Pairing renormalization and regularization within the local density approximation
Borycki, P.J.; Dobaczewski, J.; Nazarewicz, W.; Stoitsov, M.V.
2006-04-15
We discuss methods used in mean-field theories to treat pairing correlations within the local density approximation. Pairing renormalization and regularization procedures are compared in spherical and deformed nuclei. Both prescriptions give fairly similar results, although the theoretical motivation, simplicity, and stability of the regularization procedure make it a method of choice for future applications.
Generalized local-density approximation for spherical potentials
Zhang, X.; Nicholson, D.M.
1999-08-01
An alternative density functional for the spherical approximation of cell potentials is formulated. It relies on overlapping atomic spheres for the calculation of the kinetic energy, similar to the atomic sphere approximation (ASA), however, a shape correction is used that has the same form as the interstitial treatment in the nonoverlapping muffin-tin (MT) approach. The intersite Coulomb energy is evaluated using the Madelung energy as computed in the MT approach, while the on-site Coulomb energy is calculated using the ASA. The Kohn-Sham equations for the functional are then solved self-consistently. The ASA is known to give poor elastic constants and good point defect energies. Conversely the MT approach gives good elastic constants and poor point defect energies. The proposed new functional maintains the simplicity of the spherical potentials found in the ASA and MT approaches, but gives good values for both elastic constants and point defects. This solution avoids a problem, absent in the ASA but suffered by the MT approximation, of incorrect distribution of site charges when charge transfer is large. Relaxation of atomic positions is thus facilitated. Calculations confirm that the approach gives similar elastic constants to the MT approximation, and defect formation energies similar to those obtained with ASA. {copyright} {ital 1999} {ital The American Physical Society}
Connection between Hybrid Functionals and Importance of the Local Density Approximation.
Mosquera, Martín A; Borca, Carlos H; Ratner, Mark A; Schatz, George C
2016-03-10
The exchange-correlation (XC) local density approximation (LDA) is the original density functional used to investigate the electronic structure of molecules and solids within the formulation of Kohn and Sham. The LDA is fundamental for the development of density-functional approximations. In this work we consider the generalized Kohn-Sham (GKS) theory of hybrid functionals. The GKS formalism is an extension of the Kohn-Sham theory for electronic ground states and leads to a vast set of alternative density functionals, which can be estimated by the LDA and related methods. Herein we study auxiliary electronic systems with parametrized interactions and derive (i) a set of exact equations relating the GKS XC energies in the parameter space and (ii) a formal relation between the parameters and the standard XC derivative discontinuity. In view of the new results and previously reported findings, we discuss why the inclusion of Fock exchange, and its long-range-corrected form (in the ground-state calculations and in linear-response Kohn-Sham equations), dominate over the generalized gradient corrections to enhance the quality of the fundamental gap and to enhance excitation-energy estimations. As an example, we show that the adiabatic CAM-LDA0 (a functional with 1/4 global and 1/2 long-range Hartree-Fock interaction, respectively, a range separation factor of 1/3, and pure LDA exchange and correlation) works for electronic excitations as well as the adiabatic CAM-B3LYP functional. PMID:26901359
Sun, Bo; Zhang, Ping; Zhao, Xian-Geng
2008-02-28
The electronic structure and properties of PuO2 and Pu2O3 have been studied from first principles by the all-electron projector-augmented-wave method. The local density approximation+U and the generalized gradient approximation+U formalisms have been used to account for the strong on-site Coulomb repulsion among the localized Pu 5f electrons. We discuss how the properties of PuO2 and Pu2O3 are affected by the choice of U as well as the choice of exchange-correlation potential. Also, oxidation reaction of Pu2O3, leading to formation of PuO2, and its dependence on U and exchange-correlation potential have been studied. Our results show that by choosing an appropriate U, it is promising to correctly and consistently describe structural, electronic, and thermodynamic properties of PuO2 and Pu2O3, which enable the modeling of redox process involving Pu-based materials possible. PMID:18315070
Adiabatic approximation for the density matrix
NASA Astrophysics Data System (ADS)
Band, Yehuda B.
1992-05-01
An adiabatic approximation for the Liouville density-matrix equation which includes decay terms is developed. The adiabatic approximation employs the eigenvectors of the non-normal Liouville operator. The approximation is valid when there exists a complete set of eigenvectors of the non-normal Liouville operator (i.e., the eigenvectors span the density-matrix space), the time rate of change of the Liouville operator is small, and an auxiliary matrix is nonsingular. Numerical examples are presented involving efficient population transfer in a molecule by stimulated Raman scattering, with the intermediate level of the molecule decaying on a time scale that is fast compared with the pulse durations of the pump and Stokes fields. The adiabatic density-matrix approximation can be simply used to determine the density matrix for atomic or molecular systems interacting with cw electromagnetic fields when spontaneous emission or other decay mechanisms prevail.
Adiabatic approximation for nucleus-nucleus scattering
Johnson, R.C.
2005-10-14
Adiabatic approximations to few-body models of nuclear scattering are described with emphasis on reactions with deuterons and halo nuclei (frozen halo approximation) as projectiles. The different ways the approximation should be implemented in a consistent theory of elastic scattering, stripping and break-up are explained and the conditions for the theory's validity are briefly discussed. A formalism which links few-body models and the underlying many-body system is outlined and the connection between the adiabatic and CDCC methods is reviewed.
Wilson, B.; Liberman, D.A.
1995-01-18
The plasma polarization shift computed with a Local Density Functional model of an ion-sphere model is compared with results calculated using an optimum central field effective exchange potential. Indications are that the bulk of the shift is an artifact of the approximate exchange functional describing the interaction between bound and continuum orbitals in the LDA.
An adiabatic approximation for grain alignment theory
NASA Astrophysics Data System (ADS)
Roberge, W. G.
1997-10-01
The alignment of interstellar dust grains is described by the joint distribution function for certain `internal' and `external' variables, where the former describe the orientation of the axes of a grain with respect to its angular momentum, J, and the latter describe the orientation of J relative to the interstellar magnetic field. I show how the large disparity between the dynamical time-scales of the internal and external variables - which is typically 2-3 orders of magnitude - can be exploited to simplify calculations of the required distribution greatly. The method is based on an `adiabatic approximation' which closely resembles the Born-Oppenheimer approximation in quantum mechanics. The adiabatic approximation prescribes an analytic distribution function for the `fast' dynamical variables and a simplified Fokker-Planck equation for the `slow' variables which can be solved straightforwardly using various techniques. These solutions are accurate to O(epsilon), where epsilon is the ratio of the fast and slow dynamical time-scales. As a simple illustration of the method, I derive an analytic solution for the joint distribution established when Barnett relaxation acts in concert with gas damping. The statistics of the analytic solution agree with the results of laborious numerical calculations which do not exploit the adiabatic approximation.
An Adiabatic Approximation for Grain Alignment Theory
NASA Astrophysics Data System (ADS)
Roberge, W. G.
1997-12-01
The alignment of interstellar dust grains is described by the joint distribution function for certain ``internal'' and ``external'' variables, where the former describe the orientation of a grain's axes with respect to its angular momentum, J, and the latter describe the orientation of J relative to the interstellar magnetic field. I show how the large disparity between the dynamical timescales of the internal and external variables--- which is typically 2--3 orders of magnitude--- can be exploited to greatly simplify calculations of the required distribution. The method is based on an ``adiabatic approximation'' which closely resembles the Born-Oppenheimer approximation in quantum mechanics. The adiabatic approximation prescribes an analytic distribution function for the ``fast'' dynamical variables and a simplified Fokker-Planck equation for the ``slow'' variables which can be solved straightforwardly using various techniques. These solutions are accurate to cal {O}(epsilon ), where epsilon is the ratio of the fast and slow dynamical timescales. As a simple illustration of the method, I derive an analytic solution for the joint distribution established when Barnett relaxation acts in concert with gas damping. The statistics of the analytic solution agree with the results of laborious numerical calculations which do not exploit the adiabatic approximation.
Li, Arvin H.-T.; Chao, S.D.
2006-01-15
To verify the recently calculated intermolecular interaction potentials of the methane dimer within the density functional theory using the (Perdew) local density approximation (LDA) [Chen et al., Phys. Rev. A 69, 034701 (2004)], we have performed a parallel series of calculations using the LDA/6-311++G (3df, 3pd) level of theory with selected exchange functionals (B, G96, MPW, O, PBE, PW91, S, and XA). None of the above calculated intermolecular interaction potentials from the local density approximation reproduce the results reported in the commented paper. In addition, we point out the inappropriateness of using the Lennard-Jones function to model the long-range parts of the calculated intermolecular interaction potentials, as suggested positively by Chen et al.
[Bond selective chemistry beyond the adiabatic approximation
Butler, L.J.
1993-02-28
The adiabatic Born-Oppenheimer potential energy surface approximation is not valid for reaction of a wide variety of energetic materials and organic fuels; coupling between electronic states of reacting species plays a key role in determining the selectivity of the chemical reactions induced. This research program initially studies this coupling in (1) selective C-Br bond fission in 1,3- bromoiodopropane, (2) C-S:S-H bond fission branching in CH[sub 3]SH, and (3) competition between bond fission channels and H[sub 2] elimination in CH[sub 3]NH[sub 2].
Local-density approximation for confined bosons in an optical lattice
Bergkvist, Sara; Henelius, Patrik; Rosengren, Anders
2004-11-01
We investigate local and global properties of the one-dimensional Bose-Hubbard model with an external confining potential, describing an atomic condensate in an optical lattice. Using quantum Monte Carlo techniques we demonstrate that a local-density approximation, which relates the unconfined and the confined model, yields quantitatively correct results in most of the interesting parameter range. We also examine claims of universal behavior in the confined system, and demonstrate the origin of a previously calculated fine structure in the experimentally accessible momentum distribution.
Bond selective chemistry beyond the adiabatic approximation
Butler, L.J.
1993-12-01
One of the most important challenges in chemistry is to develop predictive ability for the branching between energetically allowed chemical reaction pathways. Such predictive capability, coupled with a fundamental understanding of the important molecular interactions, is essential to the development and utilization of new fuels and the design of efficient combustion processes. Existing transition state and exact quantum theories successfully predict the branching between available product channels for systems in which each reaction coordinate can be adequately described by different paths along a single adiabatic potential energy surface. In particular, unimolecular dissociation following thermal, infrared multiphoton, or overtone excitation in the ground state yields a branching between energetically allowed product channels which can be successfully predicted by the application of statistical theories, i.e. the weakest bond breaks. (The predictions are particularly good for competing reactions in which when there is no saddle point along the reaction coordinates, as in simple bond fission reactions.) The predicted lack of bond selectivity results from the assumption of rapid internal vibrational energy redistribution and the implicit use of a single adiabatic Born-Oppenheimer potential energy surface for the reaction. However, the adiabatic approximation is not valid for the reaction of a wide variety of energetic materials and organic fuels; coupling between the electronic states of the reacting species play a a key role in determining the selectivity of the chemical reactions induced. The work described below investigated the central role played by coupling between electronic states in polyatomic molecules in determining the selective branching between energetically allowed fragmentation pathways in two key systems.
NASA Astrophysics Data System (ADS)
Li, Dafa
2016-05-01
The adiabatic theorem was proposed about 90 years ago and has played an important role in quantum physics. The quantitative adiabatic condition constructed from eigenstates and eigenvalues of a Hamiltonian is a traditional tool to estimate adiabaticity and has proven to be the necessary and sufficient condition for adiabaticity. However, recently the condition has become a controversial subject. In this paper, we list some expressions to estimate the validity of the adiabatic approximation. We show that the quantitative adiabatic condition is invalid for the adiabatic approximation via the Euclidean distance between the adiabatic state and the evolution state. Furthermore, we deduce general necessary and sufficient conditions for the validity of the adiabatic approximation by different definitions.
Uniform electron gases. II. The generalized local density approximation in one dimension
Loos, Pierre-François Ball, Caleb J.; Gill, Peter M. W.
2014-05-14
We introduce a generalization (gLDA) of the traditional Local Density Approximation (LDA) within density functional theory. The gLDA uses both the one-electron Seitz radius r{sub s} and a two-electron hole curvature parameter η at each point in space. The gLDA reduces to the LDA when applied to the infinite homogeneous electron gas but, unlike the LDA, it is also exact for finite uniform electron gases on spheres. We present an explicit gLDA functional for the correlation energy of electrons that are confined to a one-dimensional space and compare its accuracy with LDA, second- and third-order Møller-Plesset perturbation energies, and exact calculations for a variety of inhomogeneous systems.
Relativistic Coulomb excitation within the time dependent superfluid local density approximation
Stetcu, I.; Bertulani, C. A.; Bulgac, A.; Magierski, P.; Roche, K. J.
2015-01-06
Within the framework of the unrestricted time-dependent density functional theory, we present for the first time an analysis of the relativistic Coulomb excitation of the heavy deformed open shell nucleus ^{238}U. The approach is based on the superfluid local density approximation formulated on a spatial lattice that can take into account coupling to the continuum, enabling self-consistent studies of superfluid dynamics of any nuclear shape. We compute the energy deposited in the target nucleus as a function of the impact parameter, finding it to be significantly larger than the estimate using the Goldhaber-Teller model. The isovector giant dipole resonance, the dipole pygmy resonance, and giant quadrupole modes are excited during the process. As a result, the one-body dissipation of collective dipole modes is shown to lead a damping width Γ↓≈0.4 MeV and the number of preequilibrium neutrons emitted has been quantified.
NASA Astrophysics Data System (ADS)
Magrakvelidze, Maia; Madjet, Mohamed; Chakraborty, Himadri
2016-05-01
We investigate Wigner-Smith (WS) time delays of the photoionization from various subshells of xenon using the time-dependent local density approximation (TDLDA) with the Leeuwen and Baerends exchange-correlation functional. At the 4d giant dipole resonance region as well as near all the Cooper minimum anti-resonances in 5p, 5s and 4d photoemissions, effects of electron correlations uniquely determine the shapes of the emission quantum phase. The Wigner-Smith time delay derived from this phase indicates significant variations as a function of energy. The results qualitatively support our TDLDA predictions at the fullerene plasmon region and at 3p Cooper minimum in argon, and should encourage attosecond measurements of Xe photoemission via two-photon interferometric techniques, such as RABITT. The work is supported by the NSF, USA.
Relativistic Coulomb excitation within the time dependent superfluid local density approximation
Stetcu, I.; Bertulani, C. A.; Bulgac, A.; Magierski, P.; Roche, K. J.
2015-01-06
Within the framework of the unrestricted time-dependent density functional theory, we present for the first time an analysis of the relativistic Coulomb excitation of the heavy deformed open shell nucleus 238U. The approach is based on the superfluid local density approximation formulated on a spatial lattice that can take into account coupling to the continuum, enabling self-consistent studies of superfluid dynamics of any nuclear shape. We compute the energy deposited in the target nucleus as a function of the impact parameter, finding it to be significantly larger than the estimate using the Goldhaber-Teller model. The isovector giant dipole resonance, themore » dipole pygmy resonance, and giant quadrupole modes are excited during the process. As a result, the one-body dissipation of collective dipole modes is shown to lead a damping width Γ↓≈0.4 MeV and the number of preequilibrium neutrons emitted has been quantified.« less
Symmetry-broken local-density approximation for one-dimensional systems
NASA Astrophysics Data System (ADS)
Rogers, Fergus J. M.; Ball, Caleb J.; Loos, Pierre-François
2016-06-01
Within density-functional theory, the local-density approximation (LDA) correlation functional is typically built by fitting the difference between the near-exact and Hartree-Fock (HF) energies of the uniform electron gas (UEG), together with analytic perturbative results from the high- and low-density regimes. Near-exact energies are obtained by performing accurate diffusion Monte Carlo calculations, while HF energies are usually assumed to be the Fermi fluid HF energy. However, it has been known since the seminal work of A. W. Overhauser [Phys. Rev. Lett. 3, 414 (1959), 10.1103/PhysRevLett.3.414; Phys. Rev. 128, 1437 (1962), 10.1103/PhysRev.128.1437] that one can obtain lower, symmetry-broken (SB) HF energies at any density. Here, we have computed the SBHF energies of the one-dimensional UEG and constructed a SB version of the LDA (SBLDA) from the results. We compare the performance of the LDA and SBLDA functionals when applied to one-dimensional systems, including atoms and molecules. Generalization to higher dimensions is also discussed.
NASA Astrophysics Data System (ADS)
Sun, Bo; Zhang, Ping; Zhao, Xian-Geng
2008-02-01
The electronic structure and properties of PuO2 and Pu2O3 have been studied from first principles by the all-electron projector-augmented-wave method. The local density approximation+U and the generalized gradient approximation+U formalisms have been used to account for the strong on-site Coulomb repulsion among the localized Pu 5f electrons. We discuss how the properties of PuO2 and Pu2O3 are affected by the choice of U as well as the choice of exchange-correlation potential. Also, oxidation reaction of Pu2O3, leading to formation of PuO2, and its dependence on U and exchange-correlation potential have been studied. Our results show that by choosing an appropriate U, it is promising to correctly and consistently describe structural, electronic, and thermodynamic properties of PuO2 and Pu2O3, which enable the modeling of redox process involving Pu-based materials possible.
Analysis of the local-density approximation of density-functional theory
NASA Astrophysics Data System (ADS)
Sahni, Viraht; Bohnen, K.-P.; Harbola, Manoj K.
1988-03-01
In this paper we perform a configuration-space analysis of the local-density approximation (LDA) for the exchange-correlation energy functional of Kohn-Sham density-functional theory in terms of the corresponding average exchange-correlation charge (hole) and energy densities. According to our analysis, the explanation for the quantitative success of the LDA based on the hole charge-conservation sum rule and the assumed consequent cancellation of errors in the spherical averages of the hole is inadequate. The principal conclusion of our work is that the constraint of charge neutrality is a necessary but not sufficient condition for an approximate energy functional to lead to accurate ground-state energies and ionization potentials. The significant additional requirement for the functional is that it must, at least qualitatively, reproduce correctly the structure of the hole as a function of electron position. We perform our calculations within the exchange-only approximation as applied to atoms and jellium metal surfaces. In atoms the Fermi hole is localized about the nucleus; as a consequence the LDA Fermi hole is accurate only for electron positions close to it. However, we show that the spherically averaged LDA hole is accurate for electron positions in the shell regions; it is substantially in error in the intershell and classically forbidden regions. The fact that the principal contribution to the exchange energy comes from the inner-shell region of the atom, where the LDA hole is accurate, explains why the errors in the LDA ground-state energies are small. However, the ionization potential, which depends on the structure of the hole in the outer regions of the atom, is substantially in error in the LDA since here the LDA hole differs significantly from the exact one. For metallic surfaces, on the other hand, as an electron is pulled from within the metal to infinity outside, the Fermi hole is delocalized and spread throughout the crystal. As a consequence
Local-density approximation study of p-Si/ n-Si nanoscale junctions
NASA Astrophysics Data System (ADS)
Zavodinsky, V. G.; Kuyanov, I. A.
1996-09-01
We have performed a first-principles local-density cluster investigation of nanoscale p-Si/ n-Si junctions. Al and P atoms were used as dopants and Al-P distances were of order a few Ångstroms. The thermoemission current-voltage characteristics were calculated in addition to the electronic structure. It was shown that a rectifying nanoscale p-njunction can be formed in silicon if the distance between donor and acceptor atoms is not too small (about 1 nm).
Density-functional formalism: V xc, discontinuities, and the local density approximation
NASA Astrophysics Data System (ADS)
Gunnarsson, O.; Jones, R. O.; Schönhammer, K.
We have demonstrated that the nodal structure of the wave functions can have a great effect on the accuracy of the LSD approximation, and we have identified classes of problems where the LSD results must be treated by caution. For states with the minimum number of nodal planes consistent with the orthogonality of the orbitals, the LSD approximation usually leads to a moderate overestimate of the exchange-correlation energy. For states with additional nodal planes the exchange-correlation energy is often greatly overestimated. In atoms, the depopulation of s-orbitals can lead to large errors, and similar effects may be expected in bonding situations where sp or sd hybridization reduces the s occupancy. More work in this area is essential.
Giera, Brian; Henson, Neil; Kober, Edward M.; Shell, M. Scott; Squires, Todd M.
2015-02-27
We evaluate the accuracy of local-density approximations (LDAs) using explicit molecular dynamics simulations of binary electrolytes comprised of equisized ions in an implicit solvent. The Bikerman LDA, which considers ions to occupy a lattice, poorly captures excluded volume interactions between primitive model ions. Instead, LDAs based on the Carnahan–Starling (CS) hard-sphere equation of state capture simulated values of ideal and excess chemical potential profiles extremely well, as is the relationship between surface charge density and electrostatic potential. Excellent agreement between the EDL capacitances predicted by CS-LDAs and computed in molecular simulations is found even in systems where ion correlations drive strong density and free charge oscillations within the EDL, despite the inability of LDAs to capture the oscillations in the detailed EDL profiles.
Giera, Brian; Lawrence Livermore National Lab.; Henson, Neil; Kober, Edward M.; Shell, M. Scott; Squires, Todd M.
2015-02-27
We evaluate the accuracy of local-density approximations (LDAs) using explicit molecular dynamics simulations of binary electrolytes comprised of equisized ions in an implicit solvent. The Bikerman LDA, which considers ions to occupy a lattice, poorly captures excluded volume interactions between primitive model ions. Instead, LDAs based on the Carnahan–Starling (CS) hard-sphere equation of state capture simulated values of ideal and excess chemical potential profiles extremely well, as is the relationship between surface charge density and electrostatic potential. Excellent agreement between the EDL capacitances predicted by CS-LDAs and computed in molecular simulations is found even in systems where ion correlations drivemore » strong density and free charge oscillations within the EDL, despite the inability of LDAs to capture the oscillations in the detailed EDL profiles.« less
NASA Astrophysics Data System (ADS)
Marchukov, Oleksandr V.; Eriksen, Emil H.; Midtgaard, Jonatan M.; Kalaee, Alex A. S.; Fedorov, Dmitri V.; Jensen, Aksel S.; Zinner, Nikolaj T.
2016-02-01
One-dimensional multi-component Fermi or Bose systems with strong zero-range interactions can be described in terms of local exchange coefficients and mapping the problem into a spin model is thus possible. For arbitrary external confining potentials the local exchanges are given by highly non-trivial geometric factors that depend solely on the geometry of the confinement through the single-particle eigenstates of the external potential. To obtain accurate effective Hamiltonians to describe such systems one needs to be able to compute these geometric factors with high precision which is difficult due to the computational complexity of the high-dimensional integrals involved. An approach using the local density approximation would therefore be a most welcome approximation due to its simplicity. Here we assess the accuracy of the local density approximation by going beyond the simple harmonic oscillator that has been the focus of previous studies and consider some double-wells of current experimental interest. We find that the local density approximation works quite well as long as the potentials resemble harmonic wells but break down for larger barriers. In order to explore the consequences of applying the local density approximation in a concrete setup we consider quantum state transfer in the effective spin models that one obtains. Here we find that even minute deviations in the local exchange coefficients between the exact and the local density approximation can induce large deviations in the fidelity of state transfer for four, five, and six particles.
NASA Astrophysics Data System (ADS)
Slamet, Marlina; Sahni, Viraht
1992-02-01
In this paper we explain that the exchange potential and energy in the local-density approximation (LDA) of density-functional theory has a IrigorousP and IunifiedP physical interpretation founded in the work of Harbola and Sahni. Accordingly, the IsourceP charge distribution that gives rise to both the LDA exchange (path-independent) potential IandP energy is the Fermi hole as derived in the gradient-expansion approximation (GEA) to O(∇). Thus, the LDA exchange potential, or equivalently the functional derivative of the LDA exchange-energy functional of the density, is the work required to bring an electron from infinity to its position at r against the force field of this charge distribution. The LDA exchange energy in turn is the energy of interaction between the electronic density and this charge. However, it is the non-spherically-symmetric component of the source charge that gives rise to the potential but its spherically symmetric component that contributes to the energy. Since the underlying physics of the LDA for exchange lies in its source charge, we next determine the structure of the GEA Fermi hole to O(∇) for the nonuniform electronic system in atoms and at metallic surfaces. A study of this structure as a function of electron position shows that the errors in the LDA arise because the source charge does not in general reproduce accurately the structure of the exact Fermi hole, that it violates the quantum-mechanical requirement of positivity, and further that it oscillates, albeit with decaying amplitude, far into the classically forbidden region.
A counterexample and a modification to the adiabatic approximation theorem in quantum mechanics
NASA Technical Reports Server (NTRS)
Gingold, H.
1991-01-01
A counterexample to the adiabatic approximation theorem is given when degeneracies are present. A formulation of an alternative version is proposed. A complete asymptotic decomposition for n dimensional self-adjoint Hamiltonian systems is restated and used.
NASA Technical Reports Server (NTRS)
Xu, Y. J.; Khandelwal, G. S.; Wilson, John W.
1989-01-01
A simple formula for the transition probability for electron exchange between unlike ions and atoms is established within the adiabatic approximation by employing the Linear Combination of Atomic Orbitals (LCAO) method. The formula also involves an adiabatic parameter, introduced by Massey, and thus the difficulties arising from the internal energy defect and the adiabatic approximation are avoided. Specific reactions Li(+++) + H to Li(++) + H(+) and Be(4+) + H to Be(3+) + H(+) are considered as examples. The calculated capture cross section results of the present work are compared with the experimental data and with the calculation of other authors over the velocity range of 10(7) cm/sec to 10(8) cm/sec.
Gidopoulos, Nikitas I.; Gross, E. K. U.
2014-01-01
A novel treatment of non-adiabatic couplings is proposed. The derivation is based on a theorem by Hunter stating that the wave function of the complete system of electrons and nuclei can be written, without approximation, as a Born–Oppenheimer (BO)-type product of a nuclear wave function, X(R), and an electronic one, ΦR(r), which depends parametrically on the nuclear configuration R. From the variational principle, we deduce formally exact equations for ΦR(r) and X(R). The algebraic structure of the exact nuclear equation coincides with the corresponding one in the adiabatic approximation. The electronic equation, however, contains terms not appearing in the adiabatic case, which couple the electronic and the nuclear wave functions and account for the electron–nuclear correlation beyond the BO level. It is proposed that these terms can be incorporated using an optimized local effective potential. PMID:24516183
Gritsenko, O V; Mentel, Ł M; Baerends, E J
2016-05-28
In spite of the high quality of exchange-correlation energies Exc obtained with the generalized gradient approximations (GGAs) of density functional theory, their xc potentials vxc are strongly deficient, yielding upshifts of ca. 5 eV in the orbital energy spectrum (in the order of 50% of high-lying valence orbital energies). The GGAs share this deficiency with the local density approximation (LDA). We argue that this error is not caused by the incorrect long-range asymptotics of vxc or by self-interaction error. It arises from incorrect density dependencies of LDA and GGA exchange functionals leading to incorrect (too repulsive) functional derivatives (i.e., response parts of the potentials). The vxc potential is partitioned into the potential of the xc hole vxchole (twice the xc energy density ϵxc), which determines Exc, and the response potential vresp, which does not contribute to Exc explicitly. The substantial upshift of LDA/GGA orbital energies is due to a too repulsive LDA exchange response potential vxresp (LDA) in the bulk region. Retaining the LDA exchange hole potential plus the B88 gradient correction to it but replacing the response parts of these potentials by the model orbital-dependent response potential vxresp (GLLB) of Gritsenko et al. [Phys. Rev. A 51, 1944 (1995)], which has the proper step-wise form, improves the orbital energies by more than an order of magnitude. Examples are given for the prototype molecules: dihydrogen, dinitrogen, carbon monoxide, ethylene, formaldehyde, and formic acid. PMID:27250286
NASA Astrophysics Data System (ADS)
Gritsenko, O. V.; Mentel, Ł. M.; Baerends, E. J.
2016-05-01
In spite of the high quality of exchange-correlation energies Exc obtained with the generalized gradient approximations (GGAs) of density functional theory, their xc potentials vxc are strongly deficient, yielding upshifts of ca. 5 eV in the orbital energy spectrum (in the order of 50% of high-lying valence orbital energies). The GGAs share this deficiency with the local density approximation (LDA). We argue that this error is not caused by the incorrect long-range asymptotics of vxc or by self-interaction error. It arises from incorrect density dependencies of LDA and GGA exchange functionals leading to incorrect (too repulsive) functional derivatives (i.e., response parts of the potentials). The vxc potential is partitioned into the potential of the xc hole vxchole (twice the xc energy density ɛxc), which determines Exc, and the response potential vresp, which does not contribute to Exc explicitly. The substantial upshift of LDA/GGA orbital energies is due to a too repulsive LDA exchange response potential vxresp L D A in the bulk region. Retaining the LDA exchange hole potential plus the B88 gradient correction to it but replacing the response parts of these potentials by the model orbital-dependent response potential vxresp G L L B of Gritsenko et al. [Phys. Rev. A 51, 1944 (1995)], which has the proper step-wise form, improves the orbital energies by more than an order of magnitude. Examples are given for the prototype molecules: dihydrogen, dinitrogen, carbon monoxide, ethylene, formaldehyde, and formic acid.
NASA Astrophysics Data System (ADS)
Zhu, Xiaolei; Yarkony, David R.
2016-01-01
We have recently introduced a diabatization scheme, which simultaneously fits and diabatizes adiabatic ab initio electronic wave functions, Zhu and Yarkony J. Chem. Phys. 140, 024112 (2014). The algorithm uses derivative couplings in the defining equations for the diabatic Hamiltonian, Hd, and fits all its matrix elements simultaneously to adiabatic state data. This procedure ultimately provides an accurate, quantifiably diabatic, representation of the adiabatic electronic structure data. However, optimizing the large number of nonlinear parameters in the basis functions and adjusting the number and kind of basis functions from which the fit is built, which provide the essential flexibility, has proved challenging. In this work, we introduce a procedure that combines adiabatic state and diabatic state data to efficiently optimize the nonlinear parameters and basis function expansion. Further, we consider using direct properties based diabatizations to initialize the fitting procedure. To address this issue, we introduce a systematic method for eliminating the debilitating (diabolical) singularities in the defining equations of properties based diabatizations. We exploit the observation that if approximate diabatic data are available, the commonly used approach of fitting each matrix element of Hd individually provides a starting point (seed) from which convergence of the full Hd construction algorithm is rapid. The optimization of nonlinear parameters and basis functions and the elimination of debilitating singularities are, respectively, illustrated using the 1,2,3,41A states of phenol and the 1,21A states of NH3, states which are coupled by conical intersections.
Rotation-vibrational states of H3+ and the adiabatic approximation.
Alijah, Alexander; Hinze, Juergen
2006-11-15
We discuss recent progress in the calculation and identification of rotation-vibrational states of H3+ at intermediate energies up to 13,000 cm(-1). Our calculations are based on the potential energy surface of Cencek et al. which is of sub-microhartree accuracy. As this surface includes diagonal adiabatic and relativistic corrections to the fixed nuclei electronic energies, the remaining discrepancies between our calculated and experimental data should be due to the neglect of non-adiabatic coupling to excited electronic states in the calculations. To account for this, our calculated energy values were adjusted empirically by a simple correction formula. Based on our understanding of the adiabatic approximation, we suggest two new approaches to account for the off-diagonal adiabatic correction, which should work; however, they have not been tested yet for H3+. Theoretical predictions made for the above-barrier energy region of recent experimental interest are accurate to 0.35 cm(-1) or better. PMID:17015396
Wilken, F.; Bauer, D.
2006-11-17
The ionization of a one-dimensional model helium atom in short laser pulses using time-dependent density-functional theory is investigated. We calculate ionization probabilities as a function of laser intensity by approximating the correlation function of the system adiabatically with an explicit dependence on the fractional number of bound electrons. For the correlation potential we take the derivative discontinuity at integer numbers of bound electrons explicitly into account. This approach reproduces ionization probabilities from the solution of the time-dependent Schroedinger equation, in particular, the so-called knee due to nonsequential ionization.
Butler, L.J.
1993-02-28
The adiabatic Born-Oppenheimer potential energy surface approximation is not valid for reaction of a wide variety of energetic materials and organic fuels; coupling between electronic states of reacting species plays a key role in determining the selectivity of the chemical reactions induced. This research program initially studies this coupling in (1) selective C-Br bond fission in 1,3- bromoiodopropane, (2) C-S:S-H bond fission branching in CH{sub 3}SH, and (3) competition between bond fission channels and H{sub 2} elimination in CH{sub 3}NH{sub 2}.
Adiabatic approximation in time-dependent reduced-density-matrix functional theory
Requist, Ryan; Pankratov, Oleg
2010-04-15
With the aim of describing real-time electron dynamics, we introduce an adiabatic approximation for the equation of motion of the one-body reduced density matrix (one-matrix). The eigenvalues of the one-matrix, which represent the occupation numbers of single-particle orbitals, are obtained from the constrained minimization of the instantaneous ground-state energy functional rather than from their dynamical equations. The performance of the approximation vis-a-vis nonadiabatic effects is assessed in real-time simulations of a two-site Hubbard model. Due to Landau-Zener-type transitions, the system evolves into a nonstationary state with persistent oscillations in the observables. The amplitude of the oscillations displays a strongly nonmonotonic dependence on the strength of the electron-electron interaction and the rate of variation of the external potential. We interpret an associated resonance behavior in the phase of the oscillations in terms of 'scattering' with spectator energy levels. To clarify the motivation for the minimization condition, we derive a sequence of energy functionals E{sub v}{sup (n)}, for which the corresponding sequence of minimizing one-matrices is asymptotic to the exact one-matrix in the adiabatic limit.
Ionization of the hydrogen atom in strong magnetic fields. Beyond the adiabatic approximation.
NASA Astrophysics Data System (ADS)
Potekhin, A. Y.; Pavlov, G. G.; Ventura, J.
1997-01-01
High magnetic fields in neutron stars, B~10^11^-10^13^G, substantially modify the properties of atoms and their interaction with radiation. In particular, the photoionization cross section becomes anisotropic and polarization dependent, being strongly reduced when the radiation is polarized perpendicular to the field. In a number of previous works based on the adiabatic approximation the conclusion was drawn that this transverse cross section vanishes for frequencies ω smaller than the electron cyclotron frequency ω_c_=eB/(m_e_c). In other works (which employed a different form of the interaction operator) appreciable finite values were obtained, ~σ_0gamma^-1^ near the photoionization threshold, where σ_0_ is the cross section without magnetic field, and γ=B/(2.35x10^9^G). Since it is the transverse cross section which determines the properties of radiation emitted from neutron star atmospheres, an adequate interpretation of the neutron star thermal-like radiation requires a resolution of this controversy. In the present work we calculate the atomic wave functions for both discrete and continuum states by solving the coupled channel equations allowing the admixture between different Landau levels, which provides much higher accuracy than the adiabatic approximation. This enables us to resolve the above contradiction in favour of the finite transverse cross sections at ω<ω_c_. Moreover, for any form of the interaction operator the non-adiabatic corrections appear to be substantial for frequencies ω> 0.3ω_c_. The non-adiabatic treatment of the continuum includes coupling between closed and open channels, which leads to the autoionization of quasi-bound energy levels associated with the electron cyclotron (Landau) excitations and gives rise to Beutler-Fano resonances of the photoionization cross section. We calculate the autoionization widths of these quasi-bound levels and compare them with the radiative widths. The correlation of the open channels is
Chao, Fa-An; Byrd, R Andrew
2016-06-15
A new computational strategy is reported that provides a fast approximation of numerical solutions of differential equations in general. The method is demonstrated with the analysis of NMR adiabatic relaxation dispersion experiments to reveal biomolecular dynamics. When an analytical solution to the theoretical equations describing a physical process is not available, the new approach can significantly accelerate the computational speed of the conventional numerical integration up to 10(5) times. NMR adiabatic relaxation dispersion experiments enhanced with optimized proton-decoupled pulse sequences, although extremely powerful, have previously been refractory to quantitative analysis. Both simulations and experimental validation demonstrate detectable "slow" (microsecond to millisecond) conformational exchange rates from 10(2) to 10(5) s(-1). This greatly expanded time-scale range enables the characterization of a wide array of conformational fluctuations for individual residues, which correlate with biomolecular function and were previously inaccessible. Moreover, the new computational method can be potentially generalized for analysis of new types of relaxation dispersion experiments to characterize the various dynamics of biomolecular systems. PMID:27225523
Quantum Lattice Fluctuations in the Charge Density Wave State beyond the Adiabatic Approximation
NASA Astrophysics Data System (ADS)
Shida, Keisuke; Watanabe, Yuko; Gomi, Hiroki; Takahashi, Akira; Tomita, Norikazu
2015-12-01
We have developed a tractable numerical method in which large-amplitude quantum lattice fluctuations can be described beyond the adiabatic approximation using the coherent state representation of phonons. A many-body wave function is constructed by the superposition of direct products of non-orthogonal Slater determinants for electrons and coherent states of phonons. Both orbitals in all the Slater determinants and the amplitudes of all the coherent states are simultaneously optimized. We apply the method to the one-dimensional Su-Schrieffer-Heeger model with the on-site and nearest-neighbor-site Coulomb interactions. It is shown the lattice fluctuations in doped charge density wave (CDW) systems are described by the translational and vibrational motion of lattice solitons. Such lattice solitons induce bond alternation in the doped CDW system while the lattice becomes equidistant in the half-filled CDW system.
Adiabatic Expansion of Supernova Remnants - an Explicit, Analytical Approximation in Two Dimensions
NASA Astrophysics Data System (ADS)
Maciejewski, W.; Shelton, R. L.; Cox, D. P.
1996-05-01
We propose a simple, analytical approximation for an adiabatic shock wave propagating in an exponentially stratified ambient medium. We aim to provide an effective tool for exploring the parameter space of 2-dimensional numerical models of supernova remnants (SNRs). We start from Kompaneets's (1960, Soviet Phys. Doklady, 5, 46) axisymmetric generalization of Sedov's spherically symmetric problem, to which he derived an implicit solution. We notice that the SNR shape in his solution can be closely approximated as an ellipsoid. In this case, an explicit solution for the size, eccentricity and expansion velocity of the remnant can be found. Our results are in excellent agreement with Kompaneets's solution, even when the ambient density varies across the remnant by factors as large as 1000. Beyond that, the blowout occurs, and Kompaneets's assumptions no longer hold. The remnant shapes are remarkably close to spherical for moderate density gradients. Using Kahn's cooling law (alpha T(-1/2) ) we derived a formula to estimate how long it takes for a cold shell to form. Even a small gradient in ambient density causes this time to vary substantially within a single remnant, so that for a period the H I shell will be only partially formed. To demonstrate how our approximation can be used, the parameter space for models of the supernova remnant W44 is explored.
Tunneling splittings in formic acid dimer: An adiabatic approximation to the Herring formula
NASA Astrophysics Data System (ADS)
Jain, Amber; Sibert, Edwin L.
2015-02-01
Small symmetric molecules and low-dimensional model Hamiltonians are excellent systems for benchmarking theories to compute tunneling splittings. In this work, we investigate a three dimensional model Hamiltonian coupled to a harmonic bath that describes concerted proton transfer in the formic acid dimer. The three modes include the symmetric proton stretch, the symmetric dimer rock, and the dimer stretch. These modes provide a paradigm for the symmetric and anti-symmetric coupled tunneling pathways, these being recognized in the literature as two of the more important classes of coupling. The effects of selective vibrational excitation and coupling to a bath on the tunneling splittings are presented. The splittings for highly excited states are computed using a novel method that makes an adiabatic approximation to the Herring estimate. Results, which are in excellent agreement with the exact splittings, are compared with those obtained using the Makri-Miller approach. This latter method has been shown to provide quality results for tunneling splittings including highly excited vibrational states.
Tunneling splittings in formic acid dimer: An adiabatic approximation to the Herring formula
Jain, Amber; Sibert, Edwin L.
2015-02-28
Small symmetric molecules and low-dimensional model Hamiltonians are excellent systems for benchmarking theories to compute tunneling splittings. In this work, we investigate a three dimensional model Hamiltonian coupled to a harmonic bath that describes concerted proton transfer in the formic acid dimer. The three modes include the symmetric proton stretch, the symmetric dimer rock, and the dimer stretch. These modes provide a paradigm for the symmetric and anti-symmetric coupled tunneling pathways, these being recognized in the literature as two of the more important classes of coupling. The effects of selective vibrational excitation and coupling to a bath on the tunneling splittings are presented. The splittings for highly excited states are computed using a novel method that makes an adiabatic approximation to the Herring estimate. Results, which are in excellent agreement with the exact splittings, are compared with those obtained using the Makri-Miller approach. This latter method has been shown to provide quality results for tunneling splittings including highly excited vibrational states.
NASA Astrophysics Data System (ADS)
Andrade, Tomás; Kelly, William R.; Marolf, Donald
2015-10-01
The gravitational Dirichlet problem—in which the induced metric is fixed on boundaries at finite distance from the bulk—is related to simple notions of UV cutoffs in gauge/gravity duality and appears in discussions relating the low-energy behavior of gravity to fluid dynamics. We study the Einstein-Maxwell version of this problem, in which the induced Maxwell potential on the wall is also fixed. For flat walls in otherwise asymptotically flat spacetimes, we identify a moduli space of Majumdar-Papapetrou-like static solutions parametrized by the location of an extreme black hole relative to the wall. Such solutions may be described as balancing gravitational repulsion from a negative-mass image source against electrostatic attraction to an oppositely signed image charge. Standard techniques for handling divergences yield a moduli space metric with an eigenvalue that becomes negative near the wall, indicating a region of negative kinetic energy and suggesting that the Hamiltonian may be unbounded below. One may also surround the black hole with an additional (roughly spherical) Dirichlet wall to impose a regulator whose physics is more clear. Negative kinetic energies remain, though new terms do appear in the moduli space metric. The regulator dependence indicates that the adiabatic approximation may be ill-defined for classical extreme black holes with Dirichlet walls.
Egorov, A A; Sevast'yanov, L A; Sevast'yanov, A L
2014-02-28
We consider the application of the method of adiabatic waveguide modes for calculating the propagation of electromagnetic radiation in three-dimensional (3D) irregular integrated optical waveguides. The method of adiabatic modes takes into account a three-dimensional distribution of quasi-waveguide modes and explicit ('inclined') tangential boundary conditions. The possibilities of the method are demonstrated on the example of numerical research of two major elements of integrated optics: a waveguide of 'horn' type and a thin-film generalised waveguide Luneburg lens by the methods of adiabatic modes and comparative waveguides. (integral optical waveguides)
Semiclassical quantization of bound and quasistationary states beyond the adiabatic approximation
Benderskii, V.A.; Vetoshkin, E.V.; Kats, E.I.
2004-06-01
We examine one important (and previously overlooked) aspect of well-known crossing diabatic potentials or Landau-Zener (LZ) problem. We derive the semiclassical quantization rules for the crossing diabatic potentials with localized initial and localized or delocalized final states, in the intermediate energy region, when all four adiabatic states are coupled and should be taken into account. We found all needed connection matrices and present the following analytical results: (i) in the tunneling region, the splittings of vibrational levels are represented as a product of the splitting in the lower adiabatic potential and the nontrivial function depending on the Massey parameter; (ii) in the overbarrier region, we find specific resonances between the levels in the lower and in the upper adiabatic potentials and, in that condition, independent quantizations rules are not correct; (iii) for the delocalized final states (decay lower adiabatic potential), we describe quasistationary states and calculate the decay rate as a function of the adiabatic coupling; and (iv) for the intermediate energy regions, we calculate the energy level quantization, which can be brought into a compact form by using either adiabatic or diabatic basis set (in contrast to the previous results found in the Landau diabatic basis). Applications of the results may concern the various systems; e.g., molecules undergoing conversion of electronic states, radiationless transitions, or isomerization reactions.
NASA Astrophysics Data System (ADS)
Weber, Cédric; Haule, Kristjan; Kotliar, Gabriel
2008-10-01
We use the local density approximation in combination with the dynamical mean-field theory to investigate intermediate energy properties of the copper oxides. We identify coherent and incoherent spectral features that result from doping a charge-transfer insulator, namely quasiparticles, Zhang-Rice singlet band, and the upper and lower Hubbard bands. Angle resolving these features, we identify a waterfall-like feature between the quasiparticle part and the incoherent part of the Zhang-Rice band. We investigate the asymmetry between particle and hole doping. On the hole-doped side, there is a very rapid transfer of spectral weight upon doping in the one particle spectra. The optical spectral weight increases superlinearly on the hole-doped side in agreement with experiments.
NASA Astrophysics Data System (ADS)
Craco, L.; Faria, J. L. B.
2016-02-01
Iron sulfides are promising candidates for the next generation of rechargeable lithium-ion battery materials. Motivated thereby, we present a detailed study of correlation- and doping-induced electronic reconstruction in troilite. Based on local-density-approximation plus dynamical-mean-field-theory, we stress the importance of multi-orbital Coulomb interactions in concert with first-principles band structure calculations for a consistent understanding of intrinsic Mott-Hubbard insulating state in FeS. We explore the anomalous nature of electron doping-induced insulator-bad metal transition, showing that it is driven by orbital-selective dynamical spectral weight transfer. Our results are relevant for understanding charge dynamics upon electrochemical lithiation of iron monosulfides electrode materials for lithium-ion batteries.
NASA Astrophysics Data System (ADS)
Casida, Mark E.; Gutierrez, Fabien; Guan, Jingang; Gadea, Florent-Xavier; Salahub, Dennis; Daudey, Jean-Pierre
2000-11-01
Time-dependent density-functional theory (TDDFT) is an increasingly popular approach for calculating molecular excitation energies. However, the TDDFT lowest triplet excitation energy, ωT, of a closed-shell molecule often falls rapidly to zero and then becomes imaginary at large internuclear distances. We show that this unphysical behavior occurs because ωT2 must become negative wherever symmetry breaking lowers the energy of the ground state solution below that of the symmetry unbroken solution. We use the fact that the ΔSCF method gives a qualitatively correct first triplet excited state to derive a "charge-transfer correction" (CTC) for the time-dependent local density approximation (TDLDA) within the two-level model and the Tamm-Dancoff approximation (TDA). Although this correction would not be needed for the exact exchange-correlation functional, it is evidently important for a correct description of molecular excited state potential energy surfaces in the TDLDA. As a byproduct of our analysis, we show why TDLDA and LDA ΔSCF excitation energies are often very similar near the equilibrium geometries. The reasoning given here is fairly general and it is expected that similar corrections will be needed in the case of generalized gradient approximations and hybrid functionals.
Wang, Jianwei; Zhang, Yong; Wang, Lin-Wang
2015-07-31
We propose a systematic approach that can empirically correct three major errors typically found in a density functional theory (DFT) calculation within the local density approximation (LDA) simultaneously for a set of common cation binary semiconductors, such as III-V compounds, (Ga or In)X with X = N,P,As,Sb, and II-VI compounds, (Zn or Cd)X, with X = O,S,Se,Te. By correcting (1) the binary band gaps at high-symmetry points , L, X, (2) the separation of p-and d-orbital-derived valence bands, and (3) conduction band effective masses to experimental values and doing so simultaneously for common cation binaries, the resulting DFT-LDA-based quasi-first-principles methodmore » can be used to predict the electronic structure of complex materials involving multiple binaries with comparable accuracy but much less computational cost than a GW level theory. This approach provides an efficient way to evaluate the electronic structures and other material properties of complex systems, much needed for material discovery and design.« less
NASA Astrophysics Data System (ADS)
Predota, Milan; Cummings, Peter T.; Chialvo, Ariel A.
The adiabatic nuclear and electronic sampling method (ANES), originally formulated as an efficient Monte Carlo algorithm for systems with fluctuating charges, is applied to the simulation of a polarizable water model with induced dipole moments. Structural, thermodynamic and dipolar properties obtained by ANES and a newer algorithm, the pair approximation for polarization interaction (PAPI), are compared with full iteration. With the best parameters, the inaccuracy of both approximate methods was found to be comparable with the uncertainty of the full iteration. The PAPI method with iteration radius equal to the second minimum of the oxygen-oxygen correlation function is, depending on the convergence tolerance, 10-15 times faster than the full iteration for 256 molecules, and yields very accurate structure and thermodynamics with deviation about 0.3%. When the iteration radius is increased to the cutoff distance, exact results are recovered at the cost of decreased efficiency. The ANES method with small nuclear displacements proved to inefficiently sample the configurational space. Simulations at low electronic temperatures with large nuclear displacements are inaccurate for up to 100 electronic moves, and increasing this number would make the simulations as slow as the full iteration. The most accurate and efficient adiabatic ANES simulations are those with infinite electronic temperature, large nuclear displacements and 1-10 electronic moves. The extra freedom of induced dipoles in the ANES method at high electronic temperatures modifies the observed dipolar properties; however, the question of whether the dielectric constant is also modified needs further consideration.
NASA Astrophysics Data System (ADS)
Haven, Emmanuel
2005-11-01
Analytical solutions to the backward Kolmogorov PDE are very dependent on the functional form of b(y,t) and a(y,t). We suggest one solution technique for obtaining analytical solutions via the use of an adiabatic approximation to the Schrödinger PDE. This approximation takes the specific form of a so-called WKB (W D Wentzel [G. Wentzel, Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik, Z. Phys. 38 (1926) 518-529], K D Kramers [H. Kramers, Wellenmechanik und halbzahlige Quantisierung, Z. Phys. 39 (1926) 828-840], B D Brillouin [L. Brillouin, La mécanique ondulatoire de Schrödinger: une méthode générale de résolution par approximations successives, C. R. Acad. Sci. 183 (1926) 24-26]) approximation. We provide for two examples, in financial option pricing, where we show how the proposed approximation could be of use.
The local density of halo giants
NASA Technical Reports Server (NTRS)
Morrison, Heather L.
1993-01-01
A new estimate of the local density of halo giants - 36 +/- 7 with M(V) less than 0.5 per cu kpc - is presented. This number is derived from an objective-prism survey for nearby metal-weak stars, and so is free from many of the assumptions needed to derive the local halo density in the traditional way, from high proper motion surveys. This number agrees well with estimates of the local density of halo horizontal-branch stars, but is approximately a factor of 2 smaller than the density derived by Bahcall and Casertano (1986). This may be due to the inclusion of some thick disk stars in their proper-motion selected sample. The halo density derived from giants can be expressed as a disk-to-halo ratio of 850:1 (+/- 35 percent). Using these results, a simple model is built to predict numbers of halo giants in specified directions in the Galaxy. It is shown that it performs much better than the Bahcall-Soniera model, in the specific case of halo giants. The surface brightness due to the halo at the solar radius is calculated to be 27.7 V magnitudes per sq arcsec, if the Galaxy was viewed from the outside, edge-on, thus raising the possibility of detecting light from halo field stars in other galaxies similar to our own.
Localized density matrix minimization and linear-scaling algorithms
NASA Astrophysics Data System (ADS)
Lai, Rongjie; Lu, Jianfeng
2016-06-01
We propose a convex variational approach to compute localized density matrices for both zero temperature and finite temperature cases, by adding an entry-wise ℓ1 regularization to the free energy of the quantum system. Based on the fact that the density matrix decays exponentially away from the diagonal for insulating systems or systems at finite temperature, the proposed ℓ1 regularized variational method provides an effective way to approximate the original quantum system. We provide theoretical analysis of the approximation behavior and also design convergence guaranteed numerical algorithms based on Bregman iteration. More importantly, the ℓ1 regularized system naturally leads to localized density matrices with banded structure, which enables us to develop approximating algorithms to find the localized density matrices with computation cost linearly dependent on the problem size.
Spatial Symmetries of the Local Densities
Rohozinski, S.; Dobaczewski, J.; Nazarewicz, Witold
2010-01-01
Spatial symmetries of the densities appearing in the nuclear Density Functional Theory are discussed. General forms of the local densities are derived by using methods of construction of isotropic tensor fields. The spherical and axial cases are considered.
NASA Astrophysics Data System (ADS)
Śpiewanowski, Maciej Dominik; Madsen, Lars Bojer
2014-04-01
We describe high-order-harmonic generation (HHG) within the adiabatic strong-field approximation (ASFA) where the ground state and its energy adiabatically follows the instantaneous external field and within the Stark-shift-corrected SFA (SSFA), where only the energy shift is accounted for. We show that the molecular polarizability reflects the significance of field-induced orbital distortion in the HHG process. We show that for CO2, which possesses a relatively low polarizability, the two-center interference minimum can be clearly seen in both the ASFA and the SSFA. This finding is in agreement with experimental data at large wavelength. Moreover, we introduce a method for analyzing the recombination events. This method relies on averaging the recombination matrix elements weighted with the photon emission probability of each harmonic. In the case of CO2 this method confirms that the interference minimum is determined by recombination to the two O atoms. We use the example of N2O, which has a moderate polarizability, to show that the number of centers taking part in the creation of the interference minimum may change depending on the intensity. Finally, we show that in the short-pulse limit, the minimum in the HHG spectrum from oriented N2O strongly depends on the molecular orientation and carrier-envelope phase.
NASA Astrophysics Data System (ADS)
Lu, Deyu
The adiabatic-connection fluctuation-dissipation theorem (ACFDT) is a formal theoretical framework to treat van der Waals (vdW) dispersion interactions. Under the random phase approximation (RPA), it yields the correct asymptotic behavior at large distances, but the short-range correlation is overestimated. It has been demonstrated that non-local exchange-correlation kernels can systematically correct the errors of RPA for homogenous electron gas. However, direct extension of non-local kernels derived from the electron gas model to inhomogeneous systems raises several issues. In addition to the high computational expense, the non-local kernels worsen the rare gas dimer binding curve as compared to RPA. In this study, we propose a quasi-local approximation of the non-local kernel in order to address these issues. This research used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704.
Local density dependent potential for compressible mesoparticles
NASA Astrophysics Data System (ADS)
Faure, Gérôme; Maillet, Jean-Bernard; Stoltz, Gabriel
2014-03-01
This work proposes a coarse grained description of molecular systems based on mesoparticles representing several molecules, where interactions between mesoparticles are modelled by an interparticle potential of molecular type. Since strong non-equilibrium situations over a wide range of pressure and density are targeted, the internal compressibility of the mesoparticles has to be considered. This is done by introducing a dependence of the potential on the local environment of the mesoparticles. To define local densities, we resort to a three-dimensional Voronoi tessellation instead of standard local, spherical averages. As an example, a local density dependent potential is fitted to reproduce the Hugoniot curve of a model of nitromethane over a large range of pressures and densities.
Wang, Jianwei; Zhang, Yong; Wang, Lin-Wang
2015-07-31
We propose a systematic approach that can empirically correct three major errors typically found in a density functional theory (DFT) calculation within the local density approximation (LDA) simultaneously for a set of common cation binary semiconductors, such as III-V compounds, (Ga or In)X with X = N,P,As,Sb, and II-VI compounds, (Zn or Cd)X, with X = O,S,Se,Te. By correcting (1) the binary band gaps at high-symmetry points , L, X, (2) the separation of p-and d-orbital-derived valence bands, and (3) conduction band effective masses to experimental values and doing so simultaneously for common cation binaries, the resulting DFT-LDA-based quasi-first-principles method can be used to predict the electronic structure of complex materials involving multiple binaries with comparable accuracy but much less computational cost than a GW level theory. This approach provides an efficient way to evaluate the electronic structures and other material properties of complex systems, much needed for material discovery and design.
NASA Astrophysics Data System (ADS)
Engel, D.; Klews, M.; Wunner, G.
2009-02-01
We have developed a new method for the fast computation of wavelengths and oscillator strengths for medium-Z atoms and ions, up to iron, at neutron star magnetic field strengths. The method is a parallelized Hartree-Fock approach in adiabatic approximation based on finite-element and B-spline techniques. It turns out that typically 15-20 finite elements are sufficient to calculate energies to within a relative accuracy of 10-5 in 4 or 5 iteration steps using B-splines of 6th order, with parallelization speed-ups of 20 on a 26-processor machine. Results have been obtained for the energies of the ground states and excited levels and for the transition strengths of astrophysically relevant atoms and ions in the range Z=2…26 in different ionization stages. Catalogue identifier: AECC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3845 No. of bytes in distributed program, including test data, etc.: 27 989 Distribution format: tar.gz Programming language: MPI/Fortran 95 and Python Computer: Cluster of 1-26 HP Compaq dc5750 Operating system: Fedora 7 Has the code been vectorised or parallelized?: Yes RAM: 1 GByte Classification: 2.1 External routines: MPI/GFortran, LAPACK, PyLab/Matplotlib Nature of problem: Calculations of synthetic spectra [1] of strongly magnetized neutron stars are bedevilled by the lack of data for atoms in intense magnetic fields. While the behaviour of hydrogen and helium has been investigated in detail (see, e.g., [2]), complete and reliable data for heavier elements, in particular iron, are still missing. Since neutron stars are formed by the collapse of the iron cores of massive stars, it may be assumed that their atmospheres contain an iron plasma. Our objective is to fill the gap
NASA Astrophysics Data System (ADS)
Engel, D.; Klews, M.; Wunner, G.
2009-02-01
We have developed a new method for the fast computation of wavelengths and oscillator strengths for medium-Z atoms and ions, up to iron, at neutron star magnetic field strengths. The method is a parallelized Hartree-Fock approach in adiabatic approximation based on finite-element and B-spline techniques. It turns out that typically 15-20 finite elements are sufficient to calculate energies to within a relative accuracy of 10-5 in 4 or 5 iteration steps using B-splines of 6th order, with parallelization speed-ups of 20 on a 26-processor machine. Results have been obtained for the energies of the ground states and excited levels and for the transition strengths of astrophysically relevant atoms and ions in the range Z=2…26 in different ionization stages. Catalogue identifier: AECC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3845 No. of bytes in distributed program, including test data, etc.: 27 989 Distribution format: tar.gz Programming language: MPI/Fortran 95 and Python Computer: Cluster of 1-26 HP Compaq dc5750 Operating system: Fedora 7 Has the code been vectorised or parallelized?: Yes RAM: 1 GByte Classification: 2.1 External routines: MPI/GFortran, LAPACK, PyLab/Matplotlib Nature of problem: Calculations of synthetic spectra [1] of strongly magnetized neutron stars are bedevilled by the lack of data for atoms in intense magnetic fields. While the behaviour of hydrogen and helium has been investigated in detail (see, e.g., [2]), complete and reliable data for heavier elements, in particular iron, are still missing. Since neutron stars are formed by the collapse of the iron cores of massive stars, it may be assumed that their atmospheres contain an iron plasma. Our objective is to fill the gap
Green Function Approach to the Calculation of the Local Density of States in the Graphitic Nanocone
NASA Astrophysics Data System (ADS)
Smotlacha, Jan; Pinčák, Richard
2016-02-01
Graphene and other nanostructures belong to the center of interest of today's physics research. The local density of states of the graphitic nanocone influenced by the spin-orbit interaction was calculated. Numerical calculations and the Green function approach were used to solve this problem. It was proven in the second case that the second order approximation is not sufficient for this purpose.
Transitionless driving on adiabatic search algorithm
Oh, Sangchul; Kais, Sabre
2014-12-14
We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.
Transitionless driving on adiabatic search algorithm
NASA Astrophysics Data System (ADS)
Oh, Sangchul; Kais, Sabre
2014-12-01
We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.
Transitionless driving on adiabatic search algorithm.
Oh, Sangchul; Kais, Sabre
2014-12-14
We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics. PMID:25494733
Ground-state properties of Ag/sub 2/: A local-density pseudopotential approach
Luis Martins, J.; Andreoni, W.
1983-12-01
The local-density approximation of the density-functional theory is applied to calculate the ground-state properties of Ag/sub 2/, within the framework of the pseudopotential method. The calculated values of the bond length and the harmonic vibrational frequency are in good agreement with experiment. The bonding properties are found to be influenced by the d-electron states in a significant way. The results are compared with those of configuration-interaction calculations.
Ziegler, Tom; Krykunov, Mykhaylo; Autschbach, Jochen
2014-09-01
The random phase approximation (RPA) equation of adiabatic time dependent density functional ground state response theory (ATDDFT) has been used extensively in studies of excited states. It extracts information about excited states from frequency dependent ground state response properties and avoids, thus, in an elegant way, direct Kohn-Sham calculations on excited states in accordance with the status of DFT as a ground state theory. Thus, excitation energies can be found as resonance poles of frequency dependent ground state polarizability from the eigenvalues of the RPA equation. ATDDFT is approximate in that it makes use of a frequency independent energy kernel derived from the ground state functional. It is shown in this study that one can derive the RPA equation of ATDDFT from a purely variational approach in which stationary states above the ground state are located using our constricted variational DFT (CV-DFT) method and the ground state functional. Thus, locating stationary states above the ground state due to one-electron excitations with a ground state functional is completely equivalent to solving the RPA equation of TDDFT employing the same functional. The present study is an extension of a previous work in which we demonstrated the equivalence between ATDDFT and CV-DFT within the Tamm-Dancoff approximation. PMID:26588541
Damski, Bogdan; Zurek, Wojciech H.
2006-06-15
We show that a simple approximation based on concepts underlying the Kibble-Zurek theory of second order phase-transition dynamics can be used to treat avoided level crossing problems. The approach discussed in this paper provides an intuitive insight into quantum dynamics of two-level systems, and may serve as a link between the theory of dynamics of classical and quantum phase transitions. To illustrate these ideas we analyze dynamics of a paramagnet-ferromagnet quantum phase transition in the Ising model. We also present exact unpublished solutions of the Landau-Zener-like problems.
Degenerate adiabatic perturbation theory: Foundations and applications
NASA Astrophysics Data System (ADS)
Rigolin, Gustavo; Ortiz, Gerardo
2014-08-01
We present details and expand on the framework leading to the recently introduced degenerate adiabatic perturbation theory [Phys. Rev. Lett. 104, 170406 (2010), 10.1103/PhysRevLett.104.170406], and on the formulation of the degenerate adiabatic theorem, along with its necessary and sufficient conditions [given in Phys. Rev. A 85, 062111 (2012), 10.1103/PhysRevA.85.062111]. We start with the adiabatic approximation for degenerate Hamiltonians that paves the way to a clear and rigorous statement of the associated degenerate adiabatic theorem, where the non-Abelian geometric phase (Wilczek-Zee phase) plays a central role to its quantitative formulation. We then describe the degenerate adiabatic perturbation theory, whose zeroth-order term is the degenerate adiabatic approximation, in its full generality. The parameter in the perturbative power-series expansion of the time-dependent wave function is directly associated to the inverse of the time it takes to drive the system from its initial to its final state. With the aid of the degenerate adiabatic perturbation theory we obtain rigorous necessary and sufficient conditions for the validity of the adiabatic theorem of quantum mechanics. Finally, to illustrate the power and wide scope of the methodology, we apply the framework to a degenerate Hamiltonian, whose closed-form time-dependent wave function is derived exactly, and also to other nonexactly solvable Hamiltonians whose solutions are numerically computed.
The local density of optical states of a metasurface
Lunnemann, Per; Koenderink, A. Femius
2016-01-01
While metamaterials are often desirable for near-field functions, such as perfect lensing, or cloaking, they are often quantified by their response to plane waves from the far field. Here, we present a theoretical analysis of the local density of states near lattices of discrete magnetic scatterers, i.e., the response to near field excitation by a point source. Based on a pointdipole theory using Ewald summation and an array scanning method, we can swiftly and semi-analytically evaluate the local density of states (LDOS) for magnetoelectric point sources in front of an infinite two-dimensional (2D) lattice composed of arbitrary magnetoelectric dipole scatterers. The method takes into account radiation damping as well as all retarded electrodynamic interactions in a self-consistent manner. We show that a lattice of magnetic scatterers evidences characteristic Drexhage oscillations. However, the oscillations are phase shifted relative to the electrically scattering lattice consistent with the difference expected for reflection off homogeneous magnetic respectively electric mirrors. Furthermore, we identify in which source-surface separation regimes the metasurface may be treated as a homogeneous interface, and in which homogenization fails. A strong frequency and in-plane position dependence of the LDOS close to the lattice reveals coupling to guided modes supported by the lattice. PMID:26868601
The local density of optical states of a metasurface.
Lunnemann, Per; Koenderink, A Femius
2016-01-01
While metamaterials are often desirable for near-field functions, such as perfect lensing, or cloaking, they are often quantified by their response to plane waves from the far field. Here, we present a theoretical analysis of the local density of states near lattices of discrete magnetic scatterers, i.e., the response to near field excitation by a point source. Based on a pointdipole theory using Ewald summation and an array scanning method, we can swiftly and semi-analytically evaluate the local density of states (LDOS) for magnetoelectric point sources in front of an infinite two-dimensional (2D) lattice composed of arbitrary magnetoelectric dipole scatterers. The method takes into account radiation damping as well as all retarded electrodynamic interactions in a self-consistent manner. We show that a lattice of magnetic scatterers evidences characteristic Drexhage oscillations. However, the oscillations are phase shifted relative to the electrically scattering lattice consistent with the difference expected for reflection off homogeneous magnetic respectively electric mirrors. Furthermore, we identify in which source-surface separation regimes the metasurface may be treated as a homogeneous interface, and in which homogenization fails. A strong frequency and in-plane position dependence of the LDOS close to the lattice reveals coupling to guided modes supported by the lattice. PMID:26868601
The local density of optical states of a metasurface
NASA Astrophysics Data System (ADS)
Lunnemann, Per; Koenderink, A. Femius
2016-02-01
While metamaterials are often desirable for near-field functions, such as perfect lensing, or cloaking, they are often quantified by their response to plane waves from the far field. Here, we present a theoretical analysis of the local density of states near lattices of discrete magnetic scatterers, i.e., the response to near field excitation by a point source. Based on a pointdipole theory using Ewald summation and an array scanning method, we can swiftly and semi-analytically evaluate the local density of states (LDOS) for magnetoelectric point sources in front of an infinite two-dimensional (2D) lattice composed of arbitrary magnetoelectric dipole scatterers. The method takes into account radiation damping as well as all retarded electrodynamic interactions in a self-consistent manner. We show that a lattice of magnetic scatterers evidences characteristic Drexhage oscillations. However, the oscillations are phase shifted relative to the electrically scattering lattice consistent with the difference expected for reflection off homogeneous magnetic respectively electric mirrors. Furthermore, we identify in which source-surface separation regimes the metasurface may be treated as a homogeneous interface, and in which homogenization fails. A strong frequency and in-plane position dependence of the LDOS close to the lattice reveals coupling to guided modes supported by the lattice.
NASA Astrophysics Data System (ADS)
Hahn, T.; Liebing, S.; Kortus, J.; Pederson, Mark R.
2015-12-01
The correction of the self-interaction error that is inherent to all standard density functional theory calculations is an object of increasing interest. In this article, we apply the very recently developed Fermi-orbital based approach for the self-interaction correction [M. R. Pederson et al., J. Chem. Phys. 140, 121103 (2014) and M. R. Pederson, J. Chem. Phys. 142, 064112 (2015)] to a set of different molecular systems. Our study covers systems ranging from simple diatomic to large organic molecules. We focus our analysis on the direct estimation of the ionization potential from orbital eigenvalues. Further, we show that the Fermi orbital positions in structurally similar molecules appear to be transferable.
Hahn, T. Liebing, S.; Kortus, J.; Pederson, Mark R.
2015-12-14
The correction of the self-interaction error that is inherent to all standard density functional theory calculations is an object of increasing interest. In this article, we apply the very recently developed Fermi-orbital based approach for the self-interaction correction [M. R. Pederson et al., J. Chem. Phys. 140, 121103 (2014) and M. R. Pederson, J. Chem. Phys. 142, 064112 (2015)] to a set of different molecular systems. Our study covers systems ranging from simple diatomic to large organic molecules. We focus our analysis on the direct estimation of the ionization potential from orbital eigenvalues. Further, we show that the Fermi orbital positions in structurally similar molecules appear to be transferable.
NASA Astrophysics Data System (ADS)
Hahn, Torsten; Liebing, Simon; Kortus, Jens; Pederson, Mark
The correction of the self-interaction error that is inherent to all standard density functional theory (DFT) calculations is an object of increasing interest. We present our results on the application of the recently developed Fermi-orbital based approach for the self-interaction correction (FO-SIC) to a set of different molecular systems. Our study covers systems ranging from simple diatomic to large organic molecules. Our focus lies on the direct estimation of the ionization potential from orbital eigenvalues and on the ordering of electronic levels in metal-organic molecules. Further, we show that the Fermi orbital positions in structurally similar molecules appear to be transferable. Support by DFG FOR1154 is greatly acknowledged.
Unitary Thermodynamics from Thermodynamic Geometry II: Fit to a Local-Density Approximation
NASA Astrophysics Data System (ADS)
Ruppeiner, George
2015-10-01
Strongly interacting Fermi gasses at low density possess universal thermodynamic properties that have recently seen very precise PVT measurements by a group at MIT. This group determined local thermodynamic properties of a system of ultracold atoms tuned to Feshbach resonance. In this paper, I analyze the MIT data with a thermodynamic theory of unitary thermodynamics based on ideas from critical phenomena. This theory was introduced in the first paper of this sequence and characterizes the scaled thermodynamics by the entropy per particle and the energy per particle Y( z), in units of the Fermi energy. Y( z) is in two segments, separated by a second-order phase transition at : a "superfluid" segment for and a "normal" segment for . For small z, the theory obeys a series where is a constant exponent and () are constant series coefficients. For large z, the theory obeys a perturbation of the ideal gas , where is a constant exponent and () are constant series coefficients. This limiting form for large z differs from the series used in the first paper and was necessary to fit the MIT data. I fit the MIT data by adjusting four free independent theory parameters: . This fit process was augmented by trap integration and comparison with earlier thermal data taken at Duke University. The overall match to both the data sets was good and had , , , scaled critical temperature , where is the Fermi temperature, and Bertsch parameter . I also discuss the virial expansion in the context of this thermodynamic geometric theory.
Localized Density/Drag Prediction for Improved Onboard Orbit Propagation
NASA Astrophysics Data System (ADS)
Stastny, N.; Lin, C.; Lovell, A.; Luck, J.; Chavez, F.
Since the development of Luigi G. Jacchia's first density model in 1970 (J70), atmospheric density modeling has steadily focused on large monolithic codes that provide global density coverage. The most recent instantiation of the global density model is the Jacchia-Bowman 2008 (JB08) model developed by Bruce Bowman of the Air Force Space Command. As the models have evolved and improved, their complexity has grown as well. Where the J70 model required 2 indices and various time averages to determine density, the JB08 model requires 5 indices to determine density. Due to computational complexity, the number of real-time inputs required, and limited forecasting abilities, these models are not well suited for onboard satellite orbit propagation. In contrast to the global models, this paper proposes the development of a density prediction tool that is only concerned with the trajectory of a specific satellite. Since the orbital parameters of most low Earth orbiting satellites remain relatively constant in the short term, there is also minimal variation in the density profile observed by the satellite. Limiting the density model to a smaller orbit regime will also increase the ability to forecast the density along that orbital track. As a first step, this paper evaluates the feasibility of using a localized density prediction algorithm to generate the density profile that will be seen by satellite, allowing for high-accuracy orbit propagation with minimal or no input from the ground. The algorithm evaluated in this paper is a simple Yule-Walker auto-regressive filter that, given previously measured density values, provides predictions on the upcoming density profile. This first approach requires zero information about the satellite's current orbit, but does require an onboard method for determining the current, local density. Though this aspect of the onboard system is not analyzed here, it is envisioned that this current, local density (or equivalently drag acceleration
Adiabatic invariance of oscillons/I -balls
NASA Astrophysics Data System (ADS)
Kawasaki, Masahiro; Takahashi, Fuminobu; Takeda, Naoyuki
2015-11-01
Real scalar fields are known to fragment into spatially localized and long-lived solitons called oscillons or I -balls. We prove the adiabatic invariance of the oscillons/I -balls for a potential that allows periodic motion even in the presence of non-negligible spatial gradient energy. We show that such a potential is uniquely determined to be the quadratic one with a logarithmic correction, for which the oscillons/I -balls are absolutely stable. For slightly different forms of the scalar potential dominated by the quadratic one, the oscillons/I -balls are only quasistable, because the adiabatic charge is only approximately conserved. We check the conservation of the adiabatic charge of the I -balls in numerical simulation by slowly varying the coefficient of logarithmic corrections. This unambiguously shows that the longevity of oscillons/I -balls is due to the adiabatic invariance.
Local density of states in parabolic quantum corrals
NASA Astrophysics Data System (ADS)
Trallero-Giner, C.; Ulloa, S. E.; López-Richard, V.
2004-03-01
Atomic manipulation and scanning tunnel microscope experiments on metal surfaces have shown that electronic states in a “quantum corral” can be locally monitored and used to analyze the nonlocal effects of perturbations. We study new corral geometries defined by families of confocal parabolas. General solutions of the Schrödinger equation for the interior problem with Dirichlet (hard wall) boundary conditions are found exactly in terms of zeroes of hypergeometric functions. We show that the Hilbert space of solutions is separated in subspaces with odd and even symmetry. We perform numerical evaluation of the zeroes and study the effects of the parabolic curvatures on the eigenvalues and eigenfunctions of the parabolic quantum corral. The evolution of the local density of states with energy as a function of parabolic corral geometry is also analyzed. We find that under suitable conditions, the distribution of state antinodes can be described as directed intensity beams, which could be used as “quantum beacons” in future generations of “quantum mirage” experiments or optical and acoustic analogs of quantum corrals for the state node distribution.
Wireless adiabatic power transfer
Rangelov, A.A.; Suchowski, H.; Silberberg, Y.; Vitanov, N.V.
2011-03-15
Research Highlights: > Efficient and robust mid-range wireless energy transfer between two coils. > The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. > Wireless energy transfer is insensitive to any resonant constraints. > Wireless energy transfer is insensitive to noise in the neighborhood of the coils. - Abstract: We propose a technique for efficient mid-range wireless power transfer between two coils, by adapting the process of adiabatic passage for a coherently driven two-state quantum system to the realm of wireless energy transfer. The proposed technique is shown to be robust to noise, resonant constraints, and other interferences that exist in the neighborhood of the coils.
Adiabatically driven Brownian pumps.
Rozenbaum, Viktor M; Makhnovskii, Yurii A; Shapochkina, Irina V; Sheu, Sheh-Yi; Yang, Dah-Yen; Lin, Sheng Hsien
2013-07-01
We investigate a Brownian pump which, being powered by a flashing ratchet mechanism, produces net particle transport through a membrane. The extension of the Parrondo's approach developed for reversible Brownian motors [Parrondo, Phys. Rev. E 57, 7297 (1998)] to adiabatically driven pumps is given. We demonstrate that the pumping mechanism becomes especially efficient when the time variation of the potential occurs adiabatically fast or adiabatically slow, in perfect analogy with adiabatically driven Brownian motors which exhibit high efficiency [Rozenbaum et al., Phys. Rev. E 85, 041116 (2012)]. At the same time, the efficiency of the pumping mechanism is shown to be less than that of Brownian motors due to fluctuations of the number of particles in the membrane. PMID:23944411
Geometrical representation of sum frequency generation and adiabatic frequency conversion
NASA Astrophysics Data System (ADS)
Suchowski, Haim; Oron, Dan; Arie, Ady; Silberberg, Yaron
2008-12-01
We present a geometrical representation of the process of sum frequency generation in the undepleted pump approximation, in analogy with the known optical Bloch equations. We use this analogy to propose a technique for achieving both high efficiency and large bandwidth in sum frequency conversion using the adiabatic inversion scheme. The process is analogous with rapid adiabatic passage in NMR, and adiabatic constraints are derived in this context. This adiabatic frequency conversion scheme is realized experimentally using an aperiodically poled potassium titanyl phosphate (KTP) device, where we achieved high efficiency signal-to-idler conversion over a bandwidth of 140nm .
Parallelizable adiabatic gate teleportation
NASA Astrophysics Data System (ADS)
Nakago, Kosuke; Hajdušek, Michal; Nakayama, Shojun; Murao, Mio
2015-12-01
To investigate how a temporally ordered gate sequence can be parallelized in adiabatic implementations of quantum computation, we modify adiabatic gate teleportation, a model of quantum computation proposed by Bacon and Flammia [Phys. Rev. Lett. 103, 120504 (2009), 10.1103/PhysRevLett.103.120504], to a form deterministically simulating parallelized gate teleportation, which is achievable only by postselection. We introduce a twisted Heisenberg-type interaction Hamiltonian, a Heisenberg-type spin interaction where the coordinates of the second qubit are twisted according to a unitary gate. We develop parallelizable adiabatic gate teleportation (PAGT) where a sequence of unitary gates is performed in a single step of the adiabatic process. In PAGT, numeric calculations suggest the necessary time for the adiabatic evolution implementing a sequence of L unitary gates increases at most as O (L5) . However, we show that it has the interesting property that it can map the temporal order of gates to the spatial order of interactions specified by the final Hamiltonian. Using this property, we present a controlled-PAGT scheme to manipulate the order of gates by a control qubit. In the controlled-PAGT scheme, two differently ordered sequential unitary gates F G and G F are coherently performed depending on the state of a control qubit by simultaneously applying the twisted Heisenberg-type interaction Hamiltonians implementing unitary gates F and G . We investigate why the twisted Heisenberg-type interaction Hamiltonian allows PAGT. We show that the twisted Heisenberg-type interaction Hamiltonian has an ability to perform a transposed unitary gate by just modifying the space ordering of the final Hamiltonian implementing a unitary gate in adiabatic gate teleportation. The dynamics generated by the time-reversed Hamiltonian represented by the transposed unitary gate enables deterministic simulation of a postselected event of parallelized gate teleportation in adiabatic
Cembran, Alessandro; Song, Lingchun; Mo, Yirong; Gao, Jiali
2010-01-01
A multistate density functional theory in the framework of the valence bond model is described. The method is based on a block-localized density functional theory (BLDFT) for the construction of valence-bond-like diabatic electronic states and is suitable for the study of electron transfer reactions and for the representation of reactive potential energy surfaces. The method is equivalent to a valence bond theory with the treatment of the localized configurations by using density functional theory (VBDFT). In VBDFT, the electron densities and energies of the valence bond states are determined by BLDFT. A functional estimate of the off-diagonal matrix elements of the VB Hamiltonian is proposed, making use of the overlap integral between Kohn–Sham determinants and the exchange-correlation functional for the ground state substituted with the transition (exchange) density. In addition, we describe an approximate approach, in which the off-diagonal matrix element is computed by wave function theory using block-localized Kohn–Sham orbitals. The key feature is that the electron density of the adiabatic ground state is not directly computed nor used to obtain the ground-state energy; the energy is determined by diagonalization of the multistate valence bond Hamiltonian. This represents a departure from the standard single-determinant Kohn–Sham density functional theory. The multistate VBDFT method is illustrated by the bond dissociation of H2+ and a set of three nucleophilic substitution reactions in the DBH24 database. In the dissociation of H2+, the VBDFT method yields the correct asymptotic behavior as the two protons stretch to infinity, whereas approximate functionals fail badly. For the SN2 nucleophilic substitution reactions, the hybrid functional B3LYP severely underestimates the barrier heights, while the approximate two-state VBDFT method overcomes the self-interaction error, and overestimates the barrier heights. Inclusion of the ionic state in a three
Spontaneous emission in stimulated Raman adiabatic passage
Ivanov, P. A.; Vitanov, N. V.; Bergmann, K.
2005-11-15
This work explores the effect of spontaneous emission on the population transfer efficiency in stimulated Raman adiabatic passage (STIRAP). The approach uses adiabatic elimination of weakly coupled density matrix elements in the Liouville equation, from which a very accurate analytic approximation is derived. The loss of population transfer efficiency is found to decrease exponentially with the factor {omega}{sub 0}{sup 2}/{gamma}, where {gamma} is the spontaneous emission rate and {omega}{sub 0} is the peak Rabi frequency. The transfer efficiency increases with the pulse delay and reaches a steady value. For large pulse delay and large spontaneous emission rate STIRAP degenerates into optical pumping.
Adiabatic cooling of antiprotons.
Gabrielse, G; Kolthammer, W S; McConnell, R; Richerme, P; Kalra, R; Novitski, E; Grzonka, D; Oelert, W; Sefzick, T; Zielinski, M; Fitzakerley, D; George, M C; Hessels, E A; Storry, C H; Weel, M; Müllers, A; Walz, J
2011-02-18
Adiabatic cooling is shown to be a simple and effective method to cool many charged particles in a trap to very low temperatures. Up to 3×10(6) p are cooled to 3.5 K-10(3) times more cold p and a 3 times lower p temperature than previously reported. A second cooling method cools p plasmas via the synchrotron radiation of embedded e(-) (with many fewer e(-) than p in preparation for adiabatic cooling. No p are lost during either process-a significant advantage for rare particles. PMID:21405511
Adiabatic Cooling of Antiprotons
Gabrielse, G.; Kolthammer, W. S.; McConnell, R.; Richerme, P.; Kalra, R.; Novitski, E.; Oelert, W.; Grzonka, D.; Sefzick, T.; Zielinski, M.; Fitzakerley, D.; George, M. C.; Hessels, E. A.; Storry, C. H.; Weel, M.; Muellers, A.; Walz, J.
2011-02-18
Adiabatic cooling is shown to be a simple and effective method to cool many charged particles in a trap to very low temperatures. Up to 3x10{sup 6} p are cooled to 3.5 K--10{sup 3} times more cold p and a 3 times lower p temperature than previously reported. A second cooling method cools p plasmas via the synchrotron radiation of embedded e{sup -} (with many fewer e{sup -} than p) in preparation for adiabatic cooling. No p are lost during either process--a significant advantage for rare particles.
NASA Astrophysics Data System (ADS)
Fredriksson, C.; Lazzaroni, R.; Brédas, J. L.; Ouhlal, A.; Selmani, A.
1994-06-01
The interactions between aluminum atoms and model molecules representing trans-polyacetylene are studied quantum chemically by a local density functional method. We focus on the chemical and electronic structure of the organoaluminum complexes. Special emphasis is put on a comparison between results at the local spin density approximation and ab initio Hartree-Fock levels. In unmetallized polyenes, the density functional method provides a very good description of the carbon-carbon bond lengths of conjugated systems; in the case of hexatriene, it reproduces the bond dimerization in very good agreement with experimental measurements. Upon metallization, a strong covalent interaction between aluminum and carbon is found. The Al-C bond formation induces an interruption of the bond alternation pattern and reduces the π-conjugation in the oligomer, in qualitative agreement with photoelectron spectroscopy data and previous theoretical results at the Hartree-Fock level. Notably, the π-electron levels in the organoaluminum complexes maintain delocalization. In contrast to Hartree-Fock results where an aluminum atom binds to a single carbon, the interactions calculated with the local spin density approximation lead to (i) formation of multicenter aluminum-carbon bonding; (ii) near planarity of the polyene molecule; and (iii) a lower degree of charge transfer from the metal atom to the polymer.
Global hybrids from the semiclassical atom theory satisfying the local density linear response.
Fabiano, Eduardo; Constantin, Lucian A; Cortona, Pietro; Della Sala, Fabio
2015-01-13
We propose global hybrid approximations of the exchange-correlation (XC) energy functional which reproduce well the modified fourth-order gradient expansion of the exchange energy in the semiclassical limit of many-electron neutral atoms and recover the full local density approximation (LDA) linear response. These XC functionals represent the hybrid versions of the APBE functional [Phys. Rev. Lett. 2011, 106, 186406] yet employing an additional correlation functional which uses the localization concept of the correlation energy density to improve the compatibility with the Hartree-Fock exchange as well as the coupling-constant-resolved XC potential energy. Broad energetic and structural testing, including thermochemistry and geometry, transition metal complexes, noncovalent interactions, gold clusters and small gold-molecule interfaces, as well as an analysis of the hybrid parameters, show that our construction is quite robust. In particular, our testing shows that the resulting hybrid, including 20% of Hartree-Fock exchange and named hAPBE, performs remarkably well for a broad palette of systems and properties, being generally better than popular hybrids (PBE0 and B3LYP). Semiempirical dispersion corrections are also provided. PMID:26574210
Extensive Adiabatic Invariants for Nonlinear Chains
NASA Astrophysics Data System (ADS)
Giorgilli, Antonio; Paleari, Simone; Penati, Tiziano
2012-09-01
We look for extensive adiabatic invariants in nonlinear chains in the thermodynamic limit. Considering the quadratic part of the Klein-Gordon Hamiltonian, by a linear change of variables we transform it into a sum of two parts in involution. At variance with the usual method of introducing normal modes, our constructive procedure allows us to exploit the complete resonance, while keeping the extensive nature of the system. Next we construct a nonlinear approximation of an extensive adiabatic invariant for a perturbation of the discrete nonlinear Schrödinger model. The fluctuations of this quantity are controlled via Gibbs measure estimates independent of the system size, for a large set of initial data at low specific energy. Finally, by numerical calculations we show that our adiabatic invariant is well conserved for times much longer than predicted by our first order theory, with fluctuation much smaller than expected according to standard statistical estimates.
Adiabatically implementing quantum gates
Sun, Jie; Lu, Songfeng Liu, Fang
2014-06-14
We show that, through the approach of quantum adiabatic evolution, all of the usual quantum gates can be implemented efficiently, yielding running time of order O(1). This may be considered as a useful alternative to the standard quantum computing approach, which involves quantum gates transforming quantum states during the computing process.
Entanglement and adiabatic quantum computation
NASA Astrophysics Data System (ADS)
Ahrensmeier, D.
2006-06-01
Adiabatic quantum computation provides an alternative approach to quantum computation using a time-dependent Hamiltonian. The time evolution of entanglement during the adiabatic quantum search algorithm is studied, and its relevance as a resource is discussed.
The Local-Density Theory: Application to Atoms and Molecules
NASA Astrophysics Data System (ADS)
Guo, Yufei
1990-01-01
The generalized local-spin-density functional (G-LSD) theory is proposed which avoids (a) the physical restriction used in the generalized exchange local-spin -density functional (GX-LSD) theory; (b) the homogeneous electron-density approximation in the Hartree-Fock-Slater (HFS) theory and in the Gaspar-Kohn-Sham (GKS) theory; and (c) the time-consuming step to search the optimal exchange parameter for each atom or ion in the Xalpha and Xia theories. Theoretically, the G-LSD theory is more rigorous than the GX-LSD, HFS, GKS, and Xia theories. Numerically, the statistical total energies for atoms are better in the G-LSD theory than in the GKS theory. Ionization potentials and electron affinities of atoms, the stability of singly and doubly charged negative ions, and the electronegativities, and hardnesses of the fractional charged atoms with Z < 37 are calculated by the SIC-GX-LSD theory with the GWB Fermi -hole parameters and electron-correlation correction. The self-interaction correction (SIC) is introduced into the multiple-Scattering Xalpha (MS-Xalpha) method and used to calculate some molecules and molecular anions. The results show that the ionization potentials from the negative of the one-electron eigenvalues are as good as those obtained in the transition state calculation and in very good agreement with experiment.
Parallel and Low-Order Scaling Implementation of Hartree-Fock Exchange Using Local Density Fitting.
Köppl, Christoph; Werner, Hans-Joachim
2016-07-12
Calculations using modern linear-scaling electron-correlation methods are often much faster than the necessary reference Hartree-Fock (HF) calculations. We report a newly implemented HF program that speeds up the most time-consuming step, namely, the evaluation of the exchange contributions to the Fock matrix. Using localized orbitals and their sparsity, local density fitting (LDF), and atomic orbital domains, we demonstrate that the calculation of the exchange matrix scales asymptotically linearly with molecular size. The remaining parts of the HF calculation scale cubically but become dominant only for very large molecular sizes or with many processing cores. The method is well parallelized, and the speedup scales well with up to about 100 CPU cores on multiple compute nodes. The effect of the local approximations on the accuracy of computed HF and local second-order Møller-Plesset perturbation theory energies is systematically investigated, and default values are established for the parameters that determine the domain sizes. Using these values, calculations for molecules with hundreds of atoms in combination with triple-ζ basis sets can be carried out in less than 1 h, with just a few compute nodes. The method can also be used to speed up density functional theory calculations with hybrid functionals that contain HF exchange. PMID:27267488
Adiabatic topological quantum computing
NASA Astrophysics Data System (ADS)
Cesare, Chris; Landahl, Andrew J.; Bacon, Dave; Flammia, Steven T.; Neels, Alice
2015-07-01
Topological quantum computing promises error-resistant quantum computation without active error correction. However, there is a worry that during the process of executing quantum gates by braiding anyons around each other, extra anyonic excitations will be created that will disorder the encoded quantum information. Here, we explore this question in detail by studying adiabatic code deformations on Hamiltonians based on topological codes, notably Kitaev's surface codes and the more recently discovered color codes. We develop protocols that enable universal quantum computing by adiabatic evolution in a way that keeps the energy gap of the system constant with respect to the computation size and introduces only simple local Hamiltonian interactions. This allows one to perform holonomic quantum computing with these topological quantum computing systems. The tools we develop allow one to go beyond numerical simulations and understand these processes analytically.
Dephasing effects on stimulated Raman adiabatic passage in tripod configurations
Lazarou, C.; Vitanov, N. V.
2010-09-15
We present an analytic description of the effects of dephasing processes on stimulated Raman adiabatic passage in a tripod quantum system. To this end, we develop an effective two-level model. Our analysis makes use of the adiabatic approximation in the weak dephasing regime. An effective master equation for a two-level system formed by two dark states is derived, where analytic solutions are obtained by utilizing the Demkov-Kunike model. From these, it is found that the fidelity for the final coherent superposition state decreases exponentially for increasing dephasing rates. Depending on the pulse ordering and for adiabatic evolution, the pulse delay can have an inverse effect.
Necessary and sufficient condition for quantum adiabatic evolution by unitary control fields
NASA Astrophysics Data System (ADS)
Wang, Zhen-Yu; Plenio, Martin B.
2016-05-01
We decompose the quantum adiabatic evolution as the products of gauge invariant unitary operators and obtain the exact nonadiabatic correction in the adiabatic approximation. A necessary and sufficient condition that leads to adiabatic evolution with geometric phases is provided, and we determine that in the adiabatic evolution, while the eigenstates are slowly varying, the eigenenergies and degeneracy of the Hamiltonian can change rapidly. We exemplify this result by the example of the adiabatic evolution driven by parametrized pulse sequences. For driving fields that are rotating slowly with the same average energy and evolution path, fast modulation fields can have smaller nonadiabatic errors than obtained under the traditional approach with a constant amplitude.
Bazzani, A.; Turchetti, G.; Benedetti, C.; Rambaldi, S.; Servizi, G.
2005-06-08
In a high intensity circular accelerator the synchrotron dynamics introduces a slow modulation in the betatronic tune due to the space-charge tune depression. When the transverse motion is non-linear due to the presence of multipolar effects, resonance islands move in the phase space and change their amplitude. This effect introduces the trapping and detrapping phenomenon and a slow diffusion in the phase space. We apply the neo-adiabatic theory to describe this diffusion mechanism that can contribute to halo formation.
Patrick, Christopher E. Thygesen, Kristian S.
2015-09-14
We present calculations of the correlation energies of crystalline solids and isolated systems within the adiabatic-connection fluctuation-dissipation formulation of density-functional theory. We perform a quantitative comparison of a set of model exchange-correlation kernels originally derived for the homogeneous electron gas (HEG), including the recently introduced renormalized adiabatic local-density approximation (rALDA) and also kernels which (a) satisfy known exact limits of the HEG, (b) carry a frequency dependence, or (c) display a 1/k{sup 2} divergence for small wavevectors. After generalizing the kernels to inhomogeneous systems through a reciprocal-space averaging procedure, we calculate the lattice constants and bulk moduli of a test set of 10 solids consisting of tetrahedrally bonded semiconductors (C, Si, SiC), ionic compounds (MgO, LiCl, LiF), and metals (Al, Na, Cu, Pd). We also consider the atomization energy of the H{sub 2} molecule. We compare the results calculated with different kernels to those obtained from the random-phase approximation (RPA) and to experimental measurements. We demonstrate that the model kernels correct the RPA’s tendency to overestimate the magnitude of the correlation energy whilst maintaining a high-accuracy description of structural properties.
Nonadiabatic transitions in finite-time adiabatic rapid passage
NASA Astrophysics Data System (ADS)
Lu, T.; Miao, X.; Metcalf, H.
2007-06-01
To apply the adiabatic rapid passage process repetitively [T. Lu, X. Miao, and H. Metcalf, Phys. Rev. A 71, 061405(R) (2005)], the nonadiabatic transition probability of a two-level atom subject to chirped light pulses over a finite period of time needs to be calculated. Using a unitary first-order perturbation method in the rotating adiabatic frame, an approximate formula has been derived for such transition probabilities in the entire parameter space of the pulses.
Multisurface Adiabatic Reactive Molecular Dynamics.
Nagy, Tibor; Yosa Reyes, Juvenal; Meuwly, Markus
2014-04-01
Adiabatic reactive molecular dynamics (ARMD) simulation method is a surface-crossing algorithm for modeling chemical reactions in classical molecular dynamics simulations using empirical force fields. As the ARMD Hamiltonian is time dependent during crossing, it allows only approximate energy conservation. In the current work, the range of applicability of conventional ARMD is explored, and a new multisurface ARMD (MS-ARMD) method is presented, implemented in CHARMM and applied to the vibrationally induced photodissociation of sulfuric acid (H2SO4) in the gas phase. For this, an accurate global potential energy surface (PES) involving 12 H2SO4 and 4 H2O + SO3 force fields fitted to MP2/6-311G++(2d,2p) reference energies is employed. The MS-ARMD simulations conserve total energy and feature both intramolecular H-transfer reactions and water elimination. An analytical treatment of the dynamics in the crossing region finds that conventional ARMD can approximately conserve total energy for limiting cases. In one of them, the reduced mass of the system is large, which often occurs for simulations of solvated biomolecular systems. On the other hand, MS-ARMD is a general approach for modeling chemical reactions including gas-phase, homogeneous, heterogeneous, and enzymatic catalytic reactions while conserving total energy in atomistic simulations. PMID:26580356
Suzuki-Trotter Formula for Real Time Dependent LDA II: Non-adiabatic MD
NASA Astrophysics Data System (ADS)
Miyamoto, Yoshiyuki; Sugino, Osamu
1998-03-01
In order to investigate ultrafast chemical reactions strongly coupled with electron dynamics, we must go beyond Born-Oppenheimer scheme. An ab-initio approach on this regime is quite challenging and applicable for many phenomena stimulated by electronic excitations. We have developed computational methods for a non-adiabatic molecular dynamics (MD) within the framework of the local density approximation (LDA) and pseudopotentials. The higher order Suziki-Trotter formula(M. Suzuki, J. Phys. Soc. Jpn. 61), L3015 (1992). for the time-evolution operator (e^fracihbarHΔ t) is found to be applicable even with use of separable non-local pseudopotentials(L. Kleinman, and D. M. Bylander, Phys. Rev. Lett. 48), 1425 (1982).. This formula enables us to perform numerically stable simulation for a long-time scale, during which orthonormality of wavefunctions is automatically conserved. At every time step, the Hellmann-Feynman force(J. Ihm, A. Zunger, and M. L. Cohen, J. Phys. C 12), 4409 (1979). on each atom is calculated to treat atomic motion within the classical Newton's equation. In this talk, a motion of an electronically excited K3 cluster is demonstrated as an example. During the simulation, sudden decrease of an expectation values of an excited electron is observed which can be attributed to non-radiative decay.
NASA Astrophysics Data System (ADS)
Landahl, Andrew
2012-10-01
Quantum computers promise to exploit counterintuitive quantum physics principles like superposition, entanglement, and uncertainty to solve problems using fundamentally fewer steps than any conventional computer ever could. The mere possibility of such a device has sharpened our understanding of quantum coherent information, just as lasers did for our understanding of coherent light. The chief obstacle to developing quantum computer technology is decoherence--one of the fastest phenomena in all of physics. In principle, decoherence can be overcome by using clever entangled redundancies in a process called fault-tolerant quantum error correction. However, the quality and scale of technology required to realize this solution appears distant. An exciting alternative is a proposal called ``adiabatic'' quantum computing (AQC), in which adiabatic quantum physics keeps the computer in its lowest-energy configuration throughout its operation, rendering it immune to many decoherence sources. The Adiabatic Quantum Architectures In Ultracold Systems (AQUARIUS) Grand Challenge Project at Sandia seeks to demonstrate this robustness in the laboratory and point a path forward for future hardware development. We are building devices in AQUARIUS that realize the AQC architecture on up to three quantum bits (``qubits'') in two platforms: Cs atoms laser-cooled to below 5 microkelvin and Si quantum dots cryo-cooled to below 100 millikelvin. We are also expanding theoretical frontiers by developing methods for scalable universal AQC in these platforms. We have successfully demonstrated operational qubits in both platforms and have even run modest one-qubit calculations using our Cs device. In the course of reaching our primary proof-of-principle demonstrations, we have developed multiple spinoff technologies including nanofabricated diffractive optical elements that define optical-tweezer trap arrays and atomic-scale Si lithography commensurate with placing individual donor atoms with
Geometry of the Adiabatic Theorem
ERIC Educational Resources Information Center
Lobo, Augusto Cesar; Ribeiro, Rafael Antunes; Ribeiro, Clyffe de Assis; Dieguez, Pedro Ruas
2012-01-01
We present a simple and pedagogical derivation of the quantum adiabatic theorem for two-level systems (a single qubit) based on geometrical structures of quantum mechanics developed by Anandan and Aharonov, among others. We have chosen to use only the minimum geometric structure needed for the understanding of the adiabatic theorem for this case.…
Non-adiabatic effect on quantum pumping
NASA Astrophysics Data System (ADS)
Uchiyama, Chikako
2014-03-01
We study quantum pumping for an anharmonic junction model which interacts with two kinds of bosonic environments. We provide an expression for the quantum pumping under a piecewise modulation of environmental temperatures with including non-adiabatic effect under Markovian approximation. The obtained formula is an extension of the one expressed with the geometrical phase(Phys. Rev. Lett. 104,170601 (2010)). This extension shows that the quantum pumping depends on the initial condition of the anharmonic junction just before the modulation, as well as the characteristic environmental parameters such as interaction strength and cut-off frequencies of spectral density other than the conditions of modulation. We clarify that the pumping current including non-adiabatic effect can be larger than that under the adiabatic condition. This means that we can find the optimal condition of the current by adjusting these parameters. (The article has been submitted as http://arxiv.org/submit/848201 and will be appeared soon.) This work is supported by a Grant-in-Aid for Scientific Research (B) (KAKENHI 25287098).
Adiabatic charging of nickel-hydrogen batteries
NASA Technical Reports Server (NTRS)
Lurie, Chuck; Foroozan, S.; Brewer, Jeff; Jackson, Lorna
1995-01-01
Battery management during prelaunch activities has always required special attention and careful planning. The transition from nickel-cadium to nickel-hydrogen batteries, with their high self discharge rate and lower charge efficiency, as well as longer prelaunch scenarios, has made this aspect of spacecraft battery management even more challenging. The AXAF-I Program requires high battery state of charge at launch. The use of active cooling, to ensure efficient charging, was considered and proved to be difficult and expensive. Alternative approaches were evaluated. Optimized charging, in the absence of cooling, appeared promising and was investigated. Initial testing was conducted to demonstrate the feasibility of the 'Adiabatic Charging' approach. Feasibility was demonstrated and additional testing performed to provide a quantitative, parametric data base. The assumption that the battery is in an adiabatic environment during prelaunch charging is a conservative approximation because the battery will transfer some heat to its surroundings by convective air cooling. The amount is small compared to the heat dissipated during battery overcharge. Because the battery has a large thermal mass, substantial overcharge can occur before the cells get too hot to charge efficiently. The testing presented here simulates a true adiabatic environment. Accordingly the data base may be slightly conservative. The adiabatic charge methodology used in this investigation begins with stabilizing the cell at a given starting temperature. The cell is then fully insulated on all sides. Battery temperature is carefully monitored and the charge terminated when the cell temperature reaches 85 F. Charging has been evaluated with starting temperatures from 55 to 75 F.
Cioslowski, Jerzy; Albin, Joanna
2013-09-21
Asymptotic equivalence of the shell-model and local-density (LDA) descriptions of Coulombic systems confined by radially symmetric potentials in two and three dimensions is demonstrated. Tight upper bounds to the numerical constants that enter the LDA expressions for the Madelung energy are derived and found to differ by less than 0.5% from the previously known approximate values. Thanks to the variational nature of the shell-model approximate energies, asymptotic expressions for other properties, such as mean radial positions of the particles and number densities, are also obtained. A conjecture that generalizes the present results to confining potentials with arbitrary symmetries is formulated. PMID:24070281
Taylor, John S.; Folta, James A.; Montcalm, Claude
2005-01-18
Figure errors are corrected on optical or other precision surfaces by changing the local density of material in a zone at or near the surface. Optical surface height is correlated with the localized density of the material within the same region. A change in the height of the optical surface can then be caused by a change in the localized density of the material at or near the surface.
An adiabatic demagnetization refrigerator for infrared bolometers
NASA Technical Reports Server (NTRS)
Britt, R. D.; Richards, P. L.
1981-01-01
Adiabatic demagnetization refrigerators have been built and installed in small portable liquid helium cryostats to test the feasibility of this method of cooling infrared bolometric detectors to temperatures below 0.3 K. Performance has been achieved which suggests that bolometer temperatures of 0.2 K can be maintained for periods of approximately 60 hours. Applications to sensitive infrared detection from ground-based telescopes and space satellites are discussed. Design data are given which permit the evaluation of refrigerator performance for a variety of design parameters.
Spatially heterogeneous populations with mixed negative and positive local density dependence.
Knipl, Diána; Röst, Gergely
2016-06-01
Identifying the steady states of a population is a key issue in theoretical ecology, that includes the study of spatially heterogeneous populations. There are several examples of real ecosystems in patchy environments where the habitats are heterogeneous in their local density dependence. We investigate a multi-patch model of a single species with spatial dispersal, where the growth of the local population is logistic in some localities (negative density dependence) while other patches exhibit a strong Allee effect (positive density dependence). When the local dynamics is logistic in each patch and the habitats are interconnected by dispersal then the total population has only the extinction steady state and a componentwise positive equilibrium, corresponding to persistence in each patch. We show that animal populations in patchy environments can have a large number of steady states if local density dependence varies over the locations. It is demonstrated that, depending on the network topology of migration routes between the patches, the interaction of spatial dispersal and local density dependence can create a variety of coexisting stable positive equilibria. We give a detailed description of the multiple ways dispersal can rescue local populations from extinction. PMID:26801607
Ribeiro, M.
2015-06-21
Ab initio calculations of hydrogen-passivated Si nanowires were performed using density functional theory within LDA-1/2, to account for the excited states properties. A range of diameters was calculated to draw conclusions about the ability of the method to correctly describe the main trends of bandgap, quantum confinement, and self-energy corrections versus the diameter of the nanowire. Bandgaps are predicted with excellent accuracy if compared with other theoretical results like GW, and with the experiment as well, but with a low computational cost.
Classical nuclear motion coupled to electronic non-adiabatic transitions
NASA Astrophysics Data System (ADS)
Agostini, Federica; Abedi, Ali; Gross, E. K. U.
2014-12-01
Based on the exact factorization of the electron-nuclear wave function, we have recently proposed a mixed quantum-classical scheme [A. Abedi, F. Agostini, and E. K. U. Gross, Europhys. Lett. 106, 33001 (2014)] to deal with non-adiabatic processes. Here we present a comprehensive description of the formalism, including the full derivation of the equations of motion. Numerical results are presented for a model system for non-adiabatic charge transfer in order to test the performance of the method and to validate the underlying approximations.
Classical nuclear motion coupled to electronic non-adiabatic transitions
Agostini, Federica; Abedi, Ali; Gross, E. K. U.
2014-12-07
Based on the exact factorization of the electron-nuclear wave function, we have recently proposed a mixed quantum-classical scheme [A. Abedi, F. Agostini, and E. K. U. Gross, Europhys. Lett. 106, 33001 (2014)] to deal with non-adiabatic processes. Here we present a comprehensive description of the formalism, including the full derivation of the equations of motion. Numerical results are presented for a model system for non-adiabatic charge transfer in order to test the performance of the method and to validate the underlying approximations.
Adiabatic evolution of plasma equilibrium
Grad, H.; Hu, P. N.; Stevens, D. C.
1975-01-01
A new theory of plasma equilibrium is introduced in which adiabatic constraints are specified. This leads to a mathematically nonstandard structure, as compared to the usual equilibrium theory, in which prescription of pressure and current profiles leads to an elliptic partial differential equation. Topologically complex configurations require further generalization of the concept of adiabaticity to allow irreversible mixing of plasma and magnetic flux among islands. Matching conditions across a boundary layer at the separatrix are obtained from appropriate conservation laws. Applications are made to configurations with planned islands (as in Doublet) and accidental islands (as in Tokamaks). Two-dimensional, axially symmetric, helically symmetric, and closed line equilibria are included. PMID:16578729
Failure of geometric electromagnetism in the adiabatic vector Kepler problem
Anglin, J.R.; Schmiedmayer, J.
2004-02-01
The magnetic moment of a particle orbiting a straight current-carrying wire may precess rapidly enough in the wire's magnetic field to justify an adiabatic approximation, eliminating the rapid time dependence of the magnetic moment and leaving only the particle position as a slow degree of freedom. To zeroth order in the adiabatic expansion, the orbits of the particle in the plane perpendicular to the wire are Keplerian ellipses. Higher-order postadiabatic corrections make the orbits precess, but recent analysis of this 'vector Kepler problem' has shown that the effective Hamiltonian incorporating a postadiabatic scalar potential ('geometric electromagnetism') fails to predict the precession correctly, while a heuristic alternative succeeds. In this paper we resolve the apparent failure of the postadiabatic approximation, by pointing out that the correct second-order analysis produces a third Hamiltonian, in which geometric electromagnetism is supplemented by a tensor potential. The heuristic Hamiltonian of Schmiedmayer and Scrinzi is then shown to be a canonical transformation of the correct adiabatic Hamiltonian, to second order. The transformation has the important advantage of removing a 1/r{sup 3} singularity which is an artifact of the adiabatic approximation.
Adiabatic Quantum Programming: Minor Embedding With Hard Faults
Klymko, Christine F; Sullivan, Blair D; Humble, Travis S
2013-01-01
Adiabatic quantum programming defines the time-dependent mapping of a quantum algorithm into the hardware or logical fabric. An essential programming step is the embedding of problem-specific information into the logical fabric to define the quantum computational transformation. We present algorithms for embedding arbitrary instances of the adiabatic quantum optimization algorithm into a square lattice of specialized unit cells. Our methods are shown to be extensible in fabric growth, linear in time, and quadratic in logical footprint. In addition, we provide methods for accommodating hard faults in the logical fabric without invoking approximations to the original problem. These hard fault-tolerant embedding algorithms are expected to prove useful for benchmarking the adiabatic quantum optimization algorithm on existing quantum logical hardware. We illustrate this versatility through numerical studies of embeddabilty versus hard fault rates in square lattices of complete bipartite unit cells.
Adiabatic quantum programming: minor embedding with hard faults
NASA Astrophysics Data System (ADS)
Klymko, Christine; Sullivan, Blair D.; Humble, Travis S.
2013-11-01
Adiabatic quantum programming defines the time-dependent mapping of a quantum algorithm into an underlying hardware or logical fabric. An essential step is embedding problem-specific information into the quantum logical fabric. We present algorithms for embedding arbitrary instances of the adiabatic quantum optimization algorithm into a square lattice of specialized unit cells. These methods extend with fabric growth while scaling linearly in time and quadratically in footprint. We also provide methods for handling hard faults in the logical fabric without invoking approximations to the original problem and illustrate their versatility through numerical studies of embeddability versus fault rates in square lattices of complete bipartite unit cells. The studies show that these algorithms are more resilient to faulty fabrics than naive embedding approaches, a feature which should prove useful in benchmarking the adiabatic quantum optimization algorithm on existing faulty hardware.
Staggered Local Density of States around the Vortex in Underdoped Cuprates
Kishine, Jun-ichiro; Lee, Patrick A.; Wen, Xiao-Gang
2001-06-04
We have studied a single vortex with the staggered flux (SF) core based on the SU(2) slave-boson theory of high T{sub c} superconductors. We find that, whereas the center in the vortex core is a SF state, as one moves away from the core center a correlated staggered modulation of the hopping amplitude {chi} and pairing amplitude {Delta} becomes predominant. We predict that in this region the local density of states exhibits staggered modulation when measured on the bonds, which may be directly detected by STM experiments.
The Guiding Center Approximation
NASA Astrophysics Data System (ADS)
Pedersen, Thomas Sunn
The guiding center approximation for charged particles in strong magnetic fields is introduced here. This approximation is very useful in situations where the charged particles are very well magnetized, such that the gyration (Larmor) radius is small compared to relevant length scales of the confinement device, and the gyration is fast relative to relevant timescales in an experiment. The basics of motion in a straight, uniform, static magnetic field are reviewed, and are used as a starting point for analyzing more complicated situations where more forces are present, as well as inhomogeneities in the magnetic field -- magnetic curvature as well as gradients in the magnetic field strength. The first and second adiabatic invariant are introduced, and slowly time-varying fields are also covered. As an example of the use of the guiding center approximation, the confinement concept of the cylindrical magnetic mirror is analyzed.
Pressure Oscillations in Adiabatic Compression
ERIC Educational Resources Information Center
Stout, Roland
2011-01-01
After finding Moloney and McGarvey's modified adiabatic compression apparatus, I decided to insert this experiment into my physical chemistry laboratory at the last minute, replacing a problematic experiment. With insufficient time to build the apparatus, we placed a bottle between two thick textbooks and compressed it with a third textbook forced…
Adiabatic dynamics of magnetic vortices
NASA Astrophysics Data System (ADS)
Papanicolaou, N.
1994-03-01
We formulate a reasonably detailed adiabatic conjecture concerning the dynamics of skew deflection of magnetic vortices in a field gradient, which is expected to be valid at sufficiently large values of the winding number. The conjecture is consistent with the golden rule used to describe the dynamics of realistic magnetic bubbles and is verified here numerically within the 2-D isotropic Heisenberg model.
Power-law singularity in the local density of states due to the point defect in graphene
NASA Astrophysics Data System (ADS)
Huang, Wen-Min; Tang, Jian-Ming; Lin, Hsiu-Hau
2009-09-01
Defects in graphene give rise to zero modes that are often related to the sharp peak in the local density of states near the defect site. Here we solved all zero modes induced by a single defect in the finite-size graphene and show that their contributions to the local density of states vanish in the thermodynamic limit. Instead, lots of resonant states emerge at low energies and eventually lead to a power-law singularity in the local density of states. Our findings show that the impurity problem in graphene should be treated as a collective phenomenon rather than a single impurity state.
Nonadiabatic Transitions in Adiabatic Rapid Passage
NASA Astrophysics Data System (ADS)
Lu, T.; Miao, X.; Metcalf, H.
2006-05-01
Optical forces much larger than the ordinary radiative force can be achieved on a two-level atom by multiple repetitions of adiabatic rapid passage sweeps with counterpropagating light beams. Chirped light pulses drive the atom-laser system up a ladder of dressed state energy sheets on sequential trajectories, thereby decreasing the atomic kinetic energy. Nonadiabatic transitions between the energy sheets must be avoided for this process to be effective. We have calculated the nonadiabatic transition probability for various chirped light pulses numerically. These results were compared to the first Demkov-Kunike model and the well-known Landau-Zener model. In addition, an analytical form of the nonadiabatic transition probability has been found for linearly chirped pulses and an approximate form for generic symmetric finite-time pulses has been found for the entire parameter space using the technique of unitary integration. From this, the asymptotic transition probability in the adiabatic limit was derived. T. Lu, X. Miao, and H. Metcalf, Phys., Rev. A 71 061405(R) (2005). Yu. Demkov and M. Kunike, Vestn. Leningr. Univ. Fis. Khim., 16, 39 (1969); K.-A. Suominen and B. Garraway, Phys. Rev. A45, 374 (1992)
Studies in Chaotic adiabatic dynamics
Jarzynski, C.
1994-01-01
Chaotic adiabatic dynamics refers to the study of systems exhibiting chaotic evolution under slowly time-dependent equations of motion. In this dissertation the author restricts his attention to Hamiltonian chaotic adiabatic systems. The results presented are organized around a central theme, namely, that the energies of such systems evolve diffusively. He begins with a general analysis, in which he motivates and derives a Fokker-Planck equation governing this process of energy diffusion. He applies this equation to study the {open_quotes}goodness{close_quotes} of an adiabatic invariant associated with chaotic motion. This formalism is then applied to two specific examples. The first is that of a gas of noninteracting point particles inside a hard container that deforms slowly with time. Both the two- and three-dimensional cases are considered. The results are discussed in the context of the Wall Formula for one-body dissipation in nuclear physics, and it is shown that such a gas approaches, asymptotically with time, an exponential velocity distribution. The second example involves the Fermi mechanism for the acceleration of cosmic rays. Explicit evolution equations are obtained for the distribution of cosmic ray energies within this model, and the steady-state energy distribution that arises when this equation is modified to account for the injection and removal of cosmic rays is discussed. Finally, the author re-examines the multiple-time-scale approach as applied to the study of phase space evolution under a chaotic adiabatic Hamiltonian. This leads to a more rigorous derivation of the above-mentioned Fokker-Planck equation, and also to a new term which has relevance to the problem of chaotic adiabatic reaction forces (the forces acting on slow, heavy degrees of freedom due to their coupling to light, fast chaotic degrees).
Nonadiabatic quantum Liouville and master equations in the adiabatic basis
Jang, Seogjoo
2012-12-14
A compact form of nonadiabatic molecular Hamiltonian in the basis of adiabatic electronic states and nuclear position states is presented. The Hamiltonian, which includes both the first and the second derivative couplings, is Hermitian and thus leads to a standard expression for the quantum Liouville equation for the density operator. With the application of a projection operator technique, a quantum master equation for the diagonal components of the density operator is derived. Under the assumption that nuclear states are much more short ranged compared to electronic states and assuming no singularity, a semi-adiabatic approximation is invoked, which results in expressions for the nonadiabatic molecular Hamiltonian and the quantum Liouville equation that are much more amenable to advanced quantum dynamics calculation. The semi-adiabatic approximation is also applied to a resonance energy transfer system consisting of a donor and an acceptor interacting via Coulomb terms, and explicit detailed expressions for exciton-bath Hamiltonian including all the non-adiabatic terms are derived.
Adiabatic Mass Loss Model in Binary Stars
NASA Astrophysics Data System (ADS)
Ge, H. W.
2012-07-01
Rapid mass transfer process in the interacting binary systems is very complicated. It relates to two basic problems in the binary star evolution, i.e., the dynamically unstable Roche-lobe overflow and the common envelope evolution. Both of the problems are very important and difficult to be modeled. In this PhD thesis, we focus on the rapid mass loss process of the donor in interacting binary systems. The application to the criterion of dynamically unstable mass transfer and the common envelope evolution are also included. Our results based on the adiabatic mass loss model could be used to improve the binary evolution theory, the binary population synthetic method, and other related aspects. We build up the adiabatic mass loss model. In this model, two approximations are included. The first one is that the energy generation and heat flow through the stellar interior can be neglected, hence the restructuring is adiabatic. The second one is that he stellar interior remains in hydrostatic equilibrium. We model this response by constructing model sequences, beginning with a donor star filling its Roche lobe at an arbitrary point in its evolution, holding its specific entropy and composition profiles fixed. These approximations are validated by the comparison with the time-dependent binary mass transfer calculations and the polytropic model for low mass zero-age main-sequence stars. In the dynamical time scale mass transfer, the adiabatic response of the donor star drives it to expand beyond its Roche lobe, leading to runaway mass transfer and the formation of a common envelope with its companion star. For donor stars with surface convection zones of any significant depth, this runaway condition is encountered early in mass transfer, if at all; but for main sequence stars with radiative envelopes, it may be encountered after a prolonged phase of thermal time scale mass transfer, so-called delayed dynamical instability. We identify the critical binary mass ratio for the
NASA Astrophysics Data System (ADS)
Mintmire, J. W.; White, C. T.
1987-03-01
We report the results of a computational study of the dimerization of the all-trans-polyacetylene chain within the local-density-func- tional formalism employing the Gáspár-Kohn-Sham exchange-correlation potential. Our calculated bond alternation at equilibrium is less than experimentally implied by roughly a factor of 3. Evidence is presented that suggests that this underestimation of dimerization is closely connected with the much discussed band-gap problem in local-density-functional theory.
Quantum Adiabatic Optimization and Combinatorial Landscapes
NASA Technical Reports Server (NTRS)
Smelyanskiy, V. N.; Knysh, S.; Morris, R. D.
2003-01-01
In this paper we analyze the performance of the Quantum Adiabatic Evolution (QAE) algorithm on a variant of Satisfiability problem for an ensemble of random graphs parametrized by the ratio of clauses to variables, gamma = M / N. We introduce a set of macroscopic parameters (landscapes) and put forward an ansatz of universality for random bit flips. We then formulate the problem of finding the smallest eigenvalue and the excitation gap as a statistical mechanics problem. We use the so-called annealing approximation with a refinement that a finite set of macroscopic variables (verses only energy) is used, and are able to show the existence of a dynamic threshold gamma = gammad, beyond which QAE should take an exponentially long time to find a solution. We compare the results for extended and simplified sets of landscapes and provide numerical evidence in support of our universality ansatz.
Entropy in Adiabatic Regions of Convection Simulations
NASA Astrophysics Data System (ADS)
Tanner, Joel D.; Basu, Sarbani; Demarque, Pierre
2016-05-01
One of the largest sources of uncertainty in stellar models is caused by the treatment of convection in stellar envelopes. One-dimensional stellar models often make use of the mixing length or equivalent approximations to describe convection, all of which depend on various free parameters. There have been attempts to rectify this by using 3D radiative-hydrodynamic simulations of stellar convection, and in trying to extract an equivalent mixing length from the simulations. In this Letter, we show that the entropy of the deeper, adiabatic layers in these simulations can be expressed as a simple function of {log}g and {log}{T}{{eff}}, which holds potential for calibrating stellar models in a simple and more general manner.
Non Adiabatic Evolution of Elliptical Galaxies by Dynamical Friction
NASA Astrophysics Data System (ADS)
Arena, S. E.; Bertin, G.; Liseikina, T.; Pegoraro, F.
2007-05-01
Many astrophysical problems, ranging from structure formation in cosmology to dynamics of elliptical galaxies, refer to slow processes of evolution of essentially collisionless self-gravitating systems. In order to determine the relevant quasi-equilibrium configuration at time t from given initial conditions, it is often argued that such slow evolution may be approximated in terms of adiabatic evolution, for the calculation of which efficient semi--analytical techniques are available. Here we focus on the slow process of evolution, induced by dynamical friction of a host stellar system on a minority component of "satellites", to determine to what extent an adiabatic description might be applied. The study is realized by means of N--body simulations of the evolution of the total system (the stellar system plus the minority component), in a controlled numerical environment. In particular, we compare the evolution from initial to final configurations of the system subject to dynamical friction with that of the same system evolved adiabatically (in the absence of dynamical friction). We consider two classes of galaxy models characterized by significantly different density and pressure anisotropy profiles. We demonstrate that, for the examined process, the evolution driven by dynamical friction is significantly different from the adiabatic case, not only quantitatively, but also qualitatively. The two classes of galaxy models considered in this investigation exhibit generally similar trends in evolution, with one exception: concentrated models reach a final total density profile, in the internal region, shallower than the initial one, while galaxy models with a broad core show the opposite behaviour. The evolution of elliptical galaxies induced by dynamical friction is a slow process but it is not adiabatic. The results of our investigation should be taken as a warning against the indiscriminate use of adiabatic growth prescriptions in studies of the structure of
Liang, Xiangdong; Johnson, Steven G
2013-12-16
We present a technique for large-scale optimization of optical microcavities based on the frequency-averaged local density of states (LDOS), which circumvents computational difficulties posed by previous eigenproblem-based formulations and allows us to perform full topology optimization of three-dimensional (3d) leaky cavity modes. We present theoretical results for both 2d and fully 3d computations in which every pixel of the design pattern is a degree of freedom ("topology optimization"), e.g. for lithographic patterning of dielectric slabs in 3d. More importantly, we argue that such optimization techniques can be applied to design cavities for which (unlike silicon-slab single-mode cavities) hand designs are difficult or unavailable, and in particular we design minimal-volume multi-mode cavities (e.g. for nonlinear frequency-conversion applications). PMID:24514656
Determination of Local Densities in Accreted Ice Samples Using X-Rays and Digital Imaging
NASA Technical Reports Server (NTRS)
Broughton, Howard; Sims, James; Vargas, Mario
1996-01-01
At the NASA Lewis Research Center's Icing Research Tunnel ice shapes, similar to those which develop in-flight icing conditions, were formed on an airfoil. Under cold room conditions these experimental samples were carefully removed from the airfoil, sliced into thin sections, and x-rayed. The resulting microradiographs were developed and the film digitized using a high resolution scanner to extract fine detail in the radiographs. A procedure was devised to calibrate the scanner and to maintain repeatability during the experiment. The techniques of image acquisition and analysis provide accurate local density measurements and reveal the internal characteristics of the accreted ice with greater detail. This paper will discuss the methodology by which these samples were prepared with emphasis on the digital imaging techniques.
Quantifying local density of optical states of nanorods by fluorescence lifetime imaging
Liu, Jing; Jiang, Xunpeng; Ishii, Satoshi; Shalaev, Vladimir; Irudayaraj, Joseph
2014-01-01
In this letter, we demonstrate a facile far-field approach to quantify the near-field local density of optical states (LDOS) of a nanorod using CdTe quantum dots (QDs) emitters tethered to the surface of nanorods as beacons for optical read-outs. Radiative decay rate was extracted to quantify the LDOS; our analysis indicates that the LDOS of the nanorod enhance both the radiative and nonradiative decay of QD, particularly radiative decay of QDs at the end of nanorod is enhanced by 1.17 times greater than that at the waist, while the nonradiative decay was uniformly enhanced over the nanorod. To the best of our knowledge, our effort constitutes the first to map the LDOS of a nanostructure via far-field method, to provide clarity on the interaction mechanism between emitters and the nanostructure, and to be potentially employed in the LDOS mapping of high-throughput nanostructures. PMID:25408619
Broadband enhancement of local density of states using silicon-compatible hyperbolic metamaterials
Wang, Yu; Inampudi, Sandeep; Capretti, Antonio; Sugimoto, Hiroshi; Fujii, Minoru; Dal Negro, Luca
2015-06-15
Light emitting silicon quantum dots by colloidal synthesis were uniformly spin-coated into a 20 nm-thick film and deposited atop a hyperbolic metamaterial of alternating TiN and SiO{sub 2} sub-wavelength layers. Using steady-state and time-resolved photoluminescence spectroscopy as a function of the emission wavelength in partnership with rigorous electromagnetic modeling of dipolar emission, we demonstrate enhanced Local Density of States and coupling to high-k modes in a broad spectral range. These findings provide an alternative approach for the engineering of novel Si-compatible broadband sources that leverage the control of radiative transitions in hyperbolic metamaterials and the flexibility of the widespread Si platform.
Robust adiabatic sum frequency conversion.
Suchowski, Haim; Prabhudesai, Vaibhav; Oron, Dan; Arie, Ady; Silberberg, Yaron
2009-07-20
We discuss theoretically and demonstrate experimentally the robustness of the adiabatic sum frequency conversion method. This technique, borrowed from an analogous scheme of robust population transfer in atomic physics and nuclear magnetic resonance, enables the achievement of nearly full frequency conversion in a sum frequency generation process for a bandwidth up to two orders of magnitude wider than in conventional conversion schemes. We show that this scheme is robust to variations in the parameters of both the nonlinear crystal and of the incoming light. These include the crystal temperature, the frequency of the incoming field, the pump intensity, the crystal length and the angle of incidence. Also, we show that this extremely broad bandwidth can be tuned to higher or lower central wavelengths by changing either the pump frequency or the crystal temperature. The detailed study of the properties of this converter is done using the Landau-Zener theory dealing with the adiabatic transitions in two level systems. PMID:19654679
Adiabaticity in open quantum systems
NASA Astrophysics Data System (ADS)
Venuti, Lorenzo Campos; Albash, Tameem; Lidar, Daniel A.; Zanardi, Paolo
2016-03-01
We provide a rigorous generalization of the quantum adiabatic theorem for open systems described by a Markovian master equation with time-dependent Liouvillian L (t ) . We focus on the finite system case relevant for adiabatic quantum computing and quantum annealing. Adiabaticity is defined in terms of closeness to the instantaneous steady state. While the general result is conceptually similar to the closed-system case, there are important differences. Namely, a system initialized in the zero-eigenvalue eigenspace of L (t ) will remain in this eigenspace with a deviation that is inversely proportional to the total evolution time T . In the case of a finite number of level crossings, the scaling becomes T-η with an exponent η that we relate to the rate of the gap closing. For master equations that describe relaxation to thermal equilibrium, we show that the evolution time T should be long compared to the corresponding minimum inverse gap squared of L (t ) . Our results are illustrated with several examples.
McMahan, A K
2005-03-30
This paper reports calculations for compressed Ce (4f{sup 1}), Pr (4f{sup 2}), and Nd (4f{sup 3}) using a combination of the local-density approximation (LDA) and dynamical mean field theory (DMFT), or LDA+DMFT. The 4f moment, spectra, and the total energy among other properties are examined as functions of volume and atomic number for an assumed face-centered cubic (fcc) structure. These materials are seen to be strongly localized at ambient pressure and for compressions up through the experimentally observed fcc phases ({gamma} phase for Ce), in the sense of having fully formed Hund's rules moments and little 4f spectral weight at the Fermi level. Subsequent compression for all three lanthanides brings about significant deviation of the moments from their Hund's rules values, a growing Kondo resonance at the fermi level, an associated softening in the total energy, and quenching of the spin orbit since the Kondo resonance is of mixed spin-orbit character while the lower Hubbard band is predominantly j = 5/2. while the most dramatic changes for Ce occur within the two-phase region of the {gamma}-{alpha} volume collapse transition, as found in earlier work, those for Pr and Nd occur within the volume range of the experimentally observed distorted fcc (dfcc) phase, which is therefore seen here as transitional and not part of the localized trivalent lanthanide sequence. The experimentally observed collapse to the {alpha}-U structure in Pr occurs only on further compression, and no such collapse is found in Nd. These lanthanides start closer to the localized limit for increasing atomic number, and so the theoretical signatures noted above are also offset to smaller volume as well, which is possibly related to the measured systematics of the size of the volume collapse being 15%, 9%, and none for Ce, Pr, and Nd, respectively.
Adiabatic Wankel type rotary engine
NASA Technical Reports Server (NTRS)
Kamo, R.; Badgley, P.; Doup, D.
1988-01-01
This SBIR Phase program accomplished the objective of advancing the technology of the Wankel type rotary engine for aircraft applications through the use of adiabatic engine technology. Based on the results of this program, technology is in place to provide a rotor and side and intermediate housings with thermal barrier coatings. A detailed cycle analysis of the NASA 1007R Direct Injection Stratified Charge (DISC) rotary engine was performed which concluded that applying thermal barrier coatings to the rotor should be successful and that it was unlikely that the rotor housing could be successfully run with thermal barrier coatings as the thermal stresses were extensive.
Cesa, Yanina; Blum, Christian; van den Broek, Johanna M; Mosk, Allard P; Vos, Willem L; Subramaniam, Vinod
2009-04-14
We present experiments to determine the quantum efficiency and emission oscillator strength of exclusively the emitting states of the widely used enhanced green fluorescent protein (EGFP). We positioned the emitters at precisely defined distances from a mirror to control the local density of optical states, resulting in characteristic changes in the fluorescence decay rate that we monitored by fluorescence lifetime microscopy. To the best of our knowledge, this is the first emission lifetime control of a biological emitter. From the oscillation of the observed emission lifetimes as a function of the emitter to mirror distance, we determined the radiative and nonradiative decay rates of the fluorophore. Since only the emitting species contribute to the change in emission lifetimes, the rates determined characterize specifically the quantum efficiency and oscillator strength of the on-states of the emitter, in contrast to other methods that do not differentiate between emitting and dark states. The method reported is especially interesting for photophysically complex systems like fluorescent proteins, where a range of emitting and dark forms has been observed. We have validated the analysis method using Rhodamine 6G dye, obtaining results in very good agreement with the literature. For EGFP we determine the quantum efficiency of the on-states to be 72%. As expected for this complex system, our value is higher than that determined by methods that average over on- and off-states. PMID:19325987
Color of pure and alkali-doped cerium sulfide: A local-density-functional study
NASA Astrophysics Data System (ADS)
Perrin, M.-A.; Wimmer, E.
1996-07-01
The electronic structure and mechanisms for the optical excitations of pure and Na-doped γ-Ce2S3 have been investigated using first-principles local-density-functional theory. The energy-band structures from augmented-spherical-wave calculations indicate that the S 3p-->Ce 5d interband transitions give rise to absorptions in the ultraviolet, whereas the observed red color of γ-Ce2S3 is associated with localized Ce 4f-->5d excitations. The cationic vacancies in γ-Ce2S3 (which is derived from the cubic Th3P4 structure) lead to the formation of vacancy bands, which are split off from the top of the S 3p valence band. Na doping removes these vacancy bands and homogenizes the band edges of the valence and conduction bands. As a consequence, the onset of the f-->d transitions is shifted slightly to larger energies and becomes sharper, which is consistent with an observed change in the color of γ-Ce2S3 from maroon to red-orange upon doping with Na.
Spontaneous-emission control by local density of states of photonic crystal cavity
NASA Astrophysics Data System (ADS)
Jiang, Bin; Zhang, Ye-Jin; Zhou, Wen-Jun; Chen, Wei; Liu, An-Jin; Zheng, Wan-Hua
2011-02-01
The local density of states (LDOS) of two-dimensional square lattice photonic crystal (PhC) defect cavity is studied. The results show that the LDOS in the centre is greatly reduced, while the LDOS at the point off the centre (for example, at the point (0.3a, 0.4a), where a is the lattice constant) is extremely enhanced. Further, the disordered radii are introduced to imitate the real devices fabricated in our experiment, and then we study the LDOS of PhC cavity with configurations of different disordered radii. The results show that in the disordered cavity, the LDOS in the centre is still greatly reduced, while the LDOS at the point (0.3a, 0.4a) is still extremely enhanced. It shows that the LDOS analysis is useful. When a laser is designed on the basis of the square lattice PhC rod cavity, in order to enhance the spontaneous emission, the active materials should not be inserted in the centre of the cavity, but located at positions off the centre. So LDOS method gives a guide to design the positions of the active materials (quantum dots) in the lasers.
RKKY interaction and local density of states for a triangular triple quantum dot system
NASA Astrophysics Data System (ADS)
Xiong, Yong-Chen; Wang, Wei-Zhong; Luo, Shi-Jun; Yang, Jun-Tao; Huang, Hai-Ming
2016-02-01
By means of the numerical renormalization group technique, we study the local density of states (LDOS) for a triangular triple quantum dot system, with two dots connected in parallel to the conduction leads. We find the location of the Ruderman-Kittel-Kasuya-Yosida (RKKY) peak identified in the LDOS could be illustrated as JRKKY = aΓ2 / U +bt22 / U, with U being the on-site Coulomb repulsion, Γ the dot-lead coupling, and t2 the hopping between the connected dots and the side dot. When the hopping between two connected dots t1 turns on, the spectrum weight of the RKKY peaks decreases due to the competition between the direct and the RKKY interactions. As t1 increases beyond a critical point t1c, two connected dots form a spin singlet, and decouple from both the side dot and the conduction leads, thus the Kondo and RKKY peaks could not be found. For t1
Fluctuations of work in nearly adiabatically driven open quantum systems.
Suomela, S; Salmilehto, J; Savenko, I G; Ala-Nissila, T; Möttönen, M
2015-02-01
We extend the quantum jump method to nearly adiabatically driven open quantum systems in a way that allows for an accurate account of the external driving in the system-environment interaction. Using this framework, we construct the corresponding trajectory-dependent work performed on the system and derive the integral fluctuation theorem and the Jarzynski equality for nearly adiabatic driving. We show that such identities hold as long as the stochastic dynamics and work variable are consistently defined. We numerically study the emerging work statistics for a two-level quantum system and find that the conventional diabatic approximation is unable to capture some prominent features arising from driving, such as the continuity of the probability density of work. Our results reveal the necessity of using accurate expressions for the drive-dressed heat exchange in future experiments probing jump time distributions. PMID:25768477
Shortcut to adiabatic gate teleportation
NASA Astrophysics Data System (ADS)
Santos, Alan C.; Silva, Raphael D.; Sarandy, Marcelo S.
2016-01-01
We introduce a shortcut to the adiabatic gate teleportation model of quantum computation. More specifically, we determine fast local counterdiabatic Hamiltonians able to implement teleportation as a universal computational primitive. In this scenario, we provide the counterdiabatic driving for arbitrary n -qubit gates, which allows to achieve universality through a variety of gate sets. Remarkably, our approach maps the superadiabatic Hamiltonian HSA for an arbitrary n -qubit gate teleportation into the implementation of a rotated superadiabatic dynamics of an n -qubit state teleportation. This result is rather general, with the speed of the evolution only dictated by the quantum speed limit. In particular, we analyze the energetic cost for different Hamiltonian interpolations in the context of the energy-time complementarity.
Adiabaticity and gravity theory independent conservation laws for cosmological perturbations
NASA Astrophysics Data System (ADS)
Romano, Antonio Enea; Mooij, Sander; Sasaki, Misao
2016-04-01
We carefully study the implications of adiabaticity for the behavior of cosmological perturbations. There are essentially three similar but different definitions of non-adiabaticity: one is appropriate for a thermodynamic fluid δPnad, another is for a general matter field δPc,nad, and the last one is valid only on superhorizon scales. The first two definitions coincide if cs2 = cw2 where cs is the propagation speed of the perturbation, while cw2 = P ˙ / ρ ˙ . Assuming the adiabaticity in the general sense, δPc,nad = 0, we derive a relation between the lapse function in the comoving slicing Ac and δPnad valid for arbitrary matter field in any theory of gravity, by using only momentum conservation. The relation implies that as long as cs ≠cw, the uniform density, comoving and the proper-time slicings coincide approximately for any gravity theory and for any matter field if δPnad = 0 approximately. In the case of general relativity this gives the equivalence between the comoving curvature perturbation Rc and the uniform density curvature perturbation ζ on superhorizon scales, and their conservation. This is realized on superhorizon scales in standard slow-roll inflation. We then consider an example in which cw =cs, where δPnad = δPc,nad = 0 exactly, but the equivalence between Rc and ζ no longer holds. Namely we consider the so-called ultra slow-roll inflation. In this case both Rc and ζ are not conserved. In particular, as for ζ, we find that it is crucial to take into account the next-to-leading order term in ζ's spatial gradient expansion to show its non-conservation, even on superhorizon scales. This is an example of the fact that adiabaticity (in the thermodynamic sense) is not always enough to ensure the conservation of Rc or ζ.
Quantum gates with controlled adiabatic evolutions
NASA Astrophysics Data System (ADS)
Hen, Itay
2015-02-01
We introduce a class of quantum adiabatic evolutions that we claim may be interpreted as the equivalents of the unitary gates of the quantum gate model. We argue that these gates form a universal set and may therefore be used as building blocks in the construction of arbitrary "adiabatic circuits," analogously to the manner in which gates are used in the circuit model. One implication of the above construction is that arbitrary classical boolean circuits as well as gate model circuits may be directly translated to adiabatic algorithms with no additional resources or complexities. We show that while these adiabatic algorithms fail to exhibit certain aspects of the inherent fault tolerance of traditional quantum adiabatic algorithms, they may have certain other experimental advantages acting as quantum gates.
On a Nonlinear Model in Adiabatic Evolutions
NASA Astrophysics Data System (ADS)
Sun, Jie; Lu, Song-Feng
2016-08-01
In this paper, we study a kind of nonlinear model of adiabatic evolution in quantum search problem. As will be seen here, for this problem, there always exists a possibility that this nonlinear model can successfully solve the problem, while the linear model can not. Also in the same setting, when the overlap between the initial state and the final stare is sufficiently large, a simple linear adiabatic evolution can achieve O(1) time efficiency, but infinite time complexity for the nonlinear model of adiabatic evolution is needed. This tells us, it is not always a wise choice to use nonlinear interpolations in adiabatic algorithms. Sometimes, simple linear adiabatic evolutions may be sufficient for using. Supported by the National Natural Science Foundation of China under Grant Nos. 61402188 and 61173050. The first author also gratefully acknowledges the support from the China Postdoctoral Science Foundation under Grant No. 2014M552041
Design of the PIXIE Adiabatic Demagnetization Refrigerators
NASA Technical Reports Server (NTRS)
Shirron, Peter J.; Kimball, Mark Oliver; Fixsen, Dale J.; Kogut, Alan J.; Li, Xiaoyi; DiPirro, Michael
2012-01-01
The Primordial Inflation Explorer (PIXIE) is a proposed mission to densely map the polarization of the cosmic microwave background. It will operate in a scanning mode from a sun-synchronous orbit, using low temperature detectors (at 0.1 K) and located inside a teslescope that is cooled to approximately 2.73 K - to match the background temperature. A mechanical cryocooler operating at 4.5 K establishes a low base temperature from which two adiabatic demagnetization refrigerator (ADR) assemblies will cool the telescope and detectors. To achieve continuous scanning capability, the ADRs must operate continuously. Complicating the design are two factors: 1) the need to systematically vary the temperature of various telescope components in order to separate the small polarization signal variations from those that may arise from temperature drifts and changing gradients within the telescope, and 2) the orbital and monthly variations in lunar irradiance into the telescope barrels. These factors require the telescope ADR to reject quasi-continuous heat loads of 2-3 millwatts, while maintaining a peak heat reject rate of less than 12 milliwatts. The detector heat load at 0.1 K is comparatively small at 1-2 microwatts. This paper will describe the 3-stage and 2-stage continuous ADRs that will be used to meet the cooling power and temperature stability requirements of the PIXIE detectors and telescope.
Design of the PIXIE adiabatic demagnetization refrigerators
NASA Astrophysics Data System (ADS)
Shirron, Peter J.; Kimball, Mark O.; Fixsen, Dale J.; Kogut, Alan J.; Li, Xiaoyi; DiPirro, Michael J.
2012-04-01
The Primordial Inflation Explorer (PIXIE) is a proposed mission to densely map the polarization of the cosmic microwave background. It will operate in a scanning mode from a sun-synchronous orbit, using low temperature detectors (at 0.1 K) and located inside a telescope that is cooled to approximately 2.73 K - to match the background temperature. A mechanical cryocooler operating at 4.5 K establishes a low base temperature from which two adiabatic demagnetization refrigerator (ADR) assemblies will cool the telescope and detectors. To achieve continuous scanning capability, the ADRs must operate continuously. Complicating the design are two factors: (1) the need to systematically vary the temperature of various telescope components in order to separate the small polarization signal variations from those that may arise from temperature drifts and changing gradients within the telescope, and (2) the orbital and monthly variations in lunar irradiance into the telescope barrels. These factors require the telescope ADR to reject quasi-continuous heat loads of 2-3 mW, while maintaining a peak heat reject rate of less than 12 mW. The detector heat load at 0.1 K is comparatively small at 1-2 μW. This paper will describe the 3-stage and 2-stage continuous ADRs that will be used to meet the cooling power and temperature stability requirements of the PIXIE detectors and telescope.
Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo
White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; Mozyrsky, Dmitry
2015-07-07
Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficientmore » as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In many cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.« less
Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo
White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; Mozyrsky, Dmitry
2015-07-07
Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficient as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In many cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.
Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo
White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; Mozyrsky, Dmitry
2015-07-07
Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficient as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In most cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.
Adiabatic Compression of Oxygen: Real Fluid Temperatures
NASA Technical Reports Server (NTRS)
Barragan, Michelle; Wilson, D. Bruce; Stoltzfus, Joel M.
2000-01-01
The adiabatic compression of oxygen has been identified as an ignition source for systems operating in enriched oxygen atmospheres. Current practice is to evaluate the temperature rise on compression by treating oxygen as an ideal gas with constant heat capacity. This paper establishes the appropriate thermodynamic analysis for the common occurrence of adiabatic compression of oxygen and in the process defines a satisfactory equation of state (EOS) for oxygen. It uses that EOS to model adiabatic compression as isentropic compression and calculates final temperatures for this system using current approaches for comparison.
Heating and cooling in adiabatic mixing process
NASA Astrophysics Data System (ADS)
Zhou, Jing; Cai, Zi; Zou, Xu-Bo; Guo, Guang-Can
2010-12-01
We study the effect of interaction on the temperature change in the process of adiabatic mixing of two components of Fermi gases using the real-space Bogoliubov-de Gennes method. We find that in the process of adiabatic mixing, the competition between the adiabatic expansion and the attractive interaction makes it possible to cool or heat the system depending on the strength of the interaction and the initial temperature of the system. The changes of the temperature in a bulk system and in a trapped system are investigated.
Adiabatic limits on Riemannian Heisenberg manifolds
Yakovlev, A A
2008-02-28
An asymptotic formula is obtained for the distribution function of the spectrum of the Laplace operator, in the adiabatic limit for the foliation defined by the orbits of an invariant flow on a compact Riemannian Heisenberg manifold. Bibliography: 21 titles.
Experimental demonstration of composite adiabatic passage
NASA Astrophysics Data System (ADS)
Schraft, Daniel; Halfmann, Thomas; Genov, Genko T.; Vitanov, Nikolay V.
2013-12-01
We report an experimental demonstration of composite adiabatic passage (CAP) for robust and efficient manipulation of two-level systems. The technique represents a altered version of rapid adiabatic passage (RAP), driven by composite sequences of radiation pulses with appropriately chosen phases. We implement CAP with radio-frequency pulses to invert (i.e., to rephase) optically prepared spin coherences in a Pr3+:Y2SiO5 crystal. We perform systematic investigations of the efficiency of CAP and compare the results with conventional π pulses and RAP. The data clearly demonstrate the superior features of CAP with regard to robustness and efficiency, even under conditions of weakly fulfilled adiabaticity. The experimental demonstration of composite sequences to support adiabatic passage is of significant relevance whenever a high efficiency or robustness of coherent excitation processes need to be maintained, e.g., as required in quantum information technology.
An Adiabatic Architecture for Linear Signal Processing
NASA Astrophysics Data System (ADS)
Vollmer, M.; Götze, J.
2005-05-01
Using adiabatic CMOS logic instead of the more traditional static CMOS logic can lower the power consumption of a hardware design. However, the characteristic differences between adiabatic and static logic, such as a four-phase clock, have a far reaching influence on the design itself. These influences are investigated in this paper by adapting a systolic array of CORDIC devices to be implemented adiabatically. We present a means to describe adiabatic logic in VHDL and use it to define the systolic array with precise timing and bit-true calculations. The large pipeline bubbles that occur in a naive version of this array are identified and removed to a large degree. As an example, we demonstrate a parameterization of the CORDIC array that carries out adaptive RLS filtering.
General conditions for quantum adiabatic evolution
Comparat, Daniel
2009-07-15
Adiabaticity occurs when, during its evolution, a physical system remains in the instantaneous eigenstate of the Hamiltonian. Unfortunately, existing results, such as the quantum adiabatic theorem based on a slow down evolution [H({epsilon}t),{epsilon}{yields}0], are insufficient to describe an evolution driven by the Hamiltonian H(t) itself. Here we derive general criteria and exact bounds, for the state and its phase, ensuring an adiabatic evolution for any Hamiltonian H(t). As a corollary, we demonstrate that the commonly used condition of a slow Hamiltonian variation rate, compared to the spectral gap, is indeed sufficient to ensure adiabaticity but only when the Hamiltonian is real and nonoscillating (for instance, containing exponential or polynomial but no sinusoidal functions)
Relativistic blast waves in two dimensions. I - The adiabatic case
NASA Technical Reports Server (NTRS)
Shapiro, P. R.
1979-01-01
Approximate solutions are presented for the dynamical evolution of strong adiabatic relativistic blast waves which result from a point explosion in an ambient gas in which the density varies both with distance from the explosion center and with polar angle in axisymmetry. Solutions are analytical or quasi-analytical for the extreme relativistic case and numerical for the arbitrarily relativistic case. Some general properties of nonplanar relativistic shocks are also discussed, including the incoherence of spherical ultrarelativistic blast-wave fronts on angular scales greater than the reciprocal of the shock Lorentz factor, as well as the conditions for producing blast-wave acceleration.
Nonlinear effects generation in non-adiabatically tapered fibres
NASA Astrophysics Data System (ADS)
Palací, Jesús; Mas, Sara; Monzón-Hernández, David; Martí, Javier
2015-12-01
Nonlinear effects are observed in a non-adiabatically tapered optical fibre. The designed structure allows for the introduction of self-phase modulation, which is observed through pulse breaking and spectral broadening, in approximately a centimetre of propagation using a commercial telecom laser. These devices are simple to fabricate and suitable to generate and control a variety of nonlinear effects in practical applications because they do not experience short-term degradation as previously reported approaches. Experimental and theoretical results are obtained, showing a good agreement.
Quantum corrections during inflation and conservation of adiabatic perturbations
Campo, David
2010-02-15
The possibility that quantum corrections break the conservation of superhorizon adiabatic perturbations in single field inflation is examined. I consider the lowest order corrections from massless matter fields in the Hamiltonian formalism. Particular emphasis is therefore laid on the renormalization. The counterterms are the same as in the Lagrangian formalism. The renormalized value of the tadpole is zero. I find a possible secular dependence of the power spectrum at one loop due to the trace anomaly, but this result depends on the approximation of the modes and is inconclusive. The symmetry (not) violated by the quantum corrections is the invariance by dilatation. Perspectives on the backreaction problem are briefly discussed.
Symmetry of the Adiabatic Condition in the Piston Problem
ERIC Educational Resources Information Center
Anacleto, Joaquim; Ferreira, J. M.
2011-01-01
This study addresses a controversial issue in the adiabatic piston problem, namely that of the piston being adiabatic when it is fixed but no longer so when it can move freely. It is shown that this apparent contradiction arises from the usual definition of adiabatic condition. The issue is addressed here by requiring the adiabatic condition to be…
Leroy, Frédéric Böhm, Michael C.; Schulte, Joachim; Balasubramanian, Ganesh
2014-04-14
We report reverse nonequilibrium molecular dynamics calculations of the thermal conductivity of isotope substituted (10,10) carbon nanotubes (CNTs) at 300 K. {sup 12}C and {sup 14}C isotopes both at 50% content were arranged either randomly, in bands running parallel to the main axis of the CNTs or in bands perpendicular to this axis. It is found that the systems with randomly distributed isotopes yield significantly reduced thermal conductivity. In contrast, the systems where the isotopes are organized in patterns parallel to the CNTs axis feature no reduction in thermal conductivity when compared with the pure {sup 14}C system. Moreover, a reduction of approximately 30% is observed in the system with the bands of isotopes running perpendicular to the CNT axis. The computation of phonon dispersion curves in the local density approximation and classical densities of vibrational states reveal that the phonon structure of carbon nanotubes is conserved in the isotope substituted systems with the ordered patterns, yielding high thermal conductivities in spite of the mass heterogeneity. In order to complement our conclusions on the {sup 12}C-{sup 14}C mixtures, we computed the thermal conductivity of systems where the {sup 14}C isotope was turned into pseudo-atoms of 20 and 40 atomic mass units.
HALOGEN: Approximate synthetic halo catalog generator
NASA Astrophysics Data System (ADS)
Avila Perez, Santiago; Murray, Steven
2015-05-01
HALOGEN generates approximate synthetic halo catalogs. Written in C, it decomposes the problem of generating cosmological tracer distributions (eg. halos) into four steps: generating an approximate density field, generating the required number of tracers from a CDF over mass, placing the tracers on field particles according to a bias scheme dependent on local density, and assigning velocities to the tracers based on velocities of local particles. It also implements a default set of four models for these steps. HALOGEN uses 2LPTic (ascl:1201.005) and CUTE (ascl:1505.016); the software is flexible and can be adapted to varying cosmologies and simulation specifications.
Point defects as a test ground for the local density approximation +U theory: Mn, Fe, and VGa in GaN
NASA Astrophysics Data System (ADS)
Volnianska, O.; Zakrzewski, T.; Boguslawski, P.
2014-09-01
Electronic structure of the Mn and Fe ions and of the gallium vacancy VGa in GaN was analysed within the GGA + U approach. First, the +U term was treated as a free parameter, and applied to p(N), d(Mn), and d(Fe). The band gap of GaN is reproduced for U(N) ≈ 4 eV. The electronic structure of defect states was found to be more sensitive to the value of U than that of the bulk states. Both the magnitude and the sign of the U-induced energy shifts of levels depend on occupancies, and thus on the defect charge state. The energy shifts also depend on the hybridization between defect and host states, and thus are different for different level symmetries. In the case of VGa, these effects lead to stabilization of spin polarization and the "negative-Ueff" behavior. The values of Us were also calculated using the linear response approach, which gives U(Fe) ≈ U(Mn) ≈ 4 eV. This reproduces well the results of previous hybrid functionals calculations. However, the best agreement with the experimental data is obtained for vanishing or even negative U(Fe) and U(Mn).
Volnianska, O; Zakrzewski, T; Boguslawski, P
2014-09-21
Electronic structure of the Mn and Fe ions and of the gallium vacancy V(Ga) in GaN was analysed within the GGA + U approach. First, the +U term was treated as a free parameter, and applied to p(N), d(Mn), and d(Fe). The band gap of GaN is reproduced for U(N) ≈ 4 eV. The electronic structure of defect states was found to be more sensitive to the value of U than that of the bulk states. Both the magnitude and the sign of the U-induced energy shifts of levels depend on occupancies, and thus on the defect charge state. The energy shifts also depend on the hybridization between defect and host states, and thus are different for different level symmetries. In the case of V(Ga), these effects lead to stabilization of spin polarization and the "negative-U(eff)" behavior. The values of Us were also calculated using the linear response approach, which gives U(Fe) ≈ U(Mn) ≈ 4 eV. This reproduces well the results of previous hybrid functionals calculations. However, the best agreement with the experimental data is obtained for vanishing or even negative U(Fe) and U(Mn). PMID:25240364
Volnianska, O.; Zakrzewski, T.; Boguslawski, P.
2014-09-21
Electronic structure of the Mn and Fe ions and of the gallium vacancy V{sub Ga} in GaN was analysed within the GGA + U approach. First, the +U term was treated as a free parameter, and applied to p(N), d(Mn), and d(Fe). The band gap of GaN is reproduced for U(N) ≈ 4 eV. The electronic structure of defect states was found to be more sensitive to the value of U than that of the bulk states. Both the magnitude and the sign of the U-induced energy shifts of levels depend on occupancies, and thus on the defect charge state. The energy shifts also depend on the hybridization between defect and host states, and thus are different for different level symmetries. In the case of V{sub Ga}, these effects lead to stabilization of spin polarization and the “negative-U{sub eff}” behavior. The values of Us were also calculated using the linear response approach, which gives U(Fe) ≈ U(Mn) ≈ 4 eV. This reproduces well the results of previous hybrid functionals calculations. However, the best agreement with the experimental data is obtained for vanishing or even negative U(Fe) and U(Mn)
Graph isomorphism and adiabatic quantum computing
NASA Astrophysics Data System (ADS)
Gaitan, Frank; Clark, Lane
2014-02-01
In the graph isomorphism (GI) problem two N-vertex graphs G and G' are given and the task is to determine whether there exists a permutation of the vertices of G that preserves adjacency and transforms G →G'. If yes, then G and G' are said to be isomorphic; otherwise they are nonisomorphic. The GI problem is an important problem in computer science and is thought to be of comparable difficulty to integer factorization. In this paper we present a quantum algorithm that solves arbitrary instances of GI and which also provides an approach to determining all automorphisms of a given graph. We show how the GI problem can be converted to a combinatorial optimization problem that can be solved using adiabatic quantum evolution. We numerically simulate the algorithm's quantum dynamics and show that it correctly (i) distinguishes nonisomorphic graphs; (ii) recognizes isomorphic graphs and determines the permutation(s) that connect them; and (iii) finds the automorphism group of a given graph G. We then discuss the GI quantum algorithm's experimental implementation, and close by showing how it can be leveraged to give a quantum algorithm that solves arbitrary instances of the NP-complete subgraph isomorphism problem. The computational complexity of an adiabatic quantum algorithm is largely determined by the minimum energy gap Δ (N) separating the ground and first-excited states in the limit of large problem size N ≫1. Calculating Δ (N) in this limit is a fundamental open problem in adiabatic quantum computing, and so it is not possible to determine the computational complexity of adiabatic quantum algorithms in general, nor consequently, of the specific adiabatic quantum algorithms presented here. Adiabatic quantum computing has been shown to be equivalent to the circuit model of quantum computing, and so development of adiabatic quantum algorithms continues to be of great interest.
NASA Astrophysics Data System (ADS)
Hao, Pan
Density functional theory (DFT) is a widely used quantum mechanical method for the simulation of the electronic structure of atoms, molecules, and solids. The only part that needs to be approximated is the exchange-correlation energy as a functional of the electron density. After many-year development, there is a huge variety of exchange-correlation functionals. According to the ingredients, an exchange-correlation functional can be classified as a semi-local functional or beyond. A semi-local functional can be nonempirical or empirical and only uses locality information, such as electron density, gradient of the density, Laplacian of the density, and kinetic energy density. Unlike a non-local functional that uses non-locality information, a semi-local functional is computationally efficient and can be applied to large systems. The meta-generalized gradient approximation (meta-GGA), which is the highest-level semi-local functional, has the potential to give a good description for condensed matter physics and quantum chemistry. We built the self-consistent revised Tao-Perdew-Staroverov-Scuseria (revTPSS) meta-GGA into the band-structure program BAND to test the performances of some self-consistent semi-local functionals on lattice constant with a 58-solid test set. The self-consistent effect of revTPSS was also discussed. The vibration of a crystal has a contribution to the ground state energy of a system, which is the zero-point energy at zero temperature. It has anharmonicity at the equilibrium geometry. The standard DFT doesn't consider the zero-point energy of a crystal. We used density functional perturbation theory (DFPT), which is a powerful and flexible theoretical technique within the density functional framework, to study the zero-point energy and make a correction to the lattice constant. The method was compared to a traditional zero-point anharmonic expansion method that is based on the Debye and Dugdale-MacDonald approximations. We also tested some new
Fermi surface in local-density-functional theory and in gradient expansions
NASA Astrophysics Data System (ADS)
Mearns, Daniel; Kohn, Walter
1989-05-01
It has recently been shown that the Kohn-Sham (KS) equations, even with the exact exchange-correlation potential, vxc(r), in general do not yield the exact physical Fermi surface (FS). The latter may be obtained either from the discontinuities of the momentum distribution in the exact ground state or, equally well, from the locus of singularities in q space of the exact density-density response function, χ(q,q) (Kohn effect). The present paper considers approximations in which the exact exchange-correlation energy functional is replaced by a gradient expansion of arbitrary finite order m [e.g., Exc(2)[n] =Fd3 [exc(n(r))n(r)+gxc (n(r))||∇n(r)||2
Benabbas, Abdelkrim; Salna, Bridget; Sage, J. Timothy; Champion, Paul M.
2015-03-21
Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical “gating” distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotope effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working
Benabbas, Abdelkrim; Salna, Bridget; Sage, J Timothy; Champion, Paul M
2015-03-21
Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical "gating" distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotope effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working near
NASA Astrophysics Data System (ADS)
Benabbas, Abdelkrim; Salna, Bridget; Sage, J. Timothy; Champion, Paul M.
2015-03-01
Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical "gating" distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotope effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working near
Accurate adiabatic correction in the hydrogen molecule
Pachucki, Krzysztof; Komasa, Jacek
2014-12-14
A new formalism for the accurate treatment of adiabatic effects in the hydrogen molecule is presented, in which the electronic wave function is expanded in the James-Coolidge basis functions. Systematic increase in the size of the basis set permits estimation of the accuracy. Numerical results for the adiabatic correction to the Born-Oppenheimer interaction energy reveal a relative precision of 10{sup −12} at an arbitrary internuclear distance. Such calculations have been performed for 88 internuclear distances in the range of 0 < R ⩽ 12 bohrs to construct the adiabatic correction potential and to solve the nuclear Schrödinger equation. Finally, the adiabatic correction to the dissociation energies of all rovibrational levels in H{sub 2}, HD, HT, D{sub 2}, DT, and T{sub 2} has been determined. For the ground state of H{sub 2} the estimated precision is 3 × 10{sup −7} cm{sup −1}, which is almost three orders of magnitude higher than that of the best previous result. The achieved accuracy removes the adiabatic contribution from the overall error budget of the present day theoretical predictions for the rovibrational levels.
Accurate adiabatic correction in the hydrogen molecule
NASA Astrophysics Data System (ADS)
Pachucki, Krzysztof; Komasa, Jacek
2014-12-01
A new formalism for the accurate treatment of adiabatic effects in the hydrogen molecule is presented, in which the electronic wave function is expanded in the James-Coolidge basis functions. Systematic increase in the size of the basis set permits estimation of the accuracy. Numerical results for the adiabatic correction to the Born-Oppenheimer interaction energy reveal a relative precision of 10-12 at an arbitrary internuclear distance. Such calculations have been performed for 88 internuclear distances in the range of 0 < R ⩽ 12 bohrs to construct the adiabatic correction potential and to solve the nuclear Schrödinger equation. Finally, the adiabatic correction to the dissociation energies of all rovibrational levels in H2, HD, HT, D2, DT, and T2 has been determined. For the ground state of H2 the estimated precision is 3 × 10-7 cm-1, which is almost three orders of magnitude higher than that of the best previous result. The achieved accuracy removes the adiabatic contribution from the overall error budget of the present day theoretical predictions for the rovibrational levels.
Symmetry-Protected Quantum Adiabatic Transistors
NASA Astrophysics Data System (ADS)
Williamson, Dominic J.; Bartlett, Stephen D.
2014-03-01
An essential development in the history of computing was the invention of the transistor as it allowed logic circuits to be implemented in a robust and modular way. The physical characteristics of semiconductor materials were the key to building these devices. We aim to present an analogous development for quantum computing by showing that quantum adiabatic transistors (as defined by Flammia et al.) are built upon the essential qualities of symmetry-protected (SP) quantum ordered phases in one dimension. Flammia et al. and Renes et al. have demonstrated schemes for universal adiabatic quantum computation using quantum adiabatic transistors described by interacting spin chain models with specifically chosen Hamiltonian terms. We show that these models can be understood as specific examples of the generic situation in which all SP phases lead to quantum computation on encoded edge degrees of freedom by adiabatically traversing a symmetric phase transition into a trivial symmetric phase. This point of view is advantageous as it allows us to readily see that the computational properties of a quantum adiabatic transistor arise from a phase of matter rather than due to carefully tuned interactions.
REMOVING BARYON-ACOUSTIC-OSCILLATION PEAK SHIFTS WITH LOCAL DENSITY TRANSFORMS
McCullagh, Nuala; Neyrinck, Mark C.; Szalay, Alexander S.; Szapudi, Istvan
2013-01-20
Large-scale bulk flows in the universe distort the initial density field, broadening the baryon-acoustic-oscillation (BAO) feature that was imprinted when baryons were strongly coupled to photons. Additionally, there is a small shift inward in the peak of the conventional overdensity correlation function, a mass-weighted statistic. This shift occurs when high-density peaks move toward each other. We explore whether this shift can be removed by applying to the density field a transform (such as a logarithm) that gives fairer statistical weight to fluctuations in underdense regions. Using configuration-space perturbation theory in the Zel'dovich approximation, we find that the log-density correlation function shows a much smaller inward shift in the position of the BAO peak at low redshift than is seen in the overdensity correlation function. We also show that if the initial, Lagrangian density of matter parcels could be estimated at their Eulerian positions, giving a displaced-initial-density field, its peak shift would be even smaller. In fact, a transformed field that accentuates underdensities, such as the reciprocal of the density, pushes the peak the other way, outward. In our model, these shifts in the peak position can be attributed to shift terms, involving the derivative of the linear correlation function, that entirely vanish in this displaced-initial-density field.
Nonadiabatic exchange dynamics during adiabatic frequency sweeps
NASA Astrophysics Data System (ADS)
Barbara, Thomas M.
2016-04-01
A Bloch equation analysis that includes relaxation and exchange effects during an adiabatic frequency swept pulse is presented. For a large class of sweeps, relaxation can be incorporated using simple first order perturbation theory. For anisochronous exchange, new expressions are derived for exchange augmented rotating frame relaxation. For isochronous exchange between sites with distinct relaxation rate constants outside the extreme narrowing limit, simple criteria for adiabatic exchange are derived and demonstrate that frequency sweeps commonly in use may not be adiabatic with regard to exchange unless the exchange rates are much larger than the relaxation rates. Otherwise, accurate assessment of the sensitivity to exchange dynamics will require numerical integration of the rate equations. Examples of this situation are given for experimentally relevant parameters believed to hold for in-vivo tissue. These results are of significance in the study of exchange induced contrast in magnetic resonance imaging.
Anderson localization makes adiabatic quantum optimization fail
Altshuler, Boris; Krovi, Hari; Roland, Jérémie
2010-01-01
Understanding NP-complete problems is a central topic in computer science (NP stands for nondeterministic polynomial time). This is why adiabatic quantum optimization has attracted so much attention, as it provided a new approach to tackle NP-complete problems using a quantum computer. The efficiency of this approach is limited by small spectral gaps between the ground and excited states of the quantum computer’s Hamiltonian. We show that the statistics of the gaps can be analyzed in a novel way, borrowed from the study of quantum disordered systems in statistical mechanics. It turns out that due to a phenomenon similar to Anderson localization, exponentially small gaps appear close to the end of the adiabatic algorithm for large random instances of NP-complete problems. This implies that unfortunately, adiabatic quantum optimization fails: The system gets trapped in one of the numerous local minima. PMID:20616043
NASA Astrophysics Data System (ADS)
Sanyal, Tanmoy; Shell, M. Scott
2016-07-01
Bottom-up multiscale techniques are frequently used to develop coarse-grained (CG) models for simulations at extended length and time scales but are often limited by a compromise between computational efficiency and accuracy. The conventional approach to CG nonbonded interactions uses pair potentials which, while computationally efficient, can neglect the inherently multibody contributions of the local environment of a site to its energy, due to degrees of freedom that were coarse-grained out. This effect often causes the CG potential to depend strongly on the overall system density, composition, or other properties, which limits its transferability to states other than the one at which it was parameterized. Here, we propose to incorporate multibody effects into CG potentials through additional nonbonded terms, beyond pair interactions, that depend in a mean-field manner on local densities of different atomic species. This approach is analogous to embedded atom and bond-order models that seek to capture multibody electronic effects in metallic systems. We show that the relative entropy coarse-graining framework offers a systematic route to parameterizing such local density potentials. We then characterize this approach in the development of implicit solvation strategies for interactions between model hydrophobes in an aqueous environment.
Sanyal, Tanmoy; Shell, M Scott
2016-07-21
Bottom-up multiscale techniques are frequently used to develop coarse-grained (CG) models for simulations at extended length and time scales but are often limited by a compromise between computational efficiency and accuracy. The conventional approach to CG nonbonded interactions uses pair potentials which, while computationally efficient, can neglect the inherently multibody contributions of the local environment of a site to its energy, due to degrees of freedom that were coarse-grained out. This effect often causes the CG potential to depend strongly on the overall system density, composition, or other properties, which limits its transferability to states other than the one at which it was parameterized. Here, we propose to incorporate multibody effects into CG potentials through additional nonbonded terms, beyond pair interactions, that depend in a mean-field manner on local densities of different atomic species. This approach is analogous to embedded atom and bond-order models that seek to capture multibody electronic effects in metallic systems. We show that the relative entropy coarse-graining framework offers a systematic route to parameterizing such local density potentials. We then characterize this approach in the development of implicit solvation strategies for interactions between model hydrophobes in an aqueous environment. PMID:27448876
Adiabatic Hyperspherical Analysis of Realistic Nuclear Potentials
NASA Astrophysics Data System (ADS)
Daily, K. M.; Kievsky, Alejandro; Greene, Chris H.
2015-12-01
Using the hyperspherical adiabatic method with the realistic nuclear potentials Argonne V14, Argonne V18, and Argonne V18 with the Urbana IX three-body potential, we calculate the adiabatic potentials and the triton bound state energies. We find that a discrete variable representation with the slow variable discretization method along the hyperradial degree of freedom results in energies consistent with the literature. However, using a Laguerre basis results in missing energy, even when extrapolated to an infinite number of basis functions and channels. We do not include the isospin T = 3/2 contribution in our analysis.
On black hole spectroscopy via adiabatic invariance
NASA Astrophysics Data System (ADS)
Jiang, Qing-Quan; Han, Yan
2012-12-01
In this Letter, we obtain the black hole spectroscopy by combining the black hole property of adiabaticity and the oscillating velocity of the black hole horizon. This velocity is obtained in the tunneling framework. In particular, we declare, if requiring canonical invariance, the adiabatic invariant quantity should be of the covariant form Iadia = ∮pi dqi. Using it, the horizon area of a Schwarzschild black hole is quantized independently of the choice of coordinates, with an equally spaced spectroscopy always given by ΔA = 8 π lp2 in the Schwarzschild and Painlevé coordinates.
Complexity of the Quantum Adiabatic Algorithm
NASA Technical Reports Server (NTRS)
Hen, Itay
2013-01-01
The Quantum Adiabatic Algorithm (QAA) has been proposed as a mechanism for efficiently solving optimization problems on a quantum computer. Since adiabatic computation is analog in nature and does not require the design and use of quantum gates, it can be thought of as a simpler and perhaps more profound method for performing quantum computations that might also be easier to implement experimentally. While these features have generated substantial research in QAA, to date there is still a lack of solid evidence that the algorithm can outperform classical optimization algorithms.
Influence of viscosity and the adiabatic index on planetary migration
NASA Astrophysics Data System (ADS)
Bitsch, B.; Boley, A.; Kley, W.
2013-02-01
Context. The strength and direction of migration of low mass embedded planets depends on the disk's thermodynamic state. It has been shown that in active disks, where the internal dissipation is balanced by radiative transport, migration can be directed outwards, a process which extends the lifetime of growing embryos. Very important parameters determining the structure of disks, and hence the direction of migration, are the viscosity and the adiabatic index. Aims: In this paper we investigate the influence of different viscosity prescriptions (α-type and constant) and adiabatic indices on disk structures. We then determine how this affects the migration rate of planets embedded in such disks. Methods: We perform three-dimensional numerical simulations of accretion disks with embedded planets. We use the explicit/implicit hydrodynamical code NIRVANA that includes full tensor viscosity and radiation transport in the flux-limited diffusion approximation, as well as a proper equation of state for molecular hydrogen. The migration of embedded 20 MEarth planets is studied. Results: Low-viscosity disks have cooler temperatures and the migration rates of embedded planets tend toward the isothermal limit. Hence, in these disks, planets migrate inwards even in the fully radiative case. The effect of outward migration can only be sustained if the viscosity in the disk is large. Overall, the differences between the treatments for the equation of state seem to play a more important role in disks with higher viscosity. A change in the adiabatic index and in the viscosity changes the zero-torque radius that separates inward from outward migration. Conclusions: For larger viscosities, temperatures in the disk become higher and the zero-torque radius moves to larger radii, allowing outward migration of a 20-MEarth planet to persist over an extended radial range. In combination with large disk masses, this may allow for an extended period of the outward migration of growing
The adiabatic limit of the exact factorization of the electron-nuclear wave function
NASA Astrophysics Data System (ADS)
Eich, F. G.; Agostini, Federica
2016-08-01
We propose a procedure to analyze the relation between the exact factorization of the electron-nuclear wave function and the Born-Oppenheimer approximation. We define the adiabatic limit as the limit of infinite nuclear mass. To this end, we introduce a unit system that singles out the dependence on the electron-nuclear mass ratio of each term appearing in the equations of the exact factorization. We observe how non-adiabatic effects induced by the coupling to the nuclear motion affect electronic properties and we analyze the leading term, connecting it to the classical nuclear momentum. Its dependence on the mass ratio is tested numerically on a model of proton-coupled electron transfer in different non-adiabatic regimes.
NASA Astrophysics Data System (ADS)
Hofmann, C.; Zimmermann, T.; Zielinski, A.; Landsman, A. S.
2016-04-01
The validity of the adiabatic approximation in strong field ionization under typical experimental conditions has recently become a topic of great interest. Experimental results have been inconclusive, in part, due to the uncertainty in experimental calibration of intensity. Here we turn to the time-dependent Schrödinger equation, where all the laser parameters are known exactly. We find that the centre of the electron momentum distribution (typically used for calibration of elliptically and circularly polarized light) is sensitive to non-adiabatic effects, leading to intensity shifts in experimental data that can significantly affect the interpretation of results. On the other hand, the transverse momentum spread in the plane of polarization is relatively insensitive to such effects, even in the Keldysh parameter regime approaching γ ≈ 3. This suggests the transverse momentum spread in the plane of polarization as a good alternative to the usual calibration method, particularly for experimental investigation of non-adiabatic effects using circularly polarized light.
The adiabatic limit of the exact factorization of the electron-nuclear wave function.
Eich, F G; Agostini, Federica
2016-08-01
We propose a procedure to analyze the relation between the exact factorization of the electron-nuclear wave function and the Born-Oppenheimer approximation. We define the adiabatic limit as the limit of infinite nuclear mass. To this end, we introduce a unit system that singles out the dependence on the electron-nuclear mass ratio of each term appearing in the equations of the exact factorization. We observe how non-adiabatic effects induced by the coupling to the nuclear motion affect electronic properties and we analyze the leading term, connecting it to the classical nuclear momentum. Its dependence on the mass ratio is tested numerically on a model of proton-coupled electron transfer in different non-adiabatic regimes. PMID:27497542
Adiabatic Compression in a Fire Syringe.
ERIC Educational Resources Information Center
Hayn, Carl H.; Baird, Scott C.
1985-01-01
Suggests using better materials in fire syringes to obtain more effective results during demonstrations which show the elevation in temperature upon a very rapid (adiabatic) compression of air. Also describes an experiment (using ignition temperatures) which introduces students to the use of thermocouples for high temperature measurements. (DH)
Apparatus to Measure Adiabatic and Isothermal Processes.
ERIC Educational Resources Information Center
Lamb, D. W.; White, G. M.
1996-01-01
Describes a simple manual apparatus designed to serve as an effective demonstration of the differences between isothermal and adiabatic processes for the general or elementary physics student. Enables students to verify Boyle's law for slow processes and identify the departure from this law for rapid processes and can also be used to give a clear…
Wigner phase space distribution via classical adiabatic switching.
Bose, Amartya; Makri, Nancy
2015-09-21
Evaluation of the Wigner phase space density for systems of many degrees of freedom presents an extremely demanding task because of the oscillatory nature of the Fourier-type integral. We propose a simple and efficient, approximate procedure for generating the Wigner distribution that avoids the computational difficulties associated with the Wigner transform. Starting from a suitable zeroth-order Hamiltonian, for which the Wigner density is available (either analytically or numerically), the phase space distribution is propagated in time via classical trajectories, while the perturbation is gradually switched on. According to the classical adiabatic theorem, each trajectory maintains a constant action if the perturbation is switched on infinitely slowly. We show that the adiabatic switching procedure produces the exact Wigner density for harmonic oscillator eigenstates and also for eigenstates of anharmonic Hamiltonians within the Wentzel-Kramers-Brillouin (WKB) approximation. We generalize the approach to finite temperature by introducing a density rescaling factor that depends on the energy of each trajectory. Time-dependent properties are obtained simply by continuing the integration of each trajectory under the full target Hamiltonian. Further, by construction, the generated approximate Wigner distribution is invariant under classical propagation, and thus, thermodynamic properties are strictly preserved. Numerical tests on one-dimensional and dissipative systems indicate that the method produces results in very good agreement with those obtained by full quantum mechanical methods over a wide temperature range. The method is simple and efficient, as it requires no input besides the force fields required for classical trajectory integration, and is ideal for use in quasiclassical trajectory calculations. PMID:26395694
Wigner phase space distribution via classical adiabatic switching
Bose, Amartya; Makri, Nancy
2015-09-21
Evaluation of the Wigner phase space density for systems of many degrees of freedom presents an extremely demanding task because of the oscillatory nature of the Fourier-type integral. We propose a simple and efficient, approximate procedure for generating the Wigner distribution that avoids the computational difficulties associated with the Wigner transform. Starting from a suitable zeroth-order Hamiltonian, for which the Wigner density is available (either analytically or numerically), the phase space distribution is propagated in time via classical trajectories, while the perturbation is gradually switched on. According to the classical adiabatic theorem, each trajectory maintains a constant action if the perturbation is switched on infinitely slowly. We show that the adiabatic switching procedure produces the exact Wigner density for harmonic oscillator eigenstates and also for eigenstates of anharmonic Hamiltonians within the Wentzel-Kramers-Brillouin (WKB) approximation. We generalize the approach to finite temperature by introducing a density rescaling factor that depends on the energy of each trajectory. Time-dependent properties are obtained simply by continuing the integration of each trajectory under the full target Hamiltonian. Further, by construction, the generated approximate Wigner distribution is invariant under classical propagation, and thus, thermodynamic properties are strictly preserved. Numerical tests on one-dimensional and dissipative systems indicate that the method produces results in very good agreement with those obtained by full quantum mechanical methods over a wide temperature range. The method is simple and efficient, as it requires no input besides the force fields required for classical trajectory integration, and is ideal for use in quasiclassical trajectory calculations.
Wigner phase space distribution via classical adiabatic switching
NASA Astrophysics Data System (ADS)
Bose, Amartya; Makri, Nancy
2015-09-01
Evaluation of the Wigner phase space density for systems of many degrees of freedom presents an extremely demanding task because of the oscillatory nature of the Fourier-type integral. We propose a simple and efficient, approximate procedure for generating the Wigner distribution that avoids the computational difficulties associated with the Wigner transform. Starting from a suitable zeroth-order Hamiltonian, for which the Wigner density is available (either analytically or numerically), the phase space distribution is propagated in time via classical trajectories, while the perturbation is gradually switched on. According to the classical adiabatic theorem, each trajectory maintains a constant action if the perturbation is switched on infinitely slowly. We show that the adiabatic switching procedure produces the exact Wigner density for harmonic oscillator eigenstates and also for eigenstates of anharmonic Hamiltonians within the Wentzel-Kramers-Brillouin (WKB) approximation. We generalize the approach to finite temperature by introducing a density rescaling factor that depends on the energy of each trajectory. Time-dependent properties are obtained simply by continuing the integration of each trajectory under the full target Hamiltonian. Further, by construction, the generated approximate Wigner distribution is invariant under classical propagation, and thus, thermodynamic properties are strictly preserved. Numerical tests on one-dimensional and dissipative systems indicate that the method produces results in very good agreement with those obtained by full quantum mechanical methods over a wide temperature range. The method is simple and efficient, as it requires no input besides the force fields required for classical trajectory integration, and is ideal for use in quasiclassical trajectory calculations.
The effect of adiabaticity on strongly quenched Bose Einstein Condensates
NASA Astrophysics Data System (ADS)
Ling, Hong; Kain, Ben
2015-05-01
We study the properties of a Bose-Einstein condensate following a deep quench to a large scattering length during which the condensate fraction nc changes with time. We construct a closed set of equations that highlight the role of the adiabaticity or equivalently, dnc/dt, the rate change of nc, which is to induce an (imaginary) effective interaction between quasiparticles. We show analytically that such a system supports a steady state characterized by a constant condensate density and a steady but periodically changing momentum distribution, whose time average is described exactly by the generalized Gibbs ensemble. We discuss how the nc -induced effective interaction, which cannot be ignored on the grounds of the adiabatic approximation for modes near the gapless Goldstone mode, can significantly affect condensate populations and Tan's contact for a Bose gas that has undergone a deep quench. In particular, we find that even when the Bose gas is quenched to unitarity, nc(t) does not completely deplete, approaching, instead, to a steady state with a finite condensate fraction. ITAMP, Harvard-Smithsonian Center for Astrophysics; KITP, University of Santa Barbara.
Highly parallel implementation of non-adiabatic Ehrenfest molecular dynamics
NASA Astrophysics Data System (ADS)
Kanai, Yosuke; Schleife, Andre; Draeger, Erik; Anisimov, Victor; Correa, Alfredo
2014-03-01
While the adiabatic Born-Oppenheimer approximation tremendously lowers computational effort, many questions in modern physics, chemistry, and materials science require an explicit description of coupled non-adiabatic electron-ion dynamics. Electronic stopping, i.e. the energy transfer of a fast projectile atom to the electronic system of the target material, is a notorious example. We recently implemented real-time time-dependent density functional theory based on the plane-wave pseudopotential formalism in the Qbox/qb@ll codes. We demonstrate that explicit integration using a fourth-order Runge-Kutta scheme is very suitable for modern highly parallelized supercomputers. Applying the new implementation to systems with hundreds of atoms and thousands of electrons, we achieved excellent performance and scalability on a large number of nodes both on the BlueGene based ``Sequoia'' system at LLNL as well as the Cray architecture of ``Blue Waters'' at NCSA. As an example, we discuss our work on computing the electronic stopping power of aluminum and gold for hydrogen projectiles, showing an excellent agreement with experiment. These first-principles calculations allow us to gain important insight into the the fundamental physics of electronic stopping.
Communication: Adiabatic and non-adiabatic electron-nuclear motion: Quantum and classical dynamics
NASA Astrophysics Data System (ADS)
Albert, Julian; Kaiser, Dustin; Engel, Volker
2016-05-01
Using a model for coupled electronic-nuclear motion we investigate the range from negligible to strong non-adiabatic coupling. In the adiabatic case, the quantum dynamics proceeds in a single electronic state, whereas for strong coupling a complete transition between two adiabatic electronic states takes place. It is shown that in all coupling regimes the short-time wave-packet dynamics can be described using ensembles of classical trajectories in the phase space spanned by electronic and nuclear degrees of freedom. We thus provide an example which documents that the quantum concept of non-adiabatic transitions is not necessarily needed if electronic and nuclear motion is treated on the same footing.
The dynamic instability of adiabatic blast waves
NASA Technical Reports Server (NTRS)
Ryu, Dongsu; Vishniac, Ethan T.
1991-01-01
Adiabatic blastwaves, which have a total energy injected from the center E varies as t(sup q) and propagate through a preshock medium with a density rho(sub E) varies as r(sup -omega) are described by a family of similarity solutions. Previous work has shown that adiabatic blastwaves with increasing or constant postshock entropy behind the shock front are susceptible to an oscillatory instability, caused by the difference between the nature of the forces on the two sides of the dense shell behind the shock front. This instability sets in if the dense postshock layer is sufficiently thin. The stability of adiabatic blastwaves with a decreasing postshock entropy is considered. Such blastwaves, if they are decelerating, always have a region behind the shock front which is subject to convection. Some accelerating blastwaves also have such region, depending on the values of q, omega, and gamma where gamma is the adiabatic index. However, since the shock interface stabilizes dynamically induced perturbations, blastwaves become convectively unstable only if the convective zone is localized around the origin or a contact discontinuity far from the shock front. On the other hand, the contact discontinuity of accelerating blastwaves is subject to a strong Rayleigh-Taylor instability. The frequency spectra of the nonradial, normal modes of adiabatic blastwaves have been calculated. The results have been applied to the shocks propagating through supernovae envelopes. It is shown that the metal/He and He/H interfaces are strongly unstable against the Rayleigh-Taylor instability. This instability will induce mixing in supernovae envelopes. In addition the implications of this work for the evolution of planetary nebulae is discussed.
Adiabatic circuits: converter for static CMOS signals
NASA Astrophysics Data System (ADS)
Fischer, J.; Amirante, E.; Bargagli-Stoffi, A.; Schmitt-Landsiedel, D.
2003-05-01
Ultra low power applications can take great advantages from adiabatic circuitry. In this technique a multiphase system is used which consists ideally of trapezoidal voltage signals. The input signals to be processed will often come from a function block realized in static CMOS. The static rectangular signals must be converted for the oscillating multiphase system of the adiabatic circuitry. This work shows how to convert the input signals to the proposed pulse form which is synchronized to the appropriate supply voltage. By means of adder structures designed for a 0.13µm technology in a 4-phase system there will be demonstrated, which additional circuits are necessary for the conversion. It must be taken into account whether the data arrive in parallel or serial form. Parallel data are all in one phase and therefore it is advantageous to use an adder structure with a proper input stage, e.g. a Carry Lookahead Adder (CLA). With a serial input stage it is possible to read and to process four signals during one cycle due to the adiabatic 4-phase system. Therefore input signals with a frequency four times higher than the adiabatic clock frequency can be used. This reduces the disadvantage of the slow clock period typical for adiabatic circuits. By means of an 8 bit Ripple Carry Adder (8 bit RCA) the serial reading will be introduced. If the word width is larger than 4 bits the word can be divided in 4 bit words which are processed in parallel. This is the most efficient way to minimize the number of input lines and pads. At the same time a high throughput is achieved.
The dynamic instability of adiabatic blast waves
NASA Astrophysics Data System (ADS)
Ryu, Dongsu; Vishniac, Ethan T.
1991-02-01
Adiabatic blastwaves, which have a total energy injected from the center E varies as tq and propagate through a preshock medium with a density rhoE varies as r-omega are described by a family of similarity solutions. Previous work has shown that adiabatic blastwaves with increasing or constant postshock entropy behind the shock front are susceptible to an oscillatory instability, caused by the difference between the nature of the forces on the two sides of the dense shell behind the shock front. This instability sets in if the dense postshock layer is sufficiently thin. The stability of adiabatic blastwaves with a decreasing postshock entropy is considered. Such blastwaves, if they are decelerating, always have a region behind the shock front which is subject to convection. Some accelerating blastwaves also have such region, depending on the values of q, omega, and gamma where gamma is the adiabatic index. However, since the shock interface stabilizes dynamically induced perturbations, blastwaves become convectively unstable only if the convective zone is localized around the origin or a contact discontinuity far from the shock front. On the other hand, the contact discontinuity of accelerating blastwaves is subject to a strong Rayleigh-Taylor instability. The frequency spectra of the nonradial, normal modes of adiabatic blastwaves have been calculated. The results have been applied to the shocks propagating through supernovae envelopes. It is shown that the metal/He and He/H interfaces are strongly unstable against the Rayleigh-Taylor instability. This instability will induce mixing in supernovae envelopes. In addition the implications of this work for the evolution of planetary nebulae is discussed.
The dynamic instability of adiabatic blastwaves
NASA Astrophysics Data System (ADS)
Ryu, Dongsu; Vishniac, Ethan T.
1990-05-01
Adiabatic blastwaves, which have a total energy injected from the center E varies as t(sup q) and propagate through a preshock medium with a density rho(sub E) varies as r(sup -omega) are described by a family of similarity solutions. Previous work has shown that adiabatic blastwaves with increasing or constant postshock entropy behind the shock front are susceptible to an oscillatory instability, caused by the difference between the nature of the forces on the two sides of the dense shell behind the shock front. This instability sets in if the dense postshock layer is sufficiently thin. The stability of adiabatic blastwaves with a decreasing postshock entropy is considered. Such blastwaves, if they are decelerating, always have a region behind the shock front which is subject to convection. Some accelerating blastwaves also have such region, depending on the values of q, omega, and gamma where gamma is the adiabatic index. However, since the shock interface stabilizes dynamically induced perturbations, blastwaves become convectively unstable only if the convective zone is localized around the origin or a contact discontinuity far from the shock front. On the other hand, the contact discontinuity of accelerating blastwaves is subject to a strong Rayleigh-Taylor instability. The frequency spectra of the nonradial, normal modes of adiabatic blastwaves have been calculated. The results have been applied to the shocks propagating through supernovae envelopes. It is shown that the metal/He and He/H interfaces are strongly unstable against the Rayleigh-Taylor instability. This instability will induce mixing in supernovae envelopes. In addition the implications of this work for the evolution of planetary nebulae is discussed.
Adiabatic burst evaporation from bicontinuous nanoporous membranes
Ichilmann, Sachar; Rücker, Kerstin; Haase, Markus; Enke, Dirk
2015-01-01
Evaporation of volatile liquids from nanoporous media with bicontinuous morphology and pore diameters of a few 10 nm is an ubiquitous process. For example, such drying processes occur during syntheses of nanoporous materials by sol–gel chemistry or by spinodal decomposition in the presence of solvents as well as during solution impregnation of nanoporous hosts with functional guests. It is commonly assumed that drying is endothermic and driven by non-equilibrium partial pressures of the evaporating species in the gas phase. We show that nearly half of the liquid evaporates in an adiabatic mode involving burst-like liquid-to-gas conversions. During single adiabatic burst evaporation events liquid volumes of up to 107 μm3 are converted to gas. The adiabatic liquid-to-gas conversions occur if air invasion fronts get unstable because of the built-up of high capillary pressures. Adiabatic evaporation bursts propagate avalanche-like through the nanopore systems until the air invasion fronts have reached new stable configurations. Adiabatic cavitation bursts thus compete with Haines jumps involving air invasion front relaxation by local liquid flow without enhanced mass transport out of the nanoporous medium and prevail if the mean pore diameter is in the range of a few 10 nm. The results reported here may help optimize membrane preparation via solvent-based approaches, solution-loading of nanopore systems with guest materials as well as routine use of nanoporous membranes with bicontinuous morphology and may contribute to better understanding of adsorption/desorption processes in nanoporous media. PMID:25926406
Adiabatic evolution of an irreversible two level system
Kvitsinsky, A.; Putterman, S. )
1991-05-01
The adiabatic dynamics of a two level atom with spontaneous decay is studied. The existence of a complex adiabatic phase shift is established: The real part being the usual Berry's phase. A closed-form expression for this phase and the adiabatic transition amplitudes is obtained. Incorporation of a finite preparation time for the initial state yields a new asymptotic form for the adiabatic transition amplitudes which is significantly different from the standard Landau--Zener--Dykhne formula.
ADIABATIC MASS LOSS IN BINARY STARS. I. COMPUTATIONAL METHOD
Ge Hongwei; Chen Xuefei; Han Zhanwen; Webbink, Ronald F. E-mail: mshjell@gmail.co
2010-07-10
The asymptotic response of donor stars in interacting binary systems to very rapid mass loss is characterized by adiabatic expansion throughout their interiors. In this limit, energy generation and heat flow through the stellar interior can be neglected. We model this response by constructing model sequences, beginning with a donor star filling its Roche lobe at an arbitrary point in its evolution, holding its specific entropy and composition profiles fixed as mass is removed from the surface. The stellar interior remains in hydrostatic equilibrium. Luminosity profiles in these adiabatic models of mass-losing stars can be reconstructed from the specific entropy profiles and their gradients. These approximations are validated by comparison with time-dependent binary mass transfer calculations. We describe how adiabatic mass-loss sequences can be used to quantify threshold conditions for dynamical timescale mass transfer, and to establish the range of post-common envelope binaries that are allowed energetically. In dynamical timescale mass transfer, the adiabatic response of the donor star drives it to expand beyond its Roche lobe, leading to runaway mass transfer and the formation of a common envelope with its companion star. For donor stars with surface convection zones of any significant depth, this runaway condition is encountered early in mass transfer, if at all; but for main-sequence stars with radiative envelopes, it may be encountered after a prolonged phase of thermal timescale mass transfer, a so-called delayed dynamical instability. We identify the critical binary mass ratio for the onset of dynamical timescale mass transfer as that ratio for which the adiabatic response of the donor star radius to mass loss matches that of its Roche lobe at some point during mass transfer; if the ratio of donor to accretor masses exceeds this critical value, dynamical timescale mass transfer ensues. In common envelope evolution, the dissipation of orbital energy of the
Lin, L. Ding, W. X.; Brower, D. L.
2014-11-15
Combined polarimetry-interferometry capability permits simultaneous measurement of line-integrated density and Faraday effect with fast time response (∼1 μs) and high sensitivity. Faraday effect fluctuations with phase shift of order 0.05° associated with global tearing modes are resolved with an uncertainty ∼0.01°. For physics investigations, local density fluctuations are obtained by inverting the line-integrated interferometry data. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of the polarimetry data. Reconstructed 2D images of density and magnetic field fluctuations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particle transport flux and its spatial distribution are resolved.
NASA Astrophysics Data System (ADS)
Liu, Zhe; Fang, Zhong; Muroya, Yusa; Fu, Haiying; Yan, Yu; Katsumura, Yosuke; Lin, Mingzhang
2016-07-01
Solvatochromic shift of 4,4‧-bpyHrad in aqueous solutions at elevated temperatures up to supercritical conditions and in various organic solvents with different dielectric constants, is investigated by pulse-radiolysis technique. 4,4‧-bpyHrad shows a stronger solvent-solute interaction in water than in organic solvents, perhaps due to the hydrogen bond between 4,4‧-bpyHrad and water. At 380 °C, local density augmentation, namely ρlocal-ρbulk, in supercritical water becomes 280 kg m-3 (ρbulk = 208 kg m-3), and the density enhancement factor is 8.9. Density fluctuation maximizes when ρbulk is around 120 kg m-3. Density inhomogeneity decreases as temperature rises, but is still remarkable at 400 °C.
Weiner, J; Kinsman, S; Williams, S
1998-11-01
We studied the growth of individual Xanthium strumarium plants growing at four naturally occurring local densities on a beach in Maine: (1) isolated plants, (2) pairs of plants ≤1 cm apart, (3) four plants within 4 cm of each other, and (4) discrete dense clumps of 10-39 plants. A combination of nondestructive measurements every 2 wk and parallel calibration harvests provided very good estimates of the growth in aboveground biomass of over 400 individual plants over 8 wk and afforded the opportunity to fit explicit growth models to 293 of them. There was large individual variation in growth and resultant size within the population and within all densities. Local crowding played a role in determining plant size within the population: there were significant differences in final size between all densities except pairs and quadruples, which were almost identical. Overall, plants growing at higher densities were more variable in growth and final size than plants growing at lower densities, but this was due to increased variation among groups (greater variation in local density and/or greater environmental heterogeneity), not to increased variation within groups. Thus, there was no evidence of size asymmetric competition in this population. The growth of most plants was close to exponential over the study period, but half the plants were slightly better fit by a sigmoidal (logistic) model. The proportion of plants better fit by the logistic model increased with density and with initial plant size. The use of explicit growth models over several growth intervals to describe stand development can provide more biological content and more statistical power than "growth-size" methods that analyze growth intervals separately. PMID:21680325
NASA Astrophysics Data System (ADS)
Agostini, Federica; Abedi, Ali; Suzuki, Yasumitsu; Min, Seung Kyu; Maitra, Neepa T.; Gross, E. K. U.
2015-03-01
The Born-Oppenheimer (BO) approximation allows to visualize the coupled electron-nuclear dynamics in molecular systems as a set of nuclei moving on a single potential energy surface representing the effect of the electrons in a given eigenstate. Many interesting phenomena, however, such as vision or charge separation in organic photovoltaic materials, take place in conditions beyond its range of validity. Nevertheless, the basic construct of the adiabatic treatment, the BO potential energy surfaces, is employed to describe non-adiabatic processes and the full problem is represented in terms of adiabatic states and transitions among them in regions of strong non-adiabatic coupling. But the concept of single potential energy is lost. The alternative point of view arising in the framework of the exact factorization of the electron-nuclear wave function will be presented. A single, time-dependent, potential energy provides the force driving the nuclear motion and is adopted as starting point for the development of quantum-classical approximations to the full quantum mechanical problem.
Differential geometric treewidth estimation in adiabatic quantum computation
NASA Astrophysics Data System (ADS)
Wang, Chi; Jonckheere, Edmond; Brun, Todd
2016-07-01
The D-Wave adiabatic quantum computing platform is designed to solve a particular class of problems—the Quadratic Unconstrained Binary Optimization (QUBO) problems. Due to the particular "Chimera" physical architecture of the D-Wave chip, the logical problem graph at hand needs an extra process called minor embedding in order to be solvable on the D-Wave architecture. The latter problem is itself NP-hard. In this paper, we propose a novel polynomial-time approximation to the closely related treewidth based on the differential geometric concept of Ollivier-Ricci curvature. The latter runs in polynomial time and thus could significantly reduce the overall complexity of determining whether a QUBO problem is minor embeddable, and thus solvable on the D-Wave architecture.
Non-adiabatic perturbations in multi-component perfect fluids
Koshelev, N.A.
2011-04-01
The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models.
Adiabatic Far Field Sub-Diffraction Imaging
Cang, Hu; Salandrino, Alessandro; Wang, Yuan; Zhang, Xiang
2015-01-01
The limited resolution of a conventional optical imaging system stems from the fact that the fine feature information of an object is carried by evanescent waves, which exponentially decay in space thus cannot reach the imaging plane. We introduce here a new concept of adiabatic lens, which utilizes a geometrically conformal surface to mediate the interference of slowly decompressed electromagnetic waves at far field to form images. The decompression is satisfying an adiabatic condition, and by bridging the gap between far field and near field, it allows far field optical systems to project an image of the near field features directly. Using these designs, we demonstrated the magnification can be up to 20 times and it is possible to achieve sub-50nm imaging resolution in visible. Our approach provides a means to extend the domain of geometrical optics to a deep sub-wavelength scale. PMID:26258769
Shortcuts to adiabaticity from linear response theory.
Acconcia, Thiago V; Bonança, Marcus V S; Deffner, Sebastian
2015-10-01
A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. With the help of phenomenological response functions, a simple expression for the excess work is found-quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. Finally, we propose a degenerate family of protocols, which facilitates shortcuts to adiabaticity for specific and very short driving times. PMID:26565209
Arbitrary qudit gates by adiabatic passage
NASA Astrophysics Data System (ADS)
Rousseaux, B.; Guérin, S.; Vitanov, N. V.
2013-03-01
We derive an adiabatic technique that implements the most general SU(d) transformation in a quantum system of d degenerate states, featuring a qudit. This technique is based on the factorization of the SU(d) transformation into d generalized quantum Householder reflections, each of which is implemented by a two-shot stimulated Raman adiabatic passage with appropriate static phases. The energy of the lasers needed to synthesize a single Householder reflection is shown to be remarkably constant as a function of d. This technique is directly applicable to a linear trapped ion system with d+1 ions. We implement the quantum Fourier transform numerically in a qudit with d=4 (defined as a quartit) as an example.
Trapped Ion Quantum Computation by Adiabatic Passage
Feng Xuni; Wu Chunfeng; Lai, C. H.; Oh, C. H.
2008-11-07
We propose a new universal quantum computation scheme for trapped ions in thermal motion via the technique of adiabatic passage, which incorporates the advantages of both the adiabatic passage and the model of trapped ions in thermal motion. Our scheme is immune from the decoherence due to spontaneous emission from excited states as the system in our scheme evolves along a dark state. In our scheme the vibrational degrees of freedom are not required to be cooled to their ground states because they are only virtually excited. It is shown that the fidelity of the resultant gate operation is still high even when the magnitude of the effective Rabi frequency moderately deviates from the desired value.
Adiabatic Quantum Optimization for Associative Memory Recall
NASA Astrophysics Data System (ADS)
Seddiqi, Hadayat; Humble, Travis
2014-12-01
Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.
Quantum adiabatic evolution with energy degeneracy levels
NASA Astrophysics Data System (ADS)
Zhang, Qi
2016-01-01
A classical-kind phase-space formalism is developed to address the tiny intrinsic dynamical deviation from what is predicted by Wilczek-Zee theorem during quantum adiabatic evolution on degeneracy levels. In this formalism, the Hilbert space and the aggregate of degenerate eigenstates become the classical-kind phase space and a high-dimensional subspace in the phase space, respectively. Compared with the previous analogous study by a different method, the current result is qualitatively different in that the first-order deviation derived here is always perpendicular to the degeneracy subspace. A tripod-scheme Hamiltonian with two degenerate dark states is employed to illustrate the adiabatic deviation with degeneracy levels.
Shortcuts to adiabaticity from linear response theory
NASA Astrophysics Data System (ADS)
Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian
2015-10-01
A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. With the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. Finally, we propose a degenerate family of protocols, which facilitates shortcuts to adiabaticity for specific and very short driving times.
Adiabatic quantum optimization for associative memory recall
Seddiqi, Hadayat; Humble, Travis S.
2014-12-22
Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are storedmore » in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.« less
Adiabatic quantum optimization for associative memory recall
Seddiqi, Hadayat; Humble, Travis S.
2014-12-22
Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.
Shortcuts to adiabaticity from linear response theory
Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian
2015-10-23
A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. Moreover, with the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. We finally propose a degenerate family of protocols, which facilitates shortcuts to adiabaticity for specific and very short driving times.
Shortcuts to adiabaticity from linear response theory
Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian
2015-10-23
A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. Moreover, with the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. We finally propose a degenerate family of protocols, which facilitates shortcuts tomore » adiabaticity for specific and very short driving times.« less
Adiabatic Quantization of Andreev Quantum Billiard Levels
NASA Astrophysics Data System (ADS)
Silvestrov, P. G.; Goorden, M. C.; Beenakker, C. W.
2003-03-01
We identify the time T between Andreev reflections as a classical adiabatic invariant in a ballistic chaotic cavity (Lyapunov exponent λ), coupled to a superconductor by an N-mode constriction. Quantization of the adiabatically invariant torus in phase space gives a discrete set of periods Tn, which in turn generate a ladder of excited states ɛnm=(m+1/2)πℏ/Tn. The largest quantized period is the Ehrenfest time T0=λ-1ln(N. Projection of the invariant torus onto the coordinate plane shows that the wave functions inside the cavity are squeezed to a transverse dimension W/(N), much below the width W of the constriction.
Adiabatic state preparation study of methylene
Veis, Libor Pittner, Jiří
2014-06-07
Quantum computers attract much attention as they promise to outperform their classical counterparts in solving certain type of problems. One of them with practical applications in quantum chemistry is simulation of complex quantum systems. An essential ingredient of efficient quantum simulation algorithms are initial guesses of the exact wave functions with high enough fidelity. As was proposed in Aspuru-Guzik et al. [Science 309, 1704 (2005)], the exact ground states can in principle be prepared by the adiabatic state preparation method. Here, we apply this approach to preparation of the lowest lying multireference singlet electronic state of methylene and numerically investigate preparation of this state at different molecular geometries. We then propose modifications that lead to speeding up the preparation process. Finally, we decompose the minimal adiabatic state preparation employing the direct mapping in terms of two-qubit interactions.
Adiabatic Quantum Simulation of Quantum Chemistry
Babbush, Ryan; Love, Peter J.; Aspuru-Guzik, Alán
2014-01-01
We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions. PMID:25308187
Pulse sequences in photoassociation via adiabatic passage
NASA Astrophysics Data System (ADS)
Li, Xuan; Dupre, William; Parker, Gregory A.
2012-07-01
We perform a detailed study of pulse sequences in a photoassociation via adiabatic passage (PAP) process to transfer population from an ensemble of ultracold atomic clouds to a vibrationally cold molecular state. We show that an appreciable final population of ultracold NaCs molecules can be achieved with optimized pulses in either the ‘counter-intuitive’ (tP > tS) or ‘intuitive’ (tP < tS) PAP pulse sequences, with tP and tS denoting the temporal centers of the pump and Stokes pulses, respectively. By investigating the dependence of the reactive yield on pulse sequences, in a wide range of tP-tS, we show that there is not a fundamental preference to either pulse sequence in a PAP process. We explain this no-sequence-preference phenomenon by analyzing a multi-bound model so that an analogy can be drawn to the conventional stimulated Raman adiabatic passage.
Advanced Adiabatic Demagnetization Refrigerators for Continuous Cooling
NASA Technical Reports Server (NTRS)
Chu, Paul C. W.
2004-01-01
The research at Houston was focused on optimizing the design of superconducting magnets for advanced adiabatic demagnetization refrigerators (ADRs), assessing the feasibility of using high temperature superconducting (HTS) magnets in ADRs in the future, and developing techniques to deposit HTS thin and thick films on high strength, low thermal conductivity substrates for HTS magnet leads. Several approaches have been tested for the suggested superconducting magnets.
Computer Code For Turbocompounded Adiabatic Diesel Engine
NASA Technical Reports Server (NTRS)
Assanis, D. N.; Heywood, J. B.
1988-01-01
Computer simulation developed to study advantages of increased exhaust enthalpy in adiabatic turbocompounded diesel engine. Subsytems of conceptual engine include compressor, reciprocator, turbocharger turbine, compounded turbine, ducting, and heat exchangers. Focus of simulation of total system is to define transfers of mass and energy, including release and transfer of heat and transfer of work in each subsystem, and relationship among subsystems. Written in FORTRAN IV.
Siphon flows in isolated magnetic flux tubes. II - Adiabatic flows
NASA Technical Reports Server (NTRS)
Montesinos, Benjamin; Thomas, John H.
1989-01-01
This paper extends the study of steady siphon flows in isolated magnetic flux tubes surrounded by field-free gas to the case of adiabatic flows. The basic equations governing steady adiabatic siphon flows in a thin, isolated magnetic flux tube are summarized, and qualitative features of adiabatic flows in elevated, arched flux tubes are discussed. The equations are then cast in nondimensional form and the results of numerical computations of adiabatic siphon flows in arched flux tubes are presented along with comparisons between isothermal and adiabatic flows. The effects of making the interior of the flux tube hotter or colder than the surrounding atmosphere at the upstream footpoint of the arch is considered. In this case, is it found that the adiabatic flows are qualitatively similar to the isothermal flows, with adiabatic cooling producing quantitative differences. Critical flows can produce a bulge point in the rising part of the arch and a concentration of magnetic flux above the bulge point.
Exchange–Correlation Functionals via Local Interpolation along the Adiabatic Connection
2016-01-01
The construction of density-functional approximations is explored by modeling the adiabatic connection locally, using energy densities defined in terms of the electrostatic potential of the exchange–correlation hole. These local models are more amenable to the construction of size-consistent approximations than their global counterparts. In this work we use accurate input local ingredients to assess the accuracy of a range of local interpolation models against accurate exchange–correlation energy densities. The importance of the strictly correlated electrons (SCE) functional describing the strong coupling limit is emphasized, enabling the corresponding interpolated functionals to treat strong correlation effects. In addition to exploring the performance of such models numerically for the helium and beryllium isoelectronic series and the dissociation of the hydrogen molecule, an approximate analytic model is presented for the initial slope of the local adiabatic connection. Comparisons are made with approaches based on global models, and prospects for future approximations based on the local adiabatic connection are discussed. PMID:27116427
Exchange-Correlation Functionals via Local Interpolation along the Adiabatic Connection.
Vuckovic, Stefan; Irons, Tom J P; Savin, Andreas; Teale, Andrew M; Gori-Giorgi, Paola
2016-06-14
The construction of density-functional approximations is explored by modeling the adiabatic connection locally, using energy densities defined in terms of the electrostatic potential of the exchange-correlation hole. These local models are more amenable to the construction of size-consistent approximations than their global counterparts. In this work we use accurate input local ingredients to assess the accuracy of a range of local interpolation models against accurate exchange-correlation energy densities. The importance of the strictly correlated electrons (SCE) functional describing the strong coupling limit is emphasized, enabling the corresponding interpolated functionals to treat strong correlation effects. In addition to exploring the performance of such models numerically for the helium and beryllium isoelectronic series and the dissociation of the hydrogen molecule, an approximate analytic model is presented for the initial slope of the local adiabatic connection. Comparisons are made with approaches based on global models, and prospects for future approximations based on the local adiabatic connection are discussed. PMID:27116427
Random matrix model of adiabatic quantum computing
Mitchell, David R.; Adami, Christoph; Lue, Waynn; Williams, Colin P.
2005-05-15
We present an analysis of the quantum adiabatic algorithm for solving hard instances of 3-SAT (an NP-complete problem) in terms of random matrix theory (RMT). We determine the global regularity of the spectral fluctuations of the instantaneous Hamiltonians encountered during the interpolation between the starting Hamiltonians and the ones whose ground states encode the solutions to the computational problems of interest. At each interpolation point, we quantify the degree of regularity of the average spectral distribution via its Brody parameter, a measure that distinguishes regular (i.e., Poissonian) from chaotic (i.e., Wigner-type) distributions of normalized nearest-neighbor spacings. We find that for hard problem instances - i.e., those having a critical ratio of clauses to variables - the spectral fluctuations typically become irregular across a contiguous region of the interpolation parameter, while the spectrum is regular for easy instances. Within the hard region, RMT may be applied to obtain a mathematical model of the probability of avoided level crossings and concomitant failure rate of the adiabatic algorithm due to nonadiabatic Landau-Zener-type transitions. Our model predicts that if the interpolation is performed at a uniform rate, the average failure rate of the quantum adiabatic algorithm, when averaged over hard problem instances, scales exponentially with increasing problem size.
Adiabatic heating in impulsive solar flares
NASA Technical Reports Server (NTRS)
Maetzler, C.; Bai, T.; Crannell, C. J.; Frost, K. J.
1978-01-01
A study is made of adiabatic heating in two impulsive solar flares on the basis of dynamic X-ray spectra in the 28-254 keV range, H-alpha, microwave, and meter-wave radio observations. It is found that the X-ray spectra of the events are like those of thermal bremsstrahlung from single-temperature plasmas in the 10-60 keV range if photospheric albedo is taken into account. The temperature-emission correlation indicates adiabatic compression followed by adiabatic expansion and that the electron distribution remains isotropic. H-alpha data suggest compressive energy transfer. The projected areas and volumes of the flares are estimated assuming that X-ray and microwave emissions are produced in a single thermal plasma. Electron densities of about 10 to the 9th/cu cm are found for homogeneous, spherically symmetric sources. It is noted that the strong self-absorption of hot-plasma gyrosynchrotron radiation reveals low magnetic field strengths.
Aspects of adiabatic population transfer and control
NASA Astrophysics Data System (ADS)
Demirplak, Mustafa
This thesis explores two different questions. The first question we answer is how to restore a given population transfer scenario given that it works efficiently in the adiabatic limit but fails because of lack of intensity and/or short duration. We derive a very simple algorithm to do this and apply it to both toy and realistic models. Two results emerge from this study. While the mathematical existence of the programme is certain it might not always be physically desirable. The restoration of adiabaticity is phase sensitive. The second question that is answered in this thesis is not how to invent new control paradigms, but rather what would happen to them in the presence of stochastic perturbers. We first use a phenomenological model to study the effect of stochastic dephasing on population transfer by stimulated Raman adiabatic passage. The results of this Monte Carlo calculation are qualitatively explained with a perturbation theoretical result in the dressed state basis. The reliability of our phenomenological model is questioned through a more rigorous hybrid quantal-classical simulation of controlled population transfer in HCl in Ar.
NASA Astrophysics Data System (ADS)
Salom, Igor; Dmitrašinović, V.
2016-05-01
We construct the three-body permutation symmetric O (6) hyperspherical harmonics and use them to solve the non-relativistic three-body Schrödinger equation in three spatial dimensions. We label the states with eigenvalues of the U (1) ⊗ SO(3)rot ⊂ U (3) ⊂ O (6) chain of algebras, and we present the K ≤ 4 harmonics and tables of their matrix elements. That leads to closed algebraic form of low-K energy spectra in the adiabatic approximation for factorizable potentials with square-integrable hyper-angular parts. This includes homogeneous pairwise potentials of degree α ≥ - 1. More generally, a simplification is achieved in numerical calculations of non-adiabatic approximations to non-factorizable potentials by using our harmonics.
NASA Astrophysics Data System (ADS)
Burmistrov, I. S.; Gornyi, I. V.; Mirlin, A. D.
2016-05-01
We develop a theory of the local density of states (LDOS) of disordered superconductors, employing the nonlinear sigma-model formalism and the renormalization-group framework. The theory takes into account the interplay of disorder and interaction couplings in all channels, treating the systems with short-range and Coulomb interactions on equal footing. We explore two-dimensional systems that would be Anderson insulators in the absence of interaction and two- or three-dimensional systems that undergo an Anderson transition in the absence of interaction. We evaluate both the average tunneling density of states and its mesoscopic fluctuations which are related to the LDOS multifractality in normal disordered systems. The obtained average LDOS shows a pronounced depletion around the Fermi energy, both in the metallic phase (i.e., above the superconducting critical temperature Tc) and in the insulating phase near the superconductor-insulator transition (SIT). The fluctuations of the LDOS are found to be particularly strong for the case of short-range interactions, especially, in the regime when Tc is enhanced by Anderson localization. On the other hand, the long-range Coulomb repulsion reduces the mesoscopic LDOS fluctuations. However, also in a model with Coulomb interaction, the fluctuations become strong when the systems approach the SIT.
NASA Astrophysics Data System (ADS)
Seshadri, Ranjani; Sengupta, K.; Sen, Diptiman
2016-01-01
We study graphene, which has both spin-orbit coupling (SOC), taken to be of the Kane-Mele form, and a Zeeman field induced due to proximity to a ferromagnetic material. We show that a zigzag interface of graphene having SOC with its pristine counterpart hosts robust chiral edge modes in spite of the gapless nature of the pristine graphene; such modes do not occur for armchair interfaces. Next we study the change in the local density of states (LDOS) due to the presence of an impurity in graphene with SOC and Zeeman field, and demonstrate that the Fourier transform of the LDOS close to the Dirac points can act as a measure of the strength of the spin-orbit coupling; in addition, for a specific distribution of impurity atoms, the LDOS is controlled by a destructive interference effect of graphene electrons which is a direct consequence of their Dirac nature. Finally, we study transport across junctions, which separates spin-orbit coupled graphene with Kane-Mele and Rashba terms from pristine graphene both in the presence and absence of a Zeeman field. We demonstrate that such junctions are generally spin active, namely, they can rotate the spin so that an incident electron that is spin polarized along some direction has a finite probability of being transmitted with the opposite spin. This leads to a finite, electrically controllable, spin current in such graphene junctions. We discuss possible experiments that can probe our theoretical predictions.
Fitzgerald, J.E.; Robinson, R.L.; Gasem, K.A.M.
2006-11-07
The simplified local-density (SLD) theory was investigated regarding its ability to provide accurate representations and predictions of high-pressure supercritical adsorption isotherms encountered in coalbed methane (CBM) recovery and CO{sub 2} sequestration. Attention was focused on the ability of the SLD theory to predict mixed-gas adsorption solely on the basis of information from pure gas isotherms using a modified Peng-Robinson (PR) equation of state (EOS). An extensive set of high-pressure adsorption measurements was used in this evaluation. These measurements included pure and binary mixture adsorption measurements for several gas compositions up to 14 MPa for Calgon F-400 activated carbon and three water-moistened coals. Also included were ternary measurements for the activated carbon and one coal. For the adsorption of methane, nitrogen, and CO{sub 2} on dry activated carbon, the SLD-PR can predict the component mixture adsorption within about 2.2 times the experimental uncertainty on average solely on the basis of pure-component adsorption isotherms. For the adsorption of methane, nitrogen, and CO{sub 2} on two of the three wet coals, the SLD-PR model can predict the component adsorption within the experimental uncertainties on average for all feed fractions (nominally molar compositions of 20/80, 40/60, 60/40, and 80/20) of the three binary gas mixture combinations, although predictions for some specific feed fractions are outside of their experimental uncertainties.
Slow evolution of elliptical galaxies induced by dynamical friction. II. Non-adiabatic effects
NASA Astrophysics Data System (ADS)
Arena, S. E.; Bertin, G.; Liseikina, T.; Pegoraro, F.
2006-07-01
Context: .Many astrophysical problems, ranging from structure formation in cosmology to dynamics of elliptical galaxies, refer to slow processes of evolution of essentially collisionless self-gravitating systems. In order to determine the relevant quasi-equilibrium configuration at time t from given initial conditions, it is often argued that such slow evolution may be approximated in terms of adiabatic evolution, for the calculation of which efficient semi-analytical techniques are available. Aims: .Here we focus on the slow process of evolution, induced by dynamical friction of a host stellar system on a minority component of "satellites", that we have investigated in a previous paper, to determine to what extent an adiabatic description might be applied. Methods: .The study is realized by comparing directly N-body simulations of the stellar system evolution (in two significantly different models) from initial to final conditions in a controlled numerical environment. Results: .We demonstrate that for the examined process the adiabatic description is going to provide incorrect answers, not only quantitatively, but also qualitatively. The two classes of models considered exhibit generally similar trends in evolution, with one exception noted in relation to the evolution of the total density profile. Conclusions: .This simple conclusion should be taken as a warning against the indiscriminate use of adiabatic growth prescriptions in studies of structure of galaxies.
Phase relations and adiabats in boiling seafloor geothermal systems
NASA Astrophysics Data System (ADS)
Bischoff, James L.; Pitzer, Kenneth S.
1985-11-01
Observations of large salinity variations and vent temperatures in the range of 380-400°C suggest that boiling or two-phase separation may be occurring in some seafloor geothermal systems. Consideration of flow rates and the relatively small differences in density between vapors and liquids at the supercritical pressures at depth in these systems suggests that boiling is occurring under closed-system conditions. Salinity and temperature of boiling vents can be used to estimate the pressure-temperature point in the subsurface at which liquid seawater first reached the two-phase boundary. Data are reviewed to construct phase diagrams of coexisting brines and vapors in the two-phase region at pressures corresponding to those of the seafloor geothermal systems. A method is developed for calculating the enthalpy and entropy of the coexisting mixtures, and results are used to construct adiabats from the seafloor to the P-T two-phase boundary. Results for seafloor vents discharging at 2300 m below sea level indicate that a 385°C vent is composed of a brine (7% NaCl equivalent) in equilibrium with a vapor (0.1% NaCl). Brine constitutes 45% by weight of the mixture, and the fluid first boiled at approximately 1 km below the seafloor at 415°C, 330 bar. A 400°C vent is primarily vapor (88 wt.%, 0.044% NaCl) with a small amount of brine (26% NaCl) and first boiled at 2.9 km below the seafloor at 500°C, 520 bar. These results show that adiabatic decompression in the two-phase region results in dramatic cooling of the fluid mixture when there is a large fraction of vapor.
Phase avalanches in near-adiabatic evolutions
Vertesi, T.; Englman, R.
2006-02-15
In the course of slow, nearly adiabatic motion of a system, relative changes in the slowness can cause abrupt and high magnitude phase changes, ''phase avalanches,'' superimposed on the ordinary geometric phases. The generality of this effect is examined for arbitrary Hamiltonians and multicomponent (>2) wave packets and is found to be connected (through the Blaschke term in the theory of analytic signals) to amplitude zeros in the lower half of the complex time plane. Motion on a nonmaximal circle on the Poincare-sphere suppresses the effect. A spectroscopic transition experiment can independently verify the phase-avalanche magnitudes.
Adiabatic chaos in the spin orbit problem
NASA Astrophysics Data System (ADS)
Benettin, Giancarlo; Guzzo, Massimiliano; Marini, Valerio
2008-05-01
We provide evidences that the angular momentum of a symmetric rigid body in a spin orbit resonance can perform large scale chaotic motions on time scales which increase polynomially with the inverse of the oblateness of the body. This kind of irregular precession appears as soon as the orbit of the center of mass is non-circular and the angular momentum of the body is far from the principal directions with minimum (maximum) moment of inertia. We also provide a quantitative explanation of these facts by using the theory of adiabatic invariants, and we provide numerical applications to the cases of the 1:1 and 1:2 spin orbit resonances.
Experimental breaking of an adiabatic invariant
NASA Astrophysics Data System (ADS)
Notte, J.; Fajans, J.; Chu, R.; Wurtele, J. S.
1993-06-01
When a cylindrical pure electron plasma is displaced from the center of the trap, it performs a bulk circular orbital motion known as the l=1 diocotron mode. The slow application of a perturbing potential to a patch on the trap wall distorts the orbit into a noncircular closed path. Experiments and a simple theoretical model indicate that the area by the loop is an adiabatic invariant. Detailed studies are made of the breaking of the invariant when perturbations are rapidly applied. When the perturbation is applied with discontinuous time derivatives, the invariant breaking greatly exceeds the predictions of the standard theory for smooth perturbations.
Adiabatic passage in the presence of noise
NASA Astrophysics Data System (ADS)
Noel, T.; Dietrich, M. R.; Kurz, N.; Shu, G.; Wright, J.; Blinov, B. B.
2012-02-01
We report on an experimental investigation of rapid adiabatic passage (RAP) in a trapped barium ion system. RAP is implemented on the transition from the 6S1/2 ground state to the metastable 5D5/2 level by applying a laser at 1.76 μm. We focus on the interplay of laser frequency noise and laser power in shaping the effectiveness of RAP, which is commonly assumed to be a robust tool for high-efficiency population transfer. However, we note that reaching high state transfer fidelity requires a combination of small laser linewidth and large Rabi frequency.
Adiabatic demagnetization refrigerator for space use
NASA Technical Reports Server (NTRS)
Serlemitsos, A. T.; Warner, B. A.; Castles, S.; Breon, S. R.; San Sebastian, M.; Hait, T.
1990-01-01
An Adiabatic Demagnetization Refrigerator (ADR) for space use is under development at NASA's Goddard Space Flight Center (GSFC). The breadboard ADR operated at 100 mK for 400 minutes. Some significant changes to that ADR, designed to eliminate shortcomings revealed during tests, are reported. To increase thermal contact, the ferric ammonium sulfate crystals were grown directly on gold-plated copper wires which serve as the thermal bus. The thermal link to the X-ray sensors was also markedly improved. To speed up the testing required to determine the best design parameters for the gas gap heat switch, the new heat switch has a modular design and is easy to disassemble.
Generalized Ramsey numbers through adiabatic quantum optimization
NASA Astrophysics Data System (ADS)
Ranjbar, Mani; Macready, William G.; Clark, Lane; Gaitan, Frank
2016-06-01
Ramsey theory is an active research area in combinatorics whose central theme is the emergence of order in large disordered structures, with Ramsey numbers marking the threshold at which this order first appears. For generalized Ramsey numbers r(G, H), the emergent order is characterized by graphs G and H. In this paper we: (i) present a quantum algorithm for computing generalized Ramsey numbers by reformulating the computation as a combinatorial optimization problem which is solved using adiabatic quantum optimization; and (ii) determine the Ramsey numbers r({{T}}m,{{T}}n) for trees of order m,n = 6,7,8 , most of which were previously unknown.
Decoherence in a scalable adiabatic quantum computer
Ashhab, S.; Johansson, J. R.; Nori, Franco
2006-11-15
We consider the effects of decoherence on Landau-Zener crossings encountered in a large-scale adiabatic-quantum-computing setup. We analyze the dependence of the success probability--i.e., the probability for the system to end up in its new ground state--on the noise amplitude and correlation time. We determine the optimal sweep rate that is required to maximize the success probability. We then discuss the scaling of decoherence effects with increasing system size. We find that those effects can be important for large systems, even if they are small for each of the small building blocks.
Local entanglement generation in the adiabatic regime
Cliche, M.; Veitia, Andrzej
2010-09-15
We study entanglement generation in a pair of qubits interacting with an initially correlated system. Using time-independent perturbation theory and the adiabatic theorem, we show conditions under which the qubits become entangled as the joint system evolves into the ground state of the interacting theory. We then apply these results to the case of qubits interacting with a scalar quantum field. We study three different variations of this setup; a quantum field subject to Dirichlet boundary conditions, a quantum field interacting with a classical potential, and a quantum field that starts in a thermal state.
Zimmermann, Julia; Higgins, Steven I; Grimm, Volker; Hoffmann, John; Linstädter, Anja
2015-08-01
Perennial grasses are a dominant component of grasslands, and provide important ecosystem services. However, most knowledge of grasslands' functioning and production comes from plot-level studies, and drivers of individual-level production remain poorly explored. Extrapolation from existing experiments is hampered by the fact that these are mostly concentrated on even-aged cohorts, and/or on the early stages of a plant's life cycle. Here we explored how local density regulates individual production in mono-specific natural grassland, focusing on adult individuals of a perennial savanna grass (Stipagrostis uniplumis). We found individual production to increase with individuals' size, but to decrease with neighbour abundance. A metric of neighbour abundance that considered size was superior to a metric based solely on the number of individuals. This finding is particularly important for studying competitive effects in natural populations, where plants are normally not even-sized. The inferred competition kernel, i.e. the function describing how competitive strength varies with spatial distance from a target plant, was hump-shaped, indicating strongest intraspecific competition at intermediate distances (10-30 cm). The spatial signature of competitive effects changed with time since fire; peak effects moved successively away from the target plant. Our results suggest that inferred competition kernels of long-lived plant populations may have shapes that differ from exponential or sigmoidal decreases. More generally, results underline that competition among neighbouring plants is dynamic. Studies that address density-dependent and density-independent (fire-related) population dynamics of perennial grasses in their fire-prone environment may thus shed new light on the functioning and production of grasslands. PMID:25790804
Turjeman, Sondra Feldman; Centeno-Cuadros, Alejandro; Eggers, Ute; Rotics, Shay; Blas, Julio; Fiedler, Wolfgang; Kaatz, Michael; Jeltsch, Florian; Wikelski, Martin; Nathan, Ran
2016-01-01
Although many birds are socially monogamous, most (>75%) studied species are not strictly genetically monogamous, especially under high breeding density. We used molecular tools to reevaluate the reproductive strategy of the socially monogamous white stork (Ciconia ciconia) and examined local density effects. DNA samples of nestlings (Germany, Spain) were genotyped and assigned relationships using a two-program maximum likelihood classification. Relationships were successfully classified in 79.2% of German (n = 120) and 84.8% of Spanish (n = 59) nests. For each population respectively, 76.8% (n = 73) and 66.0% (n = 33) of nests contained only full-siblings, 10.5% (n = 10) and 18.0% (n = 9) had half-siblings (at least one nestling with a different parent), 3.2% (n = 3) and 10.0% (n = 5) had unrelated nestlings (at least two nestlings, each with different parents), and 9.5% (n = 9) and 6.0% (n = 3) had “not full-siblings” (could not differentiate between latter two cases). These deviations from strict monogamy place the white stork in the 59th percentile for extra-pair paternity among studied bird species. Although high breeding density generally increases extra-pair paternity, we found no significant association with this species’ mating strategies. Thus although genetic monogamy is indeed prominent in the white stork, extra-pair paternity is fairly common compared to other bird species and cannot be explained by breeding density. PMID:27328982
Turjeman, Sondra Feldman; Centeno-Cuadros, Alejandro; Eggers, Ute; Rotics, Shay; Blas, Julio; Fiedler, Wolfgang; Kaatz, Michael; Jeltsch, Florian; Wikelski, Martin; Nathan, Ran
2016-01-01
Although many birds are socially monogamous, most (>75%) studied species are not strictly genetically monogamous, especially under high breeding density. We used molecular tools to reevaluate the reproductive strategy of the socially monogamous white stork (Ciconia ciconia) and examined local density effects. DNA samples of nestlings (Germany, Spain) were genotyped and assigned relationships using a two-program maximum likelihood classification. Relationships were successfully classified in 79.2% of German (n = 120) and 84.8% of Spanish (n = 59) nests. For each population respectively, 76.8% (n = 73) and 66.0% (n = 33) of nests contained only full-siblings, 10.5% (n = 10) and 18.0% (n = 9) had half-siblings (at least one nestling with a different parent), 3.2% (n = 3) and 10.0% (n = 5) had unrelated nestlings (at least two nestlings, each with different parents), and 9.5% (n = 9) and 6.0% (n = 3) had "not full-siblings" (could not differentiate between latter two cases). These deviations from strict monogamy place the white stork in the 59(th) percentile for extra-pair paternity among studied bird species. Although high breeding density generally increases extra-pair paternity, we found no significant association with this species' mating strategies. Thus although genetic monogamy is indeed prominent in the white stork, extra-pair paternity is fairly common compared to other bird species and cannot be explained by breeding density. PMID:27328982
Geometry of an adiabatic passage at a level crossing
Cholascinski, Mateusz
2005-06-15
We discuss adiabatic quantum phenomena at a level crossing. Given a path in the parameter space which passes through a degeneracy point, we find a criterion which determines whether the adiabaticity condition can be satisfied. For paths that can be traversed adiabatically we also derive a differential equation which specifies the time dependence of the system parameters, for which transitions between distinct energy levels can be neglected. We also generalize the well-known geometric connections to the case of adiabatic paths containing arbitrarily many level-crossing points and degenerate levels.
On the Role of Prior Probability in Adiabatic Quantum Algorithms
NASA Astrophysics Data System (ADS)
Sun, Jie; Lu, Songfeng; Yang, Liping
2016-03-01
In this paper, we study the role of prior probability on the efficiency of quantum local adiabatic search algorithm. The following aspects for prior probability are found here: firstly, only the probabilities of marked states affect the running time of the adiabatic evolution; secondly, the prior probability can be used for improving the efficiency of the adiabatic algorithm; thirdly, like the usual quantum adiabatic evolution, the running time for the case of multiple solution states where the number of marked elements are smaller enough than the size of the set assigned that contains them can be significantly bigger than that of the case where the assigned set only contains all the marked states.
Adiabatic calorimetry (RSST and VSP) tests with sodium acetate
Kirch, N.W.
1993-09-01
As requested in the subject reference, adiabatic calorimetry (RSST and VSP) tests have been performed with sodium acetate covering TOC concentrations from 3 to 7% with the following results: Exothermic activity noted around 200{degrees}C. Propagating reaction initiated at about 300{degrees}C. Required TOC concentration for propagation estimated at about 6 w% (dry mixture) or about 20 w% sodium acetate. Heat of reaction estimated to be 3.7 MJ per kg of sodium acetate (based on VSP test with 3 w% TOC and using a dry mixture specific heat of 1000 J kg{sup {minus}1} K{sup {minus}1}). Based upon the above results we estimate that a moisture content in excess of 14 w% would prevent a propagating reaction of a stoichiometric mixture of fuel and oxidizer ({approximately} 38 w% sodium acetate and {approximately}62 w% sodium nitrate). Assuming that the fuel can be treated as sodium acetate equivalent, and considering that the moisture content in the organic containing waste generally is believed to be in excess of 14 w%, it follows that the possibility of propagating reactions in the Hanford waste tanks can be ruled out.
Quantum Adiabatic Algorithms and Large Spin Tunnelling
NASA Technical Reports Server (NTRS)
Boulatov, A.; Smelyanskiy, V. N.
2003-01-01
We provide a theoretical study of the quantum adiabatic evolution algorithm with different evolution paths proposed in this paper. The algorithm is applied to a random binary optimization problem (a version of the 3-Satisfiability problem) where the n-bit cost function is symmetric with respect to the permutation of individual bits. The evolution paths are produced, using the generic control Hamiltonians H (r) that preserve the bit symmetry of the underlying optimization problem. In the case where the ground state of H(0) coincides with the totally-symmetric state of an n-qubit system the algorithm dynamics is completely described in terms of the motion of a spin-n/2. We show that different control Hamiltonians can be parameterized by a set of independent parameters that are expansion coefficients of H (r) in a certain universal set of operators. Only one of these operators can be responsible for avoiding the tunnelling in the spin-n/2 system during the quantum adiabatic algorithm. We show that it is possible to select a coefficient for this operator that guarantees a polynomial complexity of the algorithm for all problem instances. We show that a successful evolution path of the algorithm always corresponds to the trajectory of a classical spin-n/2 and provide a complete characterization of such paths.
Effect of the Heat Pipe Adiabatic Region.
Brahim, Taoufik; Jemni, Abdelmajid
2014-04-01
The main motivation of conducting this work is to present a rigorous analysis and investigation of the potential effect of the heat pipe adiabatic region on the flow and heat transfer performance of a heat pipe under varying evaporator and condenser conditions. A two-dimensional steady-state model for a cylindrical heat pipe coupling, for both regions, is presented, where the flow of the fluid in the porous structure is described by Darcy-Brinkman-Forchheimer model which accounts for the boundary and inertial effects. The model is solved numerically by using the finite volumes method, and a fortran code was developed to solve the system of equations obtained. The results show that a phase change can occur in the adiabatic region due to temperature gradient created in the porous structure as the heat input increases and the heat pipe boundary conditions change. A recirculation zone may be created at the condenser end section. The effect of the heat transfer rate on the vapor radial velocities and the performance of the heat pipe are discussed. PMID:24895467
Adiabatic cooling of solar wind electrons
NASA Technical Reports Server (NTRS)
Sandbaek, Ornulf; Leer, Egil
1992-01-01
In thermally driven winds emanating from regions in the solar corona with base electron densities of n0 not less than 10 exp 8/cu cm, a substantial fraction of the heat conductive flux from the base is transfered into flow energy by the pressure gradient force. The adiabatic cooling of the electrons causes the electron temperature profile to fall off more rapidly than in heat conduction dominated flows. Alfven waves of solar origin, accelerating the basically thermally driven solar wind, lead to an increased mass flux and enhanced adiabatic cooling. The reduction in electron temperature may be significant also in the subsonic region of the flow and lead to a moderate increase of solar wind mass flux with increasing Alfven wave amplitude. In the solar wind model presented here the Alfven wave energy flux per unit mass is larger than that in models where the temperature in the subsonic flow is not reduced by the wave, and consequently the asymptotic flow speed is higher.
Inertial effects in adiabatically driven flashing ratchets
NASA Astrophysics Data System (ADS)
Rozenbaum, Viktor M.; Makhnovskii, Yurii A.; Shapochkina, Irina V.; Sheu, Sheh-Yi; Yang, Dah-Yen; Lin, Sheng Hsien
2014-05-01
We study analytically the effect of a small inertial correction on the properties of adiabatically driven flashing ratchets. Parrondo's lemma [J. M. R. Parrondo, Phys. Rev. E 57, 7297 (1998), 10.1103/PhysRevE.57.7297] is generalized to include the inertial term so as to establish the symmetry conditions allowing directed motion (other than in the overdamped massless case) and to obtain a high-temperature expansion of the motion velocity for arbitrary potential profiles. The inertial correction is thus shown to enhance the ratchet effect at all temperatures for sawtooth potentials and at high temperatures for simple potentials described by the first two harmonics. With the special choice of potentials represented by at least the first three harmonics, the correction gives rise to the motion reversal in the high-temperature region. In the low-temperature region, inertia weakens the ratchet effect, with the exception of the on-off model, where diffusion is important. The directed motion adiabatically driven by potential sign fluctuations, though forbidden in the overdamped limit, becomes possible due to purely inertial effects in neither symmetric nor antisymmetric potentials, i.e., not for commonly used sawtooth and two-sinusoid profiles.
Stress-energy tensor of adiabatic vacuum in Friedmann-Robertson-Walker spacetimes
Kaya, Ali; Tarman, Merve E-mail: merve.tarman@boun.edu.tr
2011-04-01
We compute the leading order contribution to the stress-energy tensor corresponding to the modes of a quantum scalar field propagating in a Friedmann-Robertson-Walker universe with arbitrary coupling to the scalar curvature, whose exact mode functions can be expanded as an infinite adiabatic series. While for a massive field this is a good approximation for all modes when the mass of the field m is larger than the Hubble parameter H, for a massless field only the subhorizon modes with comoving wave-numbers larger than some fixed k{sub *} obeying k{sub *}/a > H can be analyzed in this way. As infinities coming from adiabatic zero, second and fourth order expressions are removed by adiabatic regularization, the leading order finite contribution to the stress-energy tensor is given by the adiabatic order six terms, which we determine explicitly. For massive and massless modes these have the magnitudes H{sup 6}/m{sup 2} and H{sup 6}a{sup 2}/k{sub *}{sup 2}, respectively, and higher order corrections are suppressed by additional powers of (H/m){sup 2} and (Ha/k{sub *}){sup 2}. When the scale factor in the conformal time η is a simple power a(η) = (1/η){sup n}, the stress-energy tensor obeys P = Øρ with Ø = (n−2)/n for massive and Ø = (n−6)/(3n) for massless modes. In that case, the adiabaticity is eventually lost when 0 < n < 1 for massive and when 0 < n < 3/2 for massless fields since in time H/m and Ha/k{sub *} become order one. We discuss the implications of these results for de Sitter and other cosmologically relevant spaces.
Shear viscosity in the postquasistatic approximation
Peralta, C.; Rosales, L.; Rodriguez-Mueller, B.; Barreto, W.
2010-05-15
We apply the postquasistatic approximation, an iterative method for the evolution of self-gravitating spheres of matter, to study the evolution of anisotropic nonadiabatic radiating and dissipative distributions in general relativity. Dissipation is described by viscosity and free-streaming radiation, assuming an equation of state to model anisotropy induced by the shear viscosity. We match the interior solution, in noncomoving coordinates, with the Vaidya exterior solution. Two simple models are presented, based on the Schwarzschild and Tolman VI solutions, in the nonadiabatic and adiabatic limit. In both cases, the eventual collapse or expansion of the distribution is mainly controlled by the anisotropy induced by the viscosity.
Electric and magnetic drift of non-adiabatic ions in the earth's geomagnetic tail current sheet
NASA Technical Reports Server (NTRS)
Beard, D. B.; Cowley, S. W. H.
1985-01-01
It has been shown recently that nonadiabatic particles in the earth's magnetotail drift across the tail roughly as predicted for adiabatic particles with 90 deg pitch angles. In this paper it is shown that this result implies the existence of an approximate invariant of the motion. Adding the effect of convection associated electric fields, the approximate bounce averaged motion of nonadiabatic particles in the magnetotail can be obtained. Thus the particle motion and energization due to combined magnetic and electric drifts in the magnetotail are easily predicted.
NASA Astrophysics Data System (ADS)
Tichauer, Kenneth M.; Osswald, Christian R.; Dosmar, Emily; Guthrie, Micah J.; Hones, Logan; Sinha, Lagnojita; Xu, Xiaochun; Mieler, William F.; St. Lawrence, Keith; Kang-Mieler, Jennifer J.
2015-06-01
Clinical symptoms of diabetic retinopathy are not detectable until damage to the retina reaches an irreversible stage, at least by today's treatment standards. As a result, there is a push to develop new, "sub-clinical" methods of predicting the onset of diabetic retinopathy before the onset of irreversible damage. With diabetic retinopathy being associated with the accumulation of long-term mild damage to the retinal vasculature, retinal blood vessel permeability has been proposed as a key parameter for detecting preclinical stages of retinopathy. In this study, a kinetic modeling approach used to quantify vascular permeability in dynamic contrast-enhanced medical imaging was evaluated in noise simulations and then applied to retinal videoangiography data in a diabetic rat for the first time to determine the potential for this approach to be employed clinically as an early indicator of diabetic retinopathy. Experimental levels of noise were found to introduce errors of less than 15% in estimates of blood flow and extraction fraction (a marker of vascular permeability), and fitting of rat retinal fluorescein angiography data provided stable maps of both parameters.
Collective motion of two-electron atom in hyperspherical adiabatic approximation
Mohamed, A. S.; Nikitin, S. I.
2015-03-30
This work is devoted to calculate bound states in the two-electron atoms. The separation of variables has carried out in hyper spherical coordinate system (R, θ, α). Assuming collective motion of the electrons, where the hper angle (α∼π/4) and (θ∼π). The separation of the rotational variables leads to system of differential equations with more simple form as compared with non restricted motion. Energy of doubly excited P{sup e} and D{sup 0} states are calculated semi classically by using quantization condition of Bohr -Somerfield. The results compared with previously published data.
Viscous heating, adiabatic heating and energetic consistency in compressible mantle convection
NASA Astrophysics Data System (ADS)
Leng, Wei; Zhong, Shijie
2008-05-01
Although it has been suggested that the total viscous heating, Qv, should be exactly balanced by the total adiabatic heating, Qa, for compressible mantle convection, previous numerical studies show a significant imbalance of up to several percent between Qv and Qa for simple isoviscous compressible convection. The cause of this imbalance and its potential effects on more complicated convective systems remain largely unknown. In this study, we present an analysis to show that total viscous heating and adiabatic heating for compressible mantle convection with anelastic liquid approximation (ALA) and the Adams-Williamson equation of state are balanced out at any instant in time, and that the previously reported imbalance between Qv and Qa for numerical models with a truncated anelastic liquid approximation (TALA) is caused by neglecting the effect of the pressure on the buoyancy force. Although we only consider the Adams-Williamson equation of state in our analysis, our method can be used to check the energetic consistency for other forms of equation of state. We formulate numerical models of compressible mantle convection under both TALA and ALA formulations by modifying the Uzawa algorithm in Citcom code. Our numerical results confirm our analysis on the balance between total viscous heating and total adiabatic heating.
Rotational excitation of H2O by para-H2 from an adiabatically reduced dimensional potential
NASA Astrophysics Data System (ADS)
Scribano, Yohann; Faure, Alexandre; Lauvergnat, David
2012-03-01
Cross sections and rate coefficients for low lying rotational transitions in H2O colliding with para-hydrogen pH2 are computed using an adiabatic approximation which reduces the dimensional dynamics from a 5D to a 3D problem. Calculations have been performed at the close-coupling level using the recent potential of Valiron et al. [J. Chem. Phys. 129, 134306 (2008), 10.1063/1.2988314]. A good agreement is found between the reduced adiabatic calculations and the 5D exact calculations, with an impressive time saving and memory gain. This adiabatic reduction of dimensionality seems very promising for scattering studies involving the excitation of a heavy target molecule by a light molecular projectile.
NASA Technical Reports Server (NTRS)
Stern, D. P.
1978-01-01
An investigation is made of the adiabatic particle motion occurring in an almost drift-free magnetic field. The dependence of the mean drift velocity on the equatorial pitch angle and the variation of the local drift velocity along the trajectories is studied. The fields considered are two-dimensional and resemble the geomagnetic tail. Derivations are presented for instantaneous and average drift velocities, bounce times, longitudinal invariants, and approximations to the adiabatic Hamiltonian. As expected, the mean drift velocity is significantly smaller than the instantaneous drift velocities found at typical points on the trajectory. The slow drift indicates that particles advance in the dawn-dusk direction rather slowly in the plasma sheet of the magnetospheric tail.
Method of adiabatic modes in studying problems of smoothly irregular open waveguide structures
Sevastianov, L. A.; Egorov, A. A.; Sevastyanov, A. L.
2013-02-15
Basic steps in developing an original method of adiabatic modes that makes it possible to solve the direct and inverse problems of simulating and designing three-dimensional multilayered smoothly irregular open waveguide structures are described. A new element in the method is that an approximate solution of Maxwell's equations is made to obey 'inclined' boundary conditions at the interfaces between themedia being considered. These boundary conditions take into account the obliqueness of planes tangent to nonplanar boundaries between the media and lead to new equations for coupled vector quasiwaveguide hybrid adiabatic modes. Solutions of these equations describe the phenomenon of 'entanglement' of two linear polarizations of an irregular multilayered waveguide, the appearance of a new mode in an entangled state, and the effect of rotation of the polarization plane of quasiwaveguide modes. The efficiency of the method is demonstrated by considering the example of numerically simulating a thin-film generalized waveguide Lueneburg lens.
Semiclassical analysis of the electron-nuclear coupling in electronic non-adiabatic processes
NASA Astrophysics Data System (ADS)
Agostini, Federica; Min, Seung Kyu; Gross, E. K. U.
2015-10-01
In the context of the exact factorization of the electron-nuclear wave function, the coupling between electrons and nuclei beyond the adiabatic regime is encoded (i) in the time-dependent vector and scalar potentials and (ii) in the electron-nuclear coupling operator. The former appear in the Schroedinger-like equation that drives the evolution of the nuclear degrees of freedom, whereas the latter is responsible for inducing non-adiabatic effects in the electronic evolution equation. As we have devoted previous studies to the analysis of the vector and scalar potentials, in this paper we focus on the properties of the electron-nuclear coupling operator, with the aim of describing a numerical procedure to approximate it within a semiclassical treatment of the nuclear dynamics.
Adiabat-shaping in indirect drive inertial confinement fusion
NASA Astrophysics Data System (ADS)
Baker, K. L.; Robey, H. F.; Milovich, J. L.; Jones, O. S.; Smalyuk, V. A.; Casey, D. T.; MacPhee, A. G.; Pak, A.; Celliers, P. M.; Clark, D. S.; Landen, O. L.; Peterson, J. L.; Berzak-Hopkins, L. F.; Weber, C. R.; Haan, S. W.; Döppner, T. D.; Dixit, S.; Giraldez, E.; Hamza, A. V.; Jancaitis, K. S.; Kroll, J. J.; Lafortune, K. N.; MacGowan, B. J.; Moody, J. D.; Nikroo, A.; Widmayer, C. C.
2015-05-01
Adiabat-shaping techniques were investigated in indirect drive inertial confinement fusion experiments on the National Ignition Facility as a means to improve implosion stability, while still maintaining a low adiabat in the fuel. Adiabat-shaping was accomplished in these indirect drive experiments by altering the ratio of the picket and trough energies in the laser pulse shape, thus driving a decaying first shock in the ablator. This decaying first shock is designed to place the ablation front on a high adiabat while keeping the fuel on a low adiabat. These experiments were conducted using the keyhole experimental platform for both three and four shock laser pulses. This platform enabled direct measurement of the shock velocities driven in the glow-discharge polymer capsule and in the liquid deuterium, the surrogate fuel for a DT ignition target. The measured shock velocities and radiation drive histories are compared to previous three and four shock laser pulses. This comparison indicates that in the case of adiabat shaping the ablation front initially drives a high shock velocity, and therefore, a high shock pressure and adiabat. The shock then decays as it travels through the ablator to pressures similar to the original low-adiabat pulses when it reaches the fuel. This approach takes advantage of initial high ablation velocity, which favors stability, and high-compression, which favors high stagnation pressures.
Quantum adiabatic algorithm for factorization and its experimental implementation.
Peng, Xinhua; Liao, Zeyang; Xu, Nanyang; Qin, Gan; Zhou, Xianyi; Suter, Dieter; Du, Jiangfeng
2008-11-28
We propose an adiabatic quantum algorithm capable of factorizing numbers, using fewer qubits than Shor's algorithm. We implement the algorithm in a NMR quantum information processor and experimentally factorize the number 21. In the range that our classical computer could simulate, the quantum adiabatic algorithm works well, providing evidence that the running time of this algorithm scales polynomially with the problem size. PMID:19113467
Adiabat-shaping in indirect drive inertial confinement fusion
Baker, K. L.; Robey, H. F.; Milovich, J. L.; Jones, O. S.; Smalyuk, V. A.; Casey, D. T.; MacPhee, A. G.; Pak, A.; Celliers, P. M.; Clark, D. S.; Landen, O. L.; Peterson, J. L.; Berzak-Hopkins, L. F.; Weber, C. R.; Haan, S. W.; Döppner, T. D.; Dixit, S.; Hamza, A. V.; Jancaitis, K. S.; Kroll, J. J.; and others
2015-05-15
Adiabat-shaping techniques were investigated in indirect drive inertial confinement fusion experiments on the National Ignition Facility as a means to improve implosion stability, while still maintaining a low adiabat in the fuel. Adiabat-shaping was accomplished in these indirect drive experiments by altering the ratio of the picket and trough energies in the laser pulse shape, thus driving a decaying first shock in the ablator. This decaying first shock is designed to place the ablation front on a high adiabat while keeping the fuel on a low adiabat. These experiments were conducted using the keyhole experimental platform for both three and four shock laser pulses. This platform enabled direct measurement of the shock velocities driven in the glow-discharge polymer capsule and in the liquid deuterium, the surrogate fuel for a DT ignition target. The measured shock velocities and radiation drive histories are compared to previous three and four shock laser pulses. This comparison indicates that in the case of adiabat shaping the ablation front initially drives a high shock velocity, and therefore, a high shock pressure and adiabat. The shock then decays as it travels through the ablator to pressures similar to the original low-adiabat pulses when it reaches the fuel. This approach takes advantage of initial high ablation velocity, which favors stability, and high-compression, which favors high stagnation pressures.
Kinetic Theory Derivation of the Adiabatic Law for Ideal Gases.
ERIC Educational Resources Information Center
Sobel, Michael I.
1980-01-01
Discusses how the adiabatic law for ideal gases can be derived from the assumption of a Maxwell-Boltzmann (or any other) distribution of velocities--in contrast to the usual derivations from thermodynamics alone, and the higher-order effect that leads to one-body viscosity. An elementary derivation of the adiabatic law is given. (Author/DS)
The Adiabatic Invariance of the Action Variable in Classical Dynamics
ERIC Educational Resources Information Center
Wells, Clive G.; Siklos, Stephen T. C.
2007-01-01
We consider one-dimensional classical time-dependent Hamiltonian systems with quasi-periodic orbits. It is well known that such systems possess an adiabatic invariant which coincides with the action variable of the Hamiltonian formalism. We present a new proof of the adiabatic invariance of this quantity and illustrate our arguments by means of…
Adiabatic theory for anisotropic cold molecule collisions
Pawlak, Mariusz; Shagam, Yuval; Narevicius, Edvardas; Moiseyev, Nimrod
2015-08-21
We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment {sup 4}He(1s2s {sup 3}S) + HD(1s{sup 2}) → {sup 4}He(1s{sup 2}) + HD{sup +}(1s) + e{sup −} [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings.
An adiabatic demagnetization refrigerator for SIRTF
NASA Technical Reports Server (NTRS)
Timbie, P. T.; Bernstein, G. M.; Richards, P. L.
1989-01-01
An adiabatic demagnetization refrigerator (ADR) has been proposed to cool bolometric infrared detectors on the multiband imaging photometer of the Space Infrared Telescope Facility (SIRTF). One such refrigerator has been built which uses a ferric ammonium alum salt pill suspended by nylon threads in a 3-T solenoid. The resonant modes of this suspension are above 100 Hz. The heat leak to the salt pill is less than 0.5 microW. The system has a hold time at 0.1K of more than 12 h. The cold stage temperature is regulated with a feedback loop that controls the magnetic field. A second, similar refrigerator is being built at a SIRTF prototype to fly on a ballon-borne telescope. It will use a ferromagnetic shield. The possibility of using a high-Tc solenoid-actuated heat switch is also discussed.
Design of a spaceworthy adiabatic demagnetization refrigerator
NASA Technical Reports Server (NTRS)
Serlemitsos, A. T.; Kunes, E.; Sansebastian, M.
1992-01-01
A spaceworthy adiabatic demagnetization refrigerator (ADR) under development at NASA-Goddard is presented. A baseline model heat switch was tested extensively with an on/off ratio of about 10,000 and a parasitic heat leak of 10 micro-W. Data obtained from the breadboard models were used to design an ADR with improved structural integrity. The core of the ADR is the salt pill which consists of the paramagnetic salt crystal and the thermal bus. When a magnetic field is applied to the salt it forces the alignment of the magnetic moments, thereby decreasing the entropy of the salt. Preliminary tests results showed a net crystal mass of 680 g instead of the expected 740 g, which indicate that there are gaps in the salt pill. A partial fix was accomplished by sealing helium gas in the salt pill at a pressure of 2 bar, which improved the thermal contact during salt magnetization, at about 2 K.
Differential topology of adiabatically controlled quantum processes
NASA Astrophysics Data System (ADS)
Jonckheere, Edmond A.; Rezakhani, Ali T.; Ahmad, Farooq
2013-03-01
It is shown that in a controlled adiabatic homotopy between two Hamiltonians, H 0 and H 1, the gap or "anti-crossing" phenomenon can be viewed as the development of cusps and swallow tails in the region of the complex plane where two critical value curves of the quadratic map associated with the numerical range of H 0 + i H 1 come close. The "near crossing" in the energy level plots happens to be a generic situation, in the sense that a crossing is a manifestation of the quadratic numerical range map being unstable in the sense of differential topology. The stable singularities that can develop are identified and it is shown that they could occur near the gap, making those singularities of paramount importance. Various applications, including the quantum random walk, are provided to illustrate this theory.
Reversible logic gate using adiabatic superconducting devices
Takeuchi, N.; Yamanashi, Y.; Yoshikawa, N.
2014-01-01
Reversible computing has been studied since Rolf Landauer advanced the argument that has come to be known as Landauer's principle. This principle states that there is no minimum energy dissipation for logic operations in reversible computing, because it is not accompanied by reductions in information entropy. However, until now, no practical reversible logic gates have been demonstrated. One of the problems is that reversible logic gates must be built by using extremely energy-efficient logic devices. Another difficulty is that reversible logic gates must be both logically and physically reversible. Here we propose the first practical reversible logic gate using adiabatic superconducting devices and experimentally demonstrate the logical and physical reversibility of the gate. Additionally, we estimate the energy dissipation of the gate, and discuss the minimum energy dissipation required for reversible logic operations. It is expected that the results of this study will enable reversible computing to move from the theoretical stage into practical usage. PMID:25220698
Symmetry-protected adiabatic quantum transistors
NASA Astrophysics Data System (ADS)
Williamson, Dominic J.; Bartlett, Stephen D.
2015-05-01
Adiabatic quantum transistors (AQT) allow quantum logic gates to be performed by applying a large field to a quantum many-body system prepared in its ground state, without the need for local control. The basic operation of such a device can be viewed as driving a spin chain from a symmetry-protected (SP) phase to a trivial phase. This perspective offers an avenue to generalize the AQT and to design several improvements. The performance of quantum logic gates is shown to depend only on universal symmetry properties of a SP phase rather than any fine tuning of the Hamiltonian, and it is possible to implement a universal set of logic gates in this way by combining several different types of SP matter. Such SP AQTs are argued to be robust to a range of relevant noise processes.
Number Partitioning via Quantum Adiabatic Computation
NASA Technical Reports Server (NTRS)
Smelyanskiy, Vadim N.; Toussaint, Udo; Clancy, Daniel (Technical Monitor)
2002-01-01
We study both analytically and numerically the complexity of the adiabatic quantum evolution algorithm applied to random instances of combinatorial optimization problems. We use as an example the NP-complete set partition problem and obtain an asymptotic expression for the minimal gap separating the ground and exited states of a system during the execution of the algorithm. We show that for computationally hard problem instances the size of the minimal gap scales exponentially with the problem size. This result is in qualitative agreement with the direct numerical simulation of the algorithm for small instances of the set partition problem. We describe the statistical properties of the optimization problem that are responsible for the exponential behavior of the algorithm.
Geometric Adiabatic Transport in Quantum Hall States
NASA Astrophysics Data System (ADS)
Klevtsov, S.; Wiegmann, P.
2015-08-01
We argue that in addition to the Hall conductance and the nondissipative component of the viscous tensor, there exists a third independent transport coefficient, which is precisely quantized. It takes constant values along quantum Hall plateaus. We show that the new coefficient is the Chern number of a vector bundle over moduli space of surfaces of genus 2 or higher and therefore cannot change continuously along the plateau. As such, it does not transpire on a sphere or a torus. In the linear response theory, this coefficient determines intensive forces exerted on electronic fluid by adiabatic deformations of geometry and represents the effect of the gravitational anomaly. We also present the method of computing the transport coefficients for quantum Hall states.
Geometric Adiabatic Transport in Quantum Hall States.
Klevtsov, S; Wiegmann, P
2015-08-21
We argue that in addition to the Hall conductance and the nondissipative component of the viscous tensor, there exists a third independent transport coefficient, which is precisely quantized. It takes constant values along quantum Hall plateaus. We show that the new coefficient is the Chern number of a vector bundle over moduli space of surfaces of genus 2 or higher and therefore cannot change continuously along the plateau. As such, it does not transpire on a sphere or a torus. In the linear response theory, this coefficient determines intensive forces exerted on electronic fluid by adiabatic deformations of geometry and represents the effect of the gravitational anomaly. We also present the method of computing the transport coefficients for quantum Hall states. PMID:26340197
Adiabatic connection at negative coupling strengths
Seidl, Michael; Gori-Giorgi, Paola
2010-01-15
The adiabatic connection of density functional theory (DFT) for electronic systems is generalized here to negative values of the coupling strength alpha (with attractive electrons). In the extreme limit alpha->-infinity a simple physical solution is presented and its implications for DFT (as well as its limitations) are discussed. For two-electron systems (a case in which the present solution can be calculated exactly), we find that an interpolation between the limit alpha->-infinity and the opposite limit of infinitely strong repulsion (alpha->+infinity) yields a rather accurate estimate of the second-order correlation energy E{sub c}{sup GL2}[rho] for several different densities rho, without using virtual orbitals. The same procedure is also applied to the Be isoelectronic series, analyzing the effects of near degeneracy.
Adiabatic theory for anisotropic cold molecule collisions.
Pawlak, Mariusz; Shagam, Yuval; Narevicius, Edvardas; Moiseyev, Nimrod
2015-08-21
We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment (4)He(1s2s (3)S) + HD(1s(2)) → (4)He(1s(2)) + HD(+)(1s) + e(-) [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings. PMID:26298122
Sliding seal materials for adiabatic engines
NASA Technical Reports Server (NTRS)
Lankford, J.
1985-01-01
The sliding friction coefficients and wear rates of promising carbide, oxide, and nitride materials were measured under temperature, environmental, velocity, loading conditions that are representative of the adiabatic engine environment. In order to provide guidance needed to improve materials for this application, the program stressed fundamental understanding of the mechanisms involved in friction and wear. Microhardness tests were performed on the candidate materials at elevated temperatures, and in atmospheres relevant to the piston seal application, and optical and electron microscopy were used to elucidate the micromechanisms of wear following wear testing. X-ray spectroscopy was used to evaluate interface/environment interactions which seemed to be important in the friction and wear process. Electrical effects in the friction and wear processes were explored in order to evaluate the potential usefulness of such effects in modifying the friction and wear rates in service. However, this factor was found to be of negligible significance in controlling friction and wear.
Adiabatically-tapered fiber mode multiplexers.
Yerolatsitis, S; Gris-Sánchez, I; Birks, T A
2014-01-13
Simple all-fiber three-mode multiplexers were made by adiabatically merging three dissimilar single-mode cores into one multimode core. This was achieved by collapsing air holes in a photonic crystal fiber and (in a separate device) by fusing and tapering separate telecom fibers in a fluorine-doped silica capillary. In each case the LP01 mode and both LP11 modes were individually excited from three separate input cores, with losses below 0.3 and 0.7 dB respectively and mode purities exceeding 10 dB. Scaling to more modes is challenging, but would be assisted by using single-mode fibers with a smaller ratio of cladding to core diameter. PMID:24515021
The HAWC and SAFIRE Adiabatic Demagnetization Refrigerators
NASA Technical Reports Server (NTRS)
Tuttle, Jim; Shirron, Peter; DiPirro, Michael; Jackson, Michael; Behr, Jason; Kunes, Evan; Hait, Tom; Krebs, Carolyn (Technical Monitor)
2001-01-01
The High-Resolution Airborne Wide-band Camera (HAWC) and Submillimeter and Far Infrared Experiment (SAFIRE) are far-infrared experiments which will fly on the Stratospheric Observatory for Infrared Astronomy (SOFIA) aircraft. HAWC's detectors will operate at 0.2 Kelvin, while those of SAFIRE will be at 0.1 Kelvin. Each instrument will include an adiabatic demagnetization refrigerator (ADR) to cool its detector stage from the liquid helium bath temperature (HAWC's at 4.2 Kelvin and SAFIRE's pumped to about 1.3 Kelvin) to its operating temperature. Except for the magnets used to achieve the cooling and a slight difference in the heat switch design, the two ADRs are nearly identical. We describe the ADR design and present the results of performance testing.
Adiabatic separatrix crossing theory for heavy-light-heavy chemical reactions in three dimensions
NASA Astrophysics Data System (ADS)
Skodje, Rex T.
1991-11-01
The beautifully regular dynamics observed for the collinear I+HI reaction appears to be largely irrelevant for the three-dimensional reaction. The pronounced oscillations in the collinear reaction probability and other variables are suppressed in three dimensions due to the extreme instability of the collinear dynamics in directions orthogonal to the collinear subspace. A new theory is formulated for the three-dimensional classical dynamics of heavy-light-heavy (HLH) reactions. This theory is based on three ideas. First, the fastest time scale motion can be adiabatically eliminated with high accuracy. The fast motion corresponds to diatomic vibration in the asymptotic channels and to asymmetric stretch motion in the strong collision region. A composite set of ``α'' and ``β'' channel Jacobi coordinates properly captures the correct separation of time scales. Second, the reactive separatrix can be easily defined within the adiabatic approximation and is crucial in modeling the reactive dynamics. The separatrix is the boundary in phase space between the trajectories where the light atom is dynamically bound to one of the heavy atoms and those trajectories where the light atom is exchanging back and forth between the two heavy atoms. Third, trajectories which cross the separatrix behave statistically in three dimensions. For the I+HI reaction with J=0, it is found that the reaction probability is very accurately modeled by PR= (1)/(2) Px, where Px is the probability for trajectories to cross the separatrix in the adiabatic approximation. Numerical simulations on the I+HI reaction strongly support a statistical adiabatic separatrix crossing theory and suggest widespread chaotic scattering for reactive orbits.
An integrated programming and development environment for adiabatic quantum optimization
NASA Astrophysics Data System (ADS)
Humble, T. S.; McCaskey, A. J.; Bennink, R. S.; Billings, J. J.; DʼAzevedo, E. F.; Sullivan, B. D.; Klymko, C. F.; Seddiqi, H.
2014-01-01
Adiabatic quantum computing is a promising route to the computational power afforded by quantum information processing. The recent availability of adiabatic hardware has raised challenging questions about how to evaluate adiabatic quantum optimization (AQO) programs. Processor behavior depends on multiple steps to synthesize an adiabatic quantum program, which are each highly tunable. We present an integrated programming and development environment for AQO called Jade Adiabatic Development Environment (JADE) that provides control over all the steps taken during program synthesis. JADE captures the workflow needed to rigorously specify the AQO algorithm while allowing a variety of problem types, programming techniques, and processor configurations. We have also integrated JADE with a quantum simulation engine that enables program profiling using numerical calculation. The computational engine supports plug-ins for simulation methodologies tailored to various metrics and computing resources. We present the design, integration, and deployment of JADE and discuss its potential use for benchmarking AQO programs by the quantum computer science community.
An Integrated Development Environment for Adiabatic Quantum Programming
Humble, Travis S; McCaskey, Alex; Bennink, Ryan S; Billings, Jay Jay; D'Azevedo, Eduardo; Sullivan, Blair D; Klymko, Christine F; Seddiqi, Hadayat
2014-01-01
Adiabatic quantum computing is a promising route to the computational power afforded by quantum information processing. The recent availability of adiabatic hardware raises the question of how well quantum programs perform. Benchmarking behavior is challenging since the multiple steps to synthesize an adiabatic quantum program are highly tunable. We present an adiabatic quantum programming environment called JADE that provides control over all the steps taken during program development. JADE captures the workflow needed to rigorously benchmark performance while also allowing a variety of problem types, programming techniques, and processor configurations. We have also integrated JADE with a quantum simulation engine that enables program profiling using numerical calculation. The computational engine supports plug-ins for simulation methodologies tailored to various metrics and computing resources. We present the design, integration, and deployment of JADE and discuss its use for benchmarking adiabatic quantum programs.
Non-adiabatic molecular dynamics with complex quantum trajectories. II. The adiabatic representation
NASA Astrophysics Data System (ADS)
Zamstein, Noa; Tannor, David J.
2012-12-01
We present a complex quantum trajectory method for treating non-adiabatic dynamics. Each trajectory evolves classically on a single electronic surface but with complex position and momentum. The equations of motion are derived directly from the time-dependent Schrödinger equation, and the population exchange arises naturally from amplitude-transfer terms. In this paper the equations of motion are derived in the adiabatic representation to complement our work in the diabatic representation [N. Zamstein and D. J. Tannor, J. Chem. Phys. 137, 22A517 (2012)], 10.1063/1.4739845. We apply our method to two benchmark models introduced by John Tully [J. Chem. Phys. 93, 1061 (1990)], 10.1063/1.459170, and get very good agreement with converged quantum-mechanical calculations. Specifically, we show that decoherence (spatial separation of wavepackets on different surfaces) is already contained in the equations of motion and does not require ad hoc augmentation.
Non-adiabatic molecular dynamics with complex quantum trajectories. II. The adiabatic representation
Zamstein, Noa; Tannor, David J.
2012-12-14
We present a complex quantum trajectory method for treating non-adiabatic dynamics. Each trajectory evolves classically on a single electronic surface but with complex position and momentum. The equations of motion are derived directly from the time-dependent Schroedinger equation, and the population exchange arises naturally from amplitude-transfer terms. In this paper the equations of motion are derived in the adiabatic representation to complement our work in the diabatic representation [N. Zamstein and D. J. Tannor, J. Chem. Phys. 137, 22A517 (2012)]. We apply our method to two benchmark models introduced by John Tully [J. Chem. Phys. 93, 1061 (1990)], and get very good agreement with converged quantum-mechanical calculations. Specifically, we show that decoherence (spatial separation of wavepackets on different surfaces) is already contained in the equations of motion and does not require ad hoc augmentation.
Test particle propagation in magnetostatic turbulence. 1. Failure of the diffusion approximation
NASA Technical Reports Server (NTRS)
Klimas, A. J.; Sandri, G.; Scudder, J. D.; Howell, D. R.
1976-01-01
The equation which governs the quasi-linear approximation to the ensemble and gyro-phase averaged one-body probability distribution function is constructed from first principles. This derived equation is subjected to a thorough investigation in order to calculate the possible limitations of the quasi-linear approximation. It is shown that the reduction of this equation to a standard diffusion equation in the Markovian limit can be accomplished through the application of the adiabatic approximation. A numerical solution of the standard diffusion equation in the Markovian limit is obtained for the narrow parallel beam injection. Comparison of the diabatic and adiabatic results explicitly demonstrates the failure of the Markovian description of the probability distribution function. Through the use of a linear time-scale extension the failure of the adiabatic approximation, which leads to the Markovian limit, is shown to be due to mixing of the relaxation and interaction time scales in the presence of the strong mean field.
Józefowicz, W; Cholewiak, G; Longa, L
2005-03-01
The main focus of the present paper is on studying the nematic-smectic- A phase boundary of an ideally oriented Gay-Berne system. The phase diagram is determined by means of an isothermal-isobaric Monte Carlo simulation. The results are compared with predictions of the local density functional expanded up to second and third order in the one-particle distribution function. It is shown that generally the second-order expansion does not give satisfactory predictions for smectics. Going beyond the leading order yields good quantitative agreement at moderate densities. With increasing density the relative error of the local density functional calculations increases, but usually does not exceed 10% in densities. We conclude that the density functional approach could be competitive to time-consuming simulations in determining phase diagrams of spatially and orientationally ordered liquid crystalline structures. PMID:15903474
NASA Astrophysics Data System (ADS)
Józefowicz, W.; Cholewiak, G.; Longa, L.
2005-03-01
The main focus of the present paper is on studying the nematic-smectic- A phase boundary of an ideally oriented Gay-Berne system. The phase diagram is determined by means of an isothermal-isobaric Monte Carlo simulation. The results are compared with predictions of the local density functional expanded up to second and third order in the one-particle distribution function. It is shown that generally the second-order expansion does not give satisfactory predictions for smectics. Going beyond the leading order yields good quantitative agreement at moderate densities. With increasing density the relative error of the local density functional calculations increases, but usually does not exceed 10% in densities. We conclude that the density functional approach could be competitive to time-consuming simulations in determining phase diagrams of spatially and orientationally ordered liquid crystalline structures.
Adiabatic Heat of Hydration Calorimetric Measurements for Reference Saltstone Waste
Bollinger, James
2006-01-12
The production of nuclear materials for weapons, medical, and space applications from the mid-1950's through the late-1980's at the Savannah River Site (SRS) generated approximately 35 million gallons of liquid high-level radioactive waste, which is currently being processed into vitrified glass for long-term storage. Upstream of the vitrification process, the waste is separated into three components: high activity insoluble sludge, high activity insoluble salt, and very low activity soluble salts. The soluble salt represents 90% of the 35 million gallons of overall waste and is processed at the SRS Saltstone Facility, where it mixed with cement, blast furnace slag, and flyash, creating a grout-like mixture. The resulting grout is pumped into aboveground storage vaults, where it hydrates into concrete monoliths, called saltstone, thus immobilizing the low-level radioactive salt waste. As the saltstone hydrates, it generates heat that slowly diffuses out of the poured material. To ensure acceptable grout properties for disposal and immobilization of the salt waste, the grout temperature must not exceed 95 C during hydration. Adiabatic calorimetric measurements of the heat generated for a representative sample of saltstone were made to determine the time-dependent heat source term. These measurements subsequently were utilized as input to a numerical conjugate heat transfer model to determine the expected peak temperatures for the saltstone vaults.
Evolution of f{sub NL} to the adiabatic limit
Elliston, Joseph; Mulryne, David J.; Tavakol, Reza; Seery, David E-mail: D.Mulryne@qmul.ac.uk E-mail: R.Tavakol@qmul.ac.uk
2011-11-01
We study inflationary perturbations in multiple-field models, for which ζ typically evolves until all isocurvature modes decay — the {sup a}diabatic limit{sup .} We use numerical methods to explore the sensitivity of the local-shape bispectrum to the process by which this limit is achieved, finding an appreciable dependence on model-specific data such as the time at which slow-roll breaks down or the timescale of reheating. In models with a sum-separable potential where the isocurvature modes decay before the end of the slow-roll phase we give an analytic criterion for the asymptotic value of f{sub NL} to be large. Other examples can be constructed using a waterfall field to terminate inflation while f{sub NL} is transiently large, caused by descent from a ridge or convergence into a valley. We show that these two types of evolution are distinguished by the sign of the bispectrum, and give approximate expressions for the peak f{sub NL}.
Non-adiabatic perturbations in Ricci dark energy model
Karwan, Khamphee; Thitapura, Thiti E-mail: nanodsci2523@hotmail.com
2012-01-01
We show that the non-adiabatic perturbations between Ricci dark energy and matter can grow both on superhorizon and subhorizon scales, and these non-adiabatic perturbations on subhorizon scales can lead to instability in this dark energy model. The rapidly growing non-adiabatic modes on subhorizon scales always occur when the equation of state parameter of dark energy starts to drop towards -1 near the end of matter era, except that the parameter α of Ricci dark energy equals to 1/2. In the case where α = 1/2, the rapidly growing non-adiabatic modes disappear when the perturbations in dark energy and matter are adiabatic initially. However, an adiabaticity between dark energy and matter perturbations at early time implies a non-adiabaticity between matter and radiation, this can influence the ordinary Sachs-Wolfe (OSW) effect. Since the amount of Ricci dark energy is not small during matter domination, the integrated Sachs-Wolfe (ISW) effect is greatly modified by density perturbations of dark energy, leading to a wrong shape of CMB power spectrum. The instability in Ricci dark energy is difficult to be alleviated if the effects of coupling between baryon and photon on dark energy perturbations are included.
Bendall; Skinner
1998-10-01
To provide the most efficient conditions for spin decoupling with least RF power, master calibration curves are provided for the maximum centerband amplitude, and the minimum amplitude for the largest cycling sideband, resulting from STUD+ adiabatic decoupling applied during a single free induction decay. The principal curve is defined as a function of the four most critical experimental input parameters: the maximum amplitude of the RF field, RFmax, the length of the sech/tanh pulse, Tp, the extent of the frequency sweep, bwdth, and the coupling constant, Jo. Less critical parameters, the effective (or actual) decoupled bandwidth, bweff, and the sech/tanh truncation factor, beta, which become more important as bwdth is decreased, are calibrated in separate curves. The relative importance of nine additional factors in determining optimal decoupling performance in a single transient are considered. Specific parameters for efficient adiabatic decoupling can be determined via a set of four equations which will be most useful for 13C decoupling, covering the range of one-bond 13C1H coupling constants from 125 to 225 Hz, and decoupled bandwidths of 7 to 100 kHz, with a bandwidth of 100 kHz being the requirement for a 2 GHz spectrometer. The four equations are derived from a recent vector model of adiabatic decoupling, and experiment, supported by computer simulations. The vector model predicts an inverse linear relation between the centerband and maximum sideband amplitudes, and it predicts a simple parabolic relationship between maximum sideband amplitude and the product JoTp. The ratio bwdth/(RFmax)2 can be viewed as a characteristic time scale, tauc, affecting sideband levels, with tauc approximately Tp giving the most efficient STUD+ decoupling, as suggested by the adiabatic condition. Functional relationships between bwdth and less critical parameters, bweff and beta, for efficient decoupling can be derived from Bloch-equation calculations of the inversion profile
Semiclassical Monte Carlo: A first principles approach to non-adiabatic molecular dynamics
White, Alexander J.; Gorshkov, Vyacheslav N.; Wang, Ruixi; Tretiak, Sergei; Mozyrsky, Dmitry
2014-11-14
Modeling the dynamics of photophysical and (photo)chemical reactions in extended molecular systems is a new frontier for quantum chemistry. Many dynamical phenomena, such as intersystem crossing, non-radiative relaxation, and charge and energy transfer, require a non-adiabatic description which incorporate transitions between electronic states. Additionally, these dynamics are often highly sensitive to quantum coherences and interference effects. Several methods exist to simulate non-adiabatic dynamics; however, they are typically either too expensive to be applied to large molecular systems (10's-100's of atoms), or they are based on ad hoc schemes which may include severe approximations due to inconsistencies in classical and quantum mechanics. We present, in detail, an algorithm based on Monte Carlo sampling of the semiclassical time-dependent wavefunction that involves running simple surface hopping dynamics, followed by a post-processing step which adds little cost. The method requires only a few quantities from quantum chemistry calculations, can systematically be improved, and provides excellent agreement with exact quantum mechanical results. Here we show excellent agreement with exact solutions for scattering results of standard test problems. Additionally, we find that convergence of the wavefunction is controlled by complex valued phase factors, the size of the non-adiabatic coupling region, and the choice of sampling function. These results help in determining the range of applicability of the method, and provide a starting point for further improvement.
Semiclassical Monte Carlo: A first principles approach to non-adiabatic molecular dynamics
NASA Astrophysics Data System (ADS)
White, Alexander J.; Gorshkov, Vyacheslav N.; Wang, Ruixi; Tretiak, Sergei; Mozyrsky, Dmitry
2014-11-01
Modeling the dynamics of photophysical and (photo)chemical reactions in extended molecular systems is a new frontier for quantum chemistry. Many dynamical phenomena, such as intersystem crossing, non-radiative relaxation, and charge and energy transfer, require a non-adiabatic description which incorporate transitions between electronic states. Additionally, these dynamics are often highly sensitive to quantum coherences and interference effects. Several methods exist to simulate non-adiabatic dynamics; however, they are typically either too expensive to be applied to large molecular systems (10's-100's of atoms), or they are based on ad hoc schemes which may include severe approximations due to inconsistencies in classical and quantum mechanics. We present, in detail, an algorithm based on Monte Carlo sampling of the semiclassical time-dependent wavefunction that involves running simple surface hopping dynamics, followed by a post-processing step which adds little cost. The method requires only a few quantities from quantum chemistry calculations, can systematically be improved, and provides excellent agreement with exact quantum mechanical results. Here we show excellent agreement with exact solutions for scattering results of standard test problems. Additionally, we find that convergence of the wavefunction is controlled by complex valued phase factors, the size of the non-adiabatic coupling region, and the choice of sampling function. These results help in determining the range of applicability of the method, and provide a starting point for further improvement.
Dynamics of Charged Particles in an Adiabatic Thermal Beam Equilibrium
NASA Astrophysics Data System (ADS)
Chen, Chiping; Wei, Haofei
2010-11-01
Charged-particle motion is studied in the self-electric and self-magnetic fields of a well-matched, intense charged-particle beam and an applied periodic solenoidal magnetic focusing field. The beam is assumed to be in a state of adiabatic thermal equilibrium. The phase space is analyzed and compared with that of the well-known Kapchinskij-Vladimirskij (KV)-type beam equilibrium. It is found that the widths of nonlinear resonances in the adiabatic thermal beam equilibrium are narrower than those in the KV-type beam equilibrium. Numerical evidence is presented, indicating almost complete elimination of chaotic particle motion in the adiabatic thermal beam equilibrium.
Complete population inversion of Bose particles by an adiabatic cycle
NASA Astrophysics Data System (ADS)
Tanaka, Atushi; Cheon, Taksu
2016-04-01
We show that an adiabatic cycle excites Bose particles confined in a one-dimensional box. During the adiabatic cycle, a wall described by a δ-shaped potential is applied and its strength and position are slowly varied. When the system is initially prepared in the ground state, namely, in the zero-temperature equilibrium state, the adiabatic cycle brings all Bosons into the first excited one-particle state, leaving the system in a nonequilibrium state. The absorbed energy during the cycle is proportional to the number of Bosons.
Graph isomorphism and adiabatic quantum computing
NASA Astrophysics Data System (ADS)
Gaitan, Frank; Clark, Lane
2014-03-01
In the Graph Isomorphism (GI) problem two N-vertex graphs G and G' are given and the task is to determine whether there exists a permutation of the vertices of G that preserves adjacency and maps G --> G'. If yes (no), then G and G' are said to be isomorphic (non-isomorphic). The GI problem is an important problem in computer science and is thought to be of comparable difficulty to integer factorization. We present a quantum algorithm that solves arbitrary instances of GI, and which provides a novel approach to determining all automorphisms of a graph. The algorithm converts a GI instance to a combinatorial optimization problem that can be solved using adiabatic quantum evolution. Numerical simulation of the algorithm's quantum dynamics shows that it correctly distinguishes non-isomorphic graphs; recognizes isomorphic graphs; and finds the automorphism group of a graph. We also discuss the algorithm's experimental implementation and show how it can be leveraged to solve arbitrary instances of the NP-Complete Sub-Graph Isomorphism problem.
Adiabatic Quantum Computation with Neutral Atoms
NASA Astrophysics Data System (ADS)
Biedermann, Grant
2013-03-01
We are implementing a new platform for adiabatic quantum computation (AQC)[2] based on trapped neutral atoms whose coupling is mediated by the dipole-dipole interactions of Rydberg states. Ground state cesium atoms are dressed by laser fields in a manner conditional on the Rydberg blockade mechanism,[3,4] thereby providing the requisite entangling interactions. As a benchmark we study a Quadratic Unconstrained Binary Optimization (QUBO) problem whose solution is found in the ground state spin configuration of an Ising-like model. In collaboration with Lambert Parazzoli, Sandia National Laboratories; Aaron Hankin, Center for Quantum Information and Control (CQuIC), University of New Mexico; James Chin-Wen Chou, Yuan-Yu Jau, Peter Schwindt, Cort Johnson, and George Burns, Sandia National Laboratories; Tyler Keating, Krittika Goyal, and Ivan Deutsch, Center for Quantum Information and Control (CQuIC), University of New Mexico; and Andrew Landahl, Sandia National Laboratories. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories
Adiabatic Quantum Algorithm for Search Engine Ranking
NASA Astrophysics Data System (ADS)
Garnerone, Silvano; Zanardi, Paolo; Lidar, Daniel A.
2012-06-01
We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this algorithm can prepare the quantum PageRank state in a time which, on average, scales polylogarithmically in the number of web pages. We argue that the main topological feature of the underlying web graph allowing for such a scaling is the out-degree distribution. The top-ranked log(n) entries of the quantum PageRank state can then be estimated with a polynomial quantum speed-up. Moreover, the quantum PageRank state can be used in “q-sampling” protocols for testing properties of distributions, which require exponentially fewer measurements than all classical schemes designed for the same task. This can be used to decide whether to run a classical update of the PageRank.
Pulse design without the rotating-wave approximation
NASA Astrophysics Data System (ADS)
Ibáñez, S.; Li, Yi-Chao; Chen, Xi; Muga, J. G.
2015-12-01
We design realizable time-dependent semiclassical pulses to invert the population of a two-level system faster than adiabatically when the rotating-wave approximation cannot be applied. Different approaches, based on the counterdiabatic method or on invariants, may lead to singularities in the pulse functions. Ways to avoid or cancel the singularities are put forward when the pulse spans few oscillations. For many oscillations an alternative numerical minimization method is proposed and demonstrated.
Adiabaticity and spectral splits in collective neutrino transformations
Raffelt, Georg G.; Smirnov, Alexei Yu.
2007-12-15
Neutrinos streaming off a supernova core transform collectively by neutrino-neutrino interactions, leading to 'spectral splits' where an energy E{sub split} divides the transformed spectrum sharply into parts of almost pure but different flavors. We present a detailed description of the spectral-split phenomenon which is conceptually and quantitatively understood in an adiabatic treatment of neutrino-neutrino effects. Central to this theory is a self-consistency condition in the form of two sum rules (integrals over the neutrino spectra that must equal certain conserved quantities). We provide explicit analytic and numerical solutions for various neutrino spectra. We introduce the concept of the adiabatic reference frame and elaborate on the relative adiabatic evolution. Violating adiabaticity leads to the spectral split being 'washed out'. The sharpness of the split appears to be represented by a surprisingly universal function.
Acceleration of adiabatic quantum dynamics in electromagnetic fields
Masuda, Shumpei; Nakamura, Katsuhiro
2011-10-15
We show a method to accelerate quantum adiabatic dynamics of wave functions under electromagnetic field (EMF) by developing the preceding theory [Masuda and Nakamura, Proc. R. Soc. London Ser. A 466, 1135 (2010)]. Treating the orbital dynamics of a charged particle in EMF, we derive the driving field which accelerates quantum adiabatic dynamics in order to obtain the final adiabatic states in any desired short time. The scheme is consolidated by describing a way to overcome possible singularities in both the additional phase and driving potential due to nodes proper to wave functions under EMF. As explicit examples, we exhibit the fast forward of adiabatic squeezing and transport of excited Landau states with nonzero angular momentum, obtaining the result consistent with the transitionless quantum driving applied to the orbital dynamics in EMF.
Adiabatic and isocurvature perturbation projections in multi-field inflation
NASA Astrophysics Data System (ADS)
Gordon, Chris; Saffin, Paul M.
2013-08-01
Current data are in good agreement with the predictions of single field inflation. However, the hemispherical asymmetry, seen in the cosmic microwave background data, may hint at a potential problem. Generalizing to multi-field models may provide one possible explanation. A useful way of modeling perturbations in multi-field inflation is to investigate the projection of the perturbation along and perpendicular to the background fields' trajectory. These correspond to the adiabatic and isocurvature perturbations. However, it is important to note that in general there are no corresponding adiabatic and isocurvature fields. The purpose of this article is to highlight the distinction between a field redefinition and a perturbation projection. We provide a detailed derivation of the evolution of the isocurvature perturbation to show that no assumption of an adiabatic or isocurvature field is needed. We also show how this evolution equation is consistent with the field covariant evolution equations for the adiabatic perturbation in the flat field space limit.
Startup of the RFP in a quasi-adiabatic mode
Caramana, E.J.
1980-01-01
The equations describing the purely adiabatic formation of the reversed-field pinch are solved. This method of formation in principle remedies the problem of flux consumption during the startup phase of this device.
Ultrafast stimulated Raman parallel adiabatic passage by shaped pulses
Dridi, G.; Guerin, S.; Hakobyan, V.; Jauslin, H. R.; Eleuch, H.
2009-10-15
We present a general and versatile technique of population transfer based on parallel adiabatic passage by femtosecond shaped pulses. Their amplitude and phase are specifically designed to optimize the adiabatic passage corresponding to parallel eigenvalues at all times. We show that this technique allows the robust adiabatic population transfer in a Raman system with the total pulse area as low as 3{pi}, corresponding to a fluence of one order of magnitude below the conventional stimulated Raman adiabatic passage process. This process of short duration, typically picosecond and subpicosecond, is easily implementable with the modern pulse shaper technology and opens the possibility of ultrafast robust population transfer with interesting applications in quantum information processing.
Quantum Monte Carlo simulations of tunneling in quantum adiabatic optimization
NASA Astrophysics Data System (ADS)
Brady, Lucas T.; van Dam, Wim
2016-03-01
We explore to what extent path-integral quantum Monte Carlo methods can efficiently simulate quantum adiabatic optimization algorithms during a quantum tunneling process. Specifically we look at symmetric cost functions defined over n bits with a single potential barrier that a successful quantum adiabatic optimization algorithm will have to tunnel through. The height and width of this barrier depend on n , and by tuning these dependencies, we can make the optimization algorithm succeed or fail in polynomial time. In this article we compare the strength of quantum adiabatic tunneling with that of path-integral quantum Monte Carlo methods. We find numerical evidence that quantum Monte Carlo algorithms will succeed in the same regimes where quantum adiabatic optimization succeeds.
The adiabatic phase mixing and heating of electrons in Buneman turbulence
Che, H.; Goldstein, M. L.; Drake, J. F.; Swisdak, M.
2013-06-15
The nonlinear development of the strong Buneman instability and the associated fast electron heating in thin current layers with Ω{sub e}/ω{sub pe}<1 is explored. Phase mixing of the electrons in wave potential troughs and a rapid increase in temperature are observed during the saturation of the instability. We show that the motion of trapped electrons can be described using a Hamiltonian formalism in the adiabatic approximation. The process of separatrix crossing as electrons are trapped and de-trapped is irreversible and guarantees that the resulting electron energy gain is a true heating process.
Realization of adiabatic Aharonov-Bohm scattering with neutrons
NASA Astrophysics Data System (ADS)
Sjöqvist, Erik; Almquist, Martin; Mattsson, Ken; Gürkan, Zeynep Nilhan; Hessmo, Björn
2015-11-01
The adiabatic Aharonov-Bohm (AB) effect is a manifestation of the Berry phase acquired when some slow variables take a planar spin around a loop. While the effect has been observed in molecular spectroscopy, direct measurement of the topological phase shift in a scattering experiment has been elusive in the past. Here, we demonstrate an adiabatic AB effect by explicit simulation of the dynamics of unpolarized very slow neutrons that scatter on a long straight current-carrying wire.
Shortcuts to adiabaticity for non-Hermitian systems
Ibanez, S.; Martinez-Garaot, S.; Torrontegui, E.; Muga, J. G.; Chen Xi
2011-08-15
Adiabatic processes driven by non-Hermitian, time-dependent Hamiltonians may be sped up by generalizing inverse engineering techniques based on counter-diabatic (transitionless driving) algorithms or on dynamical invariants. We work out the basic theory and examples described by two-level Hamiltonians: the acceleration of rapid adiabatic passage with a decaying excited level and of the dynamics of a classical particle on an expanding harmonic oscillator.
Rasin, A.
1994-04-01
We discuss the idea of approximate flavor symmetries. Relations between approximate flavor symmetries and natural flavor conservation and democracy models is explored. Implications for neutrino physics are also discussed.
Habershon, Scott
2013-09-14
We introduce a new approach for calculating quantum time-correlation functions and time-dependent expectation values in many-body thermal systems; both electronically adiabatic and non-adiabatic cases can be treated. Our approach uses a path integral simulation to sample an initial thermal density matrix; subsequent evolution of this density matrix is equivalent to solution of the time-dependent Schrödinger equation, which we perform using a linear expansion of Gaussian wavepacket basis functions which evolve according to simple classical-like trajectories. Overall, this methodology represents a formally exact approach for calculating time-dependent quantum properties; by introducing approximations into both the imaginary-time and real-time propagations, this approach can be adapted for complex many-particle systems interacting through arbitrary potentials. We demonstrate this method for the spin Boson model, where we find good agreement with numerically exact calculations. We also discuss future directions of improvement for our approach with a view to improving accuracy and efficiency.
Raghwani, Jayna; Rambaut, Andrew; Holmes, Edward C.; Hang, Vu Ty; Hien, Tran Tinh; Farrar, Jeremy; Wills, Bridget; Lennon, Niall J.; Birren, Bruce W.; Henn, Matthew R.; Simmons, Cameron P.
2011-01-01
Dengue is one of the most important infectious diseases of humans and has spread throughout much of the tropical and subtropical world. Despite this widespread dispersal, the determinants of dengue transmission in endemic populations are not well understood, although essential for virus control. To address this issue we performed a phylogeographic analysis of 751 complete genome sequences of dengue 1 virus (DENV-1) sampled from both rural (Dong Thap) and urban (Ho Chi Minh City) populations in southern Viet Nam during the period 2003–2008. We show that DENV-1 in Viet Nam exhibits strong spatial clustering, with likely importation from Cambodia on multiple occasions. Notably, multiple lineages of DENV-1 co-circulated in Ho Chi Minh City. That these lineages emerged at approximately the same time and dispersed over similar spatial regions suggests that they are of broadly equivalent fitness. We also observed an important relationship between the density of the human host population and the dispersion rate of dengue, such that DENV-1 tends to move from urban to rural populations, and that densely populated regions within Ho Chi Minh City act as major transmission foci. Despite these fluid dynamics, the dispersion rates of DENV-1 are relatively low, particularly in Ho Chi Minh City where the virus moves less than an average of 20 km/year. These low rates suggest a major role for mosquito-mediated dispersal, such that DENV-1 does not need to move great distances to infect a new host when there are abundant susceptibles, and imply that control measures should be directed toward the most densely populated urban environments. PMID:21655108
Bethe free-energy approximations for disordered quantum systems
NASA Astrophysics Data System (ADS)
Biazzo, I.; Ramezanpour, A.
2014-06-01
Given a locally consistent set of reduced density matrices, we construct approximate density matrices which are globally consistent with the local density matrices we started from when the trial density matrix has a tree structure. We employ the cavity method of statistical physics to find the optimal density matrix representation by slowly decreasing the temperature in an annealing algorithm, or by minimizing an approximate Bethe free energy depending on the reduced density matrices and some cavity messages originated from the Bethe approximation of the entropy. We obtain the classical Bethe expression for the entropy within a naive (mean-field) approximation of the cavity messages, which is expected to work well at high temperatures. In the next order of the approximation, we obtain another expression for the Bethe entropy depending only on the diagonal elements of the reduced density matrices. In principle, we can improve the entropy approximation by considering more accurate cavity messages in the Bethe approximation of the entropy. We compare the annealing algorithm and the naive approximation of the Bethe entropy with exact and approximate numerical simulations for small and large samples of the random transverse Ising model on random regular graphs.
Transition from adiabatic inspiral to plunge into a spinning black hole
Kesden, Michael
2011-05-15
A test particle of mass {mu} on a bound geodesic of a Kerr black hole of mass M>>{mu} will slowly inspiral as gravitational radiation extracts energy and angular momentum from its orbit. This inspiral can be considered adiabatic when the orbital period is much shorter than the time scale on which energy is radiated, and quasicircular when the radial velocity is much less than the azimuthal velocity. Although the inspiral always remains adiabatic provided {mu}<
Zero-point energy, tunneling, and vibrational adiabaticity in the Mu + H2 reaction
Mielke, Steven L.; Garrett, Bruce C.; Fleming, Donald G.; Truhlar, Donald G.
2015-01-09
Abstract: Isotopic substitution of muonium for hydrogen provides an unparalleled opportunity to deepen our understanding of quantum mass effects on chemical reactions. A recent topical review [Aldegunde et al., Mol. Phys. 111, 3169 (2013)] of the thermal and vibrationally-stateselected reaction of Mu with H2 raises a number of issues that are addressed here. We show that some earlier quantum mechanical calculations of the Mu + H2 reaction, which are highlighted in this review and which have been used to benchmark approximate methods, are in error by as much as 19% in the low-temperature limit. We demonstrate that an approximate treatment of the Born–Oppenheimer diagonal correction that was used in some recent studies is not valid for treating the vibrationally-state-selected reaction. We also discuss why vibrationally adiabatic potentials that neglect bend zero-point energy are not a useful analytical tool for understanding reaction rates and why vibrationally nonadiabatic transitions cannot be understood by considering tunneling through vibrationally adiabatic potentials. Finally, we present calculations on a hierarchical family of potential energy surfaces to assess the sensitivity of rate constants to the quality of the potential surface.
Adiabatic condition and the quantum hitting time of Markov chains
Krovi, Hari; Ozols, Maris; Roland, Jeremie
2010-08-15
We present an adiabatic quantum algorithm for the abstract problem of searching marked vertices in a graph, or spatial search. Given a random walk (or Markov chain) P on a graph with a set of unknown marked vertices, one can define a related absorbing walk P{sup '} where outgoing transitions from marked vertices are replaced by self-loops. We build a Hamiltonian H(s) from the interpolated Markov chain P(s)=(1-s)P+sP{sup '} and use it in an adiabatic quantum algorithm to drive an initial superposition over all vertices to a superposition over marked vertices. The adiabatic condition implies that, for any reversible Markov chain and any set of marked vertices, the running time of the adiabatic algorithm is given by the square root of the classical hitting time. This algorithm therefore demonstrates a novel connection between the adiabatic condition and the classical notion of hitting time of a random walk. It also significantly extends the scope of previous quantum algorithms for this problem, which could only obtain a full quadratic speedup for state-transitive reversible Markov chains with a unique marked vertex.
Extended adiabatic blast waves and a model of the soft X-ray background. [interstellar matter
NASA Technical Reports Server (NTRS)
Cox, D. P.; Anderson, P. R.
1981-01-01
An analytical approximation is generated which follows the development of an adiabatic spherical blast wave in a homogeneous ambient medium of finite pressure. An analytical approximation is also presented for the electron temperature distribution resulting from coulomb collisional heating. The dynamical, thermal, ionization, and spectral structures are calculated for blast waves of energy E sub 0 = 5 x 10 to the 50th power ergs in a hot low-density interstellar environment. A formula is presented for estimating the luminosity evolution of such explosions. The B and C bands of the soft X-ray background, it is shown, are reproduced by such a model explosion if the ambient density is about .000004 cm, the blast radius is roughly 100 pc, and the solar system is located inside the shocked region. Evolution in a pre-existing cavity with a strong density gradient may, it is suggested, remove both the M band and OVI discrepancies.
Fowler-Nordheim emission modified by laser pulses in the adiabatic regime
NASA Astrophysics Data System (ADS)
Rokhlenko, A.; Lebowitz, J. L.
2016-06-01
We investigate enhanced field emission due to a continuous or pulsed oscillating field added to a constant electric field E at the emitter surface. When the frequency of oscillation, field strength, and property of the emitter material satisfy the Keldysh condition γ<1 /2 , one can use the adiabatic approximation for treating the oscillating field, i.e., consider the tunneling through the instantaneous Fowler-Nordheim barrier created by both fields. Due to the great sensitivity of the emission to the field strength, the average tunneling current can be much larger than the current produced by only the constant field. We carry out the computations for arbitrary strong constant electric fields, beyond the commonly used Fowler-Nordheim approximation which exhibit, in particular, an important property of the wave function inside the potential barrier where it is found to be monotonically decreasing without oscillations.
Adiabatic particle motion in a nearly drift-free magnetic field: Application to the geomagnetic tail
NASA Technical Reports Server (NTRS)
Stern, D. P.
1977-01-01
The guiding center motion of particles in a nearly drift free magnetic field is analyzed in order to investigate the dependence of mean drift velocity on equatorial pitch angle, the variation of local drift velocity along the trajectory, and other properties. The mean drift for adiabatic particles is expressed by means of elliptic integrals. Approximations to the twice-averaged Hamiltonian W near z = O are derived, permitting simple representation of drift paths if an electric potential also exists. In addition, the use of W or of expressions for the longitudinal invariant allows the derivation of the twice averaged Liouville equation and of the corresponding Vlasov equation. Bounce times are calculated (using the drift-free approximation), as are instantaneous guiding center drift velocities, which are then used to provide a numerical check on the formulas for the mean drift.
Integrated polarization rotator/converter by stimulated Raman adiabatic passage.
Xiong, Xiao; Zou, Chang-Ling; Ren, Xi-Feng; Guo, Guang-Can
2013-07-15
We proposed a polarization rotator inspired by stimulated Raman adiabatic passage model from quantum optics, which is composed of a signal waveguide and an ancillary waveguide. The two orthogonal modes in signal waveguide and the oblique mode in ancillary waveguide form a Λ-type three-level system. By controlling the width of signal waveguide and the gap between two waveguides, adiabatic conversion between two orthogonal modes can be realized in the signal waveguide. With such adiabatic passage, polarization conversion is completed within 150 μm length, with the efficiencies over 99% for both conversions between horizontal polarization and vertical polarization. In addition, such a polarization rotator is quite robust against fabrication error, allowing a wide range of tolerances for the rotator geometric parameters. Our work is not only significative to photonic simulations of coherent quantum phenomena with engineered photonic waveguides, but also enlightens the practical applications of these phenomena in optical device designs. PMID:23938558
Adiabatic compressibility of myoglobin. Effect of axial ligand and denaturation.
Leung, W P; Cho, K C; Lo, Y M; Choy, C L
1986-03-01
An ultrasonic technique has been employed to study the adiabatic compressibility of three metmyoglobin derivatives (aquomet-, fluoromet- and azidometmyoglobin) at neutral pH, and aquometmyoglobin as a function of pH in the frequency range of 1-10 MHz at 20 degrees C. No difference was observed in the adiabatic compressibility of the various derivatives. This indicates that the binding of different axial ligands to myoglobin does not affect significantly the conformational fluctuations of the protein. The finding is consistent with the results of the hydrogen exchange rate experiment, indicating that both types of measurements are useful for the study of protein dynamics. Upon acid-induced denaturation, the adiabatic compressibility of myoglobin drops from 5.3 X 10(-12) cm2/dyn to 0.5 X 10(-12) cm2/dyn. Plausible reasons for such a decrease are discussed. PMID:3947645
Effect of dephasing on stimulated Raman adiabatic passage
Ivanov, P.A.; Vitanov, N.V.; Bergmann, K.
2004-12-01
This work explores the effect of phase relaxation on the population transfer efficiency in stimulated Raman adiabatic passage (STIRAP). The study is based on the Liouville equation, which is solved analytically in the adiabatic limit. The transfer efficiency of STIRAP is found to decrease exponentially with the dephasing rate; this effect is stronger for shorter pulse delays and weaker for larger delays, since the transition time is found to be inversely proportional to the pulse delay. Moreover, it is found that the transfer efficiency of STIRAP in the presence of dephasing does not depend on the peak Rabi frequencies at all, as long as they are sufficiently large to enforce adiabatic evolution; hence increasing the field intensity cannot reduce the dephasing losses. It is shown also that for any dephasing rate, the final populations of the initial state and the intermediate state are equal. For strong dephasing all three populations tend to (1/3)
Interaction-induced adiabatic cooling for antiferromagnetism in optical lattices
Dare, A.-M.; Raymond, L.; Albinet, G.; Tremblay, A.-M. S.
2007-08-01
In the experimental context of cold-fermion optical lattices, we discuss the possibilities to approach the pseudogap or ordered phases by manipulating the scattering length or the strength of the laser-induced lattice potential. Using the two-particle self-consistent approach, as well as quantum Monte Carlo simulations, we provide isentropic curves for the two- and three-dimensional Hubbard models at half-filling. These quantitative results are important for practical attempts to reach the ordered antiferromagnetic phase in experiments on optical lattices of two-component fermions. We find that adiabatically turning on the interaction in two dimensions to cool the system is not very effective. In three dimensions, adiabatic cooling to the antiferromagnetic phase can be achieved in such a manner, although the cooling efficiency is not as high as initially suggested by dynamical mean-field theory. Adiabatic cooling by turning off the repulsion beginning at strong coupling is possible in certain cases.
Shortcuts to adiabaticity in a time-dependent box
Campo, A. del; Boshier, M. G.
2012-01-01
A method is proposed to drive an ultrafast non-adiabatic dynamics of an ultracold gas trapped in a time-dependent box potential. The resulting state is free from spurious excitations associated with the breakdown of adiabaticity, and preserves the quantum correlations of the initial state up to a scaling factor. The process relies on the existence of an adiabatic invariant and the inversion of the dynamical self-similar scaling law dictated by it. Its physical implementation generally requires the use of an auxiliary expulsive potential. The method is extended to a broad family of interacting many-body systems. As illustrative examples we consider the ultrafast expansion of a Tonks-Girardeau gas and of Bose-Einstein condensates in different dimensions, where the method exhibits an excellent robustness against different regimes of interactions and the features of an experimentally realizable box potential. PMID:22970340
Pressure sensitivity of adiabatic shear banding in metals
NASA Astrophysics Data System (ADS)
Hanina, E.; Rittel, D.; Rosenberg, Z.
2007-01-01
Adiabatic shear banding (ASB) is a dynamic failure mode characterized by large plastic strains in a narrow localized band. ASB occurs at high strain rates (ɛ˙⩾103s-1), under adiabatic conditions leading to a significant temperature rise inside the band [H. Tresca, Annales du Conservatoire des Arts et Métiers 4, (1879); Y. L. Bai and B. Dodd, Adiabatic Shear Localization-Occurrence, Theories, and Applications (Pergamon, Oxford, 1992); M. A. Meyers, Dynamic Behavior of Materials (Wiley, New York, 1994).; and J. J. Lewandowski and L. M. Greer, Nat. Mater. 5, 15 (2006)]. Large hydrostatic pressures are experienced in many dynamic applications involving ASB formation (e.g., ballistic penetration, impact, and machining). The relationship between hydrostatic pressure and ASB development remains an open question, although its importance has been often noted. This letter reports original experimental results indicating a linear relationship between the (normalized) dynamic deformation energy and the (normalized) hydrostatic pressure.
Litvinenko, Yuri E.
2012-06-10
Transport of solar energetic particles in interplanetary space is analyzed. A new systematic derivation of the diffusion approximation is given, which incorporates the effects of non-isotropic scattering, magnetic helicity, and adiabatic focusing in a non-uniform large-scale magnetic field. The derivation is based on a system of stochastic differential equations, equivalent to the Fokker-Planck equation, and the new method is a generalization of the Smoluchowski approximation in the theory of the Brownian motion. Simple, physically transparent expressions for the transport coefficients are derived. Different results of earlier treatments of the problem are related to the assumptions regarding the evolving particle distribution.
NASA Technical Reports Server (NTRS)
Dutta, Soumitra
1988-01-01
A model for approximate spatial reasoning using fuzzy logic to represent the uncertainty in the environment is presented. Algorithms are developed which can be used to reason about spatial information expressed in the form of approximate linguistic descriptions similar to the kind of spatial information processed by humans. Particular attention is given to static spatial reasoning.
Adiabatic invariants, diffusion and acceleration in rigid body dynamics
NASA Astrophysics Data System (ADS)
Borisov, Alexey V.; Mamaev, Ivan S.
2016-03-01
The onset of adiabatic chaos in rigid body dynamics is considered. A comparison of the analytically calculated diffusion coefficient describing probabilistic effects in the zone of chaos with a numerical experiment is made. An analysis of the splitting of asymptotic surfaces is performed and uncertainty curves are constructed in the Poincaré-Zhukovsky problem. The application of Hamiltonian methods to nonholonomic systems is discussed. New problem statements are given which are related to the destruction of an adiabatic invariant and to the acceleration of the system (Fermi's acceleration).
Adiabatic Rosen-Zener interferometry with ultracold atoms
Fu Libin; Ye Defa; Lee Chaohong; Zhang Weiping; Liu Jie
2009-07-15
We propose a time-domain 'interferometer' based on double-well ultracold atoms through a so-called adiabatic Rosen-Zener process, that is, the barrier between two wells is ramped down slowly, held for a while, and then ramped back. After the adiabatic Rosen-Zener process, we count the particle population in each well. We find that the final occupation probability shows nice interference fringes. The fringe pattern is sensitive to the initial state as well as the intrinsic parameters of the system such as interatomic interaction or energy bias between two wells. The underlying mechanism is revealed and possible applications are discussed.
Quantum dynamics by the constrained adiabatic trajectory method
Leclerc, A.; Jolicard, G.; Guerin, S.; Killingbeck, J. P.
2011-03-15
We develop the constrained adiabatic trajectory method (CATM), which allows one to solve the time-dependent Schroedinger equation constraining the dynamics to a single Floquet eigenstate, as if it were adiabatic. This constrained Floquet state (CFS) is determined from the Hamiltonian modified by an artificial time-dependent absorbing potential whose forms are derived according to the initial conditions. The main advantage of this technique for practical implementation is that the CFS is easy to determine even for large systems since its corresponding eigenvalue is well isolated from the others through its imaginary part. The properties and limitations of the CATM are explored through simple examples.
Speeding up Adiabatic Quantum State Transfer by Using Dressed States
NASA Astrophysics Data System (ADS)
Baksic, Alexandre; Ribeiro, Hugo; Clerk, Aashish A.
2016-06-01
We develop new pulse schemes to significantly speed up adiabatic state transfer protocols. Our general strategy involves adding corrections to an initial control Hamiltonian that harness nonadiabatic transitions. These corrections define a set of dressed states that the system follows exactly during the state transfer. We apply this approach to stimulated Raman adiabatic passage protocols and show that a suitable choice of dressed states allows one to design fast protocols that do not require additional couplings, while simultaneously minimizing the occupancy of the "intermediate" level.
Gravitational Chern-Simons and the adiabatic limit
McLellan, Brendan
2010-12-15
We compute the gravitational Chern-Simons term explicitly for an adiabatic family of metrics using standard methods in general relativity. We use the fact that our base three-manifold is a quasiregular K-contact manifold heavily in this computation. Our key observation is that this geometric assumption corresponds exactly to a Kaluza-Klein Ansatz for the metric tensor on our three-manifold, which allows us to translate our problem into the language of general relativity. Similar computations have been performed by Guralnik et al.[Ann. Phys. 308, 222 (2008)], although not in the adiabatic context.
Spatial adiabatic passage: a review of recent progress
NASA Astrophysics Data System (ADS)
Menchon-Enrich, R.; Benseny, A.; Ahufinger, V.; Greentree, A. D.; Busch, Th; Mompart, J.
2016-07-01
Adiabatic techniques are known to allow for engineering quantum states with high fidelity. This requirement is currently of large interest, as applications in quantum information require the preparation and manipulation of quantum states with minimal errors. Here we review recent progress on developing techniques for the preparation of spatial states through adiabatic passage, particularly focusing on three state systems. These techniques can be applied to matter waves in external potentials, such as cold atoms or electrons, and to classical waves in waveguides, such as light or sound.
Spatial adiabatic passage: a review of recent progress.
Menchon-Enrich, R; Benseny, A; Ahufinger, V; Greentree, A D; Busch, Th; Mompart, J
2016-07-01
Adiabatic techniques are known to allow for engineering quantum states with high fidelity. This requirement is currently of large interest, as applications in quantum information require the preparation and manipulation of quantum states with minimal errors. Here we review recent progress on developing techniques for the preparation of spatial states through adiabatic passage, particularly focusing on three state systems. These techniques can be applied to matter waves in external potentials, such as cold atoms or electrons, and to classical waves in waveguides, such as light or sound. PMID:27245462
Adiabatic fluctuations from cosmic strings in a contracting universe
Brandenberger, Robert H.; Takahashi, Tomo; Yamaguchi, Masahide E-mail: tomot@cc.saga-u.ac.jp
2009-07-01
We show that adiabatic, super-Hubble, and almost scale invariant density fluctuations are produced by cosmic strings in a contracting universe. An essential point is that isocurvature perturbations produced by topological defects such as cosmic strings on super-Hubble scales lead to a source term which seeds the growth of curvature fluctuations on these scales. Once the symmetry has been restored at high temperatures, the isocurvature seeds disappear, and the fluctuations evolve as adiabatic ones in the expanding phase. Thus, cosmic strings may be resurrected as a mechanism for generating the primordial density fluctuations observed today.
Quantum Adiabatic Pumping by Modulating Tunnel Phase in Quantum Dots
NASA Astrophysics Data System (ADS)
Taguchi, Masahiko; Nakajima, Satoshi; Kubo, Toshihiro; Tokura, Yasuhiro
2016-08-01
In a mesoscopic system, under zero bias voltage, a finite charge is transferred by quantum adiabatic pumping by adiabatically and periodically changing two or more control parameters. We obtained expressions for the pumped charge for a ring of three quantum dots (QDs) by choosing the magnetic flux penetrating the ring as one of the control parameters. We found that the pumped charge shows a steplike behavior with respect to the variance of the flux. The value of the step heights is not universal but depends on the trajectory of the control parameters. We discuss the physical origin of this behavior on the basis of the Fano resonant condition of the ring.
NASA Astrophysics Data System (ADS)
Indukuri, Chaitanya; Mukherjee, Arnab; Basu, J. K.
2015-03-01
We report results of controlled tuning of the local density of states (LDOS) in versatile, flexible, and hierarchical self assembled plasmonic templates. Using 5 nm diameter gold (Au) spherical nanoantenna within a polymer template randomly dispersed with quantum dots, we show how the photoluminescence intensity and lifetime anisotropy of these dots can be significantly enhanced through LDOS tuning. Finite difference time domain simulations corroborate the experimental observations and extend the regime of enhancement to a wider range of geometric and spectral parameters bringing out the versatility of these functional plasmonic templates. It is also demonstrated how the templates act as plasmonic resonators for effectively engineer giant enhancement of the scattering efficiency of these nano antenna embedded in the templates. Our work provides an alternative method to achieve spontaneous emission intensity and anisotropy enhancement with true nanoscale plasmon resonators.
Jamei, R.
2010-04-06
While the influence of impurities on the local density of states (LDOS) in a metal is notoriously non-local due to interference effects, low order moments of the LDOS in general can be shown to depend only on the local structure of the Hamiltonian. Specifically, we show that an analysis of the spatial variations of these moments permits one to 'work backwards' from scanning tunneling microscopy (STM) data to infer the local structure of the underlying effective Hamiltonian. Applying this analysis to STM data from the high temperature superconductor, Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}}, we find that the variations of the electro-chemical potential are remarkably small (i.e., the disorder is, in a sense, weak) but that there are large variations in the local magnitude of the d-wave gap parameter.
Indukuri, Chaitanya; Mukherjee, Arnab; Basu, J. K.
2015-03-30
We report results of controlled tuning of the local density of states (LDOS) in versatile, flexible, and hierarchical self assembled plasmonic templates. Using 5 nm diameter gold (Au) spherical nanoantenna within a polymer template randomly dispersed with quantum dots, we show how the photoluminescence intensity and lifetime anisotropy of these dots can be significantly enhanced through LDOS tuning. Finite difference time domain simulations corroborate the experimental observations and extend the regime of enhancement to a wider range of geometric and spectral parameters bringing out the versatility of these functional plasmonic templates. It is also demonstrated how the templates act as plasmonic resonators for effectively engineer giant enhancement of the scattering efficiency of these nano antenna embedded in the templates. Our work provides an alternative method to achieve spontaneous emission intensity and anisotropy enhancement with true nanoscale plasmon resonators.
Non-adiabatic and adiabatic transitions at level crossing with decay: two- and three-level systems
NASA Astrophysics Data System (ADS)
Kenmoe, M. B.; Mkam Tchouobiap, S. E.; Kenfack Sadem, C.; Tchapda, A. B.; Fai, L. C.
2015-03-01
We investigate the Landau-Zener (LZ) like dynamics of decaying two- and three-level systems with decay rates {{Γ }1} and {{Γ }2} for levels with minimum and maximum spin projection. Non-adiabatic and adiabatic transition probabilities are calculated from diabatic and adiabatic bases for two- and three-level systems. We extend the familiar two-level model of atoms with decay from the excited state out of the system into the hierarchy of three-level models which can be solved analytically or computationally in a non-perturbative manner. Exact analytical solutions are obtained within the framework of an extended form of the proposed procedure which enables to take into account all possible initial moments rather than large negative time {{t}0}=-∞ as in standard LZ problems. We elucidate the applications of our results from a unified theoretical basis that numerically analyzes the dynamics of a system as probed by experiments.
Taioli, Simone; Garberoglio, Giovanni; Simonucci, Stefano; Beccara, Silvio a; Aversa, Lucrezia; Nardi, Marco; Verucchi, Roberto; Iannotta, Salvatore; Dapor, Maurizio; and others
2013-01-28
In this work, we investigate the processes leading to the room-temperature growth of silicon carbide thin films by supersonic molecular beam epitaxy technique. We present experimental data showing that the collision of fullerene on a silicon surface induces strong chemical-physical perturbations and, for sufficient velocity, disruption of molecular bonds, and cage breaking with formation of nanostructures with different stoichiometric character. We show that in these out-of-equilibrium conditions, it is necessary to go beyond the standard implementations of density functional theory, as ab initio methods based on the Born-Oppenheimer approximation fail to capture the excited-state dynamics. In particular, we analyse the Si-C{sub 60} collision within the non-adiabatic nuclear dynamics framework, where stochastic hops occur between adiabatic surfaces calculated with time-dependent density functional theory. This theoretical description of the C{sub 60} impact on the Si surface is in good agreement with our experimental findings.
NASA Astrophysics Data System (ADS)
Acharya, Shree Ram; Baral, Nisha; Turkowski, Volodymyr; Rahman, Talat S.
2015-03-01
We apply Dynamical Mean-Field Theory (DMFT) to calculate the non-adiabatic (frequency-dependent) exchange-correlation kernel for the three-dimensional Hubbard model. We analyze the dependence of the kernel on the electron doping, local Coulomb repulsion and frequency by using three different impurity solvers: Hubbard-I, Iterative Perturbation Theory (IPT) and Continuous-Time Quantum Monte Carlo (CT-QMC). From the calculated data, we obtain approximate analytical expressions for the kernel. We apply the exact numerical and analytical kernels to study the non-equilibrium response of the system for applied ultrafast laser pulse. We demonstrate that the non-adiabaticity of the kernel plays an important role in the system response; in particular, leading to new excited-states involved in the system dynamics. Work supported in part by DOE Grant No. DOE-DE-FG02-07ER46354.
NASA Astrophysics Data System (ADS)
Yarkony, David
2015-03-01
The construction of fit single state potential energy surfaces (PESs), analytic representations of ab initio electronic energies and energy gradients, is now well established. These single state PESs, which are essential for accurate quantum dynamics and have found wide application in more approximate quasi-classical treatments, have revolutionized adiabatic dynamics. The situation for nonadiabatic processes involving dissociative and large amplitude motion is less sanguine. In these cases, compared to single electronic state dynamics, both the electronic structure data and the representation are more challenging to determine. We describe the recent development and applications of algorithms that enable description of multiple adiabatic electronic potential energy surfaces coupled by conical intersections in their full dimensionality using coupled quasi-diabatic states. These representations are demonstrably quasi-diabatic, provide accurate representations of conical intersection seams and can smooth out the discontinuities in electronic structure energies due to changing active orbital spaces that routinely afflict global multistate representations.
NASA Astrophysics Data System (ADS)
Kimura, Jun-Ichi; Kawabata, Hiroshi
2014-06-01
numerical mass balance calculation model for the adiabatic melting of a dry to hydrous peridotite has been programmed in order to simulate the trace element compositions of basalts from mid-ocean ridges, back-arc basins, ocean islands, and large igneous provinces. The Excel spreadsheet-based calculator, Hydrous Adiabatic Mantle Melting Simulator version 1 (HAMMS1) uses (1) a thermodynamic model of fractional adiabatic melting of mantle peridotite, with (2) the parameterized experimental melting relationships of primitive to depleted mantle sources in terms of pressure, temperature, water content, and degree of partial melting. The trace element composition of the model basalt is calculated from the accumulated incremental melts within the adiabatic melting regime, with consideration for source depletion. The mineralogic mode in the primitive to depleted source mantle in adiabat is calculated using parameterized experimental results. Partition coefficients of the trace elements of mantle minerals are parameterized to melt temperature mostly from a lattice strain model and are tested using the latest compilations of experimental results. The parameters that control the composition of trace elements in the model are as follows: (1) mantle potential temperature, (2) water content in the source mantle, (3) depth of termination of adiabatic melting, and (4) source mantle depletion. HAMMS1 enables us to obtain the above controlling parameters using Monte Carlo fitting calculations and by comparing the calculated basalt compositions to primary basalt compositions. Additionally, HAMMS1 compares melting parameters with a major element model, which uses petrogenetic grids formulated from experimental results, thus providing better constraints on the source conditions.
Calculator Function Approximation.
ERIC Educational Resources Information Center
Schelin, Charles W.
1983-01-01
The general algorithm used in most hand calculators to approximate elementary functions is discussed. Comments on tabular function values and on computer function evaluation are given first; then the CORDIC (Coordinate Rotation Digital Computer) scheme is described. (MNS)
Finite temperature quasiparticle self-consistent GW approximation
Vanschilfgaarde, Mark; Leonard, Francois; Desjarlais, Michael Paul; Kotani, Takao; Faleev, Sergey V
2005-10-01
We present a new ab initio method for electronic structure calculations of materials at finite temperature (FT) based on the all-electron quasiparticle self-consistent GW (QPscGW) approximation and Keldysh time-loop Green's function approach. We apply the method to Si, Ge, GaAs, InSb, and diamond and show that the band gaps of these materials universally decrease with temperature in contrast with the local density approximation (LDA) of density functional theory (DFT) where the band gaps universally increase. At temperatures of a few eV the difference between quasiparticle energies obtained in FT-QPscGW and FT-LDA approaches significantly reduces. This result suggests that existing simulations of very high temperature materials based on the FT-LDA are more justified then it might appear from well-known LDA band gap errors at zero-temperature.
Adiabatic quantum computing with phase modulated laser pulses
Goswami, Debabrata
2005-01-01
Implementation of quantum logical gates for multilevel systems is demonstrated through decoherence control under the quantum adiabatic method using simple phase modulated laser pulses. We make use of selective population inversion and Hamiltonian evolution with time to achieve such goals robustly instead of the standard unitary transformation language. PMID:17195865
Does temperature increase or decrease in adiabatic decompression of magma?
NASA Astrophysics Data System (ADS)
Kilinc, A. I.; Ghiorso, M. S.; Khan, T.
2011-12-01
We have modeled adiabatic decompression of an andesitic and a basaltic magma as an isentropic process using the Melts algorithm. Our modeling shows that during adiabatic decompression temperature of andesitic magma increases but temperature of basaltic magma decreases. In an isentropic process entropy is constant so change of temperature with pressure can be written as dT/dP=T (dV/dT)/Cp where T (dV/dT)/Cp is generally positive. If delta P is negative so is delta T. In general, in the absence of phase change, we expect the temperature to decrease with adiabatic decompression. The effect of crystallization is to turn a more entropic phase (liquid) into a less entropic phase (solid), which must be compensated by raising the temperature. If during adiabatic decompression there is small amount or no crystallization, T (dV/dT)/Cp effect which lowers the temperature overwhelms the small amount of crystallization, which raises the temperature, and overall system temperature decreases.
A Kinetic Study of the Adiabatic Polymerization of Acrylamide.
ERIC Educational Resources Information Center
Thomson, R. A. M.
1986-01-01
Discusses theory, procedures, and results for an experiment which demonstrates the application of basic physics to chemical problems. The experiment involves the adiabatic process, in which polymerization carried out in a vacuum flask is compared to the theoretical prediction of the model with the temperature-time curve obtained in practice. (JN)
The flat Grothendieck-Riemann-Roch theorem without adiabatic techniques
NASA Astrophysics Data System (ADS)
Ho, Man-Ho
2016-09-01
In this paper we give a simplified proof of the flat Grothendieck-Riemann-Roch theorem. The proof makes use of the local family index theorem and basic computations of the Chern-Simons form. In particular, it does not involve any adiabatic limit computation of the reduced eta-invariant.
Fast Quasi-Adiabatic Gas Cooling: An Experiment Revisited
ERIC Educational Resources Information Center
Oss, S.; Gratton, L. M.; Calza, G.; Lopez-Arias, T.
2012-01-01
The well-known experiment of the rapid expansion and cooling of the air contained in a bottle is performed with a rapidly responsive, yet very cheap thermometer. The adiabatic, low temperature limit is approached quite closely and measured with our apparatus. A straightforward theoretical model for this process is also presented and discussed.…
When an Adiabatic Irreversible Expansion or Compression Becomes Reversible
ERIC Educational Resources Information Center
Anacleto, Joaquim; Ferreira, J. M.; Soares, A. A.
2009-01-01
This paper aims to contribute to a better understanding of the concepts of a "reversible process" and "entropy". For this purpose, an adiabatic irreversible expansion or compression is analysed, by considering that an ideal gas is expanded (compressed), from an initial pressure P[subscript i] to a final pressure P[subscript f], by being placed in…
Digitized adiabatic quantum computing with a superconducting circuit.
Barends, R; Shabani, A; Lamata, L; Kelly, J; Mezzacapo, A; Las Heras, U; Babbush, R; Fowler, A G; Campbell, B; Chen, Yu; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J Y; Neeley, M; Neill, C; O'Malley, P J J; Quintana, C; Roushan, P; Sank, D; Vainsencher, A; Wenner, J; White, T C; Solano, E; Neven, H; Martinis, John M
2016-06-01
Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable. PMID:27279216
Digitized adiabatic quantum computing with a superconducting circuit
NASA Astrophysics Data System (ADS)
Barends, R.; Shabani, A.; Lamata, L.; Kelly, J.; Mezzacapo, A.; Heras, U. Las; Babbush, R.; Fowler, A. G.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Lucero, E.; Megrant, A.; Mutus, J. Y.; Neeley, M.; Neill, C.; O’Malley, P. J. J.; Quintana, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Solano, E.; Neven, H.; Martinis, John M.
2016-06-01
Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.
The density temperature and the dry and wet virtual adiabats
NASA Technical Reports Server (NTRS)
Bartlo, J.; Betts, Alan K.
1991-01-01
A density temperature is introduced to represent virtual temperature and potential temperature on thermodynamic diagrams. This study reviews how the dry and wet virtual adiabats can be used to represent stability and air parcel density for unsaturated and cloudy air, and present formula and tabulations.
Adiabatic single scan two-dimensional NMR spectrocopy.
Pelupessy, Philippe
2003-10-01
New excitation schemes, based on the use adiabatic pulses, for single scan two-dimensional NMR experiments (Frydman et al., Proc. Nat. Acad. Sci. 2002, 99, 15 858-15 862) are introduced. The advantages are discussed. Applications in homo- and heteronuclear experiments are presented. PMID:14519020
SIMULATION OF CONTINUOUS-CONTACT SEPARATION PROCESSES: MULTICOMPONENT, ADIABATIC ABSORPTION
A new algorithm has been developed for the steady-state simulation of multicomponent, adiabatic absorption in packed columns. The system of differential model equations that describe the physical absorption process is reduced to algebraic equations by using a finite difference me...
Equations for Adiabatic but Rotational Steady Gas Flows without Friction
NASA Technical Reports Server (NTRS)
Schaefer, Manfred
1947-01-01
This paper makes the following assumptions: 1) The flowing gases are assumed to have uniform energy distribution. ("Isoenergetic gas flows," that is valid with the same constants for the the energy equation entire flow.) This is correct, for example, for gas flows issuing from a region of constant pressure, density, temperature, end velocity. This property is not destroyed by compression shocks because of the universal validity of the energy law. 2) The gas behaves adiabatically, not during the compression shock itself but both before and after the shock. However, the adiabatic equation (p/rho(sup kappa) = C) is not valid for the entire gas flow with the same constant C but rather with an appropriate individual constant for each portion of the gas. For steady flows, this means that the constant C of the adiabatic equation is a function of the stream function. Consequently, a gas that has been flowing "isentropically",that is, with the same constant C of the adiabatic equation throughout (for example, in origination from a region of constant density, temperature, and velocity) no longer remains isentropic after a compression shock if the compression shock is not extremely simple (wedge shaped in a two-dimensional flow or cone shaped in a rotationally symmetrical flow). The solution of nonisentropic flows is therefore an urgent necessity.
NASA Technical Reports Server (NTRS)
Dutta, Soumitra
1988-01-01
Much of human reasoning is approximate in nature. Formal models of reasoning traditionally try to be precise and reject the fuzziness of concepts in natural use and replace them with non-fuzzy scientific explicata by a process of precisiation. As an alternate to this approach, it has been suggested that rather than regard human reasoning processes as themselves approximating to some more refined and exact logical process that can be carried out with mathematical precision, the essence and power of human reasoning is in its capability to grasp and use inexact concepts directly. This view is supported by the widespread fuzziness of simple everyday terms (e.g., near tall) and the complexity of ordinary tasks (e.g., cleaning a room). Spatial reasoning is an area where humans consistently reason approximately with demonstrably good results. Consider the case of crossing a traffic intersection. We have only an approximate idea of the locations and speeds of various obstacles (e.g., persons and vehicles), but we nevertheless manage to cross such traffic intersections without any harm. The details of our mental processes which enable us to carry out such intricate tasks in such apparently simple manner are not well understood. However, it is that we try to incorporate such approximate reasoning techniques in our computer systems. Approximate spatial reasoning is very important for intelligent mobile agents (e.g., robots), specially for those operating in uncertain or unknown or dynamic domains.
Approximate kernel competitive learning.
Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang
2015-03-01
Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches. PMID:25528318
Non-adiabatic response of relativistic radiation belt electrons to GEM magnetic storms
NASA Astrophysics Data System (ADS)
McAdams, K. L.; Reeves, G. D.
The importance of fully adiabatic effects in the relativistic radiation belt electron response to magnetic storms is poorly characterized due to many difficulties in calculating adiabatic flux response. Using the adiabatic flux model of Kim and Chan [1997a] and Los Alamos National Laboratory geosynchronous satellite data, we examine the relative timing of the adiabatic and non-adiabatic flux responses. In the three storms identified by the GEM community for in depth study, the non-adiabatic energization occurs hours earlier than the adiabatic re-energization. The adiabatic energization can account for only 10-20% of the flux increases in the first recovery stages, and only 1% of the flux increase if there is continuing activity.
Vibrational coherences in charge-transfer dyes: A non-adiabatic picture
Sissa, Cristina; Delchiaro, Francesca; Di Maiolo, Francesco
2014-10-28
Essential-state models efficiently describe linear and nonlinear spectral properties of different families of charge-transfer chromophores. Here, the essential-state machinery is applied to the calculation of the early-stage dynamics after ultrafast (coherent) excitation of polar and quadrupolar chromophores. The fully non-adiabatic treatment of coupled electronic and vibrational motion allows for a reliable description of the dynamics of these intriguing systems. In particular, the proposed approach is reliable even when the adiabatic and harmonic approximations do not apply, such as for quadrupolar dyes that show a multistable, broken-symmetry excited state. Our approach quite naturally leads to a clear picture for a dynamical Jahn-Teller effect in these systems. The recovery of symmetry due to dynamical effects is however disrupted in polar solvents where a static symmetry lowering is observed. More generally, thermal disorder in polar solvents is responsible for dephasing phenomena, damping the coherent oscillations with particularly important effects in the case of polar dyes.
Diestler, D J
2012-03-22
The Born-Oppenheimer (BO) description of electronically adiabatic molecular processes predicts a vanishing electronic flux density (j(e)),
Vibrational coherences in charge-transfer dyes: A non-adiabatic picture
NASA Astrophysics Data System (ADS)
Sissa, Cristina; Delchiaro, Francesca; Di Maiolo, Francesco; Terenziani, Francesca; Painelli, Anna
2014-10-01
Essential-state models efficiently describe linear and nonlinear spectral properties of different families of charge-transfer chromophores. Here, the essential-state machinery is applied to the calculation of the early-stage dynamics after ultrafast (coherent) excitation of polar and quadrupolar chromophores. The fully non-adiabatic treatment of coupled electronic and vibrational motion allows for a reliable description of the dynamics of these intriguing systems. In particular, the proposed approach is reliable even when the adiabatic and harmonic approximations do not apply, such as for quadrupolar dyes that show a multistable, broken-symmetry excited state. Our approach quite naturally leads to a clear picture for a dynamical Jahn-Teller effect in these systems. The recovery of symmetry due to dynamical effects is however disrupted in polar solvents where a static symmetry lowering is observed. More generally, thermal disorder in polar solvents is responsible for dephasing phenomena, damping the coherent oscillations with particularly important effects in the case of polar dyes.
Kutzelnigg, Werner; Jaquet, Ralph
2006-11-15
After a short historical account of the theory of the H3+ ion, two ab initio methods are reviewed that allow the computation of the ground-state potential energy surface (PES) of H3+ in the Born-Oppenheimer (BO) approximation, with microhartree or even sub-microhartree accuracy, namely the R12 method and the method of explicitly correlated Gaussians. The BO-PES is improved by the inclusion of relativistic effects and adiabatic corrections. It is discussed how non-adiabatic effects on rotation and vibration can be simulated by corrections to the moving nuclear masses. The importance of the appropriate analytic fit to the computed points of the PES for the subsequent computation of the rovibronic spectrum is addressed. Some recent extensions of the computed PES in the energy region above the barrier to linearity are reviewed. This involves a large set of input geometries and the correct treatment of the dissociation asymptotics, including the coupling with the first excited singlet state. Some comments on this state as well as on the lowest triplet state of H3+ are made. The paper ends with a few remarks on the ion H5+. PMID:17015373
Coherent Dynamics in Dressed Optical Lattices Beyond the Born-Oppenheimer Approximation
NASA Astrophysics Data System (ADS)
Reeves, Jeremy; Krinner, Ludwig; Stewart, Mike; Pazmino, Arturo; Schneble, Dominik
2015-05-01
Usual treatments of matter-wave diffraction assume that the zero-point energy in the diffracting potential is much smaller than the gap between the dressed levels. However, in near-resonant weak-driving scenarios, zero-point motion can mix the adiabatic dressed states, making the diffracting potentials highly non-adiabatic, such that the usual Born-Oppenheimer approximation for the external and internal degrees of freedom no longer applies. We model the dynamics of a matter wave in a microwave-coupled state-dependent lattice in this regime, and quantify the importance of these effects on recent experiments. Supported by NSF grant PHY-1205894.
Non-adiabatic resonant conversion of solar neutrinos in three generations
NASA Astrophysics Data System (ADS)
Kim, C. W.; Nussinov, S.; Sze, W. K.
1987-02-01
The survival probability of solar electron neutrinos after non-adiabatic passage through the resonance-oscillation region in the Sun is discussed for the case of three generations. A method to calculate three-generation Landau-Zener transition probabilities between adiabatic states is described. We also discuss how the Landua-Zener probability is modified in the extreme non-adiabatic case.
NASA Astrophysics Data System (ADS)
Trushin, Egor; Betzinger, Markus; Blügel, Stefan; Görling, Andreas
2016-08-01
An approach to calculate fundamental band gaps, ionization energies, and electron affinities of periodic electron systems is explored. Starting from total energies obtained with the help of the adiabatic-connection fluctuation-dissipation (ACFD) theorem, these physical observables are calculated according to their basic definition by differences of the total energies of the N -, (N -1 ) -, and (N +1 ) -electron system. The response functions entering the ACFD theorem are approximated here by the direct random phase approximation (dRPA). For a set of prototypical semiconductors and insulators it is shown that even with this quite drastic approximation the resulting band gaps are very close to experiment and of a similar quality to those from the computationally more involved G W approximation. By going beyond the dRPA in the future the accuracy of the calculated band gaps may be significantly improved further.
Covariant approximation averaging
NASA Astrophysics Data System (ADS)
Shintani, Eigo; Arthur, Rudy; Blum, Thomas; Izubuchi, Taku; Jung, Chulwoo; Lehner, Christoph
2015-06-01
We present a new class of statistical error reduction techniques for Monte Carlo simulations. Using covariant symmetries, we show that correlation functions can be constructed from inexpensive approximations without introducing any systematic bias in the final result. We introduce a new class of covariant approximation averaging techniques, known as all-mode averaging (AMA), in which the approximation takes account of contributions of all eigenmodes through the inverse of the Dirac operator computed from the conjugate gradient method with a relaxed stopping condition. In this paper we compare the performance and computational cost of our new method with traditional methods using correlation functions and masses of the pion, nucleon, and vector meson in Nf=2 +1 lattice QCD using domain-wall fermions. This comparison indicates that AMA significantly reduces statistical errors in Monte Carlo calculations over conventional methods for the same cost.
Fast approximate motif statistics.
Nicodème, P
2001-01-01
We present in this article a fast approximate method for computing the statistics of a number of non-self-overlapping matches of motifs in a random text in the nonuniform Bernoulli model. This method is well suited for protein motifs where the probability of self-overlap of motifs is small. For 96% of the PROSITE motifs, the expectations of occurrences of the motifs in a 7-million-amino-acids random database are computed by the approximate method with less than 1% error when compared with the exact method. Processing of the whole PROSITE takes about 30 seconds with the approximate method. We apply this new method to a comparison of the C. elegans and S. cerevisiae proteomes. PMID:11535175
Monotone Boolean approximation
Hulme, B.L.
1982-12-01
This report presents a theory of approximation of arbitrary Boolean functions by simpler, monotone functions. Monotone increasing functions can be expressed without the use of complements. Nonconstant monotone increasing functions are important in their own right since they model a special class of systems known as coherent systems. It is shown here that when Boolean expressions for noncoherent systems become too large to treat exactly, then monotone approximations are easily defined. The algorithms proposed here not only provide simpler formulas but also produce best possible upper and lower monotone bounds for any Boolean function. This theory has practical application for the analysis of noncoherent fault trees and event tree sequences.
Approximating Integrals Using Probability
ERIC Educational Resources Information Center
Maruszewski, Richard F., Jr.; Caudle, Kyle A.
2005-01-01
As part of a discussion on Monte Carlo methods, which outlines how to use probability expectations to approximate the value of a definite integral. The purpose of this paper is to elaborate on this technique and then to show several examples using visual basic as a programming tool. It is an interesting method because it combines two branches of…
Multicriteria approximation through decomposition
Burch, C. |; Krumke, S.; Marathe, M.; Phillips, C.; Sundberg, E. |
1997-12-01
The authors propose a general technique called solution decomposition to devise approximation algorithms with provable performance guarantees. The technique is applicable to a large class of combinatorial optimization problems that can be formulated as integer linear programs. Two key ingredients of the technique involve finding a decomposition of a fractional solution into a convex combination of feasible integral solutions and devising generic approximation algorithms based on calls to such decompositions as oracles. The technique is closely related to randomized rounding. The method yields as corollaries unified solutions to a number of well studied problems and it provides the first approximation algorithms with provable guarantees for a number of new problems. The particular results obtained in this paper include the following: (1) The authors demonstrate how the technique can be used to provide more understanding of previous results and new algorithms for classical problems such as Multicriteria Spanning Trees, and Suitcase Packing. (2) They show how the ideas can be extended to apply to multicriteria optimization problems, in which they wish to minimize a certain objective function subject to one or more budget constraints. As corollaries they obtain first non-trivial multicriteria approximation algorithms for problems including the k-Hurdle and the Network Inhibition problems.
Multicriteria approximation through decomposition
Burch, C.; Krumke, S.; Marathe, M.; Phillips, C.; Sundberg, E.
1998-06-01
The authors propose a general technique called solution decomposition to devise approximation algorithms with provable performance guarantees. The technique is applicable to a large class of combinatorial optimization problems that can be formulated as integer linear programs. Two key ingredients of their technique involve finding a decomposition of a fractional solution into a convex combination of feasible integral solutions and devising generic approximation algorithms based on calls to such decompositions as oracles. The technique is closely related to randomized rounding. Their method yields as corollaries unified solutions to a number of well studied problems and it provides the first approximation algorithms with provable guarantees for a number of new problems. The particular results obtained in this paper include the following: (1) the authors demonstrate how the technique can be used to provide more understanding of previous results and new algorithms for classical problems such as Multicriteria Spanning Trees, and Suitcase Packing; (2) they also show how the ideas can be extended to apply to multicriteria optimization problems, in which they wish to minimize a certain objective function subject to one or more budget constraints. As corollaries they obtain first non-trivial multicriteria approximation algorithms for problems including the k-Hurdle and the Network Inhibition problems.
Critical stability of almost adiabatic convection in a rapidly rotating thick spherical shell
Starchenko, S. V.; Kotelnikova, M. S.
2013-02-15
In this work, the convection equations in the almost adiabatic approximation is studied for which the choice of physical parameters is primarily based on possible applications to the hydrodynamics of the deep interiors of the Earth and planets and moons of the terrestrial group. The initial system of partial differential equations (PDEs) was simplified to a single second-order ordinary differential equation for the pressure or vertical velocity component to investigate the linear stability of convection. The critical frequencies, modified Rayleigh numbers, and distributions of convection are obtained at various possible Prandtl numbers and in different thick fluid shells. An analytical WKB-type solution was obtained for the case when the inner radius of the shell is much smaller than the outer radius and convective sources are concentrated along the inner boundary.
A general design algorithm for low optical loss adiabatic connections in waveguides.
Chen, Tong; Lee, Hansuek; Li, Jiang; Vahala, Kerry J
2012-09-24
Single-mode waveguide designs frequently support higher order transverse modes, usually as a consequence of process limitations such as lithography. In these systems, it is important to minimize coupling to higher-order modes so that the system nonetheless behaves single mode. We propose a variational approach to design adiabatic waveguide connections with minimal intermodal coupling. An application of this algorithm in designing the "S-bend" of a whispering-gallery spiral waveguide is demonstrated with approximately 0.05 dB insertion loss. Compared to other approaches, our algorithm requires less fabrication resolution and is able to minimize the transition loss over a broadband spectrum. The method can be applied to a wide range of turns and connections and has the advantage of handling connections with arbitrary boundary conditions. PMID:23037432
NASA Astrophysics Data System (ADS)
Gudmundsdóttir, Sigrídur; Tang, Wenjie; Henkelman, Graeme; Jónsson, Hannes; Skúlason, Egill
2012-10-01
Local density of states and electric charge in regions defined for individual atoms and molecules using grid based Bader analysis is presented for N2 and CO2 adsorbed on a platinum electrode in the presence of an applied electric field. When the density of states is projected onto Bader regions, the partial density of states for the various subregions correctly sums up to the total density of states for the whole system, unlike the commonly used projection onto spheres which results in missing contributions from some regions while others are over counted, depending on the radius chosen. The electrode is represented by a slab with a missing row reconstructed Pt(110)-(1 × 2) surface to model an edge between micro-facets on the surface of a nano-particle catalyst. For both N2 and CO2, a certain electric field window leads to adsorption. The binding of N2 to the electrode is mainly due to polarization of the molecule but for CO2 hybridization occurs between the molecular states and the states of the Pt electrode.
Gudmundsdóttir, Sigrídur; Tang, Wenjie; Henkelman, Graeme; Jónsson, Hannes; Skúlason, Egill
2012-10-28
Local density of states and electric charge in regions defined for individual atoms and molecules using grid based Bader analysis is presented for N(2) and CO(2) adsorbed on a platinum electrode in the presence of an applied electric field. When the density of states is projected onto Bader regions, the partial density of states for the various subregions correctly sums up to the total density of states for the whole system, unlike the commonly used projection onto spheres which results in missing contributions from some regions while others are over counted, depending on the radius chosen. The electrode is represented by a slab with a missing row reconstructed Pt(110)-(1 × 2) surface to model an edge between micro-facets on the surface of a nano-particle catalyst. For both N(2) and CO(2), a certain electric field window leads to adsorption. The binding of N(2) to the electrode is mainly due to polarization of the molecule but for CO(2) hybridization occurs between the molecular states and the states of the Pt electrode. PMID:23126735
Birkenheuer, U. ); Boettger, J.C. ); Roesch, N. )
1994-05-01
A first principles local density functional investigation on extended, two-dimensional periodic slab models of the MgO(001) surface is performed, using the linear combination of Gaussian-type orbitals (LCGTO) technique as implemented in the FILMS program package. Stimulated by recent theoretical evidence for a reduced charge separation in MgO(001), a detailed analysis of the charge distribution and its influence on the electrical field above the surface is carried out. Two different methods to quantify the charge separation in the ionic substrate are employed, a local one based on the topological atom approach and a global one derived from the Madelung field of the surface near potential adsorbates. Both procedures lead to a charge separation significantly (10%--20%) below the nominal ionic value of [plus minus]2 a.u. A variational atomic orbital analysis is utilized to discuss the origin of the Mg 3[ital s] and 3[ital p] structures discernible in the crystal orbitals of the MgO slab systems. They are identified as covalent magnesium valence orbital admixtures to the oxygen dominated valence bands in consistence with the reduced charge separation. Their influence on the cohesive energy of crystalline MgO, however, is found to be only 5% ([similar to]0.5 eV).
NASA Astrophysics Data System (ADS)
Morean, Casey; Marijczuk, Roman; Senevirathne, Indrajith
Highly Oriented Pyrolytic Graphite (HOPG) has many applications in physics and engineering thus understanding affiliated physical and chemical phenomena is important. This also makes HOPG an important and interesting system to study. This is an investigation of surfaces of HOPG and Au thin films (ranging about 20nm) via Scanning Tunneling Microscopy (STM) and Tunneling Spectroscopy (TS) with a Pt-Ir tip equipped Nanosurf Naio STM. In this investigation, clean fresh cleaved HOPG substrates were used. Surfaces of HOPG and Au sputter deposited at different film thicknesses were imaged via constant current mode to assess the surface consistency and roughness. Consistent atomic resolution images were obtained. The systems were then investigated via TS by applied tip voltage (V) vs. tunneling current (I) curves. These spectroscopic data were then used to assess the local density of states (LDOS) and the surface variation of LDOS. The discussion will attempt to assess the surface electronic environment of these systems in relation to the Au deposition and variation of Au thicknesses on HOPG. Since measurements were carried out in ambient conditions this adds to the complexity which will also be discussed. Lock Haven University Nanotechnology Program.
Mean-Field Approximation to the Hydrophobic Hydration in the Liquid-Vapor Interface of Water.
Abe, Kiharu; Sumi, Tomonari; Koga, Kenichiro
2016-03-01
A mean-field approximation to the solvation of nonpolar solutes in the liquid-vapor interface of aqueous solutions is proposed. It is first remarked with a numerical illustration that the solvation of a methane-like solute in bulk liquid water is accurately described by the mean-field theory of liquids, the main idea of which is that the probability (Pcav) of finding a cavity in the solvent that can accommodate the solute molecule and the attractive interaction energy (uatt) that the solute would feel if it is inserted in such a cavity are both functions of the solvent density alone. It is then assumed that the basic idea is still valid in the liquid-vapor interface, but Pcav and uatt are separately functions of different coarse-grained local densities, not functions of a common local density. Validity of the assumptions is confirmed for the solvation of the methane-like particle in the interface of model water at temperatures between 253 and 613 K. With the mean-field approximation extended to the inhomogeneous system the local solubility profiles across the interface at various temperatures are calculated from Pcav and uatt obtained at a single temperature. The predicted profiles are in excellent agreement with those obtained by the direct calculation of the excess chemical potential over an interfacial region where the solvent local density varies most rapidly. PMID:26595441
Optimizing the Zeldovich approximation
NASA Technical Reports Server (NTRS)
Melott, Adrian L.; Pellman, Todd F.; Shandarin, Sergei F.
1994-01-01
We have recently learned that the Zeldovich approximation can be successfully used for a far wider range of gravitational instability scenarios than formerly proposed; we study here how to extend this range. In previous work (Coles, Melott and Shandarin 1993, hereafter CMS) we studied the accuracy of several analytic approximations to gravitational clustering in the mildly nonlinear regime. We found that what we called the 'truncated Zeldovich approximation' (TZA) was better than any other (except in one case the ordinary Zeldovich approximation) over a wide range from linear to mildly nonlinear (sigma approximately 3) regimes. TZA was specified by setting Fourier amplitudes equal to zero for all wavenumbers greater than k(sub nl), where k(sub nl) marks the transition to the nonlinear regime. Here, we study the cross correlation of generalized TZA with a group of n-body simulations for three shapes of window function: sharp k-truncation (as in CMS), a tophat in coordinate space, or a Gaussian. We also study the variation in the crosscorrelation as a function of initial truncation scale within each type. We find that k-truncation, which was so much better than other things tried in CMS, is the worst of these three window shapes. We find that a Gaussian window e(exp(-k(exp 2)/2k(exp 2, sub G))) applied to the initial Fourier amplitudes is the best choice. It produces a greatly improved crosscorrelation in those cases which most needed improvement, e.g. those with more small-scale power in the initial conditions. The optimum choice of kG for the Gaussian window is (a somewhat spectrum-dependent) 1 to 1.5 times k(sub nl). Although all three windows produce similar power spectra and density distribution functions after application of the Zeldovich approximation, the agreement of the phases of the Fourier components with the n-body simulation is better for the Gaussian window. We therefore ascribe the success of the best-choice Gaussian window to its superior treatment
Experimental implementation of adiabatic passage between different topological orders.
Peng, Xinhua; Luo, Zhihuang; Zheng, Wenqiang; Kou, Supeng; Suter, Dieter; Du, Jiangfeng
2014-08-22
Topological orders are exotic phases of matter existing in strongly correlated quantum systems, which are beyond the usual symmetry description and cannot be distinguished by local order parameters. Here we report an experimental quantum simulation of the Wen-plaquette spin model with different topological orders in a nuclear magnetic resonance system, and observe the adiabatic transition between two Z(2) topological orders through a spin-polarized phase by measuring the nonlocal closed-string (Wilson loop) operator. Moreover, we also measure the entanglement properties of the topological orders. This work confirms the adiabatic method for preparing topologically ordered states and provides an experimental tool for further studies of complex quantum systems. PMID:25192080
Adiabatic and diabatic process of sum frequency conversion.
Liqing, Ren; Yongfang, Li; Baihong, Li; Lei, Wang; Zhaohua, Wang
2010-09-13
Based on the dressed state formalism, we obtain the adiabatic criterion of the sum frequency conversion. We show that this constraint restricts the energy conversion between the two dressed fields, which are superpositions of the signal field and the sum frequency field. We also show that the evolution of the populations of the dressed fields, which in turn describes the conversion of light photons from the seed frequency to the sum frequency during propagation through the nonlinear crystal. Take the quasiphased matched (QPM) scheme as an example, we calculate the expected bandwidth of the frequency conversion process, and its dependence on the length of the crystal. We demonstrate that the evolutionary patterns of the sum frequency field's energy are similar to the Fresnel diffraction of a light field. We finally show that the expected bandwidth can be also deduced from the evolution of the adiabaticity of the dressed fileds. PMID:20940935
On the off-stoichiometric peaking of adiabatic flame temperature
Law, C.K.; Lu, T.F.; Makino, A.
2006-06-15
The characteristic rich shifting of the maximum adiabatic flame temperature from the stoichiometric value for mixtures of hydrocarbon and air is demonstrated to be caused by product dissociation and hence reduced amount of heat release. Since the extent of dissociation is greater on the lean side as a result of the stoichiometry of dissociated products, the peaking occurs on the rich side. The specific heat per unit mass of the mixture is shown to increase monotonically with increasing fuel concentration, and as such tends to shift the peak toward the lean side. It is further shown that this is the cause for the lean shifting of the adiabatic flame temperature of oxidizer-enriched mixtures of N{sub m}H{sub n} and F{sub 2} and of NH{sub 3} and O{sub 2}, with various amounts of inert dilution, even though their maximum heat release still peaks on the rich side. (author)
Microscopic expression for heat in the adiabatic basis.
Polkovnikov, Anatoli
2008-11-28
We derive a microscopic expression for the instantaneous diagonal elements of the density matrix rho(nn)(t) in the adiabatic basis for an arbitrary time-dependent process in a closed Hamiltonian system. If the initial density matrix is stationary (diagonal) then this expression contains only squares of absolute values of matrix elements of the evolution operator, which can be interpreted as transition probabilities. We then derive the microscopic expression for the heat defined as the energy generated due to transitions between instantaneous energy levels. If the initial density matrix is passive [diagonal with rho(nn)(0) monotonically decreasing with energy] then the heat is non-negative in agreement with basic expectations of thermodynamics. Our findings also can be used for systematic expansion of various observables around the adiabatic limit. PMID:19113464
Non-adiabatic dynamics of molecules in optical cavities
NASA Astrophysics Data System (ADS)
Kowalewski, Markus; Bennett, Kochise; Mukamel, Shaul
2016-02-01
Strong coupling of molecules to the vacuum field of micro cavities can modify the potential energy surfaces thereby opening new photophysical and photochemical reaction pathways. While the influence of laser fields is usually described in terms of classical field, coupling to the vacuum state of a cavity has to be described in terms of dressed photon-matter states (polaritons) which require quantized fields. We present a derivation of the non-adiabatic couplings for single molecules in the strong coupling regime suitable for the calculation of the dressed state dynamics. The formalism allows to use quantities readily accessible from quantum chemistry codes like the adiabatic potential energy surfaces and dipole moments to carry out wave packet simulations in the dressed basis. The implications for photochemistry are demonstrated for a set of model systems representing typical situations found in molecules.
Fastest Effectively Adiabatic Transitions for a Collection of Harmonic Oscillators.
Boldt, Frank; Salamon, Peter; Hoffmann, Karl Heinz
2016-05-19
We discuss fastest effectively adiabatic transitions (FEATs) for a collection of noninteracting harmonic oscillators with shared controllable real frequencies. The construction of such transitions is presented for given initial and final equilibrium states, and the dependence of the minimum time control on the interval of achievable frequencies is discussed. While the FEAT times and associated FEAT processes are important in their own right as optimal controls, the FEAT time is an added feature which provides a measure of the quality of a shortcut to adiabaticity (STA). The FEAT time is evaluated for a previously reported experiment, wherein a cloud of Rb atoms is cooled following a STA recipe that took about twice as long as the FEAT speed limit, a time efficiency of 50%. PMID:26811863
Ultrafast adiabatic manipulation of slow light in a photonic crystal
Kampfrath, T.; Kuipers, L.; Beggs, D. M.; White, T. P.; Krauss, T. F.; Melloni, A.
2010-04-15
We demonstrate by experiment and theory that a light pulse propagating through a Si-based photonic-crystal waveguide is adiabatically blueshifted when the refractive index of the Si is reduced on a femtosecond time scale. Thanks to the use of slow-light modes, we are able to shift a 1.3-ps pulse at telecom frequencies by 0.3 THz with an efficiency as high as 80% in a waveguide as short as 19{mu}m. An analytic theory reproduces the experimental data excellently, which shows that adiabatic dynamics are possible even on the femtosecond time scale as long as the external stimulus conserves the spatial symmetry of the system.
Adiabatic tapered optical fiber fabrication in two step etching
NASA Astrophysics Data System (ADS)
Chenari, Z.; Latifi, H.; Ghamari, S.; Hashemi, R. S.; Doroodmand, F.
2016-01-01
A two-step etching method using HF acid and Buffered HF is proposed to fabricate adiabatic biconical optical fiber tapers. Due to the fact that the etching rate in second step is almost 3 times slower than the previous droplet etching method, terminating the fabrication process is controllable enough to achieve a desirable fiber diameter. By monitoring transmitted spectrum, final diameter and adiabaticity of tapers are deduced. Tapers with losses about 0.3 dB in air and 4.2 dB in water are produced. The biconical fiber taper fabricated using this method is used to excite whispering gallery modes (WGMs) on a microsphere surface in an aquatic environment. So that they are suitable to be used in applications like WGM biosensors.
The adiabatic motion of charged dust grains in rotating magnetospheres
NASA Astrophysics Data System (ADS)
Northrop, T. G.; Hill, J. R.
1983-01-01
Adiabatic equations of motion are derived for the micrometer-sized dust grains detected in the Jovian and Saturn magnetospheres by the Pioneer 10 and 11 spacecraft. The adiabatic theory of charged particle motion is extended to the case of variable grain charge. Attention is focused on the innermost and outermost limits to the grain orbit evolution, with all orbits tending to become circular with time. The parameters such as the center equation of motion, the drift velocity, and the parallel equation of motion are obtained for grains in a rotating magnetosphere. Consideration is given to the effects of periodic grain charge-discharge, which are affected by the ambient plasma properties and the grain plasma velocity. The charge-discharge process at the gyrofrequency is determined to eliminate the invariance of the magnetic moment and cause the grain to exhibit radial movement. The magnetic moment increases or decreases as a function of the gyrophase of the charge variation.
Adiabatic Berry phase in an atom-molecule conversion system
Fu Libin; Liu Jie
2010-11-15
We investigate the Berry phase of adiabatic quantum evolution in the atom-molecule conversion system that is governed by a nonlinear Schroedinger equation. We find that the Berry phase consists of two parts: the usual Berry connection term and a novel term from the nonlinearity brought forth by the atom-molecule coupling. The total geometric phase can be still viewed as the flux of the magnetic field of a monopole through the surface enclosed by a closed path in parameter space. The charge of the monopole, however, is found to be one third of the elementary charge of the usual quantized monopole. We also derive the classical Hannay angle of a geometric nature associated with the adiabatic evolution. It exactly equals minus Berry phase, indicating a novel connection between Berry phase and Hannay angle in contrast to the usual derivative form.
Adiabatic creation of atomic squeezing in dark states versus decoherences
Gong, Z. R.; Sun, C. P.; Wang Xiaoguang
2010-07-15
We study the multipartite correlations of the multiatom dark states, which are characterized by the atomic squeezing beyond the pairwise entanglement. It is shown that, in the photon storage process with atomic ensemble via the electromagnetically induced transparency (EIT) mechanism, the atomic squeezing and the pairwise entanglement can be created by adiabatically manipulating the Rabi frequency of the classical light field on the atomic ensemble. We also consider the sudden death for the atomic squeezing and the pairwise entanglement under various decoherence channels. An optimal time for generating the greatest atomic squeezing and pairwise entanglement is obtained by studying in detail the competition between the adiabatic creation of quantum correlation in the atomic ensemble and the decoherence that we describe with three typical decoherence channels.
Steam bottoming cycle for an adiabatic diesel engine
NASA Technical Reports Server (NTRS)
Poulin, E.; Demier, R.; Krepchin, I.; Walker, D.
1984-01-01
Steam bottoming cycles using adiabatic diesel engine exhaust heat which projected substantial performance and economic benefits for long haul trucks were studied. Steam cycle and system component variables, system cost, size and performance were analyzed. An 811 K/6.90 MPa state of the art reciprocating expander steam system with a monotube boiler and radiator core condenser was selected for preliminary design. The costs of the diesel with bottoming system (TC/B) and a NASA specified turbocompound adiabatic diesel with aftercooling with the same total output were compared, the annual fuel savings less the added maintenance cost was determined to cover the increase initial cost of the TC/B system in a payback period of 2.3 years. Steam bottoming system freeze protection strategies were developed, technological advances required for improved system reliability are considered and the cost and performance of advanced systes are evaluated.
Engineering adiabaticity at an avoided crossing with optimal control
NASA Astrophysics Data System (ADS)
Chasseur, T.; Theis, L. S.; Sanders, Y. R.; Egger, D. J.; Wilhelm, F. K.
2015-04-01
We investigate ways to optimize adiabaticity and diabaticity in the Landau-Zener model with nonuniform sweeps. We show how diabaticity can be engineered with a pulse consisting of a linear sweep augmented by an oscillating term. We show that the oscillation leads to jumps in populations whose value can be accurately modeled using a model of multiple, photon-assisted Landau-Zener transitions, which generalizes work by Wubs et al. [New J. Phys. 7, 218 (2005)], 10.1088/1367-2630/7/1/218. We extend the study on diabaticity using methods derived from optimal control. We also show how to preserve adiabaticity with optimal pulses at limited time, finding a nonuniform quantum speed limit.
Adiabatic Tip-Plasmon Focusing for Nano-Raman Spectroscopy
Berweger, Samuel; Atkin, Joanna M.; Olmon, Robert L.; Raschke, Markus Bernd
2010-12-16
True nanoscale optical spectroscopy requires the efficient delivery of light for a spatially nanoconfined excitation. We utilize adiabatic plasmon focusing to concentrate an optical field into the apex of a scanning probe tip of {approx}10 nm in radius. The conical tips with the ability for two-stage optical mode matching of the surface plasmon polariton (SPP) grating-coupling and the adiabatic propagating SPP conversion into a localized SPP at the tip apex represent a special optical antenna concept for far-field transduction into nanoscale excitation. The resulting high nanofocusing efficiency and the spatial separation of the plasmonic grating coupling element on the tip shaft from the near-field apex probe region allows for true background-free nanospectroscopy. As an application, we demonstrate tip-enhanced Raman spectroscopy (TERS) of surface molecules with enhanced contrast and its extension into the near-IR with 800 nm excitation.
Adiabatic far-field sub-diffraction imaging
NASA Astrophysics Data System (ADS)
Cang, Hu; Salandrino, Alessandro; Wang, Yuan; Zhang, Xiang
2015-08-01
The limited resolution of a conventional optical imaging system stems from the fact that the fine feature information of an object is carried by evanescent waves, which exponentially decays in space and thus cannot reach the imaging plane. We introduce here an adiabatic lens, which utilizes a geometrically conformal surface to mediate the interference of slowly decompressed electromagnetic waves at far field to form images. The decompression is satisfying an adiabatic condition, and by bridging the gap between far field and near field, it allows far-field optical systems to project an image of the near-field features directly. Using these designs, we demonstrated the magnification can be up to 20 times and it is possible to achieve sub-50 nm imaging resolution in visible. Our approach provides a means to extend the domain of geometrical optics to a deep sub-wavelength scale.
Adiabatic nonlinear waves with trapped particles. II. Wave dispersion
Dodin, I. Y.; Fisch, N. J.
2012-01-15
A general nonlinear dispersion relation is derived in a nondifferential form for an adiabatic sinusoidal Langmuir wave in collisionless plasma, allowing for an arbitrary distribution of trapped electrons. The linear dielectric function is generalized, and the nonlinear kinetic frequency shift {omega}{sub NL} is found analytically as a function of the wave amplitude a. Smooth distributions yield {omega}{sub NL}{proportional_to}{radical}(a), as usual. However, beam-like distributions of trapped electrons result in different power laws, or even a logarithmic nonlinearity, which are derived as asymptotic limits of the same dispersion relation. Such beams are formed whenever the phase velocity changes, because the trapped distribution is in autoresonance and thus evolves differently from the passing distribution. Hence, even adiabatic {omega}{sub NL}(a) is generally nonlocal.
Adiabatic trapping in coupled kinetic Alfven-acoustic waves
Shah, H. A.; Ali, Z.; Masood, W.
2013-03-15
In the present work, we have discussed the effects of adiabatic trapping of electrons on obliquely propagating Alfven waves in a low {beta} plasma. Using the two potential theory and employing the Sagdeev potential approach, we have investigated the existence of arbitrary amplitude coupled kinetic Alfven-acoustic solitary waves in both the sub and super Alfvenic cases. The results obtained have been analyzed and presented graphically and can be applied to regions of space where the low {beta} assumption holds true.
Geometric Phase for Adiabatic Evolutions of General Quantum States
Wu, Biao; Liu, Jie; Niu, Qian; Singh, David J
2005-01-01
The concept of a geometric phase (Berry's phase) is generalized to the case of noneigenstates, which is applicable to both linear and nonlinear quantum systems. This is particularly important to nonlinear quantum systems, where, due to the lack of the superposition principle, the adiabatic evolution of a general state cannot be described in terms of eigenstates. For linear quantum systems, our new geometric phase reduces to a statistical average of Berry's phases. Our results are demonstrated with a nonlinear two-level model.
Breakdown of adiabaticity when loading ultracold atoms in optical lattices
NASA Astrophysics Data System (ADS)
Zakrzewski, Jakub; Delande, Dominique
2009-07-01
Realistic simulations of current ultracold atom experiments in optical lattices show that the ramping up of the optical lattice is significantly nonadiabatic, implying that experimentally prepared Mott insulators are not really in the ground state of the atomic system. The nonadiabaticity is even larger in the presence of a secondary quasiperiodic lattice simulating “disorder.” Alternative ramping schemes are suggested that improve the adiabaticity when the disorder is not too large.
Complete Cycle Experiments Using the Adiabatic Gas Law Apparatus
NASA Astrophysics Data System (ADS)
Kutzner, Mickey D.; Plantak, Mateja
2014-10-01
The ability of our society to make informed energy-usage decisions in the future depends partly on current science and engineering students retaining a deep understanding of the thermodynamics of heat engines. Teacher imaginations and equipment budgets can both be taxed in the effort to engage students in hands-on heat engine activities. The experiments described in this paper, carried out using the Adiabatic Gas Law Apparatus1 (AGLA), quantitatively explore popular complete cycle heat engine processes.
Non-adiabatic Dynamics of Molecules in Optical Cavities
NASA Astrophysics Data System (ADS)
Kowalewski, Markus; Bennett, Kochise; Mukamel, Shaul
Molecular systems coupled to optical cavities are promising candidates for a novel kind of photo chemistry. Strong coupling to the vacuum field of the cavity can modify the potential energy surfaces opening up new reaction pathways. We present a derivation of the non-adiabatic couplings for single molecules in the strong coupling regime. The possibilities for photo chemistry are demonstrated for a set of model systems representing typical situations found in molecules. Supported by the Alexander von Humboldt Foundation.
NASA Astrophysics Data System (ADS)
Bačić, Z.
1991-09-01
We show that the triatomic adiabatic vibrational eigenstates (AVES) provide a convenient basis for accurate discrete variable representation (DVR) calculation and automatic assignment of highly excited, large amplitude motion vibrational states of floppy triatomic molecules. The DVR-AVES states are eigenvectors of the diagonal (in the stretch states) blocks of the adiabatically rearranged triatomic DVR-ray eigenvector (DVR-REV) Hamiltonian [J. C. Light and Z. Bačić, J. Chem. Phys. 87, 4008 (1987)]. The transformation of the full triatomic vibrational Hamiltonian from the DVR-REV basis to the new DVR-AVES basis is simple, and does not involve calculation of any new matrix elements. No dynamical approximation is made in the energy level calculation by the DVR-AVES approach; its accuracy and efficiency are identical to those of the DVR-REV method. The DVR-AVES states, as the adiabatic approximation to the vibrational states of a triatomic molecule, are labeled by three vibrational quantum numbers. Consequently, accurate large amplitude motion vibrational levels obtained by diagonalizing the full vibrational Hamiltonian transformed to the DVR-AVES basis, can be assigned automatically by the code, with the three quantum numbers of the dominant DVR-AVES state associated with the largest (by modulus) eigenvector element in the DVR-AVES basis. The DVR-AVES approach is used to calculate accurate highly excited localized and delocalized vibrational levels of HCN/HNC and LiCN/LiNC. A significant fraction of localized states of both systems, below and above the isomerization barrier, is assigned automatically, without inspection of wave function plots or separate approximate calculations.
Adiabatic shear mechanisms for the hard cutting process
NASA Astrophysics Data System (ADS)
Yue, Caixu; Wang, Bo; Liu, Xianli; Feng, Huize; Cai, Chunbin
2015-05-01
The most important consequence of adiabatic shear phenomenon is formation of sawtooth chip. Lots of scholars focused on the formation mechanism of sawtooth, and the research often depended on experimental approach. For the present, the mechanism of sawtooth chip formation still remains some ambiguous aspects. This study develops a combined numerical and experimental approach to get deeper understanding of sawtooth chip formation mechanism for Polycrystalline Cubic Boron Nitride (PCBN) tools orthogonal cutting hard steel GCr15. By adopting the Johnson-Cook material constitutive equations, the FEM simulation model established in this research effectively overcomes serious element distortions and cell singularity in high strain domain caused by large material deformation, and the adiabatic shear phenomenon is simulated successfully. Both the formation mechanism and process of sawtooth are simulated. Also, the change features regarding the cutting force as well as its effects on temperature are studied. More specifically, the contact of sawtooth formation frequency with cutting force fluctuation frequency is established. The cutting force and effect of cutting temperature on mechanism of adiabatic shear are investigated. Furthermore, the effects of the cutting condition on sawtooth chip formation are researched. The researching results show that cutting feed has the most important effect on sawtooth chip formation compared with cutting depth and speed. This research contributes a better understanding of mechanism, feature of chip formation in hard turning process, and supplies theoretical basis for the optimization of hard cutting process parameters.
Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning
NASA Technical Reports Server (NTRS)
Smelyanskiy, V. N.; Toussaint, U. V.; Timucin, D. A.
2002-01-01
We have developed a general technique to study the dynamics of the quantum adiabatic evolution algorithm applied to random combinatorial optimization problems in the asymptotic limit of large problem size n. We use as an example the NP-complete Number Partitioning problem and map the algorithm dynamics to that of an auxiliary quantum spin glass system with the slowly varying Hamiltonian. We use a Green function method to obtain the adiabatic eigenstates and the minimum excitation gap. g min, = O(n 2(exp -n/2), corresponding to the exponential complexity of the algorithm for Number Partitioning. The key element of the analysis is the conditional energy distribution computed for the set of all spin configurations generated from a given (ancestor) configuration by simultaneous flipping of a fixed number of spins. For the problem in question this distribution is shown to depend on the ancestor spin configuration only via a certain parameter related to 'the energy of the configuration. As the result, the algorithm dynamics can be described in terms of one-dimensional quantum diffusion in the energy space. This effect provides a general limitation of a quantum adiabatic computation in random optimization problems. Analytical results are in agreement with the numerical simulation of the algorithm.
Steam bottoming cycle for an adiabatic diesel engine
Poulin, E.; Demler, R.; Krepchin, I.; Walker, D.
1984-03-01
A study of steam bottoming cycles using adiabatic diesel engine exhaust heat projected substantial performance and economic benefits for long haul trucks. A parametric analysis of steam cycle and system component variables, system cost, size and performance was conducted. An 811 K/6.90 MPa state-of-the-art reciprocating expander steam system with a monotube boiler and radiator core condenser was selected for preliminary design. When applied to a NASA specified turbo-charged adiabatic diesel the bottoming system increased the diesel output by almost 18%. In a comparison of the costs of the diesel with bottoming system (TC/B) and a NASA specified turbocompound adiabatic diesel with after-cooling with the same total output, the annual fuel savings less the added maintenance cost was determined to cover the increased initial cost of the TC/B system in a payback period of 2.3 years. Also during this program steam bottoming system freeze protection strategies were developed, technological advances required for improved system reliability were considered and the cost and performance of advanced systems were evaluated.
Irreconcilable difference between quantum walks and adiabatic quantum computing
NASA Astrophysics Data System (ADS)
Wong, Thomas G.; Meyer, David A.
2016-06-01
Continuous-time quantum walks and adiabatic quantum evolution are two general techniques for quantum computing, both of which are described by Hamiltonians that govern their evolutions by Schrödinger's equation. In the former, the Hamiltonian is fixed, while in the latter, the Hamiltonian varies with time. As a result, their formulations of Grover's algorithm evolve differently through Hilbert space. We show that this difference is fundamental; they cannot be made to evolve along each other's path without introducing structure more powerful than the standard oracle for unstructured search. For an adiabatic quantum evolution to evolve like the quantum walk search algorithm, it must interpolate between three fixed Hamiltonians, one of which is complex and introduces structure that is stronger than the oracle for unstructured search. Conversely, for a quantum walk to evolve along the path of the adiabatic search algorithm, it must be a chiral quantum walk on a weighted, directed star graph with structure that is also stronger than the oracle for unstructured search. Thus, the two techniques, although similar in being described by Hamiltonians that govern their evolution, compute by fundamentally irreconcilable means.
Conditions for super-adiabatic droplet growth after entrainment mixing
NASA Astrophysics Data System (ADS)
Yang, Fan; Shaw, Raymond; Xue, Huiwen
2016-07-01
Cloud droplet response to entrainment and mixing between a cloud and its environment is considered, accounting for subsequent droplet growth during adiabatic ascent following a mixing event. The vertical profile for liquid water mixing ratio after a mixing event is derived analytically, allowing the reduction to be predicted from the mixing fraction and from the temperature and humidity for both the cloud and environment. It is derived for the limit of homogeneous mixing. The expression leads to a critical height above the mixing level: at the critical height the cloud droplet radius is the same for both mixed and unmixed parcels, and the critical height is independent of the updraft velocity and mixing fraction. Cloud droplets in a mixed parcel are larger than in an unmixed parcel above the critical height, which we refer to as the "super-adiabatic" growth region. Analytical results are confirmed with a bin microphysics cloud model. Using the model, we explore the effects of updraft velocity, aerosol source in the environmental air, and polydisperse cloud droplets. Results show that the mixed parcel is more likely to reach the super-adiabatic growth region when the environmental air is humid and clean. It is also confirmed that the analytical predictions are matched by the volume-mean cloud droplet radius for polydisperse size distributions. The findings have implications for the origin of large cloud droplets that may contribute to onset of collision-coalescence in warm clouds.
Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning
NASA Technical Reports Server (NTRS)
Smelyanskiy, Vadius; vonToussaint, Udo V.; Timucin, Dogan A.; Clancy, Daniel (Technical Monitor)
2002-01-01
We have developed a general technique to study the dynamics of the quantum adiabatic evolution algorithm applied to random combinatorial optimization problems in the asymptotic limit of large problem size n. We use as an example the NP-complete Number Partitioning problem and map the algorithm dynamics to that of an auxiliary quantum spin glass system with the slowly varying Hamiltonian. We use a Green function method to obtain the adiabatic eigenstates and the minimum exitation gap, gmin = O(n2(sup -n/2)), corresponding to the exponential complexity of the algorithm for Number Partitioning. The key element of the analysis is the conditional energy distribution computed for the set of all spin configurations generated from a given (ancestor) configuration by simultaneous flipping of a fixed number of spins. For the problem in question this distribution is shown to depend on the ancestor spin configuration only via a certain parameter related to the energy of the configuration. As the result, the algorithm dynamics can be described in terms of one-dimensional quantum diffusion in the energy space. This effect provides a general limitation of a quantum adiabatic computation in random optimization problems. Analytical results are in agreement with the numerical simulation of the algorithm.
NMR implementation of adiabatic SAT algorithm using strongly modulated pulses.
Mitra, Avik; Mahesh, T S; Kumar, Anil
2008-03-28
NMR implementation of adiabatic algorithms face severe problems in homonuclear spin systems since the qubit selective pulses are long and during this period, evolution under the Hamiltonian and decoherence cause errors. The decoherence destroys the answer as it causes the final state to evolve to mixed state and in homonuclear systems, evolution under the internal Hamiltonian causes phase errors preventing the initial state to converge to the solution state. The resolution of these issues is necessary before one can proceed to implement an adiabatic algorithm in a large system where homonuclear coupled spins will become a necessity. In the present work, we demonstrate that by using "strongly modulated pulses" (SMPs) for the creation of interpolating Hamiltonian, one can circumvent both the problems and successfully implement the adiabatic SAT algorithm in a homonuclear three qubit system. This work also demonstrates that the SMPs tremendously reduce the time taken for the implementation of the algorithm, can overcome problems associated with decoherence, and will be the modality in future implementation of quantum information processing by NMR. PMID:18376911
NMR implementation of adiabatic SAT algorithm using strongly modulated pulses
NASA Astrophysics Data System (ADS)
Mitra, Avik; Mahesh, T. S.; Kumar, Anil
2008-03-01
NMR implementation of adiabatic algorithms face severe problems in homonuclear spin systems since the qubit selective pulses are long and during this period, evolution under the Hamiltonian and decoherence cause errors. The decoherence destroys the answer as it causes the final state to evolve to mixed state and in homonuclear systems, evolution under the internal Hamiltonian causes phase errors preventing the initial state to converge to the solution state. The resolution of these issues is necessary before one can proceed to implement an adiabatic algorithm in a large system where homonuclear coupled spins will become a necessity. In the present work, we demonstrate that by using "strongly modulated pulses" (SMPs) for the creation of interpolating Hamiltonian, one can circumvent both the problems and successfully implement the adiabatic SAT algorithm in a homonuclear three qubit system. This work also demonstrates that the SMPs tremendously reduce the time taken for the implementation of the algorithm, can overcome problems associated with decoherence, and will be the modality in future implementation of quantum information processing by NMR.
Adiabatic corrections to density functional theory energies and wave functions.
Mohallem, José R; Coura, Thiago de O; Diniz, Leonardo G; de Castro, Gustavo; Assafrão, Denise; Heine, Thomas
2008-09-25
The adiabatic finite-nuclear-mass-correction (FNMC) to the electronic energies and wave functions of atoms and molecules is formulated for density-functional theory and implemented in the deMon code. The approach is tested for a series of local and gradient corrected density functionals, using MP2 results and diagonal-Born-Oppenheimer corrections from the literature for comparison. In the evaluation of absolute energy corrections of nonorganic molecules the LDA PZ81 functional works surprisingly better than the others. For organic molecules the GGA BLYP functional has the best performance. FNMC with GGA functionals, mainly BLYP, show a good performance in the evaluation of relative corrections, except for nonorganic molecules containing H atoms. The PW86 functional stands out with the best evaluation of the barrier of linearity of H2O and the isotopic dipole moment of HDO. In general, DFT functionals display an accuracy superior than the common belief and because the corrections are based on a change of the electronic kinetic energy they are here ranked in a new appropriate way. The approach is applied to obtain the adiabatic correction for full atomization of alcanes C(n)H(2n+2), n = 4-10. The barrier of 1 mHartree is approached for adiabatic corrections, justifying its insertion into DFT. PMID:18537228
A quantum relaxation-time approximation for finite fermion systems
Reinhard, P.-G.; Suraud, E.
2015-03-15
We propose a relaxation time approximation for the description of the dynamics of strongly excited fermion systems. Our approach is based on time-dependent density functional theory at the level of the local density approximation. This mean-field picture is augmented by collisional correlations handled in relaxation time approximation which is inspired from the corresponding semi-classical picture. The method involves the estimate of microscopic relaxation rates/times which is presently taken from the well established semi-classical experience. The relaxation time approximation implies evaluation of the instantaneous equilibrium state towards which the dynamical state is progressively driven at the pace of the microscopic relaxation time. As test case, we consider Na clusters of various sizes excited either by a swift ion projectile or by a short and intense laser pulse, driven in various dynamical regimes ranging from linear to strongly non-linear reactions. We observe a strong effect of dissipation on sensitive observables such as net ionization and angular distributions of emitted electrons. The effect is especially large for moderate excitations where typical relaxation/dissipation time scales efficiently compete with ionization for dissipating the available excitation energy. Technical details on the actual procedure to implement a working recipe of such a quantum relaxation approximation are given in appendices for completeness.
An Extension of the Krieger-Li-Iafrate Approximation to the Optimized-Effective-Potential Method
Wilson, B.G.
1999-11-11
The Krieger-Li-Iafrate approximation can be expressed as the zeroth order result of an unstable iterative method for solving the integral equation form of the optimized-effective-potential method. By pre-conditioning the iterate a first order correction can be obtained which recovers the bulk of quantal oscillations missing in the zeroth order approximation. A comparison of calculated total energies are given with Krieger-Li-Iafrate, Local Density Functional, and Hyper-Hartree-Fock results for non-relativistic atoms and ions.
Rittmeyer, Simon P; Meyer, Jörg; Juaristi, J Iñaki; Reuter, Karsten
2015-07-24
We assess the accuracy of vibrational damping rates of diatomic adsorbates on metal surfaces as calculated within the local-density friction approximation (LDFA). An atoms-in-molecules (AIM) type charge partitioning scheme accounts for intramolecular contributions and overcomes the systematic underestimation of the nonadiabatic losses obtained within the prevalent independent-atom approximation. The quantitative agreement obtained with theoretical and experimental benchmark data suggests the LDFA-AIM scheme as an efficient and reliable approach to account for electronic dissipation in ab initio molecular dynamics simulations of surface chemical reactions. PMID:26252696
Piezoelectric control of the mobility of a domain wall driven by adiabatic and non-adiabatic torques
NASA Astrophysics Data System (ADS)
de Ranieri, E.; Roy, P. E.; Fang, D.; Vehsthedt, E. K.; Irvine, A. C.; Heiss, D.; Casiraghi, A.; Campion, R. P.; Gallagher, B. L.; Jungwirth, T.; Wunderlich, J.
2013-09-01
The rich internal degrees of freedom of magnetic domain walls make them an attractive complement to electron charge for exploring new concepts of storage, transport and processing of information. Here we use the tunable internal structure of a domain wall in a perpendicularly magnetized GaMnAsP/GaAs ferromagnetic semiconductor and demonstrate devices in which piezoelectrically controlled magnetic anisotropy yields up to 500% mobility variations for an electrical-current-driven domain wall. We observe current-induced domain wall motion over a wide range of current-pulse amplitudes and report a direct observation and the piezoelectric control of the Walker breakdown separating two regimes with different mobilities. Our work demonstrates that in spin-orbit-coupled ferromagnets with weak extrinsic domain wall pinning, the piezoelectric control allows one to experimentally assess the upper and lower boundaries of the characteristic ratio of adiabatic and non-adiabatic spin-transfer torques in the current-driven domain wall motion.
Novel developments and applications of the classical adiabatic dynamics technique
NASA Astrophysics Data System (ADS)
Rosso, Lula
The present work aims to apply and develop modern molecular dynamics techniques based on a novel analysis of the classical adiabatic dynamics approach. In the first part of this thesis, Car-Parrinello ab-initio molecular dynamics, a successful technique based on adiabatic dynamics, is used to study the charge transport mechanism in solid ammonium perchlorate (AP) crystal exposed to an ammonia-rich environment. AP is a solid-state proton conductor composed of NH+4 and ClO-4 units that can undergo a decomposition process at high temperature, leading to its use such as rocket fuel. After computing IR spectra and carefully analysing the dynamics at different temperatures, we found that the charge transport mechanism in the pure crystal is dominated by diffusion of the ammonium ions and that the translational diffusion is strongly coupled to rotational diffusion of the two types of ions present. When the pure ammonium-perchlorate crystal is doped with neutral ammonia, another mechanism comes into play, namely, the Grotthuss proton hopping mechanism via short-lived N2H+7 complexes. In the second part of this thesis, adiabatic dynamics will be used to develop an alternative approach to the calculation of free energy profiles along reaction paths. The new method (AFED) is based on the creation of an adiabatic separation between the reaction coordinate subspace and the remaining degrees of freedom within a molecular dynamics run. This is achieved by associating with the reaction coordinate(s) a high temperature and large mass. These conditions allow the activated process to occur while permitting the remaining degrees of freedom to respond adiabatically. In this limit, by applying a formal multiple time scale Liouville operator factorization, it can be rigorously shown that the free energy profile is obtained directly from the probability distribution of the reaction coordinate subspace and, therefore, no postprocessing of the output data is required. The new method is
NASA Astrophysics Data System (ADS)
Colonna, Nicola; de Gironcoli, Stefano
2014-03-01
We have developed an expression for the electronic correlation energy via the Adiabatic Connection Fluctuation-Dissipation Theorem (ACFDT) going beyond the Random-Phase Approximation (RPA) by including exact exchange contribution to the kernel (RPAx). Our derivation is valid and efficient for general systems. It is based on an eigenvalue decomposition of the time dependent response function of the Many Body system in the limit of vanishing coupling constant, evaluated by Density Functional Perturbation Theory. We tested the accuracy of this approximation on the homogeneous electron gas. Within RPAx, the correlation energy of the homogeneous electron gas improves significantly with respect to the RPA results up to densities of the order of rs ~ 10 . However, beyond this value, the RPAx response function becomes pathological and the approximation breaks down. We have also evaluated the dependence of the correlation energy on the spin magnetization of the system. Both RPA an RPAx are in excellent agreement with accurate Quantum Monte Carlo results.
Chalasani, P.; Saias, I.; Jha, S.
1996-04-08
As increasingly large volumes of sophisticated options (called derivative securities) are traded in world financial markets, determining a fair price for these options has become an important and difficult computational problem. Many valuation codes use the binomial pricing model, in which the stock price is driven by a random walk. In this model, the value of an n-period option on a stock is the expected time-discounted value of the future cash flow on an n-period stock price path. Path-dependent options are particularly difficult to value since the future cash flow depends on the entire stock price path rather than on just the final stock price. Currently such options are approximately priced by Monte carlo methods with error bounds that hold only with high probability and which are reduced by increasing the number of simulation runs. In this paper the authors show that pricing an arbitrary path-dependent option is {number_sign}-P hard. They show that certain types f path-dependent options can be valued exactly in polynomial time. Asian options are path-dependent options that are particularly hard to price, and for these they design deterministic polynomial-time approximate algorithms. They show that the value of a perpetual American put option (which can be computed in constant time) is in many cases a good approximation to the value of an otherwise identical n-period American put option. In contrast to Monte Carlo methods, the algorithms have guaranteed error bounds that are polynormally small (and in some cases exponentially small) in the maturity n. For the error analysis they derive large-deviation results for random walks that may be of independent interest.
Beyond the Kirchhoff approximation
NASA Technical Reports Server (NTRS)
Rodriguez, Ernesto
1989-01-01
The three most successful models for describing scattering from random rough surfaces are the Kirchhoff approximation (KA), the small-perturbation method (SPM), and the two-scale-roughness (or composite roughness) surface-scattering (TSR) models. In this paper it is shown how these three models can be derived rigorously from one perturbation expansion based on the extinction theorem for scalar waves scattering from perfectly rigid surface. It is also shown how corrections to the KA proportional to the surface curvature and higher-order derivatives may be obtained. Using these results, the scattering cross section is derived for various surface models.
Magnetic reconnection under anisotropic magnetohydrodynamic approximation
Hirabayashi, K.; Hoshino, M.
2013-11-15
We study the formation of slow-mode shocks in collisionless magnetic reconnection by using one- and two-dimensional collisionless MHD codes based on the double adiabatic approximation and the Landau closure model. We bridge the gap between the Petschek-type MHD reconnection model accompanied by a pair of slow shocks and the observational evidence of the rare occasion of in-situ slow shock observations. Our results showed that once magnetic reconnection takes place, a firehose-sense (p{sub ∥}>p{sub ⊥}) pressure anisotropy arises in the downstream region, and the generated slow shocks are quite weak comparing with those in an isotropic MHD. In spite of the weakness of the shocks, however, the resultant reconnection rate is 10%–30% higher than that in an isotropic case. This result implies that the slow shock does not necessarily play an important role in the energy conversion in the reconnection system and is consistent with the satellite observation in the Earth's magnetosphere.
Graefe, E. M.; Korsch, H. J.; Witthaut, D.
2006-01-15
We investigate the dynamics of a Bose-Einstein condensate in a triple-well trap in a three-level approximation. The interatomic interactions are taken into account in a mean-field approximation (Gross-Pitaevskii equation), leading to a nonlinear three-level model. Additional eigenstates emerge due to the nonlinearity, depending on the system parameters. Adiabaticity breaks down if such a nonlinear eigenstate disappears when the parameters are varied. The dynamical implications of this loss of adiabaticity are analyzed for two important special cases: A three-level Landau-Zener model and the stimulated Raman adiabatic passage (STIRAP) scheme. We discuss the emergence of looped levels for an equal-slope Landau-Zener model. The Zener tunneling probability does not tend to zero in the adiabatic limit and shows pronounced oscillations as a function of the velocity of the parameter variation. Furthermore we generalize the STIRAP scheme for adiabatic coherent population transfer between atomic states to the nonlinear case. It is shown that STIRAP breaks down if the nonlinearity exceeds the detuning.
Mineo, H.; Kuo, J. L.; Niu, Y. L.; Lin, S. H.; Fujimura, Y.
2015-08-28
The results of application of the quantum-mechanical adiabatic theory to vibrational predissociation (VPD) of water dimers, (H{sub 2}O){sub 2} and (D{sub 2}O){sub 2}, are presented. We consider the VPD processes including the totally symmetric OH mode of the dimer and the bending mode of the fragment. The VPD in the adiabatic representation is induced by breakdown of the vibrational adiabatic approximation, and two types of nonadiabatic coupling matrix elements are involved: one provides the VPD induced by the low-frequency dissociation mode and the other provides the VPD through channel interactions induced by the low-frequency modes. The VPD rate constants were calculated using the Fermi golden rule expression. A closed form for the nonadiabatic transition matrix element between the discrete and continuum states was derived in the Morse potential model. All of the parameters used were obtained from the potential surfaces of the water dimers, which were calculated by the density functional theory procedures. The VPD rate constants for the two processes were calculated in the non-Condon scheme beyond the so-called Condon approximation. The channel interactions in and between the initial and final states were taken into account, and those are found to increase the VPD rates by 3(1) orders of magnitude for the VPD processes in (H{sub 2}O){sub 2} ((D{sub 2}O){sub 2}). The fraction of the bending-excited donor fragments is larger than that of the bending-excited acceptor fragments. The results obtained by quantum-mechanical approach are compared with both experimental and quasi-classical trajectory calculation results.
Kibble-Zurek mechanism beyond adiabaticity: Finite-time scaling with critical initial slip
NASA Astrophysics Data System (ADS)
Huang, Yingyi; Yin, Shuai; Hu, Qijun; Zhong, Fan
2016-01-01
The Kibble-Zurek mechanism demands an initial adiabatic stage before an impulse stage to have a frozen correlation length that generates topological defects in a cooling phase transition. Here we study such a driven critical dynamics but with an initial condition that is near the critical point and that is far away from equilibrium. In this case, there is no initial adiabatic stage at all and thus adiabaticity is broken. However, we show that there again exists a finite length scale arising from the driving that divides the evolution into three stages. A relaxation-finite-time-scaling-adiabatic scenario is then proposed in place of the adiabatic-impulse-adiabatic scenario of the original Kibble-Zurek mechanism. A unified scaling theory, which combines finite-time scaling with critical initial slip, is developed to describe the universal behavior and is confirmed with numerical simulations of a two-dimensional classical Ising model.
Optimized sympathetic cooling of atomic mixtures via fast adiabatic strategies
Choi, Stephen; Sundaram, Bala; Onofrio, Roberto
2011-11-15
We discuss fast frictionless cooling techniques in the framework of sympathetic cooling of cold atomic mixtures. It is argued that optimal cooling of an atomic species--in which the deepest quantum degeneracy regime is achieved--may be obtained by means of sympathetic cooling with another species whose trapping frequency is dynamically changed to maintain constancy of the Lewis-Riesenfeld adiabatic invariant. Advantages and limitations of this cooling strategy are discussed, with particular regard to the possibility of cooling Fermi gases to a deeper degenerate regime.
Magnetic shielding for a spaceborne adiabatic demagnetization refrigerator (ADR)
NASA Technical Reports Server (NTRS)
Warner, Brent A.; Shirron, Peter J.; Castles, Stephen H.; Serlemitsos, Aristides T.
1991-01-01
The Goddard Space Flight Center has studied magnetic shielding for an adiabatic demagnetization refrigerator. Four types of shielding were studied: active coils, passive ferromagnetic shells, passive superconducting coils, and passive superconducting shells. The passive superconducting shells failed by allowing flux penetration. The other three methods were successful, singly or together. Experimental studies of passive ferromagnetic shielding are compared with calculations made using the Poisson Group of programs, distributed by the Los Alamos Accelerator Code Group of the Los Alamos National Laboratory. Agreement between calculation and experiment is good. The ferromagnetic material is a silicon iron alloy.
Modeling of the Adiabatic and Isothermal Methanation Process
NASA Astrophysics Data System (ADS)
Porubova, Jekaterina; Bazbauers, Gatis; Markova, Darja
2011-01-01
Increased use of biomass offers one of the ways to reduce anthropogenic impact on the environment. Using various biomass conversion processes, it is possible to obtain different types of fuels: • solid, e.g. bio-carbon; • liquid, e.g. biodiesel and ethanol; • gaseous, e.g. biomethane. Biomethane can be used in the transport and energy sector, and the total methane production efficiency can reach 65%. By modeling adiabatic and isothermal methanation processes, the most effective one from the methane production point of view is defined. Influence of the process parameters on the overall efficiency of the methane production is determined.
Stimulated Raman adiabatic passage in Tm{sup 3+}:YAG
Alexander, A. L.; Lauro, R.; Louchet, A.; Chaneliere, T.; Le Goueet, J. L.
2008-10-01
We report on the experimental demonstration of stimulated Raman adiabatic passage in a Tm{sup 3+}:YAG crystal. Tm{sup 3+}:YAG is a promising material for use in quantum information processing applications, but as yet there are few experimental investigations of coherent Raman processes in this material. We investigate the effect of inhomogeneous broadening and Rabi frequency on the transfer efficiency and the width of the two-photon spectrum. Simulations of the complete Tm{sup 3+}:YAG system are presented along with the corresponding experimental results.
Plasma heating via adiabatic magnetic compression-expansion cycle
NASA Astrophysics Data System (ADS)
Avinash, K.; Sengupta, M.; Ganesh, R.
2016-06-01
Heating of collisionless plasmas in closed adiabatic magnetic cycle comprising of a quasi static compression followed by a non quasi static constrained expansion against a constant external pressure is proposed. Thermodynamic constraints are derived to show that the plasma always gains heat in cycles having at least one non quasi static process. The turbulent relaxation of the plasma to the equilibrium state at the end of the non quasi static expansion is discussed and verified via 1D Particle in Cell (PIC) simulations. Applications of this scheme to heating plasmas in open configurations (mirror machines) and closed configurations (tokamak, reverse field pinche) are discussed.
Ultrasonic velocity and adiabatic compressibility in dioxane-water mixtures
NASA Technical Reports Server (NTRS)
Ciupe, A.; Auslaender, D.
1974-01-01
Using a method of diffraction of light on an ultrasonic beam, the velocity of ultrasounds and the adiabatic compressibility in dioxane-water mixtures were determined. The dependence of these quantities on the temperature (in the 15-50 C range) and on the concentration (0-100%) were studied. For each temperature there was found a velocity maximum and a compressibility minimum for a given value of the dioxane concentration. The different behavior of these mixtures is due to intense interactions between the molecules of the two liquids composing the mixture.
More bang for your buck: Super-adiabatic quantum engines
Campo, A. del; Goold, J.; Paternostro, M.
2014-01-01
The practical untenability of the quasi-static assumption makes any realistic engine intrinsically irreversible and its operating time finite, thus implying friction effects at short cycle times. An important technological goal is thus the design of maximally efficient engines working at the maximum possible power. We show that, by utilising shortcuts to adiabaticity in a quantum engine cycle, one can engineer a thermodynamic cycle working at finite power and zero friction. Our findings are illustrated using a harmonic oscillator undergoing a quantum Otto cycle. PMID:25163421
Salt materials testing for a spacecraft adiabatic demagnetization refrigerator
NASA Technical Reports Server (NTRS)
Savage, M. L.; Kittel, P.; Roellig, T.
1990-01-01
As part of a technology development effort to qualify adiabatic demagnetization refrigerators for use in a NASA spacecraft, such as the Space Infrared Telescope Facility, a study of low temperature characteristics, heat capacity and resistance to dehydration was conducted for different salt materials. This report includes results of testing with cerrous metaphosphate, several synthetic rubies, and chromic potassium alum (CPA). Preliminary results show that CPA may be suitable for long-term spacecraft use, provided that the salt is property encapsulated. Methods of salt pill construction and testing for all materials are discussed, as well as reliability tests. Also, the temperature regulation scheme and the test cryostat design are briefly discussed.
Gravitational radiation reaction and inspiral waveforms in the adiabatic limit.
Hughes, Scott A; Drasco, Steve; Flanagan, Eanna E; Franklin, Joel
2005-06-10
We describe progress evolving an important limit of binaries in general relativity: stellar mass compact objects spiraling into much larger black holes. Such systems are of great observational interest. We have developed tools to compute for the first time the radiation from generic orbits. Using global conservation laws, we find the orbital evolution and waveforms for special cases. For generic orbits, inspirals and waveforms can be found by augmenting our approach with an adiabatic self-force rule due to Mino. Such waveforms should be accurate enough for gravitational-wave searches. PMID:16090377
From Classical Nonlinear Integrable Systems to Quantum Shortcuts to Adiabaticity
NASA Astrophysics Data System (ADS)
Okuyama, Manaka; Takahashi, Kazutaka
2016-08-01
Using shortcuts to adiabaticity, we solve the time-dependent Schrödinger equation that is reduced to a classical nonlinear integrable equation. For a given time-dependent Hamiltonian, the counterdiabatic term is introduced to prevent nonadiabatic transitions. Using the fact that the equation for the dynamical invariant is equivalent to the Lax equation in nonlinear integrable systems, we obtain the counterdiabatic term exactly. The counterdiabatic term is available when the corresponding Lax pair exists and the solvable systems are classified in a unified and systematic way. Multisoliton potentials obtained from the Korteweg-de Vries equation and isotropic X Y spin chains from the Toda equations are studied in detail.
More bang for your buck: super-adiabatic quantum engines.
del Campo, A; Goold, J; Paternostro, M
2014-01-01
The practical untenability of the quasi-static assumption makes any realistic engine intrinsically irreversible and its operating time finite, thus implying friction effects at short cycle times. An important technological goal is thus the design of maximally efficient engines working at the maximum possible power. We show that, by utilising shortcuts to adiabaticity in a quantum engine cycle, one can engineer a thermodynamic cycle working at finite power and zero friction. Our findings are illustrated using a harmonic oscillator undergoing a quantum Otto cycle. PMID:25163421
Stimulated Raman adiabatic passage through permanent dipole moment transitions
Niu Yingyu; Wang Rong; Qiu Minghui
2010-04-15
The rovibrational dynamics of stimulated Raman adiabatic passage (STIRAP) through permanent dipole moment transitions are investigated theoretically using a time-dependent quantum wave packet method for the ground electronic state of an HF molecule. The two basic STIRAP processes, {Lambda} and ladder systems, are simulated. The calculated results show that nearly 100% of the population can be transferred to the target state. Besides the interested transitions, the pulses can induce other transitions which affect the dynamics of STIRAP. The final populations of the initial and target states depend on delay time.
Local shortcut to adiabaticity for quantum many-body systems
NASA Astrophysics Data System (ADS)
Mukherjee, Victor; Montangero, Simone; Fazio, Rosario
2016-06-01
We study the environmentally assisted local transitionless dynamics in closed spin systems driven through quantum critical points. In general the shortcut to adaiabaticity (STA) in quantum critical systems requires highly nonlocal control Hamiltonians. In this work we develop an approach to achieve local shortcuts to adiabaticity (LSTA) in spin chains, using local control fields which scale polynomially with the system size, following universal critical exponents. We relate the control fields to reduced fidelity susceptibility and use the transverse Ising model in one dimension to exemplify our generic results. We also extend our analysis to achieve LSTA in central spin models.
Steady-state coherent transfer by adiabatic passage.
Huneke, Jan; Platero, Gloria; Kohler, Sigmund
2013-01-18
We propose steady-state electron transport based on coherent transfer by adiabatic passage (CTAP) in a linearly arranged triple quantum dot with leads attached to the outer dots. Its main feature is repeated steering of single electrons from the first dot to the last dot without relevant occupation of the middle dot. The coupling to leads enables a steady-state current, whose shot noise is significantly suppressed provided that the CTAP protocol performs properly. This represents an indication for the direct transfer between spatially separated dots and, thus, may resolve the problem of finding experimental evidence for the nonoccupation of the middle dot. PMID:23373941
Countably QC-Approximating Posets
Mao, Xuxin; Xu, Luoshan
2014-01-01
As a generalization of countably C-approximating posets, the concept of countably QC-approximating posets is introduced. With the countably QC-approximating property, some characterizations of generalized completely distributive lattices and generalized countably approximating posets are given. The main results are as follows: (1) a complete lattice is generalized completely distributive if and only if it is countably QC-approximating and weakly generalized countably approximating; (2) a poset L having countably directed joins is generalized countably approximating if and only if the lattice σc(L)op of all σ-Scott-closed subsets of L is weakly generalized countably approximating. PMID:25165730
Approximate Bayesian multibody tracking.
Lanz, Oswald
2006-09-01
Visual tracking of multiple targets is a challenging problem, especially when efficiency is an issue. Occlusions, if not properly handled, are a major source of failure. Solutions supporting principled occlusion reasoning have been proposed but are yet unpractical for online applications. This paper presents a new solution which effectively manages the trade-off between reliable modeling and computational efficiency. The Hybrid Joint-Separable (HJS) filter is derived from a joint Bayesian formulation of the problem, and shown to be efficient while optimal in terms of compact belief representation. Computational efficiency is achieved by employing a Markov random field approximation to joint dynamics and an incremental algorithm for posterior update with an appearance likelihood that implements a physically-based model of the occlusion process. A particle filter implementation is proposed which achieves accurate tracking during partial occlusions, while in cases of complete occlusion, tracking hypotheses are bound to estimated occlusion volumes. Experiments show that the proposed algorithm is efficient, robust, and able to resolve long-term occlusions between targets with identical appearance. PMID:16929730
Shortcut to Adiabatic Passage in Two- and Three-Level Atoms
Chen Xi; Lizuain, I.; Muga, J. G.; Ruschhaupt, A.; Guery-Odelin, D.
2010-09-17
We propose a method to speed up adiabatic passage techniques in two-level and three-level atoms extending to the short-time domain their robustness with respect to parameter variations. It supplements or substitutes the standard laser beam setups with auxiliary pulses that steer the system along the adiabatic path. Compared to other strategies, such as composite pulses or the original adiabatic techniques, it provides a fast and robust approach to population control.
Bateman, James; Freegarde, Tim
2007-07-15
Atom interferometers require atom mirrors and beam splitters that can maintain high fidelity even when experimental parameters vary from the ideal. We address the use of chirped laser pulses to provide such elements via rapid adiabatic passage, and present a prescription for practical pulses that offer controlled adiabaticity throughout. Full- and half-adiabatic pulses, providing mirrors and beam splitters, respectively, are derived, and the latter examined for robustness and suitability for experimental implementations.
NASA Astrophysics Data System (ADS)
Wójcik, P.; Zegrodnik, M.; Rzeszotarski, B.; Adamowski, J.
2016-09-01
The tunneling conductance through the half-metal/conical magnet/superconductor (HM/CM/SC) junctions is investigated with the use of the Bogoliubov-de Gennes equations in the framework of Blonder-Tinkham-Klapwijk formalism. Due to the spin band separation in the HM, the conductance in the subgap region is mainly determined by the anomalous Andreev reflection, the probability of which strongly depends on the spin transmission in the CM layer. We show that the spins of electrons injected from the HM can be transmitted through the CM to the SC either adiabatically or non-adiabatically depending on the period of the spatial modulation of the exchange field. We find that the conductance in the subgap region oscillates as a function of the CM layer thickness wherein the oscillations transform from the irregular pattern in the non-adiabatic regime to the regular one in the adiabatic regime. For both adiabatic and non-adiabatic transport regimes the conductance is studied over a broad range of parameters determining the spiral magnetization in the CM. We find that in the non-adiabatic regime, the decrease of the exchange field amplitude in the CM leads to the emergence of the conductance peak for the particular CM thickness in agreement with recent experiments.
Approximation by hinge functions
Faber, V.
1997-05-01
Breiman has defined {open_quotes}hinge functions{close_quotes} for use as basis functions in least squares approximations to data. A hinge function is the max (or min) function of two linear functions. In this paper, the author assumes the existence of smooth function f(x) and a set of samples of the form (x, f(x)) drawn from a probability distribution {rho}(x). The author hopes to find the best fitting hinge function h(x) in the least squares sense. There are two problems with this plan. First, Breiman has suggested an algorithm to perform this fit. The author shows that this algorithm is not robust and also shows how to create examples on which the algorithm diverges. Second, if the author tries to use the data to minimize the fit in the usual discrete least squares sense, the functional that must be minimized is continuous in the variables, but has a derivative which jumps at the data. This paper takes a different approach. This approach is an example of a method that the author has developed called {open_quotes}Monte Carlo Regression{close_quotes}. (A paper on the general theory is in preparation.) The author shall show that since the function f is continuous, the analytic form of the least squares equation is continuously differentiable. A local minimum is solved for by using Newton`s method, where the entries of the Hessian are estimated directly from the data by Monte Carlo. The algorithm has the desirable properties that it is quadratically convergent from any starting guess sufficiently close to a solution and that each iteration requires only a linear system solve.
Singularity of the time-energy uncertainty in adiabatic perturbation and cycloids on a Bloch sphere.
Oh, Sangchul; Hu, Xuedong; Nori, Franco; Kais, Sabre
2016-01-01
Adiabatic perturbation is shown to be singular from the exact solution of a spin-1/2 particle in a uniformly rotating magnetic field. Due to a non-adiabatic effect, its quantum trajectory on a Bloch sphere is a cycloid traced by a circle rolling along an adiabatic path. As the magnetic field rotates more and more slowly, the time-energy uncertainty, proportional to the length of the quantum trajectory, calculated by the exact solution is entirely different from the one obtained by the adiabatic path traced by the instantaneous eigenstate. However, the non-adiabatic Aharonov-Anandan geometric phase, measured by the area enclosed by the exact path, approaches smoothly the adiabatic Berry phase, proportional to the area enclosed by the adiabatic path. The singular limit of the time-energy uncertainty and the regular limit of the geometric phase are associated with the arc length and arc area of the cycloid on a Bloch sphere, respectively. Prolate and curtate cycloids are also traced by different initial states outside and inside of the rolling circle, respectively. The axis trajectory of the rolling circle, parallel to the adiabatic path, is shown to be an example of transitionless driving. The non-adiabatic resonance is visualized by the number of cycloid arcs. PMID:26916031
Singularity of the time-energy uncertainty in adiabatic perturbation and cycloids on a Bloch sphere
Oh, Sangchul; Hu, Xuedong; Nori, Franco; Kais, Sabre
2016-01-01
Adiabatic perturbation is shown to be singular from the exact solution of a spin-1/2 particle in a uniformly rotating magnetic field. Due to a non-adiabatic effect, its quantum trajectory on a Bloch sphere is a cycloid traced by a circle rolling along an adiabatic path. As the magnetic field rotates more and more slowly, the time-energy uncertainty, proportional to the length of the quantum trajectory, calculated by the exact solution is entirely different from the one obtained by the adiabatic path traced by the instantaneous eigenstate. However, the non-adiabatic Aharonov- Anandan geometric phase, measured by the area enclosed by the exact path, approaches smoothly the adiabatic Berry phase, proportional to the area enclosed by the adiabatic path. The singular limit of the time-energy uncertainty and the regular limit of the geometric phase are associated with the arc length and arc area of the cycloid on a Bloch sphere, respectively. Prolate and curtate cycloids are also traced by different initial states outside and inside of the rolling circle, respectively. The axis trajectory of the rolling circle, parallel to the adiabatic path, is shown to be an example of transitionless driving. The non-adiabatic resonance is visualized by the number of cycloid arcs. PMID:26916031
Adiabatic invariants in stellar dynamics, 3: Application to globular cluster evolution
NASA Technical Reports Server (NTRS)
Weinberg, Martin D.
1994-01-01
The previous two companion papers demonstrate that slowly varying perturbations may not result in adiabatic cutoffs and provide a formalism for computing the long-term effects of time-dependent perturbations on stellar systems. Here, the theory is implemented in a Fokker-Planck code and a suite of runs illustrating the effects of shock heating on globular cluster evolution are described. Shock heating alone results in considerable mass loss for clusters with R(sub g) less than or approximately 8 kpc: a concentration c = 1.5 cluster with R(sub g) kpc loses up to 95% of its initial mass in 15 Gyr. Only those with concentration c greater than or approximately 1.3 survive disk shocks inside of this radius. Other effects, such as mass loss by stellar evolution, will decrease this survival bound. Loss of the initial halo together with mass segregation leads to mass spectral indices, x, which may be considerably larger than their initial values.
NASA Astrophysics Data System (ADS)
Juhl, B.; Treumann, R. A.
1980-09-01
Observation of the adiabatic behavior of energetic particle pitch-angle distributions in the magnetosphere in the past indicated the development of pronounced minima or drift-loss cones on the pitch-angle distributions centered at angles between particle velocity and magnetic field of approximately 90 deg in connection with storm-time changes in magnetospheric convection and magnetic field. Using a model of a drift-modified loss-cone distribution (MLCD) of the butterfly type, the linear stability of electromagnetic whistler or ion-cyclotron waves propagating parallel to the magnetic field has been investigated. The instability is shown to be quenched at high frequencies less than the marginally stable frequency, which is equal to A/(A + 1), where A is the thermal anisotropy. This quenching becomes stronger the higher are the respective parallel hot particle thermal velocity and cold plasma density. Particles around pitch-angles of approximately 90 deg are identified as generating electromagnetic cyclotron waves near the marginally stable frequency. It is concluded that the absence of electromagnetic VLF and ELF noise during times when MLCD develops is the result of the shift of the unstable spectrum to low frequencies.
Schedule path optimization for adiabatic quantum computing and optimization
NASA Astrophysics Data System (ADS)
Zeng, Lishan; Zhang, Jun; Sarovar, Mohan
2016-04-01
Adiabatic quantum computing and optimization have garnered much attention recently as possible models for achieving a quantum advantage over classical approaches to optimization and other special purpose computations. Both techniques are probabilistic in nature and the minimum gap between the ground state and first excited state of the system during evolution is a major factor in determining the success probability. In this work we investigate a strategy for increasing the minimum gap and success probability by introducing intermediate Hamiltonians that modify the evolution path between initial and final Hamiltonians. We focus on an optimization problem relevant to recent hardware implementations and present numerical evidence for the existence of a purely local intermediate Hamiltonian that achieve the optimum performance in terms of pushing the minimum gap to one of the end points of the evolution. As a part of this study we develop a convex optimization formulation of the search for optimal adiabatic schedules that makes this computation more tractable, and which may be of independent interest. We further study the effectiveness of random intermediate Hamiltonians on the minimum gap and success probability, and empirically find that random Hamiltonians have a significant probability of increasing the success probability, but only by a modest amount.
Sliding Seal Materials for Adiabatic Engines, Phase 2
NASA Technical Reports Server (NTRS)
Lankford, J.; Wei, W.
1986-01-01
An essential task in the development of the heavy-duty adiabatic diesel engine is identification and improvements of reliable, low-friction piston seal materials. In the present study, the sliding friction coefficients and wear rates of promising carbide, oxide, and nitride materials were measured under temperature, environmental, velocity, and loading conditions that are representative of the adiabatic engine environment. In addition, silicon nitride and partially stabilized zirconia disks were ion implanted with TiNi, Ni, Co, and Cr, and subsequently run against carbide pins, with the objective of producing reduced friction via solid lubrication at elevated temperature. In order to provide guidance needed to improve materials for this application, the program stressed fundamental understanding of the mechanisms involved in friction and wear. Electron microscopy was used to elucidate the micromechanisms of wear following wear testing, and Auger electron spectroscopy was used to evaluate interface/environment interactions which seemed to be important in the friction and wear process. Unmodified ceramic sliding couples were characterized at all temperatures by friction coefficients of 0.24 and above. The coefficient at 800 C in an oxidizing environment was reduced to below 0.1, for certain material combinations, by the ion implanation of TiNi or Co. This beneficial effect was found to derive from lubricious Ti, Ni, and Co oxides.
Fast Ion Non-adiabaticity in Spherical Tokamaks
V.A. Yavorskij; D. Darrow; V.Ya. Goloborod'ko; S.N. Reznik; U. Holzmueller-Steinacker; N. Gorelenkov; K. Schoepf
2002-08-01
Transport processes of fast ions in axisymmetric low-aspect-ratio spherical torus (ST) plasmas are investigated, which are induced by the non-conservation of the magnetic moment {mu}. The reason for non-conservation of {mu} of fast ions in ST's is the relatively large adiabaticity parameter epsilon typically exceeding the value 0.1 (epsilon = ratio of ion gyroradius to the gradient scale length of the magnetic field). Both analytical and numerical evaluations of the magnitude of nonadiabatic variations of {mu} are performed. Nonadiabaticity effects are shown to be most significant for fast ions for which the bounce oscillations are in resonance with the gyromotion, i.e., for ions with omega(subscript)B - lomega(subscript)b = 0, where omega(subscript)B and omega(subscript)b represent the bounce-averaged gyrofrequency and the bounce frequency, respectively, and l is an integer. The critical threshold of the adiabaticity parameter, epsilon(subscript)cr, to be exceeded for the transition to stochastic behavior of fast ions in axisymmetric ST's is inspected. Nonadiabatic variations of {mu} are shown to lead to collisionless transformation of trapped orbits into circulating ones and vice versa. For the case of strong nonadiabaticity, epsilon > epsilon(subscript)cr, we assess the transport coefficients describing intense collisionless pitch-angle diffusion, whereas, in the case of weak nonadiabaticity, epsilon > epsilon(subscript)cr, the more substantial coefficients of enhanced collisional radial diffusion and convection of fast ions gyrating resonantly with the bounce oscillations are estimated.
Robust quantum logic in neutral atoms via adiabatic Rydberg dressing
Keating, Tyler; Cook, Robert L.; Hankin, Aaron M.; Jau, Yuan -Yu; Biedermann, Grant W.; Deutsch, Ivan H.
2015-01-28
We study a scheme for implementing a controlled-Z (CZ) gate between two neutral-atom qubits based on the Rydberg blockade mechanism in a manner that is robust to errors caused by atomic motion. By employing adiabatic dressing of the ground electronic state, we can protect the gate from decoherence due to random phase errors that typically arise because of atomic thermal motion. In addition, the adiabatic protocol allows for a Doppler-free configuration that involves counterpropagating lasers in a σ_{+}/σ_{-} orthogonal polarization geometry that further reduces motional errors due to Doppler shifts. The residual motional error is dominated by dipole-dipole forces acting on doubly-excited Rydberg atoms when the blockade is imperfect. As a result, for reasonable parameters, with qubits encoded into the clock states of ^{133}Cs, we predict that our protocol could produce a CZ gate in < 10 μs with error probability on the order of 10^{-3}.
Adiabatic cooling of the artificial Porcupine plasma jet
NASA Astrophysics Data System (ADS)
Ruizhin, Iu. Ia.; Treumann, R. A.; Bauer, O. H.; Moskalenko, A. M.
1987-01-01
Measurements of the plasma density obtained during the interaction of the artificial plasma jet, fired into the ionosphere with the body of the Porcupine main payload, have been analyzed for times when there was a well-developed wake effect. Using wake theory, the maximum temperature of the quasi-neutral xenon ion beam has been determined for an intermediate distance from the ion beam source when the beam has left the diamagnetic region but is still much denser than the ionospheric background plasma. The beam temperature is found to be about 4 times less than the temperature at injection. This observation is very well explained by adiabatic cooling of the beam during its initial diamagnetic and current-buildup phases at distances r smaller than 10 m. Outside this region, the beam conserves the temperature achieved. The observation proves that the artificial plasma jet passes through an initial gas-like diamagnetic phase restricted to the vicinity of the beam source, where it expands adiabatically. Partial cooling also takes place outside the diamagnetic region where the beam current still builds up. The observations also support a recently developed current-closure model of the quasi-neutral ion beam.
The 0.1K bolometers cooled by adiabatic demagnetization
NASA Technical Reports Server (NTRS)
Roellig, T.; Lesyna, L.; Kittel, P.; Werner, M.
1983-01-01
The most straightforward way of reducing the noise equivalent power of bolometers is to lower their operating temperature. We have been exploring the possibility of using conventionally constructed bolometers at ultra-low temperatures to achieve NEP's suitable to the background environment of cooled space telescopes. We have chosen the technique of adiabatic demagnetization of a paramagnetic salt as a gravity independent, compact, and low power way to achieve temperatures below pumped He-3 (0.3 K). The demagnetization cryostat we used was capable of reaching temperatures below 0.08 K using Chromium Potassium Alum as a salt from a starting temperature of 1.5 K and a starting magnetic field of 30,000 gauss. Computer control of the magnetic field decay allowed a temperature of 0.2 K to be maintained to within 0.5 mK over a time period exceeding 14 hours. The refrigerator duty cycle was over 90 percent at this temperature. The success of these tests has motivated us to construct a more compact portable adiabatic demagnetization cryostat capable of bolometer optical tests and use at the 5m Hale telescope at 1mm wavelengths.
FRW-type cosmologies with adiabatic matter creation
NASA Astrophysics Data System (ADS)
Lima, J. A. S.; Germano, A. S. M.; Abramo, L. R. W.
1996-04-01
Some properties of cosmological models with matter creation are investigated in the framework of the Friedmann-Robertson-Walker line element. For adiabatic matter creation, as developed by Prigogine and co-workers, we derive a simple expression relating the particle number density n and energy density ρ which holds regardless of the matter creation rate. The conditions to generate inflation are discussed and by considering the natural phenomenological matter creation rate ψ=3βnH, where β is a pure number of the order of unity and H is the Hubble parameter, a minimally modified hot big-bang model is proposed. The dynamic properties of such models can be deduced from the standard ones simply by replacing the adiabatic index γ of the equation of state by an effective parameter γ*=γ(1-β). The thermodynamic behavior is determined and it is also shown that ages large enough to agree with observations are obtained even given the high values of H suggested by recent measurements.
Conditions for super-adiabatic droplet growth after entrainment mixing
Yang, Fan; Shaw, Raymond; Xue, Huiwen
2016-07-29
Cloud droplet response to entrainment and mixing between a cloud and its environment is considered, accounting for subsequent droplet growth during adiabatic ascent following a mixing event. The vertical profile for liquid water mixing ratio after a mixing event is derived analytically, allowing the reduction to be predicted from the mixing fraction and from the temperature and humidity for both the cloud and environment. It is derived for the limit of homogeneous mixing. The expression leads to a critical height above the mixing level: at the critical height the cloud droplet radius is the same for both mixed and unmixedmore » parcels, and the critical height is independent of the updraft velocity and mixing fraction. Cloud droplets in a mixed parcel are larger than in an unmixed parcel above the critical height, which we refer to as the “super-adiabatic” growth region. Analytical results are confirmed with a bin microphysics cloud model. Using the model, we explore the effects of updraft velocity, aerosol source in the environmental air, and polydisperse cloud droplets. Results show that the mixed parcel is more likely to reach the super-adiabatic growth region when the environmental air is humid and clean. It is also confirmed that the analytical predictions are matched by the volume-mean cloud droplet radius for polydisperse size distributions. The findings have implications for the origin of large cloud droplets that may contribute to onset of collision–coalescence in warm clouds.« less
Robust quantum logic in neutral atoms via adiabatic Rydberg dressing
Keating, Tyler; Cook, Robert L.; Hankin, Aaron M.; Jau, Yuan -Yu; Biedermann, Grant W.; Deutsch, Ivan H.
2015-01-28
We study a scheme for implementing a controlled-Z (CZ) gate between two neutral-atom qubits based on the Rydberg blockade mechanism in a manner that is robust to errors caused by atomic motion. By employing adiabatic dressing of the ground electronic state, we can protect the gate from decoherence due to random phase errors that typically arise because of atomic thermal motion. In addition, the adiabatic protocol allows for a Doppler-free configuration that involves counterpropagating lasers in a σ+/σ- orthogonal polarization geometry that further reduces motional errors due to Doppler shifts. The residual motional error is dominated by dipole-dipole forces actingmore » on doubly-excited Rydberg atoms when the blockade is imperfect. As a result, for reasonable parameters, with qubits encoded into the clock states of 133Cs, we predict that our protocol could produce a CZ gate in < 10 μs with error probability on the order of 10-3.« less
Turbulent Density Variations in Non-Adiabatic Interstellar Fluids
NASA Astrophysics Data System (ADS)
Higdon, J. C.; Conley, Alex
1998-05-01
Analyses of radio scintillation measurements have demonstrated (e.g., Rickett, ARAA, 28, 561, 1990) the existence of ubiquitous turbulent density fluctuations in the interstellar medium. Higdon (ApJ, 309, 342, 1986) and Goldreich and Sridhar (ApJ, 438, 763 1995) have modeled successfully these density variations as entropy structures distorted by convection in anisotropic magnetohydrodynamic turbulent flows. However, the interstellar medium is a heterogeneous non-adiabatic fluid whose thermal properties result ( Field, ApJ, 142, 531 1965) from a balance of heating and cooling rates. The effect of the non-adiabatic nature of interstellar fluids on the properties of turbulent cascades to small scales has not been considered previously. We find that in thermally stable fluids that the required balance of heating and cooling decreases the amplitudes of entropy structures independently of their spatial scale. Consequently, we show that if the time scale for turbulent flows to cascade to small scales is significantly greater than the cooling time of an interstellar fluid, the generation of turbulent denisty density variations at large wave numbers is greatly suppressed. Such results constrain possible values for the turbulent outer scale in models of interstellar turbulent flows.
AB INITIO SIMULATIONS FOR MATERIAL PROPERTIES ALONG THE JUPITER ADIABAT
French, Martin; Becker, Andreas; Lorenzen, Winfried; Nettelmann, Nadine; Bethkenhagen, Mandy; Redmer, Ronald; Wicht, Johannes
2012-09-15
We determine basic thermodynamic and transport properties of hydrogen-helium-water mixtures for the extreme conditions along Jupiter's adiabat via ab initio simulations, which are compiled in an accurate and consistent data set. In particular, we calculate the electrical and thermal conductivity, the shear and longitudinal viscosity, and diffusion coefficients of the nuclei. We present results for associated quantities like the magnetic and thermal diffusivity and the kinematic shear viscosity along an adiabat that is taken from a state-of-the-art interior structure model. Furthermore, the heat capacities, the thermal expansion coefficient, the isothermal compressibility, the Grueneisen parameter, and the speed of sound are calculated. We find that the onset of dissociation and ionization of hydrogen at about 0.9 Jupiter radii marks a region where the material properties change drastically. In the deep interior, where the electrons are degenerate, many of the material properties remain relatively constant. Our ab initio data will serve as a robust foundation for applications that require accurate knowledge of the material properties in Jupiter's interior, e.g., models for the dynamo generation.
Adiabatic Processes Realized with a Trapped Brownian Particle
NASA Astrophysics Data System (ADS)
Martínez, Ignacio A.; Roldán, Édgar; Dinis, Luis; Petrov, Dmitri; Rica, Raúl A.
2015-03-01
The ability to implement adiabatic processes in the mesoscale is of key importance in the study of artificial or biological micro- and nanoengines. Microadiabatic processes have been elusive to experimental implementation due to the difficulty in isolating Brownian particles from their fluctuating environment. Here we report on the experimental realization of a microscopic quasistatic adiabatic process employing a trapped Brownian particle. We circumvent the complete isolation of the Brownian particle by designing a protocol where both characteristic volume and temperature of the system are changed in such a way that the entropy of the system is conserved along the process. We compare the protocols that follow from either the overdamped or underdamped descriptions, demonstrating that the latter is mandatory in order to obtain a vanishing average heat flux to the particle. We provide analytical expressions for the distributions of the fluctuating heat and entropy and verify them experimentally. Our protocols could serve to implement the first microscopic engine that is able to attain the fundamental limit for the efficiency set by Carnot.
Adiabatic processes realized with a trapped Brownian particle.
Martínez, Ignacio A; Roldán, Édgar; Dinis, Luis; Petrov, Dmitri; Rica, Raúl A
2015-03-27
The ability to implement adiabatic processes in the mesoscale is of key importance in the study of artificial or biological micro- and nanoengines. Microadiabatic processes have been elusive to experimental implementation due to the difficulty in isolating Brownian particles from their fluctuating environment. Here we report on the experimental realization of a microscopic quasistatic adiabatic process employing a trapped Brownian particle. We circumvent the complete isolation of the Brownian particle by designing a protocol where both characteristic volume and temperature of the system are changed in such a way that the entropy of the system is conserved along the process. We compare the protocols that follow from either the overdamped or underdamped descriptions, demonstrating that the latter is mandatory in order to obtain a vanishing average heat flux to the particle. We provide analytical expressions for the distributions of the fluctuating heat and entropy and verify them experimentally. Our protocols could serve to implement the first microscopic engine that is able to attain the fundamental limit for the efficiency set by Carnot. PMID:25860731
Breakup of three particles within the adiabatic expansion method
NASA Astrophysics Data System (ADS)
Garrido, E.; Kievsky, A.; Viviani, M.
2014-07-01
General expressions for the breakup cross sections in the laboratory frame for 1+2 reactions are given in terms of the hyperspherical adiabatic basis. The three-body wave function is expanded in this basis and the corresponding hyperradial functions are obtained by solving a set of second order differential equations. The S matrix is computed by using two recently derived integral relations. Even though the method is shown to be well suited to describe 1+2 processes, there are particular configurations in the breakup channel (for example, those in which two particles move away close to each other in a relative zero-energy state) that need a huge number of basis states. This pathology manifests itself in the extremely slow convergence of the breakup amplitude in terms of the hyperspherical harmonic basis used to construct the adiabatic channels. To overcome this difficulty the breakup amplitude is extracted from an integral relation as well. For the sake of illustration, we consider neutron-deuteron scattering. The results are compared to the available benchmark calculations.
Random Phase Approximation in Surface Chemistry: Water Splitting on Iron.
Karlický, František; Lazar, Petr; Dubecký, Matúš; Otyepka, Michal
2013-08-13
The reaction of water with zero-valent iron (anaerobic corrosion) is a complex chemical process involving physisorption and chemisorption events. We employ random phase approximation (RPA) along with gradient-corrected and hybrid density functional theory (DFT) functionals to study the reaction of water with the Fe atom and Fe(100) surface. We show that the involvement of the exact electron exchange and nonlocal correlation effects in RPA improves the description of all steps of the reaction on the Fe surface with respect to standard [meaning local density approximation (LDA) or generalized gradient approximation (GGA)] DFT methods. The reaction profile calculated by range-separated hybrid functional HSE06 agrees reasonably well with the RPA profile, which makes HSE06 a computationally less demanding alternative to RPA. We also investigate the reaction of the Fe atom with water using DFT, RPA, and coupled-cluster through the perturbative triples complete basis set [CCSD(T)-3s3p-DKH/CBS] method. Local DFT methods significantly underestimate reaction barriers, while the reaction kinetics and thermodynamics from RPA agree with the reference CCSD(T) data. Both systems, i.e., the Fe atom and Fe(100), provide the same reaction mechanism, indicating that anaerobic corrosion is a stepwise process involving one-electron steps, with the first reaction step (formation of the HFeOH intermediate) representing the rate-limiting step. PMID:26584120
De Ranieri, E; Roy, P E; Fang, D; Vehsthedt, E K; Irvine, A C; Heiss, D; Casiraghi, A; Campion, R P; Gallagher, B L; Jungwirth, T; Wunderlich, J
2013-09-01
The rich internal degrees of freedom of magnetic domain walls make them an attractive complement to electron charge for exploring new concepts of storage, transport and processing of information. Here we use the tunable internal structure of a domain wall in a perpendicularly magnetized GaMnAsP/GaAs ferromagnetic semiconductor and demonstrate devices in which piezoelectrically controlled magnetic anisotropy yields up to 500% mobility variations for an electrical-current-driven domain wall. We observe current-induced domain wall motion over a wide range of current-pulse amplitudes and report a direct observation and the piezoelectric control of the Walker breakdown separating two regimes with different mobilities. Our work demonstrates that in spin-orbit-coupled ferromagnets with weak extrinsic domain wall pinning, the piezoelectric control allows one to experimentally assess the upper and lower boundaries of the characteristic ratio of adiabatic and non-adiabatic spin-transfer torques in the current-driven domain wall motion. PMID:23749266
NASA Astrophysics Data System (ADS)
Krix, David; Nienhaus, Hermann
2014-08-01
Thin potassium films grown on Si(001) substrates are used to measure internal chemicurrents and the external emission of exoelectrons simultaneously during adsorption of molecular oxygen on K surfaces at 120 K. The experiments clarify the dynamics of electronic excitations at a simple metal with a narrow valence band. X-ray photoemission reveals that for exposures below 5 L almost exclusively peroxide K2O2 is formed, i.e., no dissociation of the molecule occurs during interaction. Still a significant chemicurrent and a delayed exoelectron emission are detected due to a rapid injection of unoccupied molecular levels below the Fermi level. Since the valence band width of potassium is approximately equal to the potassium work function (2.4 eV) the underlying mechanism of exoemission is an Auger relaxation whereas chemicurrents are detected after resonant charge transfer from the metal valence band into the injected level. The change of the chemicurrent and exoemission efficiencies with oxygen coverage can be deduced from the kinetics of the reaction and the recorded internal and external emission currents traces. It is shown that the non-adiabaticity of the reaction increases with coverage due to a reduction of the electronic density of states at the surface while the work function does not vary significantly. Therefore, the peroxide formation is one of the first reaction systems which exhibits varying non-adiabaticity and efficiencies during the reaction. Non-adiabatic calculations based on model Hamiltonians and density functional theory support the picture of chemicurrent generation and explain the rapid injection of hot hole states by an intramolecular motion, i.e., the expansion of the oxygen molecule on the timescale of a quarter of a vibrational period.
Krix, David; Nienhaus, Hermann
2014-08-21
Thin potassium films grown on Si(001) substrates are used to measure internal chemicurrents and the external emission of exoelectrons simultaneously during adsorption of molecular oxygen on K surfaces at 120 K. The experiments clarify the dynamics of electronic excitations at a simple metal with a narrow valence band. X-ray photoemission reveals that for exposures below 5 L almost exclusively peroxide K2O2 is formed, i.e., no dissociation of the molecule occurs during interaction. Still a significant chemicurrent and a delayed exoelectron emission are detected due to a rapid injection of unoccupied molecular levels below the Fermi level. Since the valence band width of potassium is approximately equal to the potassium work function (2.4 eV) the underlying mechanism of exoemission is an Auger relaxation whereas chemicurrents are detected after resonant charge transfer from the metal valence band into the injected level. The change of the chemicurrent and exoemission efficiencies with oxygen coverage can be deduced from the kinetics of the reaction and the recorded internal and external emission currents traces. It is shown that the non-adiabaticity of the reaction increases with coverage due to a reduction of the electronic density of states at the surface while the work function does not vary significantly. Therefore, the peroxide formation is one of the first reaction systems which exhibits varying non-adiabaticity and efficiencies during the reaction. Non-adiabatic calculations based on model Hamiltonians and density functional theory support the picture of chemicurrent generation and explain the rapid injection of hot hole states by an intramolecular motion, i.e., the expansion of the oxygen molecule on the timescale of a quarter of a vibrational period. PMID:25149810
Krix, David; Nienhaus, Hermann
2014-08-21
Thin potassium films grown on Si(001) substrates are used to measure internal chemicurrents and the external emission of exoelectrons simultaneously during adsorption of molecular oxygen on K surfaces at 120 K. The experiments clarify the dynamics of electronic excitations at a simple metal with a narrow valence band. X-ray photoemission reveals that for exposures below 5 L almost exclusively peroxide K{sub 2}O{sub 2} is formed, i.e., no dissociation of the molecule occurs during interaction. Still a significant chemicurrent and a delayed exoelectron emission are detected due to a rapid injection of unoccupied molecular levels below the Fermi level. Since the valence band width of potassium is approximately equal to the potassium work function (2.4 eV) the underlying mechanism of exoemission is an Auger relaxation whereas chemicurrents are detected after resonant charge transfer from the metal valence band into the injected level. The change of the chemicurrent and exoemission efficiencies with oxygen coverage can be deduced from the kinetics of the reaction and the recorded internal and external emission currents traces. It is shown that the non-adiabaticity of the reaction increases with coverage due to a reduction of the electronic density of states at the surface while the work function does not vary significantly. Therefore, the peroxide formation is one of the first reaction systems which exhibits varying non-adiabaticity and efficiencies during the reaction. Non-adiabatic calculations based on model Hamiltonians and density functional theory support the picture of chemicurrent generation and explain the rapid injection of hot hole states by an intramolecular motion, i.e., the expansion of the oxygen molecule on the timescale of a quarter of a vibrational period.
On the adiabatic stability of solitons and the matching of conservation laws
NASA Astrophysics Data System (ADS)
Lochak, Pierre
1984-08-01
We derive a series of identities which generalize and simplify the results obtained for adiabatically modulated solitons in the case of perturbed specific integrable equations. It stresses the importance of the variational properties of the solitons, which make an adiabatic theorem plausible. A precise conjecture is made and its validity discussed from different points of view.
Scaling of the running time of the quantum adiabatic algorithm for propositional satisfiability
Znidaric, Marko
2005-06-15
We numerically study the quantum adiabatic algorithm for propositional satisfiability. A new class of previously unknown hard instances is identified among random problems. We numerically find that the running time for such instances grows exponentially with their size. The worst case complexity of the quantum adiabatic algorithm therefore seems to be exponential.
NASA Astrophysics Data System (ADS)
Savoini, P.; Lembege, B.
2006-12-01
Test particle simulations are performed in order to analyze in details the dynamics of transmitted electrons through a supercritical strictly perpendicular collisionless shock. Recent analysis has evidenced three different behavior for the electron population: (i) adiabatic, (ii) over-adiabatic characterized by an increase of the gyrating velocity higher than that expected from the conservation of the magnetic moment and (iii) under- adiabatic characterized by a decrease of this velocity and not predicted by any existing theory. Analysis of individual time particle trajectories is performed and completed by statistics based on different upstream distributions (spherical shell and Maxwellian). The use of a Maxwellian distribution function allows us to speak in term of an electronic temperature and we observe in agreement with experimental datas that as the temperature increases (enlarged Maxwellian distribution function) the number of non-adiabatic transmitted electrons drastically decreases. In addition, our study evidenced that both non-adiabatic populations are coming from the core of the electron distribution. All combined nonstationary and nonuniformity effects have a filtering impact on the relative percentages of adiabatic and over-adiabatic populations, in contrast with under- adiabatic population which is relatively poorly affected.
Broadband electrically detected magnetic resonance using adiabatic pulses.
Hrubesch, F M; Braunbeck, G; Voss, A; Stutzmann, M; Brandt, M S
2015-05-01
We present a broadband microwave setup for electrically detected magnetic resonance (EDMR) based on microwave antennae with the ability to apply arbitrarily shaped pulses for the excitation of electron spin resonance (ESR) and nuclear magnetic resonance (NMR) of spin ensembles. This setup uses non-resonant stripline structures for on-chip microwave delivery and is demonstrated to work in the frequency range from 4 MHz to 18 GHz. π pulse times of 50 ns and 70 μs for ESR and NMR transitions, respectively, are achieved with as little as 100 mW of microwave or radiofrequency power. The use of adiabatic pulses fully compensates for the microwave magnetic field inhomogeneity of the stripline antennae, as demonstrated with the help of BIR4 unitary rotation pulses driving the ESR transition of neutral phosphorus donors in silicon and the NMR transitions of ionized phosphorus donors as detected by electron nuclear double resonance (ENDOR). PMID:25828243
Spatial adiabatic passage via interaction-induced band separation
NASA Astrophysics Data System (ADS)
Benseny, Albert; Gillet, Jérémie; Busch, Thomas
2016-03-01
The development of advanced quantum technologies and the quest for a deeper understanding of many-particle quantum mechanics requires control over the quantum state of interacting particles to a high degree of fidelity. However, the quickly increasing density of the spectrum, together with the appearance of crossings in time-dependent processes, makes any effort to control the system hard and resource intensive. Here we show that in trapped systems regimes can exist in which isolated energy bands appear that allow one to easily generalize known single-particle techniques. We demonstrate this for the well-known spatial adiabatic passage effect, which can control the center-of-mass state of atoms with high fidelity.
A Multi-Stage Continuous-Duty Adiabatic Demagnetization Refrigerator
NASA Technical Reports Server (NTRS)
Shirron, P. J.; Blumenstock, K. A.; Canavan, E. R.; DiPirro, M. J.; Tuttle, J. G.; Voellmer, G. M.; Yeager, C. J.
1999-01-01
The design for a multi-stage adiabatic demagnetization refrigerator (ADR) that can provide continuous cooling at very low temperatures is presented. The ADR is being developed for use in x-ray, IR and sub-millimeter space astronomy missions which will employ large format detector arrays operating at 50 mK and lower and which may dissipate up to 10 microwatts. It is also being designed to reject heat slowly to a relatively warm heat sink (in the 6-10 K range), so that future missions may use mechanical cryocoolers instead of liquid helium for pre-cooling. The continuous nature of the device gives it a much higher cooling power per unit mass, allowing it to be much smaller and lighter than existing ADRs with comparable performance. Design details are discussed along with prototype test results.
Adiabatic passage with spin locking in Tm3+:YAG
NASA Astrophysics Data System (ADS)
Pascual-Winter, M. F.; Tongning, R. C.; Lauro, R.; Louchet-Chauvet, A.; Chanelière, T.; Le Gouët, J.-L.
2012-08-01
In low-concentration Tm3+:YAG, we observe efficient adiabatic rapid passage (ARP) of thulium nuclear spin over flipping times much longer than T2. Efficient ARP with long flipping time has been observed in monoatomic solids for decades and has been analyzed in terms of spin temperature and of the thermodynamic equilibrium of a coupled spin ensemble. In low-concentration impurity-doped crystals the spin temperature concept may be questioned. A single spin model should be preferred since the impurity ions are weakly coupled together but interact with the numerous off-resonant matrix ions that originate the spin-spin relaxation. The experiment takes place in the context of quantum information investigation, involving impurity-doped crystals, spin hyperpolarization by optical pumping, and optical detection of the spin evolution.
Some properties of adiabatic blast waves in preexisting cavities
NASA Technical Reports Server (NTRS)
Cox, D. P.; Franco, J.
1981-01-01
Cox and Anderson (1982) have conducted an investigation regarding an adiabatic blast wave in a region of uniform density and finite external pressure. In connection with an application of the results of the investigation to a study of interstellar blast waves in the very hot, low-density matrix, it was found that it would be desirable to examine situations with a positive radial density gradient in the ambient medium. Information concerning such situations is needed to learn about the behavior of blast waves occurring within preexisting, presumably supernova-induced cavities in the interstellar mass distribution. The present investigation is concerned with the first steps of a study conducted to obtain the required information. A review is conducted of Sedov's (1959) similarity solutions for the dynamical structure of any explosion in a medium with negligible pressure and power law density dependence on radius.
Optical waveguide device with an adiabatically-varying width
Watts; Michael R. , Nielson; Gregory N.
2011-05-10
Optical waveguide devices are disclosed which utilize an optical waveguide having a waveguide bend therein with a width that varies adiabatically between a minimum value and a maximum value of the width. One or more connecting members can be attached to the waveguide bend near the maximum value of the width thereof to support the waveguide bend or to supply electrical power to an impurity-doped region located within the waveguide bend near the maximum value of the width. The impurity-doped region can form an electrical heater or a semiconductor junction which can be activated with a voltage to provide a variable optical path length in the optical waveguide. The optical waveguide devices can be used to form a tunable interferometer (e.g. a Mach-Zehnder interferometer) which can be used for optical modulation or switching. The optical waveguide devices can also be used to form an optical delay line.
Hydroxylamine nitrate self-catalytic kinetics study with adiabatic calorimetry.
Liu, Lijun; Wei, Chunyang; Guo, Yuyan; Rogers, William J; Sam Mannan, M
2009-03-15
Hydroxylamine nitrate (HAN) is an important member of the hydroxylamine compound family with applications that include equipment decontamination in the nuclear industry and aqueous or solid propellants. Due to its instability and autocatalytic behavior, HAN has been involved in several incidents at the Hanford and Savannah River Site (SRS) [Technical Report on Hydroxylamine Nitrate, US Department of Energy, 1998]. Much research has been conducted on HAN in different areas, such as combustion mechanism, decomposition mechanism, and runaway behavior. However, the autocatalytic decomposition behavior of HAN at runaway stage has not been fully addressed due to its highly exothermic and rapid decomposition behavior. This work is focused on extracting HAN autocatalytic kinetics and analyzing HAN critical behavior from adiabatic calorimetry measurements. A lumped autocatalytic kinetic model for HAN and associated model parameters are determined. Also the storage and handling critical conditions of diluted HAN solution without metal presence are quantified. PMID:18639378
Controlled Rapid Adiabatic Passage in a V-Type System
NASA Astrophysics Data System (ADS)
Song, Yunheung; Lee, Han-Gyeol; Jo, Hanlae; Ahn, Jaewook
2016-05-01
In chirped rapid adiabatic passage (RAP), chirp sign determines the final state to which the complete population transfer (CPT) occurs in a three-level V-type system. In this study, we show that laser intensity can be alternatively used as a control means in RAP, when the laser pulse is chirped and of a spectral hole resonant to one of the excited states. We verified such excitation selectivity in the experiment performed as-shaped femtosecond laser pulses interacting with the lowest three levels (5S, 5 P1/2, and 5 P3/2) of atomic rubidium. The successful demonstration implies that this intensity-dependent RAP in conjunction with laser beam profile programming may allow excitation selectivity for atoms or ions arranged in space.
Robust Ramsey sequences with Raman adiabatic rapid passage
NASA Astrophysics Data System (ADS)
Kotru, Krish; Brown, Justin M.; Butts, David L.; Kinast, Joseph M.; Stoner, Richard E.
2014-11-01
We present a method for robust timekeeping in which alkali-metal atoms are interrogated in a Ramsey sequence based on stimulated Raman transitions with optical photons. To suppress systematic effects introduced by differential ac Stark shifts and optical intensity gradients, we employ atom optics derived from Raman adiabatic rapid passage (ARP). Raman ARP drives coherent transfer between the alkali-metal hyperfine ground states via a sweep of the Raman detuning through the two-photon resonance. Our experimental implementation of Raman ARP reduced the phase sensitivity of Ramsey sequences to Stark shifts in 133Cs atoms by about two orders of magnitude, relative to fixed-frequency Raman transitions. This technique also preserved Ramsey fringe contrast for cloud displacements reaching the 1 /e2 intensity radius of the laser beam. In a magnetically unshielded apparatus, second-order Zeeman shifts limited the fractional frequency uncertainty to ˜3.5 ×10-12 after about 2500 s of averaging.
Robust entanglement via optomechanical dark mode: adiabatic scheme
NASA Astrophysics Data System (ADS)
Tian, Lin; Wang, Ying-Dan; Huang, Sumei; Clerk, Aashish
2013-03-01
Entanglement is a powerful resource for studying quantum effects in macroscopic objects and for quantum information processing. Here, we show that robust entanglement between cavity modes with distinct frequencies can be generated via a mechanical dark mode in an optomechanical quantum interface. Due to quantum interference, the effect of the mechanical noise is cancelled in a way that is similar to the electromagnetically induced transparency. We derive the entanglement in the strong coupling regime by solving the quantum Langevin equation using a perturbation theory approach. The entanglement in the adiabatic scheme is then compared with the entanglement in the stationary state scheme. Given the robust entanglement schemes and our previous schemes on quantum wave length conversion, the optomechanical interface hence forms an effective building block for a quantum network. This work is supported by DARPA-ORCHID program, NSF-DMR-0956064, NSF-CCF-0916303, and NSF-COINS.
Coherently controlled adiabatic passage to multiple continuum channels
Thanopulos, Ioannis; Shapiro, Moshe
2006-09-15
We present a solution to the multichannel quantum control problem, where selective and complete population transfer from an initial bound state to M energetically degenerate continuum channels is achieved under loss-free conditions. The control is affected by adiabatic passage proceeding via N bound intermediate states, where even in the presence of real loss from these states, the control efficiency remains significant, about 40-50%. We illustrate the viability of the method by computationally controlling the CH{sub 3}(v)+I*({sup 2}P{sub 1/2})<-CH{sub 3}I{yields}CH{sub 3}(v)+I({sup 2}P{sub 3/2}) multichannel photodissociation process.
Novel latch for adiabatic quantum-flux-parametron logic
Takeuchi, Naoki Yamanashi, Yuki; Yoshikawa, Nobuyuki; Ortlepp, Thomas
2014-03-14
We herein propose the quantum-flux-latch (QFL) as a novel latch for adiabatic quantum-flux-parametron (AQFP) logic. A QFL is very compact and compatible with AQFP logic gates and can be read out in one clock cycle. Simulation results revealed that the QFL operates at 5 GHz with wide parameter margins of more than ±22%. The calculated energy dissipation was only ∼0.1 aJ/bit, which yields a small energy delay product of 20 aJ·ps. We also designed shift registers using QFLs to demonstrate more complex circuits with QFLs. Finally, we experimentally demonstrated correct operations of the QFL and a 1-bit shift register (a D flip-flop)
Adiabatic passage in photon-echo quantum memories
NASA Astrophysics Data System (ADS)
Demeter, Gabor
2013-11-01
Photon-echo-based quantum memories use inhomogeneously broadened, optically thick ensembles of absorbers to store a weak optical signal and employ various protocols to rephase the atomic coherences for information retrieval. We study the application of two consecutive, frequency-chirped control pulses for coherence rephasing in an ensemble with a “natural” inhomogeneous broadening. Although propagation effects distort the two control pulses differently, chirped pulses that drive adiabatic passage can rephase atomic coherences in an optically thick storage medium. Combined with spatial phase-mismatching techniques to prevent primary echo emission, coherences can be rephased around the ground state to achieve secondary echo emission with close to unit efficiency. Potential advantages over similar schemes working with π pulses include greater potential signal fidelity, reduced noise due to spontaneous emission, and better capability for the storage of multiple memory channels.
Quasi-adiabatic compression heating of selected foods
NASA Astrophysics Data System (ADS)
Landfeld, Ales; Strohalm, Jan; Halama, Radek; Houska, Milan
2011-03-01
The quasi-adiabatic temperature increase due to compression heating, during high-pressure (HP) processing (HPP), was studied using specially designed equipment. The temperature increase was evaluated as the difference in temperature, during compression, between atmospheric pressure and nominal pressure. The temperature was measured using a thermocouple in the center of a polyoxymethylene cup, which contained the sample. Fresh meat balls, pork meat pate, and tomato purée temperature increases were measured at three initial temperature levels between 40 and 80 °C. Nominal pressure was either 400 or 500 MPa. Results showed that the fat content had a positive effect on temperature increases. Empirical equations were developed to calculate the temperature increase during HPP at different initial temperatures for pressures of 400 and 500 MPa. This thermal effect data can be used for numerical modeling of temperature histories of foods during HP-assisted pasteurization or sterilization processes.
Laser-nucleus interactions: The quasi-adiabatic regime
NASA Astrophysics Data System (ADS)
Pálffy, Adriana; Buss, Oliver; Hoefer, Axel; Weidenmüller, Hans A.
2015-10-01
The interaction between nuclei and a strong zeptosecond laser pulse with coherent MeV photons is investigated theoretically. We provide a first semiquantitative study of the quasi-adiabatic regime where the photon absorption rate is comparable to the nuclear equilibration rate. In that regime, multiple photon absorption leads to the formation of a compound nucleus in the so-far unexplored regime of excitation energies several hundred MeV above the yrast line. The temporal dynamics of the process is investigated by means of a set of master equations that account for dipole absorption, stimulated dipole emission, neutron decay, and induced fission in a chain of nuclei. That set is solved numerically by means of state-of-the-art matrix exponential methods also used in nuclear fuel burn-up and radioactivity transport calculations. Our quantitative estimates predict the excitation path and range of nuclei reached by neutron decay and provide relevant information for the layout of future experiments.
Nucleon-deuteron scattering using the adiabatic projection method
NASA Astrophysics Data System (ADS)
Elhatisari, Serdar; Lee, Dean; Meißner, Ulf-G.; Rupak, Gautam
2016-06-01
In this paper we discuss the adiabatic projection method, a general framework for scattering and reaction calculations on the lattice. We also introduce several new techniques developed to study nucleus-nucleus scattering and reactions on the lattice. We present technical details of the method for large-scale problems. To estimate the systematic errors of the calculations we consider simple two-particle scattering on the lattice. Then we benchmark the accuracy and efficiency of the numerical methods by applying these to calculate fermion-dimer scattering in lattice effective field theory with and without a long-range Coulomb potential. The fermion-dimer calculations correspond to neutron-deuteron and proton-deuteron scattering in the spin-quartet channel at leading order in the pionless effective field theory.
Properties of a two stage adiabatic demagnetization refrigerator
NASA Astrophysics Data System (ADS)
Fukuda, H.; Ueda, S.; Arai, R.; Li, J.; Saito, A. T.; Nakagome, H.; Numazawa, T.
2015-12-01
Currently, many space missions using cryogenic temperatures are being planned. In particular, high resolution sensors such as Transition Edge Sensors need very low temperatures, below 100 mK. It is well known that the adiabatic demagnetization refrigerator (ADR) is one of most useful tools for producing ultra-low temperatures in space because it is gravity independent. We studied a continuous ADR system consisting of 4 stages and demonstrated it could provide continuous temperatures around 100 mK. However, there was some heat leakage from the power leads which resulted in reduced cooling power. Our efforts to upgrade our ADR system are presented. We show the effect of using the HTS power leads and discuss a cascaded Carnot cycle consisting of 2 ADR units.
Pitch-angle scattering of energetic particles with adiabatic focusing
Tautz, R. C.; Shalchi, A.; Dosch, A. E-mail: andreasm4@yahoo.com
2014-10-20
Understanding turbulent transport of charged particles in magnetized plasmas often requires a model for the description of random variations in the particle's pitch angle. The Fokker-Planck coefficient of pitch-angle scattering, which is used to describe scattering parallel to the mean magnetic field, is therefore of central importance. Whereas quasi-linear theory assumes a homogeneous mean magnetic field, such a condition is often not fulfilled, especially for high-energy particles. Here, a new derivation of the quasi-linear approach is given that is based on the unperturbed orbit found for an adiabatically focused mean magnetic field. The results show that, depending on the ratio of the focusing length and the particle's Larmor radius, the Fokker-Planck coefficient is significantly modified but agrees with the classical expression in the limit of a homogeneous mean magnetic field.
Trapping ultracold atoms in a time-averaged adiabatic potential
Gildemeister, M.; Nugent, E.; Sherlock, B. E.; Kubasik, M.; Sheard, B. T.; Foot, C. J.
2010-03-15
We report an experimental realization of ultracold atoms confined in a time-averaged, adiabatic potential (TAAP). This trapping technique involves using a slowly oscillating ({approx}kHz) bias field to time-average the instantaneous potential given by dressing a bare magnetic potential with a high-frequency ({approx}MHz) magnetic field. The resultant potentials provide a convenient route to a variety of trapping geometries with tunable parameters. We demonstrate the TAAP trap in a standard time-averaged orbiting potential trap with additional Helmholtz coils for the introduction of the radio frequency dressing field. We have evaporatively cooled 5x10{sup 4} atoms of {sup 87}Rb to quantum degeneracy and observed condensate lifetimes of longer than 3 s.
Model of TPTC Stirling engine with adiabatic working spaces
NASA Astrophysics Data System (ADS)
Renfroe, D. A.; Counts, M.
1988-10-01
A Stirling engine incorporating a phase-changing component of the working fluid has been modeled with the assumption that the compression and expansion space are adiabatic, and that the heat exchanger consists of a cooler, regenerator, and heater of finite size where the fluid follows an idealized temperature profile. Differential equations for the rate of change of mass in any cell and pressure over the entire engine were derived from the energy, continuity, state equations, and Dalton's law. From the simultaneous solution of these equations, all of the information necessary for calculation of power output and efficiency were obtained. Comparison of the results from this model with previous studies shows that the advantage of adding a phase-changing component to the working fluid may have been overstated.
Adiabatic quantum-flux-parametron cell library adopting minimalist design
NASA Astrophysics Data System (ADS)
Takeuchi, Naoki; Yamanashi, Yuki; Yoshikawa, Nobuyuki
2015-05-01
We herein build an adiabatic quantum-flux-parametron (AQFP) cell library adopting minimalist design and a symmetric layout. In the proposed minimalist design, every logic cell is designed by arraying four types of building block cells: buffer, NOT, constant, and branch cells. Therefore, minimalist design enables us to effectively build and customize an AQFP cell library. The symmetric layout reduces unwanted parasitic magnetic coupling and ensures a large mutual inductance in an output transformer, which enables very long wiring between logic cells. We design and fabricate several logic circuits using the minimal AQFP cell library so as to test logic cells in the library. Moreover, we experimentally investigate the maximum wiring length between logic cells. Finally, we present an experimental demonstration of an 8-bit carry look-ahead adder designed using the minimal AQFP cell library and demonstrate that the proposed cell library is sufficiently robust to realize large-scale digital circuits.
Shortcut to Adiabaticity for an Anisotropic Gas Containing Quantum Defects.
Papoular, D J; Stringari, S
2015-07-10
We present a shortcut to adiabaticity (STA) protocol applicable to 3D unitary Fermi gases and 2D weakly interacting Bose gases containing defects such as vortices or solitons. Our protocol relies on a new class of exact scaling solutions in the presence of anisotropic time-dependent harmonic traps. It connects stationary states in initial and final traps having the same frequency ratios. The resulting scaling laws exhibit a universal form and also apply to the classical Boltzmann gas. The duration of the STA can be made very short so as to realize a quantum quench from one stationary state to another. When applied to an anisotropically trapped superfluid gas, the STA conserves the shape of the quantum defects hosted by the cloud, thereby acting like a perfect microscope, which sharply contrasts with their strong distortion occurring during the free expansion of the cloud. PMID:26207476
Do biomolecular ion-motive ATPase work as adiabatic pumps
NASA Astrophysics Data System (ADS)
Astumian, Raymond Dean
2001-03-01
Biomolecular ion pumps use chemical energy to pump ions from low to high chemical potential across a biological membrane. Experiments show that the chemical energy can be substituted by an external oscillating or stochastically fluctuating electric field. This result can be interpreted analogously to a mechanism for an adiabatic electron pump originally suggested by Thouless (PRB 27: 6083 (1983)) in which two system parameters are modulated out of phase with one another. In our model, internal relaxations of the protein (at least two with different time scales) provide a mechanism for transforming a single ac or stochastically fluctuating external signal into a two phase shifted outputs. For a sinusoidally oscillating electric field, the frequency response for the Sodium-Potassium ATPase for both sodium and rubidium (an analog of potassium) can be fit using a very simple expression with only one fit parameter. These results show how biomolecular pumps can be modelled at the mesoscopic level of detail.
Adiabatic invariants in stellar dynamics. 1: Basic concepts
NASA Technical Reports Server (NTRS)
Weinberg, Martin D.
1994-01-01
The adiabatic criterion, widely used in astronomical dynamics, is based on the harmonic oscillator. It asserts that the change in action under a slowly varying perturbation is exponentially small. Recent mathematical results that precisely define the conditions for invariance show that this model does not apply in general. In particular, a slowly varying perturbation may cause significant evolution stellar dynamical systems even if its time scale is longer than any internal orbital time scale. This additional 'heating' may have serious implications for the evolution of star clusters and dwarf galaxies which are subject to long-term environmental forces. The mathematical developments leading to these results are reviewed, and the conditions for applicability to and further implications for stellar systems are discussed. Companion papers present a computational method for a general time-dependent disturbance and detailed example.