Science.gov

Sample records for adiabatic lapse rate

  1. Comparison of radiative-convective models with constant and pressure-dependent lapse rates

    NASA Technical Reports Server (NTRS)

    Hummel, J. R.; Kuhn, W. R.

    1981-01-01

    One of the most commonly used models for studying climatic processes is the convective adjustment radiation model. In current radiation models, stable temperature profiles are maintained with a convective adjustment in which the temperature lapse rate is set equal to a critical lapse rate whenever the computed lapse rates exceed the critical value. First introduced by Manabe and Strickler (1964), a variety of convective adjustment models are now in use. It is pointed out that on a global scale, moist adiabatic processes, and thus moist adiabatic lapse rates, approximate the atmospheric temperature profile. Comparisons of profiles from a one-dimensional-radiative-convective model have been made using the conventional 6.5 K/km as the critical lapse rate and the pressure-dependent moist adiabatic lapse rates. For a clear sky and a single effective cloud the surface temperatures are 1 to 3 K higher with the constant 6.5 K/km critical lapse rate.

  2. Temperature lapse rates at restricted thermodynamic equilibrium. Part II: Saturated air and further discussions

    NASA Astrophysics Data System (ADS)

    Björnbom, Pehr

    2016-03-01

    In the first part of this work equilibrium temperature profiles in fluid columns with ideal gas or ideal liquid were obtained by numerically minimizing the column energy at constant entropy, equivalent to maximizing column entropy at constant energy. A minimum in internal plus potential energy for an isothermal temperature profile was obtained in line with Gibbs' classical equilibrium criterion. However, a minimum in internal energy alone for adiabatic temperature profiles was also obtained. This led to a hypothesis that the adiabatic lapse rate corresponds to a restricted equilibrium state, a type of state in fact discussed already by Gibbs. In this paper similar numerical results for a fluid column with saturated air suggest that also the saturated adiabatic lapse rate corresponds to a restricted equilibrium state. The proposed hypothesis is further discussed and amended based on the previous and the present numerical results and a theoretical analysis based on Gibbs' equilibrium theory.

  3. Tropospheric Lapse Rate and Methane on Titan

    NASA Technical Reports Server (NTRS)

    McKay, C. P.; Martin, S. Chau; Griffith, C. A.; Keller, R. M.; Cuzzi, Jeffery N. (Technical Monitor)

    1995-01-01

    We have reanalyzed the Voyager radio occultation data for Titan with two alternative approaches to methane condensation. In one approach, methane condensation is enhanced by the presence of nitrogen. In the other approach, methane condensation does not occur. As pointed out by Thompson, nitrogen lowers the condensation level for a methane/nitrogen Mixture and we find that the upper limit on surface relative humidity of methane obtained from the Voyager occultation data is lowered from 0.7 to 0.6. However, 140% supersaturation of methane in the troposphere, suggested by Courtin et al., allows all surface humidities to be consistent with the Voyager occultation data and the upper limit is set by other considerations. We conclude that if supersaturation is not included then the surface relative humidity of methane is between 0.08 and 0.6, with values close to 0.6 indicated. If supersaturation is included then the surface relative humidity of methane is between 0.08 and 0.85, again, with values close to 0.6 indicated. The tropospheric lapse rate on Titan appears to be determined by radiative equilibrium. It is everywhere stable against dry convection but is unstable to moist convection. This is consistent with a supersaturated atmosphere in which condensation - and hence moist convection - is inhibited. The absence of dry convection in the troposphere of Titan can be explained by a simple grey model which shows that the radiative profile of any gas for which the ratio of the gas constant to the specific heat at constant pressure is greater than 0.25 never becomes unstable to dry convection.

  4. The lapse-rate feedback leads to polar temperature amplification.

    NASA Astrophysics Data System (ADS)

    Grand Graversen, Rune; Langen, Peter; Mauritsen, Thorsten

    2014-05-01

    The atmospheric temperature will change in response to a radiative forcing of the climate system, but the temperature change may not be constant with height in the atmosphere. The dependence of the temperature change on hight gives rise to the lapse-rate feedback. In a warmer climate, the saturated mixing ratio of water vapour increases more at lower than at upper levels in the troposphere. Therefore due to enhanced latent heat release, the atmosphere tends to warm more in the upper than in the lower troposphere in regions where strong convection is present, such as at tropical latitudes. This results in enhanced radiation back to space, and in a more efficient cooling of the Earth system. This is contributing to a negative lapse-rate feedback. The opposite situation prevails at the high latitudes where stable stratification conditions in the lower troposphere result in a larger warming of the surface-near atmosphere than of the upper troposphere. This is contributing to a positive lapse-rate feedback. Hence the lapse-rate feedback is assumed to be negative at low, and positive at high latitudes. Here we explore the lapse-rate feedback and its effect on the climate system using a slab-ocean climate model, the Community Climate System Model version 4. By locking the temperature change throughout the troposphere to that at the surface in calls to the radiation code, the lapse-rate feedback is suppressed on-line in the model. Doubling-of-CO2 experiments where the lapse-rate feedback is suppressed are compared with experiments where it is retained. In a similar way the surface-albedo feedback is suppressed by keeping the surface albedo fixed in the entire model system. On the basis of model versions where either one or both of the feedbacks are suppressed, we are able to separate the effect of the surface-albedo and lapse-rate feedback. For instance we can estimate the contribution to the polar temperature amplification due to each of the feedbacks. The results show

  5. The tropical lapse rate steepened during the Last Glacial Maximum

    PubMed Central

    Loomis, Shannon E.; Russell, James M.; Verschuren, Dirk; Morrill, Carrie; De Cort, Gijs; Sinninghe Damsté, Jaap S.; Olago, Daniel; Eggermont, Hilde; Street-Perrott, F. Alayne; Kelly, Meredith A.

    2017-01-01

    The gradient of air temperature with elevation (the temperature lapse rate) in the tropics is predicted to become less steep during the coming century as surface temperature rises, enhancing the threat of warming in high-mountain environments. However, the sensitivity of the lapse rate to climate change is uncertain because of poor constraints on high-elevation temperature during past climate states. We present a 25,000-year temperature reconstruction from Mount Kenya, East Africa, which demonstrates that cooling during the Last Glacial Maximum was amplified with elevation and hence that the lapse rate was significantly steeper than today. Comparison of our data with paleoclimate simulations indicates that state-of-the-art models underestimate this lapse-rate change. Consequently, future high-elevation tropical warming may be even greater than predicted. PMID:28138544

  6. The tropical lapse rate steepened during the Last Glacial Maximum.

    PubMed

    Loomis, Shannon E; Russell, James M; Verschuren, Dirk; Morrill, Carrie; De Cort, Gijs; Sinninghe Damsté, Jaap S; Olago, Daniel; Eggermont, Hilde; Street-Perrott, F Alayne; Kelly, Meredith A

    2017-01-01

    The gradient of air temperature with elevation (the temperature lapse rate) in the tropics is predicted to become less steep during the coming century as surface temperature rises, enhancing the threat of warming in high-mountain environments. However, the sensitivity of the lapse rate to climate change is uncertain because of poor constraints on high-elevation temperature during past climate states. We present a 25,000-year temperature reconstruction from Mount Kenya, East Africa, which demonstrates that cooling during the Last Glacial Maximum was amplified with elevation and hence that the lapse rate was significantly steeper than today. Comparison of our data with paleoclimate simulations indicates that state-of-the-art models underestimate this lapse-rate change. Consequently, future high-elevation tropical warming may be even greater than predicted.

  7. Temperature lapse rate as an adjunct to wind shear detection

    NASA Technical Reports Server (NTRS)

    Zweifil, Terry

    1991-01-01

    Several meteorological parameters were examined to determine if measurable atmospheric conditions can improve windshear detection devices. Lapse rate, the temperature change with altitude, shows promise as being an important parameter in the prediction of severe wind shears. It is easily measured from existing aircraft instrumentation, and it can be important indicator of convective activity including thunderstorms and microbursts. The meteorological theory behind lapse rate measurement is briefly reviewed, and and FAA certified system is described that is currently implemented in the Honeywell Wind Shear Detection and Guidance System.

  8. Near-surface temperature lapse rates in a mountainous catchment in the Chilean Andes

    NASA Astrophysics Data System (ADS)

    Ayala; Schauwecker, S.; Pellicciotti, F.; McPhee, J. P.

    2011-12-01

    In mountainous areas, and in the Chilean Andes in particular, the irregular and sparse distribution of recording stations resolves insufficiently the variability of climatic factors such as precipitation, temperature and relative humidity. Assumptions about air temperature variability in space and time have a strong effect on the performance of hydrologic models that represent snow processes such as accumulation and ablation. These processes have large diurnal variations, and assumptions that average over longer time periods (days, weeks or months) may reduce the predictive capacity of these models under different climatic conditions from those for which they were calibrated. They also introduce large uncertainties when such models are used to predict processes with strong subdiurnal variability such as snowmelt dynamics. In many applications and modeling exercises, temperature is assumed to decrease linearly with elevation, using the free-air moist adiabatic lapse rate (MALR: 0.0065°C/m). Little evidence is provided for this assumption, however, and recent studies have shown that use of lapse rates that are uniform in space and constant in time is not appropriate. To explore the validity of this approach, near-surface (2 m) lapse rates were calculated and analyzed at different temporal resolution, based on a new data set of spatially distributed temperature sensors setup in a high elevation catchment of the dry Andes of Central Chile (approx. 33°S). Five minutes temperature data were collected between January 2011 and April 2011 in the Ojos de Agua catchment, using two Automatic Weather Stations (AWSs) and 13 T-loggers (Hobo H8 Pro Temp with external data logger), ranging in altitude from 2230 to 3590 m.s.l.. The entire catchment was snow free during our experiment. We use this unique data set to understand the main controls over temperature variability in time and space, and test whether lapse rates can be used to describe the spatial variations of air

  9. Refinement of Eocene lapse rates, fossil-leaf altimetry, and North American Cordilleran surface elevation estimates

    NASA Astrophysics Data System (ADS)

    Feng, Ran; Poulsen, Christopher J.

    2016-02-01

    Estimates of continental paleoelevation using proxy methods are essential for understanding the geodynamic, climatic, and geomorphoric evolution of ancient orogens. Fossil-leaf paleoaltimetry, one of the few quantitative proxy approaches, uses fossil-leaf traits to quantify differences in temperature or moist enthalpy between coeval coastal and inland sites along latitudes. These environmental differences are converted to elevation differences using their rates of change with elevation (lapse rate). Here, we evaluate the uncertainty associated with this method using the Eocene North American Cordillera as a case study. To do so, we develop a series of paleoclimate simulations for the Early (∼55-49 Ma) and Middle Eocene (49-40 Ma) period using a range of elevation scenarios for the western North American Cordillera. Simulated Eocene lapse rates over western North America are ∼5 °C/km and 9.8 kJ/km, close to moist adiabatic rates but significantly different from modern rates. Further, using linear lapse rates underestimates high-altitude (>3 km) temperature variability and loss of moist enthalpy induced by non-linear circulation changes in response to increasing surface elevation. Ignoring these changes leads to kilometer-scale biases in elevation estimates. In addition to these biases, we demonstrate that previous elevation estimates of the western Cordillera are affected by local climate variability at coastal fossil-leaf sites of up to ∼8 °C in temperature and ∼20 kJ in moist enthalpy, a factor which further contributes to elevation overestimates of ∼1 km for Early Eocene floras located in the Laramide foreland basins and underestimates of ∼1 km for late Middle Eocene floras in the southern Cordillera. We suggest a new approach for estimating past elevations by comparing proxy reconstructions directly with simulated distributions of temperature and moist enthalpy under a range of elevation scenarios. Using this method, we estimate mean elevations for

  10. Temperature lapse rate and methane in Titan's troposphere

    NASA Technical Reports Server (NTRS)

    McKay, C. P.; Chau Martin, S.; Griffith, C. A.; Keller, R. M.

    1997-01-01

    We have reanalyzed the Voyager radio occultation data for Titan, examining two alternative approaches to methane condensation. In one approach, methane condensation is facilitated by the presence of nitrogen because nitrogen lowers the condensation level of a methane/nitrogen mixture. The resulting enhancement in methane condensation lowers the upper limit on surface relative humidity of methane obtained from the Voyager occultation data from 0.7 to 0.6. We conclude that in this case the surface relative humidity of methane lies between 0.08 and 0.6, with values close to 0.6 indicated. In the other approach, methane is allowed to become supersaturated and reaches 1.4 times saturation in the troposphere. In this case, surface humidities up to 100% are allowed by the Voyager occultation data, and thus the upper limit must be set by other considerations. We conclude that if supersaturation is included, then the surface relative humidity of methane can be any value greater than 0.08--unless a deep ocean is present, in which case the surface relative humidity is limited to less than 0.85. Again, values close to 0.6 are indicated. Overall, the tropospheric lapse rate on Titan appears to be determined by radiative equilibrium. The lapse rate is everywhere stable against dry convection, but is unstable to moist convection. This finding is consistent with a supersaturated atmosphere in which condensation-and hence moist convection-is inhibited.

  11. Spatial patterns of climatological temperature lapse rate in mainland China: A multi-time scale investigation

    NASA Astrophysics Data System (ADS)

    Li, Yue; Zeng, Zhenzhong; Zhao, Lin; Piao, Shilong

    2015-04-01

    Quantitative evaluation of how mountain ecosystems respond to climate change requires accurate estimates of temperature at high elevations. One approach to estimating highland temperature is to extrapolate temperatures from low elevations based on previous observations of the environmental temperature lapse rate (γlocal). However, our understanding of γlocal is still very limited. Here we use daily mean, maximum, and minimum temperature (Tmean, Tmax, and Tmin) data from 523 meteorological stations in mainland China to estimate the spatiotemporal patterns of the climatological γlocal (γlocal(Tmean), γlocal(Tmax), and γlocal(Tmin)). The patterns of all γlocal display (1) a significant (P < 0.05) spatial difference between southern China (4 to 6 K km-1) and northern China (including the Qinghai-Tibetan Plateau, >6 K km-1) and (2) a distinct seasonal variation, with higher γlocal occurring in summer and lower in winter (except for the Qinghai-Tibetan Plateau where the seasonality is reversed). In addition, the seasonal amplitude of γlocal(Tmax) exceeds that of γlocal(Tmin). Physically, γlocal(Tmax) is significantly influenced by cloud cover (partial correlation coefficients: R = -0.25, P < 0.001) and regulated by precipitation, with γlocal (Tmax) increasing with Tmax in humid regions while decreasing in drier regions. At night, the spatial pattern of γlocal (Tmin) is determined by Tmin (R = -0.51, P < 0.001) due to temperature control on the saturated adiabatic lapse rate. Our results demonstrate that the magnitude of γlocal obviously differs in regional distributions and seasonal variations and may be a result of the interactions among the climatic factors. To improve the accuracy of the extrapolation method requires spatial patterns of γlocal rather than just a constant universal value.

  12. Near-surface air temperature lapse rates in Xinjiang, northwestern China

    NASA Astrophysics Data System (ADS)

    Du, Mingxia; Zhang, Mingjun; Wang, Shengjie; Zhu, Xiaofan; Che, Yanjun

    2017-01-01

    Lapse rates of near-surface (2 m) air temperature are important parameters in hydrologic and climate simulations, especially for the mountainous areas without enough in-situ observations. In Xinjiang, northwestern China, the elevations range from higher than 7000 m to lower than sea level, but the existing long-term meteorological measurements are limited and distributed unevenly. To calculate lapse rates in Xinjiang, the daily data of near-surface air temperature (T min, T ave, and T max) were measured by automatic weather stations from 2012 to 2014. All the in situ observation stations were gridded into a network of 1.5° (latitude) by 1.5° (longitude), and the spatial distribution and the daily, monthly, seasonal variations of lapse rates for T min, T ave, and T max in Xinjiang are analyzed. The Urumqi River Basin has been considered as a case to study the influence of elevation, aspect, and the wet and dry air conditions to the T min, T ave, and T max lapse rates. Results show that (1) the lapse rates for T min, T ave, and T max vary spatially during the observation period. The spatial diversity of T min lapse rates is larger than that of T ave, and that of T max is the smallest. For each season, T max lapse rates have more negative values than T ave lapse rates which are steeper than T min lapse rates. The weakest spatial diversity usually appears in July throughout a year. (2) The comparison for the three subregions (North, Middle, and South region) exhibits that lapse rates have similar day-to-day and month-to-month characteristics which present shallower values in winter months and steeper values in summer months. The T ave lapse rates in North region are shallower than those in Middle and South region, and the steepest T ave lapse rates of the three regions all appear in April. T min lapse rates are shallower than T max lapse rates. The maximum medians of T min and T max lapse rates for each grid in the three regions all appear in January, whereas the

  13. Adiabatic vs. non-adiabatic determination of specific absorption rate of ferrofluids

    NASA Astrophysics Data System (ADS)

    Natividad, Eva; Castro, Miguel; Mediano, Arturo

    2009-05-01

    The measurement of temperature variations in adiabatic conditions allows the determination of the specific absorption rate of magnetic nanoparticles and ferrofluids from the correct incremental expression, SAR=(1/ m MNP) C(Δ T/Δ t). However, when measurements take place in non-adiabatic conditions, one must approximate this expression by SAR≈ Cβ/ m MNP, where β is the initial slope of the temperature vs. time curve during alternating field application. The errors arising from the use of this approximation were estimated through several experiments with different isolating conditions, temperature sensors and sample-sensor contacts. It is concluded that small to appreciable errors can appear, which are difficult to infer or control.

  14. Variability of the isotopic lapse rate across the mountain ranges in Wyoming

    NASA Astrophysics Data System (ADS)

    Brian, H.; Fan, M.

    2012-12-01

    Stable isotope based paleoaltimetry studies require knowledge of the isotope-elevation gradient during the time of interest, but this information is rarely available. As a result, many studies often apply the modern local lapse rate or a global average lapse rate and assume these values are valid for the area of interest and that they hold through time. However, natural variability in local-scale climate and mountain geometry and morphology can influence the isotope-elevation (and temperature-elevation) gradient. We evaluate the inter- and intra-mountain range variability of modern climate and isotope values of stream water for three Laramide ranges in Wyoming (Wind River Range, Bighorn and Laramie Mountains), as well as for a regional elevation transect across the central Rocky mountain front. Samples of steam water were taken from major catchments across Wyoming in 2007, 2011, and 2012. We find that the modern lapse rate for these ranges is -1.7‰/km, -2.2‰/km and -1.8‰/km respectively. Although these values are very similar to one another and to the global isotopic lapse rate (-2.1‰/km), large variation (up to 6‰/km) exists among individual small river catchments of the Bighorn Mountains. The variability in catchment-scale lapse rate does not appear to be systematically related to annual, or seasonal surface air temperature, precipitation amount, or catchment area. However, the range-scale lapse rates may yet reflect the regional climate, which is generally coolest and driest in the Wind River Range (lowest lapse rate) and warmest and wettest in the Bighorn Mountains (highest lapse rate). Similar d-excess values exist across individual mountain ranges, but inter-mountain range differences indicate that the Laramie Mountains (and regions of western Nebraska) receive evaporatively enriched rainwater compared to those in the Wind River Range and Bighorn Mountains. These differences do not necessarily require separate vapor sources as the lower d

  15. Diurnal Wind Regimes and Lapse-Rate Variability Over Clean and Debris-Covered Ice

    NASA Astrophysics Data System (ADS)

    Flowers, G. E.; Young, E.

    2015-12-01

    Near-surface winds and air temperature play an important role in the surface energy balance of glaciers and ice sheets, and can be highly variable in space and time. The increasing fraction of debris-covered ice observed in many retreating alpine glacier environments motivates the study of these variables, and the processes that control them, over both clean and debris-covered ice. We use meteorological data collected in the ablation zone of a ~ 5km-long valley glacier in Yukon, Canada, to analyze the diurnal variability of temperature and wind regimes over debris-covered and debris-free ice. Our data reveal pronounced diurnal cycles in temperature lapse rates, wind speeds, and wind directions. Common to both clean and debris-covered areas are: (1) a shallowing of lapse rates in the early morning from 6:00 to 9:00 and a steepening of lapse rates during the day from 9:00 to 16:00, (2) nearly identical lapse rates regardless of surface type between 15:00 and 19:00, and (3) a persistent diurnal wind regime in which up-valley winds occur from late morning to evening, peaking at 16:00-17:00, and relatively weaker down-valley winds occur overnight. Significant differences between the clean-ice and debris-covered sites are also evident in the data, namely: (1) much steeper night-time lapse rates over debris-covered ice than clean ice, (2) the occurrence of steepest lapse rates overnight for debris-covered ice and in late afternoon (around 16:00) for clean ice, and (3) a more pronounced diurnal cycle in windspeed over debris-covered ice than clean ice, despite all stations exhibiting evidence of the diurnal changes in wind direction. The patterns described above conform to a model of weak katabatic flow at night and relatively stronger up-valley winds during the day, peaking in late afternoon. Though absolute temperatures over clean and debris-covered ice are markedly different during the day, lapse rates over both surfaces evolve similarly through the day to achieve steep

  16. Extratropical lapse rates during the Paleogene and other very hot climates

    NASA Astrophysics Data System (ADS)

    Zamora, R. A.; Korty, R.; Huber, M.; Thomas, D. J.

    2011-12-01

    Middle latitude storms redistribute heat across the planet, pushing warm tropical air poleward on one side and bringing cold polar air equatorward on the other. At the same time they redistribute heat vertically, stabilizing atmospheric lapse rates in the process. The interplay between convective processes and the stabilizing effects of these large-scale systems remains debated, and the purpose of this study is to examine how the relative importance of each varies with climate. We study output from NCAR's Community Atmospheric Model in which carbon dioxide concentrations vary over a wide range: from preindustrial-era levels of 280 ppm to 8960 ppm. One set uses present-day continental distributions while another has geography applicable to the Eocene epoch. As a tool to assess the stability of the atmosphere, we calculate a thermodynamic variable called saturation potential vorticity (P*), which has the property of being identically zero wherever lapse rates are neutral with respect to moist convection, and large where lapse rates are stable. To complement this analysis, we also examine how the heights of the thermal and dynamic tropopauses change. By examining simulations in which carbon dioxide concentrations vary over a wide range of values, we can assess the relative importance of convective processes to middle latitude thermal stratification in progressively warmer climate states. We also examine how the large-scale general circulation evolves in the hottest states, by assessing the relationship between the width of the Hadley circulation and subtropical stability. The controls for the Eocene epoch and preindustrial era cases have stabilites similar to those found in the present-day climate. Our simulations indicate tropical regions are neutral with respect to moist convection while higher latitudes most often have stable lapse rates, especially during the winter months. In the warmer climates, the frequency of convectively neutral air masses increases in both

  17. High Lapse Rates in AIRS Retrieved Temperatures in Cold Air Outbreaks

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Kahn, Brian; Olsen, Edward T.; Fishbein, Evan

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) experiment, on NASA's Aqua spacecraft, uses a combination of infrared and microwave observations to retrieve cloud and surface properties, plus temperature and water vapor profiles comparable to radiosondes throughout the troposphere, for cloud cover up to 70%. The high spectral resolution of AIRS provides sensitivity to important information about the near-surface atmosphere and underlying surface. A preliminary analysis of AIRS temperature retrievals taken during January 2003 reveals extensive areas of superadiabatic lapse rates in the lowest kilometer of the atmosphere. These areas are found predominantly east of North America over the Gulf Stream, and, off East Asia over the Kuroshio Current. Accompanying the high lapse rates are low air temperatures, large sea-air temperature differences, and low relative humidities. Imagery from a Visible / Near Infrared instrument on the AIRS experiment shows accompanying clouds. These lines of evidence all point to shallow convection in the bottom layer of a cold air mass overlying warm water, with overturning driven by heat flow from ocean to atmosphere. An examination of operational radiosondes at six coastal stations in Japan shows AIRS to be oversensitive to lower tropospheric lapse rates due to systematically warm near-surface air temperatures. The bias in near-surface air temperature is seen to be independent of sea surface temperature, however. AIRS is therefore sensitive to air-sea temperature difference, but with a warm atmospheric bias. A regression fit to radiosondes is used to correct AIRS near-surface retrieved temperatures, and thereby obtain an estimate of the true atmosphere-ocean thermal contrast in five subtropical regions across the north Pacific. Moving eastward, we show a systematic shift in this air-sea temperature differences toward more isothermal conditions. These results, while preliminary, have implications for our understanding of heat flow from ocean to

  18. Accurate measurement of the specific absorption rate using a suitable adiabatic magnetothermal setup

    NASA Astrophysics Data System (ADS)

    Natividad, Eva; Castro, Miguel; Mediano, Arturo

    2008-03-01

    Accurate measurements of the specific absorption rate (SAR) of solids and fluids were obtained by a calorimetric method, using a special-purpose setup working under adiabatic conditions. Unlike in current nonadiabatic setups, the weak heat exchange with the surroundings allowed a straightforward determination of temperature increments, avoiding the usual initial-time approximations. The measurements performed on a commercial magnetite aqueous ferrofluid revealed a good reproducibility (4%). Also, the measurements on a copper sample allowed comparison between experimental and theoretical values: adiabatic conditions gave SAR values only 3% higher than the theoretical ones, while the typical nonadiabatic method underestimated SAR by 21%.

  19. The altitudinal temperature lapse rates applied to high elevation rockfalls studies in the Western European Alps

    NASA Astrophysics Data System (ADS)

    Nigrelli, Guido; Fratianni, Simona; Zampollo, Arianna; Turconi, Laura; Chiarle, Marta

    2017-02-01

    Temperature is one of the most important aspects of mountain climates. The relationships between air temperature and rockfalls at high-elevation sites are very important to know, but are also very difficult to study. In relation to this, a reliable method to estimate air temperatures at high-elevation sites is to apply the altitudinal temperature lapse rates (ATLR). The aims of this work are to quantify the values and the variability of the hourly ATLR and to apply this to estimated temperatures at high-elevation sites for rockfalls studies. To calculate ATLR prior the rockfalls, we used data acquired from two automatic weather stations that are located at an elevation above 2500 m. The sensors/instruments of these two stations are reliable because subjected to an accurate control and calibration once for year and the raw data have passed two automatic quality controls. Our study has yielded the following main results: (i) hourly ATLR increases slightly with increasing altitude, (ii) it is possible to estimate temperature at high-elevation sites with a good level of accuracy using ATLR, and (iii) temperature plays an important role on slope failures that occur at high-elevation sites and its importance is much more evident if the values oscillate around 0 °C with an amplitude of ±5 °C during the previous time-period. For these studies, it is not enough to improve the knowledge on air temperature, but it is necessary to develop an integrated knowledge of the thermal conditions of different materials involved in these processes (rock, debris, ice, water). Moreover, this integrated knowledge must be acquired by means of sensors and acquisition chains with known metrological traceability and uncertainty of measurements.

  20. Spatiotemporal Characteristics of Altitudinal Lapse Rate of Temperature in Mainland China

    NASA Astrophysics Data System (ADS)

    Li, Y.; Zeng, Z.; Zhao, L.; Piao, S.

    2014-12-01

    Quantitative evaluation of how mountain ecosystems respond to climate change requires accurate estimates of temperature at high altitudes. One approach to estimating highland temperature is by extrapolating temperatures from low altitudes, based on previous observations of the actual altitudinal lapse rate of temperature (γlocal). However, our understanding of γlocal is still very limited. Here, we use daily mean, maximum and minimum temperature (Tmean, Tmax, Tmin) data from 523 meteorological stations in mainland China to estimate the spatiotemporal patterns of γlocal. The mean γlocal across the whole country is 5.4 K km-1, with a daytime average of 5.0 K km-1 and a nighttime average of 5.6 K km-1. The patterns of γlocal for Tmean (γlocal(Tmean)) display: 1) a significant spatial difference between southern China and northern China (including the Qinghai-Tibet Plateau, p<0.05); 2) a distinct seasonal variation, with higher γlocal occurring in summer and lower occurring in winter in most regions. Interestingly, the seasonal variation for the Qinghai-Tibet Plateau is reversed, with γlocal being lower in summer and higher in winter. In addition, the spatial difference and seasonal variation of γlocal for Tmax and Tmin (γlocal(Tmax) and γlocal(T­min)) show similar patterns to γlocal(Tmean), but slightly diverge from each other. Our results demonstrate that the magnitude of γlocal obviously differs in regional distributions and seasonal variations, and may be a result of the interactions among temperature, atmospheric moisture content and solar radiation. To improve the accuracy of the extrapolation method requires spatial patterns of γlocal rather than just a constant universal value.

  1. Sensitivity of the atmospheric lapse rate to solar cloud absorption in a radiative-convective model

    NASA Astrophysics Data System (ADS)

    Erlick, Carynelisa; Ramaswamy, V.

    2003-08-01

    Previous radiative-convective model studies of the radiative forcing due to absorbing aerosols such as soot and dust have revealed a strong dependence on the vertical distribution of the absorbers. In this study, we extend this concept to absorption in cloud layers, using a one-dimensional radiative-convective model employing high, middle, and low cloud representations to investigate the response of the surface temperature and atmospheric lapse rate to increases in visible cloud absorption. The visible single-scattering albedo (ssa) of the clouds is prescribed, ranging from 1.0 to 0.6, where 0.99 is the minimum that would be expected from the presence of absorbing aerosols within the cloud drops on the basis of recent Monterey Area Ship Track (MAST) Experiment case studies. Simulations are performed with respect to both a constant cloud optical depth and an increasing cloud optical depth and as a function of cloud height. We find that increases in solar cloud absorption tend to warm the troposphere and surface and stabilize the atmosphere, while increases in cloud optical depth cool the troposphere and surface and slightly stabilize the atmosphere between the low cloud top and surface because of the increase in surface cooling. In the absence of considerations involving microphysical or cloud-climate feedbacks, we find that two conditions are required to yield an inversion from a solar cloud absorption perturbation: (1) The solar absorption perturbation must be included throughout the tropospheric clouds column, distributing the solar heating to higher altitudes, and (2) the ssa of the clouds must be ≤0.6, which is an unrealistically low value. The implication is that there is very little possibility of significant stabilization of the global mean atmosphere due to perturbation of cloud properties given current ssa values.

  2. A direct algorithm for convective adjustment of the vertical temperature profile for an arbitrary critical lapse rate

    NASA Technical Reports Server (NTRS)

    Akmaev, Rashid A.

    1991-01-01

    An efficient direct algorithm of convective adjustment for an arbitrary critical value of the vertical temperature lapse rate gamma is proposed. The algorithm provides an exact and unique solution of a standard convective adjustment problem for models with temperature specified either on nonuniformly spaced levels or for layers of different thicknesses in pressure, sigma, or other vertical coordinate related to pressure. The algorithm may be recommended for use either directly in atmospheric models not explicitly including a hydrologic cycle with prescribed gamma, or as a part of more complicated parameterizations of moist convection, where gamma may be calculated depending on relative humidity.

  3. Intense dust episodes in the Mediterranean and possible effects on atmospheric lapse rates

    NASA Astrophysics Data System (ADS)

    Hatzianastassiou, Nikos; Gkikas, Antonis; Papadimas, Christos D.; Gavrouzou, Maria

    2016-04-01

    Dust aerosols are major contributor to the atmospheric particulate matter, having significant effects on climate and weather patterns as well as on human health, not to mention others like agriculture or ocean chlorophyll. Moreover, these effects are maximized under conditions of massive dust concentration in the atmosphere, namely dust episodes or events. Such events are caused by uplifting and transport of dust from arid and semi-arid areas under favorable synoptic conditions. The Mediterranean basin, nearby to the greatest world deserts of North Africa and Middle East, frequently undergoes dust episodes. During such Mediterranean episodes, the number and mass concentration of dust is high, due to the proximity of its source areas. The dust episodes, through the direct interaction of dust primarily withthe shortwave but also with longwave radiation can lead to strong local warming in the atmosphere, possibly causing temperature inversion during daytime. The existence of such temperature inversions, associated with intense dust episodes in the Mediterranean, is the focus in this study. The methodology followed to achieve the scientific goal of the study consists in the use of a synergy of different data. This synergy enables: (i) the determination of intense dust episodes over the Mediterranean, (ii) the investigation and specification of temperature lapse rates and inversions during the days of dust episodes and (iii) the identification of vertical distribution of aerosols in the atmosphere over specific locations during the days of the episodes. These objectives are achieved through the use of data from: (i) the AERosol Robotic NETwork (AERONET) network, (ii) the Upper Air Observations (radiosondes) database of the University of Wyoming (UoW) and (iii) the European Aerosol Research Lidar Network (EARLINET) database. The study period spans the years from 2000 to 2013, constrained by the data availability of the databases. A key element of the methodology is the

  4. Separating climate change signals into thermodynamic, lapse-rate and circulation effects: theory and application to the European summer climate

    NASA Astrophysics Data System (ADS)

    Kröner, Nico; Kotlarski, Sven; Fischer, Erich; Lüthi, Daniel; Zubler, Elias; Schär, Christoph

    2016-07-01

    Climate models robustly project a strong overall summer warming across Europe showing a characteristic north-south gradient with enhanced warming and drying in southern Europe. However, the processes that are responsible for this pattern are not fully understood. We here employ an extended surrogate or pseudo-warming approach to disentangle the contribution of different mechanisms to this response pattern. The basic idea of the surrogate technique is to use a regional climate model and apply a large-scale warming to the lateral boundary conditions of a present-day reference simulation, while maintaining the relative humidity (and thus implicitly increasing the specific moisture content). In comparison to previous studies, our approach includes two important extensions: first, different vertical warming profiles are applied in order to separate the effects of a mean warming from lapse-rate effects. Second, a twin-design is used, in which the climate change signals are not only added to present-day conditions, but also subtracted from a scenario experiment. We demonstrate that these extensions provide an elegant way to separate the full climate change signal into contributions from large-scale thermodynamic (TD), lapse-rate (LR), and circulation and other remaining effects (CO). The latter in particular include changes in land-ocean contrast and spatial variations of the SST warming patterns. We find that the TD effect yields a large-scale warming across Europe with no distinct latitudinal gradient. The LR effect, which is quantified for the first time in our study, leads to a stronger warming and some drying in southern Europe. It explains about 50 % of the warming amplification over the Iberian Peninsula, thus demonstrating the important role of lapse-rate changes. The effect is linked to an extending Hadley circulation. The CO effect as inherited from the driving GCM is shown to further amplify the north-south temperature change gradient. In terms of mean summer

  5. Separating climate change signals into thermodynamic, lapse-rate and circulation effects: Theory and application to the European summer climate

    NASA Astrophysics Data System (ADS)

    Kroener, Nico; Kotlarski, Sven; Fischer, Erich; Lüthi, Daniel; Zubler, Elias; Schär, Christoph

    2016-04-01

    Climate models robustly project a strong overall summer warming across Europe showing a characteristic north-south gradient with enhanced warming and drying in southern Europe. However, the processes that are responsible for this pattern are not fully understood. We here employ an extended surrogate or pseudo-warming approach to disentangle the contribution of different mechanisms to this response pattern. The basic idea of the surrogate technique is to use a regional climate model and apply a large-scale warming to the lateral boundary conditions of a present-day reference simulation, while maintaining the relative humidity (and thus implicitly increasing the specific moisture content). In comparison to previous studies, our approach includes two important extensions: First, different vertical warming profiles are applied in order to separate the effects of a mean warming from lapse-rate effects. Second, a twin-design is used, in which the temperature change signal is not only added to present-day conditions, but also subtracted from a scenario experiment. We use the regional climate model COSMO-CLM with a grid spacing of approximately 50 km (EURO-CORDEX EUR-44 setup) using transient simulations (1950-2100) with the RCP8.5 emissions scenario. We demonstrate that the aforementioned extensions provide an elegant way to separate the full climate change signal into contributions from large-scale thermodynamics (LST), lapse-rate (LR) and large-scale circulation (LSC). In our framework the LSC effect also includes effects due to changes in land-sea contrast and the spatial variations of the SST warming pattern. We find that the LST effect yields a large-scale warming across Europe without any distinct latitudinal gradient. The LR effect, which is quantified for the first time in our study, leads to a stronger warming and some drying in Southern Europe. It explains about 50% of the warming amplification over the Iberian Peninsula, thus demonstrating the important role of

  6. Validation of snow depth reconstruction from lapse-rate webcam images against terrestrial laser scanner measurements in centrel Pyrenees

    NASA Astrophysics Data System (ADS)

    Revuelto, Jesús; Jonas, Tobias; López-Moreno, Juan Ignacio

    2015-04-01

    Snow distribution in mountain areas plays a key role in many processes as runoff dynamics, ecological cycles or erosion rates. Nevertheless, the acquisition of high resolution snow depth data (SD) in space-time is a complex task that needs the application of remote sensing techniques as Terrestrial Laser Scanning (TLS). Such kind of techniques requires intense field work for obtaining high quality snowpack evolution during a specific time period. Combining TLS data with other remote sensing techniques (satellite images, photogrammetry…) and in-situ measurements could represent an improvement of the available information of a variable with rapid topographic changes. The aim of this study is to reconstruct daily SD distribution from lapse-rate images from a webcam and data from two to three TLS acquisitions during the snow melting periods of 2012, 2013 and 2014. This information is obtained at Izas Experimental catchment in Central Spanish Pyrenees; a catchment of 33ha, with an elevation ranging from 2050 to 2350m a.s.l. The lapse-rate images provide the Snow Covered Area (SCA) evolution at the study site, while TLS allows obtaining high resolution information of SD distribution. With ground control points, lapse-rate images are georrectified and their information is rasterized into a 1-meter resolution Digital Elevation Model. Subsequently, for each snow season, the Melt-Out Date (MOD) of each pixel is obtained. The reconstruction increases the estimated SD lose for each time step (day) in a distributed manner; starting the reconstruction for each grid cell at the MOD (note the reverse time evolution). To do so, the reconstruction has been previously adjusted in time and space as follows. Firstly, the degree day factor (SD lose/positive average temperatures) is calculated from the information measured at an automatic weather station (AWS) located in the catchment. Afterwards, comparing the SD lose at the AWS during a specific time period (i.e. between two TLS

  7. Specific absorption rate determination of magnetic nanoparticles through hyperthermia measurements in non-adiabatic conditions

    NASA Astrophysics Data System (ADS)

    Coïsson, M.; Barrera, G.; Celegato, F.; Martino, L.; Vinai, F.; Martino, P.; Ferraro, G.; Tiberto, P.

    2016-10-01

    An experimental setup for magnetic hyperthermia operating in non-adiabatic conditions is described. A thermodynamic model that takes into account the heat exchanged by the sample with the surrounding environment is developed. A suitable calibration procedure is proposed that allows the experimental validation of the model. Specific absorption rate can then be accurately determined just from the measurement of the sample temperature at the equilibrium steady state. The setup and the measurement procedure represent a simplification with respect to other systems requiring calorimeters or crucial corrections for heat flow. Two families of magnetic nanoparticles, one superparamagnetic and one characterised by larger sizes and static hysteresis, have been characterised as a function of field intensity, and specific absorption rate and intrinsic loss power have been obtained.

  8. Spatial-temporal variation of near-surface temperature lapse rates over the Tianshan Mountains, central Asia

    NASA Astrophysics Data System (ADS)

    Shen, Yan-Jun; Shen, Yanjun; Goetz, Jason; Brenning, Alexander

    2016-12-01

    Adequate estimates of near-surface temperature lapse rate (γlocal) are needed to represent air temperature in remote mountain regions with sparse instrumental records such as the mountains of central Asia. To identify the spatial and temporal variations of γlocal in the Tianshan Mountains, long-term (1961-2011) daily maximum, mean, and minimum temperature (Tmax, Tmean, and Tmin) data from 17 weather stations and 1 year of temperature logger data were analyzed considering three subregions: northern slopes, Kaidu Basin, and southern slopes. Simple linear regression was performed to identify relationships between elevation and temperature, revealing spatial and seasonal variations in γlocal. The γlocal are higher on the southern slopes than the northern slopes due to topography and regional climate conditions. Seasonally, γlocal are more pronounced higher in the summer than in the winter months. The γlocal are generally higher for Tmax than Tmean and Tmin. The Kaidu Basin shows similar seasonal variability but with the highest γlocal for Tmean and Tmin occurring in the spring. Formation of γlocal patterns is associated with the interactions of climate factors in different subregions. Overall, annual mean γlocal for Tmax, Tmean, and Tmin in the study's subregions are lower than the standard atmospheric lapse rate (6.5°C km-1), which would therefore be an inadequate choice for representing the near-surface temperature conditions in this area. Our findings highlight the importance of spatial and temporal variations of γlocal in hydrometeorological research in the data-sparse Tianshan Mountains.

  9. Field measurement of erosion rates: time-lapse monitoring of rapid stone flaking at Howden Minster, UK

    NASA Astrophysics Data System (ADS)

    Doehne, E.; Pinchin, S.

    2012-04-01

    The use of a solar-powered, field time-lapse camera and environmental monitoring system enabled measurements of the pattern and rate of loss of stone from the surface of Howden Minster, an abandoned monastery in Yorkshire dating to 1380 AD. Acquiring a photograph every 1-3 hours allowed the stone damage to be correlated with local environmental conditions. Image comparison techniques borrowed from observational astronomy, such as blink comparison, were used to determine what elements had changed from image to image. Results indicate that loss is episodic rather than continuous and in several cases is related to specific environmental conditions, such as condensation/dew formation or high winds. Damage was found also to be synchronous, with surface change (flaking, granular disintegration, and loss of flakes) occurring at the same time on different stone blocks. Crystallization pressure from magnesium sulfate phase transitions appear to be the main cause of the loss of stone surfaces. Significant variation in surface loss rates was observed and appears to be related to variations in salt concentration. An examination of stone texture by ESEM/EDS revealed signification variations and suggests that salt concentrations are controlled in part by stone micromorphology. Quantitative data on rates of surface loss are not available from most monuments. Time-lapse methods permit the relatively inexpensive acquisition of this type of data, which is needed to aid conservation decision-making and the evaluation of interventions. Such tools should also prove useful to geomorphologists studying honeycomb weathering, the moving rocks on Death Valley's Racetrack Playa, and other phenomena that are otherwise difficult to study. Context: The rapid deterioration of magnesian limestone structures in the north of England has been a serious problem for more than one hundred years. While air quality in England has improved during this period, the rate of stone loss in these carved stone

  10. Adiabatic decohesion in a thermoplastic craze thickening at constant or increasing rate

    NASA Astrophysics Data System (ADS)

    Leevers, Patrick S.; Godart, Marie-Aude

    When a crack in a thermally non-diffusive material is impact loaded—or propagates at high speed—a cohesive process which resists slow crack extension may itself cause decohesion by adiabatic heating. By assuming that decohesion ultimately occurs by low-energy disentanglement within a melt layer of critical thickness, the fracture resistance of craze-forming crystalline polymers can be estimated quantitatively. Previous estimates used a simple, thermomechanically linear representation of craze fibril drawing. This paper presents a more physically realistic, numerical formulation, and demonstrates it for constant craze thickening rate (as imposed by an ideal full-notch tension test) and for linearly increasing thickening rate (as at the tip of an impact-loaded or rapidly propagating crack). For a linear material, the numerical formulation gives results which asymptotically approach those from analytical solutions, as craze density approaches zero. In more realistic model polymers, the enthalpy of fusion increasingly delays decohesion as impact speed increases, although the temperature distribution of an endotherm appears to have little effect. Increasing molecular weight, heuristically associated with decreasing craze density and increasing structural dimension, increases the predicted impact fracture resistance. In every case, fracture resistance passes through a minimum as impact speed increases. The conclusions encourage the use of impact fracture tests, and discourage the use of the full-notch tension test, to assess the dynamic fracture resistance of a craze-forming polymer.

  11. Improving snow process modeling with satellite-based estimation of near-surface-air-temperature lapse rate

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Sun, Litao; Shrestha, Maheswor; Li, Xiuping; Liu, Wenbin; Zhou, Jing; Yang, Kun; Lu, Hui; Chen, Deliang

    2016-10-01

    In distributed hydrological modeling, surface air temperature (Tair) is of great importance in simulating cold region processes, while the near-surface-air-temperature lapse rate (NLR) is crucial to prepare Tair (when interpolating Tair from site observations to model grids). In this study, a distributed biosphere hydrological model with improved snow physics (WEB-DHM-S) was rigorously evaluated in a typical cold, large river basin (e.g., the upper Yellow River basin), given a mean monthly NLRs. Based on the validated model, we have examined the influence of the NLR on the simulated snow processes and streamflows. We found that the NLR has a large effect on the simulated streamflows, with a maximum difference of greater than 24% among the various scenarios for NLRs considered. To supplement the insufficient number of monitoring sites for near-surface-air-temperature at developing/undeveloped mountain regions, the nighttime Moderate Resolution Imaging Spectroradiometer land surface temperature is used as an alternative to derive the approximate NLR at a finer spatial scale (e.g., at different elevation bands, different land covers, different aspects, and different snow conditions). Using satellite-based estimation of NLR, the modeling of snow processes has been greatly refined. Results show that both the determination of rainfall/snowfall and the snowpack process were significantly improved, contributing to a reduced summer evapotranspiration and thus an improved streamflow simulation.

  12. Spatial and Temporal Variation of Boundary Layer Lapse Rate and Cloud-top-height Observed from MODIS, CALIPSO and AMSR-E over Eastern Pacific

    NASA Astrophysics Data System (ADS)

    Adhikari, L.; Xie, F.; Winning, T.

    2015-12-01

    The strong free tropospheric subsidence and the cool sea surface temperatures over the subtropical eastern Pacific Ocean often lead to a shallow and cloudy planetary boundary layer (PBL) capped by a strong inversion. These low PBL clouds are crucial for understanding the ocean-atmosphere interaction and the cloud-radiation feedback processes. However, accurate identification/representation of these clouds remains a key challenge in both satellite observations and global climate model simulations. Specifically, the cloud transition from the near-shore stratocumulus to trade-cumulus remains a huge challenge in climate models and warrants high-quality PBL observations from space. The MODIS collection 6 cloud top height vastly improves the global PBL cloud top heights (CTH) compared to collection 5. However, the MODIS collection 6 CTH still shows systematic higher CTH than CALIPSO in the subtropical subsidence region, which is likely due to the underestimation of lapse rate. This study presents the seasonal climatology of PBL lapse rate derived from multi-year CALIPSO with co-incident MODIS CTT and AMSR-E SST measurements. The lapse rate climatology is validated by the high-resolution radiosonde observations and then used to derive the CTH from MODIS measurements. Comparison of the new lapse rate based MODIS CTH with CALIPSO CTH will be presented. The PBL height derived from the COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate) GPS radio occultation (RO) will be used to evaluate the MODIS CTH as an independent dataset. The discrepancies over the transition from stratus to trade-cumuli regions (broken clouds) will also be discussed.

  13. Microstructural characteristics of adiabatic shear localization in a metastable beta titanium alloy deformed at high strain rate and elevated temperatures

    SciTech Connect

    Zhan, Hongyi; Zeng, Weidong; Wang, Gui; Kent, Damon; Dargusch, Matthew

    2015-04-15

    The microstructural evolution and grain refinement within adiabatic shear bands in the Ti6554 alloy deformed at high strain rates and elevated temperatures have been characterized using transmission electron microscopy. No stress drops were observed in the corresponding stress–strain curve, indicating that the initiation of adiabatic shear bands does not lead to the loss of load capacity for the Ti6554 alloy. The outer region of the shear bands mainly consists of cell structures bounded by dislocation clusters. Equiaxed subgrains in the core area of the shear band can be evolved from the subdivision of cell structures or reconstruction and transverse segmentation of dislocation clusters. It is proposed that dislocation activity dominates the grain refinement process. The rotational recrystallization mechanism may operate as the kinetic requirements for it are fulfilled. The coexistence of different substructures across the shear bands implies that the microstructural evolution inside the shear bands is not homogeneous and different grain refinement mechanisms may operate simultaneously to refine the structure. - Graphical abstract: Display Omitted - Highlights: • The microstructure within the adiabatic shear band was characterized by TEM. • No stress drops were observed in the corresponding stress–strain curve. • Dislocation activity dominated the grain refinement process. • The kinetic requirements for rotational recrystallization mechanism were fulfilled. • Different grain refinement mechanisms operated simultaneously to refine the structure.

  14. Risk evaluation on the basis of pressure rate measured by automatic pressure tracking adiabatic calorimeter.

    PubMed

    Iwata, Yusaku; Koseki, Hiroshi

    2008-11-15

    An automatic pressure tracking adiabatic calorimeter (APTAC) had been employed to obtain the thermokinetic and the vapor pressure data during runaway reactions. The APTAC is an adiabatic calorimeter with a large-scale sample mass and low thermal inertia, and is an extremely useful tool for assessing thermal hazards of reactive chemicals. The data obtained by the APTAC are important information for the design of the safe industrial process. The thermodynamics parameters and the gas production were discussed on the basis of the experimental data of various concentrations and weights of di-tert-butyl peroxide (DTBP)/toluene solution for the purpose of investigating the properties of the APTAC data. The thermal decomposition of DTBP was studied on the basis of the temperature data and the pressure data obtained by the APTAC. The activation energy and the frequency factor of DTBP are nearly constant and the same as the literature values in the concentrations between 20 and 60 wt.%. The pressure rise due to gas production is important data for designing the relief vent of a reactor. The time history of the gas production was investigated with various weights and concentrations. The total gas production index, which had the vapor pressure correction, was 1.0 in the decomposition of DTBP.

  15. Lapse resistance in the verbal letter reporting task.

    PubMed

    Arditi, Aries

    2006-04-01

    Lapses, or misreporting errors, can affect accuracy of threshold measurements. Assumptions about lapse rate, especially in untrained observers, have consequently guided the design of at least one clinical psychophysical test. Lapse rate was assessed using a verbal letter identification paradigm like that used in visual acuity and letter contrast sensitivity testing. Subjects occasionally made slip-of-the tongue errors but spontaneously corrected them. Lapse rate (excluding such errors) was 0-3 errors per 1,536 (average rate of 0.0005). In this common clinical paradigm, in which observers set their reporting pace, and where opportunity to amend responses is available, lapse rate is negligible.

  16. Application of RVA and Time-Lapse Photography to Explore Effects of Extent of Chlorination, Milling Extraction Rate, and Particle-Size Reduction of Flour on Cake-Baking Functionality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three factors (extent of chlorination, milling extraction rate and particle-size reduction) in the cake-bakeing functionality of Croplan 594W flour were explored by Rapid Visco-Analyzer (RVA) and time-lapse photography. The extent of chlorination and milling extraction rate showed dramatic effects,...

  17. Entrained liquid fraction calculation in adiabatic disperse-annular flows at low rate in film

    NASA Astrophysics Data System (ADS)

    Yagov, V. V.; Minko, M. V.

    2016-04-01

    In this work, we continue our study [1] and extend further an approach to low reduced pressures. An approximate model of droplets entrainment from the laminar film surface and an equation for calculating entrainment intensity are proposed. To carry out direct verification of this equation using experimental data is extremely difficult because the integral effect—liquid flow rate in a film at a dynamic equilibrium between entrainment and deposition—is usually measured in the experiments. The balance between flows of droplets entrainment and deposition corresponds to the dynamic equilibrium because of turbulent diffusion. The transcendental equation, which was obtained on the basis of this balance, contains one unknown numerical factor and allows one to calculate the liquid rate. Comparing calculation results with the experimental data for the water-air and water-helium flows at low reduced pressures (less than 0.03) has shown their good agreement at the universal value of a numerical constant, if an additional dimensionless parameter, a fourth root of vaporliquid densities ratio, is introduced. The criterion that determines the boundary of using methods of this work and that of [1] in calculations and that reflects effect of pressure and state of film surface on distribution of the liquid in the annular flow is proposed; the numerical value of this criterion has been determined.

  18. AMS Time Lapse Installation

    NASA Video Gallery

    A time lapse video compilation of the installation of the Alpha Magnetic Spectrometer on the International Space Station’s starboard truss using the station’s robotic arm, Canadarm2, during the...

  19. Investigation of carbon-formation mechanisms and fuel-conversion rates in the adiabatic reformer. Annual report, March 19, 1980-March 19, 1981

    SciTech Connect

    Not Available

    1981-01-01

    Fuel cell power plants may be required to use coal derived liquid fuels or heavy petroleum distillates as fuels. Among the fuel processor candidates, the adiabatic reformer is at the most advanced state of development. The objective of the present program is to establish a reactor model for the adiabatic reformer which will predict process stream compositions and include carbon formation processes. Four subordinate tasks were proposed to achieve the objective. These are: 1) to determine on selected catalysts rate expressions for catalytic reactions occurring in the entrance section of the adiabatic reformer; 2) to determine with microbalance experiments critical conditions for carbon formation on selected catalysts; 3) to establish a reactor model to predict process stream compositions in the adiabatic reformer using data from Task 1 for catalytic reactions and data from the literature for homogeneous gas phase reactions; and 4) to establish a model to predict carbon formation by combination of the model for process stream composition from Task 3 and data for carbon formation from Task 2. Progress is reported. (WHK)

  20. Heat deposition rate measurements using a graphite quasi-adiabatic calorimeter and thermoluminescent dosimeters in a fusion environment of the LOTUS facility

    SciTech Connect

    Joneja, O.P.; Rosselet, M.; Luethi, A.; Ligou, J.; Anand, R.P.; Buchillier, T.

    1995-11-01

    Heat deposition rate measurements are made by an extremely sensitive quasi-adiabatic graphite calorimeter and thermoluminescent dosimeters (TLDs) in the fusion environment of the LOTUS facility. The reproducibility of these measurements is found to be better than 1% for a dose rate more than 60 cGy/min and better than 3.8% for dose rates in the range of 6 to 60 cGy/min. The heating rates are found to vary linearly with neutron source strength. The calculation to experiment (C/E) for the bare calorimeter is found to be 1.05, whereas inside the graphite block, C/E varies from 1.11 to 1.32. These measurements are analyzed by the MCNP Monte Carlo neutron and photon transport code using the BMCCS2, PHOTXS2, and EL2 cross-section libraries. The influence of wall-returned neutrons and gammas is found to be negligible. A detailed data treatment is done with the TLD outputs to arrive at the gamma heating component at different locations in the graphite by employing the Burlin theory. The gamma production is found to be well represented in the calculations. On the other hand, measured and calculated net nuclear heating in the graphite differ considerably. A downward revision of the neutron kerma factor would be desirable. 23 refs., 8 figs., 4 tabs.

  1. Optimizing Adiabaticity in NMR

    NASA Astrophysics Data System (ADS)

    Vandermause, Jonathan; Ramanathan, Chandrasekhar

    We demonstrate the utility of Berry's superadiabatic formalism for numerically finding control sequences that implement quasi-adiabatic unitary transformations. Using an iterative interaction picture, we design a shortcut to adiabaticity that reduces the time required to perform an adiabatic inversion pulse in liquid state NMR. We also show that it is possible to extend our scheme to two or more qubits to find adiabatic quantum transformations that are allowed by the control algebra, and demonstrate a two-qubit entangling operation in liquid state NMR. We examine the pulse lengths at which the fidelity of these adiabatic transitions break down and compare with the quantum speed limit.

  2. A-3 Construction Time Lapse

    NASA Technical Reports Server (NTRS)

    2009-01-01

    A time lapse from start to finish of steel erection for the 235-foot tall A-3 Test Stand. Ground work for the stand was broken in August 2008 and the final structural steel beam was placed April 9, 2009.

  3. Assisted finite-rate adiabatic passage across a quantum critical point: exact solution for the quantum Ising model.

    PubMed

    del Campo, Adolfo; Rams, Marek M; Zurek, Wojciech H

    2012-09-14

    The dynamics of a quantum phase transition is inextricably woven with the formation of excitations, as a result of critical slowing down in the neighborhood of the critical point. We design a transitionless quantum driving through a quantum critical point, allowing one to access the ground state of the broken-symmetry phase by a finite-rate quench of the control parameter. The method is illustrated in the one-dimensional quantum Ising model in a transverse field. Driving through the critical point is assisted by an auxiliary Hamiltonian, for which the interplay between the range of the interaction and the modes where excitations are suppressed is elucidated.

  4. Local shear texture formation in adiabatic shear bands by high rate compression of high manganese TRIP steels

    NASA Astrophysics Data System (ADS)

    Li, J.; Yang, P.; Mao, W. M.; Cui, F. E.

    2015-04-01

    Local shear textures in ASBs of high manganese TRIP steels under high rate straining are determined and the influences of initial microstructure is analyzed using EBSD technique. It is seen that even at the presence of majority of two types of martensite before deformation, ASB is preferred to evolve in austenite, rather than in martenite, due to reverse transformation. Ultrafine grains of thress phases due to dynamic recrystallization are formed and all show shear textures. The less ε-martensite in ASB is distributed as islands and its preferred orientation can be found to originate from the variants in matrix. The grain orientation rotation around ASB in multi-phase alloy reveals significant influence of α'- martensite on texture in ASB. The mechanism of local texture formation in ASB of high manganese TRIP steel is proposed in terms of the interaction of early TRIP and later reverse transformation.

  5. Probing mechanistic photochemistry of glyoxal in the gas phase by ab initio calculations of potential-energy surfaces and adiabatic and nonadiabatic rates.

    PubMed

    Li, Quan-Song; Zhang, Feng; Fang, Wei-Hai; Yu, Jian-Guo

    2006-02-07

    In the present work, the wavelength-dependent mechanistic photochemistry of glyoxal in the gas phase has been explored by ab initio calculations of potential-energy surfaces, surface crossing points, and adiabatic and nonadiabatic rates. The CHOCHO molecules in S1 by photoexcitation at 393-440 nm mainly decay to the ground state via internal conversion, which is followed by molecular eliminations to form CO, H2CO,H2, and HCOH. Upon photodissociation of CHOCHO at 350-390 nm, intersystem crossing to T1 followed by the C-C bond cleavage is the dominant process in this wavelength range, which is responsible for the formation of the CHO radicals. The C-C and C-H bond cleavages along the S1 pathway are energetically accessible upon photodissociation of CHOCHO at 290-310 nm, which can compete with the S1-->T1 intersystem crossing process. The present study predicts that the C-H bond cleavage on the S1 surface is probably a new photolysis pathway at high excitation energy, which has not been observed experimentally. In addition, the trans-cis isomerization is predicted to occur more easily in the ground state than in the excited states.

  6. Bimolecular recombination reactions: K-adiabatic and K-active forms of RRKM theory, nonstatistical aspects, low-pressure rates, and time-dependent survival probabilities with application to ozone. 2.

    PubMed

    Ghaderi, Nima; Marcus, R A

    2014-11-06

    We consider for bimolecular recombination reactions the K-adiabatic versus the K-active forms of RRKM theory, where K is the component of the total angular momentum along the axis of least moment of inertia of the recombination product. When that product is approximately a prolate symmetric top, with two moments of inertia of the product substantially larger than the third, K becomes a dynamically slowly varying quantity and the K-adiabatic form of RRKM theory is the appropriate version to use. Using classical trajectory results for the rate constant for ozone formation in the low-pressure region as an example, excellent agreement for the recombination rate constant k(rec) with the K-adiabatic RRKM theory is observed. Use of a two transition state (inner, outer TS) formalism also obviates any need for assessing recrossings in the exit channel. In contrast, the K-active form of RRKM theory for this system disagrees with the trajectory results by a factor of about 2.5. In this study we also consider the distribution of the (E, J) resolved time-dependent survival probabilities P(E, J, t) of the intermediate O3* formed from O + O2. It is calculated using classical trajectories. The initial conditions for classical trajectories were selected using action-angle variables and a total J representation for (E, J) resolved systems, as described in Part I.1 The difference between K-active and K-adiabatic treatments is reflected also in a difference of the K-active RRKM survival probability P(E, J, t) from its trajectory-based value and from its often non-single-exponential decay. It is shown analytically that krec (K-active) ≥ k(rec) (K-adiabatic), independent of the details of the TS (e.g., variational or fixed RRKM theory, 1-TS or 2-TS). Nonstatistical effects for O3* formation include a small initial recrossing of the transition state, a slow (several picoseconds) equipartitioning of energy among the two O-O bonds of the newly formed O3*, and a small nondissociation (a

  7. Time-lapse atomic force microscopy observations of the morphology, growth rate, and spontaneous alignment of nanofibers containing a peptide-amphiphile from the hepatitis G virus (NS3 protein).

    PubMed

    Weroński, Konrad J; Cea, Pilar; Diez-Peréz, Ismael; Busquets, Maria Antonia; Prat, Josefina; Girona, Victoria

    2010-01-14

    Time-lapse atomic force microscopy is used in this contribution to directly watch the growth of nanofibers of a lipidated peptide on a mica surface. Specifically, the studied lipopeptide is the palmitoyl derivative of the fragment 505-514 of NS3 protein from the hepatitis G virus, abbreviated as Palmitoyl-NS3 (505-514). Data on the morphology, growth rate, and orientation of these peptide-amphiphile nanofibers have been obtained. From these data, it can be concluded that this synthetic lipopeptide forms two types of fiber-like aggregates: (i) half-spherical fibrous aggregates with lengths of hundreds of nanometers and (ii) spherical fibrous aggregates with lengths of several micrometers. In addition, when a fresh lipopeptide aqueous solution is deposited onto a mica surface, the aggregates spontaneously orient parallel to each other, yielding well-aligned nanofibers on large areas of the mica surface. A significant growth in both the length and the number of the fibers was observed during the first minutes after the solution deposition. Elongation of the fibrous aggregates from one end is more frequent, though elongation from both ends also occurs, with growth rates in the 4-5 nm/s range. The effects of dilution, mechanical perturbation, and pH on the aggregation behavior of Palmitoyl-NS3 (505-514) are also detailed in this paper.

  8. Wireless adiabatic power transfer

    SciTech Connect

    Rangelov, A.A.; Suchowski, H.; Silberberg, Y.; Vitanov, N.V.

    2011-03-15

    Research Highlights: > Efficient and robust mid-range wireless energy transfer between two coils. > The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. > Wireless energy transfer is insensitive to any resonant constraints. > Wireless energy transfer is insensitive to noise in the neighborhood of the coils. - Abstract: We propose a technique for efficient mid-range wireless power transfer between two coils, by adapting the process of adiabatic passage for a coherently driven two-state quantum system to the realm of wireless energy transfer. The proposed technique is shown to be robust to noise, resonant constraints, and other interferences that exist in the neighborhood of the coils.

  9. General conditions for quantum adiabatic evolution

    SciTech Connect

    Comparat, Daniel

    2009-07-15

    Adiabaticity occurs when, during its evolution, a physical system remains in the instantaneous eigenstate of the Hamiltonian. Unfortunately, existing results, such as the quantum adiabatic theorem based on a slow down evolution [H({epsilon}t),{epsilon}{yields}0], are insufficient to describe an evolution driven by the Hamiltonian H(t) itself. Here we derive general criteria and exact bounds, for the state and its phase, ensuring an adiabatic evolution for any Hamiltonian H(t). As a corollary, we demonstrate that the commonly used condition of a slow Hamiltonian variation rate, compared to the spectral gap, is indeed sufficient to ensure adiabaticity but only when the Hamiltonian is real and nonoscillating (for instance, containing exponential or polynomial but no sinusoidal functions)

  10. Parallelizable adiabatic gate teleportation

    NASA Astrophysics Data System (ADS)

    Nakago, Kosuke; Hajdušek, Michal; Nakayama, Shojun; Murao, Mio

    2015-12-01

    To investigate how a temporally ordered gate sequence can be parallelized in adiabatic implementations of quantum computation, we modify adiabatic gate teleportation, a model of quantum computation proposed by Bacon and Flammia [Phys. Rev. Lett. 103, 120504 (2009), 10.1103/PhysRevLett.103.120504], to a form deterministically simulating parallelized gate teleportation, which is achievable only by postselection. We introduce a twisted Heisenberg-type interaction Hamiltonian, a Heisenberg-type spin interaction where the coordinates of the second qubit are twisted according to a unitary gate. We develop parallelizable adiabatic gate teleportation (PAGT) where a sequence of unitary gates is performed in a single step of the adiabatic process. In PAGT, numeric calculations suggest the necessary time for the adiabatic evolution implementing a sequence of L unitary gates increases at most as O (L5) . However, we show that it has the interesting property that it can map the temporal order of gates to the spatial order of interactions specified by the final Hamiltonian. Using this property, we present a controlled-PAGT scheme to manipulate the order of gates by a control qubit. In the controlled-PAGT scheme, two differently ordered sequential unitary gates F G and G F are coherently performed depending on the state of a control qubit by simultaneously applying the twisted Heisenberg-type interaction Hamiltonians implementing unitary gates F and G . We investigate why the twisted Heisenberg-type interaction Hamiltonian allows PAGT. We show that the twisted Heisenberg-type interaction Hamiltonian has an ability to perform a transposed unitary gate by just modifying the space ordering of the final Hamiltonian implementing a unitary gate in adiabatic gate teleportation. The dynamics generated by the time-reversed Hamiltonian represented by the transposed unitary gate enables deterministic simulation of a postselected event of parallelized gate teleportation in adiabatic

  11. Nonadiabatic exchange dynamics during adiabatic frequency sweeps.

    PubMed

    Barbara, Thomas M

    2016-04-01

    A Bloch equation analysis that includes relaxation and exchange effects during an adiabatic frequency swept pulse is presented. For a large class of sweeps, relaxation can be incorporated using simple first order perturbation theory. For anisochronous exchange, new expressions are derived for exchange augmented rotating frame relaxation. For isochronous exchange between sites with distinct relaxation rate constants outside the extreme narrowing limit, simple criteria for adiabatic exchange are derived and demonstrate that frequency sweeps commonly in use may not be adiabatic with regard to exchange unless the exchange rates are much larger than the relaxation rates. Otherwise, accurate assessment of the sensitivity to exchange dynamics will require numerical integration of the rate equations. Examples of this situation are given for experimentally relevant parameters believed to hold for in-vivo tissue. These results are of significance in the study of exchange induced contrast in magnetic resonance imaging.

  12. Quantum adiabatic machine learning

    NASA Astrophysics Data System (ADS)

    Pudenz, Kristen L.; Lidar, Daniel A.

    2013-05-01

    We develop an approach to machine learning and anomaly detection via quantum adiabatic evolution. This approach consists of two quantum phases, with some amount of classical preprocessing to set up the quantum problems. In the training phase we identify an optimal set of weak classifiers, to form a single strong classifier. In the testing phase we adiabatically evolve one or more strong classifiers on a superposition of inputs in order to find certain anomalous elements in the classification space. Both the training and testing phases are executed via quantum adiabatic evolution. All quantum processing is strictly limited to two-qubit interactions so as to ensure physical feasibility. We apply and illustrate this approach in detail to the problem of software verification and validation, with a specific example of the learning phase applied to a problem of interest in flight control systems. Beyond this example, the algorithm can be used to attack a broad class of anomaly detection problems.

  13. Adiabatic capture and debunching

    SciTech Connect

    Ng, K.Y.; /Fermilab

    2012-03-01

    In the study of beam preparation for the g-2 experiment, adiabatic debunching and adiabatic capture are revisited. The voltage programs for these adiabbatic processes are derived and their properties discussed. Comparison is made with some other form of adiabatic capture program. The muon g-2 experiment at Fermilab calls for intense proton bunches for the creation of muons. A booster batch of 84 bunches is injected into the Recycler Ring, where it is debunched and captured into 4 intense bunches with the 2.5-MHz rf. The experiment requires short bunches with total width less than 100 ns. The transport line from the Recycler to the muon-production target has a low momentum aperture of {approx} {+-}22 MeV. Thus each of the 4 intense proton bunches required to have an emittance less than {approx} 3.46 eVs. The incoming booster bunches have total emittance {approx} 8.4 eVs, or each one with an emittance {approx} 0.1 eVs. However, there is always emittance increase when the 84 booster bunches are debunched. There will be even larger emittance increase during adiabatic capture into the buckets of the 2.5-MHz rf. In addition, the incoming booster bunches may have emittances larger than 0.1 eVs. In this article, we will concentrate on the analysis of the adiabatic capture process with the intention of preserving the beam emittance as much as possible. At this moment, beam preparation experiment is being performed at the Main Injector. Since the Main Injector and the Recycler Ring have roughly the same lattice properties, we are referring to adiabatic capture in the Main Injector instead in our discussions.

  14. Adiabatic gate teleportation.

    PubMed

    Bacon, Dave; Flammia, Steven T

    2009-09-18

    The difficulty in producing precisely timed and controlled quantum gates is a significant source of error in many physical implementations of quantum computers. Here we introduce a simple universal primitive, adiabatic gate teleportation, which is robust to timing errors and many control errors and maintains a constant energy gap throughout the computation above a degenerate ground state space. This construction allows for geometric robustness based upon the control of two independent qubit interactions. Further, our piecewise adiabatic evolution easily relates to the quantum circuit model, enabling the use of standard methods from fault-tolerance theory for establishing thresholds.

  15. Spontaneous emission in stimulated Raman adiabatic passage

    SciTech Connect

    Ivanov, P. A.; Vitanov, N. V.; Bergmann, K.

    2005-11-15

    This work explores the effect of spontaneous emission on the population transfer efficiency in stimulated Raman adiabatic passage (STIRAP). The approach uses adiabatic elimination of weakly coupled density matrix elements in the Liouville equation, from which a very accurate analytic approximation is derived. The loss of population transfer efficiency is found to decrease exponentially with the factor {omega}{sub 0}{sup 2}/{gamma}, where {gamma} is the spontaneous emission rate and {omega}{sub 0} is the peak Rabi frequency. The transfer efficiency increases with the pulse delay and reaches a steady value. For large pulse delay and large spontaneous emission rate STIRAP degenerates into optical pumping.

  16. Adiabatically implementing quantum gates

    SciTech Connect

    Sun, Jie; Lu, Songfeng Liu, Fang

    2014-06-14

    We show that, through the approach of quantum adiabatic evolution, all of the usual quantum gates can be implemented efficiently, yielding running time of order O(1). This may be considered as a useful alternative to the standard quantum computing approach, which involves quantum gates transforming quantum states during the computing process.

  17. Semiconductor adiabatic qubits

    DOEpatents

    Carroll, Malcolm S.; Witzel, Wayne; Jacobson, Noah Tobias; Ganti, Anand; Landahl, Andrew J.; Lilly, Michael; Nguyen, Khoi Thi; Bishop, Nathaniel; Carr, Stephen M.; Bussmann, Ezra; Nielsen, Erik; Levy, James Ewers; Blume-Kohout, Robin J.; Rahman, Rajib

    2016-12-27

    A quantum computing device that includes a plurality of semiconductor adiabatic qubits is described herein. The qubits are programmed with local biases and coupling terms between qubits that represent a problem of interest. The qubits are initialized by way of a tuneable parameter, a local tunnel coupling within each qubit, such that the qubits remain in a ground energy state, and that initial state is represented by the qubits being in a superposition of |0> and |1> states. The parameter is altered over time adiabatically or such that relaxation mechanisms maintain a large fraction of ground state occupation through decreasing the tunnel coupling barrier within each qubit with the appropriate schedule. The final state when tunnel coupling is effectively zero represents the solution state to the problem represented in the |0> and |1> basis, which can be accurately read at each qubit location.

  18. On adiabatic invariant in generalized Galileon theories

    SciTech Connect

    Ema, Yohei; Jinno, Ryusuke; Nakayama, Kazunori; Mukaida, Kyohei E-mail: jinno@hep-th.phys.s.u-tokyo.ac.jp E-mail: kazunori@hep-th.phys.s.u-tokyo.ac.jp

    2015-10-01

    We consider background dynamics of generalized Galileon theories in the context of inflation, where gravity and inflaton are non-minimally coupled to each other. In the inflaton oscillation regime, the Hubble parameter and energy density oscillate violently in many cases, in contrast to the Einstein gravity with minimally coupled inflaton. However, we find that there is an adiabatic invariant in the inflaton oscillation regime in any generalized Galileon theory. This adiabatic invariant is useful in estimating the expansion law of the universe and also the particle production rate due to the oscillation of the Hubble parameter.

  19. Biomarkers identified with time-lapse imaging: discovery, validation, and practical application

    PubMed Central

    Chen, Alice A.; Tan, Lei; Suraj, Vaishali; Pera, Renee Reijo; Shen, Shehua

    2014-01-01

    “Time-lapse markers,” which are defined by time-lapse imaging and correlated with clinical outcomes, may provide embryologists with new opportunities for improving embryo selection. This article provides an overview of noninvasive biomarkers defined by time-lapse imaging studies. In addition to comprehensively reviewing the discovery of each time-lapse marker, it focuses on the criteria necessary for their successful integration into clinical practice, including [1] statistical and biological significance, [2] validation through prospective clinical studies, and [3] development of reliable technology to measure and quantify the time-lapse marker. Because manual analysis of time-lapse images is labor intensive and limits the practical use of the image data in the clinic, automated image analysis software platforms may contribute substantially to improvements in embryo selection accuracy. Ultimately, time-lapse markers that are based on a foundation of basic research, validated through prospective clinical studies, and enabled by a reliable quantification technology may improve IVF success rates, encourage broader adoption of single-embryo transfer, and reduce the risks associated with multiple gestation pregnancies. PMID:23499001

  20. On Adiabatic Pair Creation

    NASA Astrophysics Data System (ADS)

    Pickl, Peter; Dürr, Detlef

    2008-08-01

    We give here a rigorous proof of the well known prediction of pair creation as it arises from the Dirac equation with an external time dependent potential. Pair creation happens with probability one if the potential changes adiabatically in time and becomes overcritical, which means that an eigenvalue curve (as a function of time) bridges the gap between the negative and positive spectral continuum. The potential can be thought of as being zero at large negative and large positive times. The rigorous treatment of this effect has been lacking since the pioneering work of Beck, Steinwedel and Süßmann [1] in 1963 and Gershtein and Zeldovich [8] in 1970.

  1. Rim Fire Time Lapse, August 2013

    NASA Video Gallery

    Time-lapse photography shows various perspectives of the 2013 Rim Fire, as viewed from Yosemite National Park. The first part of this video is from the Crane Flat Helibase. The fire is currently bu...

  2. Crawler-Transporter Time-Lapse

    NASA Video Gallery

    Time-lapse video shows crawler-transporter No. 2 traveling from the Vehicle Assembly Building to Launch Pad 39A at NASA's Kennedy Space Center in Florida. The move was performed by the Ground Syste...

  3. Geometry of the Adiabatic Theorem

    ERIC Educational Resources Information Center

    Lobo, Augusto Cesar; Ribeiro, Rafael Antunes; Ribeiro, Clyffe de Assis; Dieguez, Pedro Ruas

    2012-01-01

    We present a simple and pedagogical derivation of the quantum adiabatic theorem for two-level systems (a single qubit) based on geometrical structures of quantum mechanics developed by Anandan and Aharonov, among others. We have chosen to use only the minimum geometric structure needed for the understanding of the adiabatic theorem for this case.…

  4. Random matrix model of adiabatic quantum computing

    SciTech Connect

    Mitchell, David R.; Adami, Christoph; Lue, Waynn; Williams, Colin P.

    2005-05-15

    We present an analysis of the quantum adiabatic algorithm for solving hard instances of 3-SAT (an NP-complete problem) in terms of random matrix theory (RMT). We determine the global regularity of the spectral fluctuations of the instantaneous Hamiltonians encountered during the interpolation between the starting Hamiltonians and the ones whose ground states encode the solutions to the computational problems of interest. At each interpolation point, we quantify the degree of regularity of the average spectral distribution via its Brody parameter, a measure that distinguishes regular (i.e., Poissonian) from chaotic (i.e., Wigner-type) distributions of normalized nearest-neighbor spacings. We find that for hard problem instances - i.e., those having a critical ratio of clauses to variables - the spectral fluctuations typically become irregular across a contiguous region of the interpolation parameter, while the spectrum is regular for easy instances. Within the hard region, RMT may be applied to obtain a mathematical model of the probability of avoided level crossings and concomitant failure rate of the adiabatic algorithm due to nonadiabatic Landau-Zener-type transitions. Our model predicts that if the interpolation is performed at a uniform rate, the average failure rate of the quantum adiabatic algorithm, when averaged over hard problem instances, scales exponentially with increasing problem size.

  5. Adiabatic charging of nickel-hydrogen batteries

    NASA Technical Reports Server (NTRS)

    Lurie, Chuck; Foroozan, S.; Brewer, Jeff; Jackson, Lorna

    1995-01-01

    Battery management during prelaunch activities has always required special attention and careful planning. The transition from nickel-cadium to nickel-hydrogen batteries, with their high self discharge rate and lower charge efficiency, as well as longer prelaunch scenarios, has made this aspect of spacecraft battery management even more challenging. The AXAF-I Program requires high battery state of charge at launch. The use of active cooling, to ensure efficient charging, was considered and proved to be difficult and expensive. Alternative approaches were evaluated. Optimized charging, in the absence of cooling, appeared promising and was investigated. Initial testing was conducted to demonstrate the feasibility of the 'Adiabatic Charging' approach. Feasibility was demonstrated and additional testing performed to provide a quantitative, parametric data base. The assumption that the battery is in an adiabatic environment during prelaunch charging is a conservative approximation because the battery will transfer some heat to its surroundings by convective air cooling. The amount is small compared to the heat dissipated during battery overcharge. Because the battery has a large thermal mass, substantial overcharge can occur before the cells get too hot to charge efficiently. The testing presented here simulates a true adiabatic environment. Accordingly the data base may be slightly conservative. The adiabatic charge methodology used in this investigation begins with stabilizing the cell at a given starting temperature. The cell is then fully insulated on all sides. Battery temperature is carefully monitored and the charge terminated when the cell temperature reaches 85 F. Charging has been evaluated with starting temperatures from 55 to 75 F.

  6. Time-lapse in the IVF-lab: how should we assess potential benefit?

    PubMed

    Armstrong, S; Vail, A; Mastenbroek, S; Jordan, V; Farquhar, C

    2015-01-01

    Time-lapse imaging of embryos has been widely introduced to fertility laboratories worldwide with the aim of identifying the best quality embryos to transfer that will ultimately improve IVF success rates. In this opinion paper, we explore the lack of evidence of benefit of this novel intervention, analyse the methodological flaws of current studies, offer ideal study designs that assess the various features of time-lapse imaging, and discuss forthcoming studies. In particular, we emphasize the ethical aspects of hastily adopting a costly technology without current high level evidence of improved live birth rates, safety and cost effectiveness.

  7. Predicting the Initial Lapse Using a Mobile Health Application after Alcohol Detoxification

    ERIC Educational Resources Information Center

    Chih, Ming-Yuan

    2013-01-01

    The prediction and prevention of the initial lapse--which is defined as the first lapse after a period of abstinence--is important because the initial lapse often leads to subsequent lapses (within the same lapse episode) or relapse. The prediction of the initial lapse may allow preemptive intervention to be possible. This dissertation reports on…

  8. The Floquet Adiabatic Theorem revisited

    NASA Astrophysics Data System (ADS)

    Weinberg, Phillip; Bukov, Marin; D'Alessio, Luca; Kolodrubetz, Michael; Davidson, Shainen; Polkovnikov, Anatoli

    2015-03-01

    The existance of the adiabatic theorem for Floquet systems has been the subject of an active debate with different articles reaching opposite conclusions over the years. In this talk we clarify the situation by deriving a systematic expansion in the time-derivatives of a slow parameter for the occupation probabilities of the Floque states. Our analysis shows that the in a certain limit the transition between Floquet eigenstates are suppressed and it is possible to define an adiabatic theorem for Floquet systems. Crucially we observe however that the conditions for adiabaticity in ordinary and Floquet systems are different and that this difference can become important when the amplitude of the periodic driving is large. We illustrate our results with specific examples of a periodically driven harmonic oscillator and cold atoms in optical lattices which are relevant in current experiments.

  9. Adiabatic losses in Stirling refrigerators

    SciTech Connect

    Bauwens, L.

    1996-06-01

    The Stirling cycle has been used very effectively in cryocoolers; but efficiencies relative to the Carnot limit are typically observed to peak for absolute temperature ratios of about two, which makes it less suitable for low-life refrigeration. The adiabatic loss appears to be responsible for poor performance at small temperature differences. In this paper, adiabatic losses are evaluated, for a temperature ratio of 2/3, taking into account the effect of phase angle between pistons, of volume ratio, of the distribution of the dead volume necessary to reduce the volume ratio, and of the distribution of displacement between expansion and compression spaces. The study is carried out numerically, using an adiabatic Stirling engine model in which cylinder flow is assumed to be stratified. Results show that the best location for the cylinder dead volume is on the compression side. Otherwise, all strategies used to trade off refrigeration for coefficient of performance are found to be roughly equivalent.

  10. Adiabatic evolution of plasma equilibrium

    PubMed Central

    Grad, H.; Hu, P. N.; Stevens, D. C.

    1975-01-01

    A new theory of plasma equilibrium is introduced in which adiabatic constraints are specified. This leads to a mathematically nonstandard structure, as compared to the usual equilibrium theory, in which prescription of pressure and current profiles leads to an elliptic partial differential equation. Topologically complex configurations require further generalization of the concept of adiabaticity to allow irreversible mixing of plasma and magnetic flux among islands. Matching conditions across a boundary layer at the separatrix are obtained from appropriate conservation laws. Applications are made to configurations with planned islands (as in Doublet) and accidental islands (as in Tokamaks). Two-dimensional, axially symmetric, helically symmetric, and closed line equilibria are included. PMID:16578729

  11. Adiabatic circular polarizer based on chiral fiber grating.

    PubMed

    Yang, Li; Xue, Lin-Lin; Li, Cheng; Su, Jue; Qian, Jing-Ren

    2011-01-31

    Based on the adiabatic coupling principle, a new scheme of a broadband circular polarizer formed by twisting a high-birefringence (Hi-Bi) fiber with a slowly varying twist rate is proposed. The conditions of adiabatic coupling for the adiabatic polarizer are first identified through analytical derivations. These conditions are easily realized by choosing a reasonable variation of the twist rate. Moreover, the bandwidth of the polarizer is able to be directly determined by the twist rates at the two ends. Finally, the broadband characteristics of the polarizer are demonstrated by simulations. It is also shown that the performance of the polarizer can be remarkably improved by accomplishing a multi-mode phase-matching along the grating or by using of the couplings of the core mode to lossy modes.

  12. MUSCLE: MUltiscale Spherical-ColLapse Evolution

    NASA Astrophysics Data System (ADS)

    Neyrinck, Mark C.

    2016-05-01

    MUSCLE (MUltiscale Spherical ColLapse Evolution) produces low-redshift approximate N-body realizations accurate to few-Megaparsec scales. It applies a spherical-collapse prescription on multiple Gaussian-smoothed scales. It achieves higher accuracy than perturbative schemes (Zel'dovich and second-order Lagrangian perturbation theory - 2LPT), and by including the void-in-cloud process (voids in large-scale collapsing regions), solves problems with a single-scale spherical-collapse scheme.

  13. Pupil Diameter Tracks Lapses of Attention

    PubMed Central

    Murphy, Peter R.; Nieuwenhuis, Sander

    2016-01-01

    Our ability to sustain attention for prolonged periods of time is limited. Studies on the relationship between lapses of attention and psychophysiological markers of attentional state, such as pupil diameter, have yielded contradicting results. Here, we investigated the relationship between tonic fluctuations in pupil diameter and performance on a demanding sustained attention task. We found robust linear relationships between baseline pupil diameter and several measures of task performance, suggesting that attentional lapses tended to occur when pupil diameter was small. However, these observations were primarily driven by the joint effects of time-on-task on baseline pupil diameter and task performance. The linear relationships disappeared when we statistically controlled for time-on-task effects and were replaced by consistent inverted U-shaped relationships between baseline pupil diameter and each of the task performance measures, such that most false alarms and the longest and most variable response times occurred when pupil diameter was both relatively small and large. Finally, we observed strong linear relationships between the temporal derivative of pupil diameter and task performance measures, which were largely independent of time-on-task. Our results help to reconcile contradicting findings in the literature on pupil-linked changes in attentional state, and are consistent with the adaptive gain theory of locus coeruleus-norepinephrine function. Moreover, they suggest that the derivative of baseline pupil diameter is a potentially useful psychophysiological marker that could be used in the on-line prediction and prevention of attentional lapses. PMID:27768778

  14. Decoherence in a scalable adiabatic quantum computer

    SciTech Connect

    Ashhab, S.; Johansson, J. R.; Nori, Franco

    2006-11-15

    We consider the effects of decoherence on Landau-Zener crossings encountered in a large-scale adiabatic-quantum-computing setup. We analyze the dependence of the success probability--i.e., the probability for the system to end up in its new ground state--on the noise amplitude and correlation time. We determine the optimal sweep rate that is required to maximize the success probability. We then discuss the scaling of decoherence effects with increasing system size. We find that those effects can be important for large systems, even if they are small for each of the small building blocks.

  15. Understanding physical activity lapses among women: responses to lapses and the potential buffering effect of social support.

    PubMed

    Schumacher, Leah M; Arigo, Danielle; Thomas, Coco

    2017-04-05

    Many women fail to meet recommended levels of physical activity (PA). Limited research has examined women's barriers to PA adoption during attempts to increase PA-in particular, how often they experience PA lapses (i.e., failure to meet PA goals), their cognitive-affective responses to lapses, and the role of social support in preventing or responding to lapses. The present study assessed weekly variability in PA lapses, cognitive-affective responses to lapses, and social support related to PA among women participating in a partner-based PA program (n = 20). Multilevel modeling showed that greater PA self-efficacy and more frequent partner communication predicted fewer lapses during the concurrent or subsequent week (ps < 0.02). Interestingly, greater self-forgiveness for lapsing also predicted more lapses the subsequent week (p = 0.04), though greater perceived partner support appeared to buffer the negative effect of self-forgiveness on future lapses (p = 0.04). These findings demonstrate the importance of cognitive-affective responses to PA lapses for future PA, as well as the potential benefit of social support for preventing PA lapses among women.

  16. Global dynamics of selective attention and its lapses in primary auditory cortex.

    PubMed

    Lakatos, Peter; Barczak, Annamaria; Neymotin, Samuel A; McGinnis, Tammy; Ross, Deborah; Javitt, Daniel C; O'Connell, Monica Noelle

    2016-12-01

    Previous research demonstrated that while selectively attending to relevant aspects of the external world, the brain extracts pertinent information by aligning its neuronal oscillations to key time points of stimuli or their sampling by sensory organs. This alignment mechanism is termed oscillatory entrainment. We investigated the global, long-timescale dynamics of this mechanism in the primary auditory cortex of nonhuman primates, and hypothesized that lapses of entrainment would correspond to lapses of attention. By examining electrophysiological and behavioral measures, we observed that besides the lack of entrainment by external stimuli, attentional lapses were also characterized by high-amplitude alpha oscillations, with alpha frequency structuring of neuronal ensemble and single-unit operations. Entrainment and alpha-oscillation-dominated periods were strongly anticorrelated and fluctuated rhythmically at an ultra-slow rate. Our results indicate that these two distinct brain states represent externally versus internally oriented computational resources engaged by large-scale task-positive and task-negative functional networks.

  17. Pressure Oscillations in Adiabatic Compression

    ERIC Educational Resources Information Center

    Stout, Roland

    2011-01-01

    After finding Moloney and McGarvey's modified adiabatic compression apparatus, I decided to insert this experiment into my physical chemistry laboratory at the last minute, replacing a problematic experiment. With insufficient time to build the apparatus, we placed a bottle between two thick textbooks and compressed it with a third textbook forced…

  18. Transitionless driving on adiabatic search algorithm

    SciTech Connect

    Oh, Sangchul; Kais, Sabre

    2014-12-14

    We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.

  19. Transitionless driving on adiabatic search algorithm

    NASA Astrophysics Data System (ADS)

    Oh, Sangchul; Kais, Sabre

    2014-12-01

    We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.

  20. Transitionless driving on adiabatic search algorithm.

    PubMed

    Oh, Sangchul; Kais, Sabre

    2014-12-14

    We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.

  1. Lapse of time effects on tax evasion in an agent-based econophysics model

    NASA Astrophysics Data System (ADS)

    Seibold, Götz; Pickhardt, Michael

    2013-05-01

    We investigate an inhomogeneous Ising model in the context of tax evasion dynamics where different types of agents are parameterized via local temperatures and magnetic fields. In particular, we analyze the impact of lapse of time effects (i.e. backauditing) and endogenously determined penalty rates on tax compliance. Both features contribute to a microfoundation of agent-based econophysics models of tax evasion.

  2. Digital waveguide adiabatic passage part 1: theory

    NASA Astrophysics Data System (ADS)

    Vaitkus, Jesse A.; Steel, M. J.; Greentree, Andrew D.

    2017-03-01

    Spatial adiabatic passage represents a new way to design integrated photonic devices. In conventional adiabatic passage designs require smoothly varying waveguide separations. Here we show modelling of adiabatic passage devices where the waveguide separation is varied digitally. Despite digitisation, our designs show robustness against variations in the input wavelength and refractive index contrast of the waveguides relative to the cladding. This approach to spatial adiabatic passage opens new design strategies and hence the potential for new photonics devices.

  3. Effect of dephasing on stimulated Raman adiabatic passage

    SciTech Connect

    Ivanov, P.A.; Vitanov, N.V.; Bergmann, K.

    2004-12-01

    This work explores the effect of phase relaxation on the population transfer efficiency in stimulated Raman adiabatic passage (STIRAP). The study is based on the Liouville equation, which is solved analytically in the adiabatic limit. The transfer efficiency of STIRAP is found to decrease exponentially with the dephasing rate; this effect is stronger for shorter pulse delays and weaker for larger delays, since the transition time is found to be inversely proportional to the pulse delay. Moreover, it is found that the transfer efficiency of STIRAP in the presence of dephasing does not depend on the peak Rabi frequencies at all, as long as they are sufficiently large to enforce adiabatic evolution; hence increasing the field intensity cannot reduce the dephasing losses. It is shown also that for any dephasing rate, the final populations of the initial state and the intermediate state are equal. For strong dephasing all three populations tend to (1/3)

  4. New Siemens Research Turbine - time lapse

    SciTech Connect

    2009-01-01

    The National Renewable Energy Laboratory (NREL) and Siemens Energy Inc. recently commissioned a new 2.3 megawatt Siemens wind turbine at NREL's National Wind Technology Center. This video shows a time lapse of the installation. The turbine is the centerpiece of a multi-year project to study the performance and aerodynamics of a new class of large, land-based machines — in what will be the biggest government-industry research partnership for wind power generation ever undertaken in the U.S.

  5. Prospective Analysis of Early Lapse to Drinking and Smoking Among Individuals in Concurrent Alcohol and Tobacco Treatment

    PubMed Central

    Holt, Laura J.; Litt, Mark D.; Cooney, Ned L.

    2012-01-01

    The aims of the current study were to examine, prospectively, 1) dynamic changes in affective state, self-efficacy, and urge in the hours before initial smoking and drinking lapses among individuals in concurrent alcohol and smoking treatment, and 2) the extent to which self-efficacy, urge to use, and/or the use of one substance predicted lapse to the other substance. Ninety-six men and women recruited for a clinical trial of concurrent alcohol and tobacco treatment were eligible for inclusion. Only data from those who experienced an initial lapse to drinking (n=29), or smoking (n=32) were included. Two outpatient substance abuse clinics provided concurrent alcohol and smoking treatment on a weekly basis for three months. Ecological Momentary Assessment (EMA) methods were employed over a 28-day monitoring period to assess antecedents to first drink and a 14-day monitoring period was examined for initial smoking lapses. Baseline and EMA measures of positive and negative affect, alcohol/smoking urge, alcohol/smoking abstinence self-efficacy, nicotine withdrawal, and quantity/frequency of alcohol and tobacco use were examined as lapse predictors. Analyses of EMA ratings controlled for the corresponding baseline measure. Smoking lapse among individuals in concurrent alcohol and tobacco treatment was foreshadowed by higher urges to smoke, lower positive mood, and lower confidence to resist smoking. Drinking lapse was preceded by lower confidence to resist smoking, but only among individuals who reported recent smoking. Concurrent alcohol and smoking treatment should focus on the enhancement of abstinence self-efficacy, positive mood, and the curbing of urges in order to offset lapse risk. PMID:22023022

  6. Cosmological solutions in spatially curved universes with adiabatic particle production

    NASA Astrophysics Data System (ADS)

    Aresté Saló, Llibert; de Haro, Jaume

    2017-03-01

    We perform a qualitative and thermodynamic study of two models when one takes into account adiabatic particle production. In the first one, there is a constant particle production rate, which leads to solutions depicting the current cosmic acceleration but without inflation. The other one has solutions that unify the early and late time acceleration. These solutions converge asymptotically to the thermal equilibrium.

  7. The genesis of adiabatic shear bands

    PubMed Central

    Landau, P.; Osovski, S.; Venkert, A.; Gärtnerová, V.; Rittel, D.

    2016-01-01

    Adiabatic shear banding (ASB) is a unique dynamic failure mechanism that results in an unpredicted catastrophic failure due to a concentrated shear deformation mode. It is universally considered as a material or structural instability and as such, ASB is hardly controllable or predictable to some extent. ASB is modeled on the premise of stability analyses. The leading paradigm is that a competition between strain (rate) hardening and thermal softening determines the onset of the failure. It was recently shown that microstructural softening transformations, such as dynamic recrystallization, are responsible for adiabatic shear failure. These are dictated by the stored energy of cold work, so that energy considerations can be used to macroscopically model the failure mechanism. The initial mechanisms that lead to final failure are still unknown, as well as the ASB formation mechanism(s). Most of all - is ASB an abrupt instability or rather a gradual transition as would be dictated by microstructural evolutions? This paper reports thorough microstructural characterizations that clearly show the gradual character of the phenomenon, best described as a nucleation and growth failure mechanism, and not as an abrupt instability as previously thought. These observations are coupled to a simple numerical model that illustrates them. PMID:27849023

  8. Invalidity of the quantitative adiabatic condition and general conditions for adiabatic approximations

    NASA Astrophysics Data System (ADS)

    Li, Dafa

    2016-05-01

    The adiabatic theorem was proposed about 90 years ago and has played an important role in quantum physics. The quantitative adiabatic condition constructed from eigenstates and eigenvalues of a Hamiltonian is a traditional tool to estimate adiabaticity and has proven to be the necessary and sufficient condition for adiabaticity. However, recently the condition has become a controversial subject. In this paper, we list some expressions to estimate the validity of the adiabatic approximation. We show that the quantitative adiabatic condition is invalid for the adiabatic approximation via the Euclidean distance between the adiabatic state and the evolution state. Furthermore, we deduce general necessary and sufficient conditions for the validity of the adiabatic approximation by different definitions.

  9. Sliding seal materials for adiabatic engines

    NASA Technical Reports Server (NTRS)

    Lankford, J.

    1985-01-01

    The sliding friction coefficients and wear rates of promising carbide, oxide, and nitride materials were measured under temperature, environmental, velocity, loading conditions that are representative of the adiabatic engine environment. In order to provide guidance needed to improve materials for this application, the program stressed fundamental understanding of the mechanisms involved in friction and wear. Microhardness tests were performed on the candidate materials at elevated temperatures, and in atmospheres relevant to the piston seal application, and optical and electron microscopy were used to elucidate the micromechanisms of wear following wear testing. X-ray spectroscopy was used to evaluate interface/environment interactions which seemed to be important in the friction and wear process. Electrical effects in the friction and wear processes were explored in order to evaluate the potential usefulness of such effects in modifying the friction and wear rates in service. However, this factor was found to be of negligible significance in controlling friction and wear.

  10. Theory of Adiabatic Fountain Resonance

    NASA Astrophysics Data System (ADS)

    Williams, Gary A.

    2017-01-01

    The theory of "Adiabatic Fountain Resonance" with superfluid ^4{He} is clarified. In this geometry a film region between two silicon wafers bonded at their outer edge opens up to a central region with a free surface. We find that the resonance in this system is not a Helmholtz resonance as claimed by Gasparini et al., but in fact is a fourth sound resonance. We postulate that it occurs at relatively low frequency because the thin silicon wafers flex appreciably from the pressure oscillations of the sound wave.

  11. Adiabatic Wankel type rotary engine

    NASA Technical Reports Server (NTRS)

    Kamo, R.; Badgley, P.; Doup, D.

    1988-01-01

    This SBIR Phase program accomplished the objective of advancing the technology of the Wankel type rotary engine for aircraft applications through the use of adiabatic engine technology. Based on the results of this program, technology is in place to provide a rotor and side and intermediate housings with thermal barrier coatings. A detailed cycle analysis of the NASA 1007R Direct Injection Stratified Charge (DISC) rotary engine was performed which concluded that applying thermal barrier coatings to the rotor should be successful and that it was unlikely that the rotor housing could be successfully run with thermal barrier coatings as the thermal stresses were extensive.

  12. On stress collapse in adiabatic shear bands

    NASA Astrophysics Data System (ADS)

    Wright, T. W.; Walter, J. W.

    T HE DYNAMICS of adiabatic shear band formation is considered making use of a simplified thermo/visco/plastic flow law. A new numerical solution is used to follow the growth of a perturbation from initiation, through early growth and severe localization, to a slowly varying terminal configuration. Asymptotic analyses predict the early and late stage patterns, but the timing and structure of the abrupt transition to severe localization can only be studied numerically, to date. A characteristic feature of the process is that temperature and plastic strain rate begin to localize immediately, but only slowly, whereas the stress first evolves almost as if there were no perturbation, but then collapses rapidly when severe localization occurs.

  13. Ultrafast adiabatic second harmonic generation

    NASA Astrophysics Data System (ADS)

    Dahan, Asaf; Levanon, Assaf; Katz, Mordechai; Suchowski, Haim

    2017-03-01

    We introduce a generalization of the adiabatic frequency conversion method for an efficient conversion of ultrashort pulses in the full nonlinear regime. Our analysis takes into account dispersion as well as two-photon processes and Kerr effect, allowing complete analysis of any three waves with arbitrary phase mismatched design and any nonlinear optical process. We use this analysis to design an efficient and robust second harmonic generation, the most widely used nonlinear process for both fundamental and applied research. We experimentally show that such design not only allows for very efficient conversion of various of ultrashort pulses, but is also very robust to variations in the parameters of both the nonlinear crystal and the incoming light. These include variation of more than 100 °C in the crystal temperature, a wide bandwidth of up to 75 nm and a chirp variation of 300 fs to 3.5 ps of the incoming pulse. Also, we show the dependency of the adiabatic second harmonic generation design on the pump intensity and the crystal length. Our study shows that two photon absorption plays a critical role in such high influence nonlinear dynamics, and that it must be considered in order to achieve agreement with experimental results.

  14. Ultrafast adiabatic second harmonic generation.

    PubMed

    Dahan, Asaf; Levanon, Assaf; Katz, Mordechai; Suchowski, Haim

    2017-03-01

    We introduce a generalization of the adiabatic frequency conversion method for an efficient conversion of ultrashort pulses in the full nonlinear regime. Our analysis takes into account dispersion as well as two-photon processes and Kerr effect, allowing complete analysis of any three waves with arbitrary phase mismatched design and any nonlinear optical process. We use this analysis to design an efficient and robust second harmonic generation, the most widely used nonlinear process for both fundamental and applied research. We experimentally show that such design not only allows for very efficient conversion of various of ultrashort pulses, but is also very robust to variations in the parameters of both the nonlinear crystal and the incoming light. These include variation of more than 100 °C in the crystal temperature, a wide bandwidth of up to 75 nm and a chirp variation of 300 fs to 3.5 ps of the incoming pulse. Also, we show the dependency of the adiabatic second harmonic generation design on the pump intensity and the crystal length. Our study shows that two photon absorption plays a critical role in such high influence nonlinear dynamics, and that it must be considered in order to achieve agreement with experimental results.

  15. puffMarker: A Multi-Sensor Approach for Pinpointing the Timing of First Lapse in Smoking Cessation.

    PubMed

    Saleheen, Nazir; Ali, Amin Ahsan; Hossain, Syed Monowar; Sarker, Hillol; Chatterjee, Soujanya; Marlin, Benjamin; Ertin, Emre; al'Absi, Mustafa; Kumar, Santosh

    2015-09-01

    Recent researches have demonstrated the feasibility of detecting smoking from wearable sensors, but their performance on real-life smoking lapse detection is unknown. In this paper, we propose a new model and evaluate its performance on 61 newly abstinent smokers for detecting a first lapse. We use two wearable sensors - breathing pattern from respiration and arm movements from 6-axis inertial sensors worn on wrists. In 10-fold cross-validation on 40 hours of training data from 6 daily smokers, our model achieves a recall rate of 96.9%, for a false positive rate of 1.1%. When our model is applied to 3 days of post-quit data from 32 lapsers, it correctly pinpoints the timing of first lapse in 28 participants. Only 2 false episodes are detected on 20 abstinent days of these participants. When tested on 84 abstinent days from 28 abstainers, the false episode per day is limited to 1/6.

  16. Using Digital Time-Lapse Videos to Teach Geomorphic Processes to Undergraduates

    NASA Astrophysics Data System (ADS)

    Clark, D. H.; Linneman, S. R.; Fuller, J.

    2004-12-01

    We demonstrate the use of relatively low-cost, computer-based digital imagery to create time-lapse videos of two distinct geomorphic processes in order to help students grasp the significance of the rates, styles, and temporal dependence of geologic phenomena. Student interviews indicate that such videos help them to understand the relationship between processes and landform development. Time-lapse videos have been used extensively in some sciences (e.g., biology - http://sbcf.iu.edu/goodpract/hangarter.html, meteorology - http://www.apple.com/education/hed/aua0101s/meteor/, chemistry - http://www.chem.yorku.ca/profs/hempsted/chemed/home.html) to demonstrate gradual processes that are difficult for many students to visualize. Most geologic processes are slower still, and are consequently even more difficult for students to grasp, yet time-lapse videos are rarely used in earth science classrooms. The advent of inexpensive web-cams and computers provides a new means to explore the temporal dimension of earth surface processes. To test the use of time-lapse videos in geoscience education, we are developing time-lapse movies that record the evolution of two landforms: a stream-table delta and a large, natural, active landslide. The former involves well-known processes in a controlled, repeatable laboratory experiment, whereas the latter tracks the developing dynamics of an otherwise poorly understood slope failure. The stream-table delta is small and grows in ca. 2 days; we capture a frame on an overhead web-cam every 3 minutes. Before seeing the video, students are asked to hypothesize how the delta will grow through time. The final time-lapse video, ca. 20-80 MB, elegantly shows channel migration, progradation rates, and formation of major geomorphic elements (topset, foreset, bottomset beds). The web-cam can also be "zoomed-in" to show smaller-scale processes, such as bedload transfer, and foreset slumping. Post-lab tests and interviews with students indicate that

  17. An interacting adiabatic quantum motor

    NASA Astrophysics Data System (ADS)

    Viola Kusminskiy, Silvia; Bruch, Anton; von Oppen, Felix

    We consider the effect of electron-electron interactions on the performance of an adiabatic quantum motor based on a Thouless pump operating in reverse. We model such a device by electrons in a 1d wire coupled to a slowly moving periodic potential associated with the classical mechanical degree of freedom of the motor. This periodic degree of freedom is set into motion by a bias voltage applied to the 1d electron channel. We investigate the Thouless motor with interacting leads modeled as Luttinger liquids. We show that interactions enhance the energy gap opened by the periodic potential and thus the robustness of the Thouless motor against variations in the chemical potential. We show that the motor degree of freedom can be described as a mobile impurity in a Luttinger liquid obeying Langevin dynamics with renormalized coefficients due to interactions, for which we give explicit expressions.

  18. Quantum and classical dynamics in adiabatic computation

    NASA Astrophysics Data System (ADS)

    Crowley, P. J. D.; Äńurić, T.; Vinci, W.; Warburton, P. A.; Green, A. G.

    2014-10-01

    Adiabatic transport provides a powerful way to manipulate quantum states. By preparing a system in a readily initialized state and then slowly changing its Hamiltonian, one may achieve quantum states that would otherwise be inaccessible. Moreover, a judicious choice of final Hamiltonian whose ground state encodes the solution to a problem allows adiabatic transport to be used for universal quantum computation. However, the dephasing effects of the environment limit the quantum correlations that an open system can support and degrade the power of such adiabatic computation. We quantify this effect by allowing the system to evolve over a restricted set of quantum states, providing a link between physically inspired classical optimization algorithms and quantum adiabatic optimization. This perspective allows us to develop benchmarks to bound the quantum correlations harnessed by an adiabatic computation. We apply these to the D-Wave Vesuvius machine with revealing—though inconclusive—results.

  19. Saturn Time Lapse - Target of Opportunity

    NASA Astrophysics Data System (ADS)

    Westphal, J.

    1990-12-01

    This program will obtain sets of exposures of Saturn in several spectral bands over a time span of about a week. By selecting filters that are sensitive to atmospheric processes (methane absorption and molecular scattering), the dynamic behavior can be mapped at several altitudes within the Saturnian atmosphere. This sequence will utilize time lapse sequences in chip PC-6 to continue monitoring motions associated with the great white spot that was discovered in late September. These observations will allow us to follow the evolution of the storm. Observation is broken up into 2 parts - part 1 = Get as many orbits as possible in a 31 orbit timeframe. Part 2 = Get as many orbits as possible in a 16 orbit timeframe. Use the FGS SAA avoidance contour versus the WF/PC SAA avoidance contour. During orbits with FGS SAA impact, obtain earth flats, using seq FLATn. Take flats in each filter (FLAT1->FLAT6) then go back and take second set in each filter, time permitting.

  20. Atlantis Time-Lapse Move to KSC Visitor Complex

    NASA Video Gallery

    Time-lapse cameras captured space shuttle Atlantis making a 10-mile trek from the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida to the Kennedy Space Center Visitor Complex whe...

  1. Time-Lapsed Animation of a Mercury Day

    NASA Video Gallery

    Parts of Prokofiev crater (center) and Kandinsky crater (upper left side of Prokofiev) stay in darkness, making it possible for ice to persist on the surface. This time-lapsed animation represents ...

  2. NEA Scout Solar Sail: Half-scale Fold Time Lapse

    NASA Video Gallery

    In this time lapse, the Near-Earth Asteroid Scout (NEA Scout) CubeSat team rolls a half-scale prototype of the small satellite's solar sail in preparation for a deployment test. During its mission,...

  3. 77 FR 38396 - Agency Information Collection (Notice of Lapse-Government Life Insurance) Activities Under OMB...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-27

    ... AFFAIRS Agency Information Collection (Notice of Lapse--Government Life Insurance) Activities Under OMB... INFORMATION: Titles: a. Notice of Lapse--Government Life Insurance, VA Form 29-389. b. Application for... government life insurance has lapsed or will lapse due to nonpayment of premiums. The claimant must...

  4. Adiabat shape Laser Pulses for ablation front instability control and high fuel compression

    NASA Astrophysics Data System (ADS)

    Milovich, Jose; Jones, O. S.; Berzak-Hopkins, L.; Clark, D. S.; Baker, K. L.; Casey, D. T.; Macphee, A. G.; Peterson, J. L.; Robey, H. F.; Smalyuk, V. A.; Weber, C. R.

    2014-10-01

    At the end of the NIC campaign a large body of experimental evidence showed that the point-design implosions driven by low-adiabat pulses had a high degree of mix. To reduce instability a high-adiabat (~3 × higher picket drive) design was fielded in the National Ignition Facility (NIF). The experimental results from this campaign have shown considerable improvement in performance (10 × neutron yields) over the point design with little evidence of mix. However, the adiabat of the implosions may be too high to achieve ignition for the available laser energy. To overcome this difficulty, and to take advantage of the high-picket drives, we have developed hybrid laser pulses that combined the virtue of both designs. These pulses can be thought of achieving adiabat shaping, where the ablator is set in a higher adiabat for instability control, while the fuel is maintained at a lower adiabat favoring higher fuel compression. Using these pulses, recent experiments at the NIF have indeed shown reduced growth rates. In this talk we will present the design of high-yield low-growth DT ignition experiments using these adiabat-shaped pulses. Work performed under the auspices of the U.S. D.O.E. by LLNL under contract DE-AC52-07NA27344.

  5. Adiabatic heating in impulsive solar flares

    NASA Technical Reports Server (NTRS)

    Maetzler, C.; Bai, T.; Crannell, C. J.; Frost, K. J.

    1977-01-01

    The dynamic X-ray spectra of two simple, impulsive solar flares are examined together with H alpha, microwave and meter wave radio observations. X-ray spectra of both events were characteristic of thermal bremsstrahlung from single temperature plasmas. The symmetry between rise and fall was found to hold for the temperature and emission measure. The relationship between temperature and emission measure was that of an adiabatic compression followed by adiabatic expansion; the adiabatic index of 5/3 indicated that the electron distribution remained isotropic. Observations in H alpha provided further evidence for compressive energy transfer.

  6. Observation of infiltration experiments with time lapse electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Noell, Ursula; Ganz, Christina; Altfelder, Sven; Günther, Thomas; Duijnisveld, Wilhelmus; Grissemann, Christoph

    2010-05-01

    analysed quantitatively. For the first experiment this calculation shows one day after the infiltration about 40% of the infiltrated water being lost to the groundwater. For the second experiment the quantitative interpretation takes into account the increased conductivity of the infiltrating tracer solution compared to the pore water of the vadose zone before infiltration. Another infiltration experiment is done on Loess. Due to the low infiltration rate only about 9l of water could be infiltrated within about 3 h (38mm/h). The time lapse ERT clearly reveals the water remaining close to surface and no sign of resistivity change due to the infiltration is observed to penetrate deeper than 30cm. At this depth the plough pan seems to inhibit the infiltration. The analysis shows the high sensitivity of the ERT method. Although the original water content is quite high and therefore the resistivity changes due to water content changes are small (the flat part of the Archie function) the time lapse ERT inversion depicts the changes of resistivity quite clearly. The experiments show the advantages of ERT measurements to observe the infiltration process in real time. However, the interpretation of such measurements still poses difficulties mainly due to the limited resolution and the ill posedness of the inversion problem of electrical resistivity tomography (ERT). These problems are investigated further in order to advance the applicability of the method to infiltration problems showing signs of preferential flow.

  7. Experimental demonstration of composite adiabatic passage

    NASA Astrophysics Data System (ADS)

    Schraft, Daniel; Halfmann, Thomas; Genov, Genko T.; Vitanov, Nikolay V.

    2013-12-01

    We report an experimental demonstration of composite adiabatic passage (CAP) for robust and efficient manipulation of two-level systems. The technique represents a altered version of rapid adiabatic passage (RAP), driven by composite sequences of radiation pulses with appropriately chosen phases. We implement CAP with radio-frequency pulses to invert (i.e., to rephase) optically prepared spin coherences in a Pr3+:Y2SiO5 crystal. We perform systematic investigations of the efficiency of CAP and compare the results with conventional π pulses and RAP. The data clearly demonstrate the superior features of CAP with regard to robustness and efficiency, even under conditions of weakly fulfilled adiabaticity. The experimental demonstration of composite sequences to support adiabatic passage is of significant relevance whenever a high efficiency or robustness of coherent excitation processes need to be maintained, e.g., as required in quantum information technology.

  8. Adiabatic Quantum Search in Open Systems.

    PubMed

    Wild, Dominik S; Gopalakrishnan, Sarang; Knap, Michael; Yao, Norman Y; Lukin, Mikhail D

    2016-10-07

    Adiabatic quantum algorithms represent a promising approach to universal quantum computation. In isolated systems, a key limitation to such algorithms is the presence of avoided level crossings, where gaps become extremely small. In open quantum systems, the fundamental robustness of adiabatic algorithms remains unresolved. Here, we study the dynamics near an avoided level crossing associated with the adiabatic quantum search algorithm, when the system is coupled to a generic environment. At zero temperature, we find that the algorithm remains scalable provided the noise spectral density of the environment decays sufficiently fast at low frequencies. By contrast, higher order scattering processes render the algorithm inefficient at any finite temperature regardless of the spectral density, implying that no quantum speedup can be achieved. Extensions and implications for other adiabatic quantum algorithms will be discussed.

  9. Adiabatic Quantum Search in Open Systems

    NASA Astrophysics Data System (ADS)

    Wild, Dominik S.; Gopalakrishnan, Sarang; Knap, Michael; Yao, Norman Y.; Lukin, Mikhail D.

    2016-10-01

    Adiabatic quantum algorithms represent a promising approach to universal quantum computation. In isolated systems, a key limitation to such algorithms is the presence of avoided level crossings, where gaps become extremely small. In open quantum systems, the fundamental robustness of adiabatic algorithms remains unresolved. Here, we study the dynamics near an avoided level crossing associated with the adiabatic quantum search algorithm, when the system is coupled to a generic environment. At zero temperature, we find that the algorithm remains scalable provided the noise spectral density of the environment decays sufficiently fast at low frequencies. By contrast, higher order scattering processes render the algorithm inefficient at any finite temperature regardless of the spectral density, implying that no quantum speedup can be achieved. Extensions and implications for other adiabatic quantum algorithms will be discussed.

  10. Adiabatic limits on Riemannian Heisenberg manifolds

    SciTech Connect

    Yakovlev, A A

    2008-02-28

    An asymptotic formula is obtained for the distribution function of the spectrum of the Laplace operator, in the adiabatic limit for the foliation defined by the orbits of an invariant flow on a compact Riemannian Heisenberg manifold. Bibliography: 21 titles.

  11. Simulation of periodically focused, adiabatic thermal beams

    SciTech Connect

    Chen, C.; Akylas, T. R.; Barton, T. J.; Field, D. M.; Lang, K. M.; Mok, R. V.

    2012-12-21

    Self-consistent particle-in-cell simulations are performed to verify earlier theoretical predictions of adiabatic thermal beams in a periodic solenoidal magnetic focusing field [K.R. Samokhvalova, J. Zhou and C. Chen, Phys. Plasma 14, 103102 (2007); J. Zhou, K.R. Samokhvalova and C. Chen, Phys. Plasma 15, 023102 (2008)]. In particular, results are obtained for adiabatic thermal beams that do not rotate in the Larmor frame. For such beams, the theoretical predictions of the rms beam envelope, the conservations of the rms thermal emittances, the adiabatic equation of state, and the Debye length are verified in the simulations. Furthermore, the adiabatic thermal beam is found be stable in the parameter regime where the simulations are performed.

  12. Measuring fast gene dynamics in single cells with time-lapse luminescence microscopy

    PubMed Central

    Mazo-Vargas, Anyimilehidi; Park, Heungwon; Aydin, Mert; Buchler, Nicolas E.

    2014-01-01

    Time-lapse fluorescence microscopy is an important tool for measuring in vivo gene dynamics in single cells. However, fluorescent proteins are limited by slow chromophore maturation times and the cellular autofluorescence or phototoxicity that arises from light excitation. An alternative is luciferase, an enzyme that emits photons and is active upon folding. The photon flux per luciferase is significantly lower than that for fluorescent proteins. Thus time-lapse luminescence microscopy has been successfully used to track gene dynamics only in larger organisms and for slower processes, for which more total photons can be collected in one exposure. Here we tested green, yellow, and red beetle luciferases and optimized substrate conditions for in vivo luminescence. By combining time-lapse luminescence microscopy with a microfluidic device, we tracked the dynamics of cell cycle genes in single yeast with subminute exposure times over many generations. Our method was faster and in cells with much smaller volumes than previous work. Fluorescence of an optimized reporter (Venus) lagged luminescence by 15–20 min, which is consistent with its known rate of chromophore maturation in yeast. Our work demonstrates that luciferases are better than fluorescent proteins at faithfully tracking the underlying gene expression. PMID:25232010

  13. Confocal time lapse imaging as an efficient method for the cytocompatibility evaluation of dental composites.

    PubMed

    Attik, Ghania Nina; Gritsch, Kerstin; Colon, Pierre; Grosgogeat, Brigitte

    2014-11-09

    It is generally accepted that in vitro cell material interaction is a useful criterion in the evaluation of dental material biocompatibility. The objective of this study was to use 3D CLSM time lapse confocal imaging to assess the in vitro biocompatibility of dental composites. This method provides an accurate and sensitive indication of viable cell rate in contact with dental composite extracts. The ELS extra low shrinkage, a dental composite used for direct restoration, has been taken as example. In vitro assessment was performed on cultured primary human gingival fibroblast cells using Live/Dead staining. Images were obtained with the FV10i confocal biological inverted system and analyzed with the FV10-ASW 3.1 Software. Image analysis showed a very slight cytotoxicity in the presence of the tested composite after 5 hours of time lapse. A slight decrease of cell viability was shown in contact with the tested composite extracts compared to control cells. The findings highlighted the use of 3D CLSM time lapse imaging as a sensitive method to qualitatively and quantitatively evaluate the biocompatibility behavior of dental composites.

  14. Global dynamics of selective attention and its lapses in primary auditory cortex

    PubMed Central

    Lakatos, Peter; Barczak, Annamaria; Neymotin, Samuel A; McGinnis, Tammy; Ross, Deborah; Javitt, Daniel C.; O’Connell, Monica Noelle

    2016-01-01

    Previous research demonstrated that while selectively attending to relevant aspects of the external world, the brain extracts pertinent information by aligning its neuronal oscillations to key time points of stimuli or their sampling by sensory organs. This alignment mechanism is termed oscillatory entrainment. We investigated the global, long-timescale dynamics of this mechanism in the primary auditory cortex of nonhuman primates, and hypothesized that lapses of entrainment would correspond to lapses of attention. By examining electrophysiological and behavioral measures we observed that besides the lack of entrainment by external stimuli, attentional lapses were characterized by high amplitude alpha oscillations, with alpha frequency structuring of neuronal ensemble and single unit operations. Strikingly, entrainment and alpha oscillation dominated periods were strongly anti-correlated and fluctuated rhythmically at an ultra-slow rate. Our results indicate that these two distinct brain states represent externally versus internally oriented computational resources engaged by large-scale task-positive and task-negative functional networks. PMID:27618311

  15. Symmetry of the Adiabatic Condition in the Piston Problem

    ERIC Educational Resources Information Center

    Anacleto, Joaquim; Ferreira, J. M.

    2011-01-01

    This study addresses a controversial issue in the adiabatic piston problem, namely that of the piston being adiabatic when it is fixed but no longer so when it can move freely. It is shown that this apparent contradiction arises from the usual definition of adiabatic condition. The issue is addressed here by requiring the adiabatic condition to be…

  16. Design of the PIXIE adiabatic demagnetization refrigerators

    NASA Astrophysics Data System (ADS)

    Shirron, Peter J.; Kimball, Mark O.; Fixsen, Dale J.; Kogut, Alan J.; Li, Xiaoyi; DiPirro, Michael J.

    2012-04-01

    The Primordial Inflation Explorer (PIXIE) is a proposed mission to densely map the polarization of the cosmic microwave background. It will operate in a scanning mode from a sun-synchronous orbit, using low temperature detectors (at 0.1 K) and located inside a telescope that is cooled to approximately 2.73 K - to match the background temperature. A mechanical cryocooler operating at 4.5 K establishes a low base temperature from which two adiabatic demagnetization refrigerator (ADR) assemblies will cool the telescope and detectors. To achieve continuous scanning capability, the ADRs must operate continuously. Complicating the design are two factors: (1) the need to systematically vary the temperature of various telescope components in order to separate the small polarization signal variations from those that may arise from temperature drifts and changing gradients within the telescope, and (2) the orbital and monthly variations in lunar irradiance into the telescope barrels. These factors require the telescope ADR to reject quasi-continuous heat loads of 2-3 mW, while maintaining a peak heat reject rate of less than 12 mW. The detector heat load at 0.1 K is comparatively small at 1-2 μW. This paper will describe the 3-stage and 2-stage continuous ADRs that will be used to meet the cooling power and temperature stability requirements of the PIXIE detectors and telescope.

  17. On the persistence of adiabatic shear bands

    NASA Astrophysics Data System (ADS)

    Boakye-Yiadom, S.; Bassim, M. N.; Al-Ameeri, S.

    2012-08-01

    It is generally agreed that the initiation and development of adiabatic shear bands (ASBs) are manifestations of damage in metallic materials subjected to high strain rates and large strains as those due to impact in a Hopkinson Bar system. Models for evolution of these bands have been described in the literature. One question that has not received attention is how persistent these bands are and whether their presence and effect can be reversed or eliminated by using a process of thermal (heat treatment) or thermo-mechanical treatment that would relieve the material from the high strain associated with ASBs and their role as precursors to crack initiation and subsequent failure. Since ASBs are more prevalent and more defined in BCC metals including steels, a study was conducted to investigate the best conditions of generating ASBs in a heat treatable steel, followed by determining the best conditions for heat treatment of specimens already damaged by the presence of ASBs in order to relieve the strains due to ASBs and restore the material to an apparent microstructure without the "scars" due to the previous presence of ASBs. It was found that heat treatment achieves the curing from ASBs. This presentation documents the process undertaken to achieve this objective.

  18. Assessment of total efficiency in adiabatic engines

    NASA Astrophysics Data System (ADS)

    Mitianiec, W.

    2016-09-01

    The paper presents influence of ceramic coating in all surfaces of the combustion chamber of SI four-stroke engine on working parameters mainly on heat balance and total efficiency. Three cases of engine were considered: standard without ceramic coating, fully adiabatic combustion chamber and engine with different thickness of ceramic coating. Consideration of adiabatic or semi-adiabatic engine was connected with mathematical modelling of heat transfer from the cylinder gas to the cooling medium. This model takes into account changeable convection coefficient based on the experimental formulas of Woschni, heat conductivity of multi-layer walls and also small effect of radiation in SI engines. The simulation model was elaborated with full heat transfer to the cooling medium and unsteady gas flow in the engine intake and exhaust systems. The computer program taking into account 0D model of engine processes in the cylinder and 1D model of gas flow was elaborated for determination of many basic engine thermodynamic parameters for Suzuki DR-Z400S 400 cc SI engine. The paper presents calculation results of influence of the ceramic coating thickness on indicated pressure, specific fuel consumption, cooling and exhaust heat losses. Next it were presented comparisons of effective power, heat losses in the cooling and exhaust systems, total efficiency in function of engine rotational speed and also comparison of temperature inside the cylinder for standard, semi-adiabatic and full adiabatic engine. On the basis of the achieved results it was found higher total efficiency of adiabatic engines at 2500 rpm from 27% for standard engine to 37% for full adiabatic engine.

  19. Chromatin Imaging with Time-Lapse Atomic Force Microscopy

    PubMed Central

    Lyubchenko, Yuri L.; Shlyakhtenko, Luda S.

    2016-01-01

    Time-lapse atomic force microscopy (AFM) is widely used for direct visualization of the nanoscale dynamics of various biological systems. The advent of high-speed AFM instrumentation made it possible to image the dynamics of proteins and protein-DNA complexes within millisecond time range. This chapter describes protocols for studies of structure and dynamics of nucleosomes with time-lapse AFM including the high-speed AFM instrument. The necessary specifics for the preparation of chromatin samples for imaging with AFM including the protocols for the surface preparation are provided. PMID:25827873

  20. Opioid abstinence reinforcement delays heroin lapse during buprenorphine dose tapering.

    PubMed

    Greenwald, Mark K

    2008-01-01

    A positive reinforcement contingency increased opioid abstinence during outpatient dose tapering (4, 2, then 0 mg/day during Weeks 1 through 3) in non-treatment-seeking heroin-dependent volunteers who had been maintained on buprenorphine (8 mg/day) during an inpatient research protocol. The control group (n=12) received $4.00 for completing assessments at each thrice-weekly visit during dose tapering; 10 of 12 lapsed to heroin use 1 day after discharge. The abstinence reinforcement group (n=10) received $30.00 for each consecutive opioid-free urine sample; this significantly delayed heroin lapse (median, 15 days).

  1. Adiabatic dynamics of an inhomogeneous quantum phase transition: the case of a z>1 dynamical exponent

    NASA Astrophysics Data System (ADS)

    Dziarmaga, Jacek; Rams, Marek M.

    2010-10-01

    We consider an inhomogeneous quantum phase transition across a multicritical point of the XY quantum spin chain. This is an example of a Lifshitz transition with a dynamical exponent z=2. Just like in the case z=1 considered by Dziarmaga and Rams (2010 New J. Phys. 12 055007), when a critical front propagates much faster than the maximal group velocity of quasiparticles vq, then the transition is effectively homogeneous: the density of excitations obeys a generalized Kibble-Zurek mechanism and scales with the sixth root of the transition rate. However, unlike for the case z=1, the inhomogeneous transition becomes adiabatic not below vq but at a lower threshold velocity \\hat{v} , proportional to the inhomogeneity of the transition, where the excitations are suppressed exponentially. Interestingly, the adiabatic threshold \\hat{v} is nonzero despite the vanishing minimal group velocity of low-energy quasiparticles. In the adiabatic regime below \\hat{v} , the inhomogeneous transition can be used for efficient adiabatic quantum state preparation in a quantum simulator: the time required for the critical front to sweep across a chain of N spins adiabatically is merely linear in N, while the corresponding time for a homogeneous transition across the multicritical point scales with the sixth power of N. What is more, excitations after the adiabatic inhomogeneous transition, if any, are brushed away by the critical front to the end of the spin chain.

  2. Semiclassical quantization of bound and quasistationary states beyond the adiabatic approximation

    SciTech Connect

    Benderskii, V.A.; Vetoshkin, E.V.; Kats, E.I.

    2004-06-01

    We examine one important (and previously overlooked) aspect of well-known crossing diabatic potentials or Landau-Zener (LZ) problem. We derive the semiclassical quantization rules for the crossing diabatic potentials with localized initial and localized or delocalized final states, in the intermediate energy region, when all four adiabatic states are coupled and should be taken into account. We found all needed connection matrices and present the following analytical results: (i) in the tunneling region, the splittings of vibrational levels are represented as a product of the splitting in the lower adiabatic potential and the nontrivial function depending on the Massey parameter; (ii) in the overbarrier region, we find specific resonances between the levels in the lower and in the upper adiabatic potentials and, in that condition, independent quantizations rules are not correct; (iii) for the delocalized final states (decay lower adiabatic potential), we describe quasistationary states and calculate the decay rate as a function of the adiabatic coupling; and (iv) for the intermediate energy regions, we calculate the energy level quantization, which can be brought into a compact form by using either adiabatic or diabatic basis set (in contrast to the previous results found in the Landau diabatic basis). Applications of the results may concern the various systems; e.g., molecules undergoing conversion of electronic states, radiationless transitions, or isomerization reactions.

  3. Deep proton tunneling in the electronically adiabatic and non-adiabatic limits: comparison of the quantum and classical treatment of donor-acceptor motion in a protein environment.

    PubMed

    Benabbas, Abdelkrim; Salna, Bridget; Sage, J Timothy; Champion, Paul M

    2015-03-21

    Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical "gating" distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotope effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working near

  4. Deep proton tunneling in the electronically adiabatic and non-adiabatic limits: Comparison of the quantum and classical treatment of donor-acceptor motion in a protein environment

    SciTech Connect

    Benabbas, Abdelkrim; Salna, Bridget; Sage, J. Timothy; Champion, Paul M.

    2015-03-21

    Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical “gating” distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotope effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working

  5. Adiabatic optimization versus diffusion Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Jarret, Michael; Jordan, Stephen P.; Lackey, Brad

    2016-10-01

    Most experimental and theoretical studies of adiabatic optimization use stoquastic Hamiltonians, whose ground states are expressible using only real nonnegative amplitudes. This raises a question as to whether classical Monte Carlo methods can simulate stoquastic adiabatic algorithms with polynomial overhead. Here we analyze diffusion Monte Carlo algorithms. We argue that, based on differences between L1 and L2 normalized states, these algorithms suffer from certain obstructions preventing them from efficiently simulating stoquastic adiabatic evolution in generality. In practice however, we obtain good performance by introducing a method that we call Substochastic Monte Carlo. In fact, our simulations are good classical optimization algorithms in their own right, competitive with the best previously known heuristic solvers for MAX-k -SAT at k =2 ,3 ,4 .

  6. 30 CFR 556.55 - Lapse of bond.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Lapse of bond. 556.55 Section 556.55 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF SULPHUR OR OIL... 72 hours of learning of such an action. All bonds must require the surety to provide this...

  7. 30 CFR 556.55 - Lapse of bond.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Lapse of bond. 556.55 Section 556.55 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF SULPHUR OR OIL... 72 hours of learning of such an action. All bonds must require the surety to provide this...

  8. 30 CFR 556.55 - Lapse of bond.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Lapse of bond. 556.55 Section 556.55 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF SULPHUR OR OIL... 72 hours of learning of such an action. All bonds must require the surety to provide this...

  9. Negative Affect and Smoking Lapses: A Prospective Analysis

    ERIC Educational Resources Information Center

    Shiffman, Saul; Waters, Andrew J.

    2004-01-01

    Relapse is a central problem in smoking treatment. Data collected at the time of relapse episodes indicate that stress and negative affect (NA) promote relapse, but retrospective data are potentially biased. The authors performed a prospective analysis of stress and NA prior to initial lapses in smokers (N = 215). Day-to-day changes in stress…

  10. The nuclear debate: Deterrence and the lapse of faith

    SciTech Connect

    Tucker, R.W.

    1985-01-01

    This essay examines the growth of skepticism about the present system of nuclear deterrence. Tucker resists predicting the ultimate outcome, but he views the nuclear debate of this decade as an important ''lapse of faith'' in deterrence and he doubts there will ever be a full restoration of confidence.

  11. 26 CFR 25.2704-1 - Lapse of certain rights.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... immediately after death would have been $90X if the voting rights had been nonlapsing. The decrease in value... after the lapse of the voting rights. Example 2. Prior to D's death, D owned all the preferred stock of... market value of D's stock (determined immediately after D's death as though the voting rights had...

  12. 26 CFR 25.2704-1 - Lapse of certain rights.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... immediately after death would have been $90X if the voting rights had been nonlapsing. The decrease in value... after the lapse of the voting rights. Example 2. Prior to D's death, D owned all the preferred stock of... market value of D's stock (determined immediately after D's death as though the voting rights had...

  13. 26 CFR 25.2704-1 - Lapse of certain rights.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... immediately after death would have been $90X if the voting rights had been nonlapsing. The decrease in value... after the lapse of the voting rights. Example 2. Prior to D's death, D owned all the preferred stock of... market value of D's stock (determined immediately after D's death as though the voting rights had...

  14. 26 CFR 25.2704-1 - Lapse of certain rights.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... immediately after death would have been $90X if the voting rights had been nonlapsing. The decrease in value... after the lapse of the voting rights. Example 2. Prior to D's death, D owned all the preferred stock of... market value of D's stock (determined immediately after D's death as though the voting rights had...

  15. 26 CFR 25.2704-1 - Lapse of certain rights.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... immediately after death would have been $90X if the voting rights had been nonlapsing. The decrease in value... after the lapse of the voting rights. Example 2. Prior to D's death, D owned all the preferred stock of... market value of D's stock (determined immediately after D's death as though the voting rights had...

  16. Time-lapse microscopy using smartphone with augmented reality markers.

    PubMed

    Baek, Dongyoub; Cho, Sungmin; Yun, Kyungwon; Youn, Keehong; Bang, Hyunwoo

    2014-04-01

    A prototype system that replaces the conventional time-lapse imaging in microscopic inspection for use with smartphones is presented. Existing time-lapse imaging requires a video data feed between a microscope and a computer that varies depending on the type of image grabber. Even with proper hardware setups, a series of tedious and repetitive tasks is still required to relocate to the region-of-interest (ROI) of the specimens. In order to simplify the system and improve the efficiency of time-lapse imaging tasks, a smartphone-based platform utilizing microscopic augmented reality (μ-AR) markers is proposed. To evaluate the feasibility and efficiency of the proposed system, a user test was designed and performed, measuring the elapse time for a trial of the task starting from the execution of the application software to the completion of restoring and imaging of an ROI saved in advance. The results of the user test showed that the average elapse time was 65.3 ± 15.2 s with 6.86 ± 3.61 μm of position error and 0.08 ± 0.40 degrees of angle error. This indicates that the time-lapse imaging task was accomplished rapidly with a high level of accuracy. Thus, simplification of both the system and the task was achieved via our proposed system.

  17. Bimolecular recombination reactions: K-adiabatic and K-active forms of the bimolecular master equations and analytic solutions.

    PubMed

    Ghaderi, Nima

    2016-03-28

    Expressions for a K-adiabatic master equation for a bimolecular recombination rate constant krec are derived for a bimolecular reaction forming a complex with a single well or complexes with multiple well, where K is the component of the total angular momentum along the axis of least moment of inertia of the recombination product. The K-active master equation is also considered. The exact analytic solutions, i.e., the K-adiabatic and K-active steady-state population distribution function of reactive complexes, g(EJK) and g(EJ), respectively, are derived for the K-adiabatic and K-active master equation cases using properties of inhomogeneous integral equations (Fredholm type). The solutions accommodate arbitrary intermolecular energy transfer models, e.g., the single exponential, double exponential, Gaussian, step-ladder, and near-singularity models. At the high pressure limit, the krec for both the K-adiabatic and K-active master equations reduce, respectively, to the K-adiabatic and K-active bimolecular Rice-Ramsperger-Kassel-Marcus theory (high pressure limit expressions). Ozone and its formation from O + O2 are known to exhibit an adiabatic K. The ratio of the K-adiabatic to the K-active recombination rate constants for ozone formation at the high pressure limit is calculated to be ∼0.9 at 300 K. Results on the temperature and pressure dependence of the recombination rate constants and populations of O3 will be presented elsewhere.

  18. Complexity of the Quantum Adiabatic Algorithm

    NASA Technical Reports Server (NTRS)

    Hen, Itay

    2013-01-01

    The Quantum Adiabatic Algorithm (QAA) has been proposed as a mechanism for efficiently solving optimization problems on a quantum computer. Since adiabatic computation is analog in nature and does not require the design and use of quantum gates, it can be thought of as a simpler and perhaps more profound method for performing quantum computations that might also be easier to implement experimentally. While these features have generated substantial research in QAA, to date there is still a lack of solid evidence that the algorithm can outperform classical optimization algorithms.

  19. On black hole spectroscopy via adiabatic invariance

    NASA Astrophysics Data System (ADS)

    Jiang, Qing-Quan; Han, Yan

    2012-12-01

    In this Letter, we obtain the black hole spectroscopy by combining the black hole property of adiabaticity and the oscillating velocity of the black hole horizon. This velocity is obtained in the tunneling framework. In particular, we declare, if requiring canonical invariance, the adiabatic invariant quantity should be of the covariant form Iadia = ∮pi dqi. Using it, the horizon area of a Schwarzschild black hole is quantized independently of the choice of coordinates, with an equally spaced spectroscopy always given by ΔA = 8 π lp2 in the Schwarzschild and Painlevé coordinates.

  20. Adiabatic Hyperspherical Analysis of Realistic Nuclear Potentials

    NASA Astrophysics Data System (ADS)

    Daily, K. M.; Kievsky, Alejandro; Greene, Chris H.

    2015-12-01

    Using the hyperspherical adiabatic method with the realistic nuclear potentials Argonne V14, Argonne V18, and Argonne V18 with the Urbana IX three-body potential, we calculate the adiabatic potentials and the triton bound state energies. We find that a discrete variable representation with the slow variable discretization method along the hyperradial degree of freedom results in energies consistent with the literature. However, using a Laguerre basis results in missing energy, even when extrapolated to an infinite number of basis functions and channels. We do not include the isospin T = 3/2 contribution in our analysis.

  1. Adiabatic cluster-state quantum computing

    SciTech Connect

    Bacon, Dave; Flammia, Steven T.

    2010-09-15

    Models of quantum computation (QC) are important because they change the physical requirements for achieving universal QC. For example, one-way QC requires the preparation of an entangled ''cluster'' state, followed by adaptive measurement on this state, a set of requirements which is different from the standard quantum-circuit model. Here we introduce a model based on one-way QC but without measurements (except for the final readout), instead using adiabatic deformation of a Hamiltonian whose initial ground state is the cluster state. Our results could help increase the feasibility of adiabatic schemes by using tools from one-way QC.

  2. Markovian quantum master equation beyond adiabatic regime.

    PubMed

    Yamaguchi, Makoto; Yuge, Tatsuro; Ogawa, Tetsuo

    2017-01-01

    By introducing a temporal change time scale τ_{A}(t) for the time-dependent system Hamiltonian, a general formulation of the Markovian quantum master equation is given to go well beyond the adiabatic regime. In appropriate situations, the framework is well justified even if τ_{A}(t) is faster than the decay time scale of the bath correlation function. An application to the dissipative Landau-Zener model demonstrates this general result. The findings are applicable to a wide range of fields, providing a basis for quantum control beyond the adiabatic regime.

  3. Markovian quantum master equation beyond adiabatic regime

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Makoto; Yuge, Tatsuro; Ogawa, Tetsuo

    2017-01-01

    By introducing a temporal change time scale τA(t ) for the time-dependent system Hamiltonian, a general formulation of the Markovian quantum master equation is given to go well beyond the adiabatic regime. In appropriate situations, the framework is well justified even if τA(t ) is faster than the decay time scale of the bath correlation function. An application to the dissipative Landau-Zener model demonstrates this general result. The findings are applicable to a wide range of fields, providing a basis for quantum control beyond the adiabatic regime.

  4. Dynamics of an optomechanical system with quadratic coupling: Effect of first order correction to adiabatic elimination

    PubMed Central

    Jiang, Cheng; Cui, Yuanshun; Chen, Guibin

    2016-01-01

    We explore theoretically the dynamics of an optomechanical system in which a resonantly driven cavity mode is quadratically coupled to the displacement of a mechanical resonator. Considering the first order correction to adiabatic elimination, we obtain the analytical expression of optomechanical damping rate which is negative and depends on the position of the mechanical resonator. After comparing the numerical results between the full simulation of Langevin equations, adiabatic elimination, and first order correction to adiabatic elimination, we explain the dynamics of the system in terms of overall mechanical potential and optomechanical damping rate. The antidamping induced by radiation pressure can result in self-sustained oscillation of the mechanical resonator. Finally, we discuss the time evolution of the intracavity photon number, which also shows that the effect of first order correction cannot be neglected when the ratio of the cavity decay rate to the mechanical resonance frequency becomes smaller than a critical value. PMID:27752125

  5. Optical force on atoms with periodic adiabatic rapid passage sequences

    NASA Astrophysics Data System (ADS)

    Miao, Xiyue

    Adiabatic Rapid Passage (ARP) is a long-existing method to invert the population of a two-level nuclear spin system. Its extension to the optical domain necessitates a frequency chirped light pulse to interact with a two-level atom through dipole interaction. In this dissertation ARP processes for various pulse schemes and pulse parameters have been studied theoretically and experimentally. The non-adiabatic transition probability of ARP was quantified to characterize the efficiency of ARP for population transfer. Unanticipated regularities were found in the pulse parameter space. ARP sequences in periodic phase coherent counter-propagating light pulses can be used to produce large optical forces on atoms. The magnitude of the force is proportional to the pulse repetition rate. So the force can be much larger than the usual radiative force if the pulse repetition rate is much higher than the spontaneous emission rate. The behavior of the atoms in such periodic ARP fields without spontaneous emission is well described by a periodic Hamiltonian. By investigating the evolution of the Bloch vector on the Bloch sphere, we related the average optical force on atoms to the non-adiabatic transition probability of a single pulse. Syncopation time has to be introduced in the pulsing scheme to produce a directional force in the presence of spontaneous emission. Experimentally, we observed the force on He* atoms by the deflection of the atomic beam with periodic chirped pulses from counter-propagating pulse trains. The chirped pulse train was realized by synchronized phase and amplitude modulation of the light from a cw diode laser. The Fourier spectrum of the modulated light was monitored to guarantee the quality of the chirped pulses. The measured ARP forces are about half of the theoretical predictions. Not only have we shown that such forces are huge and robust, but we have also been able to map the forces in the two dimensional pulse parameter space. The force

  6. Adiabatic Compression in a Fire Syringe.

    ERIC Educational Resources Information Center

    Hayn, Carl H.; Baird, Scott C.

    1985-01-01

    Suggests using better materials in fire syringes to obtain more effective results during demonstrations which show the elevation in temperature upon a very rapid (adiabatic) compression of air. Also describes an experiment (using ignition temperatures) which introduces students to the use of thermocouples for high temperature measurements. (DH)

  7. Apparatus to Measure Adiabatic and Isothermal Processes.

    ERIC Educational Resources Information Center

    Lamb, D. W.; White, G. M.

    1996-01-01

    Describes a simple manual apparatus designed to serve as an effective demonstration of the differences between isothermal and adiabatic processes for the general or elementary physics student. Enables students to verify Boyle's law for slow processes and identify the departure from this law for rapid processes and can also be used to give a clear…

  8. Adiabatic and Non-adiabatic quenches in a Spin-1 Bose Einstein Condensate

    NASA Astrophysics Data System (ADS)

    Boguslawski, Matthew; Hebbe Madhusudhana, Bharath; Anquez, Martin; Robbins, Bryce; Barrios, Maryrose; Hoang, Thai; Chapman, Michael

    2016-05-01

    A quantum phase transition (QPT) is observed in a wide range of phenomena. We have studied the dynamics of a spin-1 ferromagnetic Bose-Einstein condensate for both adiabatic and non-adiabatic quenches through a QPT. At the quantum critical point (QCP), finite size effects lead to a non-zero gap, which makes an adiabatic quench possible through the QPT. We experimentally demonstrate such a quench, which is forbidden at the mean field level. For faster quenches through the QCP, the vanishing energy gap causes the reaction timescale of the system to diverge, preventing the system from adiabatically following the ground state. We measure the temporal evolution of the spin populations for different quench speeds and determine the exponents characterizing the scaling of the onset of excitations, which are in good agreement with the predictions of Kibble-Zurek mechanism.

  9. Noradrenergic Genotype Predicts Lapses in Sustained Attention

    ERIC Educational Resources Information Center

    Greene, Ciara M.; Bellgrove, Mark A.; Gill, Michael; Robertson, Ian H.

    2009-01-01

    Sustained attention is modulated by the neurotransmitter noradrenaline. The balance of dopamine and noradrenaline in the cortex is controlled by the DBH gene. The principal variant in this gene is a C/T change at position-1021, and the T allele at this locus is hypothesised to result in a slower rate of dopamine to noradrenaline conversion than…

  10. Fixed-point adiabatic quantum search

    NASA Astrophysics Data System (ADS)

    Dalzell, Alexander M.; Yoder, Theodore J.; Chuang, Isaac L.

    2017-01-01

    Fixed-point quantum search algorithms succeed at finding one of M target items among N total items even when the run time of the algorithm is longer than necessary. While the famous Grover's algorithm can search quadratically faster than a classical computer, it lacks the fixed-point property—the fraction of target items must be known precisely to know when to terminate the algorithm. Recently, Yoder, Low, and Chuang [Phys. Rev. Lett. 113, 210501 (2014), 10.1103/PhysRevLett.113.210501] gave an optimal gate-model search algorithm with the fixed-point property. Previously, it had been discovered by Roland and Cerf [Phys. Rev. A 65, 042308 (2002), 10.1103/PhysRevA.65.042308] that an adiabatic quantum algorithm, operating by continuously varying a Hamiltonian, can reproduce the quadratic speedup of gate-model Grover search. We ask, can an adiabatic algorithm also reproduce the fixed-point property? We show that the answer depends on what interpolation schedule is used, so as in the gate model, there are both fixed-point and non-fixed-point versions of adiabatic search, only some of which attain the quadratic quantum speedup. Guided by geometric intuition on the Bloch sphere, we rigorously justify our claims with an explicit upper bound on the error in the adiabatic approximation. We also show that the fixed-point adiabatic search algorithm can be simulated in the gate model with neither loss of the quadratic Grover speedup nor of the fixed-point property. Finally, we discuss natural uses of fixed-point algorithms such as preparation of a relatively prime state and oblivious amplitude amplification.

  11. Adiabatic burst evaporation from bicontinuous nanoporous membranes.

    PubMed

    Ichilmann, Sachar; Rücker, Kerstin; Haase, Markus; Enke, Dirk; Steinhart, Martin; Xue, Longjian

    2015-05-28

    Evaporation of volatile liquids from nanoporous media with bicontinuous morphology and pore diameters of a few 10 nm is an ubiquitous process. For example, such drying processes occur during syntheses of nanoporous materials by sol-gel chemistry or by spinodal decomposition in the presence of solvents as well as during solution impregnation of nanoporous hosts with functional guests. It is commonly assumed that drying is endothermic and driven by non-equilibrium partial pressures of the evaporating species in the gas phase. We show that nearly half of the liquid evaporates in an adiabatic mode involving burst-like liquid-to-gas conversions. During single adiabatic burst evaporation events liquid volumes of up to 10(7) μm(3) are converted to gas. The adiabatic liquid-to-gas conversions occur if air invasion fronts get unstable because of the built-up of high capillary pressures. Adiabatic evaporation bursts propagate avalanche-like through the nanopore systems until the air invasion fronts have reached new stable configurations. Adiabatic cavitation bursts thus compete with Haines jumps involving air invasion front relaxation by local liquid flow without enhanced mass transport out of the nanoporous medium and prevail if the mean pore diameter is in the range of a few 10 nm. The results reported here may help optimize membrane preparation via solvent-based approaches, solution-loading of nanopore systems with guest materials as well as routine use of nanoporous membranes with bicontinuous morphology and may contribute to better understanding of adsorption/desorption processes in nanoporous media.

  12. Adiabatic circuits: converter for static CMOS signals

    NASA Astrophysics Data System (ADS)

    Fischer, J.; Amirante, E.; Bargagli-Stoffi, A.; Schmitt-Landsiedel, D.

    2003-05-01

    Ultra low power applications can take great advantages from adiabatic circuitry. In this technique a multiphase system is used which consists ideally of trapezoidal voltage signals. The input signals to be processed will often come from a function block realized in static CMOS. The static rectangular signals must be converted for the oscillating multiphase system of the adiabatic circuitry. This work shows how to convert the input signals to the proposed pulse form which is synchronized to the appropriate supply voltage. By means of adder structures designed for a 0.13µm technology in a 4-phase system there will be demonstrated, which additional circuits are necessary for the conversion. It must be taken into account whether the data arrive in parallel or serial form. Parallel data are all in one phase and therefore it is advantageous to use an adder structure with a proper input stage, e.g. a Carry Lookahead Adder (CLA). With a serial input stage it is possible to read and to process four signals during one cycle due to the adiabatic 4-phase system. Therefore input signals with a frequency four times higher than the adiabatic clock frequency can be used. This reduces the disadvantage of the slow clock period typical for adiabatic circuits. By means of an 8 bit Ripple Carry Adder (8 bit RCA) the serial reading will be introduced. If the word width is larger than 4 bits the word can be divided in 4 bit words which are processed in parallel. This is the most efficient way to minimize the number of input lines and pads. At the same time a high throughput is achieved.

  13. The dynamic instability of adiabatic blast waves

    NASA Technical Reports Server (NTRS)

    Ryu, Dongsu; Vishniac, Ethan T.

    1991-01-01

    Adiabatic blastwaves, which have a total energy injected from the center E varies as t(sup q) and propagate through a preshock medium with a density rho(sub E) varies as r(sup -omega) are described by a family of similarity solutions. Previous work has shown that adiabatic blastwaves with increasing or constant postshock entropy behind the shock front are susceptible to an oscillatory instability, caused by the difference between the nature of the forces on the two sides of the dense shell behind the shock front. This instability sets in if the dense postshock layer is sufficiently thin. The stability of adiabatic blastwaves with a decreasing postshock entropy is considered. Such blastwaves, if they are decelerating, always have a region behind the shock front which is subject to convection. Some accelerating blastwaves also have such region, depending on the values of q, omega, and gamma where gamma is the adiabatic index. However, since the shock interface stabilizes dynamically induced perturbations, blastwaves become convectively unstable only if the convective zone is localized around the origin or a contact discontinuity far from the shock front. On the other hand, the contact discontinuity of accelerating blastwaves is subject to a strong Rayleigh-Taylor instability. The frequency spectra of the nonradial, normal modes of adiabatic blastwaves have been calculated. The results have been applied to the shocks propagating through supernovae envelopes. It is shown that the metal/He and He/H interfaces are strongly unstable against the Rayleigh-Taylor instability. This instability will induce mixing in supernovae envelopes. In addition the implications of this work for the evolution of planetary nebulae is discussed.

  14. Monitoring hydraulic processes with automated time-lapse electrical resistivity tomography (ALERT)

    NASA Astrophysics Data System (ADS)

    Kuras, Olivier; Pritchard, Jonathan D.; Meldrum, Philip I.; Chambers, Jonathan E.; Wilkinson, Paul B.; Ogilvy, Richard D.; Wealthall, Gary P.

    2009-10-01

    Hydraulic processes in porous media can be monitored in a minimally invasive fashion by time-lapse electrical resistivity tomography (ERT). The permanent installation of specifically designed ERT instrumentation, telemetry and information technology (IT) infrastructure enables automation of data collection, transfer, processing, management and interpretation. Such an approach gives rise to a dramatic increase in temporal resolution, thus providing new insight into rapidly occurring subsurface processes. In this paper, we discuss a practical implementation of automated time-lapse ERT. We present the results of a recent study in which we used controlled hydraulic experiments in two test cells at reduced field scale to explore the limiting conditions for process monitoring with cross-borehole ERT measurements. The first experiment used three adjacent boreholes to monitor rapidly rising and falling water levels. For the second experiment, we injected a saline tracer into a homogeneous flow field in freshwater-saturated sand; the dynamics of the plume were then monitored with 2D measurements across a 9-borehole fence and 3D measurements across a 3 × 3 grid of boreholes. We investigated different strategies for practical data acquisition and show that simple re-ordering of ERT measurement schemes can help harmonise data collection with the nature of the monitored process. The methodology of automated time-lapse ERT was found to perform well in different monitoring scenarios (2D/3D plus time) at time scales associated with realistic subsurface processes. The limiting factor is the finite amount of time needed for the acquisition of sufficiently comprehensive datasets. We found that, given the complexity of our monitoring scenarios, typical frame rates of at least 1.5-3 images per hour were possible without compromising image quality.

  15. Sensitivity of MJO to the CAPE lapse time in the NCAR CAM3

    SciTech Connect

    LIU, P.; Wang, B.; Meehl, Gerald, A.

    2007-09-05

    Weak and irregular boreal winter MJO in the NCAR CAM3 corresponds to very low CAPE background, which is caused by easy-to-occur and over-dominant deep convection indicating the deep convective scheme uses either too low CAPE threshold as triggering function or too large consumption rate of CAPE to close the scheme. Raising the CAPE threshold from default 70 J/kg to ten times large only enhances the CAPE background while fails to noticeably improve the wind mean state and the MJO. However, lengthening the CAPE lapse time from one to eight hours significantly improved the background in CAPE and winds, and salient features of the MJO. Variances, dominant periods and zonal wave numbers, power spectra and coherent propagating structure in winds and convection associated with MJO are ameliorated and comparable to the observations. Lengthening the CAPE lapse time to eight hours reduces dramatically the cloud base mass flux, which prevents effectively the deep convection from occurring prematurely. In this case, partitioning of deep to shallow convection in MJO active area is about 5:4.5 compared to over 9:0.5 in the control run. Latent heat is significantly enhanced below 600 hPa over the central Indian Ocean and the western Pacific. Such partitioning of deep and shallow convection is argued necessary for simulating realistic MJO features. Although the universal eight hours lies in the upper limit of that required by the quasi-equilibrium theory, a local CAPE lapse time for the parameterized cumulus convection will be more realistic.

  16. A cautionary note against embryo aneuploidy risk assessment using time-lapse imaging.

    PubMed

    Ottolini, Christian; Rienzi, Laura; Capalbo, Antonio

    2014-03-01

    Preimplantation genetic screening (PGS) for embryo aneuploidy using embryo biopsy is a widely available technique used to select embryos for transfer following IVF for certain patient populations. Since its introduction, there has been an ongoing search for a non-invasive technique to perform PGS. Such an advance would revolutionize the field of IVF enabling PGS to be used universally as a routine embryo selection tool with the potential to significantly increase pregnancy rates and decrease poor outcomes such as miscarriage. Recent publications illustrating the development of an algorithm using time-lapse imaging of IVF embryos have claimed to have done just this. We believe that the statements made in these articles, which include the proposed ability to increase pregnancy rates by determining embryo aneuploidy risk by time-lapse imaging, are premature and to this point unsubstantiated by the published data. We provide evidence from existing publications and from our own data that suggests that the statements recently made are misleading. We make the point that further investigation is needed either in the form of a larger, age-adjusted data set or preferably in a randomized controlled trial.

  17. Shear Faulting and Adiabatic Heating: Experimental Results from Ice

    NASA Astrophysics Data System (ADS)

    Golding, N.; Schulson, E. M.; Renshaw, C. E.

    2011-12-01

    Ice exhibits two distinct modes of shear faulting (Golding et al. Acta Materialia, 2010;58:5043), namely frictional or Coulombic (C) faulting under moderate levels of confinement and non-frictional or plastic (P) faulting under high levels of confinement. The mechanisms governing C-faulting have previously been discussed in connection with the comb-crack model (Renshaw & Schulson Nature, 2001;412:897). Here we examine the physical process[es] that trigger P-faulting. Systematic experiments on laboratory grown granular and columnar polycrystalline ice loaded triaxially under a high degree of confinement at -10 oC to -40 oC at applied strain rates 10-5 s-1 to 10-1 s-1 trace the micro-mechanical evolution of P-faulting. Terminal failure is characterized by a sudden brittle-like loss in load bearing capacity, the development of a narrow shear band, comprised of recrystallized grains and oriented on a plane of maximum shear, and localized heating. Possible mechanisms considered to account for the localization include: 1) adiabatic heating, 2) localized material softening through a reduction in dislocation density caused by dynamic recrystallization and 3) a transition from power-law creep to grain-size-dependent diffusional creep as a result of grain refinement caused by dynamic recrystallization. Our results indicate that, although recrystallization develops dynamically during loading, microstructural development does not significantly affect shear localization in ice. Nor does it affect the character of the fault. The minimum levels of deformation required to generate faulting are found to be consistent with those predicted for adiabatic shear instability. The present observations suggest that under specific conditions adiabatic heating, rather than dynamic recrystallization, may lead to material instability and shear faulting.

  18. Time-lapse Raman imaging of osteoblast differentiation

    NASA Astrophysics Data System (ADS)

    Hashimoto, Aya; Yamaguchi, Yoshinori; Chiu, Liang-Da; Morimoto, Chiaki; Fujita, Katsumasa; Takedachi, Masahide; Kawata, Satoshi; Murakami, Shinya; Tamiya, Eiichi

    2015-07-01

    Osteoblastic mineralization occurs during the early stages of bone formation. During this mineralization, hydroxyapatite (HA), a major component of bone, is synthesized, generating hard tissue. Many of the mechanisms driving biomineralization remain unclear because the traditional biochemical assays used to investigate them are destructive techniques incompatible with viable cells. To determine the temporal changes in mineralization-related biomolecules at mineralization spots, we performed time-lapse Raman imaging of mouse osteoblasts at a subcellular resolution throughout the mineralization process. Raman imaging enabled us to analyze the dynamics of the related biomolecules at mineralization spots throughout the entire process of mineralization. Here, we stimulated KUSA-A1 cells to differentiate into osteoblasts and conducted time-lapse Raman imaging on them every 4 hours for 24 hours, beginning 5 days after the stimulation. The HA and cytochrome c Raman bands were used as markers for osteoblastic mineralization and apoptosis. From the Raman images successfully acquired throughout the mineralization process, we found that β-carotene acts as a biomarker that indicates the initiation of osteoblastic mineralization. A fluctuation of cytochrome c concentration, which indicates cell apoptosis, was also observed during mineralization. We expect time-lapse Raman imaging to help us to further elucidate osteoblastic mineralization mechanisms that have previously been unobservable.

  19. Quantum-Classical Correspondence of Shortcuts to Adiabaticity

    NASA Astrophysics Data System (ADS)

    Okuyama, Manaka; Takahashi, Kazutaka

    2017-04-01

    We formulate the theory of shortcuts to adiabaticity in classical mechanics. For a reference Hamiltonian, the counterdiabatic term is constructed from the dispersionless Korteweg-de Vries (KdV) hierarchy. Then the adiabatic theorem holds exactly for an arbitrary choice of time-dependent parameters. We use the Hamilton-Jacobi theory to define the generalized action. The action is independent of the history of the parameters and is directly related to the adiabatic invariant. The dispersionless KdV hierarchy is obtained from the classical limit of the KdV hierarchy for the quantum shortcuts to adiabaticity. This correspondence suggests some relation between the quantum and classical adiabatic theorems.

  20. Efficient shortcuts to adiabatic passage for three-dimensional entanglement generation via transitionless quantum driving

    PubMed Central

    He, Shuang; Su, Shi-Lei; Wang, Dong-Yang; Sun, Wen-Mei; Bai, Cheng-Hua; Zhu, Ai-Dong; Wang, Hong-Fu; Zhang, Shou

    2016-01-01

    We propose an effective scheme of shortcuts to adiabaticity for generating a three-dimensional entanglement of two atoms trapped in a cavity using the transitionless quantum driving (TQD) approach. The key point of this approach is to construct an effective Hamiltonian that drives the dynamics of a system along instantaneous eigenstates of a reference Hamiltonian to reproduce the same final state as that of an adiabatic process within a much shorter time. In this paper, the shortcuts to adiabatic passage are constructed by introducing two auxiliary excited levels in each atom and applying extra cavity modes and classical fields to drive the relevant transitions. Thereby, the three-dimensional entanglement is obtained with a faster rate than that in the adiabatic passage. Moreover, the influences of atomic spontaneous emission and photon loss on the fidelity are discussed by numerical simulation. The results show that the speed of entanglement implementation is greatly improved by the use of adiabatic shortcuts and that this entanglement implementation is robust against decoherence. This will be beneficial to the preparation of high-dimensional entanglement in experiment and provides the necessary conditions for the application of high-dimensional entangled states in quantum information processing. PMID:27499169

  1. Adiabatic Quantum Simulation of Quantum Chemistry

    NASA Astrophysics Data System (ADS)

    Babbush, Ryan; Love, Peter J.; Aspuru-Guzik, Alán

    2014-10-01

    We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions.

  2. Ramsey numbers and adiabatic quantum computing.

    PubMed

    Gaitan, Frank; Clark, Lane

    2012-01-06

    The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers R(m,n) with m, n≥3, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers R(m,n). We show how the computation of R(m,n) can be mapped to a combinatorial optimization problem whose solution can be found using adiabatic quantum evolution. We numerically simulate this adiabatic quantum algorithm and show that it correctly determines the Ramsey numbers R(3,3) and R(2,s) for 5≤s≤7. We then discuss the algorithm's experimental implementation, and close by showing that Ramsey number computation belongs to the quantum complexity class quantum Merlin Arthur.

  3. Comment on ``Adiabatic theory for the bipolaron''

    NASA Astrophysics Data System (ADS)

    Smondyrev, M. A.; Devreese, J. T.

    1996-05-01

    Comments are given on the application of the Bogoliubov-Tyablikov approach to the bipolaron problem in a recent paper by Lakhno [Phys. Rev. B 51, 3512 (1995)]. This author believes that his model (1) is the translation-invariant adiabatic theory of bipolarons and (2) gives asymptotically exact solutions in the adiabatic limit while the other approaches are considered as either phenomenological or variational in nature. Numerical results by Lakhno are in contradiction with all other papers published on the subject because his model leads to much lower energies. Thus, the author concludes that bipolarons ``are more stable than was considered before.'' We prove that both the analytical and the numerical results presented by Lakhno are wrong.

  4. Shortcuts to adiabaticity from linear response theory

    SciTech Connect

    Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian

    2015-10-23

    A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. Moreover, with the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. We finally propose a degenerate family of protocols, which facilitates shortcuts to adiabaticity for specific and very short driving times.

  5. Shortcuts to adiabaticity from linear response theory

    DOE PAGES

    Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian

    2015-10-23

    A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. Moreover, with the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. We finally propose a degenerate family of protocols, which facilitates shortcuts tomore » adiabaticity for specific and very short driving times.« less

  6. Adiabatic state preparation study of methylene

    SciTech Connect

    Veis, Libor Pittner, Jiří

    2014-06-07

    Quantum computers attract much attention as they promise to outperform their classical counterparts in solving certain type of problems. One of them with practical applications in quantum chemistry is simulation of complex quantum systems. An essential ingredient of efficient quantum simulation algorithms are initial guesses of the exact wave functions with high enough fidelity. As was proposed in Aspuru-Guzik et al. [Science 309, 1704 (2005)], the exact ground states can in principle be prepared by the adiabatic state preparation method. Here, we apply this approach to preparation of the lowest lying multireference singlet electronic state of methylene and numerically investigate preparation of this state at different molecular geometries. We then propose modifications that lead to speeding up the preparation process. Finally, we decompose the minimal adiabatic state preparation employing the direct mapping in terms of two-qubit interactions.

  7. Fast forward to the classical adiabatic invariant

    NASA Astrophysics Data System (ADS)

    Jarzynski, Christopher; Deffner, Sebastian; Patra, Ayoti; Subaşı, Yiǧit

    2017-03-01

    We show how the classical action, an adiabatic invariant, can be preserved under nonadiabatic conditions. Specifically, for a time-dependent Hamiltonian H =p2/2 m +U (q ,t ) in one degree of freedom, and for an arbitrary choice of action I0, we construct a so-called fast-forward potential energy function VFF(q ,t ) that, when added to H , guides all trajectories with initial action I0 to end with the same value of action. We use this result to construct a local dynamical invariant J (q ,p ,t ) whose value remains constant along these trajectories. We illustrate our results with numerical simulations. Finally, we sketch how our classical results may be used to design approximate quantum shortcuts to adiabaticity.

  8. Adiabatic invariance with first integrals of motion.

    PubMed

    Adib, Artur B

    2002-10-01

    The construction of a microthermodynamic formalism for isolated systems based on the concept of adiabatic invariance is an old but seldom appreciated effort in the literature, dating back at least to P. Hertz [Ann. Phys. (Leipzig) 33, 225 (1910)]. An apparently independent extension of such formalism for systems bearing additional first integrals of motion was recently proposed by Hans H. Rugh [Phys. Rev. E 64, 055101 (2001)], establishing the concept of adiabatic invariance even in such singular cases. After some remarks in connection with the formalism pioneered by Hertz, it will be suggested that such an extension can incidentally explain the success of a dynamical method for computing the entropy of classical interacting fluids, at least in some potential applications where the presence of additional first integrals cannot be ignored.

  9. Trapped Ion Quantum Computation by Adiabatic Passage

    SciTech Connect

    Feng Xuni; Wu Chunfeng; Lai, C. H.; Oh, C. H.

    2008-11-07

    We propose a new universal quantum computation scheme for trapped ions in thermal motion via the technique of adiabatic passage, which incorporates the advantages of both the adiabatic passage and the model of trapped ions in thermal motion. Our scheme is immune from the decoherence due to spontaneous emission from excited states as the system in our scheme evolves along a dark state. In our scheme the vibrational degrees of freedom are not required to be cooled to their ground states because they are only virtually excited. It is shown that the fidelity of the resultant gate operation is still high even when the magnitude of the effective Rabi frequency moderately deviates from the desired value.

  10. Adiabatic quantum simulation of quantum chemistry.

    PubMed

    Babbush, Ryan; Love, Peter J; Aspuru-Guzik, Alán

    2014-10-13

    We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions.

  11. Multiphoton adiabatic passage for atom optics applications

    SciTech Connect

    Demeter, Gabor; Djotyan, Gagik P.

    2009-04-15

    We study the force exerted on two-level atoms by short, counterpropagating laser pulses. When the counterpropagating pulses overlap each other partially, multiphoton adiabatic processes are possible in several configurations, which amplify the force exerted on the atoms. We investigate the practical usefulness of such multiphoton adiabatic transitions for the manipulation of the atoms' mechanical state. In particular, we compare the efficiency of a pair of constant frequency, oppositely detuned laser pulses and that of a pair of frequency-chirped pulses. We also consider the case of prolonged exposure to a sequence of laser pulses for a duration that is comparable to or much larger than the spontaneous lifetime of the atoms. We use numerical methods to calculate the reduction of the force and the heating of the atomic ensemble when spontaneous emission cannot be neglected during the interaction. In addition, we derive simple approximate formulas for the force and the heating, and compare them to the numerical results.

  12. Adiabatic quantum optimization for associative memory recall

    DOE PAGES

    Seddiqi, Hadayat; Humble, Travis S.

    2014-12-22

    Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are storedmore » in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.« less

  13. Adiabatic quantum optimization for associative memory recall

    SciTech Connect

    Seddiqi, Hadayat; Humble, Travis S.

    2014-12-22

    Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.

  14. Adiabatic Quantum Simulation of Quantum Chemistry

    PubMed Central

    Babbush, Ryan; Love, Peter J.; Aspuru-Guzik, Alán

    2014-01-01

    We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions. PMID:25308187

  15. Computer Code For Turbocompounded Adiabatic Diesel Engine

    NASA Technical Reports Server (NTRS)

    Assanis, D. N.; Heywood, J. B.

    1988-01-01

    Computer simulation developed to study advantages of increased exhaust enthalpy in adiabatic turbocompounded diesel engine. Subsytems of conceptual engine include compressor, reciprocator, turbocharger turbine, compounded turbine, ducting, and heat exchangers. Focus of simulation of total system is to define transfers of mass and energy, including release and transfer of heat and transfer of work in each subsystem, and relationship among subsystems. Written in FORTRAN IV.

  16. Non-adiabatic holonomic quantum computation in linear system-bath coupling

    PubMed Central

    Sun, Chunfang; Wang, Gangcheng; Wu, Chunfeng; Liu, Haodi; Feng, Xun-Li; Chen, Jing-Ling; Xue, Kang

    2016-01-01

    Non-adiabatic holonomic quantum computation in decoherence-free subspaces protects quantum information from control imprecisions and decoherence. For the non-collective decoherence that each qubit has its own bath, we show the implementations of two non-commutable holonomic single-qubit gates and one holonomic nontrivial two-qubit gate that compose a universal set of non-adiabatic holonomic quantum gates in decoherence-free-subspaces of the decoupling group, with an encoding rate of . The proposed scheme is robust against control imprecisions and the non-collective decoherence, and its non-adiabatic property ensures less operation time. We demonstrate that our proposed scheme can be realized by utilizing only two-qubit interactions rather than many-qubit interactions. Our results reduce the complexity of practical implementation of holonomic quantum computation in experiments. We also discuss the physical implementation of our scheme in coupled microcavities. PMID:26846444

  17. Aspects of adiabatic population transfer and control

    NASA Astrophysics Data System (ADS)

    Demirplak, Mustafa

    This thesis explores two different questions. The first question we answer is how to restore a given population transfer scenario given that it works efficiently in the adiabatic limit but fails because of lack of intensity and/or short duration. We derive a very simple algorithm to do this and apply it to both toy and realistic models. Two results emerge from this study. While the mathematical existence of the programme is certain it might not always be physically desirable. The restoration of adiabaticity is phase sensitive. The second question that is answered in this thesis is not how to invent new control paradigms, but rather what would happen to them in the presence of stochastic perturbers. We first use a phenomenological model to study the effect of stochastic dephasing on population transfer by stimulated Raman adiabatic passage. The results of this Monte Carlo calculation are qualitatively explained with a perturbation theoretical result in the dressed state basis. The reliability of our phenomenological model is questioned through a more rigorous hybrid quantal-classical simulation of controlled population transfer in HCl in Ar.

  18. Adiabatic graph-state quantum computation

    NASA Astrophysics Data System (ADS)

    Antonio, B.; Markham, D.; Anders, J.

    2014-11-01

    Measurement-based quantum computation (MBQC) and holonomic quantum computation (HQC) are two very different computational methods. The computation in MBQC is driven by adaptive measurements executed in a particular order on a large entangled state. In contrast in HQC the system starts in the ground subspace of a Hamiltonian which is slowly changed such that a transformation occurs within the subspace. Following the approach of Bacon and Flammia, we show that any MBQC on a graph state with generalized flow (gflow) can be converted into an adiabatically driven holonomic computation, which we call adiabatic graph-state quantum computation (AGQC). We then investigate how properties of AGQC relate to the properties of MBQC, such as computational depth. We identify a trade-off that can be made between the number of adiabatic steps in AGQC and the norm of \\dot{H} as well as the degree of H, in analogy to the trade-off between the number of measurements and classical post-processing seen in MBQC. Finally the effects of performing AGQC with orderings that differ from standard MBQC are investigated.

  19. puffMarker: A Multi-Sensor Approach for Pinpointing the Timing of First Lapse in Smoking Cessation

    PubMed Central

    Saleheen, Nazir; Ali, Amin Ahsan; Hossain, Syed Monowar; Sarker, Hillol; Chatterjee, Soujanya; Marlin, Benjamin; Ertin, Emre; al’Absi, Mustafa; Kumar, Santosh

    2015-01-01

    Recent researches have demonstrated the feasibility of detecting smoking from wearable sensors, but their performance on real-life smoking lapse detection is unknown. In this paper, we propose a new model and evaluate its performance on 61 newly abstinent smokers for detecting a first lapse. We use two wearable sensors — breathing pattern from respiration and arm movements from 6-axis inertial sensors worn on wrists. In 10-fold cross-validation on 40 hours of training data from 6 daily smokers, our model achieves a recall rate of 96.9%, for a false positive rate of 1.1%. When our model is applied to 3 days of post-quit data from 32 lapsers, it correctly pinpoints the timing of first lapse in 28 participants. Only 2 false episodes are detected on 20 abstinent days of these participants. When tested on 84 abstinent days from 28 abstainers, the false episode per day is limited to 1/6. PMID:26543927

  20. Watching amyloid fibrils grow by time-lapse atomic force microscopy.

    PubMed

    Goldsbury, C; Kistler, J; Aebi, U; Arvinte, T; Cooper, G J

    1999-01-08

    Late-onset diabetes is typically associated with amyloid deposits of fibrillar amylin in the pancreatic islets. Aqueous synthetic human amylin spontaneously forms polymorphic fibrils in vitro, and this system was used to examine the dynamics of fibril assembly. By time-lapse atomic force microscopy (AFM), the growth of individual amylin fibrils on a mica surface was observed over several hours. Prominent was the assembly of a protofibril with an elongation rate in these experiments of 1.1(+/-0.5) nm/minute. The assembly of higher order polymorphic fibrils was also observed. Growth of the protofibrils was bidirectional, i.e. it occurred by elongation at both ends. This ability of AFM to continuously monitor growth, directionality, and changes in morphology for individual fibrils, provides a significant advantage over spectroscopy-based bulk methods which average the growth of many fibrils and typically require 100 to 1000-fold more protein. The time-lapse AFM procedure used for human amylin here is thus likely to be applicable to fibril formation from other amyloid proteins and peptides.

  1. Time-Lapse Evaluation of Interactions Between Biodegradable Mg Particles and Cells.

    PubMed

    Alvarez, Florencia; Lozano Puerto, Rosa M; Pérez-Maceda, Blanca; Grillo, Claudia A; Fernández Lorenzo de Mele, Mónica

    2016-02-01

    Mg-based implants have promising applications as biodegradable materials in medicine for orthopedic, dental, and cardiovascular therapies. During wear and degradation microdebris are released. Time-lapse multidimensional microscopy (MM) is proposed here as a suitable tool to follow, in fixed intervals over 24-h periods, the interaction between cells and particles. Results of MM show interactions of macrophages (J774) with the magnesium particles (MgPa) that led to modifications of cell size and morphology, a decrease in duplication rate, and cell damage. Corrosion products were progressively formed on the surface of the particles and turbulence was generated due to hydrogen development. Changes were more significant after treating MgPa with potassium fluoride. In order to complement MM observations, membrane damage as detected by a lactase dehydrogenase (LDH) assay and mitochondrial activity as detected by a WST-1 assay with macrophages and osteoblasts (MC3T3-E1) were compared. A more significant concentration-dependent effect was detected for macrophages exposed to MgPa than for osteoblasts. Accordingly, complementary data showed that viability and cell cycle seem to be more altered in macrophages. In addition, protein profiles and expression of proteins associated with the adhesion process changed in the presence of MgPa. These studies revealed that time-lapse MM is a helpful tool for monitoring changes of biodegradable materials and the biological surrounding in real time and in situ. This information is useful in studies related to biodegradable biomaterials.

  2. Sliding Seal Materials for Adiabatic Engines, Phase 2

    NASA Technical Reports Server (NTRS)

    Lankford, J.; Wei, W.

    1986-01-01

    An essential task in the development of the heavy-duty adiabatic diesel engine is identification and improvements of reliable, low-friction piston seal materials. In the present study, the sliding friction coefficients and wear rates of promising carbide, oxide, and nitride materials were measured under temperature, environmental, velocity, and loading conditions that are representative of the adiabatic engine environment. In addition, silicon nitride and partially stabilized zirconia disks were ion implanted with TiNi, Ni, Co, and Cr, and subsequently run against carbide pins, with the objective of producing reduced friction via solid lubrication at elevated temperature. In order to provide guidance needed to improve materials for this application, the program stressed fundamental understanding of the mechanisms involved in friction and wear. Electron microscopy was used to elucidate the micromechanisms of wear following wear testing, and Auger electron spectroscopy was used to evaluate interface/environment interactions which seemed to be important in the friction and wear process. Unmodified ceramic sliding couples were characterized at all temperatures by friction coefficients of 0.24 and above. The coefficient at 800 C in an oxidizing environment was reduced to below 0.1, for certain material combinations, by the ion implanation of TiNi or Co. This beneficial effect was found to derive from lubricious Ti, Ni, and Co oxides.

  3. The effect of adiabaticity on strongly quenched Bose Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Ling, Hong; Kain, Ben

    2015-05-01

    We study the properties of a Bose-Einstein condensate following a deep quench to a large scattering length during which the condensate fraction nc changes with time. We construct a closed set of equations that highlight the role of the adiabaticity or equivalently, dnc/dt, the rate change of nc, which is to induce an (imaginary) effective interaction between quasiparticles. We show analytically that such a system supports a steady state characterized by a constant condensate density and a steady but periodically changing momentum distribution, whose time average is described exactly by the generalized Gibbs ensemble. We discuss how the nc -induced effective interaction, which cannot be ignored on the grounds of the adiabatic approximation for modes near the gapless Goldstone mode, can significantly affect condensate populations and Tan's contact for a Bose gas that has undergone a deep quench. In particular, we find that even when the Bose gas is quenched to unitarity, nc(t) does not completely deplete, approaching, instead, to a steady state with a finite condensate fraction. ITAMP, Harvard-Smithsonian Center for Astrophysics; KITP, University of Santa Barbara.

  4. Non-adiabatic effects in near-adiabatic mixed-field orientation and alignment

    NASA Astrophysics Data System (ADS)

    Maan, Anjali; Ahlawat, Dharamvir Singh; Prasad, Vinod

    2016-11-01

    We present a theoretical study of the impact of a pair of moderate electric fields tilted an angle with respect to one another on a molecule. As a prototype, we consider a molecule with large rotational constant (with corresponding small rotational period) and moderate dipole moment. Within rigid-rotor approximation, the time-dependent Schrodinger equation is solved using fourth-order Runge-Kutta method. We have analysed that lower rotational states are significantly influenced by variation in pulse durations, the tilt angle between the fields and also on the electric field strengths. We also suggest a control scheme of how the rotational dynamics, orientation and alignment of a molecule can be enhanced by a combination of near-adiabatic pulses in comparision to non-adiabatic or adiabatic pulses.

  5. The Attention-Lapse and Motor Decoupling accounts of SART performance are not mutually exclusive.

    PubMed

    Seli, Paul

    2016-04-01

    There is an ongoing debate about the mechanisms purported to underlie performance in the Sustained-Attention-to-Response Task (SART). Whereas the Attention-Lapse account posits that SART errors result from attentional disengagement, the Motor Decoupling account proposes that SART errors result from failures to inhibit a fast, prepotent motor response, despite adequate attention to the task. That SART performance might be fully accounted for by motor decoupling is problematic for a Attention-Lapse account, and for the use of the SART as an index of attention lapses. To test whether SART performance is in fact fully accounted for by motor decoupling, I examined the relation between SART performance and attention lapses while controlling for motor decoupling. The results were clear: The SART was associated with attention lapses independently of motor decoupling. Thus, the present study suggests that both accounts are correct and that the SART is a valid measure of attention lapses.

  6. Improved site contamination through time-lapse complex resistivity imaging

    NASA Astrophysics Data System (ADS)

    Flores Orozco, Adrian; Kemna, Andreas; Cassiani, Giorgio; Binley, Andrew

    2016-04-01

    In the framework of the EU FP7 project ModelPROBE, time-lapse complex resistivity (CR) measurements were conducted at a test site close to Trecate (NW Italy). The objective was to investigate the capabilities of the CR imaging method to delineate the geometry and dynamics of subsurface hydrocarbon contaminant plume which resulted from a crude oil spill in 1994. To achieve this it is required to discriminate the electrical signal associated to static (i.e., lithology) from dynamic changes in the subsurface, with the latter associated to significant seasonal groundwater fluctuations. Previous studies have demonstrated the benefits of the CR method to gain information which is not accessible with common electrical resistivity tomography. However field applications are still rarely and neither the analysis of the data error for CR time-lapse measurements, nor the inversion itself haven not received enough attention. While the ultimate objective at the site is to characterize, here we address the discrimination of the lithological and hydrological controls on the IP response by considering data collected in an uncontaminated area of the site. In this study we demonstrate that an adequate error description of CR measurements provides images free of artifacts and quantitative superior than previous approaches. Based on this approach, differential images computed for time-lapse data exhibited anomalies well correlated with spatiotemporal changes correlated to seasonal fluctuations in the groundwater level. The proposed analysis may be useful in the characterization of fate and transport of hydrocarbon contaminants relevant for the site, which presents areas contaminated with crude oil.

  7. Recurrent event analysis of lapse and recovery in a smoking cessation clinical trial using bupropion.

    PubMed

    Wileyto, E Paul; Patterson, Freda; Niaura, Raymond; Epstein, Leonard H; Brown, Richard A; Audrain-McGovern, Janet; Hawk, Larry W; Lerman, Caryn

    2005-04-01

    We report a reanalysis of data from a prior study describing the event history of quitting smoking aided by bupropion, using recurrent-event models to determine the effect of the drug on occurrence of lapses and recoveries from lapse (resumption of abstinence). Data were collected on 1,070 subjects across two similar double-blind randomized clinical trials of bupropion versus placebo and fitted with separate Cox regression models for lapse and recovery. Analyses were split using discrete time-varying covariates between the treatment (weeks 1-10) and follow-up phases (end of treatment to 12 months). Bupropion was associated with slower lapse during treatment for both sexes, and being female was associated with faster lapse across both phases. Drug did not affect time to recovery for males but was associated with faster recovery among females, allowing women to recover as quickly as men. High levels of nicotine dependence did not affect time to lapse but were associated with slower recovery from lapse across treatment and follow-up phases. During the treatment phase, higher levels of baseline depression symptoms had no effect on time to lapse but were associated with slower recovery from lapse. Results highlight the asymmetry in factors preventing lapse versus promoting recovery. Specifically, dependence, depression symptoms, and a sex x drug interaction were found to affect recovery but not lapse. Further research disentangling lapse and recovery events from summary abstinence measures is needed to help us develop interventions that take advantage of bupropion at its best and that compensate where it is weak.

  8. Distinct coping strategies differentially predict urge levels and lapses in a smoking cessation attempt.

    PubMed

    Brodbeck, Jeannette; Bachmann, Monica S; Znoj, Hansjörg

    2013-06-01

    This study analysed mechanisms through which stress-coping and temptation-coping strategies were associated with lapses. Furthermore, we explored whether distinct coping strategies differentially predicted reduced lapse risk, lower urge levels, or a weaker association between urge levels and lapses during the first week of an unassisted smoking cessation attempt. Participants were recruited via the internet and mass media in Switzerland. Ecological momentary assessment (EMA) with mobile devices was used to assess urge levels and lapses. Online questionnaires were used to measure smoking behaviours and coping variables at baseline, as well as smoking behaviour at the three-month follow-up. The sample consisted of 243 individuals, aged 20 to 40, who reported 4199 observations. Findings of multilevel regression analyses show that coping was mainly associated with a reduced lapse risk and not with lower urge levels or a weaker association between urge levels and lapses. 'Calming down' and 'commitment to change' predicted a lower lapse risk and also a weaker relation between urge levels and lapses. 'Stimulus control' predicted a lower lapse risk and lower urge levels. Conversely, 'task-orientation' and 'risk assessment' were related to higher lapse risk and 'risk assessment' also to higher urge levels. Disengagement coping i.e. 'eating or shopping', 'distraction', and 'mobilising social support' did not affect lapse risk. Promising coping strategies during the initial stage of smoking cessation attempt are targeted directly at reducing the lapse risk and are characterised by engagement with the stressor or one's reactions towards the stressor and a focus on positive consequences instead of health risks.

  9. Bond selective chemistry beyond the adiabatic approximation

    SciTech Connect

    Butler, L.J.

    1993-12-01

    One of the most important challenges in chemistry is to develop predictive ability for the branching between energetically allowed chemical reaction pathways. Such predictive capability, coupled with a fundamental understanding of the important molecular interactions, is essential to the development and utilization of new fuels and the design of efficient combustion processes. Existing transition state and exact quantum theories successfully predict the branching between available product channels for systems in which each reaction coordinate can be adequately described by different paths along a single adiabatic potential energy surface. In particular, unimolecular dissociation following thermal, infrared multiphoton, or overtone excitation in the ground state yields a branching between energetically allowed product channels which can be successfully predicted by the application of statistical theories, i.e. the weakest bond breaks. (The predictions are particularly good for competing reactions in which when there is no saddle point along the reaction coordinates, as in simple bond fission reactions.) The predicted lack of bond selectivity results from the assumption of rapid internal vibrational energy redistribution and the implicit use of a single adiabatic Born-Oppenheimer potential energy surface for the reaction. However, the adiabatic approximation is not valid for the reaction of a wide variety of energetic materials and organic fuels; coupling between the electronic states of the reacting species play a a key role in determining the selectivity of the chemical reactions induced. The work described below investigated the central role played by coupling between electronic states in polyatomic molecules in determining the selective branching between energetically allowed fragmentation pathways in two key systems.

  10. Quantized adiabatic transport in momentum space.

    PubMed

    Ho, Derek Y H; Gong, Jiangbin

    2012-07-06

    Though topological aspects of energy bands are known to play a key role in quantum transport in solid-state systems, the implications of Floquet band topology for transport in momentum space (i.e., acceleration) have not been explored so far. Using a ratchet accelerator model inspired by existing cold-atom experiments, here we characterize a class of extended Floquet bands of one-dimensional driven quantum systems by Chern numbers, reveal topological phase transitions therein, and theoretically predict the quantization of adiabatic transport in momentum space. Numerical results confirm our theory and indicate the feasibility of experimental studies.

  11. Adiabatic demagnetization refrigerator for space use

    NASA Technical Reports Server (NTRS)

    Serlemitsos, A. T.; Warner, B. A.; Castles, S.; Breon, S. R.; San Sebastian, M.; Hait, T.

    1990-01-01

    An Adiabatic Demagnetization Refrigerator (ADR) for space use is under development at NASA's Goddard Space Flight Center (GSFC). The breadboard ADR operated at 100 mK for 400 minutes. Some significant changes to that ADR, designed to eliminate shortcomings revealed during tests, are reported. To increase thermal contact, the ferric ammonium sulfate crystals were grown directly on gold-plated copper wires which serve as the thermal bus. The thermal link to the X-ray sensors was also markedly improved. To speed up the testing required to determine the best design parameters for the gas gap heat switch, the new heat switch has a modular design and is easy to disassemble.

  12. Shortcuts to adiabaticity for quantum annealing

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazutaka

    2017-01-01

    We study the Ising Hamiltonian with a transverse field term to simulate the quantum annealing. Using shortcuts to adiabaticity, we design the time dependence of the Hamiltonian. The dynamical invariant is obtained by the mean-field ansatz, and the Hamiltonian is designed by the inverse engineering. We show that the time dependence of physical quantities such as the magnetization is independent of the speed of the Hamiltonian variation in the infinite-range model. We also show that rotating transverse magnetic fields are useful to achieve the ideal time evolution.

  13. Phase avalanches in near-adiabatic evolutions

    SciTech Connect

    Vertesi, T.; Englman, R.

    2006-02-15

    In the course of slow, nearly adiabatic motion of a system, relative changes in the slowness can cause abrupt and high magnitude phase changes, ''phase avalanches,'' superimposed on the ordinary geometric phases. The generality of this effect is examined for arbitrary Hamiltonians and multicomponent (>2) wave packets and is found to be connected (through the Blaschke term in the theory of analytic signals) to amplitude zeros in the lower half of the complex time plane. Motion on a nonmaximal circle on the Poincare-sphere suppresses the effect. A spectroscopic transition experiment can independently verify the phase-avalanche magnitudes.

  14. Cavity-state preparation using adiabatic transfer

    NASA Astrophysics Data System (ADS)

    Larson, Jonas; Andersson, Erika

    2005-05-01

    We show how to prepare a variety of cavity field states for multiple cavities. The state preparation technique used is related to the method of stimulated adiabatic Raman passage. The cavity modes are coupled by atoms, making it possible to transfer an arbitrary cavity field state from one cavity to another and also to prepare nontrivial cavity field states. In particular, we show how to prepare entangled states of two or more cavities, such as an Einstein-Podolsky-Rosen state and a W state, as well as various entangled superpositions of coherent states in different cavities, including Schrödinger cat states. The theoretical considerations are supported by numerical simulations.

  15. Generalized Ramsey numbers through adiabatic quantum optimization

    NASA Astrophysics Data System (ADS)

    Ranjbar, Mani; Macready, William G.; Clark, Lane; Gaitan, Frank

    2016-09-01

    Ramsey theory is an active research area in combinatorics whose central theme is the emergence of order in large disordered structures, with Ramsey numbers marking the threshold at which this order first appears. For generalized Ramsey numbers r( G, H), the emergent order is characterized by graphs G and H. In this paper we: (i) present a quantum algorithm for computing generalized Ramsey numbers by reformulating the computation as a combinatorial optimization problem which is solved using adiabatic quantum optimization; and (ii) determine the Ramsey numbers r({{T}}m,{{T}}n) for trees of order m,n = 6,7,8, most of which were previously unknown.

  16. Generating shortcuts to adiabaticity in quantum and classical dynamics

    NASA Astrophysics Data System (ADS)

    Jarzynski, Christopher

    2013-10-01

    Transitionless quantum driving achieves adiabatic evolution in a hurry, using a counterdiabatic Hamiltonian to stifle nonadiabatic transitions. Here this shortcut to adiabaticity is cast in terms of a generator of adiabatic transport. This yields a classical analog of transitionless driving, and provides a strategy for constructing quantal counterdiabatic Hamiltonians. As an application of this framework, exact classical and quantal counterdiabatic terms are obtained for a particle in a box and for even-power-law potentials in one degree of freedom.

  17. Numerical simulations of solar spicules: Adiabatic and non-adiabatic studies

    NASA Astrophysics Data System (ADS)

    Kuźma, B.; Murawski, K.; Zaqarashvili, T. V.; Konkol, P.; Mignone, A.

    2017-01-01

    Aims: We aim to study the formation and evolution of solar spicules using numerical simulations of a vertical velocity pulse that is launched from the upper chromosphere. Methods: With the use of the PLUTO code, we numerically solved adiabatic and non-adiabatic magnetohydrodynamic (MHD) equations in 2D cylindrical geometry. We followed the evolution of spicules triggered by pulses that are launched in a vertical velocity component from the upper chromosphere. Then we compared the results obtained with and without non-adiabatic terms in the MHD equations. Results: Our numerical results reveal that the velocity pulse is steepened into a shock that propagates upward into the corona. The chromospheric cold and dense plasma follows the shock and rises into the corona with the mean speed of 20-25 km s-1. The nonlinear wake behind the pulse in the stratified atmosphere leads to quasi-periodic rebound shocks, which lead to quasi-periodic rising of chromospheric plasma into the corona with a period close to the acoustic cut-off period of the chromosphere. We found that the effect of non-adiabatic terms on spicule evolution is minor; the general properties of spicules such as their heights and rising-time remain slightly affected by these terms. Conclusions: In the framework of the axisymmetric model we devised, we show that the solar spicules can be triggered by the vertical velocity pulses, and thermal conduction and radiative cooling terms do not exert any significant influence on the dynamics of these spicules.

  18. Multiphoton Raman Atom Optics with Frequency-Swept Adiabatic Passage

    NASA Astrophysics Data System (ADS)

    Kotru, Krish; Butts, David; Kinast, Joseph; Stoner, Richard

    2016-05-01

    Light-pulse atom interferometry is a promising candidate for future inertial navigators, gravitational wave detectors, and measurements of fundamental physical constants. The sensitivity of this technique, however, is often limited by the small momentum separations created between interfering atom wave packets (typically ~ 2 ℏk) . We address this issue using light-pulse atom optics derived from stimulated Raman transitions and frequency-swept adiabatic rapid passage (ARP). In experiments, these Raman ARP atom optics have generated up to 30 ℏk photon recoil momenta in an acceleration-sensitive atom interferometer, thereby enhancing the phase shift per unit acceleration by a factor of 15. Since this approach forgoes evaporative cooling and velocity selection, it could enable large-area atom interferometry at higher data rates, while also lowering the atom shot-noise-limited measurement uncertainty.

  19. Nonlinear Adiabatic Passage from Fermion Atoms to Boson Molecules

    SciTech Connect

    Pazy, E.; Tikhonenkov, I.; Band, Y.B.; Vardi, A.; Fleischhauer, M.

    2005-10-21

    We study the dynamics of an adiabatic sweep through a Feshbach resonance in a quantum gas of fermionic atoms. Analysis of the dynamical equations, supported by mean-field and many-body numerical results, shows that the dependence of the remaining atomic fraction {gamma} on the sweep rate {alpha} varies from exponential Landau-Zener behavior for a single pair of particles to a power-law dependence for large particle number N. The power law is linear, {gamma}{proportional_to}{alpha}, when the initial molecular fraction is smaller than the 1/N quantum fluctuations, and {gamma}{proportional_to}{alpha}{sup 1/3} when it is larger. Experimental data agree well with a linear dependence, but do not conclusively rule out the Landau-Zener model.

  20. On the Role of Prior Probability in Adiabatic Quantum Algorithms

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Lu, Songfeng; Yang, Liping

    2016-03-01

    In this paper, we study the role of prior probability on the efficiency of quantum local adiabatic search algorithm. The following aspects for prior probability are found here: firstly, only the probabilities of marked states affect the running time of the adiabatic evolution; secondly, the prior probability can be used for improving the efficiency of the adiabatic algorithm; thirdly, like the usual quantum adiabatic evolution, the running time for the case of multiple solution states where the number of marked elements are smaller enough than the size of the set assigned that contains them can be significantly bigger than that of the case where the assigned set only contains all the marked states.

  1. Adiabatic following for a three-state quantum system

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Shore, Bruce W.; Rangelov, Andon; Kyoseva, Elica

    2017-01-01

    Adiabatic time-evolution - found in various forms of adiabatic following and adiabatic passage - is often advantageous for controlled manipulation of quantum systems due to its insensitivity to deviations in the pulse shapes and timings. In this paper we discuss controlled adiabatic evolution of a three-state quantum system, a natural advance to the widespread use of two-state systems in numerous contemporary applications. We discuss, and illustrate, not only possibilities for population transfer but also for creating, with prescribed relative phase, 50:50 superpositions of two Zeeman sublevels in a letter-vee coupling linkage.

  2. Adiabatic approximation via hodograph translation and zero-curvature equations

    NASA Astrophysics Data System (ADS)

    Karasev, M. V.

    2014-04-01

    For quantum as well classical slow-fast systems, we develop a general method which allows one to compute the adiabatic invariant (approximate integral of motion), its symmetries, the adiabatic guiding center coordinates and the effective scalar Hamiltonian in all orders of a small parameter. The scheme does not exploit eigenvectors or diagonalization, but is based on the ideas of isospectral deformation and zero-curvature equations, where the role of "time" is played by the adiabatic (quantization) parameter. The algorithm includes the construction of the zero-curvature adiabatic connection and its splitting generated by averaging up to an arbitrary order in the small parameter.

  3. Predictive Modeling of Addiction Lapses in a Mobile Health Application

    PubMed Central

    Chih, Ming-Yuan; Patton, Timothy; McTavish, Fiona M.; Isham, Andrew; Judkins-Fisher, Chris L.; Atwood, Amy K.; Gustafson, David H.

    2013-01-01

    The chronically relapsing nature of alcoholism leads to substantial personal, family, and societal costs. Addiction-Comprehensive Health Enhancement Support System (A-CHESS) is a smartphone application that aims to reduce relapse. To offer targeted support to patients who are at risk of lapses within the coming week, a Bayesian network model to predict such events was constructed using responses on 2,934 weekly surveys (called the Weekly Check-in) from 152 alcohol-dependent individuals who recently completed residential treatment. The Weekly Check-in is a self-monitoring service, provided in A-CHESS, to track patients’ recovery progress. The model showed good predictability, with the area under receiver operating characteristic curve of 0.829 in the 10-fold cross-validation and 0.912 in the external validation. The sensitivity/specificity table assists the tradeoff decisions necessary to apply the model in practice. This study moves us closer to the goal of providing lapse prediction so that patients might receive more targeted and timely support. PMID:24035143

  4. Predictive modeling of addiction lapses in a mobile health application.

    PubMed

    Chih, Ming-Yuan; Patton, Timothy; McTavish, Fiona M; Isham, Andrew J; Judkins-Fisher, Chris L; Atwood, Amy K; Gustafson, David H

    2014-01-01

    The chronically relapsing nature of alcoholism leads to substantial personal, family, and societal costs. Addiction-comprehensive health enhancement support system (A-CHESS) is a smartphone application that aims to reduce relapse. To offer targeted support to patients who are at risk of lapses within the coming week, a Bayesian network model to predict such events was constructed using responses on 2,934 weekly surveys (called the Weekly Check-in) from 152 alcohol-dependent individuals who recently completed residential treatment. The Weekly Check-in is a self-monitoring service, provided in A-CHESS, to track patients' recovery progress. The model showed good predictability, with the area under receiver operating characteristic curve of 0.829 in the 10-fold cross-validation and 0.912 in the external validation. The sensitivity/specificity table assists the tradeoff decisions necessary to apply the model in practice. This study moves us closer to the goal of providing lapse prediction so that patients might receive more targeted and timely support.

  5. Debye decomposition of time-lapse spectral induced polarisation data

    NASA Astrophysics Data System (ADS)

    Weigand, M.; Kemna, A.

    2016-01-01

    Spectral induced polarisation (SIP) measurements capture the low-frequency electrical properties of soils and rocks and provide a non-invasive means to access lithological, hydrogeological, and geochemical properties of the subsurface. The Debye decomposition (DD) approach is now increasingly being used to analyse SIP signatures in terms of relaxation time distributions due to its flexibility regarding the shape of the spectra. Imaging and time-lapse (monitoring) SIP measurements, capturing SIP variations in space and time, respectively, are now more and more conducted and lead to a drastic increase in the number of spectra considered, which prompts the need for robust and reliable DD tools to extract quantitative parameters from such data. We here present an implementation of the DD method for the analysis of a series of SIP data sets which are expected to only smoothly change in terms of spectral behaviour, such as encountered in many time-lapse applications where measurement geometry does not change. The routine is based on a non-linear least-squares inversion scheme with smoothness constraints on the spectral variation and in addition from one spectrum of the series to the next to deal with the inherent ill-posedness and non-uniqueness of the problem. By means of synthetic examples with typical SIP characteristics we elucidate the influence of the number and range of considered relaxation times on the inversion results. The source code of the presented routines is provided under an open source licence as a basis for further applications and developments.

  6. Many-body effects on adiabatic passage through Feshbach resonances

    SciTech Connect

    Tikhonenkov, I.; Pazy, E.; Band, Y. B.; Vardi, A.; Fleischhauer, M.

    2006-04-15

    We theoretically study the dynamics of an adiabatic sweep through a Feshbach resonance, thereby converting a degenerate quantum gas of fermionic atoms into a degenerate quantum gas of bosonic dimers. Our analysis relies on a zero temperature mean-field theory which accurately accounts for initial molecular quantum fluctuations, triggering the association process. The structure of the resulting semiclassical phase space is investigated, highlighting the dynamical instability of the system towards association, for sufficiently small detuning from resonance. It is shown that this instability significantly modifies the finite-rate efficiency of the sweep, transforming the single-pair exponential Landau-Zener behavior of the remnant fraction of atoms {gamma} on sweep rate {alpha}, into a power-law dependence as the number of atoms increases. The obtained nonadiabaticity is determined from the interplay of characteristic time scales for the motion of adiabatic eigenstates and for fast periodic motion around them. Critical slowing-down of these precessions near the instability leads to the power-law dependence. A linear power law {gamma}{proportional_to}{alpha} is obtained when the initial molecular fraction is smaller than the 1/N quantum fluctuations, and a cubic-root power law {gamma}{proportional_to}{alpha}{sup 1/3} is attained when it is larger. Our mean-field analysis is confirmed by exact calculations, using Fock-space expansions. Finally, we fit experimental low temperature Feshbach sweep data with a power-law dependence. While the agreement with the experimental data is well within experimental error bars, similar accuracy can be obtained with an exponential fit, making additional data highly desirable.

  7. Quantum Adiabatic Algorithms and Large Spin Tunnelling

    NASA Technical Reports Server (NTRS)

    Boulatov, A.; Smelyanskiy, V. N.

    2003-01-01

    We provide a theoretical study of the quantum adiabatic evolution algorithm with different evolution paths proposed in this paper. The algorithm is applied to a random binary optimization problem (a version of the 3-Satisfiability problem) where the n-bit cost function is symmetric with respect to the permutation of individual bits. The evolution paths are produced, using the generic control Hamiltonians H (r) that preserve the bit symmetry of the underlying optimization problem. In the case where the ground state of H(0) coincides with the totally-symmetric state of an n-qubit system the algorithm dynamics is completely described in terms of the motion of a spin-n/2. We show that different control Hamiltonians can be parameterized by a set of independent parameters that are expansion coefficients of H (r) in a certain universal set of operators. Only one of these operators can be responsible for avoiding the tunnelling in the spin-n/2 system during the quantum adiabatic algorithm. We show that it is possible to select a coefficient for this operator that guarantees a polynomial complexity of the algorithm for all problem instances. We show that a successful evolution path of the algorithm always corresponds to the trajectory of a classical spin-n/2 and provide a complete characterization of such paths.

  8. Accurate Variational Description of Adiabatic Quantum Optimization

    NASA Astrophysics Data System (ADS)

    Carleo, Giuseppe; Bauer, Bela; Troyer, Matthias

    Adiabatic quantum optimization (AQO) is a quantum computing protocol where a system is driven by a time-dependent Hamiltonian. The initial Hamiltonian has an easily prepared ground-state and the final Hamiltonian encodes some desired optimization problem. An adiabatic time evolution then yields a solution to the optimization problem. Several challenges emerge in the theoretical description of this protocol: on one hand, the exact simulation of quantum dynamics is exponentially complex in the size of the optimization problem. On the other hand, approximate approaches such as tensor network states (TNS) are limited to small instances by the amount of entanglement that can be encoded. I will present here an extension of the time-dependent Variational Monte Carlo approach to problems in AQO. This approach is based on a general class of (Jastrow-Feenberg) entangled states, whose parameters are evolved in time according to a stochastic variational principle. We demonstrate this approach for optimization problems of the Ising spin-glass type. A very good accuracy is achieved when compared to exact time-dependent TNS on small instances. We then apply this approach to larger problems, and discuss the efficiency of the quantum annealing scheme in comparison with its classical counterpart.

  9. Nonadiabatic Transitions in Adiabatic Rapid Passage

    NASA Astrophysics Data System (ADS)

    Lu, T.; Miao, X.; Metcalf, H.

    2006-05-01

    Optical forces much larger than the ordinary radiative force can be achieved on a two-level atom by multiple repetitions of adiabatic rapid passage sweeps with counterpropagating light beams. Chirped light pulses drive the atom-laser system up a ladder of dressed state energy sheets on sequential trajectories, thereby decreasing the atomic kinetic energy. Nonadiabatic transitions between the energy sheets must be avoided for this process to be effective. We have calculated the nonadiabatic transition probability for various chirped light pulses numerically. These results were compared to the first Demkov-Kunike model and the well-known Landau-Zener model. In addition, an analytical form of the nonadiabatic transition probability has been found for linearly chirped pulses and an approximate form for generic symmetric finite-time pulses has been found for the entire parameter space using the technique of unitary integration. From this, the asymptotic transition probability in the adiabatic limit was derived. T. Lu, X. Miao, and H. Metcalf, Phys., Rev. A 71 061405(R) (2005). Yu. Demkov and M. Kunike, Vestn. Leningr. Univ. Fis. Khim., 16, 39 (1969); K.-A. Suominen and B. Garraway, Phys. Rev. A45, 374 (1992)

  10. The formation of multiple adiabatic shear bands

    NASA Astrophysics Data System (ADS)

    Zhou, F.; Wright, T. W.; Ramesh, K. T.

    2006-07-01

    In a previous paper, Zhou et al. [2006. A numerical methodology for investigating adiabatic shear band formation. J. Mech. Phys. Solids, 54, 904-926] developed a numerical method for analyzing one-dimensional deformation of thermoviscoplastic materials. The method uses a second order algorithm for integration along characteristic lines, and computes the plastic flow after complete localization with high resolution and efficiency. We apply this numerical scheme to analyze localization in a thermoviscoplastic material where multiple shear bands are allowed to form at random locations in a large specimen. As a shear band develops, it unloads neighboring regions and interacts with other bands. Beginning with a random distribution of imperfections, which might be imagined as arising qualitatively from the microstructure, we obtain the average spacing of shear bands through calculations and compare our results with previously existing theoretical estimates. It is found that the spacing between nucleating shear bands follows the perturbation theory due to Wright and Ockendon [1996. A scaling law for the effect of inertia on the formation of adiabatic shear bands. Int. J. Plasticity 12, 927-934], whereas the spacing between mature shear bands is closer to that predicted by the momentum diffusion theory of Grady and Kipp [1987. The growth of unstable thermoplastic shear with application to steady-wave shock compression in solids. J. Mech. Phys. Solids 35, 95-119]. Scaling laws for the dependence of band spacing on material parameters differ in many respects from either theory.

  11. Adiabatic cooling of solar wind electrons

    NASA Technical Reports Server (NTRS)

    Sandbaek, Ornulf; Leer, Egil

    1992-01-01

    In thermally driven winds emanating from regions in the solar corona with base electron densities of n0 not less than 10 exp 8/cu cm, a substantial fraction of the heat conductive flux from the base is transfered into flow energy by the pressure gradient force. The adiabatic cooling of the electrons causes the electron temperature profile to fall off more rapidly than in heat conduction dominated flows. Alfven waves of solar origin, accelerating the basically thermally driven solar wind, lead to an increased mass flux and enhanced adiabatic cooling. The reduction in electron temperature may be significant also in the subsonic region of the flow and lead to a moderate increase of solar wind mass flux with increasing Alfven wave amplitude. In the solar wind model presented here the Alfven wave energy flux per unit mass is larger than that in models where the temperature in the subsonic flow is not reduced by the wave, and consequently the asymptotic flow speed is higher.

  12. Non-adiabatic Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Canfield, Jesse; Denissen, Nicholas; Reisner, Jon

    2016-11-01

    Onset of Rayleigh-Taylor instability (RTI) in a non-adiabatic environment is investigated with the multi-physics numerical model, FLAG. This work was inspired by laboratory experiments of non-adiabatic RTI, where a glass vessel with a layer of tetrahyrdofuran (THF) below a layer of toluene was placed inside a microwave. THF, a polar solvent, readily absorbs electromagnetic energy from microwaves. Toluene, a non-polar solvent, is nearly transparent to microwave heating. The presence of a heat source in the THF layer produced convection and a time-dependent Atwood number (At). The system, initially in stable hydrostatic equilibrium At < 0 , was set into motion by microwave induced, volumetric heating of the THF. The point when At > 0 , indicates that the system is RTI unstable. The observed dominant mode at the onset of RTI was the horizontal length scale of the vessel. This scale is contrary to classical RTI, where the modes start small and increases in scale with time. It is shown that the dominant RTI mode observed in the experiments was determined by the THF length scale prior to RTI. The dominant length scale transitions from the THF to the toluene via the updrafts and downdrafts in the convective cells. This happens when At passes from negative to positive. This work was funded by the Advanced Simulation and Computing Program.

  13. Time-lapse microscopy and image analysis in basic and clinical embryo development research.

    PubMed

    Wong, C; Chen, A A; Behr, B; Shen, S

    2013-02-01

    Mammalian preimplantation embryo development is a complex process in which the exact timing and sequence of events are as essential as the accurate execution of the events themselves. Time-lapse microscopy (TLM) is an ideal tool to study this process since the ability to capture images over time provides a combination of morphological, dynamic and quantitative information about developmental events. Here, we systematically review the application of TLM in basic and clinical embryo research. We identified all relevant preimplantation embryo TLM studies published in English up to May 2012 using PubMed and Google Scholar. We then analysed the technical challenges involved in embryo TLM studies and how these challenges may be overcome with technological innovations. Finally, we reviewed the different types of TLM embryo studies, with a special focus on how TLM can benefit clinical assisted reproduction. Although new parameters predictive of embryo development potential may be discovered and used clinically to potentially increase the success rate of IVF, adopting TLM to routine clinical practice will require innovations in both optics and image analysis. Combined with such innovations, TLM may provide embryologists and clinicians with an important tool for making critical decisions in assisted reproduction. In this review, we perform a literature search of all published early embryo development studies that used time-lapse microscopy (TLM). From the literature, we discuss the benefits of TLM over traditional time-point analysis, as well as the technical difficulties and solutions involved in implementing TLM for embryo studies. We further discuss research that has successfully derived non-invasive markers that may increase the success rate of assisted reproductive technologies, primarily IVF. Most notably, we extend our discussion to highlight important considerations for the practical use of TLM in research and clinical settings.

  14. Adiabatic effects of electrons and ions on electro-acoustic solitary waves in an adiabatic dusty plasma

    NASA Astrophysics Data System (ADS)

    Tanjia, Fatema; Mamun, A. A.

    2009-02-01

    A dusty plasma consisting of negatively charged cold dust, adiabatic hot ions, and inertia-less adiabatic hot electrons has been considered. The adiabatic effects of electrons and ions on the basic properties of electro-acoustic solitary waves associated with different types of electro-acoustic (viz. ion-acoustic (IA), dust ion-acoustic (DIA), and dust acoustic (DA)) waves are thoroughly investigated by the reductive perturbation method. It is found that the basic properties of the IA, DIA, and DA waves are significantly modified by the adiabatic effects of ions and inertia-less electrons. The implications of our results in space and laboratory dusty plasmas are briefly discussed.

  15. Thermal erosion of a permafrost coastline: Improving process-based models using time-lapse photography

    USGS Publications Warehouse

    Wobus, C.; Anderson, R.; Overeem, I.; Matell, N.; Clow, G.; Urban, F.

    2011-01-01

    Coastal erosion rates locally exceeding 30 m y-1 have been documented along Alaska's Beaufort Sea coastline, and a number of studies suggest that these erosion rates have accelerated as a result of climate change. However, a lack of direct observational evidence has limited our progress in quantifying the specific processes that connect climate change to coastal erosion rates in the Arctic. In particular, while longer ice-free periods are likely to lead to both warmer surface waters and longer fetch, the relative roles of thermal and mechanical (wave) erosion in driving coastal retreat have not been comprehensively quantified. We focus on a permafrost coastline in the northern National Petroleum Reserve-Alaska (NPR-A), where coastal erosion rates have averaged 10-15 m y-1 over two years of direct monitoring. We take advantage of these extraordinary rates of coastal erosion to observe and quantify coastal erosion directly via time-lapse photography in combination with meteorological observations. Our observations indicate that the erosion of these bluffs is largely thermally driven, but that surface winds play a crucial role in exposing the frozen bluffs to the radiatively warmed seawater that drives melting of interstitial ice. To first order, erosion in this setting can be modeled using formulations developed to describe iceberg deterioration in the open ocean. These simple models provide a conceptual framework for evaluating how climate-induced changes in thermal and wave energy might influence future erosion rates in this setting.

  16. The Development of an Aftermath of Dietary Lapses Coping Questionnaire for Weight Control

    ERIC Educational Resources Information Center

    Shimpo, Misa; Akamatsu, Rie

    2015-01-01

    Objective: This study was designed to develop the Aftermath of Dietary Lapses Coping Questionnaire (ADLCQ) for evaluating how people cope with the aftermath of dietary lapses during weight control. Method: Between June-July 2012, dieticians working in public health centres and city offices in Sizuoka, Japan, recruited 466 participants. They were…

  17. Relations among affect, abstinence motivation and confidence, and daily smoking lapse risk.

    PubMed

    Minami, Haruka; Yeh, Vivian M; Bold, Krysten W; Chapman, Gretchen B; McCarthy, Danielle E

    2014-06-01

    This study tested the hypothesis that changes in momentary affect, abstinence motivation, and confidence would predict lapse risk over the next 12-24 hr using Ecological Momentary Assessment (EMA) data from smokers attempting to quit smoking. One hundred and three adult, daily, treatment-seeking smokers recorded their momentary affect, motivation to quit, abstinence confidence, and smoking behaviors in near real time with multiple EMA reports per day using electronic diaries postquit. Multilevel models indicated that initial levels of negative affect were associated with smoking, even after controlling for earlier smoking status, and that short-term increases in negative affect predicted lapses up to 12, but not 24, hr later. Positive affect had significant effects on subsequent abstinence confidence, but not motivation to quit. High levels of motivation appeared to reduce increases in lapse risk that occur over hours although momentary changes in confidence did not predict lapse risk over 12 hr. Negative affect had short-lived effects on lapse risk, whereas higher levels of motivation protected against the risk of lapsing that accumulates over hours. An increase in positive affect was associated with greater confidence to quit, but such changes in confidence did not reduce short-term lapse risk, contrary to expectations. Relations observed among affect, cognitions, and lapse seem to depend critically on the timing of assessments.

  18. Distress Tolerance Treatment for Early-Lapse Smokers: Rationale, Program Description, and Preliminary Findings

    ERIC Educational Resources Information Center

    Brown, Richard A.; Palm, Kathleen M.; Strong, David R.; Lejuez, Carl W.; Kahler, Christopher W.; Zvolensky, Michael J.; Hayes, Steven C.; Wilson, Kelly G.; Gifford, Elizabeth V.

    2008-01-01

    A significant percentage of individuals attempting smoking cessation lapse within a matter of days, and very few are able to recover to achieve long-term abstinence. This observation suggests that many smokers may have quit-attempt histories characterized exclusively by early lapses to smoking following quit attempts. Recent negative-reinforcement…

  19. Exploring Time-Lapse Photography as a Means for Qualitative Data Collection

    ERIC Educational Resources Information Center

    Persohn, Lindsay

    2015-01-01

    Collecting information via time-lapse photography is nothing new. Scientists and artists have been using this kind of data since the late 1800s. However, my research and experiments with time-lapse have shown that great potential may lie in its application to educational and social scientific research methods. This article is part history, part…

  20. Quantitative detection of fluid distribution using time-lapse seismic

    NASA Astrophysics Data System (ADS)

    Tsuneyama, Futoshi

    The quantitative evaluation of time-lapse seismic data remains a challenge due to poor match between the model predictions and the actual seismic data. Velocity anisotropy is one important reason for the mismatch. I compile experimental velocity-anisotropy data from cores to explore the empirical relationships between anisotropy parameters and general well-log information. Then, I develop a method to estimate Thomsen's anisotropy parameters ε and gamma using a regression of the data in the crossplot domain between velocity and porosity. I present an application result of the method to demonstrate the significance of the correction. Next, using the corrected velocity, I present a method of impedance decomposition into Vp, Vs, and rho using three elastic impedances derived from the seismic inversion of angle stacks. In general, the maximum stack angle of seismic data is limited to be less than 30°, which is not wide enough to obtain the stable calculation result. I discuss the effect of noise on the analysis as the most important reason that decomposition is difficult. I show an innovative method incorporating rock-physics bounds as constraints for the analysis. I apply it to an actual dataset from an offshore oil field; I demonstrate the result of analysis for sand-body detection. Based on the estimated Vp, V s, rho and shale volume from the elastic impedances, I develop a workflow to determine the saturation of formation-water, oil and gas from seismic data. First, I consider the pressure effect and the saturation scale of fluids for time-lapse seismic analysis. Second, I demonstrate a deterministic approach to computing the fluid saturation to evaluate time-lapse seismic data. In this approach, I derive the physical properties of the water-saturated sandstone reservoir. Then, by comparing the in-situ-fluid-saturated properties with the 100% formation-water-saturated reservoir properties, I determine the bulk modulus and the density of the fluid phase in the

  1. A Modified Adiabatic Quantum Algorithm for Evaluation of Boolean Functions

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Lu, Songfeng; Liu, Fang

    2015-09-01

    In this paper, we propose a modified construction of the quantum adiabatic algorithm for Boolean functions studied by M. Andrecut et al. [13, 14]. Our algorithm has the time complexity O(1) for the evaluation of Boolean functions, without additional computational cost of implementing the driving Hamiltonian, which is required by the adiabatic evolution described in [13, 14].

  2. Adiabat-shaping in indirect drive inertial confinement fusion

    SciTech Connect

    Baker, K. L.; Robey, H. F.; Milovich, J. L.; Jones, O. S.; Smalyuk, V. A.; Casey, D. T.; MacPhee, A. G.; Pak, A.; Celliers, P. M.; Clark, D. S.; Landen, O. L.; Peterson, J. L.; Berzak-Hopkins, L. F.; Weber, C. R.; Haan, S. W.; Döppner, T. D.; Dixit, S.; Hamza, A. V.; Jancaitis, K. S.; Kroll, J. J.; and others

    2015-05-15

    Adiabat-shaping techniques were investigated in indirect drive inertial confinement fusion experiments on the National Ignition Facility as a means to improve implosion stability, while still maintaining a low adiabat in the fuel. Adiabat-shaping was accomplished in these indirect drive experiments by altering the ratio of the picket and trough energies in the laser pulse shape, thus driving a decaying first shock in the ablator. This decaying first shock is designed to place the ablation front on a high adiabat while keeping the fuel on a low adiabat. These experiments were conducted using the keyhole experimental platform for both three and four shock laser pulses. This platform enabled direct measurement of the shock velocities driven in the glow-discharge polymer capsule and in the liquid deuterium, the surrogate fuel for a DT ignition target. The measured shock velocities and radiation drive histories are compared to previous three and four shock laser pulses. This comparison indicates that in the case of adiabat shaping the ablation front initially drives a high shock velocity, and therefore, a high shock pressure and adiabat. The shock then decays as it travels through the ablator to pressures similar to the original low-adiabat pulses when it reaches the fuel. This approach takes advantage of initial high ablation velocity, which favors stability, and high-compression, which favors high stagnation pressures.

  3. The Adiabatic Invariance of the Action Variable in Classical Dynamics

    ERIC Educational Resources Information Center

    Wells, Clive G.; Siklos, Stephen T. C.

    2007-01-01

    We consider one-dimensional classical time-dependent Hamiltonian systems with quasi-periodic orbits. It is well known that such systems possess an adiabatic invariant which coincides with the action variable of the Hamiltonian formalism. We present a new proof of the adiabatic invariance of this quantity and illustrate our arguments by means of…

  4. Kinetic Theory Derivation of the Adiabatic Law for Ideal Gases.

    ERIC Educational Resources Information Center

    Sobel, Michael I.

    1980-01-01

    Discusses how the adiabatic law for ideal gases can be derived from the assumption of a Maxwell-Boltzmann (or any other) distribution of velocities--in contrast to the usual derivations from thermodynamics alone, and the higher-order effect that leads to one-body viscosity. An elementary derivation of the adiabatic law is given. (Author/DS)

  5. Phase relations and adiabats in boiling seafloor geothermal systems

    USGS Publications Warehouse

    Bischoff, J.L.; Pitzer, Kenneth S.

    1985-01-01

    Observations of large salinity variations and vent temperatures in the range of 380-400??C suggest that boiling or two-phase separation may be occurring in some seafloor geothermal systems. Consideration of flow rates and the relatively small differences in density between vapors and liquids at the supercritical pressures at depth in these systems suggests that boiling is occurring under closed-system conditions. Salinity and temperature of boiling vents can be used to estimate the pressure-temperature point in the subsurface at which liquid seawater first reached the two-phase boundary. Data are reviewed to construct phase diagrams of coexisting brines and vapors in the two-phase region at pressures corresponding to those of the seafloor geothermal systems. A method is developed for calculating the enthalpy and entropy of the coexisting mixtures, and results are used to construct adiabats from the seafloor to the P-T two-phase boundary. Results for seafloor vents discharging at 2300 m below sea level indicate that a 385??C vent is composed of a brine (7% NaCl equivalent) in equilibrium with a vapor (0.1% NaCl). Brine constitutes 45% by weight of the mixture, and the fluid first boiled at approximately 1 km below the seafloor at 415??C, 330 bar. A 400??C vent is primarily vapor (88 wt.%, 0.044% NaCl) with a small amount of brine (26% NaCl) and first boiled at 2.9 km below the seafloor at 500??C, 520 bar. These results show that adiabatic decompression in the two-phase region results in dramatic cooling of the fluid mixture when there is a large fraction of vapor. ?? 1985.

  6. Observational tests of non-adiabatic Chaplygin gas

    SciTech Connect

    Carneiro, S.; Pigozzo, C. E-mail: cpigozzo@ufba.br

    2014-10-01

    In a previous paper [1] it was shown that any dark sector model can be mapped into a non-adiabatic fluid formed by two interacting components, one with zero pressure and the other with equation-of-state parameter ω = -1. It was also shown that the latter does not cluster and, hence, the former is identified as the observed clustering matter. This guarantees that the dark matter power spectrum does not suffer from oscillations or instabilities. It applies in particular to the generalised Chaplygin gas, which was shown to be equivalent to interacting models at both background and perturbation levels. In the present paper we test the non-adiabatic Chaplygin gas against the Hubble diagram of type Ia supernovae, the position of the first acoustic peak in the anisotropy spectrum of the cosmic microwave background and the linear power spectrum of large scale structures. We consider two different compilations of SNe Ia, namely the Constitution and SDSS samples, both calibrated with the MLCS2k2 fitter, and for the power spectrum we use the 2dFGRS catalogue. The model parameters to be adjusted are the present Hubble parameter, the present matter density and the Chaplygin gas parameter α. The joint analysis best fit gives α ≈ - 0.5, which corresponds to a constant-rate energy flux from dark energy to dark matter, with the dark energy density decaying linearly with the Hubble parameter. The ΛCDM model, equivalent to α = 0, stands outside the 3σ confidence interval.

  7. Adiabatic calorimetric decomposition studies of 50 wt.% hydroxylamine/water.

    PubMed

    Cisneros, L O; Rogers, W J; Mannan, M S

    2001-03-19

    Calorimetric data can provide a basis for determining potential hazards in reactions, storage, and transportation of process chemicals. This work provides calorimetric data for the thermal decomposition behavior in air of 50wt.% hydroxylamine/water (HA), both with and without added stabilizers, which was measured in closed cells with an automatic pressure tracking adiabatic calorimeter (APTAC). Among the data provided are onset temperatures, reaction order, activation energies, pressures of noncondensable products, thermal stability at 100 degrees C, and the effect of HA storage time. Discussed also are the catalytic effects of carbon steel, stainless steel, stainless steel with silica coating, inconel, titanium, and titanium with silica coating on the reaction self-heat rates and onset temperatures. In borosilicate glass cells, HA was relatively stable at temperatures up to 133 degrees C, where the HA decomposition self-heat rate reached 0.05 degrees C/min. The added stabilizers appeared to reduce HA decomposition rates in glass cells and at ambient temperatures. The tested metals and metal surfaces coated with silica acted as catalysts to lower the onset temperatures and increase the self-heat rates.

  8. Quantum Adiabatic Optimization and Combinatorial Landscapes

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, V. N.; Knysh, S.; Morris, R. D.

    2003-01-01

    In this paper we analyze the performance of the Quantum Adiabatic Evolution (QAE) algorithm on a variant of Satisfiability problem for an ensemble of random graphs parametrized by the ratio of clauses to variables, gamma = M / N. We introduce a set of macroscopic parameters (landscapes) and put forward an ansatz of universality for random bit flips. We then formulate the problem of finding the smallest eigenvalue and the excitation gap as a statistical mechanics problem. We use the so-called annealing approximation with a refinement that a finite set of macroscopic variables (verses only energy) is used, and are able to show the existence of a dynamic threshold gamma = gammad, beyond which QAE should take an exponentially long time to find a solution. We compare the results for extended and simplified sets of landscapes and provide numerical evidence in support of our universality ansatz.

  9. Number Partitioning via Quantum Adiabatic Computation

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, Vadim N.; Toussaint, Udo; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We study both analytically and numerically the complexity of the adiabatic quantum evolution algorithm applied to random instances of combinatorial optimization problems. We use as an example the NP-complete set partition problem and obtain an asymptotic expression for the minimal gap separating the ground and exited states of a system during the execution of the algorithm. We show that for computationally hard problem instances the size of the minimal gap scales exponentially with the problem size. This result is in qualitative agreement with the direct numerical simulation of the algorithm for small instances of the set partition problem. We describe the statistical properties of the optimization problem that are responsible for the exponential behavior of the algorithm.

  10. The HAWC and SAFIRE Adiabatic Demagnetization Refrigerators

    NASA Technical Reports Server (NTRS)

    Tuttle, Jim; Shirron, Peter; DiPirro, Michael; Jackson, Michael; Behr, Jason; Kunes, Evan; Hait, Tom; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    The High-Resolution Airborne Wide-band Camera (HAWC) and Submillimeter and Far Infrared Experiment (SAFIRE) are far-infrared experiments which will fly on the Stratospheric Observatory for Infrared Astronomy (SOFIA) aircraft. HAWC's detectors will operate at 0.2 Kelvin, while those of SAFIRE will be at 0.1 Kelvin. Each instrument will include an adiabatic demagnetization refrigerator (ADR) to cool its detector stage from the liquid helium bath temperature (HAWC's at 4.2 Kelvin and SAFIRE's pumped to about 1.3 Kelvin) to its operating temperature. Except for the magnets used to achieve the cooling and a slight difference in the heat switch design, the two ADRs are nearly identical. We describe the ADR design and present the results of performance testing.

  11. An adiabatic demagnetization refrigerator for SIRTF

    NASA Astrophysics Data System (ADS)

    Timbie, P. T.; Bernstein, G. M.; Richards, P. L.

    1989-02-01

    An adiabatic demagnetization refrigerator (ADR) has been proposed to cool bolometric infrared detectors on the multiband imaging photometer of the Space Infrared Telescope Facility (SIRTF). One such refrigerator has been built which uses a ferric ammonium alum salt pill suspended by nylon threads in a 3-T solenoid. The resonant modes of this suspension are above 100 Hz. The heat leak to the salt pill is less than 0.5 microW. The system has a hold time at 0.1K of more than 12 h. The cold stage temperature is regulated with a feedback loop that controls the magnetic field. A second, similar refrigerator is being built at a SIRTF prototype to fly on a ballon-borne telescope. It will use a ferromagnetic shield. The possibility of using a high-Tc solenoid-actuated heat switch is also discussed.

  12. Design of a spaceworthy adiabatic demagnetization refrigerator

    NASA Astrophysics Data System (ADS)

    Serlemitsos, A. T.; Kunes, E.; Sansebastian, M.

    A spaceworthy adiabatic demagnetization refrigerator (ADR) under development at NASA-Goddard is presented. A baseline model heat switch was tested extensively with an on/off ratio of about 10,000 and a parasitic heat leak of 10 micro-W. Data obtained from the breadboard models were used to design an ADR with improved structural integrity. The core of the ADR is the salt pill which consists of the paramagnetic salt crystal and the thermal bus. When a magnetic field is applied to the salt it forces the alignment of the magnetic moments, thereby decreasing the entropy of the salt. Preliminary tests results showed a net crystal mass of 680 g instead of the expected 740 g, which indicate that there are gaps in the salt pill. A partial fix was accomplished by sealing helium gas in the salt pill at a pressure of 2 bar, which improved the thermal contact during salt magnetization, at about 2 K.

  13. Index Theory and Adiabatic Limit in QFT

    NASA Astrophysics Data System (ADS)

    Wawrzycki, Jarosław

    2013-08-01

    The paper has the form of a proposal concerned with the relationship between the three mathematically rigorous approaches to quantum field theory: (1) local algebraic formulation of Haag, (2) Wightman formulation and (3) the perturbative formulation based on the microlocal renormalization method. In this project we investigate the relationship between (1) and (3) and utilize the known relationships between (1) and (2). The main goal of the proposal lies in obtaining obstructions for the existence of the adiabatic limit ( confinement problem in the phenomenological standard model approach). We extend the method of deformation of Dütsch and Fredenhagen (in the Bordeman-Waldmann sense) and apply Fedosov construction of the formal index—an analog of the index for deformed symplectic manifolds, generalizing the Atiyah-Singer index. We present some first steps in realization of the proposal.

  14. An adiabatic demagnetization refrigerator for SIRTF

    NASA Technical Reports Server (NTRS)

    Timbie, P. T.; Bernstein, G. M.; Richards, P. L.

    1989-01-01

    An adiabatic demagnetization refrigerator (ADR) has been proposed to cool bolometric infrared detectors on the multiband imaging photometer of the Space Infrared Telescope Facility (SIRTF). One such refrigerator has been built which uses a ferric ammonium alum salt pill suspended by nylon threads in a 3-T solenoid. The resonant modes of this suspension are above 100 Hz. The heat leak to the salt pill is less than 0.5 microW. The system has a hold time at 0.1K of more than 12 h. The cold stage temperature is regulated with a feedback loop that controls the magnetic field. A second, similar refrigerator is being built at a SIRTF prototype to fly on a ballon-borne telescope. It will use a ferromagnetic shield. The possibility of using a high-Tc solenoid-actuated heat switch is also discussed.

  15. Design of a spaceworthy adiabatic demagnetization refrigerator

    NASA Technical Reports Server (NTRS)

    Serlemitsos, A. T.; Kunes, E.; Sansebastian, M.

    1992-01-01

    A spaceworthy adiabatic demagnetization refrigerator (ADR) under development at NASA-Goddard is presented. A baseline model heat switch was tested extensively with an on/off ratio of about 10,000 and a parasitic heat leak of 10 micro-W. Data obtained from the breadboard models were used to design an ADR with improved structural integrity. The core of the ADR is the salt pill which consists of the paramagnetic salt crystal and the thermal bus. When a magnetic field is applied to the salt it forces the alignment of the magnetic moments, thereby decreasing the entropy of the salt. Preliminary tests results showed a net crystal mass of 680 g instead of the expected 740 g, which indicate that there are gaps in the salt pill. A partial fix was accomplished by sealing helium gas in the salt pill at a pressure of 2 bar, which improved the thermal contact during salt magnetization, at about 2 K.

  16. Adiabatic connection at negative coupling strengths

    SciTech Connect

    Seidl, Michael; Gori-Giorgi, Paola

    2010-01-15

    The adiabatic connection of density functional theory (DFT) for electronic systems is generalized here to negative values of the coupling strength alpha (with attractive electrons). In the extreme limit alpha->-infinity a simple physical solution is presented and its implications for DFT (as well as its limitations) are discussed. For two-electron systems (a case in which the present solution can be calculated exactly), we find that an interpolation between the limit alpha->-infinity and the opposite limit of infinitely strong repulsion (alpha->+infinity) yields a rather accurate estimate of the second-order correlation energy E{sub c}{sup GL2}[rho] for several different densities rho, without using virtual orbitals. The same procedure is also applied to the Be isoelectronic series, analyzing the effects of near degeneracy.

  17. Adiabatic theory for anisotropic cold molecule collisions

    SciTech Connect

    Pawlak, Mariusz; Shagam, Yuval; Narevicius, Edvardas; Moiseyev, Nimrod

    2015-08-21

    We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment {sup 4}He(1s2s {sup 3}S) + HD(1s{sup 2}) → {sup 4}He(1s{sup 2}) + HD{sup +}(1s) + e{sup −} [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings.

  18. An Integrated Development Environment for Adiabatic Quantum Programming

    SciTech Connect

    Humble, Travis S; McCaskey, Alex; Bennink, Ryan S; Billings, Jay Jay; D'Azevedo, Eduardo; Sullivan, Blair D; Klymko, Christine F; Seddiqi, Hadayat

    2014-01-01

    Adiabatic quantum computing is a promising route to the computational power afforded by quantum information processing. The recent availability of adiabatic hardware raises the question of how well quantum programs perform. Benchmarking behavior is challenging since the multiple steps to synthesize an adiabatic quantum program are highly tunable. We present an adiabatic quantum programming environment called JADE that provides control over all the steps taken during program development. JADE captures the workflow needed to rigorously benchmark performance while also allowing a variety of problem types, programming techniques, and processor configurations. We have also integrated JADE with a quantum simulation engine that enables program profiling using numerical calculation. The computational engine supports plug-ins for simulation methodologies tailored to various metrics and computing resources. We present the design, integration, and deployment of JADE and discuss its use for benchmarking adiabatic quantum programs.

  19. An integrated programming and development environment for adiabatic quantum optimization

    NASA Astrophysics Data System (ADS)

    Humble, T. S.; McCaskey, A. J.; Bennink, R. S.; Billings, J. J.; DʼAzevedo, E. F.; Sullivan, B. D.; Klymko, C. F.; Seddiqi, H.

    2014-01-01

    Adiabatic quantum computing is a promising route to the computational power afforded by quantum information processing. The recent availability of adiabatic hardware has raised challenging questions about how to evaluate adiabatic quantum optimization (AQO) programs. Processor behavior depends on multiple steps to synthesize an adiabatic quantum program, which are each highly tunable. We present an integrated programming and development environment for AQO called Jade Adiabatic Development Environment (JADE) that provides control over all the steps taken during program synthesis. JADE captures the workflow needed to rigorously specify the AQO algorithm while allowing a variety of problem types, programming techniques, and processor configurations. We have also integrated JADE with a quantum simulation engine that enables program profiling using numerical calculation. The computational engine supports plug-ins for simulation methodologies tailored to various metrics and computing resources. We present the design, integration, and deployment of JADE and discuss its potential use for benchmarking AQO programs by the quantum computer science community.

  20. Adiabatic theory, Liapunov exponents, and rotation number for quadratic Hamiltonians

    NASA Astrophysics Data System (ADS)

    Delyon, François; Foulon, Patrick

    1987-11-01

    We consider the adiabatic problem for general time-dependent quadratic Hamiltonians and develop a method quite different from WKB. In particular, we apply our results to the Schrödinger equation in a strip. We show that there exists a first regular step (avoiding resonance problems) providing one adiabatic invariant, bounds on the Liapunov exponents, and estimates on the rotation number at any order of the perturbation theory. The further step is shown to be equivalent to a quantum adiabatic problem, which, by the usual adiabatic techniques, provides the other possible adiabatic invariants. In the special case of the Schrödinger equation our method is simpler and more powerful than the WKB techniques.

  1. Combined time-lapse cinematography and immuno-electron microscopy.

    PubMed

    Balfour, B M; Goscicka, T; MacKenzie, J L; Gautam, A; Tate, M; Clark, J

    1990-04-01

    A method was developed to record interactions between mobile non-adherent immunocytes by time-lapse cinematography and then to study the same cells by immuno-electron microscopy, using monoclonal antibodies against surface components. For this purpose a modified stage was designed to fit an inverted microscope. The attachment included a device to cool the culture chamber with N2 gas, a micro-injector for monoclonal antibody and immuno-gold treatment, and two pairs of washing needles to change the medium without disturbance. The technique was first employed to study the formation of aggregates around the antigen-presenting cells in cultures containing cells from hyper-immunized animals. Recently peripheral blood cells from normal subjects and patients with immune deficiency syndromes were stimulated with pokeweed mitogen, cluster formation was recorded, and the cells were processed for immuno-electron microscopy.

  2. Time-lapse video sysem used to study nesting gyrfalcons

    USGS Publications Warehouse

    Booms, Travis; Fuller, Mark R.

    2003-01-01

    We used solar-powered time-lapse video photography to document nesting Gyrfalcon (Falco rusticolus) food habits in central West Greenland from May to July in 2000 and 2001. We collected 2677.25 h of videotape from three nests, representing 94, 87, and 49% of the nestling period at each nest. The video recorded 921 deliveries of 832 prey items. We placed 95% of the items into prey categories. The image quality was good but did not reveal enough detail to identify most passerines to species. We found no evidence that Gyrfalcons were negatively affected by the video system after the initial camera set-up. The video system experienced some mechanical problems but proved reliable. The system likely can be used to effectively document the food habits and nesting behavior of other birds, especially those delivering large prey to a nest or other frequently used site.

  3. Non-adiabatic molecular dynamics with complex quantum trajectories. II. The adiabatic representation

    SciTech Connect

    Zamstein, Noa; Tannor, David J.

    2012-12-14

    We present a complex quantum trajectory method for treating non-adiabatic dynamics. Each trajectory evolves classically on a single electronic surface but with complex position and momentum. The equations of motion are derived directly from the time-dependent Schroedinger equation, and the population exchange arises naturally from amplitude-transfer terms. In this paper the equations of motion are derived in the adiabatic representation to complement our work in the diabatic representation [N. Zamstein and D. J. Tannor, J. Chem. Phys. 137, 22A517 (2012)]. We apply our method to two benchmark models introduced by John Tully [J. Chem. Phys. 93, 1061 (1990)], and get very good agreement with converged quantum-mechanical calculations. Specifically, we show that decoherence (spatial separation of wavepackets on different surfaces) is already contained in the equations of motion and does not require ad hoc augmentation.

  4. Energy decomposition analysis in an adiabatic picture.

    PubMed

    Mao, Yuezhi; Horn, Paul R; Head-Gordon, Martin

    2017-02-22

    Energy decomposition analysis (EDA) of electronic structure calculations has facilitated quantitative understanding of diverse intermolecular interactions. Nevertheless, such analyses are usually performed at a single geometry and thus decompose a "single-point" interaction energy. As a result, the influence of the physically meaningful EDA components on the molecular structure and other properties are not directly obtained. To address this gap, the absolutely localized molecular orbital (ALMO)-EDA is reformulated in an adiabatic picture, where the frozen, polarization, and charge transfer energy contributions are defined as energy differences between the stationary points on different potential energy surfaces (PESs), which are accessed by geometry optimizations at the frozen, polarized and fully relaxed levels of density functional theory (DFT). Other molecular properties such as vibrational frequencies can thus be obtained at the stationary points on each PES. We apply the adiabatic ALMO-EDA to different configurations of the water dimer, the water-Cl(-) and water-Mg(2+)/Ca(2+) complexes, metallocenes (Fe(2+), Ni(2+), Cu(2+), Zn(2+)), and the ammonia-borane complex. This method appears to be very useful for unraveling how physical effects such as polarization and charge transfer modulate changes in molecular properties induced by intermolecular interactions. As an example of the insight obtained, we find that a linear hydrogen bond geometry for the water dimer is preferred even without the presence of polarization and charge transfer, while the red shift in the OH stretch frequency is primarily a charge transfer effect; by contrast, a near-linear geometry for the water-chloride hydrogen bond is achieved only when charge transfer is allowed.

  5. Time-Lapse Geophysics for Aquifer Characterization and Remediation Monitoring

    NASA Astrophysics Data System (ADS)

    Lane, J. W.

    2003-12-01

    Time-lapse monitoring of subsurface processes is an emerging and promising area of hydrogeophysics. The use of non-invasive or minimally invasive geophysical methods to indirectly measure time-varying fluid saturation, solute concentration, and other hydraulic and geochemical conditions facilitates cost-effective aquifer characterization and remediation. The USGS Office of Ground Water, Branch of Geophysics, in cooperation with USEPA, DOD, and university researchers, has applied time-lapse geophysics for site characterization and remediation monitoring at a number of sites. This talk presents recent examples of applied research, including: (1) application of cross-borehole and surface-to-borehole radar methods to monitor vegetable-oil emulsion injections for biostimulation at a Navy site in Fridley, MN; (2) application of borehole and cross-borehole radar methods to monitor steam injections for remediation of VOCs at the former Loring Air Force Base, ME; (3) application of electrical resistivity tomography to monitor saline tracer tests at the Massachusetts Military Reservation, MA; (4) use of borehole and cross-borehole flowmeter and a discrete-zone packer system to characterize bedrock aquifer hydraulics and water quality at the University of Connecticut landfill, Storrs, CT; and (5) application of crosshole radar methods to monitor a saline tracer in fractured bedrock at the USGS Mirror Lake Site, NH. The goals of these studies are (1) to provide increasingly quantitative information about the subsurface, critical for developing models of aquifer structure, dynamics, and processes, and (2) identification of the spatial and temporal distributions of tracers, contamination, and fluids injected to enhance degradation of contaminants.

  6. Dust Storm Time Lapse Shows Opportunity's Skies Darken

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Dust Storm Time Lapse Shows Opportunity's Skies Darken

    NASA's Opportunity rover is literally seeing some of its darkest days. Both Mars Exploration Rovers have been riding out a regional dust storm for several weeks. Conditions became particularly dreary in the Meridiani Planum region where Opportunity sits, perched on the edge of 'Victoria Crater.'

    This image is a time-lapse composite where each horizon-survey image has been compressed horizontally (but not vertically) to emphasize the sky. The relative brightness and darkness of the sky from sol to sol (over a 30-sol period beginning June 14, 2007) is depicted accurately in these images, which view roughly the same part of the plains southwest of the rover. The images are approximately true color composites, generated from calibrated radiance data files using the panoramic camera's 601-nanometer, 535-nanometer and 482-nanometer filters.

    The rovers' atmospheric science team is concerned that smaller, regional dust storms could expand into a larger, globe-encircling storm. That could extend the time the sun stays obscured, challenging the capability of Opportunity's solar panels to produce enough electricity for the rover to function.

    Fortunately, as of July 19, 2007, the Opportunity site is clearing slightly. When the storm ends, atmospheric scientists hope to review data from the rovers that will help them determine what sort of dust was being lifted and distributed.

    The numbers across the top of the image report a measurement of atmospheric opacity, called by the Greek letter tau. The lower the number, the clearer the sky. Both Opportunity and Spirit have been recording higher tau measurements in July 2007 than they had seen any time previously in their three and a half years on Mars. The five sol numbers across the bottom correspond (left to right) to June 14, June 30, July 5, July 13 and July 15, 2007.

  7. Nonequilibrium adiabatic molecular dynamics simulations of methane clathrate hydrate decomposition

    NASA Astrophysics Data System (ADS)

    Alavi, Saman; Ripmeester, J. A.

    2010-04-01

    Nonequilibrium, constant energy, constant volume (NVE) molecular dynamics simulations are used to study the decomposition of methane clathrate hydrate in contact with water. Under adiabatic conditions, the rate of methane clathrate decomposition is affected by heat and mass transfer arising from the breakup of the clathrate hydrate framework and release of the methane gas at the solid-liquid interface and diffusion of methane through water. We observe that temperature gradients are established between the clathrate and solution phases as a result of the endothermic clathrate decomposition process and this factor must be considered when modeling the decomposition process. Additionally we observe that clathrate decomposition does not occur gradually with breakup of individual cages, but rather in a concerted fashion with rows of structure I cages parallel to the interface decomposing simultaneously. Due to the concerted breakup of layers of the hydrate, large amounts of methane gas are released near the surface which can form bubbles that will greatly affect the rate of mass transfer near the surface of the clathrate phase. The effects of these phenomena on the rate of methane hydrate decomposition are determined and implications on hydrate dissociation in natural methane hydrate reservoirs are discussed.

  8. Time-lapse and UAV Thermal Imaging of Glacial and Periglacial Environments in the Peruvian Andes (Cordillera Blanca, Peru)

    NASA Astrophysics Data System (ADS)

    McKenzie, J. M.; Wigmore, O.; Aubry-Wake, C.; Mark, B. G.; Hellstrom, R. A.; Lautz, L.

    2015-12-01

    In the tropics, the acquisition of high-resolution geospatial data of high-mountain glacial and periglacial systems presents unique challenges due to remote site access and very high elevations. For glaciers and hydrologic systems, a key variable of interest is surface temperature as it constrains glacier melt rates, traces hydrologic processes, and is needed for the calibration of energy budget models. We present results from two studies that acquired high resolution temperature data from the Cuchillacocha Glacier, Peru (9.24°S, 77.21°W). The glacier resides on the western drainage of the Cordillera Blanca with an elevation range of 4700 to 6096 m. In the first study we use high resolution time-lapse infrared imagery (5-10 minute interval over 3 days; 0.6 m2 pixel size) to observe diel changes in the surface energy budget of the glacier and to demonstrate how radiation from bare rock adjacent to the glacier may affect melt rates. In the second study we use a newly developed, inexpensive unmanned aerial vehicle (UAV) for high resolution multispectral mapping of the glacier (2 cm resolution orthomosaic and 5 cm resolution DEM). We present results showing how the time-lapse and the high-resolution UAV imagery can be combined to further strengthen our understanding of the Cuchillacocha Glacier's energy budget and possible insights about turbulent heat fluxes. While the new instruments provide unprecedented data acquisition capabilities, there is an outstanding need for proper data correction. Spatial/thermal control points and post-processing algorithms are needed to produce quantifiable datasets. For example, our post-processed time-lapse imagery has an r2 > 0.9 after emissivity, transmissivity and offset corrections.

  9. Spin-Label CW Microwave Power Saturation and Rapid Passage with Triangular Non-Adiabatic Rapid Sweep (NARS) and Adiabatic Rapid Passage (ARP) EPR Spectroscopy

    PubMed Central

    Kittell, Aaron W.; Hyde, James S.

    2015-01-01

    Non-adiabatic rapid passage (NARS) electron paramagnetic resonance (EPR) spectroscopy was introduced by Kittell, A.W., Camenisch, T.G., Ratke, J.J. Sidabras, J.W., Hyde, J.S., 2011 as a general purpose technique to collect the pure absorption response. The technique has been used to improve sensitivity relative to sinusoidal magnetic field modulation, increase the range of inter-spin distances that can be measured under near physiological conditions, and enhance spectral resolution in copper (II) spectra. In the present work, the method is extended to CW microwave power saturation of spin-labeled T4 Lysozyme (T4L). As in the cited papers, rapid triangular sweep of the polarizing magnetic field was superimposed on slow sweep across the spectrum. Adiabatic rapid passage (ARP) effects were encountered in samples undergoing very slow rotational diffusion as the triangular magnetic field sweep rate was increased. The paper reports results of variation of experimental parameters at the interface of adiabatic and non-adiabatic rapid sweep conditions. Comparison of the forward (up) and reverse (down) triangular sweeps is shown to be a good indicator of the presence of rapid passage effects. Spectral turning points can be distinguished from spectral regions between turning points in two ways: differential microwave power saturation and differential passage effects. Oxygen accessibility data are shown under NARS conditions that appear similar to conventional field modulation data. However, the sensitivity is much higher, permitting, in principle, experiments at substantially lower protein concentrations. Spectral displays were obtained that appear sensitive to rotational diffusion in the range of rotational correlation times of 10−3 to 10−7 s in a manner that is analogous to saturation transfer spectroscopy. PMID:25917132

  10. Spin-label CW microwave power saturation and rapid passage with triangular non-adiabatic rapid sweep (NARS) and adiabatic rapid passage (ARP) EPR spectroscopy.

    PubMed

    Kittell, Aaron W; Hyde, James S

    2015-06-01

    Non-adiabatic rapid passage (NARS) electron paramagnetic resonance (EPR) spectroscopy was introduced by Kittell et al. (2011) as a general purpose technique to collect the pure absorption response. The technique has been used to improve sensitivity relative to sinusoidal magnetic field modulation, increase the range of inter-spin distances that can be measured under near physiological conditions (Kittell et al., 2012), and enhance spectral resolution in copper (II) spectra (Hyde et al., 2013). In the present work, the method is extended to CW microwave power saturation of spin-labeled T4 Lysozyme (T4L). As in the cited papers, rapid triangular sweep of the polarizing magnetic field was superimposed on slow sweep across the spectrum. Adiabatic rapid passage (ARP) effects were encountered in samples undergoing very slow rotational diffusion as the triangular magnetic field sweep rate was increased. The paper reports results of variation of experimental parameters at the interface of adiabatic and non-adiabatic rapid sweep conditions. Comparison of the forward (up) and reverse (down) triangular sweeps is shown to be a good indicator of the presence of rapid passage effects. Spectral turning points can be distinguished from spectral regions between turning points in two ways: differential microwave power saturation and differential passage effects. Oxygen accessibility data are shown under NARS conditions that appear similar to conventional field modulation data. However, the sensitivity is much higher, permitting, in principle, experiments at substantially lower protein concentrations. Spectral displays were obtained that appear sensitive to rotational diffusion in the range of rotational correlation times of 10(-3) to 10(-7) s in a manner that is analogous to saturation transfer spectroscopy.

  11. On the General Class of Models of Adiabatic Evolution

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Lu, Songfeng; Liu, Fang

    2016-10-01

    The general class of models of adiabatic evolution was proposed to speed up the usual adiabatic computation in the case of quantum search problem. It was shown [8] that, by temporarily increasing the ground state energy of a time-dependent Hamiltonian to a suitable quantity, the quantum computation can perform the calculation in time complexity O(1). But it is also known that if the overlap between the initial and final states of the system is zero, then the computation based on the generalized models of adiabatic evolution can break down completely. In this paper, we find another severe limitation for this class of adiabatic evolution-based algorithms, which should be taken into account in applications. That is, it is still possible that this kind of evolution designed to deal with the quantum search problem fails completely if the interpolating paths in the system Hamiltonian are chosen inappropriately, while the usual adiabatic evolutions can do the same job relatively effectively. This implies that it is not always recommendable to use nonlinear paths in adiabatic computation. On the contrary, the usual simple adiabatic evolution may be sufficient for effective use.

  12. Effects of EOS adiabat on hot spot dynamics

    NASA Astrophysics Data System (ADS)

    Cheng, Baolian; Kwan, Thomas; Wang, Yi-Ming; Batha, Steven

    2013-10-01

    Equation of state (EOS) and adiabat of the pusher play significant roles in the dynamics and formation of the hot spot of an ignition capsule. For given imploding energy, they uniquely determine the partition of internal energy, mass, and volume between the pusher and the hot spot. In this work, we apply the new scaling laws recently derived by Cheng et al. to the National Ignition Campaign (NIC) ignition capsules and study the impacts of EOS and adiabat of the pusher on the hot spot dynamics by using the EOS adiabat index as an adjustable model parameter. We compare our analysis with the NIC data, specifically, for shots N120321 and N120205, and with the numerical simulations of these shots. The predictions from our theoretical model are in good agreements with the NIC data when a hot adiabat was used for the pusher, and with code simulations when a cold adiabat was used for the pusher. Our analysis indicates that the actual adiabat of the pusher in NIC experiments may well be higher than the adiabat assumed in the simulations. This analysis provides a physical and systematic explanation to the ongoing disagreements between the NIC experimental results and the multi-dimensional numerical simulations. This work was performed under the auspices of the U.S. Department of Energy by the Los Alamos National Laboratory under contract number W-7405-ENG-36.

  13. Non-adiabatic perturbations in Ricci dark energy model

    SciTech Connect

    Karwan, Khamphee; Thitapura, Thiti E-mail: nanodsci2523@hotmail.com

    2012-01-01

    We show that the non-adiabatic perturbations between Ricci dark energy and matter can grow both on superhorizon and subhorizon scales, and these non-adiabatic perturbations on subhorizon scales can lead to instability in this dark energy model. The rapidly growing non-adiabatic modes on subhorizon scales always occur when the equation of state parameter of dark energy starts to drop towards -1 near the end of matter era, except that the parameter α of Ricci dark energy equals to 1/2. In the case where α = 1/2, the rapidly growing non-adiabatic modes disappear when the perturbations in dark energy and matter are adiabatic initially. However, an adiabaticity between dark energy and matter perturbations at early time implies a non-adiabaticity between matter and radiation, this can influence the ordinary Sachs-Wolfe (OSW) effect. Since the amount of Ricci dark energy is not small during matter domination, the integrated Sachs-Wolfe (ISW) effect is greatly modified by density perturbations of dark energy, leading to a wrong shape of CMB power spectrum. The instability in Ricci dark energy is difficult to be alleviated if the effects of coupling between baryon and photon on dark energy perturbations are included.

  14. Dynamics of Charged Particles in an Adiabatic Thermal Beam Equilibrium

    NASA Astrophysics Data System (ADS)

    Chen, Chiping; Wei, Haofei

    2010-11-01

    Charged-particle motion is studied in the self-electric and self-magnetic fields of a well-matched, intense charged-particle beam and an applied periodic solenoidal magnetic focusing field. The beam is assumed to be in a state of adiabatic thermal equilibrium. The phase space is analyzed and compared with that of the well-known Kapchinskij-Vladimirskij (KV)-type beam equilibrium. It is found that the widths of nonlinear resonances in the adiabatic thermal beam equilibrium are narrower than those in the KV-type beam equilibrium. Numerical evidence is presented, indicating almost complete elimination of chaotic particle motion in the adiabatic thermal beam equilibrium.

  15. Time-lapse imaging of neural development: zebrafish lead the way into the fourth dimension.

    PubMed

    Rieger, Sandra; Wang, Fang; Sagasti, Alvaro

    2011-07-01

    Time-lapse imaging is often the only way to appreciate fully the many dynamic cell movements critical to neural development. Zebrafish possess many advantages that make them the best vertebrate model organism for live imaging of dynamic development events. This review will discuss technical considerations of time-lapse imaging experiments in zebrafish, describe selected examples of imaging studies in zebrafish that revealed new features or principles of neural development, and consider the promise and challenges of future time-lapse studies of neural development in zebrafish embryos and adults.

  16. Time-lapse imaging of neural development: Zebrafish lead the way into the fourth dimension

    PubMed Central

    Rieger, Sandra; Wang, Fang; Sagasti, Alvaro

    2011-01-01

    Time-lapse imaging is often the only way to appreciate fully the many dynamic cell movements critical to neural development. Zebrafish possess many advantages that make them the best vertebrate model organism for live imaging of dynamic development events. This review will discuss technical considerations of time-lapse imaging experiments in zebrafish, describe selected examples of imaging studies in zebrafish that revealed new features or principles of neural development, and consider the promise and challenges of future time-lapse studies of neural development in zebrafish embryos and adults. PMID:21305690

  17. Effects of dissipation on an adiabatic quantum search algorithm

    NASA Astrophysics Data System (ADS)

    de Vega, Inés; Bañuls, Mari Carmen; Pérez, A.

    2010-12-01

    According to recent studies (Amin et al 2008 Phys. Rev. Lett. 100 060503), the effect of a thermal bath may improve the performance of a quantum adiabatic search algorithm. In this paper, we compare the effects of such a thermal environment on the algorithm performance with those of a structured environment similar to the one encountered in systems coupled to an electromagnetic field that exists within a photonic crystal. Whereas for all the parameter regimes explored here, the algorithm performance is worsened by contact with a thermal environment, the picture appears to be different when one considers a structured environment. In this case we show that by tuning the environment parameters to certain regimes, the algorithm performance can actually be improved with respect to the closed system case. Additionally, the relevance of considering the dissipation rates as complex quantities is discussed in both cases. More specifically, we find that the imaginary part of the rates cannot be neglected with the usual argument that it simply amounts to an energy shift and in fact influences crucially the system dynamics.

  18. Segmentation Method of Time-Lapse Microscopy Images with the Focus on Biocompatibility Assessment.

    PubMed

    Soukup, Jindřich; Císař, Petr; Šroubek, Filip

    2016-06-01

    Biocompatibility testing of new materials is often performed in vitro by measuring the growth rate of mammalian cancer cells in time-lapse images acquired by phase contrast microscopes. The growth rate is measured by tracking cell coverage, which requires an accurate automatic segmentation method. However, cancer cells have irregular shapes that change over time, the mottled background pattern is partially visible through the cells and the images contain artifacts such as halos. We developed a novel algorithm for cell segmentation that copes with the mentioned challenges. It is based on temporal differences of consecutive images and a combination of thresholding, blurring, and morphological operations. We tested the algorithm on images of four cell types acquired by two different microscopes, evaluated the precision of segmentation against manual segmentation performed by a human operator, and finally provided comparison with other freely available methods. We propose a new, fully automated method for measuring the cell growth rate based on fitting a coverage curve with the Verhulst population model. The algorithm is fast and shows accuracy comparable with manual segmentation. Most notably it can correctly separate live from dead cells.

  19. Thermal explosion hazards on 18650 lithium ion batteries with a VSP2 adiabatic calorimeter.

    PubMed

    Jhu, Can-Yong; Wang, Yih-Wen; Shu, Chi-Min; Chang, Jian-Chuang; Wu, Hung-Chun

    2011-08-15

    Thermal abuse behaviors relating to adiabatic runaway reactions in commercial 18650 lithium ion batteries (LiCoO(2)) are being studied in an adiabatic calorimeter, vent sizing package 2 (VSP2). We select four worldwide battery producers, Sony, Sanyo, Samsung and LG, and tested their Li-ion batteries, which have LiCoO(2) cathodes, to determine their thermal instabilities and adiabatic runaway features. The charged (4.2V) and uncharged (3.7 V) 18650 Li-ion batteries are tested using a VSP2 with a customized stainless steel test can to evaluate their thermal hazard characteristics, such as the initial exothermic temperature (T(0)), the self-heating rate (dT/dt), the pressure rise rate (dP/dt), the pressure-temperature profiles and the maximum temperature (T(max)) and pressure (P(max)). The T(max) and P(max) of the charged Li-ion battery during the runaway reaction reach 903.0°C and 1565.9 psig (pound-force per square inch gauge), respectively. This result leads to a thermal explosion, and the heat of reaction is 26.2 kJ. The thermokinetic parameters of the reaction of LiCoO(2) batteries are also determined using the Arrhenius model. The thermal reaction mechanism of the Li-ion battery (pack) proved to be an important safety concern for energy storage. Additionally, use of the VSP2 to classify the self-reactive ratings of the various Li-ion batteries demonstrates a new application of the adiabatic calorimetric methodology.

  20. Quantum adiabatic optimization and combinatorial landscapes

    NASA Astrophysics Data System (ADS)

    Smelyanskiy, V. N.; Knysh, S.; Morris, R. D.

    2004-09-01

    In this paper we analyze the performance of the Quantum Adiabatic Evolution algorithm on a variant of the satisfiability problem for an ensemble of random graphs parametrized by the ratio of clauses to variables, γ=M/N . We introduce a set of macroscopic parameters (landscapes) and put forward an ansatz of universality for random bit flips. We then formulate the problem of finding the smallest eigenvalue and the excitation gap as a statistical mechanics problem. We use the so-called annealing approximation with a refinement that a finite set of macroscopic variables (instead of only energy) is used, and are able to show the existence of a dynamic threshold γ=γd starting with some value of K —the number of variables in each clause. Beyond the dynamic threshold, the algorithm should take an exponentially long time to find a solution. We compare the results for extended and simplified sets of landscapes and provide numerical evidence in support of our universality ansatz. We have been able to map the ensemble of random graphs onto another ensemble with fluctuations significantly reduced. This enabled us to obtain tight upper bounds on the satisfiability transition and to recompute the dynamical transition using the extended set of landscapes.

  1. Adiabatic quantum algorithm for search engine ranking.

    PubMed

    Garnerone, Silvano; Zanardi, Paolo; Lidar, Daniel A

    2012-06-08

    We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this algorithm can prepare the quantum PageRank state in a time which, on average, scales polylogarithmically in the number of web pages. We argue that the main topological feature of the underlying web graph allowing for such a scaling is the out-degree distribution. The top-ranked log(n) entries of the quantum PageRank state can then be estimated with a polynomial quantum speed-up. Moreover, the quantum PageRank state can be used in "q-sampling" protocols for testing properties of distributions, which require exponentially fewer measurements than all classical schemes designed for the same task. This can be used to decide whether to run a classical update of the PageRank.

  2. Adiabatic Quantum Algorithm for Search Engine Ranking

    NASA Astrophysics Data System (ADS)

    Garnerone, Silvano; Zanardi, Paolo; Lidar, Daniel A.

    2012-06-01

    We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this algorithm can prepare the quantum PageRank state in a time which, on average, scales polylogarithmically in the number of web pages. We argue that the main topological feature of the underlying web graph allowing for such a scaling is the out-degree distribution. The top-ranked log⁡(n) entries of the quantum PageRank state can then be estimated with a polynomial quantum speed-up. Moreover, the quantum PageRank state can be used in “q-sampling” protocols for testing properties of distributions, which require exponentially fewer measurements than all classical schemes designed for the same task. This can be used to decide whether to run a classical update of the PageRank.

  3. Adiabatic Spin Pumping with Quantum Dots

    NASA Astrophysics Data System (ADS)

    Mucciolo, Eduardo R.

    Electronic transport in mesoscopic systems has been intensively studied for more the last three decades. While there is a substantial understanding of the stationary regime, much less is know about phase-coherent nonequilibrium transport when pulses or ac perturbations are used to drive electrons at low temperatures and at small length scales. However, about 20 years ago Thouless proposed to drive nondissipative currents in quantum systems by applying simultaneously two phase-locked external perturbations. The so-called adiabatic pumping mechanism has been revived in the last few years, both theoretically and experimentally, in part because of the development of lateral semiconductor quantum dots. Here we will explain how open dots can be used to create spin-polarized currents with little or no net charge transfer. The pure spin pump we propose is the analog of a charge battery in conventional electronics and may provide a needed circuit element for spin-based electronics. We will also discuss other relevant issues such as rectification and decoherence and point out possible extensions of the mechanism to closed dots.

  4. On the stability of obliquely propagating dust ion-acoustic solitary waves in hot adiabatic magnetized dusty plasmas

    NASA Astrophysics Data System (ADS)

    Shalaby, M.; EL-Labany, S. K.; EL-Shamy, E. F.; El-Taibany, W. F.; Khaled, M. A.

    2009-12-01

    Obliquely propagating dust ion acoustic solitary waves (DIASWs) are investigated in hot adiabatic magnetized dusty plasmas consisting of hot adiabatic inertial ions, hot adiabatic inertialess electrons, and negatively/positively charged static dust grains. Using a reductive perturbation method, a nonlinear Zakharov-Kuznetsov equation is derived. The effects of the concentration of negatively/positively charged dust particles and ion-neutral collision on the basic characteristics of DIASWs are studied. The three-dimensional stability of these waves is examined by the use of small-k (long wavelength plane wave) perturbation expansion technique. It is shown that the instability criterion and their growth rate depend on external magnetic field, obliqueness, the concentration of charged dust grains, ion-neutral, and ion-dust collisions.

  5. Adiabatic polymerization of acrylamide in water under the effect of the potassium persulfate-sodium metabisulfite-copper sulfate system

    SciTech Connect

    Kurenkov, V.F.; Baiburdov, T.A.; Stupen'kova, L.L.

    1988-04-10

    Since adiabatic polymerization of acrylamide (AA) has been studied very little and the information on the effect of copper ions on polymerization of AA prepared in dilute aqueous solutions is very limited, the features of adiabatic polymerization of AA in concentrated aqueous solutions in the presence of the potassium persulfate-sodium metabisulfite-copper sulfate redox initiating system were investigated in this study. The empirical equation for the overall rate of adiabatic polymerization of acrylamide in concentrated aqueous solutions was found, and the effective total activation energy, which decreases with an increase in the concentration of CuSO/sub 4/, was determined. An increase in the molecular weight of the polymer with an increase in the concentration of the monomer and a decrease in the concentration of the components of the initiating system was demonstrated.

  6. Acceleration of adiabatic quantum dynamics in electromagnetic fields

    SciTech Connect

    Masuda, Shumpei; Nakamura, Katsuhiro

    2011-10-15

    We show a method to accelerate quantum adiabatic dynamics of wave functions under electromagnetic field (EMF) by developing the preceding theory [Masuda and Nakamura, Proc. R. Soc. London Ser. A 466, 1135 (2010)]. Treating the orbital dynamics of a charged particle in EMF, we derive the driving field which accelerates quantum adiabatic dynamics in order to obtain the final adiabatic states in any desired short time. The scheme is consolidated by describing a way to overcome possible singularities in both the additional phase and driving potential due to nodes proper to wave functions under EMF. As explicit examples, we exhibit the fast forward of adiabatic squeezing and transport of excited Landau states with nonzero angular momentum, obtaining the result consistent with the transitionless quantum driving applied to the orbital dynamics in EMF.

  7. Adiabatic shear bands localization in materials undergoing deformations

    NASA Astrophysics Data System (ADS)

    Ryabov, P. N.; Kudryashov, N. A.; Muratov, R. V.

    2017-01-01

    We consider the adiabatic shear banding phenomenon in composite materials undergoing the high speed shear deformations. The mathematical model of adiabatic shear banding in thermo-visco-plastic material is given. New two step numerical algorithm which is based on the Courant-Isaacson-Rees scheme that allows one to simulate fully localized plastic flow from initial stage of localization is proposed. To test this numerical algorithm we use three benchmark problems. The testing results show the accuracy and efficiency of proposed algorithm. The features of adiabatic shear bands formation in composites are studied. The existence of characteristic depth of localization in composites is shown. Influence of initial temperature distribution on the processes of adiabatic shear bands formation in composites is considered.

  8. Adiabaticity and spectral splits in collective neutrino transformations

    SciTech Connect

    Raffelt, Georg G.; Smirnov, Alexei Yu.

    2007-12-15

    Neutrinos streaming off a supernova core transform collectively by neutrino-neutrino interactions, leading to 'spectral splits' where an energy E{sub split} divides the transformed spectrum sharply into parts of almost pure but different flavors. We present a detailed description of the spectral-split phenomenon which is conceptually and quantitatively understood in an adiabatic treatment of neutrino-neutrino effects. Central to this theory is a self-consistency condition in the form of two sum rules (integrals over the neutrino spectra that must equal certain conserved quantities). We provide explicit analytic and numerical solutions for various neutrino spectra. We introduce the concept of the adiabatic reference frame and elaborate on the relative adiabatic evolution. Violating adiabaticity leads to the spectral split being 'washed out'. The sharpness of the split appears to be represented by a surprisingly universal function.

  9. Adiabatic and isocurvature perturbation projections in multi-field inflation

    SciTech Connect

    Gordon, Chris; Saffin, Paul M. E-mail: Paul.Saffin@nottingham.ac.uk

    2013-08-01

    Current data are in good agreement with the predictions of single field inflation. However, the hemispherical asymmetry, seen in the cosmic microwave background data, may hint at a potential problem. Generalizing to multi-field models may provide one possible explanation. A useful way of modeling perturbations in multi-field inflation is to investigate the projection of the perturbation along and perpendicular to the background fields' trajectory. These correspond to the adiabatic and isocurvature perturbations. However, it is important to note that in general there are no corresponding adiabatic and isocurvature fields. The purpose of this article is to highlight the distinction between a field redefinition and a perturbation projection. We provide a detailed derivation of the evolution of the isocurvature perturbation to show that no assumption of an adiabatic or isocurvature field is needed. We also show how this evolution equation is consistent with the field covariant evolution equations for the adiabatic perturbation in the flat field space limit.

  10. Ultrafast stimulated Raman parallel adiabatic passage by shaped pulses

    SciTech Connect

    Dridi, G.; Guerin, S.; Hakobyan, V.; Jauslin, H. R.; Eleuch, H.

    2009-10-15

    We present a general and versatile technique of population transfer based on parallel adiabatic passage by femtosecond shaped pulses. Their amplitude and phase are specifically designed to optimize the adiabatic passage corresponding to parallel eigenvalues at all times. We show that this technique allows the robust adiabatic population transfer in a Raman system with the total pulse area as low as 3{pi}, corresponding to a fluence of one order of magnitude below the conventional stimulated Raman adiabatic passage process. This process of short duration, typically picosecond and subpicosecond, is easily implementable with the modern pulse shaper technology and opens the possibility of ultrafast robust population transfer with interesting applications in quantum information processing.

  11. Geodesic acoustic mode in anisotropic plasmas using double adiabatic model and gyro-kinetic equation

    SciTech Connect

    Ren, Haijun; Cao, Jintao

    2014-12-15

    Geodesic acoustic mode in anisotropic tokamak plasmas is theoretically analyzed by using double adiabatic model and gyro-kinetic equation. The bi-Maxwellian distribution function for guiding-center ions is assumed to obtain a self-consistent form, yielding pressures satisfying the magnetohydrodynamic (MHD) anisotropic equilibrium condition. The double adiabatic model gives the dispersion relation of geodesic acoustic mode (GAM), which agrees well with the one derived from gyro-kinetic equation. The GAM frequency increases with the ratio of pressures, p{sub ⊥}/p{sub ∥}, and the Landau damping rate is dramatically decreased by p{sub ⊥}/p{sub ∥}. MHD result shows a low-frequency zonal flow existing for all p{sub ⊥}/p{sub ∥}, while according to the kinetic dispersion relation, no low-frequency branch exists for p{sub ⊥}/p{sub ∥}≳ 2.

  12. Temperature gradients due to adiabatic plasma expansion in a magnetic nozzle

    NASA Astrophysics Data System (ADS)

    Sheehan, J. P.; Longmier, B. W.; Bering, E. A.; Olsen, C. S.; Squire, J. P.; Ballenger, M. G.; Carter, M. D.; Cassady, L. D.; Díaz, F. R. Chang; Glover, T. W.; Ilin, A. V.

    2014-08-01

    A mechanism for ambipolar ion acceleration in a magnetic nozzle is proposed. The plasma is adiabatic (i.e., does not exchange energy with its surroundings) in the diverging section of a magnetic nozzle so any energy lost by the electrons must be transferred to the ions via the electric field. Fluid theory indicates that the change in plasma potential is proportional to the change in average electron energy. These predictions were compared to measurements in the VX-200 experiment which has conditions conducive to ambipolar ion acceleration. A planar Langmuir probe was used to measure the plasma potential, electron density, and electron temperature for a range of mass flow rates and power levels. Axial profiles of those parameters were also measured, showing consistency with the adiabatic ambipolar fluid theory.

  13. Deterministic entanglement generation between a pair of atoms on different Rydberg states via chirped adiabatic passage

    NASA Astrophysics Data System (ADS)

    Qian, Jing; Zhang, Weiping

    2017-03-01

    We develop a scheme for deterministic generation of an entangled state between two atoms on different Rydberg states via a chirped adiabatic passage, which directly connects the initial ground and target entangled states and also does not request the normally needed blockade effect. The occupancy of intermediate states suffers from a strong reduction via two pulses with proper time-dependent detunings and the electromagnetically induced transparency condition. By solving the analytical expressions of eigenvalues and eigenstates of a two-atom system, we investigate the optimal parameters for guaranteeing the adiabatic condition. We present a detailed study for the effect of pulse duration, changing rate, different Rydberg interactions on the fidelity of the prepared entangled state with experimentally feasible parameters, which reveals a good agreement between the analytic and full numerical results.

  14. Adiabatic measurements of magneto-caloric effects in pulsed high magnetic fields up to 55 T

    NASA Astrophysics Data System (ADS)

    Kihara, T.; Kohama, Y.; Hashimoto, Y.; Katsumoto, S.; Tokunaga, M.

    2013-07-01

    Magneto-caloric effects (MCEs) measurement system in adiabatic condition is proposed to investigate the thermodynamic properties in pulsed magnetic fields up to 55 T. With taking the advantage of the fast field-sweep rate in pulsed field, adiabatic measurements of MCEs were carried out at various temperatures. To obtain the prompt response of the thermometer in the pulsed field, a thin film thermometer is grown directly on the sample surfaces. The validity of the present setup was demonstrated in the wide temperature range through the measurements on Gd at about room temperature and on Gd3Ga5O12 at low temperatures. The both results show reasonable agreement with the data reported earlier. By comparing the MCE data with the specific heat data, we could estimate the entropy as functions of magnetic field and temperature. The results demonstrate the possibility that our approach can trace the change in transition temperature caused by the external field.

  15. Severe plastic deformation through adiabatic shear banding in Fe-C steels

    SciTech Connect

    Lesuer, D; Syn, C; Sherby, O

    2004-12-01

    Severe plastic deformation is observed within adiabatic shear bands in iron-carbon steels. These shear bands form under high strain rate conditions, in excess of 1000 s{sup -1}, and strains in the order 5 or greater are commonly observed. Studies on shear band formation in a ultrahigh carbon steel (1.3%C) are described in the pearlitic condition. A hardness of 11.5 GPa (4600 MPa) is obtained within the band. A mechanism is described to explain the high strength based on phase transformation to austenite from adiabatic heating resulting from severe deformation. Rapid re-transformation leads to an ultra-fine ferrite grain size containing carbon principally in the form of nanosize carbides. It is proposed that the same mechanism explains the ultrahigh strength of iron-carbon steels observed in ball-milling, ball drop tests and in severely deformed wires.

  16. Nanoscale Nucleosome Dynamics Assessed with Time-lapse AFM

    PubMed Central

    Lyubchenko, Yuri L.

    2013-01-01

    A fundamental challenge associated with chromosomal gene regulation is accessibility of DNA within nucleosomes. Recent studies performed by various techniques, including single-molecule approaches, led to the realization that nucleosomes are dynamic structures rather than static systems, as it was once believed. Direct data is required in order to understand the dynamics of nucleosomes more clearly and answer fundamental questions, including: What is the range of nucleosome dynamics? Does a non-ATP dependent unwrapping process of nucleosomes exist? What are the factors facilitating the large scale opening and unwrapping of nucleosomes? This review summarizes the results of nucleosome dynamics obtained with time-lapse AFM, including a high-speed version (HS-AFM) capable of visualizing molecular dynamics on the millisecond time scale. With HS-AFM, the dynamics of nucleosomes at a sub-second time scale was observed allowing one to visualize various pathways of nucleosome dynamics, such as sliding and unwrapping, including complete dissociation. Overall, these findings reveal new insights into the dynamics of nucleosomes and the novel mechanisms controlling spontaneous chromatin dynamics. PMID:24839467

  17. Adiabatic Phase Mixing and Fast Electron Heating in Thin current Sheet

    NASA Astrophysics Data System (ADS)

    Che, H.; Drake, J. F.; Swisdak, M. M.; Goldstein, M. L.

    2012-12-01

    Using particle-in-cell simulations and kinetic theory, it's found that strong Buneman instability develop non-linearly in thin current layer form in plasma with Ω e/ω pe< 1. The Buneman instability produces strong electric field and fast phase mixing which leads to the increase of electron temperature by more than a factor of 10 in a few tens of electron gyro-periods. The resonance of wave-particles feeds waves with particle's kinetic energy and causes the growth of waves and strong trapping of electrons at a large velocity range. We discovered it is the adiabatic movement of trapped electrons produce fast phase mixing when the particle's bounce rate is much larger than the growth and decay rate of waves. The adiabatic movement effectively exchange energy between particles and waves and redistribute the energy from high velocity electrons to low energy electrons with the assistance of the non-adiabatic crossing of separatrix of electron holes. The implications of the results for reconnection are being explored.

  18. High temperature and dynamic testing of AHSS for an analytical description of the adiabatic cutting process

    NASA Astrophysics Data System (ADS)

    Winter, S.; Schmitz, F.; Clausmeyer, T.; Tekkaya, A. E.; F-X Wagner, M.

    2017-03-01

    In the automotive industry, advanced high strength steels (AHSS) are widely used as sheet part components to reduce weight, even though this leads to several challenges. The demand for high-quality shear cutting surfaces that do not require reworking can be fulfilled by adiabatic shear cutting: High strain rates and local temperatures lead to the formation of adiabatic shear bands (ASB). While this process is well suited to produce AHSS parts with excellent cutting surface quality, a fundamental understanding of the process is still missing today. In this study, compression tests in a Split-Hopkinson Pressure Bar with an initial strain rate of 1000 s-1 were performed in a temperature range between 200 °C and 1000 °C. The experimental results show that high strength steels with nearly the same mechanical properties at RT may possess a considerably different behavior at higher temperatures. The resulting microstructures after testing at different temperatures were analyzed by optical microscopy. The thermo-mechanical material behavior was then considered in an analytical model. To predict the local temperature increase that occurs during the adiabatic blanking process, experimentally determined flow curves were used. Furthermore, the influence of temperature evolution with respect to phase transformation is discussed. This study contributes to a more complete understanding of the relevant microstructural and thermo-mechanical mechanisms leading to the evolution of ASB during cutting of AHSS.

  19. Shortcuts to adiabaticity for non-Hermitian systems

    SciTech Connect

    Ibanez, S.; Martinez-Garaot, S.; Torrontegui, E.; Muga, J. G.; Chen Xi

    2011-08-15

    Adiabatic processes driven by non-Hermitian, time-dependent Hamiltonians may be sped up by generalizing inverse engineering techniques based on counter-diabatic (transitionless driving) algorithms or on dynamical invariants. We work out the basic theory and examples described by two-level Hamiltonians: the acceleration of rapid adiabatic passage with a decaying excited level and of the dynamics of a classical particle on an expanding harmonic oscillator.

  20. Nonadiabatic transitions in finite-time adiabatic rapid passage

    NASA Astrophysics Data System (ADS)

    Lu, T.; Miao, X.; Metcalf, H.

    2007-06-01

    To apply the adiabatic rapid passage process repetitively [T. Lu, X. Miao, and H. Metcalf, Phys. Rev. A 71, 061405(R) (2005)], the nonadiabatic transition probability of a two-level atom subject to chirped light pulses over a finite period of time needs to be calculated. Using a unitary first-order perturbation method in the rotating adiabatic frame, an approximate formula has been derived for such transition probabilities in the entire parameter space of the pulses.

  1. ENTROPY-VORTEX WAVES IN NON-ADIABATIC FLOWS

    SciTech Connect

    Ibáñez S, Miguel H.

    2016-02-20

    The Ertel theorem on the vorticity along the flow of adiabatic fluids is generalized for non-adiabatic flows. Several limiting cases are analyzed and the results are applied to flows behind different hydrodynamics fronts, particularly to thermal fronts (heat and cooling fronts). An important conclusion of the present analysis is that vorticity is inherent in the condensation’s (or hot spots) formation by thermal instabilities in plasma flows. Implications for several astrophysical plasmas are outlined.

  2. Vacuum vessel eddy current modeling for TFTR adiabatic compression experiments

    SciTech Connect

    DeLucia, J.; Bell, M.; Wong, K.L.

    1985-07-01

    A relatively simple current filament model of the TFTR vacuum vessel is described. It is used to estimate the three-dimensional structure of magnetic field perturbations in the vicinity of the plasma that arise from vacuum vessel eddy currents induced during adiabatic compression. Eddy currents are calculated self-consistently with the plasma motion. The Shafranov formula and adiabatic scaling laws are used to model the plasma. Although the specific application is to TFTR, the present model is of generation applicability.

  3. Towards a LAPSE Theory of Teacher Preparation in English as a Second Language

    ERIC Educational Resources Information Center

    Alatis, James E.

    1974-01-01

    'LAPSE' is an organising acronym for the kinds of courses that should be included in any teacher education programme in English for speakers of other languages. The letters stand for Linguistics, Anthropology, Psychology, Sociolinguistics, English (and Education). (Author)

  4. Orb-2's Antares Rolls Out to Launch Pad (Time-Lapse)

    NASA Video Gallery

    This time-lapse video shows the roll out of the Orbital Sciences Corporation Antares rocket, with the Cygnus spacecraft aboard, from the Horizontal Integration Facility to the Mid-Atlantic Regional...

  5. NASA HS3 Mission Time Lapse Highlights Cameras Over Tropical Systems

    NASA Video Gallery

    This is a time-lapse video created with images recorded during a recent HS3 Science Missions with the NASA Global Hawk. Shown are the images from the Daylight, HDVis, and the Low-light Cameras on t...

  6. Distress tolerance treatment for early-lapse smokers: rationale, program description, and preliminary findings.

    PubMed

    Brown, Richard A; Palm, Kathleen M; Strong, David R; Lejuez, Carl W; Kahler, Christopher W; Zvolensky, Michael J; Hayes, Steven C; Wilson, Kelly G; Gifford, Elizabeth V

    2008-05-01

    A significant percentage of individuals attempting smoking cessation lapse within a matter of days, and very few are able to recover to achieve long-term abstinence. This observation suggests that many smokers may have quit-attempt histories characterized exclusively by early lapses to smoking following quit attempts. Recent negative-reinforcement conceptualizations of early lapse to smoking suggest that individuals' reactions to withdrawal and inability to tolerate the experience of these symptoms, rather than withdrawal severity itself, may represent an important treatment target in the development of new behavioral interventions for this subpopulation of smokers. This article presents the theoretical rationale and describes a novel, multicomponent distress-tolerance treatment for early-lapse smokers that incorporates behavioral and pharmacological elements of standard smoking-cessation treatment, whereas drawing distress-tolerance elements from exposure-based and Acceptance and Commitment Therapy-based treatment approaches. Preliminary data from a pilot study (N = 16) are presented, and clinical implications are discussed.

  7. 77 FR 22069 - Proposed Information Collection (Notice of Lapse-Government Life Insurance); Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-12

    ... AFFAIRS Proposed Information Collection (Notice of Lapse--Government Life Insurance); Comment Request... Register concerning each proposed collection of information, including each proposed extension of a... Life Insurance policy. DATES: Written comments and recommendations on the proposed collection...

  8. Time-Lapse of Backplane of the JWST Being Moved Into Clean Room

    NASA Video Gallery

    This is a time-lapse video of the center section of the 'pathfinder' backplane for NASA's James Webb Space Telescope being moved into the clean room at NASA's Goddard Space Flight Center in Greenbe...

  9. Preliminary observations on polar body extrusion and pronuclear formation in human oocytes using time-lapse video cinematography.

    PubMed

    Payne, D; Flaherty, S P; Barry, M F; Matthews, C D

    1997-03-01

    In this study, we have used time-lapse video cinematography to study fertilization in 50 human oocytes that had undergone intracytoplasmic sperm injection (ICSI). Time-lapse recording commenced shortly after ICSI and proceeded for 17-20 h. Oocytes were cultured in an environmental chamber which was maintained under standard culture conditions. Overall, 38 oocytes (76%) were fertilized normally, and the fertilization rate and embryo quality were not significantly different from 487 sibling oocytes cultured in a conventional incubator. Normal fertilization followed a defined course of events, although the timing of these events varied markedly between oocytes. In 35 of the 38 fertilized oocytes (92%), there were circular waves of granulation within the ooplasm which had a periodicity of 20-53 min. The sperm head decondensed during this granulation phase. The second polar body was then extruded, and this was followed by the central formation of the male pronucleus. The female pronucleus formed in the cytoplasm adjacent to the second polar body at the same time as, or slightly after, the male pronucleus, and was subsequently drawn towards the male pronucleus until the two abutted. Both pronuclei then increased in size, the nucleoli moved around within the pronuclei and some nucleoli coalesced. During pronuclear growth, the organelles contracted from the cortex towards the centre of the oocyte, leaving a clear cortical zone. The oocyte decreased in diameter from 112 to 106 microm (P < 0.0001) during the course of the observation period. The female pronucleus was significantly smaller in diameter than the male pronucleus (24.1 and 22.4 microm respectively, P = 0.008) and contained fewer nucleoli (4.2 and 7.0 respectively, P < 0.0001). After time-lapse recording, oocytes were cultured for 48 h prior to embryo transfer or cryopreservation. Embryo quality was related to fertilization events and periodicity of the cytoplasmic wave, and it was found that good quality embryos

  10. A connection between mix and adiabat in ICF capsules

    NASA Astrophysics Data System (ADS)

    Cheng, Baolian; Kwan, Thomas; Wang, Yi-Ming; Yi, Sunghuan (Austin); Batha, Steven

    2016-10-01

    We study the relationship between instability induced mix, preheat and the adiabat of the deuterium-tritium (DT) fuel in fusion capsule experiments. Our studies show that hydrodynamic instability not only directly affects the implosion, hot spot shape and mix, but also affects the thermodynamics of the capsule, such as, the adiabat of the DT fuel, and, in turn, affects the energy partition between the pusher shell (cold DT) and the hot spot. It was found that the adiabat of the DT fuel is sensitive to the amount of mix caused by Richtmyer-Meshkov (RM) and Rayleigh-Taylor (RT) instabilities at the material interfaces due to its exponential dependence on the fuel entropy. An upper limit of mix allowed maintaining a low adiabat of DT fuel is derived. Additionally we demonstrated that the use of a high adiabat for the DT fuel in theoretical analysis and with the aid of 1D code simulations could explain some aspects of the 3D effects and mix in the capsule experiments. Furthermore, from the observed neutron images and our physics model, we could infer the adiabat of the DT fuel in the capsule and determine the possible amount of mix in the hot spot (LA-UR-16-24880). This work was conducted under the auspices of the U.S. Department of Energy by the Los Alamos National Laboratory under Contract No. W-7405-ENG-36.

  11. Adiabatic and non-adiabatic charge pumping in a single-level molecular motor

    NASA Astrophysics Data System (ADS)

    Napitu, B. D.; Thijssen, J. M.

    2015-07-01

    We propose a design for realizing quantum charge pump based on a recent proposal for a molecular motor (Seldenthuis J S et al 2010 ACS Nano 4 6681). Our design is based on the presence of a moiety with a permanent dipole moment which can rotate, thereby modulating the couplings to metallic contacts at both ends of the molecule. Using the non-equilibrium Keldysh Green’s function formalism (NEGF), we show that our design indeed generates a pump current. In the non-interacting pump, the variation of frequency from adiabatic to non-adiabatic regime, can be used to control the direction as well as the amplitude of the average current. The effect of Coulomb interaction is considered within the first- and the second- order perturbation. The numerical implementation of the scheme is quite demanding, and we develop an analytical approximation to obtain a speed-up giving results within a reasonable time. We find that the amplitude of the average pumped current can be controlled by both the driving frequency and the Coulomb interaction. The direction of of pumped current is shown to be determined by the phase difference between left and right anchoring groups.

  12. Adiabatic and non-adiabatic charge pumping in a single-level molecular motor.

    PubMed

    Napitu, B D; Thijssen, J M

    2015-07-15

    We propose a design for realizing quantum charge pump based on a recent proposal for a molecular motor (Seldenthuis J S et al 2010 ACS Nano 4 6681). Our design is based on the presence of a moiety with a permanent dipole moment which can rotate, thereby modulating the couplings to metallic contacts at both ends of the molecule. Using the non-equilibrium Keldysh Green's function formalism (NEGF), we show that our design indeed generates a pump current. In the non-interacting pump, the variation of frequency from adiabatic to non-adiabatic regime, can be used to control the direction as well as the amplitude of the average current. The effect of Coulomb interaction is considered within the first- and the second- order perturbation. The numerical implementation of the scheme is quite demanding, and we develop an analytical approximation to obtain a speed-up giving results within a reasonable time. We find that the amplitude of the average pumped current can be controlled by both the driving frequency and the Coulomb interaction. The direction of of pumped current is shown to be determined by the phase difference between left and right anchoring groups.

  13. Adiabatic fission barriers in superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Jachimowicz, P.; Kowal, M.; Skalski, J.

    2017-01-01

    Using the microscopic-macroscopic model based on the deformed Woods-Saxon single-particle potential and the Yukawa-plus-exponential macroscopic energy, we calculated static fission barriers Bf for 1305 heavy and superheavy nuclei 98 ≤Z ≤126 , including even-even, odd-even, even-odd and odd-odd systems. For odd and odd-odd nuclei, adiabatic potential-energy surfaces were calculated by a minimization over configurations with one blocked neutron or/and proton on a level from the 10th below to the 10th above the Fermi level. The parameters of the model that have been fixed previously by a fit to masses of even-even heavy nuclei were kept unchanged. A search for saddle points has been performed by the "imaginary water flow" method on a basic five-dimensional deformation grid, including triaxiality. Two auxiliary grids were used for checking the effects of the mass asymmetry and hexadecapole nonaxiality. The ground states (g.s.) were found by energy minimization over configurations and deformations. We find that the nonaxiality significantly changes first and second fission saddle in many nuclei. The effect of the mass asymmetry, known to lower the second, very deformed saddles in actinides, in the heaviest nuclei appears at the less deformed saddles in more than 100 nuclei. It happens for those saddles in which the triaxiality does not play any role, which suggests a decoupling between effects of the mass asymmetry and triaxiality. We studied also the influence of the pairing interaction strength on the staggering of Bf for odd- and even-particle numbers. Finally, we provide a comparison of our results with other theoretical fission barrier evaluations and with available experimental estimates.

  14. Selection of competent blastocysts for transfer by combining time-lapse monitoring and array CGH testing for patients undergoing preimplantation genetic screening: a prospective study with sibling oocytes

    PubMed Central

    2014-01-01

    Background Recent advances in time-lapse monitoring in IVF treatment have provided new morphokinetic markers for embryonic competence. However, there is still very limited information about the relationship between morphokinetic parameters, chromosomal compositions and implantation potential. Accordingly, this study aimed at investigating the effects of selecting competent blastocysts for transfer by combining time-lapse monitoring and array CGH testing on pregnancy and implantation outcomes for patients undergoing preimplantation genetic screening (PGS). Methods A total of 1163 metaphase II (MII) oocytes were retrieved from 138 PGS patients at a mean age of 36.6 ± 2.4 years. These sibling MII oocytes were then randomized into two groups after ICSI: 1) Group A, oocytes (n = 582) were cultured in the time-lapse system and 2) Group B, oocytes (n = 581) were cultured in the conventional incubator. For both groups, whole genomic amplification and array CGH testing were performed after trophectoderm biopsy on day 5. One to two euploid blastocysts within the most predictive morphokinetic parameters (Group A) or with the best morphological grade available (Group B) were selected for transfer to individual patients on day 6. Ongoing pregnancy and implantation rates were compared between the two groups. Results There were significant differences in clinical pregnancy rates between Group A and Group B (71.1% vs. 45.9%, respectively, p = 0.037). The observed implantation rate per embryo transfer significantly increased in Group A compared to Group B (66.2% vs. 42.4%, respectively, p = 0.011). Moreover, a significant increase in ongoing pregnancy rates was also observed in Group A compared to Group B (68.9% vs. 40.5%. respectively, p = 0.019). However, there was no significant difference in miscarriage rate between the time-lapse system and the conventional incubator (3.1% vs. 11.8%, respectively, p = 0.273). Conclusions This is the first prospective investigation using

  15. Speaking up: using OSTEs to understand how medical students address professionalism lapses

    PubMed Central

    Tucker, Constance R.; Choby, Beth A.; Moore, Andrew; Parker, Robert Scott; Zambetti, Benjamin R.; Naids, Sarah; Scott, Jillian; Loome, Jennifer; Gaffney, Sierra

    2016-01-01

    Background Objective-structured teaching encounters (OSTEs) are used across many disciplines to assess teaching ability. The OSTE detailed in this paper assesses 191 fourth-year medical students’ (M4) ability to identify and address lapses in professionalism based on Association of American Medical Colleges’ professionalism competencies. The research questions addressed areHow frequently do M4s address professionalism lapses observed during an OSTE?What factors influence whether M4s provide feedback when they observe professionalism lapses in an OSTE? Methods Standardized patients (SPs) and standardized learners (SLs) were recruited and trained to participate in a standardized encounter with specific cognitive, social, and behavioral errors, including professionalism lapses. M4s viewed this encounter and then offered feedback to the SL, while remotely observed by faculty. Post-encounter, the SL and faculty completed identical checklists to assess both teaching readiness and ability to address professionalism concerns. Results An analysis of frequencies showed that six of the Association of American Medical Colleges’ nine professional competencies were addressed in the checklist and/or discussed in the focus group. Analysis of transcribed debriefing sessions confirmed that M4s did not consistently address professionalism lapses by their peers. Conclusions In focus groups, M4s indicated that, while they noticed professionalism issues, they were uncomfortable discussing them with the SLs. Findings of the current study suggest how medical educators might support learners’ ability to address lapses in professionalism as well as topics for future research. PMID:27814779

  16. Experimental Progress Toward Multiple Adiabatic Rapid Passage Sequences

    NASA Astrophysics Data System (ADS)

    Miao, X.; Wertz, E.; Cohen, M. G.; Metcalf, H.

    2006-05-01

    Multiple repetitions of adiabatic rapid passage (ARP) sweeps with counterpropagating light beams can enable huge optical forces on atoms. The repetition rate of the ARP sweeps φsγ results in a force k φs/πk γ/2 ≡Frad where 1/γ≡τ is the excited state lifetime and Frad is the ordinary radiative force. This is because each pair of ARP-induced inversions can coherently transfer momentum ±2 k between the light beams, and thus 2 k to the atoms. In developing instruments for such experiments on the 2^3S1-> 2^3P2 transition at λ = 1083 nm in He, we exploit recent developments in the optical communications industry. We use commercial phase and intensity modulators of the LiNbO3 waveguide type having Vπ as low as 6 V and thus requiring relatively low rf power for the modulation. Synchronized driving of the two modulators can produce the necessary multiple ARP sequences of 10 ns chirped pulses that span several GHz, as needed for the experiment^3. We are also developing optical methods for characterizing these pulses. T. Lu, X. Miao, and H. Metcalf, Phys., Rev. A 71 061405(R) (2005).

  17. Assessment of ice-dam collapse by time-lapse photos at the Perito Moreno glacier, Argentina

    NASA Astrophysics Data System (ADS)

    Lenzano, M. G.; Lannutti, E.; Toth, C. K.; Lenzano, L. E.; Lovecchio, A.

    2014-11-01

    This research provides a feasibility study on the implementation and performance assessment of time-lapse processing of a monoscopic image sequence, acquired by a calibrated camera in the Perito Moreno Glacier in Argentina. The glacier is located at 50°28'23" S, 73°02'10" W at the Parque Nacional Los Glaciares, South Patagonia Icefield, Santa Cruz and has experienced minor fluctuations and unusual behavior since the early 1960's to present. The objective of this study was to determine the evolution and changes in the ice-dam of the Perito Moreno glacier that started on November, 23 2012 and collapsed on January 19, 2013. Two images every 24 hours were acquired since October 2012 until February 2013, a total of 135 days. Image information was supported by ground data. Image and ground data was correlated with a 2D affine transformation. This technique allows the determination of the distortions in the images and estimating the values of scale factors. This, along with an accurate time-lapse interval, has produced accurate data for the analysis. In addition, changes in the level of the Brazo Rico lake were validated with direct data in order to determine the degree of uncertainty in the estimation of changes in the glacier. Based on the calculations, advance rates of the front of the Perito Moreno glacier were estimated at 0.67 m/d ± 0.003 m, and the tunnel evolution was also recorded.

  18. Dynamics of the reactions of muonium and deuterium atoms with vibrationally excited hydrogen molecules: tunneling and vibrational adiabaticity.

    PubMed

    Jambrina, P G; García, E; Herrero, V J; Sáez-Rábanos, V; Aoiz, F J

    2012-11-14

    Quantum mechanical (QM) and quasiclassical trajectory (QCT) calculations have been carried out for the exchange reactions of D and Mu (Mu = muonium) with hydrogen molecules in their ground and first vibrational states. In all the cases considered, the QM rate coefficients, k(T), are in very good agreement with the available experimental results. In particular, QM calculations on the most accurate potential energy surfaces (PESs) predict a rate coefficient for the Mu + H(2) (ν = 1) reaction which is very close to the preliminary estimate of its experimental value at 300 K. In contrast to the D + H(2) (ν = 0,1) and the Mu + H(2) (ν = 0) reactions, the QCT calculations for Mu + H(2) (ν = 1) predict a much smaller k(T) than that obtained with the accurate QM method. This behaviour is indicative of tunneling. The QM reaction probabilities and total reactive cross sections show that the total energy thresholds for the reactions of Mu with H(2) in ν = 0 and ν = 1 are very similar, whereas for the corresponding reaction with D the ν = 0 total energy threshold is about 0.3 eV lower than that for ν = 1. The results just mentioned can be explained by considering the vibrational adiabatic potentials along the minimum energy path. The threshold for the reaction of Mu with H(2) in both ν = 0 and ν = 1 states is the same and is given by the height of the ground vibrational adiabatic collinear potential, whereas for the D + H(2) reaction the adiabaticity is preserved and the threshold for the reaction in ν = 1 is very close to the height of the ν = 1 adiabatic collinear barrier. For Mu + H(2) (ν = 1) the reaction takes place by crossing from the ν = 1 to the ν = 0 adiabat, since the exit channel leading to MuH (ν = 1) is not energetically accessible. At the lowest possible energies, the non-adiabatic vibrational crossing implies a strong tunneling effect through the ν = 1 adiabatic barrier. Absence of tunneling in the classical calculations results in a threshold

  19. Large-Strain Time-Temperature Equivalence and Adiabatic Heating of Polyethylene

    SciTech Connect

    Furmanski, Jevan; Brown, Eric; Cady, Carl M.

    2012-06-06

    Time-temperature equivalence is a well-known phenomenon in time-dependent material response, where rapid events at a moderate temperature are indistinguishable from some occurring at modest rates but elevated temperatures. However, there is as-yet little elucidation of how well this equivalence holds for substantial plastic strains. In this work, we demonstrate time-temperature equivalence over a large range in a previously studied high-density polyethylene formulation (HDPE). At strain-rates exceeding 0.1/s, adiabatic heating confounds the comparison of nominally isothermal material response, apparently violating time-temperature equivalence. Strain-rate jumps can be employed to access the instantaneous true strain rate without heating. Adiabatic heating effects were isolated by comparing a locus of isothermal instantaneous flow stress measurements from strain-rate jumps up to 1/s with the predicted equivalent states at 0.01/s and 0.001/s in compression. Excellent agreement between the isothermal jump condition locus and the quasi-static tests was observed up to 50% strain, yielding one effective isothermal plastic response for each material for a given time-temperature equivalent state. These results imply that time-temperature equivalence can be effectively used to predict the deformation response of polymers during extreme mechanical events (large strain and high strain-rate) from measurements taken at reduced temperatures and nominal strain-rates in the laboratory.

  20. Estimation of atmospheric parameters from time-lapse imagery

    NASA Astrophysics Data System (ADS)

    McCrae, Jack E.; Basu, Santasri; Fiorino, Steven T.

    2016-05-01

    A time-lapse imaging experiment was conducted to estimate various atmospheric parameters for the imaging path. Atmospheric turbulence caused frame-to-frame shifts of the entire image as well as parts of the image. The statistics of these shifts encode information about the turbulence strength (as characterized by Cn2, the refractive index structure function constant) along the optical path. The shift variance observed is simply proportional to the variance of the tilt of the optical field averaged over the area being tracked. By presuming this turbulence follows the Kolmogorov spectrum, weighting functions can be derived which relate the turbulence strength along the path to the shifts measured. These weighting functions peak at the camera and fall to zero at the object. The larger the area observed, the more quickly the weighting function decays. One parameter we would like to estimate is r0 (the Fried parameter, or atmospheric coherence diameter.) The weighting functions derived for pixel sized or larger parts of the image all fall faster than the weighting function appropriate for estimating the spherical wave r0. If we presume Cn2 is constant along the path, then an estimate for r0 can be obtained for each area tracked, but since the weighting function for r0 differs substantially from that for every realizable tracked area, it can be expected this approach would yield a poor estimator. Instead, the weighting functions for a number of different patch sizes can be combined through the Moore-Penrose pseudo-inverse to create a new weighting function which yields the least-squares optimal linear combination of measurements for estimation of r0. This approach is carried out, and it is observed that this approach is somewhat noisy because the pseudo-inverse assigns weights much greater than one to many of the observations.

  1. Comment on ``Adiabatic quantum computation with a one-dimensional projector Hamiltonian''

    NASA Astrophysics Data System (ADS)

    Kay, Alastair

    2013-10-01

    The partial adiabatic search algorithm was introduced in Tulsi's paper [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.80.052328 80, 052328 (2009)] as a modification of the usual adiabatic algorithm for a quantum search with the idea that most of the interesting computation only happens over a very short range of the adiabatic path. By focusing on that restricted range, one can potentially gain an advantage by reducing the control requirements on the system, enabling a uniform rate of evolution. In this Comment, we point out an oversight in Tulsi's paper [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.80.052328 80, 052328 (2009)] that invalidates its proof. However, the argument can be corrected, and the calculations in Tulsi's paper [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.80.052328 80, 052328 (2009)] are then sufficient to show that the scheme still works. Nevertheless, subsequent works [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.82.034304 82, 034304 (2010), Chin. Phys. BCPBHAJ1674-105610.1088/1674-1056/20/4/040309 20, 040309 (2011), Chin. Phys. BCPBHAJ1674-105610.1088/1674-1056/21/1/010306 21, 010306 (2012), AASRI Procedia 1, 5862 (2012), and Quantum Inf. Process.10.1007/s11128-013-0557-1 12, 2689 (2013)] cannot all be recovered in the same way.

  2. The density variance-Mach number relation in isothermal and non-isothermal adiabatic turbulence

    NASA Astrophysics Data System (ADS)

    Nolan, C. A.; Federrath, C.; Sutherland, R. S.

    2015-08-01

    The density variance-Mach number relation of the turbulent interstellar medium is relevant for theoretical models of the star formation rate, efficiency, and the initial mass function of stars. Here we use high-resolution hydrodynamical simulations with grid resolutions of up to 10243 cells to model compressible turbulence in a regime similar to the observed interstellar medium. We use FYRIS ALPHA, a shock-capturing code employing a high-order Godunov scheme to track large density variations induced by shocks. We investigate the robustness of the standard relation between the logarithmic density variance (σ _s^2) and the sonic Mach number M of isothermal interstellar turbulence, in the non-isothermal regime. Specifically, we test ideal gases with diatomic molecular (γ = 7/5) and monatomic (γ = 5/3) adiabatic indices. A periodic cube of gas is stirred with purely solenoidal forcing at low wavenumbers, leading to a fully developed turbulent medium. We find that as the gas heats in adiabatic compressions, it evolves along the relationship in the density variance-Mach number plane, but deviates significantly from the standard expression for isothermal gases. Our main result is a new density variance-Mach number relation that takes the adiabatic index into account: σ _s^2=ln (1+b^2 M^{(5γ +1)/3}) and provides good fits for b M≲ 1. A theoretical model based on the Rankine-Hugoniot shock jump conditions is derived, σ _s^2 = ln {1 + (γ +1)b^2{M}^2/[(γ -1)b^2{M}^2+2]}, and provides good fits also for b M>1. We conclude that this new relation for adiabatic turbulence may introduce important corrections to the standard relation, if the gas is not isothermal (γ ≠ 1).

  3. Assessing spatial and temporal snowpack evolution and melt with time-lapse photography

    NASA Astrophysics Data System (ADS)

    Bush, C. E.; Ewers, B. E.; Beverly, D.; Speckman, H. N.; Hyde, K.; Ohara, N.

    2015-12-01

    Snowpack supplies and stores water for many ecosystems of the greater Rocky Mountain region. In Wyoming the snowpack supplies water to 18 states east and west of the Continental Divide. The spatial variability in physical and biological processes creates a heterogeneous pattern of snow evolution. Understanding these processes within individual plots and throughout the entire watershed increases the predictive power of snow distribution, melt rates and contribution to streamflow. However, on site sampling of snow can be an expensive and arduous process. The objective of this experiment was to quantify spatial and temporal patterns of snowpack evolution and melt rates while minimizing perturbations to snowpack through the use of time-lapse photography via trail cameras. Field cameras were assessed as a method to quantify snow depths throughout the 120 ha No Name watershed at approximately 3000 m elevation in central Wyoming. RGB trail cameras were installed at three systematically chosen sites within the watershed to correlate physical and biological drivers of snow distribution. Five stakes were placed in each site in heterogeneous spots that remained in the frame of the camera. Stakes were divided into five centimeter increments, alternating black and white bars, with red bars denoting each half meter. Images were then taken at two-hour intervals over a period of three-months and analyzed with the ImageJ program. Snowpack distributions, as well as melt rates, were variable at both the plot and watershed scales. Meteorological and physical drivers, primarily topography and radiation, accounted for the greatest variability when comparing among plot across the watershed; however, LAI and soil and air temperature were the most significant drivers within plots. Snow-melt rate increased as soils and course woody debris became exposed increasing ground and soil temperature. These data will improve process model predictions of streamflow from the watershed.

  4. Mathematical analysis of endothelial sibling pair cell-cell interactions using time-lapse cinematography data.

    PubMed

    Brown, L M; Ryan, U S; Absher, M; Olazabal, B M

    1982-01-01

    The sibling pairs from two different endothelial cell cultures were analysed by time-lapse cinematography. It was shown that wounded and regular (low density seeded) cultures differed in the behaviour patterns of their siblings. The cultures differed most significantly in the minimum interdivision time (IDT) which was 27% lower for the wounded culture. In the wounded culture there was a greater correlation of IDT values between sibling pairs. IDT values recorded both for paired and for unpaired cells were shorter for the wounded than for the regular culture. The mean IDT for unpaired cells was longer than the mean IDT for paired cells in the regular culture. Thus paired cells in the regular culture, had shorter IDTs, but not as short as in the wounded culture. It was significant that in the wounded culture the first generation of siblings were very close (less than 150 microns apart) at division. Overall the behaviour differences between the two cultures resulted in a higher rate of increase in cell numbers, and thus faster repair, of the wounded monolayer.

  5. Applications and error correction for adiabatic quantum optimization

    NASA Astrophysics Data System (ADS)

    Pudenz, Kristen

    Adiabatic quantum optimization (AQO) is a fast-developing subfield of quantum information processing which holds great promise in the relatively near future. Here we develop an application, quantum anomaly detection, and an error correction code, Quantum Annealing Correction (QAC), for use with AQO. The motivation for the anomaly detection algorithm is the problematic nature of classical software verification and validation (V&V). The number of lines of code written for safety-critical applications such as cars and aircraft increases each year, and with it the cost of finding errors grows exponentially (the cost of overlooking errors, which can be measured in human safety, is arguably even higher). We approach the V&V problem by using a quantum machine learning algorithm to identify charateristics of software operations that are implemented outside of specifications, then define an AQO to return these anomalous operations as its result. Our error correction work is the first large-scale experimental demonstration of quantum error correcting codes. We develop QAC and apply it to USC's equipment, the first and second generation of commercially available D-Wave AQO processors. We first show comprehensive experimental results for the code's performance on antiferromagnetic chains, scaling the problem size up to 86 logical qubits (344 physical qubits) and recovering significant encoded success rates even when the unencoded success rates drop to almost nothing. A broader set of randomized benchmarking problems is then introduced, for which we observe similar behavior to the antiferromagnetic chain, specifically that the use of QAC is almost always advantageous for problems of sufficient size and difficulty. Along the way, we develop problem-specific optimizations for the code and gain insight into the various on-chip error mechanisms (most prominently thermal noise, since the hardware operates at finite temperature) and the ways QAC counteracts them. We finish by showing

  6. Time-lapse joint inversion of geophysical data with automatic joint constraints and dynamic attributes

    NASA Astrophysics Data System (ADS)

    Rittgers, J. B.; Revil, A.; Mooney, M. A.; Karaoulis, M.; Wodajo, L.; Hickey, C. J.

    2016-12-01

    Joint inversion and time-lapse inversion techniques of geophysical data are often implemented in an attempt to improve imaging of complex subsurface structures and dynamic processes by minimizing negative effects of random and uncorrelated spatial and temporal noise in the data. We focus on the structural cross-gradient (SCG) approach (enforcing recovered models to exhibit similar spatial structures) in combination with time-lapse inversion constraints applied to surface-based electrical resistivity and seismic traveltime refraction data. The combination of both techniques is justified by the underlying petrophysical models. We investigate the benefits and trade-offs of SCG and time-lapse constraints. Using a synthetic case study, we show that a combined joint time-lapse inversion approach provides an overall improvement in final recovered models. Additionally, we introduce a new approach to reweighting SCG constraints based on an iteratively updated normalized ratio of model sensitivity distributions at each time-step. We refer to the new technique as the Automatic Joint Constraints (AJC) approach. The relevance of the new joint time-lapse inversion process is demonstrated on the synthetic example. Then, these approaches are applied to real time-lapse monitoring field data collected during a quarter-scale earthen embankment induced-piping failure test. The use of time-lapse joint inversion is justified by the fact that a change of porosity drives concomitant changes in seismic velocities (through its effect on the bulk and shear moduli) and resistivities (through its influence upon the formation factor). Combined with the definition of attributes (i.e. specific characteristics) of the evolving target associated with piping, our approach allows localizing the position of the preferential flow path associated with internal erosion. This is not the case using other approaches.

  7. LETTERS AND COMMENTS: Adiabatic process reversibility: microscopic and macroscopic views

    NASA Astrophysics Data System (ADS)

    Anacleto, Joaquim; Pereira, Mário G.

    2009-05-01

    The reversibility of adiabatic processes was recently addressed by two publications. In the first (Miranda 2008 Eur. J. Phys. 29 937-43), an equation was derived relating the initial and final volumes and temperatures for adiabatic expansions of an ideal gas, using a microscopic approach. In that relation the parameter r accounts for the process reversibility, ranging between 0 and 1, which corresponds to the free and reversible expansion, respectively. In the second (Anacleto and Pereira 2009 Eur. J. Phys. 30 177-83), the authors have shown that thermodynamics can effectively and efficiently be used to obtain the general law for adiabatic processes carried out by an ideal gas, including compressions, for which r \\ge 1. The present work integrates and extends the aforementioned studies, providing thus further insights into the analysis of the adiabatic process. It is shown that Miranda's work is wholly valid for compressions. In addition, it is demonstrated that the adiabatic reversibility coefficient given in terms of the piston velocity and the root mean square velocity of the gas particles is equivalent to the macroscopic description, given just by the quotient between surroundings and system pressure values.

  8. Heteronuclear Adiabatic Relaxation Dispersion (HARD) for quantitative analysis of conformational dynamics in proteins.

    PubMed

    Traaseth, Nathaniel J; Chao, Fa-An; Masterson, Larry R; Mangia, Silvia; Garwood, Michael; Michaeli, Shalom; Seelig, Burckhard; Veglia, Gianluigi

    2012-06-01

    NMR relaxation methods probe biomolecular motions over a wide range of timescales. In particular, the rotating frame spin-lock R(1ρ) and Carr-Purcell-Meiboom-Gill (CPMG) R(2) experiments are commonly used to characterize μs to ms dynamics, which play a critical role in enzyme folding and catalysis. In an effort to complement these approaches, we introduced the Heteronuclear Adiabatic Relaxation Dispersion (HARD) method, where dispersion in rotating frame relaxation rate constants (longitudinal R(1ρ) and transverse R(2ρ)) is created by modulating the shape and duration of adiabatic full passage (AFP) pulses. Previously, we showed the ability of the HARD method to detect chemical exchange dynamics in the fast exchange regime (k(ex)∼10(4)-10(5) s(-1)). In this article, we show the sensitivity of the HARD method to slower exchange processes by measuring R(1ρ) and R(2ρ) relaxation rates for two soluble proteins (ubiquitin and 10C RNA ligase). One advantage of the HARD method is its nominal dependence on the applied radio frequency field, which can be leveraged to modulate the dispersion in the relaxation rate constants. In addition, we also include product operator simulations to define the dynamic range of adiabatic R(1ρ) and R(2ρ) that is valid under all exchange regimes. We conclude from both experimental observations and simulations that this method is complementary to CPMG-based and rotating frame spin-lock R(1ρ) experiments to probe conformational exchange dynamics for biomolecules. Finally, this approach is germane to several NMR-active nuclei, where relaxation rates are frequency-offset independent.

  9. Adiabatic channel capture theory applied to cold atom-molecule reactions: Li + CaH \\to LiH + Ca at 1K

    NASA Astrophysics Data System (ADS)

    Tscherbul, Timur V.; Buchachenko, Alexei A.

    2015-03-01

    We use quantum and classical adiabatic capture theories to study the chemical reaction Li + CaH \\to LiH + Ca. Using a recently developed ab initio potential energy surface, which provides an accurate representation of long-range interactions in the entrance reaction channel, we calculate the adiabatic channel potentials by diagonalizing the Li-CaH Hamiltonian as a function of the atom-molecule separation. The resulting adiabatic channel potentials are used to calculate both the classical and quantum capture probabilities as a function of collision energy, as well as the temperature dependencies of the partial and total reaction rates. The calculated reaction rate agrees well with the measured value at 1 K (V Singh et al 2012 Phys. Rev. Lett. 108 203201), suggesting that the title reaction proceeds without an activation barrier. The calculated classical adiabatic capture rate agrees well with the quantum result in the multiple-partial-wave regime of relevance to the experiment. Significant differences are found only in the ultracold limit (T\\lt 1 mK), demonstrating that adiabatic capture theories can predict the reaction rates with nearly quantitative accuracy in the multiple-partial-wave regime.

  10. Shortcuts to adiabaticity in a time-dependent box

    PubMed Central

    Campo, A. del; Boshier, M. G.

    2012-01-01

    A method is proposed to drive an ultrafast non-adiabatic dynamics of an ultracold gas trapped in a time-dependent box potential. The resulting state is free from spurious excitations associated with the breakdown of adiabaticity, and preserves the quantum correlations of the initial state up to a scaling factor. The process relies on the existence of an adiabatic invariant and the inversion of the dynamical self-similar scaling law dictated by it. Its physical implementation generally requires the use of an auxiliary expulsive potential. The method is extended to a broad family of interacting many-body systems. As illustrative examples we consider the ultrafast expansion of a Tonks-Girardeau gas and of Bose-Einstein condensates in different dimensions, where the method exhibits an excellent robustness against different regimes of interactions and the features of an experimentally realizable box potential. PMID:22970340

  11. Applications of chirped Raman adiabatic rapid passage to atom interferometry

    NASA Astrophysics Data System (ADS)

    Kotru, Krish; Butts, David L.; Kinast, Joseph M.; Johnson, David M. S.; Radojevic, Antonije M.; Timmons, Brian P.; Stoner, Richard E.

    2012-02-01

    We present robust atom optics, based on chirped Raman adiabatic rapid passage (ARP), in the context of atom interferometry. Such ARP light pulses drive coherent population transfer between two hyperfine ground states by sweeping the frequency difference of two fixed-intensity optical fields with large single photon detunings. Since adiabatic transfer is less sensitive to atom temperature and non-uniform Raman beam intensity than standard Raman pulses, this approach should improve the stability of atom interferometers operating in dynamic environments. In such applications, chirped Raman ARP may also provide advantages over the previously demonstrated stimulated Raman adiabatic passage (STIRAP) technique, which requires precise modulation of beam intensity and zeroing of the single photon detuning. We demonstrate a clock interferometer with chirped Raman ARP pulses, and compare its stability to that of a conventional Raman pulse interferometer. We also discuss potential improvements to inertially sensitive atom interferometers. Copyright 2011 by The Charles Stark Draper Laboratory, Inc. All rights reserved.

  12. Acoustic startle and prepulse inhibition predict smoking lapse in posttraumatic stress disorder.

    PubMed

    Vrana, Scott R; Calhoun, Patrick S; Dennis, Michelle F; Kirby, Angela C; Beckham, Jean C

    2015-10-01

    Most smokers who attempt to quit lapse within the first week and are ultimately unsuccessful in their quit attempt. Nicotine withdrawal exacerbates cognitive and attentional problems and may be one factor in smoking relapse. The startle reflex response and prepulse inhibition (PPI) of the response are sensitive to arousal and early attentional dysregulation. The current study examined whether startle response and PPI are related to early smoking lapse, and if this differs in people with and without posttraumatic stress disorder (PTSD). Participants with (N = 34) and without (N = 57) PTSD completed a startle reflex and PPI assessment during (1) ad lib smoking (2) on the first day of abstinence during a quit attempt. Most (88%) participants lapsed within the first week of the quit attempt. PTSD status predicted shorter time to lapse. Larger startle magnitude and greater PPI predicted a longer duration before smoking lapse. When diagnostic groups were examined separately, greater PPI predicted a longer successful quit attempt only in participants with a PTSD diagnosis. The startle reflex response and PPI may provide an objective, neurophysiological evaluation of regulation of arousal and early attentional processes by nicotine, which are important factors in smoking cessation success.

  13. THE ROLE OF NEGATIVE AFFECT IN RISK FOR EARLY LAPSE AMONG LOW DISTRESS TOLERANCE SMOKERS

    PubMed Central

    Abrantes, Ana M.; Strong, David R.; Lejuez, Carl W.; Kahler, Christopher W.; Carpenter, Linda L.; Price, Lawrence H.; Niaura, Raymond; Brown, Richard A.

    2008-01-01

    Individual differences in the ability to tolerate negative affect due to psychological and/or physical discomfort (e.g., distress tolerance) are emerging as an important predictor of smoking cessation outcomes. The purpose of this study was to build on existing evidence by exploring the relationship between levels of distress tolerance (DT) and negative affect on quit date in relation to risk for early lapse. Eighty-one smokers (48% female; M age = 42.6 years) who completed laboratory-based, behavioral distress tolerance tasks prior to an unaided quit attempt were categorized into low, average, and high persistence on the tasks. Low persistence smokers were significantly more likely to lapse on the assigned quit day. Among smokers able to achieve abstinence on quit day, low persistence smokers demonstrated higher levels of negative affect and urges compared to high persistence smokers. Further, negative affect-related risk for early lapse was strongest among those with low persistence. These findings suggest that smokers low in distress tolerance may be particularly vulnerable to very early lapse to smoking and that increases in negative affect may contribute to the risk for early lapse in this high-risk group of smokers. PMID:18684569

  14. Developing human laboratory models of smoking lapse behavior for medication screening.

    PubMed

    McKee, Sherry A

    2009-01-01

    Use of human laboratory analogues of smoking behavior can provide an efficient, cost-effective mechanistic evaluation of a medication signal on smoking behavior, with the result of facilitating translational work in medications development. Although a number of human laboratory models exist to investigate various aspects of smoking behavior and nicotine dependence phenomena, none have yet modeled smoking lapse behavior. The first instance of smoking during a quit attempt (i.e. smoking lapse) is highly predictive of relapse and represents an important target for medications development. Focusing on an abstinence outcome is critical for medication screening as the US Food and Drug Administration approval for cessation medications is contingent on demonstrating effects on smoking abstinence. This paper outlines a three-stage process for the development of a smoking lapse model for the purpose of medication screening. The smoking lapse paradigm models two critical features of lapse behavior: the ability to resist the first cigarette and subsequent ad libitum smoking. Within the context of the model, smokers are first exposed to known precipitants of smoking relapse (e.g. nicotine deprivation, alcohol, stress), and then presented their preferred brand of cigarettes. Their ability to resist smoking is then modeled and once smokers 'give in' and decide to smoke, they participate in a tobacco self-administration session. Ongoing and completed work developing and validating these models for the purpose of medication screening is discussed.

  15. Adiabatic Pseudospectral Technique: Applications to Four Atom Molecules

    NASA Astrophysics Data System (ADS)

    Antikainen, Jyrki Tapio

    1995-01-01

    After the introduction, in chapter 2 we review some of the well established techniques used to solve the Schrodinger equation. The following methods are discussed: the Finite Basis Representation, the Discrete Variable Representation, the Basic Light basis set truncation, and the Lanczos tridiagonalization. After reviewing the previous techniques we present the main features of our Adiabatic Pseudospectral (APS) technique. The Adiabatic Pseudospectral technique is a synthesis of several powerful computational methods such as the sequential adiabatic basis set reduction, the iterative Lanczos diagonalization, the collocation techniques, and a careful implementation of the matrix -vector product for the Hamiltonian in the reduced adiabatic representation. In chapter 3 we use our adiabatic pseudospectral method (APS) to calculate energy levels of the H _2O_2 molecule up to 5000 cm ^{-1}. Reasonably high accuracy (a few wavenumbers) is achieved for a fully six dimensional calculation in a few hours of CPU time on an IBM 580 workstation. These results are a great improvement over previous calculations on the same system which required 50-100 times more computational effort for a similar level of accuracy. The method presented here is both general and robust. It will allow for routine studies of six dimensional potential surfaces and the associated spectroscopy, while making calculations on still larger systems feasible. In chapter 4 the adiabatic pseudospectral method is used to study the high energy vibrational levels of the H_2C_2 molecule. We calculate stimulated emission pumping spectra initialized by the excited electronic state vibrational trans-bent state ~ A_sp{u}{1 }3_{nu}_3 . The calculations show that with the APS-method we can easily investigate energy regions in the excess of 15,000 cm^{-1}; these high energy regions have been previously unattainable by computational techniques.

  16. Spatial adiabatic passage: a review of recent progress

    NASA Astrophysics Data System (ADS)

    Menchon-Enrich, R.; Benseny, A.; Ahufinger, V.; Greentree, A. D.; Busch, Th; Mompart, J.

    2016-07-01

    Adiabatic techniques are known to allow for engineering quantum states with high fidelity. This requirement is currently of large interest, as applications in quantum information require the preparation and manipulation of quantum states with minimal errors. Here we review recent progress on developing techniques for the preparation of spatial states through adiabatic passage, particularly focusing on three state systems. These techniques can be applied to matter waves in external potentials, such as cold atoms or electrons, and to classical waves in waveguides, such as light or sound.

  17. Quantum dynamics by the constrained adiabatic trajectory method

    SciTech Connect

    Leclerc, A.; Jolicard, G.; Guerin, S.; Killingbeck, J. P.

    2011-03-15

    We develop the constrained adiabatic trajectory method (CATM), which allows one to solve the time-dependent Schroedinger equation constraining the dynamics to a single Floquet eigenstate, as if it were adiabatic. This constrained Floquet state (CFS) is determined from the Hamiltonian modified by an artificial time-dependent absorbing potential whose forms are derived according to the initial conditions. The main advantage of this technique for practical implementation is that the CFS is easy to determine even for large systems since its corresponding eigenvalue is well isolated from the others through its imaginary part. The properties and limitations of the CATM are explored through simple examples.

  18. Adiabatic regularisation of power spectra in k-inflation

    SciTech Connect

    Alinea, Allan L.; Kubota, Takahiro; Nakanishi, Yukari; Naylor, Wade E-mail: kubota@celas.osaka-u.ac.jp E-mail: naylor@phys.sci.osaka-u.ac.jp

    2015-06-01

    We look at the question posed by Parker et al. about the effect of UV regularisation on the power spectrum for inflation. Focusing on the slow-roll k-inflation, we show that up to second order in the Hubble and sound flow parameters, the adiabatic regularisation of such model leads to no difference in the power spectrum apart from certain cases that violate near scale-invariant power spectra. Furthermore, extending to non-minimal k-inflation, we establish the equivalence of the subtraction terms in the adiabatic regularisation of the power spectrum in Jordan and Einstein frames.

  19. Dynamics with the effective adiabatic theory: The Bloch equations

    NASA Astrophysics Data System (ADS)

    Carmeli, Benny; Chandler, David

    1988-07-01

    This paper extends our earlier work on the effective adiabatic theory [J. Chem. Phys. 82, 3400 (1985)] to study relaxation of a two-level system coupled to a Gaussian dissipative bath—the spin-boson problem. Bloch equations are derived which, under the limited circumstances described herein, treat the role of bath fluctuations omitted in the equilibrium effective adiabatic reference system. Applications to the Lorentzian dissipative bath show that the theory agrees closely with numerical simulation results. Application to an Ohmic bath shows that the theory is in agreement with currently accepted results concerned with the problem of macroscopic quantum coherence.

  20. Adiabatic State Conversion and Pulse Transmission in Optomechanical Systems

    NASA Astrophysics Data System (ADS)

    Tian, Lin

    2012-04-01

    Optomechanical systems with strong coupling can be a powerful medium for quantum state engineering of the cavity modes. Here, we show that quantum state conversion between cavity modes of distinctively different wavelengths can be realized with high fidelity by adiabatically varying the effective optomechanical couplings. The conversion fidelity for Gaussian states is derived by solving the Langevin equation in the adiabatic limit. Meanwhile, we also show that traveling photon pulses can be transmitted between different input and output channels with high fidelity and the output pulse can be engineered via the optomechanical couplings.

  1. Gravitational Chern-Simons and the adiabatic limit

    SciTech Connect

    McLellan, Brendan

    2010-12-15

    We compute the gravitational Chern-Simons term explicitly for an adiabatic family of metrics using standard methods in general relativity. We use the fact that our base three-manifold is a quasiregular K-contact manifold heavily in this computation. Our key observation is that this geometric assumption corresponds exactly to a Kaluza-Klein Ansatz for the metric tensor on our three-manifold, which allows us to translate our problem into the language of general relativity. Similar computations have been performed by Guralnik et al.[Ann. Phys. 308, 222 (2008)], although not in the adiabatic context.

  2. Statistical mechanics of Roskilde liquids: Configurational adiabats, specific heat contours, and density dependence of the scaling exponent

    SciTech Connect

    Bailey, Nicholas P.; Bøhling, Lasse; Veldhorst, Arno A.; Schrøder, Thomas B.; Dyre, Jeppe C.

    2013-11-14

    We derive exact results for the rate of change of thermodynamic quantities, in particular, the configurational specific heat at constant volume, C{sub V}, along configurational adiabats (curves of constant excess entropy S{sub ex}). Such curves are designated isomorphs for so-called Roskilde liquids, in view of the invariance of various structural and dynamical quantities along them. The slope of the isomorphs in a double logarithmic representation of the density-temperature phase diagram, γ, can be interpreted as one third of an effective inverse power-law potential exponent. We show that in liquids where γ increases (decreases) with density, the contours of C{sub V} have smaller (larger) slope than configurational adiabats. We clarify also the connection between γ and the pair potential. A fluctuation formula for the slope of the C{sub V}-contours is derived. The theoretical results are supported with data from computer simulations of two systems, the Lennard-Jones fluid, and the Girifalco fluid. The sign of dγ/dρ is thus a third key parameter in characterizing Roskilde liquids, after γ and the virial-potential energy correlation coefficient R. To go beyond isomorph theory we compare invariance of a dynamical quantity, the self-diffusion coefficient, along adiabats and C{sub V}-contours, finding it more invariant along adiabats.

  3. Using Intensive Longitudinal Data Collected via Mobile Phone to Detect Imminent Lapse in Smokers Undergoing a Scheduled Quit Attempt

    PubMed Central

    Ma, Ping; Kendzor, Darla E; Frank, Summer G; Wetter, David W; Vidrine, Damon J

    2016-01-01

    Background Mobile phone‒based real-time ecological momentary assessments (EMAs) have been used to record health risk behaviors, and antecedents to those behaviors, as they occur in near real time. Objective The objective of this study was to determine if intensive longitudinal data, collected via mobile phone, could be used to identify imminent risk for smoking lapse among socioeconomically disadvantaged smokers seeking smoking cessation treatment. Methods Participants were recruited into a randomized controlled smoking cessation trial at an urban safety-net hospital tobacco cessation clinic. All participants completed in-person EMAs on mobile phones provided by the study. The presence of six commonly cited lapse risk variables (ie, urge to smoke, stress, recent alcohol consumption, interaction with someone smoking, cessation motivation, and cigarette availability) collected during 2152 prompted or self-initiated postcessation EMAs was examined to determine whether the number of lapse risk factors was greater when lapse was imminent (ie, within 4 hours) than when lapse was not imminent. Various strategies were used to weight variables in efforts to improve the predictive utility of the lapse risk estimator. Results Participants (N=92) were mostly female (52/92, 57%), minority (65/92, 71%), 51.9 (SD 7.4) years old, and smoked 18.0 (SD 8.5) cigarettes per day. EMA data indicated significantly higher urges (P=.01), stress (P=.002), alcohol consumption (P<.001), interaction with someone smoking (P<.001), and lower cessation motivation (P=.03) within 4 hours of the first lapse compared with EMAs collected when lapse was not imminent. Further, the total number of lapse risk factors present within 4 hours of lapse (mean 2.43, SD 1.37) was significantly higher than the number of lapse risk factors present during periods when lapse was not imminent (mean 1.35, SD 1.04), P<.001. Overall, 62% (32/52) of all participants who lapsed completed at least one EMA wherein they

  4. Physical activity adoption to adherence, lapse, and dropout: a self-determination theory perspective.

    PubMed

    Kinnafick, Florence-Emilie; Thøgersen-Ntoumani, Cecilie; Duda, Joan L

    2014-05-01

    Grounded in Self-Determination Theory, we aimed to explore and identify key motivational processes involved in the transition from a physically inactive to an active lifestyle, and the processes involved in lapse and dropout behavior within a walking program. We implemented a qualitative, longitudinal case study method, using semistructured interviews and theoretical thematic analyses. Fifteen women were interviewed over 10 months and three profiles were generated: (a) nonadherence, (b) lapse/readoption of physical activity, and (c) adherence. Internalization of walking behavior was key to adherence. Satisfaction of the needs for competence and relatedness were central for participation during exercise at the adoption stages, and autonomy was particularly pertinent in facilitating adherence. Those who lapsed and restarted physical activity experienced feelings of autonomy at the point of readoption. Sources of support were driving forces in the adoption and adherence phases.

  5. Large-Area Atom Interferometry with Frequency-Swept Raman Adiabatic Passage.

    PubMed

    Kotru, Krish; Butts, David L; Kinast, Joseph M; Stoner, Richard E

    2015-09-04

    We demonstrate light-pulse atom interferometry with large-momentum-transfer atom optics based on stimulated Raman transitions and frequency-swept adiabatic rapid passage. Our atom optics have produced momentum splittings of up to 30 photon recoil momenta in an acceleration-sensitive interferometer for laser cooled atoms. We experimentally verify the enhancement of phase shift per unit acceleration and characterize interferometer contrast loss. By forgoing evaporative cooling and velocity selection, this method lowers the atom shot-noise-limited measurement uncertainty and enables large-area atom interferometry at higher data rates.

  6. A prospective examination of distress tolerance and early smoking lapse in adult self-quitters

    PubMed Central

    Lejuez, C. W.; Strong, David R.; Kahler, Christopher W.; Zvolensky, Michael J.; Carpenter, Linda L.; Niaura, Raymond; Price, Lawrence H.

    2009-01-01

    Introduction: A significant percentage of smokers attempting cessation lapse to smoking within a matter of days, and current models of relapse devote insufficient attention to such early smoking lapse. Studies attempting to relate severity of nicotine withdrawal symptoms to short-term smoking cessation outcomes have yielded equivocal results. How one reacts to the discomfort of nicotine withdrawal and quitting smoking (i.e., distress tolerance) may be a more promising avenue of investigation with important treatment implications. Methods: The present investigation examined distress tolerance and early smoking lapse using a prospective design. Participants were 81 adult daily smokers recruited through newspaper advertisements targeted at smokers planning to quit smoking without assistance (i.e., no pharmacotherapy or psychosocial treatment; 42 males and 39 females; mean age = 42.6 years, SD = 12.20). Results: As hypothesized, both greater breath-holding duration and carbon dioxide–enriched air persistence were associated with a significantly lower risk of smoking lapse following an unaided quit attempt. These effects were above and beyond the risk associated with levels of nicotine dependence, education, and history of major depressive disorder, suggesting that distress tolerance and task persistence may operate independently of risk factors such as nicotine dependence and depressive history. In contrast to expectation, persistence on the Paced Auditory Serial Addition Test (a psychological challenge task) was not a significant predictor of earlier smoking lapse. Discussion: These results are discussed in relation to refining theoretical models of the role of distress tolerance in early smoking lapse and the utility of such models in the development of specialized treatment approaches for smoking cessation. PMID:19372572

  7. Source Repeatability of Time-Lapse Offset VSP Surveys for Monitoring CO2 Injection

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Huang, L.; Rutledge, J. T.; Denli, H.; Zhang, H.; McPherson, B. J.; Grigg, R.

    2009-12-01

    Time-lapse vertical seismic profiling (VSP) surveys have the potential to remotely track the migration of injected CO2 within a geologic formation. To accurately detect small changes due to CO2 injection, the sources of time-lapse VSP surveys must be located exactly at the same positions. However, in practice, the source locations can vary from one survey to another survey. Our numerical simulations demonstrate that a variation of a few meters in the VSP source locations can result in significant changes in time-lapse seismograms. To address the source repeatability issue, we apply double-difference tomography to downgoing waves of time-lapse offset VSP data to invert for the source locations and the velocity structures simultaneously. In collaboration with Resolute Natural Resources, Navajo National Oil and Gas Company, and the Southwest Regional Partnership on Carbon Sequestration under the support of the U.S. Department of Energy’s National Energy Technology Laboratory, one baseline and two repeat offset VSP datasets were acquired in 2007-2009 for monitoring CO2 injection at the Aneth oil field in Utah. A cemented geophone string was used to acquire the data for one zero-offset and seven offset source locations. During the data acquisition, there was some uncertainty in the repeatability of the source locations relative to the baseline survey. Our double-difference tomography results of the Aneth time-lapse VSP data show that the source locations for different surveys are separated up to a few meters. Accounting for these source location variations during VSP data analysis will improve reliability of time-lapse VSP monitoring.

  8. Do small lapses predict relapse to smoking behavior under bupropion treatment?

    PubMed

    Wileyto, Paul; Patterson, Freda; Niaura, Raymond; Epstein, Leonard; Brown, Richard; Audrain-McGovern, Janet; Hawk, Larry; Lerman, Caryn; Patterson, Freda

    2004-04-01

    Although bupropion is known to be an effective aid to smoking cessation, little is known about its mode of action. In the present study we tested the hypothesis that bupropion reduces the likelihood that a smoking lapse, or slip, leads to a subsequent relapse. This hypothesis was tested in the context of a clinical trial of bupropion as a smoking cessation aid, using Cox regression and representing lapse history as a discrete time-varying covariate. Bupropion treatment reduced the probability of relapse during the treatment phase (hazard ratio, or HR=.421, p< or =.000) but not during the follow-up phase (end of treatment to 6 months, HR=.896, p< or=.67). As anticipated, having small lapses during treatment contributed to or predicted subsequent relapse, both during treatment (HR=2.897, p< or =.000) and during follow-up (HR=2.320, p< or=.008). Although an interaction was found between drug treatment and lapse history in predicting subsequent failure during the treatment phase, the finding suggested that drug slightly increased the effect of lapse on eventual failure during treatment (HR=1.706, plapse in predicting relapse.

  9. Advances in interpretation of subsurface processes with time-lapse electrical imaging

    SciTech Connect

    Singha, Kamini; Day-Lewis, Frederick D.; Johnson, Timothy C.; Slater, Lee D.

    2015-03-15

    Electrical geophysical methods, including electrical resistivity, time-domain induced polarization, and complex resistivity, have become commonly used to image the near subsurface. Here, we outline their utility for time-lapse imaging of hydrological, geochemical, and biogeochemical processes, focusing on new instrumentation, processing, and analysis techniques specific to monitoring. We review data collection procedures, parameters measured, and petrophysical relationships and then outline the state of the science with respect to inversion methodologies, including coupled inversion. We conclude by highlighting recent research focused on innovative applications of time-lapse imaging in hydrology, biology, ecology, and geochemistry, among other areas of interest.

  10. Adiabatic frequency conversion with a sign flip in the coupling

    NASA Astrophysics Data System (ADS)

    Hristova, H. S.; Rangelov, A. A.; Montemezzani, G.; Vitanov, N. V.

    2016-09-01

    Adiabatic frequency conversion is a method recently developed in nonlinear optics [H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, Phys. Rev. A 78, 063821 (2008), 10.1103/PhysRevA.78.063821], using ideas from the technique of rapid adiabatic passage (RAP) via a level crossing in quantum physics. In this method, the coupling coefficients are constant and the phase mismatch is chirped adiabatically. In this work, we propose another method for adiabatic frequency conversion, in which the phase mismatch is constant and the coupling is a pulse-shaped function with a sign flip (i.e., a phase step of π ) at its maximum. Compared to the RAP method, our technique has comparable efficiency but it is simpler to implement for it only needs two bulk crystals with opposite χ(2 ) nonlinearity. Moreover, because our technique requires constant nonzero frequency mismatch and has zero conversion efficiency on exact frequency matching, it can be used as a frequency filter.

  11. Failure of geometric electromagnetism in the adiabatic vector Kepler problem

    SciTech Connect

    Anglin, J.R.; Schmiedmayer, J.

    2004-02-01

    The magnetic moment of a particle orbiting a straight current-carrying wire may precess rapidly enough in the wire's magnetic field to justify an adiabatic approximation, eliminating the rapid time dependence of the magnetic moment and leaving only the particle position as a slow degree of freedom. To zeroth order in the adiabatic expansion, the orbits of the particle in the plane perpendicular to the wire are Keplerian ellipses. Higher-order postadiabatic corrections make the orbits precess, but recent analysis of this 'vector Kepler problem' has shown that the effective Hamiltonian incorporating a postadiabatic scalar potential ('geometric electromagnetism') fails to predict the precession correctly, while a heuristic alternative succeeds. In this paper we resolve the apparent failure of the postadiabatic approximation, by pointing out that the correct second-order analysis produces a third Hamiltonian, in which geometric electromagnetism is supplemented by a tensor potential. The heuristic Hamiltonian of Schmiedmayer and Scrinzi is then shown to be a canonical transformation of the correct adiabatic Hamiltonian, to second order. The transformation has the important advantage of removing a 1/r{sup 3} singularity which is an artifact of the adiabatic approximation.

  12. Fast Quasi-Adiabatic Gas Cooling: An Experiment Revisited

    ERIC Educational Resources Information Center

    Oss, S.; Gratton, L. M.; Calza, G.; Lopez-Arias, T.

    2012-01-01

    The well-known experiment of the rapid expansion and cooling of the air contained in a bottle is performed with a rapidly responsive, yet very cheap thermometer. The adiabatic, low temperature limit is approached quite closely and measured with our apparatus. A straightforward theoretical model for this process is also presented and discussed.…

  13. Adiabatic compression and radiative compression of magnetic fields

    SciTech Connect

    Woods, C.H.

    1980-02-12

    Flux is conserved during mechanical compression of magnetic fields for both nonrelativistic and relativistic compressors. However, the relativistic compressor generates radiation, which can carry up to twice the energy content of the magnetic field compressed adiabatically. The radiation may be either confined or allowed to escape.

  14. Digitized adiabatic quantum computing with a superconducting circuit.

    PubMed

    Barends, R; Shabani, A; Lamata, L; Kelly, J; Mezzacapo, A; Las Heras, U; Babbush, R; Fowler, A G; Campbell, B; Chen, Yu; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J Y; Neeley, M; Neill, C; O'Malley, P J J; Quintana, C; Roushan, P; Sank, D; Vainsencher, A; Wenner, J; White, T C; Solano, E; Neven, H; Martinis, John M

    2016-06-09

    Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.

  15. A Kinetic Study of the Adiabatic Polymerization of Acrylamide.

    ERIC Educational Resources Information Center

    Thomson, R. A. M.

    1986-01-01

    Discusses theory, procedures, and results for an experiment which demonstrates the application of basic physics to chemical problems. The experiment involves the adiabatic process, in which polymerization carried out in a vacuum flask is compared to the theoretical prediction of the model with the temperature-time curve obtained in practice. (JN)

  16. Reversibility and energy dissipation in adiabatic superconductor logic.

    PubMed

    Takeuchi, Naoki; Yamanashi, Yuki; Yoshikawa, Nobuyuki

    2017-12-01

    Reversible computing is considered to be a key technology to achieve an extremely high energy efficiency in future computers. In this study, we investigated the relationship between reversibility and energy dissipation in adiabatic superconductor logic. We analyzed the evolution of phase differences of Josephson junctions in the reversible quantum-flux-parametron (RQFP) gate and confirmed that the phase differences can change time reversibly, which indicates that the RQFP gate is physically, as well as logically, reversible. We calculated energy dissipation required for the RQFP gate to perform a logic operation and numerically demonstrated that the energy dissipation can fall below the thermal limit, or the Landauer bound, by lowering operation frequencies. We also investigated the 1-bit-erasure gate as a logically irreversible gate and the quasi-RQFP gate as a physically irreversible gate. We calculated the energy dissipation of these irreversible gates and showed that the energy dissipation of these gate is dominated by non-adiabatic state changes, which are induced by unwanted interactions between gates due to logical or physical irreversibility. Our results show that, in reversible computing using adiabatic superconductor logic, logical and physical reversibility are required to achieve energy dissipation smaller than the Landauer bound without non-adiabatic processes caused by gate interactions.

  17. Adiabatic State Conversion and Photon Transmission in Optomechanical Systems

    NASA Astrophysics Data System (ADS)

    Tian, Lin

    2012-02-01

    Light-matter interaction in optomechanical systems in the strong coupling regime can be explored as a tool to transfer cavity states and to transmit photon pulses. Here, we show that quantum state conversion between cavity modes with different wavelengths can be realized with high fidelity by adiabatically varying the effective optomechanical couplings. During this adiabatic process, the quantum state is preserved in the dark mode of the cavities, similar to the adiabatic transfer schemes in EIT systems. The fidelity for gaussian states is derived by solving the Langevin equation in the adiabatic limit and shows negligible dependence on the mechanical noise. We also show that an input pulse can be transmitted to an output channel with a different wavelength via the effective optomechanical couplings. The condition for optimal transmission is derived in the frequency domain. Input pulses with a narrow spectral width can be transmitted with high fidelity. For input pulses with a large spectral width, the shape of the output pulses can be manipulated by applying time-dependent effective couplings. (1) L. Tian, arXiv:1111.2119. (2) L. Tian and H. L. Wang, Phys. Rev. A 82, 053806 (2010).

  18. When an Adiabatic Irreversible Expansion or Compression Becomes Reversible

    ERIC Educational Resources Information Center

    Anacleto, Joaquim; Ferreira, J. M.; Soares, A. A.

    2009-01-01

    This paper aims to contribute to a better understanding of the concepts of a "reversible process" and "entropy". For this purpose, an adiabatic irreversible expansion or compression is analysed, by considering that an ideal gas is expanded (compressed), from an initial pressure P[subscript i] to a final pressure P[subscript f], by being placed in…

  19. Dark energy and dark matter from an additional adiabatic fluid

    NASA Astrophysics Data System (ADS)

    Dunsby, Peter K. S.; Luongo, Orlando; Reverberi, Lorenzo

    2016-10-01

    The dark sector is described by an additional barotropic fluid which evolves adiabatically during the Universe's history and whose adiabatic exponent γ is derived from the standard definitions of specific heats. Although in general γ is a function of the redshift, the Hubble parameter and its derivatives, we find that our assumptions lead necessarily to solutions with γ =constant in a Friedmann-Lemaître-Robertson-Walker universe. The adiabatic fluid acts effectively as the sum of two distinct components, one evolving like nonrelativistic matter and the other depending on the value of the adiabatic index. This makes the model particularly interesting as a way of simultaneously explaining the nature of both dark energy and dark matter, at least at the level of the background cosmology. The Λ CDM model is included in this family of theories when γ =0 . We fit our model to supernovae Ia, H (z ) and baryonic acoustic oscillation data, discussing the model selection criteria. The implications for the early Universe and the growth of small perturbations in this model are also discussed.

  20. Non-adiabatic transition probability dependence on conical intersection topography

    NASA Astrophysics Data System (ADS)

    Malhado, João Pedro; Hynes, James T.

    2016-11-01

    We derive a closed form analytical expression for the non-adiabatic transition probability for a distribution of trajectories passing through a generic conical intersection (CI), based on the Landau-Zener equation for the non-adiabatic transition probability for a single straight-line trajectory in the CI's vicinity. We investigate the non-adiabatic transition probability's variation with topographical features and find, for the same crossing velocity, no intrinsic difference in efficiency at promoting non-adiabatic decay between peaked and sloped CIs, a result in contrast to the commonly held view. Any increased efficiency of peaked over sloped CIs is thus due to dynamical effects rather than to any increased transition probability of topographical origin. It is also shown that the transition probability depends in general on the direction of approach to the CI, and that the coordinates' reduced mass can affect the transition probability via its influence on the CI topography in mass-scaled coordinates. The resulting predictions compare well with surface hopping simulation results.

  1. Non-adiabatic transition probability dependence on conical intersection topography.

    PubMed

    Malhado, João Pedro; Hynes, James T

    2016-11-21

    We derive a closed form analytical expression for the non-adiabatic transition probability for a distribution of trajectories passing through a generic conical intersection (CI), based on the Landau-Zener equation for the non-adiabatic transition probability for a single straight-line trajectory in the CI's vicinity. We investigate the non-adiabatic transition probability's variation with topographical features and find, for the same crossing velocity, no intrinsic difference in efficiency at promoting non-adiabatic decay between peaked and sloped CIs, a result in contrast to the commonly held view. Any increased efficiency of peaked over sloped CIs is thus due to dynamical effects rather than to any increased transition probability of topographical origin. It is also shown that the transition probability depends in general on the direction of approach to the CI, and that the coordinates' reduced mass can affect the transition probability via its influence on the CI topography in mass-scaled coordinates. The resulting predictions compare well with surface hopping simulation results.

  2. Digitized adiabatic quantum computing with a superconducting circuit

    NASA Astrophysics Data System (ADS)

    Barends, R.; Shabani, A.; Lamata, L.; Kelly, J.; Mezzacapo, A.; Heras, U. Las; Babbush, R.; Fowler, A. G.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Lucero, E.; Megrant, A.; Mutus, J. Y.; Neeley, M.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Solano, E.; Neven, H.; Martinis, John M.

    2016-06-01

    Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.

  3. 1H-2H cross-polarization NMR in fast spinning solids by adiabatic sweeps

    NASA Astrophysics Data System (ADS)

    Wi, Sungsool; Schurko, Robert; Frydman, Lucio

    2017-03-01

    Cross-polarization (CP) experiments employing frequency-swept radiofrequency (rf) pulses have been successfully used in static spin systems for obtaining broadband signal enhancements. These experiments have been recently extended to heteronuclear I, S = spin-1/2 nuclides under magic-angle spinning (MAS), by applying adiabatic inversion pulses along the S (low-γ) channel while simultaneously applying a conventional spin-locking pulse on the I-channel (1H). This study explores an extension of this adiabatic frequency sweep concept to quadrupolar nuclei, focusing on CP from 1H (I = 1/2) to 2H spins (S = 1) undergoing fast MAS (νr = 60 kHz). A number of new features emerge, including zero- and double-quantum polarization transfer phenomena that depend on the frequency offsets of the swept pulses, the rf pulse powers, and the MAS spinning rate. An additional mechanism found operational in the 1H-2H CP case that was absent in the spin-1/2 counterpart, concerns the onset of a pseudo-static zero-quantum CP mode, driven by a quadrupole-modulated rf/dipolar recoupling term arising under the action of MAS. The best CP conditions found at these fast spinning rates correspond to double-quantum transfers, involving weak 2H rf field strengths. At these easily attainable (ca. 10 kHz) rf field conditions, adiabatic level-crossings among the {|1 ⟩ ,|0 ⟩ ,|-1 ⟩ } mS energy levels, which are known to complicate the CP MAS of quadrupolar nuclei, are avoided. Moreover, the CP line shapes generated in this manner are very close to the ideal 2H MAS spectral line shapes, facilitating the extraction of quadrupolar coupling parameters. All these features were corroborated with experiments on model compounds and justified using numerical simulations and average Hamiltonian theory models. Potential applications of these new phenomena, as well as extensions to higher spins S, are briefly discussed.

  4. A dynamical approach to non-adiabatic electron transfers at the bio-inorganic interface.

    PubMed

    Zanetti-Polzi, Laura; Corni, Stefano

    2016-04-21

    A methodology is proposed to investigate electron transfer reactions between redox-active biomolecular systems (e.g. a protein) and inorganic surfaces. The whole system is modelled at the atomistic level using classical molecular dynamics - making an extensive sampling of the system's configurations possible - and the energies associated with the redox-active complex reduction are calculated using a hybrid quantum/classical approach along the molecular dynamics trajectory. The non-adiabaticity is introduced a posteriori using a Monte Carlo approach based on the Landau-Zener theory extended to treat a metal surface. This approach thus allows us to investigate the role of the energy fluctuations, determined by the dynamical evolution of the system, as well as the role of non-adiabaticity in affecting the kinetic rate of the electron transfer reaction. Most notably, it allows us to investigate the two contributions separately, hence achieving a detailed picture of the mechanisms that determine the rate. The analysis of the system configurations also allows us to relate the estimated electronic coupling to the structural and dynamic properties of the system. As a test case, the methodology is here applied to study the electron transfer reaction between cytochrome c and a gold surface. The results obtained explain the different electron transfer rates experimentally measured for two different concentrations of proteins on the electrode surface.

  5. MICROSTRUCTURE IN ADIABATIC SHEAR BANDS IN A PEARLITIC ULTRAHIGH CARBON STEEL

    SciTech Connect

    Syn, C K; Lesuer, D R; Sherby, O D

    2003-09-22

    Adiabatic shear bands, obtained in compression deformation at a strain rate of 4000 s{sup -1}, in a pearlitic 1.3%C steel, were investigated. Shear-bands initiated at 55% compression deformation with the width of the band equal to 14 {micro}m. Nano-indentor hardness of the shear band was 11.5 GPa in contrast to the initial matrix hardness of 3.5 GPa. The high strength of the shear band is attributed to its creation from two sequential events. First, large strain deformation, at a high strain rate, accompanied by adiabatic heating, led to phase transformation to austenite. Second, retransformation upon rapid cooling occurred by a divorced eutectoid transformation. The result is a predicted microstructure consisting of nano-size carbide particles within a matrix of fine ferrite grains. It is proposed that the divorced eutectoid transformation occurs in iron-carbon steels during high rate deformation in ball milling, ball drop tests and in commercial wire drawing.

  6. Modeling of time-lapse seismic reflection data from CO2 sequestration at West Pearl Queen Field

    NASA Astrophysics Data System (ADS)

    Bartel, L. C.; Haney, M. M.; Aldridge, D. F.; Symons, N. P.; Elbring, G. J.

    2006-12-01

    Sequestration of CO2 in depleted oil reservoirs, saline aquifers, or unminable coal sequences may prove to be an economical and environmentally safe means for long-term removal of carbon from the atmosphere. Requirements for storage of CO2 in subsurface geologic repositories (e.g., less than 0.1% per year leakage) pose significant challenges for geophysical remote sensing techniques. The many issues relevant to successful CO2 sequestration (volume in place, migration, leakage rate) require improved understanding of the advantages and pitfalls of potential monitoring methods. Advanced numerical modeling of time-lapse seismic reflection responses offers a controlled environment for testing hypotheses and exploring alternatives. The U.S. Department of Energy has conducted CO2 sequestration and monitoring tests at West Pearl Queen (WPQ) field in southeastern New Mexico. High-quality 9C/3D seismic reflection data were acquired before and after injection of ~2 kt of CO2 into a depleted sandstone unit at ~4200 ft depth. Images developed from time- lapse seismic data appear to reveal strong reflectivity changes attributed to displacement of brine by CO2. We are pursuing seismic numerical modeling studies with the goal of understanding and assessing the reliability and robustness of the time-lapse reflection responses. A 3D time-domain finite-difference isotropic elastic wave propagation algorithm generates realistic synthetic data. With this capability, we examine how various types of errors and noise in the 4D data degrade the ability to image a deep CO2 plume. Source/receiver sampling, subsurface illumination, correlated geologic heterogeneity, and static shifts are considered. As a result, we are able to make quantitative estimates of the tolerable errors for monitoring CO2 injection at WPQ field. Future plans include incorporating 3D poroelastic wave propagation modeling into the analysis. Sandia National Laboratories is a multiprogram science and engineering facility

  7. Sub-adiabatic perpendicular electron heating across high-Mach number collisionless shocks

    NASA Astrophysics Data System (ADS)

    Sundkvist, D. J.; Mozer, F.

    2012-12-01

    Spacecraft observations of a high Mach number quasi-perpendicular bow shock with high plasma beta have revealed electrons that were sub-adiabatic through the shock ramp because they were less heated than expected from conservation of the first adiabatic invariant. This stands out in contrast to existing theories of electron heating at collisionless shocks in which the electrons are adiabatically heated through compression or more-than-adiabatically heated due to additional effects such as anomalous resistivity induced by microinstabilites.

  8. Lapses in Sustained Attention and Their Relation to Executive Control and Fluid Abilities: An Individual Differences Investigation

    ERIC Educational Resources Information Center

    Unsworth, Nash; Redick, Thomas S.; Lakey, Chad E.; Young, Diana L.

    2010-01-01

    A latent variable analysis was conducted to examine the nature of individual differences in lapses of attention and their relation to executive and fluid abilities. Participants performed a sustained attention task along with multiple measures of executive control and fluid abilities. Lapses of attention were indexed based on the slowest reaction…

  9. Time-Lapse Motion Picture Technique Applied to the Study of Geological Processes.

    PubMed

    Miller, R D; Crandell, D R

    1959-09-25

    Light-weight, battery-operated timers were built and coupled to 16-mm motion-picture cameras having apertures controlled by photoelectric cells. The cameras were placed adjacent to Emmons Glacier on Mount Rainier. The film obtained confirms the view that exterior time-lapse photography can be applied to the study of slow-acting geologic processes.

  10. Knowledge of Ethical Lapses and Other Experiences on Clinical Licensure Examinations.

    ERIC Educational Resources Information Center

    Feil, Philip; Meeske, Jessica; Fortman, Jared

    1999-01-01

    A survey of 429 general dentists attempted to verify anecdotal reports of ethical lapses in clinical dental licensing examinations. It found significant occurrence of not arranging followup care for the patient even though indicated, intentional creation of lesions, premature treatment for the purpose of the examinations, coercing patients into…

  11. Feasibility of monitoring gas hydrate production with time-lapse VSP

    SciTech Connect

    Kowalsky, M.B.; Nakagawa, S.; Moridis, G.J.

    2009-11-01

    In this work we begin to examine the feasibility of using time-lapse seismic methods-specifically the vertical seismic profiling (VSP) method-for monitoring changes in hydrate accumulations that are predicted to occur during production of natural gas.

  12. 37 CFR 1.317 - Lapsed patents; delayed payment of balance of issue fee.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... payment of balance of issue fee. 1.317 Section 1.317 Patents, Trademarks, and Copyrights UNITED STATES... Processing Provisions Allowance and Issue of Patent § 1.317 Lapsed patents; delayed payment of balance of... is required at the time the issue fee is paid, any remaining balance of the issue fee is to be...

  13. 37 CFR 1.317 - Lapsed patents; delayed payment of balance of issue fee.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... payment of balance of issue fee. 1.317 Section 1.317 Patents, Trademarks, and Copyrights UNITED STATES... Processing Provisions Allowance and Issue of Patent § 1.317 Lapsed patents; delayed payment of balance of... is required at the time the issue fee is paid, any remaining balance of the issue fee is to be...

  14. 37 CFR 1.317 - Lapsed patents; delayed payment of balance of issue fee.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... payment of balance of issue fee. 1.317 Section 1.317 Patents, Trademarks, and Copyrights UNITED STATES... Processing Provisions Allowance and Issue of Patent § 1.317 Lapsed patents; delayed payment of balance of... is required at the time the issue fee is paid, any remaining balance of the issue fee is to be...

  15. 37 CFR 1.317 - Lapsed patents; delayed payment of balance of issue fee.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... payment of balance of issue fee. 1.317 Section 1.317 Patents, Trademarks, and Copyrights UNITED STATES... Processing Provisions Allowance and Issue of Patent § 1.317 Lapsed patents; delayed payment of balance of... is required at the time the issue fee is paid, any remaining balance of the issue fee is to be...

  16. 75 FR 68037 - Proposed Information Collection (Application for Reinstatement (Insurance Lapsed More Than 6...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-04

    ... collection of information, including each proposed extension of a currently approved collection, and allow 60... to reinstate a claimant's Government Life Insurance and/or Total Disability Income Provision. DATES...: Application for Reinstatement (Insurance Lapsed More than 6 Months), Government Life Insurance and/or...

  17. Estimating topsoil water content of clay soils with data from time-lapse electrical conductivity surveys

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spatial estimation of soil water content (') at the field, hillslope, or catchment scale is required in numerous applications. Time-lapse electrical resistivity and electrical conductivity surveys were recognized as the useful source of information about both spatial variations in soil water conten...

  18. A Typology of University Ethical Lapses: Types, Levels of Seriousness, and Originating Location

    ERIC Educational Resources Information Center

    Kelley, Patricia C.; Chang, Pepe Lee

    2007-01-01

    Scandals ranging from National Collegiate Athletic Association (NCAA) violations to falsified research results have fueled criticism of America's universities. Sports violations, research manipulation, gender discrimination, and other ethical lapses affect an entire institution as they have a spillover effect on its reputation. The results of…

  19. 3D inversion of time-lapse CSEM data for reservoir monitoring

    NASA Astrophysics Data System (ADS)

    Black, N.; Wilson, G. A.; Zhdanov, M. S.

    2010-12-01

    Effective reservoir monitoring requires time-lapse reservoir information throughout the interwell volume. The ability to understand and control reservoir behavior over the course of production allows for optimization of reservoir performance and production strategies. Good monitoring information makes it possible to improve the timing and location of new drilling (for both production and injection wells), to recognize flow paths, and to map oil that has been bypassed. Recent studies have inferred the feasibility of time-lapse marine controlled-source electromagnetic (CSEM) methods for the monitoring of offshore oil and gas fields. However, quantitative interpretations to ascertain what reservoir information may be recovered have not been performed. The time-lapse CSEM inverse problem can be highly constrained since the geometry of the reservoir is established prior from high resolution seismic surveys, rock and fluid properties are measured from well logs, and multiple history matched production scenarios are contained in dynamic reservoir models. We present a 3D inversion study of synthetic time-lapse CSEM data modeled from dynamic reservoir simulations. We demonstrate that even with few constraints on the model, the hydrocarbon-water front can be recovered from 3D inversion.

  20. 30 CFR 585.530 - What must I do if my financial assurance lapses?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What must I do if my financial assurance lapses? 585.530 Section 585.530 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE... subpart. (b) You must notify BOEM within 3 business days after you learn of any action filed alleging...

  1. 30 CFR 585.530 - What must I do if my financial assurance lapses?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What must I do if my financial assurance lapses? 585.530 Section 585.530 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE... subpart. (b) You must notify BOEM within 3 business days after you learn of any action filed alleging...

  2. 30 CFR 585.530 - What must I do if my financial assurance lapses?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What must I do if my financial assurance lapses? 585.530 Section 585.530 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE... subpart. (b) You must notify BOEM within 3 business days after you learn of any action filed alleging...

  3. Automated time-lapse microscopy and high-resolution tracking of cell migration

    SciTech Connect

    Fotos, Joseph S.; Vivek, Patel P.; Karin, Norm J.; Temburni, Murali; Koh, John T.; Galileo, Deni S.

    2006-08-09

    The study of cell motility is greatly enhanced by using a fully-automated high-throughput time-lapse microscopy system that is capable of collecting and analyzing data (1) from closely-spaced time points (seconds to minutes), (2) over long periods (hours to days), (3) from multiple areas of interest, (4) under several different experimental conditions simultaneously. Time-lapse video images collected under phase contrast and fluorescent illumination were analyzed using parameters of migration velocity, total accumulated distance (path length), and directionality for individual cells or for averaged cell populations. Quantitation of ''scratch'' or ''wound healing'' assays revealed unique motility dynamics of drug-treated and adhesion molecule-transfected cells with high resolution and, thus, is a vast distinct improvement of current methods. Several fluorescent vital labeling methods commonly used for end-point analyses, including GFP expression, were evaluated and most were useful for time-lapse studies under specific conditions. For example, fluorescently-labeled tumor cells were seeded onto cell monolayers expressing ectopic adhesion molecules displayed altered migration velocities compared to tumor cells plated directly onto culture dishes. The techniques described here revealed cell motility behavior not discernable by previously-used methods. We propose that quantitative time-lapse video analysis will foster the creation new cell motility assays, and increase the resolution and accuracy of existing assays.

  4. 2D Time-lapse Seismic Tomography Using An Active Time Constraint (ATC) Approach

    EPA Science Inventory

    We propose a 2D seismic time-lapse inversion approach to image the evolution of seismic velocities over time and space. The forward modeling is based on solving the eikonal equation using a second-order fast marching method. The wave-paths are represented by Fresnel volumes rathe...

  5. First successful pregnancies following embryo selection using Time-lapse technology in Iran: Case report

    PubMed Central

    Faramarzi, Azita; Khalili, Mohammad Ali; Soleimani, Mehrdad

    2015-01-01

    Background: Embryo selection is a vital part of in vitro fertilization (IVF) programs, with morphology-based grading systems having been widely used for decades. Time-lapse imaging combined with embryo morph kinetics may proffer a non-invasive means for improving embryo selection. We report the first ongoing and chemical pregnancies using Time-lapse embryo scope to select best embryos for transfer in Iran. Cases: A case with tubal factor infertility was admitted to IVF program with normozoospermia. After ovarian hyper stimulation, 6 COCs were retrieved and inseminated with 25,000 progressive sperms/ oocyte. Five zygotes were placed individually into the micro wells of equilibrated embryo scope dish for Time-lapse observation, and incubated at 37°C, 5% CO2. On day 3, single embryo transfer (SET) took place based on kinetic parameters of the embryos. Clinical pregnancy was confirmed 7 weeks after SET. The second case with history of previous ICSI failure was admitted with azoospermia. Nine MII oocytes underwent ICSI, and incubated in Time-lapse facilities. The rest of procedures were followed as described for case 1. Chemical pregnancy was confirmed 15 days after SET. Conclusion: This approach opens a way to select best embryo non-invasively for SET; thus, increasing implantation, while reducing multiple pregnancy complications. PMID:26131014

  6. Dynamic Association between Negative Affect and Alcohol Lapses following Alcohol Treatment

    ERIC Educational Resources Information Center

    Witkiewitz, Katie; Villarroel, Nadia Aracelliz

    2009-01-01

    Clinical research has found a strong association between negative affect and returning to alcohol use after a period of abstinence. Yet little is known about the probability of a lapse given a particular level of negative affect or whether there is a reciprocal relationship between negative affect and alcohol use across time. The goal of the…

  7. Relative Effectiveness of Continued, Lapsed, and Delayed Smoking Prevention Intervention in Senior High School Students.

    ERIC Educational Resources Information Center

    Eckhardt, Laura; And Others

    1997-01-01

    Reports findings from the final year of a tobacco use prevention project for junior and senior high school students. After three years of intervention with junior high students, researchers assessed the relative effectiveness of continued, lapsed, and delayed interventions in high school. In grade 11, continued intervention students had the lowest…

  8. Time-lapse motion picture technique applied to the study of geological processes

    USGS Publications Warehouse

    Miller, R.D.; Crandell, D.R.

    1959-01-01

    Light-weight, battery-operated timers were built and coupled to 16-mm motion-picture cameras having apertures controlled by photoelectric cells. The cameras were placed adjacent to Emmons Glacier on Mount Rainier. The film obtained confirms the view that exterior time-lapse photography can be applied to the study of slow-acting geologic processes.

  9. Probabilistic 3-D time-lapse inversion of magnetotelluric data: application to an enhanced geothermal system

    NASA Astrophysics Data System (ADS)

    Rosas-Carbajal, M.; Linde, N.; Peacock, J.; Zyserman, F. I.; Kalscheuer, T.; Thiel, S.

    2015-12-01

    Surface-based monitoring of mass transfer caused by injections and extractions in deep boreholes is crucial to maximize oil, gas and geothermal production. Inductive electromagnetic methods, such as magnetotellurics, are appealing for these applications due to their large penetration depths and sensitivity to changes in fluid conductivity and fracture connectivity. In this work, we propose a 3-D Markov chain Monte Carlo inversion of time-lapse magnetotelluric data to image mass transfer following a saline fluid injection. The inversion estimates the posterior probability density function of the resulting plume, and thereby quantifies model uncertainty. To decrease computation times, we base the parametrization on a reduced Legendre moment decomposition of the plume. A synthetic test shows that our methodology is effective when the electrical resistivity structure prior to the injection is well known. The centre of mass and spread of the plume are well retrieved. We then apply our inversion strategy to an injection experiment in an enhanced geothermal system at Paralana, South Australia, and compare it to a 3-D deterministic time-lapse inversion. The latter retrieves resistivity changes that are more shallow than the actual injection interval, whereas the probabilistic inversion retrieves plumes that are located at the correct depths and oriented in a preferential north-south direction. To explain the time-lapse data, the inversion requires unrealistically large resistivity changes with respect to the base model. We suggest that this is partly explained by unaccounted subsurface heterogeneities in the base model from which time-lapse changes are inferred.

  10. Zero-point energy, tunneling, and vibrational adiabaticity in the Mu + H2 reaction

    SciTech Connect

    Mielke, Steven L.; Garrett, Bruce C.; Fleming, Donald G.; Truhlar, Donald G.

    2015-01-09

    Abstract: Isotopic substitution of muonium for hydrogen provides an unparalleled opportunity to deepen our understanding of quantum mass effects on chemical reactions. A recent topical review [Aldegunde et al., Mol. Phys. 111, 3169 (2013)] of the thermal and vibrationally-stateselected reaction of Mu with H2 raises a number of issues that are addressed here. We show that some earlier quantum mechanical calculations of the Mu + H2 reaction, which are highlighted in this review and which have been used to benchmark approximate methods, are in error by as much as 19% in the low-temperature limit. We demonstrate that an approximate treatment of the Born–Oppenheimer diagonal correction that was used in some recent studies is not valid for treating the vibrationally-state-selected reaction. We also discuss why vibrationally adiabatic potentials that neglect bend zero-point energy are not a useful analytical tool for understanding reaction rates and why vibrationally nonadiabatic transitions cannot be understood by considering tunneling through vibrationally adiabatic potentials. Finally, we present calculations on a hierarchical family of potential energy surfaces to assess the sensitivity of rate constants to the quality of the potential surface.

  11. Overland flow dynamics through visual observation using time-lapse photographs

    NASA Astrophysics Data System (ADS)

    Silasari, Rasmiaditya; Blöschl, Günter

    2016-04-01

    Overland flow process on agricultural land is important to be investigated as it affects the stream discharge and water quality assessment. During rainfall events the formation of overland flow may happen through different processes (i.e. Hortonian or saturation excess overland flow) based on the governing soil hydraulic parameters (i.e. soil infiltration rate, soil water capacity). The dynamics of the soil water state and the processes will affect the surface runoff response which can be analyzed visually by observing the saturation patterns with a camera. Although visual observation was proven useful in laboratory experiments, the technique is not yet assessed for natural rainfall events. The aim of this work is to explore the use of time-lapse photographs of naturally occurring-saturation patterns in understanding the threshold processes of overland flow generation. The image processing produces orthographic projection of the saturation patterns which will be used to assess the dynamics of overland flow formation in relation with soil moisture state and rainfall magnitude. The camera observation was performed at Hydrological Open Air Laboratory (HOAL) catchment at Petzenkirchen, Lower Austria. The catchment covers an area of 66 ha dominated with agricultural land (87%). The mean annual precipitation and mean annual flow at catchment outlet are 750 mm and 4 l/s, respectively. The camera was set to observe the overland flow along a thalweg on an arable field which was drained in 1950s and has advantages of: (1) representing agricultural land as the dominant part of the catchment, (2) adjacent to the stream with clear visibility (no obstructing objects, such as trees), (3) drained area provides extra cases in understanding the response of tile drain outflow to overland flow formation and vice versa, and (4) in the vicinity of TDT soil moisture stations. The camera takes a picture with 1280 x 720 pixels resolution every minute and sends it directly in a PC via fiber

  12. Full waveform inversion of repeating seismic events to estimate time-lapse velocity changes

    NASA Astrophysics Data System (ADS)

    Kamei, R.; Lumley, D.

    2017-02-01

    Seismic monitoring provides valuable information regarding the time-varying changes in subsurface physical properties caused by natural or man-made processes. However, the resulting changes in the earth's subsurface properties are often small both in terms of magnitude and spatial extent, leading to minimal time-lapse differences in seismic amplitude or traveltime. In order to better extract information from the time-lapse data, we show that exploiting the full seismic waveform information can be critical. In this study, we develop and test methods of full waveform inversion that estimate an optimal subsurface model of time-varying elastic properties in order to fit the observed time-lapse seismic data with predicted waveforms based on numerical solutions of the wave equation. Time-lapse full waveform inversion is non-linear and non-unique, and depends on the knowledge of the baseline velocity model before a change, and (non-)repeatability of earthquake source and sensor parameters, and of ambient and cultural noise. We propose to use repeating earthquake data sets acquired with permanent arrays of seismic sensors to enhance the repeatability of source and sensor parameters. We further develop and test time-lapse parallel, double-difference and bootstrapping inversion strategies to mitigate the dependence on the baseline velocity model. The parallel approach uses a time-invariant full waveform inversion method to estimate velocity models independently of the different source event times. The double-difference approach directly estimates velocity changes from time-lapse waveform differences, requiring excellent repeatability. The bootstrapping approach inverts for velocity models sequentially in time, implicitly constraining the time-lapse inversions, while relaxing an explicit requirement for high data repeatability. We assume that prior to the time-lapse inversion, we can estimate the true source locations and the origin time of the events, and also we can also

  13. Time-lapse monitoring of localized changes within heterogeneous media with scattered waves

    NASA Astrophysics Data System (ADS)

    Chinaemerem, Kanu

    Time-lapse monitoring of geological and mechanical media has been the focus of various studies over the past four decades because of the information that the inferred changes within the medium provides insight into the dynamic characteristics of the medium. Time-lapse changes within a medium can be used to characterize the temporal evolution of the medium, evaluate the forces driving the changes within the medium and make predictions on the future state of the monitored medium. The detectability of the changes within a material depends on the characteristics of the change to be imaged, the sensitivity of the monitoring data to the change, and the time-lapse monitoring parameters such as the monitoring source-receiver array and the spectral content of the monitoring waves. Various time-lapse monitoring tools have been used to monitor changes within media ranging from the earth's surface to tumors within the human body. These monitoring tools include the use of 4D active surveys were an imprint of the change within the medium is extracted from the time-lapse surveys and the use of interferometric techniques that use singly or multiply scattered waves. My major goal in this study is to image and localize changes present within a scattering medium using time-lapse multiply scattered waves generated within the monitored medium. The changes to be imaged are generally localized in space. This work is an extension of coda wave interferometry. Coda wave interferometry focuses on the identification and extraction of average velocity change occurring within a scattering medium. Due to the non-linear characteristics of multiply scattered waves and limited information of the origin of the multiply scattered waves, coda wave interferometry resolves the average velocity change within the scattering medium with no or limited indication of the location of the change. In this study, I demonstrate that time-lapse changes can be imaged and localized within scattering media using

  14. Adiabatic sweep cross-polarization magic-angle-spinning NMR of half-integer quadrupolar spins

    NASA Astrophysics Data System (ADS)

    Wi, Sungsool; Kim, Chul; Schurko, Robert; Frydman, Lucio

    2017-04-01

    The use of frequency-swept radiofrequency (rf) pulses for enhancing signals in the magic-angle spinning (MAS) spectra of half-integer quadrupolar nuclides was explored. The broadband adiabatic inversion cross-polarization magic-angle spinning (BRAIN-CPMAS) method, involving an adiabatic inversion pulse on the S-channel and a simultaneous rectangular spin-lock pulse on the I-channel (1H), was applied to I(1/2) → S(3/2) systems. Optimal BRAIN-CPMAS matching conditions were found to involve low rf pulse strengths for both the I- and S-spin channels. At these low and easily attainable rf field strengths, level-crossing events among the energy levels | 3 / 2 >, | 1 / 2 >, | - 1 / 2 >, | - 3 / 2 > that are known to complicate the CPMAS of quadrupolar nuclei, are mostly avoided. Zero- and double-quantum polarization transfer modes, akin to those we have observed for I(1/2) → S(1/2) polarization transfers, were evidenced by these analyses even in the presence of the quadrupolar interaction. 1H-23Na and 1H-11B BRAIN-CPMAS conditions were experimentally explored on model compounds by optimizing the width of the adiabatic sweep, as well as the rf pulse powers of the 1H and 23Na/11B channels, for different MAS rates. The experimental data obtained on model compounds containing spin-3/2 nuclides, matched well predictions from numerical simulations and from an average Hamiltonian theory model. Extensions to half-integer spin nuclides with higher spins and potential applications of this BRAIN-CPMAS approach are discussed.

  15. Condition for adiabatic passage in the earth's-field NMR technique

    NASA Astrophysics Data System (ADS)

    Melton, B. F.; Pollak, V. L.

    2002-09-01

    The equation of motion d M/ dt=γ M× B(t) is solved for the case B(t)= jB p(t)+ kB e. The field Be is a small static field, typically the earth's field. The field Bp( t) decays exponentially toward zero with time constant T. This decay is produced by an overdamped switching transient that occurs near the end of the rapid cutoff of the coil current used to polarize the sample. It is assumed that Bp is initially large compared to Be, and that magnetization M is initially along the resultant field B. Exact solutions are obtained numerically for several decay time constants of Bp, and the motion of M is depicted graphically. It is found that for adiabatic passage, the final cone angle β of the precession in field Be is related to the decay time constant of Bp by β=2e -(π/2) ωeT. This is confirmed by measurements of the amplitudes of the ensuing free-precession signals for various decay rates of Bp. Near-perfect adiabatic passage (magnetization aligned within 2° of the earth's field) can be achieved for time constants T⩾2.6/ ωe. For the case of sudden passage, an approximate analytic solution is developed by linearizing the equation of motion in the laboratory frame of reference. For the adiabatic case, an approximate analytic solution is obtained by linearizing the equation of motion in a rotating frame of reference that follows the resultant field B= Bp+ Be.

  16. Developing an EEG-based on-line closed-loop lapse detection and mitigation system

    PubMed Central

    Wang, Yu-Te; Huang, Kuan-Chih; Wei, Chun-Shu; Huang, Teng-Yi; Ko, Li-Wei; Lin, Chin-Teng; Cheng, Chung-Kuan; Jung, Tzyy-Ping

    2014-01-01

    In America, 60% of adults reported that they have driven a motor vehicle while feeling drowsy, and at least 15–20% of fatal car accidents are fatigue-related. This study translates previous laboratory-oriented neurophysiological research to design, develop, and test an On-line Closed-loop Lapse Detection and Mitigation (OCLDM) System featuring a mobile wireless dry-sensor EEG headgear and a cell-phone based real-time EEG processing platform. Eleven subjects participated in an event-related lane-keeping task, in which they were instructed to manipulate a randomly deviated, fixed-speed cruising car on a 4-lane highway. This was simulated in a 1st person view with an 8-screen and 8-projector immersive virtual-reality environment. When the subjects experienced lapses or failed to respond to events during the experiment, auditory warning was delivered to rectify the performance decrements. However, the arousing auditory signals were not always effective. The EEG spectra exhibited statistically significant differences between effective and ineffective arousing signals, suggesting that EEG spectra could be used as a countermeasure of the efficacy of arousing signals. In this on-line pilot study, the proposed OCLDM System was able to continuously detect EEG signatures of fatigue, deliver arousing warning to subjects suffering momentary cognitive lapses, and assess the efficacy of the warning in near real-time to rectify cognitive lapses. The on-line testing results of the OCLDM System validated the efficacy of the arousing signals in improving subjects' response times to the subsequent lane-departure events. This study may lead to a practical on-line lapse detection and mitigation system in real-world environments. PMID:25352773

  17. Sideband excitation of trapped ions by rapid adiabatic passage for manipulation of motional states

    SciTech Connect

    Watanabe, T.; Nomura, S.; Toyoda, K.; Urabe, S.

    2011-09-15

    We describe an analysis and experimental results of the manipulation of motional states of a single trapped {sup 40}Ca{sup +} ion based on sideband excitation by rapid adiabatic passage. When the sideband transition is excited by rapid adiabatic passage, adiabaticity may be affected by ac Stark shifts. We investigate the influence of ac Stark shifts and compensate for these shifts with an additional laser field. This makes the population transfer by rapid adiabatic passage more robust with respect to experimental parameters. Finally, we manipulate the motional states and generate motional Fock states of a single {sup 40}Ca{sup +} ion by rapid adiabatic passage with ac Stark compensation.

  18. Non-adiabatic dynamics of molecules in optical cavities

    NASA Astrophysics Data System (ADS)

    Kowalewski, Markus; Bennett, Kochise; Mukamel, Shaul

    2016-02-01

    Strong coupling of molecules to the vacuum field of micro cavities can modify the potential energy surfaces thereby opening new photophysical and photochemical reaction pathways. While the influence of laser fields is usually described in terms of classical field, coupling to the vacuum state of a cavity has to be described in terms of dressed photon-matter states (polaritons) which require quantized fields. We present a derivation of the non-adiabatic couplings for single molecules in the strong coupling regime suitable for the calculation of the dressed state dynamics. The formalism allows to use quantities readily accessible from quantum chemistry codes like the adiabatic potential energy surfaces and dipole moments to carry out wave packet simulations in the dressed basis. The implications for photochemistry are demonstrated for a set of model systems representing typical situations found in molecules.

  19. Non-adiabatic dynamics of molecules in optical cavities

    SciTech Connect

    Kowalewski, Markus Bennett, Kochise; Mukamel, Shaul

    2016-02-07

    Strong coupling of molecules to the vacuum field of micro cavities can modify the potential energy surfaces thereby opening new photophysical and photochemical reaction pathways. While the influence of laser fields is usually described in terms of classical field, coupling to the vacuum state of a cavity has to be described in terms of dressed photon-matter states (polaritons) which require quantized fields. We present a derivation of the non-adiabatic couplings for single molecules in the strong coupling regime suitable for the calculation of the dressed state dynamics. The formalism allows to use quantities readily accessible from quantum chemistry codes like the adiabatic potential energy surfaces and dipole moments to carry out wave packet simulations in the dressed basis. The implications for photochemistry are demonstrated for a set of model systems representing typical situations found in molecules.

  20. Adiabatic theory of solitons fed by dispersive waves

    NASA Astrophysics Data System (ADS)

    Pickartz, Sabrina; Bandelow, Uwe; Amiranashvili, Shalva

    2016-09-01

    We consider scattering of low-amplitude dispersive waves at an intense optical soliton which constitutes a nonlinear perturbation of the refractive index. Specifically, we consider a single-mode optical fiber and a group velocity matched pair: an optical soliton and a nearly perfectly reflected dispersive wave, a fiber-optical analog of the event horizon. By combining (i) an adiabatic approach that is used in soliton perturbation theory and (ii) scattering theory from quantum mechanics, we give a quantitative account of the evolution of all soliton parameters. In particular, we quantify the increase in the soliton peak power that may result in the spontaneous appearance of an extremely large, so-called champion soliton. The presented adiabatic theory agrees well with the numerical solutions of the pulse propagation equation. Moreover, we predict the full frequency band of the scattered dispersive waves and explain an emerging caustic structure in the space-time domain.

  1. Adiabatic far-field sub-diffraction imaging.

    PubMed

    Cang, Hu; Salandrino, Alessandro; Wang, Yuan; Zhang, Xiang

    2015-08-10

    The limited resolution of a conventional optical imaging system stems from the fact that the fine feature information of an object is carried by evanescent waves, which exponentially decays in space and thus cannot reach the imaging plane. We introduce here an adiabatic lens, which utilizes a geometrically conformal surface to mediate the interference of slowly decompressed electromagnetic waves at far field to form images. The decompression is satisfying an adiabatic condition, and by bridging the gap between far field and near field, it allows far-field optical systems to project an image of the near-field features directly. Using these designs, we demonstrated the magnification can be up to 20 times and it is possible to achieve sub-50 nm imaging resolution in visible. Our approach provides a means to extend the domain of geometrical optics to a deep sub-wavelength scale.

  2. Engineering adiabaticity at an avoided crossing with optimal control

    NASA Astrophysics Data System (ADS)

    Chasseur, T.; Theis, L. S.; Sanders, Y. R.; Egger, D. J.; Wilhelm, F. K.

    2015-04-01

    We investigate ways to optimize adiabaticity and diabaticity in the Landau-Zener model with nonuniform sweeps. We show how diabaticity can be engineered with a pulse consisting of a linear sweep augmented by an oscillating term. We show that the oscillation leads to jumps in populations whose value can be accurately modeled using a model of multiple, photon-assisted Landau-Zener transitions, which generalizes work by Wubs et al. [New J. Phys. 7, 218 (2005)], 10.1088/1367-2630/7/1/218. We extend the study on diabaticity using methods derived from optimal control. We also show how to preserve adiabaticity with optimal pulses at limited time, finding a nonuniform quantum speed limit.

  3. Adiabatic molecular-dynamics-simulation-method studies of kinetic friction

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Sokoloff, J. B.

    2005-06-01

    An adiabatic molecular-dynamics method is developed and used to study the Muser-Robbins model for dry friction (i.e., nonzero kinetic friction in the slow sliding speed limit). In this model, dry friction between two crystalline surfaces rotated with respect to each other is due to mobile molecules (i.e., dirt particles) adsorbed at the interface. Our adiabatic method allows us to quickly locate interface potential-well minima, which become unstable during sliding of the surfaces. Since dissipation due to friction in the slow sliding speed limit results from mobile molecules dropping out of such unstable wells, our method provides a way to calculate dry friction, which agrees extremely well with results found by conventional molecular dynamics for the same system, but our method is more than a factor of 10 faster.

  4. Steam bottoming cycle for an adiabatic diesel engine

    NASA Technical Reports Server (NTRS)

    Poulin, E.; Demier, R.; Krepchin, I.; Walker, D.

    1984-01-01

    Steam bottoming cycles using adiabatic diesel engine exhaust heat which projected substantial performance and economic benefits for long haul trucks were studied. Steam cycle and system component variables, system cost, size and performance were analyzed. An 811 K/6.90 MPa state of the art reciprocating expander steam system with a monotube boiler and radiator core condenser was selected for preliminary design. The costs of the diesel with bottoming system (TC/B) and a NASA specified turbocompound adiabatic diesel with aftercooling with the same total output were compared, the annual fuel savings less the added maintenance cost was determined to cover the increase initial cost of the TC/B system in a payback period of 2.3 years. Steam bottoming system freeze protection strategies were developed, technological advances required for improved system reliability are considered and the cost and performance of advanced systes are evaluated.

  5. Adiabatic approximation and fluctuations in exciton-polariton condensates

    NASA Astrophysics Data System (ADS)

    Bobrovska, Nataliya; Matuszewski, Michał

    2015-07-01

    We study the relation between the models commonly used to describe the dynamics of nonresonantly pumped exciton-polariton condensates, namely the ones described by the complex Ginzburg-Landau equation, and by the open-dissipative Gross-Pitaevskii equation including a separate equation for the reservoir density. In particular, we focus on the validity of the adiabatic approximation and small density fluctuations approximation that allow one to reduce the coupled condensate-reservoir dynamics to a single partial differential equation. We find that the adiabatic approximation consists of three independent analytical conditions that have to be fulfilled simultaneously. By investigating stochastic versions of the two corresponding models, we verify that the breakdown of these approximations can lead to discrepancies in correlation lengths and distributions of fluctuations. Additionally, we consider the phase diffusion and number fluctuations of a condensate in a box, and show that self-consistent description requires treatment beyond the typical Bogoliubov approximation.

  6. Confinement loss in adiabatic photonic crystal fiber tapers

    NASA Astrophysics Data System (ADS)

    Kuhlmey, Boris T.; Nguyen, Hong C.; Steel, M. J.; Eggleton, Benjamin J.

    2006-09-01

    We numerically study confinement loss in photonic crystal fiber (PCF) tapers and compare our results with previously published experimental data. Agreement between theory and experiment requires taking into account hole shrinkage during the tapering process, which we measure by using a noninvasive technique. We show that losses are fully explained within the adiabatic approximation and that they are closely linked to the existence of a fundamental core-mode cutoff. This cutoff is equivalent to the core-mode cutoff in depressed-cladding fibers, so that losses in PCF tapers can be obtained semiquantitatively from an equivalent depressed-cladding fiber model. Finally, we discuss the definition of adiabaticity in this open boundary problem.

  7. Adiabatic far-field sub-diffraction imaging

    PubMed Central

    Cang, Hu; Salandrino, Alessandro; Wang, Yuan; Zhang, Xiang

    2015-01-01

    The limited resolution of a conventional optical imaging system stems from the fact that the fine feature information of an object is carried by evanescent waves, which exponentially decays in space and thus cannot reach the imaging plane. We introduce here an adiabatic lens, which utilizes a geometrically conformal surface to mediate the interference of slowly decompressed electromagnetic waves at far field to form images. The decompression is satisfying an adiabatic condition, and by bridging the gap between far field and near field, it allows far-field optical systems to project an image of the near-field features directly. Using these designs, we demonstrated the magnification can be up to 20 times and it is possible to achieve sub-50 nm imaging resolution in visible. Our approach provides a means to extend the domain of geometrical optics to a deep sub-wavelength scale. PMID:26258769

  8. Multidimensional Study of High-Adiabat OMEGA Cryogenic Experiments

    NASA Astrophysics Data System (ADS)

    Collins, T. J. B.; Betti, R.; Bose, A.; Christopherson, A. R.; Knauer, J. P.; Marozas, J. A.; Maximov, A. V.; Mora, A.; Radha, P. B.; Shang, W.; Shvydky, A.; Stoeckl, C.; Woo, K. M.; Varchas, G.

    2016-10-01

    Despite recent advances in modeling laser direct-drive inertial confinement fusion (ICF) experiments, there remains a predictability gap. This is particularly shown by the shortfall in hot-spot pressures inferred from OMEGA cryogenic implosions. To address this, a series of high-adiabat, cryogenic implosions were performed on OMEGA. These shots were performed with and without single-beam smoothing by spectral dispersion, at low and high drive intensities. These shots represent a regime where good agreement with simulation is expected because of the high adiabat. Multidimensional simulations of these shots will be presented with an emphasis on comparison with experimental indicators of departure from spherical symmetry (``1-D-ness''). The roles of short- and long-wavelength perturbations are considered. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  9. Breaking of dynamical adiabaticity in direct laser acceleration of electrons

    NASA Astrophysics Data System (ADS)

    Robinson, A. P. L.; Arefiev, A. V.

    2017-02-01

    The interaction of an electron oscillating in an ion channel and irradiated by a plane electromagnetic wave is considered. It is shown that the interaction qualitatively changes with the increase of electron energy, as the oscillations across the channel become relativistic. The "square-wave-like" profile of the transverse velocity in the relativistic case enables breaking of the adiabaticity that precludes electron energy retention in the non-relativistic case. For an electron with a relativistic factor γ0, the adiabaticity breaks if ωL/ωp0≪√{γ0 } . Under these conditions, the kinetic energy acquired by the electron is retained once the interaction with the laser field ceases. This mechanism notably enables electron heating in regimes that do not require a resonant interaction between the initially oscillating electron and the laser electric field.

  10. Fluctuations of work in nearly adiabatically driven open quantum systems.

    PubMed

    Suomela, S; Salmilehto, J; Savenko, I G; Ala-Nissila, T; Möttönen, M

    2015-02-01

    We extend the quantum jump method to nearly adiabatically driven open quantum systems in a way that allows for an accurate account of the external driving in the system-environment interaction. Using this framework, we construct the corresponding trajectory-dependent work performed on the system and derive the integral fluctuation theorem and the Jarzynski equality for nearly adiabatic driving. We show that such identities hold as long as the stochastic dynamics and work variable are consistently defined. We numerically study the emerging work statistics for a two-level quantum system and find that the conventional diabatic approximation is unable to capture some prominent features arising from driving, such as the continuity of the probability density of work. Our results reveal the necessity of using accurate expressions for the drive-dressed heat exchange in future experiments probing jump time distributions.

  11. Reverse engineering of a nonlossy adiabatic Hamiltonian for non-Hermitian systems

    NASA Astrophysics Data System (ADS)

    Wu, Qi-Cheng; Chen, Ye-Hong; Huang, Bi-Hua; Xia, Yan; Song, Jie

    2016-11-01

    We generalize the quantum adiabatic theorem to the non-Hermitian system and build a strict adiabaticity condition to make the adiabatic evolution nonlossy when taking into account the effect of the adiabatic phase. According to the strict adiabaticity condition, the nonadiabatic couplings and the effect of the imaginary part of adiabatic phase should be eliminated as much as possible. Also, the non-Hermitian Hamiltonian reverse-engineering method is proposed for adiabatically driving an artificial quantum state. A concrete two-level system is adopted to show the usefulness of the reverse-engineering method. We obtain the desired target state by adjusting extra rotating magnetic fields at a predefined time. Furthermore, the numerical simulation shows that certain noise and dissipation in the systems are no longer undesirable but play a positive role in the scheme. Therefore, the scheme is quite useful for quantum information processing in some dissipative systems.

  12. Experimental Adiabatic Quantum Factorization under Ambient Conditions Based on a Solid-State Single Spin System.

    PubMed

    Xu, Kebiao; Xie, Tianyu; Li, Zhaokai; Xu, Xiangkun; Wang, Mengqi; Ye, Xiangyu; Kong, Fei; Geng, Jianpei; Duan, Changkui; Shi, Fazhan; Du, Jiangfeng

    2017-03-31

    The adiabatic quantum computation is a universal and robust method of quantum computing. In this architecture, the problem can be solved by adiabatically evolving the quantum processor from the ground state of a simple initial Hamiltonian to that of a final one, which encodes the solution of the problem. Adiabatic quantum computation has been proved to be a compatible candidate for scalable quantum computation. In this Letter, we report on the experimental realization of an adiabatic quantum algorithm on a single solid spin system under ambient conditions. All elements of adiabatic quantum computation, including initial state preparation, adiabatic evolution (simulated by optimal control), and final state read-out, are realized experimentally. As an example, we found the ground state of the problem Hamiltonian S_{z}I_{z} on our adiabatic quantum processor, which can be mapped to the factorization of 35 into its prime factors 5 and 7.

  13. Temperature effect on back electron-transfer reactions within a geminate radical pair: The influence of the solvent on the adiabaticity of the process

    NASA Astrophysics Data System (ADS)

    Vauthey, Eric; Suppan, Paul

    1989-12-01

    A study of the temperature dependence (from 233 to 353 K) of the rate of back electron-transfer reactions within geminate radical pairs by measurement of the free radical yield is reported. The radical pair is generated by photoinduced electron transfer with rhodamine 6G and oxazine 118 cations as electron acceptors and aromatic amines and methoxy-benzene derivatives as electron donors in acetonitrile, methanol and ethanol. In acetonitrile, the back electron transfer is non-adiabatic and apparent negative activation energies are observed for barrierless reactions. In alcohol solvents, an anomalously large temperature dependence is observed, which is attributed to a solvent-controlled adiabatic behaviour.

  14. Geometric Phase for Adiabatic Evolutions of General Quantum States

    SciTech Connect

    Wu, Biao; Liu, Jie; Niu, Qian; Singh, David J

    2005-01-01

    The concept of a geometric phase (Berry's phase) is generalized to the case of noneigenstates, which is applicable to both linear and nonlinear quantum systems. This is particularly important to nonlinear quantum systems, where, due to the lack of the superposition principle, the adiabatic evolution of a general state cannot be described in terms of eigenstates. For linear quantum systems, our new geometric phase reduces to a statistical average of Berry's phases. Our results are demonstrated with a nonlinear two-level model.

  15. Stellar oscillations - II - The non-adiabatic case

    NASA Astrophysics Data System (ADS)

    Samadi, R.; Belkacem, K.; Sonoi, T.

    2015-02-01

    A leap forward has been performed due to the space-borne missions, MOST, CoRoT and Kepler. They provided a wealth of observational data, and more precisely oscillation spectra, which have been (and are still) exploited to infer the internal structure of stars. While an adiabatic approach is often sufficient to get information on the stellar equilibrium structures it is not sufficient to get a full understanding of the physics of the oscillation. Indeed, it does not permit one to answer some fundamental questions about the oscillations, such as: What are the physical mechanisms responsible for the pulsations inside stars? What determines the amplitudes? To what extent the adiabatic approximation is valid? All these questions can only be addressed by considering the energy exchanges between the oscillations and the surrounding medium. This lecture therefore aims at considering the energetical aspects of stellar pulsations with particular emphasis on the driving and damping mechanisms. To this end, the full non-adiabatic equations are introduced and thoroughly discussed. Two types of pulsation are distinguished, namely the self-excited oscillations that result from an instability and the solar-like oscillations that result from a balance between driving and damping by turbulent convection. For each type, the main physical principles are presented and illustrated using recent observations obtained with the ultra-high precision photometry space-borne missions (MOST, CoRoT and Kepler). Finally, we consider in detail the physics of scaling relations, which relates the seismic global indices with the global stellar parameters and gave birth to the development of statistical (or ensemble) asteroseismology. Indeed, several of these relations rely on the same cause: the physics of non-adiabatic oscillations.

  16. Adiabatic modulation of cnoidal wave by Kuznetsov - Ma soliton

    NASA Astrophysics Data System (ADS)

    Makarov, V. A.; Petnikova, V. M.; Shuvalov, V. V.

    2016-08-01

    The problem of nonlinear interaction of a cnoidal wave (a “fast” component of vector light field) with localized in time and periodic in space control signal in the form of Kuznetsov-Ma soliton (a "slow" component of the same field) is analytically solved in the adiabatic approximation. The conditions which must be fulfilled for stable propagation of the obtained solution with amplitude and frequency modulation are determined.

  17. Adiabatic pipelining: a key to ternary computing with quantum dots.

    PubMed

    Pečar, P; Ramšak, A; Zimic, N; Mraz, M; Lebar Bajec, I

    2008-12-10

    The quantum-dot cellular automaton (QCA), a processing platform based on interacting quantum dots, was introduced by Lent in the mid-1990s. What followed was an exhilarating period with the development of the line, the functionally complete set of logic functions, as well as more complex processing structures, however all in the realm of binary logic. Regardless of these achievements, it has to be acknowledged that the use of binary logic is in computing systems mainly the end result of the technological limitations, which the designers had to cope with in the early days of their design. The first advancement of QCAs to multi-valued (ternary) processing was performed by Lebar Bajec et al, with the argument that processing platforms of the future should not disregard the clear advantages of multi-valued logic. Some of the elementary ternary QCAs, necessary for the construction of more complex processing entities, however, lead to a remarkable increase in size when compared to their binary counterparts. This somewhat negates the advantages gained by entering the ternary computing domain. As it turned out, even the binary QCA had its initial hiccups, which have been solved by the introduction of adiabatic switching and the application of adiabatic pipeline approaches. We present here a study that introduces adiabatic switching into the ternary QCA and employs the adiabatic pipeline approach to successfully solve the issues of elementary ternary QCAs. What is more, the ternary QCAs presented here are sizewise comparable to binary QCAs. This in our view might serve towards their faster adoption.

  18. Competing adiabatic Thouless pumps in enlarged parameter spaces

    NASA Astrophysics Data System (ADS)

    Lopes, Pedro L. e. S.; Ghaemi, Pouyan; Ryu, Shinsei; Hughes, Taylor L.

    2016-12-01

    The transfer of conserved charges through insulating matter via smooth deformations of the Hamiltonian is known as quantum adiabatic, or Thouless, pumping. Central to this phenomenon are Hamiltonians whose insulating gap is controlled by a multidimensional (usually two-dimensional) parameter space in which paths can be defined for adiabatic changes in the Hamiltonian, i.e., without closing the gap. Here, we extend the concept of Thouless pumps of band insulators by considering a larger, three-dimensional parameter space. We show that the connectivity of this parameter space is crucial for defining quantum pumps, demonstrating that, as opposed to the conventional two-dimensional case, pumped quantities depend not only on the initial and final points of Hamiltonian evolution but also on the class of the chosen path and preserved symmetries. As such, we distinguish the scenarios of closed/open paths of Hamiltonian evolution, finding that different closed cycles can lead to the pumping of different quantum numbers, and that different open paths may point to distinct scenarios for surface physics. As explicit examples, we consider models similar to simple models used to describe topological insulators, but with doubled degrees of freedom compared to a minimal topological insulator model. The extra fermionic flavors from doubling allow for extra gapping terms/adiabatic parameters—besides the usual topological mass which preserves the topology-protecting discrete symmetries—generating an enlarged adiabatic parameter space. We consider cases in one and three spatial dimensions, and our results in three dimensions may be realized in the context of crystalline topological insulators, as we briefly discuss.

  19. Adiabatic Compression Sensitivity of Liquid Fuels and Monopropellants

    DTIC Science & Technology

    2007-11-02

    Sensitivity of Liquid Fuels and Monopropellants " 46’b Internat’I Instrumentation Syrup (Bellevue, WA, 30 Apr- 04 May 00) (Statement A) (Deadline: 30 Dec...99) Adiabatic Compression Sensitivity of Liquid Fuels and Monopropellants Ismail M. K. Ismail Tom W. Hawkins Senior Engineer/Scientist Group Leader...hazard sensitivity, propellants, fuels, oxidizers ABSTRACT Liquid rocket fuels and monopropellants can be sensitive to rapid compression. Such liquids

  20. On optimal methods for adiabatic quantum state transformations

    NASA Astrophysics Data System (ADS)

    Somma, Rolando

    2013-03-01

    Many problems in science could be solved by preparing the low-energy quantum state (or any eigenstate) of a Hamiltonian. A common example is the Boolean satisfiability problem, where each clause can be mapped to the energy of an interacting many-body system, and the problem reduces to minimizing the energy. In quantum computing, adiabatic quantum state transformations (ASTs) provide a tool for preparing the quantum state. ASTs are conventionally implemented via slow or adiabatic perturbations to the Hamiltonian, relying on the quantum adiabatic theorem. Nevertheless, more efficient implementations of ASTs exist. In this talk I will review recently developed methods for ASTs that are more efficient and require less assumptions on the Hamiltonians than the conventional implementation. Such methods involve measurements of the states along the evolution path and have a best-case implementation cost of L/G, where L is the length of the (evolved) state path and G is a lower bound to the spectral gap of the Hamiltonians. I will show that this cost is optimal and comment on results of the gap amplification problem, where the goal is to reduce the cost by increasing G. We acknowledge support from NSF through the CCF program and the LDRD programs at Los Alamos National Laboratory and Sandia National Laboratories.

  1. Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo

    SciTech Connect

    White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; Mozyrsky, Dmitry

    2015-07-07

    Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficient as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In many cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.

  2. Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, Vadius; vonToussaint, Udo V.; Timucin, Dogan A.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We have developed a general technique to study the dynamics of the quantum adiabatic evolution algorithm applied to random combinatorial optimization problems in the asymptotic limit of large problem size n. We use as an example the NP-complete Number Partitioning problem and map the algorithm dynamics to that of an auxiliary quantum spin glass system with the slowly varying Hamiltonian. We use a Green function method to obtain the adiabatic eigenstates and the minimum exitation gap, gmin = O(n2(sup -n/2)), corresponding to the exponential complexity of the algorithm for Number Partitioning. The key element of the analysis is the conditional energy distribution computed for the set of all spin configurations generated from a given (ancestor) configuration by simultaneous flipping of a fixed number of spins. For the problem in question this distribution is shown to depend on the ancestor spin configuration only via a certain parameter related to the energy of the configuration. As the result, the algorithm dynamics can be described in terms of one-dimensional quantum diffusion in the energy space. This effect provides a general limitation of a quantum adiabatic computation in random optimization problems. Analytical results are in agreement with the numerical simulation of the algorithm.

  3. Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, V. N.; Toussaint, U. V.; Timucin, D. A.

    2002-01-01

    We have developed a general technique to study the dynamics of the quantum adiabatic evolution algorithm applied to random combinatorial optimization problems in the asymptotic limit of large problem size n. We use as an example the NP-complete Number Partitioning problem and map the algorithm dynamics to that of an auxiliary quantum spin glass system with the slowly varying Hamiltonian. We use a Green function method to obtain the adiabatic eigenstates and the minimum excitation gap. g min, = O(n 2(exp -n/2), corresponding to the exponential complexity of the algorithm for Number Partitioning. The key element of the analysis is the conditional energy distribution computed for the set of all spin configurations generated from a given (ancestor) configuration by simultaneous flipping of a fixed number of spins. For the problem in question this distribution is shown to depend on the ancestor spin configuration only via a certain parameter related to 'the energy of the configuration. As the result, the algorithm dynamics can be described in terms of one-dimensional quantum diffusion in the energy space. This effect provides a general limitation of a quantum adiabatic computation in random optimization problems. Analytical results are in agreement with the numerical simulation of the algorithm.

  4. The performance of the quantum adiabatic algorithm on spike Hamiltonians

    NASA Astrophysics Data System (ADS)

    Kong, Linghang; Crosson, Elizabeth

    Spike Hamiltonians arise from optimization instances for which the adiabatic algorithm provably out performs classical simulated annealing. In this work, we study the efficiency of the adiabatic algorithm for solving the “the Hamming weight with a spike” problem by analyzing the scaling of the spectral gap at the critical point for various sizes of the barrier. Our main result is a rigorous lower bound on the minimum spectral gap for the adiabatic evolution when the bit-symmetric cost function has a thin but polynomially high barrier, which is based on a comparison argument and an improved variational ansatz for the ground state. We also adapt the discrete WKB method for the case of abruptly changing potentials and compare it with the predictions of the spin coherent instanton method which was previously used by Farhi, Goldstone and Gutmann. Finally, our improved ansatz for the ground state leads to a method for predicting the location of avoided crossings in the excited energy states of the thin spike Hamiltonian, and we use a recursion relation to understand the ordering of some of these avoided crossings as a step towards analyzing the previously observed diabatic cascade phenomenon.

  5. Adiabatic shear mechanisms for the hard cutting process

    NASA Astrophysics Data System (ADS)

    Yue, Caixu; Wang, Bo; Liu, Xianli; Feng, Huize; Cai, Chunbin

    2015-05-01

    The most important consequence of adiabatic shear phenomenon is formation of sawtooth chip. Lots of scholars focused on the formation mechanism of sawtooth, and the research often depended on experimental approach. For the present, the mechanism of sawtooth chip formation still remains some ambiguous aspects. This study develops a combined numerical and experimental approach to get deeper understanding of sawtooth chip formation mechanism for Polycrystalline Cubic Boron Nitride (PCBN) tools orthogonal cutting hard steel GCr15. By adopting the Johnson-Cook material constitutive equations, the FEM simulation model established in this research effectively overcomes serious element distortions and cell singularity in high strain domain caused by large material deformation, and the adiabatic shear phenomenon is simulated successfully. Both the formation mechanism and process of sawtooth are simulated. Also, the change features regarding the cutting force as well as its effects on temperature are studied. More specifically, the contact of sawtooth formation frequency with cutting force fluctuation frequency is established. The cutting force and effect of cutting temperature on mechanism of adiabatic shear are investigated. Furthermore, the effects of the cutting condition on sawtooth chip formation are researched. The researching results show that cutting feed has the most important effect on sawtooth chip formation compared with cutting depth and speed. This research contributes a better understanding of mechanism, feature of chip formation in hard turning process, and supplies theoretical basis for the optimization of hard cutting process parameters.

  6. Irreconcilable difference between quantum walks and adiabatic quantum computing

    NASA Astrophysics Data System (ADS)

    Wong, Thomas G.; Meyer, David A.

    2016-06-01

    Continuous-time quantum walks and adiabatic quantum evolution are two general techniques for quantum computing, both of which are described by Hamiltonians that govern their evolutions by Schrödinger's equation. In the former, the Hamiltonian is fixed, while in the latter, the Hamiltonian varies with time. As a result, their formulations of Grover's algorithm evolve differently through Hilbert space. We show that this difference is fundamental; they cannot be made to evolve along each other's path without introducing structure more powerful than the standard oracle for unstructured search. For an adiabatic quantum evolution to evolve like the quantum walk search algorithm, it must interpolate between three fixed Hamiltonians, one of which is complex and introduces structure that is stronger than the oracle for unstructured search. Conversely, for a quantum walk to evolve along the path of the adiabatic search algorithm, it must be a chiral quantum walk on a weighted, directed star graph with structure that is also stronger than the oracle for unstructured search. Thus, the two techniques, although similar in being described by Hamiltonians that govern their evolution, compute by fundamentally irreconcilable means.

  7. Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo

    DOE PAGES

    White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; ...

    2015-07-07

    Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficientmore » as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In many cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.« less

  8. Adiabatic dynamics with classical noise in optical lattice

    NASA Astrophysics Data System (ADS)

    Xu, Guanglei; Daley, Andrew

    2016-05-01

    The technique of adiabatic state preparation is an interesting potential tool for the realisation of sensitive many-body states with ultra-cold atoms at low temperatures. However, questions remain regarding the influence of classical noise in these adiabatic dynamics. We investigate such dynamics in a situation where a level dressing scheme can make amplitude noise in an optical lattice proportional to the Hamiltonian, leading to a quantum Zeno effect for non-adiabatic transitions. We compute the dynamics using stochastic many-body Schrödinger equation and master equation approaches. Taking the examples of 1D Bose-Hubbard model from Mott insulator phase to superfluid phase and comparing with analytical calculations for a two-level system, we demonstrate that when the total time for the process is limited, properly transformed noise can lead to an increased final fidelity in the state preparation. We consider the dynamics also in the presence of imperfections, studying the resulting heating and dephasing for the many-body states, and identifying optimal regimes for future experiments.

  9. Adiabatic invariants for the regular region of the Dicke model

    NASA Astrophysics Data System (ADS)

    Bastarrachea-Magnani, M. A.; Relaño, A.; Lerma-Hernández, S.; López-del-Carpio, B.; Chávez-Carlos, J.; Hirsch, J. G.

    2017-04-01

    Adiabatic invariants for the non-integrable Dicke model are introduced. They are shown to provide approximate second integrals of motion in the energy region where the system exhibits a regular dynamics. This low-energy region, present for any set of values of the Hamiltonian parameters is described both with a semiclassical and a full quantum analysis in a broad region of the parameter space. Peres lattices in this region exhibit that many observables vary smoothly with energy, along distinct lines which beg for a formal description. It is demonstrated how the adiabatic invariants provide a rationale to their presence in many cases. They are built employing the Born–Oppenheimer approximation, valid when a fast system is coupled to a much slower one. As the Dicke model has one bosonic and one fermionic degree of freedom, two versions of the approximation are used, depending on which one is the faster. In both cases a noticeably accord with exact numerical results is obtained. The employment of the adiabatic invariants provides a simple and clear theoretical framework to study the physical phenomenology associated to these regimes, far beyond the energies where a quadratic approximation around the minimal energy configuration can be used.

  10. Experimental implementation of an adiabatic quantum optimization algorithm

    NASA Astrophysics Data System (ADS)

    Steffen, Matthias; van Dam, Wim; Hogg, Tad; Breyta, Greg; Chuang, Isaac

    2003-03-01

    A novel quantum algorithm using adiabatic evolution was recently presented by Ed Farhi [1] and Tad Hogg [2]. This algorithm represents a remarkable discovery because it offers new insights into the usefulness of quantum resources. An experimental demonstration of an adiabatic algorithm has remained beyond reach because it requires an experimentally accessible Hamiltonian which encodes the problem and which must also be smoothly varied over time. We present tools to overcome these difficulties by discretizing the algorithm and extending average Hamiltonian techniques [3]. We used these techniques in the first experimental demonstration of an adiabatic optimization algorithm: solving an instance of the MAXCUT problem using three qubits and nuclear magnetic resonance techniques. We show that there exists an optimal run-time of the algorithm which can be predicted using a previously developed decoherence model. [1] E. Farhi et al., quant-ph/0001106 (2000) [2] T. Hogg, PRA, 61, 052311 (2000) [3] W. Rhim, A. Pines, J. Waugh, PRL, 24,218 (1970)

  11. Analysis of a High-Adiabat Cryogenic Implosion on OMEGA

    NASA Astrophysics Data System (ADS)

    Christopherson, A. R.; Betti, R.; Nora, R.; Epstein, R.; Marshall, F. J.; Forrest, C. J.; Stoeckl, C.; Delettrez, J. A.; Radha, P. B.; Howard, J.

    2014-10-01

    The performance of high-adiabat implosions >~ 10 is marginally affected by nonuniformities because of the strong ablative stabilization. To test the validity of the one-dimensional (1-D) physics included in existing hydrocodes, a study of high-adiabat cryogenic DT implosions is carried out by comparing the results of 1-D simulations with several measured quantities. It is found that after including nonlocal transport, cross-beam energy transfer, and hot electrons, 1-D simulations reproduce most of the observables with reasonable accuracy. Since the analysis is applied to the only high-adiabat DT implosion fielded on OMEGA, these results do not fully validate the 1-D physics of current hydrocodes. However, this work shows the framework for establishing a validation capability of the 1-D physics of inertial confinement fusion implosions. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and the Office of Fusion Energy Sciences Number DE-FG02-04ER54786.

  12. Absolute rate theories of epigenetic stability

    NASA Astrophysics Data System (ADS)

    Walczak, Aleksandra M.; Onuchic, José N.; Wolynes, Peter G.

    2005-12-01

    Spontaneous switching events in most characterized genetic switches are rare, resulting in extremely stable epigenetic properties. We show how simple arguments lead to theories of the rate of such events much like the absolute rate theory of chemical reactions corrected by a transmission factor. Both the probability of the rare cellular states that allow epigenetic escape and the transmission factor depend on the rates of DNA binding and unbinding events and on the rates of protein synthesis and degradation. Different mechanisms of escape from the stable attractors occur in the nonadiabatic, weakly adiabatic, and strictly adiabatic regimes, characterized by the relative values of those input rates. rate theory | stochastic gene expression | gene switches

  13. New empirical correlations for sizing adiabatic capillary tubes in refrigeration systems

    NASA Astrophysics Data System (ADS)

    Shodiya, S.; Aahar, A. A.; Henry, N.; Darus, A. N.

    2012-06-01

    This paper presents new empirical correlations that have been developed for sizing adiabatic capillary tubes used in small vapor compression refrigeration and air-conditioning systems. A numerical model which is based on the basic equations of conservation of mass, momentum and energy was developed. Colebrook's formulation was used to determine the single phase friction factor. The two-phase viscosity models - Cicchitti et al., Dukler et al. and McAdam et al. were used based on the recommendation from literature to determine the two-phase viscosity factor. The developed numerical model was validated using the experimental data from literature. The numerical model was used to study the effects of relevant parameters on capillary tube length and the results showed that the length of capillary tube increase with increase in condensing temperature, subcooling, and inner diameter of tube but decrease with increase in surface roughness and mass flow rate. Thereafter, empirical correlation of the capillary tube length with the five dependent variables was presented. The empirical models are validated using experimental data from literature. Different from the previous studies, the empirical models have a large set of refrigerants and wide operating conditions. The developed correlation can be used as an effective tool for sizing adiabatic capillary tube with system models working with alternative refrigerants.

  14. How non-adiabatic passing electron layers of linear microinstabilities affect turbulent transport

    NASA Astrophysics Data System (ADS)

    Dominski, J.; Brunner, S.; Görler, T.; Jenko, F.; Told, D.; Villard, L.

    2015-06-01

    The response of passing electrons in ion temperature gradient and trapped electron mode microturbulence regimes is investigated in tokamak geometry making use of the flux-tube version of the gyrokinetic code GENE. Results are obtained using two different electron models, fully kinetic and hybrid in which passing particles are forced to respond adiabatically, while trapped are handled kinetically. Comparing linear eigenmodes obtained with these two models enables to systematically isolate fine radial structures located at corresponding mode rational surfaces, clearly resulting from the non-adiabatic passing-electron response. Non-linear simulations show that these fine structures on the non-axisymmetric modes survive in the turbulent phase. Furthermore, through non-linear coupling to axisymmetric modes, they induce radial modulations in the effective profiles of density, ion/electron temperature, and E × B shearing rate. Finally, the passing-electron channel is shown to significantly contribute to the transport levels, at least in our ion temperature gradient case. Also shown is that the passing electrons significantly influence the E × B saturation mechanism of turbulence fluxes.

  15. Adiabatic approximation in time-dependent reduced-density-matrix functional theory

    SciTech Connect

    Requist, Ryan; Pankratov, Oleg

    2010-04-15

    With the aim of describing real-time electron dynamics, we introduce an adiabatic approximation for the equation of motion of the one-body reduced density matrix (one-matrix). The eigenvalues of the one-matrix, which represent the occupation numbers of single-particle orbitals, are obtained from the constrained minimization of the instantaneous ground-state energy functional rather than from their dynamical equations. The performance of the approximation vis-a-vis nonadiabatic effects is assessed in real-time simulations of a two-site Hubbard model. Due to Landau-Zener-type transitions, the system evolves into a nonstationary state with persistent oscillations in the observables. The amplitude of the oscillations displays a strongly nonmonotonic dependence on the strength of the electron-electron interaction and the rate of variation of the external potential. We interpret an associated resonance behavior in the phase of the oscillations in terms of 'scattering' with spectator energy levels. To clarify the motivation for the minimization condition, we derive a sequence of energy functionals E{sub v}{sup (n)}, for which the corresponding sequence of minimizing one-matrices is asymptotic to the exact one-matrix in the adiabatic limit.

  16. Retrospective analysis of outcomes after IVF using an aneuploidy risk model derived from time-lapse imaging without PGS.

    PubMed

    Campbell, Alison; Fishel, Simon; Bowman, Natalie; Duffy, Samantha; Sedler, Mark; Thornton, Simon

    2013-08-01

    Time-lapse imaging of human preimplantation IVF embryos has enabled objective algorithms based on novel observations of development (morphokinetics) to be used for clinical selection of embryos. Embryo aneuploidy, a major cause of IVF failure, has been correlated with specific morphokinetic variables used previously to develop an aneuploidy risk classification model. The purpose of this study was to evaluate the effectiveness and potential impact of this model for unselected IVF patients without biopsy and preimplantation genetic screening (PGS). Embryo outcomes - no implantation, fetal heart beat (FHB) and live birth (LB) - of 88 transferred blastocysts were compared according to calculated aneuploidy risk classes (low, medium, high). A significant difference was seen for FHB (P<0.0001) and LB (P<0.01) rates between embryos classified as low and medium risk. Within the low-risk class, relative increases of 74% and 56%, compared with rates for all blastocysts, were observed for FHB and LB respectively. The area under the receiver operating characteristic curve was 0.75 for FHB and 0.74 for LB. This study demonstrates the clinical relevance of the aneuploidy risk classification model and introduces a novel, non-invasive method of embryo selection to yield higher implantation and live birth rates without PGS.

  17. Dynamic interactions of snow and plants in the boreal forest, winter 2011-2012 revealed by time-lapse photography and LiDAR

    NASA Astrophysics Data System (ADS)

    Filhol, S. V.; Sturm, M.

    2012-12-01

    The winter blanket of snow in the boreal forest is anything but still. In winter 2011-2012 we followed the evolution of a snowpack on a boreal forest plot (0.5 ha) from first snowfall to the beginning of the melt in springtime. We used multiple methods such as time-lapse ground-based LiDAR (Light Detection and Ranging), time-lapse photography, imagery from a suspended cableway, snow-depth sensors, and frequent manual snow-pits. The experimental site is located near Fairbanks, Alaska, a typical boreal forest underlain by permafrost with sparse black spruce, larch, willow, and dwarf birch. We observed snowpack properties to be greatly affected by the vegetation substrate. Interactions between snow and plants are mainly dependent on falling snow properties (rate, wetness), plant heights and stiffness, plant canopy structure (leaves, number of branches, density), succession of weather events (wind before or after snow, thaw events) and pre-existing snow depth. Time-lapse imagery shows interception of snow by trees and shrubs controlled by air-temperature and wind events. LiDAR and snow pit measurements show one class of flexible shrubs (i.e. dwarf birch) bending under load, while a second class (willows) were far stiffer and resisted bending. Where dwarf birch branches were dense, it prevented snow from reaching the ground, leaving a significant air space under the snowpack. This vertical air gap can be as high as 10% of the total snow depth by the end of winter. Improving our understanding of the dynamic relationships between plants and snow is a fundamental key for studying boreal snow physics and snow ecology.

  18. A hyperbolic slicing condition adapted to Killing fields and densitized lapses

    NASA Astrophysics Data System (ADS)

    Alcubierre, Miguel; Corichi, Alejandro; González, José A.; Núñez, Darío; Salgado, Marcelo

    2003-09-01

    We study the properties of a modified version of the Bona Masso family of hyperbolic slicing conditions. This modified slicing condition has two very important features: in the first place, it guarantees that if a spacetime is static or stationary, and one starts the evolution in a coordinate system in which the metric coefficients are already time independent, then they will remain time independent during the subsequent evolution, i.e. the lapse will not evolve and will therefore not drive the time lines away from the Killing direction. Second, the modified condition is naturally adapted to the use of a densitized lapse as a fundamental variable, which in turn makes it a good candidate for a dynamic slicing condition that can be used in conjunction with some recently proposed hyperbolic reformulations of the Einstein evolution equations.

  19. Volumetric monitoring of aqueous two phase system droplets using time-lapse optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lee, J.; Bathany, C.; Ahn, Y.; Takayama, S.; Jung, W.

    2016-02-01

    We present a volumetric monitoring method to observe the morphological changes of aqueous two phase system (ATPS) droplets in a microfluidic system. Our method is based on time-lapse optical coherence tomography (OCT) which allows the study of the dynamics of ATPS droplets while visualizing their 3D structures and providing quantitative information on the droplets. In this study, we monitored the process of rehydration and deformation of an ATPS droplet in a microfluidic system and quantified the changes of its volume and velocity under both static and dynamic fluid conditions. Our results indicate that time-lapse OCT is a very promising tool to evaluate the unprecedented features of droplet-based microfluidics.

  20. Freeze core sampling to validate time-lapse resistivity monitoring of the hyporheic zone.

    PubMed

    Toran, Laura; Hughes, Brian; Nyquist, Jonathan; Ryan, Robert

    2013-01-01

    A freeze core sampler was used to characterize hyporheic zone storage during a stream tracer test. The pore water from the frozen core showed tracer lingered in the hyporheic zone after the tracer had returned to background concentration in collocated well samples. These results confirmed evidence of lingering subsurface tracer seen in time-lapse electrical resistivity tomographs. The pore water exhibited brine exclusion (ion concentrations in ice lower than source water) in a sediment matrix, despite the fast freezing time. Although freeze core sampling provided qualitative evidence of lingering tracer, it proved difficult to quantify tracer concentration because the amount of brine exclusion during freezing could not be accurately determined. Nonetheless, the additional evidence for lingering tracer supports using time-lapse resistivity to detect regions of low fluid mobility within the hyporheic zone that can act as chemically reactive zones of importance in stream health.

  1. Absolute Rate Theories of Epigenetic Stability

    NASA Astrophysics Data System (ADS)

    Walczak, Aleksandra M.; Onuchic, Jose N.; Wolynes, Peter G.

    2006-03-01

    Spontaneous switching events in most characterized genetic switches are rare, resulting in extremely stable epigenetic properties. We show how simple arguments lead to theories of the rate of such events much like the absolute rate theory of chemical reactions corrected by a transmission factor. Both the probability of the rare cellular states that allow epigenetic escape, and the transmission factor, depend on the rates of DNA binding and unbinding events and on the rates of protein synthesis and degradation. Different mechanisms of escape from the stable attractors occur in the nonadiabatic, weakly adiabatic and strictly adiabatic regimes, characterized by the relative values of those input rates.

  2. Calixarenes and cations: a time-lapse photography of the big-bang.

    PubMed

    Casnati, Alessandro

    2013-08-07

    The outstanding cation complexation properties emerging from the pioneering studies on calixarene ligands during a five-year period in the early 1980s triggered a big-bang burst of publications on such macrocycles that is still lasting at a distance of more than 30 years. A time-lapse photography of this timeframe is proposed which allows the readers to pinpoint the contributions of the different research groups.

  3. Imaging Hydrological Processes in Headwater Riparian Seeps with Time-Lapse Electrical Resistivity.

    PubMed

    Williams, Mark R; Buda, Anthony R; Singha, Kamini; Folmar, Gordon J; Elliott, Herschel A; Schmidt, John P

    2017-01-01

    Delineating hydrologic and pedogenic factors influencing groundwater flow in riparian zones is central in understanding pathways of water and nutrient transport. In this study, we combined two-dimensional time-lapse electrical resistivity imaging (ERI) (depth of investigation approximately 2 m) with hydrometric monitoring to examine hydrological processes in the riparian area of FD-36, a small (0.4 km(2) ) agricultural headwater basin in the Valley and Ridge region of east-central Pennsylvania. We selected two contrasting study sites, including a seep with groundwater discharge and an adjacent area lacking such seepage. Both sites were underlain by a fragipan at 0.6 m. We then monitored changes in electrical resistivity, shallow groundwater, and nitrate-N concentrations as a series of storms transitioned the landscape from dry to wet conditions. Time-lapse ERI revealed different resistivity patterns between seep and non-seep areas during the study period. Notably, the seep displayed strong resistivity reductions (∼60%) along a vertically aligned region of the soil profile, which coincided with strong upward hydraulic gradients recorded in a grid of nested piezometers (0.2- and 0.6-m depth). These patterns suggested a hydraulic connection between the seep and the nitrate-rich shallow groundwater system below the fragipan, which enabled groundwater and associated nitrate-N to discharge through the fragipan to the surface. In contrast, time-lapse ERI indicated no such connections in the non-seep area, with infiltrated rainwater presumably perched above the fragipan. Results highlight the value of pairing time-lapse ERI with hydrometric and water quality monitoring to illuminate possible groundwater and nutrient flow pathways to seeps in headwater riparian areas.

  4. Time-lapse AVO fluid inversion for dynamic reservoir characterization in Delhi Field, Louisiana

    NASA Astrophysics Data System (ADS)

    Putri, Indah Hermansyah

    In the development stage, CO2 injection is becoming more widely used in enhanced oil recovery (EOR). Delhi Oil Field is part of Phases XIII and XIV of the Reservoir Characterization Project (RCP) Colorado School of Mines. The focus of these phases is to monitor the effectiveness of the CO 2 injection in Delhi Field by using multicomponent time-lapse seismic data. In this study, I analyze the amplitude versus offset (AVO) response of the time-lapse P-wave seismic data in order to quantify the fluid probability in the field. RCP acquired four square miles of multicomponent time-lapse seismic in Delhi Field to characterize the field dynamically. RCP's two surveys, monitor 1 and monitor 2, were shot in 2010 and 2011 after the start of CO2 injection in November 2009. Time-lapse AVO modeling was performed. The modeling results show that both the top Tuscaloosa and Paluxy Formations are class III AVO, and change toward class IV AVO by increasing the CO2 saturation in the reservoir. In addition, the Paluxy Formation shows a consistent result between the synthetic and real data, however, the Tuscaloosa Formation is not consistent as it is affected by tuning. AVO fluid inversion (AFI) was performed on both the Tuscaloosa and Paluxy Formations in order to quantify the fluid probability in these formations. The inversion results are confirmed by the pseudo gamma ray model, the porosity model, the permeability model, the pressure model, and the production data. In the Tuscaloosa and Paluxy Formations, oil and CO2 are located in the good quality, high porosity, and high permeability sandstones. The presence of CO2 is also confirmed by the pressure interpretation. Furthermore, production data from both Tuscaloosa and Paluxy Formations confirm the fluid presence in the reservoir.

  5. Analysis of the repeatability of time-lapse 3d vsp multicomponent surveys, delhi field

    NASA Astrophysics Data System (ADS)

    Carvalho, Mariana Fernandes de

    Delhi Field is a producing oil field located in northeastern Louisiana. In order to monitor the CO2 sweep efficiency, time-lapse 3D seismic data have been acquired in this area. Time-lapse studies are increasingly used to evaluate changes in the seismic response induced by the production of hydrocarbons or the injection of water, CO2 or steam into a reservoir. A 4D seismic signal is generated by a combination of production and injection effects within the reservoir as well as non-repeatability effects. In order to get reliable results from time-lapse seismic methods, it is important to distinguish the production and injection effects from the non-repeatability effects in the 4D seismic signal. Repeatability of 4D land seismic data is affected by several factors. The most significant of them are: source and receiver geometry inaccuracies, differences in seismic sources signatures, variations in the immediate near surface and ambient non-repeatable noise. In this project, two 3D multicomponent VSP surveys acquired in Delhi Field were used to quantify the relative contribution of each factor that can affect the repeatability in land seismic data. The factors analyzed in this study were: source and receiver geometry inaccura- cies, variations in the immediate near surface and ambient non-repeatable noise. This study showed that all these factors had a significant impact on the repeatability of the successive multicomponent VSP surveys in Delhi Field. This project also shows the advantages and disadvantages in the use of different repeata- bility metrics, normalized-root-mean-square (NRMS) difference and signal-to-distortion ratio (SDR) attribute, to evaluate the level of seismic repeatability between successive time-lapse seismic surveys. It is observed that NRMS difference is greatly influenced by time-shifts and that SDR attribute combined with the time-shift may give more distinct and representative repeatability information than the NRMS difference.

  6. Probabilistic 3-D time-lapse inversion of magnetotelluric data: Application to an enhanced geothermal system

    USGS Publications Warehouse

    Rosas-Carbajal, Marina; Linde, Nicolas; Peacock, Jared R.; Zyserman, F. I.; Kalscheuer, Thomas; Thiel, Stephan

    2015-01-01

    Surface-based monitoring of mass transfer caused by injections and extractions in deep boreholes is crucial to maximize oil, gas and geothermal production. Inductive electromagnetic methods, such as magnetotellurics, are appealing for these applications due to their large penetration depths and sensitivity to changes in fluid conductivity and fracture connectivity. In this work, we propose a 3-D Markov chain Monte Carlo inversion of time-lapse magnetotelluric data to image mass transfer following a saline fluid injection. The inversion estimates the posterior probability density function of the resulting plume, and thereby quantifies model uncertainty. To decrease computation times, we base the parametrization on a reduced Legendre moment decomposition of the plume. A synthetic test shows that our methodology is effective when the electrical resistivity structure prior to the injection is well known. The centre of mass and spread of the plume are well retrieved.We then apply our inversion strategy to an injection experiment in an enhanced geothermal system at Paralana, South Australia, and compare it to a 3-D deterministic time-lapse inversion. The latter retrieves resistivity changes that are more shallow than the actual injection interval, whereas the probabilistic inversion retrieves plumes that are located at the correct depths and oriented in a preferential north-south direction. To explain the time-lapse data, the inversion requires unrealistically large resistivity changes with respect to the base model. We suggest that this is partly explained by unaccounted subsurface heterogeneities in the base model from which time-lapse changes are inferred.

  7. TIME-LAPSE SEISMIC MODELING & INVERSION OF CO2 SATURATION FOR SEQUESTRATION AND ENHANCED OIL RECOVERY

    SciTech Connect

    Mark A. Meadows

    2006-03-31

    Injection of carbon dioxide (CO2) into subsurface aquifers for geologic storage/sequestration, and into subsurface hydrocarbon reservoirs for enhanced oil recovery, has become an important topic to the nation because of growing concerns related to global warming and energy security. In this project we developed new ways to predict and quantify the effects of CO2 on seismic data recorded over porous reservoir/aquifer rock systems. This effort involved the research and development of new technology to: (1) Quantitatively model the rock physics effects of CO2 injection in porous saline and oil/brine reservoirs (both miscible and immiscible). (2) Quantitatively model the seismic response to CO2 injection (both miscible and immiscible) from well logs (1D). (3) Perform quantitative inversions of time-lapse 4D seismic data to estimate injected CO2 distributions within subsurface reservoirs and aquifers. This work has resulted in an improved ability to remotely monitor the injected CO2 for safe storage and enhanced hydrocarbon recovery, predict the effects of CO2 on time-lapse seismic data, and estimate injected CO2 saturation distributions in subsurface aquifers/reservoirs. We applied our inversion methodology to a 3D time-lapse seismic dataset from the Sleipner CO2 sequestration project, Norwegian North Sea. We measured changes in the seismic amplitude and traveltime at the top of the Sleipner sandstone reservoir and used these time-lapse seismic attributes in the inversion. Maps of CO2 thickness and its standard deviation were generated for the topmost layer. From this information, we estimated that 7.4% of the total CO2 injected over a five-year period had reached the top of the reservoir. This inversion approach could also be applied to the remaining levels within the anomalous zone to obtain an estimate of the total CO2 injected.

  8. Time-lapse cross-hole electrical resistivity tomography monitoring effects of an urban tunnel

    NASA Astrophysics Data System (ADS)

    Bellmunt, F.; Marcuello, A.; Ledo, J.; Queralt, P.; Falgàs, E.; Benjumea, B.; Velasco, V.; Vázquez-Suñé, E.

    2012-12-01

    Tunnel construction in urban areas has recently become a topic of interest and has increased the use of tunnel boring machines. Monitoring subsurface effects due to tunnel building in urban areas with conventional surface geophysical techniques is not an easy task because of space constraints. Taking advantage of the construction of a new metro line in Barcelona (Spain), a geoelectrical experiment, which included borehole logging and time-lapse cross-hole measurements using permanent electrode deployments, was designed to characterise and to study the subsurface effects of the tunnel drilling in a test site. We present a case study in which the differences between time-lapse cross-hole resistivity measurements acquired before, during and after the tunnel drilling below the test site have been calculated using three different procedures: a constrained time-lapse inversion, a model subtraction and an inversion of the normalised data ratio. The three procedures have provided satisfactory images of the resistivity changes and tunnel geometry, but resistivity changes for the tunnel void were lower than predicted by modelling. This behaviour has been explained by considering a conductive zone around the tunnel. Further, an apparent resistivity pseudosection for the cross-hole data, equivalent to the case of the equatorial dipole-dipole on the surface, is introduced.

  9. Efficiency of time-lapse intervals and simple baits for camera surveys of wild pigs

    USGS Publications Warehouse

    Williams, B.L.; Holtfreter, R.W.; Ditchkoff, S.S.; Grand, J.B.

    2011-01-01

    Growing concerns surrounding established and expanding populations of wild pigs (Sus scrofa) have created the need for rapid and accurate surveys of these populations. We conducted surveys of a portion of the wild pig population on Fort Benning, Georgia, to determine if a longer time-lapse interval than had been previously used in surveys of wild pigs would generate similar detection results. We concurrently examined whether use of soured corn at camera sites affected the time necessary for pigs to locate a new camera site or the time pigs remained at a site. Our results suggest that a 9-min time-lapse interval generated dependable detection results for pigs and that soured corn neither attracted pigs to a site any quicker than plain, dry, whole-kernel corn, nor held them at a site longer. Maximization of time-lapse interval should decrease data and processing loads, and use of a simple, available bait should decrease cost and effort associated with more complicated baits; combination of these concepts should increase efficiency of wild pig surveys. ?? 2011 The Wildlife Society.

  10. Extended Time-lapse Intravital Imaging of Real-time Multicellular Dynamics in the Tumor Microenvironment

    PubMed Central

    Harney, Allison S.; Wang, Yarong; Condeelis, John S.; Entenberg, David

    2016-01-01

    In the tumor microenvironment, host stromal cells interact with tumor cells to promote tumor progression, angiogenesis, tumor cell dissemination and metastasis. Multicellular interactions in the tumor microenvironment can lead to transient events including directional tumor cell motility and vascular permeability. Quantification of tumor vascular permeability has frequently used end-point experiments to measure extravasation of vascular dyes. However, due to the transient nature of multicellular interactions and vascular permeability, the kinetics of these dynamic events cannot be discerned. By labeling cells and vasculature with injectable dyes or fluorescent proteins, high-resolution time-lapse intravital microscopy has allowed the direct, real-time visualization of transient events in the tumor microenvironment. Here we describe a method for using multiphoton microscopy to perform extended intravital imaging in live mice to directly visualize multicellular dynamics in the tumor microenvironment. This method details cellular labeling strategies, the surgical preparation of a mammary skin flap, the administration of injectable dyes or proteins by tail vein catheter and the acquisition of time-lapse images. The time-lapse sequences obtained from this method facilitate the visualization and quantitation of the kinetics of cellular events of motility and vascular permeability in the tumor microenvironment. PMID:27341448

  11. Can arousing feedback rectify lapses in driving? Prediction from EEG power spectra

    NASA Astrophysics Data System (ADS)

    Lin, Chin-Teng; Huang, Kuan-Chih; Chuang, Chun-Hsiang; Ko, Li-Wei; Jung, Tzyy-Ping

    2013-10-01

    Objective. This study explores the neurophysiological changes, measured using an electroencephalogram (EEG), in response to an arousing warning signal delivered to drowsy drivers, and predicts the efficacy of the feedback based on changes in the EEG. Approach. Eleven healthy subjects participated in sustained-attention driving experiments. The driving task required participants to maintain their cruising position and compensate for randomly induced lane deviations using the steering wheel, while their EEG and driving performance were continuously monitored. The arousing warning signal was delivered to participants who experienced momentary behavioral lapses, failing to respond rapidly to lane-departure events (specifically the reaction time exceeded three times the alert reaction time). Main results. The results of our previous studies revealed that arousing feedback immediately reversed deteriorating driving performance, which was accompanied by concurrent EEG theta- and alpha-power suppression in the bilateral occipital areas. This study further proposes a feedback efficacy assessment system to accurately estimate the efficacy of arousing warning signals delivered to drowsy participants by monitoring the changes in their EEG power spectra immediately thereafter. The classification accuracy was up 77.8% for determining the need for triggering additional warning signals. Significance. The findings of this study, in conjunction with previous studies on EEG correlates of behavioral lapses, might lead to a practical closed-loop system to predict, monitor and rectify behavioral lapses of human operators in attention-critical settings.

  12. Estimating Flow Properties from the Onset of Time-Lapse Changes

    NASA Astrophysics Data System (ADS)

    Vasco, D. W.

    2015-12-01

    Geophysical time-lapse observations are increasingly important for monitoring subsurface fluid flow. Time-lapse data can even be used to characterize spatial variations in the properties of a porous medium. A major impediment to such characterization is the difficulty in connecting flow-related changes to changes geophysical properties. For example, physical models used to relate changes in fluid saturation and pressure to seismic velocity changes often depend upon unknown parameters, or on the detailed distribution of the fluid at intermediate spatial scales. The challange is particularly acute when one tries to relate the magnitudes of saturation and pressure changes to the magnitude of a change in a time-lapse observation. I present an alternative approach for the characterization of a porous medium, based upon the onset of changes of a geophysical attribute, that is applicable when there are a sequence of geophysical surveys. An onset time is the calander time as which a geophysical observable begins to deviate from its initial or background value. In many cases onset times are sensitive to flow properties, such as permeability, and insensitive to the details of the physical model governing the geophysical response. Several examples of the use of onset times will be presented, including the seismic monitoring of injected carbon dioxide and the use of surface deformation data to image fluid flow at depth. Though the technique works best when there are numerous geophysical snapshots, numerical modeling indicates useful results are possible from yearly seismic surveys.

  13. Dynamic association between negative affect and alcohol lapses following alcohol treatment.

    PubMed

    Witkiewitz, Katie; Villarroel, Nadia Aracelliz

    2009-08-01

    Clinical research has found a strong association between negative affect and returning to alcohol use after a period of abstinence. Yet little is known about the probability of a lapse given a particular level of negative affect or whether there is a reciprocal relationship between negative affect and alcohol use across time. The goal of the current study was to examine the association between negative affect and drinking behavior in the 1st year following alcohol treatment. The authors applied an associative latent transition analysis to the Project MATCH outpatient data (n = 952) and then replicated the model in the Project MATCH aftercare data (n = 774). Changes in drinking following treatment were significantly associated with current and prior changes in negative affect, and changes in negative affect were related to prior changes in drinking (effect size range = 0.13-0.33). The results supported the hypothesis that negative affect and alcohol lapses are dynamically linked and suggest that targeting the relationship between negative affect and alcohol use could greatly decrease the probability of lapses and improve alcohol treatment outcomes.

  14. Using time-lapse photogrammetric method to study the terminal part of the Perito Moreno glacier

    NASA Astrophysics Data System (ADS)

    Lenzano, M. G.; Toth, C.; Lenzano, L.; Skvarca, P.; Smalley, R.

    2013-05-01

    The changes that are occurring in regional climate affect cryospheric environments and have a direct impact on the hydrological cycle. This work presents a feasibility study on the implementation and performance assessment of time-lapse processing ofstereo image sequence, acquired by calibrated cameras, in order to determine the altimetric and volumetric changes in the terminus of Perito Moreno (PM) glacier. This glacier is located at 50° 28' 23''S, 73° 02' 10''W at the Parque Nacional Los Glaciares, South Patagonia Icefield, Santa Cruz, Argentina. This glacier has experienced minor fluctuations or unusual behavior with respect to others glaciers since early 1960's until nowadays. The time-lapse technique allows for obtaining accurate estimates of deformations and velocity models. Digital Terrain Models (DTMs) were created from images, captured daily from April, 2012 to November, 2012, with a total of 182 days. One of the challenges was maintaining the accurate co-registration of the DTMs, which was essential for the information extraction. The differences between DTMs provided the velocities in the terminal part of PM for the period as it approaches the Peninsula de Magallanes. In additon, the DTMs were validated in order to determine the degree of uncertainty in the estimation of changes in the glacier. Keywords: time-lapse, DTMs, glacier volume change, Perito Moreno.

  15. Quantifying Waddington landscapes and paths of non-adiabatic cell fate decisions for differentiation, reprogramming and transdifferentiation.

    PubMed

    Li, Chunhe; Wang, Jin

    2013-12-06

    Cellular differentiation, reprogramming and transdifferentiation are determined by underlying gene regulatory networks. Non-adiabatic regulation via slow binding/unbinding to the gene can be important in these cell fate decision-making processes. Based on a stem cell core gene network, we uncovered the stem cell developmental landscape. As the binding/unbinding speed decreases, the landscape topography changes from bistable attractors of stem and differentiated states to more attractors of stem and other different cell states as well as substates. Non-adiabaticity leads to more differentiated cell types and provides a natural explanation for the heterogeneity observed in the experiments. We quantified Waddington landscapes with two possible cell fate decision mechanisms by changing the regulation strength or regulation timescale (non-adiabaticity). Transition rates correlate with landscape topography through barrier heights between different states and quantitatively determine global stability. We found the optimal speeds of these cell fate decision-making processes. We quantified biological paths and predict that differentiation and reprogramming go through an intermediate state (IM1), whereas transdifferentiation goes through another intermediate state (IM2). Some predictions are confirmed by recent experimental studies.

  16. [Time lapse (Embryoscope®) as a routine technique in the IVF laboratory: a useful tool for better embryo selection?].

    PubMed

    Freour, T; Lammers, J; Splingart, C; Jean, M; Barriere, P

    2012-09-01

    Among all the strategies available in order to improve success rates in IVF cycles, a lot of work has been done on embryo culture conditions and embryo quality evaluation. Most IVF centres use conventional incubators and select embryo according to punctual morphological evaluation, but this strategy has several limitations. Recently developed commercial devices associating more stable culture conditions and time lapse observation of embryo development provide new insights into early embryo development in IVF cycles. Among them, the Embryoscope(®) appears to be the most user-friendly, performing and suited for routine daily practice. The first Embryoscope(®) for France was installed in the University Hospital of Nantes in 2011. In our experience, it takes relatively a short time to get used to this system. Moreover, its integration in routine process yielded several advantages, such as better embryo selection according to kinetic parameters and observation of abnormal cleavage events, continuing education and training, quality control and flexibility. This leaded to an overall increase in success rates in IVF cycles.

  17. Shortcuts to adiabaticity by counterdiabatic driving for trapped-ion displacement in phase space

    PubMed Central

    An, Shuoming; Lv, Dingshun; del Campo, Adolfo; Kim, Kihwan

    2016-01-01

    The application of adiabatic protocols in quantum technologies is severely limited by environmental sources of noise and decoherence. Shortcuts to adiabaticity by counterdiabatic driving constitute a powerful alternative that speed up time-evolution while mimicking adiabatic dynamics. Here we report the experimental implementation of counterdiabatic driving in a continuous variable system, a shortcut to the adiabatic transport of a trapped ion in phase space. The resulting dynamics is equivalent to a ‘fast-motion video' of the adiabatic trajectory. The robustness of this protocol is shown to surpass that of competing schemes based on classical local controls and Fourier optimization methods. Our results demonstrate that shortcuts to adiabaticity provide a robust speedup of quantum protocols of wide applicability in quantum technologies. PMID:27669897

  18. Adiabatic quantum computing with spin qubits hosted by molecules.

    PubMed

    Yamamoto, Satoru; Nakazawa, Shigeaki; Sugisaki, Kenji; Sato, Kazunobu; Toyota, Kazuo; Shiomi, Daisuke; Takui, Takeji

    2015-01-28

    A molecular spin quantum computer (MSQC) requires electron spin qubits, which pulse-based electron spin/magnetic resonance (ESR/MR) techniques can afford to manipulate for implementing quantum gate operations in open shell molecular entities. Importantly, nuclear spins, which are topologically connected, particularly in organic molecular spin systems, are client qubits, while electron spins play a role of bus qubits. Here, we introduce the implementation for an adiabatic quantum algorithm, suggesting the possible utilization of molecular spins with optimized spin structures for MSQCs. We exemplify the utilization of an adiabatic factorization problem of 21, compared with the corresponding nuclear magnetic resonance (NMR) case. Two molecular spins are selected: one is a molecular spin composed of three exchange-coupled electrons as electron-only qubits and the other an electron-bus qubit with two client nuclear spin qubits. Their electronic spin structures are well characterized in terms of the quantum mechanical behaviour in the spin Hamiltonian. The implementation of adiabatic quantum computing/computation (AQC) has, for the first time, been achieved by establishing ESR/MR pulse sequences for effective spin Hamiltonians in a fully controlled manner of spin manipulation. The conquered pulse sequences have been compared with the NMR experiments and shown much faster CPU times corresponding to the interaction strength between the spins. Significant differences are shown in rotational operations and pulse intervals for ESR/MR operations. As a result, we suggest the advantages and possible utilization of the time-evolution based AQC approach for molecular spin quantum computers and molecular spin quantum simulators underlain by sophisticated ESR/MR pulsed spin technology.

  19. Diabatic Versus Adiabatic Calculation of Torsion-Vibration Interactions

    NASA Astrophysics Data System (ADS)

    Hougen, Jon T.

    2013-06-01

    The introductory part of this talk will deal briefly with two historical topics: (i) use of the words adiabatic, nonadiabatic, and diabatic in thermodynamics and quantum mechanics, and (ii) application of diabatic and adiabatic ideas to vibrational energy level calculations for a pair of diatomic-molecule potential energy curves exhibiting an avoided crossing. The main part of the talk will be devoted to recent work with Li-Hong Xu and Ron Lees on how ab initio projected frequency calculations for small-amplitude vibrations along the large-amplitude internal rotation path in methanol can best be used to help guide experimental assignments and fits in the IR vibrational spectrum. The three CH stretching vibrations for CH_{3}OH can conveniently be represented as coefficients multiplying three different types of basis vibrations, i.e., as coefficients of: (i) the local mode C-H_i bond displacements δr_{i} for hydrogens H_{1}, H_{2} and H_{3} of the methyl top, (ii) symmetrized linear combinations of the three δr_{i} of species A_{1} oplus E in the permutation-inversion group G_{6} = C_{3v} appropriate for methanol, or (iii) symmetrized linear combinations of the three δr_{i} of species 2A_{1} oplus A_{2} in the permutation-inversion group G_{6}. In this talk, we will focus on diabatic and adiabatic computations for the A_{1} oplus E basis vibrations of case (ii) above. We will briefly explain how Jahn-Teller-like and Renner-Teller-like torsion-vibration interaction terms occurring in the potential energy expression in the diabatic calculation become torsion-vibration Coriolis interaction terms occurring in the kinetic energy expression of the adiabatic calculations, and also show how, for algebraically solvable parameter choices, the same energy levels are obtained from either calculation. A final conclusion as to which approach is computationally superior for the numerical data given in a quantum chemistry output file has not yet been arrived at.

  20. Major Steps in the Discovery of Adiabatic Shear Bands

    NASA Astrophysics Data System (ADS)

    Dodd, Bradley; Walley, Stephen M.; Yang, Rong; Nesterenko, Vitali F.

    2015-10-01

    The standard story of the discovery of adiabatic shear bands is that it began with the American researchers Zener and Hollomon's famous 1944 paper where the phenomenon was first reported and named. However, a recent discovery by one of us (SMW) in the Cambridge University Library has shown that the phenomenon was discovered and described by a Russian researcher, V.P. Kravz-Tarnavskii, in 1928. A follow-up paper was published by two of his colleagues in 1935. Translations of the 1928 and 1935 papers may be found at http://arxiv.org/abs/1410.1353.

  1. Adiabatic transport of qubits around a black hole

    NASA Astrophysics Data System (ADS)

    Viennot, David; Moro, Olivia

    2017-03-01

    We consider localized qubits evolving around a black hole following a quantum adiabatic dynamics. We develop a geometric structure (based on fibre bundles) permitting to describe the quantum states of a qubit and the spacetime geometry in a single framework. The quantum decoherence induced by the black hole on the qubit is analysed in this framework (the role of the dynamical and geometric phases in this decoherence is treated), especially for the quantum teleportation protocol when one qubit falls to the event horizon. A simple formula to compute the fidelity of the teleportation is derived. The case of a Schwarzschild black hole is analysed.

  2. From Classical Nonlinear Integrable Systems to Quantum Shortcuts to Adiabaticity

    NASA Astrophysics Data System (ADS)

    Okuyama, Manaka; Takahashi, Kazutaka

    2016-08-01

    Using shortcuts to adiabaticity, we solve the time-dependent Schrödinger equation that is reduced to a classical nonlinear integrable equation. For a given time-dependent Hamiltonian, the counterdiabatic term is introduced to prevent nonadiabatic transitions. Using the fact that the equation for the dynamical invariant is equivalent to the Lax equation in nonlinear integrable systems, we obtain the counterdiabatic term exactly. The counterdiabatic term is available when the corresponding Lax pair exists and the solvable systems are classified in a unified and systematic way. Multisoliton potentials obtained from the Korteweg-de Vries equation and isotropic X Y spin chains from the Toda equations are studied in detail.

  3. Relativistic blast waves in two dimensions. I - The adiabatic case

    NASA Technical Reports Server (NTRS)

    Shapiro, P. R.

    1979-01-01

    Approximate solutions are presented for the dynamical evolution of strong adiabatic relativistic blast waves which result from a point explosion in an ambient gas in which the density varies both with distance from the explosion center and with polar angle in axisymmetry. Solutions are analytical or quasi-analytical for the extreme relativistic case and numerical for the arbitrarily relativistic case. Some general properties of nonplanar relativistic shocks are also discussed, including the incoherence of spherical ultrarelativistic blast-wave fronts on angular scales greater than the reciprocal of the shock Lorentz factor, as well as the conditions for producing blast-wave acceleration.

  4. Magnetic shielding for a spaceborne adiabatic demagnetization refrigerator (ADR)

    NASA Technical Reports Server (NTRS)

    Warner, Brent A.; Shirron, Peter J.; Castles, Stephen H.; Serlemitsos, Aristides T.

    1991-01-01

    The Goddard Space Flight Center has studied magnetic shielding for an adiabatic demagnetization refrigerator. Four types of shielding were studied: active coils, passive ferromagnetic shells, passive superconducting coils, and passive superconducting shells. The passive superconducting shells failed by allowing flux penetration. The other three methods were successful, singly or together. Experimental studies of passive ferromagnetic shielding are compared with calculations made using the Poisson Group of programs, distributed by the Los Alamos Accelerator Code Group of the Los Alamos National Laboratory. Agreement between calculation and experiment is good. The ferromagnetic material is a silicon iron alloy.

  5. More bang for your buck: Super-adiabatic quantum engines

    PubMed Central

    Campo, A. del; Goold, J.; Paternostro, M.

    2014-01-01

    The practical untenability of the quasi-static assumption makes any realistic engine intrinsically irreversible and its operating time finite, thus implying friction effects at short cycle times. An important technological goal is thus the design of maximally efficient engines working at the maximum possible power. We show that, by utilising shortcuts to adiabaticity in a quantum engine cycle, one can engineer a thermodynamic cycle working at finite power and zero friction. Our findings are illustrated using a harmonic oscillator undergoing a quantum Otto cycle. PMID:25163421

  6. Non-Adiabatic Holonomic Quantum Gates in an atomic system

    NASA Astrophysics Data System (ADS)

    Azimi Mousolou, Vahid; Canali, Carlo M.; Sjoqvist, Erik

    2012-02-01

    Quantum computation is essentially the implementation of a universal set of quantum gate operations on a set of qubits, which is reliable in the presence of noise. We propose a scheme to perform robust gates in an atomic four-level system using the idea of non-adiabatic holonomic quantum computation proposed in [1]. The gates are realized by applying sequences of short laser pulses that drive transitions between the four energy levels in such a way that the dynamical phases vanish. [4pt] [1] E. Sjoqvist, D.M. Tong, B. Hessmo, M. Johansson, K. Singh, arXiv:1107.5127v2 [quant-ph

  7. Metallization of nanofilms in strong adiabatic electric fields.

    PubMed

    Durach, Maxim; Rusina, Anastasia; Kling, Matthias F; Stockman, Mark I

    2010-08-20

    We introduce an effect of metallization of dielectric nanofilms by strong, adiabatically varying electric fields. The metallization causes optical properties of a dielectric film to become similar to those of a plasmonic metal (strong absorption and negative permittivity at low optical frequencies). This is a quantum effect, which is exponentially size-dependent, occurring at fields on the order of 0.1 V/Å and pulse durations ranging from ∼1 fs to ∼10 ns for a film thickness of 3-10 nm.

  8. Metallization of Nanofilms in Strong Adiabatic Electric Fields

    NASA Astrophysics Data System (ADS)

    Durach, Maxim; Rusina, Anastasia; Kling, Matthias F.; Stockman, Mark I.

    2010-08-01

    We introduce an effect of metallization of dielectric nanofilms by strong, adiabatically varying electric fields. The metallization causes optical properties of a dielectric film to become similar to those of a plasmonic metal (strong absorption and negative permittivity at low optical frequencies). This is a quantum effect, which is exponentially size-dependent, occurring at fields on the order of 0.1V/Å and pulse durations ranging from ˜1fs to ˜10ns for a film thickness of 3-10 nm.

  9. Salt materials testing for a spacecraft adiabatic demagnetization refrigerator

    NASA Astrophysics Data System (ADS)

    Savage, M. L.; Kittel, P.; Roellig, T.

    As part of a technology development effort to qualify adiabatic demagnetization refrigerators for use in a NASA spacecraft, such as the Space Infrared Telescope Facility, a study of low temperature characteristics, heat capacity and resistance to dehydration was conducted for different salt materials. This report includes results of testing with cerrous metaphosphate, several synthetic rubies, and chromic potassium alum (CPA). Preliminary results show that CPA may be suitable for long-term spacecraft use, provided that the salt is property encapsulated. Methods of salt pill construction and testing for all materials are discussed, as well as reliability tests. Also, the temperature regulation scheme and the test cryostat design are briefly discussed.

  10. Non-adiabatic pumping in an oscillating-piston model

    NASA Astrophysics Data System (ADS)

    Chuchem, Maya; Dittrich, Thomas; Cohen, Doron

    2012-05-01

    We consider the prototypical "piston pump" operating on a ring, where a circulating current is induced by means of an AC driving. This can be regarded as a generalized Fermi-Ulam model, incorporating a finite-height moving wall (piston) and non-trivial topology (ring). The amount of particles transported per cycle is determined by a layered structure of phase space. Each layer is characterized by a different drift velocity. We discuss the differences compared with the adiabatic and Boltzmann pictures, and highlight the significance of the "diabatic" contribution that might lead to a counter-stirring effect.

  11. Optimized sympathetic cooling of atomic mixtures via fast adiabatic strategies

    SciTech Connect

    Choi, Stephen; Sundaram, Bala; Onofrio, Roberto

    2011-11-15

    We discuss fast frictionless cooling techniques in the framework of sympathetic cooling of cold atomic mixtures. It is argued that optimal cooling of an atomic species--in which the deepest quantum degeneracy regime is achieved--may be obtained by means of sympathetic cooling with another species whose trapping frequency is dynamically changed to maintain constancy of the Lewis-Riesenfeld adiabatic invariant. Advantages and limitations of this cooling strategy are discussed, with particular regard to the possibility of cooling Fermi gases to a deeper degenerate regime.

  12. Salt materials testing for a spacecraft adiabatic demagnetization refrigerator

    NASA Technical Reports Server (NTRS)

    Savage, M. L.; Kittel, P.; Roellig, T.

    1990-01-01

    As part of a technology development effort to qualify adiabatic demagnetization refrigerators for use in a NASA spacecraft, such as the Space Infrared Telescope Facility, a study of low temperature characteristics, heat capacity and resistance to dehydration was conducted for different salt materials. This report includes results of testing with cerrous metaphosphate, several synthetic rubies, and chromic potassium alum (CPA). Preliminary results show that CPA may be suitable for long-term spacecraft use, provided that the salt is property encapsulated. Methods of salt pill construction and testing for all materials are discussed, as well as reliability tests. Also, the temperature regulation scheme and the test cryostat design are briefly discussed.

  13. Propagation of laser pulses under conditions of adiabatic population transfer

    SciTech Connect

    Arkhipkin, V G; Manushkin, D V; Timofeev, V P

    1998-12-31

    A medium of three-level absorbing atoms is considered under conditions of adiabatic population transfer. A study is made of the characteristics of spatial propagation of two delayed (relative to one another) Gaussian pulses. It is shown that selective excitation of a two-photon resonant state with a near-unity probability is conserved over the length of a medium, which is considerably greater than the absorption length of a weak probe pulse in the absence of the second field. (physical basis of quantum electronics)

  14. Stimulated Raman adiabatic passage in Tm{sup 3+}:YAG

    SciTech Connect

    Alexander, A. L.; Lauro, R.; Louchet, A.; Chaneliere, T.; Le Goueet, J. L.

    2008-10-01

    We report on the experimental demonstration of stimulated Raman adiabatic passage in a Tm{sup 3+}:YAG crystal. Tm{sup 3+}:YAG is a promising material for use in quantum information processing applications, but as yet there are few experimental investigations of coherent Raman processes in this material. We investigate the effect of inhomogeneous broadening and Rabi frequency on the transfer efficiency and the width of the two-photon spectrum. Simulations of the complete Tm{sup 3+}:YAG system are presented along with the corresponding experimental results.

  15. Adiabatic invariants in stellar dynamics. 2: Gravitational shocking

    NASA Technical Reports Server (NTRS)

    Weinberg, Martin D.

    1994-01-01

    A new theory of gravitational shocking based on time-dependent perturbation theory shows that the changes in energy and angular momentum due to a slowly varying disturbance are not exponentially small for stellar dynamical systems in general. It predicts significant shock heating by slowly varying perturbations previously thought to be negligible according to the adiabatic criterion. The theory extends the scenarios traditionally computed only with the impulse approximation and is applicable to a wide class of disturbances. The approach is applied specifically to the problem of disk shocking of star clusters.

  16. Modeling of the Adiabatic and Isothermal Methanation Process

    NASA Astrophysics Data System (ADS)

    Porubova, Jekaterina; Bazbauers, Gatis; Markova, Darja

    2011-01-01

    Increased use of biomass offers one of the ways to reduce anthropogenic impact on the environment. Using various biomass conversion processes, it is possible to obtain different types of fuels: • solid, e.g. bio-carbon; • liquid, e.g. biodiesel and ethanol; • gaseous, e.g. biomethane. Biomethane can be used in the transport and energy sector, and the total methane production efficiency can reach 65%. By modeling adiabatic and isothermal methanation processes, the most effective one from the methane production point of view is defined. Influence of the process parameters on the overall efficiency of the methane production is determined.

  17. Enhancing Monitoring of Recharge-Related Environmental Remediation Processes Using Time-Lapse Seismic Refraction

    NASA Astrophysics Data System (ADS)

    Gaines, D. P.; Baker, G. S.; Hubbard, S. S.; Watson, D. B.; Jardine, P. M.

    2008-12-01

    The application of time-lapse seismic methods has typically been constrained to large-scale geologic investigations associated with petroleum exploration and exploitation; however, there is growing interest in monitoring near-surface phenomena (e.g., fluid flow in fractured or karstic geologic media, hydraulic recharge, and near-surface anthropogenic manipulations) using time-lapse seismic methods. In order to demonstrate the feasibility of detailed time-lapse seismic refraction tomography (TLSRT), we have monitored a perched water table at Oak Ridge National Laboratory (ORNL) Y-12 site in conjunction with a multi- disciplinary investigation of the fate and transport of contaminants. Due to remnant anthropogenic alterations of the site (i.e., replacement of 0-7 meters of contaminated soil with poorly sorted limestone gravel fill during construction of a seepage basin cap), the near surface hydrology is extremely complex and is hypothesized to have a large influence on infiltration, contaminant distribution, and contaminant remobilization. Understanding the impact of recharge-related flow and transport processes is especially important in regions that are subjected to significant precipitation events, such as at the ORNL Y-12 site. Here, TLSRT techniques are used to monitor the changing geometry of a perched water table located near the covered seepage basin, while coincident time-lapse surface electrical resistivity (TLERT) measurements are used to monitor changes in total dissolved solids due to recharge-related dilution. Data are collected at multiple time intervals (i.e., daily, weekly, monthly, yearly) and at varying stages in the evolution of the perch zone. The resulting seismic data are processed using wavepath eikonal tomography (WET) and differenced to identify areas of variable velocity associated with a change in saturation. The differenced tomograms correlate with discrete point water table measurements; however, the highly variable water table at this

  18. The application of time-lapse photography for the observation of snow processes in mountainous catchments

    NASA Astrophysics Data System (ADS)

    Garvelmann, J.; Pohl, S.; Weiler, M.

    2012-04-01

    For the forecast of snowmelt flood events in mountainous catchments it is very important to know the spatial distribution and temporal evolution of the snowcover. Topography and vegetation have the most important influence on the spatio-temporal variability of the snowcover. In order to accomplish a continuous observation of the quantity and the status of the snowcover, an extensive measurement network consisting of numerous standalone snow and meteorological sensors and time-lapse photography was established in three catchments in the Black Forest, a typical mid latitude medium elevation mountain range. Catchments with different topographic characteristic and areal extent were specifically chosen for this study. Within the catchments, a stratified sampling design was used to cover a wide range of altitudes and exposures. In order to investigate the influence of a vegetation cover on the snow processes beneath sensors and cameras have been installed under the forest canopy and on adjacent open field sites, respectively. In the presented study the application of spatially distributed time-lapse cameras for the observation of snow processes and snowcover properties at the catchment scale will be discussed. Image analysis software was applied to extract information about snowdepth, snow albedo and canopy interception from the digital images. A measurement scale with a black/white board was installed in the focus of every camera to allow a determination of the snowdepth at every camera location while the black/white board was used to provide a white balance for the albedo estimation. The albedo provides important information about the status of the snowcover and its temporal evolution is a crucial factor for the snowmelt energy balance. Furthermore the time-lapse images provided a continuous observation of the forest canopy allowing the estimation of the interception efficiency and the temporal evolution of the snow interception for different topographic situations

  19. Control of adiabatic light transfer in coupled waveguides with longitudinally varying detuning

    NASA Astrophysics Data System (ADS)

    Oukraou, Hassan; Vittadello, Laura; Coda, Virginie; Ciret, Charles; Alonzo, Massimo; Rangelov, Andon A.; Vitanov, Nikolay V.; Montemezzani, Germano

    2017-02-01

    We study adiabatic light transfer in systems of two coupled waveguides with spatially varying detuning of the propagation constants, providing an analogy to the quantum phenomena of rapid adiabatic passage (RAP) and two-state stimulated Raman adiabatic passage (two-state STIRAP). Experimental demonstration using a photoinduction technique confirms the robust and broadband character of the structures that act as broadband directional couplers and broadband beam splitters, respectively.

  20. Shortcut to Adiabatic Passage in Two- and Three-Level Atoms

    SciTech Connect

    Chen Xi; Lizuain, I.; Muga, J. G.; Ruschhaupt, A.; Guery-Odelin, D.

    2010-09-17

    We propose a method to speed up adiabatic passage techniques in two-level and three-level atoms extending to the short-time domain their robustness with respect to parameter variations. It supplements or substitutes the standard laser beam setups with auxiliary pulses that steer the system along the adiabatic path. Compared to other strategies, such as composite pulses or the original adiabatic techniques, it provides a fast and robust approach to population control.

  1. Determining the Complexity of the Quantum Adiabatic Algorithm using Quantum Monte Carlo Simulations

    DTIC Science & Technology

    2012-12-18

    efficiently a quantum computer could solve optimization problems using the quantum adiabatic algorithm (QAA). Comparisons were made with a classical...Park, NC 27709-2211 15. SUBJECT TERMS Quantum Adiabatic Algorithm , Optimization, Monte Carlo, quantum computer, satisfiability problems, spin glass... quantum adiabatic algorithm (QAA). Comparisons were made with a classical heuristic algorithm , WalkSAT. A preliminary study was also made to see if the

  2. Shortcut to adiabatic control of soliton matter waves by tunable interaction

    PubMed Central

    Li, Jing; Sun, Kun; Chen, Xi

    2016-01-01

    We propose a method for shortcut to adiabatic control of soliton matter waves in harmonic traps. The tunable interaction controlled by Feshbach resonance is inversely designed to achieve fast and high-fidelity compression of soliton matter waves as compared to the conventional adiabatic compression. These results pave the way to control the nonlinear dynamics for matter waves and optical solitons by using shortcuts to adiabaticity. PMID:28009007

  3. Non-adiabatic effects in thermochemistry, spectroscopy and kinetics: the general importance of all three Born-Oppenheimer breakdown corrections.

    PubMed

    Reimers, Jeffrey R; McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S

    2015-10-14

    Using a simple model Hamiltonian, the three correction terms for Born-Oppenheimer (BO) breakdown, the adiabatic diagonal correction (DC), the first-derivative momentum non-adiabatic correction (FD), and the second-derivative kinetic-energy non-adiabatic correction (SD), are shown to all contribute to thermodynamic and spectroscopic properties as well as to thermal non-diabatic chemical reaction rates. While DC often accounts for >80% of thermodynamic and spectroscopic property changes, the commonly used practice of including only the FD correction in kinetics calculations is rarely found to be adequate. For electron-transfer reactions not in the inverted region, the common physical picture that diabatic processes occur because of surface hopping at the transition state is proven inadequate as the DC acts first to block access, increasing the transition state energy by (ℏω)(2)λ/16J(2) (where λ is the reorganization energy, J the electronic coupling and ω the vibration frequency). However, the rate constant in the weakly-coupled Golden-Rule limit is identified as being only inversely proportional to this change rather than exponentially damped, owing to the effects of tunneling and surface hopping. Such weakly-coupled long-range electron-transfer processes should therefore not be described as "non-adiabatic" processes as they are easily described by Born-Huang ground-state adiabatic surfaces made by adding the DC to the BO surfaces; instead, they should be called just "non-Born-Oppenheimer" processes. The model system studied consists of two diabatic harmonic potential-energy surfaces coupled linearly through a single vibration, the "two-site Holstein model". Analytical expressions are derived for the BO breakdown terms, and the model is solved over a large parameter space focusing on both the lowest-energy spectroscopic transitions and the quantum dynamics of coherent-state wavepackets. BO breakdown is investigated pertinent to: ammonia inversion, aromaticity

  4. Proton transfer in nanoconfined polar solvents. II. Adiabatic proton transfer dynamics.

    PubMed

    Thompson, Ward H

    2005-09-29

    The reaction dynamics for a model phenol-amine proton transfer system in a confined methyl chloride solvent have been simulated by mixed quantum-classical molecular dynamics. In this approach, the proton vibration is treated quantum mechanically (and adiabatically), while the rest of the system is described classically. Nonequilibrium trajectories are used to determine the proton transfer reaction rate constant. The reaction complex and methyl chloride solvent are confined in a smooth, hydrophobic spherical cavity, and radii of 10, 12, and 15 A have been considered. The effects of the cavity radius and the heavy atom (hydrogen bond) distance on the reaction dynamics are considered, and the mechanism of the proton transfer is examined in detail by analysis of the trajectories.

  5. Singularity of the time-energy uncertainty in adiabatic perturbation and cycloids on a Bloch sphere.

    PubMed

    Oh, Sangchul; Hu, Xuedong; Nori, Franco; Kais, Sabre

    2016-02-26

    Adiabatic perturbation is shown to be singular from the exact solution of a spin-1/2 particle in a uniformly rotating magnetic field. Due to a non-adiabatic effect, its quantum trajectory on a Bloch sphere is a cycloid traced by a circle rolling along an adiabatic path. As the magnetic field rotates more and more slowly, the time-energy uncertainty, proportional to the length of the quantum trajectory, calculated by the exact solution is entirely different from the one obtained by the adiabatic path traced by the instantaneous eigenstate. However, the non-adiabatic Aharonov-Anandan geometric phase, measured by the area enclosed by the exact path, approaches smoothly the adiabatic Berry phase, proportional to the area enclosed by the adiabatic path. The singular limit of the time-energy uncertainty and the regular limit of the geometric phase are associated with the arc length and arc area of the cycloid on a Bloch sphere, respectively. Prolate and curtate cycloids are also traced by different initial states outside and inside of the rolling circle, respectively. The axis trajectory of the rolling circle, parallel to the adiabatic path, is shown to be an example of transitionless driving. The non-adiabatic resonance is visualized by the number of cycloid arcs.

  6. Fast adiabatic quantum state transfer and entanglement generation between two atoms via dressed states

    PubMed Central

    Wu, Jin-Lei; Ji, Xin; Zhang, Shou

    2017-01-01

    We propose a dressed-state scheme to achieve shortcuts to adiabaticity in atom-cavity quantum electrodynamics for speeding up adiabatic two-atom quantum state transfer and maximum entanglement generation. Compared with stimulated Raman adiabatic passage, the dressed-state scheme greatly shortens the operation time in a non-adiabatic way. By means of some numerical simulations, we determine the parameters which can guarantee the feasibility and efficiency both in theory and experiment. Besides, numerical simulations also show the scheme is robust against the variations in the parameters, atomic spontaneous emissions and the photon leakages from the cavity.

  7. Singularity of the time-energy uncertainty in adiabatic perturbation and cycloids on a Bloch sphere

    PubMed Central

    Oh, Sangchul; Hu, Xuedong; Nori, Franco; Kais, Sabre

    2016-01-01

    Adiabatic perturbation is shown to be singular from the exact solution of a spin-1/2 particle in a uniformly rotating magnetic field. Due to a non-adiabatic effect, its quantum trajectory on a Bloch sphere is a cycloid traced by a circle rolling along an adiabatic path. As the magnetic field rotates more and more slowly, the time-energy uncertainty, proportional to the length of the quantum trajectory, calculated by the exact solution is entirely different from the one obtained by the adiabatic path traced by the instantaneous eigenstate. However, the non-adiabatic Aharonov- Anandan geometric phase, measured by the area enclosed by the exact path, approaches smoothly the adiabatic Berry phase, proportional to the area enclosed by the adiabatic path. The singular limit of the time-energy uncertainty and the regular limit of the geometric phase are associated with the arc length and arc area of the cycloid on a Bloch sphere, respectively. Prolate and curtate cycloids are also traced by different initial states outside and inside of the rolling circle, respectively. The axis trajectory of the rolling circle, parallel to the adiabatic path, is shown to be an example of transitionless driving. The non-adiabatic resonance is visualized by the number of cycloid arcs. PMID:26916031

  8. Heterogeneous cell-cycle behavior in response to UVB irradiation by a population of single cancer cells visualized by time-lapse FUCCI imaging.

    PubMed

    Miwa, Shinji; Yano, Shuya; Kimura, Hiroaki; Yamamoto, Mako; Toneri, Makoto; Murakami, Takashi; Hayashi, Katsuhiro; Yamamoto, Norio; Fujiwara, Toshiyoshi; Tsuchiya, Hiroyuki; Hoffman, Robert M

    2015-01-01

    The present study analyzed the heterogeneous cell-cycle dependence and fate of single cancer cells in a population treated with UVB using a fluorescence ubiquitination-based cell-cycle (FUCCI) imaging system. HeLa cells expressing FUCCI were irradiated by 100 or 200 J/m(2) UVB. Modulation of the cell-cycle and apoptosis were observed by time-lapse confocal microscopy imaging every 30 min for 72 h. Correlation between cell survival and factors including cell-cycle phase at the time of the irradiation of UVB, mitosis and the G1/S transition were analyzed using the Kaplan-Meier method along with the log rank test. Time-lapse FUCCI imaging of HeLa cells demonstrated that UVB irradiation induced cell-cycle arrest in S/G2/M phase in the majority of the cells. The cells irradiated by 100 or 200 J/m(2) UVB during G0/G1 phase had a higher survival rate than the cells irradiated during S/G2/M phase. A minority of cells could escape S/G2/M arrest and undergo mitosis which significantly correlated with decreased survival of the cells. In contrast, G1/S transition significantly correlated with increased survival of the cells after UVB irradiation. UVB at 200 J/m(2) resulted in a greater number of apoptotic cells.

  9. Understanding infiltration and groundwater flow at an artificial recharge facility using time-lapse gravity data

    NASA Astrophysics Data System (ADS)

    Kennedy, Jeffrey

    Groundwater provides a fundamental resource for modern life. Throughout the world, groundwater is managed by storing (recharging) it underground in natural aquifers for future withdrawal and consumptive use. In Arizona, over 4 million people benefit from managed aquifer storage, but little effort is made to track the movement of recharged water through the subsurface. Motivated by current limitations in our ability to monitor percolation and groundwater movement at the scale of a recharge facility, an effort to collect time-lapse gravity data was carried out at the Southern Avra Valley Storage and Recovery Project (SAVSARP) operated by the City of Tucson, Arizona. In addition to collecting water-level data 12 wells, there were three primary gravity experiments: (1) five continuously-recording gravity meters (2 iGrav superconducting gravity meters and 3 gPhone gravity meters) were installed semi-permanently in control buildings adjacent to the recharge basins, (2) absolute gravity measurements were made at nine locations over a 17 month period, and (3) three relative-gravity campaigns were carried out on a network of 70 stations. This large-scale controlled experiment, with known infiltration and pumping rates, resulted in one of the most comprehensive datasets of its kind. Gravity data led to several hydrologic insights, both through direct measurement and modeling. First, the infiltration rate could be estimated accurately based on the initial rate of gravity change during infiltration, regardless of the specific yield. Using two gravity meters, the depth, and therefore speed, of the wetting front beneath a recharge basin was observed, including the time at which the water table was reached. Spatial maps of gravity change from relative gravity surveys show areas where infiltration efficiency is highest, and where groundwater accumulates; storage accumulated preferentially to the west of the recharge basins, away from pumping wells. Such information would be

  10. Robust quantum logic in neutral atoms via adiabatic Rydberg dressing

    SciTech Connect

    Keating, Tyler; Cook, Robert L.; Hankin, Aaron M.; Jau, Yuan -Yu; Biedermann, Grant W.; Deutsch, Ivan H.

    2015-01-28

    We study a scheme for implementing a controlled-Z (CZ) gate between two neutral-atom qubits based on the Rydberg blockade mechanism in a manner that is robust to errors caused by atomic motion. By employing adiabatic dressing of the ground electronic state, we can protect the gate from decoherence due to random phase errors that typically arise because of atomic thermal motion. In addition, the adiabatic protocol allows for a Doppler-free configuration that involves counterpropagating lasers in a σ+- orthogonal polarization geometry that further reduces motional errors due to Doppler shifts. The residual motional error is dominated by dipole-dipole forces acting on doubly-excited Rydberg atoms when the blockade is imperfect. As a result, for reasonable parameters, with qubits encoded into the clock states of 133Cs, we predict that our protocol could produce a CZ gate in < 10 μs with error probability on the order of 10-3.

  11. Breakdown of adiabatic electron behavior in expanding magnetic fields

    NASA Astrophysics Data System (ADS)

    Lichko, Emily; Egedal, Jan; Daughton, William

    2015-11-01

    During magnetic reconnection the incoming magnetic flux tubes expand in the inflow region. If this expansion is sufficiently slow the results are well described by a previously developed adiabatic model. Using kinetic simulations in a simple geometry and applying rapid magnetic perturbations, this study investigates the point at which the adiabatic assumption fails. To this end a 2D VPIC simulation was constructed, where the magnetic field in a uniform plasma is perturbed by externally driven currents. By varying the onset speed of the magnetic perturbation and the electron thermal speed, we found a sharp threshold at which this model breaks down. We believe that this point is determined by the time of the magnetic pumping compared to the electron transit time through the region, i.e. ω ~ Ḃ / B ~vthe / L . This threshold was also characterized by the launching of Whistler waves and with time domain structures, such as electron holes and double layers, which agree with those seen during magnetic reconnection and may relate to similar structures in the Van Allen Belts. NSF GEM award 1405166 and NASA grant NNX14AC68G.

  12. Robust quantum logic in neutral atoms via adiabatic Rydberg dressing

    DOE PAGES

    Keating, Tyler; Cook, Robert L.; Hankin, Aaron M.; ...

    2015-01-28

    We study a scheme for implementing a controlled-Z (CZ) gate between two neutral-atom qubits based on the Rydberg blockade mechanism in a manner that is robust to errors caused by atomic motion. By employing adiabatic dressing of the ground electronic state, we can protect the gate from decoherence due to random phase errors that typically arise because of atomic thermal motion. In addition, the adiabatic protocol allows for a Doppler-free configuration that involves counterpropagating lasers in a σ+/σ- orthogonal polarization geometry that further reduces motional errors due to Doppler shifts. The residual motional error is dominated by dipole-dipole forces actingmore » on doubly-excited Rydberg atoms when the blockade is imperfect. As a result, for reasonable parameters, with qubits encoded into the clock states of 133Cs, we predict that our protocol could produce a CZ gate in < 10 μs with error probability on the order of 10-3.« less

  13. Schedule path optimization for adiabatic quantum computing and optimization

    NASA Astrophysics Data System (ADS)

    Zeng, Lishan; Zhang, Jun; Sarovar, Mohan

    2016-04-01

    Adiabatic quantum computing and optimization have garnered much attention recently as possible models for achieving a quantum advantage over classical approaches to optimization and other special purpose computations. Both techniques are probabilistic in nature and the minimum gap between the ground state and first excited state of the system during evolution is a major factor in determining the success probability. In this work we investigate a strategy for increasing the minimum gap and success probability by introducing intermediate Hamiltonians that modify the evolution path between initial and final Hamiltonians. We focus on an optimization problem relevant to recent hardware implementations and present numerical evidence for the existence of a purely local intermediate Hamiltonian that achieve the optimum performance in terms of pushing the minimum gap to one of the end points of the evolution. As a part of this study we develop a convex optimization formulation of the search for optimal adiabatic schedules that makes this computation more tractable, and which may be of independent interest. We further study the effectiveness of random intermediate Hamiltonians on the minimum gap and success probability, and empirically find that random Hamiltonians have a significant probability of increasing the success probability, but only by a modest amount.

  14. Highly parallel implementation of non-adiabatic Ehrenfest molecular dynamics

    NASA Astrophysics Data System (ADS)

    Kanai, Yosuke; Schleife, Andre; Draeger, Erik; Anisimov, Victor; Correa, Alfredo

    2014-03-01

    While the adiabatic Born-Oppenheimer approximation tremendously lowers computational effort, many questions in modern physics, chemistry, and materials science require an explicit description of coupled non-adiabatic electron-ion dynamics. Electronic stopping, i.e. the energy transfer of a fast projectile atom to the electronic system of the target material, is a notorious example. We recently implemented real-time time-dependent density functional theory based on the plane-wave pseudopotential formalism in the Qbox/qb@ll codes. We demonstrate that explicit integration using a fourth-order Runge-Kutta scheme is very suitable for modern highly parallelized supercomputers. Applying the new implementation to systems with hundreds of atoms and thousands of electrons, we achieved excellent performance and scalability on a large number of nodes both on the BlueGene based ``Sequoia'' system at LLNL as well as the Cray architecture of ``Blue Waters'' at NCSA. As an example, we discuss our work on computing the electronic stopping power of aluminum and gold for hydrogen projectiles, showing an excellent agreement with experiment. These first-principles calculations allow us to gain important insight into the the fundamental physics of electronic stopping.

  15. Enhanced Diffusion Weighting Generated by Selective Adiabatic Pulse Trains

    PubMed Central

    Sun, Ziqi; Bartha, Robert

    2007-01-01

    A theoretical description and experimental validation of the enhanced diffusion weighting generated by selective adiabatic full passage (AFP) pulse trains is provided. Six phantoms (Ph-1 to Ph-6) were studied on a 4T Varian/Siemens whole body MRI system. Phantoms consisted of 2.8 cm diameter plastic tubes containing a mixture of 10 μm ORGASOL polymer beads and 2 mM Gd-DTPA dissolved in 5% agar (Ph-1) or nickel(II) ammonium sulphate hexahydrate doped (56.3 mM – 0.8 mM) water solutions (Ph-2 to Ph-6). A customized localization by adiabatic selective refocusing (LASER) sequence containing slice selective AFP pulse trains and pulsed diffusion gradients applied in the phase encoding direction was used to measure 1H2O diffusion. The b-value associated with the LASER sequence was derived using the Bloch-Torrey equation. The apparent diffusion coefficients measured by LASER were comparable to those measured by a conventional pulsed gradient spin-echo (PGSE) sequence for all phantoms. Image signal intensity increased in Ph-1 and decreased in Ph-2 – Ph-6 as AFP pulse train length increased while maintaining a constant echo-time. These experimental results suggest that such AFP pulse trains can enhance contrast between regions containing microscopic magnetic susceptibility variations and homogeneous regions in which dynamic dephasing relaxation mechanisms are dominant. PMID:17600741

  16. The 0.1K bolometers cooled by adiabatic demagnetization

    NASA Technical Reports Server (NTRS)

    Roellig, T.; Lesyna, L.; Kittel, P.; Werner, M.

    1983-01-01

    The most straightforward way of reducing the noise equivalent power of bolometers is to lower their operating temperature. We have been exploring the possibility of using conventionally constructed bolometers at ultra-low temperatures to achieve NEP's suitable to the background environment of cooled space telescopes. We have chosen the technique of adiabatic demagnetization of a paramagnetic salt as a gravity independent, compact, and low power way to achieve temperatures below pumped He-3 (0.3 K). The demagnetization cryostat we used was capable of reaching temperatures below 0.08 K using Chromium Potassium Alum as a salt from a starting temperature of 1.5 K and a starting magnetic field of 30,000 gauss. Computer control of the magnetic field decay allowed a temperature of 0.2 K to be maintained to within 0.5 mK over a time period exceeding 14 hours. The refrigerator duty cycle was over 90 percent at this temperature. The success of these tests has motivated us to construct a more compact portable adiabatic demagnetization cryostat capable of bolometer optical tests and use at the 5m Hale telescope at 1mm wavelengths.

  17. Conditions for super-adiabatic droplet growth after entrainment mixing

    DOE PAGES

    Yang, Fan; Shaw, Raymond; Xue, Huiwen

    2016-07-29

    Cloud droplet response to entrainment and mixing between a cloud and its environment is considered, accounting for subsequent droplet growth during adiabatic ascent following a mixing event. The vertical profile for liquid water mixing ratio after a mixing event is derived analytically, allowing the reduction to be predicted from the mixing fraction and from the temperature and humidity for both the cloud and environment. It is derived for the limit of homogeneous mixing. The expression leads to a critical height above the mixing level: at the critical height the cloud droplet radius is the same for both mixed and unmixedmore » parcels, and the critical height is independent of the updraft velocity and mixing fraction. Cloud droplets in a mixed parcel are larger than in an unmixed parcel above the critical height, which we refer to as the “super-adiabatic” growth region. Analytical results are confirmed with a bin microphysics cloud model. Using the model, we explore the effects of updraft velocity, aerosol source in the environmental air, and polydisperse cloud droplets. Results show that the mixed parcel is more likely to reach the super-adiabatic growth region when the environmental air is humid and clean. It is also confirmed that the analytical predictions are matched by the volume-mean cloud droplet radius for polydisperse size distributions. The findings have implications for the origin of large cloud droplets that may contribute to onset of collision–coalescence in warm clouds.« less

  18. Adiabatic cooling of the artificial Porcupine plasma jet

    NASA Astrophysics Data System (ADS)

    Ruizhin, Iu. Ia.; Treumann, R. A.; Bauer, O. H.; Moskalenko, A. M.

    1987-01-01

    Measurements of the plasma density obtained during the interaction of the artificial plasma jet, fired into the ionosphere with the body of the Porcupine main payload, have been analyzed for times when there was a well-developed wake effect. Using wake theory, the maximum temperature of the quasi-neutral xenon ion beam has been determined for an intermediate distance from the ion beam source when the beam has left the diamagnetic region but is still much denser than the ionospheric background plasma. The beam temperature is found to be about 4 times less than the temperature at injection. This observation is very well explained by adiabatic cooling of the beam during its initial diamagnetic and current-buildup phases at distances r smaller than 10 m. Outside this region, the beam conserves the temperature achieved. The observation proves that the artificial plasma jet passes through an initial gas-like diamagnetic phase restricted to the vicinity of the beam source, where it expands adiabatically. Partial cooling also takes place outside the diamagnetic region where the beam current still builds up. The observations also support a recently developed current-closure model of the quasi-neutral ion beam.

  19. AB INITIO SIMULATIONS FOR MATERIAL PROPERTIES ALONG THE JUPITER ADIABAT

    SciTech Connect

    French, Martin; Becker, Andreas; Lorenzen, Winfried; Nettelmann, Nadine; Bethkenhagen, Mandy; Redmer, Ronald; Wicht, Johannes

    2012-09-15

    We determine basic thermodynamic and transport properties of hydrogen-helium-water mixtures for the extreme conditions along Jupiter's adiabat via ab initio simulations, which are compiled in an accurate and consistent data set. In particular, we calculate the electrical and thermal conductivity, the shear and longitudinal viscosity, and diffusion coefficients of the nuclei. We present results for associated quantities like the magnetic and thermal diffusivity and the kinematic shear viscosity along an adiabat that is taken from a state-of-the-art interior structure model. Furthermore, the heat capacities, the thermal expansion coefficient, the isothermal compressibility, the Grueneisen parameter, and the speed of sound are calculated. We find that the onset of dissociation and ionization of hydrogen at about 0.9 Jupiter radii marks a region where the material properties change drastically. In the deep interior, where the electrons are degenerate, many of the material properties remain relatively constant. Our ab initio data will serve as a robust foundation for applications that require accurate knowledge of the material properties in Jupiter's interior, e.g., models for the dynamo generation.

  20. Adiabatic-nuclei calculations of positron scattering from molecular hydrogen

    NASA Astrophysics Data System (ADS)

    Zammit, Mark C.; Fursa, Dmitry V.; Savage, Jeremy S.; Bray, Igor; Chiari, Luca; Zecca, Antonio; Brunger, Michael J.

    2017-02-01

    The single-center adiabatic-nuclei convergent close-coupling method is used to investigate positron collisions with molecular hydrogen (H2) in the ground and first vibrationally excited states. Cross sections are presented over the energy range from 1 to 1000 eV for elastic scattering, vibrational excitation, total ionization, and the grand total cross section. The present adiabatic-nuclei positron-H2 scattering length is calculated as A =-2.70 a0 for the ground state and A =-3.16 a0 for the first vibrationally excited state. The present elastic differential cross sections are also used to "correct" the low-energy grand total cross-section measurements of the Trento group [A. Zecca et al., Phys. Rev. A 80, 032702 (2009), 10.1103/PhysRevA.80.032702] for the forward-angle-scattering effect. In general, the comparison with experiment is good. By performing convergence studies, we estimate that our Rm=1.448 a0 fixed-nuclei results are converged to within ±5 % for the major scattering integrated cross sections.

  1. Breakdown of the adiabatic Born-Oppenheimer approximation in graphene

    NASA Astrophysics Data System (ADS)

    Pisana, Simone; Lazzeri, Michele; Casiraghi, Cinzia; Novoselov, Kostya S.; Geim, A. K.; Ferrari, Andrea C.; Mauri, Francesco

    2007-03-01

    The adiabatic Born-Oppenheimer approximation (ABO) has been the standard ansatz to describe the interaction between electrons and nuclei since the early days of quantum mechanics. ABO assumes that the lighter electrons adjust adiabatically to the motion of the heavier nuclei, remaining at any time in their instantaneous ground state. ABO is well justified when the energy gap between ground and excited electronic states is larger than the energy scale of the nuclear motion. In metals, the gap is zero and phenomena beyond ABO (such as phonon-mediated superconductivity or phonon-induced renormalization of the electronic properties) occur. The use of ABO to describe lattice motion in metals is, therefore, questionable. In spite of this, ABO has proved effective for the accurate determination of chemical reactions, molecular dynamics and phonon frequencies in a wide range of metallic systems. Here, we show that ABO fails in graphene. Graphene, recently discovered in the free state, is a zero-bandgap semiconductor that becomes a metal if the Fermi energy is tuned applying a gate voltage, Vg. This induces a stiffening of the Raman G peak that cannot be described within ABO.

  2. Analysis of embryo morphokinetics, multinucleation and cleavage anomalies using continuous time-lapse monitoring in blastocyst transfer cycles

    PubMed Central

    2014-01-01

    Background Time-lapse imaging combined with embryo morphokinetics may offer a non-invasive means for improving embryo selection. Data from clinics worldwide are necessary to compare and ultimately develop embryo classifications models using kinetic data. The primary objective of this study was to determine if there were kinetic differences between embryos with limited potential and those more often associated with in vitro blastocyst formation and/or implantation. We also wanted to compare putative kinetic markers for embryo selection as proposed by other laboratories to what we were observing in our own laboratory setting. Methods Kinetic data and cycle outcomes were retrospectively analyzed in patients age 39 and younger with 7 or more zygotes cultured in the Embryoscope. Timing of specific events from the point of insemination were determined using time-lapse (TL) imaging. The following kinetic markers were assessed: time to syngamy (tPNf), t2, time to two cells (c), 3c (t3), 4c ( t4), 5c (t5), 8c (t8), morula (tMor), start of blastulation (tSB); tBL, blastocyst (tBL); expanded blastocyst (tEBL). Durations of the second (cc2) and third (cc3) cell cycles, the t5-t2 interval as well as time to complete synchronous divisions s1, s2 and s3 were calculated. Incidence and impact on development of nuclear and cleavage anomalies were also assessed. Results A total of 648 embryos transferred on day 5 were analyzed. The clinical pregnancy and implantation rate were 72% and 50%, respectively. Morphokinetic data showed that tPNf, t2,t4, t8, s1, s2,s3 and cc2 were significantly different in embryos forming blastocysts (ET or frozen) versus those with limited potential either failing to blastulate or else forming poor quality blastocysts ,ultimately discarded. Comparison of embryo kinetics in cycles with all embryos implanting (KID+) versus no implantation (KID-) suggested that markers of embryo competence to implant may be different from ability to form a blastocyst. The

  3. Assessment of human embryos by time-lapse videography: A comparison of quantitative and qualitative measures between two independent laboratories.

    PubMed

    Liu, Yanhe; Copeland, Christopher; Stevens, Adam; Feenan, Katie; Chapple, Vincent; Myssonski, Kim; Roberts, Peter; Matson, Phillip

    2015-12-01

    A total of 488 Day 3 human embryos with known implantation data from two independent in vitro fertilization laboratories were included for analysis, with 270 from Fertility North (FN) and 218 from Canberra Fertility Centre (CFC). Implanting embryos grew at different rates between FN and CFC as indicated in hours of the time intervals between pronuclear fading and the 4- (13.9 ± 1.1 vs. 14.9 ± 1.8), 5- (25.7 ± 1.9 vs. 28.4 ± 3.7) and 8-cell stages (29.0 ± 3.2 vs. 32.2 ± 4.6), as well as the durations of 2- (10.8 ± 0.8 vs. 11.6 ± 1.1), 3- (0.4 ± 0.5 vs. 0.9 ± 1.2), and 4-cell stages (11.8 ± 1.4 vs. 13.6 ± 2.9), all p<0.05. The application of a previously published time-lapse algorithm on ICSI embryos from the two participating laboratories failed to reproduce a predictive pattern of implantation outcomes (FN: AUC=0.565, p=0.250; CFC: AUC=0.614, p=0.224). However, for the qualitative measures including poor conventional morphology, direct cleavage, reverse cleavage and <6 intercellular contact points at the end of the 4-cell stage, there were similar proportions of embryos showing at least one of these biological events in either implanting (3.1% vs. 3.3%, p>0.05) or non-implanting embryos (30.4% vs. 38.3%, p>0.05) between FN and CFC. Furthermore, implanting embryos favored lower proportions of the above biological events compared to the non-implanting ones in both laboratories (both p<0.01). To conclude, human embryo morphokinetics may vary between laboratories, therefore time-lapse algorithms emphasizing quantitative timing parameters may have reduced inter-laboratory transferability; qualitative measures are independent of cell division timings, with potentially improved inter-laboratory reproducibility.

  4. Experimental Investigations on Conventional and Semi-Adiabatic Diesel Engine Using Simarouba Biodiesel as Fuel

    NASA Astrophysics Data System (ADS)

    Ravi, M. U.; Reddy, C. P.; Ravindranath, K.

    2013-04-01

    In view of fast depletion of fossil fuels and the rapid rate at which the fuel consumption is taking place all over the world, scientists are searching for alternate fuels for maintaining the growth industrially and economically. Hence search for alternate fuel(s) has become imminent. Out of the limited options for internal combustion engines, the bio diesel fuel appears to be the best. Many advanced countries are implementing several biodiesel initiatives and developmental programmes in order to become self sufficient and reduce the import bills. Biodiesel is biodegradable and renewable fuel with the potential to enhance the performance and reduce engine exhaust emissions. This is due to ready usage of existing diesel engines, fuel distribution pattern, reduced emission profiles, and eco-friendly properties of biodiesel. Simarouba biodiesel (SBD), the methyl ester of Simarouba oil is one such alternative fuel which can be used as substitute to conventional petro-diesel. The present work involves experimental investigation on the use of SBD blends as fuel in conventional diesel engine and semi-adiabatic diesel engine. The oil was triple filtered to eliminate particulate matter and then transesterified to obtain biodiesel. The project envisaged aims at conducting analysis of diesel with SBD blends (10, 20, 30 and 40 %) in conventional engine and semi-adiabatic engine. Also it was decided to vary the injection pressure (180, 190 and 200 bar) and observe its effect on performance and also suggest better value of injection pressure. The engine was made semi adiabatic by coating the piston crown with partially stabilized zirconia (PSZ). Kirloskar AV I make (3.67 kW) vertical, single cylinder, water cooled diesel engine coupled to an eddy current dynamometer with suitable measuring instrumentation/accessories used for the study. Experiments were initially carried out using pure diesel fuel to provide base line data. The test results were compared based on the performance

  5. Time-lapse borehole radar for monitoring rainfall infiltration through podosol horizons in a sandy vadose zone

    NASA Astrophysics Data System (ADS)

    Strobach, Elmar; Harris, B. D.; Dupuis, J. C.; Kepic, A. W.

    2014-03-01

    The shallow aquifer on the Gnangara Mound, north of Perth, Western Australia, is recharged by winter rainfall. Water infiltrates through a sandy Podosol where cemented accumulation (B-) horizons are common. They are water retentive and may impede recharge. To observe wetting fronts and the influence of soil horizons on unsaturated flow, we deployed time-lapse borehole radar techniques sensitive to soil moisture variations during an annual recharge cycle. Zero-offset crosswell profiling (ZOP) and vertical radar profiling (VRP) measurements were performed at six sites on a monthly basis before, during, and after annual rainfall in 2011. Water content profiles are derived from ZOP logs acquired in closely spaced wells. Sites with small separation between wells present potential repeatability and accuracy difficulties. Such problems could be lessened by (i) ZOP saturated zone velocity matching of time-lapse curves, and (ii) matching of ZOP and VRP results. The moisture contents for the baseline condition and subsequent observations are computed using the Topp relationship. Time-lapse moisture curves reveal characteristic vadose zone infiltration regimes. Examples are (I) full recharge potential after 200 mm rainfall, (II) delayed wetting and impeded recharge, and (III) no recharge below 7 m depth. Seasonal infiltration trends derived from long-term time-lapse neutron logging at several sites are shown to be comparable with infiltration trends recovered from time-lapse crosswell radar measurements. However, radar measurements sample a larger volume of earth while being safer to deploy than the neutron method which employs a radioactive source. For the regime (III) site, where time-lapse radar indicates no net recharge or zero flux to the water table, a simple water balance provides an evapotranspiration value of 620 mm for the study period. This value compares favorably to previous studies at similar test sites in the region. Our six field examples demonstrate

  6. Quantum-mechanical approach to predissociation of water dimers in the vibrational adiabatic representation: Importance of channel interactions

    SciTech Connect

    Mineo, H.; Kuo, J. L.; Niu, Y. L.; Lin, S. H.; Fujimura, Y.

    2015-08-28

    The results of application of the quantum-mechanical adiabatic theory to vibrational predissociation (VPD) of water dimers, (H{sub 2}O){sub 2} and (D{sub 2}O){sub 2}, are presented. We consider the VPD processes including the totally symmetric OH mode of the dimer and the bending mode of the fragment. The VPD in the adiabatic representation is induced by breakdown of the vibrational adiabatic approximation, and two types of nonadiabatic coupling matrix elements are involved: one provides the VPD induced by the low-frequency dissociation mode and the other provides the VPD through channel interactions induced by the low-frequency modes. The VPD rate constants were calculated using the Fermi golden rule expression. A closed form for the nonadiabatic transition matrix element between the discrete and continuum states was derived in the Morse potential model. All of the parameters used were obtained from the potential surfaces of the water dimers, which were calculated by the density functional theory procedures. The VPD rate constants for the two processes were calculated in the non-Condon scheme beyond the so-called Condon approximation. The channel interactions in and between the initial and final states were taken into account, and those are found to increase the VPD rates by 3(1) orders of magnitude for the VPD processes in (H{sub 2}O){sub 2} ((D{sub 2}O){sub 2}). The fraction of the bending-excited donor fragments is larger than that of the bending-excited acceptor fragments. The results obtained by quantum-mechanical approach are compared with both experimental and quasi-classical trajectory calculation results.

  7. Minds "at attention": mindfulness training curbs attentional lapses in military cohorts.

    PubMed

    Jha, Amishi P; Morrison, Alexandra B; Dainer-Best, Justin; Parker, Suzanne; Rostrup, Nina; Stanley, Elizabeth A

    2015-01-01

    We investigated the impact of mindfulness training (MT) on attentional performance lapses associated with task-unrelated thought (i.e., mind wandering). Periods of persistent and intensive demands may compromise attention and increase off-task thinking. Here, we investigated if MT may mitigate these deleterious effects and promote cognitive resilience in military cohorts enduring a high-demand interval of predeployment training. To better understand which aspects of MT programs are most beneficial, three military cohorts were examined. Two of the three groups were provided MT. One group received an 8-hour, 8-week variant of Mindfulness-based Mind Fitness Training (MMFT) emphasizing engagement in training exercises (training-focused MT, n = 40), a second group received a didactic-focused variant emphasizing content regarding stress and resilience (didactic-focused MT, n = 40), and the third group served as a no-training control (NTC, n = 24). Sustained Attention to Response Task (SART) performance was indexed in all military groups and a no-training civilian group (CIV, n = 45) before (T1) and after (T2) the MT course period. Attentional performance (measured by A', a sensitivity index) was lower in NTC vs. CIV at T2, suggesting that performance suffers after enduring a high-demand predeployment interval relative to a similar time period of civilian life. Yet, there were significantly fewer performance lapses in the military cohorts receiving MT relative to NTC, with training-focused MT outperforming didactic-focused MT at T2. From T1 to T2, A' degraded in NTC and didactic-focused MT but remained stable in training-focused MT and CIV. In sum, while protracted periods of high-demand military training may increase attentional performance lapses, practice-focused MT programs akin to training-focused MT may bolster attentional performance more than didactic-focused programs. As such, training-focused MT programs should be further examined in cohorts experiencing

  8. High-Resolution Time-Lapse Monitoring of Unsaturated Flow using Automated GPR Data Collection

    NASA Astrophysics Data System (ADS)

    Mangel, A. R.; Moysey, S. M.; Lytle, B. A.; Bradford, J. H.

    2015-12-01

    High-resolution ground-penetrating radar (GPR) data provide the detailed information required to image subsurface structures. Recent advances in GPR monitoring now also make it possible to study transient hydrologic processes, but high-speed data acquisition is critical for this application. We therefore highlight the capabilities of our automated system to acquire time-lapse, high-resolution multifold GPR data during infiltration of water into soils. The system design allows for fast acquisition of constant-offset (COP) and common-midpoint profiles (CMP) to monitor unsaturated flow at multiple locations. Qualitative interpretation of the unprocessed COPs can provide substantial information regarding the hydrologic response of the system, such as the complexities of patterns associated with the wetting of the soil and geophysical evidence of non-uniform propagation of a wetting front. While we find that unprocessed images are informative, we show that the spatial variability of velocity introduced by infiltration events can complicate the images and that migration of the data is an effective tool to improve interpretability of the time-lapse images. The ability of the system to collect high density CMP data also introduces the potential for improving the velocity model along with the image via reflection tomography in the post-migrated domain. We show that for both simulated and empirical time-lapse GPR profiles we can resolve a propagating wetting front in the soil that is in good agreement with the response of in-situ soil moisture measurements. The data from these experiments illustrate the importance of high-speed, high-resolution GPR data acquisition for obtaining insight about the dynamics of hydrologic events. Continuing research is aimed at improving the quantitative analysis of surface-based GPR monitoring data for identifying preferential flow in soils.

  9. Time-Lapse Electrical Geophysical Monitoring of Amendment-Based Biostimulation.

    PubMed

    Johnson, Timothy C; Versteeg, Roelof J; Day-Lewis, Frederick D; Major, William; Lane, John W

    2015-01-01

    Biostimulation is increasingly used to accelerate microbial remediation of recalcitrant groundwater contaminants. Effective application of biostimulation requires successful emplacement of amendment in the contaminant target zone. Verification of remediation performance requires postemplacement assessment and contaminant monitoring. Sampling-based approaches are expensive and provide low-density spatial and temporal information. Time-lapse electrical resistivity tomography (ERT) is an effective geophysical method for determining temporal changes in subsurface electrical conductivity. Because remedial amendments and biostimulation-related biogeochemical processes often change subsurface electrical conductivity, ERT can complement and enhance sampling-based approaches for assessing emplacement and monitoring biostimulation-based remediation. Field studies demonstrating the ability of time-lapse ERT to monitor amendment emplacement and behavior were performed during a biostimulation remediation effort conducted at the Department of Defense Reutilization and Marketing Office (DRMO) Yard, in Brandywine, Maryland, United States. Geochemical fluid sampling was used to calibrate a petrophysical relation in order to predict groundwater indicators of amendment distribution. The petrophysical relations were field validated by comparing predictions to sequestered fluid sample results, thus demonstrating the potential of electrical geophysics for quantitative assessment of amendment-related geochemical properties. Crosshole radar zero-offset profile and borehole geophysical logging were also performed to augment the data set and validate interpretation. In addition to delineating amendment transport in the first 10 months after emplacement, the time-lapse ERT results show later changes in bulk electrical properties interpreted as mineral precipitation. Results support the use of more cost-effective surface-based ERT in conjunction with limited field sampling to improve spatial

  10. Time-lapse lens-free imaging of cell migration in diverse physical microenvironments.

    PubMed

    Mathieu, Evelien; Paul, Colin D; Stahl, Richard; Vanmeerbeeck, Geert; Reumers, Veerle; Liu, Chengxun; Konstantopoulos, Konstantinos; Lagae, Liesbet

    2016-08-16

    Time-lapse imaging of biological samples is important for understanding complex (patho)physiological processes. A growing number of point-of-care biomedical assays rely on real-time imaging of flowing or migrating cells. However, the cost and complexity of integrating experimental models simulating physiologically relevant microenvironments with bulky imaging systems that offer sufficient spatiotemporal resolution limit the use of time-lapse assays in research and clinical settings. This paper introduces a compact and affordable lens-free imaging (LFI) device based on the principle of coherent in-line, digital holography for time-lapse cell migration assays. The LFI device combines single-cell resolution (1.2 μm) with a large field of view (6.4 × 4.6 mm(2)), thus rendering it ideal for high-throughput applications and removing the need for expensive and bulky programmable motorized stages. The set-up is so compact that it can be housed in a standard cell culture incubator, thereby avoiding custom-built stage top incubators. LFI is thoroughly benchmarked against conventional live-cell phase contrast microscopy for random cell motility on two-dimensional (2D) surfaces and confined migration on 1D-microprinted lines and in microchannels using breast adenocarcinoma cells. The quality of the results obtained by the two imaging systems is comparable, and they reveal that cells migrate more efficiently upon increasing confinement. Interestingly, assays of confined migration more readily distinguish the migratory potential of metastatic MDA-MB-231 cells from non-metastatic MCF7 cells relative to traditional 2D migration assays. Altogether, this single-cell migration study establishes LFI as an elegant and useful tool for live-cell imaging.

  11. Exploring the Resolution of Time-Lapse Microgravity at an Aquifer Storage and Recovery Site

    NASA Astrophysics Data System (ADS)

    Bradley, C. C.; Ali, M.; Levannier, A.

    2008-12-01

    Time-Lapse Microgravity can reveal relatively small underground fluid displacements via the redistribution of density-contrast at fluid boundaries. The method has, for example, been successfully demonstrated in underground natural gas storage and carbon sequestration studies, and has clear potential for hydrological research and applications such as mining and hydrocarbon reservoir management. For surveys based on modern spring-type gravimeters, the technique's basic measurement resolution is limited by instrument drift, offset errors, and viscoelastic strain hysteresis of the sensor. Despite the sophistication of modern instruments, actual field performance of gravimeters still depends on operator technique and survey conditions. To explore the ultimate resolution of field microgravity (and time-lapse measurements, in particular), we have made repeated gravity surveys of a shallow aquifer storage and recovery test site in the UAE, where injection produces a 'water mound' - localized vertical water-level shifts - monitored by a set of instrumented wells. Based on field measurements and additional laboratory testing of our Scintrex CG-5 gravimeter, we find that the main limit on measurement resolution is from orientation strain hysteresis - a variable amplitude error that decays in approximately 30 minutes, typically in response to orientation during transport between measurement stations. Still, carefully conducted surveys (during the summer, in the desert conditions of the UAE) demonstrate time-lapse microgravity resolution of about 3 microGals, corresponding to a water-level shift of about 0.3 m for this aquifer. In this paper, we will discuss what a 'careful survey' requires and present our detailed testing and survey results.

  12. Time-Lapse Electrical Geophysical Monitoring of Amendment-Based Biostimulation

    SciTech Connect

    Johnson, Timothy C.; Versteeg, Roelof; Day-Lewis, Frederick D.; Major, William; Lane, John W.

    2015-12-02

    Biostimulation is increasingly used to accelerate microbial remediation of recalcitrant groundwater contaminants. Effective application of biostimulation requires successful emplacement of amendment in the contaminant target zone. Verification of remediation performance requires postemplacement assessment and contaminant monitoring. Sampling based approaches are expensive and provide low-density spatial and temporal information. Time-lapse electrical resistivity tomography (ERT) is an effective geophysical method for determining temporal changes in subsurface electrical conductivity. Because remedial amendments and biostimulation-related biogeochemical processes often change subsurface electrical conductivity, ERT can complement and enhance sampling-based approaches for assessing emplacement and monitoring biostimulation-based remediation. Field studies demonstrating the ability of time-lapse ERT to monitor amendment emplacement and behavior were performed during a biostimulation remediation effort conducted at the Department of Defense Reutilization and Marketing Office (DRMO) Yard, in Brandywine, Maryland, United States. Geochemical fluid sampling was used to calibrate a petrophysical relation in order to predict groundwater indicators of amendment distribution. The petrophysical relations were field validated by comparing predictions to sequestered fluid sample results, thus demonstrating the potential of electrical geophysics for quantitative assessment of amendment-related geochemical properties. Crosshole radar zero-offset profile and borehole geophysical logging were also performed to augment the data set and validate interpretation. In addition to delineating amendment transport in the first 10 months after emplacement, the time-lapse ERT results show later changes in bulk electrical properties interpreted as mineral precipitation. Results support the use of more cost-effective surfacebased ERT in conjunction with limited field sampling to improve spatial

  13. A state-space Bayesian framework for estimating biogeochemical transformations using time-lapse geophysical data

    SciTech Connect

    Chen, J.; Hubbard, S.; Williams, K.; Pride, S.; Li, L.; Steefel, C.; Slater, L.

    2009-04-15

    We develop a state-space Bayesian framework to combine time-lapse geophysical data with other types of information for quantitative estimation of biogeochemical parameters during bioremediation. We consider characteristics of end-products of biogeochemical transformations as state vectors, which evolve under constraints of local environments through evolution equations, and consider time-lapse geophysical data as available observations, which could be linked to the state vectors through petrophysical models. We estimate the state vectors and their associated unknown parameters over time using Markov chain Monte Carlo sampling methods. To demonstrate the use of the state-space approach, we apply it to complex resistivity data collected during laboratory column biostimulation experiments that were poised to precipitate iron and zinc sulfides during sulfate reduction. We develop a petrophysical model based on sphere-shaped cells to link the sulfide precipitate properties to the time-lapse geophysical attributes and estimate volume fraction of the sulfide precipitates, fraction of the dispersed, sulfide-encrusted cells, mean radius of the aggregated clusters, and permeability over the course of the experiments. Results of the case study suggest that the developed state-space approach permits the use of geophysical datasets for providing quantitative estimates of end-product characteristics and hydrological feedbacks associated with biogeochemical transformations. Although tested here on laboratory column experiment datasets, the developed framework provides the foundation needed for quantitative field-scale estimation of biogeochemical parameters over space and time using direct, but often sparse wellbore data with indirect, but more spatially extensive geophysical datasets.

  14. Time-lapse 3D ground-penetrating radar during plot-scale infiltration experiments

    NASA Astrophysics Data System (ADS)

    Allroggen, Niklas; Jackisch, Conrad; Tronicke, Jens

    2016-04-01

    In electrical resistive soils, surface-based ground-penetrating radar (GPR) is known as the geophysical tool providing the highest spatial resolution. Thus, 2D and 3D GPR surveys are commonly used for imaging subsurface structures or estimating soil moisture content. Due to its sensitivity to soil moisture and its non-invasive character, GPR provides a large potential to monitor soil moisture variation at high temporal and spatial resolution. As shown in previous experiments, the acquisition of time-lapse GPR data under field conditions requires a high data quality in terms of repeatability as well as spatial and temporal resolution. We present hydrogeophysical field experiments at the plot scale (1m x 1m), during which we record time-lapse 3D GPR. For GPR data acquisition, we use a pulseEKKO PRO GPR system equipped with a pair of 500 MHz antennas in combination with a specially designed metal-free measuring platform. Additionally, we collect tracer and soil moisture data, which are used to improve the interpretation of the GPR data with special focus on preferential flow paths and their structured advective flow field. After an accurate time-lapse GPR data processing, we compare 3D reflection events before and after infiltration and quantitatively interpret their relative time-shift in terms of soil moisture variations. Thereby, we are able to account for basically all of the infiltrated water. The first experiments demonstrate the general applicability of our experimental approach but are limited by the number of acquired time steps and measurement during the sprinkling period (the time of the highest temporal dynamics) are not possible at all. Based on this experience we redesign our experimental setup to continuously collect GPR data during irrigation and infiltration. Thereby, we strongly increase the temporal resolution of our measurements, improve the interpretability of the GPR data, and monitor the temporal and spatial dynamics of shallow subsurface

  15. A state-space Bayesian framework for estimating biogeochemical transformations using time-lapse geophysical data

    NASA Astrophysics Data System (ADS)

    Chen, Jinsong; Hubbard, Susan S.; Williams, Kenneth H.; Pride, Steve; Li, Li; Steefel, Carl; Slater, Lee

    2009-08-01

    We develop a state-space Bayesian framework to combine time-lapse geophysical data with other types of information for quantitative estimation of biogeochemical parameters during bioremediation. We consider characteristics of end products of biogeochemical transformations as state vectors, which evolve under constraints of local environments through evolution equations, and consider time-lapse geophysical data as available observations, which could be linked to the state vectors through petrophysical models. We estimate the state vectors and their associated unknown parameters over time using Markov chain Monte Carlo sampling methods. To demonstrate the use of the state-space approach, we apply it to complex resistivity data collected during laboratory column biostimulation experiments that were poised to precipitate iron and zinc sulfides during sulfate reduction. We develop a petrophysical model based on sphere-shaped cells to link the sulfide precipitate properties to the time-lapse geophysical attributes and estimate volume fraction of the sulfide precipitates, fraction of the dispersed, sulfide-encrusted cells, mean radius of the aggregated clusters, and permeability over the course of the experiments. Results of the case study suggest that the developed state-space approach permits the use of geophysical data sets for providing quantitative estimates of end-product characteristics and hydrological feedbacks associated with biogeochemical transformations. Although tested here on laboratory column experiment data sets, the developed framework provides the foundation needed for quantitative field-scale estimation of biogeochemical parameters over space and time using direct, but often sparse wellbore data with indirect, but more spatially extensive geophysical data sets.

  16. Time-lapse camera studies of sea-disposed chemical munitions in Hawaii

    NASA Astrophysics Data System (ADS)

    Edwards, Margo H.; Fornari, Daniel J.; Rognstad, Mark R.; Kelley, Christopher D.; Mah, Christopher L.; Davis, Logan K.; Flores, Kyle R. M.; Main, Erin L.; Bruso, Natalie L.

    2016-06-01

    The interactions between fauna and sea-disposed munitions provide important evidence regarding whether munitions constituents affect the health of the ocean environment and its inhabitants. To date few studies of these interactions have been conducted at deep-water disposal sites; typically observations of fauna in the vicinity of sea-disposed munitions are limited to the few minutes or hours required to collect physical samples at a specific location. During the 2012 Hawaii Undersea Military Munitions Assessment (HUMMA) field program we deployed two deep-sea time-lapse camera systems with the objectives of cataloging the diversity of fauna visiting sea-disposed chemical munitions and observing faunal behavior and physiology. Over the 1- and 3-day deployments we recorded 28 different species of fishes, crustaceans, mollusks, cnidarians, and echinoderms at the two sites. Both cameras captured the previously undocumented behavior of brisingid sea stars repositioning themselves along chemical munitions casings. Despite the fact that brisingid sea stars are able to move, for the duration of both time-lapse experiments they remained on chemical munitions casings. We interpret this result to indicate that the advantages of residing on a hard substrate slightly elevated above the seafloor outweigh the effects of chemical munitions constituents for brisingid sea stars. One type of physiological anomaly observed on several arms of the brisingid sea stars at the time-lapse sites led to the collection and examination of six specimens. As reported by Mah (2015. Deep Sea Res. II, 2015, XX-XX), these physiological features are the result of parasitic crustaceans and are not caused by chemical munitions constituents.

  17. Epikarstic storage and doline structural characterization with time-lapse geophysics (seismic refraction & electrical resistivity)

    NASA Astrophysics Data System (ADS)

    Valois, R.; Galibert, P.; Guérin, R.; Mendes, M.; Plagnes, V.

    2011-12-01

    Karst formations are one of the most challenging environments in terms of groundwater, engineering and environmental issues. Geophysical methods can provide useful subsurface information in karst regions concerning groundwater vulnerability assessment, exploitation or hazard estimation. First, dolines are studied as preferential pathways for the protection of karstic aquifer in south France. Geophysics helps to characterize lateral and underground morphologies of such objects and is able to detect doline hidden by the soil cover too. Electrical resistivity and seismic refraction tomographies provide information about dolines filling and could help to propose a genesis scenario. Time-lapse resistivity measurements show that the studied doline is more vulnerable to infiltration on its sides than at its centre. The epikarst could be defined as a perched aquifer above the massive carbonate rocks; it constitutes a highly fractured zone, which water stock capacities. So, the epikarst was investigated with 3D seismic refraction and results show an important velocity anisotropy linked to the fracturing and weathering of the dolostone. The 3D model presents also some large heterogeneities: a corridor with highly weathered dolostone and an unweathered pinnacle. The corridor is probably situated on vertical joints, which have conducted aggressive water. The associated weathering with residual weathered-rock keeping its initial volume could create a "ghost-rock" corridor. So, the epikarst in the dolostones of the Causse du Larzac (France) seems to be composed by "ghost-rock" developed around a specific direction of fractures. Time-lapse electrical resistivity and seismic refraction velocity were carried out on this epikarst to observe the influence of water saturation on the measurements. The results show important variations for both seismic and electrical methods and are localized in the first 6 m: in the weathered zone. So, time-lapse measurements could more easily identify

  18. Simple proof of equivalence between adiabatic quantum computation and the circuit model.

    PubMed

    Mizel, Ari; Lidar, Daniel A; Mitchell, Morgan

    2007-08-17

    We prove the equivalence between adiabatic quantum computation and quantum computation in the circuit model. An explicit adiabatic computation procedure is given that generates a ground state from which the answer can be extracted. The amount of time needed is evaluated by computing the gap. We show that the procedure is computationally efficient.

  19. Time-Lapse Imaging to Examine the Growth Kinetics of Arabidopsis Seedlings in Response to Ethylene.

    PubMed

    Binder, Brad M

    2017-01-01

    Ethylene is well known to inhibit the growth of dark-grown eudicot seedlings. Most studies examine this inhibition after several days of exposure to ethylene. However, such end-point analysis misses transient responses and the dynamic nature of growth regulation. Here, high-resolution, time-lapse imaging is described as a method to gather data about ethylene growth kinetics and movement responses of the hypocotyls of dark-grown seedlings of Arabidopsis thaliana. These methods allow for the characterization of short-term kinetic responses and can be modified for the analysis of roots and seedlings from other species.

  20. Arctic sea-ice variations from time-lapse passive microwave imagery

    NASA Technical Reports Server (NTRS)

    Campbell, W. J.; Ramseier, R. O.; Zwally, H. J.; Gloersen, P.

    1980-01-01

    This paper presents: (1) a short historical review of the passive microwave research on sea ice, which established the observational and theoretical base permitting the interpretation of the first passive microwave images of earth obtained by the Nimbus-5 ESMR; (2) the construction of a time-lapse motion picture film of a 16-month set of serial ESMR images to aid in the formidable data analysis task; and (3) a few of the most significant findings resulting from an early analysis of these data, using selected ESMR images to illustrate these findings.