He, Shuang; Su, Shi-Lei; Wang, Dong-Yang; Sun, Wen-Mei; Bai, Cheng-Hua; Zhu, Ai-Dong; Wang, Hong-Fu; Zhang, Shou
2016-01-01
We propose an effective scheme of shortcuts to adiabaticity for generating a three-dimensional entanglement of two atoms trapped in a cavity using the transitionless quantum driving (TQD) approach. The key point of this approach is to construct an effective Hamiltonian that drives the dynamics of a system along instantaneous eigenstates of a reference Hamiltonian to reproduce the same final state as that of an adiabatic process within a much shorter time. In this paper, the shortcuts to adiabatic passage are constructed by introducing two auxiliary excited levels in each atom and applying extra cavity modes and classical fields to drive the relevant transitions. Thereby, the three-dimensional entanglement is obtained with a faster rate than that in the adiabatic passage. Moreover, the influences of atomic spontaneous emission and photon loss on the fidelity are discussed by numerical simulation. The results show that the speed of entanglement implementation is greatly improved by the use of adiabatic shortcuts and that this entanglement implementation is robust against decoherence. This will be beneficial to the preparation of high-dimensional entanglement in experiment and provides the necessary conditions for the application of high-dimensional entangled states in quantum information processing. PMID:27499169
He, Shuang; Su, Shi-Lei; Wang, Dong-Yang; Sun, Wen-Mei; Bai, Cheng-Hua; Zhu, Ai-Dong; Wang, Hong-Fu; Zhang, Shou
2016-08-08
We propose an effective scheme of shortcuts to adiabaticity for generating a three-dimensional entanglement of two atoms trapped in a cavity using the transitionless quantum driving (TQD) approach. The key point of this approach is to construct an effective Hamiltonian that drives the dynamics of a system along instantaneous eigenstates of a reference Hamiltonian to reproduce the same final state as that of an adiabatic process within a much shorter time. In this paper, the shortcuts to adiabatic passage are constructed by introducing two auxiliary excited levels in each atom and applying extra cavity modes and classical fields to drive the relevant transitions. Thereby, the three-dimensional entanglement is obtained with a faster rate than that in the adiabatic passage. Moreover, the influences of atomic spontaneous emission and photon loss on the fidelity are discussed by numerical simulation. The results show that the speed of entanglement implementation is greatly improved by the use of adiabatic shortcuts and that this entanglement implementation is robust against decoherence. This will be beneficial to the preparation of high-dimensional entanglement in experiment and provides the necessary conditions for the application of high-dimensional entangled states in quantum information processing.
Broadband photonic transport between waveguides by adiabatic elimination
NASA Astrophysics Data System (ADS)
Oukraou, Hassan; Coda, Virginie; Rangelov, Andon A.; Montemezzani, Germano
2018-02-01
We propose an adiabatic method for the robust transfer of light between the two outer waveguides in a three-waveguide directional coupler. Unlike the established technique inherited from stimulated Raman adiabatic passage (STIRAP), the method proposed here is symmetric with respect to an exchange of the left and right waveguides in the structure and permits the transfer in both directions. The technique uses the adiabatic elimination of the middle waveguide together with level crossing and adiabatic passage in an effective two-state system involving only the external waveguides. It requires a strong detuning between the outer and the middle waveguide and does not rely on the adiabatic transfer state (dark state) underlying the STIRAP process. The suggested technique is generalized to an array of N waveguides and verified by numerical beam propagation calculations.
NASA Astrophysics Data System (ADS)
Eilam, A.; Shapiro, M.
2012-01-01
We present a fully quantum-mechanical theory of the mutual light-matter effects when two laser pulses interact with three discrete states coupled to a (quasi)continuum. Our formulation uses a single set of equations to describe the time dependence of the discrete and continuum populations, as well as pulse propagation in electromagnetically induced transparency (EIT) and stimulated Raman adiabatic passage (STIRAP) situations, for both weak and strong laser pulses. The theory gives a mechanistic picture of the “slowing down of light” and the state of spontaneously emitted photons during this process. Surprising features regarding the time dependence of material and radiative transients as well as limitations on quantum light storage and retrieval are unraveled.
Chen, Ye-Hong; Xia, Yan; Song, Jie; Chen, Qing-Qin
2015-10-28
Berry's approach on "transitionless quantum driving" shows how to set a Hamiltonian which drives the dynamics of a system along instantaneous eigenstates of a reference Hamiltonian to reproduce the same final result of an adiabatic process in a shorter time. In this paper, motivated by transitionless quantum driving, we construct shortcuts to adiabatic passage in a three-atom system to create the Greenberger-Horne-Zeilinger states with the help of quantum Zeno dynamics and of non-resonant lasers. The influence of various decoherence processes is discussed by numerical simulation and the result proves that the scheme is fast and robust against decoherence and operational imperfection.
Experimental realization of noise-induced adiabaticity in nuclear magnetic resonance
NASA Astrophysics Data System (ADS)
Wang, Bi-Xue; Xin, Tao; Kong, Xiang-Yu; Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu
2018-04-01
The adiabatic evolution is the dynamics of an instantaneous eigenstate of a slowly varing Hamiltonian. Recently, an interesting phenomenon shows up that white noises can enhance and even induce adiabaticity, which is in contrast to previous perception that environmental noises always modify and even ruin a designed adiabatic passage. We experimentally realized a noise-induced adiabaticity in a nuclear magnetic resonance system. Adiabatic Hadamard gate and entangled state are demonstrated. The effect of noise on adiabaticity is experimentally exhibited and compared with the noise-free process. We utilized a noise-injected method, which can be applied to other quantum systems.
Connection between optimal control theory and adiabatic-passage techniques in quantum systems
NASA Astrophysics Data System (ADS)
Assémat, E.; Sugny, D.
2012-08-01
This work explores the relationship between optimal control theory and adiabatic passage techniques in quantum systems. The study is based on a geometric analysis of the Hamiltonian dynamics constructed from Pontryagin's maximum principle. In a three-level quantum system, we show that the stimulated Raman adiabatic passage technique can be associated to a peculiar Hamiltonian singularity. One deduces that the adiabatic pulse is solution of the optimal control problem only for a specific cost functional. This analysis is extended to the case of a four-level quantum system.
Fast CNOT gate between two spatially separated atoms via shortcuts to adiabatic passage.
Liang, Yan; Song, Chong; Ji, Xin; Zhang, Shou
2015-09-07
Quantum logic gate is indispensable to quantum computation. One of the important qubit operations is the quantum controlled-not (CNOT) gate that performs a NOT operation on a target qubit depending on the state of the control qubit. In this paper we present a scheme to realize the quantum CNOT gate between two spatially separated atoms via shortcuts to adiabatic passage. The influence of various decoherence processes on the fidelity is discussed. The strict numerical simulation results show that the fidelity for the CNOT gate is relatively high.
Implementation speed of deterministic population passages compared to that of Rabi pulses
NASA Astrophysics Data System (ADS)
Chen, Jingwei; Wei, L. F.
2015-02-01
Fast Rabi π -pulse technique has been widely applied to various coherent quantum manipulations, although it requires precise designs of the pulse areas. Relaxing the precise pulse designs, various rapid adiabatic passage (RAP) approaches have been alternatively utilized to implement various population passages deterministically. However, the usual RAP protocol could not be implemented desirably fast, as the relevant adiabatic condition should be robustly satisfied during the passage. Here, we propose a modified shortcut to adiabaticity (STA) technique to accelerate significantly the desired deterministic quantum state population passages. This transitionless technique is beyond the usual rotating wave approximation (RWA) performed in the recent STA protocols, and thus can be applied to deliver various fast quantum evolutions wherein the relevant counter-rotating effects cannot be neglected. The proposal is demonstrated specifically with the driven two- and three-level systems. Numerical results show that with the present STA technique beyond the RWA the usual Stark-chirped RAPs and stimulated Raman adiabatic passages could be significantly speeded up; the deterministic population passages could be implemented as fast as the widely used fast Rabi π pulses, but are insensitive to the applied pulse areas.
NASA Astrophysics Data System (ADS)
Zhang, Xu; Chen, Ye-Hong; Wu, Qi-Cheng; Shi, Zhi-Cheng; Song, Jie; Xia, Yan
2017-01-01
We present an efficient scheme to quickly generate three-qubit Greenberger-Horne-Zeilinger (GHZ) states by using three superconducting qubits (SQs) separated by two coplanar waveguide resonators (CPWRs) capacitively. The scheme is based on quantum Zeno dynamics and the approach of transitionless quantum driving to construct shortcuts to adiabatic passage. In order to highlight the advantages, we compare the present scheme with the traditional one with adiabatic passage. The comparison result shows the shortcut scheme is closely related to the adiabatic scheme but is better than it. Moreover, we discuss the influence of various decoherences with numerical simulation. The result proves that the present scheme is less sensitive to the energy relaxation, the decay of CPWRs and the deviations of the experimental parameters the same as the adiabatic passage. However, the shortcut scheme is effective and robust against the dephasing of SQs in comparison with the adiabatic scheme.
Kittell, Aaron W.; Hyde, James S.
2015-01-01
Non-adiabatic rapid passage (NARS) electron paramagnetic resonance (EPR) spectroscopy was introduced by Kittell, A.W., Camenisch, T.G., Ratke, J.J. Sidabras, J.W., Hyde, J.S., 2011 as a general purpose technique to collect the pure absorption response. The technique has been used to improve sensitivity relative to sinusoidal magnetic field modulation, increase the range of inter-spin distances that can be measured under near physiological conditions, and enhance spectral resolution in copper (II) spectra. In the present work, the method is extended to CW microwave power saturation of spin-labeled T4 Lysozyme (T4L). As in the cited papers, rapid triangular sweep of the polarizing magnetic field was superimposed on slow sweep across the spectrum. Adiabatic rapid passage (ARP) effects were encountered in samples undergoing very slow rotational diffusion as the triangular magnetic field sweep rate was increased. The paper reports results of variation of experimental parameters at the interface of adiabatic and non-adiabatic rapid sweep conditions. Comparison of the forward (up) and reverse (down) triangular sweeps is shown to be a good indicator of the presence of rapid passage effects. Spectral turning points can be distinguished from spectral regions between turning points in two ways: differential microwave power saturation and differential passage effects. Oxygen accessibility data are shown under NARS conditions that appear similar to conventional field modulation data. However, the sensitivity is much higher, permitting, in principle, experiments at substantially lower protein concentrations. Spectral displays were obtained that appear sensitive to rotational diffusion in the range of rotational correlation times of 10−3 to 10−7 s in a manner that is analogous to saturation transfer spectroscopy. PMID:25917132
Fast generating Greenberger-Horne-Zeilinger state via iterative interaction pictures
NASA Astrophysics Data System (ADS)
Huang, Bi-Hua; Chen, Ye-Hong; Wu, Qi-Cheng; Song, Jie; Xia, Yan
2016-10-01
We delve a little deeper into the construction of shortcuts to adiabatic passage for three-level systems by iterative interaction picture (multiple Schrödinger dynamics). As an application example, we use the deduced iterative based shortcuts to rapidly generate the Greenberger-Horne-Zeilinger (GHZ) state in a three-atom system with the help of quantum Zeno dynamics. Numerical simulation shows the dynamics designed by the iterative picture method is physically feasible and the shortcut scheme performs much better than that using the conventional adiabatic passage techniques. Also, the influences of various decoherence processes are discussed by numerical simulation and the results prove that the scheme is fast and robust against decoherence and operational imperfection.
Nonlinear Stimulated Raman Exact Passage by Resonance-Locked Inverse Engineering
NASA Astrophysics Data System (ADS)
Dorier, V.; Gevorgyan, M.; Ishkhanyan, A.; Leroy, C.; Jauslin, H. R.; Guérin, S.
2017-12-01
We derive an exact and robust stimulated Raman process for nonlinear quantum systems driven by pulsed external fields. The external fields are designed with closed-form expressions from the inverse engineering of a given efficient and stable dynamics. This technique allows one to induce a controlled population inversion which surpasses the usual nonlinear stimulated Raman adiabatic passage efficiency.
Adiabatic quantum computation along quasienergies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, Atushi; Nemoto, Kae; National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda ku, Tokyo 101-8430
2010-02-15
The parametric deformations of quasienergies and eigenvectors of unitary operators are applied to the design of quantum adiabatic algorithms. The conventional, standard adiabatic quantum computation proceeds along eigenenergies of parameter-dependent Hamiltonians. By contrast, discrete adiabatic computation utilizes adiabatic passage along the quasienergies of parameter-dependent unitary operators. For example, such computation can be realized by a concatenation of parameterized quantum circuits, with an adiabatic though inevitably discrete change of the parameter. A design principle of adiabatic passage along quasienergy was recently proposed: Cheon's quasienergy and eigenspace anholonomies on unitary operators is available to realize anholonomic adiabatic algorithms [A. Tanaka and M.more » Miyamoto, Phys. Rev. Lett. 98, 160407 (2007)], which compose a nontrivial family of discrete adiabatic algorithms. It is straightforward to port a standard adiabatic algorithm to an anholonomic adiabatic one, except an introduction of a parameter |v>, which is available to adjust the gaps of the quasienergies to control the running time steps. In Grover's database search problem, the costs to prepare |v> for the qualitatively different (i.e., power or exponential) running time steps are shown to be qualitatively different.« less
Detuning-induced stimulated Raman adiabatic passage in dense two-level systems
NASA Astrophysics Data System (ADS)
Deng, Li; Lin, Gongwei; Niu, Yueping; Gong, Shangqing
2018-05-01
We investigate the coherence generation in dense two-level systems under detuning-induced stimulated Raman adiabatic passage (D-STIRAP). In the dense two-level system, the near dipole-dipole (NDD) interaction should be taken into consideration. With the increase in the strength of the NDD interaction, it is found that a switchlike transition of the generated coherence from maximum value to zero appears. Meanwhile, the adiabatic condition of the D-STIRAP is destroyed in the presence of the NDD interaction. In order to avoid the sudden decrease in the generated coherence and maintain the maximum value, we can use stronger detuning pulse or pump pulse, between which increasing the intensity of the detuning pulse is of more efficiency. Except for taking advantage of such maximum coherence in the high density case into areas like enhancing the four-wave mixing process, we also point out that the phenomenon of the coherence transition can be applied as an optical switch.
Stimulated Raman adiabatic passage in a three-level superconducting circuit
Kumar, K. S.; Vepsäläinen, A.; Danilin, S.; Paraoanu, G. S.
2016-01-01
The adiabatic manipulation of quantum states is a powerful technique that opened up new directions in quantum engineering—enabling tests of fundamental concepts such as geometrical phases and topological transitions, and holding the promise of alternative models of quantum computation. Here we benchmark the stimulated Raman adiabatic passage for circuit quantum electrodynamics by employing the first three levels of a transmon qubit. In this ladder configuration, we demonstrate a population transfer efficiency >80% between the ground state and the second excited state using two adiabatic Gaussian-shaped control microwave pulses. By doing quantum tomography at successive moments during the Raman pulses, we investigate the transfer of the population in time domain. Furthermore, we show that this protocol can be reversed by applying a third adiabatic pulse, we study a hybrid nondiabatic–adiabatic sequence, and we present experimental results for a quasi-degenerate intermediate level. PMID:26902454
Stimulated Raman adiabatic passage in a three-level superconducting circuit.
Kumar, K S; Vepsäläinen, A; Danilin, S; Paraoanu, G S
2016-02-23
The adiabatic manipulation of quantum states is a powerful technique that opened up new directions in quantum engineering--enabling tests of fundamental concepts such as geometrical phases and topological transitions, and holding the promise of alternative models of quantum computation. Here we benchmark the stimulated Raman adiabatic passage for circuit quantum electrodynamics by employing the first three levels of a transmon qubit. In this ladder configuration, we demonstrate a population transfer efficiency >80% between the ground state and the second excited state using two adiabatic Gaussian-shaped control microwave pulses. By doing quantum tomography at successive moments during the Raman pulses, we investigate the transfer of the population in time domain. Furthermore, we show that this protocol can be reversed by applying a third adiabatic pulse, we study a hybrid nondiabatic-adiabatic sequence, and we present experimental results for a quasi-degenerate intermediate level.
NASA Astrophysics Data System (ADS)
Lu, Mei; Chen, Qing-Qin
2018-05-01
We propose an efficient scheme to generate the maximal entangle states in an atom–cavity system between two three-level atoms in cavity quantum electronic dynamics system based on shortcuts to adiabatic passage. In the accelerate scheme, there is no need to design a time-varying coupling coefficient for the cavity. We only need to tactfully design time-dependent lasers to drive the system into the desired entangled states. Controlling the detuning between the cavity mode and lasers, we deduce a determinate analysis formula for this quantum information processing. The lasers do not need to distinguish which atom is to be affected, therefore the implementation of the experiment is simpler. The method is also generalized to generate a W state. Moreover, the accelerated program can be extended to a multi-body system and an analytical solution in a higher-dimensional system can be achieved. The influence of decoherence and variations of the parameters are discussed by numerical simulation. The results show that the maximally entangled states can be quickly prepared in a short time with high fidelity, and which are robust against both parameter fluctuations and dissipation. Our study enriches the physics and applications of multi-particle quantum entanglement preparation via shortcuts to adiabatic passage in quantum electronic dynamics.
Implementation of quantum logic gates via Stark-tuned Förster resonance in Rydberg atoms
NASA Astrophysics Data System (ADS)
Huang, Xi-Rong; Hu, Chang-Sheng; Shen, Li-Tuo; Yang, Zhen-Biao; Wu, Huai-Zhi
2018-02-01
We present a scheme for implementation of controlled-Z and controlled-NOT gates via rapid adiabatic passage and Stark-tuned Förster resonance. By sweeping the Förster resonance once without passing through it and adiabatically tuning the angle-dependent Rydberg-Rydberg interaction of the dipolar nature, the system can be effectively described by a two-level system with the adiabatic theorem. The single adiabatic passage leads to a gate fidelity as high as 0.999 and a greatly reduced gate operation time. We investigate the scheme by considering an actual atomic level configuration with rubidium atoms, where the fidelity of the controlled-Z gate is still higher than 0.99 under the influence of the Zeeman effect.
Optimum conditions for producing Cs2 molecular condensates by stimulated Raman adiabatic passage
NASA Astrophysics Data System (ADS)
Feng, Zhifang; Li, Weidong; Wang, Lirong; Xiao, Liantuan; Jia, Suotang
2009-10-01
The optimum conditions for producing Cs2 molecular condensates from Cs atomic condensates with high transfer efficiency by stimulated Raman adiabatic passage are presented. Under the extended “two-photon” resonance condition, including the two-photon process, the mean-field correction, and the tunneling coupling between two upper excited molecular levels, a high and stable conversion efficiency is realized. The high conversion efficiency could be achieved by following two methods under experimentally less demanding conditions (relatively small effective Rabi frequency for pump laser pulse). One is adjusting the detuning difference between two laser pulses for same effective Rabi frequencies with up to 87.2% transfer efficiency. Another one is adjusting the effective Rabi frequency, the detuning of dump laser for given effective Rabi frequency, and the detuning of pump laser with up to 80.7% transfer efficiency.
Wu, Jin-Lei; Ji, Xin; Zhang, Shou
2016-01-01
Recently, a novel three-dimensional entangled state called tree-type entanglement, which is likely to have applications for improving quantum communication security, was prepared via adiabatic passage by Song et al. Here we propose two schemes for fast generating tree-type three-dimensional entanglement among three spatially separated atoms via shortcuts to adiabatic passage. With the help of quantum Zeno dynamics, two kinds of different but equivalent methods, Lewis-Riesenfeld invariants and transitionless quantum driving, are applied to construct shortcuts to adiabatic passage. The comparisons between the two methods are discussed. The strict numerical simulations show that the tree-type three-dimensional entangled states can be fast prepared with quite high fidelities and the two schemes are both robust against the variations in the parameters, atomic spontaneous emissions and the cavity-fiber photon leakages. PMID:27667583
Baranowski, M; Woźniak-Braszak, A; Jurga, K
2016-01-01
The paper presents the benefits of using fast adiabatic passage for the study of molecular dynamics in the solid state heteronuclear systems in the laboratory frame. A homemade pulse spectrometer operating at the frequency of 30.2MHz and 28.411MHz for protons and fluorines, respectively, has been enhanced with microcontroller direct digital synthesizer DDS controller [1-4]. This work briefly describes how to construct a low-cost and easy-to-assemble adiabatic extension set for homemade and commercial spectrometers based on recently very popular Arduino shields. The described set was designed for fast adiabatic generation. Timing and synchronization problems are discussed. The cross-relaxation experiments with different initial states of the two spin systems have been performed. Contrary to our previous work [5] where the steady-state NOE experiments were conducted now proton spins (1)H are polarized in the magnetic field B0 while fluorine spins (19)F are perturbed by selective saturation for a short time and then the system is allowed to evolve for a period in the absence of a saturating field. The adiabatic passage application leads to a reversal of magnetization of fluorine spins and increases the amplitude of the signal. Copyright © 2015 Elsevier Inc. All rights reserved.
Zheng, Shi-Biao
2005-08-19
We propose a new approach to quantum phase gates via the adiabatic evolution. The conditional phase shift is neither of dynamical nor geometric origin. It arises from the adiabatic evolution of the dark state itself. Taking advantage of the adiabatic passage, this kind of quantum logic gates is robust against moderate fluctuations of experimental parameters. In comparison with the geometric phase gates, it is unnecessary to drive the system to undergo a desired cyclic evolution to obtain a desired solid angle. Thus, the procedure is simplified, and the fidelity may be further improved since the errors in obtaining the required solid angle are avoided. We illustrate such a kind of quantum logic gates in the ion trap system. The idea can also be realized in other systems, opening a new perspective for quantum information processing.
Detection of magnetic resonance signals using a magnetoresistive sensor
Budker, Dmitry; Pines, Alexander; Xu, Shoujun; Hilty, Christian; Ledbetter, Micah P; Bouchard, Louis S
2013-10-01
A method and apparatus are described wherein a micro sample of a fluidic material may be assayed without sample contamination using NMR techniques, in combination with magnetoresistive sensors. The fluidic material to be assayed is first subject to pre-polarization, in one embodiment, by passage through a magnetic field. The magnetization of the fluidic material is then subject to an encoding process, in one embodiment an rf-induced inversion by passage through an adiabatic fast-passage module. Thereafter, the changes in magnetization are detected by a pair of solid-state magnetoresistive sensors arranged in gradiometer mode. Miniaturization is afforded by the close spacing of the various modules.
Optimal superadiabatic population transfer and gates by dynamical phase corrections
NASA Astrophysics Data System (ADS)
Vepsäläinen, A.; Danilin, S.; Paraoanu, G. S.
2018-04-01
In many quantum technologies adiabatic processes are used for coherent quantum state operations, offering inherent robustness to errors in the control parameters. The main limitation is the long operation time resulting from the requirement of adiabaticity. The superadiabatic method allows for faster operation, by applying counterdiabatic driving that corrects for excitations resulting from the violation of the adiabatic condition. In this article we show how to construct the counterdiabatic Hamiltonian in a system with forbidden transitions by using two-photon processes and how to correct for the resulting time-dependent ac-Stark shifts in order to enable population transfer with unit fidelity. We further demonstrate that superadiabatic stimulated Raman passage can realize a robust unitary NOT-gate between the ground state and the second excited state of a three-level system. The results can be readily applied to a three-level transmon with the ladder energy level structure.
Far-field nanoscopy on a semiconductor quantum dot via a rapid-adiabatic-passage-based switch
NASA Astrophysics Data System (ADS)
Kaldewey, Timo; Kuhlmann, Andreas V.; Valentin, Sascha R.; Ludwig, Arne; Wieck, Andreas D.; Warburton, Richard J.
2018-02-01
The diffraction limit prevents a conventional optical microscope from imaging at the nanoscale. However, nanoscale imaging of molecules is possible by exploiting an intensity-dependent molecular switch1-3. This switch is translated into a microscopy scheme, stimulated emission depletion microscopy4-7. Variants on this scheme exist3,8-13, yet all exploit an incoherent response to the lasers. We present a scheme that relies on a coherent response to a laser. Quantum control of a two-level system proceeds via rapid adiabatic passage, an ideal molecular switch. We implement this scheme on an ensemble of quantum dots. Each quantum dot results in a bright spot in the image with extent down to 30 nm (λ/31). There is no significant loss of intensity with respect to confocal microscopy, resulting in a factor of 10 improvement in emitter position determination. The experiments establish rapid adiabatic passage as a versatile tool in the super-resolution toolbox.
Efficient shortcut techniques in evanescently coupled waveguides
NASA Astrophysics Data System (ADS)
Paul, Koushik; Sarma, Amarendra K.
2016-10-01
Shortcut to Adiabatic Passage (SHAPE) technique, in the context of coherent control of atomic systems has gained considerable attention in last few years. It is primarily because of its ability to manipulate population among the quantum states infinitely fast compared to the adiabatic processes. Two methods in this regard have been explored rigorously, namely the transitionless quantum driving and the Lewis-Riesenfeld invariant approach. We have applied these two methods to realize SHAPE in adiabatic waveguide coupler. Waveguide couplers are integral components of photonic circuits, primarily used as switching devices. Our study shows that with appropriate engineering of the coupling coefficient and propagation constants of the coupler it is possible to achieve efficient and complete power switching. We also observed that the coupler length could be reduced significantly without affecting the coupling efficiency of the system.
Artifacts correction for T1rho imaging with constant amplitude spin-lock
NASA Astrophysics Data System (ADS)
Chen, Weitian
2017-01-01
T1rho imaging with constant amplitude spin-lock is prone to artifacts in the presence of B1 RF and B0 field inhomogeneity. Despite significant technological progress, improvements on the robustness of constant amplitude spin-lock are necessary in order to use it for routine clinical practice. This work proposes methods to simultaneously correct for B1 RF and B0 field inhomogeneity in constant amplitude spin-lock. By setting the maximum B1 amplitude of the excitation adiabatic pulses equal to the expected constant amplitude spin-lock frequency, the spins become aligned along the effective field throughout the spin-lock process. This results in T1rho-weighted images free of artifacts, despite the spatial variation of the effective field caused by B1 RF and B0 field inhomogeneity. When the pulse is long, the relaxation effect during the adiabatic half passage may result in a non-negligible error in the mono-exponential relaxation model. A two-acquisition approach is presented to solve this issue. Simulation, phantom, and in-vivo scans demonstrate the proposed methods achieve superior image quality compared to existing methods, and that the two-acquisition method is effective in resolving the relaxation effect during the adiabatic half passage.
Adiabatic transfer of energy fluctuations between membranes inside an optical cavity
NASA Astrophysics Data System (ADS)
Garg, Devender; Chauhan, Anil K.; Biswas, Asoka
2017-08-01
A scheme is presented for the adiabatic transfer of average fluctuations in the phonon number between two membranes in an optical cavity. We show that by driving the cavity modes with external time-delayed pulses, one can obtain an effect analogous to stimulated Raman adiabatic passage in the atomic systems. The adiabatic transfer of fluctuations from one membrane to the other is attained through a "dark" mode, which is robust against decay of the mediating cavity mode. The results are supported with analytical and numerical calculations with experimentally feasible parameters.
Wu, Jin-Lei; Ji, Xin; Zhang, Shou
2017-01-01
We propose a dressed-state scheme to achieve shortcuts to adiabaticity in atom-cavity quantum electrodynamics for speeding up adiabatic two-atom quantum state transfer and maximum entanglement generation. Compared with stimulated Raman adiabatic passage, the dressed-state scheme greatly shortens the operation time in a non-adiabatic way. By means of some numerical simulations, we determine the parameters which can guarantee the feasibility and efficiency both in theory and experiment. Besides, numerical simulations also show the scheme is robust against the variations in the parameters, atomic spontaneous emissions and the photon leakages from the cavity. PMID:28397793
Flow Quantification by Nuclear Magnetic Resonance Imaging
NASA Astrophysics Data System (ADS)
Vu, Anthony Tienhuan
1994-01-01
In this dissertation, a robust method for the measurement and visualization of flow field in laminar, complex and turbulent flows by Nuclear Magnetic Resonance Imaging utilizing flow induced Adiabatic Fast Passage (AFP) principle will be presented. This dissertation focuses on the application of AFP in spatially resolvable size vessels. We first review two main flow effects in NMR: time-of-flight and phase dispersion. The discussion of NMR flow imaging application - flow measurements and NMR angiography will be given. The theoretical framework of adiabatic passage will be discussed in order to explain the principle of flow-induced adiabatic passage tagging for flow imaging applications. From a knowledge of the basic flow-induced adiabatic passage principle, we propose a multi-zone AFP excitation scheme to deal with flow in a curved tube, branches and constrictions, i.e. complex and turbulent flow regimes. The technique provides a quick and simple way to acquire flow profiles simultaneously at several locations and arbitrary orientations inside the field-of-view. The flow profile is the time-averaged evolution of the labeled flowing material. Results obtained using a carotid bifurcation and circular jet phantoms are similar to the previous experimental studies employing laser Doppler Anemometry, and other flow visualization techniques. In addition, the preliminary results obtained with a human volunteer support the feasibility of the technique for in vivo flow quantification. Finally, a quantitative comparison of flow measurement of the new proposed techniques with the more established Phase Contrast MRA was performed. The results show excellent correlation between the two methods and with the standard volumetric flow rate measurement indicating that the flow measurements obtained using this technique are reliable and accurate under various flow regimes.
Speeding up adiabatic population transfer in a Josephson qutrit via counter-diabatic driving
NASA Astrophysics Data System (ADS)
Feng, Zhi-Bo; Lu, Xiao-Jing; Li, M.; Yan, Run-Ying; Zhou, Yun-Qing
2017-12-01
We propose a theoretical scheme to speed up adiabatic population transfer in a Josephson artificial qutrit by transitionless quantum driving. At a magic working point, an effective three-level subsystem can be chosen to constitute our qutrit. With Stokes and pump driving, adiabatic population transfer can be achieved in the qutrit by means of stimulated Raman adiabatic passage. Assisted by a counter-diabatic driving, the adiabatic population transfer can be sped up drastically with accessible parameters. Moreover, the accelerated operation is flexibly reversible and highly robust against decoherence effects. Thanks to these distinctive advantages, the present protocol could offer a promising avenue for optimal coherent operations in Josephson quantum circuits.
NASA Astrophysics Data System (ADS)
Vitanov, Nikolay V.
2018-05-01
In the experimental determination of the population transfer efficiency between discrete states of a coherently driven quantum system it is often inconvenient to measure the population of the target state. Instead, after the interaction that transfers the population from the initial state to the target state, a second interaction is applied which brings the system back to the initial state, the population of which is easy to measure and normalize. If the transition probability is p in the forward process, then classical intuition suggests that the probability to return to the initial state after the backward process should be p2. However, this classical expectation is generally misleading because it neglects interference effects. This paper presents a rigorous theoretical analysis based on the SU(2) and SU(3) symmetries of the propagators describing the evolution of quantum systems with two and three states, resulting in explicit analytic formulas that link the two-step probabilities to the single-step ones. Explicit examples are given with the popular techniques of rapid adiabatic passage and stimulated Raman adiabatic passage. The present results suggest that quantum-mechanical probabilities degrade faster in repeated processes than classical probabilities. Therefore, the actual single-pass efficiencies in various experiments, calculated from double-pass probabilities, might have been greater than the reported values.
Cross-coupling effects in circuit-QED stimulated Raman adiabatic passage
NASA Astrophysics Data System (ADS)
Vepsäläinen, A.; Paraoanu, G. S.
2018-03-01
Stimulated Raman adiabatic passage is a quantum protocol that can be used for robust state preparation in a three-level system. It has been commonly employed in quantum optics, but recently this technique has drawn attention also in circuit quantum electrodynamics. The protocol relies on two slowly varying drive pulses that couple the initial and the target state via an intermediate state, which remains unpopulated. Here we study the detrimental effect of the parasitic couplings of the drives into transitions other than those required by the protocol. The effect is most prominent in systems with almost harmonic energy level structure, such as the transmon. We show that under these conditions in the presence of decoherence there exists an optimal STIRAP amplitude for population transfer.
Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system
Zhou, Brian B.; Baksic, Alexandre; Ribeiro, Hugo; ...
2016-11-28
Adiabatic evolutions find widespread utility in applications to quantum state engineering1 , geometric quantum computation2 , and quantum simulation3 . Although offering desirable robustness to experimental imperfections, adiabatic techniques are susceptible to decoherence during their long operation time. A recent strategy termed ‘shortcuts to adiabaticity’ 4–10 (STA) aims to circumvent this trade-off by designing fast dynamics to reproduce the results of infinitely slow, adiabatic processes. Here, as a realization of this strategy, we implement ‘superadiabatic’ transitionless driving11 (SATD) to speed up stimulated Raman adiabatic passage1,12–15 (STIRAP) in a solid-state lambda (Λ) system. Utilizing optical transitions to a dissipative excited statemore » in the nitrogen vacancy (NV) center in diamond, we demonstrate the accelerated performance of different shortcut trajectories for population transfer and for the transfer and initialization of coherent superpositions. We reveal that SATD protocols exhibit robustness to dissipation and experimental uncertainty, and can be optimized when these effects are present. These results motivate STA as a promising tool for controlling open quantum systems comprising individual or hybrid nanomechanical, superconducting, and photonic elements in the solid state12–17.« less
NASA Astrophysics Data System (ADS)
Yu, Long-Bao; Zhang, Wen-Hai; Ye, Liu
2007-09-01
We propose a simple scheme to realize 1→M economical phase-covariant quantum cloning machine (EPQCM) with superconducting quantum interference device (SQUID) qubits. In our scheme, multi-SQUIDs are fixed into a microwave cavity by adiabatic passage for their manipulation. Based on this model, we can realize the EPQCM with high fidelity via adiabatic quantum computation.
Stimulated Raman adiabatic passage in physics, chemistry, and beyond
NASA Astrophysics Data System (ADS)
Vitanov, Nikolay V.; Rangelov, Andon A.; Shore, Bruce W.; Bergmann, Klaas
2017-01-01
The technique of stimulated Raman adiabatic passage (STIRAP), which allows efficient and selective population transfer between quantum states without suffering loss due to spontaneous emission, was introduced in 1990 by Gaubatz et al.. Since then STIRAP has emerged as an enabling methodology with widespread successful applications in many fields of physics, chemistry, and beyond. This article reviews the many applications of STIRAP emphasizing the developments since 2001, the time when the last major review on the topic was written (Vitanov, Fleischhauer et al.). A brief introduction into the theory of STIRAP and the early applications for population transfer within three-level systems is followed by the discussion of several extensions to multilevel systems, including multistate chains and tripod systems. The main emphasis is on the wide range of applications in atomic and molecular physics (including atom optics, cavity quantum electrodynamics, formation of ultracold molecules, etc.), quantum information (including single- and two-qubit gates, entangled-state preparation, etc.), solid-state physics (including processes in doped crystals, nitrogen-vacancy centers, superconducting circuits, semiconductor quantum dots and wells), and even some applications in classical physics (including waveguide optics, polarization optics, frequency conversion, etc.). Promising new prospects for STIRAP are also presented (including processes in optomechanics, precision experiments, detection of parity violation in molecules, spectroscopy of core-nonpenetrating Rydberg states, population transfer with x-ray pulses, etc.).
Gigahertz dynamics of a strongly driven single quantum spin.
Fuchs, G D; Dobrovitski, V V; Toyli, D M; Heremans, F J; Awschalom, D D
2009-12-11
Two-level systems are at the core of numerous real-world technologies such as magnetic resonance imaging and atomic clocks. Coherent control of the state is achieved with an oscillating field that drives dynamics at a rate determined by its amplitude. As the strength of the field is increased, a different regime emerges where linear scaling of the manipulation rate breaks down and complex dynamics are expected. By calibrating the spin rotation with an adiabatic passage, we have measured the room-temperature "strong-driving" dynamics of a single nitrogen vacancy center in diamond. With an adiabatic passage to calibrate the spin rotation, we observed dynamics on sub-nanosecond time scales. Contrary to conventional thinking, this breakdown of the rotating wave approximation provides opportunities for time-optimal quantum control of a single spin.
NASA Astrophysics Data System (ADS)
Papell, S. S.
1984-11-01
The thermal film-cooling footprints observed by infrared imagery for three coolant-passage configurations embedded in adiabatic-test plates are discussed. The configurations included a standard round-hole cross section and two orientations of a vortex-generating flow passage. Both orientations showed up to factors of four increases in both film-cooling effectiveness and surface coverage over that obtained with the round coolant passage. The crossflow data covered a range of tunnel velocities from 15.5 to 45 m/sec with blowing rates from 0.20 to 2.05. A photographic streakline flow visualization technique supported the concept of the counterrotating apability of the flow passage design and gave visual credence to its role in inhibiting flow separation.
NASA Technical Reports Server (NTRS)
Papell, S. S.
1984-01-01
The thermal film-cooling footprints observed by infrared imagery for three coolant-passage configurations embedded in adiabatic-test plates are discussed. The configurations included a standard round-hole cross section and two orientations of a vortex-generating flow passage. Both orientations showed up to factors of four increases in both film-cooling effectiveness and surface coverage over that obtained with the round coolant passage. The crossflow data covered a range of tunnel velocities from 15.5 to 45 m/sec with blowing rates from 0.20 to 2.05. A photographic streakline flow visualization technique supported the concept of the counterrotating apability of the flow passage design and gave visual credence to its role in inhibiting flow separation.
Time-reversal-symmetric single-photon wave packets for free-space quantum communication.
Trautmann, N; Alber, G; Agarwal, G S; Leuchs, G
2015-05-01
Readout and retrieval processes are proposed for efficient, high-fidelity quantum state transfer between a matter qubit, encoded in the level structure of a single atom or ion, and a photonic qubit, encoded in a time-reversal-symmetric single-photon wave packet. They are based on controlling spontaneous photon emission and absorption of a matter qubit on demand in free space by stimulated Raman adiabatic passage. As these processes do not involve mode selection by high-finesse cavities or photon transport through optical fibers, they offer interesting perspectives as basic building blocks for free-space quantum-communication protocols.
Adiabatic passage in photon-echo quantum memories
NASA Astrophysics Data System (ADS)
Demeter, Gabor
2013-11-01
Photon-echo-based quantum memories use inhomogeneously broadened, optically thick ensembles of absorbers to store a weak optical signal and employ various protocols to rephase the atomic coherences for information retrieval. We study the application of two consecutive, frequency-chirped control pulses for coherence rephasing in an ensemble with a “natural” inhomogeneous broadening. Although propagation effects distort the two control pulses differently, chirped pulses that drive adiabatic passage can rephase atomic coherences in an optically thick storage medium. Combined with spatial phase-mismatching techniques to prevent primary echo emission, coherences can be rephased around the ground state to achieve secondary echo emission with close to unit efficiency. Potential advantages over similar schemes working with π pulses include greater potential signal fidelity, reduced noise due to spontaneous emission, and better capability for the storage of multiple memory channels.
NASA Astrophysics Data System (ADS)
Beterov, I. I.; Hamzina, G. N.; Yakshina, E. A.; Tretyakov, D. B.; Entin, V. M.; Ryabtsev, I. I.
2018-03-01
High-fidelity entangled Bell states are of great interest in quantum physics. Entanglement of ultracold neutral atoms in two spatially separated optical dipole traps is promising for implementation of quantum computing and quantum simulation and for investigation of Bell states of material objects. We propose a method to entangle two atoms via long-range Rydberg-Rydberg interaction. Alternative to previous approaches, based on Rydberg blockade, we consider radio-frequency-assisted Stark-tuned Förster resonances in Rb Rydberg atoms. To reduce the sensitivity of the fidelity of Bell states to the fluctuations of interatomic distance, we propose to use the double adiabatic passage across the radio-frequency-assisted Stark-tuned Förster resonances, which results in a deterministic phase shift of the collective two-atom state.
Predicting the effect of relaxation during frequency-selective adiabatic pulses
NASA Astrophysics Data System (ADS)
Pfaff, Annalise R.; McKee, Cailyn E.; Woelk, Klaus
2017-11-01
Adiabatic half and full passages are invaluable for achieving uniform, B1-insensitive excitation or inversion of macroscopic magnetization across a well-defined range of NMR frequencies. To accomplish narrow frequency ranges with adiabatic pulses (<100 Hz), long pulse durations at low RF power levels are necessary, and relaxation during these pulses may no longer be negligible. A numerical, discrete recursive combination of the Bloch equations for longitudinal and transverse relaxation with the optimized equation for adiabatic angular motion of magnetization is used to calculate the trajectory of magnetization including its relaxation during adiabatic hyperbolic secant pulses. The agreement of computer-calculated data with experimental results demonstrates that, in non-viscous, small-molecule fluids, it is possible to model magnetization and relaxation by considering standard T1 and T2 relaxation in the traditional rotating frame. The proposed model is aimed at performance optimizations of applications in which these pulses are employed. It differs from previous reports which focused on short high-power adiabatic pulses and relaxation that is governed by dipole-dipole interactions, cross polarization, or chemical exchange.
Microscopic Description of Spontaneous Emission in Stark Chirped Rapid Adiabatic Passages
NASA Astrophysics Data System (ADS)
Shi, Xuan; Yuan, Hao; Zhao, Hong-Quan
2018-01-01
A microscopic approach describing the effect of spontaneous emission in the stark-chirped rapid adiabatic passages (SCRAPs) for quantum computation is presented. Apart from the phenomenological model, this microscopic one can investigate the dependence of the population dynamics both on the temperature of the environment and the decay rate γ. With flux-biased Josephson qubits as a specifical example, we study the efficiency of the SCRAP for realizing the basic Pauli-X and iSWAP gates. Our results show clearly that the behavior of the population transfer described by the microscopic model is similar with the phenomenological one at zero temperature. In the limit of very high temperature, the population probabilities of the qubit states exhibit strong stability properties. High efficiency for the quantum gate manipulations in SCRAPs is available against the weak decay rate γ ≪ 1 at low temperature.
A high-field adiabatic fast passage ultracold neutron spin flipper for the UCNA experiment.
Holley, A T; Broussard, L J; Davis, J L; Hickerson, K; Ito, T M; Liu, C-Y; Lyles, J T M; Makela, M; Mammei, R R; Mendenhall, M P; Morris, C L; Mortensen, R; Pattie, R W; Rios, R; Saunders, A; Young, A R
2012-07-01
The UCNA collaboration is making a precision measurement of the β asymmetry (A) in free neutron decay using polarized ultracold neutrons (UCN). A critical component of this experiment is an adiabatic fast passage neutron spin flipper capable of efficient operation in ambient magnetic fields on the order of 1 T. The requirement that it operate in a high field necessitated the construction of a free neutron spin flipper based, for the first time, on a birdcage resonator. The design, construction, and initial testing of this spin flipper prior to its use in the first measurement of A with UCN during the 2007 run cycle of the Los Alamos Neutron Science Center's 800 MeV proton accelerator is detailed. These studies determined the flipping efficiency of the device, averaged over the UCN spectrum present at the location of the spin flipper, to be ̅ε=0.9985(4).
Huang, Xiao-Bin; Chen, Ye-Hong; Wang, Zhe
2016-05-24
In this paper, we propose an efficient scheme to fast generate three-qubit Greenberger-Horne-Zeilinger (GHZ) state by constructing shortcuts to adiabatic passage (STAP) based on the "Lewis-Riesenfeld (LR) invariants" in spatially separated cavities connected by optical fibers. Numerical simulations illustrate that the scheme is not only fast, but robust against the decoherence caused by atomic spontaneous emission, cavity losses and the fiber photon leakages. This might be useful to realize fast and noise-resistant quantum information processing for multi-qubit systems.
Deterministic quantum state transfer between remote qubits in cavities
NASA Astrophysics Data System (ADS)
Vogell, B.; Vermersch, B.; Northup, T. E.; Lanyon, B. P.; Muschik, C. A.
2017-12-01
Performing a faithful transfer of an unknown quantum state is a key challenge for enabling quantum networks. The realization of networks with a small number of quantum links is now actively pursued, which calls for an assessment of different state transfer methods to guide future design decisions. Here, we theoretically investigate quantum state transfer between two distant qubits, each in a cavity, connected by a waveguide, e.g., an optical fiber. We evaluate the achievable success probabilities of state transfer for two different protocols: standard wave packet shaping and adiabatic passage. The main loss sources are transmission losses in the waveguide and absorption losses in the cavities. While special cases studied in the literature indicate that adiabatic passages may be beneficial in this context, it remained an open question under which conditions this is the case and whether their use will be advantageous in practice. We answer these questions by providing a full analysis, showing that state transfer by adiabatic passage—in contrast to wave packet shaping—can mitigate the effects of undesired cavity losses, far beyond the regime of coupling to a single waveguide mode and the regime of lossless waveguides, as was proposed so far. Furthermore, we show that the photon arrival probability is in fact bounded in a trade-off between losses due to non-adiabaticity and due to coupling to off-resonant waveguide modes. We clarify that neither protocol can avoid transmission losses and discuss how the cavity parameters should be chosen to achieve an optimal state transfer.
Stimulated Raman adiabatic control of a nuclear spin in diamond
NASA Astrophysics Data System (ADS)
Coto, Raul; Jacques, Vincent; Hétet, Gabriel; Maze, Jerónimo R.
2017-08-01
Coherent manipulation of nuclear spins is a highly desirable tool for both quantum metrology and quantum computation. However, most of the current techniques to control nuclear spins lack fast speed, impairing their robustness against decoherence. Here, based on stimulated Raman adiabatic passage, and its modification including shortcuts to adiabaticity, we present a fast protocol for the coherent manipulation of nuclear spins. Our proposed Λ scheme is implemented in the microwave domain and its excited-state relaxation can be optically controlled through an external laser excitation. These features allow for the initialization of a nuclear spin starting from a thermal state. Moreover we show how to implement Raman control for performing Ramsey spectroscopy to measure the dynamical and geometric phases acquired by nuclear spins.
Adiabatic and fast passage ultra-wideband inversion in pulsed EPR.
Doll, Andrin; Pribitzer, Stephan; Tschaggelar, René; Jeschke, Gunnar
2013-05-01
We demonstrate that adiabatic and fast passage ultra-wideband (UWB) pulses can achieve inversion over several hundreds of MHz and thus enhance the measurement sensitivity, as shown by two selected experiments. Technically, frequency-swept pulses are generated by a 12 GS/s arbitrary waveform generator and upconverted to X-band frequencies. This pulsed UWB source is utilized as an incoherent channel in an ordinary pulsed EPR spectrometer. We discuss experimental methodologies and modeling techniques to account for the response of the resonator, which can strongly limit the excitation bandwidth of the entire non-linear excitation chain. Aided by these procedures, pulses compensated for bandwidth or variations in group delay reveal enhanced inversion efficiency. The degree of bandwidth compensation is shown to depend critically on the time available for excitation. As a result, we demonstrate optimized inversion recovery and double electron electron resonance (DEER) experiments. First, virtually complete inversion of the nitroxide spectrum with an adiabatic pulse of 128ns length is achieved. Consequently, spectral diffusion between inverted and non-inverted spins is largely suppressed and the observation bandwidth can be increased to increase measurement sensitivity. Second, DEER is performed on a terpyridine-based copper (II) complex with a nitroxide-copper distance of 2.5nm. As previously demonstrated on this complex, when pumping copper spins and observing nitroxide spins, the modulation depth is severely limited by the excitation bandwidth of the pump pulse. By using fast passage UWB pulses with a maximum length of 64ns, we achieve up to threefold enhancement of the modulation depth. Associated artifacts in distance distributions when increasing the bandwidth of the pump pulse are shown to be small. Copyright © 2013 Elsevier Inc. All rights reserved.
Wei, Yu-Jia; He, Yu-Ming; Chen, Ming-Cheng; Hu, Yi-Nan; He, Yu; Wu, Dian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Lu, Chao-Yang; Pan, Jian-Wei
2014-11-12
Single photons are attractive candidates of quantum bits (qubits) for quantum computation and are the best messengers in quantum networks. Future scalable, fault-tolerant photonic quantum technologies demand both stringently high levels of photon indistinguishability and generation efficiency. Here, we demonstrate deterministic and robust generation of pulsed resonance fluorescence single photons from a single semiconductor quantum dot using adiabatic rapid passage, a method robust against fluctuation of driving pulse area and dipole moments of solid-state emitters. The emitted photons are background-free, have a vanishing two-photon emission probability of 0.3% and a raw (corrected) two-photon Hong-Ou-Mandel interference visibility of 97.9% (99.5%), reaching a precision that places single photons at the threshold for fault-tolerant surface-code quantum computing. This single-photon source can be readily scaled up to multiphoton entanglement and used for quantum metrology, boson sampling, and linear optical quantum computing.
Circular states of atomic hydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lutwak, R.; Holley, J.; Chang, P.P.
1997-08-01
We describe the creation of circular states of hydrogen by adiabatic transfer of a Rydberg state in crossed electric and magnetic fields, and also by adiabatic passage in a rotating microwave field. The latter method permits rapid switching between the two circular states of a given n manifold. The two methods are demonstrated experimentally, and results are presented of an analysis of the field ionization properties of the circular states. An application for the circular states is illustrated by millimeter-wave resonance in hydrogen of the n=29{r_arrow}n=30 transition. {copyright} {ital 1997} {ital The American Physical Society}
Quantum computation with cold bosonic atoms in an optical lattice.
García-Ripoll, Juan José; Cirac, Juan Ignacio
2003-07-15
We analyse an implementation of a quantum computer using bosonic atoms in an optical lattice. We show that, even though the number of atoms per site and the tunnelling rate between neighbouring sites is unknown, one may operate a universal set of gates by means of adiabatic passage.
Magnetization transfer and adiabatic R 1ρ MRI in the brainstem of Parkinson's disease.
Tuite, Paul J; Mangia, Silvia; Tyan, Andrew E; Lee, Michael K; Garwood, Michael; Michaeli, Shalom
2012-06-01
In addition to classic midbrain pathology, Parkinson's disease (PD) is accompanied by changes in pontine and medullary brainstem structures. These additional abnormalities may underlie non-motor features as well as play a role in motor disability. Using novel magnetic resonance imaging (MRI) methods based on rotating frame adiabatic R(1ρ) (i.e., measurements of longitudinal relaxation during adiabatic full passage pulses) and modified magnetization transfer (MT) MRI mapping, we sought to identify brainstem alterations in nine individuals with mild-moderate PD (off medication) and ten age-matched controls at 4 T. We discovered significant differences in MRI parameters between midbrain and medullary brainstem structures in control subjects as compared to PD patients. These findings support the presence of underlying functional/structural brainstem changes in mild-moderate PD. Copyright © 2012 Elsevier Ltd. All rights reserved.
Cavity-mediated entanglement generation via Landau-Zener interferometry.
Quintana, C M; Petersson, K D; McFaul, L W; Srinivasan, S J; Houck, A A; Petta, J R
2013-04-26
We demonstrate quantum control and entanglement generation using a Landau-Zener beam splitter formed by coupling two transmon qubits to a superconducting cavity. Single passage through the cavity-mediated qubit-qubit avoided crossing provides a direct test of the Landau-Zener transition formula. Consecutive sweeps result in Landau-Zener-Stückelberg interference patterns, with a visibility that can be sensitively tuned by adjusting the level velocity through both the nonadiabatic and adiabatic regimes. Two-qubit state tomography indicates that a Bell state can be generated via a single passage, with a fidelity of 78% limited by qubit relaxation.
NASA Astrophysics Data System (ADS)
Panda, C. D.; O'Leary, B. R.; West, A. D.; Baron, J.; Hess, P. W.; Hoffman, C.; Kirilov, E.; Overstreet, C. B.; West, E. P.; DeMille, D.; Doyle, J. M.; Gabrielse, G.
2016-05-01
Experimental searches for the electron electric-dipole moment (EDM) probe new physics beyond the standard model. The current best EDM limit was set by the ACME Collaboration [Science 343, 269 (2014), 10.1126/science.1248213], constraining time-reversal symmetry (T ) violating physics at the TeV energy scale. ACME used optical pumping to prepare a coherent superposition of ThO H3Δ1 states that have aligned electron spins. Spin precession due to the molecule's internal electric field was measured to extract the EDM. We report here on an improved method for preparing this spin-aligned state of the electron by using stimulated Raman adiabatic passage (STIRAP). We demonstrate a transfer efficiency of 75 %±5 % , representing a significant gain in signal for a next-generation EDM experiment. We discuss the particularities of implementing STIRAP in systems such as ours, where molecular ensembles with large phase-space distributions are transferred via weak molecular transitions with limited laser power and limited optical access.
A homonuclear spin-pair filter for solid-state NMR based on adiabatic-passage techniques
NASA Astrophysics Data System (ADS)
Verel, René; Baldus, Marc; Ernst, Matthias; Meier, Beat H.
1998-05-01
A filtering scheme for the selection of spin pairs (and larger spin clusters) under fast magic-angle spinning is proposed. The scheme exploits the avoided level crossing in spin pairs during an adiabatic amplitude sweep through the so-called HORROR recoupling condition. The advantages over presently used double-quantum filters are twofold. (i) The maximum theoretical filter efficiency is, due to the adiabatic variation, 100% instead of 73% as for transient methods. (ii) Since the filter does not rely on the phase-cycling properties of the double-quantum coherence, there is no need to obtain the full double-quantum intensity for all spins in the sample at one single point in time. The only important requirement is that all coupled spins pass through a two-spin state during the amplitude sweep. This makes the pulse scheme robust with respect to rf-amplitude missetting, rf-field inhomogeneity and chemical-shift offset.
A water bag theory of autoresonant Bernstein-Greene-Kruskal modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khain, P.; Friedland, L.
2007-08-15
The adiabatic water bag theory describing formation and passage through phase-space of driven, continuously phase-locked (autoresonant) coherent structures in plasmas [L. Friedland et al., Phys. Rev. Lett. 96, 225001 (2006)] and of the associated Bernstein-Greene-Kruskal (BGK) modes is developed. The phase-locking is achieved by using a chirped frequency ponderomotive drive, passing through kinetic Cerenkov-type resonances. The theory uses the adiabatic invariants (conserved actions of limiting trajectories) in the problem and, for a flat-top initial distribution of the electrons, reduces the calculation of the self-field of the driven BGK mode to solution of a few algebraic equations. The adiabatic multiwater bagmore » extension of the theory for applications to autoresonant BGK structures with more general initial distributions is suggested. The results of the theories are in very good agreement with numerical simulations.« less
Traaseth, Nathaniel J; Chao, Fa-An; Masterson, Larry R; Mangia, Silvia; Garwood, Michael; Michaeli, Shalom; Seelig, Burckhard; Veglia, Gianluigi
2012-06-01
NMR relaxation methods probe biomolecular motions over a wide range of timescales. In particular, the rotating frame spin-lock R(1ρ) and Carr-Purcell-Meiboom-Gill (CPMG) R(2) experiments are commonly used to characterize μs to ms dynamics, which play a critical role in enzyme folding and catalysis. In an effort to complement these approaches, we introduced the Heteronuclear Adiabatic Relaxation Dispersion (HARD) method, where dispersion in rotating frame relaxation rate constants (longitudinal R(1ρ) and transverse R(2ρ)) is created by modulating the shape and duration of adiabatic full passage (AFP) pulses. Previously, we showed the ability of the HARD method to detect chemical exchange dynamics in the fast exchange regime (k(ex)∼10(4)-10(5) s(-1)). In this article, we show the sensitivity of the HARD method to slower exchange processes by measuring R(1ρ) and R(2ρ) relaxation rates for two soluble proteins (ubiquitin and 10C RNA ligase). One advantage of the HARD method is its nominal dependence on the applied radio frequency field, which can be leveraged to modulate the dispersion in the relaxation rate constants. In addition, we also include product operator simulations to define the dynamic range of adiabatic R(1ρ) and R(2ρ) that is valid under all exchange regimes. We conclude from both experimental observations and simulations that this method is complementary to CPMG-based and rotating frame spin-lock R(1ρ) experiments to probe conformational exchange dynamics for biomolecules. Finally, this approach is germane to several NMR-active nuclei, where relaxation rates are frequency-offset independent. Copyright © 2012 Elsevier Inc. All rights reserved.
Transverse relaxation in the rotating frame induced by chemical exchange.
Michaeli, Shalom; Sorce, Dennis J; Idiyatullin, Djaudat; Ugurbil, Kamil; Garwood, Michael
2004-08-01
In the presence of radiofrequency irradiation, relaxation of magnetization aligned with the effective magnetic field is characterized by the time constant T1rho. On the other hand, the time constant T2rho characterizes the relaxation of magnetization that is perpendicular to the effective field. Here, it is shown that T2rho can be measured directly with Carr-Purcell sequences composed of a train of adiabatic full-passage (AFP) pulses. During adiabatic rotation, T2rho characterizes the relaxation of the magnetization, which under adiabatic conditions remains approximately perpendicular to the time-dependent effective field. Theory is derived to describe the influence of chemical exchange on T2rho relaxation in the fast-exchange regime, with time constant defined as T2rho,ex. The derived theory predicts the rate constant R2rho,ex (= 1/T2rho,ex) to be dependent on the choice of amplitude- and frequency-modulation functions used in the AFP pulses. Measurements of R2rho,ex of the water/ethanol exchanging system confirm the predicted dependence on modulation functions. The described theoretical framework and adiabatic methods represent new tools to probe exchanging systems. Copyright 2004 Elsevier Inc.
Using optimal control methods with constraints to generate singlet states in NMR
NASA Astrophysics Data System (ADS)
Rodin, Bogdan A.; Kiryutin, Alexey S.; Yurkovskaya, Alexandra V.; Ivanov, Konstantin L.; Yamamoto, Satoru; Sato, Kazunobu; Takui, Takeji
2018-06-01
A method is proposed for optimizing the performance of the APSOC (Adiabatic-Passage Spin Order Conversion) technique, which can be exploited in NMR experiments with singlet spin states. In this technique magnetization-to-singlet conversion (and singlet-to-magnetization conversion) is performed by using adiabatically ramped RF-fields. Optimization utilizes the GRAPE (Gradient Ascent Pulse Engineering) approach, in which for a fixed search area we assume monotonicity to the envelope of the RF-field. Such an approach allows one to achieve much better performance for APSOC; consequently, the efficiency of magnetization-to-singlet conversion is greatly improved as compared to simple model RF-ramps, e.g., linear ramps. We also demonstrate that the optimization method is reasonably robust to possible inaccuracies in determining NMR parameters of the spin system under study and also in setting the RF-field parameters. The present approach can be exploited in other NMR and EPR applications using adiabatic switching of spin Hamiltonians.
Coherent population transfer in multilevel systems with magnetic sublevels. II. Algebraic analysis
NASA Astrophysics Data System (ADS)
Martin, J.; Shore, B. W.; Bergmann, K.
1995-07-01
We extend previous theoretical work on coherent population transfer by stimulated Raman adiabatic passage for states involving nonzero angular momentum. The pump and Stokes fields are either copropagating or counterpropagating with the corresponding linearly polarized electric-field vectors lying in a common plane with the magnetic-field direction. Zeeman splitting lifts the magnetic sublevel degeneracy. We present an algebraic analysis of dressed-state properties to explain the behavior noted in numerical studies. In particular, we discuss conditions which are likely to lead to a failure of complete population transfer. The applied strategy, based on simple methods of linear algebra, will also be successful for other types of discrete multilevel systems, provided the rotating-wave and adiabatic approximation are valid.
NASA Astrophysics Data System (ADS)
Zhang, Xu; Chen, Ye-Hong; Shi, Zhi-Cheng; Shan, Wu-Jiang; Song, Jie; Xia, Yan
2017-12-01
Combining the advantages of the dressed states and superconducting quantum interference device (SQUID) qubits, we propose an efficient scheme to generate Greenberger-Horne-Zeilinger (GHZ) states for three SQUID qubits. Firstly, we elaborate how to generate GHZ states of three SQUID qubits by choosing a set of dressed states suitably. Then, we compare the scheme by using dressed states with that via the adiabatic passage. Lastly, the influence of various decoherence factors, such as cavity decay, spontaneous emission and dephasing, is analyzed numerically. All of the results show that the GHZ state can be obtained fast and with high fidelity and that the present scheme is robust against the cavity decay and spontaneous emission. In addition, our scheme is more stable against the dephasing than the adiabatic scheme.
Modeling of High-Velocity Flows in ITAM Impulse Facilities
2010-04-01
up to 150 ms; Adiabatic compression wind tunnels up to 100 ms; Shock tubes... shock tubes. Basic and applied aerodynamic research has been performed in these wind tunnels in the range of Mach numbers М = 6 20 for many years...passage of a shock wave propagating over a cold rarefied gas filling the wind tunnel . When the gas heated in the shock wave (plug) passes around the
Triggered generation of single guided photons from a single atom in a nanofiber cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Kien, Fam; Hakuta, K.
2011-04-15
We study the deterministic generation of single guided-mode photons from an atom in the vicinity of a nanofiber with two fiber-Bragg-grating (FBG) mirrors. The technique is based on a cavity-enhanced Raman scattering process involving an adiabatic passage. We take into account the scattering of the pump field from the fiber, the multilevel structure of the atom, and the surface-induced van der Waals potential in describing the photon generation process. We find that, due to the confinement of the cavity field in the transverse plane of the fiber and in the space between the FBG mirrors, the probability of the generationmore » of a single guided-mode photon can be close to unity even when the finesse of the nanofiber cavity is moderate. We show the possibilities of saturation and power broadening in the behavior of the number of photons emitted into the nanofiber.« less
Controllable high-fidelity quantum state transfer and entanglement generation in circuit QED.
Xu, Peng; Yang, Xu-Chen; Mei, Feng; Xue, Zheng-Yuan
2016-01-25
We propose a scheme to realize controllable quantum state transfer and entanglement generation among transmon qubits in the typical circuit QED setup based on adiabatic passage. Through designing the time-dependent driven pulses applied on the transmon qubits, we find that fast quantum sate transfer can be achieved between arbitrary two qubits and quantum entanglement among the qubits also can also be engineered. Furthermore, we numerically analyzed the influence of the decoherence on our scheme with the current experimental accessible systematical parameters. The result shows that our scheme is very robust against both the cavity decay and qubit relaxation, the fidelities of the state transfer and entanglement preparation process could be very high. In addition, our scheme is also shown to be insensitive to the inhomogeneous of qubit-resonator coupling strengths.
Stabilized 1762 nm Laser for Barium Ion Qubit Readout via Adiabatic Passage
NASA Astrophysics Data System (ADS)
Salacka, Joanna
2008-05-01
Trapped ions are one of the most promising candidates for the implementation of quantum computation. We are trapping single ions of Ba^137 to serve as our qubit, because the hyperfine structure of its ground state and its various visible-wavelength transitions make it favorable for quantum computation. The two hyperfine ground levels will serve as our |1> and |0> qubit states. The readout of the qubit will be accomplished by first selectively shelving the ion directly to the metastable 5D5/2 state using a 1762 nm narrow band fiber laser. Next, the cooling and repumping lasers are turned on and the fluorescence of the ion is measured. Since the 5D5/2 state is decoupled from the laser cooling transitions, the ion will remain dark when shelved. Thus if fluorescence is seen we know that the qubit was in the |0> state, and if no fluorescence is seen it was in the |1> state. The laser is actively stabilized to a temperature-controlled, high-finesse 1.76 um Zerodur optical cavity. The shelving to the 5D5/2 state is most efficiently achieved with adiabatic passage, which requires a smooth scan of the laser frequency across the transition resonance. To accomplish this, the laser frequency is modulated by an AOM driven by a smooth frequency sweep of adjustable amplitude and duration.
Solar-flare-induced Forbush decreases - Dependence on shock wave geometry
NASA Technical Reports Server (NTRS)
Thomas, B. T.; Gall, R.
1984-01-01
It is argued that the principal mechanism for the association of Forbush decreases with the passage of a solar flare shock wave is prolonged containment of cosmic ray particles behind the flare compression region, which acts as a semipermeable obstacle to particle motion along the field lines, leading to additional adiabatic cooling of the particles. Liouville's theorem is used to calculate the instantaneous distribution function at 1 AU for each particle arriving at the earth. By averaging over a large number of individual estimates, a representative estimate of the omnidirectional phase space density and the corresponding particle intensity is obtained. The energy change of individual particles at the shocks is found to be small in comparison to the energy lost by adiabatic cooling of the cosmic rays between the shock wave and the sun. The effects of particle rigidity, diffusion coefficient, and flare longitude on the magnitude of the Forbush decrease are quantitatively investigated.
Controllable high-fidelity quantum state transfer and entanglement generation in circuit QED
Xu, Peng; Yang, Xu-Chen; Mei, Feng; Xue, Zheng-Yuan
2016-01-01
We propose a scheme to realize controllable quantum state transfer and entanglement generation among transmon qubits in the typical circuit QED setup based on adiabatic passage. Through designing the time-dependent driven pulses applied on the transmon qubits, we find that fast quantum sate transfer can be achieved between arbitrary two qubits and quantum entanglement among the qubits also can also be engineered. Furthermore, we numerically analyzed the influence of the decoherence on our scheme with the current experimental accessible systematical parameters. The result shows that our scheme is very robust against both the cavity decay and qubit relaxation, the fidelities of the state transfer and entanglement preparation process could be very high. In addition, our scheme is also shown to be insensitive to the inhomogeneous of qubit-resonator coupling strengths. PMID:26804326
Rapid-Adiabatic Control of Ro-Vibrational Populations in Polyatomic Molecules
NASA Astrophysics Data System (ADS)
Zak, Emil J.; Yachmenev, Andrey
2017-06-01
We present a simple method for control of ro-vibrational populations in polyatomic molecules in the presence of inhomogeneous electric fields [1]. Cooling and trapping of heavy polar polyatomic molecules has become one of the frontier goals in high-resolution molecular spectroscopy, especially in the context of parity violation measurement in chiral compounds [2]. A key step toward reaching this goal would be development of a robust and efficient protocol for control of populations of ro-vibrational states in polyatomic, often floppy molecules. Here we demonstrate a modification of the stark-chirped rapid-adiabatic-passage technique (SCRAP) [3], designed for achieving high levels of control of ro-vibrational populations over a selected region in space. The new method employs inhomogeneous electric fields to generate space- and time- controlled Stark-shifts of energy levels in molecules. Adiabatic passage between ro-vibrational states is enabled by the pump pulse, which raises the value of the Rabi frequency. This Stark-chirped population transfer can be used in manipulation of population differences between high-field-seeking and low-field-seeking states of molecules in the Stark decelerator [4]. Appropriate timing of voltages on electric rods located along the decelerator combined with a single pump laser renders our method as potentially more efficient than traditional Stark decelerator techniques. Simulations for NH_3 show significant improvement in effectiveness of cooling, with respect to the standard 'moving-potential' method [5]. At the same time a high phase-space acceptance of the molecular packet is maintained. E. J. Zak, A. Yachmenev (submitted). C. Medcraft, R. Wolf, M. Schnell, Angew. Chem. Int. Ed., 53, 43, 11656-11659 (2014) M. Oberst, H. Munch, T. Halfman, PRL 99, 173001 (2007). K. Wohlfart, F. Grätz, F. Filsinger, H. Haak, G. Meijer, J. Küpper, Phys. Rev. A 77, 031404(R) (2008). H. L. Bethlem, F. M. H. Crompvoets, R. T. Jongma, S. Y. T. van de Meerakker, G. Meijer, Phys. Rev. A, 65, 053416 (2002).
Fast implementation of the 1\\rightarrow3 orbital state quantum cloning machine
NASA Astrophysics Data System (ADS)
Lin, Jin-Zhong
2018-05-01
We present a scheme to implement a 1→3 orbital state quantum cloning machine assisted by quantum Zeno dynamics. By constructing shortcuts to adiabatic passage with transitionless quantum driving, we can complete this scheme effectively and quickly in one step. The effects of decoherence, including spontaneous emission and the decay of the cavity, are also discussed. The numerical simulation results show that high fidelity can be obtained and the feasibility analysis indicates that this can also be realized in experiments.
Nonlinear compression of temporal solitons in an optical waveguide via inverse engineering
NASA Astrophysics Data System (ADS)
Paul, Koushik; Sarma, Amarendra K.
2018-03-01
We propose a novel method based on the so-called shortcut-to-adiabatic passage techniques to achieve fast compression of temporal solitons in a nonlinear waveguide. We demonstrate that soliton compression could be achieved, in principle, at an arbitrarily small distance by inverse-engineering the pulse width and the nonlinearity of the medium. The proposed scheme could possibly be exploited for various short-distance communication protocols and may be even in nonlinear guided wave-optics devices and generation of ultrashort soliton pulses.
Research and evolution of mid-infrared optical source
NASA Astrophysics Data System (ADS)
Chen, Changshui; Hu, Hui; Xu, Lei
2016-10-01
3-5 μm mid-infrared wave band is in the atmosphere window, it has lots of promising applications on the spectroscopy, remote sensing, medical treatment, environmental protection and military affairs. So, it has been a hot topic around the world to research the lasers at this wave band. In recent years, adiabatic passage technology has been applied in frequency conversion area, which borrowed from atomic physics. In this paper we will introduce efficient nonlinear optics frequency conversion by suing this technology.
NASA Astrophysics Data System (ADS)
Kang, Yan-Mei; Chen, Xi; Lin, Xu-Dong; Tan, Ning
The mean first passage time (MFPT) in a phenomenological gene transcriptional regulatory model with non-Gaussian noise is analytically investigated based on the singular perturbation technique. The effect of the non-Gaussian noise on the phenomenon of stochastic resonance (SR) is then disclosed based on a new combination of adiabatic elimination and linear response approximation. Compared with the results in the Gaussian noise case, it is found that bounded non-Gaussian noise inhibits the transition between different concentrations of protein, while heavy-tailed non-Gaussian noise accelerates the transition. It is also found that the optimal noise intensity for SR in the heavy-tailed noise case is smaller, while the optimal noise intensity in the bounded noise case is larger. These observations can be explained by the heavy-tailed noise easing random transitions.
Adiabatic excitation for 31 P MR spectroscopy in the human heart at 7 T: A feasibility study.
Valkovič, Ladislav; Clarke, William T; Purvis, Lucian A B; Schaller, Benoit; Robson, Matthew D; Rodgers, Christopher T
2017-11-01
Phosphorus magnetic resonance spectroscopy ( 31 P-MRS) provides a unique tool for assessing cardiac energy metabolism, often quantified using the phosphocreatine (PCr)/adenosine triphosphate (ATP) ratio. Surface coils are typically used for excitation for 31 P-MRS, but they create an inhomogeneous excitation field across the myocardium, producing undesirable, spatially varying partial saturation. Therefore, we implemented adiabatic excitation in a 3D chemical shift imaging (CSI) sequence for cardiac 31 P-MRS at 7 Tesla (T). We optimized an adiabatic half passage pulse with bandwidth sufficient to excite PCr and γ-ATP together. In addition, the CSI sequence was modified to allow interleaved excitation of PCr and γ-ATP, then 2,3-DPG, to enable PCr/ATP determination with blood correction. Nine volunteers were scanned at 2 transmit voltages to confirm that measured PCr/ATP was independent of B1+ (i.e. over the adiabatic threshold). Six septal voxels were evaluated for each volunteer. Phantom experiments showed that adiabatic excitation can be reached at the depth of the heart using our pulse. The mean evaluated cardiac PCr/ATP ratio from all 9 volunteers corrected for blood signal was 2.14 ± 0.16. Comparing the two acquisitions with different voltages resulted in a minimal mean difference of -0.005. Adiabatic excitation is possible in the human heart at 7 T, and gives consistent PCr/ATP ratios. Magn Reson Med 78:1667-1673, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Adiabatic cooling processes in frustrated magnetic systems with pyrochlore structure
NASA Astrophysics Data System (ADS)
Jurčišinová, E.; Jurčišin, M.
2017-11-01
We investigate in detail the process of adiabatic cooling in the framework of the exactly solvable antiferromagnetic spin-1/2 Ising model in the presence of the external magnetic field on an approximate lattice with pyrochlore structure. The behavior of the entropy of the model is studied and exact values of the residual entropies of all ground states are found. The temperature variation of the system under adiabatic (de)magnetization is investigated and the central role of the macroscopically degenerated ground states in cooling processes is explicitly demonstrated. It is shown that the model parameter space of the studied geometrically frustrated system is divided into five disjunct regions with qualitatively different processes of the adiabatic cooling. The effectiveness of the adiabatic (de)magnetization cooling in the studied model is compared to the corresponding processes in paramagnetic salts. It is shown that the processes of the adiabatic cooling in the antiferromagnetic frustrated systems are much more effective especially in nonzero external magnetic fields. It means that the frustrated magnetic materials with pyrochlore structure can be considered as very promising refrigerants mainly in the situations with nonzero final values of the magnetic field.
Adiabatic cooling processes in frustrated magnetic systems with pyrochlore structure.
Jurčišinová, E; Jurčišin, M
2017-11-01
We investigate in detail the process of adiabatic cooling in the framework of the exactly solvable antiferromagnetic spin-1/2 Ising model in the presence of the external magnetic field on an approximate lattice with pyrochlore structure. The behavior of the entropy of the model is studied and exact values of the residual entropies of all ground states are found. The temperature variation of the system under adiabatic (de)magnetization is investigated and the central role of the macroscopically degenerated ground states in cooling processes is explicitly demonstrated. It is shown that the model parameter space of the studied geometrically frustrated system is divided into five disjunct regions with qualitatively different processes of the adiabatic cooling. The effectiveness of the adiabatic (de)magnetization cooling in the studied model is compared to the corresponding processes in paramagnetic salts. It is shown that the processes of the adiabatic cooling in the antiferromagnetic frustrated systems are much more effective especially in nonzero external magnetic fields. It means that the frustrated magnetic materials with pyrochlore structure can be considered as very promising refrigerants mainly in the situations with nonzero final values of the magnetic field.
NASA Astrophysics Data System (ADS)
Mukherjee, Nandini; Perreault, William; Zare, Richard
2017-04-01
To selectively prepare highly vibrationally excited quantum states of molecules like H2, we present a novel multi-photon ladder-climbing technique where the successive rungs of the ladder are connected by Stark-induced adiabatic Raman passage (SARP). Previously, we have demonstrated that SARP achieves complete population transfer from the v = 0 to the v = 1 and v = 4 levels of H2. We show here that SARP can be generalized into a continuously coupled, multiphoton adiabatic passage which uses one or more intermediate states having strong Raman coupling to access highly vibrationally excited states weakly coupled to the ground state. As an example, we consider the case of four-photon coherent excitation to high vibrational levels of H2 via an intermediate level coupled to both the initial and target levels by two-photon SARP. Using a sequence of commercially available single mode, nanosecond lasers, a pump pulse partially overlapping with two Stokes pulses, we show that the complete population of v = 0 can be selectively transferred to the most weakly coupled v = 6 and v = 9 vibrational levels of H2, without leaving any population stranded in the intermediate level. The present method provides a practical way of generating an entangled pair of fragments without resorting to an ultracold system. This work has been supported by US Army Research Office under ARO Grant No. W911NF-16-1-1061.
Optical preparation of H2 rovibrational levels with almost complete population transfer.
Dong, Wenrui; Mukherjee, Nandini; Zare, Richard N
2013-08-21
Using stimulated Raman adiabatic passage (SARP), it is possible, in principle, to transfer all the population in a rovibrational level of an isolated diatomic molecule to an excited rovibrational level. We use an overlapping sequence of pump (532 nm) and dump (683 nm) single-mode laser pulses of unequal fluence to prepare isolated H2 molecules in a molecular beam. In a first series of experiments we were able to transfer more than half the population to an excited rovibrational level [N. Mukherjee, W. R. Dong, J. A. Harrison, and R. N. Zare, J. Chem. Phys. 138(5), 051101-1-051101-4 (2013)]. Since then, we have achieved almost complete transfer (97% ± 7%) of population from the H2 (v = 0, J = 0) ground rovibrational level to the H2 (v = 1, J = 0) excited rovibrational level. An explanation is presented of the SARP process and how these results are obtained.
Optical preparation of H2 rovibrational levels with almost complete population transfer
NASA Astrophysics Data System (ADS)
Dong, Wenrui; Mukherjee, Nandini; Zare, Richard N.
2013-08-01
Using stimulated Raman adiabatic passage (SARP), it is possible, in principle, to transfer all the population in a rovibrational level of an isolated diatomic molecule to an excited rovibrational level. We use an overlapping sequence of pump (532 nm) and dump (683 nm) single-mode laser pulses of unequal fluence to prepare isolated H2 molecules in a molecular beam. In a first series of experiments we were able to transfer more than half the population to an excited rovibrational level [N. Mukherjee, W. R. Dong, J. A. Harrison, and R. N. Zare, J. Chem. Phys. 138(5), 051101-1051101-4 (2013)], 10.1063/1.4790402. Since then, we have achieved almost complete transfer (97% ± 7%) of population from the H2 (v = 0, J = 0) ground rovibrational level to the H2 (v = 1, J = 0) excited rovibrational level. An explanation is presented of the SARP process and how these results are obtained.
Enhanced diffusion weighting generated by selective adiabatic pulse trains
NASA Astrophysics Data System (ADS)
Sun, Ziqi; Bartha, Robert
2007-09-01
A theoretical description and experimental validation of the enhanced diffusion weighting generated by selective adiabatic full passage (AFP) pulse trains is provided. Six phantoms (Ph-1-Ph-6) were studied on a 4 T Varian/Siemens whole body MRI system. Phantoms consisted of 2.8 cm diameter plastic tubes containing a mixture of 10 μm ORGASOL polymer beads and 2 mM Gd-DTPA dissolved in 5% agar (Ph-1) or nickel(II) ammonium sulphate hexahydrate doped (56.3-0.8 mM) water solutions (Ph-2-Ph-6). A customized localization by adiabatic selective refocusing (LASER) sequence containing slice selective AFP pulse trains and pulsed diffusion gradients applied in the phase encoding direction was used to measure 1H 2O diffusion. The b-value associated with the LASER sequence was derived using the Bloch-Torrey equation. The apparent diffusion coefficients measured by LASER were comparable to those measured by a conventional pulsed gradient spin-echo (PGSE) sequence for all phantoms. Image signal intensity increased in Ph-1 and decreased in Ph-2-Ph-6 as AFP pulse train length increased while maintaining a constant echo-time. These experimental results suggest that such AFP pulse trains can enhance contrast between regions containing microscopic magnetic susceptibility variations and homogeneous regions in which dynamic dephasing relaxation mechanisms are dominant.
Tunable Superfluidity and Quantum Magnetism with Ultracold Polar Molecules
2011-09-08
generalization of the t-J model that we refer to as the anisotropic t-J-V-W model. Dipole-dipole interactions that give rise to this model are orders...controlled by the ratio between the Rabi frequency and the detuning of a þ-polarized microwave field acting on the j0i j1i tran- sition [27]. In 40K87Rb...field coupling jm0i and jm1i and performing an adiabatic passage from an easily accessible state to the desired ground state by tuning the Rabi
Defect-suppressed atomic crystals in an optical lattice.
Rabl, P; Daley, A J; Fedichev, P O; Cirac, J I; Zoller, P
2003-09-12
We present a coherent filtering scheme which dramatically reduces the site occupation number defects for atoms in an optical lattice by transferring a chosen number of atoms to a different internal state via adiabatic passage. With the addition of superlattices it is possible to engineer states with a specific number of atoms per site (atomic crystals), which are required for quantum computation and the realization of models from condensed matter physics, including doping and spatial patterns. The same techniques can be used to measure two-body spatial correlation functions.
Optimal control of population and coherence in three-level Λ systems
NASA Astrophysics Data System (ADS)
Kumar, Praveen; Malinovskaya, Svetlana A.; Malinovsky, Vladimir S.
2011-08-01
Optimal control theory (OCT) implementations for an efficient population transfer and creation of maximum coherence in a three-level system are considered. We demonstrate that the half-stimulated Raman adiabatic passage scheme for creation of the maximum Raman coherence is the optimal solution according to the OCT. We also present a comparative study of several implementations of OCT applied to the complete population transfer and creation of the maximum coherence. Performance of the conjugate gradient method, the Zhu-Rabitz method and the Krotov method has been analysed.
Quantum teleportation with atoms trapped in cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Jaeyoon; Lee, Hai-Woong
2004-09-01
We propose a scheme to implement the quantum teleportation protocol with single atoms trapped in cavities. The scheme is based on the adiabatic passage and the polarization measurement. We show that it is possible to teleport the internal state of an atom trapped in a cavity to an atom trapped in another cavity with the success probability of 1/2 and the fidelity of 1. The scheme is resistant to a number of considerable imperfections such as the violation of the Lamb-Dicke condition, weak atom-cavity coupling, spontaneous emission, and detection inefficiency.
Observations of a diapycnal shortcut to adiabatic upwelling of Antarctic Circumpolar Deep Water
NASA Astrophysics Data System (ADS)
Silvester, J. Mead; Lenn, Yueng-Djern; Polton, Jeff A.; Rippeth, Tom P.; Maqueda, M. Morales
2014-11-01
In the Southern Ocean, small-scale turbulence causes diapycnal mixing which influences important water mass transformations, in turn impacting large-scale ocean transports such as the Meridional Overturning Circulation (MOC), a key controller of Earth's climate. We present direct observations of mixing over the Antarctic continental slope between water masses that are part of the Southern Ocean MOC. A 12 h time series of microstructure turbulence measurements, hydrography, and velocity observations off Elephant Island, north of the Antarctic Peninsula, reveals two concurrent bursts of elevated dissipation of O(10-6) W kg-1, resulting in heat fluxes ˜10 times higher than basin-integrated Drake Passage estimates. This occurs across the boundary between adjacent adiabatic upwelling and downwelling overturning cells. Ray tracing to nearby topography shows mixing between 300 and 400 m is consistent with the breaking of locally generated internal tidal waves. Since similar conditions extend to much of the Antarctic continental slope where these water masses outcrop, diapycnal mixing may contribute significantly to upwelling.
Principle of minimal work fluctuations.
Xiao, Gaoyang; Gong, Jiangbin
2015-08-01
Understanding and manipulating work fluctuations in microscale and nanoscale systems are of both fundamental and practical interest. For example, in considering the Jarzynski equality 〈e-βW〉=e-βΔF, a change in the fluctuations of e-βW may impact how rapidly the statistical average of e-βW converges towards the theoretical value e-βΔF, where W is the work, β is the inverse temperature, and ΔF is the free energy difference between two equilibrium states. Motivated by our previous study aiming at the suppression of work fluctuations, here we obtain a principle of minimal work fluctuations. In brief, adiabatic processes as treated in quantum and classical adiabatic theorems yield the minimal fluctuations in e-βW. In the quantum domain, if a system initially prepared at thermal equilibrium is subjected to a work protocol but isolated from a bath during the time evolution, then a quantum adiabatic process without energy level crossing (or an assisted adiabatic process reaching the same final states as in a conventional adiabatic process) yields the minimal fluctuations in e-βW, where W is the quantum work defined by two energy measurements at the beginning and at the end of the process. In the classical domain where the classical work protocol is realizable by an adiabatic process, then the classical adiabatic process also yields the minimal fluctuations in e-βW. Numerical experiments based on a Landau-Zener process confirm our theory in the quantum domain, and our theory in the classical domain explains our previous numerical findings regarding the suppression of classical work fluctuations [G. Y. Xiao and J. B. Gong, Phys. Rev. E 90, 052132 (2014)].
NASA Astrophysics Data System (ADS)
Dietiker, P.; Miloglyadov, E.; Quack, M.; Schneider, A.; Seyfang, G.
2015-12-01
We have set up an experiment for the efficient population transfer by a sequential two photon—absorption and stimulated emission—process in a molecular beam to prepare quantum states of well defined parity and their subsequent sensitive detection. This provides a proof of principle for an experiment which would allow for parity selection and measurement of the time evolution of parity in chiral molecules, resulting in a measurement of the parity violating energy difference ΔpvE between enantiomers of chiral molecules. Here, we present first results on a simple achiral molecule demonstrating efficient population transfer (about 80% on the average for each step) and unperturbed persistence of a selected excited parity level over flight times of about 1.3 ms in the beam. In agreement with model calculations with and without including nuclear hyperfine structure, efficient population transfer can be achieved by a rather simple implementation of the rapid adiabatic passage method of Reuss and coworkers and considering also the stimulated Raman adiabatic passage technique of Bergmann and coworkers as an alternative. The preparation step uses two powerful single mode continuous wave optical parametric oscillators of high frequency stability and accuracy. The detection uses a sensitive resonantly enhanced multiphoton ionization method after free flight lengths of up to 0.8 m in the molecular beam. Using this technique, we were able to also resolve the nuclear hyperfine structure in the rovibrational levels of the ν1 and ν3 fundamentals as well as the 2ν4 overtone of 14NH3, for which no previous data with hyperfine resolution were available. We present our new results on the quadrupole coupling constants for the ν1, ν3, and 2ν4 levels in the context of previously known data for ν2 and its overtone, as well as ν4, and the ground state. Thus, now, 14N quadrupole coupling constants for all fundamentals and some overtones of 14NH3 are known and can be used for further theoretical analysis.
Dietiker, P; Miloglyadov, E; Quack, M; Schneider, A; Seyfang, G
2015-12-28
We have set up an experiment for the efficient population transfer by a sequential two photon-absorption and stimulated emission-process in a molecular beam to prepare quantum states of well defined parity and their subsequent sensitive detection. This provides a proof of principle for an experiment which would allow for parity selection and measurement of the time evolution of parity in chiral molecules, resulting in a measurement of the parity violating energy difference ΔpvE between enantiomers of chiral molecules. Here, we present first results on a simple achiral molecule demonstrating efficient population transfer (about 80% on the average for each step) and unperturbed persistence of a selected excited parity level over flight times of about 1.3 ms in the beam. In agreement with model calculations with and without including nuclear hyperfine structure, efficient population transfer can be achieved by a rather simple implementation of the rapid adiabatic passage method of Reuss and coworkers and considering also the stimulated Raman adiabatic passage technique of Bergmann and coworkers as an alternative. The preparation step uses two powerful single mode continuous wave optical parametric oscillators of high frequency stability and accuracy. The detection uses a sensitive resonantly enhanced multiphoton ionization method after free flight lengths of up to 0.8 m in the molecular beam. Using this technique, we were able to also resolve the nuclear hyperfine structure in the rovibrational levels of the ν1 and ν3 fundamentals as well as the 2ν4 overtone of (14)NH3, for which no previous data with hyperfine resolution were available. We present our new results on the quadrupole coupling constants for the ν1, ν3, and 2ν4 levels in the context of previously known data for ν2 and its overtone, as well as ν4, and the ground state. Thus, now, (14)N quadrupole coupling constants for all fundamentals and some overtones of (14)NH3 are known and can be used for further theoretical analysis.
NASA Astrophysics Data System (ADS)
Mukherjee, Nandini; Dong, Wenrui; Perreault, William; Zare, Richard
2017-04-01
We prepare a large ensemble of rovibrationally excited (v = 1, J = 2) H2 molecules in a coherent superposition of M-states using Stark-induced adiabatic Raman passage (SARP) with linearly polarized single mode pump (532 nm) and Stokes (699 nm) laser pulses of duration 6 ns and 4 ns. A biaxial superposition state, | ψ〉 = 1/ √2 [ | v = 1, J = 2, M = -2〉- | v = 1, J = 2, M = + 2〉], is prepared using SARP with a sequence of a pump laser pulse partially overlapping with a cross polarized Stokes laser pulse co-propagating along the quantization z-axis. The degree of phase coherence is measured by recording interference fringes in the ion signal produced using the O(2) line of 2 +1 resonance enhanced multiphoton ionization (REMPI) from the rovibrationally excited (v = 1, J = 2) level as a function of REMPI laser polarization angle. The ion signal is measured using a time-of-flight mass spectrometer. Nearly 60% population transfer from H2 (v = 0, J = 0) ground state to the superposition state in H2 (v = 1, J = 2) is measured from the depletion of Q(0) REMPI signal of the (v = 0, J = 0) ground state. The M-state superposition behaves much like a multi-slit interferometer where the number of slits, i.e. the number of M-states, and their separations, i.e. the relative phase, can be varied experimentally. This work has been supported by the U.S. Army Research Office.
NASA Astrophysics Data System (ADS)
Perreault, William; Mukherjee, Nandini; Zare, Richard
2017-04-01
Stark induced adiabatic Raman passage (SARP) allows us to prepare an appreciable concentration of isolated molecules in a specific highly excited vibrational level. As a demonstration, we transfer nearly 100% of the HD (v =0, J =0) in a supersonically expanded molecular beam of HD molecules to HD (v =4, J =0). This is achieved with a sequence of partially overlapping nanosecond pump (355 nm) and Stokes (680 nm) single-mode laser pulses of unequal intensities. The experimental spectral broadening with pump to Stokes delay and saturation against Stokes power suggest that complete population transfer has been achieved from the initial HD (v =0, J =0) to the target (v =4, J =0). By comparing our experimental data with our theoretical calculations we are able to draw two important conclusions: (1) using SARP a large population (>1010 molecules per laser pulse) is prepared in the (v =4, J =0) level of HD, and (2) the polarizability α00 , 40 (0.6 x 10-41Cm2V-1) for the (v =0, J =0) to (v =4, J =0) Raman overtone transition is only about five times smaller than α00 , 10 for the (v =0, J =0) to (v =1, J =0) fundamental Raman transition. This capability of preparing selected, highly excited vibrational quantum states of molecules opens new opportunities for fundamental scattering experiments. This work has been supported by the U.S. Army Research Office under ARO Grant No. W911NF-16-1-1061, and MURI Grant No. W911NF-12-1-0476.
Multiwavelength study of the flaring activity of Sagittarius A* in 2014 February-April
NASA Astrophysics Data System (ADS)
Mossoux, E.; Grosso, N.; Bushouse, H.; Eckart, A.; Yusef-Zadeh, F.; Plambeck, D.; Peissker, F.; Valencia-S., M.; Porquet, D.; Roberts, D.
2017-10-01
We studied the flaring activity of the Galactic Center supermassive black hole Sgr A* close to the DSO/G2 pericenter passage with XMM-Newton, HST/WFC3, VLT/SINFONI, VLA and CARMA. We detected 3 and 2 NIR and 2 X-ray flares with HST, VLT and XMM-Newton, respectively. The Mar. 10 X-ray flare has a long rise and a rapid decay. Its NIR counterpart peaked before the X-ray peak implying a variation in the X-ray-to-NIR flux ratio. This flare may be one flare created by the adiabatic compression of a plasmon or 2 close flares with simultaneous X-ray/NIR peaks. The rising radio flux-density observed on Mar. 10 with the VLA could be the delayed emission from a NIR/X-ray flare preceding our observations. On Apr. 2, we observed the start of the NIR counterpart of the X-ray flare and the end of a bright NIR flare without X-ray counterpart. We studied the physical parameters of the flaring region for each NIR flare but none of the radiative processes can be ruled out for the X-ray flares creation. Our X-ray flaring rate is consistent with those observed in the 2012 Chandra/XVP campaign. No increase in the flaring activity was thus triggered close to the DSO/G2 pericenter passage.
Controlling geometric phase optically in a single spin in diamond
NASA Astrophysics Data System (ADS)
Yale, Christopher G.
Geometric phase, or Berry phase, is an intriguing quantum mechanical phenomenon that arises from the cyclic evolution of a quantum state. Unlike dynamical phases, which rely on the time and energetics of the interaction, the geometric phase is determined solely by the geometry of the path travelled in parameter space. As such, it is robust to certain types of noise that preserve the area enclosed by the path, and shows promise for the development of fault-tolerant logic gates. Here, we demonstrate the optical control of geometric phase within a solid-state spin qubit, the nitrogen-vacancy center in diamond. Using stimulated Raman adiabatic passage (STIRAP), we evolve a coherent dark state along `tangerine slice' trajectories on the Bloch sphere and probe these paths through time-resolved state tomography. We then measure the accumulated geometric phase through phase reference to a third ground spin state. In addition, we examine the limits of this control due to adiabatic breakdown as well as the longer timescale effect of far-detuned optical fields. Finally, we intentionally introduce noise into the experimental control parameters, and measure the distributions of the resulting phases to probe the resilience of the phase to differing types of noise. We also examine this robustness as a function of traversal time as well as the noise amplitude. Through these studies, we demonstrate that geometric phase is a promising route toward fault-tolerant quantum information processing. This work is supported by the AFOSR, the NSF, and the German Research Foundation.
Quantum state conversion in opto-electro-mechanical systems via shortcut to adiabaticity
NASA Astrophysics Data System (ADS)
Zhou, Xiao; Liu, Bao-Jie; Shao, L.-B.; Zhang, Xin-Ding; Xue, Zheng-Yuan
2017-09-01
Adiabatic processes have found many important applications in modern physics, the distinct merit of which is that accurate control over process timing is not required. However, such processes are slow, which limits their application in quantum computation, due to the limited coherent times of typical quantum systems. Here, we propose a scheme to implement quantum state conversion in opto-electro-mechanical systems via a shortcut to adiabaticity, where the process can be greatly speeded up while precise timing control is still not necessary. In our scheme, by modifying only the coupling strength, we can achieve fast quantum state conversion with high fidelity, where the adiabatic condition does not need to be met. In addition, the population of the unwanted intermediate state can be further suppressed. Therefore, our protocol presents an important step towards practical state conversion between optical and microwave photons, and thus may find many important applications in hybrid quantum information processing.
Long-Lived Ultracold Molecules with Electric and Magnetic Dipole Moments.
Rvachov, Timur M; Son, Hyungmok; Sommer, Ariel T; Ebadi, Sepehr; Park, Juliana J; Zwierlein, Martin W; Ketterle, Wolfgang; Jamison, Alan O
2017-10-06
We create fermionic dipolar ^{23}Na^{6}Li molecules in their triplet ground state from an ultracold mixture of ^{23}Na and ^{6}Li. Using magnetoassociation across a narrow Feshbach resonance followed by a two-photon stimulated Raman adiabatic passage to the triplet ground state, we produce 3×10^{4} ground state molecules in a spin-polarized state. We observe a lifetime of 4.6 s in an isolated molecular sample, approaching the p-wave universal rate limit. Electron spin resonance spectroscopy of the triplet state was used to determine the hyperfine structure of this previously unobserved molecular state.
Long-Lived Ultracold Molecules with Electric and Magnetic Dipole Moments
NASA Astrophysics Data System (ADS)
Rvachov, Timur M.; Son, Hyungmok; Sommer, Ariel T.; Ebadi, Sepehr; Park, Juliana J.; Zwierlein, Martin W.; Ketterle, Wolfgang; Jamison, Alan O.
2017-10-01
We create fermionic dipolar 23Na 6Li molecules in their triplet ground state from an ultracold mixture of 23Na and 6Li. Using magnetoassociation across a narrow Feshbach resonance followed by a two-photon stimulated Raman adiabatic passage to the triplet ground state, we produce 3 ×1 04 ground state molecules in a spin-polarized state. We observe a lifetime of 4.6 s in an isolated molecular sample, approaching the p -wave universal rate limit. Electron spin resonance spectroscopy of the triplet state was used to determine the hyperfine structure of this previously unobserved molecular state.
Nonleaky Population Transfer in a Transmon Qutrit via Largely-Detuned Drivings
NASA Astrophysics Data System (ADS)
Yan, Run-Ying; Feng, Zhi-Bo
2018-06-01
We propose an efficient scheme to implement nonleaky population transfer in a transmon qutrit via largely-detuned drivings. Due to weak level anharmonicity of the transmon system, the remarkable quantum leakages need to be considered in quantum coherent operations. Under the conditions of two-photon resonance and large detunings, the robust population transfer within a qutrit can be implemented via the technique of stimulated Raman adiabatic passage. Based on the accessible parameters, the feasible approach can remove the leakage error effectively, and then provides a potential approach for enhancing the transfer fidelity with transmon-regime artificial atoms experimentally.
Multi-point optimization of recirculation flow type casing treatment in centrifugal compressors
NASA Astrophysics Data System (ADS)
Tun, Min Thaw; Sakaguchi, Daisaku
2016-06-01
High-pressure ratio and wide operating range are highly required for a turbocharger in diesel engines. A recirculation flow type casing treatment is effective for flow range enhancement of centrifugal compressors. Two ring grooves on a suction pipe and a shroud casing wall are connected by means of an annular passage and stable recirculation flow is formed at small flow rates from the downstream groove toward the upstream groove through the annular bypass. The shape of baseline recirculation flow type casing is modified and optimized by using a multi-point optimization code with a metamodel assisted evolutionary algorithm embedding a commercial CFD code CFX from ANSYS. The numerical optimization results give the optimized design of casing with improving adiabatic efficiency in wide operating flow rate range. Sensitivity analysis of design parameters as a function of efficiency has been performed. It is found that the optimized casing design provides optimized recirculation flow rate, in which an increment of entropy rise is minimized at grooves and passages of the rotating impeller.
Quantum Otto heat engine with three-qubit XXZ model as working substance
NASA Astrophysics Data System (ADS)
Huang, X. L.; Sun, Qi; Guo, D. Y.; Yu, Qian
2018-02-01
A quantum Otto heat engine is established with a three-qubit Heisenberg XXZ model with Dzyaloshinskii-Moriya (DM) interaction under a homogeneous magnetic field as the working substance. The quantum Otto engine is composed of two quantum isochoric processes and two quantum adiabatic processes. Here we have restricted Bc /Bh =Jc /Jh = r in the two adiabatic processes, where r is the adiabatic compression ratio. The work output and efficiency are calculated for our cycle. The possible adiabatic compression ratios and the ratios of work output between our working substance and a single spin under the same external conditions in the Otto cycle are analyzed with different DM interaction parameters and anisotropic parameters. The effects of pairwise entanglements on the heat engine efficiency are discussed.
Bomble, L; Lavorel, B; Remacle, F; Desouter-Lecomte, M
2008-05-21
Following the scheme recently proposed by Remacle and Levine [Phys. Rev. A 73, 033820 (2006)], we investigate the concrete implementation of a classical full adder on two electronic states (X 1A1 and C 1B2) of the SO2 molecule by optical pump-probe laser pulses using intuitive and counterintuitive (stimulated Raman adiabatic passage) excitation schemes. The resources needed for providing the inputs and reading out are discussed, as well as the conditions for achieving robustness in both the intuitive and counterintuitive pump-dump sequences. The fidelity of the scheme is analyzed with respect to experimental noise and two kinds of perturbations: The coupling to the neighboring rovibrational states and a finite rotational temperature that leads to a mixture for the initial state. It is shown that the logic processing of a full addition cycle can be realistically experimentally implemented on a picosecond time scale while the readout takes a few nanoseconds.
NASA Astrophysics Data System (ADS)
Kellerman, A. C.; Shprits, Y.; McPherron, R. L.; Kondrashov, D. A.; Weygand, J. M.; Zhu, H.; Drozdov, A.
2017-12-01
Presented is an analysis of the phase-space density (PSD) response to the stream-interaction region (SIR), which utilizes a reanalysis dataset principally comprised of the data-assimilative Versatile Electron Radiation Belt (VERB) code, Van Allen Probe and GOES observations. The dataset spans the period 2012-2017, and includes several SIR (and CIR) storms. The PSD is examined for evidence of injections, transport, acceleration, and loss by considering the instantaneous and time-averaged change at adiabatic invariant values that correspond to ring-current, relativistic, and ultra-relativistic energies. In the solar wind, the following variables in the slow and fast wind on either side of the stream interface (SI) are considered in each case: the coronal hole polarity, IMF, solar wind speed, density, pressure, and SI tilt angle. In the magnetosphere, the Dst, AE, and past PSD state are considered. Presented is an analysis of the dominant mechanisms, both external and internal to the magnetosphere, that cause radiation-belt electron non-adiabatic changes during the passage of these fascinating solar wind structures.
Centrifugal Gas Compression Cycle
NASA Astrophysics Data System (ADS)
Fultun, Roy
2002-11-01
A centrifuged gas of kinetic, elastic hard spheres compresses isothermally and without flow of heat in a process that reverses free expansion. This theorem follows from stated assumptions via a collection of thought experiments, theorems and other supporting results, and it excludes application of the reversible mechanical adiabatic power law in this context. The existence of an isothermal adiabatic centrifugal compression process makes a three-process cycle possible using a fixed sample of the working gas. The three processes are: adiabatic mechanical expansion and cooling against a piston, isothermal adiabatic centrifugal compression back to the original volume, and isochoric temperature rise back to the original temperature due to an influx of heat. This cycle forms the basis for a Thomson perpetuum mobile that induces a loop of energy flow in an isolated system consisting of a heat bath connectable by a thermal path to the working gas, a mechanical extractor of the gas's internal energy, and a device that uses that mechanical energy and dissipates it as heat back into the heat bath. We present a simple experimental procedure to test the assertion that adiabatic centrifugal compression is isothermal. An energy budget for the cycle provides a criterion for breakeven in the conversion of heat to mechanical energy.
NASA Astrophysics Data System (ADS)
Bao, J.; Liu, D.; Lin, Z.
2017-10-01
A conservative scheme of drift kinetic electrons for gyrokinetic simulations of kinetic-magnetohydrodynamic processes in toroidal plasmas has been formulated and verified. Both vector potential and electron perturbed distribution function are decomposed into adiabatic part with analytic solution and non-adiabatic part solved numerically. The adiabatic parallel electric field is solved directly from the electron adiabatic response, resulting in a high degree of accuracy. The consistency between electrostatic potential and parallel vector potential is enforced by using the electron continuity equation. Since particles are only used to calculate the non-adiabatic response, which is used to calculate the non-adiabatic vector potential through Ohm's law, the conservative scheme minimizes the electron particle noise and mitigates the cancellation problem. Linear dispersion relations of the kinetic Alfvén wave and the collisionless tearing mode in cylindrical geometry have been verified in gyrokinetic toroidal code simulations, which show that the perpendicular grid size can be larger than the electron collisionless skin depth when the mode wavelength is longer than the electron skin depth.
Adiabatic reduction of a model of stochastic gene expression with jump Markov process.
Yvinec, Romain; Zhuge, Changjing; Lei, Jinzhi; Mackey, Michael C
2014-04-01
This paper considers adiabatic reduction in a model of stochastic gene expression with bursting transcription considered as a jump Markov process. In this model, the process of gene expression with auto-regulation is described by fast/slow dynamics. The production of mRNA is assumed to follow a compound Poisson process occurring at a rate depending on protein levels (the phenomena called bursting in molecular biology) and the production of protein is a linear function of mRNA numbers. When the dynamics of mRNA is assumed to be a fast process (due to faster mRNA degradation than that of protein) we prove that, with appropriate scalings in the burst rate, jump size or translational rate, the bursting phenomena can be transmitted to the slow variable. We show that, depending on the scaling, the reduced equation is either a stochastic differential equation with a jump Poisson process or a deterministic ordinary differential equation. These results are significant because adiabatic reduction techniques seem to have not been rigorously justified for a stochastic differential system containing a jump Markov process. We expect that the results can be generalized to adiabatic methods in more general stochastic hybrid systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dietiker, P.; Miloglyadov, E.; Quack, M., E-mail: Martin@Quack.ch
We have set up an experiment for the efficient population transfer by a sequential two photon—absorption and stimulated emission—process in a molecular beam to prepare quantum states of well defined parity and their subsequent sensitive detection. This provides a proof of principle for an experiment which would allow for parity selection and measurement of the time evolution of parity in chiral molecules, resulting in a measurement of the parity violating energy difference Δ{sub pv}E between enantiomers of chiral molecules. Here, we present first results on a simple achiral molecule demonstrating efficient population transfer (about 80% on the average for eachmore » step) and unperturbed persistence of a selected excited parity level over flight times of about 1.3 ms in the beam. In agreement with model calculations with and without including nuclear hyperfine structure, efficient population transfer can be achieved by a rather simple implementation of the rapid adiabatic passage method of Reuss and coworkers and considering also the stimulated Raman adiabatic passage technique of Bergmann and coworkers as an alternative. The preparation step uses two powerful single mode continuous wave optical parametric oscillators of high frequency stability and accuracy. The detection uses a sensitive resonantly enhanced multiphoton ionization method after free flight lengths of up to 0.8 m in the molecular beam. Using this technique, we were able to also resolve the nuclear hyperfine structure in the rovibrational levels of the ν{sub 1} and ν{sub 3} fundamentals as well as the 2ν{sub 4} overtone of {sup 14}NH{sub 3}, for which no previous data with hyperfine resolution were available. We present our new results on the quadrupole coupling constants for the ν{sub 1}, ν{sub 3}, and 2ν{sub 4} levels in the context of previously known data for ν{sub 2} and its overtone, as well as ν{sub 4}, and the ground state. Thus, now, {sup 14}N quadrupole coupling constants for all fundamentals and some overtones of {sup 14}NH{sub 3} are known and can be used for further theoretical analysis.« less
Energy consumption for shortcuts to adiabaticity
NASA Astrophysics Data System (ADS)
Torrontegui, E.; Lizuain, I.; González-Resines, S.; Tobalina, A.; Ruschhaupt, A.; Kosloff, R.; Muga, J. G.
2017-08-01
Shortcuts to adiabaticity let a system reach the results of a slow adiabatic process in a shorter time. We propose to quantify the "energy cost" of the shortcut by the energy consumption of the system enlarged by including the control device. A mechanical model where the dynamics of the system and control device can be explicitly described illustrates that a broad range of possible values for the consumption is possible, including zero (above the adiabatic energy increment) when friction is negligible and the energy given away as negative power is stored and reused by perfect regenerative braking.
Generalized shortcuts to adiabaticity and enhanced robustness against decoherence
NASA Astrophysics Data System (ADS)
Santos, Alan C.; Sarandy, Marcelo S.
2018-01-01
Shortcuts to adiabaticity provide a general approach to mimic adiabatic quantum processes via arbitrarily fast evolutions in Hilbert space. For these counter-diabatic evolutions, higher speed comes at higher energy cost. Here, the counter-diabatic theory is employed as a minimal energy demanding scheme for speeding up adiabatic tasks. As a by-product, we show that this approach can be used to obtain infinite classes of transitionless models, including time-independent Hamiltonians under certain conditions over the eigenstates of the original Hamiltonian. We apply these results to investigate shortcuts to adiabaticity in decohering environments by introducing the requirement of a fixed energy resource. In this scenario, we show that generalized transitionless evolutions can be more robust against decoherence than their adiabatic counterparts. We illustrate this enhanced robustness both for the Landau-Zener model and for quantum gate Hamiltonians.
Laser cooling of molecules by zero-velocity selection and single spontaneous emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ooi, C. H. Raymond
2010-11-15
A laser-cooling scheme for molecules is presented based on repeated cycle of zero-velocity selection, deceleration, and irreversible accumulation. Although this scheme also employs a single spontaneous emission as in [Raymond Ooi, Marzlin, and Audretsch, Eur. Phys. J. D 22, 259 (2003)], in order to circumvent the difficulty of maintaining closed pumping cycles in molecules, there are two distinct features which make the cooling process of this scheme faster and more practical. First, the zero-velocity selection creates a narrow velocity-width population with zero mean velocity, such that no further deceleration (with many stimulated Raman adiabatic passage (STIRAP) pulses) is required. Second,more » only two STIRAP processes are required to decelerate the remaining hot molecular ensemble to create a finite population around zero velocity for the next cycle. We present a setup to realize the cooling process in one dimension with trapping in the other two dimensions using a Stark barrel. Numerical estimates of the cooling parameters and simulations with density matrix equations using OH molecules show the applicability of the cooling scheme. For a gas at temperature T=1 K, the estimated cooling time is only 2 ms, with phase-space density increased by about 30 times. The possibility of extension to three-dimensional cooling via thermalization is also discussed.« less
Dissipative Work in Thermodynamics
ERIC Educational Resources Information Center
Anacleto, Joaquim; Pereira, Mario G.; Ferreira, J. M.
2011-01-01
This work explores the concept of dissipative work and shows that such a kind of work is an invariant non-negative quantity. This feature is then used to get a new insight into adiabatic irreversible processes; for instance, why the final temperature in any adiabatic irreversible process is always higher than that attained in a reversible process…
NASA Astrophysics Data System (ADS)
Hu, Yong; Wu, Feifei; Ma, Yongli; He, Jizhou; Wang, Jianhui; Hernández, A. Calvo; Roco, J. M. M.
2013-12-01
We study the coefficient of performance (COP) and its bounds for a Carnot-like refrigerator working between two heat reservoirs at constant temperatures Th and Tc, under two optimization criteria χ and Ω. In view of the fact that an “adiabatic” process usually takes finite time and is nonisentropic, the nonadiabatic dissipation and the finite time required for the adiabatic processes are taken into account by assuming low dissipation. For given optimization criteria, we find that the lower and upper bounds of the COP are the same as the corresponding ones obtained from the previous idealized models where any adiabatic process is undergone instantaneously with constant entropy. To describe some particular models with very fast adiabatic transitions, we also consider the influence of the nonadiabatic dissipation on the bounds of the COP, under the assumption that the irreversible entropy production in the adiabatic process is constant and independent of time. Our theoretical predictions match the observed COPs of real refrigerators more closely than the ones derived in the previous models, providing a strong argument in favor of our approach.
Relaxation versus adiabatic quantum steady-state preparation
NASA Astrophysics Data System (ADS)
Venuti, Lorenzo Campos; Albash, Tameem; Marvian, Milad; Lidar, Daniel; Zanardi, Paolo
2017-04-01
Adiabatic preparation of the ground states of many-body Hamiltonians in the closed-system limit is at the heart of adiabatic quantum computation, but in reality systems are always open. This motivates a natural comparison between, on the one hand, adiabatic preparation of steady states of Lindbladian generators and, on the other hand, relaxation towards the same steady states subject to the final Lindbladian of the adiabatic process. In this work we thus adopt the perspective that the goal is the most efficient possible preparation of such steady states, rather than ground states. Using known rigorous bounds for the open-system adiabatic theorem and for mixing times, we are then led to a disturbing conclusion that at first appears to doom efforts to build physical quantum annealers: relaxation seems to always converge faster than adiabatic preparation. However, by carefully estimating the adiabatic preparation time for Lindbladians describing thermalization in the low-temperature limit, we show that there is, after all, room for an adiabatic speedup over relaxation. To test the analytically derived bounds for the adiabatic preparation time and the relaxation time, we numerically study three models: a dissipative quasifree fermionic chain, a single qubit coupled to a thermal bath, and the "spike" problem of n qubits coupled to a thermal bath. Via these models we find that the answer to the "which wins" question depends for each model on the temperature and the system-bath coupling strength. In the case of the "spike" problem we find that relaxation during the adiabatic evolution plays an important role in ensuring a speedup over the final-time relaxation procedure. Thus, relaxation-assisted adiabatic preparation can be more efficient than both pure adiabatic evolution and pure relaxation.
Adiabatic burst evaporation from bicontinuous nanoporous membranes
Ichilmann, Sachar; Rücker, Kerstin; Haase, Markus; Enke, Dirk
2015-01-01
Evaporation of volatile liquids from nanoporous media with bicontinuous morphology and pore diameters of a few 10 nm is an ubiquitous process. For example, such drying processes occur during syntheses of nanoporous materials by sol–gel chemistry or by spinodal decomposition in the presence of solvents as well as during solution impregnation of nanoporous hosts with functional guests. It is commonly assumed that drying is endothermic and driven by non-equilibrium partial pressures of the evaporating species in the gas phase. We show that nearly half of the liquid evaporates in an adiabatic mode involving burst-like liquid-to-gas conversions. During single adiabatic burst evaporation events liquid volumes of up to 107 μm3 are converted to gas. The adiabatic liquid-to-gas conversions occur if air invasion fronts get unstable because of the built-up of high capillary pressures. Adiabatic evaporation bursts propagate avalanche-like through the nanopore systems until the air invasion fronts have reached new stable configurations. Adiabatic cavitation bursts thus compete with Haines jumps involving air invasion front relaxation by local liquid flow without enhanced mass transport out of the nanoporous medium and prevail if the mean pore diameter is in the range of a few 10 nm. The results reported here may help optimize membrane preparation via solvent-based approaches, solution-loading of nanopore systems with guest materials as well as routine use of nanoporous membranes with bicontinuous morphology and may contribute to better understanding of adsorption/desorption processes in nanoporous media. PMID:25926406
An Integrated Development Environment for Adiabatic Quantum Programming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humble, Travis S; McCaskey, Alex; Bennink, Ryan S
2014-01-01
Adiabatic quantum computing is a promising route to the computational power afforded by quantum information processing. The recent availability of adiabatic hardware raises the question of how well quantum programs perform. Benchmarking behavior is challenging since the multiple steps to synthesize an adiabatic quantum program are highly tunable. We present an adiabatic quantum programming environment called JADE that provides control over all the steps taken during program development. JADE captures the workflow needed to rigorously benchmark performance while also allowing a variety of problem types, programming techniques, and processor configurations. We have also integrated JADE with a quantum simulation enginemore » that enables program profiling using numerical calculation. The computational engine supports plug-ins for simulation methodologies tailored to various metrics and computing resources. We present the design, integration, and deployment of JADE and discuss its use for benchmarking adiabatic quantum programs.« less
NASA Technical Reports Server (NTRS)
Jeracki, Robert J.
2006-01-01
A large scale model representative of an advanced ducted propulsor-type, low-noise, very high bypass ratio turbofan engine was tested for acoustics, aerodynamic performance, and off-design operability in the NASA Glenn 9- by 15-Foot Low-Speed Wind Tunnel. The test was part of NASA s Advanced Subsonic Technology Noise Reduction Program. The low tip speed fan, nacelle, and un-powered core passage were simulated. As might be expected, the effect of stall management casing treatment was a performance penalty. Reducing the recirculating flow at the fan tip reduced the penalty while still providing sufficient stall margin. Two fans were tested with the same aerodynamic design; one with graphite composite material, and the other with solid titanium. There were surprising performance differences between the two fans, though both blades showed some indication of transitional flow near the tips. Though the pressure and temperature ratios were low for this fan design, the techniques used to improve thermocouple measurement accuracy gave repeatable data with adiabatic efficiencies agreeing within 1 percent. The measured fan adiabatic efficiency at simulated takeoff conditions was 93.7 percent and matched the design intent.
NASA Astrophysics Data System (ADS)
Dutta, Shovan; Mueller, Erich J.
2018-03-01
We present and analyze a protocol in which polaritons in a noncoplanar optical cavity form fractional quantum Hall states. We model the formation of these states and present techniques for subsequently creating anyons and measuring their fractional exchange statistics. In this protocol, we use a rapid adiabatic passage scheme to sequentially add polaritons to the system, such that the system is coherently driven from n - to (n +1 )-particle Laughlin states. Quasiholes are created by slowly moving local pinning potentials in from outside the cloud. They are braided by dragging the pinning centers around one another, and the resulting phases are measured interferometrically. The most technically challenging issue with implementing our procedure is that maintaining adiabaticity and coherence requires that the two-particle interaction energy V0 be sufficiently large compared to the single-polariton decay rate γ , V0/γ ≫10 N2lnN , where N is the number of particles in the target state. While this condition is very demanding for present-day experiments where V0/γ ˜50 , our protocol presents a significant advance over the existing protocols in the literature.
Probing coherence aspects of adiabatic quantum computation and control.
Goswami, Debabrata
2007-09-28
Quantum interference between multiple excitation pathways can be used to cancel the couplings to the unwanted, nonradiative channels resulting in robustly controlling decoherence through adiabatic coherent control approaches. We propose a useful quantification of the two-level character in a multilevel system by considering the evolution of the coherent character in the quantum system as represented by the off-diagonal density matrix elements, which switches from real to imaginary as the excitation process changes from being resonant to completely adiabatic. Such counterintuitive results can be explained in terms of continuous population exchange in comparison to no population exchange under the adiabatic condition.
Modeling of First-Passage Processes in Financial Markets
NASA Astrophysics Data System (ADS)
Inoue, Jun-Ichi; Hino, Hikaru; Sazuka, Naoya; Scalas, Enrico
2010-03-01
In this talk, we attempt to make a microscopic modeling the first-passage process (or the first-exit process) of the BUND future by minority game with market history. We find that the first-passage process of the minority game with appropriate history length generates the same properties as the BTP future (the middle and long term Italian Government bonds with fixed interest rates), namely, both first-passage time distributions have a crossover at some specific time scale as is the case for the Mittag-Leffler function. We also provide a macroscopic (or a phenomenological) modeling of the first-passage process of the BTP future and show analytically that the first-passage time distribution of a simplest mixture of the normal compound Poisson processes does not have such a crossover.
Method And Apparatus For High Resolution Ex-Situ Nmr Spectroscopy
Pines, Alexander; Meriles, Carlos A.; Heise, Henrike; Sakellariou, Dimitrios; Moule, Adam
2004-01-06
A method and apparatus for ex-situ nuclear magnetic resonance spectroscopy for use on samples outside the physical limits of the magnets in inhomogeneous static and radio-frequency fields. Chemical shift spectra can be resolved with the method using sequences of correlated, composite z-rotation pulses in the presence of spatially matched static and radio frequency field gradients producing nutation echoes. The amplitude of the echoes is modulated by the chemical shift interaction and an inhomogeneity free FID may be recovered by stroboscopically sampling the maxima of the echoes. In an alternative embodiment, full-passage adiabatic pulses are consecutively applied. One embodiment of the apparatus generates a static magnetic field that has a variable saddle point.
Multichannel modeling and two-photon coherent transfer paths in NaK
NASA Astrophysics Data System (ADS)
Schulze, T. A.; Temelkov, I. I.; Gempel, M. W.; Hartmann, T.; Knöckel, H.; Ospelkaus, S.; Tiemann, E.
2013-08-01
We explore possible pathways for the creation of ultracold polar NaK molecules in their absolute electronic and rovibrational ground state starting from ultracold Feshbach molecules. In particular, we present a multichannel analysis of the electronic ground and K(4p)+Na(3s) excited-state manifold of NaK, analyze the spin character of both the Feshbach molecular state and the electronically excited intermediate states and discuss possible coherent two-photon transfer paths from Feshbach molecules to rovibronic ground-state molecules. The theoretical study is complemented by the demonstration of stimulated Raman adiabatic passage from the X1Σ+(v=0) state to the a3Σ+ manifold on a molecular beam experiment.
Adiabatic Quantum Search in Open Systems.
Wild, Dominik S; Gopalakrishnan, Sarang; Knap, Michael; Yao, Norman Y; Lukin, Mikhail D
2016-10-07
Adiabatic quantum algorithms represent a promising approach to universal quantum computation. In isolated systems, a key limitation to such algorithms is the presence of avoided level crossings, where gaps become extremely small. In open quantum systems, the fundamental robustness of adiabatic algorithms remains unresolved. Here, we study the dynamics near an avoided level crossing associated with the adiabatic quantum search algorithm, when the system is coupled to a generic environment. At zero temperature, we find that the algorithm remains scalable provided the noise spectral density of the environment decays sufficiently fast at low frequencies. By contrast, higher order scattering processes render the algorithm inefficient at any finite temperature regardless of the spectral density, implying that no quantum speedup can be achieved. Extensions and implications for other adiabatic quantum algorithms will be discussed.
Shortcuts to adiabaticity. Suppression of pair production in driven Dirac dynamics
Deffner, Sebastian
2015-12-21
By achieving effectively adiabatic dynamics in finite time, we have found that it is our ubiquitous goal in virtually all areas of modern physics. So-called shortcuts to adiabaticity refer to a set of methods and techniques that allow us to produce in a short time the same final state that would result from an adiabatic, infinitely slow process. In this paper we generalize one of these methods—the fast-forward technique—to driven Dirac dynamics. We find that our main result shortcuts to adiabaticity for the (1+1)-dimensional Dirac equation are facilitated by a combination of both scalar and pseudoscalar potentials. Our findings aremore » illustrated for two analytically solvable examples, namely charged particles driven in spatially homogeneous and linear vector fields.« less
Shortcuts to adiabaticity using flow fields
NASA Astrophysics Data System (ADS)
Patra, Ayoti; Jarzynski, Christopher
2017-12-01
A shortcut to adiabaticity is a recipe for generating adiabatic evolution at an arbitrary pace. Shortcuts have been developed for quantum, classical and (most recently) stochastic dynamics. A shortcut might involve a counterdiabatic (CD) Hamiltonian that causes a system to follow the adiabatic evolution at all times, or it might utilize a fast-forward (FF) potential, which returns the system to the adiabatic path at the end of the process. We develop a general framework for constructing shortcuts to adiabaticity from flow fields that describe the desired adiabatic evolution. Our approach encompasses quantum, classical and stochastic dynamics, and provides surprisingly compact expressions for both CD Hamiltonians and FF potentials. We illustrate our method with numerical simulations of a model system, and we compare our shortcuts with previously obtained results. We also consider the semiclassical connections between our quantum and classical shortcuts. Our method, like the FF approach developed by previous authors, is susceptible to singularities when applied to excited states of quantum systems; we propose a simple, intuitive criterion for determining whether these singularities will arise, for a given excited state.
An adiabatic quantum flux parametron as an ultra-low-power logic device
NASA Astrophysics Data System (ADS)
Takeuchi, Naoki; Ozawa, Dan; Yamanashi, Yuki; Yoshikawa, Nobuyuki
2013-03-01
Ultra-low-power adiabatic quantum flux parametron (QFP) logic is investigated since it has the potential to reduce the bit energy per operation to the order of the thermal energy. In this approach, nonhysteretic QFPs are operated slowly to prevent nonadiabatic energy dissipation occurring during switching events. The designed adiabatic QFP gate is estimated to have a dynamic energy dissipation of 12% of IcΦ0 for a rise/fall time of 1000 ps. It can be further reduced by reducing circuit inductances. Three stages of adiabatic QFP NOT gates were fabricated using a Nb Josephson integrated circuit process and their correct operation was confirmed.
Construction of diabatic energy surfaces for LiFH with artificial neural networks
NASA Astrophysics Data System (ADS)
Guan, Yafu; Fu, Bina; Zhang, Dong H.
2017-12-01
A new set of diabatic potential energy surfaces (PESs) for LiFH is constructed with artificial neural networks (NNs). The adiabatic PESs of the ground state and the first excited state are directly fitted with NNs. Meanwhile, the adiabatic-to-diabatic transformation (ADT) angles (mixing angles) are obtained by simultaneously fitting energy difference and interstate coupling gradients. No prior assumptions of the functional form of ADT angles are used before fitting, and the ab initio data including energy difference and interstate coupling gradients are well reproduced. Converged dynamical results show remarkable differences between adiabatic and diabatic PESs, which suggests the significance of non-adiabatic processes.
Adiabatic pipelining: a key to ternary computing with quantum dots.
Pečar, P; Ramšak, A; Zimic, N; Mraz, M; Lebar Bajec, I
2008-12-10
The quantum-dot cellular automaton (QCA), a processing platform based on interacting quantum dots, was introduced by Lent in the mid-1990s. What followed was an exhilarating period with the development of the line, the functionally complete set of logic functions, as well as more complex processing structures, however all in the realm of binary logic. Regardless of these achievements, it has to be acknowledged that the use of binary logic is in computing systems mainly the end result of the technological limitations, which the designers had to cope with in the early days of their design. The first advancement of QCAs to multi-valued (ternary) processing was performed by Lebar Bajec et al, with the argument that processing platforms of the future should not disregard the clear advantages of multi-valued logic. Some of the elementary ternary QCAs, necessary for the construction of more complex processing entities, however, lead to a remarkable increase in size when compared to their binary counterparts. This somewhat negates the advantages gained by entering the ternary computing domain. As it turned out, even the binary QCA had its initial hiccups, which have been solved by the introduction of adiabatic switching and the application of adiabatic pipeline approaches. We present here a study that introduces adiabatic switching into the ternary QCA and employs the adiabatic pipeline approach to successfully solve the issues of elementary ternary QCAs. What is more, the ternary QCAs presented here are sizewise comparable to binary QCAs. This in our view might serve towards their faster adoption.
From Free Expansion to Abrupt Compression of an Ideal Gas
ERIC Educational Resources Information Center
Anacleto, Joaquim; Pereira, Mario G.
2009-01-01
Using macroscopic thermodynamics, the general law for adiabatic processes carried out by an ideal gas was studied. It was shown that the process reversibility is characterized by the adiabatic reversibility coefficient r, in the range 0 [less than or equal] r [less than or equal] 1 for expansions and r [greater than or equal] 1 for compressions.…
ERIC Educational Resources Information Center
Gonen, S.
2014-01-01
The present study was carried out with 46 teacher candidates taking the course of "Thermodynamics" in the Department of Physics Teaching. The purpose of the study was to determine the difficulties that teacher candidates experienced in explaining the heat, work and internal energy relationships in the processes of adiabatic compression…
Multiple-state quantum Otto engine, 1D box system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latifah, E., E-mail: enylatifah@um.ac.id; Purwanto, A.
2014-03-24
Quantum heat engines produce work using quantum matter as their working substance. We studied adiabatic and isochoric processes and defined the general force according to quantum system. The processes and general force are used to evaluate a quantum Otto engine based on multiple-state of one dimensional box system and calculate the efficiency. As a result, the efficiency depends on the ratio of initial and final width of system under adiabatic processes.
NASA Technical Reports Server (NTRS)
Einstein, Thomas H.
1961-01-01
Equations were derived representing heat transfer and pressure drop for a gas flowing in the passages of a heater composed of a series of parallel flat plates. The plates generated heat which was transferred to the flowing gas by convection. The relatively high temperature level of this system necessitated the consideration of heat transfer between the plates by radiation. The equations were solved on an IBM 704 computer, and results were obtained for hydrogen as the working fluid for a series of cases with a gas inlet temperature of 200 R, an exit temperature of 5000 0 R, and exit Mach numbers ranging from 0.2 to O.8. The length of the heater composed of the plates ranged from 2 to 4 feet, and the spacing between the plates was varied from 0.003 to 0.01 foot. Most of the results were for a five- plate heater, but results are also given for nine plates to show the effect of increasing the number of plates. The heat generation was assumed to be identical for each plate but was varied along the length of the plates. The axial variation of power used to obtain the results presented is the so-called "2/3-cosine variation." The boundaries surrounding the set of plates, and parallel to it, were assumed adiabatic, so that all the power generated in the plates went into heating the gas. The results are presented in plots of maximum plate and maximum adiabatic wall temperatures as functions of parameters proportional to f(L/D), for the case of both laminar and turbulent flow. Here f is the Fanning friction factor and (L/D) is the length to equivalent diameter ratio of the passages in the heater. The pressure drop through the heater is presented as a function of these same parameters, the exit Mach number, and the pressure at the exit of the heater.
The 2.35 year itch of Cygnus OB2 #9. I. Optical and X-ray monitoring
NASA Astrophysics Data System (ADS)
Nazé, Y.; Mahy, L.; Damerdji, Y.; Kobulnicky, H. A.; Pittard, J. M.; Parkin, E. R.; Absil, O.; Blomme, R.
2012-10-01
Context. Nonthermal radio emission in massive stars is expected to arise in wind-wind collisions occurring inside a binary system. One such case, the O-type star Cyg OB2 #9, was proven to be a binary only four years ago, but the orbital parameters remained uncertain. The periastron passage of 2011 was the first one to be observable under good conditions since the discovery of binarity. Aims: In this context, we have organized a large monitoring campaign to refine the orbital solution and to study the wind-wind collision. Methods: This paper presents the analysis of optical spectroscopic data, as well as of a dedicated X-ray monitoring performed with Swift and XMM-Newton. Results: In light of our refined orbital solution, Cyg OB2 #9 appears as a massive O+O binary with a long period and high eccentricity; its components (O5-5.5I for the primary and O3-4III for the secondary) have similar masses and similar luminosities. The new data also provide the first evidence that a wind-wind collision is present in the system. In the optical domain, the broad Hα line varies, displaying enhanced absorption and emission components at periastron. X-ray observations yield the unambiguous signature of an adiabatic collision, because as the stars approach periastron, the X-ray luminosity closely follows the 1/D variation expected in that case. The X-ray spectrum appears, however, slightly softer at periastron, which is probably related to winds colliding at slightly lower speeds at that time. Conclusions: It is the first time that such a variation has been detected in O+O systems, and the first case where the wind-wind collision is found to remain adiabatic even at periastron passage. Based on observations collected at OHP, with Swift, and with XMM-Newton.Tables 1 and 2 are available in electronic form at http://www.aanda.org
Pumped shot noise in adiabatically modulated graphene-based double-barrier structures.
Zhu, Rui; Lai, Maoli
2011-11-16
Quantum pumping processes are accompanied by considerable quantum noise. Based on the scattering approach, we investigated the pumped shot noise properties in adiabatically modulated graphene-based double-barrier structures. It is found that compared with the Poisson processes, the pumped shot noise is dramatically enhanced where the dc pumped current changes flow direction, which demonstrates the effect of the Klein paradox.
Pumped shot noise in adiabatically modulated graphene-based double-barrier structures
NASA Astrophysics Data System (ADS)
Zhu, Rui; Lai, Maoli
2011-11-01
Quantum pumping processes are accompanied by considerable quantum noise. Based on the scattering approach, we investigated the pumped shot noise properties in adiabatically modulated graphene-based double-barrier structures. It is found that compared with the Poisson processes, the pumped shot noise is dramatically enhanced where the dc pumped current changes flow direction, which demonstrates the effect of the Klein paradox.
A model study of assisted adiabatic transfer of population in the presence of collisional dephasing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masuda, Shumpei, E-mail: shumpei.masuda@aalto.fi; Rice, Stuart A., E-mail: s-rice@uchicago.edu
2015-06-28
Previous studies have demonstrated that when experimental conditions generate non-adiabatic dynamics that prevents highly efficient population transfer between states of an isolated system by stimulated Raman adiabatic passage (STIRAP), the addition of an auxiliary counter-diabatic field (CDF) can restore most or all of that efficiency. This paper examines whether that strategy is also successful in a non-isolated system in which the energies of the states fluctuate, e.g., when a solute is subject to collisions with solvent. We study population transfer in two model systems: (i) the three-state system used by Demirplak and Rice [J. Chem. Phys. 116, 8028 (2002)] andmore » (ii) a four-state system, derived from the simulation studies of Demirplak and Rice [J. Chem. Phys. 125, 194517 (2006)], that mimics HCl in liquid Ar. Simulation studies of the vibrational manifold of HCl in dense fluid Ar show that the collision induced vibrational energy level fluctuations have asymmetric distributions. Representations of these asymmetric energy level fluctuation distributions are used in both models (i) and (ii). We identify three sources of degradation of the efficiency of STIRAP generated selective population transfer in model (ii): too small pulse areas of the laser fields, unwanted interference arising from use of strong fields, and the vibrational detuning. For both models (i) and (ii), our examination of the efficiency of STIRAP + CDF population transfer under the influence of the asymmetric distribution of the vibrational energy fluctuations shows that there is a range of field strengths and pulse durations under which STIRAP + CDF control of population transfer has greater efficiency than does STIRAP generated population transfer.« less
Magnetosphere-Ionosphere Coupling and Associated Ring Current Energization Processes
NASA Technical Reports Server (NTRS)
Liemohn, M. W.; Khazanov, G. V.
2004-01-01
Adiabatic processes in the ring current are examined. In particular, an analysis of the factors that parameterize the net adiabatic energy gain in the inner magnetosphere during magnetic storms is presented. A single storm was considered, that of April 17, 2002. Three simulations were conducted with similar boundary conditions but with different electric field descriptions. It is concluded that the best parameter for quantifying the net adiabatic energy gain in the inner magnetosphere during storms is the instantaneous value of the product of the maximum westward electric field at the outer simulation boundary with the nightside plasma sheet density. However, all of the instantaneous magnetospheric quantities considered in this study produced large correlation coefficients. Therefore, they all could be considered useful predictors of the net adiabatic energy gain of the ring current. Long integration times over the parameters lessen the significance of the correlation. Finally, some significant differences exist in the correlation coefficients depending on the electric field description.
Optimal diabatic dynamics of Majorana-based quantum gates
NASA Astrophysics Data System (ADS)
Rahmani, Armin; Seradjeh, Babak; Franz, Marcel
2017-08-01
In topological quantum computing, unitary operations on qubits are performed by adiabatic braiding of non-Abelian quasiparticles, such as Majorana zero modes, and are protected from local environmental perturbations. In the adiabatic regime, with timescales set by the inverse gap of the system, the errors can be made arbitrarily small by performing the process more slowly. To enhance the performance of quantum information processing with Majorana zero modes, we apply the theory of optimal control to the diabatic dynamics of Majorana-based qubits. While we sacrifice complete topological protection, we impose constraints on the optimal protocol to take advantage of the nonlocal nature of topological information and increase the robustness of our gates. By using the Pontryagin's maximum principle, we show that robust equivalent gates to perfect adiabatic braiding can be implemented in finite times through optimal pulses. In our implementation, modifications to the device Hamiltonian are avoided. Focusing on thermally isolated systems, we study the effects of calibration errors and external white and 1 /f (pink) noise on Majorana-based gates. While a noise-induced antiadiabatic behavior, where a slower process creates more diabatic excitations, prohibits indefinite enhancement of the robustness of the adiabatic scheme, our fast optimal protocols exhibit remarkable stability to noise and have the potential to significantly enhance the practical performance of Majorana-based information processing.
Adiabatic leakage elimination operator in an experimental framework
NASA Astrophysics Data System (ADS)
Wang, Zhao-Ming; Byrd, Mark S.; Jing, Jun; Wu, Lian-Ao
2018-06-01
Adiabatic evolution is used in a variety of quantum information processing tasks. However, the elimination of errors is not as well developed as it is for circuit model processing. Here, we present a strategy to improve the performance of a quantum adiabatic process by adding leakage elimination operators (LEOs) to the evolution. These are a sequence of pulse controls acting in an adiabatic subspace to eliminate errors by suppressing unwanted transitions. Using the Feshbach P Q partitioning technique, we obtain an analytical solution for a set of pulse controls. The effectiveness of the LEO is independent of the specific form of the pulse but depends on the average frequency of the control function. By observing that the evolution of the target eigenstate is governed by a periodic function appearing in the integral of the control function, we show that control parameters can be chosen in such a way that the instantaneous eigenstates of the system are unchanged, yet a speedup can be achieved by suppressing transitions. Furthermore, we give the exact expression of the control function for a counter unitary transformation to be used in experiments which provides a clear physical meaning for the LEO, aiding in the implementation.
Microscopic heat engine and control of work fluctuations
NASA Astrophysics Data System (ADS)
Xiao, Gaoyang
In this thesis, we study novel behaviors of microscopic work and heat in systems involving few degrees of freedom. We firstly report that a quantum Carnot cycle should consist of two isothermal processes and two mechanical adiabatic processes if we want to maximize its heat-to-work conversion efficiency. We then find that the efficiency can be further optimized, and it is generally system specific, lower than the Carnot efficiency, and dependent upon both temperatures of the cold and hot reservoirs. We then move on to the studies the fluctuations of microscopic work. We find a principle of minimal work fluctuations related to the Jarzynski equality. In brief, an adiabatic process without energy level crossing yields the minimal fluctuations in exponential work, given a thermally isolated system initially prepared at thermal equilibrium. Finally, we investigate an optimal control approach to suppress the work fluctuations and accelerate the adiabatic processes. This optimal control approach can apply to wide variety of systems even when we do not have full knowledge of the systems.
Lithospheric processes that enhance melting at rifts
NASA Astrophysics Data System (ADS)
Elkins-Tanton, L. T.; Furman, T.
2008-12-01
Continental rifts are commonly sites for mantle melting, whether in the form of ridge melting to create new oceanic crust, or as the locus of flood basalt activity, or in the long initial period of rifting before lavas evolve fully into MORBs. The high topography in the lithosphere-asthenosphere boundary under a rift creates mantle upwelling and adiabatic melting even in the absence of a plume. This geometry itself, however, is conducive to lithospheric instability on the sides of the rifts. Unstable lithosphere may founder into the mantle, producing more complex aesthenospheric convective patterns and additional opportunities to produce melt. Lithospheric instabilities can produce additional adiabatic melting in convection produced as they sink, and they may also devolatilize as they sink, introducing the possibility of flux melting to the rift environment. We call this process upside-down melting, since devolatilization and melting proceed as the foundering lithosphere sinks, rather than while rising, as in the more familiar adiabatic decompression melting. Both adiabatic melting and flux melting would take place along the edges of the rift and may even move magmatism outside the rift, as has been seen in Ethiopia. In volcanism postdating the flood basalts on and adjacent to the Ethiopian Plateau there is evidence for both lithospheric thinning and volatile enrichment in the magmas, potentially consistent with the upside-down melting model. Here we present a physical model for the conjunction of adiabatic decompression melting to produce new oceanic crust in the rift, while lithospheric gravitational instabilities drive both adiabatic and flux melting at its margins.
Gas hydrate suspensions formation and transportation research
NASA Astrophysics Data System (ADS)
Gulkov, A. N.; Gulkova, S.; Zemenkov, Yu D.; Lapshin, V. D.
2018-05-01
An experimental unit for studying the formation of gas hydrate suspensions and their transport properties is considered. The scheme of installation and the basic processes, which can be studied, are described. The results of studies of gas hydrates and a gas hydrate suspension’ formation in an adiabatic process in a stream of seawater are given. The adiabatic method of obtaining gas hydrates and forming gas hydrate suspensions is offered to use. Directions for further research are outlined.
A Kinetic Study of the Adiabatic Polymerization of Acrylamide.
ERIC Educational Resources Information Center
Thomson, R. A. M.
1986-01-01
Discusses theory, procedures, and results for an experiment which demonstrates the application of basic physics to chemical problems. The experiment involves the adiabatic process, in which polymerization carried out in a vacuum flask is compared to the theoretical prediction of the model with the temperature-time curve obtained in practice. (JN)
Fast Quasi-Adiabatic Gas Cooling: An Experiment Revisited
ERIC Educational Resources Information Center
Oss, S.; Gratton, L. M.; Calza, G.; Lopez-Arias, T.
2012-01-01
The well-known experiment of the rapid expansion and cooling of the air contained in a bottle is performed with a rapidly responsive, yet very cheap thermometer. The adiabatic, low temperature limit is approached quite closely and measured with our apparatus. A straightforward theoretical model for this process is also presented and discussed.…
ERIC Educational Resources Information Center
Moore, William M.
1984-01-01
Describes the procedures and equipment for an experiment on the adiabatic expansion of gases suitable for demonstration and discussion in the physical chemical laboratory. The expansion produced shows how the process can change temperature and still return to a different location on an isotherm. (JN)
Adiabatic shear mechanisms for the hard cutting process
NASA Astrophysics Data System (ADS)
Yue, Caixu; Wang, Bo; Liu, Xianli; Feng, Huize; Cai, Chunbin
2015-05-01
The most important consequence of adiabatic shear phenomenon is formation of sawtooth chip. Lots of scholars focused on the formation mechanism of sawtooth, and the research often depended on experimental approach. For the present, the mechanism of sawtooth chip formation still remains some ambiguous aspects. This study develops a combined numerical and experimental approach to get deeper understanding of sawtooth chip formation mechanism for Polycrystalline Cubic Boron Nitride (PCBN) tools orthogonal cutting hard steel GCr15. By adopting the Johnson-Cook material constitutive equations, the FEM simulation model established in this research effectively overcomes serious element distortions and cell singularity in high strain domain caused by large material deformation, and the adiabatic shear phenomenon is simulated successfully. Both the formation mechanism and process of sawtooth are simulated. Also, the change features regarding the cutting force as well as its effects on temperature are studied. More specifically, the contact of sawtooth formation frequency with cutting force fluctuation frequency is established. The cutting force and effect of cutting temperature on mechanism of adiabatic shear are investigated. Furthermore, the effects of the cutting condition on sawtooth chip formation are researched. The researching results show that cutting feed has the most important effect on sawtooth chip formation compared with cutting depth and speed. This research contributes a better understanding of mechanism, feature of chip formation in hard turning process, and supplies theoretical basis for the optimization of hard cutting process parameters.
NASA Astrophysics Data System (ADS)
Winter, S.; Schmitz, F.; Clausmeyer, T.; Tekkaya, A. E.; F-X Wagner, M.
2017-03-01
In the automotive industry, advanced high strength steels (AHSS) are widely used as sheet part components to reduce weight, even though this leads to several challenges. The demand for high-quality shear cutting surfaces that do not require reworking can be fulfilled by adiabatic shear cutting: High strain rates and local temperatures lead to the formation of adiabatic shear bands (ASB). While this process is well suited to produce AHSS parts with excellent cutting surface quality, a fundamental understanding of the process is still missing today. In this study, compression tests in a Split-Hopkinson Pressure Bar with an initial strain rate of 1000 s-1 were performed in a temperature range between 200 °C and 1000 °C. The experimental results show that high strength steels with nearly the same mechanical properties at RT may possess a considerably different behavior at higher temperatures. The resulting microstructures after testing at different temperatures were analyzed by optical microscopy. The thermo-mechanical material behavior was then considered in an analytical model. To predict the local temperature increase that occurs during the adiabatic blanking process, experimentally determined flow curves were used. Furthermore, the influence of temperature evolution with respect to phase transformation is discussed. This study contributes to a more complete understanding of the relevant microstructural and thermo-mechanical mechanisms leading to the evolution of ASB during cutting of AHSS.
Cotton, Stephen J.; Miller, William H.
2016-10-14
Previous work has shown how a symmetrical quasi-classical (SQC) windowing procedure can be used to quantize the initial and final electronic degrees of freedom in the Meyer-Miller (MM) classical vibronic (i.e, nuclear + electronic) Hamiltonian, and that the approach provides a very good description of electronically non-adiabatic processes within a standard classical molecular dynamics framework for a number of benchmark problems. This study explores application of the SQC/MM approach to the case of very weak non-adiabatic coupling between the electronic states, showing (as anticipated) how the standard SQC/MM approach used to date fails in this limit, and then devises amore » new SQC windowing scheme to deal with it. Finally, application of this new SQC model to a variety of realistic benchmark systems shows that the new model not only treats the weak coupling case extremely well, but it is also seen to describe the “normal” regime (of electronic transition probabilities ≳ 0.1) even more accurately than the previous “standard” model.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cotton, Stephen J.; Miller, William H.
Previous work has shown how a symmetrical quasi-classical (SQC) windowing procedure can be used to quantize the initial and final electronic degrees of freedom in the Meyer-Miller (MM) classical vibronic (i.e, nuclear + electronic) Hamiltonian, and that the approach provides a very good description of electronically non-adiabatic processes within a standard classical molecular dynamics framework for a number of benchmark problems. This study explores application of the SQC/MM approach to the case of very weak non-adiabatic coupling between the electronic states, showing (as anticipated) how the standard SQC/MM approach used to date fails in this limit, and then devises amore » new SQC windowing scheme to deal with it. Finally, application of this new SQC model to a variety of realistic benchmark systems shows that the new model not only treats the weak coupling case extremely well, but it is also seen to describe the “normal” regime (of electronic transition probabilities ≳ 0.1) even more accurately than the previous “standard” model.« less
Trade-off between speed and cost in shortcuts to adiabaticity
NASA Astrophysics Data System (ADS)
Campbell, Steve
Recent years have witnessed a surge of interest in the study of thermal nano-machines that are capable of converting disordered forms of energy into useful work. It has been shown for both classical and quantum systems that external drivings can allow a system to evolve adiabatically even when driven in finite time, a technique commonly known as shortcuts to adiabaticity. It was suggested to use such external drivings to render the unitary processes of a thermodynamic cycle quantum adiabatic, while being performed in finite time. However, implementing an additional external driving requires resources that should be accounted for. Furthermore, and in line with natural intuition, these transformations should not be achievable in arbitrarily short times. First, we will present a computable measure of the cost of a shortcut to adiabaticity. Using this, we then examine the speed with which a quantum system can be driven. As a main result, we will establish a rigorous link between this speed, the quantum speed limit, and the (energetic) cost of implementing such a shortcut to adiabaticity. Interestingly, this link elucidates a trade-off between speed and cost, namely that instantaneous manipulation is impossible as it requires an infinite cost.
NASA Astrophysics Data System (ADS)
Liu, Gengyuan; Malinovskaya, S. A.
2018-06-01
A method is proposed to create molecules in the ultracold state from the Feshbach molecules by stepwise adiabatic passage using an optical frequency comb without losses due to decoherence. An emphasis is made on the impact of the vibrational state manifold on controllability of the coherent dynamics by including five excited states into the model. The results are compared with recently reported results on a three-level ? system. Sinusoidal modulation across an individual pulse in the pulse train is applied, leading to the creation of a quasi-dark state, which minimizes population of the transitional, vibrational state manifold, and efficiently mitigates decoherence in the system. The parity of the temporal chirp is shown to be an important factor in designing population dynamics in the system.
First measurement of the neutron beta asymmetry with ultracold neutrons.
Pattie, R W; Anaya, J; Back, H O; Boissevain, J G; Bowles, T J; Broussard, L J; Carr, R; Clark, D J; Currie, S; Du, S; Filippone, B W; Geltenbort, P; García, A; Hawari, A; Hickerson, K P; Hill, R; Hino, M; Hoedl, S A; Hogan, G E; Holley, A T; Ito, T M; Kawai, T; Kirch, K; Kitagaki, S; Lamoreaux, S K; Liu, C-Y; Liu, J; Makela, M; Mammei, R R; Martin, J W; Melconian, D; Meier, N; Mendenhall, M P; Morris, C L; Mortensen, R; Pichlmaier, A; Pitt, M L; Plaster, B; Ramsey, J C; Rios, R; Sabourov, K; Sallaska, A L; Saunders, A; Schmid, R; Seestrom, S; Servicky, C; Sjue, S K L; Smith, D; Sondheim, W E; Tatar, E; Teasdale, W; Terai, C; Tipton, B; Utsuro, M; Vogelaar, R B; Wehring, B W; Xu, Y P; Young, A R; Yuan, J
2009-01-09
We report the first measurement of an angular correlation parameter in neutron beta decay using polarized ultracold neutrons (UCN). We utilize UCN with energies below about 200 neV, which we guide and store for approximately 30 s in a Cu decay volume. The interaction of the neutron magnetic dipole moment with a static 7 T field external to the decay volume provides a 420 neV potential energy barrier to the spin state parallel to the field, polarizing the UCN before they pass through an adiabatic fast passage spin flipper and enter a decay volume, situated within a 1 T field in a 2x2pi solenoidal spectrometer. We determine a value for the beta-asymmetry parameter A_{0}=-0.1138+/-0.0046+/-0.0021.
Sign changes as a universal concept in first-passage-time calculations
NASA Astrophysics Data System (ADS)
Braun, Wilhelm; Thul, Rüdiger
2017-01-01
First-passage-time problems are ubiquitous across many fields of study, including transport processes in semiconductors and biological synapses, evolutionary game theory and percolation. Despite their prominence, first-passage-time calculations have proven to be particularly challenging. Analytical results to date have often been obtained under strong conditions, leaving most of the exploration of first-passage-time problems to direct numerical computations. Here we present an analytical approach that allows the derivation of first-passage-time distributions for the wide class of nondifferentiable Gaussian processes. We demonstrate that the concept of sign changes naturally generalizes the common practice of counting crossings to determine first-passage events. Our method works across a wide range of time-dependent boundaries and noise strengths, thus alleviating common hurdles in first-passage-time calculations.
Adiabatic Quantum Computation: Coherent Control Back Action.
Goswami, Debabrata
2006-11-22
Though attractive from scalability aspects, optical approaches to quantum computing are highly prone to decoherence and rapid population loss due to nonradiative processes such as vibrational redistribution. We show that such effects can be reduced by adiabatic coherent control, in which quantum interference between multiple excitation pathways is used to cancel coupling to the unwanted, non-radiative channels. We focus on experimentally demonstrated adiabatic controlled population transfer experiments wherein the details on the coherence aspects are yet to be explored theoretically but are important for quantum computation. Such quantum computing schemes also form a back-action connection to coherent control developments.
2018-01-01
Single-cell experiments show that gene expression is stochastic and bursty, a feature that can emerge from slow switching between promoter states with different activities. In addition to slow chromatin and/or DNA looping dynamics, one source of long-lived promoter states is the slow binding and unbinding kinetics of transcription factors to promoters, i.e. the non-adiabatic binding regime. Here, we introduce a simple analytical framework, known as a piecewise deterministic Markov process (PDMP), that accurately describes the stochastic dynamics of gene expression in the non-adiabatic regime. We illustrate the utility of the PDMP on a non-trivial dynamical system by analysing the properties of a titration-based oscillator in the non-adiabatic limit. We first show how to transform the underlying chemical master equation into a PDMP where the slow transitions between promoter states are stochastic, but whose rates depend upon the faster deterministic dynamics of the transcription factors regulated by these promoters. We show that the PDMP accurately describes the observed periods of stochastic cycles in activator and repressor-based titration oscillators. We then generalize our PDMP analysis to more complicated versions of titration-based oscillators to explain how multiple binding sites lengthen the period and improve coherence. Last, we show how noise-induced oscillation previously observed in a titration-based oscillator arises from non-adiabatic and discrete binding events at the promoter site. PMID:29386401
NASA Astrophysics Data System (ADS)
Gaillard, F.; Massuyeau, M.; Sifre, D.; Tarits, P.
2013-12-01
Mineralogical transformations in the up-welling mantle play a critical role on the dynamics of mass and heat transfers at mid-ocean-ridgeS. The melting event producing ridge basalts occur at 60 km depth below the ridge axis, but because of small amounts of H2O and CO2 in the source region of MOR-basalts, incipient melting can initiate at much greater depth. Such incipient melts concentrate incompatible elements, and are particularly rich in volatile species. These juices evolve from carbonatites, carbonated basalts, to CO2-H2O-rich basalts as recently exposed by petrological surveys; the passage from carbonate to silicate melts is a complex pathway that is strongly non-linear. This picture has recently been complicated further by studies showing that oxygen increasingly partitions into garnet as pressure increases; this implies that incipient melting may be prevented at depth exceeding 200 km because not enough oxygen is available in the system to stabilize carbonate melts. The aim of this work is twofold: - We modelled the complex pathway of mantle melting in presence of C-O-H volatiles by adjusting the thermodynamic properties of mixing in the multi-component C-O-H-melt system. This allows us to calculate the change in melt composition vs. depth following any sortS of adiabat. - We modelled the continuous change in electrical properties from carbonatites, carbonated basalts, to CO2-H2O-rich basalts. We then successfully converted this petrological evolution along a ridge adiabat into electrical conductivity vs. depth signal. The discussion that follows is about comparison of this petrologically-based conductivity profile with the recent profiles obtained by inversion of the long-period electromagnetic signals from the East-Pacific-Rise. These geophysically-based profiles reveal the electrical conductivity structure down to 400 km depth and they show some intriguing highly conductive sections. We will discuss heterogeneity in electrical conductivity of the upper mantle underneath the ridge in terms of melting processes. Our prime conclusion is that the redox melting process, universally predicted by petrological models, might not be universal and that incipient melting can extend down to the transition zone.
Assessment of total efficiency in adiabatic engines
NASA Astrophysics Data System (ADS)
Mitianiec, W.
2016-09-01
The paper presents influence of ceramic coating in all surfaces of the combustion chamber of SI four-stroke engine on working parameters mainly on heat balance and total efficiency. Three cases of engine were considered: standard without ceramic coating, fully adiabatic combustion chamber and engine with different thickness of ceramic coating. Consideration of adiabatic or semi-adiabatic engine was connected with mathematical modelling of heat transfer from the cylinder gas to the cooling medium. This model takes into account changeable convection coefficient based on the experimental formulas of Woschni, heat conductivity of multi-layer walls and also small effect of radiation in SI engines. The simulation model was elaborated with full heat transfer to the cooling medium and unsteady gas flow in the engine intake and exhaust systems. The computer program taking into account 0D model of engine processes in the cylinder and 1D model of gas flow was elaborated for determination of many basic engine thermodynamic parameters for Suzuki DR-Z400S 400 cc SI engine. The paper presents calculation results of influence of the ceramic coating thickness on indicated pressure, specific fuel consumption, cooling and exhaust heat losses. Next it were presented comparisons of effective power, heat losses in the cooling and exhaust systems, total efficiency in function of engine rotational speed and also comparison of temperature inside the cylinder for standard, semi-adiabatic and full adiabatic engine. On the basis of the achieved results it was found higher total efficiency of adiabatic engines at 2500 rpm from 27% for standard engine to 37% for full adiabatic engine.
Ultrahigh-Repetition Pulse Train with Absolute-Phase Control Produced by AN Adiabatic Raman Process
NASA Astrophysics Data System (ADS)
Katsuragawa, M.; Suzuki, T.; Shiraga, K.; Arakawa, M.; Onose, T.; Yokoyama, K.; Hong, F. L.; Misawa, K.
2010-02-01
We describe the generation of an ultrahigh-repetition-rate train of ultrashort pulses on the basis of an adiabatic Raman process. We also describe recent progress in studies toward the ultimate regime: realization of an ultrahigh-repetition-rate train of monocycle pulses with control of the absolute phase. We comment on the milestones expected in the near future in terms of the study of such novel light sources and the new field of optical science stimulated by their development.
ERIC Educational Resources Information Center
Ferreira, Joao Paulo M.
2007-01-01
The problem of the equilibrium state of an isolated composite system with a movable internal adiabatic wall is a recurrent one in the literature. Classical equilibrium thermodynamics is unable to predict the equilibrium state, unless supplemented with information about the process taking place. This conclusion is clearly demonstrated in this…
When an Adiabatic Irreversible Expansion or Compression Becomes Reversible
ERIC Educational Resources Information Center
Anacleto, Joaquim; Ferreira, J. M.; Soares, A. A.
2009-01-01
This paper aims to contribute to a better understanding of the concepts of a "reversible process" and "entropy". For this purpose, an adiabatic irreversible expansion or compression is analysed, by considering that an ideal gas is expanded (compressed), from an initial pressure P[subscript i] to a final pressure P[subscript f], by being placed in…
Using Self-Generated Analogies in Teaching of Thermodynamics
ERIC Educational Resources Information Center
Haglund, Jesper; Jeppsson, Fredrik
2012-01-01
Using self-generated analogies has been proposed as a method in a constructivist tradition for students to learn about a new subject, by use of what they previously know. We report on a group exercise on using self-generated analogies to make sense of two thermodynamic processes, reversible adiabatic expansion and free adiabatic expansion of an…
Adiabatic topological quantum computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cesare, Chris; Landahl, Andrew J.; Bacon, Dave
Topological quantum computing promises error-resistant quantum computation without active error correction. However, there is a worry that during the process of executing quantum gates by braiding anyons around each other, extra anyonic excitations will be created that will disorder the encoded quantum information. Here, we explore this question in detail by studying adiabatic code deformations on Hamiltonians based on topological codes, notably Kitaev’s surface codes and the more recently discovered color codes. We develop protocols that enable universal quantum computing by adiabatic evolution in a way that keeps the energy gap of the system constant with respect to the computationmore » size and introduces only simple local Hamiltonian interactions. This allows one to perform holonomic quantum computing with these topological quantum computing systems. The tools we develop allow one to go beyond numerical simulations and understand these processes analytically.« less
Adiabatic topological quantum computing
Cesare, Chris; Landahl, Andrew J.; Bacon, Dave; ...
2015-07-31
Topological quantum computing promises error-resistant quantum computation without active error correction. However, there is a worry that during the process of executing quantum gates by braiding anyons around each other, extra anyonic excitations will be created that will disorder the encoded quantum information. Here, we explore this question in detail by studying adiabatic code deformations on Hamiltonians based on topological codes, notably Kitaev’s surface codes and the more recently discovered color codes. We develop protocols that enable universal quantum computing by adiabatic evolution in a way that keeps the energy gap of the system constant with respect to the computationmore » size and introduces only simple local Hamiltonian interactions. This allows one to perform holonomic quantum computing with these topological quantum computing systems. The tools we develop allow one to go beyond numerical simulations and understand these processes analytically.« less
Wang, Li; Tu, Tao; Gong, Bo; Zhou, Cheng; Guo, Guang-Can
2016-01-01
High fidelity universal gates for quantum bits form an essential ingredient of quantum information processing. In particular, geometric gates have attracted attention because they have a higher intrinsic resistance to certain errors. However, their realization remains a challenge because of the need for complicated quantum control on a multi-level structure as well as meeting the adiabatic condition within a short decoherence time. Here, we demonstrate non-adiabatic quantum operations for a two-level system by applying a well-controlled geometric Landau-Zener-Stückelberg interferometry. By characterizing the gate quality, we also investigate the operation in the presence of realistic dephasing. Furthermore, the result provides an essential model suitable for understanding an interplay of geometric phase and Landau-Zener-Stückelberg process which are well explored separately. PMID:26738875
NASA Astrophysics Data System (ADS)
Shieh, Lih-Yir; Kan, Hung-Chih
2014-04-01
We demonstrate that plotting the P-V diagram of an ideal gas Carnot cycle on a logarithmic scale results in a more intuitive approach for deriving the final form of the efficiency equation. The same approach also facilitates the derivation of the efficiency of other thermodynamic engines that employ adiabatic ideal gas processes, such as the Brayton cycle, the Otto cycle, and the Diesel engine. We finally demonstrate that logarithmic plots of isothermal and adiabatic processes help with visualization in approximating an arbitrary process in terms of an infinite number of Carnot cycles.
Statistical Analysis of the First Passage Path Ensemble of Jump Processes
NASA Astrophysics Data System (ADS)
von Kleist, Max; Schütte, Christof; Zhang, Wei
2018-02-01
The transition mechanism of jump processes between two different subsets in state space reveals important dynamical information of the processes and therefore has attracted considerable attention in the past years. In this paper, we study the first passage path ensemble of both discrete-time and continuous-time jump processes on a finite state space. The main approach is to divide each first passage path into nonreactive and reactive segments and to study them separately. The analysis can be applied to jump processes which are non-ergodic, as well as continuous-time jump processes where the waiting time distributions are non-exponential. In the particular case that the jump processes are both Markovian and ergodic, our analysis elucidates the relations between the study of the first passage paths and the study of the transition paths in transition path theory. We provide algorithms to numerically compute statistics of the first passage path ensemble. The computational complexity of these algorithms scales with the complexity of solving a linear system, for which efficient methods are available. Several examples demonstrate the wide applicability of the derived results across research areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Straasø, Lasse A.; Shankar, Ravi; Nielsen, Niels Chr.
The homonuclear radio-frequency driven recoupling (RFDR) experiment is commonly used in solid-state NMR spectroscopy to gain insight into the structure of biological samples due to its ease of implementation, stability towards fluctuations/missetting of radio-frequency (rf) field strength, and in general low rf requirements. A theoretical operator-based Floquet description is presented to appreciate the effect of having a temporal displacement of the π-pulses in the RFDR experiment. From this description, we demonstrate improved transfer efficiency for the RFDR experiment by generating an adiabatic passage through the zero-quantum recoupling condition. We have compared the performances of RFDR and the improved sequence tomore » mediate efficient {sup 13}CO to {sup 13}C{sub α} polarization transfer for uniformly {sup 13}C,{sup 15}N-labeled glycine and for the fibril forming peptide SNNFGAILSS (one-letter amino acid codes) uniformly {sup 13}C,{sup 15}N-labeled at the FGAIL residues. Using numerically optimized sweeps, we get experimental gains of approximately 20% for glycine where numerical simulations predict an improvement of 25% relative to the standard implementation. For the fibril forming peptide, using the same sweep parameters as found for glycine, we have gains in the order of 10%–20% depending on the spectral regions of interest.« less
Quantum adiabatic machine learning
NASA Astrophysics Data System (ADS)
Pudenz, Kristen L.; Lidar, Daniel A.
2013-05-01
We develop an approach to machine learning and anomaly detection via quantum adiabatic evolution. This approach consists of two quantum phases, with some amount of classical preprocessing to set up the quantum problems. In the training phase we identify an optimal set of weak classifiers, to form a single strong classifier. In the testing phase we adiabatically evolve one or more strong classifiers on a superposition of inputs in order to find certain anomalous elements in the classification space. Both the training and testing phases are executed via quantum adiabatic evolution. All quantum processing is strictly limited to two-qubit interactions so as to ensure physical feasibility. We apply and illustrate this approach in detail to the problem of software verification and validation, with a specific example of the learning phase applied to a problem of interest in flight control systems. Beyond this example, the algorithm can be used to attack a broad class of anomaly detection problems.
Adiabatic Expansion of Electron Gas in a Magnetic Nozzle.
Takahashi, Kazunori; Charles, Christine; Boswell, Rod; Ando, Akira
2018-01-26
A specially constructed experiment shows the near perfect adiabatic expansion of an ideal electron gas resulting in a polytropic index greater than 1.4, approaching the adiabatic value of 5/3, when removing electric fields from the system, while the polytropic index close to unity is observed when the electrons are trapped by the electric fields. The measurements were made on collisionless electrons in an argon plasma expanding in a magnetic nozzle. The collision lengths of all electron collision processes are greater than the scale length of the expansion, meaning the system cannot be in thermodynamic equilibrium, yet thermodynamic concepts can be used, with caution, in explaining the results. In particular, a Lorentz force, created by inhomogeneities in the radial plasma density, does work on the expanding magnetic field, reducing the internal energy of the electron gas that behaves as an adiabatically expanding ideal gas.
Adiabatic Expansion of Electron Gas in a Magnetic Nozzle
NASA Astrophysics Data System (ADS)
Takahashi, Kazunori; Charles, Christine; Boswell, Rod; Ando, Akira
2018-01-01
A specially constructed experiment shows the near perfect adiabatic expansion of an ideal electron gas resulting in a polytropic index greater than 1.4, approaching the adiabatic value of 5 /3 , when removing electric fields from the system, while the polytropic index close to unity is observed when the electrons are trapped by the electric fields. The measurements were made on collisionless electrons in an argon plasma expanding in a magnetic nozzle. The collision lengths of all electron collision processes are greater than the scale length of the expansion, meaning the system cannot be in thermodynamic equilibrium, yet thermodynamic concepts can be used, with caution, in explaining the results. In particular, a Lorentz force, created by inhomogeneities in the radial plasma density, does work on the expanding magnetic field, reducing the internal energy of the electron gas that behaves as an adiabatically expanding ideal gas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yen Ting; Buchler, Nicolas E.
Single-cell experiments show that gene expression is stochastic and bursty, a feature that can emerge from slow switching between promoter states with different activities. In addition to slow chromatin and/or DNA looping dynamics, one source of long-lived promoter states is the slow binding and unbinding kinetics of transcription factors to promoters, i.e. the non-adiabatic binding regime. Here, we introduce a simple analytical framework, known as a piecewise deterministic Markov process (PDMP), that accurately describes the stochastic dynamics of gene expression in the non-adiabatic regime. We illustrate the utility of the PDMP on a non-trivial dynamical system by analysing the propertiesmore » of a titration-based oscillator in the non-adiabatic limit. We first show how to transform the underlying chemical master equation into a PDMP where the slow transitions between promoter states are stochastic, but whose rates depend upon the faster deterministic dynamics of the transcription factors regulated by these promoters. We show that the PDMP accurately describes the observed periods of stochastic cycles in activator and repressor-based titration oscillators. We then generalize our PDMP analysis to more complicated versions of titration-based oscillators to explain how multiple binding sites lengthen the period and improve coherence. Finally, we show how noise-induced oscillation previously observed in a titration-based oscillator arises from non-adiabatic and discrete binding events at the promoter site.« less
Lin, Yen Ting; Buchler, Nicolas E.
2018-01-31
Single-cell experiments show that gene expression is stochastic and bursty, a feature that can emerge from slow switching between promoter states with different activities. In addition to slow chromatin and/or DNA looping dynamics, one source of long-lived promoter states is the slow binding and unbinding kinetics of transcription factors to promoters, i.e. the non-adiabatic binding regime. Here, we introduce a simple analytical framework, known as a piecewise deterministic Markov process (PDMP), that accurately describes the stochastic dynamics of gene expression in the non-adiabatic regime. We illustrate the utility of the PDMP on a non-trivial dynamical system by analysing the propertiesmore » of a titration-based oscillator in the non-adiabatic limit. We first show how to transform the underlying chemical master equation into a PDMP where the slow transitions between promoter states are stochastic, but whose rates depend upon the faster deterministic dynamics of the transcription factors regulated by these promoters. We show that the PDMP accurately describes the observed periods of stochastic cycles in activator and repressor-based titration oscillators. We then generalize our PDMP analysis to more complicated versions of titration-based oscillators to explain how multiple binding sites lengthen the period and improve coherence. Finally, we show how noise-induced oscillation previously observed in a titration-based oscillator arises from non-adiabatic and discrete binding events at the promoter site.« less
Quantum phases with differing computational power.
Cui, Jian; Gu, Mile; Kwek, Leong Chuan; Santos, Marcelo França; Fan, Heng; Vedral, Vlatko
2012-05-01
The observation that concepts from quantum information has generated many alternative indicators of quantum phase transitions hints that quantum phase transitions possess operational significance with respect to the processing of quantum information. Yet, studies on whether such transitions lead to quantum phases that differ in their capacity to process information remain limited. Here we show that there exist quantum phase transitions that cause a distinct qualitative change in our ability to simulate certain quantum systems under perturbation of an external field by local operations and classical communication. In particular, we show that in certain quantum phases of the XY model, adiabatic perturbations of the external magnetic field can be simulated by local spin operations, whereas the resulting effect within other phases results in coherent non-local interactions. We discuss the potential implications to adiabatic quantum computation, where a computational advantage exists only when adiabatic perturbation results in coherent multi-body interactions.
Strategies in Reading Comprehension: III. Visual Imagery as a Psychological Process.
ERIC Educational Resources Information Center
Levin, Joel R.; Divine-Hawkins, Patricia
The viability of visual imagery as a prose-learning process was evaluated in two experiments with elementary school children in this study. In experiment one, two concrete ten-sentence passages were constructed. The attributes of two subclasses were contrasted in each passage (two kinds of monkeys in one passage, and two kinds of cars in the…
Reimers, Jeffrey R; McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S
2015-10-14
Using a simple model Hamiltonian, the three correction terms for Born-Oppenheimer (BO) breakdown, the adiabatic diagonal correction (DC), the first-derivative momentum non-adiabatic correction (FD), and the second-derivative kinetic-energy non-adiabatic correction (SD), are shown to all contribute to thermodynamic and spectroscopic properties as well as to thermal non-diabatic chemical reaction rates. While DC often accounts for >80% of thermodynamic and spectroscopic property changes, the commonly used practice of including only the FD correction in kinetics calculations is rarely found to be adequate. For electron-transfer reactions not in the inverted region, the common physical picture that diabatic processes occur because of surface hopping at the transition state is proven inadequate as the DC acts first to block access, increasing the transition state energy by (ℏω)(2)λ/16J(2) (where λ is the reorganization energy, J the electronic coupling and ω the vibration frequency). However, the rate constant in the weakly-coupled Golden-Rule limit is identified as being only inversely proportional to this change rather than exponentially damped, owing to the effects of tunneling and surface hopping. Such weakly-coupled long-range electron-transfer processes should therefore not be described as "non-adiabatic" processes as they are easily described by Born-Huang ground-state adiabatic surfaces made by adding the DC to the BO surfaces; instead, they should be called just "non-Born-Oppenheimer" processes. The model system studied consists of two diabatic harmonic potential-energy surfaces coupled linearly through a single vibration, the "two-site Holstein model". Analytical expressions are derived for the BO breakdown terms, and the model is solved over a large parameter space focusing on both the lowest-energy spectroscopic transitions and the quantum dynamics of coherent-state wavepackets. BO breakdown is investigated pertinent to: ammonia inversion, aromaticity in benzene, the Creutz-Taube ion, the bacterial photosynthetic reaction centre, BNB, the molecular conductor Alq3, and inverted-region charge recombination in a ferrocene-porphyrin-fullerene triad photosynthetic model compound. Throughout, the fundamental nature of BO breakdown is linked to the properties of the cusp catastrophe: the cusp diameter is shown to determine the magnitudes of all couplings, numerical basis-set and trajectory-integration requirements, and to determine the transmission coefficient κ used to understand deviations from transition-state theory.
Sub-diffraction Imaging via Surface Plasmon Decompression
2014-06-08
of the local wavelength of a surface plasmon polariton supported by two adjoining curved metal surfaces. The views, opinions and/or findings...adiabatic decompression of the local wavelength of a surface plasmon polariton supported by two adjoining curved metal surfaces. Conference Name...diffraction imaging based on a process of adiabatic decompression of the local wavelength of a surface plasmon polariton supported by two adjoining curved
Socci, Luciano; Sorianello, Vito; Romagnoli, Marco
2015-07-27
Adiabatic polarization splitter-rotators are investigated exploiting continuous symmetry breaking thereby achieving significant device size and losses reduction in a single mask fabrication process for both SOI channel and ridge waveguides. A crosstalk lower than -25 dB is expected over 300nm bandwidth, making the device suitable for full grid CWDM and diplexer/triplexer FTTH applications at 1310, 1490 and 1550nm.
Mean first-passage times of non-Markovian random walkers in confinement.
Guérin, T; Levernier, N; Bénichou, O; Voituriez, R
2016-06-16
The first-passage time, defined as the time a random walker takes to reach a target point in a confining domain, is a key quantity in the theory of stochastic processes. Its importance comes from its crucial role in quantifying the efficiency of processes as varied as diffusion-limited reactions, target search processes or the spread of diseases. Most methods of determining the properties of first-passage time in confined domains have been limited to Markovian (memoryless) processes. However, as soon as the random walker interacts with its environment, memory effects cannot be neglected: that is, the future motion of the random walker does not depend only on its current position, but also on its past trajectory. Examples of non-Markovian dynamics include single-file diffusion in narrow channels, or the motion of a tracer particle either attached to a polymeric chain or diffusing in simple or complex fluids such as nematics, dense soft colloids or viscoelastic solutions. Here we introduce an analytical approach to calculate, in the limit of a large confining volume, the mean first-passage time of a Gaussian non-Markovian random walker to a target. The non-Markovian features of the dynamics are encompassed by determining the statistical properties of the fictitious trajectory that the random walker would follow after the first-passage event takes place, which are shown to govern the first-passage time kinetics. This analysis is applicable to a broad range of stochastic processes, which may be correlated at long times. Our theoretical predictions are confirmed by numerical simulations for several examples of non-Markovian processes, including the case of fractional Brownian motion in one and higher dimensions. These results reveal, on the basis of Gaussian processes, the importance of memory effects in first-passage statistics of non-Markovian random walkers in confinement.
Mean first-passage times of non-Markovian random walkers in confinement
NASA Astrophysics Data System (ADS)
Guérin, T.; Levernier, N.; Bénichou, O.; Voituriez, R.
2016-06-01
The first-passage time, defined as the time a random walker takes to reach a target point in a confining domain, is a key quantity in the theory of stochastic processes. Its importance comes from its crucial role in quantifying the efficiency of processes as varied as diffusion-limited reactions, target search processes or the spread of diseases. Most methods of determining the properties of first-passage time in confined domains have been limited to Markovian (memoryless) processes. However, as soon as the random walker interacts with its environment, memory effects cannot be neglected: that is, the future motion of the random walker does not depend only on its current position, but also on its past trajectory. Examples of non-Markovian dynamics include single-file diffusion in narrow channels, or the motion of a tracer particle either attached to a polymeric chain or diffusing in simple or complex fluids such as nematics, dense soft colloids or viscoelastic solutions. Here we introduce an analytical approach to calculate, in the limit of a large confining volume, the mean first-passage time of a Gaussian non-Markovian random walker to a target. The non-Markovian features of the dynamics are encompassed by determining the statistical properties of the fictitious trajectory that the random walker would follow after the first-passage event takes place, which are shown to govern the first-passage time kinetics. This analysis is applicable to a broad range of stochastic processes, which may be correlated at long times. Our theoretical predictions are confirmed by numerical simulations for several examples of non-Markovian processes, including the case of fractional Brownian motion in one and higher dimensions. These results reveal, on the basis of Gaussian processes, the importance of memory effects in first-passage statistics of non-Markovian random walkers in confinement.
First-Passage-Time Distribution for Variable-Diffusion Processes
NASA Astrophysics Data System (ADS)
Barney, Liberty; Gunaratne, Gemunu H.
2017-05-01
First-passage-time distribution, which presents the likelihood of a stock reaching a pre-specified price at a given time, is useful in establishing the value of financial instruments and in designing trading strategies. First-passage-time distribution for Wiener processes has a single peak, while that for stocks exhibits a notable second peak within a trading day. This feature has only been discussed sporadically—often dismissed as due to insufficient/incorrect data or circumvented by conversion to tick time—and to the best of our knowledge has not been explained in terms of the underlying stochastic process. It was shown previously that intra-day variations in the market can be modeled by a stochastic process containing two variable-diffusion processes (Hua et al. in, Physica A 419:221-233, 2015). We show here that the first-passage-time distribution of this two-stage variable-diffusion model does exhibit a behavior similar to the empirical observation. In addition, we find that an extended model incorporating overnight price fluctuations exhibits intra- and inter-day behavior similar to those of empirical first-passage-time distributions.
NASA Astrophysics Data System (ADS)
Pal, Arnab; Reuveni, Shlomi
2017-01-01
First passage under restart has recently emerged as a conceptual framework suitable for the description of a wide range of phenomena, but the endless variety of ways in which restart mechanisms and first passage processes mix and match hindered the identification of unifying principles and general truths. Hope that these exist came from a recently discovered universality displayed by processes under optimal, constant rate, restart—but extensions and generalizations proved challenging as they marry arbitrarily complex processes and restart mechanisms. To address this challenge, we develop a generic approach to first passage under restart. Key features of diffusion under restart—the ultimate poster boy for this wide and diverse class of problems—are then shown to be completely universal.
Shortcuts to adiabaticity from linear response theory
Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian
2015-10-23
A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. Moreover, with the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. We finally propose a degenerate family of protocols, which facilitates shortcuts tomore » adiabaticity for specific and very short driving times.« less
NASA Astrophysics Data System (ADS)
Alqefl, Mahmood Hasan
In many regions of the high-pressure gas turbine, film cooling flows are used to protect the turbine components from the combustor exit hot gases. Endwalls are challenging to cool because of the complex system of secondary flows that disturb surface film coolant coverage. The secondary flow vortices wash the film coolant from the surface into the mainstream significantly decreasing cooling effectiveness. In addition to being effected by secondary flow structures, film cooling flow can also affect these structures by virtue of their momentum exchange. In addition, many studies in the literature have shown that endwall contouring affects the strength of passage secondary flows. Therefore, to develop better endwall cooling schemes, a good understanding of passage aerodynamics and heat transfer as affected by interactions of film cooling flows with secondary flows is required. This experimental and computational study presents results from a linear, stationary, two-passage cascade representing the first stage nozzle guide vane of a high-pressure gas turbine with an axisymmetrically contoured endwall. The sources of film cooling flows are upstream combustor liner coolant and endwall slot film coolant injected immediately upstream of the cascade passage inlet. The operating conditions simulate combustor exit flow features, with a high Reynolds number of 390,000 and approach flow turbulence intensity of 11% with an integral length scale of 21% of the chord length. Measurements are performed with varying slot film cooling mass flow to mainstream flow rate ratios (MFR). Aerodynamic effects are documented with five-hole probe measurements at the exit plane. Heat transfer is documented through recovery temperature measurements with a thermocouple. General secondary flow features are observed. Total pressure loss measurements show that varying the slot film cooling MFR has some effects on passage loss. Velocity vectors and vorticity distributions show a very thin, yet intense, cross-pitch flow on the contoured endwall side. Endwall adiabatic effectiveness values and coolant distribution thermal fields show minimal effects of varying slot film coolant MFR. This suggests the dominant effects of combustor liner coolant. show dominant effects of combustor liner coolant on cooling the endwall. A coolant vorticity correlation presenting the advective mixing of the coolant due to secondary flow vorticity at the exit plane is also discussed.
Reversibility and energy dissipation in adiabatic superconductor logic.
Takeuchi, Naoki; Yamanashi, Yuki; Yoshikawa, Nobuyuki
2017-03-06
Reversible computing is considered to be a key technology to achieve an extremely high energy efficiency in future computers. In this study, we investigated the relationship between reversibility and energy dissipation in adiabatic superconductor logic. We analyzed the evolution of phase differences of Josephson junctions in the reversible quantum-flux-parametron (RQFP) gate and confirmed that the phase differences can change time reversibly, which indicates that the RQFP gate is physically, as well as logically, reversible. We calculated energy dissipation required for the RQFP gate to perform a logic operation and numerically demonstrated that the energy dissipation can fall below the thermal limit, or the Landauer bound, by lowering operation frequencies. We also investigated the 1-bit-erasure gate as a logically irreversible gate and the quasi-RQFP gate as a physically irreversible gate. We calculated the energy dissipation of these irreversible gates and showed that the energy dissipation of these gate is dominated by non-adiabatic state changes, which are induced by unwanted interactions between gates due to logical or physical irreversibility. Our results show that, in reversible computing using adiabatic superconductor logic, logical and physical reversibility are required to achieve energy dissipation smaller than the Landauer bound without non-adiabatic processes caused by gate interactions.
Quantum adiabatic computation and adiabatic conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei Zhaohui; Ying Mingsheng
2007-08-15
Recently, quantum adiabatic computation has attracted more and more attention in the literature. It is a novel quantum computation model based on adiabatic approximation, and the analysis of a quantum adiabatic algorithm depends highly on the adiabatic conditions. However, it has been pointed out that the traditional adiabatic conditions are problematic. Thus, results obtained previously should be checked and sufficient adiabatic conditions applicable to adiabatic computation should be proposed. Based on a result of Tong et al. [Phys. Rev. Lett. 98, 150402 (2007)], we propose a modified adiabatic criterion which is more applicable to the analysis of adiabatic algorithms. Asmore » an example, we prove the validity of the local adiabatic search algorithm by employing our criterion.« less
Gas turbine bucket cooling circuit and related process
Lewis, Doyle C.; Barb, Kevin Joseph
2002-01-01
A turbine bucket includes an airfoil portion having leading and trailing edges; at least one radially extending cooling passage within the airfoil portion, the airfoil portion joined to a platform at a radially inner end of the airfoil portion; a dovetail mounting portion enclosing a cooling medium supply passage; and, a crossover passage in fluid communication with the cooling medium supply passage and with at least one radially extending cooling passage, the crossover passage having a portion extending along and substantially parallel to an underside surface of the platform.
Adiabatic model of field reversal by fast ions in an axisymmetric open trap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsidulko, Yu. A., E-mail: tsidulko@mail.ru
2016-06-15
A model of field reversal by fast ions has been developed under the assumption of preservation of fast-ion adiabatic invariants. Analytical solutions obtained in the approximation of a narrow fast-ion layer and numerical solutions to the evolutionary problem are presented. The solutions demonstrate the process of formation of a field reversed configuration with parameters close to those of the planned experiment.
Adiabatic demagnetization of the antiferromagnetic spin-1/2 Heisenberg hexagonal cluster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deb, Moumita, E-mail: moumitadeb44@gmail.com; Ghosh, Asim Kumar, E-mail: asimkumar96@yahoo.com
2016-05-23
Exact analytic expressions of eigenvalues of the antiferromagnetic spin-1/2 Heisenberg hexagon in the presence of uniform magnetic field have been obtained. Magnetization process, nature of isentrops and properties of magneto caloric effect in terms of adiabatic demagnetization have been investigated. Theoretical results have been used to study the magneto caloric effect of the spin-1/2 Heisenberg hexagonal compound Cu{sub 3}WO{sub 6}.
Effect of Temperature, Time, and Material Thickness on the Dehydration Process of Tomato
Correia, A. F. K.; Loro, A. C.; Zanatta, S.; Spoto, M. H. F.; Vieira, T. M. F. S.
2015-01-01
This study aimed to evaluate the effects of temperature, time, and thickness of tomatoes fruits during adiabatic drying process. Dehydration, a simple and inexpensive process compared to other conservation methods, is widely used in the food industry in order to ensure a long shelf life for the product due to the low water activity. This study aimed to obtain the best processing conditions to avoid losses and keep product quality. Factorial design and surface response methodology were applied to fit predictive mathematical models. In the dehydration of tomatoes through the adiabatic process, temperature, time, and sample thickness, which greatly contribute to the physicochemical and sensory characteristics of the final product, were evaluated. The optimum drying conditions were 60°C with the lowest thickness level and shorter time. PMID:26904666
Ising Processing Units: Potential and Challenges for Discrete Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coffrin, Carleton James; Nagarajan, Harsha; Bent, Russell Whitford
The recent emergence of novel computational devices, such as adiabatic quantum computers, CMOS annealers, and optical parametric oscillators, presents new opportunities for hybrid-optimization algorithms that leverage these kinds of specialized hardware. In this work, we propose the idea of an Ising processing unit as a computational abstraction for these emerging tools. Challenges involved in using and bench- marking these devices are presented, and open-source software tools are proposed to address some of these challenges. The proposed benchmarking tools and methodology are demonstrated by conducting a baseline study of established solution methods to a D-Wave 2X adiabatic quantum computer, one examplemore » of a commercially available Ising processing unit.« less
NMR implementation of adiabatic SAT algorithm using strongly modulated pulses.
Mitra, Avik; Mahesh, T S; Kumar, Anil
2008-03-28
NMR implementation of adiabatic algorithms face severe problems in homonuclear spin systems since the qubit selective pulses are long and during this period, evolution under the Hamiltonian and decoherence cause errors. The decoherence destroys the answer as it causes the final state to evolve to mixed state and in homonuclear systems, evolution under the internal Hamiltonian causes phase errors preventing the initial state to converge to the solution state. The resolution of these issues is necessary before one can proceed to implement an adiabatic algorithm in a large system where homonuclear coupled spins will become a necessity. In the present work, we demonstrate that by using "strongly modulated pulses" (SMPs) for the creation of interpolating Hamiltonian, one can circumvent both the problems and successfully implement the adiabatic SAT algorithm in a homonuclear three qubit system. This work also demonstrates that the SMPs tremendously reduce the time taken for the implementation of the algorithm, can overcome problems associated with decoherence, and will be the modality in future implementation of quantum information processing by NMR.
Superadiabatic holonomic quantum computation in cavity QED
NASA Astrophysics Data System (ADS)
Liu, Bao-Jie; Huang, Zhen-Hua; Xue, Zheng-Yuan; Zhang, Xin-Ding
2017-06-01
Adiabatic quantum control is a powerful tool for quantum engineering and a key component in some quantum computation models, where accurate control over the timing of the involved pulses is not needed. However, the adiabatic condition requires that the process be very slow and thus limits its application in quantum computation, where quantum gates are preferred to be fast due to the limited coherent times of the quantum systems. Here, we propose a feasible scheme to implement universal holonomic quantum computation based on non-Abelian geometric phases with superadiabatic quantum control, where the adiabatic manipulation is sped up while retaining its robustness against errors in the timing control. Consolidating the advantages of both strategies, our proposal is thus both robust and fast. The cavity QED system is adopted as a typical example to illustrate the merits where the proposed scheme can be realized in a tripod configuration by appropriately controlling the pulse shapes and their relative strength. To demonstrate the distinct performance of our proposal, we also compare our scheme with the conventional adiabatic strategy.
On the Importance of Adiabatic Heating on Deformation Behavior of Medium-Manganese Sheet Steels
NASA Astrophysics Data System (ADS)
Rana, Radhakanta; De Moor, Emmanuel; Speer, John G.; Matlock, David K.
2018-02-01
The effects of adiabatic heating during deformation of a medium-manganese transformation-induced plasticity steel containing 10.1Mn-1.68Al-0.14C-0.2Si (wt.%) processed with initially 57 vol.% retained austenite were investigated over the temperature range from - 60°C to 100°C at strain rates from 0.002 s-1 to 0.2 s-1. Tensile tests were performed on specimens immersed in isothermal baths, which reduced but did not completely eliminate adiabatic heating. The specimen temperature depended on the extent of adiabatic heating, which increased with strain and strain rate. The measured properties primarily reflected the effects of temperature on austenite stability and the corresponding resistance of austenite transformation to martensite with strain. Changes in austenite stability were monitored by measurements of austenite fractions at a specific strain and observation of microstructures after deformation. The results of this study provide a basis to identify input material parameters required for numerical models applicable to sheet metal forming of medium-Mn steels.
Adiabatic tapered optical fiber fabrication in two step etching
NASA Astrophysics Data System (ADS)
Chenari, Z.; Latifi, H.; Ghamari, S.; Hashemi, R. S.; Doroodmand, F.
2016-01-01
A two-step etching method using HF acid and Buffered HF is proposed to fabricate adiabatic biconical optical fiber tapers. Due to the fact that the etching rate in second step is almost 3 times slower than the previous droplet etching method, terminating the fabrication process is controllable enough to achieve a desirable fiber diameter. By monitoring transmitted spectrum, final diameter and adiabaticity of tapers are deduced. Tapers with losses about 0.3 dB in air and 4.2 dB in water are produced. The biconical fiber taper fabricated using this method is used to excite whispering gallery modes (WGMs) on a microsphere surface in an aquatic environment. So that they are suitable to be used in applications like WGM biosensors.
Structured wafer for device processing
Okandan, Murat; Nielson, Gregory N
2014-05-20
A structured wafer that includes through passages is used for device processing. Each of the through passages extends from or along one surface of the structured wafer and forms a pattern on a top surface area of the structured wafer. The top surface of the structured wafer is bonded to a device layer via a release layer. Devices are processed on the device layer, and are released from the structured wafer using etchant. The through passages within the structured wafer allow the etchant to access the release layer to thereby remove the release layer.
Structured wafer for device processing
Okandan, Murat; Nielson, Gregory N
2014-11-25
A structured wafer that includes through passages is used for device processing. Each of the through passages extends from or along one surface of the structured wafer and forms a pattern on a top surface area of the structured wafer. The top surface of the structured wafer is bonded to a device layer via a release layer. Devices are processed on the device layer, and are released from the structured wafer using etchant. The through passages within the structured wafer allow the etchant to access the release layer to thereby remove the release layer.
Radial diffusion in magnetodiscs. [charged particle motion in planetary or stellar magnetosphere
NASA Technical Reports Server (NTRS)
Birmingham, T. J.
1985-01-01
The orbits of charged particles in magnetodiscs are considered. The bounce motion is assumed adiabatic except for transits of a small equatorial region of weak magnetic field strength and high field curvature. Previous theory and modeling have shown that particles scatter randomly in pitch angle with each passage through the equator. A peaked distribution thus diffuses in pitch angle on the time scale of many bounces. It is argued in this paper that spatial diffusion is a further consequence when the magnetodisc has a longitudinal asymmetry. A general expression for DLL, the diffusion of equatorial crossing radii, is derived. DLL is evaluated explicitly for ions in Jupiter's 20-35 radii magnetodisc, assumed to be represented by Connerney et al.'s (1982) Voyager model plus a small image dipole asymmetry. Rates are energy, species, and space dependent but can average as much as a few tenths of a planetary radius per bounce period.
Laser pulses for coherent xuv Raman excitation
NASA Astrophysics Data System (ADS)
Greenman, Loren; Koch, Christiane P.; Whaley, K. Birgitta
2015-07-01
We combine multichannel electronic structure theory with quantum optimal control to derive femtosecond-time-scale Raman pulse sequences that coherently populate a valence excited state. For a neon atom, Raman target populations of up to 13% are obtained. Superpositions of the ground and valence Raman states with a controllable relative phase are found to be reachable with up to 4.5% population and arbitrary phase control facilitated by the pump pulse carrier-envelope phase. Analysis of the optimized pulse structure reveals a sequential mechanism in which the valence excitation is reached via a fast (femtosecond) population transfer through an intermediate resonance state in the continuum rather than avoiding intermediate-state population with simultaneous or counterintuitive (stimulated Raman adiabatic passage) pulse sequences. Our results open a route to coupling valence excitations and core-hole excitations in molecules and aggregates that locally address specific atoms and represent an initial step towards realization of multidimensional spectroscopy in the xuv and x-ray regimes.
Phonon arithmetic in a trapped ion system
NASA Astrophysics Data System (ADS)
Um, Mark; Zhang, Junhua; Lv, Dingshun; Lu, Yao; An, Shuoming; Zhang, Jing-Ning; Nha, Hyunchul; Kim, M. S.; Kim, Kihwan
2016-04-01
Single-quantum level operations are important tools to manipulate a quantum state. Annihilation or creation of single particles translates a quantum state to another by adding or subtracting a particle, depending on how many are already in the given state. The operations are probabilistic and the success rate has yet been low in their experimental realization. Here we experimentally demonstrate (near) deterministic addition and subtraction of a bosonic particle, in particular a phonon of ionic motion in a harmonic potential. We realize the operations by coupling phonons to an auxiliary two-level system and applying transitionless adiabatic passage. We show handy repetition of the operations on various initial states and demonstrate by the reconstruction of the density matrices that the operations preserve coherences. We observe the transformation of a classical state to a highly non-classical one and a Gaussian state to a non-Gaussian one by applying a sequence of operations deterministically.
Phase control in coherent population distribution in molecules
NASA Astrophysics Data System (ADS)
Datta, Avijit
2018-06-01
A chirped laser pulse transfers population from one level to another level accessible by one photon dipole transition. We have used a pair of phase-locked chirped pulses of same frequency instead of a single chirped pulse to achieve phase control over the population transfer and thus creating coherent population distribution in hydrogen molecule. Simultaneous actions of the phase controlled interference and rapid adiabatic passages due to chirped pulses lead to the control in population transfer from the ground X(v = 0, j = 0) level to the C(v = 2, j = 1) level. We have extended this two-level system to a three-level 1 + 1 ladder system for population transfer from the X level to the J(v = 2, j = 2) level via the C intermediate level using two pairs of phase-locked laser chirped pulses and have achieved laudable control over the coherent population distribution.
Interaction-induced backscattering in short quantum wires
Rieder, M. -T.; Micklitz, T.; Levchenko, A.; ...
2014-10-06
We study interaction-induced backscattering in clean quantum wires with adiabatic contacts exposed to a voltage bias. Particle backscattering relaxes such systems to a fully equilibrated steady state only on length scales exponentially large in the ratio of bandwidth of excitations and temperature. Here in this paper we focus on shorter wires in which full equilibration is not accomplished. Signatures of relaxation then are due to backscattering of hole excitations close to the band bottom which perform a diffusive motion in momentum space while scattering from excitations at the Fermi level. This is reminiscent to the first passage problem of amore » Brownian particle and, regardless of the interaction strength, can be described by an inhomogeneous Fokker-Planck equation. From general solutions of the latter we calculate the hole backscattering rate for different wire lengths and discuss the resulting length dependence of interaction-induced correction to the conductance of a clean single channel quantum wire.« less
NASA Astrophysics Data System (ADS)
Panda, C. D.; O'Leary, B. R.; Lasner, Z.; Petrik, E. S.; West, A. D.; Demille, D.; Doyle, J. M.; Gabrielse, G.
2016-05-01
The ACME Collaboration recently reported an order of magnitude improved limit on the electric dipole moment of the electron (eEDM), setting more stringent constraints on many time reversal (T) violating extensions to the Standard Model. The experiment was performed using spin precession measurements in a molecular beam of thorium oxide. We report here on a new method of preparing the coherent spin superposition state that serves as the initial state of the spin precession measurement using STImulated Raman Adiabatic Passage (STIRAP). We demonstrate a transfer efficiency of 75 % , giving a twelve-fold increase in signal. We discuss the particularities of implementing STIRAP in the ACME measurement and the methods we have used to overcome various challenges. This work was performed as part of the ACME Collaboration, to whom we are grateful for its contributions, and was supported by the NSF.
Efficient production of long-lived ultracold Sr2 molecules
NASA Astrophysics Data System (ADS)
Ciamei, Alessio; Bayerle, Alex; Chen, Chun-Chia; Pasquiou, Benjamin; Schreck, Florian
2017-07-01
We associate Sr atom pairs on sites of a Mott insulator optically and coherently into weakly bound ground-state molecules, achieving an efficiency above 80%. This efficiency is 2.5 times higher than in our previous work [S. Stellmer, B. Pasquiou, R. Grimm, and F. Schreck, Phys. Rev. Lett. 109, 115302 (2012), 10.1103/PhysRevLett.109.115302] and obtained through two improvements. First, the lifetime of the molecules is increased beyond one minute by using an optical lattice wavelength that is further detuned from molecular transitions. Second, we compensate undesired dynamic light shifts that occur during the stimulated Raman adiabatic passage (STIRAP) used for molecule association. We also characterize and model STIRAP, providing insights into its limitations. Our work shows that significant molecule association efficiencies can be achieved even for atomic species or mixtures that lack Feshbach resonances suitable for magnetoassociation.
High-resolution internal state control of ultracold 23Na87Rb molecules
NASA Astrophysics Data System (ADS)
Guo, Mingyang; Ye, Xin; He, Junyu; Quéméner, Goulven; Wang, Dajun
2018-02-01
We report the full internal state control of ultracold 23Na87Rb molecules, including vibrational, rotational, and hyperfine degrees of freedom. Starting from a sample of weakly bound Feshbach molecules, we realize the creation of molecules in single hyperfine levels of both the rovibrational ground and excited states with a high-efficiency and high-resolution stimulated Raman adiabatic passage. This capability brings broad possibilities for investigating ultracold polar molecules with different chemical reactivities and interactions with a single molecular species. Moreover, starting from the rovibrational and hyperfine ground state, we achieve rotational and hyperfine control with one- and two-photon microwave spectroscopy to reach levels not accessible by the stimulated Raman transfer. The combination of these two techniques results in complete control over the internal state of ultracold polar molecules, which paves the way to study state-dependent molecular collisions and state-controlled chemical reactions.
NASA Technical Reports Server (NTRS)
Wolf, Bart J.; Johnson, D. R.
1995-01-01
The mutual forcing of a midlatitude upper-tropospheric jet streak by organized mesoscale adiabatic and diabatic processes within a simulated convective system (SCS) is investigated. Using isentropic diagnostics, results from a three-dimensional numerical simulation of an SCS are examined to study the isallobaric flow field, modes of dominant ageostrophic motion, and stability changes in relation to the mutual interdependence of adiabatic processes and latent heat release. Isentropic analysis affords an explicit isolation of a component of isallobaric flow associated with diabatic processes within the SCS. Prior to convective development within the simulations, atmospheric destabilization occurs through adiabatic ageostrophic mass adjustment and low-level convergence in association with the preexisting synoptic-scale upper-tropospheric jet streak. The SCS develops in a baroclinic zone and quickly initiates a vigorous mass circulation. By the mature stage, a pronounced vertical couplet of low-level convergence and upper-level mass divergence is established, linked by intense midtropospoheric diabatic heating. Significant divergence persists aloft for several hours subsequent to SCS decay. The dominant role of ageostrophic motion within which the low-level mass convergence develops is the adiabatic isallobaric component, while the mass divergence aloft develops principally through the diabatic isallobaric component. Both compnents are intrinsically linked to the convectively forced vertical mass transport. The inertial diabatic ageostrophic component is largest near the level of maximum heating and is responsible for the development of inertial instability to the north of SCS, resulting in this quadrant being preferred for outflow. The inertial advective component, the dominant term that produces the new downstream wind maximum, rapidly develops north of the SCS and through mutual adjustment creates the baroclinic support for the new jet streak.
On two diffusion neuronal models with multiplicative noise: The mean first-passage time properties
NASA Astrophysics Data System (ADS)
D'Onofrio, G.; Lansky, P.; Pirozzi, E.
2018-04-01
Two diffusion processes with multiplicative noise, able to model the changes in the neuronal membrane depolarization between two consecutive spikes of a single neuron, are considered and compared. The processes have the same deterministic part but different stochastic components. The differences in the state-dependent variabilities, their asymptotic distributions, and the properties of the first-passage time across a constant threshold are investigated. Closed form expressions for the mean of the first-passage time of both processes are derived and applied to determine the role played by the parameters involved in the model. It is shown that for some values of the input parameters, the higher variability, given by the second moment, does not imply shorter mean first-passage time. The reason for that can be found in the complete shape of the stationary distribution of the two processes. Applications outside neuroscience are also mentioned.
Multiple coupled landscapes and non-adiabatic dynamics with applications to self-activating genes.
Chen, Cong; Zhang, Kun; Feng, Haidong; Sasai, Masaki; Wang, Jin
2015-11-21
Many physical, chemical and biochemical systems (e.g. electronic dynamics and gene regulatory networks) are governed by continuous stochastic processes (e.g. electron dynamics on a particular electronic energy surface and protein (gene product) synthesis) coupled with discrete processes (e.g. hopping among different electronic energy surfaces and on and off switching of genes). One can also think of the underlying dynamics as the continuous motion on a particular landscape and discrete hoppings among different landscapes. The main difference of such systems from the intra-landscape dynamics alone is the emergence of the timescale involved in transitions among different landscapes in addition to the timescale involved in a particular landscape. The adiabatic limit when inter-landscape hoppings are fast compared to continuous intra-landscape dynamics has been studied both analytically and numerically, but the analytical treatment of the non-adiabatic regime where the inter-landscape hoppings are slow or comparable to continuous intra-landscape dynamics remains challenging. In this study, we show that there exists mathematical mapping of the dynamics on 2(N) discretely coupled N continuous dimensional landscapes onto one single landscape in 2N dimensional extended continuous space. On this 2N dimensional landscape, eddy current emerges as a sign of non-equilibrium non-adiabatic dynamics and plays an important role in system evolution. Many interesting physical effects such as the enhancement of fluctuations, irreversibility, dissipation and optimal kinetics emerge due to non-adiabaticity manifested by the eddy current illustrated for an N = 1 self-activator. We further generalize our theory to the N-gene network with multiple binding sites and multiple synthesis rates for discretely coupled non-equilibrium stochastic physical and biological systems.
Processing of false belief passages during natural story comprehension: An fMRI study.
Kandylaki, Katerina D; Nagels, Arne; Tune, Sarah; Wiese, Richard; Bornkessel-Schlesewsky, Ina; Kircher, Tilo
2015-11-01
The neural correlates of theory of mind (ToM) are typically studied using paradigms which require participants to draw explicit, task-related inferences (e.g., in the false belief task). In a natural setup, such as listening to stories, false belief mentalizing occurs incidentally as part of narrative processing. In our experiment, participants listened to auditorily presented stories with false belief passages (implicit false belief processing) and immediately after each story answered comprehension questions (explicit false belief processing), while neural responses were measured with functional magnetic resonance imaging (fMRI). All stories included (among other situations) one false belief condition and one closely matched control condition. For the implicit ToM processing, we modeled the hemodynamic response during the false belief passages in the story and compared it to the hemodynamic response during the closely matched control passages. For implicit mentalizing, we found activation in typical ToM processing regions, that is the angular gyrus (AG), superior medial frontal gyrus (SmFG), precuneus (PCUN), middle temporal gyrus (MTG) as well as in the inferior frontal gyrus (IFG) billaterally. For explicit ToM, we only found AG activation. The conjunction analysis highlighted the left AG and MTG as well as the bilateral IFG as overlapping ToM processing regions for both implicit and explicit modes. Implicit ToM processing during listening to false belief passages, recruits the left SmFG and billateral PCUN in addition to the "mentalizing network" known form explicit processing tasks. © 2015 Wiley Periodicals, Inc.
Mineo, H; Niu, Y L; Kuo, J L; Lin, S H; Fujimura, Y
2015-08-28
The results of application of the quantum-mechanical adiabatic theory to vibrational predissociation (VPD) of water dimers, (H2O)2 and (D2O)2, are presented. We consider the VPD processes including the totally symmetric OH mode of the dimer and the bending mode of the fragment. The VPD in the adiabatic representation is induced by breakdown of the vibrational adiabatic approximation, and two types of nonadiabatic coupling matrix elements are involved: one provides the VPD induced by the low-frequency dissociation mode and the other provides the VPD through channel interactions induced by the low-frequency modes. The VPD rate constants were calculated using the Fermi golden rule expression. A closed form for the nonadiabatic transition matrix element between the discrete and continuum states was derived in the Morse potential model. All of the parameters used were obtained from the potential surfaces of the water dimers, which were calculated by the density functional theory procedures. The VPD rate constants for the two processes were calculated in the non-Condon scheme beyond the so-called Condon approximation. The channel interactions in and between the initial and final states were taken into account, and those are found to increase the VPD rates by 3(1) orders of magnitude for the VPD processes in (H2O)2 ((D2O)2). The fraction of the bending-excited donor fragments is larger than that of the bending-excited acceptor fragments. The results obtained by quantum-mechanical approach are compared with both experimental and quasi-classical trajectory calculation results.
Consistency of the adiabatic theorem.
Amin, M H S
2009-06-05
The adiabatic theorem provides the basis for the adiabatic model of quantum computation. Recently the conditions required for the adiabatic theorem to hold have become a subject of some controversy. Here we show that the reported violations of the adiabatic theorem all arise from resonant transitions between energy levels. In the absence of fast driven oscillations the traditional adiabatic theorem holds. Implications for adiabatic quantum computation are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhan, Hongyi, E-mail: h.zhan@uq.edu.au; Zeng, Weidong; Wang, Gui
2015-04-15
The microstructural evolution and grain refinement within adiabatic shear bands in the Ti6554 alloy deformed at high strain rates and elevated temperatures have been characterized using transmission electron microscopy. No stress drops were observed in the corresponding stress–strain curve, indicating that the initiation of adiabatic shear bands does not lead to the loss of load capacity for the Ti6554 alloy. The outer region of the shear bands mainly consists of cell structures bounded by dislocation clusters. Equiaxed subgrains in the core area of the shear band can be evolved from the subdivision of cell structures or reconstruction and transverse segmentationmore » of dislocation clusters. It is proposed that dislocation activity dominates the grain refinement process. The rotational recrystallization mechanism may operate as the kinetic requirements for it are fulfilled. The coexistence of different substructures across the shear bands implies that the microstructural evolution inside the shear bands is not homogeneous and different grain refinement mechanisms may operate simultaneously to refine the structure. - Graphical abstract: Display Omitted - Highlights: • The microstructure within the adiabatic shear band was characterized by TEM. • No stress drops were observed in the corresponding stress–strain curve. • Dislocation activity dominated the grain refinement process. • The kinetic requirements for rotational recrystallization mechanism were fulfilled. • Different grain refinement mechanisms operated simultaneously to refine the structure.« less
Non-adiabatic effects in elementary reaction processes at metal surfaces
NASA Astrophysics Data System (ADS)
Alducin, M.; Díez Muiño, R.; Juaristi, J. I.
2017-12-01
Great success has been achieved in the modeling of gas-surface elementary processes by the use of the Born-Oppenheimer approximation. However, in metal surfaces low energy electronic excitations are generated even by thermal and hyperthermal molecules due to the absence of band gaps in the electronic structure. This shows the importance of performing dynamical simulations that incorporate non-adiabatic effects to analyze in which way they affect most common gas-surface reactions. Here we review recent theoretical developments in this problem and their application to the study of the effect of electronic excitations in the adsorption and relaxation of atoms and molecules in metal surfaces, in scattering processes, and also in recombinative processes between impinging atoms and adsorbates at the surface. All these studies serve us to establish what properties of the gas-surface interaction favor the excitation of low-energy electron-hole pairs. A general observation is that the nature of these excitations usually requires long lasting interactions at the surface in order to observe deviations from the adiabatic behaviour. We also provide the basis of the local density friction approximation (LDFA) that have been used in all these studies, and show how it has been employed to perform ab initio molecular dynamics with electronic friction (AIMDEF). As a final remark, we will shortly review on recent applications of the LDFA to successfully simulate desorption processes induced by intense femtosecond laser pulses.
NASA Technical Reports Server (NTRS)
Papell, S. S.
1984-01-01
The fluid mechanics of the basic discrete hole film cooling process is described as an inclined jet in crossflow and a cusp shaped coolant flow channel contour that increases the efficiency of the film cooling process is hypothesized. The design concept requires the channel to generate a counter rotating vortex pair secondary flow within the jet stream by virture of flow passage geometry. The interaction of the vortex structures generated by both geometry and crossflow was examined in terms of film cooling effectiveness and surface coverage. Comparative data obtained with this vortex generating coolant passage showed up to factors of four increases in both effectiveness and surface coverage over that obtained with a standard round cross section flow passage. A streakline flow visualization technique was used to support the concept of the counter rotating vortex pair generating capability of the flow passage design.
Vortex generating flow passage design for increased film-cooling effectiveness and surface coverage
NASA Astrophysics Data System (ADS)
Papell, S. S.
The fluid mechanics of the basic discrete hole film cooling process is described as an inclined jet in crossflow and a cusp shaped coolant flow channel contour that increases the efficiency of the film cooling process is hypothesized. The design concept requires the channel to generate a counter rotating vortex pair secondary flow within the jet stream by virture of flow passage geometry. The interaction of the vortex structures generated by both geometry and crossflow was examined in terms of film cooling effectiveness and surface coverage. Comparative data obtained with this vortex generating coolant passage showed up to factors of four increases in both effectiveness and surface coverage over that obtained with a standard round cross section flow passage. A streakline flow visualization technique was used to support the concept of the counter rotating vortex pair generating capability of the flow passage design.
First passage Brownian functional properties of snowmelt dynamics
NASA Astrophysics Data System (ADS)
Dubey, Ashutosh; Bandyopadhyay, Malay
2018-04-01
In this paper, we model snow-melt dynamics in terms of a Brownian motion (BM) with purely time dependent drift and difusion and examine its first passage properties by suggesting and examining several Brownian functionals which characterize the lifetime and reactivity of such stochastic processes. We introduce several probability distribution functions (PDFs) associated with such time dependent BMs. For instance, for a BM with initial starting point x0, we derive analytical expressions for : (i) the PDF P(tf|x0) of the first passage time tf which specify the lifetime of such stochastic process, (ii) the PDF P(A|x0) of the area A till the first passage time and it provides us numerous valuable information about the total fresh water availability during melting, (iii) the PDF P(M) associated with the maximum size M of the BM process before the first passage time, and (iv) the joint PDF P(M; tm) of the maximum size M and its occurrence time tm before the first passage time. These P(M) and P(M; tm) are useful in determining the time of maximum fresh water availability and in calculating the total maximum amount of available fresh water. These PDFs are examined for the power law time dependent drift and diffusion which matches quite well with the available data of snowmelt dynamics.
Bridging Quantum, Classical and Stochastic Shortcuts to Adiabaticity
NASA Astrophysics Data System (ADS)
Patra, Ayoti
Adiabatic invariants - quantities that are preserved under the slow driving of a system's external parameters - are important in classical mechanics, quantum mechanics and thermodynamics. Adiabatic processes allow a system to be guided to evolve to a desired final state. However, the slow driving of a quantum system makes it vulnerable to environmental decoherence, and for both quantum and classical systems, it is often desirable and time-efficient to speed up a process. Shortcuts to adiabaticity are strategies for preserving adiabatic invariants under rapid driving, typically by means of an auxiliary field that suppresses excitations, otherwise generated during rapid driving. Several theoretical approaches have been developed to construct such shortcuts. In this dissertation we focus on two different approaches, namely counterdiabatic driving and fast-forward driving, which were originally developed for quantum systems. The counterdiabatic approach introduced independently by Dermirplak and Rice [J. Phys. Chem. A, 107:9937, 2003], and Berry [J. Phys. A: Math. Theor., 42:365303, 2009] formally provides an exact expression for the auxiliary Hamiltonian, which however is abstract and difficult to translate into an experimentally implementable form. By contrast, the fast-forward approach developed by Masuda and Nakamura [Proc. R. Soc. A, 466(2116):1135, 2010] provides an auxiliary potential that may be experimentally implementable but generally applies only to ground states. The central theme of this dissertation is that classical shortcuts to adiabaticity can provide useful physical insights and lead to experimentally implementable shortcuts for analogous quantum systems. We start by studying a model system of a tilted piston to provide a proof of principle that quantum shortcuts can successfully be constructed from their classical counterparts. In the remainder of the dissertation, we develop a general approach based on flow-fields which produces simple expressions for auxiliary terms required for both counterdiabatic and fast-forward driving. We demonstrate the applicability of this approach for classical, quantum as well as stochastic systems. We establish strong connections between counterdiabatic and fast-forward approaches, and also between shortcut protocols required for classical, quantum and stochastic systems. In particular, we show how the fast-forward approach can be extended to highly excited states of quantum systems.
Novel developments and applications of the classical adiabatic dynamics technique
NASA Astrophysics Data System (ADS)
Rosso, Lula
The present work aims to apply and develop modern molecular dynamics techniques based on a novel analysis of the classical adiabatic dynamics approach. In the first part of this thesis, Car-Parrinello ab-initio molecular dynamics, a successful technique based on adiabatic dynamics, is used to study the charge transport mechanism in solid ammonium perchlorate (AP) crystal exposed to an ammonia-rich environment. AP is a solid-state proton conductor composed of NH+4 and ClO-4 units that can undergo a decomposition process at high temperature, leading to its use such as rocket fuel. After computing IR spectra and carefully analysing the dynamics at different temperatures, we found that the charge transport mechanism in the pure crystal is dominated by diffusion of the ammonium ions and that the translational diffusion is strongly coupled to rotational diffusion of the two types of ions present. When the pure ammonium-perchlorate crystal is doped with neutral ammonia, another mechanism comes into play, namely, the Grotthuss proton hopping mechanism via short-lived N2H+7 complexes. In the second part of this thesis, adiabatic dynamics will be used to develop an alternative approach to the calculation of free energy profiles along reaction paths. The new method (AFED) is based on the creation of an adiabatic separation between the reaction coordinate subspace and the remaining degrees of freedom within a molecular dynamics run. This is achieved by associating with the reaction coordinate(s) a high temperature and large mass. These conditions allow the activated process to occur while permitting the remaining degrees of freedom to respond adiabatically. In this limit, by applying a formal multiple time scale Liouville operator factorization, it can be rigorously shown that the free energy profile is obtained directly from the probability distribution of the reaction coordinate subspace and, therefore, no postprocessing of the output data is required. The new method is applied to a variety of model problems and extended to calculate conformational surfaces of small peptides and the chemical potential of a Lennard-Jones liquid. The comparison with established methods shows that the new approach calculates free energy profiles with greater ease and efficiency.
Adiabatic shear banding and scaling laws in chip formation with application to cutting of Ti-6Al-4V
NASA Astrophysics Data System (ADS)
Molinari, A.; Soldani, X.; Miguélez, M. H.
2013-11-01
The phenomenon of adiabatic shear banding is analyzed theoretically in the context of metal cutting. The mechanisms of material weakening that are accounted for are (i) thermal softening and (ii) material failure related to a critical value of the accumulated plastic strain. Orthogonal cutting is viewed as a unique configuration where adiabatic shear bands can be experimentally produced under well controlled loading conditions by individually tuning the cutting speed, the feed (uncut chip thickness) and the tool geometry. The role of cutting conditions on adiabatic shear banding and chip serration is investigated by combining finite element calculations and analytical modeling. This leads to the characterization and classification of different regimes of shear banding and the determination of scaling laws which involve dimensionless parameters representative of thermal and inertia effects. The analysis gives new insights into the physical aspects of plastic flow instability in chip formation. The originality with respect to classical works on adiabatic shear banding stems from the various facets of cutting conditions that influence shear banding and from the specific role exercised by convective flow on the evolution of shear bands. Shear bands are generated at the tool tip and propagate towards the chip free surface. They grow within the chip formation region while being convected away by chip flow. It is shown that important changes in the mechanism of shear banding take place when the characteristic time of shear band propagation becomes equal to a characteristic convection time. Application to Ti-6Al-4V titanium are considered and theoretical predictions are compared to available experimental data in a wide range of cutting speeds and feeds. The fundamental knowledge developed in this work is thought to be useful not only for the understanding of metal cutting processes but also, by analogy, to similar problems where convective flow is also interfering with adiabatic shear banding as in impact mechanics and perforation processes. In that perspective, cutting speeds higher than those usually encountered in machining operations have been also explored.
White, Alexander James; Tretiak, Sergei; Mozyrsky, Dima V.
2016-04-25
Accurate simulation of the non-adiabatic dynamics of molecules in excited electronic states is key to understanding molecular photo-physical processes. Here we present a novel method, based on a semiclassical approximation, that is as efficient as the commonly used mean field Ehrenfest or ad hoc surface hopping methods and properly accounts for interference and decoherence effects. This novel method is an extension of Heller's thawed Gaussian wave-packet dynamics that includes coupling between potential energy surfaces. By studying several standard test problems we demonstrate that the accuracy of the method can be systematically improved while maintaining high efficiency. The method is suitablemore » for investigating the role of quantum coherence in the non-adiabatic dynamics of many-atom molecules.« less
Nonthermal plasma processor utilizing additive-gas injection and/or gas extraction
Rosocha, Louis A.
2006-06-20
A device for processing gases includes a cylindrical housing in which an electrically grounded, metal injection/extraction gas supply tube is disposed. A dielectric tube surrounds the injection/extraction gas supply tube to establish a gas modification passage therearound. Additionally, a metal high voltage electrode circumscribes the dielectric tube. The high voltage electrode is energizable to create nonthermal electrical microdischarges between the high voltage electrode and the injection/extraction gas supply tube across the dielectric tube within the gas modification passage. An injection/extraction gas and a process gas flow through the nonthermal electrical microdischarges within the gas modification passage and a modified process gas results. Using the device contaminants that are entrained in the process gas can be destroyed to yield a cleaner, modified process gas.
Self-similar expansion of adiabatic electronegative dusty plasma
NASA Astrophysics Data System (ADS)
Shahmansouri, M.; Bemooni, A.; Mamun, A. A.
2017-12-01
The self-similar expansion of an adiabatic electronegative dusty plasma (consisting of inertialess adiabatic electrons, inertialess adiabatic ions and inertial adiabatic negatively charged dust fluids) is theoretically investigated by employing the self-similar approach. It is found that the effects of the plasma adiabaticity (represented by the adiabatic index ) and dusty plasma parameters (determined by dust temperature and initial dust population) significantly modify the nature of the plasma expansion. The implications of our results are expected to play an important role in understanding the physics of the expansion of space and laboratory electronegative dusty plasmas.
Ab initio and density functional study on the mechanism of the C2H2++methanol reaction
NASA Astrophysics Data System (ADS)
Irle, Stephan; Morokuma, Keiji
1999-09-01
High level ab initio (G2MS and CASSCF) and density functional (B3LYP) calculations were carried out to study the mechanism of the ion-molecule reaction C2H2++CH3OH for four reaction channels: hydride abstraction from methanol (HA), proton transfer from acetylene cation (PT), charge transfer (CT), and covalent complex formation (CC) channel. For the CT channel, two pathways have been found: a usual nonadiabatic pathway via A'/A″ seam of crossing, and a low-energy adiabatic pathway through an initial intermediate; the latter may be the dominant process with favorable energies and a large impact parameter. The HA process involves a low-energy direct intermediate and a very low barrier to form C2H3+CH2OH+ and is also energetically favorable. The PT processes require passage over a high-energy transition state (TS) and are not important. One of the experimentally unobserved CC channels, formation of the COCC skeleton, is energetically favorable and there is no energetic reason for it not to take place; a "dynamic bottleneck" argument may have to be invoked to explain the experiment. The increase in reaction efficiency with the C-C stretch excitation may be justified by considering the TSs for two CT pathways, where the C-C distance changed substantially from that in the reactant C2H2+. Very qualitatively, the C2H2++CH3OH potential energy surface looks more like that of the C2H2++NH3 system than the C2H2++CH4 system, because of the differences in the ionization potentials: NH3˜CH3OH
Electron radiation belt dynamics during magnetic storms and in quiet time
NASA Astrophysics Data System (ADS)
Lazutin, Leonid; Dmitriev, Aleksey; Suvorova, Alla
2018-03-01
The paper discusses the dynamics of the outer electron belt, adiabatic and nonadiabatic mechanisms of replenishment and losses of energetic electrons. Under undisturbed conditions, the outer electron belt gradually empties: in the inner magnetosphere due to electron precipitation in the atmosphere and in the quasi-trapping region due to losses at the magnetopause because drift shells of electrons are not closed there. The latter process does not occur in normal years due to the masking replenishment by freshly accelerated particles, but in years of extremely low activity, it leads to a significant decrease in the electron population of the belt. During the magnetic storm main phase, the first reason for the decrease in the electron flux intensity is the adiabatic cooling associated with conservation of adiabatic invariants and complemented by precipitation of electrons into the atmosphere and their dropout at the magnetopause. Electron flux increases involve E×B electron injection by the induction electric field of substorm activation and by the large-scale solar wind electric field, with pitch energy diffusion along with adiabatic heating in the recovery phase. The rate of electron flux recovery after a storm is determined by the ratio of nonadiabatic increases and losses; hence the electron flux represents a continuous series from low to very high values. The combination of these processes determines the individual character of radiation belt development during each magnetic storm and the behavior of the belt in the quiet time.
High-fidelity gates in quantum dot spin qubits
Koh, Teck Seng; Coppersmith, S. N.; Friesen, Mark
2013-01-01
Several logical qubits and quantum gates have been proposed for semiconductor quantum dots controlled by voltages applied to top gates. The different schemes can be difficult to compare meaningfully. Here we develop a theoretical framework to evaluate disparate qubit-gating schemes on an equal footing. We apply the procedure to two types of double-dot qubits: the singlet–triplet and the semiconducting quantum dot hybrid qubit. We investigate three quantum gates that flip the qubit state: a DC pulsed gate, an AC gate based on logical qubit resonance, and a gate-like process known as stimulated Raman adiabatic passage. These gates are all mediated by an exchange interaction that is controlled experimentally using the interdot tunnel coupling g and the detuning ϵ, which sets the energy difference between the dots. Our procedure has two steps. First, we optimize the gate fidelity (f) for fixed g as a function of the other control parameters; this yields an that is universal for different types of gates. Next, we identify physical constraints on the control parameters; this yields an upper bound that is specific to the qubit-gate combination. We show that similar gate fidelities should be attainable for singlet-triplet qubits in isotopically purified Si, and for hybrid qubits in natural Si. Considerably lower fidelities are obtained for GaAs devices, due to the fluctuating magnetic fields ΔB produced by nuclear spins. PMID:24255105
Electrochemical cell operation and system
Maru, Hansraj C.
1980-03-11
Thermal control in fuel cell operation is affected through sensible heat of process gas by providing common input manifolding of the cell gas flow passage in communication with the cell electrolyte and an additional gas flow passage which is isolated from the cell electrolyte and in thermal communication with a heat-generating surface of the cell. Flow level in the cell gas flow passage is selected based on desired output electrical energy and flow level in the additional gas flow passage is selected in accordance with desired cell operating temperature.
Influence of the random walk finite step on the first-passage probability
NASA Astrophysics Data System (ADS)
Klimenkova, Olga; Menshutin, Anton; Shchur, Lev
2018-01-01
A well known connection between first-passage probability of random walk and distribution of electrical potential described by Laplace equation is studied. We simulate random walk in the plane numerically as a discrete time process with fixed step length. We measure first-passage probability to touch the absorbing sphere of radius R in 2D. We found a regular deviation of the first-passage probability from the exact function, which we attribute to the finiteness of the random walk step.
Unifying role of dissipative action in the dynamic failure of solids
NASA Astrophysics Data System (ADS)
Grady, Dennis E.
2015-04-01
A fourth-power law underlying the steady shock-wave structure and solid viscosity of condensed material has been observed for a wide range of metals and non-metals. The fourth-power law relates the steady-wave Hugoniot pressure to the fourth power of the strain rate during passage of the material through the structured shock wave. Preceding the fourth-power law was the observation in a shock transition that the product of the shock dissipation energy and the shock transition time is a constant independent of the shock pressure amplitude. Invariance of this energy-time product implies the fourth-power law. This property of the shock transition in solids was initially identified as a shock invariant. More recently, it has been referred to as the dissipative action, although no relationship to the accepted definitions of action in mechanics has been demonstrated. This same invariant property has application to a wider range of transient failure phenomena in solids. Invariance of this dissipation action has application to spall fracture, failure through adiabatic shear, shock compaction of granular media, and perhaps others. Through models of the failure processes, a clearer picture of the physics underlying the observed invariance is emerging. These insights in turn are leading to a better understanding of the shock deformation processes underlying the fourth-power law. Experimental result and material models encompassing the dynamic failure of solids are explored for the purpose of demonstrating commonalities leading to invariance of the dissipation action. Calculations are extended to aluminum and uranium metals with the intent of predicting micro-scale dynamics and spatial structure in the steady shock wave.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grady, Dennis E.
A fourth-power law underlying the steady shock-wave structure and solid viscosity of condensed material has been observed for a wide range of metals and non-metals. The fourth-power law relates the steady-wave Hugoniot pressure to the fourth power of the strain rate during passage of the material through the structured shock wave. Preceding the fourth-power law was the observation in a shock transition that the product of the shock dissipation energy and the shock transition time is a constant independent of the shock pressure amplitude. Invariance of this energy-time product implies the fourth-power law. This property of the shock transition inmore » solids was initially identified as a shock invariant. More recently, it has been referred to as the dissipative action, although no relationship to the accepted definitions of action in mechanics has been demonstrated. This same invariant property has application to a wider range of transient failure phenomena in solids. Invariance of this dissipation action has application to spall fracture, failure through adiabatic shear, shock compaction of granular media, and perhaps others. Through models of the failure processes, a clearer picture of the physics underlying the observed invariance is emerging. These insights in turn are leading to a better understanding of the shock deformation processes underlying the fourth-power law. Experimental result and material models encompassing the dynamic failure of solids are explored for the purpose of demonstrating commonalities leading to invariance of the dissipation action. Calculations are extended to aluminum and uranium metals with the intent of predicting micro-scale dynamics and spatial structure in the steady shock wave.« less
Transitionless driving on adiabatic search algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, Sangchul, E-mail: soh@qf.org.qa; Kais, Sabre, E-mail: kais@purdue.edu; Department of Chemistry, Department of Physics and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907
We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian,more » approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.« less
Vascular smooth muscle cells exhibit a progressive loss of rigidity with serial culture passaging.
Dinardo, Carla Luana; Venturini, Gabriela; Omae, Samantha Vieira; Zhou, Enhua H; da Motta-Leal-Filho, Joaquim Maurício; Dariolli, Rafael; Krieger, José Eduardo; Alencar, Adriano Mesquita; Costa Pereira, Alexandre
2012-01-01
One drawback of in vitro cell culturing is the dedifferentiation process that cells experience. Smooth muscle cells (SMC) also change molecularly and morphologically with long term culture. The main objective of this study was to evaluate if culture passages interfere in vascular SMC mechanical behavior. SMC were obtained from five different porcine arterial beds. Optical magnetic twisting cytometry (OMTC) was used to characterize mechanically vascular SMC from different cultures in distinct passages and confocal microscopy/western blotting, to evaluate cytoskeleton and extracellular matrix proteins. We found that vascular SMC rigidity or viscoelastic complex modulus (G) decreases with progression of passages. A statistically significant negative correlation between G and passage was found in four of our five cultures studied. Phalloidin-stained SMC from higher passages exhibited lower mean signal intensity per cell (confocal microscopy) and quantitative western blotting analysis showed a decrease in collagen I content throughout passages. We concluded that vascular SMC progressively lose their stiffness with serial culture passaging. Thus, limiting the number of passages is essential for any experiment measuring viscoelastic properties of SMC in culture.
Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo
White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; ...
2015-07-07
Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficientmore » as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In many cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.« less
ERIC Educational Resources Information Center
Tirre, William C.; And Others
A study involving 80 undergraduate students was undertaken to test the use of imaginal and verbal strategies to remember and comprehend concrete and abstract prose passages. Sets of three to five words were selected from each passage. After reading a passage, the subjects were instructed to process the words either verbally or imaginally by…
Reading Rate, Readability and Variations in Task-Induced Processing.
ERIC Educational Resources Information Center
Coke, Esther U.
This study examined the adaptability of reading rate to passage difficulty under different conditions of task-induced processing. Sixteen experimental passages varying in subject matter and ranging from 85 to 171 words were selected from a set of 32 texts rated for comprehensibility. The eight easiest and eight hardest texts were selected. Another…
Rapid generation of Mott insulators from arrays of noncondensed atoms
NASA Astrophysics Data System (ADS)
Sturm, M. R.; Schlosser, M.; Birkl, G.; Walser, R.
2018-06-01
We theoretically analyze a scheme for a fast adiabatic transfer of cold atoms from the atomic limit of isolated traps to a Mott insulator close to the superfluid phase. This gives access to the Bose-Hubbard physics without the need of a prior Bose-Einstein condensate. The initial state can be prepared by combining the deterministic assembly of atomic arrays with resolved Raman-sideband cooling. In the subsequent transfer the trap depth is reduced significantly. We derive conditions for the adiabaticity of this process and calculate optimal adiabatic ramp shapes. Using available experimental parameters, we estimate the impact of heating due to photon scattering and compute the fidelity of the transfer scheme. Finally, we discuss the particle number scaling behavior of the method for preparing low-entropy states. Our findings demonstrate the feasibility of the proposed scheme with state-of-the-art technology.
Symmetry of the Adiabatic Condition in the Piston Problem
ERIC Educational Resources Information Center
Anacleto, Joaquim; Ferreira, J. M.
2011-01-01
This study addresses a controversial issue in the adiabatic piston problem, namely that of the piston being adiabatic when it is fixed but no longer so when it can move freely. It is shown that this apparent contradiction arises from the usual definition of adiabatic condition. The issue is addressed here by requiring the adiabatic condition to be…
Buchweitz, Augusto; Mason, Robert A.; Meschyan, Gayane; Keller, Timothy A.; Just, Marcel Adam
2014-01-01
Brain activation associated with normal and speeded comprehension of expository texts on familiar and unfamiliar topics was investigated in reading and listening. The goal was to determine how brain activation and the comprehension processes it reflects are modulated by comprehension speed and topic familiarity. Passages on more familiar topics differentially activated a set of areas in the anterior temporal lobe and medial frontal gyrus, areas often associated with text-level integration processes, which we interpret to reflect integration of previous knowledge with the passage content. Passages presented at the faster presentation resulted in more activation of a network of frontal areas associated with strategic and working-memory processes (as well as visual or auditory sensory-related regions), which we interpret to reflect maintenance of local coherence among briefly available passage segments. The implications of this research is to demonstrate how the brain system for text comprehension adapts to varying perceptual and knowledge conditions. PMID:25463816
Buchweitz, Augusto; Mason, Robert A; Meschyan, Gayane; Keller, Timothy A; Just, Marcel Adam
2014-12-01
Brain activation associated with normal and speeded comprehension of expository texts on familiar and unfamiliar topics was investigated in reading and listening. The goal was to determine how brain activation and the comprehension processes it reflects are modulated by comprehension speed and topic familiarity. Passages on more familiar topics differentially activated a set of areas in the anterior temporal lobe and medial frontal gyrus, areas often associated with text-level integration processes, which we interpret to reflect integration of previous knowledge with the passage content. Passages presented at the faster presentation resulted in more activation of a network of frontal areas associated with strategic and working-memory processes (as well as visual or auditory sensory-related regions), which we interpret to reflect maintenance of local coherence among briefly available passage segments. The implications of this research is that the brain system for text comprehension adapts to varying perceptual and knowledge conditions. Copyright © 2014 Elsevier Inc. All rights reserved.
Mason, Robert A.; Just, Marcel Adam
2010-01-01
Cortical activity associated with generating an inference was measured using fMRI. Participants read three-sentence passages that differed in whether or not an inference needed to be drawn to understand them. The inference was based on either a protagonist’s intention or a physical consequence of a character’s action. Activation was expected in Theory of Mind brain regions for the passages based on protagonists’ intentions but not for the physical consequence passages. The activation measured in the right temporo-parietal junction was greater in the intentional passages than in the consequence passages, consistent with predictions from a Theory of Mind perspective. In contrast, there was increased occipital activation in the physical inference passages. For both types of passage, the cortical activity related to the reading of the critical inference sentence demonstrated a recruitment of a common inference cortical network. This general inference-related activation appeared bilaterally in the language processing areas (the inferior frontal gyrus, the temporal gyrus, and the angular gyrus), as well as in the medial to superior frontal gyrus, which has been found to be active in Theory of Mind tasks. These findings are consistent with the hypothesis that component areas of the discourse processing network are recruited as needed based on the nature of the inference. A Protagonist monitoring and synthesis network is proposed as a more accurate account for Theory of Mind activation during narrative comprehension. PMID:21229617
Unintended consequences and trade-offs of fish passage
McLaughlin, Robert L.; Smyth, Eric R.; Castro-Santos, Theodore; Jones, Michael L.; Koops, Marten A.; Pratt, Thomas C.; Vélez-Espino, Luis-Antonio
2012-01-01
We synthesized evidence for unintended consequences and trade-offs associated with the passage of fishes. Provisioning of fish passageways at dams and dam removals are being carried out increasingly as resource managers seek ways to reduce fragmentation of migratory fish populations and restore biodiversity and nature-like ecosystem services in tributaries altered by dams. The benefits of provisioning upstream passage are highlighted widely. Possible unwanted consequences and trade-offs of upstream passage are coming to light, but remain poorly examined and underappreciated. Unintended consequences arise when passage of native and desirable introduced fishes is delayed, undone (fallback), results in patterns of movement and habitat use that reduce Darwinian fitness (e.g. ecological traps), or is highly selective taxonomically and numerically. Trade-offs arise when passage decisions intended to benefit native species interfere with management decisions intended to control the unwanted spread of non-native fishes and aquatic invertebrates, or genes, diseases and contaminants carried by hatchery and wild fishes. These consequences and trade-offs will vary in importance from system to system and can result in large economic and environmental costs. For some river systems, decisions about how to manage fish passage involve substantial risks and could benefit from use of a formal, structured process that allows transparent, objective and, where possible, quantitative evaluation of these risks. Such a process can also facilitate the design of an adaptive framework that provides valuable insights into future decisions.
A 4 K cryogenic probe for use in magnetic resonance force microscopy experiments
NASA Astrophysics Data System (ADS)
Smith, Doran D.; Alexson, Dimitri A.; Garbini, Joseph L.
2013-09-01
The detailed design of a mechanically detected nuclear magnetic resonance probe using the SPAM (Springiness Preservation by Aligning Magnetization) geometry, operating at 4 K, in vacuum, and a several-Tesla magnetic field is described. The probe head is vibration-isolated well enough from the environment by a three-spring suspension system that the cantilever achieves thermal equilibrium with the environment without the aid of eddy current damping. The probe uses an ultra-soft Si cantilever with a Ni sphere attached to its tip, and magnetic resonance is registered as a change in the resonant frequency of the driven cantilever. The RF system uses frequency sweeps for adiabatic rapid passage using a 500 μm diameter RF coil wound around a sapphire rod. The RF coil and optical fiber of the interferometer used to sense the cantilever's position are both located with respect to the cantilever using a Garbini micropositioner, and the sample stage is mounted on an Attocube nanopositioner.
Unsteady heat transfer in turbine blade ducts: Focus on combustor sources
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.; Huff, Ronald
1988-01-01
Thermal waves generated by either turbine rotor blades cutting through nonuniform combustor temperature fields or unsteady burning could lead to thermal fatigue cracking in the blades. To determine the magnitude of the thermal oscillation in blades with complex shapes and material compositions, a finite element Galerkin formulation has been developed to study combustor generated thermal wave propagation in a model two-dimensional duct with a uniform plug flow profile. The reflection and transmission of the thermal waves at the entrance and exit boundaries are determined by coupling the finite element solutions at the entrance and exit to the eigenfunctions of an infinitely long adiabatic duct. Example solutions are presented. In general, thermal wave propagation from an air passage into a metallic blade wall is small and not a problem. However, if a thermal barrier coating is applied to a metallic surface under conditions of a high heat transfer, a good impedance match is obtained and a significant portion of the thermal wave can pass into the blade material.
Effects of coupling between the vibrational modes on CARS signal
NASA Astrophysics Data System (ADS)
Patel, Vishesha; Malinovskaya, Svetlana
2007-06-01
CARS is well suited spectroscopy method for imaging specific molecules, e.g., proteins and live cells, diagnosis of cancerous cells, imaging dueterated compounds, etc. CARS imaging techniques avoid problems associated with photo bleaching and photo induced toxicity. The CARS signal is accompanied by a strong non resonant background which may overshadow the weak signal of interest. Two methods, using femtosecond chriped laser pulses and providing the Rabi oscillation and the adiabatic passage type of control [1], allow one to achieve sensitivity with high resolution and are known to efficiently suppress background. It has been previously shown that coupling between vibrational modes affects the sensitivity of the Raman signal and selective excitation of vibrational modes [2]. In this paper we will discuss simulation results on vibrational coupling between modes and its impact into control mechanisms of the CARS signal. [1] S.A.Malinovskaya, Physical.Rev.A 73, 033416(2006) [2] S.A. Malinovskaya,P.H. Bucksbaum, and P.R. Berman, J. Chem. Phys. 121, 3434 (2004).
Identification of the hydrate gel phases present in phosphate-modified calcium aluminate binders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chavda, Mehul A.; Bernal, Susan A.; Apperley, David C.
The conversion of hexagonal calcium aluminate hydrates to cubic phases in hydrated calcium aluminate cements (CAC) can involve undesirable porosity changes and loss of strength. Modification of CAC by phosphate addition avoids conversion, by altering the nature of the reaction products, yielding a stable amorphous gel instead of the usual crystalline hydrate products. Here, details of the environments of aluminium and phosphorus in this gel were elucidated using solid-state NMR and complementary techniques. Aluminium is identified in both octahedral and tetrahedral coordination states, and phosphorus is present in hydrous environments with varying, but mostly low, degrees of crosslinking. A {supmore » 31}P/{sup 27}Al rotational echo adiabatic passage double resonance (REAPDOR) experiment showed the existence of aluminium–phosphorus interactions, confirming the formation of a hydrated calcium aluminophosphate gel as a key component of the binding phase. This resolves previous disagreements in the literature regarding the nature of the disordered products forming in this system.« less
NASA Astrophysics Data System (ADS)
Shi, Pei-Ming; Li, Qun; Han, Dong-Ying
2017-06-01
This paper investigates a new asymmetric bistable model driven by correlated multiplicative colored noise and additive white noise. The mean first-passage time (MFPT) and the signal-to-noise ratio (SNR) as the indexes of evaluating the model are researched. Based on the two-state theory and the adiabatic approximation theory, the expressions of MFPT and SNR have been obtained for the asymmetric bistable system driven by a periodic signal, correlated multiplicative colored noise and additive noise. Simulation results show that it is easier to generate stochastic resonance (SR) to adjust the intensity of correlation strength λ. Meanwhile, the decrease of asymmetric coefficient r2 and the increase of noise intensity are beneficial to realize the transition between the two steady states in the system. At the same time, the twice SR phenomena can be observed by adjusting additive white noise and correlation strength. The influence of asymmetry of potential function on the MFPTs in two different directions is different.
FAST CARS: Engineering a laser spectroscopic technique for rapid identification of bacterial spores
Scully, M. O.; Kattawar, G. W.; Lucht, R. P.; Opatrný, T.; Pilloff, H.; Rebane, A.; Sokolov, A. V.; Zubairy, M. S.
2002-01-01
Airborne contaminants, e.g., bacterial spores, are usually analyzed by time-consuming microscopic, chemical, and biological assays. Current research into real-time laser spectroscopic detectors of such contaminants is based on e.g., resonance fluorescence. The present approach derives from recent experiments in which atoms and molecules are prepared by one (or more) coherent laser(s) and probed by another set of lasers. However, generating and using maximally coherent oscillation in macromolecules having an enormous number of degrees of freedom is challenging. In particular, the short dephasing times and rapid internal conversion rates are major obstacles. However, adiabatic fast passage techniques and the ability to generate combs of phase-coherent femtosecond pulses provide tools for the generation and utilization of maximal quantum coherence in large molecules and biopolymers. We call this technique FAST CARS (femtosecond adaptive spectroscopic techniques for coherent anti-Stokes Raman spectroscopy), and the present article proposes and analyses ways in which it could be used to rapidly identify preselected molecules in real time. PMID:12177405
Effects of quantum coherence and interference in atoms near nanoparticles
NASA Astrophysics Data System (ADS)
Dhayal, Suman; Rostovtsev, Yuri V.
2016-04-01
Optical properties of ensembles of realistic quantum emitters coupled to plasmonic systems are studied by using adequate models that can take into account full atomic geometry. In particular, the coherent effects such as forming "dark states," optical pumping, coherent Raman scattering, and the stimulated Raman adiabatic passage (STIRAP) are revisited in the presence of metallic nanoparticles. It is shown that the dark states are still formed but they have more complicated structure, and the optical pumping and the STIRAP cannot be employed in the vicinity of plasmonic nanostructures. Also, there is a huge difference in the behavior of the local atomic polarization and the atomic polarization averaged over an ensemble of atoms homogeneously spread near nanoparticles. The average polarization is strictly related to the polarization induced by the external field, while the local polarization can be very different from the one induced by the external field. This is important for the excitation of single molecules, e.g., different components of scattering from single molecules can be used for their efficient detection.
Adiabatic evolution of decoherence-free subspaces and its shortcuts
NASA Astrophysics Data System (ADS)
Wu, S. L.; Huang, X. L.; Li, H.; Yi, X. X.
2017-10-01
The adiabatic theorem and shortcuts to adiabaticity for time-dependent open quantum systems are explored in this paper. Starting from the definition of dynamical stable decoherence-free subspace, we show that, under a compact adiabatic condition, the quantum state remains in the time-dependent decoherence-free subspace with an extremely high purity, even though the dynamics of the open quantum system may not be adiabatic. The adiabatic condition mentioned here in the adiabatic theorem for open systems is very similar to that for closed quantum systems, except that the operators required to change slowly are the Lindblad operators. We also show that the adiabatic evolution of decoherence-free subspaces depends on the existence of instantaneous decoherence-free subspaces, which requires that the Hamiltonian of open quantum systems be engineered according to the incoherent control protocol. In addition, shortcuts to adiabaticity for adiabatic decoherence-free subspaces are also presented based on the transitionless quantum driving method. Finally, we provide an example that consists of a two-level system coupled to a broadband squeezed vacuum field to show our theory. Our approach employs Markovian master equations and the theory can apply to finite-dimensional quantum open systems.
Motivational influences on controlled processing: moderating distractibility in older adults.
Germain, Cassandra M; Hess, Thomas M
2007-09-01
Research has suggested that aging is associated with a decline in the efficiency of controlling processing operations. Three studies examined the moderating impact of personal relevance on age differences in one index of such operations: the ability to ignore distracting information. Young (17-26) and older (58-86) adults read a series of passages interspersed with irrelevant, distracting information, with the relevance of the passage content to these two age groups being systematically varied. For both groups, processing was more efficient and comprehension enhanced when passage relevance was high. These effects were particularly strong among older adults, a finding consistent with a growing body of data highlighting the importance of motivational factors in determining age differences in cognitive performance.
Andronesi, Ovidiu C.; Ramadan, Saadallah; Mountford, Carolyn E.; Sorensen, A. Gregory
2011-01-01
Novel low-power adiabatic sequences are demonstrated for in-vivo localized two-dimensional (2D) correlated MR spectroscopy, such as COSY (Correlated Spectroscopy) and TOCSY (Total Correlated Spectroscopy). The design is based on three new elements for in-vivo 2D MRS: the use of gradient modulated constant adiabaticity GOIA-W(16,4) pulses for i) localization (COSY and TOCSY) and ii) mixing (TOCSY), and iii) the use of longitudinal mixing (z-filter) for magnetization transfer during TOCSY. GOIA-W(16,4) provides accurate signal localization, and more importantly, lowers the SAR for both TOCSY mixing and localization. Longitudinal mixing improves considerably (five-folds) the efficiency of TOCSY transfer. These are markedly different from previous 1D editing TOCSY sequences using spatially non-selective pulses and transverse mixing. Fully adiabatic (adiabatic mixing with adiabatic localization) and semi-adiabatic (adiabatic mixing with non-adiabatic localization) methods for 2D TOCSY are compared. Results are presented for simulations, phantoms, and in-vivo 2D spectra from healthy volunteers and patients with brain tumors obtained on 3T clinical platforms equipped with standard hardware. To the best of our knowledge this is the first demonstration of in-vivo adiabatic 2D TOCSY and fully adiabatic 2D COSY. It is expected that these methodological developments will advance the in-vivo applicability of multi(spectrally)dimensional MRS to reliably identify metabolic biomarkers. PMID:20890988
Xu, Kebiao; Xie, Tianyu; Li, Zhaokai; Xu, Xiangkun; Wang, Mengqi; Ye, Xiangyu; Kong, Fei; Geng, Jianpei; Duan, Changkui; Shi, Fazhan; Du, Jiangfeng
2017-03-31
The adiabatic quantum computation is a universal and robust method of quantum computing. In this architecture, the problem can be solved by adiabatically evolving the quantum processor from the ground state of a simple initial Hamiltonian to that of a final one, which encodes the solution of the problem. Adiabatic quantum computation has been proved to be a compatible candidate for scalable quantum computation. In this Letter, we report on the experimental realization of an adiabatic quantum algorithm on a single solid spin system under ambient conditions. All elements of adiabatic quantum computation, including initial state preparation, adiabatic evolution (simulated by optimal control), and final state read-out, are realized experimentally. As an example, we found the ground state of the problem Hamiltonian S_{z}I_{z} on our adiabatic quantum processor, which can be mapped to the factorization of 35 into its prime factors 5 and 7.
NASA Astrophysics Data System (ADS)
Xu, Kebiao; Xie, Tianyu; Li, Zhaokai; Xu, Xiangkun; Wang, Mengqi; Ye, Xiangyu; Kong, Fei; Geng, Jianpei; Duan, Changkui; Shi, Fazhan; Du, Jiangfeng
2017-03-01
The adiabatic quantum computation is a universal and robust method of quantum computing. In this architecture, the problem can be solved by adiabatically evolving the quantum processor from the ground state of a simple initial Hamiltonian to that of a final one, which encodes the solution of the problem. Adiabatic quantum computation has been proved to be a compatible candidate for scalable quantum computation. In this Letter, we report on the experimental realization of an adiabatic quantum algorithm on a single solid spin system under ambient conditions. All elements of adiabatic quantum computation, including initial state preparation, adiabatic evolution (simulated by optimal control), and final state read-out, are realized experimentally. As an example, we found the ground state of the problem Hamiltonian SzIz on our adiabatic quantum processor, which can be mapped to the factorization of 35 into its prime factors 5 and 7.
Is there an effect of dysphonic teachers' voices on children's processing of spoken language?
Rogerson, Jemma; Dodd, Barbara
2005-03-01
There is a vast body of literature on the causes, prevalence, implications, and issues of vocal dysfunction in teachers. However, the educational effect of teacher vocal impairment is largely unknown. The purpose of this study was to investigate the effect of impaired voice quality on children's processing of spoken language. One hundred and seven children (age range, 9.2 to 10.6, mean 9.8, SD 3.76 months) listened to three video passages, one read in a control voice, one in a mild dysphonic voice, and one in a severe dysphonic voice. After each video passage, children were asked to answer six questions, with multiple-choice answers. The results indicated that children's perceptions of speech across the three voice qualities differed, regardless of gender, IQ, and school attended. Performance in the control voice passages was better than performance in the mild and severe dysphonic voice passages. No difference was found between performance in the mild and severe dysphonic voice passages, highlighting that any form of vocal impairment is detrimental to children's speech processing and is therefore likely to have a negative educational effect. These findings, in light of the high rate of vocal dysfunction in teachers, further support the implementation of specific voice care education for those in the teaching profession.
NASA Astrophysics Data System (ADS)
Takeuchi, Naoki; Nagasawa, Shuichi; China, Fumihiro; Ando, Takumi; Hidaka, Mutsuo; Yamanashi, Yuki; Yoshikawa, Nobuyuki
2017-03-01
Adiabatic quantum-flux-parametron (AQFP) logic is an energy-efficient superconductor logic with zero static power consumption and very small switching energy. In this paper, we report a new AQFP cell library designed using the AIST 10 kA cm-2 Nb high-speed standard process (HSTP), which is a high-critical-current-density version of the AIST 2.5 kA cm-2 Nb standard process (STP2). Since the intrinsic damping of the Josephson junction (JJ) of HSTP is relatively strong, shunt resistors for JJs were removed and the energy efficiency improved significantly. Also, excitation transformers in the new cells were redesigned so that the cells can operate in a four-phase excitation mode. We described the detail of HSTP and the AQFP cell library designed using HSTP, and showed experimental results of cell test circuits.
Singularity of the time-energy uncertainty in adiabatic perturbation and cycloids on a Bloch sphere
Oh, Sangchul; Hu, Xuedong; Nori, Franco; Kais, Sabre
2016-01-01
Adiabatic perturbation is shown to be singular from the exact solution of a spin-1/2 particle in a uniformly rotating magnetic field. Due to a non-adiabatic effect, its quantum trajectory on a Bloch sphere is a cycloid traced by a circle rolling along an adiabatic path. As the magnetic field rotates more and more slowly, the time-energy uncertainty, proportional to the length of the quantum trajectory, calculated by the exact solution is entirely different from the one obtained by the adiabatic path traced by the instantaneous eigenstate. However, the non-adiabatic Aharonov- Anandan geometric phase, measured by the area enclosed by the exact path, approaches smoothly the adiabatic Berry phase, proportional to the area enclosed by the adiabatic path. The singular limit of the time-energy uncertainty and the regular limit of the geometric phase are associated with the arc length and arc area of the cycloid on a Bloch sphere, respectively. Prolate and curtate cycloids are also traced by different initial states outside and inside of the rolling circle, respectively. The axis trajectory of the rolling circle, parallel to the adiabatic path, is shown to be an example of transitionless driving. The non-adiabatic resonance is visualized by the number of cycloid arcs. PMID:26916031
Open-Source Multi-Language Audio Database for Spoken Language Processing Applications
2012-12-01
Mandarin, and Russian . Approximately 30 hours of speech were collected for each language. Each passage has been carefully transcribed at the...manual and automatic methods. The Russian passages have not yet been marked at the phonetic level. Another phase of the work was to explore...You Tube. 300 passages were collected in each of three languages—English, Mandarin, and Russian . Approximately 30 hours of speech were
Membrane with supported internal passages
NASA Technical Reports Server (NTRS)
Gonzalez-Martin, Anuncia (Inventor); Salinas, Carlos E. (Inventor); Cisar, Alan J. (Inventor); Hitchens, G. Duncan (Inventor); Murphy, Oliver J. (Inventor)
2000-01-01
The invention provides an improved proton exchange membrane for use in electrochemical cells having internal passages parallel to the membrane surface comprising permanent tubes preferably placed at the ends of the fluid passages. The invention also provides an apparatus and process for making the membrane, membrane and electrode assemblies fabricated using the membrane, and the application of the membrane and electrode assemblies to a variety of devices, both electrochemical and otherwise. The passages in the membrane extend from one edge of the membrane to another and allow fluid flow through the membrane and give access directly to the membrane.
The Independent Technical Analysis Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duberstein, Corey A.; Ham, Kenneth D.; Dauble, Dennis D.
2007-04-13
The Bonneville Power Administration (BPA) contracted with the Pacific Northwest National Laboratory (PNNL) to provide technical analytical support for system-wide fish passage information (BPA Project No. 2006-010-00). The goal of this project was to produce rigorous technical analysis products using independent analysts and anonymous peer reviewers. In the past, regional parties have interacted with a single entity, the Fish Passage Center to access the data, analyses, and coordination related to fish passage. This project provided an independent technical source for non-routine fish passage analyses while allowing routine support functions to be performed by other well-qualified entities.
Regenerator matrix physical property data
NASA Technical Reports Server (NTRS)
Fucinari, C. A.
1980-01-01
Among several cellular ceramic structures manufactured by various suppliers for regenerator application in a gas turbine engine, three have the best potential for achieving durability and performance objectives for use in gas turbines, Stirling engines, and waste heat recovery systems: (1) an aluminum-silicate sinusoidal flow passage made from a corrugated wate paper process; (2) an extruded isosceles triangle flow passage; and (3) a second generation matrix incorporating a square flow passage formed by an embossing process. Key physical and thermal property data for these configurations presented include: heat transfer and pressure drop characteristics, compressive strength, tensile strength and elasticity, thermal expansion characteristics, chanical attack, and thermal stability.
Time-reversing light pulses by adiabatic coupling modulation in coupled-resonator optical waveguides
NASA Astrophysics Data System (ADS)
Wang, Chao; Martini, Rainer; Search, Christopher P.
2012-12-01
We introduce a mechanism to time reverse short optical pulses in coupled resonator optical waveguides (CROWs) by direct modulation of the coupling coefficients between microresonators. The coupling modulation is achieved using phase modulation of a Mach-Zehnder interferometer coupler. We demonstrate that by adiabatic modulation of the coupling between resonators we can time reverse or store light pulses with bandwidths up to a few hundred GHz. The large pulse bandwidths, small device footprint, robustness with respect to resonator losses, and easy tuning process of the coupling coefficients make this method more practical than previous proposals.
Grossman, Gershon; Perez-Blanco, Horacio
1984-01-01
An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.
Grossman, G.; Perez-Blanco, H.
1983-06-16
An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.
Cloud and boundary layer structure over San Nicolas Island during FIRE
NASA Technical Reports Server (NTRS)
Albrecht, Bruce A.; Fairall, Christopher W.; Syrett, William J.; Schubert, Wayne H.; Snider, Jack B.
1990-01-01
The temporal evolution of the structure of the marine boundary layer and of the associated low-level clouds observed in the vicinity of the San Nicolas Island (SNI) is defined from data collected during the First ISCCP Regional Experiment (FIRE) Marine Stratocumulus Intense Field Observations (IFO) (July 1 to 19). Surface, radiosonde, and remote-sensing measurements are used for this analysis. Sounding from the Island and from the ship Point Sur, which was located approximately 100 km northwest of SNI, are used to define variations in the thermodynamic structure of the lower-troposphere on time scales of 12 hours and longer. Time-height sections of potential temperature and equivalent potential temperature clearly define large-scale variations in the height and the strength of the inversion and periods where the conditions for cloud-top entrainment instability (CTEI) are met. Well defined variations in the height and the strength of the inversion were associated with a Cataline Eddy that was present at various times during the experiment and with the passage of the remnants of a tropical cyclone on July 18. The large-scale variations in the mean thermodynamic structure at SNI correlate well with those observed from the Point Sur. Cloud characteristics are defined for 19 days of the experiment using data from a microwave radiometer, a cloud ceilometer, a sodar, and longwave and shortwave radiometers. The depth of the cloud layer is estimated by defining inversion heights from the sodar reflectivity and cloud-base heights from a laser ceilometer. The integrated liquid water obtained from NOAA's microwave radiometer is compared with the adiabatic liquid water content that is calculated by lifting a parcel adiabatically from cloud base. In addition, the cloud structure is characterized by the variability in cloud-base height and in the integrated liquid water.
Shortcuts to adiabaticity by counterdiabatic driving for trapped-ion displacement in phase space
An, Shuoming; Lv, Dingshun; del Campo, Adolfo; Kim, Kihwan
2016-01-01
The application of adiabatic protocols in quantum technologies is severely limited by environmental sources of noise and decoherence. Shortcuts to adiabaticity by counterdiabatic driving constitute a powerful alternative that speed up time-evolution while mimicking adiabatic dynamics. Here we report the experimental implementation of counterdiabatic driving in a continuous variable system, a shortcut to the adiabatic transport of a trapped ion in phase space. The resulting dynamics is equivalent to a ‘fast-motion video' of the adiabatic trajectory. The robustness of this protocol is shown to surpass that of competing schemes based on classical local controls and Fourier optimization methods. Our results demonstrate that shortcuts to adiabaticity provide a robust speedup of quantum protocols of wide applicability in quantum technologies. PMID:27669897
Mason, Robert A; Just, Marcel Adam
2011-02-01
Cortical activity associated with generating an inference was measured using fMRI. Participants read three-sentence passages that differed in whether or not an inference needed to be drawn to understand them. The inference was based on either a protagonist's intention or a physical consequence of a character's action. Activation was expected in Theory of Mind brain regions for the passages based on protagonists' intentions but not for the physical consequence passages. The activation measured in the right temporo-parietal junction was greater in the intentional passages than in the consequence passages, consistent with predictions from a Theory of Mind perspective. In contrast, there was increased occipital activation in the physical inference passages. For both types of passage, the cortical activity related to the reading of the critical inference sentence demonstrated a recruitment of a common inference cortical network. This general inference-related activation appeared bilaterally in the language processing areas (the inferior frontal gyrus, the temporal gyrus, and the angular gyrus), as well as in the medial to superior frontal gyrus, which has been found to be active in Theory of Mind tasks. These findings are consistent with the hypothesis that component areas of the discourse processing network are recruited as needed based on the nature of the inference. A Protagonist monitoring and synthesis network is proposed as a more accurate account for Theory of Mind activation during narrative comprehension. Copyright © 2010 Wiley-Liss, Inc.
Sanz-Sanz, Cristina; Aguado, Alfredo; Roncero, Octavio; Naumkin, Fedor
2016-01-01
Analytical derivatives and non-adiabatic coupling matrix elements are derived for Hn+ systems (n=3, 4 and 5). The method uses a generalized Hellmann-Feynman theorem applied to a multi-state description based on diatomics-in-molecules (for H3+) or triatomics-in-molecules (for H4+ and H5+) formalisms, corrected with a permutationally invariant many-body term to get high accuracy. The analytical non-adiabatic coupling matrix elements are compared with ab initio calculations performed at multi-reference configuration interaction level. These magnitudes are used to calculate H2(v′=0,j′=0)+H2+(v,j=0) collisions, to determine the effect of electronic transitions using a molecular dynamics method with electronic transitions. Cross sections for several initial vibrational states of H2+ are calculated and compared with the available experimental data, yielding an excellent agreement. The effect of vibrational excitation of H2+ reactant, and its relation with non-adiabatic processes are discussed. Also, the behavior at low collisional energies, in the 1 meV-0.1 eV interval, of interest in astrophysical environments, are discussed in terms of the long range behaviour of the interaction potential which is properly described within the TRIM formalism. PMID:26696058
Siphon flows in isolated magnetic flux tubes. II - Adiabatic flows
NASA Technical Reports Server (NTRS)
Montesinos, Benjamin; Thomas, John H.
1989-01-01
This paper extends the study of steady siphon flows in isolated magnetic flux tubes surrounded by field-free gas to the case of adiabatic flows. The basic equations governing steady adiabatic siphon flows in a thin, isolated magnetic flux tube are summarized, and qualitative features of adiabatic flows in elevated, arched flux tubes are discussed. The equations are then cast in nondimensional form and the results of numerical computations of adiabatic siphon flows in arched flux tubes are presented along with comparisons between isothermal and adiabatic flows. The effects of making the interior of the flux tube hotter or colder than the surrounding atmosphere at the upstream footpoint of the arch is considered. In this case, is it found that the adiabatic flows are qualitatively similar to the isothermal flows, with adiabatic cooling producing quantitative differences. Critical flows can produce a bulge point in the rising part of the arch and a concentration of magnetic flux above the bulge point.
'Safe passage': pregnant Iranian Kurdish women's choice of childbirth method.
Shahoei, Roonak; Riji, Haliza Mohd; Saeedi, Zhila Abed
2011-10-01
This article is a report of a grounded theory study of the influence of emotions on women's selection of a method of childbirth. There is substantial evidence to indicate that a pregnant woman's emotions play an important role in the decision-making process of selecting a child delivery method. Despite this, however, there is a notable lack of research about the relationship between pregnant women's emotions and their choice of a childbirth method in developing countries. A qualitative study using the grounded theory approach was conducted. The data were collected from 22 Iranian Kurdish pregnant women in their third trimester using semi-structured interviews. Concurrent data collection and analysis took place between 2008 and 2009. A cumulative process of theoretical sampling and constant comparison was used to identify concepts and then expand, validate, and clarify them. The substantive grounded theory that was identified from data analysis was 'safe passage'. 'Safe passage' involved five phases that were not mutually exclusive in their occurrence. The five phases of the 'safe passage' theory that were identified from the data analysis were: 'safety of baby', 'fear', 'previous experience', 'social support' and 'faith'. The goal of 'safe passage' was to achieve a healthy delivery and to ensure the health of the newborn. 'Safe passage' was a process used to determine how the emotions of pregnant Iranian Kurdish women influenced their choice of the mode of child delivery. More research is needed in this field to develop a body of knowledge beneficial to midwifery education and practice. © 2011 Blackwell Publishing Ltd.
Adiabatic quantum computation in open systems.
Sarandy, M S; Lidar, D A
2005-12-16
We analyze the performance of adiabatic quantum computation (AQC) subject to decoherence. To this end, we introduce an inherently open-systems approach, based on a recent generalization of the adiabatic approximation. In contrast to closed systems, we show that a system may initially be in an adiabatic regime, but then undergo a transition to a regime where adiabaticity breaks down. As a consequence, the success of AQC depends sensitively on the competition between various pertinent rates, giving rise to optimality criteria.
Urzúa, Ulises; Ampuero, Sandra; Roby, Katherine F; Owens, Garrison A; Munroe, David J
2016-10-25
Based in epidemiological evidence, repetitive ovulation has been proposed to play a role in the origin of ovarian cancer by inducing an aberrant wound rupture-repair process of the ovarian surface epithelium (OSE). Accordingly, long term cultures of isolated OSE cells undergo in vitro spontaneous transformation thus developing tumorigenic capacity upon extensive subcultivation. In this work, C57BL/6 mouse OSE (MOSE) cells were cultured up to passage 28 and their RNA and DNA copy number profiles obtained at passages 2, 5, 7, 10, 14, 18, 23, 25 and 28 by means of DNA microarrays. Gene ontology, pathway and network analyses were focused in passages earlier than 20, which is a hallmark of malignancy in this model. At passage 14, 101 genes were up-regulated in absence of significant DNA copy number changes. Among these, the top-3 enriched functions (>30 fold, adj p < 0.05) comprised 7 genes coding for centralspindlin, chromosome passenger and minichromosome maintenance protein complexes. The genes Ccnb1 (Cyclin B1), Birc5 (Survivin), Nusap1 and Kif23 were the most recurrent in over a dozen GO terms related to the mitotic process. On the other hand, Pten plus the large non-coding RNAs Malat1 and Neat1 were among the 80 down-regulated genes with mRNA processing, nuclear bodies, ER-stress response and tumor suppression as relevant terms. Interestingly, the earliest discrete segmental aneuploidies arose by passage 18 in chromosomes 7, 10, 11, 13, 15, 17 and 19. By passage 23, when MOSE cells express the malignant phenotype, the dysregulated gene expression repertoire expanded, DNA imbalances enlarged in size and covered additional loci. Prior to early aneuploidies, overexpression of genes coding for the mitotic apparatus in passage-14 pre-malignant MOSE cells indicate an increased proliferation rate suggestive of replicative stress. Concomitant down-regulation of nuclear bodies and RNA processing related genes suggests altered control of nuclear RNA maturation, features recently linked to impaired DNA damage response leading to genome instability. These results, combined with cytogenetic analysis by other authors in this model, suggest that transcriptional profile at passage 14 might induce cytokinesis failure by which tetraploid cells approach a near-tetraploid stage containing primary chromosome aberrations that initiate the tumorigenic drive.
Adiabatic regularization for gauge fields and the conformal anomaly
NASA Astrophysics Data System (ADS)
Chu, Chong-Sun; Koyama, Yoji
2017-03-01
Adiabatic regularization for quantum field theory in conformally flat spacetime is known for scalar and Dirac fermion fields. In this paper, we complete the construction by establishing the adiabatic regularization scheme for the gauge field. We show that the adiabatic expansion for the mode functions and the adiabatic vacuum can be defined in a similar way using Wentzel-Kramers-Brillouin-type (WKB-type) solutions as the scalar fields. As an application of the adiabatic method, we compute the trace of the energy momentum tensor and reproduce the known result for the conformal anomaly obtained by the other regularization methods. The availability of the adiabatic expansion scheme for the gauge field allows one to study various renormalized physical quantities of theories coupled to (non-Abelian) gauge fields in conformally flat spacetime, such as conformal supersymmetric Yang Mills, inflation, and cosmology.
First-passage and escape problems in the Feller process
NASA Astrophysics Data System (ADS)
Masoliver, Jaume; Perelló, Josep
2012-10-01
The Feller process is an one-dimensional diffusion process with linear drift and state-dependent diffusion coefficient vanishing at the origin. The process is positive definite and it is this property along with its linear character that have made Feller process a convenient candidate for the modeling of a number of phenomena ranging from single-neuron firing to volatility of financial assets. While general properties of the process have long been well known, less known are properties related to level crossing such as the first-passage and the escape problems. In this work we thoroughly address these questions.
Cross-language message- and word-level transfer effects in bilingual text processing.
Friesen, Deanna C; Jared, Debra
2007-10-01
The present study examined the nature of the mental representations bilinguals form when reading a text and to what extent they are language specific. English-French bilinguals read five pairs of passages in succession while their eye movements were tracked. Dependent measures were overall reading times on second passages and fixation latencies on target cognates embeddedin second passages. The first passage w as (1) identical tothe second passage in the pair, (2) related in content only (i.e., a translation), (3) related in content and some words (i.e., translation with cognates), (4) related in words only (i.e., different content with the same cognates), or (5) unrelated. There was substantial cross-language facilitation for passages that shared meaning, but the amount of transfer was less than that for identical passages, indicating that memory representations are largely meaning based but do contain some information about surface form. Cross-language transfer for cognates was observed but depended on the skill of the bilinguals in their second language, the direction of transfer, and whether the passages shared meaning. These results are discussed in relation to Raney's (2003) model of text representation.
A Comparison of Some Processing Time Measures Based on Eye Movements. Technical Report No. 285.
ERIC Educational Resources Information Center
Blanchard, Harry E.
A study was conducted to provide a replication of the gaze duration algorithm proposed by M. A. Just and P. A. Carpenter using a different kind of passage, to compare the three gaze duration algorithms that have been proposed by other researchers, and to measure processing time in reading. Fifty-one college students read a passage while their eye…
Experimental study of the influence of flow passage subtle variation on mixed-flow pump performance
NASA Astrophysics Data System (ADS)
Bing, Hao; Cao, Shuliang
2014-05-01
In the mixed-flow pump design, the shape of the flow passage can directly affect the flow capacity and the internal flow, thus influencing hydraulic performance, cavitation performance and operation stability of the mixed-flow pump. However, there is currently a lack of experimental research on the influence mechanism. Therefore, in order to analyze the effects of subtle variations of the flow passage on the mixed-flow pump performance, the frustum cone surface of the end part of inlet contraction flow passage of the mixed-flow pump is processed into a cylindrical surface and a test rig is built to carry out the hydraulic performance experiment. In this experiment, parameters, such as the head, the efficiency, and the shaft power, are measured, and the pressure fluctuation and the noise signal are also collected. The research results suggest that after processing the inlet flow passage, the head of the mixed-flow pump significantly goes down; the best efficiency of the mixed-flow pump drops by approximately 1.5%, the efficiency decreases more significantly under the large flow rate; the shaft power slightly increases under the large flow rate, slightly decreases under the small flow rate. In addition, the pressure fluctuation amplitudes on both the impeller inlet and the diffuser outlet increase significantly with more drastic pressure fluctuations and significantly lower stability of the internal flow of the mixed-flow pump. At the same time, the noise dramatically increases. Overall speaking, the subtle variation of the inlet flow passage leads to a significant change of the mixed-flow pump performance, thus suggesting a special attention to the optimization of flow passage. This paper investigates the influence of the flow passage variation on the mixed-flow pump performance by experiment, which will benefit the optimal design of the flow passage of the mixed-flow pump.
Path-integral isomorphic Hamiltonian for including nuclear quantum effects in non-adiabatic dynamics
NASA Astrophysics Data System (ADS)
Tao, Xuecheng; Shushkov, Philip; Miller, Thomas F.
2018-03-01
We describe a path-integral approach for including nuclear quantum effects in non-adiabatic chemical dynamics simulations. For a general physical system with multiple electronic energy levels, a corresponding isomorphic Hamiltonian is introduced such that Boltzmann sampling of the isomorphic Hamiltonian with classical nuclear degrees of freedom yields the exact quantum Boltzmann distribution for the original physical system. In the limit of a single electronic energy level, the isomorphic Hamiltonian reduces to the familiar cases of either ring polymer molecular dynamics (RPMD) or centroid molecular dynamics Hamiltonians, depending on the implementation. An advantage of the isomorphic Hamiltonian is that it can easily be combined with existing mixed quantum-classical dynamics methods, such as surface hopping or Ehrenfest dynamics, to enable the simulation of electronically non-adiabatic processes with nuclear quantum effects. We present numerical applications of the isomorphic Hamiltonian to model two- and three-level systems, with encouraging results that include improvement upon a previously reported combination of RPMD with surface hopping in the deep-tunneling regime.
Dissipation in adiabatic quantum computers: lessons from an exactly solvable model
NASA Astrophysics Data System (ADS)
Keck, Maximilian; Montangero, Simone; Santoro, Giuseppe E.; Fazio, Rosario; Rossini, Davide
2017-11-01
We introduce and study the adiabatic dynamics of free-fermion models subject to a local Lindblad bath and in the presence of a time-dependent Hamiltonian. The merit of these models is that they can be solved exactly, and will help us to study the interplay between nonadiabatic transitions and dissipation in many-body quantum systems. After the adiabatic evolution, we evaluate the excess energy (the average value of the Hamiltonian) as a measure of the deviation from reaching the final target ground state. We compute the excess energy in a variety of different situations, where the nature of the bath and the Hamiltonian is modified. We find robust evidence of the fact that an optimal working time for the quantum annealing protocol emerges as a result of the competition between the nonadiabatic effects and the dissipative processes. We compare these results with the matrix-product-operator simulations of an Ising system and show that the phenomenology we found also applies for this more realistic case.
High-fidelity gates in quantum dot spin qubits.
Koh, Teck Seng; Coppersmith, S N; Friesen, Mark
2013-12-03
Several logical qubits and quantum gates have been proposed for semiconductor quantum dots controlled by voltages applied to top gates. The different schemes can be difficult to compare meaningfully. Here we develop a theoretical framework to evaluate disparate qubit-gating schemes on an equal footing. We apply the procedure to two types of double-dot qubits: the singlet-triplet and the semiconducting quantum dot hybrid qubit. We investigate three quantum gates that flip the qubit state: a DC pulsed gate, an AC gate based on logical qubit resonance, and a gate-like process known as stimulated Raman adiabatic passage. These gates are all mediated by an exchange interaction that is controlled experimentally using the interdot tunnel coupling g and the detuning [Symbol: see text], which sets the energy difference between the dots. Our procedure has two steps. First, we optimize the gate fidelity (f) for fixed g as a function of the other control parameters; this yields an f(opt)(g) that is universal for different types of gates. Next, we identify physical constraints on the control parameters; this yields an upper bound f(max) that is specific to the qubit-gate combination. We show that similar gate fidelities (~99:5%) should be attainable for singlet-triplet qubits in isotopically purified Si, and for hybrid qubits in natural Si. Considerably lower fidelities are obtained for GaAs devices, due to the fluctuating magnetic fields ΔB produced by nuclear spins.
Communication: Adiabatic and non-adiabatic electron-nuclear motion: Quantum and classical dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, Julian; Kaiser, Dustin; Engel, Volker
2016-05-07
Using a model for coupled electronic-nuclear motion we investigate the range from negligible to strong non-adiabatic coupling. In the adiabatic case, the quantum dynamics proceeds in a single electronic state, whereas for strong coupling a complete transition between two adiabatic electronic states takes place. It is shown that in all coupling regimes the short-time wave-packet dynamics can be described using ensembles of classical trajectories in the phase space spanned by electronic and nuclear degrees of freedom. We thus provide an example which documents that the quantum concept of non-adiabatic transitions is not necessarily needed if electronic and nuclear motion ismore » treated on the same footing.« less
Adiabatic quantum computation with neutral atoms via the Rydberg blockade
NASA Astrophysics Data System (ADS)
Goyal, Krittika; Deutsch, Ivan
2011-05-01
We study a trapped-neutral-atom implementation of the adiabatic model of quantum computation whereby the Hamiltonian of a set of interacting qubits is changed adiabatically so that its ground state evolves to the desired output of the algorithm. We employ the ``Rydberg blockade interaction,'' which previously has been used to implement two-qubit entangling gates in the quantum circuit model. Here it is employed via off-resonant virtual dressing of the excited levels, so that atoms always remain in the ground state. The resulting dressed-Rydberg interaction is insensitive to the distance between the atoms within a certain blockade radius, making this process robust to temperature and vibrational fluctuations. Single qubit interactions are implemented with global microwaves and atoms are locally addressed with light shifts. With these ingredients, we study a protocol to implement the two-qubit Quadratic Unconstrained Binary Optimization (QUBO) problem. We model atom trapping, addressing, coherent evolution, and decoherence. We also explore collective control of the many-atom system and generalize the QUBO problem to multiple qubits. We study a trapped-neutral-atom implementation of the adiabatic model of quantum computation whereby the Hamiltonian of a set of interacting qubits is changed adiabatically so that its ground state evolves to the desired output of the algorithm. We employ the ``Rydberg blockade interaction,'' which previously has been used to implement two-qubit entangling gates in the quantum circuit model. Here it is employed via off-resonant virtual dressing of the excited levels, so that atoms always remain in the ground state. The resulting dressed-Rydberg interaction is insensitive to the distance between the atoms within a certain blockade radius, making this process robust to temperature and vibrational fluctuations. Single qubit interactions are implemented with global microwaves and atoms are locally addressed with light shifts. With these ingredients, we study a protocol to implement the two-qubit Quadratic Unconstrained Binary Optimization (QUBO) problem. We model atom trapping, addressing, coherent evolution, and decoherence. We also explore collective control of the many-atom system and generalize the QUBO problem to multiple qubits. We acknowledge funding from the AQUARIUS project, Sandia National Laboratories
Simulating a topological transition in a superconducting phase qubit by fast adiabatic trajectories
NASA Astrophysics Data System (ADS)
Wang, Tenghui; Zhang, Zhenxing; Xiang, Liang; Gong, Zhihao; Wu, Jianlan; Yin, Yi
2018-04-01
The significance of topological phases has been widely recognized in the community of condensed matter physics. The well controllable quantum systems provide an artificial platform to probe and engineer various topological phases. The adiabatic trajectory of a quantum state describes the change of the bulk Bloch eigenstates with the momentum, and this adiabatic simulation method is however practically limited due to quantum dissipation. Here we apply the "shortcut to adiabaticity" (STA) protocol to realize fast adiabatic evolutions in the system of a superconducting phase qubit. The resulting fast adiabatic trajectories illustrate the change of the bulk Bloch eigenstates in the Su-Schrieffer-Heeger (SSH) model. A sharp transition is experimentally determined for the topological invariant of a winding number. Our experiment helps identify the topological Chern number of a two-dimensional toy model, suggesting the applicability of the fast adiabatic simulation method for topological systems.
Mitra, Avik; Ghosh, Arindam; Das, Ranabir; Patel, Apoorva; Kumar, Anil
2005-12-01
Quantum adiabatic algorithm is a method of solving computational problems by evolving the ground state of a slowly varying Hamiltonian. The technique uses evolution of the ground state of a slowly varying Hamiltonian to reach the required output state. In some cases, such as the adiabatic versions of Grover's search algorithm and Deutsch-Jozsa algorithm, applying the global adiabatic evolution yields a complexity similar to their classical algorithms. However, using the local adiabatic evolution, the algorithms given by J. Roland and N.J. Cerf for Grover's search [J. Roland, N.J. Cerf, Quantum search by local adiabatic evolution, Phys. Rev. A 65 (2002) 042308] and by Saurya Das, Randy Kobes, and Gabor Kunstatter for the Deutsch-Jozsa algorithm [S. Das, R. Kobes, G. Kunstatter, Adiabatic quantum computation and Deutsh's algorithm, Phys. Rev. A 65 (2002) 062301], yield a complexity of order N (where N=2(n) and n is the number of qubits). In this paper, we report the experimental implementation of these local adiabatic evolution algorithms on a 2-qubit quantum information processor, by Nuclear Magnetic Resonance.
Cumulative effects in inflation with ultra-light entropy modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Achúcarro, Ana; Atal, Vicente; Germani, Cristiano
2017-02-01
In multi-field inflation one or more non-adiabatic modes may become light, potentially inducing large levels of isocurvature perturbations in the cosmic microwave background. If in addition these light modes are coupled to the adiabatic mode, they influence its evolution on super horizon scales. Here we consider the case in which a non-adiabatic mode becomes approximately massless (''ultralight') while still coupled to the adiabatic mode, a typical situation that arises with pseudo-Nambu-Goldstone bosons or moduli. This ultralight mode freezes on super-horizon scales and acts as a constant source for the curvature perturbation, making it grow linearly in time and effectively suppressingmore » the isocurvature component. We identify a Stückelberg-like emergent shift symmetry that underlies this behavior. As inflation lasts for many e -folds, the integrated effect of this source enhances the power spectrum of the adiabatic mode, while keeping the non-adiabatic spectrum approximately untouched. In this case, towards the end of inflation all the fluctuations, adiabatic and non-adiabatic, are dominated by a single degree of freedom.« less
Cumulative effects in inflation with ultra-light entropy modes
NASA Astrophysics Data System (ADS)
Achúcarro, Ana; Atal, Vicente; Germani, Cristiano; Palma, Gonzalo A.
2017-02-01
In multi-field inflation one or more non-adiabatic modes may become light, potentially inducing large levels of isocurvature perturbations in the cosmic microwave background. If in addition these light modes are coupled to the adiabatic mode, they influence its evolution on super horizon scales. Here we consider the case in which a non-adiabatic mode becomes approximately massless (``ultralight") while still coupled to the adiabatic mode, a typical situation that arises with pseudo-Nambu-Goldstone bosons or moduli. This ultralight mode freezes on super-horizon scales and acts as a constant source for the curvature perturbation, making it grow linearly in time and effectively suppressing the isocurvature component. We identify a Stückelberg-like emergent shift symmetry that underlies this behavior. As inflation lasts for many e-folds, the integrated effect of this source enhances the power spectrum of the adiabatic mode, while keeping the non-adiabatic spectrum approximately untouched. In this case, towards the end of inflation all the fluctuations, adiabatic and non-adiabatic, are dominated by a single degree of freedom.
Carnot's cycle for small systems: Irreversibility and cost of operations
NASA Astrophysics Data System (ADS)
Sekimoto, Ken; Takagi, Fumiko; Hondou, Tsuyoshi
2000-12-01
In the thermodynamic limit, the existence of a maximal efficiency of energy conversion attainable by a Carnot cycle consisting of quasistatic isothermal and adiabatic processes precludes the existence of a perpetual machine of the second kind, whose cycles yield positive work in an isothermal environment. We employ the recently developed framework of the energetics of stochastic processes (called ``stochastic energetics'') to reanalyze the Carnot cycle in detail, taking account of fluctuations, without taking the thermodynamic limit. We find that in this nonmacroscopic situation both processes of connection to and disconnection from heat baths and adiabatic processes that cause distortion of the energy distribution are sources of inevitable irreversibility within the cycle. Also, the so-called null-recurrence property of the cumulative efficiency of energy conversion over many cycles and the irreversible property of isolated, purely mechanical processes under external ``macroscopic'' operations are discussed in relation to the impossibility of a perpetual machine, or Maxwell's demon. This analysis may serve as the basis for the design and analysis of mesoscopic energy converters in the near future.
NASA Astrophysics Data System (ADS)
Ladjimi, Hela; Sardar, Dibyendu; Farjallah, Mohamed; Alharzali, Nisrin; Naskar, Somnath; Mlika, Rym; Berriche, Hamid; Deb, Bimalendu
2018-07-01
In this theoretical work, we calculate potential energy curves, spectroscopic parameters and transition dipole moments of molecular ions BeX+ (X=Na, K, Rb) composed of alkaline ion Be and alkali atom X with a quantum chemistry approach based on the pseudopotential model, Gaussian basis sets, effective core polarisation potentials and full configuration interaction. We study in detail collisions of the alkaline ion and alkali atom in quantum regime. Besides, we study the possibility of the formation of molecular ions from the ion-atom colliding systems by stimulated Raman adiabatic process and discuss the parameters regime under which the population transfer is feasible. Our results are important for ion-atom cold collisions and experimental realisation of cold molecular ion formation.
Exact Time-Dependent Exchange-Correlation Potential in Electron Scattering Processes
NASA Astrophysics Data System (ADS)
Suzuki, Yasumitsu; Lacombe, Lionel; Watanabe, Kazuyuki; Maitra, Neepa T.
2017-12-01
We identify peak and valley structures in the exact exchange-correlation potential of time-dependent density functional theory that are crucial for time-resolved electron scattering in a model one-dimensional system. These structures are completely missed by adiabatic approximations that, consequently, significantly underestimate the scattering probability. A recently proposed nonadiabatic approximation is shown to correctly capture the approach of the electron to the target when the initial Kohn-Sham state is chosen judiciously, and it is more accurate than standard adiabatic functionals but ultimately fails to accurately capture reflection. These results may explain the underestimation of scattering probabilities in some recent studies on molecules and surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cotton, Stephen J.; Miller, William H., E-mail: millerwh@berkeley.edu
A recently described symmetrical windowing methodology [S. J. Cotton and W. H. Miller, J. Phys. Chem. A 117, 7190 (2013)] for quasi-classical trajectory simulations is applied here to the Meyer-Miller [H.-D. Meyer and W. H. Miller, J. Chem. Phys. 70, 3214 (1979)] model for the electronic degrees of freedom in electronically non-adiabatic dynamics. Results generated using this classical approach are observed to be in very good agreement with accurate quantum mechanical results for a variety of test applications, including problems where coherence effects are significant such as the challenging asymmetric spin-boson system.
Numerical Solutions for Supersonic Flow of an Ideal Gas Around Blunt Two-Dimensional Bodies
NASA Technical Reports Server (NTRS)
Fuller, Franklyn B.
1961-01-01
The method described is an inverse one; the shock shape is chosen and the solution proceeds downstream to a body. Bodies blunter than circular cylinders are readily accessible, and any adiabatic index can be chosen. The lower limit to the free-stream Mach number available in any case is determined by the extent of the subsonic field, which in turn depends upon the body shape. Some discussion of the stability of the numerical processes is given. A set of solutions for flows about circular cylinders at several Mach numbers and several values of the adiabatic index is included.
Effect of local minima on adiabatic quantum optimization.
Amin, M H S
2008-04-04
We present a perturbative method to estimate the spectral gap for adiabatic quantum optimization, based on the structure of the energy levels in the problem Hamiltonian. We show that, for problems that have an exponentially large number of local minima close to the global minimum, the gap becomes exponentially small making the computation time exponentially long. The quantum advantage of adiabatic quantum computation may then be accessed only via the local adiabatic evolution, which requires phase coherence throughout the evolution and knowledge of the spectrum. Such problems, therefore, are not suitable for adiabatic quantum computation.
Quantum gates with controlled adiabatic evolutions
NASA Astrophysics Data System (ADS)
Hen, Itay
2015-02-01
We introduce a class of quantum adiabatic evolutions that we claim may be interpreted as the equivalents of the unitary gates of the quantum gate model. We argue that these gates form a universal set and may therefore be used as building blocks in the construction of arbitrary "adiabatic circuits," analogously to the manner in which gates are used in the circuit model. One implication of the above construction is that arbitrary classical boolean circuits as well as gate model circuits may be directly translated to adiabatic algorithms with no additional resources or complexities. We show that while these adiabatic algorithms fail to exhibit certain aspects of the inherent fault tolerance of traditional quantum adiabatic algorithms, they may have certain other experimental advantages acting as quantum gates.
Integrated stationary Ornstein-Uhlenbeck process, and double integral processes
NASA Astrophysics Data System (ADS)
Abundo, Mario; Pirozzi, Enrica
2018-03-01
We find a representation of the integral of the stationary Ornstein-Uhlenbeck (ISOU) process in terms of Brownian motion Bt; moreover, we show that, under certain conditions on the functions f and g , the double integral process (DIP) D(t) = ∫βt g(s) (∫αs f(u) dBu) ds can be thought as the integral of a suitable Gauss-Markov process. Some theoretical and application details are given, among them we provide a simulation formula based on that representation by which sample paths, probability densities and first passage times of the ISOU process are obtained; the first-passage times of the DIP are also studied.
Adiabat-shaping in indirect drive inertial confinement fusion
Baker, K. L.; Robey, H. F.; Milovich, J. L.; ...
2015-05-05
Adiabat-shaping techniques were investigated in this paper in indirect drive inertial confinement fusion experiments on the National Ignition Facility as a means to improve implosion stability, while still maintaining a low adiabat in the fuel. Adiabat-shaping was accomplished in these indirect drive experiments by altering the ratio of the picket and trough energies in the laser pulse shape, thus driving a decaying first shock in the ablator. This decaying first shock is designed to place the ablation front on a high adiabat while keeping the fuel on a low adiabat. These experiments were conducted using the keyhole experimental platform formore » both three and four shock laser pulses. This platform enabled direct measurement of the shock velocities driven in the glow-discharge polymer capsule and in the liquid deuterium, the surrogate fuel for a DT ignition target. The measured shock velocities and radiation drive histories are compared to previous three and four shock laser pulses. This comparison indicates that in the case of adiabat shaping the ablation front initially drives a high shock velocity, and therefore, a high shock pressure and adiabat. The shock then decays as it travels through the ablator to pressures similar to the original low-adiabat pulses when it reaches the fuel. Finally, this approach takes advantage of initial high ablation velocity, which favors stability, and high-compression, which favors high stagnation pressures.« less
Recent developments in trapping and manipulation of atoms with adiabatic potentials
NASA Astrophysics Data System (ADS)
Garraway, Barry M.; Perrin, Hélène
2016-09-01
A combination of static and oscillating magnetic fields can be used to ‘dress’ atoms with radio-frequency (RF), or microwave, radiation. The spatial variation of these fields can be used to create an enormous variety of traps for ultra-cold atoms and quantum gases. This article reviews the type and character of these adiabatic traps and the applications which include atom interferometry and the study of low-dimensional quantum systems. We introduce the main concepts of magnetic traps leading to adiabatic dressed traps. The concept of adiabaticity is discussed in the context of the Landau-Zener model. The first bubble trap experiment is reviewed together with the method used for loading it. Experiments based on atom chips show the production of double wells and ring traps. Dressed atom traps can be evaporatively cooled with an additional RF field, and a weak RF field can be used to probe the spectroscopy of the adiabatic potentials. Several approaches to ring traps formed from adiabatic potentials are discussed, including those based on atom chips, time-averaged adiabatic potentials and induction methods. Several proposals for adiabatic lattices with dressed atoms are also reviewed.
Lee, Byung Jae; Bang, Jin Wook; Shin, Kyung Joon; Kim, Yun Yong
2014-12-08
In this study, adiabatic temperature rise tests depending on binder type and adiabatic specimen volume were performed, and the maximum adiabatic temperature rises and the reaction factors for each mix proportion were analyzed and suggested. The results indicated that the early strength low heat blended cement mixture had the lowest maximum adiabatic temperature rise ( Q ∞ ) and the ternary blended cement mixture had the lowest reaction factor ( r ). Also, Q and r varied depending on the adiabatic specimen volume even when the tests were conducted with a calorimeter, which satisfies the recommendations for adiabatic conditions. Test results show a correlation: the measurements from the 50 L specimens were consistently higher than those from the 6 L specimens. However, the Q ∞ and r values of the 30 L specimen were similar to those of the 50 L specimen. Based on the above correlation, the adiabatic temperature rise of the 50 L specimen could be predicted using the results of the 6 L and 30 L specimens. Therefore, it is thought that this correlation can be used for on-site concrete quality control and basic research.
Semiclassical Monte Carlo: A first principles approach to non-adiabatic molecular dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Alexander J.; Center for Nonlinear Studies; Gorshkov, Vyacheslav N.
2014-11-14
Modeling the dynamics of photophysical and (photo)chemical reactions in extended molecular systems is a new frontier for quantum chemistry. Many dynamical phenomena, such as intersystem crossing, non-radiative relaxation, and charge and energy transfer, require a non-adiabatic description which incorporate transitions between electronic states. Additionally, these dynamics are often highly sensitive to quantum coherences and interference effects. Several methods exist to simulate non-adiabatic dynamics; however, they are typically either too expensive to be applied to large molecular systems (10's-100's of atoms), or they are based on ad hoc schemes which may include severe approximations due to inconsistencies in classical and quantummore » mechanics. We present, in detail, an algorithm based on Monte Carlo sampling of the semiclassical time-dependent wavefunction that involves running simple surface hopping dynamics, followed by a post-processing step which adds little cost. The method requires only a few quantities from quantum chemistry calculations, can systematically be improved, and provides excellent agreement with exact quantum mechanical results. Here we show excellent agreement with exact solutions for scattering results of standard test problems. Additionally, we find that convergence of the wavefunction is controlled by complex valued phase factors, the size of the non-adiabatic coupling region, and the choice of sampling function. These results help in determining the range of applicability of the method, and provide a starting point for further improvement.« less
NASA Astrophysics Data System (ADS)
Obregon, Maria; Raj, Nawin; Stepanyants, Yury
2018-03-01
The adiabatic decay of different types of internal wave solitons caused by the Earth's rotation is studied within the framework of the Gardner-Ostrovsky equation. The governing equation describing such processes includes quadratic and cubic nonlinear terms, as well as the Boussinesq and Coriolis dispersions: (ut + c ux + α u ux + α1 u2 ux + β uxxx)x = γ u. It is shown that at the early stage of evolution solitons gradually decay under the influence of weak Earth's rotation described by the parameter γ. The characteristic decay time is derived for different types of solitons for positive and negative coefficients of cubic nonlinearity α1 (both signs of that parameter may occur in the oceans). The coefficient of quadratic nonlinearity α determines only a polarity of solitary wave when α1 < 0 or the asymmetry of solitary waves of opposite polarity when α1 > 0. It is found that the adiabatic theory describes well the decay of solitons having bell-shaped profiles. In contrast to that, large amplitude table-top solitons, which can exist when α1 is negative, are structurally unstable. Under the influence of Earth's rotation, they transfer first to the bell-shaped solitons, which decay then adiabatically. Estimates of the characteristic decay time of internal solitons are presented for the real oceanographic conditions.
Oscillating potential well in the complex plane and the adiabatic theorem
NASA Astrophysics Data System (ADS)
Longhi, Stefano
2017-10-01
A quantum particle in a slowly changing potential well V (x ,t ) =V ( x -x0(ɛ t ) ) , periodically shaken in time at a slow frequency ɛ , provides an important quantum mechanical system where the adiabatic theorem fails to predict the asymptotic dynamics over time scales longer than ˜1 /ɛ . Specifically, we consider a double-well potential V (x ) sustaining two bound states spaced in frequency by ω0 and periodically shaken in a complex plane. Two different spatial displacements x0(t ) are assumed: the real spatial displacement x0(ɛ t ) =A sin(ɛ t ) , corresponding to ordinary Hermitian shaking, and the complex one x0(ɛ t ) =A -A exp(-i ɛ t ) , corresponding to non-Hermitian shaking. When the particle is initially prepared in the ground state of the potential well, breakdown of adiabatic evolution is found for both Hermitian and non-Hermitian shaking whenever the oscillation frequency ɛ is close to an odd resonance of ω0. However, a different physical mechanism underlying nonadiabatic transitions is found in the two cases. For the Hermitian shaking, an avoided crossing of quasienergies is observed at odd resonances and nonadiabatic transitions between the two bound states, resulting in Rabi flopping, can be explained as a multiphoton resonance process. For the complex oscillating potential well, breakdown of adiabaticity arises from the appearance of Floquet exceptional points at exact quasienergy crossing.
Perpendicular Diffusion Coefficient of Comic Rays: The Presence of Weak Adiabatic Focusing
NASA Astrophysics Data System (ADS)
Wang, J. F.; Qin, G.; Ma, Q. M.; Song, T.; Yuan, S. B.
2017-08-01
The influence of adiabatic focusing on particle diffusion is an important topic in astrophysics and plasma physics. In the past, several authors have explored the influence of along-field adiabatic focusing on the parallel diffusion of charged energetic particles. In this paper, using the unified nonlinear transport theory developed by Shalchi and the method of He and Schlickeiser, we derive a new nonlinear perpendicular diffusion coefficient for a non-uniform background magnetic field. This formula demonstrates that the particle perpendicular diffusion coefficient is modified by along-field adiabatic focusing. For isotropic pitch-angle scattering and the weak adiabatic focusing limit, the derived perpendicular diffusion coefficient is independent of the sign of adiabatic focusing characteristic length. For the two-component model, we simplify the perpendicular diffusion coefficient up to the second order of the power series of the adiabatic focusing characteristic quantity. We find that the first-order modifying factor is equal to zero and that the sign of the second order is determined by the energy of the particles.
Is the addition of an assisted driving Hamiltonian always useful for adiabatic evolution?
NASA Astrophysics Data System (ADS)
Sun, Jie; Lu, Songfeng; Li, Li
2017-04-01
It has been known that when an assisted driving item is added to the main system Hamiltonian, the efficiency of the resultant adiabatic evolution can be significantly improved. In some special cases, it can be seen that only through adding an assisted driving Hamiltonian can the resulting adiabatic evolution be made not to fail. Thus the additional driving Hamiltonian plays an important role in adiabatic computing. In this paper, we show that if the driving Hamiltonian is chosen inappropriately, the adiabatic computation may still fail. More importantly, we find that the adiabatic computation can only succeed if the assisted driving Hamiltonian has a relatively fixed form. This may help us understand why in the related literature all of the driving Hamiltonians used share the same form.
The mixing effects for real gases and their mixtures
NASA Astrophysics Data System (ADS)
Gong, M. Q.; Luo, E. C.; Wu, J. F.
2004-10-01
The definitions of the adiabatic and isothermal mixing effects in the mixing processes of real gases were presented in this paper. Eight substances with boiling-point temperatures from cryogenic temperature to the ambient temperature were selected from the interest of low temperature refrigeration to study their binary and multicomponent mixing effects. Detailed analyses were made on the parameters of the mixing process to know their influences on mixing effects. Those parameters include the temperatures, pressures, and mole fraction ratios of pure substances before mixing. The results show that the maximum temperature variation occurs at the saturation state of each component in the mixing process. Those components with higher boiling-point temperatures have higher isothermal mixing effects. The maximum temperature variation which is defined as the adiabatic mixing effect can even reach up to 50 K, and the isothermal mixing effect can reach about 20 kJ/mol. The possible applications of the mixing cooling effect in both open cycle and closed cycle refrigeration systems were also discussed.
Anchoring effect on first passage process in Taiwan financial market
NASA Astrophysics Data System (ADS)
Liu, Hsing; Liao, Chi-Yo; Ko, Jing-Yuan; Lih, Jiann-Shing
2017-07-01
Empirical analysis of the price fluctuations of financial markets has received extensive attention because a substantial amount of financial market data has been collected and because of advances in data-mining techniques. Price fluctuation trends can help investors to make informed trading decisions, but such decisions may also be affected by a psychological factors-the anchoring effect. This study explores the intraday price time series of Taiwan futures, and applies diffusion model and quantitative methods to analyze the relationship between the anchoring effect and price fluctuations during first passage process. Our results indicate that power-law scaling and anomalous diffusion for stock price fluctuations are related to the anchoring effect. Moreover, microscopic price fluctuations before switching point in first passage process correspond with long-term price fluctuations of Taiwan's stock market. We find that microscopic trends could provide useful information for understanding macroscopic trends in stock markets.
Architectures and Applications for Scalable Quantum Information Systems
2007-01-01
quantum computation models, such as adiabatic quantum computing , can be converted to quantum circuits. Therefore, in our design flow’s first phase...vol. 26, no. 5, pp. 1484–1509, 1997. [19] A. Childs, E. Farhi, and J. Preskill, “Robustness of adiabatic quantum computation ,” Phys. Rev. A, vol. 65...magnetic resonance computer with three quantum bits that simulates an adiabatic quantum optimization algorithm. Adiabatic
Adiabatic approximation with exponential accuracy for many-body systems and quantum computation
NASA Astrophysics Data System (ADS)
Lidar, Daniel A.; Rezakhani, Ali T.; Hamma, Alioscia
2009-10-01
We derive a version of the adiabatic theorem that is especially suited for applications in adiabatic quantum computation, where it is reasonable to assume that the adiabatic interpolation between the initial and final Hamiltonians is controllable. Assuming that the Hamiltonian is analytic in a finite strip around the real-time axis, that some number of its time derivatives vanish at the initial and final times, and that the target adiabatic eigenstate is nondegenerate and separated by a gap from the rest of the spectrum, we show that one can obtain an error between the final adiabatic eigenstate and the actual time-evolved state which is exponentially small in the evolution time, where this time itself scales as the square of the norm of the time derivative of the Hamiltonian divided by the cube of the minimal gap.
Adiabatic and Non-adiabatic quenches in a Spin-1 Bose Einstein Condensate
NASA Astrophysics Data System (ADS)
Boguslawski, Matthew; Hebbe Madhusudhana, Bharath; Anquez, Martin; Robbins, Bryce; Barrios, Maryrose; Hoang, Thai; Chapman, Michael
2016-05-01
A quantum phase transition (QPT) is observed in a wide range of phenomena. We have studied the dynamics of a spin-1 ferromagnetic Bose-Einstein condensate for both adiabatic and non-adiabatic quenches through a QPT. At the quantum critical point (QCP), finite size effects lead to a non-zero gap, which makes an adiabatic quench possible through the QPT. We experimentally demonstrate such a quench, which is forbidden at the mean field level. For faster quenches through the QCP, the vanishing energy gap causes the reaction timescale of the system to diverge, preventing the system from adiabatically following the ground state. We measure the temporal evolution of the spin populations for different quench speeds and determine the exponents characterizing the scaling of the onset of excitations, which are in good agreement with the predictions of Kibble-Zurek mechanism.
Sliding seal materials for adiabatic engines
NASA Technical Reports Server (NTRS)
Lankford, J.
1985-01-01
The sliding friction coefficients and wear rates of promising carbide, oxide, and nitride materials were measured under temperature, environmental, velocity, loading conditions that are representative of the adiabatic engine environment. In order to provide guidance needed to improve materials for this application, the program stressed fundamental understanding of the mechanisms involved in friction and wear. Microhardness tests were performed on the candidate materials at elevated temperatures, and in atmospheres relevant to the piston seal application, and optical and electron microscopy were used to elucidate the micromechanisms of wear following wear testing. X-ray spectroscopy was used to evaluate interface/environment interactions which seemed to be important in the friction and wear process. Electrical effects in the friction and wear processes were explored in order to evaluate the potential usefulness of such effects in modifying the friction and wear rates in service. However, this factor was found to be of negligible significance in controlling friction and wear.
Quasi-adiabatic compression heating of selected foods
NASA Astrophysics Data System (ADS)
Landfeld, Ales; Strohalm, Jan; Halama, Radek; Houska, Milan
2011-03-01
The quasi-adiabatic temperature increase due to compression heating, during high-pressure (HP) processing (HPP), was studied using specially designed equipment. The temperature increase was evaluated as the difference in temperature, during compression, between atmospheric pressure and nominal pressure. The temperature was measured using a thermocouple in the center of a polyoxymethylene cup, which contained the sample. Fresh meat balls, pork meat pate, and tomato purée temperature increases were measured at three initial temperature levels between 40 and 80 °C. Nominal pressure was either 400 or 500 MPa. Results showed that the fat content had a positive effect on temperature increases. Empirical equations were developed to calculate the temperature increase during HPP at different initial temperatures for pressures of 400 and 500 MPa. This thermal effect data can be used for numerical modeling of temperature histories of foods during HP-assisted pasteurization or sterilization processes.
Removal of I, Rn, Xe and Kr from off gas streams using PTFE membranes
Siemer, Darryl D.; Lewis, Leroy C.
1990-01-01
A process for removing I, R, Xe and Kr which involves the passage of the off gas stream through a tube-in-shell assembly, whereby the tubing is a PTFE membrane which permits the selective passages of the gases for removing and isolating the gases.
Listening versus Reading in Monitoring Comprehension.
ERIC Educational Resources Information Center
Yussen, Steven R.; And Others
Noting the differences in processing information by reading and by listening, two studies examined subjects' ability to detect errors in written and oral prose. In both experiments, college students were presented with four expository passages drawn from different written sources. All passages were approximately 300 words and 5 paragraphs long,…
Removal of I, Rn, Xe and Kr from off gas streams using PTFE membranes
Siemer, Darryl D.; Lewis, Leroy C.
1990-08-07
A process for removing I, R, Xe and Kr which involves the passage of the off gas stream through a tube-in-shell assembly, whereby the tubing is a PTFE membrane which permits the selective passages of the gases for removing and isolating the gases.
D'Sa, Eurico J; Ko, Dong S
2008-07-15
Energetic meteorological events such as frontal passages and hurricanes often impact coastal regions in the northern Gulf of Mexico that influence geochemical processes in the region. Satellite remote sensing data such as winds from QuikSCAT, suspended particulate matter (SPM) concentrations derived from SeaWiFS and the outputs (sea level and surface ocean currents) of a nested navy coastal ocean model (NCOM) were combined to assess the effects of frontal passages between 23-28 March 2005 on the physical properties and the SPM characteristics in the northern Gulf of Mexico. Typical changes in wind speed and direction associated with frontal passages were observed in the latest 12.5 km wind product from QuikSCAT with easterly winds before the frontal passage undergoing systematic shifts in direction and speed and turning northerly, northwesterly during a weak and a strong front on 23 and 27 March, respectively. A quantitative comparison of model sea level results with tide gauge observations suggest better correlations near the delta than in the western part of the Gulf with elevated sea levels along the coast before the frontal passage and a large drop in sea level following the frontal passage on 27 March. Model results of surface currents suggested strong response to wind forcing with westward and onshore currents before the frontal passage reversing into eastward, southeastward direction over a six day period from 23 to 28 March 2005. Surface SPM distribution derived from SeaWiFS ocean color data for two clear days on 23 and 28 March 2005 indicated SPM plumes to be oriented with the current field with increasing concentrations in nearshore waters due to resuspension and discharge from the rivers and bays and its seaward transport following the frontal passage. The backscattering spectral slope γ, a parameter sensitive to particle size distribution also indicated lower γ values (larger particles) in nearshore waters that decreased offshore (smaller particles). The use of both satellite and model results revealed the strong interactions between physical processes and the surface particulate field in response to the frontal passage in a large riverdominated coastal margin.
Robustness of high-fidelity Rydberg gates with single-site addressability
NASA Astrophysics Data System (ADS)
Goerz, Michael H.; Halperin, Eli J.; Aytac, Jon M.; Koch, Christiane P.; Whaley, K. Birgitta
2014-09-01
Controlled-phase (cphase) gates can be realized with trapped neutral atoms by making use of the Rydberg blockade. Achieving the ultrahigh fidelities required for quantum computation with such Rydberg gates, however, is compromised by experimental inaccuracies in pulse amplitudes and timings, as well as by stray fields that cause fluctuations of the Rydberg levels. We report here a comparative study of analytic and numerical pulse sequences for the Rydberg cphase gate that specifically examines the robustness of the gate fidelity with respect to such experimental perturbations. Analytical pulse sequences of both simultaneous and stimulated Raman adiabatic passage (STIRAP) are found to be at best moderately robust under these perturbations. In contrast, optimal control theory is seen to allow generation of numerical pulses that are inherently robust within a predefined tolerance window. The resulting numerical pulse shapes display simple modulation patterns and can be rationalized in terms of an interference between distinct two-photon Rydberg excitation pathways. Pulses of such low complexity should be experimentally feasible, allowing gate fidelities of order 99.90-99.99% to be achievable under realistic experimental conditions.
Optical Lattice Clocks with Weakly Bound Molecules.
Borkowski, Mateusz
2018-02-23
Optical molecular clocks promise unparalleled sensitivity to the temporal variation of the electron-to-proton mass ratio and insight into possible new physics beyond the standard model. We propose to realize a molecular clock with bosonic ^{174}Yb_{2} molecules, where the forbidden ^{1}S_{0}→^{3}P_{0} clock transition would be induced magnetically. The use of a bosonic species avoids possible complications due to the hyperfine structure present in fermionic species. While direct clock line photoassociation would be challenging, weakly bound ground state molecules could be produced by stimulated Raman adiabatic passage and used instead. The recent scattering measurements [L. Franchi, et al. New J. Phys. 19, 103037 (2017)NJOPFM1367-263010.1088/1367-2630/aa8fb4] enable us to determine the positions of target ^{1}S_{0}+^{3}P_{0} vibrational levels and calculate the Franck-Condon factors for clock transitions between ground and excited molecular states. The resulting magnetically induced Rabi frequencies are similar to those for atoms hinting that an experimental realization is feasible. A successful observation could pave the way towards Hz-level molecular spectroscopy.
Recent advances in polarized 3 He based neutron spin filter development
NASA Astrophysics Data System (ADS)
Chen, Wangchun; Gentile, Thomas; Erwin, Ross; Watson, Shannon; Krycka, Kathryn; Ye, Qiang; NCNR NIST Team; University of Maryland Team
2015-04-01
Polarized 3 He neutron spin filters (NSFs) are based on the strong spin-dependence of the neutron absorption cross section by 3 He. NSFs can polarize large area, widely divergent, and broadband neutron beams effectively and allow for combining a neutron polarizer and a spin flipper into a single polarizing device. The last capability utilizes 3 He spin inversion based on the adiabatic fast passage (AFP) nuclear magnetic resonance technique. Polarized 3 He NSFs are significantly expanding the polarized neutron measurement capabilities at the NIST Center for Neutron Research (NCNR). Here we present an overview of 3 He NSF applications to small-angle neutron scattering, thermal triple axis spectrometry, and wide-angle polarization analysis. We discuss a recent upgrade of our spin-exchange optical pumping (SEOP) systems that utilize chirped volume holographic gratings for spectral narrowing. The new capability allows us to polarize rubidium/potassium hybrid SEOP cells over a liter in volume within a day, with 3 He polarizations up to 88%, Finally we discuss how we can achieve nearly lossless 3 He polarization inversion with AFP.
Optical Lattice Clocks with Weakly Bound Molecules
NASA Astrophysics Data System (ADS)
Borkowski, Mateusz
2018-02-01
Optical molecular clocks promise unparalleled sensitivity to the temporal variation of the electron-to-proton mass ratio and insight into possible new physics beyond the standard model. We propose to realize a molecular clock with bosonic 174Yb2 molecules, where the forbidden 1S0 →3P0 clock transition would be induced magnetically. The use of a bosonic species avoids possible complications due to the hyperfine structure present in fermionic species. While direct clock line photoassociation would be challenging, weakly bound ground state molecules could be produced by stimulated Raman adiabatic passage and used instead. The recent scattering measurements [L. Franchi, et al. New J. Phys. 19, 103037 (2017), 10.1088/1367-2630/aa8fb4] enable us to determine the positions of target 1S0 +3P0 vibrational levels and calculate the Franck-Condon factors for clock transitions between ground and excited molecular states. The resulting magnetically induced Rabi frequencies are similar to those for atoms hinting that an experimental realization is feasible. A successful observation could pave the way towards Hz-level molecular spectroscopy.
High-Energy, Multi-Octave-Spanning Mid-IR Sources via Adiabatic Difference Frequency Generation
2016-10-17
plan. We have evaluated a brand -new concept in nonlinear optics, adiabatic difference frequency generation (ADFG) for the efficient transfer of...achieved the main goals of our research plan. We have evaluated a brand -new concept in nonlinear optics, adiabatic difference frequency generation (ADFG...research plan. We have evaluated a brand -new concept in nonlinear optics, adiabatic difference frequency generation (ADFG) for the efficient transfer of
Decoherence in adiabatic quantum computation
NASA Astrophysics Data System (ADS)
Albash, Tameem; Lidar, Daniel A.
2015-06-01
Recent experiments with increasingly larger numbers of qubits have sparked renewed interest in adiabatic quantum computation, and in particular quantum annealing. A central question that is repeatedly asked is whether quantum features of the evolution can survive over the long time scales used for quantum annealing relative to standard measures of the decoherence time. We reconsider the role of decoherence in adiabatic quantum computation and quantum annealing using the adiabatic quantum master-equation formalism. We restrict ourselves to the weak-coupling and singular-coupling limits, which correspond to decoherence in the energy eigenbasis and in the computational basis, respectively. We demonstrate that decoherence in the instantaneous energy eigenbasis does not necessarily detrimentally affect adiabatic quantum computation, and in particular that a short single-qubit T2 time need not imply adverse consequences for the success of the quantum adiabatic algorithm. We further demonstrate that boundary cancellation methods, designed to improve the fidelity of adiabatic quantum computing in the closed-system setting, remain beneficial in the open-system setting. To address the high computational cost of master-equation simulations, we also demonstrate that a quantum Monte Carlo algorithm that explicitly accounts for a thermal bosonic bath can be used to interpolate between classical and quantum annealing. Our study highlights and clarifies the significantly different role played by decoherence in the adiabatic and circuit models of quantum computing.
Piecewise adiabatic following in non-Hermitian cycling
NASA Astrophysics Data System (ADS)
Gong, Jiangbin; Wang, Qing-hai
2018-05-01
The time evolution of periodically driven non-Hermitian systems is in general nonunitary but can be stable. It is hence of considerable interest to examine the adiabatic following dynamics in periodically driven non-Hermitian systems. We show in this work the possibility of piecewise adiabatic following interrupted by hopping between instantaneous system eigenstates. This phenomenon is first observed in a computational model and then theoretically explained, using an exactly solvable model, in terms of the Stokes phenomenon. In the latter case, the piecewise adiabatic following is shown to be a genuine critical behavior and the precise phase boundary in the parameter space is located. Interestingly, the critical boundary for piecewise adiabatic following is found to be unrelated to the domain for exceptional points. To characterize the adiabatic following dynamics, we also advocate a simple definition of the Aharonov-Anandan (AA) phase for nonunitary cyclic dynamics, which always yields real AA phases. In the slow driving limit, the AA phase reduces to the Berry phase if adiabatic following persists throughout the driving without hopping, but oscillates violently and does not approach any limit in cases of piecewise adiabatic following. This work exposes the rich features of nonunitary dynamics in cases of slow cycling and should stimulate future applications of nonunitary dynamics.
The vibrationally adiabatic torsional potential energy surface of trans-stilbene
NASA Astrophysics Data System (ADS)
Chowdary, Praveen D.; Martinez, Todd J.; Gruebele, Martin
2007-05-01
The effect of vibrational Zero Point Energy (ZPE) on the torsional barriers of trans-stilbene is studied in the adiabatic approximation. The two torsional modes corresponding to phenyl rotation are explicitly separated, and the remaining modes are treated as normal coordinates. ZPE reduces the adiabatic barrier along the in-phase torsion from 198 to 13 cm -1. A one-dimensional adiabatic potential for the anti-phase torsion, including the ZPE of the in-phase torsion, reduces the adiabatic barrier from 260 to 58 cm -1. Comparison with recent electronic structure benchmark calculations suggests that vibrational corrections play a significant role in trans-stilbene's experimentally observed planar structure.
NASA Astrophysics Data System (ADS)
Dawn, S.; Mandal, M.
2014-08-01
In this paper an attempt is made to identify the mesoscale features in surface pressure pattern, if any, associated with thunderstorm over the Gangetic West Bengal region in India. The study was conducted over Kharagpur and the adjoining area in the Gangetic West Bengal, frequently affected by thunderstorms during the pre-monsoon seasons of April-May. Observations recorded at 50 m instrumented micro-meteorological tower and upper air sounding at Kharagpur under nationally coordinated Severe Thunderstorm Observations and Regional Modeling (STORM) Programme are used to study the variation in surface pressure, wind speed and direction, temperature and relative humidity associated with the squall lines with trailing stratiform precipitation region. In the surface pressure variation, pre-squall mesolow, mesohigh and wake low are identified with the passage of the squall line at Kharagpur. It is observed that in the squall line with trailing stratiform precipitation shield, the mesohigh is associated with convective line and wake low exists at the rear of the storms. The position of the mesohigh is typically found in the vicinity of the heavy rain directly beneath the downdraft. The mesohigh seems to be initiated by the cooling due to evaporation of precipitation in the downdraft and intensified due to the non-hydrostatic effect because of the rainfall directly beneath the downdraft. It is also observed that the passage of trailing edges of the stratiform precipitation coincided with the wake low. Upper air sounding shows mid-tropospheric cooling and lower tropospheric warming. It may be possible due to the dominance of evaporative cooling in the mid-levels and dynamically forced descending motion leading to adiabatic warming in the low levels which may lead to the formation of the wake low.
NASA Astrophysics Data System (ADS)
Antoshechkina, P. M.; Asimow, P. D.
2010-12-01
Adiabat_1ph is a menu-driven front-end to the MELTS, pMELTS and pHMELTS models of thermodynamic equilibrium in silicate systems. Its public release in late 2004 was described in a software brief in G3 (doi:10.1029/2004GC000816). The software package is available for Windows, MacOS X, and Linux and includes Perl scripts that, if desired, will allow almost complete automation of the calculation process. Adiabat_1ph 3.0 is scheduled for release in October 2010 and includes, for the first time, an option to double-click the run_adiabat.command script and to drag and drop file names from a browser (e.g. Explorer on Windows, Finder on Mac). This alternative mode of operation is particularly suited for teaching at undergraduate and graduate levels, as well as for quick, ad hoc, calculations for research purposes. The original method of invoking the program from the command line is retained for more intensive applications. Version 3.0 is the first to specifically target the Windows 7 and Snow Leopard platforms. The release also includes new features that are relevant to the study of plate margins. The Marianas Trough forms the southern part of the Izu-Bonin-Marianas (IBM) arc system, one of the chosen areas of focus for the MARGINS Subduction Factory initiative. Attempts to model the complicated hydrous fractionation trends observed in this region were the motivation for adding modified versions of the ‘reverse-fractionation’ and ‘amoeba’ routines (see doi:10.1016/S0012-821X(04)00058-5) into adiabat_1ph. The ‘amoeba’ scheme, which varies a trial parental melt composition until forward fractionation yields a specified target composition, has been extended so the best-fit liquid line of descent of a group of samples can be found. We have tested the adiabat_1ph versions using glass compositions from the 9N area of the East Pacific Rise and melt inclusions from the Siqueiros Fracture Zone (see Antoshechkina et al., this meeting). One of the first user requested features to be incorporated into adiabat_1ph after its release was the ability to simulate flux melting, in which a metasomatic fluid or melt, of fixed composition, was added to the system before each equilibration step. This idea was further developed in the coupled dynamic and petrological subduction zone model GyPSM, so that fluid flux into the wedge was controlled by the location of dehydration reactions in the slab. The adiabat_1ph release candidate includes a similar option so that the user may specify assimilated compositions, which evolve as the calculation proceeds. This added flexibility opens up a number of possibilities, such as more realistic simulations of melt-rock reactions at mid-ocean ridges. Adiabat_1ph files may be downloaded from the MAGMA website at http://magmasource.caltech.edu/ and feedback is welcomed at a dedicated forum, especially ideas for new software features. MAGMA is an online resource for the study of mantle melting and magma evolution, hosted by Caltech. As well as MELTS-related resources, there are tools for visualization of binary and ternary phase diagrams. Flash movies of phase diagrams for adiabatic decompression melting of peridotite and pyroxenite sources can be played in a web browser or downloaded from a server.
Measurement of the shell decompression in direct-drive inertial-confinement-fusion implosions
Michel, D. T.; Hu, S. X.; Davis, A. K.; ...
2017-05-10
Measurement of the effect of adiabat (α) on the shell thickness were performed in direct-drive implosions. When reducing the adiabat of the shell from α = 6 to α = 4:5, the shell thickness was measured to decrease from 75 μm to 60 μm, but when decreasing the adiabat further (α = 1:8), the shell thickness was measured to increase to 75 μm. The measured shell thickness, shell trajectories, neutron bang time, and neutron yield were reproduced by two dimensional simulations that include laser imprint, nonlocal thermal transport, cross-beam energy transfer, and first-principles equation-of-state models. The minimum core size wasmore » measured to decrease from 40 μm to 30 μm, consistent with the reduction of the adiabat from α = 6 to α = 1:8. Simulations that neglected imprint reproduced the measured core size of the entire adiabat scan, but signi cantly underestimate the shell thickness for adiabat below ~3. These results show that the decompression of the shell measured for low-adiabat implosions was a result of laser imprint.« less
Measurement of the shell decompression in direct-drive inertial-confinement-fusion implosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michel, D. T.; Hu, S. X.; Davis, A. K.
Measurement of the effect of adiabat (α) on the shell thickness were performed in direct-drive implosions. When reducing the adiabat of the shell from α = 6 to α = 4:5, the shell thickness was measured to decrease from 75 μm to 60 μm, but when decreasing the adiabat further (α = 1:8), the shell thickness was measured to increase to 75 μm. The measured shell thickness, shell trajectories, neutron bang time, and neutron yield were reproduced by two dimensional simulations that include laser imprint, nonlocal thermal transport, cross-beam energy transfer, and first-principles equation-of-state models. The minimum core size wasmore » measured to decrease from 40 μm to 30 μm, consistent with the reduction of the adiabat from α = 6 to α = 1:8. Simulations that neglected imprint reproduced the measured core size of the entire adiabat scan, but signi cantly underestimate the shell thickness for adiabat below ~3. These results show that the decompression of the shell measured for low-adiabat implosions was a result of laser imprint.« less
Perpendicular Diffusion Coefficient of Comic Rays: The Presence of Weak Adiabatic Focusing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J. F.; Ma, Q. M.; Song, T.
The influence of adiabatic focusing on particle diffusion is an important topic in astrophysics and plasma physics. In the past, several authors have explored the influence of along-field adiabatic focusing on the parallel diffusion of charged energetic particles. In this paper, using the unified nonlinear transport theory developed by Shalchi and the method of He and Schlickeiser, we derive a new nonlinear perpendicular diffusion coefficient for a non-uniform background magnetic field. This formula demonstrates that the particle perpendicular diffusion coefficient is modified by along-field adiabatic focusing. For isotropic pitch-angle scattering and the weak adiabatic focusing limit, the derived perpendicular diffusionmore » coefficient is independent of the sign of adiabatic focusing characteristic length. For the two-component model, we simplify the perpendicular diffusion coefficient up to the second order of the power series of the adiabatic focusing characteristic quantity. We find that the first-order modifying factor is equal to zero and that the sign of the second order is determined by the energy of the particles.« less
Early Student Support for a Process Study of Oceanic Responses to Typhoons
2015-09-30
effect of these oceanic processes on air–sea fluxes during tropical cyclone passage will aid understanding of storm dynamics and structure. The ocean’s... Coriolis force, and the wind stress. This assumption is justified using the PWP3D model simulation. Before passage of the tropical cyclone eye, the...momentum balance is nearly linear, with a negligible pressure gradient effect . Most of the observed horizontal kinetic energy is within the upper 100 m
NASA Astrophysics Data System (ADS)
Cave, Robert J.; Newton, Marshall D.
1996-01-01
A new method for the calculation of the electronic coupling matrix element for electron transfer processes is introduced and results for several systems are presented. The method can be applied to ground and excited state systems and can be used in cases where several states interact strongly. Within the set of states chosen it is a non-perturbative treatment, and can be implemented using quantities obtained solely in terms of the adiabatic states. Several applications based on quantum chemical calculations are briefly presented. Finally, since quantities for adiabatic states are the only input to the method, it can also be used with purely experimental data to estimate electron transfer matrix elements.
A minimalistic and optimized conveyor belt for neutral atoms.
Roy, Ritayan; Condylis, Paul C; Prakash, Vindhiya; Sahagun, Daniel; Hessmo, Björn
2017-10-20
Here we report of a design and the performance of an optimized micro-fabricated conveyor belt for precise and adiabatic transportation of cold atoms. A theoretical model is presented to determine optimal currents in conductors used for the transportation. We experimentally demonstrate a fast adiabatic transportation of Rubidium ( 87 Rb) cold atoms with minimal loss and heating with as few as three conveyor belt conductors. This novel design of a multilayered conveyor belt structure is fabricated in aluminium nitride (AlN) because of its outstanding thermal and electrical properties. This demonstration would pave a way for a compact and portable quantum device required for quantum information processing and sensors, where precise positioning of cold atoms is desirable.
Combustion synthesis of ceramic and metal-matrix composites
NASA Technical Reports Server (NTRS)
Moore, John J.; Feng, Heng J.; Hunter, Kevin J.; Wirth, David G.
1993-01-01
Combustion synthesis or self-propagating high temperature synthesis (SHS) is effected by heating a reactant mixture, to above the ignition temperature (Tig) whereupon an exothermic reaction is initiated which produces a maximum or combustion temperature, Tc. These SHS reactions are being used to produce ceramics, intermetallics, and composite materials. One of the major limitations of this process is that relatively high levels of porosity, e.g., 50 percent, remain in the product. Conducting these SHS reactions under adiabatic conditions, the maximum temperature is the adiabatic temperature, Tad, and delta H (Tad) = 0, Tad = Tc. If the reactants or products go through a phase change, the latent heat of transformation needs to be taken into account.
A diagnosis of the development of a winter anticyclone over North America
NASA Technical Reports Server (NTRS)
King, Melinda L.; Smith, Phillip J.; Lupo, Anthony R.
1995-01-01
This paper examines the 48-h life cycle of a winter anticyclone occurring over North America from 18 to 20 January 1979 using Goddard Laboratory for Atmospheres FGGE level 3b (SOP 1) global analyses on a 4 deg latitude by 5 deg longitude grid. Applying the relatively new methodology of the Zwack-Okossi equation, results show that anticyclonic vorticity advection and cold-air advection acted to develop the anticyclone, while adiabatic warming in the descending air opposed development. Other forcing processes made only small contributions to anticyclone changes. Vertical profiles of the development quantities reveal that vorticity and temperature advections, as well as the adiabatic warming, maximized in the 200-300-mb layer.
Release adiabat measurements on minerals: The effect of viscosity
NASA Technical Reports Server (NTRS)
Jeanloz, R.; Ahrens, T. J.
1979-01-01
The current inversion of pressure-particle velocity data for release from a high pressure shock state to a pressure-density path is analyzed. It is assumed that the release process is isentropic. It was shown that for geological materials below stresses of 150 GPa, the effective viscosity must be 1000 kg/m/s in order that the viscous (irreversible) work carried out on the material in the shock state remains small compared to the mechanical work recovered upon adiabatic rarefaction. The available data pertaining to the offset of the Rayleigh line from the Hugoniot for minerals, the magnitude of the shear stress in the high pressure shock state for minerals, and the direct measurements of the viscosities of several engineering materials shocked to pressures below 150 GPa yield effective viscosities of 1000 kg/m/s or less. An inferance that this indicates that the conditions for isentropic release of minerals from shock states are achieved, and a conclusion that the application of the Riemann integral to obtain pressure-density states along the release adiabats of minerals in shock experiments is valid are made.
Ultra High Mode Mix in NIF NIC Implosions
NASA Astrophysics Data System (ADS)
Scott, Robbie; Garbett, Warren
2017-10-01
This work re-examines a sub-set of the low adiabat implosions from the National Ignition Campaign in an effort to better understand potential phenomenological sources of `excess' mix observed experimentally. An extensive effort has been made to match both shock-timing and backlit radiography (Con-A) implosion data in an effort to reproduce the experimental conditions as accurately as possible. Notably a 30% reduction in ablation pressure at peak drive is required to match the experimental data. The reduced ablation pressure required to match the experimental data allows the ablator to decompress, in turn causing the DT ice-ablator interface to go Rayleigh-Taylor unstable early in the implosion acceleration phase. Post-processing the runs with various mix models indicates high-mode mix from the DT ice-ablator interface may penetrate deep into the hotspot. This work offers a potential explanation of why these low-adiabat implosions exhibited significantly higher levels of mix than expected from high-fidelity multi-dimensional simulations. Through this new understanding, a possible route forward for low-adiabat implosions on NIF is suggested.
Model development of supersonic trough wind with shocks
NASA Technical Reports Server (NTRS)
Grebowsky, J. M.
1972-01-01
The time dependent one dimensional hydrodynamic equations describe the evolution of the thermal plasma flow along closed magnetic field lines outside of the plasmasphere. The convection of the supersonic polar wind onto a closed fieldline results in the assumed formation of collisionless plasma shocks. These shocks move earthward as the field line with its frozen-in plasma remains fixed or contracts with time to smaller L coordinates. The high equatorial plasma temperature (of the order of electron volts) produced by the shock process decreases with time if the flow is isothermal but it will increase if the contraction is under adiabatic conditions. Assuming adiabaticity a peak in the temperature forms at the equator in conjunction with a depression in the ion density. After an initial contraction, if the flux tube drifts to higher L coordinates the direction of the shock motion can be reversed so that the supersonic region will expand along the field line towards the state characterizing the supersonic polar wind. A rapid expansion will lower the equatorial density while the temperature decreases with time under adiabatic but not isothermal conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karpeshin, F. F., E-mail: fkarpeshin@gmail.com; Trzhaskovskaya, M. B.
2015-12-15
Special features of the effect of the electron shell on alpha decay that have important experimental implications are studied within the adiabatic approach. The magnitude of the effect is about several tenths of a percent or smaller, depending on the transition energy and on the atomic number. A dominant role of inner shells is shown: more than 80% of the effect is saturated by 1s electrons. This circumstance plays a crucial role for experiments, making it possible to measure this small effect by a difference method in the same storage rings via a comparison of, for example, decay probabilities inmore » bare nuclei and heliumlike ions. The reasons behind the relative success and the applicability limits of the frozen-shell model, which has been used to calculate the effect in question for more than half a century, are analyzed. An interesting experiment aimed at studying charged alpha-particle states is proposed. This experiment will furnish unique information for testing our ideas of the interplay of nonadiabatic and adiabatic processes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mineo, H.; Kuo, J. L.; Niu, Y. L.
The results of application of the quantum-mechanical adiabatic theory to vibrational predissociation (VPD) of water dimers, (H{sub 2}O){sub 2} and (D{sub 2}O){sub 2}, are presented. We consider the VPD processes including the totally symmetric OH mode of the dimer and the bending mode of the fragment. The VPD in the adiabatic representation is induced by breakdown of the vibrational adiabatic approximation, and two types of nonadiabatic coupling matrix elements are involved: one provides the VPD induced by the low-frequency dissociation mode and the other provides the VPD through channel interactions induced by the low-frequency modes. The VPD rate constants weremore » calculated using the Fermi golden rule expression. A closed form for the nonadiabatic transition matrix element between the discrete and continuum states was derived in the Morse potential model. All of the parameters used were obtained from the potential surfaces of the water dimers, which were calculated by the density functional theory procedures. The VPD rate constants for the two processes were calculated in the non-Condon scheme beyond the so-called Condon approximation. The channel interactions in and between the initial and final states were taken into account, and those are found to increase the VPD rates by 3(1) orders of magnitude for the VPD processes in (H{sub 2}O){sub 2} ((D{sub 2}O){sub 2}). The fraction of the bending-excited donor fragments is larger than that of the bending-excited acceptor fragments. The results obtained by quantum-mechanical approach are compared with both experimental and quasi-classical trajectory calculation results.« less
Membrane with internal passages to permit fluid flow and an electrochemical cell containing the same
NASA Technical Reports Server (NTRS)
Cisar, Alan J. (Inventor); Murphy, Oliver J. (Inventor); Gonzalez-Martin, Anuncia (Inventor); Hitchens, G. Duncan (Inventor)
1997-01-01
The invention provides an improved proton exchange membrane for use in electrochemical cells having internal passages parallel to the membrane surface, an apparatus and process for making the membrane, membrane and electrode assemblies fabricated using the membrane, and the application of the membrane and electrode assemblies to a variety of devices, both electrochemical and otherwise. The passages in the membrane extend from one edge of the membrane to another and allow fluid flow through the membrane and give access directly to the membrane for purposes of hydration.
Parameters estimation using the first passage times method in a jump-diffusion model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khaldi, K., E-mail: kkhaldi@umbb.dz; LIMOSE Laboratory, Boumerdes University, 35000; Meddahi, S., E-mail: samia.meddahi@gmail.com
2016-06-02
The main purposes of this paper are two contributions: (1) it presents a new method, which is the first passage time (FPT method) generalized for all passage times (GPT method), in order to estimate the parameters of stochastic Jump-Diffusion process. (2) it compares in a time series model, share price of gold, the empirical results of the estimation and forecasts obtained with the GPT method and those obtained by the moments method and the FPT method applied to the Merton Jump-Diffusion (MJD) model.
Advanced fabrication techniques for hydrogen-cooled engine structures
NASA Technical Reports Server (NTRS)
Buchmann, O. A.; Arefian, V. V.; Warren, H. A.; Vuigner, A. A.; Pohlman, M. J.
1985-01-01
Described is a program for development of coolant passage geometries, material systems, and joining processes that will produce long-life hydrogen-cooled structures for scramjet applications. Tests were performed to establish basic material properties, and samples constructed and evaluated to substantiate fabrication processes and inspection techniques. Results of the study show that the basic goal of increasing the life of hydrogen-cooled structures two orders of magnitude relative to that of the Hypersonic Research Engine can be reached with available means. Estimated life is 19000 cycles for the channels and 16000 cycles for pin-fin coolant passage configurations using Nickel 201. Additional research is required to establish the fatigue characteristics of dissimilar-metal coolant passages (Nickel 201/Inconel 718) and to investigate the embrittling effects of the hydrogen coolant.
Lee, A.; McVey, J.; Faustino, P.; Lute, S.; Sweeney, N.; Pawar, V.; Khan, M.; Brorson, K.; Hussong, D.
2010-01-01
Filters rated as having a 0.2-μm pore size (0.2-μm-rated filters) are used in laboratory and manufacturing settings for diverse applications of bacterial and particle removal from process fluids, analytical test articles, and gasses. Using Hydrogenophaga pseudoflava, a diminutive bacterium with an unusual geometry (i.e., it is very thin), we evaluated passage through 0.2-μm-rated filters and the impact of filtration process parameters and bacterial challenge density. We show that consistent H. pseudoflava passage occurs through 0.2-μm-rated filters. This is in contrast to an absence of significant passage of nutritionally challenged bacteria that are of similar size (i.e., hydrodynamic diameter) but dissimilar geometry. PMID:19966023
Quantum adiabatic computation with a constant gap is not useful in one dimension.
Hastings, M B
2009-07-31
We show that it is possible to use a classical computer to efficiently simulate the adiabatic evolution of a quantum system in one dimension with a constant spectral gap, starting the adiabatic evolution from a known initial product state. The proof relies on a recently proven area law for such systems, implying the existence of a good matrix product representation of the ground state, combined with an appropriate algorithm to update the matrix product state as the Hamiltonian is changed. This implies that adiabatic evolution with such Hamiltonians is not useful for universal quantum computation. Therefore, adiabatic algorithms which are useful for universal quantum computation either require a spectral gap tending to zero or need to be implemented in more than one dimension (we leave open the question of the computational power of adiabatic simulation with a constant gap in more than one dimension).
Effects of preheat and mix on the fuel adiabat of an imploding capsule
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, B.; Kwan, T. J. T.; Wang, Y. M.
We demonstrate the effect of preheat, hydrodynamic mix and vorticity on the adiabat of the deuterium-tritium (DT) fuel in fusion capsule experiments. We show that the adiabat of the DT fuel increases resulting from hydrodynamic mixing due to the phenomenon of entropy of mixture. An upper limit of mix, M clean=M DT ≥ 0:98 is found necessary to keep the DT fuel on a low adiabat. We demonstrate in this study that the use of a high adiabat for the DT fuel in theoretical analysis and with the aid of 1D code simulations could explain some aspects of 3D effectsmore » and mix in capsule implosion. Furthermore, we can infer from our physics model and the observed neutron images the adiabat of the DT fuel in the capsule and the amount of mix produced on the hot spot.« less
Effects of preheat and mix on the fuel adiabat of an imploding capsule
Cheng, B.; Kwan, T. J. T.; Wang, Y. M.; ...
2016-12-01
We demonstrate the effect of preheat, hydrodynamic mix and vorticity on the adiabat of the deuterium-tritium (DT) fuel in fusion capsule experiments. We show that the adiabat of the DT fuel increases resulting from hydrodynamic mixing due to the phenomenon of entropy of mixture. An upper limit of mix, M clean=M DT ≥ 0:98 is found necessary to keep the DT fuel on a low adiabat. We demonstrate in this study that the use of a high adiabat for the DT fuel in theoretical analysis and with the aid of 1D code simulations could explain some aspects of 3D effectsmore » and mix in capsule implosion. Furthermore, we can infer from our physics model and the observed neutron images the adiabat of the DT fuel in the capsule and the amount of mix produced on the hot spot.« less
Quantum and classical dynamics in adiabatic computation
NASA Astrophysics Data System (ADS)
Crowley, P. J. D.; Äńurić, T.; Vinci, W.; Warburton, P. A.; Green, A. G.
2014-10-01
Adiabatic transport provides a powerful way to manipulate quantum states. By preparing a system in a readily initialized state and then slowly changing its Hamiltonian, one may achieve quantum states that would otherwise be inaccessible. Moreover, a judicious choice of final Hamiltonian whose ground state encodes the solution to a problem allows adiabatic transport to be used for universal quantum computation. However, the dephasing effects of the environment limit the quantum correlations that an open system can support and degrade the power of such adiabatic computation. We quantify this effect by allowing the system to evolve over a restricted set of quantum states, providing a link between physically inspired classical optimization algorithms and quantum adiabatic optimization. This perspective allows us to develop benchmarks to bound the quantum correlations harnessed by an adiabatic computation. We apply these to the D-Wave Vesuvius machine with revealing—though inconclusive—results.
NASA Astrophysics Data System (ADS)
Bosch, R.; Ward, D.
2017-12-01
Investigation of erosion rates and processes at knickpoints in surface bedrock streams is an active area of research, involving complex feedbacks in the coupled relationships between dissolution, abrasion, and plucking that have not been sufficiently addressed. Even less research has addressed how these processes operate to propagate knickpoints through cave passages in layered sedimentary rocks, despite these features being common along subsurface streams. In both settings, there is evidence for mechanical and chemical erosion, but in cave passages the different hydrologic and hydraulic regimes, combined with an important role for the dissolution process, affect the relative roles and coupled interactions between these processes, and distinguish them from surface stream knickpoints. Using a novel approach of imaging cave passages using Structure from Motion (SFM), we create 3D geometry meshes to explore these systems using multiphysics simulation, and compare the processes as they occur in caves with those in surface streams. Here we focus on four field sites with actively eroding streambeds that include knickpoints: Upper River Acheron and Devil's Cooling Tub in Mammoth Cave, Kentucky; and two surface streams in Clermont County, Ohio, Avey's Run and Fox Run. SFM 3D reconstructions are built using images exported from 4K video shot at each field location. We demonstrate that SFM is a viable imaging approach for reconstructing cave passages with complex morphologies. We then use these reconstructions to create meshes upon which to run multiphysics simulations using STAR-CCM+. Our approach incorporates multiphase free-surface computational fluid dynamics simulations with sediment transport modeled using discrete element method grains. Physical and chemical properties of the water, bedrock, and sediment enable computation of shear stress, sediment impact forces, and chemical kinetic conditions at the bed surface. Preliminary results prove the efficacy of commercially available multiphysics simulation software for modeling various flow conditions, erosional processes, and their complex coupled interactions in cave passages and in surface stream channels to expand knowledge and understanding of overall cave system development and river profile erosion.
Floquet protocols of adiabatic state flips and reallocation of exceptional points
NASA Astrophysics Data System (ADS)
Halpern, Dashiell; Li, Huanan; Kottos, Tsampikos
2018-04-01
We introduce the notion of adiabatic state flip of a Floquet Hamiltonian associated with a non-Hermitian system that it is subjected to two driving schemes with clear separation of time scales. The fast (Floquet) modulation scheme is utilized to reallocate the exceptional points in the parameter space of the system and redefine the topological features of an adiabatic cyclic modulation associated with the slow driving scheme. Such topological reorganization can be used in order to control the adiabatic transport between two eigenmodes of the Floquet Hamiltonian. The proposed scheme provides a degree of reconfigurability of adiabatic state transfer which can find applications in system control in photonics and microwave domains.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-01
... production and processing is prone to disruption by hurricanes. In 2005, Hurricanes Katrina and Rita caused... Hurricanes AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT. ACTION: Notice... the passage of Hurricanes. ADDRESSES: This document can be viewed on the Office of Pipeline Safety...
Schooling as a Rational Rite of Passage
ERIC Educational Resources Information Center
Dimitrijevic, Ivan
2017-01-01
Starting from Illich's identification of the compulsory schooling process with the rational initiation rite to the modern, free-market, society, the paper aims to detach the philosophical premises this expensive and unequal ritual is grounded in. After having referred to Van Gennep's conception of the rites of passage, we shall show that the…
Schooling after Childhood: The Schooling Rituals of Anthropologists.
ERIC Educational Resources Information Center
Singleton, John
The paper explores the social and cultural processes in the schooling rituals of graduate students in anthropology. Four areas of concern are noted. The first area concerns rites of passage and professional competence. The author explains that the period of graduate professional schooling represents the second stage of a rite of passage after one…
NASA Astrophysics Data System (ADS)
Larsson, J. A.; Cremer, D.
1999-08-01
Vibrational spectra contain explicit information on the electronic structure and the bonding situation of a molecule, which can be obtained by transforming the vibrational normal modes of a molecule into appropriate internal coordinate modes, which are localized in a fragment of the molecule and which are associated to that internal coordinate that describes the molecular fragment in question. It is shown that the adiabatic internal modes derived recently (Int. J. Quant. Chem., 67 (1998) 1) are the theoretical counterparts of McKean's isolated CH stretching modes (Chem. Soc. Rev., 7 (1978) 399). Adiabatic CH stretching frequencies obtained from experimental vibrational spectra can be used to determine CH bond lengths with high accuracy. Contrary to the concept of isolated stretching frequencies a generalization to any bond of a molecule is possible as is demonstrated for the CC stretching frequencies. While normal mode frequencies do not provide a basis to determine CC bond lengths and CC bond strengths, this is possible with the help of the adiabatic CC stretching frequencies. Measured vibrational spectra are used to describe different types of CC bonds in a quantitative way. For CH bonds, it is also shown that adiabatic stretching frequency leads to the definition of an ideal dissociation energy, which contrary to the experimentally determined dissociation energy is a direct measure of the bond strength. The difference between measured and ideal dissociation energies gives information on stabilization or destabilization of the radicals formed in a dissociation process.
On the adiabatic representation of Meyer-Miller electronic-nuclear dynamics
NASA Astrophysics Data System (ADS)
Cotton, Stephen J.; Liang, Ruibin; Miller, William H.
2017-08-01
The Meyer-Miller (MM) classical vibronic (electronic + nuclear) Hamiltonian for electronically non-adiabatic dynamics—as used, for example, with the recently developed symmetrical quasiclassical (SQC) windowing model—can be written in either a diabatic or an adiabatic representation of the electronic degrees of freedom, the two being a canonical transformation of each other, thus giving the same dynamics. Although most recent applications of this SQC/MM approach have been carried out in the diabatic representation—because most of the benchmark model problems that have exact quantum results available for comparison are typically defined in a diabatic representation—it will typically be much more convenient to work in the adiabatic representation, e.g., when using Born-Oppenheimer potential energy surfaces (PESs) and derivative couplings that come from electronic structure calculations. The canonical equations of motion (EOMs) (i.e., Hamilton's equations) that come from the adiabatic MM Hamiltonian, however, in addition to the common first-derivative couplings, also involve second-derivative non-adiabatic coupling terms (as does the quantum Schrödinger equation), and the latter are considerably more difficult to calculate. This paper thus revisits the adiabatic version of the MM Hamiltonian and describes a modification of the classical adiabatic EOMs that are entirely equivalent to Hamilton's equations but that do not involve the second-derivative couplings. The second-derivative coupling terms have not been neglected; they simply do not appear in these modified adiabatic EOMs. This means that SQC/MM calculations can be carried out in the adiabatic representation, without approximation, needing only the PESs and the first-derivative coupling elements. The results of example SQC/MM calculations are presented, which illustrate this point, and also the fact that simply neglecting the second-derivative couplings in Hamilton's equations (and presumably also in the Schrödinger equation) can cause very significant errors.
Impact of diabatic processes on the tropopause inversion layer formation in baroclinic life cycles
NASA Astrophysics Data System (ADS)
Kunkel, Daniel; Hoor, Peter; Wirth, Volkmar
2015-04-01
Observations of temperature profiles in the extratropical upper troposphere/lower stratosphere (UTLS) show the presence of an inversion layer just above the thermal tropopause, i.e., the tropopause inversion layer (TIL). In recent studies both diabatic and adiabatic processes have been identified to contribute to the formation of this layer. In particular, adiabatic simulations indicate a TIL formation without the explicit simulation of diabatic, i.e. radiative or humidity related, processes after wave breaking during baroclinic life cycles. One goal of this study is to assess the additional contribution of diabatic processes to the formation and strength of the TIL in such life cycles. Moreover, since irreversible stratosphere-troposphere exchange (STE) is another inherent feature of baroclinic life cycles and a consequence of diabatic processes, we study whether there is a relationship between STE and TIL. We use the non-hydrostatic model COSMO in an idealized mid-latitude channel configuration to simulate baroclinic life cycles. In a first step contributions of individual diabatic processes from turbulence, radiation, and cloud microphysics to the formation of the TIL are analyzed. These results are compared to those from adiabatic simulations of baroclinic life cycles in which the TIL forms during the life cycle with the limitation of being less sharp than in observations. In a second step the combined effects of several diabatic processes are studied to further include interactions between these processes as well as to advance towards a more realistic model setup. The results suggest a much more vigorous development of the TIL due to microphysics and the release of latent heat. Moreover, radiative effects can foster an increase in static stability above the thermal tropopause when large gradients of either water vapor or cloud ice are present at the level of the tropopause. By additionally adding sub-grid scale turbulence, a co-location of high static stability and increased turbulent kinetic energy is found in the vicinity of cirrus clouds at the tropopause level. The potential relation between STE and high static stability is further discussed based on results from trajectory calculations and the distribution of passive tracers of tropospheric and stratospheric origin.
NASA Astrophysics Data System (ADS)
Guan, Shenheng; Marshall, Alan G.
1993-03-01
Conversion of magnetron motion to cyclotron motion combined with collisional cooling of the cyclotron motion provides an efficient way to reduce the kinetic energy of trapped heavy ions and to reduce their magnetron radii in an ion cyclotron resonance (ICR) ion trap. The coupling of magnetron and cyclotron motion can be realized by azimuthal quadrupolar excitation. Theoretical understanding of the coupling process has until now been based on resonant single-frequency quadrupolar excitation at the combination frequency ωc=ω++ω-, in which ωc is the ion cyclotron orbital frequency in the absence of electrostatic field; and ω+ and ω- are the reduced cyclotron and magnetron frequencies in the presence of an electrostatic trapping potential. In this work, we prove that the magnetron/cyclotron coupling is closely related to a two energy level system whose behavior is described by the well-known Bloch equations. By means of a special transformation, the equations of motion for the coupling may be expressed in Bloch-type equations in spherical coordinates. We show that magnetron-to-cyclotron conversion by single-frequency quadrupolar excitation in ICR is analogous to a 180° pulse in nuclear magnetic resonance (NMR). We go on to show that simultaneous magnetron-to-cyclotron conversion of ions over a finite mass-to-charge ratio range may be produced by quadrupolar frequency-sweep excitation, by analogy to adiabatic rapid passage in magnetic resonance. Axialization by broadband magnetron-to-cyclotron conversion followed by cyclotron cooling is successfully demonstrated experimentally for a crude oil distillate sample.
Simulation of periodically focused, adiabatic thermal beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, C.; Akylas, T. R.; Barton, T. J.
2012-12-21
Self-consistent particle-in-cell simulations are performed to verify earlier theoretical predictions of adiabatic thermal beams in a periodic solenoidal magnetic focusing field [K.R. Samokhvalova, J. Zhou and C. Chen, Phys. Plasma 14, 103102 (2007); J. Zhou, K.R. Samokhvalova and C. Chen, Phys. Plasma 15, 023102 (2008)]. In particular, results are obtained for adiabatic thermal beams that do not rotate in the Larmor frame. For such beams, the theoretical predictions of the rms beam envelope, the conservations of the rms thermal emittances, the adiabatic equation of state, and the Debye length are verified in the simulations. Furthermore, the adiabatic thermal beam ismore » found be stable in the parameter regime where the simulations are performed.« less
NASA Astrophysics Data System (ADS)
Toropov, S. Yu; Toropov, V. S.
2018-05-01
In order to design more accurately trenchless pipeline passages, a technique has been developed for calculating the passage profile, based on specific parameters of the horizontal directional drilling rig, including the range of possible drilling angles and a list of compatible drill pipe sets. The algorithm for calculating the parameters of the trenchless passage profile is shown in the paper. This algorithm is based on taking into account the features of HDD technology, namely, three different stages of production. The authors take into account that the passage profile is formed at the first stage of passage construction, that is, when drilling a pilot well. The algorithm involves calculating the profile by taking into account parameters of the drill pipes used and angles of their deviation relative to each other during the pilot drilling. This approach allows us to unambiguously calibrate the designed profile for the HDD rig capabilities and the auxiliary and navigation equipment used in the construction process.
Väliviita, Jussi; Muhonen, Vesa
2003-09-26
In general correlated models, in addition to the usual adiabatic component with a spectral index n(ad1) there is another adiabatic component with a spectral index n(ad2) generated by entropy perturbation during inflation. We extend the analysis of a correlated mixture of adiabatic and isocurvature cosmic microwave background fluctuations of the Wilkinson Microwave Anisotropy Probe (WMAP) group, who set the two adiabatic spectral indices equal. Allowing n(ad1) and n(ad2) to vary independently we find that the WMAP data favor models where the two adiabatic components have opposite spectral tilts. Using the WMAP data only, the 2sigma upper bound for the isocurvature fraction f(iso) of the initial power spectrum at k(0)=0.05 Mpc(-1) increases somewhat, e.g., from 0.76 of n(ad2)=n(ad1) models to 0.84 with a prior n(iso)<1.84 for the isocurvature spectral index.
ERIC Educational Resources Information Center
Baroni, Maria Rosa; And Others
1977-01-01
An experiment was carried out to study the processes of linguistic memory. Subjects were asked to read aloud brief prose passages and repeat what they had read. The "deviations" from the original passages were analyzed to determine the time of the deviation, during decoding or recall. (Text is in Italian.) (CFM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Destler, W.W.; O'Shea, P.G.; Segalov, Z.
1987-04-01
The propagation of intense relativistic electron beams into evacuated nonconducting drift tubes after passage through a localized plasma source has been experimentally studied. Time-integrated photographs of the propagation process have been obtained, as well as quantitative measurements of the propagated beam current and energy.
ERIC Educational Resources Information Center
Weinstein, Yana; McDermott, Kathleen B.; Roediger, Henry L., III
2010-01-01
Students are often encouraged to generate and answer their own questions on to-be-remembered material, because this interactive process is thought to enhance memory. But does this strategy actually work? In three experiments, all participants read the same passage, answered questions, and took a test to get accustomed to the materials in a…
NASA Astrophysics Data System (ADS)
Glicksman, Martin E.; Smith, Richard N.; Marsh, Steven P.; Kuklinski, Robert
A key element of mushy zone modeling is the description of the microscopic evolution of the lengthscales within the mushy zone and the influence of macroscopic transport processes. This paper describes some recent progress in developing a mean-field statistical theory of phase coarsening in adiabatic mushy zones. The main theoretical predictions are temporal scaling laws that indicate that average lengthscale increases as time 1/3, a self-similar distribution of mushy zone lengthscales based on spherical solid particle shapes, and kinetic rate constants which provide the dependences of the coarsening process on material parameters and the volume fraction of the solid phase. High precision thermal decay experiments are described which verify aspects of the theory in pure material mushy zones held under adiabatic conditions. The microscopic coarsening theory is then integrated within a macroscopic heat transfer model of one-dimensional alloy solidification, using the Double Integral Method. The method demonstrates an ability to predict the influence of macroscopic heat transfer on the evolution of primary and secondary dendrite arm spacings in Al-Cu alloys. Finally, some suggestions are made for future experimental and theoretical studies required in developing comprehensive solidification processing models.
Differential geometric treewidth estimation in adiabatic quantum computation
NASA Astrophysics Data System (ADS)
Wang, Chi; Jonckheere, Edmond; Brun, Todd
2016-10-01
The D-Wave adiabatic quantum computing platform is designed to solve a particular class of problems—the Quadratic Unconstrained Binary Optimization (QUBO) problems. Due to the particular "Chimera" physical architecture of the D-Wave chip, the logical problem graph at hand needs an extra process called minor embedding in order to be solvable on the D-Wave architecture. The latter problem is itself NP-hard. In this paper, we propose a novel polynomial-time approximation to the closely related treewidth based on the differential geometric concept of Ollivier-Ricci curvature. The latter runs in polynomial time and thus could significantly reduce the overall complexity of determining whether a QUBO problem is minor embeddable, and thus solvable on the D-Wave architecture.
Passive gas-gap heat switch for adiabatic demagnetization refrigerator
NASA Technical Reports Server (NTRS)
Shirron, Peter J. (Inventor); Di Pirro, Michael J. (Inventor)
2005-01-01
A passive gas-gap heat switch for use with a multi-stage continuous adiabatic demagnetization refrigerator (ADR). The passive gas-gap heat switch turns on automatically when the temperature of either side of the switch rises above a threshold value and turns off when the temperature on either side of the switch falls below this threshold value. One of the heat switches in this multistage process must be conductive in the 0.25? K to 0.3? K range. All of the heat switches must be capable of switching off in a short period of time (1-2 minutes), and when off to have a very low thermal conductance. This arrangement allows cyclic cooling cycles to be used without the need for separate heat switch controls.
Effect of molecular structure on the hydration of structurally related antidepressant drugs
NASA Astrophysics Data System (ADS)
Cheema, M. A.; Taboada, P.; Barbosa, S.; Siddiq, M.; Mosquera, V.
Apparent molal volumes and adiabatic compressibilities of aqueous solutions of the amphiphilic cationic antidepressant drugs butriptyline and doxepin hydrochlorides have been determined from density and ultrasound velocity measurements in the temperature range 20-50°C. Critical concentrations for aggregation of these drugs were obtained from ultrasound velocity measurements. Negative deviations from the Debye-Hückel limiting law of the apparent molal volume were obtained from both drugs in all temperature ranges, except for doxepin at 50°C, which provides evidence of no pre-association at concentrations below the critical concentration. Apparent molal adiabatic compressibilities of the aggregates formed by these drugs were typical of those corresponding for an aggregate formed by a stacking process.
NASA Astrophysics Data System (ADS)
Galparsoro, Oihana; Busnengo, Heriberto Fabio; Juaristi, Joseba Iñaki; Crespos, Cédric; Alducin, Maite; Larregaray, Pascal
2017-09-01
Adiabatic and non-adiabatic quasiclassical molecular dynamics simulations are performed to investigate the role of the crystal face on hot-atom abstraction of H adsorbates by H scattering from covered W(100) and W(110). On both cases, hyperthermal diffusion is strongly affected by the energy dissipated into electron-hole pair excitations. As a result, the hot-atom abstraction is highly reduced in favor of adsorption at low incidence energy and low coverages, i.e., when the mean free path of the hyperthermal H is typically larger. Qualitatively, this reduction is rather similar on both surfaces, despite at such initial conditions, the abstraction process involves more subsurface penetration on W(100) than on W(110).
Vacuum-induced quantum memory in an opto-electromechanical system
NASA Astrophysics Data System (ADS)
Qin, Li-Guo; Wang, Zhong-Yang; Wu, Shi-Chao; Gong, Shang-Qing; Ma, Hong-Yang; Jing, Jun
2018-03-01
We propose a scheme to implement electrically controlled quantum memory based on vacuum-induced transparency (VIT) in a high-Q tunable cavity, which is capacitively coupled to a mechanically variable capacitor by a charged mechanical cavity mirror as an interface. We analyze the changes of the cavity photons arising from vacuum-induced-Raman process and discuss VIT in an atomic ensemble trapped in the cavity. By slowly adjusting the voltage on the capacitor, the VIT can be adiabatically switched on or off, meanwhile, the transfer between the probe photon state and the atomic spin state can be electrically and adiabatically modulated. Therefore, we demonstrate a vacuum-induced quantum memory by electrically manipulating the mechanical mirror of the cavity based on electromagnetically induced transparency mechanism.
NASA Technical Reports Server (NTRS)
Kiehn, R. M.
1976-01-01
With respect to irreversible, non-homeomorphic maps, contravariant and covariant tensor fields have distinctly natural covariance and transformational behavior. For thermodynamic processes which are non-adiabatic, the fact that the process cannot be represented by a homeomorphic map emphasizes the logical arrow of time, an idea which encompasses a principle of retrodictive determinism for covariant tensor fields.
Adiabatic heating in impulsive solar flares
NASA Technical Reports Server (NTRS)
Maetzler, C.; Bai, T.; Crannell, C. J.; Frost, K. J.
1977-01-01
The dynamic X-ray spectra of two simple, impulsive solar flares are examined together with H alpha, microwave and meter wave radio observations. X-ray spectra of both events were characteristic of thermal bremsstrahlung from single temperature plasmas. The symmetry between rise and fall was found to hold for the temperature and emission measure. The relationship between temperature and emission measure was that of an adiabatic compression followed by adiabatic expansion; the adiabatic index of 5/3 indicated that the electron distribution remained isotropic. Observations in H alpha provided further evidence for compressive energy transfer.
Oreshkov, Ognyan; Calsamiglia, John
2010-07-30
We propose a theory of adiabaticity in quantum markovian dynamics based on a decomposition of the Hilbert space induced by the asymptotic behavior of the Lindblad semigroup. A central idea of our approach is that the natural generalization of the concept of eigenspace of the Hamiltonian in the case of markovian dynamics is a noiseless subsystem with a minimal noisy cofactor. Unlike previous attempts to define adiabaticity for open systems, our approach deals exclusively with physical entities and provides a simple, intuitive picture at the Hilbert-space level, linking the notion of adiabaticity to the theory of noiseless subsystems. As two applications of our theory, we propose a general framework for decoherence-assisted computation in noiseless codes and a dissipation-driven approach to holonomic computation based on adiabatic dragging of subsystems that is generally not achievable by nondissipative means.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Dinesh; Thapliyal, Himanshu; Mohammad, Azhar
Differential Power Analysis (DPA) attack is considered to be a main threat while designing cryptographic processors. In cryptographic algorithms like DES and AES, S-Box is used to indeterminate the relationship between the keys and the cipher texts. However, S-box is prone to DPA attack due to its high power consumption. In this paper, we are implementing an energy-efficient 8-bit S-Box circuit using our proposed Symmetric Pass Gate Adiabatic Logic (SPGAL). SPGAL is energy-efficient as compared to the existing DPAresistant adiabatic and non-adiabatic logic families. SPGAL is energy-efficient due to reduction of non-adiabatic loss during the evaluate phase of the outputs.more » Further, the S-Box circuit implemented using SPGAL is resistant to DPA attacks. The results are verified through SPICE simulations in 180nm technology. SPICE simulations show that the SPGAL based S-Box circuit saves upto 92% and 67% of energy as compared to the conventional CMOS and Secured Quasi-Adiabatic Logic (SQAL) based S-Box circuit. From the simulation results, it is evident that the SPGAL based circuits are energy-efficient as compared to the existing DPAresistant adiabatic and non-adiabatic logic families. In nutshell, SPGAL based gates can be used to build secure hardware for lowpower portable electronic devices and Internet-of-Things (IoT) based electronic devices.« less
Chen, Hui; Deng, Qiang; Ng, Sock Hoon; Lee, Raphael Tze Chuen; Maurer-Stroh, Sebastian; Zhai, Weiwei
2016-12-01
Influenza viruses are often propagated in a diverse set of culturing media and additional substitutions known as passage adaptation can cause extra evolution in the target strain, leading to ineffective vaccines. Using 25,482 H3N2 HA1 sequences curated from Global Initiative on Sharing All Influenza Data and National Center for Biotechnology Information databases, we found that passage adaptation is a very dynamic process that changes over time and evolves in a seesaw like pattern. After crossing the species boundary from bird to human in 1968, the influenza H3N2 virus evolves to be better adapted to the human environment and passaging them in embryonated eggs (i.e., an avian environment) leads to increasingly stronger positive selection. On the contrary, passage adaptation to the mammalian cell lines changes from positive selection to negative selection. Using two statistical tests, we identified 19 codon positions around the receptor binding domain strongly contributing to passage adaptation in the embryonated egg. These sites show strong convergent evolution and overlap extensively with positively selected sites identified in humans, suggesting that passage adaptation can confound many of the earlier studies on influenza evolution. Interestingly, passage adaptation in recent years seems to target a few codon positions in antigenic surface epitopes, which makes it difficult to produce antigenically unaltered vaccines using embryonic eggs. Our study outlines another interesting scenario whereby both convergent and adaptive evolution are working in synchrony driving viral adaptation. Future studies from sequence analysis to vaccine production need to take careful consideration of passage adaptation. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Metacognition and proofreading: the roles of aging, motivation, and interest.
Hargis, Mary B; Yue, Carole L; Kerr, Tyson; Ikeda, Kenji; Murayama, Kou; Castel, Alan D
2017-03-01
The current study examined younger and older adults' error detection accuracy, prediction calibration, and postdiction calibration on a proofreading task, to determine if age-related differences would be present in this type of common error detection task. Participants were given text passages, and were first asked to predict the percentage of errors they would detect in the passage. They then read the passage and circled errors (which varied in complexity and locality), and made postdictions regarding their performance, before repeating this with another passage and answering a comprehension test of both passages. There were no age-related differences in error detection accuracy, text comprehension, or metacognitive calibration, though participants in both age groups were overconfident overall in their metacognitive judgments. Both groups gave similar ratings of motivation to complete the task. The older adults rated the passages as more interesting than younger adults did, although this level of interest did not appear to influence error-detection performance. The age equivalence in both proofreading ability and calibration suggests that the ability to proofread text passages and the associated metacognitive monitoring used in judging one's own performance are maintained in aging. These age-related similarities persisted when younger adults completed the proofreading tasks on a computer screen, rather than with paper and pencil. The findings provide novel insights regarding the influence that cognitive aging may have on metacognitive accuracy and text processing in an everyday task.
Universal non-adiabatic geometric manipulation of pseudo-spin charge qubits
NASA Astrophysics Data System (ADS)
Azimi Mousolou, Vahid
2017-01-01
Reliable quantum information processing requires high-fidelity universal manipulation of quantum systems within the characteristic coherence times. Non-adiabatic holonomic quantum computation offers a promising approach to implement fast, universal, and robust quantum logic gates particularly useful in nano-fabricated solid-state architectures, which typically have short coherence times. Here, we propose an experimentally feasible scheme to realize high-speed universal geometric quantum gates in nano-engineered pseudo-spin charge qubits. We use a system of three coupled quantum dots containing a single electron, where two computational states of a double quantum dot charge qubit interact through an intermediate quantum dot. The additional degree of freedom introduced into the qubit makes it possible to create a geometric model system, which allows robust and efficient single-qubit rotations through careful control of the inter-dot tunneling parameters. We demonstrate that a capacitive coupling between two charge qubits permits a family of non-adiabatic holonomic controlled two-qubit entangling gates, and thus provides a promising procedure to maintain entanglement in charge qubits and a pathway toward fault-tolerant universal quantum computation. We estimate the feasibility of the proposed structure by analyzing the gate fidelities to some extent.
NASA Astrophysics Data System (ADS)
Heili, Manon; Bielawski, Andrew; Kieffer, John
The cure kinetics of a DGEBA/DETA epoxy is investigated using concurrent Raman and Brillouin light scattering. Raman scattering allows us to monitor the in-situ reaction and quantitatively assess the degree of cure. Brillouin scattering yields the elastic properties of the system, providing a measure of network connectivity. We show that the adiabatic modulus evolves non-uniquely as a function of cure degree, depending on the cure temperature and the molar ratio of the epoxy. Two mechanisms contribute to the increase in the elastic modulus of the material during curing. First, there is the formation of covalent bonds in the network during the curing process. Second, following bond formation, the epoxy undergoes structural relaxation toward an optimally packed network configuration, enhancing non-bonded interactions. We investigate to what extent the non-bonded interaction contribution to structural rigidity in cross-linked polymers is reversible, and to what extent it corresponds to the difference between adiabatic and isothermal moduli obtained from static tensile, i.e. the so-called relaxational modulus. To this end, we simultaneously measure the adiabatic and isothermal elastic moduli as a function of applied strain and deformation rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benabbas, Abdelkrim; Salna, Bridget; Sage, J. Timothy
2015-03-21
Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical “gating” distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotopemore » effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working near room temperature. This expression also holds when a broad protein conformational distribution of D-A equilibrium distances dominates the spread of the D-A vibrational wavefunction.« less
Benabbas, Abdelkrim; Salna, Bridget; Sage, J Timothy; Champion, Paul M
2015-03-21
Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical "gating" distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotope effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working near room temperature. This expression also holds when a broad protein conformational distribution of D-A equilibrium distances dominates the spread of the D-A vibrational wavefunction.
The "Sadly Cannot" Thermodynamic Cycle Revisited.
ERIC Educational Resources Information Center
Mills, David S.; Huston, Craig S.
1991-01-01
An exercise that gives students a chance to use the equations of state for both an ideal gas and for an adiabatic process in determining the points at which heat flow reverses direction and at which the working substance reaches its maximum temperature is demonstrated. (KR)
Parameter scaling toward high-energy density in a quasi-steady flow Z-pinch
NASA Astrophysics Data System (ADS)
Hughes, M. C.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Claveau, E. L.; Doty, S. A.; Forbes, E. G.; Kim, B.; Ross, M. P.
2016-10-01
Sheared axial flows are utilized by the ZaP Flow Z-Pinch Experiment to stabilize MHD instabilities. The pinches formed are 50 cm long with radii ranging from 0.3 to 1.0 cm. The plasma is generated in a coaxial acceleration region, similar to a Marshall gun, which provides a steady supply of plasma for approximately 100 us. The power to the plasma is partially decoupled between the acceleration and pinch assembly regions through the use of separate power supplies. Adiabatic scaling of the Bennett relation gives targets for future devices to reach high-energy density conditions or fusion reactors. The applicability of an adiabatic assumption is explored and work is done experimentally to clarify the plasma compression process, which may be more generally polytropic. The device is capable of a much larger parameter space than previous machine iterations, allowing flexibility in the initial conditions of the compression process to preserve stability. This work is supported by DoE FES and NNSA.
A Study of Text Processing and Intrinsic Individual Differences in Conceptual Organization.
ERIC Educational Resources Information Center
Campbell, Donald S.; Borich, Gary D.
This study is an attempt to identify one source of individual differences in the extent to which readers learn from text and the means for accommodating it. Eighty college students were administered a series of aptitude tests and randomly assigned to one of four treatment groups. The subjects then received six passages, each passage followed by a…
ERIC Educational Resources Information Center
Nora, Amaury
2002-01-01
Theorizes about interrelations between "rites of passage" in Tinto's (1993) Student Integration Model, and support from significant others in Nora and Cabrera's (1996) Student Adjustment Model. Depicts how both sets of factors impact social and academic experiences and integration, commitment levels to attainment of an educational goal…
What's in a (Role) Name? Formal and Conceptual Aspects of Comprehending Personal Nouns
ERIC Educational Resources Information Center
Irmen, Lisa
2007-01-01
Two eye-tracking studies assessed effects of grammatical and conceptual gender cues in generic role name processing in German. Participants read passages about a social or occupational group introduced by way of a generic role name(e.g., "Soldaten"/soldiers, "Kunstler"/artists). Later in the passage the gender of this group was specified by the…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-08
... Application and Request to Use the Traditional Licensing Process. b. Project No.: 14066-001. c. Date Filed... regulations. h. Potential Applicant Contact: Peter Bibb, Inside Passage Electric Cooperative, P.O. Box 210149... Hansen at (202) 502-8074; or email at ryan.hansen@ferc.gov . j. IPEC filed its request to use the...
Mean first passage time of active Brownian particle in one dimension
NASA Astrophysics Data System (ADS)
Scacchi, A.; Sharma, A.
2018-02-01
We investigate the mean first passage time of an active Brownian particle in one dimension using numerical simulations. The activity in one dimension is modelled as a two state model; the particle moves with a constant propulsion strength but its orientation switches from one state to other as in a random telegraphic process. We study the influence of a finite resetting rate r on the mean first passage time to a fixed target of a single free active Brownian particle and map this result using an effective diffusion process. As in the case of a passive Brownian particle, we can find an optimal resetting rate r* for an active Brownian particle for which the target is found with the minimum average time. In the case of the presence of an external potential, we find good agreement between the theory and numerical simulations using an effective potential approach.
The Adiabatic Invariance of the Action Variable in Classical Dynamics
ERIC Educational Resources Information Center
Wells, Clive G.; Siklos, Stephen T. C.
2007-01-01
We consider one-dimensional classical time-dependent Hamiltonian systems with quasi-periodic orbits. It is well known that such systems possess an adiabatic invariant which coincides with the action variable of the Hamiltonian formalism. We present a new proof of the adiabatic invariance of this quantity and illustrate our arguments by means of…
Geometry of the Adiabatic Theorem
ERIC Educational Resources Information Center
Lobo, Augusto Cesar; Ribeiro, Rafael Antunes; Ribeiro, Clyffe de Assis; Dieguez, Pedro Ruas
2012-01-01
We present a simple and pedagogical derivation of the quantum adiabatic theorem for two-level systems (a single qubit) based on geometrical structures of quantum mechanics developed by Anandan and Aharonov, among others. We have chosen to use only the minimum geometric structure needed for the understanding of the adiabatic theorem for this case.…
Collective neutrino oscillations and neutrino wave packets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akhmedov, Evgeny; Lindner, Manfred; Kopp, Joachim, E-mail: akhmedov@mpi-hd.mpg.de, E-mail: jkopp@uni-mainz.de, E-mail: lindner@mpi-hd.mpg.de
Effects of decoherence by wave packet separation on collective neutrino oscillations in dense neutrino gases are considered. We estimate the length of the wave packets of neutrinos produced in core collapse supernovae and the expected neutrino coherence length, and then proceed to consider the decoherence effects within the density matrix formalism of neutrino flavour transitions. First, we demonstrate that for neutrino oscillations in vacuum the decoherence effects are described by a damping term in the equation of motion of the density matrix of a neutrino as a whole (as contrasted to that of the fixed-momentum components of the neutrino densitymore » matrix). Next, we consider neutrino oscillations in ordinary matter and dense neutrino backgrounds, both in the adiabatic and non-adiabatic regimes. In the latter case we study two specific models of adiabaticity violation—one with short-term and another with extended non-adiabaticity. It is demonstrated that, while in the adiabatic case a damping term is present in the equation of motion of the neutrino density matrix (just like in the vacuum oscillation case), no such term in general appears in the non-adiabatic regime.« less
Superadiabatic Controlled Evolutions and Universal Quantum Computation.
Santos, Alan C; Sarandy, Marcelo S
2015-10-29
Adiabatic state engineering is a powerful technique in quantum information and quantum control. However, its performance is limited by the adiabatic theorem of quantum mechanics. In this scenario, shortcuts to adiabaticity, such as provided by the superadiabatic theory, constitute a valuable tool to speed up the adiabatic quantum behavior. Here, we propose a superadiabatic route to implement universal quantum computation. Our method is based on the realization of piecewise controlled superadiabatic evolutions. Remarkably, they can be obtained by simple time-independent counter-diabatic Hamiltonians. In particular, we discuss the implementation of fast rotation gates and arbitrary n-qubit controlled gates, which can be used to design different sets of universal quantum gates. Concerning the energy cost of the superadiabatic implementation, we show that it is dictated by the quantum speed limit, providing an upper bound for the corresponding adiabatic counterparts.
Superadiabatic Controlled Evolutions and Universal Quantum Computation
Santos, Alan C.; Sarandy, Marcelo S.
2015-01-01
Adiabatic state engineering is a powerful technique in quantum information and quantum control. However, its performance is limited by the adiabatic theorem of quantum mechanics. In this scenario, shortcuts to adiabaticity, such as provided by the superadiabatic theory, constitute a valuable tool to speed up the adiabatic quantum behavior. Here, we propose a superadiabatic route to implement universal quantum computation. Our method is based on the realization of piecewise controlled superadiabatic evolutions. Remarkably, they can be obtained by simple time-independent counter-diabatic Hamiltonians. In particular, we discuss the implementation of fast rotation gates and arbitrary n-qubit controlled gates, which can be used to design different sets of universal quantum gates. Concerning the energy cost of the superadiabatic implementation, we show that it is dictated by the quantum speed limit, providing an upper bound for the corresponding adiabatic counterparts. PMID:26511064
NASA Astrophysics Data System (ADS)
Humeniuk, Alexander; Mitrić, Roland
2017-12-01
A software package, called DFTBaby, is published, which provides the electronic structure needed for running non-adiabatic molecular dynamics simulations at the level of tight-binding DFT. A long-range correction is incorporated to avoid spurious charge transfer states. Excited state energies, their analytic gradients and scalar non-adiabatic couplings are computed using tight-binding TD-DFT. These quantities are fed into a molecular dynamics code, which integrates Newton's equations of motion for the nuclei together with the electronic Schrödinger equation. Non-adiabatic effects are included by surface hopping. As an example, the program is applied to the optimization of excited states and non-adiabatic dynamics of polyfluorene. The python and Fortran source code is available at http://www.dftbaby.chemie.uni-wuerzburg.de.
Context-dependent memory: colour versus odour.
Pointer, S C; Bond, N W
1998-06-01
An olfactory stimulus and a visual stimulus were employed in a context-dependent memory study using a prose passage as the to-be-remembered item. Ninety-five university students (aged 17-35 years) learned the passage of prose in the presence of one of the stimuli and were then asked to recall the passage with the original context either reinstated or not reinstated. The results revealed a significant context-dependent memory effect for the olfactory cue but not for the visual cue. They demonstrate support for the effectiveness of odours as context cues and it is suggested that context-dependent memory processes may underlie the formation and retrieval of odour-evoked autobiographical memories.
Echtler, Joseph P.
1978-01-01
A pressure tap having utility in an environment of a solid-gas phase process flow includes a tubular coupling part having attached over a passage therethrough at an end opening thereof exposed to the flow a grating of spaced bars, and affixed internally across a passage therethrough so as to cover over an opening therein a screen which maintains contained within the passage between it and the grating a matrix of smooth spheres. The grating bars are so oriented by the disposition of the aforesaid end opening with respect to the flow such that accumulations of solids therebetween tending to bridge the opening are removed therefrom by the flow.
A connection between mix and adiabat in ICF capsules
NASA Astrophysics Data System (ADS)
Cheng, Baolian; Kwan, Thomas; Wang, Yi-Ming; Yi, Sunghuan (Austin); Batha, Steven
2016-10-01
We study the relationship between instability induced mix, preheat and the adiabat of the deuterium-tritium (DT) fuel in fusion capsule experiments. Our studies show that hydrodynamic instability not only directly affects the implosion, hot spot shape and mix, but also affects the thermodynamics of the capsule, such as, the adiabat of the DT fuel, and, in turn, affects the energy partition between the pusher shell (cold DT) and the hot spot. It was found that the adiabat of the DT fuel is sensitive to the amount of mix caused by Richtmyer-Meshkov (RM) and Rayleigh-Taylor (RT) instabilities at the material interfaces due to its exponential dependence on the fuel entropy. An upper limit of mix allowed maintaining a low adiabat of DT fuel is derived. Additionally we demonstrated that the use of a high adiabat for the DT fuel in theoretical analysis and with the aid of 1D code simulations could explain some aspects of the 3D effects and mix in the capsule experiments. Furthermore, from the observed neutron images and our physics model, we could infer the adiabat of the DT fuel in the capsule and determine the possible amount of mix in the hot spot (LA-UR-16-24880). This work was conducted under the auspices of the U.S. Department of Energy by the Los Alamos National Laboratory under Contract No. W-7405-ENG-36.
Thermal Sensitive Foils in Physics Experiments
ERIC Educational Resources Information Center
Bochnícek, Zdenek; Konecný, Pavel
2014-01-01
The paper describes a set of physics demonstration experiments where thermal sensitive foils are used for the detection of the two dimensional distribution of temperature. The method is used for the demonstration of thermal conductivity, temperature change in adiabatic processes, distribution of electromagnetic radiation in a microwave oven and…
The Design of Airplane-engine Superchargers
NASA Technical Reports Server (NTRS)
Von Der Null, Werner
1937-01-01
With the forms of superchargers and underlying principles of computation, delivery heads per stage of 7,000 to 8,500 meters (air column) at an effective efficiency, based on the adiabatic process, of 0.7 may be attained, the space and weight requirements being kept within reasonable limits.
Simple proof of equivalence between adiabatic quantum computation and the circuit model.
Mizel, Ari; Lidar, Daniel A; Mitchell, Morgan
2007-08-17
We prove the equivalence between adiabatic quantum computation and quantum computation in the circuit model. An explicit adiabatic computation procedure is given that generates a ground state from which the answer can be extracted. The amount of time needed is evaluated by computing the gap. We show that the procedure is computationally efficient.
Kinetic Theory Derivation of the Adiabatic Law for Ideal Gases.
ERIC Educational Resources Information Center
Sobel, Michael I.
1980-01-01
Discusses how the adiabatic law for ideal gases can be derived from the assumption of a Maxwell-Boltzmann (or any other) distribution of velocities--in contrast to the usual derivations from thermodynamics alone, and the higher-order effect that leads to one-body viscosity. An elementary derivation of the adiabatic law is given. (Author/DS)
Astronomy-inspired Atomic and Molecular Physics
NASA Astrophysics Data System (ADS)
Rau, A. R. P.
2002-02-01
Aimed at senior undergraduate and first-year graduate students in departments of physics and astronomy, this textbook gives a systematic treatment of atomic and molecular structure and spectra, together with the effect of weak and strong external electromagnetic fields. Topics chosen are those of interest in astronomy and indeed many were inspired by specific astronomical contexts. Examples include the negative ion of hydrogen and the effects of strong magnetic fields such as those occurring on certain white dwarfs and neutron stars. Adiabatic and non-adiabatic handling of electron correlations and application to processes such as dielectronic recombination are included. Astronomical examples are provided throughout as well as end-of-the chapter problems and exercises. Over seventy illustrative diagrams complete this unique and comprehensive volume. Link: http://www.wkap.nl/prod/b/1-4020-0467-2
Adiabatic Mass Loss Model in Binary Stars
NASA Astrophysics Data System (ADS)
Ge, H. W.
2012-07-01
Rapid mass transfer process in the interacting binary systems is very complicated. It relates to two basic problems in the binary star evolution, i.e., the dynamically unstable Roche-lobe overflow and the common envelope evolution. Both of the problems are very important and difficult to be modeled. In this PhD thesis, we focus on the rapid mass loss process of the donor in interacting binary systems. The application to the criterion of dynamically unstable mass transfer and the common envelope evolution are also included. Our results based on the adiabatic mass loss model could be used to improve the binary evolution theory, the binary population synthetic method, and other related aspects. We build up the adiabatic mass loss model. In this model, two approximations are included. The first one is that the energy generation and heat flow through the stellar interior can be neglected, hence the restructuring is adiabatic. The second one is that he stellar interior remains in hydrostatic equilibrium. We model this response by constructing model sequences, beginning with a donor star filling its Roche lobe at an arbitrary point in its evolution, holding its specific entropy and composition profiles fixed. These approximations are validated by the comparison with the time-dependent binary mass transfer calculations and the polytropic model for low mass zero-age main-sequence stars. In the dynamical time scale mass transfer, the adiabatic response of the donor star drives it to expand beyond its Roche lobe, leading to runaway mass transfer and the formation of a common envelope with its companion star. For donor stars with surface convection zones of any significant depth, this runaway condition is encountered early in mass transfer, if at all; but for main sequence stars with radiative envelopes, it may be encountered after a prolonged phase of thermal time scale mass transfer, so-called delayed dynamical instability. We identify the critical binary mass ratio for the onset of dynamical time scale mass transfer; if the ratio of donor to accretor masses exceeds this critical value, the dynamical time scale mass transfer ensues. The grid of criterion for all stars can be used to be the basic input as the binary population synthetic method, which will be improved absolutely. In common envelope evolution, the dissipation of orbital energy of the binary provides the energy to eject the common envelope; the energy budget for this process essentially consists of the initial orbital energy of the binary and the initial binding energies of the binary components. We emphasize that, because stellar core and envelope contribute mutually to each other's gravitational potential energy, proper evaluation of the total energy of a star requires integration over the entire stellar interior, not the ejected envelope alone as commonly assumed. We show that the change in total energy of the donor star, as a function of its remaining mass along an adiabatic mass-loss sequence, can be calculated. This change in total energy of the donor star, combined with the requirement that both remnant donor and its companion star fit within their respective Roche lobes, then circumscribes energetically possible survivors of common envelope evolution. It is the first time that we can calculate the accurate total energy of the donor star in common envelope evolution, while the results with the old method are inconsistent with observations.
Articles which include chevron film cooling holes, and related processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunker, Ronald Scott; Lacy, Benjamin Paul
An article is described, including an inner surface which can be exposed to a first fluid; an inlet; and an outer surface spaced from the inner surface, which can be exposed to a hotter second fluid. The article further includes at least one row or other pattern of passage holes. Each passage hole includes an inlet bore extending through the substrate from the inlet at the inner surface to a passage hole-exit proximate to the outer surface, with the inlet bore terminating in a chevron outlet adjacent the hole-exit. The chevron outlet includes a pair of wing troughs having amore » common surface region between them. The common surface region includes a valley which is adjacent the hole-exit; and a plateau adjacent the valley. The article can be an airfoil. Related methods for preparing the passage holes are also described.« less
Beta cells transfer vesicles containing insulin to phagocytes for presentation to T cells.
Vomund, Anthony N; Zinselmeyer, Bernd H; Hughes, Jing; Calderon, Boris; Valderrama, Carolina; Ferris, Stephen T; Wan, Xiaoxiao; Kanekura, Kohsuke; Carrero, Javier A; Urano, Fumihiko; Unanue, Emil R
2015-10-06
Beta cells from nondiabetic mice transfer secretory vesicles to phagocytic cells. The passage was shown in culture studies where the transfer was probed with CD4 T cells reactive to insulin peptides. Two sets of vesicles were transferred, one containing insulin and another containing catabolites of insulin. The passage required live beta cells in a close cell contact interaction with the phagocytes. It was increased by high glucose concentration and required mobilization of intracellular Ca2+. Live images of beta cell-phagocyte interactions documented the intimacy of the membrane contact and the passage of the granules. The passage was found in beta cells isolated from islets of young nonobese diabetic (NOD) mice and nondiabetic mice as well as from nondiabetic humans. Ultrastructural analysis showed intraislet phagocytes containing vesicles having the distinct morphology of dense-core granules. These findings document a process whereby the contents of secretory granules become available to the immune system.
ERIC Educational Resources Information Center
Caplan, David; Waters, Gloria; Bertram, Julia; Ostrowski, Adam; Michaud, Jennifer
2016-01-01
The authors assessed 4,865 middle and high school students for the ability to recognize and understand written and spoken morphologically simple words, morphologically complex words, and the syntactic structure of sentences and for the ability to answer questions about facts presented in a written passage and to make inferences based on those…
Diffusion Monte Carlo approach versus adiabatic computation for local Hamiltonians
NASA Astrophysics Data System (ADS)
Bringewatt, Jacob; Dorland, William; Jordan, Stephen P.; Mink, Alan
2018-02-01
Most research regarding quantum adiabatic optimization has focused on stoquastic Hamiltonians, whose ground states can be expressed with only real non-negative amplitudes and thus for whom destructive interference is not manifest. This raises the question of whether classical Monte Carlo algorithms can efficiently simulate quantum adiabatic optimization with stoquastic Hamiltonians. Recent results have given counterexamples in which path-integral and diffusion Monte Carlo fail to do so. However, most adiabatic optimization algorithms, such as for solving MAX-k -SAT problems, use k -local Hamiltonians, whereas our previous counterexample for diffusion Monte Carlo involved n -body interactions. Here we present a 6-local counterexample which demonstrates that even for these local Hamiltonians there are cases where diffusion Monte Carlo cannot efficiently simulate quantum adiabatic optimization. Furthermore, we perform empirical testing of diffusion Monte Carlo on a standard well-studied class of permutation-symmetric tunneling problems and similarly find large advantages for quantum optimization over diffusion Monte Carlo.
Extension in Mona Passage, Northeast Caribbean
Chaytor, J.D.; ten Brink, Uri S.
2010-01-01
As shown by the recent Mw 7.0 Haiti earthquake, intra-arc deformation, which accompanies the subduction process, can present seismic and tsunami hazards to nearby islands. Spatially-limited diffuse tectonic deformation within the Northeast Caribbean Plate Boundary Zone likely led to the development of the submerged Mona Passage between Puerto Rico and the Dominican Republic. GPS geodetic data and a moderate to high level of seismicity indicate that extension within the region is ongoing. Newly-collected high-resolution multibeam bathymetry and multi-channel seismic reflection profiles and previously-collected samples are used here to determine the tectonic evolution of the Mona Passage intra-arc region. The passage is floored almost completely by Oligocene-Pliocene carbonate platform strata, which have undergone submarine and subaerial erosion. Structurally, the passage is characterized by W- to NNW-trending normal faults that offset the entire thickness of the Oligo-Pliocene carbonate platform rocks. The orientation of these faults is compatible with the NE-oriented extension vector observed in GPS data. Fault geometry best fits an oblique extension model rather than previously proposed single-phase, poly-phase, bending-moment, or rotation extension models. The intersection of these generally NW-trending faults in Mona Passage with the N-S oriented faults of Mona Canyon may reflect differing responses of the brittle upper-crust, along an arc-forearc rheological boundary, to oblique subduction along the Puerto Rico trench. Several faults within the passage, if ruptured completely, are long enough to generate earthquakes with magnitudes on the order of Mw 6.5-7. ?? 2010.
Heinrich, Franziska; Contioso, Vanessa Bono; Stein, Veronika M; Carlson, Regina; Tipold, Andrea; Ulrich, Reiner; Puff, Christina; Baumgärtner, Wolfgang; Spitzbarth, Ingo
2015-01-15
DH82 cells represent a permanent macrophage cell line isolated from a dog with histiocytic sarcoma (HS) and are commonly used in various fields of research upon infection and cancer, respectively. Despite its frequent use, data on cell surface antigen expression of this cell line are fragmentary and in part inconsistent. We therefore aimed at a detailed morphological and antigenic characterization of DH82 cells with respect to passage-dependent differences. Cellular morphology of early (≤ 13) and late (≥ 66) passages of DH82 cells was evaluated via scanning electron microscopy. Moreover, cells were labelled with 10 monoclonal antibodies directed against CD11c, CD14, CD18, CD44, CD45, CD80, CD86, MHC-I, MHC-II, and ICAM-1 for flow cytometric analysis. Early passage cells were characterized by round cell bodies with abundant small cytoplasmic projections whereas later passages exhibited a spindle-shaped morphology with large processes. The percentage of CD11c-, CD14-, CD18-, CD45-, and CD80 positive cells significantly decreased in late passages whereas the expression of CD44, CD86, MHC-I, MHC-II and ICAM-1 remained unchanged. DH82 cells represent a remarkably heterogeneous cell line with divergent antigenic and morphologic properties. The present findings have important implications for future studies, which should consider distinct characteristics with regard to the used passage. Copyright © 2014 Elsevier B.V. All rights reserved.
Shape design of internal cooling passages within a turbine blade
NASA Astrophysics Data System (ADS)
Nowak, Grzegorz; Nowak, Iwona
2012-04-01
The article concerns the optimization of the shape and location of non-circular passages cooling the blade of a gas turbine. To model the shape, four Bezier curves which form a closed profile of the passage were used. In order to match the shape of the passage to the blade profile, a technique was put forward to copy and scale the profile fragments into the component, and build the outline of the passage on the basis of them. For so-defined cooling passages, optimization calculations were carried out with a view to finding their optimal shape and location in terms of the assumed objectives. The task was solved as a multi-objective problem with the use of the Pareto method, for a cooling system composed of four and five passages. The tool employed for the optimization was the evolutionary algorithm. The article presents the impact of the population on the task convergence, and discusses the impact of different optimization objectives on the Pareto optimal solutions obtained. Due to the problem of different impacts of individual objectives on the position of the solution front which was noticed during the calculations, a two-step optimization procedure was introduced. Also, comparative optimization calculations for the scalar objective function were carried out and set up against the non-dominated solutions obtained in the Pareto approach. The optimization process resulted in a configuration of the cooling system that allows a significant reduction in the temperature of the blade and its thermal stress.
New Result for the β-decay Asymmetry Parameter A0 from the UCNA Experiment
NASA Astrophysics Data System (ADS)
Brown, M. A.-P.; UCNA Collaboration
2017-09-01
The UCNA Experiment at the Ultracold Neutron facility at LANL uses polarized ultracold neutrons (UCN) to determine the neutron β-decay asymmetry parameter A0, the angular correlation between the neutron spin and the decay electron's momentum. A0 further determines λ =gA /gV , which, when combined with the neutron lifetime, permits extraction of the CKM matrix element Vud solely from neutron decay. In the UCNA experiment, UCN are produced in a pulsed, spallation driven solid deuterium source, polarized using a 7 T magnetic field, and transported through an Adiabatic Fast Passage (AFP) spin flipper prior to storage within a 1 T solenoidal spectrometer housing electron detectors at each end. The spin-flipper allows one to form a super-ratio of decay rates for neutron spins aligned parallel and anti-parallel to the 1 T magnetic field, eliminating to first order errors due to variations in the decay rate and detector efficiencies. Leading systematics and analysis techniques from the most recent analysis of data collected from 2011-2013 will be presented. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Number DE-SC-0014622.
Sensitivity enhancement by multiple-contact cross-polarization under magic-angle spinning.
Raya, J; Hirschinger, J
2017-08-01
Multiple-contact cross-polarization (MC-CP) is applied to powder samples of ferrocene and l-alanine under magic-angle spinning (MAS) conditions. The method is described analytically through the density matrix formalism. The combination of a two-step memory function approach and the Anderson-Weiss approximation is found to be particularly useful to derive approximate analytical solutions for single-contact Hartmann-Hahn CP (HHCP) and MC-CP dynamics under MAS. We show that the MC-CP sequence requiring no pulse-shape optimization yields higher polarizations at short contact times than optimized adiabatic passage through the HH condition CP (APHH-CP) when the MAS frequency is comparable to the heteronuclear dipolar coupling, i.e., when APHH-CP through a single sideband matching condition is impossible or difficult to perform. It is also shown that the MC-CP sideband HH conditions are generally much broader than for single-contact HHCP and that efficient polarization transfer at the centerband HH condition can be reintroduced by rotor-asynchronous multiple equilibrations-re-equilibrations with the proton spin bath. Boundary conditions for the successful use of the MC-CP experiment when relying on spin-lattice relaxation for repolarization are also examined. Copyright © 2017 Elsevier Inc. All rights reserved.
Sensitivity enhancement by multiple-contact cross-polarization under magic-angle spinning
NASA Astrophysics Data System (ADS)
Raya, J.; Hirschinger, J.
2017-08-01
Multiple-contact cross-polarization (MC-CP) is applied to powder samples of ferrocene and L-alanine under magic-angle spinning (MAS) conditions. The method is described analytically through the density matrix formalism. The combination of a two-step memory function approach and the Anderson-Weiss approximation is found to be particularly useful to derive approximate analytical solutions for single-contact Hartmann-Hahn CP (HHCP) and MC-CP dynamics under MAS. We show that the MC-CP sequence requiring no pulse-shape optimization yields higher polarizations at short contact times than optimized adiabatic passage through the HH condition CP (APHH-CP) when the MAS frequency is comparable to the heteronuclear dipolar coupling, i.e., when APHH-CP through a single sideband matching condition is impossible or difficult to perform. It is also shown that the MC-CP sideband HH conditions are generally much broader than for single-contact HHCP and that efficient polarization transfer at the centerband HH condition can be reintroduced by rotor-asynchronous multiple equilibrations-re-equilibrations with the proton spin bath. Boundary conditions for the successful use of the MC-CP experiment when relying on spin-lattice relaxation for repolarization are also examined.
Dynamics of Charged Particles in an Adiabatic Thermal Beam Equilibrium
NASA Astrophysics Data System (ADS)
Chen, Chiping; Wei, Haofei
2010-11-01
Charged-particle motion is studied in the self-electric and self-magnetic fields of a well-matched, intense charged-particle beam and an applied periodic solenoidal magnetic focusing field. The beam is assumed to be in a state of adiabatic thermal equilibrium. The phase space is analyzed and compared with that of the well-known Kapchinskij-Vladimirskij (KV)-type beam equilibrium. It is found that the widths of nonlinear resonances in the adiabatic thermal beam equilibrium are narrower than those in the KV-type beam equilibrium. Numerical evidence is presented, indicating almost complete elimination of chaotic particle motion in the adiabatic thermal beam equilibrium.
NASA Astrophysics Data System (ADS)
Dimova, E.; Steflekova, V.; Karatodorov, S.; Kyoseva, E.
2018-03-01
We propose a way of achieving efficient and robust second-harmonic generation. The technique proposed is similar to the adiabatic population transfer in a two-state quantum system with crossing energies. If the phase mismatching changes slowly, e.g., due to a temperature gradient along the crystal, and makes the phase match for second-harmonic generation to occur, then the energy would be converted adiabatically to the second harmonic. As an adiabatic technique, the second-harmonic generation scheme presented is stable to variations in the crystal parameters, as well as in the input light, crystal length, input intensity, wavelength and angle of incidence.
Analytical skin friction and heat transfer formula for compressible internal flows
NASA Technical Reports Server (NTRS)
Dechant, Lawrence J.; Tattar, Marc J.
1994-01-01
An analytic, closed-form friction formula for turbulent, internal, compressible, fully developed flow was derived by extending the incompressible law-of-the-wall relation to compressible cases. The model is capable of analyzing heat transfer as a function of constant surface temperatures and surface roughness as well as analyzing adiabatic conditions. The formula reduces to Prandtl's law of friction for adiabatic, smooth, axisymmetric flow. In addition, the formula reduces to the Colebrook equation for incompressible, adiabatic, axisymmetric flow with various roughnesses. Comparisons with available experiments show that the model averages roughly 12.5 percent error for adiabatic flow and 18.5 percent error for flow involving heat transfer.
NASA Astrophysics Data System (ADS)
Babajanova, Gulmira; Matrasulov, Jasur; Nakamura, Katsuhiro
2018-04-01
With use of the scheme of fast forward which realizes quasistatic or adiabatic dynamics in shortened timescale, we investigate a thermally isolated ideal quantum gas confined in a rapidly dilating one-dimensional (1D) cavity with the time-dependent size L =L (t ) . In the fast-forward variants of equation of states, i.e., Bernoulli's formula and Poisson's adiabatic equation, the force or 1D analog of pressure can be expressed as a function of the velocity (L ˙) and acceleration (L ̈) of L besides rapidly changing state variables like effective temperature (T ) and L itself. The force is now a sum of nonadiabatic (NAD) and adiabatic contributions with the former caused by particles moving synchronously with kinetics of L and the latter by ideal bulk particles insensitive to such a kinetics. The ratio of NAD and adiabatic contributions does not depend on the particle number (N ) in the case of the soft-wall confinement, whereas such a ratio is controllable in the case of hard-wall confinement. We also reveal the condition when the NAD contribution overwhelms the adiabatic one and thoroughly changes the standard form of the equilibrium equation of states.
Project SQUID. Annual Program Report
1949-01-01
hydrogen had previously been observed by Taylor and Salley, but no similar data on the thermal reaction were available. The use of a spark source of... Brayton cycle. The process a-b is the adiabatic ram compression obtained by virtue of flight speed, and is the same as that experienced by a ram jet
NASA Technical Reports Server (NTRS)
Mulac, Richard A.; Celestina, Mark L.; Adamczyk, John J.; Misegades, Kent P.; Dawson, Jef M.
1987-01-01
A procedure is outlined which utilizes parallel processing to solve the inviscid form of the average-passage equation system for multistage turbomachinery along with a description of its implementation in a FORTRAN computer code, MSTAGE. A scheme to reduce the central memory requirements of the program is also detailed. Both the multitasking and I/O routines referred to are specific to the Cray X-MP line of computers and its associated SSD (Solid-State Disk). Results are presented for a simulation of a two-stage rocket engine fuel pump turbine.
Kristiansen, Tine Mechlenborg; Antoft, Rasmus
2016-06-01
In this paper, we apply the theory of status passage to the empirical field of group-based patient education. On the basis of ethnographic fieldwork carried out in the context of a local Danish patient education programme aimed at people diagnosed with rheumatoid arthritis, we illustrate how participation in the programme for the recently diagnosed is a regularised status passage symbolising a transition in life from a novice to a more experienced person with chronic illness. We demonstrate how central properties of status passage are at play and how they are shaped by interactions among the different agents: participants, lay experts and health professionals. We highlight how the unique biographical situation of the individual and the individual timing of participation is an important factor affecting whether the patient education programme succeeds in regularising the status passage. We highlight the ambiguity of the role of the health professionals in directing the status passage of the recently diagnosed. On one hand, health professionals empowered the participants by giving them access to professional knowledge and guidance and thereby supporting the status passage. On the other hand, the effort to direct responsibility back to the participants did not consider individual biographical situations, and thereby risked leaving the participants frustrated and unable to pass. Further, we point to the special significance of the socialising process between the participants, with the recently diagnosed being the novices asking questions and seeking guidance and the lay experts and the experienced participants taking the role of coaches, guiding the recently diagnosed managing the status passage into chronic illness. Copyright © 2016 Elsevier Ltd. All rights reserved.
Direct Collapse to Supermassive Black Hole Seeds with Radiative Transfer: Isolated Halos
NASA Astrophysics Data System (ADS)
Luo, Yang; Ardaneh, Kazem; Shlosman, Isaac; Nagamine, Kentaro; Wise, John H.; Begelman, Mitchell C.
2018-05-01
Direct collapse within dark matter haloes is a promising path to form supermassive black hole seeds at high redshifts. The outer part of this collapse remains optically thin. However, the innermost region of the collapse is expected to become optically thick and requires to follow the radiation field in order to understand its evolution. So far, the adiabatic approximation has been used exclusively for this purpose. We apply radiative transfer in the flux-limited diffusion (FLD) approximation to solve the evolution of coupled gas and radiation for isolated haloes. We find that (1) the photosphere forms at 10-6 pc and rapidly expands outwards. (2) A central core forms, with a mass of 1 M⊙, supported by gas pressure gradients and rotation. (3) Growing gas and radiation pressure gradients dissolve it. (4) This process is associated with a strong anisotropic outflow; another core forms nearby and grows rapidly. (5) Typical radiation luminosity emerging from the photosphere is 5 × 1037-5 × 1038 erg s-1, of the order the Eddington luminosity. (6) Two variability time-scales are associated with this process: a long one, which is related to the accretion flow within the central 10-4-10-3 pc, and 0.1 yr, related to radiation diffusion. (7) Adiabatic models evolution differs profoundly from that of the FLD models, by forming a geometrically thick disc. Overall, an adiabatic equation of state is not a good approximation to the advanced stage of direct collapse, because the radiation is capable of escaping due to anisotropy in the optical depth and associated gradients.
On the formation of adiabatic shear bands in titanium alloy Ti17 under severe loading conditions
NASA Astrophysics Data System (ADS)
Boubaker, H. Ben; Ayed, Y.; Mareau, C.; Germain, G.
2018-05-01
For metallic materials, fabrication processes (e.g. machining and forging) may involve important strain rates and high temperatures. For such severe loading conditions, the development of damage is often associated with the formation of Adiabatic Shear Bands (ASB). In this work, the impact of loading conditions (strain rate, temperature) on the formation of ASB in a beta rich titanium alloy (Ti17) is investigated. In this perspective, uniaxial compression tests have been conducted on cylindrical samples with a Gleeble-3500 thermo-mechanical simulator at temperatures ranging from 25°C to 800°C and strain rates ranging from 0.1 to 50 s-1 with axial strains of approximately 50 %. According to the experimental results, the flow curves exhibit hardening from 25°C to 550°C and softening from 600°C to 800°C. When looking at the evolution of flow stress, the strain rate sensitivity is found to increase significantly with increasing temperatures. Also, adiabatic shear bands are preferably observed for high strain rates and low temperatures. The formation of ASB thus seems to be quite dependent on the evolution of the strain rate sensitivity of Ti17. Finally, metallographic observations have been carried out to better understand the process leading to the formation of ASB. Such observations demonstrate that the average width of ASB increases with increasing temperatures and decreasing strain rates. However, such observations do not allow for identifying whether some specific microstructural transformations (e.g recrystallization or phase transformation) could explain the formation of ASB or not.
ADR salt pill design and crystal growth process for hydrated magnetic salts
NASA Technical Reports Server (NTRS)
Shirron, Peter J. (Inventor); DiPirro, Michael J. (Inventor); Canavan, Edgar R. (Inventor)
2013-01-01
A process is provided for producing a salt pill for use in very low temperature adiabatic demagnetization refrigerators (ADRs). The method can include providing a thermal bus in a housing. The thermal bus can include an array of thermally conductive metal conductors. A hydrated salt can be grown on the array of thermally conductive metal conductors. Thermal conductance can be provided to the hydrated salt.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krix, David; Nienhaus, Hermann, E-mail: hermann.nienhaus@uni-due.de
2014-08-21
Thin potassium films grown on Si(001) substrates are used to measure internal chemicurrents and the external emission of exoelectrons simultaneously during adsorption of molecular oxygen on K surfaces at 120 K. The experiments clarify the dynamics of electronic excitations at a simple metal with a narrow valence band. X-ray photoemission reveals that for exposures below 5 L almost exclusively peroxide K{sub 2}O{sub 2} is formed, i.e., no dissociation of the molecule occurs during interaction. Still a significant chemicurrent and a delayed exoelectron emission are detected due to a rapid injection of unoccupied molecular levels below the Fermi level. Since themore » valence band width of potassium is approximately equal to the potassium work function (2.4 eV) the underlying mechanism of exoemission is an Auger relaxation whereas chemicurrents are detected after resonant charge transfer from the metal valence band into the injected level. The change of the chemicurrent and exoemission efficiencies with oxygen coverage can be deduced from the kinetics of the reaction and the recorded internal and external emission currents traces. It is shown that the non-adiabaticity of the reaction increases with coverage due to a reduction of the electronic density of states at the surface while the work function does not vary significantly. Therefore, the peroxide formation is one of the first reaction systems which exhibits varying non-adiabaticity and efficiencies during the reaction. Non-adiabatic calculations based on model Hamiltonians and density functional theory support the picture of chemicurrent generation and explain the rapid injection of hot hole states by an intramolecular motion, i.e., the expansion of the oxygen molecule on the timescale of a quarter of a vibrational period.« less
Gamma time-dependency in Blaxter's compartmental model.
NASA Technical Reports Server (NTRS)
Matis, J. H.
1972-01-01
A new two-compartment model for the passage of particles through the gastro-intestinal tract of ruminants is proposed. In this model, a gamma distribution of lifetimes is introduced in the first compartment; thereby, passage from that compartment becomes time-dependent. This modification is strongly suggested by the physical alteration which certain substances, e.g. hay particles, undergo in the digestive process. The proposed model is applied to experimental data.
Process Study of Oceanic Responses to Typhoons Using Arrays of EM-APEX Floats and Moorings
2012-09-30
maximum potential intensity, structure , energy, trajectory, and dynamic evolution. The most energetic oceanic responses to tropical cyclone forcing are...during tropical cyclone passage will aid understanding of storm dynamics and structure . The ocean’s recovery after tropical cyclone passage depends...days). The wake was advected hundreds of kilometers from the storm track by a pre- existing mesoscale eddy. Its thermal structure could not be
2015-11-23
SECURITY CLASSIFICATION OF: The DURIP award provided funds for acquiring a cryogen-free adiabatic demagnetization refrigerator at Syracuse University...The new refrigerator has been installed and is now fully operational. The PI has intensive research efforts in the area of Quantum Information...Aug-2014 24-Aug-2015 Approved for Public Release; Distribution Unlimited Final Report: Acquisition of an Adiabatic Demagnetization Refrigerator for
Excitation of phonons in medium-energy electron diffraction
NASA Astrophysics Data System (ADS)
Alvarez, M. A. Vicente; Ascolani, H.; Zampieri, G.
1996-03-01
The ``elastic'' backscattering of electrons from crystalline surfaces presents two regimes: a low-energy regime, in which the characteristic low-energy electron diffraction (LEED) pattern is observed, and a medium-energy regime, in which the diffraction pattern is similar to those observed in x-ray photoemission diffraction (XPD) and Auger electron diffraction (AED) experiments. We present a model for the electron scattering which, including the vibrational degrees of freedom of the crystal, contains both regimes and explains the passage from one regime to the other. Our model is based on a separation of the electron and atomic motions (adiabatic approximation) and on a cluster-type formulation of the multiple scattering of the electron. The inelastic scattering events (excitation and/or absorption of phonons) are treated as coherent processes and no break of the phase relation between the incident and the exit paths of the electron is assumed. The LEED and the medium-energy electron diffraction regimes appear naturally in this model as the limit cases of completely elastic scattering and of inelastic scattering with excitation and/or absorption of multiple phonons. Intensity patterns calculated with this model are in very good agreement with recent experiments of electron scattering on Cu(001) at low and medium energies. We show that there is a correspondence between the type of intensity pattern and the mean number of phonons excited and/or absorbed during the scattering: a LEED-like pattern is observed when this mean number is less than 2, LEED-like and XPD/AED-like features coexist when this number is 3-4, and a XPD/AED-like pattern is observed when this number is greater than 5-6.
Electronically nonadiabatic wave packet propagation using frozen Gaussian scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondorskiy, Alexey D., E-mail: kondor@sci.lebedev.ru; Nanbu, Shinkoh, E-mail: shinkoh.nanbu@sophia.ac.jp
2015-09-21
We present an approach, which allows to employ the adiabatic wave packet propagation technique and semiclassical theory to treat the nonadiabatic processes by using trajectory hopping. The approach developed generates a bunch of hopping trajectories and gives all additional information to incorporate the effect of nonadiabatic coupling into the wave packet dynamics. This provides an interface between a general adiabatic frozen Gaussian wave packet propagation method and the trajectory surface hopping technique. The basic idea suggested in [A. D. Kondorskiy and H. Nakamura, J. Chem. Phys. 120, 8937 (2004)] is revisited and complemented in the present work by the elaborationmore » of efficient numerical algorithms. We combine our approach with the adiabatic Herman-Kluk frozen Gaussian approximation. The efficiency and accuracy of the resulting method is demonstrated by applying it to popular benchmark model systems including three Tully’s models and 24D model of pyrazine. It is shown that photoabsorption spectrum is successfully reproduced by using a few hundreds of trajectories. We employ the compact finite difference Hessian update scheme to consider feasibility of the ab initio “on-the-fly” simulations. It is found that this technique allows us to obtain the reliable final results using several Hessian matrix calculations per trajectory.« less
NASA Astrophysics Data System (ADS)
Andronesi, Ovidiu C.; Mintzopoulos, Dionyssios; Struppe, Jochem; Black, Peter M.; Tzika, A. Aria
2008-08-01
We propose a solid-state NMR method that maximizes the advantages of high-resolution magic-angle-spinning (HRMAS) applied to intact biopsies when compared to more conventional liquid-state NMR approaches. Theoretical treatment, numerical simulations and experimental results on intact human brain biopsies are presented. Experimentally, it is proven that an optimized adiabatic TOBSY (TOtal through Bond correlation SpectroscopY) solid-state NMR pulse sequence for two-dimensional 1H- 1H homonuclear scalar-coupling longitudinal isotropic mixing provides a 20%-50% improvement in signal-to-noise ratio relative to its liquid-state analogue TOCSY (TOtal Correlation SpectroscopY). For this purpose we have refined the C9151 symmetry-based 13C TOBSY pulse sequence for 1H MRS use and compared it to MLEV-16 TOCSY sequence. Both sequences were rotor-synchronized and implemented using WURST-8 adiabatic inversion pulses. As discussed theoretically and shown in simulations, the improved magnetization-transfer comes from actively removing residual dipolar couplings from the average Hamiltonian. Importantly, the solid-state NMR techniques are tailored to perform measurements at low temperatures where sample degradation is reduced. This is the first demonstration of such a concept for HRMAS metabolic profiling of disease processes, including cancer, from biopsies requiring reduced sample degradation for further genomic analysis.
A hybrid approach to simulation of electron transfer in complex molecular systems
Kubař, Tomáš; Elstner, Marcus
2013-01-01
Electron transfer (ET) reactions in biomolecular systems represent an important class of processes at the interface of physics, chemistry and biology. The theoretical description of these reactions constitutes a huge challenge because extensive systems require a quantum-mechanical treatment and a broad range of time scales are involved. Thus, only small model systems may be investigated with the modern density functional theory techniques combined with non-adiabatic dynamics algorithms. On the other hand, model calculations based on Marcus's seminal theory describe the ET involving several assumptions that may not always be met. We review a multi-scale method that combines a non-adiabatic propagation scheme and a linear scaling quantum-chemical method with a molecular mechanics force field in such a way that an unbiased description of the dynamics of excess electron is achieved and the number of degrees of freedom is reduced effectively at the same time. ET reactions taking nanoseconds in systems with hundreds of quantum atoms can be simulated, bridging the gap between non-adiabatic ab initio simulations and model approaches such as the Marcus theory. A major recent application is hole transfer in DNA, which represents an archetypal ET reaction in a polarizable medium. Ongoing work focuses on hole transfer in proteins, peptides and organic semi-conductors. PMID:23883952
Effects of local defect growth in direct-drive cryogenic implosions on OMEGA
NASA Astrophysics Data System (ADS)
Igumenshchev, I. V.; Goncharov, V. N.; Shmayda, W. T.; Harding, D. R.; Sangster, T. C.; Meyerhofer, D. D.
2013-08-01
Spherically symmetric, low-adiabat (adiabat α ≲ 3) cryogenic direct-drive-implosion experiments on the OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1995)] yield less than 10% of the neutrons predicted in one-dimensional hydrodynamic simulations. Two-dimensional hydrodynamic simulations suggest that this performance degradation can be explained assuming perturbations from isolated defects of submicron to tens-of-micron scale on the outer surface or inside the shell of implosion targets. These defects develop during the cryogenic filling process and typically number from several tens up to hundreds for each target covering from about 0.2% to 1% of its surface. The simulations predict that such defects can significantly perturb the implosion and result in the injection of about 1 to 2 μg of the hot ablator (carbon-deuterium) and fuel (deuterium-tritium) materials from the ablation surface into the targets. Both the hot mass injection and perturbations of the shell reduce the final shell convergence ratio and implosion performance. The injected carbon ions radiatively cool the hot spot, reducing the fuel temperature, and further reducing the neutron yield. The negative effect of local defects can be minimized by decreasing the number and size of these defects and/or using more hydrodynamically stable implosion designs with higher shell adiabat.
Sliding Seal Materials for Adiabatic Engines, Phase 2
NASA Technical Reports Server (NTRS)
Lankford, J.; Wei, W.
1986-01-01
An essential task in the development of the heavy-duty adiabatic diesel engine is identification and improvements of reliable, low-friction piston seal materials. In the present study, the sliding friction coefficients and wear rates of promising carbide, oxide, and nitride materials were measured under temperature, environmental, velocity, and loading conditions that are representative of the adiabatic engine environment. In addition, silicon nitride and partially stabilized zirconia disks were ion implanted with TiNi, Ni, Co, and Cr, and subsequently run against carbide pins, with the objective of producing reduced friction via solid lubrication at elevated temperature. In order to provide guidance needed to improve materials for this application, the program stressed fundamental understanding of the mechanisms involved in friction and wear. Electron microscopy was used to elucidate the micromechanisms of wear following wear testing, and Auger electron spectroscopy was used to evaluate interface/environment interactions which seemed to be important in the friction and wear process. Unmodified ceramic sliding couples were characterized at all temperatures by friction coefficients of 0.24 and above. The coefficient at 800 C in an oxidizing environment was reduced to below 0.1, for certain material combinations, by the ion implanation of TiNi or Co. This beneficial effect was found to derive from lubricious Ti, Ni, and Co oxides.
Challenges for automatically extracting molecular interactions from full-text articles.
McIntosh, Tara; Curran, James R
2009-09-24
The increasing availability of full-text biomedical articles will allow more biomedical knowledge to be extracted automatically with greater reliability. However, most Information Retrieval (IR) and Extraction (IE) tools currently process only abstracts. The lack of corpora has limited the development of tools that are capable of exploiting the knowledge in full-text articles. As a result, there has been little investigation into the advantages of full-text document structure, and the challenges developers will face in processing full-text articles. We manually annotated passages from full-text articles that describe interactions summarised in a Molecular Interaction Map (MIM). Our corpus tracks the process of identifying facts to form the MIM summaries and captures any factual dependencies that must be resolved to extract the fact completely. For example, a fact in the results section may require a synonym defined in the introduction. The passages are also annotated with negated and coreference expressions that must be resolved.We describe the guidelines for identifying relevant passages and possible dependencies. The corpus includes 2162 sentences from 78 full-text articles. Our corpus analysis demonstrates the necessity of full-text processing; identifies the article sections where interactions are most commonly stated; and quantifies the proportion of interaction statements requiring coherent dependencies. Further, it allows us to report on the relative importance of identifying synonyms and resolving negated expressions. We also experiment with an oracle sentence retrieval system using the corpus as a gold-standard evaluation set. We introduce the MIM corpus, a unique resource that maps interaction facts in a MIM to annotated passages within full-text articles. It is an invaluable case study providing guidance to developers of biomedical IR and IE systems, and can be used as a gold-standard evaluation set for full-text IR tasks.
Thermally assisted adiabatic quantum computation.
Amin, M H S; Love, Peter J; Truncik, C J S
2008-02-15
We study the effect of a thermal environment on adiabatic quantum computation using the Bloch-Redfield formalism. We show that in certain cases the environment can enhance the performance in two different ways: (i) by introducing a time scale for thermal mixing near the anticrossing that is smaller than the adiabatic time scale, and (ii) by relaxation after the anticrossing. The former can enhance the scaling of computation when the environment is super-Ohmic, while the latter can only provide a prefactor enhancement. We apply our method to the case of adiabatic Grover search and show that performance better than classical is possible with a super-Ohmic environment, with no a priori knowledge of the energy spectrum.
Optimal control of the power adiabatic stroke of an optomechanical heat engine.
Bathaee, M; Bahrampour, A R
2016-08-01
We consider the power adiabatic stroke of the Otto optomechanical heat engine introduced in Phys. Rev. Lett. 112, 150602 (2014)PRLTAO0031-900710.1103/PhysRevLett.112.150602. We derive the maximum extractable work of both optomechanical normal modes in the minimum time while the system experiences quantum friction effects. We show that the total work done by the system in the power adiabatic stroke is optimized by a bang-bang control. The time duration of the power adiabatic stroke is of the order of the inverse of the effective optomechanical-coupling coefficient. The optimal phase-space trajectory of the Otto cycle for both optomechanical normal modes is also obtained.
On the adiabatic limit of Hadamard states
NASA Astrophysics Data System (ADS)
Drago, Nicolò; Gérard, Christian
2017-08-01
We consider the adiabatic limit of Hadamard states for free quantum Klein-Gordon fields, when the background metric and the field mass are slowly varied from their initial to final values. If the Klein-Gordon field stays massive, we prove that the adiabatic limit of the initial vacuum state is the (final) vacuum state, by extending to the symplectic framework the adiabatic theorem of Avron-Seiler-Yaffe. In cases when only the field mass is varied, using an abstract version of the mode decomposition method we can also consider the case when the initial or final mass vanishes, and the initial state is either a thermal state or a more general Hadamard state.
The decay process of rotating unstable systems through the passage time distribution
NASA Astrophysics Data System (ADS)
Jiménez-Aquino, J. I.; Cortés, Emilio; Aquino, N.
2001-05-01
In this work we propose a general scheme to characterize, through the passage time distribution, the decay process of rotational unstable systems in the presence of external forces of large amplitude. The formalism starts with a matricial Langevin type equation formulated in the context of two dynamical representations given, respectively, by the vectors x and y, both related by a time dependent rotation matrix. The transformation preserves the norm of the vector and decouples the set of dynamical equations in the transformed space y. We study the dynamical characterization of the systems of two variables and show that the statistical properties of the passage time distribution are essentially equivalent in both dynamics. The theory is applied to the laser system studied in Dellunde et al. (Opt. Commun. 102 (1993) 277), where the effect of large injected signals on the transient dynamics of the laser has been studied in terms of complex electric field. The analytical results are compared with numerical simulation.
Bischoff, J.L.
1980-01-01
Pressure-volume-temperature relations for water at the depth of the magma chamber at 21°N on the East Pacific Rise suggest that the maximum subsurface temperature of the geothermal fluid is about 420°C. Both the chemistry of the discharging fluid and thermal balance considerations indicate that the effective water/rock ratios in the geothermal system are between 7 and 16. Such low ratios preclude effective metal transport at temperatures below 350°C, but metal solubilization at 400°C and above is effective even at such low ratios. It is proposed that the 420°C fluid ascends essentially adiabatically and in the process expands, cools, and precipitates metal sulfides within the upper few hundred meters of the sea floor and on the sea floor itself.
Non-Gaussian precision metrology via driving through quantum phase transitions
NASA Astrophysics Data System (ADS)
Huang, Jiahao; Zhuang, Min; Lee, Chaohong
2018-03-01
We propose a scheme to realize high-precision quantum interferometry with entangled non-Gaussian states by driving the system through quantum phase transitions. The beam splitting, in which an initial nondegenerate ground state evolves into a highly entangled state, is achieved by adiabatically driving the system from a nondegenerate regime to a degenerate one. Inversely, the beam recombination, in which the output state after interrogation becomes gradually disentangled, is accomplished by adiabatically driving the system from the degenerate regime to the nondegenerate one. The phase shift, which is accumulated in the interrogation process, can then be easily inferred via population measurement. We apply our scheme to Bose condensed atoms and trapped ions and find that Heisenberg-limited precision scalings can be approached. Our proposed scheme does not require single-particle resolved detection and is within the reach of current experiment techniques.
NASA Astrophysics Data System (ADS)
Li, Hao; Liu, Jianshe; Zhang, Yingshan; Cai, Han; Li, Gang; Liu, Qichun; Han, Siyuan; Chen, Wei
2017-03-01
A negative-inductance superconducting quantum interference device (nSQUID) is an adiabatic superconducting logic device with high energy efficiency, and therefore a promising building block for large-scale low-power superconducting computing. However, the principle of the nSQUID is not that straightforward and an nSQUID driven by voltage is vulnerable to common mode noise. We investigate a single nSQUID driven by current instead of voltage, and clarify the principle of the adiabatic transition of the current-driven nSQUID between different states. The basic logic operations of the current-driven nSQUID with proper parameters are simulated by WRspice. The corresponding circuit is fabricated with a 100 A cm-2 Nb-based lift-off process, and the experimental results at low temperature confirm the basic logic operations as a gated buffer.
Recall Performance for Content-Addressable Memory Using Adiabatic Quantum Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imam, Neena; Humble, Travis S.; McCaskey, Alex
A content-addressable memory (CAM) stores key-value associations such that the key is recalled by providing its associated value. While CAM recall is traditionally performed using recurrent neural network models, we show how to solve this problem using adiabatic quantum optimization. Our approach maps the recurrent neural network to a commercially available quantum processing unit by taking advantage of the common underlying Ising spin model. We then assess the accuracy of the quantum processor to store key-value associations by quantifying recall performance against an ensemble of problem sets. We observe that different learning rules from the neural network community influence recallmore » accuracy but performance appears to be limited by potential noise in the processor. The strong connection established between quantum processors and neural network problems supports the growing intersection of these two ideas.« less
A Controlled-Phase Gate via Adiabatic Rydberg Dressing of Neutral Atoms
NASA Astrophysics Data System (ADS)
Keating, Tyler; Deutsch, Ivan; Cook, Robert; Biederman, Grant; Jau, Yuan-Yu
2014-05-01
The dipole blockade effect between Rydberg atoms is a promising tool for quantum information processing in neutral atoms. So far, most efforts to perform a quantum logic gate with this effect have used resonant laser pulses to excite the atoms, which makes the system particularly susceptible to decoherence through thermal motional effects. We explore an alternative scheme in which the atomic ground states are adiabatically ``dressed'' by turning on an off-resonant laser. We analyze the implementation of a CPHASE gate using this mechanism and find that fidelities of >99% should be possible with current technology, owing primarily to the suppression of motional errors. We also discuss how such a scheme could be generalized to perform more complicated, multi-qubit gates; in particular, a simple generalization would allow us to perform a Toffoli gate in a single step.
Adiabatic out-of-equilibrium solutions to the Boltzmann equation in warm inflation
NASA Astrophysics Data System (ADS)
Bastero-Gil, Mar; Berera, Arjun; Ramos, Rudnei O.; Rosa, João G.
2018-02-01
We show that, in warm inflation, the nearly constant Hubble rate and temperature lead to an adiabatic evolution of the number density of particles interacting with the thermal bath, even if thermal equilibrium cannot be maintained. In this case, the number density is suppressed compared to the equilibrium value but the associated phase-space distribution retains approximately an equilibrium form, with a smaller amplitude and a slightly smaller effective temperature. As an application, we explicitly construct a baryogenesis mechanism during warm inflation based on the out-of-equilibrium decay of particles in such an adiabatically evolving state. We show that this generically leads to small baryon isocurvature perturbations, within the bounds set by the Planck satellite. These are correlated with the main adiabatic curvature perturbations but exhibit a distinct spectral index, which may constitute a smoking gun for baryogenesis during warm inflation. Finally, we discuss the prospects for other applications of adiabatically evolving out-of-equilibrium states.
NASA Technical Reports Server (NTRS)
Silk, J.; Wilson, M. L.
1980-01-01
The residual spectra of matter and radiation fluctuations in the early universe are investigated, and the evolution of primordial adiabatic and isothermal fluctuations through the decoupling epoch is studied. Amplification of adiabatic density fluctuations during decoupling, or velocity 'overshoot', is largely suppressed by Compton drag. Consequently, the amplitude of density fluctuations entering the horizon prior to decoupling is larger than hitherto assumed in the adiabatic theory. Damping of primordial adiabatic density fluctuations by an order of magnitude occurs on mass-scales of 3 x 10 to the 13th solar masses (Omega = 1) or 10 to the 14th solar masses (Omega = 0.2). Comparison of the residual radiation fluctuations with observational limits indicates that the adiabatic theory is only acceptable if re-ionization of the intergalactic medium results in additional scattering of the radiation after decoupling. Primordial isothermal fluctuations are found to yield radiation fluctuations which are insensitive to the assumed spectrum and lie a factor of about 5 below current limits
A theoretical study of the adiabatic and vertical ionization potentials of water.
Feller, David; Davidson, Ernest R
2018-06-21
Theoretical predictions of the three lowest adiabatic and vertical ionization potentials of water were obtained from the Feller-Peterson-Dixon approach. This approach combines multiple levels of coupled cluster theory with basis sets as large as aug-cc-pV8Z in some cases and various corrections up to and including full configuration interaction theory. While agreement with experiment for the adiabatic ionization potential of the lowest energy 2 B 1 state was excellent, differences for other states were much larger, sometimes exceeding 10 kcal/mol (0.43 eV). Errors of this magnitude are inconsistent with previous benchmark work on 52 adiabatic ionization potentials, where a root mean square of 0.20 kcal/mol (0.009 eV) was found. Difficulties in direct comparisons between theory and experiment for vertical ionization potentials are discussed. With regard to the differences found for the 2 A 1 / 2 Π u and 2 B 2 adiabatic ionization potentials, a reinterpretation of the experimental spectrum appears justified.
Gülci, Sercan; Akay, Abdullah Emin
2015-12-01
Major roads cause barrier effect and fragmentation on wildlife habitats that are suitable places for feeding, mating, socializing, and hiding. Due to wildlife collisions (Wc), human-wildlife conflicts result in lost lives and loss of biodiversity. Geographical information system (GIS)-based multi criteria evaluation (MCE) methods have been successfully used in short-term planning of road networks considering wild animals. Recently, wildlife passages have been effectively utilized as road engineering structures provide quick and certain solutions for traffic safety and wildlife conservation problems. GIS-based MCE methods provide decision makers with optimum location for ecological passages based on habitat suitability models (HSMs) that classify the areas based on ecological requirements of target species. In this study, ecological passages along Motorway 52 within forested areas in Mediterranean city of Osmaniye in Turkey were evaluated. Firstly, HSM coupled with nine eco-geographic decision variables were developed based on ecological requirements of roe deer (Capreolus capreolus) that were chosen as target species. Then specified decision variables were evaluated using GIS-based weighted linear combination (WLC) method to estimate movement corridors and mitigation points along the motorway. In the solution process, two linkage nodes were evaluated for eco-passages which were determined based on the least-cost movement corridor intersecting with the motorway. One of the passages was identified as a natural wildlife overpass while the other was suggested as underpass construction. The results indicated that computer-based models provide accurate and quick solutions for positioning ecological passages to reduce environmental effects of road networks on wild animals.
NASA Astrophysics Data System (ADS)
Tsuchiya, Kenji; Kuwahara, Victor S.; Yoshiki, Tomoko M.; Nakajima, Ryota; Shimode, Shinji; Kikuchi, Tomohiko; Toda, Tatsuki
2017-07-01
Daily field surveys were conducted at a coastal-shelf station in Sagami Bay, Japan after the passage of typhoon Malou in 2010 to evaluate the after-effect of a typhoon passage on the physical-chemical environment, phytoplankton bloom formation and microbial processes within and below the euphotic layer. The passage of Malou induced an abrupt decrease in salinity and increased loading of nutrients to the euphotic layer. Dinoflagellates dominated the phytoplankton community at the surface, whereas diatoms dominated below the surface just after the passage of Malou. Four days later, the dominant dinoflagellate taxa at the surface changed from Protoperidinium spp. to Prorocentrum spp. and Ceratium spp., indicating a dinoflagellate community succession from heterotrophic to autotrophic functional groups. Five days after passage, the dominant phytoplankton taxa shifted from dinoflagellates to diatom groups of Chaetoceros spp. and Cerataulina spp. throughout the water column. Below the euphotic layer, there were increases in diatom frustules, mainly composed of Chaetoceros spp. and Cerataulina spp., bacterial abundance and NH4+ concentrations. Diatom carbon biomass contributed to approximately half of particulate organic carbon (POC) below the euphotic layer, suggesting a significant contribution of diatoms to POC sinking flux after the passage of a typhoon. Bacterial abundance was positively correlated to both phaeopigment concentrations (p < 0.01) and NH4+ concentrations (p < 0.01), suggesting bacterial growth was associated with zooplankton grazing and remineralization of NH4+. The results suggest that the passage of a typhoon could significantly affect biogeochemical activities within and below the euphotic layer in temperate coastal waters.
Adiabatic Quantum Computing with Neutral Atoms
NASA Astrophysics Data System (ADS)
Hankin, Aaron; Biedermann, Grant; Burns, George; Jau, Yuan-Yu; Johnson, Cort; Kemme, Shanalyn; Landahl, Andrew; Mangan, Michael; Parazzoli, L. Paul; Schwindt, Peter; Armstrong, Darrell
2012-06-01
We are developing, both theoretically and experimentally, a neutral atom qubit approach to adiabatic quantum computation. Using our microfabricated diffractive optical elements, we plan to implement an array of optical traps for cesium atoms and use Rydberg-dressed ground states to provide a controlled atom-atom interaction. We will develop this experimental capability to generate a two-qubit adiabatic evolution aimed specifically toward demonstrating the two-qubit quadratic unconstrained binary optimization (QUBO) routine.
Analysis of geometric phase effects in the quantum-classical Liouville formalism.
Ryabinkin, Ilya G; Hsieh, Chang-Yu; Kapral, Raymond; Izmaylov, Artur F
2014-02-28
We analyze two approaches to the quantum-classical Liouville (QCL) formalism that differ in the order of two operations: Wigner transformation and projection onto adiabatic electronic states. The analysis is carried out on a two-dimensional linear vibronic model where geometric phase (GP) effects arising from a conical intersection profoundly affect nuclear dynamics. We find that the Wigner-then-Adiabatic (WA) QCL approach captures GP effects, whereas the Adiabatic-then-Wigner (AW) QCL approach does not. Moreover, the Wigner transform in AW-QCL leads to an ill-defined Fourier transform of double-valued functions. The double-valued character of these functions stems from the nontrivial GP of adiabatic electronic states in the presence of a conical intersection. In contrast, WA-QCL avoids this issue by starting with the Wigner transform of single-valued quantities of the full problem. As a consequence, GP effects in WA-QCL can be associated with a dynamical term in the corresponding equation of motion. Since the WA-QCL approach uses solely the adiabatic potentials and non-adiabatic derivative couplings as an input, our results indicate that WA-QCL can capture GP effects in two-state crossing problems using first-principles electronic structure calculations without prior diabatization or introduction of explicit phase factors.
Analysis of geometric phase effects in the quantum-classical Liouville formalism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryabinkin, Ilya G.; Izmaylov, Artur F.; Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6
2014-02-28
We analyze two approaches to the quantum-classical Liouville (QCL) formalism that differ in the order of two operations: Wigner transformation and projection onto adiabatic electronic states. The analysis is carried out on a two-dimensional linear vibronic model where geometric phase (GP) effects arising from a conical intersection profoundly affect nuclear dynamics. We find that the Wigner-then-Adiabatic (WA) QCL approach captures GP effects, whereas the Adiabatic-then-Wigner (AW) QCL approach does not. Moreover, the Wigner transform in AW-QCL leads to an ill-defined Fourier transform of double-valued functions. The double-valued character of these functions stems from the nontrivial GP of adiabatic electronic statesmore » in the presence of a conical intersection. In contrast, WA-QCL avoids this issue by starting with the Wigner transform of single-valued quantities of the full problem. As a consequence, GP effects in WA-QCL can be associated with a dynamical term in the corresponding equation of motion. Since the WA-QCL approach uses solely the adiabatic potentials and non-adiabatic derivative couplings as an input, our results indicate that WA-QCL can capture GP effects in two-state crossing problems using first-principles electronic structure calculations without prior diabatization or introduction of explicit phase factors.« less
Hoffman, Robert L.; Dunham, Jason B.; Hansen, Bruce P.
2012-01-01
Restoration and maintenance of passage for aquatic organisms at road-stream crossings represents a major management priority, involving an investment of hundreds of millions of dollars (for example, U.S. Government Accounting Office, 2001). In recent years, passage at hundreds of crossings has been restored, primarily by replacing barrier road culverts with bridges or stream simulation culverts designed to pass all species and all life stages of aquatic life and simulate natural hydro-geomorphic processes (U.S. Forest Service, 2008). The current situation has motivated two general questions: 1. Are current design standards for stream simulation culverts adequately re-establishing passage for aquatic biota? and 2. How do we monitor and evaluate effectiveness of passage restoration? To address the latter question, a national workshop was held in March 2010, in Portland, Oregon. The workshop included experts on aquatic organism passage from across the nation (see table of participants, APPENDIX) who addressed four classes of methods for monitoring effectiveness of aquatic organism passage—individual movement, occupancy, demography, and genetics. This report has been written, in part, for field biologists who will be undertaking and evaluating the effectiveness of aquatic organism passage restoration projects at road-stream crossings. The report outlines basic methods for evaluating road-stream crossing passage impairment and restoration and discusses under what circumstances and conditions each method will be useful; what questions each method can potentially answer; how to design and implement an evaluation study; and points out the fundamental reality that most evaluation projects will require special funding and partnerships among researchers and resource managers. The report is organized into the following sections, which can be read independently: 1. Historical context: In this section, we provide a brief history of events leading up to the present situation involving aquatic organism passage as a useful context for the issues covered herein. 2. Importance of connectivity for aquatic organisms: In this section, we provide background information regarding the movement characteristics of aquatic organisms and their vulnerability to passage impairment, and the importance of connectivity for a broad diversity of aquatic vertebrates and invertebrates. This section should be useful for practitioners in selecting what species to monitor in relation to aquatic organism passage. 3. Methods for evaluating aquatic organism passage: In this section, we present a range of perspectives on alternatives for assessing and monitoring aquatic organism passage impairment and the effectiveness of passage restoration actions, including the following methods: Individual Movement, Occupancy Models, Abundance (Demography), and Molecular Genetic Markers. 4. Relevance, strengths, and limitations of the four methods: In this section, we discuss the utility of each of the methods as a tool for assessing and quantifying passage impairment and restoration effectiveness. 5. Guidelines for selecting a method: In this section, we review some fundamental criteria and guidelines to consider when selecting a method for monitoring in the context of answering three important questions that should be addressed when developing a plan for evaluating aquatic organism passage. 6. Study and monitoring design considerations: In this section, we discuss four key design elements that need to be considered when developing a monitoring design for assessing passage impairment and restoration. The basic objectives of the report are to: 1. Review the movement characteristics of five groups of aquatic organisms that inhabit streams and to assess their general vulnerability to passage impairment at road-stream crossings; 2. Review four methods for monitoring aquatic organism passage impairment and the effectiveness of actions to restore passage at road-stream crossing structures; 3. Assess the relevance, strengths, and limitations of each method as a monitoring tool; 4. Identify and discuss guidelines that will be useful for selecting a monitoring method; and 5. Discuss what we have identified as the four key elements that need to be considered when developing a monitoring design for assessing passage impairment and restoration at road-stream crossings.
The report gives results of a comprehensive, pilot, dry, SO2 scrubbing test program to determine the effects of process variables on SO2 removal. In the spray dryer, stoichiometric ratio, flue gas temperature approach to adiabatic saturation, and temperature drop across the spray...
Teaching the First Law of Thermodynamics via Real-Life Examples
ERIC Educational Resources Information Center
Chang, Wheijen
2011-01-01
The literature has revealed that many students encounter substantial difficulties in applying the first law of thermodynamics. For example, university students sometimes fail to recognize that heat and work are independent means of energy transfer. When discussing adiabatic processes for an ideal gas, few students can correctly refer to the…
Quantum-to-classical crossover near quantum critical point
Vasin, M.; Ryzhov, V.; Vinokur, V. M.
2015-12-21
A quantum phase transition (QPT) is an inherently dynamic phenomenon. However, while non-dissipative quantum dynamics is described in detail, the question, that is not thoroughly understood is how the omnipresent dissipative processes enter the critical dynamics near a quantum critical point (QCP). Here we report a general approach enabling inclusion of both adiabatic and dissipative processes into the critical dynamics on the same footing. We reveal three distinct critical modes, the adiabatic quantum mode (AQM), the dissipative classical mode [classical critical dynamics mode (CCDM)], and the dissipative quantum critical mode (DQCM). We find that as a result of the transitionmore » from the regime dominated by thermal fluctuations to that governed by the quantum ones, the system acquires effective dimension d+zΛ(T), where z is the dynamical exponent, and temperature-depending parameter Λ(T)ε[0, 1] decreases with the temperature such that Λ(T=0) = 1 and Λ(T →∞) = 0. Lastly, our findings lead to a unified picture of quantum critical phenomena including both dissipation- and dissipationless quantum dynamic effects and offer a quantitative description of the quantum-to-classical crossover.« less
Three-dimensional stochastic modeling of radiation belts in adiabatic invariant coordinates
NASA Astrophysics Data System (ADS)
Zheng, Liheng; Chan, Anthony A.; Albert, Jay M.; Elkington, Scot R.; Koller, Josef; Horne, Richard B.; Glauert, Sarah A.; Meredith, Nigel P.
2014-09-01
A 3-D model for solving the radiation belt diffusion equation in adiabatic invariant coordinates has been developed and tested. The model, named Radbelt Electron Model, obtains a probabilistic solution by solving a set of Itô stochastic differential equations that are mathematically equivalent to the diffusion equation. This method is capable of solving diffusion equations with a full 3-D diffusion tensor, including the radial-local cross diffusion components. The correct form of the boundary condition at equatorial pitch angle α0=90° is also derived. The model is applied to a simulation of the October 2002 storm event. At α0 near 90°, our results are quantitatively consistent with GPS observations of phase space density (PSD) increases, suggesting dominance of radial diffusion; at smaller α0, the observed PSD increases are overestimated by the model, possibly due to the α0-independent radial diffusion coefficients, or to insufficient electron loss in the model, or both. Statistical analysis of the stochastic processes provides further insights into the diffusion processes, showing distinctive electron source distributions with and without local acceleration.
Constituent Ion Temperatures Measured in the Topside Ionosphere
NASA Astrophysics Data System (ADS)
Hsu, C. T.; Heelis, R. A.
2017-12-01
Plasma temperatures in the ionosphere are associated with both the dynamics and structure of the neutral and charge particles. The temperatures are determined by solar energy inputs and energy exchange between charged particles and neutrals. Previous observations show that during daytime the O+ temperature is generally higher when the fractional contribution of H+ to the plasma is high. Further simulations confirm that the daytime heat balance between the H+ and O+ always keeps the H+ at a temperature higher than the O+. In addition the plasma transport parallel and perpendicular to the magnetic field influences the plasma temperature through adiabatic heating and cooling effects. These processes are also important during the nighttime, when the source of photoionization is absent. In this work we examine a more sophisticated analysis procedure to extract individual mass dependent ion temperature and apply it on the DMSP F15 RPA measurements. The result shows that the daytime TH+ is a few hundred degrees higher than the TO+ and the nighttime temperature difference between TH+ and TO+ is indicative of mass dependent adiabatic heating and cooling processes across the equatorial region.
Lesnard, Hervé; Bocquet, Marie-Laure; Lorente, Nicolas
2007-04-11
We have performed a theoretical study on the dehydrogenation of benzene and pyridine molecules on Cu(100) induced by a scanning tunneling microscope (STM). Density functional theory calculations have been used to characterize benzene, pyridine, and different dehydrogenation products. The adiabatic pathways for single and double dehydrogenation have been evaluated with the nudge elastic band method. After identification of the transition states, the analysis of the electronic structure along the reaction pathway yields interesting information on the electronic process that leads to H-scission. The adiabatic barriers show that the formation of double dehydrogenated fragments is difficult and probably beyond reach under the actual experimental conditions. However, nonadiabatic processes cannot be ruled out. Hence, in order to identify the final dehydrogenation products, the inelastic spectra are simulated and compared with the experimental ones. We can then assign phenyl (C6H5) and alpha-pyridil (alpha-C5H4N) as the STM-induced dehydrogenation products of benzene and pyridine, respectively. Our simulations permit us to understand why phenyl, pyridine, and alpha-pyridil present tunneling-active C-H stretch modes in opposition to benzene.
Deflagration-to-detonation transition in granular HMX
NASA Technical Reports Server (NTRS)
Campbell, A. W.
1980-01-01
Granular HMX of three degrees of fineness was packed into heavy-walled steel tubes closed at both ends. Ignition was obtained at one end using an intimate mixture of finely divided titanium and boron as an igniter that produced heat with little gas. The distance to detonation was determined by examination of the resulting tube fragments. By inserting tightly-fitted neoprene diaphragms periodically into the HMX column, it was shown that the role of convective combustion was limited to the initial stage of the deflagration to detonation (DDT) process. Experiments in which various combinations of two of the three types of HMX were loaded into the same tube showed that heating by adiabatic shear of explosive grains was an essential factor in the final buildup to detonation. A description of the DDT process is developed in which conductive burning is followed in turn by convective burning, bed collapse with plug formation, onset of accelerated burning at the front of the plug through heating by intercrystalline friction and adiabatic shear, and intense shock formation resulting in high-order detonation.
Method and system for radioisotope generation
Toth, James J.; Soderquist, Chuck Z.; Greenwood, Lawrence R.; Mattigod, Shas V.; Fryxell, Glen E.; O'Hara, Matthew J.
2014-07-15
A system and a process for producing selected isotopic daughter products from parent materials characterized by the steps of loading the parent material upon a sorbent having a functional group configured to selectively bind the parent material under designated conditions, generating the selected isotopic daughter products, and eluting said selected isotopic daughter products from the sorbent. In one embodiment, the process also includes the step of passing an eluent formed by the elution step through a second sorbent material that is configured to remove a preselected material from said eluent. In some applications a passage of the material through a third sorbent material after passage through the second sorbent material is also performed.
NASA Technical Reports Server (NTRS)
Mulac, Richard A.; Celestina, Mark L.; Adamczyk, John J.; Misegades, Kent P.; Dawson, Jef M.
1987-01-01
A procedure is outlined which utilizes parallel processing to solve the inviscid form of the average-passage equation system for multistage turbomachinery along with a description of its implementation in a FORTRAN computer code, MSTAGE. A scheme to reduce the central memory requirements of the program is also detailed. Both the multitasking and I/O routines referred to in this paper are specific to the Cray X-MP line of computers and its associated SSD (Solid-state Storage Device). Results are presented for a simulation of a two-stage rocket engine fuel pump turbine.
Lo, Lap-Yan; Ho, Connie Suk-Han; Wong, Yau-Kai; Chan, David Wai-Ock; Chung, Kevin Kien-Hoa
2016-12-01
Understanding the microstructure and macrostructure of passages is important for reading comprehension. What cognitive-linguistic skills may contribute to understanding these two levels of structures has rarely been investigated. The present study examined whether some word-level and text-level cognitive-linguistic skills may contribute differently to the understanding of microstructure and macrostructure respectively. Seventy-nine Chinese elementary school children were tested on some cognitive-linguistic skills and literacy skills. It was found that word reading fluency and syntactic skills predicted significantly the understanding of microstructure of passages after controlling for age and IQ; while morphological awareness, syntactic skills, and discourse skills contributed significantly to understanding of macrostructure. These findings suggest that syntactic skills facilitate children's access of meaning from grammatical structures, which is a fundamental process in gaining text meaning at any level of reading comprehension. Discourse skills also allow readers to understand the cohesive interlinks within and between sentences and is important for a macro level of passage understanding.
Self-cleaning feed distributing delivery device for glass melters
Mensink, Daniel L.
1992-01-01
A self cleaning, plug resistant, adjustable parameter feed distributing and delivery apparatus for a glass melter comprising a housing with a passage therethrough for a glass slurry, a cold finger within the passage for creating a dispersion pattern of the slurry, a movable slotted tube for controlling the confluence of air propellant and slurry in the passage, and a plurality of ribs that extend through the slots in the slotted tube to urge the slurry forward if it becomes stuck or resists forward movement. Coolant passages in the housing and the cold finger maintain the slurry temperature below that of the melter plenum. The cold finger is axially movable to adjust the dispersion pattern to the desired consistency. Other design features of size can be applied for use in situations requiring different parameters of pattern, particle size, rate, and feed consistencies. The device utilizes air as both a propellant and a surface cleansing mechanism. Other fluids may be used as propellants where process compatibility requires.
Measurement-based quantum computation on two-body interacting qubits with adiabatic evolution.
Kyaw, Thi Ha; Li, Ying; Kwek, Leong-Chuan
2014-10-31
A cluster state cannot be a unique ground state of a two-body interacting Hamiltonian. Here, we propose the creation of a cluster state of logical qubits encoded in spin-1/2 particles by adiabatically weakening two-body interactions. The proposal is valid for any spatial dimensional cluster states. Errors induced by thermal fluctuations and adiabatic evolution within finite time can be eliminated ensuring fault-tolerant quantum computing schemes.
Adiabatic Compression Sensitivity of AF-M315E (Briefing Charts)
2015-07-27
Charts 3. DATES COVERED (From - To) July 2015-July 2015 4. TITLE AND SUBTITLE Adiabatic Compression Sensitivity of AF - M315E (Briefing Charts) 5a...PA#15402. 14. ABSTRACT The Air Force Research Laboratory developed monopropellant, AF - M315E , has been selected for demonstration under the NASA...Pollux Drive, Edwards AFB, CA 93524-7048. Adiabatic Compression Sensitivity of AF - M315E Phu Quach ERC, Incorporated Air Force Research Laboratory
Method and apparatus for improved observation of in-situ combustion processes
Lee, D.O.; Montoya, P.C.; Wayland, J.R. Jr.
Method and apparatus are provided for obtaining accurate dynamic measurements for passage of phase fronts through a core sample in a test fixture. Flow-through grid structures are provided for electrodes to permit data to be obtained before, during and after passage of a front there-through. Such electrodes are incorporated in a test apparatus for obtaining electrical characteristics of the core sample. With the inventive structure a method is provided for measurement of instabilities in a phase front progressing through the medium. Availability of accurate dynamic data representing parameters descriptive of material characteristics before, during and after passage of a front provides a more efficient method for enhanced recovery of oil using a fire flood technique. 6 figures, 2 tables.
Adiabatic Quantum Anomaly Detection and Machine Learning
NASA Astrophysics Data System (ADS)
Pudenz, Kristen; Lidar, Daniel
2012-02-01
We present methods of anomaly detection and machine learning using adiabatic quantum computing. The machine learning algorithm is a boosting approach which seeks to optimally combine somewhat accurate classification functions to create a unified classifier which is much more accurate than its components. This algorithm then becomes the first part of the larger anomaly detection algorithm. In the anomaly detection routine, we first use adiabatic quantum computing to train two classifiers which detect two sets, the overlap of which forms the anomaly class. We call this the learning phase. Then, in the testing phase, the two learned classification functions are combined to form the final Hamiltonian for an adiabatic quantum computation, the low energy states of which represent the anomalies in a binary vector space.
Compact beam splitters in coupled waveguides using shortcuts to adiabaticity
NASA Astrophysics Data System (ADS)
Chen, Xi; Wen, Rui-Dan; Shi, Jie-Long; Tseng, Shuo-Yen
2018-04-01
There are various works on adiabatic (three) waveguide coupler devices but most are focused on the quantum optical analogies and the physics itself. We successfully apply shortcuts to adiabaticity techniques to the coupled waveguide system with a suitable length for integrated optics devices. Especially, the counter-diabatic driving protocol followed by unitary transformation overcomes the previously unrealistic implemention, and is used to design feasible and robust 1 × 2 and 1 × 3 beam splitters for symmetric and asymmetric three waveguide couplers. Numerical simulations with the beam propagation method demonstrate that these shortcut designs for beam splitters are shorter than the adiabatic ones, and also have a better tolerance than parallel waveguides resonant beam splitters with respect to spacing errors and wavelength variation.
Smalyuk, V. A.; Robey, H. F.; Döppner, T.; ...
2015-08-27
Radiation-driven, layered deuterium-tritium plastic capsule implosions were carried out using a new, 3-shock “adiabat-shaped” drive on the National Ignition Facility. The purpose of adiabat shaping is to use a stronger first shock, reducing hydrodynamic instability growth in the ablator. The shock can decay before reaching the deuterium-tritium fuel leaving it on a low adiabat and allowing higher fuel compression. The fuel areal density was improved by ~25% with this new drive compared to similar “high-foot” implosions, while neutron yield was improved by more than 4 times, compared to “low-foot” implosions driven at the same compression and implosion velocity.
NASA Astrophysics Data System (ADS)
Bednyakova, Anastasia; Turitsyn, Sergei K.
2015-03-01
The key to generating stable optical pulses is mastery of nonlinear light dynamics in laser resonators. Modern techniques to control the buildup of laser pulses are based on nonlinear science and include classical solitons, dissipative solitons, parabolic pulses (similaritons) and various modifications and blending of these methods. Fiber lasers offer remarkable opportunities to apply one-dimensional nonlinear science models for the design and optimization of very practical laser systems. Here, we propose a new concept of a laser based on the adiabatic amplification of a soliton pulse in the cavity—the adiabatic soliton laser. The adiabatic change of the soliton parameters during evolution in the resonator relaxes the restriction on the pulse energy inherent in traditional soliton lasers. Theoretical analysis is confirmed by extensive numerical modeling.
Two stroke engine exhaust emissions separator
Turner, Terry D.; Wilding, Bruce M.; McKellar, Michael G.; Raterman, Kevin T.
2003-04-22
A separator for substantially resolving at least one component of a process stream, such as from the exhaust of an internal combustion engine. The separator includes a body defining a chamber therein. A nozzle housing is located proximate the chamber. An exhaust inlet is in communication with the nozzle housing and the chamber. A nozzle assembly is positioned in the nozzle housing and includes a nozzle moveable within and relative to the nozzle housing. The nozzle includes at least one passage formed therethrough such that a process stream entering the exhaust inlet connection passes through the passage formed in the nozzle and imparts a substantially rotational flow to the process stream as it enters the chamber. A positioning member is configured to position the nozzle relative to the nozzle housing in response to changes in process stream pressure thereby adjusting flowrate of said process stream entering into the chamber.
Two stroke engine exhaust emissions separator
Turner, Terry D.; Wilding, Bruce M.; McKellar, Michael G.; Raterman, Kevin T.
2002-01-01
A separator for substantially resolving at least one component of a process stream, such as from the exhaust of an internal combustion engine. The separator includes a body defining a chamber therein. A nozzle housing is located proximate the chamber. An exhaust inlet is in communication with the nozzle housing and the chamber. A nozzle assembly is positioned in the nozzle housing and includes a nozzle moveable within and relative to the nozzle housing. The nozzle includes at least one passage formed therethrough such that a process stream entering the exhaust inlet connection passes through the passage formed in the nozzle, which imparts a substantially rotational flow to the process stream as it enters the chamber. A positioning member is configured to position the nozzle relative to the nozzle housing in response to changes in process stream pressure to adjust flowrate of said process stream entering into the chamber.
NASA Astrophysics Data System (ADS)
Rabli, Djamal; McCarroll, Ronald
2018-02-01
This review surveys the different theoretical approaches, used to describe inelastic and rearrangement processes in collisions involving atoms and ions. For a range of energies from a few meV up to about 1 keV, the adiabatic representation is expected to be valid and under these conditions, inelastic and rearrangement processes take place via a network of avoided crossings of the potential energy curves of the collision system. In general, such avoided crossings are finite in number. The non-adiabatic coupling, due to the breakdown of the Born-Oppenheimer separation of the electronic and nuclear variables, depends on the ratio of the electron mass to the nuclear mass terms in the total Hamiltonian. By limiting terms in the total Hamiltonian correct to first order in the electron to nuclear mass ratio, a system of reaction coordinates is found which allows for a correct description of both inelastic channels. The connection between the use of reaction coordinates in the quantum description and the electron translation factors of the impact parameter approach is established. A major result is that only when reaction coordinates are used, is it possible to introduce the notion of a minimal basis set. Such a set must include all avoided crossings including both radial coupling and long range Coriolis coupling. But, only when reactive coordinates are used, can such a basis set be considered as complete. In particular when the centre of nuclear mass is used as centre of coordinates, rather than the correct reaction coordinates, it is shown that erroneous results are obtained. A few results to illustrate this important point are presented: one concerning a simple two-state Landau-Zener type avoided crossing, the other concerning a network of multiple crossings in a typical electron capture process involving a highly charged ion with a neutral atom.
NASA Astrophysics Data System (ADS)
Neri, Izaak; Roldán, Édgar; Jülicher, Frank
2017-01-01
We study the statistics of infima, stopping times, and passage probabilities of entropy production in nonequilibrium steady states, and we show that they are universal. We consider two examples of stopping times: first-passage times of entropy production and waiting times of stochastic processes, which are the times when a system reaches a given state for the first time. Our main results are as follows: (i) The distribution of the global infimum of entropy production is exponential with mean equal to minus Boltzmann's constant; (ii) we find exact expressions for the passage probabilities of entropy production; (iii) we derive a fluctuation theorem for stopping-time distributions of entropy production. These results have interesting implications for stochastic processes that can be discussed in simple colloidal systems and in active molecular processes. In particular, we show that the timing and statistics of discrete chemical transitions of molecular processes, such as the steps of molecular motors, are governed by the statistics of entropy production. We also show that the extreme-value statistics of active molecular processes are governed by entropy production; for example, we derive a relation between the maximal excursion of a molecular motor against the direction of an external force and the infimum of the corresponding entropy-production fluctuations. Using this relation, we make predictions for the distribution of the maximum backtrack depth of RNA polymerases, which follow from our universal results for entropy-production infima.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Tammie Renee; Tretiak, Sergei
2017-01-06
Understanding and controlling excited state dynamics lies at the heart of all our efforts to design photoactive materials with desired functionality. This tailor-design approach has become the standard for many technological applications (e.g., solar energy harvesting) including the design of organic conjugated electronic materials with applications in photovoltaic and light-emitting devices. Over the years, our team has developed efficient LANL-based codes to model the relevant photophysical processes following photoexcitation (spatial energy transfer, excitation localization/delocalization, and/or charge separation). The developed approach allows the non-radiative relaxation to be followed on up to ~10 ps timescales for large realistic molecules (hundreds of atomsmore » in size) in the realistic solvent dielectric environment. The Collective Electronic Oscillator (CEO) code is used to compute electronic excited states, and the Non-adiabatic Excited State Molecular Dynamics (NA-ESMD) code is used to follow the non-adiabatic dynamics on multiple coupled Born-Oppenheimer potential energy surfaces. Our preliminary NA-ESMD simulations have revealed key photoinduced mechanisms controlling competing interactions and relaxation pathways in complex materials, including organic conjugated polymer materials, and have provided a detailed understanding of photochemical products and intermediates and the internal conversion process during the initiation of energetic materials. This project will be using LANL-based CEO and NA-ESMD codes to model nonradiative relaxation in organic and energetic materials. The NA-ESMD and CEO codes belong to a class of electronic structure/quantum chemistry codes that require large memory, “long-queue-few-core” distribution of resources in order to make useful progress. The NA-ESMD simulations are trivially parallelizable requiring ~300 processors for up to one week runtime to reach a meaningful restart point.« less
Ultrasonic sludge pretreatment under pressure.
Le, Ngoc Tuan; Julcour-Lebigue, Carine; Delmas, Henri
2013-09-01
The objective of this work was to optimize the ultrasound (US) pretreatment of sludge. Three types of sewage sludge were examined: mixed, secondary and secondary after partial methanisation ("digested" sludge). Thereby, several main process parameters were varied separately or simultaneously: stirrer speed, total solid content of sludge (TS), thermal operating conditions (adiabatic vs. isothermal), ultrasonic power input (PUS), specific energy input (ES), and for the first time external pressure. This parametric study was mainly performed for the mixed sludge. Five different TS concentrations of sludge (12-36 g/L) were tested for different values of ES (7000-75,000 kJ/kgTS) and 28 g/L was found as the optimum value according to the solubilized chemical oxygen demand in the liquid phase (SCOD). PUS of 75-150 W was investigated under controlled temperature and the "high power input - short duration" procedure was the most effective at a given ES. The temperature increase in adiabatic US application significantly improved SCOD compared to isothermal conditions. With PUS of 150 W, the effect of external pressure was investigated in the range of 1-16 bar under isothermal and adiabatic conditions for two types of sludge: an optimum pressure of about 2 bar was found regardless of temperature conditions and ES values. Under isothermal conditions, the resulting improvement of sludge disintegration efficacy as compared to atmospheric pressure was by 22-67% and 26-37% for mixed and secondary sludge, respectively. Besides, mean particle diameter (D[4,3]) of the three sludge types decreased respectively from 408, 117, and 110 μm to about 94-97, 37-42, and 36-40 μm regardless of sonication conditions, and the size reduction process was much faster than COD extraction. Copyright © 2013 Elsevier B.V. All rights reserved.
Tectonic movements along the Anegada Passage derived from GPS Observations (2008-2017)
NASA Astrophysics Data System (ADS)
Liu, H.; Wang, G.
2017-12-01
The Anegada Passage system, mainly includes the Virgin Islands Basin (VIB), Anegada Gap, and the Sombrero Basin, are located within the tectonically complex plate boundary zone between the North America and Caribbean plates. It separated the Puerto Rico and Northern Virgin Islands (PRNVI) block from St. Croix and Anguilla. Long-term seismic observations indicated that this region still faces high risk from earthquakes. This study used current GPS geodesy infrastructure in the Northeastern Caribbean region, which includes high densely GPS stations on PRNVI block and northern Lesser Antilles and a stable PRNVI reference frame (SPRNVIRF). Current GPS geodesy infrastructure in the PRVI region makes it possible to precisely delineate minor tectonic motions (1 to 2 mm/year) within the northeastern Caribbean region. The carrier phase Double-Difference (DD) and Precise Point Positioning (PPP) post-processing methods are both used to processing GPS data. Over ten years of GPS observations indicate that the St. Croix Island is moving away from the PRVI block toward southeast with a velocity of 1.8 ± 0.2 mm/year; there is not considerable relative motions between the Saint Martin Island and the PRVI block. The Saint Martin Island is located at the south side of the Anegada Gap. The GPS and seismic observations along the two sides of the Anegada passage suggest that the west segment (VIB) of the passage retains active, while the east segment is presently inactive. The Virgin Islands basin presently experiences left-lateral motion in a nearly east-west direction with a velocity of about 1.2 mm/year and an extension in a nearly north-south direction with a velocity of about 1.3 mm/year. The quantitative measurements derived from GPS observations would improve seismic hazard assessment in the Anegada Passage region.
Global adiabaticity and non-Gaussianity consistency condition
NASA Astrophysics Data System (ADS)
Romano, Antonio Enea; Mooij, Sander; Sasaki, Misao
2016-10-01
In the context of single-field inflation, the conservation of the curvature perturbation on comoving slices, Rc, on super-horizon scales is one of the assumptions necessary to derive the consistency condition between the squeezed limit of the bispectrum and the spectrum of the primordial curvature perturbation. However, the conservation of Rc holds only after the perturbation has reached the adiabatic limit where the constant mode of Rc dominates over the other (usually decaying) mode. In this case, the non-adiabatic pressure perturbation defined in the thermodynamic sense, δPnad ≡ δP - cw2 δρ where cw2 = P ˙ / ρ ˙ , usually becomes also negligible on superhorizon scales. Therefore one might think that the adiabatic limit is the same as thermodynamic adiabaticity. This is in fact not true. In other words, thermodynamic adiabaticity is not a sufficient condition for the conservation of Rc on super-horizon scales. In this paper, we consider models that satisfy δPnad = 0 on all scales, which we call global adiabaticity (GA), which is guaranteed if cw2 = cs2, where cs is the phase velocity of the propagation of the perturbation. A known example is the case of ultra-slow-roll (USR) inflation in which cw2 = cs2 = 1. In order to generalize USR we develop a method to find the Lagrangian of GA K-inflation models from the behavior of background quantities as functions of the scale factor. Applying this method we show that there indeed exists a wide class of GA models with cw2 = cs2, which allows Rc to grow on superhorizon scales, and hence violates the non-Gaussianity consistency condition.
Nath, G; Sahu, P K
2016-01-01
A self-similar model for one-dimensional unsteady isothermal and adiabatic flows behind a strong exponential shock wave driven out by a cylindrical piston moving with time according to an exponential law in an ideal gas in the presence of azimuthal magnetic field and variable density is discussed in a rotating atmosphere. The ambient medium is assumed to possess radial, axial and azimuthal component of fluid velocities. The initial density, the fluid velocities and magnetic field of the ambient medium are assumed to be varying with time according to an exponential law. The gas is taken to be non-viscous having infinite electrical conductivity. Solutions are obtained, in both the cases, when the flow between the shock and the piston is isothermal or adiabatic by taking into account the components of vorticity vector. The effects of the variation of the initial density index, adiabatic exponent of the gas and the Alfven-Mach number on the flow-field behind the shock wave are investigated. It is found that the presence of the magnetic field have decaying effects on the shock wave. Also, it is observed that the effect of an increase in the magnetic field strength is more impressive in the case of adiabatic flow than in the case of isothermal flow. The assumption of zero temperature gradient brings a profound change in the density, non-dimensional azimuthal and axial components of vorticity vector distributions in comparison to those in the case of adiabatic flow. A comparison is made between isothermal and adiabatic flows. It is obtained that an increase in the initial density variation index, adiabatic exponent and strength of the magnetic field decrease the shock strength.
[Growing up as a migrant, rites of passage in the Maghreb].
Touhami, Fatima; Rizzi, Alice Titia; Moro, Marie Rose
In a context of migration, some parents experience difficulties in passing on their culture and their knowledge, which makes it difficult to achieve reciprocal recognition and to establish a feeling of filiation and heritage. In this context, maintaining the rites of passage enables their symbolic effectiveness and creativity to be maintained. Circumcision, in particular, is a key stage of this process in the Maghreb. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Symposium (International) (4th) on DETONATION Held at White Oak, Maryland on 12-15 October 1965.
1965-10-15
without Kury et al. and earlier by Wilkins et al. (UCRL- much more success than by the various small- 7797). The theoretical adiabatic exponent was...accelerate metal makes it possible ima in the adiabatic exponent versus volume to measure brisance quantitatively, and clari- plots of Kury et al. all...ef- variable covolume equations of state predict fects on confining metals. that the adiabatic exponent should thereafter decrease (essentially
Multiple Oral Re-reading treatment for alexia: The parts may be greater than the whole.
Lacey, Elizabeth H; Lott, S N; Snider, S F; Sperling, A; Friedman, R B
2010-08-01
This study examines the reasons for the success of Multiple Oral Re-reading (MOR; Moyer, 1979), a non-invasive, easily administered alexia treatment that has been reported in the literature and is currently in clinical use. The treatment consists of reading text passages aloud multiple times a day. Findings that MOR improves reading speed on practised as well as novel text have been inconsistent, making MOR's role in the rehabilitation of alexia unclear. We hypothesised that MOR's treatment mechanism works through repetition of high frequency words (i.e., bottom-up processing). We designed and controlled our text passages to test the hypothesis that participants would not improve on all novel text but would improve on text that includes a critical mass of the words contained in the passages they were re-reading. We further hypothesised that the improvement would be at the level of their specific alexic deficit. We tested four participants with phonological alexia and two with pure alexia during 8 weeks of MOR treatment. Contrary to the conclusions of previous studies, our results indicate that improvements in top-down processing cannot explain generalisation in MOR and that much of the improvement in reading is through repetition of the practised words. However, most patients also showed improvement when specific phrases were re-used in novel passages, indicating that practice of difficult words in context may be crucial to reading improvement.
Analysis of magnetically immersed electron guns with non-adiabatic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pikin, Alexander; Alessi, James G.; Beebe, Edward N.
Electron diode guns, which have strongly varying magnetic or electric fields in a cathode-anode gap, were investigated in order to generate laminar electron beams with high current density using magnetically immersed guns. By creating a strongly varying radial electric field in a cathode-anode gap of the electron gun, it was demonstrated that the optical properties of the gun can be significantly altered, which allows the generation of a laminar, high-current electron beam with relatively low magnetic field on the cathode. The relatively high magnetic compression of the electron beam achieved by this method is important for producing electron beams withmore » high current density. A similar result can be obtained by inducing a strong variation of the magnetic field in a cathode-anode gap. It was observed that creating a dip in the axial magnetic field in the cathode-anode gap of an adiabatic electron gun has an optical effect similar to guns with strong variation of radial electric field. By analyzing the electron trajectories angles and presenting the results in a gun performance map different geometries of magnetically immersed electron guns with non-adiabatic fields are compared with each other and with a more traditional adiabatic electron gun. Some advantages and limitations of guns with non-adiabatic fields are outlined. In conclusion, the tests results of non-adiabatic electron gun with modified magnetic field are presented.« less
Analysis of magnetically immersed electron guns with non-adiabatic fields
Pikin, Alexander; Alessi, James G.; Beebe, Edward N.; ...
2016-11-08
Electron diode guns, which have strongly varying magnetic or electric fields in a cathode-anode gap, were investigated in order to generate laminar electron beams with high current density using magnetically immersed guns. By creating a strongly varying radial electric field in a cathode-anode gap of the electron gun, it was demonstrated that the optical properties of the gun can be significantly altered, which allows the generation of a laminar, high-current electron beam with relatively low magnetic field on the cathode. The relatively high magnetic compression of the electron beam achieved by this method is important for producing electron beams withmore » high current density. A similar result can be obtained by inducing a strong variation of the magnetic field in a cathode-anode gap. It was observed that creating a dip in the axial magnetic field in the cathode-anode gap of an adiabatic electron gun has an optical effect similar to guns with strong variation of radial electric field. By analyzing the electron trajectories angles and presenting the results in a gun performance map different geometries of magnetically immersed electron guns with non-adiabatic fields are compared with each other and with a more traditional adiabatic electron gun. Some advantages and limitations of guns with non-adiabatic fields are outlined. In conclusion, the tests results of non-adiabatic electron gun with modified magnetic field are presented.« less
Analysis of magnetically immersed electron guns with non-adiabatic fields.
Pikin, Alexander; Alessi, James G; Beebe, Edward N; Raparia, Deepak; Ritter, John
2016-11-01
Electron diode guns, which have strongly varying magnetic or electric fields in a cathode-anode gap, were investigated in order to generate laminar electron beams with high current density using magnetically immersed guns. By creating a strongly varying radial electric field in a cathode-anode gap of the electron gun, it was demonstrated that the optical properties of the gun can be significantly altered, which allows the generation of a laminar, high-current electron beam with relatively low magnetic field on the cathode. The relatively high magnetic compression of the electron beam achieved by this method is important for producing electron beams with high current density. A similar result can be obtained by inducing a strong variation of the magnetic field in a cathode-anode gap. It was observed that creating a dip in the axial magnetic field in the cathode-anode gap of an adiabatic electron gun has an optical effect similar to guns with strong variation of radial electric field. By analyzing the electron trajectories angles and presenting the results in a gun performance map, different geometries of magnetically immersed electron guns with non-adiabatic fields are compared with each other and with a more traditional adiabatic electron gun. Some advantages and limitations of guns with non-adiabatic fields are outlined. The tests' results of a non-adiabatic electron gun with modified magnetic field are presented.
Accuracy of the adiabatic-impulse approximation for closed and open quantum systems
NASA Astrophysics Data System (ADS)
Tomka, Michael; Campos Venuti, Lorenzo; Zanardi, Paolo
2018-03-01
We study the adiabatic-impulse approximation (AIA) as a tool to approximate the time evolution of quantum states when driven through a region of small gap. Such small-gap regions are a common situation in adiabatic quantum computing and having reliable approximations is important in this context. The AIA originates from the Kibble-Zurek theory applied to continuous quantum phase transitions. The Kibble-Zurek mechanism was developed to predict the power-law scaling of the defect density across a continuous quantum phase transition. Instead, here we quantify the accuracy of the AIA via the trace norm distance with respect to the exact evolved state. As expected, we find that for short times or fast protocols, the AIA outperforms the simple adiabatic approximation. However, for large times or slow protocols, the situation is actually reversed and the AIA provides a worse approximation. Nevertheless, we found a variation of the AIA that can perform better than the adiabatic one. This counterintuitive modification consists in crossing the region of small gap twice. Our findings are illustrated by several examples of driven closed and open quantum systems.
Correlations of catalytic combustor performance parameters
NASA Technical Reports Server (NTRS)
Bulzan, D. L.
1978-01-01
Correlations for combustion efficiency percentage drop and the minimum required adiabatic reaction temperature necessary to meet emissions goals of 13.6 g CO/kg fuel and 1.64 g HC/kg fuel are presented. Combustion efficiency was found to be a function of the cell density, cell circumference, reactor length, reference velocity, and adiabatic reaction temperature. The percentage pressure drop at an adiabatic reaction temperature of 1450 K was found to be proportional to the reference velocity to the 1.5 power and to the reactor length. It is inversely proportional to the pressure, cell hydraulic diameter, and fractional open area. The minimum required adiabatic reaction temperature was found to increase with reference velocity and decrease with cell circumference, cell density and reactor length. A catalyst factor was introduced into the correlations to account for differences between catalysts. Combustion efficiency, the percentage pressure drop, and the minimum required adiabatic reaction temperature were found to be a function of the catalyst factor. The data was from a 12 cm-diameter test rig with noble metal reactors using propane fuel at an inlet temperature of 800 K.
Theoretical and Computational Investigation of High-Brightness Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chiping
Theoretical and computational investigations of adiabatic thermal beams have been carried out in parameter regimes relevant to the development of advanced high-brightness, high-power accelerators for high-energy physics research and for various applications such as light sources. Most accelerator applications require high-brightness beams. This is true for high-energy accelerators such as linear colliders. It is also true for energy recovery linacs (ERLs) and free electron lasers (FELs) such as x-ray free electron lasers (XFELs). The breakthroughs and highlights in our research in the period from February 1, 2013 to November 30, 2013 were: a) Completion of a preliminary theoretical and computationalmore » study of adiabatic thermal Child-Langmuir flow (Mok, 2013); and b) Presentation of an invited paper entitled ?Adiabatic Thermal Beams in a Periodic Focusing Field? at Space Charge 2013 Workshop, CERN, April 16-19, 2013 (Chen, 2013). In this report, an introductory background for the research project is provided. Basic theory of adiabatic thermal Child-Langmuir flow is reviewed. Results of simulation studies of adiabatic thermal Child-Langmuir flows are discussed.« less
Dark energy and dark matter from an additional adiabatic fluid
NASA Astrophysics Data System (ADS)
Dunsby, Peter K. S.; Luongo, Orlando; Reverberi, Lorenzo
2016-10-01
The dark sector is described by an additional barotropic fluid which evolves adiabatically during the Universe's history and whose adiabatic exponent γ is derived from the standard definitions of specific heats. Although in general γ is a function of the redshift, the Hubble parameter and its derivatives, we find that our assumptions lead necessarily to solutions with γ =constant in a Friedmann-Lemaître-Robertson-Walker universe. The adiabatic fluid acts effectively as the sum of two distinct components, one evolving like nonrelativistic matter and the other depending on the value of the adiabatic index. This makes the model particularly interesting as a way of simultaneously explaining the nature of both dark energy and dark matter, at least at the level of the background cosmology. The Λ CDM model is included in this family of theories when γ =0 . We fit our model to supernovae Ia, H (z ) and baryonic acoustic oscillation data, discussing the model selection criteria. The implications for the early Universe and the growth of small perturbations in this model are also discussed.
NASA Astrophysics Data System (ADS)
Dupret, M.-A.; De Ridder, J.; De Cat, P.; Aerts, C.; Scuflaire, R.; Noels, A.; Thoul, A.
2003-02-01
We present an improved version of the method of photometric mode identification of Heynderickx et al. (\\cite{hey}). Our new version is based on the inclusion of precise non-adiabatic eigenfunctions determined in the outer stellar atmosphere according to the formalism recently proposed by Dupret et al. (\\cite{dup}). Our improved photometric mode identification technique is therefore no longer dependent on ad hoc parameters for the non-adiabatic effects. It contains the complete physical conditions of the outer atmosphere of the star, provided that rotation does not play a key role. We apply our method to the two slowly pulsating B stars HD 74560 and HD 138764 and to the beta Cephei star EN (16) Lac. Besides identifying the degree l of the pulsating stars, our method is also a tool for improving the knowledge of stellar interiors and atmospheres, by imposing constraints on parameters such as the metallicity and the mixing-length parameter alpha (a procedure we label non-adiabatic asteroseismology). The non-adiabatic eigenfunctions needed for the mode identification are available upon request from the authors.
The stretch to stray on time: Resonant length of random walks in a transient
NASA Astrophysics Data System (ADS)
Falcke, Martin; Friedhoff, Victor Nicolai
2018-05-01
First-passage times in random walks have a vast number of diverse applications in physics, chemistry, biology, and finance. In general, environmental conditions for a stochastic process are not constant on the time scale of the average first-passage time or control might be applied to reduce noise. We investigate moments of the first-passage time distribution under an exponential transient describing relaxation of environmental conditions. We solve the Laplace-transformed (generalized) master equation analytically using a novel method that is applicable to general state schemes. The first-passage time from one end to the other of a linear chain of states is our application for the solutions. The dependence of its average on the relaxation rate obeys a power law for slow transients. The exponent ν depends on the chain length N like ν = - N / ( N + 1 ) to leading order. Slow transients substantially reduce the noise of first-passage times expressed as the coefficient of variation (CV), even if the average first-passage time is much longer than the transient. The CV has a pronounced minimum for some lengths, which we call resonant lengths. These results also suggest a simple and efficient noise control strategy and are closely related to the timing of repetitive excitations, coherence resonance, and information transmission by noisy excitable systems. A resonant number of steps from the inhibited state to the excitation threshold and slow recovery from negative feedback provide optimal timing noise reduction and information transmission.
A transferable model for singlet-fission kinetics.
Yost, Shane R; Lee, Jiye; Wilson, Mark W B; Wu, Tony; McMahon, David P; Parkhurst, Rebecca R; Thompson, Nicholas J; Congreve, Daniel N; Rao, Akshay; Johnson, Kerr; Sfeir, Matthew Y; Bawendi, Moungi G; Swager, Timothy M; Friend, Richard H; Baldo, Marc A; Van Voorhis, Troy
2014-06-01
Exciton fission is a process that occurs in certain organic materials whereby one singlet exciton splits into two independent triplets. In photovoltaic devices these two triplet excitons can each generate an electron, producing quantum yields per photon of >100% and potentially enabling single-junction power efficiencies above 40%. Here, we measure fission dynamics using ultrafast photoinduced absorption and present a first-principles expression that successfully reproduces the fission rate in materials with vastly different structures. Fission is non-adiabatic and Marcus-like in weakly interacting systems, becoming adiabatic and coupling-independent at larger interaction strengths. In neat films, we demonstrate fission yields near unity even when monomers are separated by >5 Å. For efficient solar cells, however, we show that fission must outcompete charge generation from the singlet exciton. This work lays the foundation for tailoring molecular properties like solubility and energy level alignment while maintaining the high fission yield required for photovoltaic applications.
NASA Astrophysics Data System (ADS)
Taj, D.; Iotti, R. C.; Rossi, F.
2009-11-01
We shall revisit the conventional adiabatic or Markov approximation, which — contrary to the semiclassical case- does not preserve the positive-definite character of the corresponding density matrix, thus leading to highly non-physical results. To overcome this serious limitation, originally addressed by Davies and co-workers almost three decades ago, we shall propose an alternative more general adiabatic procedure, able to provide a reliable/robust treatment of energy-dissipation and dephasing processes in electronic quantum devices. Unlike standard master-equation formulations, our procedure guarantees a positive evolution for a variety of physical subsystem (including the common partial trace), and quantum scattering rates are well defined even for subsystems with internal structure/ continuous energy spectrum. We shall compare the proposed Markov dissipation model with the conventional one also through basic simulations of energy-relaxation versus decoherence channels in prototypical semiconductor nanodevices.
Evolution of fNL to the adiabatic limit
NASA Astrophysics Data System (ADS)
Elliston, Joseph; Mulryne, David J.; Seery, David; Tavakol, Reza
2011-11-01
We study inflationary perturbations in multiple-field models, for which ζ typically evolves until all isocurvature modes decay — the "adiabatic limit". We use numerical methods to explore the sensitivity of the local-shape bispectrum to the process by which this limit is achieved, finding an appreciable dependence on model-specific data such as the time at which slow-roll breaks down or the timescale of reheating. In models with a sum-separable potential where the isocurvature modes decay before the end of the slow-roll phase we give an analytic criterion for the asymptotic value of fNL to be large. Other examples can be constructed using a waterfall field to terminate inflation while fNL is transiently large, caused by descent from a ridge or convergence into a valley. We show that these two types of evolution are distinguished by the sign of the bispectrum, and give approximate expressions for the peak fNL.
Ultrafast adiabatic quantum algorithm for the NP-complete exact cover problem
Wang, Hefeng; Wu, Lian-Ao
2016-01-01
An adiabatic quantum algorithm may lose quantumness such as quantum coherence entirely in its long runtime, and consequently the expected quantum speedup of the algorithm does not show up. Here we present a general ultrafast adiabatic quantum algorithm. We show that by applying a sequence of fast random or regular signals during evolution, the runtime can be reduced substantially, whereas advantages of the adiabatic algorithm remain intact. We also propose a randomized Trotter formula and show that the driving Hamiltonian and the proposed sequence of fast signals can be implemented simultaneously. We illustrate the algorithm by solving the NP-complete 3-bit exact cover problem (EC3), where NP stands for nondeterministic polynomial time, and put forward an approach to implementing the problem with trapped ions. PMID:26923834
ERIC Educational Resources Information Center
Hernandez, Gabriel E.; Criswell, Brett A.; Kirk, Nancy J.; Sauder, Deborah G.; Rushton, Gregory T.
2014-01-01
In the past three decades, researchers have noted the limitations of a problem-solving approach that overemphasizes algorithms and quantitation and neglects student misconceptions and an otherwise qualitative, conceptual understanding of chemical phenomena. Since then, studies and lessons designed to improve student understanding of chemistry has…
Teaching the First Law of Thermodynamics via Real-Life Examples
NASA Astrophysics Data System (ADS)
Chang, Wheijen
2011-04-01
The literature has revealed that many students encounter substantial difficulties in applying the first law of thermodynamics. For example, university students sometimes fail to recognize that heat and work are independent means of energy transfer. When discussing adiabatic processes for an ideal gas, few students can correctly refer to the concept of "work" to justify a change in temperature. Some students adopt the notion that "collisions between molecules produce heat" to explain the rise in temperature for an adiabatic compression process.2 When explaining processes entailing temperature variation, students tend to adopt the ideal-gas law.1,2 Although most university students have acquired a reasonable grasp of the state-function concept, which is valid for variation of internal energy, they fail to grasp the concept that work depends not only on the states but also the processes. Thus, they are unable to use the first law effectively.3 In order to help students comprehend the meaning, usages, and value of the first law, and to realize that the ideal-gas law itself is insufficient to analyze many real-life examples, this paper introduces four examples, some of which can be demonstrated in the classroom. The examples have been devised and gradually modified over a period of several years based on implementation in a calculus-based introductory physics course. Details of when, how, and why each example is adopted, along with the students' pitfalls, are described below.
Thermodynamics of an ideal generalized gas: II. Means of order alpha.
Lavenda, B H
2005-11-01
The property that power means are monotonically increasing functions of their order is shown to be the basis of the second laws not only for processes involving heat conduction, but also for processes involving deformations. This generalizes earlier work involving only pure heat conduction and underlines the incomparability of the internal energy and adiabatic potentials when expressed as powers of the adiabatic variable. In an L-potential equilibration, the final state will be one of maximum entropy, whereas in an entropy equilibration, the final state will be one of minimum L. Unlike classical equilibrium thermodynamic phase space, which lacks an intrinsic metric structure insofar as distances and other geometrical concepts do not have an intrinsic thermodynamic significance in such spaces, a metric space can be constructed for the power means: the distance between means of different order is related to the Carnot efficiency. In the ideal classical gas limit, the average change in the entropy is shown to be proportional to the difference between the Shannon and Rényi entropies for nonextensive systems that are multifractal in nature. The L potential, like the internal energy, is a Schur convex function of the empirical temperature, which satisfies Jensen's inequality, and serves as a measure of the tendency to uniformity in processes involving pure thermal conduction.
NASA Astrophysics Data System (ADS)
Keika, K.; Kistler, L. M.; Brandt, P. C.
2014-12-01
In-situ observations and modeling work have confirmed that singly-charged oxygen ions, O+, which are of Earth's ionospheric origin, are heated/accelerated up to >100 keV in the magnetosphere. The energetic O+ population makes a significant contribution to the plasma pressure in the Earth's inner magnetosphere during magnetic storms, although under quiet conditions H+ dominates the plasma pressure. The pressure enhancements, which we term energization, are caused by adiabatic heating through earthward transport of source population in the plasma sheet, local acceleration in the inner magnetosphere and near-Earth plasma sheet, and enhanced ion supply from the topside ionosphere. The key issues regarding stronger O+ energization than H+ are non-adiabatic local acceleration, responsible for increase in O+ temperature, and more significant O+ supply than H+, responsible for increase in O+ density. Although several acceleration mechanisms and O+ supply processes have been proposed, it remains an open question what mechanism(s)/process(es) play the dominant role in stronger O+ energization. In this paper we summarize important spacecraft observations including those from Van Allen Probes, introduces the proposed mechanisms/processes that generate O+-rich energetic plasma population, and outlines possible scenarios of O+ pressure abundance in the Earth's inner magnetosphere.
Dynamics of Photoexcited State of Semiconductor Quantum Dots
NASA Astrophysics Data System (ADS)
Trivedi, Dhara J.
In this thesis, non-adiabatic molecular dynamics (NAMD) of excited states in semiconductor quantum dots are investigated. Nanoscale systems provide important opportunities for theory and computation for research because the experimental tools often provide an incomplete picture of the structure and/or function of nanomaterials, and theory can often fill in missing features crucial in understanding what is being measured. The simulation of NAMD is an indispensable tool for understanding complex ultrafast photoinduced processes such as charge and energy transfer, thermal relaxation, and charge recombination. Based on the state-of-the-art ab initio approaches in both the energy and time domains, the thesis presents a comprehensive discussion of the dynamical processes in quantum dots, ranging from the initial photon absorption to the final emission. We investigate the energy relaxation and transfer rates in pure and surface passivated quantum dots of different sizes. The study establishes the fundamental mechanisms of the electron and hole relaxation processes with and without hole traps. We develop and implement more accurate and efficient methods for NAMD. These methods are advantageous over the traditional ones when one encounters classically forbidden transitions. We also explore the effect of decoherence and non-adiabatic couplings on the dynamics. The results indicate significant influence on the accuracy and related computational cost of the simulated dynamics.
Rajan, Thangavelu Soundara; Scionti, Domenico; Diomede, Francesca; Piattelli, Adriano; Bramanti, Placido; Mazzon, Emanuela; Trubiani, Oriana
2017-12-01
Neural crest-derived mesenchymal stem cells (MSCs) obtained from dental tissues received considerable interest in regenerative medicine, particularly in nerve regeneration owing to their embryonic origin and ease of harvest. Proliferation efficacy and differentiation capacity into diverse cell lineages propose dental MSCs as an in vitro tool for disease modeling. In this study, we investigated the spontaneous differentiation efficiency of dental MSCs obtained from human gingiva tissue (hGMSCs) into neural progenitor cells after extended passaging. At passage 41, the morphology of hGMSCs changed from typical fibroblast-like shape into sphere-shaped cells with extending processes. Next-generation transcriptomics sequencing showed increased expression of neural progenitor markers such as NES, MEIS2, and MEST. In addition, de novo expression of neural precursor genes, such as NRN1, PHOX2B, VANGL2, and NTRK3, was noticed in passage 41. Immunocytochemistry results showed suppression of neurogenesis repressors TP53 and p21, whereas Western blot results revealed the expression of neurotrophic factors BDNF and NT3 at passage 41. Our results showed the spontaneous efficacy of hGMSCs to differentiate into neural precursor cells over prolonged passages and that these cells may assist in producing novel in vitro disease models that are associated with neural development.
Quantum factorization of 143 on a dipolar-coupling nuclear magnetic resonance system.
Xu, Nanyang; Zhu, Jing; Lu, Dawei; Zhou, Xianyi; Peng, Xinhua; Du, Jiangfeng
2012-03-30
Quantum algorithms could be much faster than classical ones in solving the factoring problem. Adiabatic quantum computation for this is an alternative approach other than Shor's algorithm. Here we report an improved adiabatic factoring algorithm and its experimental realization to factor the number 143 on a liquid-crystal NMR quantum processor with dipole-dipole couplings. We believe this to be the largest number factored in quantum-computation realizations, which shows the practical importance of adiabatic quantum algorithms.
The influence of dielectric relaxation on intramolecular electron transfer
NASA Astrophysics Data System (ADS)
Heitele, H.; Michel-Beyerle, M. E.; Finckh, P.
1987-07-01
An unusually strong temperature dependence on the intramolecular electron-transfer rate has been observed for bridged donor-acceptor compounds in propylene glycol solution. In the frame of recent electron-transfer theories this effect reflects the influence of dielectric relaxation dynamics on electron transfer. With increasing dielectric relaxation time a smooth transition from non-adiabatic to solvent-controlled adiabatic behaviour is observed. The electron transfer rate in the solvent-controlled adiabatic limit is dominated by an inhomogeneous distribution of relaxation times.
Thermodynamics of non-Markovian reservoirs and heat engines
NASA Astrophysics Data System (ADS)
Thomas, George; Siddharth, Nana; Banerjee, Subhashish; Ghosh, Sibasish
2018-06-01
We show that non-Markovian effects of the reservoirs can be used as a resource to extract work from an Otto cycle. The state transformation under non-Markovian dynamics is achieved via a two-step process, namely an isothermal process using a Markovian reservoir followed by an adiabatic process. From second law of thermodynamics, we show that the maximum amount of extractable work from the state prepared under the non-Markovian dynamics quantifies a lower bound of non-Markovianity. We illustrate our ideas with an explicit example of non-Markovian evolution.
Valiev, R R; Cherepanov, V N; Baryshnikov, G V; Sundholm, D
2018-02-28
A method for calculating the rate constants for internal-conversion (k IC ) and intersystem-crossing (k ISC ) processes within the adiabatic and Franck-Condon (FC) approximations is proposed. The applicability of the method is demonstrated by calculation of k IC and k ISC for a set of organic and organometallic compounds with experimentally known spectroscopic properties. The studied molecules were pyrromethene-567 dye, psoralene, hetero[8]circulenes, free-base porphyrin, naphthalene, and larger polyacenes. We also studied fac-Alq 3 and fac-Ir(ppy) 3 , which are important molecules in organic light emitting diodes (OLEDs). The excitation energies were calculated at the multi-configuration quasi-degenerate second-order perturbation theory (XMC-QDPT2) level, which is found to yield excitation energies in good agreement with experimental data. Spin-orbit coupling matrix elements, non-adiabatic coupling matrix elements, Huang-Rhys factors, and vibrational energies were calculated at the time-dependent density functional theory (TDDFT) and complete active space self-consistent field (CASSCF) levels. The computed fluorescence quantum yields for the pyrromethene-567 dye, psoralene, hetero[8]circulenes, fac-Alq 3 and fac-Ir(ppy) 3 agree well with experimental data, whereas for the free-base porphyrin, naphthalene, and the polyacenes, the obtained quantum yields significantly differ from the experimental values, because the FC and adiabatic approximations are not accurate for these molecules.
Including Memory Friction in Single- and Two-State Quantum Dynamics Simulations.
Brown, Paul A; Messina, Michael
2016-03-03
We present a simple computational algorithm that allows for the inclusion of memory friction in a quantum dynamics simulation of a small, quantum, primary system coupled to many atoms in the surroundings. We show how including a memory friction operator, F̂, in the primary quantum system's Hamiltonian operator builds memory friction into the dynamics of the primary quantum system. We show that, in the harmonic, semi-classical limit, this friction operator causes the classical phase-space centers of a wavepacket to evolve exactly as if it were a classical particle experiencing memory friction. We also show that this friction operator can be used to include memory friction in the quantum dynamics of an anharmonic primary system. We then generalize the algorithm so that it can be used to treat a primary quantum system that is evolving, non-adiabatically on two coupled potential energy surfaces, i.e., a model that can be used to model H atom transfer, for example. We demonstrate this approach's computational ease and flexibility by showing numerical results for both harmonic and anharmonic primary quantum systems in the single surface case. Finally, we present numerical results for a model of non-adiabatic H atom transfer between a reactant and product state that includes memory friction on one or both of the non-adiabatic potential energy surfaces and uncover some interesting dynamical effects of non-memory friction on the H atom transfer process.
First passage properties of a generalized Pólya urn
NASA Astrophysics Data System (ADS)
Kearney, Michael J.; Martin, Richard J.
2016-12-01
A generalized two-component Pólya urn process, parameterized by a variable α , is studied in terms of the likelihood that due to fluctuations the initially smaller population in a scenario of competing population growth eventually becomes the larger, or is the larger after a certain passage of time. By casting the problem as an inhomogeneous directed random walk we quantify this role-reversal phenomenon through the first passage probability that equality in size is first reached at a given time, and the related exit probability that equality in size is reached no later than a given time. Using an embedding technique, exact results are obtained which complement existing results and provide new insights into behavioural changes (akin to phase transitions) which occur at defined values of α .
Oregon's Senate Bill 560: practical policy lessons for nurse advocates.
Gilson Sistrom, Maria
2010-02-01
In response to striking rates of childhood obesity in Oregon, advocates led by a nurse lobbyist proposed legislation in 2005 to regulate junk foods in public schools. Several theories propose to explain the policy-making process, yet Senate Bill 560 (SB 560) followed a twisted course through rule making, legislative and political processes that are not well articulated in policy theory. Three overlapping mechanisms were identified in content analysis of documents and interviews with participants in the SB 560 policy process. Strategically placed legislative "banana peels," proponents' amateur advocacy, and legislative outflanking by professional lobbyists more fully characterize this policy process and better account for the failure of SB 560. Subsequent passage of the Oregon Healthy School Foods bill in the more politically conducive 2007 legislature suggest that advocacy and incremental change frameworks are less predictive of successful passage than is the ability to take advantage of political opportunities to change public health policy.
Three-dimensional numerical simulation of gradual opening in a wave rotor passage
NASA Technical Reports Server (NTRS)
Larosiliere, Louis M.
1993-01-01
The evolution of the contact interface and the propagation of compression waves inside a single wave rotor passage gradually opening to and traversing an inlet port is studied numerically using an inviscid formulation of the governing equations. Insights into the response of the interface and kinematics of the flow field to various opening times are given. Since the opening time is inversely proportional to the rotational speed of the rotor, the effects of passage rotation such as centripetal and Coriolis accelerations are intrinsically coupled to the gradual opening process. Certain three-dimensional features associated with the gradual opening process as a result of centripetal and Coriolis accelerations are illustrated. For the range of opening times or rotational speeds considered, a portion of the interface behaves like a vortex sheet that can degenerate into a complex interfacial structure. The vortices produced along the interface can serve as a stirring mechanism to promote local mixing. Coriolis and centripetal accelerations can introduce three dimensional effects such as interfacial distortions in meridional planes and spanwise migration of fluid elements.
Jakubetz, Werner
2012-12-14
This paper presents a systematic numerical investigation of background state participation in STIRAP (stimulated Raman-adiabatic passage) population transfer among vibrational states, focusing on the consequences for the robustness of the method. The simulations, which are performed over extended grids in the parameter space of the Stokes- and pump pulses (frequencies, field strengths, and pulse lengths), involve hierarchies of (3 + N)-level systems of increasing complexity, ranging from the standard three-level STIRAP setup, (N = 0) in Λ-configuration, up to N = 446. A strongly coupled three-level core system is selected from the full Hamiltonian of the double-well HCN∕HNC system, and the couplings connecting this core system to the remaining states are (re-) parameterized in different ways, from very weak to very strong. The systems so obtained represent a three-level system embedded in various ways in webs of cross-linked vibrational background states and incorporate typical molecular properties. We first summarize essential properties of population transfer in the standard three-level system and quantify the robustness of the method and its dependence on the pulse parameters. Against these reference results, we present results obtained for four (3 + 446)-level systems and several subsystems. For pulse lengths of at most few picoseconds the intrinsic robustness of STIRAP with respect to variations in the field strength disappears as soon as the largest core-background couplings exceed about one tenth of the STIRAP couplings. In such cases robustness with respect to variations in the field strength is entirely lost, since at higher field strengths, except for irregularly spaced narrow frequency ranges, transfer probabilities are strongly reduced. STIRAP-like population transfer is maintained, with some restrictions, at low field strengths near the onset of adiabatic transfer. The suppression of STIRAP is traced back to different mechanisms based on a plentitude of single- and multiphoton transitions to background states, which at the high field strengths characteristic for STIRAP proceed readily even along weakly coupled pathways.
Hsu, Chun-Ting; Jacobs, Arthur M.; Altmann, Ulrike; Conrad, Markus
2015-01-01
Literature containing supra-natural, or magical events has enchanted generations of readers. When reading narratives describing such events, readers mentally simulate a text world different from the real one. The corresponding violation of world-knowledge during this simulation likely increases cognitive processing demands for ongoing discourse integration, catches readers’ attention, and might thus contribute to the pleasure and deep emotional experience associated with ludic immersive reading. In the present study, we presented participants in an MR scanner with passages selected from the Harry Potter book series, half of which described magical events, while the other half served as control condition. Passages in both conditions were closely matched for relevant psycholinguistic variables including, e.g., emotional valence and arousal, passage-wise mean word imageability and frequency, and syntactic complexity. Post-hoc ratings showed that readers considered supra-natural contents more surprising and more strongly associated with reading pleasure than control passages. In the fMRI data, we found stronger neural activation for the supra-natural than the control condition in bilateral inferior frontal gyri, bilateral inferior parietal lobules, left fusiform gyrus, and left amygdala. The increased activation in the amygdala (part of the salience and emotion processing network) appears to be associated with feelings of surprise and the reading pleasure, which supra-natural events, full of novelty and unexpectedness, brought about. The involvement of bilateral inferior frontal gyri likely reflects higher cognitive processing demand due to world knowledge violations, whereas increased attention to supra-natural events is reflected in inferior frontal gyri and inferior parietal lobules that are part of the fronto-parietal attention network. PMID:25671315
NASA Astrophysics Data System (ADS)
Measures, C. I.; Brown, M. T.; Selph, K. E.; Apprill, A.; Zhou, M.; Hatta, M.; Hiscock, W. T.
2013-06-01
Dissolved trace element distributions near Elephant Island in the Drake Passage show extremely high levels of dissolved Fe and Mn in waters above the shelf. The entrainment of this enriched shelf water by the Fe-poor Antarctic Circumpolar Current (ACC) as it passes through the Shackleton Gap delivers an estimated 2.8×106 mol yr-1 dissolved Fe to the offshore waters of the Drake Passage. The magnitude and spatial distribution of dissolved Fe, Mn and Al over the shelf are consistent with a diagenetically produced sedimentary source, but are inconsistent with eolian or upwelling sources. The systematics of the Mn and Fe concentrations suggest that there are two distinct sources of dissolved Fe to the surface waters of this region. The highest Fe concentrations are associated with Bransfield Strait water, which can be identified by its characteristic temperature and salinity (T/S) properties both inside the Bransfield Strait and in the Bransfield Current outflow between Elephant and Clarence Islands. Most of the shelf area is dominated by a second water type with T/S properties that are typical of modified Antarctic Surface Water, which while also enriched has a lower Fe:Mn ratio. The predominantly linear relationships between the Fe and Mn concentrations at the stations in each of these water mass types suggest that the distribution of these elements is largely controlled by physical mixing processes and that biological removal of Fe on the shelf, while certainly occurring, is limited, perhaps as a result of rapid physical flushing processes and relatively slow biological growth rates. The consequent export of large quantities of this shelf-derived Fe into the ACC is likely responsible for the extensive regions of enhanced primary production seen in satellite imagery downstream of the Drake Passage.