Science.gov

Sample records for adiabatic passage process

  1. Experimental demonstration of composite adiabatic passage

    NASA Astrophysics Data System (ADS)

    Schraft, Daniel; Halfmann, Thomas; Genov, Genko T.; Vitanov, Nikolay V.

    2013-12-01

    We report an experimental demonstration of composite adiabatic passage (CAP) for robust and efficient manipulation of two-level systems. The technique represents a altered version of rapid adiabatic passage (RAP), driven by composite sequences of radiation pulses with appropriately chosen phases. We implement CAP with radio-frequency pulses to invert (i.e., to rephase) optically prepared spin coherences in a Pr3+:Y2SiO5 crystal. We perform systematic investigations of the efficiency of CAP and compare the results with conventional π pulses and RAP. The data clearly demonstrate the superior features of CAP with regard to robustness and efficiency, even under conditions of weakly fulfilled adiabaticity. The experimental demonstration of composite sequences to support adiabatic passage is of significant relevance whenever a high efficiency or robustness of coherent excitation processes need to be maintained, e.g., as required in quantum information technology.

  2. Pulse sequences in photoassociation via adiabatic passage

    NASA Astrophysics Data System (ADS)

    Li, Xuan; Dupre, William; Parker, Gregory A.

    2012-07-01

    We perform a detailed study of pulse sequences in a photoassociation via adiabatic passage (PAP) process to transfer population from an ensemble of ultracold atomic clouds to a vibrationally cold molecular state. We show that an appreciable final population of ultracold NaCs molecules can be achieved with optimized pulses in either the ‘counter-intuitive’ (tP > tS) or ‘intuitive’ (tP < tS) PAP pulse sequences, with tP and tS denoting the temporal centers of the pump and Stokes pulses, respectively. By investigating the dependence of the reactive yield on pulse sequences, in a wide range of tP-tS, we show that there is not a fundamental preference to either pulse sequence in a PAP process. We explain this no-sequence-preference phenomenon by analyzing a multi-bound model so that an analogy can be drawn to the conventional stimulated Raman adiabatic passage.

  3. Ultrafast stimulated Raman parallel adiabatic passage by shaped pulses

    SciTech Connect

    Dridi, G.; Guerin, S.; Hakobyan, V.; Jauslin, H. R.; Eleuch, H.

    2009-10-15

    We present a general and versatile technique of population transfer based on parallel adiabatic passage by femtosecond shaped pulses. Their amplitude and phase are specifically designed to optimize the adiabatic passage corresponding to parallel eigenvalues at all times. We show that this technique allows the robust adiabatic population transfer in a Raman system with the total pulse area as low as 3{pi}, corresponding to a fluence of one order of magnitude below the conventional stimulated Raman adiabatic passage process. This process of short duration, typically picosecond and subpicosecond, is easily implementable with the modern pulse shaper technology and opens the possibility of ultrafast robust population transfer with interesting applications in quantum information processing.

  4. Nonadiabatic Transitions in Adiabatic Rapid Passage

    NASA Astrophysics Data System (ADS)

    Lu, T.; Miao, X.; Metcalf, H.

    2006-05-01

    Optical forces much larger than the ordinary radiative force can be achieved on a two-level atom by multiple repetitions of adiabatic rapid passage sweeps with counterpropagating light beams. Chirped light pulses drive the atom-laser system up a ladder of dressed state energy sheets on sequential trajectories, thereby decreasing the atomic kinetic energy. Nonadiabatic transitions between the energy sheets must be avoided for this process to be effective. We have calculated the nonadiabatic transition probability for various chirped light pulses numerically. These results were compared to the first Demkov-Kunike model and the well-known Landau-Zener model. In addition, an analytical form of the nonadiabatic transition probability has been found for linearly chirped pulses and an approximate form for generic symmetric finite-time pulses has been found for the entire parameter space using the technique of unitary integration. From this, the asymptotic transition probability in the adiabatic limit was derived. T. Lu, X. Miao, and H. Metcalf, Phys., Rev. A 71 061405(R) (2005). Yu. Demkov and M. Kunike, Vestn. Leningr. Univ. Fis. Khim., 16, 39 (1969); K.-A. Suominen and B. Garraway, Phys. Rev. A45, 374 (1992)

  5. Spontaneous emission in stimulated Raman adiabatic passage

    SciTech Connect

    Ivanov, P. A.; Vitanov, N. V.; Bergmann, K.

    2005-11-15

    This work explores the effect of spontaneous emission on the population transfer efficiency in stimulated Raman adiabatic passage (STIRAP). The approach uses adiabatic elimination of weakly coupled density matrix elements in the Liouville equation, from which a very accurate analytic approximation is derived. The loss of population transfer efficiency is found to decrease exponentially with the factor {omega}{sub 0}{sup 2}/{gamma}, where {gamma} is the spontaneous emission rate and {omega}{sub 0} is the peak Rabi frequency. The transfer efficiency increases with the pulse delay and reaches a steady value. For large pulse delay and large spontaneous emission rate STIRAP degenerates into optical pumping.

  6. Nonadiabatic transitions in finite-time adiabatic rapid passage

    NASA Astrophysics Data System (ADS)

    Lu, T.; Miao, X.; Metcalf, H.

    2007-06-01

    To apply the adiabatic rapid passage process repetitively [T. Lu, X. Miao, and H. Metcalf, Phys. Rev. A 71, 061405(R) (2005)], the nonadiabatic transition probability of a two-level atom subject to chirped light pulses over a finite period of time needs to be calculated. Using a unitary first-order perturbation method in the rotating adiabatic frame, an approximate formula has been derived for such transition probabilities in the entire parameter space of the pulses.

  7. Trapped Ion Quantum Computation by Adiabatic Passage

    SciTech Connect

    Feng Xuni; Wu Chunfeng; Lai, C. H.; Oh, C. H.

    2008-11-07

    We propose a new universal quantum computation scheme for trapped ions in thermal motion via the technique of adiabatic passage, which incorporates the advantages of both the adiabatic passage and the model of trapped ions in thermal motion. Our scheme is immune from the decoherence due to spontaneous emission from excited states as the system in our scheme evolves along a dark state. In our scheme the vibrational degrees of freedom are not required to be cooled to their ground states because they are only virtually excited. It is shown that the fidelity of the resultant gate operation is still high even when the magnitude of the effective Rabi frequency moderately deviates from the desired value.

  8. Dephasing effects on stimulated Raman adiabatic passage in tripod configurations

    SciTech Connect

    Lazarou, C.; Vitanov, N. V.

    2010-09-15

    We present an analytic description of the effects of dephasing processes on stimulated Raman adiabatic passage in a tripod quantum system. To this end, we develop an effective two-level model. Our analysis makes use of the adiabatic approximation in the weak dephasing regime. An effective master equation for a two-level system formed by two dark states is derived, where analytic solutions are obtained by utilizing the Demkov-Kunike model. From these, it is found that the fidelity for the final coherent superposition state decreases exponentially for increasing dephasing rates. Depending on the pulse ordering and for adiabatic evolution, the pulse delay can have an inverse effect.

  9. Arbitrary qudit gates by adiabatic passage

    NASA Astrophysics Data System (ADS)

    Rousseaux, B.; Guérin, S.; Vitanov, N. V.

    2013-03-01

    We derive an adiabatic technique that implements the most general SU(d) transformation in a quantum system of d degenerate states, featuring a qudit. This technique is based on the factorization of the SU(d) transformation into d generalized quantum Householder reflections, each of which is implemented by a two-shot stimulated Raman adiabatic passage with appropriate static phases. The energy of the lasers needed to synthesize a single Householder reflection is shown to be remarkably constant as a function of d. This technique is directly applicable to a linear trapped ion system with d+1 ions. We implement the quantum Fourier transform numerically in a qudit with d=4 (defined as a quartit) as an example.

  10. Adiabatic passage in the presence of noise

    NASA Astrophysics Data System (ADS)

    Noel, T.; Dietrich, M. R.; Kurz, N.; Shu, G.; Wright, J.; Blinov, B. B.

    2012-02-01

    We report on an experimental investigation of rapid adiabatic passage (RAP) in a trapped barium ion system. RAP is implemented on the transition from the 6S1/2 ground state to the metastable 5D5/2 level by applying a laser at 1.76 μm. We focus on the interplay of laser frequency noise and laser power in shaping the effectiveness of RAP, which is commonly assumed to be a robust tool for high-efficiency population transfer. However, we note that reaching high state transfer fidelity requires a combination of small laser linewidth and large Rabi frequency.

  11. Stimulated Raman adiabatic passage in Tm{sup 3+}:YAG

    SciTech Connect

    Alexander, A. L.; Lauro, R.; Louchet, A.; Chaneliere, T.; Le Goueet, J. L.

    2008-10-01

    We report on the experimental demonstration of stimulated Raman adiabatic passage in a Tm{sup 3+}:YAG crystal. Tm{sup 3+}:YAG is a promising material for use in quantum information processing applications, but as yet there are few experimental investigations of coherent Raman processes in this material. We investigate the effect of inhomogeneous broadening and Rabi frequency on the transfer efficiency and the width of the two-photon spectrum. Simulations of the complete Tm{sup 3+}:YAG system are presented along with the corresponding experimental results.

  12. Stimulated Raman adiabatic passage through permanent dipole moment transitions

    SciTech Connect

    Niu Yingyu; Wang Rong; Qiu Minghui

    2010-04-15

    The rovibrational dynamics of stimulated Raman adiabatic passage (STIRAP) through permanent dipole moment transitions are investigated theoretically using a time-dependent quantum wave packet method for the ground electronic state of an HF molecule. The two basic STIRAP processes, {Lambda} and ladder systems, are simulated. The calculated results show that nearly 100% of the population can be transferred to the target state. Besides the interested transitions, the pulses can induce other transitions which affect the dynamics of STIRAP. The final populations of the initial and target states depend on delay time.

  13. Spatial adiabatic passage via interaction-induced band separation

    NASA Astrophysics Data System (ADS)

    Benseny, Albert; Gillet, Jérémie; Busch, Thomas

    2016-03-01

    The development of advanced quantum technologies and the quest for a deeper understanding of many-particle quantum mechanics requires control over the quantum state of interacting particles to a high degree of fidelity. However, the quickly increasing density of the spectrum, together with the appearance of crossings in time-dependent processes, makes any effort to control the system hard and resource intensive. Here we show that in trapped systems regimes can exist in which isolated energy bands appear that allow one to easily generalize known single-particle techniques. We demonstrate this for the well-known spatial adiabatic passage effect, which can control the center-of-mass state of atoms with high fidelity.

  14. Coherently controlled adiabatic passage to multiple continuum channels

    SciTech Connect

    Thanopulos, Ioannis; Shapiro, Moshe

    2006-09-15

    We present a solution to the multichannel quantum control problem, where selective and complete population transfer from an initial bound state to M energetically degenerate continuum channels is achieved under loss-free conditions. The control is affected by adiabatic passage proceeding via N bound intermediate states, where even in the presence of real loss from these states, the control efficiency remains significant, about 40-50%. We illustrate the viability of the method by computationally controlling the CH{sub 3}(v)+I*({sup 2}P{sub 1/2})<-CH{sub 3}I{yields}CH{sub 3}(v)+I({sup 2}P{sub 3/2}) multichannel photodissociation process.

  15. Integrated polarization rotator/converter by stimulated Raman adiabatic passage.

    PubMed

    Xiong, Xiao; Zou, Chang-Ling; Ren, Xi-Feng; Guo, Guang-Can

    2013-07-15

    We proposed a polarization rotator inspired by stimulated Raman adiabatic passage model from quantum optics, which is composed of a signal waveguide and an ancillary waveguide. The two orthogonal modes in signal waveguide and the oblique mode in ancillary waveguide form a Λ-type three-level system. By controlling the width of signal waveguide and the gap between two waveguides, adiabatic conversion between two orthogonal modes can be realized in the signal waveguide. With such adiabatic passage, polarization conversion is completed within 150 μm length, with the efficiencies over 99% for both conversions between horizontal polarization and vertical polarization. In addition, such a polarization rotator is quite robust against fabrication error, allowing a wide range of tolerances for the rotator geometric parameters. Our work is not only significative to photonic simulations of coherent quantum phenomena with engineered photonic waveguides, but also enlightens the practical applications of these phenomena in optical device designs. PMID:23938558

  16. Spatial adiabatic passage: a review of recent progress

    NASA Astrophysics Data System (ADS)

    Menchon-Enrich, R.; Benseny, A.; Ahufinger, V.; Greentree, A. D.; Busch, Th; Mompart, J.

    2016-07-01

    Adiabatic techniques are known to allow for engineering quantum states with high fidelity. This requirement is currently of large interest, as applications in quantum information require the preparation and manipulation of quantum states with minimal errors. Here we review recent progress on developing techniques for the preparation of spatial states through adiabatic passage, particularly focusing on three state systems. These techniques can be applied to matter waves in external potentials, such as cold atoms or electrons, and to classical waves in waveguides, such as light or sound.

  17. Spatial adiabatic passage: a review of recent progress.

    PubMed

    Menchon-Enrich, R; Benseny, A; Ahufinger, V; Greentree, A D; Busch, Th; Mompart, J

    2016-07-01

    Adiabatic techniques are known to allow for engineering quantum states with high fidelity. This requirement is currently of large interest, as applications in quantum information require the preparation and manipulation of quantum states with minimal errors. Here we review recent progress on developing techniques for the preparation of spatial states through adiabatic passage, particularly focusing on three state systems. These techniques can be applied to matter waves in external potentials, such as cold atoms or electrons, and to classical waves in waveguides, such as light or sound. PMID:27245462

  18. Effect of dephasing on stimulated Raman adiabatic passage

    SciTech Connect

    Ivanov, P.A.; Vitanov, N.V.; Bergmann, K.

    2004-12-01

    This work explores the effect of phase relaxation on the population transfer efficiency in stimulated Raman adiabatic passage (STIRAP). The study is based on the Liouville equation, which is solved analytically in the adiabatic limit. The transfer efficiency of STIRAP is found to decrease exponentially with the dephasing rate; this effect is stronger for shorter pulse delays and weaker for larger delays, since the transition time is found to be inversely proportional to the pulse delay. Moreover, it is found that the transfer efficiency of STIRAP in the presence of dephasing does not depend on the peak Rabi frequencies at all, as long as they are sufficiently large to enforce adiabatic evolution; hence increasing the field intensity cannot reduce the dephasing losses. It is shown also that for any dephasing rate, the final populations of the initial state and the intermediate state are equal. For strong dephasing all three populations tend to (1/3)

  19. Transport of ultracold atoms between concentric traps via spatial adiabatic passage

    NASA Astrophysics Data System (ADS)

    Polo, J.; Benseny, A.; Busch, Th; Ahufinger, V.; Mompart, J.

    2016-01-01

    Spatial adiabatic passage processes for ultracold atoms trapped in tunnel-coupled cylindrically symmetric concentric potentials are investigated. Specifically, we discuss the matter-wave analog of the rapid adiabatic passage (RAP) technique for a high fidelity and robust loading of a single atom into a harmonic ring potential from a harmonic trap, and for its transport between two concentric rings. We also consider a system of three concentric rings and investigate the transport of a single atom between the innermost and the outermost rings making use of the matter-wave analog of the stimulated Raman adiabatic passage (STIRAP) technique. We describe the RAP-like and STIRAP-like dynamics by means of a two- and a three-state model, respectively, obtaining good agreement with the numerical simulations of the corresponding two-dimensional Schrödinger equation.

  20. Creation and Transfer of Coherence via Technique of Stimulated Raman Adiabatic Passage in Triple Quantum Dots

    NASA Astrophysics Data System (ADS)

    Tian, Si-Cong; Wan, Ren-Gang; Wang, Chun-Liang; Shu, Shi-Li; Wang, Li-Jie; Tong, Chun-Zhu

    2016-04-01

    We propose a scheme for creation and transfer of coherence among ground state and indirect exciton states of triple quantum dots via the technique of stimulated Raman adiabatic passage. Compared with the traditional stimulated Raman adiabatic passage, the Stokes laser pulse is replaced by the tunneling pulse, which can be controlled by the externally applied voltages. By varying the amplitudes and sequences of the pump and tunneling pulses, a complete coherence transfer or an equal coherence distribution among multiple states can be obtained. The investigations can provide further insight for the experimental development of controllable coherence transfer in semiconductor structure and may have potential applications in quantum information processing.

  1. Experimental demonstration of population inversion driven by retroreflection-induced bichromatic adiabatic passage

    SciTech Connect

    Conde, Alvaro Peralta; Yatsenko, Leonid P.; Klein, Jens; Oberst, Martin; Halfmann, Thomas

    2005-11-15

    We present experimental data to demonstrate coherently driven population inversion by retroreflection-induced bichromatic adiabatic passage in metastable helium atoms. Complete and robust population transfer from an initial to a target state is induced by coherent interaction of the atoms in a supersonic beam with two counterpropagating and temporally delayed laser pulses of different intensities. The radiation fields intersect the atomic beam slightly tilted away from normal incidence, thereby inducing Doppler shifts of the atomic resonance between the initial and the target state. Thus the laser pulses produce a bichromatic field in the rest frame of each atom, which induces complete coherent population transfer by an adiabatic passage process.

  2. Creation and Transfer of Coherence via Technique of Stimulated Raman Adiabatic Passage in Triple Quantum Dots.

    PubMed

    Tian, Si-Cong; Wan, Ren-Gang; Wang, Chun-Liang; Shu, Shi-Li; Wang, Li-Jie; Tong, Chun-Zhu

    2016-12-01

    We propose a scheme for creation and transfer of coherence among ground state and indirect exciton states of triple quantum dots via the technique of stimulated Raman adiabatic passage. Compared with the traditional stimulated Raman adiabatic passage, the Stokes laser pulse is replaced by the tunneling pulse, which can be controlled by the externally applied voltages. By varying the amplitudes and sequences of the pump and tunneling pulses, a complete coherence transfer or an equal coherence distribution among multiple states can be obtained. The investigations can provide further insight for the experimental development of controllable coherence transfer in semiconductor structure and may have potential applications in quantum information processing. PMID:27107772

  3. Steady-state coherent transfer by adiabatic passage.

    PubMed

    Huneke, Jan; Platero, Gloria; Kohler, Sigmund

    2013-01-18

    We propose steady-state electron transport based on coherent transfer by adiabatic passage (CTAP) in a linearly arranged triple quantum dot with leads attached to the outer dots. Its main feature is repeated steering of single electrons from the first dot to the last dot without relevant occupation of the middle dot. The coupling to leads enables a steady-state current, whose shot noise is significantly suppressed provided that the CTAP protocol performs properly. This represents an indication for the direct transfer between spatially separated dots and, thus, may resolve the problem of finding experimental evidence for the nonoccupation of the middle dot. PMID:23373941

  4. Efficient shortcuts to adiabatic passage for three-dimensional entanglement generation via transitionless quantum driving

    NASA Astrophysics Data System (ADS)

    He, Shuang; Su, Shi-Lei; Wang, Dong-Yang; Sun, Wen-Mei; Bai, Cheng-Hua; Zhu, Ai-Dong; Wang, Hong-Fu; Zhang, Shou

    2016-08-01

    We propose an effective scheme of shortcuts to adiabaticity for generating a three-dimensional entanglement of two atoms trapped in a cavity using the transitionless quantum driving (TQD) approach. The key point of this approach is to construct an effective Hamiltonian that drives the dynamics of a system along instantaneous eigenstates of a reference Hamiltonian to reproduce the same final state as that of an adiabatic process within a much shorter time. In this paper, the shortcuts to adiabatic passage are constructed by introducing two auxiliary excited levels in each atom and applying extra cavity modes and classical fields to drive the relevant transitions. Thereby, the three-dimensional entanglement is obtained with a faster rate than that in the adiabatic passage. Moreover, the influences of atomic spontaneous emission and photon loss on the fidelity are discussed by numerical simulation. The results show that the speed of entanglement implementation is greatly improved by the use of adiabatic shortcuts and that this entanglement implementation is robust against decoherence. This will be beneficial to the preparation of high-dimensional entanglement in experiment and provides the necessary conditions for the application of high-dimensional entangled states in quantum information processing.

  5. Efficient shortcuts to adiabatic passage for three-dimensional entanglement generation via transitionless quantum driving

    PubMed Central

    He, Shuang; Su, Shi-Lei; Wang, Dong-Yang; Sun, Wen-Mei; Bai, Cheng-Hua; Zhu, Ai-Dong; Wang, Hong-Fu; Zhang, Shou

    2016-01-01

    We propose an effective scheme of shortcuts to adiabaticity for generating a three-dimensional entanglement of two atoms trapped in a cavity using the transitionless quantum driving (TQD) approach. The key point of this approach is to construct an effective Hamiltonian that drives the dynamics of a system along instantaneous eigenstates of a reference Hamiltonian to reproduce the same final state as that of an adiabatic process within a much shorter time. In this paper, the shortcuts to adiabatic passage are constructed by introducing two auxiliary excited levels in each atom and applying extra cavity modes and classical fields to drive the relevant transitions. Thereby, the three-dimensional entanglement is obtained with a faster rate than that in the adiabatic passage. Moreover, the influences of atomic spontaneous emission and photon loss on the fidelity are discussed by numerical simulation. The results show that the speed of entanglement implementation is greatly improved by the use of adiabatic shortcuts and that this entanglement implementation is robust against decoherence. This will be beneficial to the preparation of high-dimensional entanglement in experiment and provides the necessary conditions for the application of high-dimensional entangled states in quantum information processing. PMID:27499169

  6. Efficient shortcuts to adiabatic passage for three-dimensional entanglement generation via transitionless quantum driving.

    PubMed

    He, Shuang; Su, Shi-Lei; Wang, Dong-Yang; Sun, Wen-Mei; Bai, Cheng-Hua; Zhu, Ai-Dong; Wang, Hong-Fu; Zhang, Shou

    2016-01-01

    We propose an effective scheme of shortcuts to adiabaticity for generating a three-dimensional entanglement of two atoms trapped in a cavity using the transitionless quantum driving (TQD) approach. The key point of this approach is to construct an effective Hamiltonian that drives the dynamics of a system along instantaneous eigenstates of a reference Hamiltonian to reproduce the same final state as that of an adiabatic process within a much shorter time. In this paper, the shortcuts to adiabatic passage are constructed by introducing two auxiliary excited levels in each atom and applying extra cavity modes and classical fields to drive the relevant transitions. Thereby, the three-dimensional entanglement is obtained with a faster rate than that in the adiabatic passage. Moreover, the influences of atomic spontaneous emission and photon loss on the fidelity are discussed by numerical simulation. The results show that the speed of entanglement implementation is greatly improved by the use of adiabatic shortcuts and that this entanglement implementation is robust against decoherence. This will be beneficial to the preparation of high-dimensional entanglement in experiment and provides the necessary conditions for the application of high-dimensional entangled states in quantum information processing. PMID:27499169

  7. Multi-atom entanglement engineering and phase-covariant cloning via adiabatic passage

    NASA Astrophysics Data System (ADS)

    Zheng, Shi-Biao

    2005-05-01

    A scheme is proposed for the generation of entangled states for multiple atoms trapped in an optical cavity via adiabatic passage. In the scheme, both the atomic system and the cavity have no probability of being excited. Thus both the atomic spontaneous emission and the cavity decay are suppressed, which makes our scheme very robust against decoherence. Taking advantage of the adiabatic process, the scheme does not require accurate adjustment of the interaction time. Furthermore, the scheme is scalable in principle. The idea can also be used for realizing phase-covariant cloning.

  8. Adiabatic passage with spin locking in Tm3+:YAG

    NASA Astrophysics Data System (ADS)

    Pascual-Winter, M. F.; Tongning, R. C.; Lauro, R.; Louchet-Chauvet, A.; Chanelière, T.; Le Gouët, J.-L.

    2012-08-01

    In low-concentration Tm3+:YAG, we observe efficient adiabatic rapid passage (ARP) of thulium nuclear spin over flipping times much longer than T2. Efficient ARP with long flipping time has been observed in monoatomic solids for decades and has been analyzed in terms of spin temperature and of the thermodynamic equilibrium of a coupled spin ensemble. In low-concentration impurity-doped crystals the spin temperature concept may be questioned. A single spin model should be preferred since the impurity ions are weakly coupled together but interact with the numerous off-resonant matrix ions that originate the spin-spin relaxation. The experiment takes place in the context of quantum information investigation, involving impurity-doped crystals, spin hyperpolarization by optical pumping, and optical detection of the spin evolution.

  9. Controlled Rapid Adiabatic Passage in a V-Type System

    NASA Astrophysics Data System (ADS)

    Song, Yunheung; Lee, Han-Gyeol; Jo, Hanlae; Ahn, Jaewook

    2016-05-01

    In chirped rapid adiabatic passage (RAP), chirp sign determines the final state to which the complete population transfer (CPT) occurs in a three-level V-type system. In this study, we show that laser intensity can be alternatively used as a control means in RAP, when the laser pulse is chirped and of a spectral hole resonant to one of the excited states. We verified such excitation selectivity in the experiment performed as-shaped femtosecond laser pulses interacting with the lowest three levels (5S, 5 P1/2, and 5 P3/2) of atomic rubidium. The successful demonstration implies that this intensity-dependent RAP in conjunction with laser beam profile programming may allow excitation selectivity for atoms or ions arranged in space.

  10. Robust Ramsey sequences with Raman adiabatic rapid passage

    NASA Astrophysics Data System (ADS)

    Kotru, Krish; Brown, Justin M.; Butts, David L.; Kinast, Joseph M.; Stoner, Richard E.

    2014-11-01

    We present a method for robust timekeeping in which alkali-metal atoms are interrogated in a Ramsey sequence based on stimulated Raman transitions with optical photons. To suppress systematic effects introduced by differential ac Stark shifts and optical intensity gradients, we employ atom optics derived from Raman adiabatic rapid passage (ARP). Raman ARP drives coherent transfer between the alkali-metal hyperfine ground states via a sweep of the Raman detuning through the two-photon resonance. Our experimental implementation of Raman ARP reduced the phase sensitivity of Ramsey sequences to Stark shifts in 133Cs atoms by about two orders of magnitude, relative to fixed-frequency Raman transitions. This technique also preserved Ramsey fringe contrast for cloud displacements reaching the 1 /e2 intensity radius of the laser beam. In a magnetically unshielded apparatus, second-order Zeeman shifts limited the fractional frequency uncertainty to ˜3.5 ×10-12 after about 2500 s of averaging.

  11. Adiabatic passage in photon-echo quantum memories

    NASA Astrophysics Data System (ADS)

    Demeter, Gabor

    2013-11-01

    Photon-echo-based quantum memories use inhomogeneously broadened, optically thick ensembles of absorbers to store a weak optical signal and employ various protocols to rephase the atomic coherences for information retrieval. We study the application of two consecutive, frequency-chirped control pulses for coherence rephasing in an ensemble with a “natural” inhomogeneous broadening. Although propagation effects distort the two control pulses differently, chirped pulses that drive adiabatic passage can rephase atomic coherences in an optically thick storage medium. Combined with spatial phase-mismatching techniques to prevent primary echo emission, coherences can be rephased around the ground state to achieve secondary echo emission with close to unit efficiency. Potential advantages over similar schemes working with π pulses include greater potential signal fidelity, reduced noise due to spontaneous emission, and better capability for the storage of multiple memory channels.

  12. Multiphoton Raman Atom Optics with Frequency-Swept Adiabatic Passage

    NASA Astrophysics Data System (ADS)

    Kotru, Krish; Butts, David; Kinast, Joseph; Stoner, Richard

    2016-05-01

    Light-pulse atom interferometry is a promising candidate for future inertial navigators, gravitational wave detectors, and measurements of fundamental physical constants. The sensitivity of this technique, however, is often limited by the small momentum separations created between interfering atom wave packets (typically ~ 2 ℏk) . We address this issue using light-pulse atom optics derived from stimulated Raman transitions and frequency-swept adiabatic rapid passage (ARP). In experiments, these Raman ARP atom optics have generated up to 30 ℏk photon recoil momenta in an acceleration-sensitive atom interferometer, thereby enhancing the phase shift per unit acceleration by a factor of 15. Since this approach forgoes evaporative cooling and velocity selection, it could enable large-area atom interferometry at higher data rates, while also lowering the atom shot-noise-limited measurement uncertainty.

  13. Shortcuts to adiabatic passage for generation of W states of distant atoms

    NASA Astrophysics Data System (ADS)

    Song, Kun-Huang; Chen, Ming-Feng

    2016-08-01

    With the help of quantum Zeno dynamics, we propose fast and noise-resistant schemes for preparing the W states in the indirectly coupled cavity systems via the inverse engineering-based Lewis-Riesenfeld invariant (IBLR). Comparing with the original adiabatic passage method, the results show that the time needed to prepare the desired state is reduced and the effects of the atomic spontaneous emission and the cavity decay on the fidelity are suppressed. Moreover, this scheme can also be generalized to generation of N-atom W states. Not only the total operation time, but also the robustness against decoherence is insensitive to the number of atoms. It proves that our scheme is useful in scalable distributed quantum information processing and contributes to the understanding of more complex systems via shortcuts to adiabatic passage based on Lewis-Riesenfeld invariants.

  14. Experimental Progress Toward Multiple Adiabatic Rapid Passage Sequences

    NASA Astrophysics Data System (ADS)

    Miao, X.; Wertz, E.; Cohen, M. G.; Metcalf, H.

    2006-05-01

    Multiple repetitions of adiabatic rapid passage (ARP) sweeps with counterpropagating light beams can enable huge optical forces on atoms. The repetition rate of the ARP sweeps φsγ results in a force k φs/πk γ/2 ≡Frad where 1/γ≡τ is the excited state lifetime and Frad is the ordinary radiative force. This is because each pair of ARP-induced inversions can coherently transfer momentum ±2 k between the light beams, and thus 2 k to the atoms. In developing instruments for such experiments on the 2^3S1-> 2^3P2 transition at λ = 1083 nm in He, we exploit recent developments in the optical communications industry. We use commercial phase and intensity modulators of the LiNbO3 waveguide type having Vπ as low as 6 V and thus requiring relatively low rf power for the modulation. Synchronized driving of the two modulators can produce the necessary multiple ARP sequences of 10 ns chirped pulses that span several GHz, as needed for the experiment^3. We are also developing optical methods for characterizing these pulses. T. Lu, X. Miao, and H. Metcalf, Phys., Rev. A 71 061405(R) (2005).

  15. Geometry of an adiabatic passage at a level crossing

    SciTech Connect

    Cholascinski, Mateusz

    2005-06-15

    We discuss adiabatic quantum phenomena at a level crossing. Given a path in the parameter space which passes through a degeneracy point, we find a criterion which determines whether the adiabaticity condition can be satisfied. For paths that can be traversed adiabatically we also derive a differential equation which specifies the time dependence of the system parameters, for which transitions between distinct energy levels can be neglected. We also generalize the well-known geometric connections to the case of adiabatic paths containing arbitrarily many level-crossing points and degenerate levels.

  16. Fast CNOT gate between two spatially separated atoms via shortcuts to adiabatic passage.

    PubMed

    Liang, Yan; Song, Chong; Ji, Xin; Zhang, Shou

    2015-09-01

    Quantum logic gate is indispensable to quantum computation. One of the important qubit operations is the quantum controlled-not (CNOT) gate that performs a NOT operation on a target qubit depending on the state of the control qubit. In this paper we present a scheme to realize the quantum CNOT gate between two spatially separated atoms via shortcuts to adiabatic passage. The influence of various decoherence processes on the fidelity is discussed. The strict numerical simulation results show that the fidelity for the CNOT gate is relatively high. PMID:26368473

  17. Shortcut to Adiabatic Passage in Two- and Three-Level Atoms

    SciTech Connect

    Chen Xi; Lizuain, I.; Muga, J. G.; Ruschhaupt, A.; Guery-Odelin, D.

    2010-09-17

    We propose a method to speed up adiabatic passage techniques in two-level and three-level atoms extending to the short-time domain their robustness with respect to parameter variations. It supplements or substitutes the standard laser beam setups with auxiliary pulses that steer the system along the adiabatic path. Compared to other strategies, such as composite pulses or the original adiabatic techniques, it provides a fast and robust approach to population control.

  18. Fractional adiabatic passage in two-level systems: Mirrors and beam splitters for atomic interferometry

    SciTech Connect

    Bateman, James; Freegarde, Tim

    2007-07-15

    Atom interferometers require atom mirrors and beam splitters that can maintain high fidelity even when experimental parameters vary from the ideal. We address the use of chirped laser pulses to provide such elements via rapid adiabatic passage, and present a prescription for practical pulses that offer controlled adiabaticity throughout. Full- and half-adiabatic pulses, providing mirrors and beam splitters, respectively, are derived, and the latter examined for robustness and suitability for experimental implementations.

  19. Many-body effects on adiabatic passage through Feshbach resonances

    SciTech Connect

    Tikhonenkov, I.; Pazy, E.; Band, Y. B.; Vardi, A.; Fleischhauer, M.

    2006-04-15

    We theoretically study the dynamics of an adiabatic sweep through a Feshbach resonance, thereby converting a degenerate quantum gas of fermionic atoms into a degenerate quantum gas of bosonic dimers. Our analysis relies on a zero temperature mean-field theory which accurately accounts for initial molecular quantum fluctuations, triggering the association process. The structure of the resulting semiclassical phase space is investigated, highlighting the dynamical instability of the system towards association, for sufficiently small detuning from resonance. It is shown that this instability significantly modifies the finite-rate efficiency of the sweep, transforming the single-pair exponential Landau-Zener behavior of the remnant fraction of atoms {gamma} on sweep rate {alpha}, into a power-law dependence as the number of atoms increases. The obtained nonadiabaticity is determined from the interplay of characteristic time scales for the motion of adiabatic eigenstates and for fast periodic motion around them. Critical slowing-down of these precessions near the instability leads to the power-law dependence. A linear power law {gamma}{proportional_to}{alpha} is obtained when the initial molecular fraction is smaller than the 1/N quantum fluctuations, and a cubic-root power law {gamma}{proportional_to}{alpha}{sup 1/3} is attained when it is larger. Our mean-field analysis is confirmed by exact calculations, using Fock-space expansions. Finally, we fit experimental low temperature Feshbach sweep data with a power-law dependence. While the agreement with the experimental data is well within experimental error bars, similar accuracy can be obtained with an exponential fit, making additional data highly desirable.

  20. Robust Population Transfer by Stimulated Raman Adiabatic Passage in a Pr{sup 3+}:Y{sub 2}SiO{sub 5} Crystal

    SciTech Connect

    Klein, Jens; Beil, Fabian; Halfmann, Thomas

    2007-09-14

    We report on the experimental implementation of stimulated Raman adiabatic passage (STIRAP) in a Pr{sup 3+}:Y{sub 2}SiO{sub 5} crystal. Our data provide clear and striking proof for nearly complete population inversion between hyperfine levels in the Pr{sup 3+} ions. The transfer efficiency was monitored by absorption spectroscopy. Time-resolved absorption measurements serve to monitor the adiabatic population dynamics during the STIRAP process. Efficient transfer is observed for negative pulse delays (STIRAP), as well as for positive delays. We identify the latter by an alternative adiabatic passage process.

  1. Spin-Label CW Microwave Power Saturation and Rapid Passage with Triangular Non-Adiabatic Rapid Sweep (NARS) and Adiabatic Rapid Passage (ARP) EPR Spectroscopy

    PubMed Central

    Kittell, Aaron W.; Hyde, James S.

    2015-01-01

    Non-adiabatic rapid passage (NARS) electron paramagnetic resonance (EPR) spectroscopy was introduced by Kittell, A.W., Camenisch, T.G., Ratke, J.J. Sidabras, J.W., Hyde, J.S., 2011 as a general purpose technique to collect the pure absorption response. The technique has been used to improve sensitivity relative to sinusoidal magnetic field modulation, increase the range of inter-spin distances that can be measured under near physiological conditions, and enhance spectral resolution in copper (II) spectra. In the present work, the method is extended to CW microwave power saturation of spin-labeled T4 Lysozyme (T4L). As in the cited papers, rapid triangular sweep of the polarizing magnetic field was superimposed on slow sweep across the spectrum. Adiabatic rapid passage (ARP) effects were encountered in samples undergoing very slow rotational diffusion as the triangular magnetic field sweep rate was increased. The paper reports results of variation of experimental parameters at the interface of adiabatic and non-adiabatic rapid sweep conditions. Comparison of the forward (up) and reverse (down) triangular sweeps is shown to be a good indicator of the presence of rapid passage effects. Spectral turning points can be distinguished from spectral regions between turning points in two ways: differential microwave power saturation and differential passage effects. Oxygen accessibility data are shown under NARS conditions that appear similar to conventional field modulation data. However, the sensitivity is much higher, permitting, in principle, experiments at substantially lower protein concentrations. Spectral displays were obtained that appear sensitive to rotational diffusion in the range of rotational correlation times of 10−3 to 10−7 s in a manner that is analogous to saturation transfer spectroscopy. PMID:25917132

  2. Spin-label CW microwave power saturation and rapid passage with triangular non-adiabatic rapid sweep (NARS) and adiabatic rapid passage (ARP) EPR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kittell, Aaron W.; Hyde, James S.

    2015-06-01

    Non-adiabatic rapid passage (NARS) electron paramagnetic resonance (EPR) spectroscopy was introduced by Kittell et al. (2011) as a general purpose technique to collect the pure absorption response. The technique has been used to improve sensitivity relative to sinusoidal magnetic field modulation, increase the range of inter-spin distances that can be measured under near physiological conditions (Kittell et al., 2012), and enhance spectral resolution in copper (II) spectra (Hyde et al., 2013). In the present work, the method is extended to CW microwave power saturation of spin-labeled T4 Lysozyme (T4L). As in the cited papers, rapid triangular sweep of the polarizing magnetic field was superimposed on slow sweep across the spectrum. Adiabatic rapid passage (ARP) effects were encountered in samples undergoing very slow rotational diffusion as the triangular magnetic field sweep rate was increased. The paper reports results of variation of experimental parameters at the interface of adiabatic and non-adiabatic rapid sweep conditions. Comparison of the forward (up) and reverse (down) triangular sweeps is shown to be a good indicator of the presence of rapid passage effects. Spectral turning points can be distinguished from spectral regions between turning points in two ways: differential microwave power saturation and differential passage effects. Oxygen accessibility data are shown under NARS conditions that appear similar to conventional field modulation data. However, the sensitivity is much higher, permitting, in principle, experiments at substantially lower protein concentrations. Spectral displays were obtained that appear sensitive to rotational diffusion in the range of rotational correlation times of 10-3 to 10-7 s in a manner that is analogous to saturation transfer spectroscopy.

  3. Spin-label CW microwave power saturation and rapid passage with triangular non-adiabatic rapid sweep (NARS) and adiabatic rapid passage (ARP) EPR spectroscopy.

    PubMed

    Kittell, Aaron W; Hyde, James S

    2015-06-01

    Non-adiabatic rapid passage (NARS) electron paramagnetic resonance (EPR) spectroscopy was introduced by Kittell et al. (2011) as a general purpose technique to collect the pure absorption response. The technique has been used to improve sensitivity relative to sinusoidal magnetic field modulation, increase the range of inter-spin distances that can be measured under near physiological conditions (Kittell et al., 2012), and enhance spectral resolution in copper (II) spectra (Hyde et al., 2013). In the present work, the method is extended to CW microwave power saturation of spin-labeled T4 Lysozyme (T4L). As in the cited papers, rapid triangular sweep of the polarizing magnetic field was superimposed on slow sweep across the spectrum. Adiabatic rapid passage (ARP) effects were encountered in samples undergoing very slow rotational diffusion as the triangular magnetic field sweep rate was increased. The paper reports results of variation of experimental parameters at the interface of adiabatic and non-adiabatic rapid sweep conditions. Comparison of the forward (up) and reverse (down) triangular sweeps is shown to be a good indicator of the presence of rapid passage effects. Spectral turning points can be distinguished from spectral regions between turning points in two ways: differential microwave power saturation and differential passage effects. Oxygen accessibility data are shown under NARS conditions that appear similar to conventional field modulation data. However, the sensitivity is much higher, permitting, in principle, experiments at substantially lower protein concentrations. Spectral displays were obtained that appear sensitive to rotational diffusion in the range of rotational correlation times of 10(-3) to 10(-7) s in a manner that is analogous to saturation transfer spectroscopy. PMID:25917132

  4. Experimental implementation of adiabatic passage between different topological orders.

    PubMed

    Peng, Xinhua; Luo, Zhihuang; Zheng, Wenqiang; Kou, Supeng; Suter, Dieter; Du, Jiangfeng

    2014-08-22

    Topological orders are exotic phases of matter existing in strongly correlated quantum systems, which are beyond the usual symmetry description and cannot be distinguished by local order parameters. Here we report an experimental quantum simulation of the Wen-plaquette spin model with different topological orders in a nuclear magnetic resonance system, and observe the adiabatic transition between two Z(2) topological orders through a spin-polarized phase by measuring the nonlocal closed-string (Wilson loop) operator. Moreover, we also measure the entanglement properties of the topological orders. This work confirms the adiabatic method for preparing topologically ordered states and provides an experimental tool for further studies of complex quantum systems. PMID:25192080

  5. Protecting and accelerating adiabatic passage with time-delayed pulse sequences.

    PubMed

    Sampedro, Pablo; Chang, Bo Y; Sola, Ignacio R

    2016-05-21

    Using numerical simulations of two-photon electronic absorption with femtosecond pulses in Na2 we show that: (i) it is possible to avoid the characteristic saturation or dumped Rabi oscillations in the yield of absorption by time-delaying the laser pulses; (ii) it is possible to accelerate the onset of adiabatic passage by using the vibrational coherence starting in a wave packet; and (iii) it is possible to prepare the initial wave packet in order to achieve full state-selective transitions with broadband pulses. The findings can be used, for instance, to achieve ultrafast adiabatic passage by light-induced potentials and understand its intrinsic robustness. PMID:27125342

  6. Deterministic implementations of quantum gates with circuit QEDs via Stark-chirped rapid adiabatic passages

    NASA Astrophysics Data System (ADS)

    Chen, Jingwei; Wei, L. F.

    2015-10-01

    We show that a set of universal quantum gates could be implemented robustly in a circuit QED system by using Stark-chirped rapid adiabatic passage (SCRAP) technique. Under the adiabatic limit we find that the population transfers could be deterministically passaged from one selected quantum states to the others, and thus the desired quantum gates can be implemented. The proposed SCRAP-based gates are insensitive to the details of the operations and thus relax the designs of the applied pulses, operational imperfections, and the decoherence of the system.

  7. Stimulated Raman adiabatic passage in a three-level superconducting circuit

    PubMed Central

    Kumar, K. S.; Vepsäläinen, A.; Danilin, S.; Paraoanu, G. S.

    2016-01-01

    The adiabatic manipulation of quantum states is a powerful technique that opened up new directions in quantum engineering—enabling tests of fundamental concepts such as geometrical phases and topological transitions, and holding the promise of alternative models of quantum computation. Here we benchmark the stimulated Raman adiabatic passage for circuit quantum electrodynamics by employing the first three levels of a transmon qubit. In this ladder configuration, we demonstrate a population transfer efficiency >80% between the ground state and the second excited state using two adiabatic Gaussian-shaped control microwave pulses. By doing quantum tomography at successive moments during the Raman pulses, we investigate the transfer of the population in time domain. Furthermore, we show that this protocol can be reversed by applying a third adiabatic pulse, we study a hybrid nondiabatic–adiabatic sequence, and we present experimental results for a quasi-degenerate intermediate level. PMID:26902454

  8. Stimulated Raman adiabatic passage in a three-level superconducting circuit

    NASA Astrophysics Data System (ADS)

    Kumar, K. S.; Vepsäläinen, A.; Danilin, S.; Paraoanu, G. S.

    2016-02-01

    The adiabatic manipulation of quantum states is a powerful technique that opened up new directions in quantum engineering--enabling tests of fundamental concepts such as geometrical phases and topological transitions, and holding the promise of alternative models of quantum computation. Here we benchmark the stimulated Raman adiabatic passage for circuit quantum electrodynamics by employing the first three levels of a transmon qubit. In this ladder configuration, we demonstrate a population transfer efficiency >80% between the ground state and the second excited state using two adiabatic Gaussian-shaped control microwave pulses. By doing quantum tomography at successive moments during the Raman pulses, we investigate the transfer of the population in time domain. Furthermore, we show that this protocol can be reversed by applying a third adiabatic pulse, we study a hybrid nondiabatic-adiabatic sequence, and we present experimental results for a quasi-degenerate intermediate level.

  9. Stimulated Raman adiabatic passage in a three-level superconducting circuit.

    PubMed

    Kumar, K S; Vepsäläinen, A; Danilin, S; Paraoanu, G S

    2016-01-01

    The adiabatic manipulation of quantum states is a powerful technique that opened up new directions in quantum engineering--enabling tests of fundamental concepts such as geometrical phases and topological transitions, and holding the promise of alternative models of quantum computation. Here we benchmark the stimulated Raman adiabatic passage for circuit quantum electrodynamics by employing the first three levels of a transmon qubit. In this ladder configuration, we demonstrate a population transfer efficiency >80% between the ground state and the second excited state using two adiabatic Gaussian-shaped control microwave pulses. By doing quantum tomography at successive moments during the Raman pulses, we investigate the transfer of the population in time domain. Furthermore, we show that this protocol can be reversed by applying a third adiabatic pulse, we study a hybrid nondiabatic-adiabatic sequence, and we present experimental results for a quasi-degenerate intermediate level. PMID:26902454

  10. Quantum state specific reactant preparation in a molecular beam by rapid adiabatic passage

    SciTech Connect

    Chadwick, Helen Hundt, P. Morten; Reijzen, Maarten E. van; Yoder, Bruce L.; Beck, Rainer D.

    2014-01-21

    Highly efficient preparation of molecules in a specific rovibrationally excited state for gas/surface reactivity measurements is achieved in a molecular beam using tunable infrared (IR) radiation from a single mode continuous wave optical parametric oscillator (cw-OPO). We demonstrate that with appropriate focusing of the IR radiation, molecules in the molecular beam crossing the fixed frequency IR field experience a Doppler tuning that can be adjusted to achieve complete population inversion of a two-level system by rapid adiabatic passage (RAP). A room temperature pyroelectric detector is used to monitor the excited fraction in the molecular beam and the population inversion is detected and quantified using IR bleaching by a second IR-OPO. The second OPO is also used for complete population transfer to an overtone or combination vibration via double resonance excitation using two spatially separated RAP processes.

  11. Quantum state specific reactant preparation in a molecular beam by rapid adiabatic passage

    NASA Astrophysics Data System (ADS)

    Chadwick, Helen; Hundt, P. Morten; van Reijzen, Maarten E.; Yoder, Bruce L.; Beck, Rainer D.

    2014-01-01

    Highly efficient preparation of molecules in a specific rovibrationally excited state for gas/surface reactivity measurements is achieved in a molecular beam using tunable infrared (IR) radiation from a single mode continuous wave optical parametric oscillator (cw-OPO). We demonstrate that with appropriate focusing of the IR radiation, molecules in the molecular beam crossing the fixed frequency IR field experience a Doppler tuning that can be adjusted to achieve complete population inversion of a two-level system by rapid adiabatic passage (RAP). A room temperature pyroelectric detector is used to monitor the excited fraction in the molecular beam and the population inversion is detected and quantified using IR bleaching by a second IR-OPO. The second OPO is also used for complete population transfer to an overtone or combination vibration via double resonance excitation using two spatially separated RAP processes.

  12. Quantum state specific reactant preparation in a molecular beam by rapid adiabatic passage.

    PubMed

    Chadwick, Helen; Hundt, P Morten; van Reijzen, Maarten E; Yoder, Bruce L; Beck, Rainer D

    2014-01-21

    Highly efficient preparation of molecules in a specific rovibrationally excited state for gas/surface reactivity measurements is achieved in a molecular beam using tunable infrared (IR) radiation from a single mode continuous wave optical parametric oscillator (cw-OPO). We demonstrate that with appropriate focusing of the IR radiation, molecules in the molecular beam crossing the fixed frequency IR field experience a Doppler tuning that can be adjusted to achieve complete population inversion of a two-level system by rapid adiabatic passage (RAP). A room temperature pyroelectric detector is used to monitor the excited fraction in the molecular beam and the population inversion is detected and quantified using IR bleaching by a second IR-OPO. The second OPO is also used for complete population transfer to an overtone or combination vibration via double resonance excitation using two spatially separated RAP processes. PMID:25669393

  13. Nonlinear Adiabatic Passage from Fermion Atoms to Boson Molecules

    SciTech Connect

    Pazy, E.; Tikhonenkov, I.; Band, Y.B.; Vardi, A.; Fleischhauer, M.

    2005-10-21

    We study the dynamics of an adiabatic sweep through a Feshbach resonance in a quantum gas of fermionic atoms. Analysis of the dynamical equations, supported by mean-field and many-body numerical results, shows that the dependence of the remaining atomic fraction {gamma} on the sweep rate {alpha} varies from exponential Landau-Zener behavior for a single pair of particles to a power-law dependence for large particle number N. The power law is linear, {gamma}{proportional_to}{alpha}, when the initial molecular fraction is smaller than the 1/N quantum fluctuations, and {gamma}{proportional_to}{alpha}{sup 1/3} when it is larger. Experimental data agree well with a linear dependence, but do not conclusively rule out the Landau-Zener model.

  14. Chirped Pulse Adiabatic Passage in CARS for Imaging of Biological Structure and Dynamics

    SciTech Connect

    Malinovskaya, Svetlana A.

    2007-12-26

    We propose the adiabatic passage control scheme implementing chirped femtosecond laser pulses to maximize coherence in a predetermined molecular vibrational mode using two-photon Raman transitions. We investigate vibrational energy relaxation and collisional dephasing as factors of coherence loss, and demonstrate the possibility for preventing decoherence by the chirped pulse train. The proposed method may be used to advance noninvasive biological imaging techniques.

  15. Stark-shift-chirped rapid-adiabatic-passage technique among three states

    SciTech Connect

    Rangelov, A. A.; Vitanov, N. V.; Yatsenko, L. P.; Shore, B. W.; Halfmann, T.; Bergmann, K.

    2005-11-15

    We show that the technique of Stark-chirped rapid adiabatic passage (SCRAP), hitherto used for complete population transfer between two quantum states, offers a simple and robust method for complete population transfer amongst three states in atoms and molecules. In this case SCRAP uses three laser pulses: a strong far-off-resonant pulse modifies the transition frequencies by inducing dynamic Stark shifts and thereby creating time-dependent level crossings amongst the three diabatic states, while near-resonant and moderately strong pump and Stokes pulses, appropriately offset in time, drive the population between the initial and final states via adiabatic passage. The population transfer efficiency is robust to variations in the intensities of the lasers, as long as these intensities are sufficiently large to enforce adiabatic evolution. With suitable pulse timings the population in the (possibly decaying) intermediate state can be minimized, as with stimulated Raman adiabatic passage (STIRAP). This technique applies to one-photon as well as multiphoton transitions and it is also applicable to media exhibiting inhomogeneous broadening; these features represent clear advantages over STIRAP by overcoming the inevitable dynamical Stark shifts that accompany multiphoton transitions as well as unwanted detunings, e.g., induced by Doppler shifts.

  16. Quantum state transfer between atomic ensembles trapped in separate cavities via adiabatic passage

    NASA Astrophysics Data System (ADS)

    Zhang, Chun-Ling; Chen, Mei-Feng

    2015-07-01

    We propose a new approach for quantum state transfer (QST) between atomic ensembles separately trapped in two distant cavities connected by an optical fiber via adiabatic passage. The three-level Λ-type atoms in each ensemble dispersively interact with the nonresonant classical field and cavity mode. By choosing appropriate parameters of the system, the effective Hamiltonian describes two atomic ensembles interacting with “the same cavity mode” and has a dark state. Consequently, the QST between atomic ensembles can be implemented via adiabatic passage. Numerical calculations show that the scheme is robust against moderate fluctuations of the experimental parameters. In addition, the effect of decoherence can be suppressed effectively. The idea provides a scalable way to an atomic-ensemble-based quantum network, which may be reachable with currently available technology. Project supported by the Funding (type B) from the Fujian Education Department, China (Grant No. JB13261).

  17. Quantum state engineering with flux-biased Josephson phase qubits by rapid adiabatic passages

    SciTech Connect

    Nie, W.; Huang, J. S.; Shi, X.; Wei, L. F.

    2010-09-15

    In this article, the scheme of quantum computing based on the Stark-chirped rapid adiabatic passage (SCRAP) technique [L. F. Wei, J. R. Johansson, L. X. Cen, S. Ashhab, and F. Nori, Phys. Rev. Lett. 100, 113601 (2008)] is extensively applied to implement quantum state manipulations in flux-biased Josephson phase qubits. The broken-parity symmetries of bound states in flux-biased Josephson junctions are utilized to conveniently generate the desirable Stark shifts. Then, assisted by various transition pulses, universal quantum logic gates as well as arbitrary quantum state preparations can be implemented. Compared with the usual {pi}-pulse operations widely used in experiments, the adiabatic population passages proposed here are insensitive to the details of the applied pulses and thus the desirable population transfers can be satisfyingly implemented. The experimental feasibility of the proposal is also discussed.

  18. Coherent tunnelling adiabatic passage in optical fibres using superimposed long-period fiber gratings

    NASA Astrophysics Data System (ADS)

    Thyagarajan, K.; Gupta, Ruchi

    2016-08-01

    In this paper, we present the optical analogue of stimulated Raman adiabatic passage (STIRAP) technique for three level atomic system in optical fibre geometry. Considering linearly polarized modes of an optical fibre, it is shown that using a pair of superimposed long-period gratings with peak refractive index perturbation varying spatially along the propagation axis, light can be transferred adiabatically from one core mode to another core mode via an intermediate cladding mode which itself does not get appreciably excited; thus acting like a dark mode. We compare the transmission spectrum of superimposed long-period gratings involved in adiabatic transfer with the transmission spectrum of conventional long-period grating. The analogue output is further analysed for its tolerance to the changes in the ambient refractive index, temperature and other fabrication parameters.

  19. Single-photon emission of two-level system via rapid adiabatic passage

    PubMed Central

    Miao, Qiang; Zheng, Yujun

    2016-01-01

    In this paper, we present a high quality single-photon source based on the two-level system undergoing rapid adiabatic passage (RAP). A trigger strategy (sweet region) is suggested to optimize the single-photon emission and explain a counter-intuitive phenomenon on the optimal parameters. The RAP strategy of single-photon source is robust against control error and environmental fluctuation. PMID:27601295

  20. Multiqubit controlled unitary gate by adiabatic passage with an optical cavity

    SciTech Connect

    Goto, Hayato; Ichimura, Kouichi

    2004-07-01

    A new implementation of quantum gates by adiabatic passage with an optical cavity is proposed. This implementation allows one to perform not only elementary gates, such as one-qubit gates and a controlled-NOT gate, but also multiqubit controlled unitary gates. Some quantum gates are numerically simulated. From the simulation results, it is concluded that this implementation of the three-qubit controlled gates is more efficient than decomposing into the elementary gates.

  1. Single-photon emission of two-level system via rapid adiabatic passage.

    PubMed

    Miao, Qiang; Zheng, Yujun

    2016-01-01

    In this paper, we present a high quality single-photon source based on the two-level system undergoing rapid adiabatic passage (RAP). A trigger strategy (sweet region) is suggested to optimize the single-photon emission and explain a counter-intuitive phenomenon on the optimal parameters. The RAP strategy of single-photon source is robust against control error and environmental fluctuation. PMID:27601295

  2. Shortcuts to adiabatic passage for fast generation of Greenberger-Horne-Zeilinger states by transitionless quantum driving

    PubMed Central

    Chen, Ye-Hong; Xia, Yan; Song, Jie; Chen, Qing-Qin

    2015-01-01

    Berry’s approach on “transitionless quantum driving” shows how to set a Hamiltonian which drives the dynamics of a system along instantaneous eigenstates of a reference Hamiltonian to reproduce the same final result of an adiabatic process in a shorter time. In this paper, motivated by transitionless quantum driving, we construct shortcuts to adiabatic passage in a three-atom system to create the Greenberger-Horne-Zeilinger states with the help of quantum Zeno dynamics and of non-resonant lasers. The influence of various decoherence processes is discussed by numerical simulation and the result proves that the scheme is fast and robust against decoherence and operational imperfection. PMID:26508283

  3. Heating and cooling in adiabatic mixing process

    NASA Astrophysics Data System (ADS)

    Zhou, Jing; Cai, Zi; Zou, Xu-Bo; Guo, Guang-Can

    2010-12-01

    We study the effect of interaction on the temperature change in the process of adiabatic mixing of two components of Fermi gases using the real-space Bogoliubov-de Gennes method. We find that in the process of adiabatic mixing, the competition between the adiabatic expansion and the attractive interaction makes it possible to cool or heat the system depending on the strength of the interaction and the initial temperature of the system. The changes of the temperature in a bulk system and in a trapped system are investigated.

  4. Large-Area Atom Interferometry with Frequency-Swept Raman Adiabatic Passage.

    PubMed

    Kotru, Krish; Butts, David L; Kinast, Joseph M; Stoner, Richard E

    2015-09-01

    We demonstrate light-pulse atom interferometry with large-momentum-transfer atom optics based on stimulated Raman transitions and frequency-swept adiabatic rapid passage. Our atom optics have produced momentum splittings of up to 30 photon recoil momenta in an acceleration-sensitive interferometer for laser cooled atoms. We experimentally verify the enhancement of phase shift per unit acceleration and characterize interferometer contrast loss. By forgoing evaporative cooling and velocity selection, this method lowers the atom shot-noise-limited measurement uncertainty and enables large-area atom interferometry at higher data rates. PMID:26382675

  5. Superposition of states by adiabatic passage in N-pod systems

    SciTech Connect

    Amniat-Talab, M.; Saadati-Niari, M.; Nader-Ali, R.; Guerin, S.

    2011-01-15

    We study the stimulated Raman adiabatic passage technique in an N-pod system driven by N pulsed fields when N-2 and N-1 pulses not connected to the initial state have the same shape. We show that, for properly timed pulses, robust population transfer from an initial ground state to an arbitrary coherent superposition of the ground states can be achieved in a single step. The case of N-2 pulses of the same shape involves a geometric phase of the same type as the one appearing in tripod systems.

  6. Deterministic single-atom excitation via adiabatic passage and Rydberg blockade

    SciTech Connect

    Beterov, I. I.; Tretyakov, D. B.; Entin, V. M.; Yakshina, E. A.; Ryabtsev, I. I.; MacCormick, C.; Bergamini, S.

    2011-08-15

    We propose to use adiabatic rapid passage with a chirped laser pulse in the strong dipole blockade regime to deterministically excite only one Rydberg atom from randomly loaded optical dipole traps or optical lattices. The chirped laser excitation is shown to be insensitive to the random number N of the atoms in the traps. Our method overcomes the problem of the {radical}(N) dependence of the collective Rabi frequency, which was the main obstacle for deterministic single-atom excitation in the ensembles with unknown N, and can be applied for single-atom loading of dipole traps and optical lattices.

  7. Population transfer of a NaH molecule via stimulated Raman adiabatic passage

    NASA Astrophysics Data System (ADS)

    Zai, Jing-Bo; Zhan, Wei-Shen; Wang, Shuo; Dang, Hai-Ping; Han, Xiao

    2016-09-01

    The population transfer of a NaH molecule from the ground state {{X}1}{Σ+} to the target state {{A}1}{Σ+} via stimulated Raman adiabatic passage (STIRAP) is investigated. The results show that the intensity, delay time and detuning have a significant effect on population transfer. A large population transfer is observed with increased pump and Stokes intensity, especially when the pump and Stokes intensity match. Population transfer also depends on the delay time between the pump laser pulse and the Stokes laser pulse. The detuning of the two pulses influences the population transfer. Efficient population transfer can be realized under the resonant or two-photon resonant condition.

  8. Apparatus to Measure Adiabatic and Isothermal Processes.

    ERIC Educational Resources Information Center

    Lamb, D. W.; White, G. M.

    1996-01-01

    Describes a simple manual apparatus designed to serve as an effective demonstration of the differences between isothermal and adiabatic processes for the general or elementary physics student. Enables students to verify Boyle's law for slow processes and identify the departure from this law for rapid processes and can also be used to give a clear…

  9. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS: Entangled W State Generation via Adiabatic Passage in Cavity QED

    NASA Astrophysics Data System (ADS)

    Ma, Song-She

    2010-09-01

    A scheme is proposed to generate W state of N atoms trapped in a cavity, based on adiabatic passage along dark state. Taking advantage of adiabatic passage, the atoms have no probability of being excited and thus the atomic spontaneous emission is suppressed. The scheme is simple. It does not need to adjust the interaction time accurately, and does not need to prepare the cavity field in one-photon state. Numerical simulation shows that the successful probability of the scheme increases with the increasing of the atom number.

  10. Generation of tree-type three-dimensional entangled states via adiabatic passage

    NASA Astrophysics Data System (ADS)

    Song, Chong; Su, Shi-Lei; Wu, Jin-Lei; Wang, Dong-Yang; Ji, Xin; Zhang, Shou

    2016-06-01

    We propose a scheme for generating a type of novel tree-type three-dimensional entangled state. In the scheme, an atom and two Bose-Einstein condensates (BECs) are individually trapped in three spatially separated optical cavities which are connected by two optical fibers. Because the system evolves along the dark state via adiabatic passage, the populations of the intermediate excited states of the atom and BECs are so negligible that the influence of atomic spontaneous radiation on the fidelity is restrained. In addition, because of the certain limit condition used, the cavity decay and fiber loss are efficiently suppressed. This novel three-dimensional entangled state is likely to have applications for improving quantum communication security.

  11. High-fidelity composite adiabatic passage in nonlinear two-level systems

    NASA Astrophysics Data System (ADS)

    Dou, Fu-Quan; Cao, Hui; Liu, Jie; Fu, Li-Bin

    2016-04-01

    We investigate the composite adiabatic passage (CAP) reported by B. T. Torosov et al. [Phys. Rev. Lett. 106, 233001 (2011), 10.1103/PhysRevLett.106.233001] in a nonlinear two-level system in which the level energies depend on the occupation of the levels, representing a mean-field type of interaction between the particles. A high-fidelity, fast, and robust quantum manipulation is achieved in the system. We consider the effect of interparticle interaction and find that it tends to increase the number of the pulse sequences. The CAP technique can suppress the nonadiabatic oscillations below the quantum-information benchmark 10-4, as long as there exist sufficiently long composite sequences. We analyze the robustness against the variations in the field parameters. The difference between the nonlinear and linear systems on the CAP technique is also discussed.

  12. Stimulated Raman adiabatic passage for improved performance of a cold-atom electron and ion source

    NASA Astrophysics Data System (ADS)

    Sparkes, B. M.; Murphy, D.; Taylor, R. J.; Speirs, R. W.; McCulloch, A. J.; Scholten, R. E.

    2016-08-01

    We implement high-efficiency coherent excitation to a Rydberg state using stimulated Raman adiabatic passage in a cold-atom electron and ion source. We achieve an efficiency of 60% averaged over the laser excitation volume with a peak efficiency of 82%, a 1.6 times improvement relative to incoherent pulsed-laser excitation. Using pulsed electric field ionization of the Rydberg atoms we create electron bunches with durations of 250 ps. High-efficiency excitation will increase source brightness, crucial for ultrafast electron diffraction experiments, and coherent excitation to high-lying Rydberg states could allow for the reduction of internal bunch heating and the creation of a high-speed single-ion source.

  13. Adiabatic and fast passage ultra-wideband inversion in pulsed EPR

    NASA Astrophysics Data System (ADS)

    Doll, Andrin; Pribitzer, Stephan; Tschaggelar, René; Jeschke, Gunnar

    2013-05-01

    We demonstrate that adiabatic and fast passage ultra-wideband (UWB) pulses can achieve inversion over several hundreds of MHz and thus enhance the measurement sensitivity, as shown by two selected experiments. Technically, frequency-swept pulses are generated by a 12 GS/s arbitrary waveform generator and upconverted to X-band frequencies. This pulsed UWB source is utilized as an incoherent channel in an ordinary pulsed EPR spectrometer. We discuss experimental methodologies and modeling techniques to account for the response of the resonator, which can strongly limit the excitation bandwidth of the entire non-linear excitation chain. Aided by these procedures, pulses compensated for bandwidth or variations in group delay reveal enhanced inversion efficiency. The degree of bandwidth compensation is shown to depend critically on the time available for excitation. As a result, we demonstrate optimized inversion recovery and double electron electron resonance (DEER) experiments. First, virtually complete inversion of the nitroxide spectrum with an adiabatic pulse of 128 ns length is achieved. Consequently, spectral diffusion between inverted and non-inverted spins is largely suppressed and the observation bandwidth can be increased to increase measurement sensitivity. Second, DEER is performed on a terpyridine-based copper (II) complex with a nitroxide-copper distance of 2.5 nm. As previously demonstrated on this complex, when pumping copper spins and observing nitroxide spins, the modulation depth is severely limited by the excitation bandwidth of the pump pulse. By using fast passage UWB pulses with a maximum length of 64 ns, we achieve up to threefold enhancement of the modulation depth. Associated artifacts in distance distributions when increasing the bandwidth of the pump pulse are shown to be small.

  14. Theoretical study of Raman chirped adiabatic passage by X-ray absorption spectroscopy: Highly excited electronic states and rotational effects

    SciTech Connect

    Engin, Selma; Sisourat, Nicolas Selles, Patricia; Taïeb, Richard; Carniato, Stéphane

    2014-06-21

    Raman Chirped Adiabatic Passage (RCAP) is an efficient method to climb the vibrational ladder of molecules. It was shown on the example of fixed-in-space HCl molecule that selective vibrational excitation can thus be achieved by RCAP and that population transfer can be followed by X-ray Photoelectron spectroscopy [S. Engin, N. Sisourat, P. Selles, R. Taïeb, and S. Carniato, Chem. Phys. Lett. 535, 192–195 (2012)]. Here, in a more detailed analysis of the process, we investigate the effects of highly excited electronic states and of molecular rotation on the efficiency of RCAP. Furthermore, we propose an alternative spectroscopic way to monitor the transfer by means of X-ray absorption spectra.

  15. Optimised adiabatic fast passage spin flipping for 3He neutron spin filters

    NASA Astrophysics Data System (ADS)

    McKetterick, T. J.; Boag, S.; Stewart, J. R.; Frost, C. D.; Skoda, M. W. A.; Parnell, S. R.; Babcock, E.

    2011-06-01

    We describe here a method of performing adiabatic fast passage (AFP) spin flipping of polarized 3He used as a neutron spin filter (NSF) to polarize neutron beams. By reversing the spin states of the 3He nuclei the polarization of a neutron beam can be efficiently reversed allowing for the transmission of a neutron beam polarized in either spin state. Using an amplitude modulated frequency sweep lasting 500 ms we can spin flip a polarized 3He neutron spin filter with only 1.8×10-5 loss in 3He polarization. The small magnetic fields (10-15 G) used to house neutron spin filters mean the 3He resonant frequencies are low enough to be generated using a computer with a digital I/O card. The versatility of this systems allows AFP to be performed on any beamline or in any laboratory using 3He neutron spin filters and polarization losses can be minimised by adjusting sweep parameters.

  16. Multi-resonance effects within a single chirp in broadband rotational spectroscopy: The rapid adiabatic passage regime for benzonitrile

    NASA Astrophysics Data System (ADS)

    Schmitz, David; Alvin Shubert, V.; Betz, Thomas; Schnell, Melanie

    2012-10-01

    We report here pronounced, stepwise multi-resonance excitations in benzonitrile arising from a single 1 μs broadband 2-8.3 GHz microwave chirp, observed with our new chirped-pulse broadband rotational spectrometer, COMPACT. Such multi-resonance excitations significantly alter the relative intensity patterns and are a strong indication that, for the given experimental conditions and using benzonitrile as a polar test molecule (μA = 4.5152 D), the rapid adiabatic passage (RAP) regime for strong coupling must be applied. This finding is contrary to previous discussions of chirped-pulse rotational spectroscopy, where the linear fast passage regime of weak coupling has been assumed.

  17. Adiabatic fast passage application in solid state NMR study of cross relaxation and molecular dynamics in heteronuclear systems.

    PubMed

    Baranowski, M; Woźniak-Braszak, A; Jurga, K

    2016-01-01

    The paper presents the benefits of using fast adiabatic passage for the study of molecular dynamics in the solid state heteronuclear systems in the laboratory frame. A homemade pulse spectrometer operating at the frequency of 30.2MHz and 28.411MHz for protons and fluorines, respectively, has been enhanced with microcontroller direct digital synthesizer DDS controller [1-4]. This work briefly describes how to construct a low-cost and easy-to-assemble adiabatic extension set for homemade and commercial spectrometers based on recently very popular Arduino shields. The described set was designed for fast adiabatic generation. Timing and synchronization problems are discussed. The cross-relaxation experiments with different initial states of the two spin systems have been performed. Contrary to our previous work [5] where the steady-state NOE experiments were conducted now proton spins (1)H are polarized in the magnetic field B0 while fluorine spins (19)F are perturbed by selective saturation for a short time and then the system is allowed to evolve for a period in the absence of a saturating field. The adiabatic passage application leads to a reversal of magnetization of fluorine spins and increases the amplitude of the signal. PMID:26705906

  18. Adiabatic fast passage application in solid state NMR study of cross relaxation and molecular dynamics in heteronuclear systems

    NASA Astrophysics Data System (ADS)

    Baranowski, M.; Woźniak-Braszak, A.; Jurga, K.

    2016-01-01

    The paper presents the benefits of using fast adiabatic passage for the study of molecular dynamics in the solid state heteronuclear systems in the laboratory frame. A homemade pulse spectrometer operating at the frequency of 30.2 MHz and 28.411 MHz for protons and fluorines, respectively, has been enhanced with microcontroller direct digital synthesizer DDS controller [1-4]. This work briefly describes how to construct a low-cost and easy-to-assemble adiabatic extension set for homemade and commercial spectrometers based on recently very popular Arduino shields. The described set was designed for fast adiabatic generation. Timing and synchronization problems are discussed. The cross-relaxation experiments with different initial states of the two spin systems have been performed. Contrary to our previous work [5] where the steady-state NOE experiments were conducted now proton spins 1H are polarized in the magnetic field B0 while fluorine spins 19F are perturbed by selective saturation for a short time and then the system is allowed to evolve for a period in the absence of a saturating field. The adiabatic passage application leads to a reversal of magnetization of fluorine spins and increases the amplitude of the signal.

  19. An Adiabatic Architecture for Linear Signal Processing

    NASA Astrophysics Data System (ADS)

    Vollmer, M.; Götze, J.

    2005-05-01

    Using adiabatic CMOS logic instead of the more traditional static CMOS logic can lower the power consumption of a hardware design. However, the characteristic differences between adiabatic and static logic, such as a four-phase clock, have a far reaching influence on the design itself. These influences are investigated in this paper by adapting a systolic array of CORDIC devices to be implemented adiabatically. We present a means to describe adiabatic logic in VHDL and use it to define the systolic array with precise timing and bit-true calculations. The large pipeline bubbles that occur in a naive version of this array are identified and removed to a large degree. As an example, we demonstrate a parameterization of the CORDIC array that carries out adaptive RLS filtering.

  20. Wireless adiabatic power transfer

    SciTech Connect

    Rangelov, A.A.; Suchowski, H.; Silberberg, Y.; Vitanov, N.V.

    2011-03-15

    Research Highlights: > Efficient and robust mid-range wireless energy transfer between two coils. > The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. > Wireless energy transfer is insensitive to any resonant constraints. > Wireless energy transfer is insensitive to noise in the neighborhood of the coils. - Abstract: We propose a technique for efficient mid-range wireless power transfer between two coils, by adapting the process of adiabatic passage for a coherently driven two-state quantum system to the realm of wireless energy transfer. The proposed technique is shown to be robust to noise, resonant constraints, and other interferences that exist in the neighborhood of the coils.

  1. Filtering of matter-wave vibrational states via spatial adiabatic passage

    SciTech Connect

    Loiko, Yu.; Ahufinger, V.; Corbalan, R.; Mompart, J.; Birkl, G.

    2011-03-15

    We discuss the filtering of the vibrational states of a cold atom in an optical trap by chaining this trap with two empty ones and adiabatically controlling the tunneling. Matter-wave filtering is performed by selectively transferring the population of the highest populated vibrational state to the most distant trap while the population of the rest of the states remains in the initial trap. Analytical conditions for two-state filtering are derived and then applied to an arbitrary number of populated bound states. Realistic numerical simulations close to state-of-the-art experimental arrangements are performed by modeling the triple well with time-dependent Poeschl-Teller potentials. In addition to filtering of vibrational states, we discuss applications for quantum tomography of the initial population distribution and engineering of atomic Fock states that, eventually, could be used for tunneling-assisted evaporative cooling.

  2. Differential topology of adiabatically controlled quantum processes

    NASA Astrophysics Data System (ADS)

    Jonckheere, Edmond A.; Rezakhani, Ali T.; Ahmad, Farooq

    2013-03-01

    It is shown that in a controlled adiabatic homotopy between two Hamiltonians, H 0 and H 1, the gap or "anti-crossing" phenomenon can be viewed as the development of cusps and swallow tails in the region of the complex plane where two critical value curves of the quadratic map associated with the numerical range of H 0 + i H 1 come close. The "near crossing" in the energy level plots happens to be a generic situation, in the sense that a crossing is a manifestation of the quadratic numerical range map being unstable in the sense of differential topology. The stable singularities that can develop are identified and it is shown that they could occur near the gap, making those singularities of paramount importance. Various applications, including the quantum random walk, are provided to illustrate this theory.

  3. SIMULATION OF CONTINUOUS-CONTACT SEPARATION PROCESSES: MULTICOMPONENT, ADIABATIC ABSORPTION

    EPA Science Inventory

    A new algorithm has been developed for the steady-state simulation of multicomponent, adiabatic absorption in packed columns. The system of differential model equations that describe the physical absorption process is reduced to algebraic equations by using a finite difference me...

  4. Adiabatic passage for one-step generation of n-qubit Greenberger-Horne-Zeilinger states of superconducting qubits via quantum Zeno dynamics

    NASA Astrophysics Data System (ADS)

    Wu, Jin-Lei; Song, Chong; Xu, Jing; Yu, Lin; Ji, Xin; Zhang, Shou

    2016-06-01

    An efficient scheme is proposed for generating n-qubit Greenberger-Horne-Zeilinger states of n superconducting qubits separated by (n-1 ) coplanar waveguide resonators capacitively via adiabatic passage with the help of quantum Zeno dynamics in one step. In the scheme, it is not necessary to precisely control the time of the whole operation and the Rabi frequencies of classical fields because of the introduction of adiabatic passage. The numerical simulations for three-qubit Greenberger-Horne-Zeilinger state show that the scheme is insensitive to the dissipation of the resonators and the energy relaxation of the superconducting qubits. The three-qubit Greenberger-Horne-Zeilinger state can be deterministically generated with comparatively high fidelity in the current experimental conditions, though the scheme is somewhat sensitive to the dephasing of superconducting qubits.

  5. Application of an unstructured Navier-Stokes code to prediction of adiabatic effectiveness of endwall flush-slot-cooling for a stator vane passage

    NASA Astrophysics Data System (ADS)

    Smirnov, Evgueni M.; Smirnov, Paul E.

    2008-06-01

    A three-dimensional unstructured finite-volume code developed for RANS computations with the artificial compressibility approach is described. The code is applied to prediction of adiabatic effectiveness of endwall flush-slot-cooling for a stator vane passage. Results obtained with the Spalart-Allmaras and the Menter SST turbulence models are presented and discussed in comparison with measurements and with the data computed using the FLUENT commercial software package.

  6. Adiabatic shear mechanisms for the hard cutting process

    NASA Astrophysics Data System (ADS)

    Yue, Caixu; Wang, Bo; Liu, Xianli; Feng, Huize; Cai, Chunbin

    2015-05-01

    The most important consequence of adiabatic shear phenomenon is formation of sawtooth chip. Lots of scholars focused on the formation mechanism of sawtooth, and the research often depended on experimental approach. For the present, the mechanism of sawtooth chip formation still remains some ambiguous aspects. This study develops a combined numerical and experimental approach to get deeper understanding of sawtooth chip formation mechanism for Polycrystalline Cubic Boron Nitride (PCBN) tools orthogonal cutting hard steel GCr15. By adopting the Johnson-Cook material constitutive equations, the FEM simulation model established in this research effectively overcomes serious element distortions and cell singularity in high strain domain caused by large material deformation, and the adiabatic shear phenomenon is simulated successfully. Both the formation mechanism and process of sawtooth are simulated. Also, the change features regarding the cutting force as well as its effects on temperature are studied. More specifically, the contact of sawtooth formation frequency with cutting force fluctuation frequency is established. The cutting force and effect of cutting temperature on mechanism of adiabatic shear are investigated. Furthermore, the effects of the cutting condition on sawtooth chip formation are researched. The researching results show that cutting feed has the most important effect on sawtooth chip formation compared with cutting depth and speed. This research contributes a better understanding of mechanism, feature of chip formation in hard turning process, and supplies theoretical basis for the optimization of hard cutting process parameters.

  7. Adiabatic and diabatic process of sum frequency conversion.

    PubMed

    Liqing, Ren; Yongfang, Li; Baihong, Li; Lei, Wang; Zhaohua, Wang

    2010-09-13

    Based on the dressed state formalism, we obtain the adiabatic criterion of the sum frequency conversion. We show that this constraint restricts the energy conversion between the two dressed fields, which are superpositions of the signal field and the sum frequency field. We also show that the evolution of the populations of the dressed fields, which in turn describes the conversion of light photons from the seed frequency to the sum frequency during propagation through the nonlinear crystal. Take the quasiphased matched (QPM) scheme as an example, we calculate the expected bandwidth of the frequency conversion process, and its dependence on the length of the crystal. We demonstrate that the evolutionary patterns of the sum frequency field's energy are similar to the Fresnel diffraction of a light field. We finally show that the expected bandwidth can be also deduced from the evolution of the adiabaticity of the dressed fileds. PMID:20940935

  8. Modeling of the Adiabatic and Isothermal Methanation Process

    NASA Astrophysics Data System (ADS)

    Porubova, Jekaterina; Bazbauers, Gatis; Markova, Darja

    2011-01-01

    Increased use of biomass offers one of the ways to reduce anthropogenic impact on the environment. Using various biomass conversion processes, it is possible to obtain different types of fuels: • solid, e.g. bio-carbon; • liquid, e.g. biodiesel and ethanol; • gaseous, e.g. biomethane. Biomethane can be used in the transport and energy sector, and the total methane production efficiency can reach 65%. By modeling adiabatic and isothermal methanation processes, the most effective one from the methane production point of view is defined. Influence of the process parameters on the overall efficiency of the methane production is determined.

  9. Coherent tunneling by adiabatic process in a four-waveguide optical coupler

    NASA Astrophysics Data System (ADS)

    Shi, Jian; Ma, Rui-Qiong; Duan, Zuo-Liang; Liang, Meng; Zhang, Wen-wen; Dong, Jun

    2016-07-01

    We numerically simulate Schrödinger-like paraxial wave equation of a four-waveguide system. The coherent tunneling by adiabatic passage in a four-waveguide optical coupler is analyzed by borrowing the dressed state theory of coherent atom system. We discuss the optical coupling mechanism and coupling efficiency of light energy in both intuitive and counterintuitive tunneling schemes and analyze the threshold condition from adiabatic to non-adiabatic regimes in intuitive scheme. The results show that this coupler can be used as power splitter under certain conditions.

  10. Rites of Passage and Teacher Training Processes.

    ERIC Educational Resources Information Center

    Katz, Fred E.

    The student teaching process may have features which actually interfere with the processes of learning. Many student teachers revealed in interviews that they went through humiliation, trauma, and disenchantment with teaching in their interactions with cooperating teachers, with other school personnel, and with children in the student teaching…

  11. Adiabatic Processes Realized with a Trapped Brownian Particle

    NASA Astrophysics Data System (ADS)

    Martínez, Ignacio A.; Roldán, Édgar; Dinis, Luis; Petrov, Dmitri; Rica, Raúl A.

    2015-03-01

    The ability to implement adiabatic processes in the mesoscale is of key importance in the study of artificial or biological micro- and nanoengines. Microadiabatic processes have been elusive to experimental implementation due to the difficulty in isolating Brownian particles from their fluctuating environment. Here we report on the experimental realization of a microscopic quasistatic adiabatic process employing a trapped Brownian particle. We circumvent the complete isolation of the Brownian particle by designing a protocol where both characteristic volume and temperature of the system are changed in such a way that the entropy of the system is conserved along the process. We compare the protocols that follow from either the overdamped or underdamped descriptions, demonstrating that the latter is mandatory in order to obtain a vanishing average heat flux to the particle. We provide analytical expressions for the distributions of the fluctuating heat and entropy and verify them experimentally. Our protocols could serve to implement the first microscopic engine that is able to attain the fundamental limit for the efficiency set by Carnot.

  12. Adiabatic processes realized with a trapped Brownian particle.

    PubMed

    Martínez, Ignacio A; Roldán, Édgar; Dinis, Luis; Petrov, Dmitri; Rica, Raúl A

    2015-03-27

    The ability to implement adiabatic processes in the mesoscale is of key importance in the study of artificial or biological micro- and nanoengines. Microadiabatic processes have been elusive to experimental implementation due to the difficulty in isolating Brownian particles from their fluctuating environment. Here we report on the experimental realization of a microscopic quasistatic adiabatic process employing a trapped Brownian particle. We circumvent the complete isolation of the Brownian particle by designing a protocol where both characteristic volume and temperature of the system are changed in such a way that the entropy of the system is conserved along the process. We compare the protocols that follow from either the overdamped or underdamped descriptions, demonstrating that the latter is mandatory in order to obtain a vanishing average heat flux to the particle. We provide analytical expressions for the distributions of the fluctuating heat and entropy and verify them experimentally. Our protocols could serve to implement the first microscopic engine that is able to attain the fundamental limit for the efficiency set by Carnot. PMID:25860731

  13. A homonuclear spin-pair filter for solid-state NMR based on adiabatic-passage techniques

    NASA Astrophysics Data System (ADS)

    Verel, René; Baldus, Marc; Ernst, Matthias; Meier, Beat H.

    1998-05-01

    A filtering scheme for the selection of spin pairs (and larger spin clusters) under fast magic-angle spinning is proposed. The scheme exploits the avoided level crossing in spin pairs during an adiabatic amplitude sweep through the so-called HORROR recoupling condition. The advantages over presently used double-quantum filters are twofold. (i) The maximum theoretical filter efficiency is, due to the adiabatic variation, 100% instead of 73% as for transient methods. (ii) Since the filter does not rely on the phase-cycling properties of the double-quantum coherence, there is no need to obtain the full double-quantum intensity for all spins in the sample at one single point in time. The only important requirement is that all coupled spins pass through a two-spin state during the amplitude sweep. This makes the pulse scheme robust with respect to rf-amplitude missetting, rf-field inhomogeneity and chemical-shift offset.

  14. Efficient production of polar molecular Bose-Einstein condensates via an all-optical R-type atom-molecule adiabatic passage

    NASA Astrophysics Data System (ADS)

    Qian, Jing; Zhou, Lu; Zhang, Keye; Zhang, Weiping

    2010-03-01

    We propose a scheme of 'R-type' photoassociative adiabatic passage (PAP) to create polar molecular condensates from two different species of ultracold atoms. Due to the presence of a quasi-coherent population trapping state in the scheme, it is possible to associate atoms into molecules with a low-power photoassociation (PA) laser. One remarkable advantage of our scheme is that a tunable atom-molecule coupling strength can be achieved by using a time-dependent PA field, which exhibits larger flexibility than using a tunable magnetic field. In addition, our results show that the PA intensity required in the 'R-type' PAP could be greatly reduced compared to that in a conventional 'Λ-type' one.

  15. Stimulated Raman adiabatic passage preparation of a coherent superposition of ThO H3Δ1 states for an improved electron electric-dipole-moment measurement

    NASA Astrophysics Data System (ADS)

    Panda, C. D.; O'Leary, B. R.; West, A. D.; Baron, J.; Hess, P. W.; Hoffman, C.; Kirilov, E.; Overstreet, C. B.; West, E. P.; DeMille, D.; Doyle, J. M.; Gabrielse, G.

    2016-05-01

    Experimental searches for the electron electric-dipole moment (EDM) probe new physics beyond the standard model. The current best EDM limit was set by the ACME Collaboration [Science 343, 269 (2014), 10.1126/science.1248213], constraining time-reversal symmetry (T ) violating physics at the TeV energy scale. ACME used optical pumping to prepare a coherent superposition of ThO H3Δ1 states that have aligned electron spins. Spin precession due to the molecule's internal electric field was measured to extract the EDM. We report here on an improved method for preparing this spin-aligned state of the electron by using stimulated Raman adiabatic passage (STIRAP). We demonstrate a transfer efficiency of 75 %±5 % , representing a significant gain in signal for a next-generation EDM experiment. We discuss the particularities of implementing STIRAP in systems such as ours, where molecular ensembles with large phase-space distributions are transferred via weak molecular transitions with limited laser power and limited optical access.

  16. Geometrical representation of sum frequency generation and adiabatic frequency conversion

    NASA Astrophysics Data System (ADS)

    Suchowski, Haim; Oron, Dan; Arie, Ady; Silberberg, Yaron

    2008-12-01

    We present a geometrical representation of the process of sum frequency generation in the undepleted pump approximation, in analogy with the known optical Bloch equations. We use this analogy to propose a technique for achieving both high efficiency and large bandwidth in sum frequency conversion using the adiabatic inversion scheme. The process is analogous with rapid adiabatic passage in NMR, and adiabatic constraints are derived in this context. This adiabatic frequency conversion scheme is realized experimentally using an aperiodically poled potassium titanyl phosphate (KTP) device, where we achieved high efficiency signal-to-idler conversion over a bandwidth of 140nm .

  17. Mean-field dynamics of a Bose-Einstein condensate in a time-dependent triple-well trap: Nonlinear eigenstates, Landau-Zener models, and stimulated Raman adiabatic passage

    SciTech Connect

    Graefe, E. M.; Korsch, H. J.; Witthaut, D.

    2006-01-15

    We investigate the dynamics of a Bose-Einstein condensate in a triple-well trap in a three-level approximation. The interatomic interactions are taken into account in a mean-field approximation (Gross-Pitaevskii equation), leading to a nonlinear three-level model. Additional eigenstates emerge due to the nonlinearity, depending on the system parameters. Adiabaticity breaks down if such a nonlinear eigenstate disappears when the parameters are varied. The dynamical implications of this loss of adiabaticity are analyzed for two important special cases: A three-level Landau-Zener model and the stimulated Raman adiabatic passage (STIRAP) scheme. We discuss the emergence of looped levels for an equal-slope Landau-Zener model. The Zener tunneling probability does not tend to zero in the adiabatic limit and shows pronounced oscillations as a function of the velocity of the parameter variation. Furthermore we generalize the STIRAP scheme for adiabatic coherent population transfer between atomic states to the nonlinear case. It is shown that STIRAP breaks down if the nonlinearity exceeds the detuning.

  18. Cosmological consequences of an adiabatic matter creation process

    NASA Astrophysics Data System (ADS)

    Nunes, Rafael C.; Pan, Supriya

    2016-06-01

    In this paper, we investigate the cosmological consequences of a continuous matter creation associated with the production of particles by the gravitational field acting on the quantum vacuum. To illustrate this, three phenomenological models are considered. An equivalent scalar field description is presented for each models. The effects on the cosmic microwave background power spectrum are analysed for the first time in the context of adiabatic matter creation cosmology. Further, we introduce a model independent treatment, Om, which depends only on the Hubble expansion rate and the cosmological redshift to distinguish any cosmological model from Λ cold dark matter by providing a null test for the cosmological constant, meaning that, for any two redshifts z1, z2, Om(z) is same, i.e. Om(z1) - Om(z2) = 0. Also, this diagnostic can differentiate between several cosmological models by indicating their quintessential/phantom behaviour without knowing the accurate value of the matter density, and the present value of the Hubble parameter. For our models, we find that particle production rate is inversely proportional to Om. Finally, the validity of the generalized second law of thermodynamics bounded by the apparent horizon has been examined.

  19. Shortcuts to adiabaticity in classical and quantum processes for scale-invariant driving

    NASA Astrophysics Data System (ADS)

    Deffner, Sebastian; Jarzynski, Christopher; Del Campo, Adolfo

    2014-03-01

    All real physical processes in classical as well as in quantum devices operate in finite-time. For most applications, however, adiabatic, i.e. infinitely-slow processes, are more favorable, as these do not cause unwanted, parasitic excitations. A shortcut to adiabaticity is a driving protocol which reproduces in a short time the same final state that would result from an adiabatic process. A particular powerful technique to engineer such shortcuts is transitionless quantum driving by means of counterdiabatic fields. However, determining closed form expressions for the counterdiabatic field has generally proven to be a daunting task. In this paper, we introduce a novel approach, with which we find the explicit form of the counterdiabatic driving field in arbitrary scale-invariant dynamical processes, encompassing expansions and transport. Our approach originates in the formalism of generating functions, and unifies previous approaches independently developed for classical and quantum systems. We show how this new approach allows to design shortcuts to adiabaticity for a large class of classical and quantum, single-particle, non-linear, and many-body systems. SD and CJ acknowledge support from the National Science Foundation (USA) under grant DMR-1206971. This research is further supported by the U.S Department of Energy through the LANL/LDRD Program and a LANL J. Robert Oppenheimer fellowship (AdC).

  20. Classical nuclear dynamics on a single time-dependent potential in electronic non-adiabatic processes

    NASA Astrophysics Data System (ADS)

    Agostini, Federica; Abedi, Ali; Suzuki, Yasumitsu; Min, Seung Kyu; Maitra, Neepa T.; Gross, E. K. U.

    2015-03-01

    The Born-Oppenheimer (BO) approximation allows to visualize the coupled electron-nuclear dynamics in molecular systems as a set of nuclei moving on a single potential energy surface representing the effect of the electrons in a given eigenstate. Many interesting phenomena, however, such as vision or charge separation in organic photovoltaic materials, take place in conditions beyond its range of validity. Nevertheless, the basic construct of the adiabatic treatment, the BO potential energy surfaces, is employed to describe non-adiabatic processes and the full problem is represented in terms of adiabatic states and transitions among them in regions of strong non-adiabatic coupling. But the concept of single potential energy is lost. The alternative point of view arising in the framework of the exact factorization of the electron-nuclear wave function will be presented. A single, time-dependent, potential energy provides the force driving the nuclear motion and is adopted as starting point for the development of quantum-classical approximations to the full quantum mechanical problem.

  1. Shortcuts to adiabaticity for non-Hermitian systems

    SciTech Connect

    Ibanez, S.; Martinez-Garaot, S.; Torrontegui, E.; Muga, J. G.; Chen Xi

    2011-08-15

    Adiabatic processes driven by non-Hermitian, time-dependent Hamiltonians may be sped up by generalizing inverse engineering techniques based on counter-diabatic (transitionless driving) algorithms or on dynamical invariants. We work out the basic theory and examples described by two-level Hamiltonians: the acceleration of rapid adiabatic passage with a decaying excited level and of the dynamics of a classical particle on an expanding harmonic oscillator.

  2. Thermodynamic properties of adsorbed water on silica gel - Exergy losses in adiabatic sorption processes

    NASA Astrophysics Data System (ADS)

    Worek, W. M.; Zengh, W.; San, J.-Y.

    1991-09-01

    In order to perform exergy analyses to optimize the transient heat and mass transfer processes involving sorption by solid adsorbents, the thermodynamic properties of adsorbed water must be determined. In this paper, the integral enthalpy and entropy are determined directly from isotherm data of water adsorbed on silica gel particles and silica gel manufactured in the form of a felt with 25 percent cotton as a support and Teflon as a binder. These results are then used to evaluate the exergy losses, due to the sorption and the convective heat and mass transfer processes, that occur in each portion of an adiabatic desiccant dehumidificaton cycle.

  3. Processing of false belief passages during natural story comprehension: An fMRI study.

    PubMed

    Kandylaki, Katerina D; Nagels, Arne; Tune, Sarah; Wiese, Richard; Bornkessel-Schlesewsky, Ina; Kircher, Tilo

    2015-11-01

    The neural correlates of theory of mind (ToM) are typically studied using paradigms which require participants to draw explicit, task-related inferences (e.g., in the false belief task). In a natural setup, such as listening to stories, false belief mentalizing occurs incidentally as part of narrative processing. In our experiment, participants listened to auditorily presented stories with false belief passages (implicit false belief processing) and immediately after each story answered comprehension questions (explicit false belief processing), while neural responses were measured with functional magnetic resonance imaging (fMRI). All stories included (among other situations) one false belief condition and one closely matched control condition. For the implicit ToM processing, we modeled the hemodynamic response during the false belief passages in the story and compared it to the hemodynamic response during the closely matched control passages. For implicit mentalizing, we found activation in typical ToM processing regions, that is the angular gyrus (AG), superior medial frontal gyrus (SmFG), precuneus (PCUN), middle temporal gyrus (MTG) as well as in the inferior frontal gyrus (IFG) billaterally. For explicit ToM, we only found AG activation. The conjunction analysis highlighted the left AG and MTG as well as the bilateral IFG as overlapping ToM processing regions for both implicit and explicit modes. Implicit ToM processing during listening to false belief passages, recruits the left SmFG and billateral PCUN in addition to the "mentalizing network" known form explicit processing tasks. PMID:26356583

  4. First Passage Moments of Finite-State Semi-Markov Processes

    SciTech Connect

    Warr, Richard; Cordeiro, James

    2014-03-31

    In this paper, we discuss the computation of first-passage moments of a regular time-homogeneous semi-Markov process (SMP) with a finite state space to certain of its states that possess the property of universal accessibility (UA). A UA state is one which is accessible from any other state of the SMP, but which may or may not connect back to one or more other states. An important characteristic of UA is that it is the state-level version of the oft-invoked process-level property of irreducibility. We adapt existing results for irreducible SMPs to the derivation of an analytical matrix expression for the first passage moments to a single UA state of the SMP. In addition, consistent point estimators for these first passage moments, together with relevant R code, are provided.

  5. Coupled-channels quantum theory of electronic flux density in electronically adiabatic processes: fundamentals.

    PubMed

    Diestler, D J

    2012-03-22

    The Born-Oppenheimer (BO) description of electronically adiabatic molecular processes predicts a vanishing electronic flux density (j(e)), =1/2∫dR[Δ(b) (x;R) - Δ(a) (x;R)] even though the electrons certainly move in response to the movement of the nuclei. This article, the first of a pair, proposes a quantum-mechanical "coupled-channels" (CC) theory that allows the approximate extraction of j(e) from the electronically adiabatic BO wave function . The CC theory is detailed for H(2)(+), in which case j(e) can be resolved into components associated with two channels α (=a,b), each of which corresponds to the "collision" of an "internal" atom α (proton a or b plus electron) with the other nucleus β (proton b or a). The dynamical role of the electron, which accommodates itself instantaneously to the motion of the nuclei, is submerged in effective electronic probability (population) densities, Δ(α), associated with each channel (α). The Δ(α) densities are determined by the (time-independent) BO electronic energy eigenfunction, which depends parametrically on the configuration of the nuclei, the motion of which is governed by the usual BO nuclear Schrödinger equation. Intuitively appealing formal expressions for the electronic flux density are derived for H(2)(+). PMID:22103768

  6. Influence of Temperature and Pressure Change on Adiabatic and Isothermal Methanation Processes

    NASA Astrophysics Data System (ADS)

    Porubova, Jekaterina; Klemm, Marco; Kiendl, Isabel; Valters, Karlis; Markova, Darja; Repele, Mara; Bazbauers, Gatis

    2012-09-01

    Energy plans of many countries anticipate an increased use of biomethane for energy supply, i.e., in power and heat production as well as in the transport sector. Existing infrastructure of natural gas storage, supply and application provides a good platform to facilitate transfer to biomethane utilization on a larger scale. One key element of the biomethane system is the upgrade of the biomass-derived synthesis gas originating from different sources, to a quality of natural gas (SNG - Synthesis Natural Gas) via the methanation process for further injection into the natural gas grid.. The maximisation of efficiency of the methanation process is of critical importance in order to make biomethane technology viable for wider application. The aim of the study was to improve efficiency of the methanation process by finding the optimum temperatures and pressure. Theoretical modelling of adiabatic and isothermal methanation processes by using thermodynamic equilibrium calculations was introduced as a method for the study. The results show the impact of temperature and pressure changes on the overall efficiency of methane production. It can be concluded from the study that knowledge about the relation between temperature, pressure and the efficiency of the methanation process makes it possible to optimize the process under various biomass synthesized gas input conditions.

  7. Mechanisms controlling warm water volume interannual variations in the equatorial Pacific: diabatic versus adiabatic processes

    NASA Astrophysics Data System (ADS)

    Lengaigne, M.; Hausmann, U.; Madec, G.; Menkes, C.; Vialard, J.; Molines, J. M.

    2012-03-01

    Variations of the volume of warm water above the thermocline in the equatorial Pacific are a good predictor of ENSO (El Niño/Southern Oscillation) and are thought to be critical for its preconditioning and development. In this study, the Warm Water Volume (WWV) interannual variability is analysed using forced general circulation model experiments and an original method for diagnosing processes responsible for WWV variations. The meridional recharge/discharge to higher latitudes drives 60% of the ENSO-related equatorial WWV variations, while diabatic processes in the eastern equatorial Pacific account for the remaining 40%. Interior meridional transport is partially compensated by western boundary transports, especially in the southern hemisphere. Diabatic equatorial WWV formation (depletions) during La Niña (El Niño) are explained by enhanced (reduced) diathermal transport through enhanced (reduced) vertical mixing and penetrating solar forcing at the 20°C isotherm depth. The respective contribution of diabatic and adiabatic processes during build-ups/depletions strongly varies from event-to-event. The WWV build-up during neutral ENSO phases (e.g. 1980-1982) is almost entirely controlled by meridional recharge, providing a text-book example for the recharge/discharge oscillator's theory. On the other hand, diabatic processes are particularly active during the strongest La Niña events (1984, 1988, 1999), contributing to more than 70% of the WWV build-up, with heating by penetrative solar fluxes explaining as much as 30% of the total build-up due to a very shallow thermocline in the eastern Pacific. This study does not invalidate the recharge/discharge oscillator theory but rather emphasizes the importance of equatorial diabatic processes and western boundary transports in controlling WWV changes.

  8. CLASSICAL TRAJECTORY MODELS FOR ELECTRONICALLY NON-ADIABATIC COLLISION PROCESSES: A CLASSICAL VALENCE BOND MODEL FOR ELECTRONIC DEGREES OF FREEDOM

    SciTech Connect

    Miller, William H.; Orel, Ann E.

    1980-11-01

    A classical interpretation of the Dirac-Van Vleck spin version of valence bond theory is used to obtain a classical model for electronic degrees of freedom within the valence bond framework. The approach is illustrated by deriving the explicit forms of the classical Hamiltonians, involving electronic and heavy particle degrees of freedom, for the H-H{sub 2}, F-H{sub 2} , and O-H{sub 2} systems. It is also shown how the initial conditions for both electronic and heavy particle degrees of freedom are chosen to carry out a classical trajectory simulation of collision processes. The attractive feature of this model is that it is as eaaily applicable to electronically non-adiabatic processes as it is to adiabatic ones.

  9. Veganism as status passage: the process of becoming a vegan among youths in Sweden.

    PubMed

    Larsson, Christel L; Rönnlund, Ulla; Johansson, Gunnar; Dahlgren, Lars

    2003-08-01

    In a town in northern Sweden, 3.3% of the 15-year-old adolescents were vegans in 1996. This study describes the process of becoming a vegan among adolescents and interprets the informants' descriptions by constructing categories, which later on were related to relevant theories. Group interviews were conducted with three vegans and in-depth interviews were performed with three other vegan adolescents. The methodology was grounded theory and the adolescents' perceptions were analyzed in the framework of symbolic interactionism. Three types of vegans were identified: the Conformed Vegan, the Organized Vegan, and the Individualistic Vegan. The decision to become a vegan was reported to be influenced by perceived internal reasons such as ethics, health, distaste for meat, and preference for vegetarian food. In addition, friends, family, school, media, and music influenced the decision to become a vegan. The perceived consequences of becoming a vegan were positive as well as negative and differed between the three types of vegans. Veganism as a new type of status passage with specific characteristics was illustrated. No modifications or new properties were discovered that add to the theory of status passage which indicates that the general model is applicable also in a vegan context. PMID:12880622

  10. Collisional and Radiative Processes in Adiabatic Deceleration, Deflection, and Off-Axis Trapping of a Rydberg Atom Beam

    SciTech Connect

    Seiler, Ch.; Hogan, S. D.; Schmutz, H.; Agner, J. A.; Merkt, F.

    2011-02-18

    A supersonic beam of Rydberg hydrogen atoms has been adiabatically deflected by 90 deg., decelerated to zero velocity in less than 25 {mu}s, and loaded into an electric trap. The deflection has allowed the suppression of collisions with atoms in the trailing part of the gas pulse. The processes leading to trap losses, i.e., fluorescence to the ground state, and transitions and ionization induced by blackbody radiation have been monitored over several milliseconds and quantitatively analyzed.

  11. Mean first-passage times in confined media: from Markovian to non-Markovian processes

    NASA Astrophysics Data System (ADS)

    Bénichou, O.; Guérin, T.; Voituriez, R.

    2015-04-01

    We review recent theoretical works that enable the accurate evaluation of the mean first passage time (MFPT) of a random walker to a target in confinement for Markovian (memory-less) and non-Markovian walkers. For the Markovian problem, we present a general theory which allows one to accurately evaluate the MFPT and its extensions to related first-passage observables such as splitting probabilities and occupation times. We show that this analytical approach provides a universal scaling dependence of the MFPT on both the volume of the confining domain and the source-target distance in the case of general scale-invariant processes. This analysis is applicable to a broad range of stochastic processes characterized by length scale-invariant properties, and reveals the key role that can be played by the starting position of the random walker. We then present an extension to non-Markovian walks by taking the specific example of a tagged monomer of a polymer chain looking for a target in confinement. We show that the MFPT can be calculated accurately by computing the distribution of the positions of all the monomers in the chain at the instant of reaction. Such a theory can be used to derive asymptotic relations that generalize the scaling dependence with the volume and the initial distance to the target derived for Markovian walks. Finally, we present an application of this theory to the problem of the first contact time between the two ends of a polymer chain, and review the various theoretical approaches of this non- Markovian problem.

  12. CLASSICAL MODEL FOR ELECTRONICALLY NON-ADIABATIC COLLISION PROCESSES: RESONANCE EFFECTS IN ELECTRONIC-VIBRATIONAL ENERGY TRANSFER

    SciTech Connect

    Orel, Ann E.; Miller, William H.

    1980-11-01

    A recently developed classical model for electronically nonadiabatic collision processes is applied to electronic-vibrational energy transfer in a collinear atom~diatom system, A + BC(v=1) + A*+ BC(v=0), which closely resembles Br-H{sub 2}. This classical model, which treats electronic as well as heavy particle (i.e., translation, rotation, and vibration) degrees of freedom by classical mechanics, is found to describe the resonance features in this process reasonably well. The usefulness of the approach is that it allows one to extend standard Monte Carlo classical trajectory methodology to include electronically non-adiabatic processes in a dynamically consistent way,

  13. Semiclassical analysis of the electron-nuclear coupling in electronic non-adiabatic processes

    NASA Astrophysics Data System (ADS)

    Agostini, Federica; Min, Seung Kyu; Gross, E. K. U.

    2015-10-01

    In the context of the exact factorization of the electron-nuclear wave function, the coupling between electrons and nuclei beyond the adiabatic regime is encoded (i) in the time-dependent vector and scalar potentials and (ii) in the electron-nuclear coupling operator. The former appear in the Schroedinger-like equation that drives the evolution of the nuclear degrees of freedom, whereas the latter is responsible for inducing non-adiabatic effects in the electronic evolution equation. As we have devoted previous studies to the analysis of the vector and scalar potentials, in this paper we focus on the properties of the electron-nuclear coupling operator, with the aim of describing a numerical procedure to approximate it within a semiclassical treatment of the nuclear dynamics.

  14. Mapping absorption processes onto a Markov chain, conserving the mean first passage time

    NASA Astrophysics Data System (ADS)

    Biswas, Katja

    2013-04-01

    The dynamics of a multidimensional system is projected onto a discrete state master equation using the transition rates W(k → k‧ t, t + dt) between a set of states {k} represented by the regions {ζk} in phase or discrete state space. Depending on the dynamics Γi(t) of the original process and the choice of ζk, the discretized process can be Markovian or non-Markovian. For absorption processes, it is shown that irrespective of these properties of the projection, a master equation with time-independent transition rates \\bar{W}(k\\rightarrow k^{\\prime }) can be obtained, which conserves the total occupation time of the partitions of the phase or discrete state space of the original process. An expression for the transition probabilities \\bar{p}(k^{\\prime }|k) is derived based on either time-discrete measurements {ti} with variable time stepping Δ(i + 1)i = ti + 1 - ti or the theoretical knowledge at continuous times t. This allows computational methods of absorbing Markov chains to be used to obtain the mean first passage time (MFPT) of the system. To illustrate this approach, the procedure is applied to obtain the MFPT for the overdamped Brownian motion of particles subject to a system with dichotomous noise and the escape from an entropic barrier. The high accuracy of the simulation results confirms with the theory.

  15. A First-Passage Kinetic Monte Carlo method for reaction–drift–diffusion processes

    SciTech Connect

    Mauro, Ava J.; Sigurdsson, Jon Karl; Shrake, Justin; Atzberger, Paul J.; Isaacson, Samuel A.

    2014-02-15

    Stochastic reaction–diffusion models are now a popular tool for studying physical systems in which both the explicit diffusion of molecules and noise in the chemical reaction process play important roles. The Smoluchowski diffusion-limited reaction model (SDLR) is one of several that have been used to study biological systems. Exact realizations of the underlying stochastic processes described by the SDLR model can be generated by the recently proposed First-Passage Kinetic Monte Carlo (FPKMC) method. This exactness relies on sampling analytical solutions to one and two-body diffusion equations in simplified protective domains. In this work we extend the FPKMC to allow for drift arising from fixed, background potentials. As the corresponding Fokker–Planck equations that describe the motion of each molecule can no longer be solved analytically, we develop a hybrid method that discretizes the protective domains. The discretization is chosen so that the drift–diffusion of each molecule within its protective domain is approximated by a continuous-time random walk on a lattice. New lattices are defined dynamically as the protective domains are updated, hence we will refer to our method as Dynamic Lattice FPKMC or DL-FPKMC. We focus primarily on the one-dimensional case in this manuscript, and demonstrate the numerical convergence and accuracy of our method in this case for both smooth and discontinuous potentials. We also present applications of our method, which illustrate the impact of drift on reaction kinetics.

  16. Adiabatic Approximation of the Correlation Function in the Density-Functional Treatment of Ionization Processes

    SciTech Connect

    Wilken, F.; Bauer, D.

    2006-11-17

    The ionization of a one-dimensional model helium atom in short laser pulses using time-dependent density-functional theory is investigated. We calculate ionization probabilities as a function of laser intensity by approximating the correlation function of the system adiabatically with an explicit dependence on the fractional number of bound electrons. For the correlation potential we take the derivative discontinuity at integer numbers of bound electrons explicitly into account. This approach reproduces ionization probabilities from the solution of the time-dependent Schroedinger equation, in particular, the so-called knee due to nonsequential ionization.

  17. Collisional and radiative processes in adiabatic deceleration, deflection, and off-axis trapping of a Rydberg atom beam.

    PubMed

    Seiler, Ch; Hogan, S D; Schmutz, H; Agner, J A; Merkt, F

    2011-02-18

    A supersonic beam of Rydberg hydrogen atoms has been adiabatically deflected by 90°, decelerated to zero velocity in less than 25  μs, and loaded into an electric trap. The deflection has allowed the suppression of collisions with atoms in the trailing part of the gas pulse. The processes leading to trap losses, i.e., fluorescence to the ground state, and transitions and ionization induced by blackbody radiation have been monitored over several milliseconds and quantitatively analyzed. PMID:21405512

  18. Parallelizable adiabatic gate teleportation

    NASA Astrophysics Data System (ADS)

    Nakago, Kosuke; Hajdušek, Michal; Nakayama, Shojun; Murao, Mio

    2015-12-01

    To investigate how a temporally ordered gate sequence can be parallelized in adiabatic implementations of quantum computation, we modify adiabatic gate teleportation, a model of quantum computation proposed by Bacon and Flammia [Phys. Rev. Lett. 103, 120504 (2009), 10.1103/PhysRevLett.103.120504], to a form deterministically simulating parallelized gate teleportation, which is achievable only by postselection. We introduce a twisted Heisenberg-type interaction Hamiltonian, a Heisenberg-type spin interaction where the coordinates of the second qubit are twisted according to a unitary gate. We develop parallelizable adiabatic gate teleportation (PAGT) where a sequence of unitary gates is performed in a single step of the adiabatic process. In PAGT, numeric calculations suggest the necessary time for the adiabatic evolution implementing a sequence of L unitary gates increases at most as O (L5) . However, we show that it has the interesting property that it can map the temporal order of gates to the spatial order of interactions specified by the final Hamiltonian. Using this property, we present a controlled-PAGT scheme to manipulate the order of gates by a control qubit. In the controlled-PAGT scheme, two differently ordered sequential unitary gates F G and G F are coherently performed depending on the state of a control qubit by simultaneously applying the twisted Heisenberg-type interaction Hamiltonians implementing unitary gates F and G . We investigate why the twisted Heisenberg-type interaction Hamiltonian allows PAGT. We show that the twisted Heisenberg-type interaction Hamiltonian has an ability to perform a transposed unitary gate by just modifying the space ordering of the final Hamiltonian implementing a unitary gate in adiabatic gate teleportation. The dynamics generated by the time-reversed Hamiltonian represented by the transposed unitary gate enables deterministic simulation of a postselected event of parallelized gate teleportation in adiabatic

  19. Adiabatic cooling of antiprotons.

    PubMed

    Gabrielse, G; Kolthammer, W S; McConnell, R; Richerme, P; Kalra, R; Novitski, E; Grzonka, D; Oelert, W; Sefzick, T; Zielinski, M; Fitzakerley, D; George, M C; Hessels, E A; Storry, C H; Weel, M; Müllers, A; Walz, J

    2011-02-18

    Adiabatic cooling is shown to be a simple and effective method to cool many charged particles in a trap to very low temperatures. Up to 3×10(6) p are cooled to 3.5 K-10(3) times more cold p and a 3 times lower p temperature than previously reported. A second cooling method cools p plasmas via the synchrotron radiation of embedded e(-) (with many fewer e(-) than p in preparation for adiabatic cooling. No p are lost during either process-a significant advantage for rare particles. PMID:21405511

  20. Adiabatic Cooling of Antiprotons

    SciTech Connect

    Gabrielse, G.; Kolthammer, W. S.; McConnell, R.; Richerme, P.; Kalra, R.; Novitski, E.; Oelert, W.; Grzonka, D.; Sefzick, T.; Zielinski, M.; Fitzakerley, D.; George, M. C.; Hessels, E. A.; Storry, C. H.; Weel, M.; Muellers, A.; Walz, J.

    2011-02-18

    Adiabatic cooling is shown to be a simple and effective method to cool many charged particles in a trap to very low temperatures. Up to 3x10{sup 6} p are cooled to 3.5 K--10{sup 3} times more cold p and a 3 times lower p temperature than previously reported. A second cooling method cools p plasmas via the synchrotron radiation of embedded e{sup -} (with many fewer e{sup -} than p) in preparation for adiabatic cooling. No p are lost during either process--a significant advantage for rare particles.

  1. Quasi-adiabatic instabilities associated with necking processes of an elasto-viscoplastic lithosphere

    NASA Astrophysics Data System (ADS)

    Regenauer-Lieb, Klaus; Yuen, David A.

    2000-02-01

    Necking of the lithosphere involves complex nonlinear thermal-mechanical feedback mechanisms in an elasto-viscoplastic plate. The mode of extension of such plates relies on the mechanical properties of the upper part of the mantle and on the nucleation of ductile faults within the lithosphere. Our numerical model addresses the key problem of controls of ductile failure of the strongest part in the lithosphere. It is found that a small heterogeneity within this strong part can nucleate quasi-adiabatic shear bands. These develop spasmodically with time as finite amplitude instabilities with increasing temporal and length scales. The largest shear zone takes about 100,000 years to propagate through the entire lithosphere and can lead to a thermal instability for an ambient mantle temperature larger than 900 K. In our numerical model, thermal runaway occurs when the plate is severed. The temperature rise of the thermal instability is a function of the creep law exponent n and can be quenched for a lower n and smaller activation energy. The model is applicable to the problem of onset of continental break-up and holds the key to ductile instabilities in the Earth's lithosphere. The changing hot surface temperature on Venus might also have precipitated lithospheric instabilities in the past.

  2. Adiabatically implementing quantum gates

    SciTech Connect

    Sun, Jie; Lu, Songfeng Liu, Fang

    2014-06-14

    We show that, through the approach of quantum adiabatic evolution, all of the usual quantum gates can be implemented efficiently, yielding running time of order O(1). This may be considered as a useful alternative to the standard quantum computing approach, which involves quantum gates transforming quantum states during the computing process.

  3. A Weibull distribution with power-law tails that describes the first passage time processes of foreign currency exchanges

    NASA Astrophysics Data System (ADS)

    Sazuka, Naoya; Inoue, Jun-Ichi

    2007-03-01

    A Weibull distribution with power-law tails is confirmed as a good candidate to describe the first passage time process of foreign currency exchange rates. The Lorentz curve and the corresponding Gini coefficient for a Weibull distribution are derived analytically. We show that the coefficient is in good agreement with the same quantity calculated from the empirical data. We also calculate the average waiting time which is an important measure to estimate the time for customers to wait until the next price change after they login to their computer systems. By assuming that the first passage time distribution might change its shape from the Weibull to the power-law at some critical time, we evaluate the averaged waiting time by means of the renewal-reward theorem. We find that our correction of tails of the distribution makes the averaged waiting time much closer to the value obtained from empirical data analysis. We also discuss the deviation from the estimated average waiting time by deriving the waiting time distribution directly. These results make us conclude that the first passage process of the foreign currency exchange rates is well described by a Weibull distribution with power-law tails.

  4. Application of the First Law of Thermodynamics to the Adiabatic Processes of an Ideal Gas: Physics Teacher Candidates' Opinions

    ERIC Educational Resources Information Center

    Gonen, S.

    2014-01-01

    The present study was carried out with 46 teacher candidates taking the course of "Thermodynamics" in the Department of Physics Teaching. The purpose of the study was to determine the difficulties that teacher candidates experienced in explaining the heat, work and internal energy relationships in the processes of adiabatic compression…

  5. Frequency Shift and Sub-band Effect in Pair-Production Process Under Adiabatic Closing the External Field

    NASA Astrophysics Data System (ADS)

    Song, Xinfang; Wang, Wenyuan; Fu, Libin

    2016-04-01

    Oscillating electric field is chosen to investigate the electron-positron pair production process by using a quantum kinetic theory and the effective mass model [Phys. Rev. Lett. 112, 050402 (2014)]. The particle yield exhibits a characteristic oscillatory structure which is related to the multi-photon thresholds. The true peak positions are typically slightly above the naive threshold estimate, which is defined as frequency shift. During the numerical calculations, we find the frequency shift can be affected by the system parameters under adiabatic closing the external field, it is worthwhile to study in detail. In this paper, we investigate the frequency shift and the sub-band effect in electron-positron pair production with oscillating electric field. First, a quantum kinetic theory and the effective mass are presented to obtain the frequency shift, the results are fitted very well. And we find the frequency shift and the sub-band effect can be influenced by pulse duration, photon number, and strength of the external field. The frequency shift becomes evident as increases of photon number and the external field strength. The sub-band width is relatively lower at longer pulse duration, higher photon number region, and weaker external field. The results shown in the paper are helpful for understanding multi-photon pair production process in the strong field.

  6. Frequency Shift and Sub-band Effect in Pair-Production Process Under Adiabatic Closing the External Field

    NASA Astrophysics Data System (ADS)

    Song, Xinfang; Wang, Wenyuan; Fu, Libin

    2016-09-01

    Oscillating electric field is chosen to investigate the electron-positron pair production process by using a quantum kinetic theory and the effective mass model [Phys. Rev. Lett. 112, 050402 (2014)]. The particle yield exhibits a characteristic oscillatory structure which is related to the multi-photon thresholds. The true peak positions are typically slightly above the naive threshold estimate, which is defined as frequency shift. During the numerical calculations, we find the frequency shift can be affected by the system parameters under adiabatic closing the external field, it is worthwhile to study in detail. In this paper, we investigate the frequency shift and the sub-band effect in electron-positron pair production with oscillating electric field. First, a quantum kinetic theory and the effective mass are presented to obtain the frequency shift, the results are fitted very well. And we find the frequency shift and the sub-band effect can be influenced by pulse duration, photon number, and strength of the external field. The frequency shift becomes evident as increases of photon number and the external field strength. The sub-band width is relatively lower at longer pulse duration, higher photon number region, and weaker external field. The results shown in the paper are helpful for understanding multi-photon pair production process in the strong field.

  7. Utilization of parallel processing in solving the inviscid form of the average-passage equation system for multistage turbomachinery

    NASA Technical Reports Server (NTRS)

    Mulac, Richard A.; Celestina, Mark L.; Adamczyk, John J.; Misegades, Kent P.; Dawson, Jef M.

    1987-01-01

    A procedure is outlined which utilizes parallel processing to solve the inviscid form of the average-passage equation system for multistage turbomachinery along with a description of its implementation in a FORTRAN computer code, MSTAGE. A scheme to reduce the central memory requirements of the program is also detailed. Both the multitasking and I/O routines referred to are specific to the Cray X-MP line of computers and its associated SSD (Solid-State Disk). Results are presented for a simulation of a two-stage rocket engine fuel pump turbine.

  8. Adiabatic topological quantum computing

    NASA Astrophysics Data System (ADS)

    Cesare, Chris; Landahl, Andrew J.; Bacon, Dave; Flammia, Steven T.; Neels, Alice

    2015-07-01

    Topological quantum computing promises error-resistant quantum computation without active error correction. However, there is a worry that during the process of executing quantum gates by braiding anyons around each other, extra anyonic excitations will be created that will disorder the encoded quantum information. Here, we explore this question in detail by studying adiabatic code deformations on Hamiltonians based on topological codes, notably Kitaev's surface codes and the more recently discovered color codes. We develop protocols that enable universal quantum computing by adiabatic evolution in a way that keeps the energy gap of the system constant with respect to the computation size and introduces only simple local Hamiltonian interactions. This allows one to perform holonomic quantum computing with these topological quantum computing systems. The tools we develop allow one to go beyond numerical simulations and understand these processes analytically.

  9. The influence of shelf processes in delivering dissolved iron to the HNLC waters of the Drake Passage, Antarctica

    NASA Astrophysics Data System (ADS)

    Measures, C. I.; Brown, M. T.; Selph, K. E.; Apprill, A.; Zhou, M.; Hatta, M.; Hiscock, W. T.

    2013-06-01

    Dissolved trace element distributions near Elephant Island in the Drake Passage show extremely high levels of dissolved Fe and Mn in waters above the shelf. The entrainment of this enriched shelf water by the Fe-poor Antarctic Circumpolar Current (ACC) as it passes through the Shackleton Gap delivers an estimated 2.8×106 mol yr-1 dissolved Fe to the offshore waters of the Drake Passage. The magnitude and spatial distribution of dissolved Fe, Mn and Al over the shelf are consistent with a diagenetically produced sedimentary source, but are inconsistent with eolian or upwelling sources. The systematics of the Mn and Fe concentrations suggest that there are two distinct sources of dissolved Fe to the surface waters of this region. The highest Fe concentrations are associated with Bransfield Strait water, which can be identified by its characteristic temperature and salinity (T/S) properties both inside the Bransfield Strait and in the Bransfield Current outflow between Elephant and Clarence Islands. Most of the shelf area is dominated by a second water type with T/S properties that are typical of modified Antarctic Surface Water, which while also enriched has a lower Fe:Mn ratio. The predominantly linear relationships between the Fe and Mn concentrations at the stations in each of these water mass types suggest that the distribution of these elements is largely controlled by physical mixing processes and that biological removal of Fe on the shelf, while certainly occurring, is limited, perhaps as a result of rapid physical flushing processes and relatively slow biological growth rates. The consequent export of large quantities of this shelf-derived Fe into the ACC is likely responsible for the extensive regions of enhanced primary production seen in satellite imagery downstream of the Drake Passage.

  10. Non-adiabatic resonant conversion of solar neutrinos in three generations

    NASA Astrophysics Data System (ADS)

    Kim, C. W.; Nussinov, S.; Sze, W. K.

    1987-02-01

    The survival probability of solar electron neutrinos after non-adiabatic passage through the resonance-oscillation region in the Sun is discussed for the case of three generations. A method to calculate three-generation Landau-Zener transition probabilities between adiabatic states is described. We also discuss how the Landua-Zener probability is modified in the extreme non-adiabatic case.

  11. Kappa Distribution in a Homogeneous Medium: Adiabatic Limit of a Super-diffusive Process?

    NASA Astrophysics Data System (ADS)

    Roth, I.

    2015-12-01

    The classical statistical theory predicts that an ergodic, weakly interacting system like charged particles in the presence of electromagnetic fields, performing Brownian motions (characterized by small range deviations in phase space and short-term microscopic memory), converges into the Gibbs-Boltzmann statistics. Observation of distributions with a kappa-power-law tails in homogeneous systems contradicts this prediction and necessitates a renewed analysis of the basic axioms of the diffusion process: characteristics of the transition probability density function (pdf) for a single interaction, with a possibility of non-Markovian process and non-local interaction. The non-local, Levy walk deviation is related to the non-extensive statistical framework. Particles bouncing along (solar) magnetic field with evolving pitch angles, phases and velocities, as they interact resonantly with waves, undergo energy changes at undetermined time intervals, satisfying these postulates. The dynamic evolution of a general continuous time random walk is determined by pdf of jumps and waiting times resulting in a fractional Fokker-Planck equation with non-integer derivatives whose solution is given by a Fox H-function. The resulting procedure involves the known, although not frequently used in physics fractional calculus, while the local, Markovian process recasts the evolution into the standard Fokker-Planck equation. Solution of the fractional Fokker-Planck equation with the help of Mellin transform and evaluation of its residues at the poles of its Gamma functions results in a slowly converging sum with power laws. It is suggested that these tails form the Kappa function. Gradual vs impulsive solar electron distributions serve as prototypes of this description.

  12. Sensitivity Study of the Vertical Velocity Variation on Cloud Droplet Nucleation Process Using an Adiabatic Parcel Model

    NASA Astrophysics Data System (ADS)

    Peng, Y.; Lohmann, U.; Leaitch, R. W.

    2003-12-01

    Eleven profiles through liquid water cloud obtained during RACE (Radiation, Aerosol and Cloud Experiment) and NARE (North Atlantic Regional Experiment) are used to study the sensitivity of cloud droplet nucleation to the vertical gust velocity. Selected cloud microphysical data, size-distributed aerosol properties and particle chemistry are applied in an adiabatic parcel model to predict the activated cloud droplet number concentrations (N) using the frequency distribution of the measured in-cloud vertical velocities and again using a vertical velocity characteristic of observations. The simulated adiabatic value of N obtained using the standard deviation of the vertical velocity distribution agrees with the observed maximum N (the cloud droplet number in an adiabetic core) to within 5%. If the parameterization derived by Lin et al. [1997] is applied to obtain the cloud-average N from the maximum N, the average N agrees with the observed cloud-average N to within 20%. The simulated N obtained using the full probability density function of the vertical gust velocities is one approach that has been used to represent the cloud average N. This is based on the assumption that the average N is controlled by all variations in the updraft and not by the mixing process [Leaitch et al. 1996]. The value of N obtained in this manner is found to be higher than the observed average N by a factor of two. We believe that this result is because low vertical velocities do not contribute effectively to the cloud droplet nucleation. If we neglect the lowest 45% of all vertical velocities, then the difference between the simulated average N and the observed mean N is reduced to within 13%. These results suggest that it is appropriate to use a characteristic vertical velocity to predict the cloud droplet number concentration in climate models as done by Lohmann et al. [1999], where the subgrid variation of vertical velocity is diagnosed from the turbulent kinetic energy. The frequency

  13. Identifying influential nodes in a wound healing-related network of biological processes using mean first-passage time

    NASA Astrophysics Data System (ADS)

    Arodz, Tomasz; Bonchev, Danail

    2015-02-01

    In this study we offer an approach to network physiology, which proceeds from transcriptomic data and uses gene ontology analysis to identify the biological processes most enriched in several critical time points of wound healing process (days 0, 3 and 7). The top-ranking differentially expressed genes for each process were used to build two networks: one with all proteins regulating the transcription of selected genes, and a second one involving the proteins from the signaling pathways that activate the transcription factors. The information from these networks is used to build a network of the most enriched processes with undirected links weighted proportionally to the count of shared genes between the pair of processes, and directed links weighted by the count of relationships connecting genes from one process to genes from the other. In analyzing the network thus built we used an approach based on random walks and accounting for the temporal aspects of the spread of a signal in the network (mean-first passage time, MFPT). The MFPT scores allowed identifying the top influential, as well as the top essential biological processes, which vary with the progress in the healing process. Thus, the most essential for day 0 was found to be the Wnt-receptor signaling pathway, well known for its crucial role in wound healing, while in day 3 this was the regulation of NF-kB cascade, essential for matrix remodeling in the wound healing process. The MFPT-based scores correctly reflected the pattern of the healing process dynamics to be highly concentrated around several processes between day 0 and day 3, and becoming more diffuse at day 7.

  14. Weather Types, temperature and relief relationship in the Iberian Peninsula: A regional adiabatic processes under directional weather types

    NASA Astrophysics Data System (ADS)

    Peña Angulo, Dhais; Trigo, Ricardo; Cortesi, Nicola; Gonzalez-Hidalgo, Jose Carlos

    2016-04-01

    We have analyzed at monthly scale the spatial distribution of Pearson correlation between monthly mean of maximum (Tmax) and minimum (Tmin) temperatures with weather types (WTs) in the Iberian Peninsula (IP), represent them in a high spatial resolution grid (10km x 10km) from MOTEDAS dataset (Gonzalez-Hidalgo et al., 2015a). The WT classification was that developed by Jenkinson and Collison, adapted to the Iberian Peninsula by Trigo and DaCamara, using Sea Level Pressure data from NCAR/NCEP Reanalysis dataset (period 1951-2010). The spatial distribution of Pearson correlations shows a clear zonal gradient in Tmax under the zonal advection produced in westerly (W) and easterly (E) flows, with negative correlation in the coastland where the air mass come from but positive correlation to the inland areas. The same is true under North-West (NW), North-East (NE), South-West (SW) and South-East (SE) WTs. These spatial gradients are coherent with the spatial distribution of the main mountain chain and offer an example of regional adiabatic phenomena that affect the entire IP (Peña-Angulo et al., 2015b). These spatial gradients have not been observed in Tmin. We suggest that Tmin values are less sensitive to changes in Sea Level Pressure and more related to local factors. These directional WT present a monthly frequency over 10 days and could be a valuable tool for downscaling processes. González-Hidalgo J.C., Peña-Angulo D., Brunetti M., Cortesi, C. (2015a): MOTEDAS: a new monthly temperature database for mainland Spain and the trend in temperature (1951-2010). International Journal of Climatology 31, 715-731. DOI: 10.1002/joc.4298 Peña-Angulo, D., Trigo, R., Cortesi, C., González-Hidalgo, J.C. (2015b): The influence of weather types on the monthly average maximum and minimum temperatures in the Iberian Peninsula. Submitted to Hydrology and Earth System Sciences.

  15. Safe Passages: Journal Process Inspires Competence and Confidence in Emerging Leaders

    ERIC Educational Resources Information Center

    Carlson, Karen Glinert; Harsy, Kathleen Ann; Karas, Susan M.

    2014-01-01

    Using the Reflective Dialogue Journal process, principal leadership candidates at Dominican University gain critical support and a partner to share ideas and test theories on a regular and as-needed basis. After two years of implementation with 60 principal interns from public, charter, and private/parochial schools, there are more than 1,500…

  16. Distribution of Escherichia coli passaged through processing equipment during ground beef production using inoculated trimmings.

    PubMed

    Koohmaraie, Mohammad; Bosilevac, Joseph M; De La Zerda, Michael; Motlagh, Ali Mohseni; Samadpour, Mansour

    2015-02-01

    The contamination of raw ground beef by Escherichia coli O157:H7 is not only a public health issue but also an economic concern to meat processors. When E. coli O157:H7 is detected in a ground beef sample, the product lots made immediately before and after the lot represented by the positive sample are discarded or diverted to lethality treatment. However, there is little data to base decisions on how much product must be diverted. Therefore, five 2,000-lb (907-kg) combo bins of beef trimmings were processed into 10-lb (4.54-kg) chubs of raw ground beef, wherein the second combo of meat was contaminated with a green fluorescent protein (GFP)-expressing strain of E. coli. This was performed at two different commercial ground beef processing facilities, and at a third establishment where ground beef chubs from the second grinding establishment were mechanically split and repackaged into 3-lb (1.36-kg) loaves in trays. The GFP E. coli was tracked through the production of 10-lb (4.54-kg) chubs and the strain could not be detected after 26.5% more material (500 lb or 227 kg) and 87.8% more material (1,840 lb or 835 kg) followed the contaminated combo at each establishment, respectively. Three-pound (1.36-kg) loaves were no longer positive after just 8.6% more initially noncontaminated material (72 lb or 33 kg) was processed. The GFP strain could not be detected postprocessing in any residual meat or fat collected from the equipment used in the three trials. These results indicate that diversion to a safe end point (lethality or rendering) of the positive lot of ground beef, plus the lot before and lot after should remove contaminated ground beef, and as such provides support for the current industry practice. Further, the distribution and flow of E. coli on beef trimmings through various commercial equipment was different; thus, each establishment needs to consider this data when segregating lots of ground beef and establishing sampling protocols to monitor production

  17. Non-adiabatic processes in the charge transfer reaction of O2 molecules with potassium surfaces without dissociation

    NASA Astrophysics Data System (ADS)

    Krix, David; Nienhaus, Hermann

    2014-08-01

    Thin potassium films grown on Si(001) substrates are used to measure internal chemicurrents and the external emission of exoelectrons simultaneously during adsorption of molecular oxygen on K surfaces at 120 K. The experiments clarify the dynamics of electronic excitations at a simple metal with a narrow valence band. X-ray photoemission reveals that for exposures below 5 L almost exclusively peroxide K2O2 is formed, i.e., no dissociation of the molecule occurs during interaction. Still a significant chemicurrent and a delayed exoelectron emission are detected due to a rapid injection of unoccupied molecular levels below the Fermi level. Since the valence band width of potassium is approximately equal to the potassium work function (2.4 eV) the underlying mechanism of exoemission is an Auger relaxation whereas chemicurrents are detected after resonant charge transfer from the metal valence band into the injected level. The change of the chemicurrent and exoemission efficiencies with oxygen coverage can be deduced from the kinetics of the reaction and the recorded internal and external emission currents traces. It is shown that the non-adiabaticity of the reaction increases with coverage due to a reduction of the electronic density of states at the surface while the work function does not vary significantly. Therefore, the peroxide formation is one of the first reaction systems which exhibits varying non-adiabaticity and efficiencies during the reaction. Non-adiabatic calculations based on model Hamiltonians and density functional theory support the picture of chemicurrent generation and explain the rapid injection of hot hole states by an intramolecular motion, i.e., the expansion of the oxygen molecule on the timescale of a quarter of a vibrational period.

  18. Non-adiabatic processes in the charge transfer reaction of O2 molecules with potassium surfaces without dissociation.

    PubMed

    Krix, David; Nienhaus, Hermann

    2014-08-21

    Thin potassium films grown on Si(001) substrates are used to measure internal chemicurrents and the external emission of exoelectrons simultaneously during adsorption of molecular oxygen on K surfaces at 120 K. The experiments clarify the dynamics of electronic excitations at a simple metal with a narrow valence band. X-ray photoemission reveals that for exposures below 5 L almost exclusively peroxide K2O2 is formed, i.e., no dissociation of the molecule occurs during interaction. Still a significant chemicurrent and a delayed exoelectron emission are detected due to a rapid injection of unoccupied molecular levels below the Fermi level. Since the valence band width of potassium is approximately equal to the potassium work function (2.4 eV) the underlying mechanism of exoemission is an Auger relaxation whereas chemicurrents are detected after resonant charge transfer from the metal valence band into the injected level. The change of the chemicurrent and exoemission efficiencies with oxygen coverage can be deduced from the kinetics of the reaction and the recorded internal and external emission currents traces. It is shown that the non-adiabaticity of the reaction increases with coverage due to a reduction of the electronic density of states at the surface while the work function does not vary significantly. Therefore, the peroxide formation is one of the first reaction systems which exhibits varying non-adiabaticity and efficiencies during the reaction. Non-adiabatic calculations based on model Hamiltonians and density functional theory support the picture of chemicurrent generation and explain the rapid injection of hot hole states by an intramolecular motion, i.e., the expansion of the oxygen molecule on the timescale of a quarter of a vibrational period. PMID:25149810

  19. Non-adiabatic processes in the charge transfer reaction of O{sub 2} molecules with potassium surfaces without dissociation

    SciTech Connect

    Krix, David; Nienhaus, Hermann

    2014-08-21

    Thin potassium films grown on Si(001) substrates are used to measure internal chemicurrents and the external emission of exoelectrons simultaneously during adsorption of molecular oxygen on K surfaces at 120 K. The experiments clarify the dynamics of electronic excitations at a simple metal with a narrow valence band. X-ray photoemission reveals that for exposures below 5 L almost exclusively peroxide K{sub 2}O{sub 2} is formed, i.e., no dissociation of the molecule occurs during interaction. Still a significant chemicurrent and a delayed exoelectron emission are detected due to a rapid injection of unoccupied molecular levels below the Fermi level. Since the valence band width of potassium is approximately equal to the potassium work function (2.4 eV) the underlying mechanism of exoemission is an Auger relaxation whereas chemicurrents are detected after resonant charge transfer from the metal valence band into the injected level. The change of the chemicurrent and exoemission efficiencies with oxygen coverage can be deduced from the kinetics of the reaction and the recorded internal and external emission currents traces. It is shown that the non-adiabaticity of the reaction increases with coverage due to a reduction of the electronic density of states at the surface while the work function does not vary significantly. Therefore, the peroxide formation is one of the first reaction systems which exhibits varying non-adiabaticity and efficiencies during the reaction. Non-adiabatic calculations based on model Hamiltonians and density functional theory support the picture of chemicurrent generation and explain the rapid injection of hot hole states by an intramolecular motion, i.e., the expansion of the oxygen molecule on the timescale of a quarter of a vibrational period.

  20. Symmetrical windowing for quantum states in quasi-classical trajectory simulations: Application to electronically non-adiabatic processes

    SciTech Connect

    Cotton, Stephen J.; Miller, William H.

    2013-12-21

    A recently described symmetrical windowing methodology [S. J. Cotton and W. H. Miller, J. Phys. Chem. A 117, 7190 (2013)] for quasi-classical trajectory simulations is applied here to the Meyer-Miller [H.-D. Meyer and W. H. Miller, J. Chem. Phys. 70, 3214 (1979)] model for the electronic degrees of freedom in electronically non-adiabatic dynamics. Results generated using this classical approach are observed to be in very good agreement with accurate quantum mechanical results for a variety of test applications, including problems where coherence effects are significant such as the challenging asymmetric spin-boson system.

  1. An exact and efficient first passage time algorithm for reaction–diffusion processes on a 2D-lattice

    SciTech Connect

    Bezzola, Andri; Bales, Benjamin B.; Alkire, Richard C.; Petzold, Linda R.

    2014-01-01

    We present an exact and efficient algorithm for reaction–diffusion–nucleation processes on a 2D-lattice. The algorithm makes use of first passage time (FPT) to replace the computationally intensive simulation of diffusion hops in KMC by larger jumps when particles are far away from step-edges or other particles. Our approach computes exact probability distributions of jump times and target locations in a closed-form formula, based on the eigenvectors and eigenvalues of the corresponding 1D transition matrix, maintaining atomic-scale resolution of resulting shapes of deposit islands. We have applied our method to three different test cases of electrodeposition: pure diffusional aggregation for large ranges of diffusivity rates and for simulation domain sizes of up to 4096×4096 sites, the effect of diffusivity on island shapes and sizes in combination with a KMC edge diffusion, and the calculation of an exclusion zone in front of a step-edge, confirming statistical equivalence to standard KMC simulations. The algorithm achieves significant speedup compared to standard KMC for cases where particles diffuse over long distances before nucleating with other particles or being captured by larger islands.

  2. Ferromagnetism and adiabatic to non-adiabatic switching process in La0.33Sr0.67Mn1-xFexO3 (0≤x≤0.02) manganite

    NASA Astrophysics Data System (ADS)

    Ahmed, Hilal; Khan, Shakeel; Khan, Wasi; Nongjai, Razia; Khan, Imran

    2014-11-01

    We have systematically investigated structural, electrical and magnetic properties of Fe doped La0.33Sr0.67MnO3 manganites synthesized through solid-state reaction-route. All the samples are found to have rhombohedral crystal structure. The crystallite sizes obtained by XRD data are much smaller than the average grain size obtained by scanning electron microscope (SEM). Temperature dependent resistivity data were fitted using Mott's variable-range hopping (VRH) and small polaron hopping (SPH) models for obtaining different parameters. The adiabatic SPH conduction mechanism is followed almost for both samples in the absence of magnetic field but a switching from adiabatic to non-adiabatic SPH conduction mechanism is found in the presence of magnetic field. Temperature dependent magnetization (M-T) measurements confirm the decrease in Curie-temperature (TC) with Fe doping. Both the samples exhibited ferromagnetic behavior at 10 K and 300 K with a small hysteresis loop and low coercivity.

  3. Adiabatic Quantum Computing

    NASA Astrophysics Data System (ADS)

    Landahl, Andrew

    2012-10-01

    Quantum computers promise to exploit counterintuitive quantum physics principles like superposition, entanglement, and uncertainty to solve problems using fundamentally fewer steps than any conventional computer ever could. The mere possibility of such a device has sharpened our understanding of quantum coherent information, just as lasers did for our understanding of coherent light. The chief obstacle to developing quantum computer technology is decoherence--one of the fastest phenomena in all of physics. In principle, decoherence can be overcome by using clever entangled redundancies in a process called fault-tolerant quantum error correction. However, the quality and scale of technology required to realize this solution appears distant. An exciting alternative is a proposal called ``adiabatic'' quantum computing (AQC), in which adiabatic quantum physics keeps the computer in its lowest-energy configuration throughout its operation, rendering it immune to many decoherence sources. The Adiabatic Quantum Architectures In Ultracold Systems (AQUARIUS) Grand Challenge Project at Sandia seeks to demonstrate this robustness in the laboratory and point a path forward for future hardware development. We are building devices in AQUARIUS that realize the AQC architecture on up to three quantum bits (``qubits'') in two platforms: Cs atoms laser-cooled to below 5 microkelvin and Si quantum dots cryo-cooled to below 100 millikelvin. We are also expanding theoretical frontiers by developing methods for scalable universal AQC in these platforms. We have successfully demonstrated operational qubits in both platforms and have even run modest one-qubit calculations using our Cs device. In the course of reaching our primary proof-of-principle demonstrations, we have developed multiple spinoff technologies including nanofabricated diffractive optical elements that define optical-tweezer trap arrays and atomic-scale Si lithography commensurate with placing individual donor atoms with

  4. Approximation of the first passage time density of a Wiener process to an exponentially decaying boundary by two-piecewise linear threshold. Application to neuronal spiking activity.

    PubMed

    Tamborrino, Massimiliano

    2016-06-01

    The first passage time density of a diffusion process to a time varying threshold is of primary interest in different fields. Here, we consider a Brownian motion in presence of an exponentially decaying threshold to model the neuronal spiking activity. Since analytical expressions of the first passage time density are not available, we propose to approximate the curved boundary by means of a continuous two-piecewise linear threshold. Explicit expressions for the first passage time density towards the new boundary are provided. First, we introduce different approximating linear thresholds. Then, we describe how to choose the optimal one minimizing the distance to the curved boundary, and hence the error in the corresponding passage time density. Theoretical means, variances and coefficients of variation given by our method are compared with empirical quantities from simulated data. Moreover, a further comparison with firing statistics derived under the assumption of a small amplitude of the time-dependent change in the threshold, is also carried out. Finally, maximum likelihood and moment estimators of the parameters of the model are derived and applied on simulated data. PMID:27106189

  5. Membrane with supported internal passages

    NASA Technical Reports Server (NTRS)

    Gonzalez-Martin, Anuncia (Inventor); Salinas, Carlos E. (Inventor); Cisar, Alan J. (Inventor); Hitchens, G. Duncan (Inventor); Murphy, Oliver J. (Inventor)

    2000-01-01

    The invention provides an improved proton exchange membrane for use in electrochemical cells having internal passages parallel to the membrane surface comprising permanent tubes preferably placed at the ends of the fluid passages. The invention also provides an apparatus and process for making the membrane, membrane and electrode assemblies fabricated using the membrane, and the application of the membrane and electrode assemblies to a variety of devices, both electrochemical and otherwise. The passages in the membrane extend from one edge of the membrane to another and allow fluid flow through the membrane and give access directly to the membrane.

  6. Studies in Chaotic adiabatic dynamics

    SciTech Connect

    Jarzynski, C.

    1994-01-01

    Chaotic adiabatic dynamics refers to the study of systems exhibiting chaotic evolution under slowly time-dependent equations of motion. In this dissertation the author restricts his attention to Hamiltonian chaotic adiabatic systems. The results presented are organized around a central theme, namely, that the energies of such systems evolve diffusively. He begins with a general analysis, in which he motivates and derives a Fokker-Planck equation governing this process of energy diffusion. He applies this equation to study the {open_quotes}goodness{close_quotes} of an adiabatic invariant associated with chaotic motion. This formalism is then applied to two specific examples. The first is that of a gas of noninteracting point particles inside a hard container that deforms slowly with time. Both the two- and three-dimensional cases are considered. The results are discussed in the context of the Wall Formula for one-body dissipation in nuclear physics, and it is shown that such a gas approaches, asymptotically with time, an exponential velocity distribution. The second example involves the Fermi mechanism for the acceleration of cosmic rays. Explicit evolution equations are obtained for the distribution of cosmic ray energies within this model, and the steady-state energy distribution that arises when this equation is modified to account for the injection and removal of cosmic rays is discussed. Finally, the author re-examines the multiple-time-scale approach as applied to the study of phase space evolution under a chaotic adiabatic Hamiltonian. This leads to a more rigorous derivation of the above-mentioned Fokker-Planck equation, and also to a new term which has relevance to the problem of chaotic adiabatic reaction forces (the forces acting on slow, heavy degrees of freedom due to their coupling to light, fast chaotic degrees).

  7. Adiabatic Compression of Oxygen: Real Fluid Temperatures

    NASA Technical Reports Server (NTRS)

    Barragan, Michelle; Wilson, D. Bruce; Stoltzfus, Joel M.

    2000-01-01

    The adiabatic compression of oxygen has been identified as an ignition source for systems operating in enriched oxygen atmospheres. Current practice is to evaluate the temperature rise on compression by treating oxygen as an ideal gas with constant heat capacity. This paper establishes the appropriate thermodynamic analysis for the common occurrence of adiabatic compression of oxygen and in the process defines a satisfactory equation of state (EOS) for oxygen. It uses that EOS to model adiabatic compression as isentropic compression and calculates final temperatures for this system using current approaches for comparison.

  8. Adiabatically driven Brownian pumps.

    PubMed

    Rozenbaum, Viktor M; Makhnovskii, Yurii A; Shapochkina, Irina V; Sheu, Sheh-Yi; Yang, Dah-Yen; Lin, Sheng Hsien

    2013-07-01

    We investigate a Brownian pump which, being powered by a flashing ratchet mechanism, produces net particle transport through a membrane. The extension of the Parrondo's approach developed for reversible Brownian motors [Parrondo, Phys. Rev. E 57, 7297 (1998)] to adiabatically driven pumps is given. We demonstrate that the pumping mechanism becomes especially efficient when the time variation of the potential occurs adiabatically fast or adiabatically slow, in perfect analogy with adiabatically driven Brownian motors which exhibit high efficiency [Rozenbaum et al., Phys. Rev. E 85, 041116 (2012)]. At the same time, the efficiency of the pumping mechanism is shown to be less than that of Brownian motors due to fluctuations of the number of particles in the membrane. PMID:23944411

  9. Robust adiabatic sum frequency conversion.

    PubMed

    Suchowski, Haim; Prabhudesai, Vaibhav; Oron, Dan; Arie, Ady; Silberberg, Yaron

    2009-07-20

    We discuss theoretically and demonstrate experimentally the robustness of the adiabatic sum frequency conversion method. This technique, borrowed from an analogous scheme of robust population transfer in atomic physics and nuclear magnetic resonance, enables the achievement of nearly full frequency conversion in a sum frequency generation process for a bandwidth up to two orders of magnitude wider than in conventional conversion schemes. We show that this scheme is robust to variations in the parameters of both the nonlinear crystal and of the incoming light. These include the crystal temperature, the frequency of the incoming field, the pump intensity, the crystal length and the angle of incidence. Also, we show that this extremely broad bandwidth can be tuned to higher or lower central wavelengths by changing either the pump frequency or the crystal temperature. The detailed study of the properties of this converter is done using the Landau-Zener theory dealing with the adiabatic transitions in two level systems. PMID:19654679

  10. Speeding up Adiabatic Quantum State Transfer by Using Dressed States

    NASA Astrophysics Data System (ADS)

    Baksic, Alexandre; Ribeiro, Hugo; Clerk, Aashish A.

    2016-06-01

    We develop new pulse schemes to significantly speed up adiabatic state transfer protocols. Our general strategy involves adding corrections to an initial control Hamiltonian that harness nonadiabatic transitions. These corrections define a set of dressed states that the system follows exactly during the state transfer. We apply this approach to stimulated Raman adiabatic passage protocols and show that a suitable choice of dressed states allows one to design fast protocols that do not require additional couplings, while simultaneously minimizing the occupancy of the "intermediate" level.

  11. Aspects of adiabatic population transfer and control

    NASA Astrophysics Data System (ADS)

    Demirplak, Mustafa

    This thesis explores two different questions. The first question we answer is how to restore a given population transfer scenario given that it works efficiently in the adiabatic limit but fails because of lack of intensity and/or short duration. We derive a very simple algorithm to do this and apply it to both toy and realistic models. Two results emerge from this study. While the mathematical existence of the programme is certain it might not always be physically desirable. The restoration of adiabaticity is phase sensitive. The second question that is answered in this thesis is not how to invent new control paradigms, but rather what would happen to them in the presence of stochastic perturbers. We first use a phenomenological model to study the effect of stochastic dephasing on population transfer by stimulated Raman adiabatic passage. The results of this Monte Carlo calculation are qualitatively explained with a perturbation theoretical result in the dressed state basis. The reliability of our phenomenological model is questioned through a more rigorous hybrid quantal-classical simulation of controlled population transfer in HCl in Ar.

  12. Entanglement and adiabatic quantum computation

    NASA Astrophysics Data System (ADS)

    Ahrensmeier, D.

    2006-06-01

    Adiabatic quantum computation provides an alternative approach to quantum computation using a time-dependent Hamiltonian. The time evolution of entanglement during the adiabatic quantum search algorithm is studied, and its relevance as a resource is discussed.

  13. Production-passage-time approximation: a new approximation method to accelerate the simulation process of enzymatic reactions.

    PubMed

    Kuwahara, Hiroyuki; Myers, Chris J

    2008-09-01

    Given the substantial computational requirements of stochastic simulation, approximation is essential for efficient analysis of any realistic biochemical system. This paper introduces a new approximation method to reduce the computational cost of stochastic simulations of an enzymatic reaction scheme which in biochemical systems often includes rapidly changing fast reactions with enzyme and enzyme-substrate complex molecules present in very small counts. Our new method removes the substrate dissociation reaction by approximating the passage time of the formation of each enzyme-substrate complex molecule which is destined to a production reaction. This approach skips the firings of unimportant yet expensive reaction events, resulting in a substantial acceleration in the stochastic simulations of enzymatic reactions. Additionally, since all the parameters used in our new approach can be derived by the Michaelis-Menten parameters which can actually be measured from experimental data, applications of this approximation can be practical even without having full knowledge of the underlying enzymatic reaction. Here, we apply this new method to various enzymatic reaction systems, resulting in a speedup of orders of magnitude in temporal behavior analysis without any significant loss in accuracy. Furthermore, we show that our new method can perform better than some of the best existing approximation methods for enzymatic reactions in terms of accuracy and efficiency. PMID:18662102

  14. A Symmetrical Quasi-Classical Spin-Mapping Model for the Electronic Degrees of Freedom in Non-Adiabatic Processes.

    PubMed

    Cotton, Stephen J; Miller, William H

    2015-12-17

    A recent series of papers has shown that a symmetrical quasi-classical (SQC) windowing procedure applied to the Meyer-Miller (MM) classical vibronic Hamiltonian provides a very good treatment of electronically nonadiabatic processes in a variety of benchmark model systems, including systems that exhibit strong quantum coherence effects and some which other approximate approaches have difficulty in describing correctly. In this paper, a different classical electronic Hamiltonian for the treatment of electronically nonadiabatic processes is proposed (and "quantized" via the SQC windowing approach), which maps the dynamics of F coupled electronic states to a set of F spin-(1)/2 degrees of freedom (DOF), similar to the Fermionic spin model described by Miller and White (J. Chem. Phys. 1986, 84, 5059). It is noted that this spin-mapping (SM) Hamiltonian is an exact Hamiltonian if treated as a quantum mechanical (QM) operator-and thus QM'ly equivalent to the MM Hamiltonian-but that an analytically distinct classical analogue is obtained by replacing the QM spin-operators with their classical counterparts. Due to their analytic differences, a practical comparison is then made between the MM and SM Hamiltonians (when quantized with the SQC technique) by applying the latter to many of the same benchmark test problems successfully treated in our recent work with the SQC/MM model. We find that for every benchmark problem the MM model provides (slightly) better agreement with the correct quantum nonadiabatic transition probabilities than does the new SM model. This is despite the fact that one might expect, a priori, a more natural description of electronic state populations (occupied versus unoccupied) to be provided by DOF with only two states, i.e., spin-(1)/2 DOF, rather than by harmonic oscillator DOF which have an infinite manifold of states (though only two of these are ever occupied). PMID:26299361

  15. Bounce-averaged approach to radial diffusion modeling: From a new derivation of the instantaneous rate of change of the third adiabatic invariant to the characterization of the radial diffusion process

    NASA Astrophysics Data System (ADS)

    Lejosne, SolèNe; Boscher, Daniel; Maget, Vincent; Rolland, Guy

    2012-08-01

    In this paper, a new approach for the derivation of the instantaneous rate of change of the third adiabatic invariant is introduced. It is based on the tracking of the bounce-averaged motion of guiding centers with assumptions that are only kept to the necessary conditions for definition and conservation of the first two adiabatic invariants. The derivation is first given in the case of trapped equatorial particles drifting in a time varying magnetic field in the absence of electrostatic potential. It is then extended to more general cases including time varying electric potentials and non-equatorial particles. Finally, the general formulation of the third adiabatic invariant time derivative is related to the description of the radial diffusion process occurring in the radiation belts. It highlights the links that exist between previous theoretical works with the objective of a better understanding of the radial diffusion process. A theoretical validation in the specific case of equatorial particles drifting in a magnetic field model whose disturbed part is limited to the first terms of a spherical expansion is also presented.

  16. Implementation speed of deterministic population passages compared to that of Rabi pulses

    NASA Astrophysics Data System (ADS)

    Chen, Jingwei; Wei, L. F.

    2015-02-01

    Fast Rabi π -pulse technique has been widely applied to various coherent quantum manipulations, although it requires precise designs of the pulse areas. Relaxing the precise pulse designs, various rapid adiabatic passage (RAP) approaches have been alternatively utilized to implement various population passages deterministically. However, the usual RAP protocol could not be implemented desirably fast, as the relevant adiabatic condition should be robustly satisfied during the passage. Here, we propose a modified shortcut to adiabaticity (STA) technique to accelerate significantly the desired deterministic quantum state population passages. This transitionless technique is beyond the usual rotating wave approximation (RWA) performed in the recent STA protocols, and thus can be applied to deliver various fast quantum evolutions wherein the relevant counter-rotating effects cannot be neglected. The proposal is demonstrated specifically with the driven two- and three-level systems. Numerical results show that with the present STA technique beyond the RWA the usual Stark-chirped RAPs and stimulated Raman adiabatic passages could be significantly speeded up; the deterministic population passages could be implemented as fast as the widely used fast Rabi π pulses, but are insensitive to the applied pulse areas.

  17. Adiabatic Halo Formation

    SciTech Connect

    Bazzani, A.; Turchetti, G.; Benedetti, C.; Rambaldi, S.; Servizi, G.

    2005-06-08

    In a high intensity circular accelerator the synchrotron dynamics introduces a slow modulation in the betatronic tune due to the space-charge tune depression. When the transverse motion is non-linear due to the presence of multipolar effects, resonance islands move in the phase space and change their amplitude. This effect introduces the trapping and detrapping phenomenon and a slow diffusion in the phase space. We apply the neo-adiabatic theory to describe this diffusion mechanism that can contribute to halo formation.

  18. Adiabatic two-photon quantum gate operations using a long-range photonic bus

    NASA Astrophysics Data System (ADS)

    Hope, Anthony P.; Nguyen, Thach G.; Mitchell, Arnan; Greentree, Andrew D.

    2015-03-01

    Adiabatic techniques have much potential to realize practical and robust optical waveguide devices. Traditionally, photonic elements are limited to coupling schemes that rely on proximity to nearest neighbour elements. We combine adiabatic passage with a continuum based long-range optical bus to break free from such topological restraints and thereby outline a new approach to photonic quantum gate design. We explicitly show designs for adiabatic quantum gates that produce a Hadamard, 50:50 and 1/3:2/3 beam splitter, and non-deterministic controlled NOT gate based on planar thin, shallow ridge waveguides. Our calculations are performed under conditions of one and two-photon inputs.

  19. Fully efficient adiabatic frequency conversion of broadband Ti:sapphire oscillator pulses.

    PubMed

    Moses, Jeffrey; Suchowski, Haim; Kärtner, Franz X

    2012-05-01

    By adiabatic difference-frequency generation in an aperiodically poled nonlinear crystal-a nonlinear optical analog of rapid adiabatic passage in a two-level atomic system-we demonstrate the conversion of a 110 nm band from an octave-spanning Ti:sapphire oscillator to the infrared, spanning 1550 to 2450 nm, with near-100% internal conversion efficiency. The experiment proves the principle of complete Landau-Zener adiabatic transfer in nonlinear optical wave mixing. Our implementation is a practical approach to the seeding of high-energy ultrabroadband optical parametric chirped pulse amplifiers. PMID:22555747

  20. Isolation and Adaptation in Passage Memory.

    ERIC Educational Resources Information Center

    Hertel, Paula T.

    1985-01-01

    Examines the phenomena of isolation and adaptation in the context of two recognition experiments investigating retroactive interference. Results suggest a framework for predicting errors and accuracies in passage memory based on integrative processing. (DF)

  1. An integrated programming and development environment for adiabatic quantum optimization

    NASA Astrophysics Data System (ADS)

    Humble, T. S.; McCaskey, A. J.; Bennink, R. S.; Billings, J. J.; DʼAzevedo, E. F.; Sullivan, B. D.; Klymko, C. F.; Seddiqi, H.

    2014-01-01

    Adiabatic quantum computing is a promising route to the computational power afforded by quantum information processing. The recent availability of adiabatic hardware has raised challenging questions about how to evaluate adiabatic quantum optimization (AQO) programs. Processor behavior depends on multiple steps to synthesize an adiabatic quantum program, which are each highly tunable. We present an integrated programming and development environment for AQO called Jade Adiabatic Development Environment (JADE) that provides control over all the steps taken during program synthesis. JADE captures the workflow needed to rigorously specify the AQO algorithm while allowing a variety of problem types, programming techniques, and processor configurations. We have also integrated JADE with a quantum simulation engine that enables program profiling using numerical calculation. The computational engine supports plug-ins for simulation methodologies tailored to various metrics and computing resources. We present the design, integration, and deployment of JADE and discuss its potential use for benchmarking AQO programs by the quantum computer science community.

  2. An Integrated Development Environment for Adiabatic Quantum Programming

    SciTech Connect

    Humble, Travis S; McCaskey, Alex; Bennink, Ryan S; Billings, Jay Jay; D'Azevedo, Eduardo; Sullivan, Blair D; Klymko, Christine F; Seddiqi, Hadayat

    2014-01-01

    Adiabatic quantum computing is a promising route to the computational power afforded by quantum information processing. The recent availability of adiabatic hardware raises the question of how well quantum programs perform. Benchmarking behavior is challenging since the multiple steps to synthesize an adiabatic quantum program are highly tunable. We present an adiabatic quantum programming environment called JADE that provides control over all the steps taken during program development. JADE captures the workflow needed to rigorously benchmark performance while also allowing a variety of problem types, programming techniques, and processor configurations. We have also integrated JADE with a quantum simulation engine that enables program profiling using numerical calculation. The computational engine supports plug-ins for simulation methodologies tailored to various metrics and computing resources. We present the design, integration, and deployment of JADE and discuss its use for benchmarking adiabatic quantum programs.

  3. Adiabatic circuits: converter for static CMOS signals

    NASA Astrophysics Data System (ADS)

    Fischer, J.; Amirante, E.; Bargagli-Stoffi, A.; Schmitt-Landsiedel, D.

    2003-05-01

    Ultra low power applications can take great advantages from adiabatic circuitry. In this technique a multiphase system is used which consists ideally of trapezoidal voltage signals. The input signals to be processed will often come from a function block realized in static CMOS. The static rectangular signals must be converted for the oscillating multiphase system of the adiabatic circuitry. This work shows how to convert the input signals to the proposed pulse form which is synchronized to the appropriate supply voltage. By means of adder structures designed for a 0.13µm technology in a 4-phase system there will be demonstrated, which additional circuits are necessary for the conversion. It must be taken into account whether the data arrive in parallel or serial form. Parallel data are all in one phase and therefore it is advantageous to use an adder structure with a proper input stage, e.g. a Carry Lookahead Adder (CLA). With a serial input stage it is possible to read and to process four signals during one cycle due to the adiabatic 4-phase system. Therefore input signals with a frequency four times higher than the adiabatic clock frequency can be used. This reduces the disadvantage of the slow clock period typical for adiabatic circuits. By means of an 8 bit Ripple Carry Adder (8 bit RCA) the serial reading will be introduced. If the word width is larger than 4 bits the word can be divided in 4 bit words which are processed in parallel. This is the most efficient way to minimize the number of input lines and pads. At the same time a high throughput is achieved.

  4. Adiabatic burst evaporation from bicontinuous nanoporous membranes

    PubMed Central

    Ichilmann, Sachar; Rücker, Kerstin; Haase, Markus; Enke, Dirk

    2015-01-01

    Evaporation of volatile liquids from nanoporous media with bicontinuous morphology and pore diameters of a few 10 nm is an ubiquitous process. For example, such drying processes occur during syntheses of nanoporous materials by sol–gel chemistry or by spinodal decomposition in the presence of solvents as well as during solution impregnation of nanoporous hosts with functional guests. It is commonly assumed that drying is endothermic and driven by non-equilibrium partial pressures of the evaporating species in the gas phase. We show that nearly half of the liquid evaporates in an adiabatic mode involving burst-like liquid-to-gas conversions. During single adiabatic burst evaporation events liquid volumes of up to 107 μm3 are converted to gas. The adiabatic liquid-to-gas conversions occur if air invasion fronts get unstable because of the built-up of high capillary pressures. Adiabatic evaporation bursts propagate avalanche-like through the nanopore systems until the air invasion fronts have reached new stable configurations. Adiabatic cavitation bursts thus compete with Haines jumps involving air invasion front relaxation by local liquid flow without enhanced mass transport out of the nanoporous medium and prevail if the mean pore diameter is in the range of a few 10 nm. The results reported here may help optimize membrane preparation via solvent-based approaches, solution-loading of nanopore systems with guest materials as well as routine use of nanoporous membranes with bicontinuous morphology and may contribute to better understanding of adsorption/desorption processes in nanoporous media. PMID:25926406

  5. Geometry of the Adiabatic Theorem

    ERIC Educational Resources Information Center

    Lobo, Augusto Cesar; Ribeiro, Rafael Antunes; Ribeiro, Clyffe de Assis; Dieguez, Pedro Ruas

    2012-01-01

    We present a simple and pedagogical derivation of the quantum adiabatic theorem for two-level systems (a single qubit) based on geometrical structures of quantum mechanics developed by Anandan and Aharonov, among others. We have chosen to use only the minimum geometric structure needed for the understanding of the adiabatic theorem for this case.…

  6. First passage time distribution in heterogeneity controlled kinetics: going beyond the mean first passage time

    PubMed Central

    Godec, Aljaž; Metzler, Ralf

    2016-01-01

    The first passage is a generic concept for quantifying when a random quantity such as the position of a diffusing molecule or the value of a stock crosses a preset threshold (target) for the first time. The last decade saw an enlightening series of new results focusing mostly on the so-called mean and global first passage time (MFPT and GFPT, respectively) of such processes. Here we push the understanding of first passage processes one step further. For a simple heterogeneous system we derive rigorously the complete distribution of first passage times (FPTs). Our results demonstrate that the typical FPT significantly differs from the MFPT, which corresponds to the long time behaviour of the FPT distribution. Conversely, the short time behaviour is shown to correspond to trajectories connecting directly from the initial value to the target. Remarkably, we reveal a previously overlooked third characteristic time scale of the first passage dynamics mirroring brief excursion away from the target. PMID:26852802

  7. Adjunctive Therapy to Promote Stone Passage

    PubMed Central

    Nuss, Geoffrey R; Rackley, Judson D; Assimos, Dean G

    2005-01-01

    The majority of individuals with nephrolithiasis have small ureteral stones that pass spontaneously. However, patients may experience severe pain during this process, which significantly alters their quality of life and may limit their vocational responsibilities. Therefore, measures to facilitate stone passage are uniformly embraced. We discuss methods to enhance spontaneous stone passage as well as the elimination of fragments generated with extracorporeal shock-wave lithotripsy. PMID:16985812

  8. The Symmetrical Quasi-Classical Model for Electronically Non-Adiabatic Processes Applied to Energy Transfer Dynamics in Site-Exciton Models of Light-Harvesting Complexes.

    PubMed

    Cotton, Stephen J; Miller, William H

    2016-03-01

    In a recent series of papers, it has been illustrated that a symmetrical quasi-classical (SQC) windowing model applied to the Meyer-Miller (MM) classical vibronic Hamiltonian provides an excellent description of a variety of electronically non-adiabatic benchmark model systems for which exact quantum results are available for comparison. In this paper, the SQC/MM approach is used to treat energy transfer dynamics in site-exciton models of light-harvesting complexes, and in particular, the well-known 7-state Fenna-Mathews-Olson (FMO) complex. Again, numerically "exact" results are available for comparison, here via the hierarchical equation of motion (HEOM) approach of Ishizaki and Fleming, and it is seen that the simple SQC/MM approach provides very reasonable agreement with the previous HEOM results. It is noted, however, that unlike most (if not all) simple approaches for treating these systems, because the SQC/MM approach presents a fully atomistic simulation based on classical trajectory simulation, it places no restrictions on the characteristics of the thermal baths coupled to each two-level site, e.g., bath spectral densities (SD) of any analytic functional form may be employed as well as discrete SD determined experimentally or from MD simulation (nor is there any restriction that the baths be harmonic), opening up the possibility of simulating more realistic variations on the basic site-exciton framework for describing the non-adiabatic dynamics of photosynthetic pigment complexes. PMID:26761191

  9. The Effects of Non-adiabatic Processes on Near-Earth Plasma Sheet Electrons for Different Substorm-Related Magnetotail Conditions

    NASA Astrophysics Data System (ADS)

    Liang, H.; Ashour-Abdalla, M.; Richard, R. L.; Schriver, D.; El-Alaoui, M.; Walker, R. J.

    2013-12-01

    We investigate the spatial evolution of energetic electron distribution functions in the near-Earth plasma sheet associated with earthward propagating dipolarization fronts by using in situ observations as well as magnetohydrodynamic (MHD) and large scale kinetic (LSK) simulations. We have investigated two substorms, one on February 15, 2008 and the other on August 15, 2001. The February 15 event was observed by one of the THEMIS spacecraft at X_{GSM} -10RE, while the August 15 event was observed by Cluster at X -18RE. Both the MHD and LSK simulation results are compared to these spacecraft observations. Earthward propagating dipolarization fronts are found in both the observations and the MHD simulations, which exhibit very different magnetotail configurations, with contrasting flows, magnetic reconnection configuration, and plasma sheet structure. Electron LSK simulations were performed by using the time-varying magnetic and electric fields from the global MHD simulations. For the February 15, 2008 event, the electrons were launched near X = -20 RE with a thermal energy of 1 keV and for August 15, 2001 event, they were launched at 4 keV near X = -22 RE. These electrons undergo both non-adiabatic acceleration near the magnetotail reconnection region and adiabatic acceleration as they propagate earthward from the launch region. We compute the electron distribution functions parallel and perpendicular to the magnetic field at different locations between X = -18 RE and X = -10 RE in the plasma sheet. We find that for the February 15, 2008 event, reconnection is localized with a narrow region of high-speed flows ( 300 km/s). For this event the distribution functions show mainly f(v_perp) > f(v_par) ("par" and "perp" correspond to parallel and perpendicular to magnetic field). On August 15, 2001, there is a neutral line extending across the tail with relatively low-speed flows ( 100 km/s). For this event the distribution functions show mainly f(v_par) > f(v_perp). The

  10. Non adiabatic time-dependent processes of the monoatomic fragmentation in C20, C60, C70 and C110 fullerenes

    NASA Astrophysics Data System (ADS)

    Joyes, P.; Tarento, R. J.; Van de Walle, J.

    1997-06-01

    The non-adiabatic time-dependent reaction of valence electrons in media submitted to a violent perturbation has important consequences in monoatomic fragmentation. We study these effects for various fullerenes: C20, C60, C70 and C110. The ionization probability P(K) of a monoatomic fragment with kinetic K energy is investigated for C20, C60, C70 and C110. Our results show that there is no important variation of P(K) with size but, for a given size, P(K) may depend on the initial position of the ejected atom. We give the variation with time of the population on the ejected atom and on various substrate levels. We also study the electronic currents appearing during the phenomenon.

  11. Heteronuclear Adiabatic Relaxation Dispersion (HARD) for quantitative analysis of conformational dynamics in proteins

    NASA Astrophysics Data System (ADS)

    Traaseth, Nathaniel J.; Chao, Fa-An; Masterson, Larry R.; Mangia, Silvia; Garwood, Michael; Michaeli, Shalom; Seelig, Burckhard; Veglia, Gianluigi

    2012-06-01

    NMR relaxation methods probe biomolecular motions over a wide range of timescales. In particular, the rotating frame spin-lock R1ρ and Carr-Purcell-Meiboom-Gill (CPMG) R2 experiments are commonly used to characterize μs to ms dynamics, which play a critical role in enzyme folding and catalysis. In an effort to complement these approaches, we introduced the Heteronuclear Adiabatic Relaxation Dispersion (HARD) method, where dispersion in rotating frame relaxation rate constants (longitudinal R1ρ and transverse R2ρ) is created by modulating the shape and duration of adiabatic full passage (AFP) pulses. Previously, we showed the ability of the HARD method to detect chemical exchange dynamics in the fast exchange regime (kex ˜ 104-105 s-1). In this article, we show the sensitivity of the HARD method to slower exchange processes by measuring R1ρ and R2ρ relaxation rates for two soluble proteins (ubiquitin and 10C RNA ligase). One advantage of the HARD method is its nominal dependence on the applied radio frequency field, which can be leveraged to modulate the dispersion in the relaxation rate constants. In addition, we also include product operator simulations to define the dynamic range of adiabatic R1ρ and R2ρ that is valid under all exchange regimes. We conclude from both experimental observations and simulations that this method is complementary to CPMG-based and rotating frame spin-lock R1ρ experiments to probe conformational exchange dynamics for biomolecules. Finally, this approach is germane to several NMR-active nuclei, where relaxation rates are frequency-offset independent.

  12. Effects of Written and Auditory Language-Processing Skills on Written Passage Comprehension in Middle and High School Students

    ERIC Educational Resources Information Center

    Caplan, David; Waters, Gloria; Bertram, Julia; Ostrowski, Adam; Michaud, Jennifer

    2016-01-01

    The authors assessed 4,865 middle and high school students for the ability to recognize and understand written and spoken morphologically simple words, morphologically complex words, and the syntactic structure of sentences and for the ability to answer questions about facts presented in a written passage and to make inferences based on those…

  13. Shortcuts to adiabaticity from linear response theory.

    PubMed

    Acconcia, Thiago V; Bonança, Marcus V S; Deffner, Sebastian

    2015-10-01

    A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. With the help of phenomenological response functions, a simple expression for the excess work is found-quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. Finally, we propose a degenerate family of protocols, which facilitates shortcuts to adiabaticity for specific and very short driving times. PMID:26565209

  14. Shortcuts to adiabaticity from linear response theory

    NASA Astrophysics Data System (ADS)

    Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian

    2015-10-01

    A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. With the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. Finally, we propose a degenerate family of protocols, which facilitates shortcuts to adiabaticity for specific and very short driving times.

  15. Shortcuts to adiabaticity from linear response theory

    SciTech Connect

    Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian

    2015-10-23

    A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. Moreover, with the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. We finally propose a degenerate family of protocols, which facilitates shortcuts to adiabaticity for specific and very short driving times.

  16. Shortcuts to adiabaticity from linear response theory

    DOE PAGESBeta

    Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian

    2015-10-23

    A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. Moreover, with the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. We finally propose a degenerate family of protocols, which facilitates shortcuts tomore » adiabaticity for specific and very short driving times.« less

  17. Adiabatic state preparation study of methylene

    SciTech Connect

    Veis, Libor Pittner, Jiří

    2014-06-07

    Quantum computers attract much attention as they promise to outperform their classical counterparts in solving certain type of problems. One of them with practical applications in quantum chemistry is simulation of complex quantum systems. An essential ingredient of efficient quantum simulation algorithms are initial guesses of the exact wave functions with high enough fidelity. As was proposed in Aspuru-Guzik et al. [Science 309, 1704 (2005)], the exact ground states can in principle be prepared by the adiabatic state preparation method. Here, we apply this approach to preparation of the lowest lying multireference singlet electronic state of methylene and numerically investigate preparation of this state at different molecular geometries. We then propose modifications that lead to speeding up the preparation process. Finally, we decompose the minimal adiabatic state preparation employing the direct mapping in terms of two-qubit interactions.

  18. Quantum Monte Carlo simulations of tunneling in quantum adiabatic optimization

    NASA Astrophysics Data System (ADS)

    Brady, Lucas T.; van Dam, Wim

    2016-03-01

    We explore to what extent path-integral quantum Monte Carlo methods can efficiently simulate quantum adiabatic optimization algorithms during a quantum tunneling process. Specifically we look at symmetric cost functions defined over n bits with a single potential barrier that a successful quantum adiabatic optimization algorithm will have to tunnel through. The height and width of this barrier depend on n , and by tuning these dependencies, we can make the optimization algorithm succeed or fail in polynomial time. In this article we compare the strength of quantum adiabatic tunneling with that of path-integral quantum Monte Carlo methods. We find numerical evidence that quantum Monte Carlo algorithms will succeed in the same regimes where quantum adiabatic optimization succeeds.

  19. Adiabatic evolution of plasma equilibrium

    PubMed Central

    Grad, H.; Hu, P. N.; Stevens, D. C.

    1975-01-01

    A new theory of plasma equilibrium is introduced in which adiabatic constraints are specified. This leads to a mathematically nonstandard structure, as compared to the usual equilibrium theory, in which prescription of pressure and current profiles leads to an elliptic partial differential equation. Topologically complex configurations require further generalization of the concept of adiabaticity to allow irreversible mixing of plasma and magnetic flux among islands. Matching conditions across a boundary layer at the separatrix are obtained from appropriate conservation laws. Applications are made to configurations with planned islands (as in Doublet) and accidental islands (as in Tokamaks). Two-dimensional, axially symmetric, helically symmetric, and closed line equilibria are included. PMID:16578729

  20. Pressure Oscillations in Adiabatic Compression

    ERIC Educational Resources Information Center

    Stout, Roland

    2011-01-01

    After finding Moloney and McGarvey's modified adiabatic compression apparatus, I decided to insert this experiment into my physical chemistry laboratory at the last minute, replacing a problematic experiment. With insufficient time to build the apparatus, we placed a bottle between two thick textbooks and compressed it with a third textbook forced…

  1. Adiabatic dynamics of magnetic vortices

    NASA Astrophysics Data System (ADS)

    Papanicolaou, N.

    1994-03-01

    We formulate a reasonably detailed adiabatic conjecture concerning the dynamics of skew deflection of magnetic vortices in a field gradient, which is expected to be valid at sufficiently large values of the winding number. The conjecture is consistent with the golden rule used to describe the dynamics of realistic magnetic bubbles and is verified here numerically within the 2-D isotropic Heisenberg model.

  2. Transitionless driving on adiabatic search algorithm

    SciTech Connect

    Oh, Sangchul; Kais, Sabre

    2014-12-14

    We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.

  3. Transitionless driving on adiabatic search algorithm

    NASA Astrophysics Data System (ADS)

    Oh, Sangchul; Kais, Sabre

    2014-12-01

    We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.

  4. Transitionless driving on adiabatic search algorithm.

    PubMed

    Oh, Sangchul; Kais, Sabre

    2014-12-14

    We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics. PMID:25494733

  5. Deep boundary current disintegration in Drake Passage

    NASA Astrophysics Data System (ADS)

    Brearley, J. Alexander; Sheen, Katy L.; Naveira Garabato, Alberto C.; Smeed, David A.; Speer, Kevin G.; Thurnherr, Andreas M.; Meredith, Michael P.; Waterman, Stephanie

    2014-01-01

    The fate of a deep boundary current that originates in the Southeast Pacific and flows southward along the continental slope of South America is elucidated. The current transports poorly ventilated water of low salinity (a type of Pacific Deep Water, PDW), into Drake Passage. East of Drake Passage, the boundary current breaks into fresh anticyclonic eddies, nine examples of which were observed in mooring data from December 2009 to March 2012. The observed eddies appear to originate mainly from a topographic separation point close to 60°W, have typical diameters of 20-60 km and accompanying Rossby numbers of 0.1-0.3. These features are likely to be responsible for transporting PDW meridionally across the Antarctic Circumpolar Current, explaining the near homogenization of Circumpolar Deep Water properties downstream of Drake Passage. This mechanism of boundary current breakdown may constitute an important process in the Southern Ocean overturning circulation.

  6. Adiabatic Rosen-Zener interferometry with ultracold atoms

    SciTech Connect

    Fu Libin; Ye Defa; Lee Chaohong; Zhang Weiping; Liu Jie

    2009-07-15

    We propose a time-domain 'interferometer' based on double-well ultracold atoms through a so-called adiabatic Rosen-Zener process, that is, the barrier between two wells is ramped down slowly, held for a while, and then ramped back. After the adiabatic Rosen-Zener process, we count the particle population in each well. We find that the final occupation probability shows nice interference fringes. The fringe pattern is sensitive to the initial state as well as the intrinsic parameters of the system such as interatomic interaction or energy bias between two wells. The underlying mechanism is revealed and possible applications are discussed.

  7. Extension in Mona Passage, Northeast Caribbean

    USGS Publications Warehouse

    Chaytor, J.D.; ten Brink, U.S.

    2010-01-01

    As shown by the recent Mw 7.0 Haiti earthquake, intra-arc deformation, which accompanies the subduction process, can present seismic and tsunami hazards to nearby islands. Spatially-limited diffuse tectonic deformation within the Northeast Caribbean Plate Boundary Zone likely led to the development of the submerged Mona Passage between Puerto Rico and the Dominican Republic. GPS geodetic data and a moderate to high level of seismicity indicate that extension within the region is ongoing. Newly-collected high-resolution multibeam bathymetry and multi-channel seismic reflection profiles and previously-collected samples are used here to determine the tectonic evolution of the Mona Passage intra-arc region. The passage is floored almost completely by Oligocene-Pliocene carbonate platform strata, which have undergone submarine and subaerial erosion. Structurally, the passage is characterized by W- to NNW-trending normal faults that offset the entire thickness of the Oligo-Pliocene carbonate platform rocks. The orientation of these faults is compatible with the NE-oriented extension vector observed in GPS data. Fault geometry best fits an oblique extension model rather than previously proposed single-phase, poly-phase, bending-moment, or rotation extension models. The intersection of these generally NW-trending faults in Mona Passage with the N-S oriented faults of Mona Canyon may reflect differing responses of the brittle upper-crust, along an arc-forearc rheological boundary, to oblique subduction along the Puerto Rico trench. Several faults within the passage, if ruptured completely, are long enough to generate earthquakes with magnitudes on the order of Mw 6.5-7. ?? 2010.

  8. Bond selective chemistry beyond the adiabatic approximation

    SciTech Connect

    Butler, L.J.

    1993-12-01

    One of the most important challenges in chemistry is to develop predictive ability for the branching between energetically allowed chemical reaction pathways. Such predictive capability, coupled with a fundamental understanding of the important molecular interactions, is essential to the development and utilization of new fuels and the design of efficient combustion processes. Existing transition state and exact quantum theories successfully predict the branching between available product channels for systems in which each reaction coordinate can be adequately described by different paths along a single adiabatic potential energy surface. In particular, unimolecular dissociation following thermal, infrared multiphoton, or overtone excitation in the ground state yields a branching between energetically allowed product channels which can be successfully predicted by the application of statistical theories, i.e. the weakest bond breaks. (The predictions are particularly good for competing reactions in which when there is no saddle point along the reaction coordinates, as in simple bond fission reactions.) The predicted lack of bond selectivity results from the assumption of rapid internal vibrational energy redistribution and the implicit use of a single adiabatic Born-Oppenheimer potential energy surface for the reaction. However, the adiabatic approximation is not valid for the reaction of a wide variety of energetic materials and organic fuels; coupling between the electronic states of the reacting species play a a key role in determining the selectivity of the chemical reactions induced. The work described below investigated the central role played by coupling between electronic states in polyatomic molecules in determining the selective branching between energetically allowed fragmentation pathways in two key systems.

  9. Non Adiabatic Evolution of Elliptical Galaxies by Dynamical Friction

    NASA Astrophysics Data System (ADS)

    Arena, S. E.; Bertin, G.; Liseikina, T.; Pegoraro, F.

    2007-05-01

    Many astrophysical problems, ranging from structure formation in cosmology to dynamics of elliptical galaxies, refer to slow processes of evolution of essentially collisionless self-gravitating systems. In order to determine the relevant quasi-equilibrium configuration at time t from given initial conditions, it is often argued that such slow evolution may be approximated in terms of adiabatic evolution, for the calculation of which efficient semi--analytical techniques are available. Here we focus on the slow process of evolution, induced by dynamical friction of a host stellar system on a minority component of "satellites", to determine to what extent an adiabatic description might be applied. The study is realized by means of N--body simulations of the evolution of the total system (the stellar system plus the minority component), in a controlled numerical environment. In particular, we compare the evolution from initial to final configurations of the system subject to dynamical friction with that of the same system evolved adiabatically (in the absence of dynamical friction). We consider two classes of galaxy models characterized by significantly different density and pressure anisotropy profiles. We demonstrate that, for the examined process, the evolution driven by dynamical friction is significantly different from the adiabatic case, not only quantitatively, but also qualitatively. The two classes of galaxy models considered in this investigation exhibit generally similar trends in evolution, with one exception: concentrated models reach a final total density profile, in the internal region, shallower than the initial one, while galaxy models with a broad core show the opposite behaviour. The evolution of elliptical galaxies induced by dynamical friction is a slow process but it is not adiabatic. The results of our investigation should be taken as a warning against the indiscriminate use of adiabatic growth prescriptions in studies of the structure of

  10. Adiabaticity in open quantum systems

    NASA Astrophysics Data System (ADS)

    Venuti, Lorenzo Campos; Albash, Tameem; Lidar, Daniel A.; Zanardi, Paolo

    2016-03-01

    We provide a rigorous generalization of the quantum adiabatic theorem for open systems described by a Markovian master equation with time-dependent Liouvillian L (t ) . We focus on the finite system case relevant for adiabatic quantum computing and quantum annealing. Adiabaticity is defined in terms of closeness to the instantaneous steady state. While the general result is conceptually similar to the closed-system case, there are important differences. Namely, a system initialized in the zero-eigenvalue eigenspace of L (t ) will remain in this eigenspace with a deviation that is inversely proportional to the total evolution time T . In the case of a finite number of level crossings, the scaling becomes T-η with an exponent η that we relate to the rate of the gap closing. For master equations that describe relaxation to thermal equilibrium, we show that the evolution time T should be long compared to the corresponding minimum inverse gap squared of L (t ) . Our results are illustrated with several examples.

  11. Frequency offset dependence of adiabatic rotating frame relaxation rate constants: relevance to MRS investigations of metabolite dynamics in vivo.

    PubMed

    Mangia, Silvia; Liimatainen, Timo; Garwood, Michael; Tkac, Ivan; Henry, Pierre-Gilles; Deelchand, Dinesh; Michaeli, Shalom

    2011-08-01

    In this work, we investigated the frequency-offset dependence of the rotating frame longitudinal (R(1ρ)) and transverse (R(2ρ)) relaxation rate constants when using hyperbolic-secant adiabatic full passage pulses or continuous-wave spin-lock irradiation. Phantom and in vivo measurements were performed to validate theoretical predictions of the dominant relaxation mechanisms existing during adiabatic full passage pulses when using different settings of the frequency offset relative to the carrier. In addition, adiabatic R(1ρ) and R(2ρ) values of total creatine and N-acetylaspartate were measured in vivo from the human brain at 4 T. When the continuous-wave pulse power was limited to safe specific absorption rates for humans, simulations revealed a strong dependence of R(1ρ) and R(2ρ) values on the frequency offset for both dipolar interactions and anisochronous exchange mechanisms. By contrast, theoretical and experimental results showed adiabatic R(1ρ) and R(2ρ) values to be practically invariant within the large subregion of the bandwidth of the hyperbolic-secant pulse where complete inversion was achieved. However, adiabatic R(1ρ) and R(2ρ) values of the methyl protons of total creatine (at 3.03 ppm) were almost doubled when compared with those of the methyl protons of N-acetylaspartate (at 2.01 ppm) in spite of the fact that these resonances were in the flat region of the inversion band of the adiabatic full passage pulses. We conclude that differences in adiabatic R(1ρ) and R(2ρ) values of human brain metabolites are not a result of their chemical shifts, but instead reflect differences in dynamics. PMID:21264976

  12. Frequency offset dependence of adiabatic rotating frame relaxation rate constants: relevance to MRS investigations of metabolite dynamics in vivo

    PubMed Central

    Mangia, Silvia; Liimatainen, Timo; Garwood, Michael; Tkac, Ivan; Henry, Pierre-Gilles; Deelchand, Dinesh; Michaeli, Shalom

    2011-01-01

    In this work, we investigated the frequency-offset dependence of the rotating frame longitudinal (R1ρ) and transverse (R2ρ) relaxation rate constants when using hyperbolic-secant adiabatic full passage pulses or continuous-wave spin-lock irradiation. Phantom and in vivo measurements were performed to validate theoretical predictions of the dominant relaxation mechanisms existing during adiabatic full passage pulses when using different settings of the frequency offset relative to the carrier. In addition, adiabatic R1ρ and R2ρ values of total creatine and N-acetylaspartate were measured in vivo from the human brain at 4 T. When the continuous-wave pulse power was limited to safe specific absorption rates for humans, simulations revealed a strong dependence of R1ρ and R2ρ values on the frequency offset for both dipolar interactions and anisochronous exchange mechanisms. By contrast, theoretical and experimental results showed adiabatic R1ρ and R2ρ values to be practically invariant within the large subregion of the bandwidth of the hyperbolic-secant pulse where complete inversion was achieved. However, adiabatic R1ρ and R2ρ values of the methyl protons of total creatine (at 3.03 ppm) were almost doubled when compared with those of the methyl protons of N-acetylaspartate (at 2.01 ppm) in spite of the fact that these resonances were in the flat region of the inversion band of the adiabatic full passage pulses. We conclude that differences in adiabatic R1ρ and R2ρ values of human brain metabolites are not a result of their chemical shifts, but instead reflect differences in dynamics. PMID:21264976

  13. Invalidity of the quantitative adiabatic condition and general conditions for adiabatic approximations

    NASA Astrophysics Data System (ADS)

    Li, Dafa

    2016-05-01

    The adiabatic theorem was proposed about 90 years ago and has played an important role in quantum physics. The quantitative adiabatic condition constructed from eigenstates and eigenvalues of a Hamiltonian is a traditional tool to estimate adiabaticity and has proven to be the necessary and sufficient condition for adiabaticity. However, recently the condition has become a controversial subject. In this paper, we list some expressions to estimate the validity of the adiabatic approximation. We show that the quantitative adiabatic condition is invalid for the adiabatic approximation via the Euclidean distance between the adiabatic state and the evolution state. Furthermore, we deduce general necessary and sufficient conditions for the validity of the adiabatic approximation by different definitions.

  14. Shortcuts to adiabaticity in a time-dependent box

    PubMed Central

    Campo, A. del; Boshier, M. G.

    2012-01-01

    A method is proposed to drive an ultrafast non-adiabatic dynamics of an ultracold gas trapped in a time-dependent box potential. The resulting state is free from spurious excitations associated with the breakdown of adiabaticity, and preserves the quantum correlations of the initial state up to a scaling factor. The process relies on the existence of an adiabatic invariant and the inversion of the dynamical self-similar scaling law dictated by it. Its physical implementation generally requires the use of an auxiliary expulsive potential. The method is extended to a broad family of interacting many-body systems. As illustrative examples we consider the ultrafast expansion of a Tonks-Girardeau gas and of Bose-Einstein condensates in different dimensions, where the method exhibits an excellent robustness against different regimes of interactions and the features of an experimentally realizable box potential. PMID:22970340

  15. Classical nuclear motion coupled to electronic non-adiabatic transitions

    NASA Astrophysics Data System (ADS)

    Agostini, Federica; Abedi, Ali; Gross, E. K. U.

    2014-12-01

    Based on the exact factorization of the electron-nuclear wave function, we have recently proposed a mixed quantum-classical scheme [A. Abedi, F. Agostini, and E. K. U. Gross, Europhys. Lett. 106, 33001 (2014)] to deal with non-adiabatic processes. Here we present a comprehensive description of the formalism, including the full derivation of the equations of motion. Numerical results are presented for a model system for non-adiabatic charge transfer in order to test the performance of the method and to validate the underlying approximations.

  16. Classical nuclear motion coupled to electronic non-adiabatic transitions

    SciTech Connect

    Agostini, Federica; Abedi, Ali; Gross, E. K. U.

    2014-12-07

    Based on the exact factorization of the electron-nuclear wave function, we have recently proposed a mixed quantum-classical scheme [A. Abedi, F. Agostini, and E. K. U. Gross, Europhys. Lett. 106, 33001 (2014)] to deal with non-adiabatic processes. Here we present a comprehensive description of the formalism, including the full derivation of the equations of motion. Numerical results are presented for a model system for non-adiabatic charge transfer in order to test the performance of the method and to validate the underlying approximations.

  17. Adiabatic Mass Loss Model in Binary Stars

    NASA Astrophysics Data System (ADS)

    Ge, H. W.

    2012-07-01

    Rapid mass transfer process in the interacting binary systems is very complicated. It relates to two basic problems in the binary star evolution, i.e., the dynamically unstable Roche-lobe overflow and the common envelope evolution. Both of the problems are very important and difficult to be modeled. In this PhD thesis, we focus on the rapid mass loss process of the donor in interacting binary systems. The application to the criterion of dynamically unstable mass transfer and the common envelope evolution are also included. Our results based on the adiabatic mass loss model could be used to improve the binary evolution theory, the binary population synthetic method, and other related aspects. We build up the adiabatic mass loss model. In this model, two approximations are included. The first one is that the energy generation and heat flow through the stellar interior can be neglected, hence the restructuring is adiabatic. The second one is that he stellar interior remains in hydrostatic equilibrium. We model this response by constructing model sequences, beginning with a donor star filling its Roche lobe at an arbitrary point in its evolution, holding its specific entropy and composition profiles fixed. These approximations are validated by the comparison with the time-dependent binary mass transfer calculations and the polytropic model for low mass zero-age main-sequence stars. In the dynamical time scale mass transfer, the adiabatic response of the donor star drives it to expand beyond its Roche lobe, leading to runaway mass transfer and the formation of a common envelope with its companion star. For donor stars with surface convection zones of any significant depth, this runaway condition is encountered early in mass transfer, if at all; but for main sequence stars with radiative envelopes, it may be encountered after a prolonged phase of thermal time scale mass transfer, so-called delayed dynamical instability. We identify the critical binary mass ratio for the

  18. Electrical-Discharge Machining Of Perpendicular Passages

    NASA Technical Reports Server (NTRS)

    Malinzak, R. Michael; Booth, Gary N.

    1996-01-01

    Perpendicular telescoping electrode used to perform electrical-discharge machining (EDM) of internal passage through previously inaccessible depth of metal workpiece. More specifically, used to make internal passage perpendicular to passage entering from outer surface.

  19. A Kinetic Study of the Adiabatic Polymerization of Acrylamide.

    ERIC Educational Resources Information Center

    Thomson, R. A. M.

    1986-01-01

    Discusses theory, procedures, and results for an experiment which demonstrates the application of basic physics to chemical problems. The experiment involves the adiabatic process, in which polymerization carried out in a vacuum flask is compared to the theoretical prediction of the model with the temperature-time curve obtained in practice. (JN)

  20. Fast Quasi-Adiabatic Gas Cooling: An Experiment Revisited

    ERIC Educational Resources Information Center

    Oss, S.; Gratton, L. M.; Calza, G.; Lopez-Arias, T.

    2012-01-01

    The well-known experiment of the rapid expansion and cooling of the air contained in a bottle is performed with a rapidly responsive, yet very cheap thermometer. The adiabatic, low temperature limit is approached quite closely and measured with our apparatus. A straightforward theoretical model for this process is also presented and discussed.…

  1. When an Adiabatic Irreversible Expansion or Compression Becomes Reversible

    ERIC Educational Resources Information Center

    Anacleto, Joaquim; Ferreira, J. M.; Soares, A. A.

    2009-01-01

    This paper aims to contribute to a better understanding of the concepts of a "reversible process" and "entropy". For this purpose, an adiabatic irreversible expansion or compression is analysed, by considering that an ideal gas is expanded (compressed), from an initial pressure P[subscript i] to a final pressure P[subscript f], by being placed in…

  2. Sliding seal materials for adiabatic engines

    NASA Technical Reports Server (NTRS)

    Lankford, J.

    1985-01-01

    The sliding friction coefficients and wear rates of promising carbide, oxide, and nitride materials were measured under temperature, environmental, velocity, loading conditions that are representative of the adiabatic engine environment. In order to provide guidance needed to improve materials for this application, the program stressed fundamental understanding of the mechanisms involved in friction and wear. Microhardness tests were performed on the candidate materials at elevated temperatures, and in atmospheres relevant to the piston seal application, and optical and electron microscopy were used to elucidate the micromechanisms of wear following wear testing. X-ray spectroscopy was used to evaluate interface/environment interactions which seemed to be important in the friction and wear process. Electrical effects in the friction and wear processes were explored in order to evaluate the potential usefulness of such effects in modifying the friction and wear rates in service. However, this factor was found to be of negligible significance in controlling friction and wear.

  3. Toxicology of the nasal passages

    SciTech Connect

    Barrow, C.S.

    1986-01-01

    Contents of this work include: Comparative Anatomy and Function of the Nasal Passages; Light Microscopic Examination of the Rat Nasal Passages: Preparation and Morphologic Features; Histopathology of Acute and Subacute Nasal Toxicity; Pathology of Chronic Nasal Toxic Responses Including Cancer; Responses of the Nasal Mucociliary Apparatus to Airborne Irritants; Effects of Chemical Exposure on Olfaction in Humans, Possible Consequences of Cytochrome P-450-Dependent Monooxygenases in Nasal Tissues.

  4. Adiabatic Wankel type rotary engine

    NASA Technical Reports Server (NTRS)

    Kamo, R.; Badgley, P.; Doup, D.

    1988-01-01

    This SBIR Phase program accomplished the objective of advancing the technology of the Wankel type rotary engine for aircraft applications through the use of adiabatic engine technology. Based on the results of this program, technology is in place to provide a rotor and side and intermediate housings with thermal barrier coatings. A detailed cycle analysis of the NASA 1007R Direct Injection Stratified Charge (DISC) rotary engine was performed which concluded that applying thermal barrier coatings to the rotor should be successful and that it was unlikely that the rotor housing could be successfully run with thermal barrier coatings as the thermal stresses were extensive.

  5. Quantum and classical non-adiabatic dynamics of Li_{2}^{+}Ne photodissociation

    NASA Astrophysics Data System (ADS)

    Pouilly, Brigitte; Monnerville, Maurice; Zanuttini, David; Gervais, Benoît

    2015-01-01

    The 3D photodissociation dynamics of Li2+Ne system is investigated by quantum calculations using the multi-configuration time-dependent Hartree (MCTDH) method and by classical simulations with the trajectory surface hopping (TSH) approach. Six electronic states of A’ symmetry and two states of A” symmetry are involved in the process. Couplings in the excitation region and two conical intersections in the vicinity of the Franck-Condon zone control the non-adiabatic nuclear dynamics. A diabatic representation including all the states and the couplings is determined. Diabatic and adiabatic populations calculated for initial excitation to pure diabatic and adiabatic states lead to a clear understanding of the mechanisms governing the non-adiabatic photodissociation process. The classical and quantum photodissociation cross-sections for absorption in two adiabatic states of the A’ symmetry are calculated. A remarkable agreement between quantum and classical results is obtained regarding the populations and the absorption cross-sections.

  6. Symmetry-protected adiabatic quantum transistors

    NASA Astrophysics Data System (ADS)

    Williamson, Dominic J.; Bartlett, Stephen D.

    2015-05-01

    Adiabatic quantum transistors (AQT) allow quantum logic gates to be performed by applying a large field to a quantum many-body system prepared in its ground state, without the need for local control. The basic operation of such a device can be viewed as driving a spin chain from a symmetry-protected (SP) phase to a trivial phase. This perspective offers an avenue to generalize the AQT and to design several improvements. The performance of quantum logic gates is shown to depend only on universal symmetry properties of a SP phase rather than any fine tuning of the Hamiltonian, and it is possible to implement a universal set of logic gates in this way by combining several different types of SP matter. Such SP AQTs are argued to be robust to a range of relevant noise processes.

  7. Does temperature increase or decrease in adiabatic decompression of magma?

    NASA Astrophysics Data System (ADS)

    Kilinc, A. I.; Ghiorso, M. S.; Khan, T.

    2011-12-01

    We have modeled adiabatic decompression of an andesitic and a basaltic magma as an isentropic process using the Melts algorithm. Our modeling shows that during adiabatic decompression temperature of andesitic magma increases but temperature of basaltic magma decreases. In an isentropic process entropy is constant so change of temperature with pressure can be written as dT/dP=T (dV/dT)/Cp where T (dV/dT)/Cp is generally positive. If delta P is negative so is delta T. In general, in the absence of phase change, we expect the temperature to decrease with adiabatic decompression. The effect of crystallization is to turn a more entropic phase (liquid) into a less entropic phase (solid), which must be compensated by raising the temperature. If during adiabatic decompression there is small amount or no crystallization, T (dV/dT)/Cp effect which lowers the temperature overwhelms the small amount of crystallization, which raises the temperature, and overall system temperature decreases.

  8. Development of new atomic scale defect identification schemes in micro / nanoelectronics incorporating digital signal processing methods for investigating zero/low field spin dependent transport and passage effects in electrically detected magnetic resonance

    NASA Astrophysics Data System (ADS)

    Cochrane, Corey J.

    This work focuses on the development of new techniques for the study of spin dependent transport and trapping centers in fully processed micro and nanoelectronics. The first, and most interesting, technique offers a very low cost means to study spin dependent transport in microelectronics as an alternative to electrically detected magnetic resonance (EDMR). EDMR measurements generally require strong static magnetic fields, typically 3 kG or greater, and high frequency oscillating electromagnetic fields, typically 9 GHz or higher. In this work, it is demonstrated that large spin dependent recombination and tunneling signals can be detected in the absence of the oscillating electromagnetic field at zero magnetic field. The physics behind this technique is based upon the mixing of singlet and triplet energy states of the electron spin pairs involved in the spin dependent processes. In this study, we show that this technique can be applied to Si and SiC based devices. Theoretically, it can be applicable to devices of all material systems in which defects play a role in spin dependent transport, some of which include CdTe and GaN. Although the resolution of the g value is sacrificed in this new measurement, the technique can detect electron-nuclear hyperfine interactions and possibly dipolar and exchange interactions. The technique also has great promise in microelectronic device reliability studies as it is directly applicable to time dependent dielectric breakdown in thin film dielectrics and bias temperature instabilities in transistors. Other applications of this new physics include self-calibrating magnetometers, spin based memories, quantum computation, and miniature EDMR spectrometers for wafer probing stations. The second technique involves the utilization of passage effects that arise when performing magnetic field modulation in EDMR. When certain conditions are met, the higher order harmonics of the spin dependent signal can contain much useful information

  9. Degenerate adiabatic perturbation theory: Foundations and applications

    NASA Astrophysics Data System (ADS)

    Rigolin, Gustavo; Ortiz, Gerardo

    2014-08-01

    We present details and expand on the framework leading to the recently introduced degenerate adiabatic perturbation theory [Phys. Rev. Lett. 104, 170406 (2010), 10.1103/PhysRevLett.104.170406], and on the formulation of the degenerate adiabatic theorem, along with its necessary and sufficient conditions [given in Phys. Rev. A 85, 062111 (2012), 10.1103/PhysRevA.85.062111]. We start with the adiabatic approximation for degenerate Hamiltonians that paves the way to a clear and rigorous statement of the associated degenerate adiabatic theorem, where the non-Abelian geometric phase (Wilczek-Zee phase) plays a central role to its quantitative formulation. We then describe the degenerate adiabatic perturbation theory, whose zeroth-order term is the degenerate adiabatic approximation, in its full generality. The parameter in the perturbative power-series expansion of the time-dependent wave function is directly associated to the inverse of the time it takes to drive the system from its initial to its final state. With the aid of the degenerate adiabatic perturbation theory we obtain rigorous necessary and sufficient conditions for the validity of the adiabatic theorem of quantum mechanics. Finally, to illustrate the power and wide scope of the methodology, we apply the framework to a degenerate Hamiltonian, whose closed-form time-dependent wave function is derived exactly, and also to other nonexactly solvable Hamiltonians whose solutions are numerically computed.

  10. Adiabatic passage mediated by plasmons: A route towards a decoherence-free quantum plasmonic platform

    NASA Astrophysics Data System (ADS)

    Rousseaux, B.; Dzsotjan, D.; Colas des Francs, G.; Jauslin, H. R.; Couteau, C.; Guérin, S.

    2016-01-01

    We show that the interaction of surface plasmons with quantum emitters can be described by an effective model that has the same structure as a lossy multimode cavity quantum electromagnetic interaction. This allows the coherent manipulation of quantum emitters dressed by surface plasmons at the nanoscale. We show that strong coupling in quantum plasmonics can be used to mediate efficiently the interaction between emitters via a decoherence-free channel, immune to the strong plasmon dissipation. Efficient and robust population transfer, as well as the deterministic generation of entanglement between emitters are numerically shown. These results pave the way for an efficient use of the quantum plasmonic platform beyond its inherent losses.

  11. Two-species Coherent Transport Adiabatic passage and Quantum Gate implementation in an Optical Superlattice

    NASA Astrophysics Data System (ADS)

    Das, Kunal; Gajdacz, Miroslav; Opatrny, Tomas

    2011-05-01

    In an optical super-lattice of triple wells, containing two mutually interacting atom species in every cell, we show that one species (A) can be transported from the left well to the right well without ever significantly occupying the central well. This occurs simultaneously in every unit cell in the lattice. We demonstrate that this can be achieved with or without the presence of an atom of the second species (B) in the intermediate well of each cell, thereby allowing species-selective transport that avoids spatial overlap and direct interaction among the two species. Furthermore, by using optimal quantum control, we also demonstrate the lattice-wide parallel implementation of CNOT quantum gates in this configuration by using the presence or absence of an atom B in the central well of each cell as a control bit, and the localization of an atom A in the left well or the right well as the target bit. Supported by a NSF grant PHY-0970012 for Kunal Das, and a Czech Science Foundation grant P205/10/1657 for Tomas Opatrny.

  12. Rapid Adiabatic Passage in a Rb gas with intense Frequency Chirped Laser Light

    NASA Astrophysics Data System (ADS)

    Kaufman, Brian; Grogan, Tanner; Paltoo, Tracy; Wright, Matthew

    We will discuss our progress toward using intense frequency chirped laser light to control the excitation of atoms in a room-temperature gas cell. We illuminate 87Rb atoms with a 1 GHz in 8 ns frequency chirped pulse of laser light covering the 5S1/2 F =1 --> 5P3/2 and explore the saturation behavior as intensity increases. We estimate that we are exciting over 90% of the atoms over 1 mm2.

  13. Shortcut to adiabatic gate teleportation

    NASA Astrophysics Data System (ADS)

    Santos, Alan C.; Silva, Raphael D.; Sarandy, Marcelo S.

    2016-01-01

    We introduce a shortcut to the adiabatic gate teleportation model of quantum computation. More specifically, we determine fast local counterdiabatic Hamiltonians able to implement teleportation as a universal computational primitive. In this scenario, we provide the counterdiabatic driving for arbitrary n -qubit gates, which allows to achieve universality through a variety of gate sets. Remarkably, our approach maps the superadiabatic Hamiltonian HSA for an arbitrary n -qubit gate teleportation into the implementation of a rotated superadiabatic dynamics of an n -qubit state teleportation. This result is rather general, with the speed of the evolution only dictated by the quantum speed limit. In particular, we analyze the energetic cost for different Hamiltonian interpolations in the context of the energy-time complementarity.

  14. Quantum gates with controlled adiabatic evolutions

    NASA Astrophysics Data System (ADS)

    Hen, Itay

    2015-02-01

    We introduce a class of quantum adiabatic evolutions that we claim may be interpreted as the equivalents of the unitary gates of the quantum gate model. We argue that these gates form a universal set and may therefore be used as building blocks in the construction of arbitrary "adiabatic circuits," analogously to the manner in which gates are used in the circuit model. One implication of the above construction is that arbitrary classical boolean circuits as well as gate model circuits may be directly translated to adiabatic algorithms with no additional resources or complexities. We show that while these adiabatic algorithms fail to exhibit certain aspects of the inherent fault tolerance of traditional quantum adiabatic algorithms, they may have certain other experimental advantages acting as quantum gates.

  15. On a Nonlinear Model in Adiabatic Evolutions

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Lu, Song-Feng

    2016-08-01

    In this paper, we study a kind of nonlinear model of adiabatic evolution in quantum search problem. As will be seen here, for this problem, there always exists a possibility that this nonlinear model can successfully solve the problem, while the linear model can not. Also in the same setting, when the overlap between the initial state and the final stare is sufficiently large, a simple linear adiabatic evolution can achieve O(1) time efficiency, but infinite time complexity for the nonlinear model of adiabatic evolution is needed. This tells us, it is not always a wise choice to use nonlinear interpolations in adiabatic algorithms. Sometimes, simple linear adiabatic evolutions may be sufficient for using. Supported by the National Natural Science Foundation of China under Grant Nos. 61402188 and 61173050. The first author also gratefully acknowledges the support from the China Postdoctoral Science Foundation under Grant No. 2014M552041

  16. PNNL Tests Fish Passage System

    SciTech Connect

    Colotelo, Alison

    2015-03-13

    Scientists from PNNL are testing a fish transportation system developed by Whooshh Innovations. The Whooshh system uses a flexible tube that works a bit like a vacuum, guiding fish over hydroelectric dams or other structures. Compared to methods used today, this system could save money while granting fish quicker, safer passage through dams and hatcheries.

  17. The passage from Rio.

    PubMed

    Strong, M F

    1992-01-01

    The Secretary-General of the UN Conference on Environment and Development notes that after the Earth Summit in Rio de Janeiro discussions about the environment and development will differ from those prior to the Summit. These discussions must now incorporate problems of developing countries, poverty, inequalities, flow of resources to developing countries, and terms of trade. The Rio Declaration on Environment and Development consists of important tenets, but it must evolve into an Earth Charter to be endorsed on the 50th anniversary of the UN in 1965. The Summit's Plan of Action, Agenda 21, must also continue to evolve and, despite its shortcomings, is the most extensive and, if implemented, most effective international action ever approved by the international community. Financing the Agenda 21 initiatives remains to be decided. New possible sources of funding must be based n the polluter pays principle and may include new taxes, user charges, emission permits, and citizen funding. Even though the most serious problem in the 1990s is stabilization of atmospheric gases, the Rio agreement does not include targets or timetables. Governments must take united action immediately to reduce carbon dioxide emissions by at least 60%. 1 nation has not yet approved the convention on biological diversity. Governments also need to move forward on conventions on decertification and deforestation. They need to incorporate the global objectives of Agenda 21 into their own national policies and practices. This must also be done at the global, regional, organizational, local, and individual levels. The global community must also begin technology capacity building. The participatory process should also include nongovernmental organizations. Population growth must also slow dramatically to achieve sustainable development. The various participatory levels must consider elimination of poverty. PMID:12343938

  18. Jumps of adiabatic invariant at the separatrix of a degenerate saddle point.

    PubMed

    Artemyev, A V; Neishtadt, A I; Zelenyi, L M

    2011-12-01

    We consider a slow-fast Hamiltonian system with two degrees of freedom. One degree of freedom corresponds to slow variables, and the other one corresponds to fast variables. A characteristic ratio of the rates of change of slow and fast variables is a small parameter κ. For every fixed value of the slow variables, in the phase portrait of the fast variables there are a saddle point and separatrices passing through it. When the slow variables change, phase points may cross the separatrices. The action variable of the fast motion is an adiabatic invariant of the full system as long as a trajectory is far from the separatrices: value of the adiabatic invariant is conserved with an accuracy of order of κ on time intervals of order of 1/κ. A passage through a narrow neighborhood of the separatrices results in a jump of the adiabatic invariant. We consider a case when the saddle point is degenerate. We derive an asymptotic formula for the jump of the adiabatic invariant which turns out to be a value of order of κ(3/4) (in the case of a non-degenarate saddle point a similar jump is known to be a value of order of κ). Accumulation of these jumps after many consecutive separatrix crossings leads to the "diffusion" of the adiabatic invariant and chaotic dynamics. We verify the analytical expression for the jump of the adiabatic invariant by numerical simulations. We discuss application of the obtained results to the description of charged particle dynamics in the Earth magnetosphere. PMID:22225357

  19. Unintended consequences and trade-offs of fish passage

    USGS Publications Warehouse

    8. McLaughlin, Robert L.; Smyth, Eric R.; Castro-Santos, Theodore; Jones, Michael L.; Koops, Marten A.; Pratt, Thomas C.; Vélez-Espino, Luis-Antonio

    2012-01-01

    We synthesized evidence for unintended consequences and trade-offs associated with the passage of fishes. Provisioning of fish passageways at dams and dam removals are being carried out increasingly as resource managers seek ways to reduce fragmentation of migratory fish populations and restore biodiversity and nature-like ecosystem services in tributaries altered by dams. The benefits of provisioning upstream passage are highlighted widely. Possible unwanted consequences and trade-offs of upstream passage are coming to light, but remain poorly examined and underappreciated. Unintended consequences arise when passage of native and desirable introduced fishes is delayed, undone (fallback), results in patterns of movement and habitat use that reduce Darwinian fitness (e.g. ecological traps), or is highly selective taxonomically and numerically. Trade-offs arise when passage decisions intended to benefit native species interfere with management decisions intended to control the unwanted spread of non-native fishes and aquatic invertebrates, or genes, diseases and contaminants carried by hatchery and wild fishes. These consequences and trade-offs will vary in importance from system to system and can result in large economic and environmental costs. For some river systems, decisions about how to manage fish passage involve substantial risks and could benefit from use of a formal, structured process that allows transparent, objective and, where possible, quantitative evaluation of these risks. Such a process can also facilitate the design of an adaptive framework that provides valuable insights into future decisions.

  20. Multisurface Adiabatic Reactive Molecular Dynamics.

    PubMed

    Nagy, Tibor; Yosa Reyes, Juvenal; Meuwly, Markus

    2014-04-01

    Adiabatic reactive molecular dynamics (ARMD) simulation method is a surface-crossing algorithm for modeling chemical reactions in classical molecular dynamics simulations using empirical force fields. As the ARMD Hamiltonian is time dependent during crossing, it allows only approximate energy conservation. In the current work, the range of applicability of conventional ARMD is explored, and a new multisurface ARMD (MS-ARMD) method is presented, implemented in CHARMM and applied to the vibrationally induced photodissociation of sulfuric acid (H2SO4) in the gas phase. For this, an accurate global potential energy surface (PES) involving 12 H2SO4 and 4 H2O + SO3 force fields fitted to MP2/6-311G++(2d,2p) reference energies is employed. The MS-ARMD simulations conserve total energy and feature both intramolecular H-transfer reactions and water elimination. An analytical treatment of the dynamics in the crossing region finds that conventional ARMD can approximately conserve total energy for limiting cases. In one of them, the reduced mass of the system is large, which often occurs for simulations of solvated biomolecular systems. On the other hand, MS-ARMD is a general approach for modeling chemical reactions including gas-phase, homogeneous, heterogeneous, and enzymatic catalytic reactions while conserving total energy in atomistic simulations. PMID:26580356

  1. Breakdown of adiabatic transfer of light in waveguides in the presence of absorption

    NASA Astrophysics Data System (ADS)

    Graefe, Eva-Maria; Mailybaev, Alexei A.; Moiseyev, Nimrod

    2013-09-01

    In atomic physics, adiabatic evolution is often used to achieve a robust and efficient population transfer. Many adiabatic schemes have also been implemented in optical waveguide structures. Recently there has been increasing interest in the influence of decay and absorption, and their engineering applications. Here it is shown that even a small decay can significantly influence the dynamical behavior of a system, above and beyond a mere change of the overall norm. In particular, a small decay can lead to a breakdown of adiabatic transfer schemes, even when both the spectrum and the eigenfunctions are only sightly modified. This is demonstrated for the generalization of a stimulated Raman adiabatic passage scheme that has recently been implemented in optical waveguide structures. Here the question how an additional absorption in either the initial or the target waveguide influences the transfer property of the scheme is addressed. It is found that the scheme breaks down for small values of the absorption at a relatively sharp threshold, which can be estimated by simple analytical arguments.

  2. Complete Cycle Experiments Using the Adiabatic Gas Law Apparatus

    NASA Astrophysics Data System (ADS)

    Kutzner, Mickey D.; Plantak, Mateja

    2014-10-01

    The ability of our society to make informed energy-usage decisions in the future depends partly on current science and engineering students retaining a deep understanding of the thermodynamics of heat engines. Teacher imaginations and equipment budgets can both be taxed in the effort to engage students in hands-on heat engine activities. The experiments described in this paper, carried out using the Adiabatic Gas Law Apparatus1 (AGLA), quantitatively explore popular complete cycle heat engine processes.

  3. Adiabatic limits on Riemannian Heisenberg manifolds

    SciTech Connect

    Yakovlev, A A

    2008-02-28

    An asymptotic formula is obtained for the distribution function of the spectrum of the Laplace operator, in the adiabatic limit for the foliation defined by the orbits of an invariant flow on a compact Riemannian Heisenberg manifold. Bibliography: 21 titles.

  4. General conditions for quantum adiabatic evolution

    SciTech Connect

    Comparat, Daniel

    2009-07-15

    Adiabaticity occurs when, during its evolution, a physical system remains in the instantaneous eigenstate of the Hamiltonian. Unfortunately, existing results, such as the quantum adiabatic theorem based on a slow down evolution [H({epsilon}t),{epsilon}{yields}0], are insufficient to describe an evolution driven by the Hamiltonian H(t) itself. Here we derive general criteria and exact bounds, for the state and its phase, ensuring an adiabatic evolution for any Hamiltonian H(t). As a corollary, we demonstrate that the commonly used condition of a slow Hamiltonian variation rate, compared to the spectral gap, is indeed sufficient to ensure adiabaticity but only when the Hamiltonian is real and nonoscillating (for instance, containing exponential or polynomial but no sinusoidal functions)

  5. Adiabatic invariance of oscillons/I -balls

    NASA Astrophysics Data System (ADS)

    Kawasaki, Masahiro; Takahashi, Fuminobu; Takeda, Naoyuki

    2015-11-01

    Real scalar fields are known to fragment into spatially localized and long-lived solitons called oscillons or I -balls. We prove the adiabatic invariance of the oscillons/I -balls for a potential that allows periodic motion even in the presence of non-negligible spatial gradient energy. We show that such a potential is uniquely determined to be the quadratic one with a logarithmic correction, for which the oscillons/I -balls are absolutely stable. For slightly different forms of the scalar potential dominated by the quadratic one, the oscillons/I -balls are only quasistable, because the adiabatic charge is only approximately conserved. We check the conservation of the adiabatic charge of the I -balls in numerical simulation by slowly varying the coefficient of logarithmic corrections. This unambiguously shows that the longevity of oscillons/I -balls is due to the adiabatic invariance.

  6. The dimer state of GyrB is an active form: implications for the initial complex assembly and processive strand passage

    PubMed Central

    Wu, Jinjun; Zhang, Zhiping; Mitchenall, Lesley A.; Maxwell, Anthony; Deng, Jiaoyu; Zhang, Hongtai; Zhou, Ying; Chen, Yuan-yuan; Wang, Da-Cheng; Zhang, Xian-En; Bi, Lijun

    2011-01-01

    In a previous study, we presented the dimer structure of DNA gyrase B′ domain (GyrB C-terminal domain) from Mycobacterium tuberculosis and proposed a ‘sluice-like’ model for T-segment transport. However, the role of the dimer structure is still not well understood. Cross-linking and analytical ultracentrifugation experiments showed that the dimer structure exists both in the B′ protein and in the full-length GyrB in solution. The cross-linked dimer of GyrB bound GyrA very weakly, but bound dsDNA with a much higher affinity than that of the monomer state. Using cross-linking and far-western analyses, the dimer state of GyrB was found to be involved in the ternary GyrA–GyrB–DNA complex. The results of mutational studies reveal that the dimer structure represents a state before DNA cleavage. Additionally, these results suggest that the dimer might also be present between the cleavage and reunion steps during processive transport. PMID:21745817

  7. Vortex-generating coolant-flow-passage design for increased film-cooling effectiveness and surface coverage

    NASA Technical Reports Server (NTRS)

    Papell, S. S.

    1984-01-01

    The thermal film-cooling footprints observed by infrared imagery for three coolant-passage configurations embedded in adiabatic-test plates are discussed. The configurations included a standard round-hole cross section and two orientations of a vortex-generating flow passage. Both orientations showed up to factors of four increases in both film-cooling effectiveness and surface coverage over that obtained with the round coolant passage. The crossflow data covered a range of tunnel velocities from 15.5 to 45 m/sec with blowing rates from 0.20 to 2.05. A photographic streakline flow visualization technique supported the concept of the counterrotating apability of the flow passage design and gave visual credence to its role in inhibiting flow separation.

  8. 24 CFR 3280.108 - Interior passage.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... passage. (a) Interior doors having passage hardware without a privacy lock, or with a privacy lock not engaged, shall open from either side by a single movement of the hardware mechanism in any direction....

  9. 24 CFR 3280.108 - Interior passage.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... passage. (a) Interior doors having passage hardware without a privacy lock, or with a privacy lock not engaged, shall open from either side by a single movement of the hardware mechanism in any direction....

  10. 24 CFR 3280.108 - Interior passage.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... passage. (a) Interior doors having passage hardware without a privacy lock, or with a privacy lock not engaged, shall open from either side by a single movement of the hardware mechanism in any direction....

  11. 24 CFR 3280.108 - Interior passage.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... passage. (a) Interior doors having passage hardware without a privacy lock, or with a privacy lock not engaged, shall open from either side by a single movement of the hardware mechanism in any direction....

  12. 24 CFR 3280.108 - Interior passage.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... passage. (a) Interior doors having passage hardware without a privacy lock, or with a privacy lock not engaged, shall open from either side by a single movement of the hardware mechanism in any direction....

  13. Symmetry of the Adiabatic Condition in the Piston Problem

    ERIC Educational Resources Information Center

    Anacleto, Joaquim; Ferreira, J. M.

    2011-01-01

    This study addresses a controversial issue in the adiabatic piston problem, namely that of the piston being adiabatic when it is fixed but no longer so when it can move freely. It is shown that this apparent contradiction arises from the usual definition of adiabatic condition. The issue is addressed here by requiring the adiabatic condition to be…

  14. Hot Wax Sweeps Debris From Narrow Passages

    NASA Technical Reports Server (NTRS)

    Ricklefs, Steven K.

    1990-01-01

    Safe and effective technique for removal of debris and contaminants from narrow passages involves entrainment of undesired material in thermoplastic casting material. Semisolid wax slightly below melting temperature pushed along passage by pressurized nitrogen to remove debris. Devised to clean out fuel passages in main combustion chamber of Space Shuttle main engine. Also applied to narrow, intricate passages in internal-combustion-engine blocks, carburetors, injection molds, and other complicated parts.

  15. 76 FR 34692 - Inside Passage Electric Cooperative

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-14

    ... Energy Regulatory Commission Inside Passage Electric Cooperative Notice of Preliminary Permit Application..., 2011, and supplemented on May 18, 2011, the Inside Passage Electric Cooperative filed an application.... Applicant Contact: Mr. Peter A. Bibb, Operations Manager, Inside Passage Electric Cooperative, P.O....

  16. Microscopic expression for heat in the adiabatic basis.

    PubMed

    Polkovnikov, Anatoli

    2008-11-28

    We derive a microscopic expression for the instantaneous diagonal elements of the density matrix rho(nn)(t) in the adiabatic basis for an arbitrary time-dependent process in a closed Hamiltonian system. If the initial density matrix is stationary (diagonal) then this expression contains only squares of absolute values of matrix elements of the evolution operator, which can be interpreted as transition probabilities. We then derive the microscopic expression for the heat defined as the energy generated due to transitions between instantaneous energy levels. If the initial density matrix is passive [diagonal with rho(nn)(0) monotonically decreasing with energy] then the heat is non-negative in agreement with basic expectations of thermodynamics. Our findings also can be used for systematic expansion of various observables around the adiabatic limit. PMID:19113464

  17. Fastest Effectively Adiabatic Transitions for a Collection of Harmonic Oscillators.

    PubMed

    Boldt, Frank; Salamon, Peter; Hoffmann, Karl Heinz

    2016-05-19

    We discuss fastest effectively adiabatic transitions (FEATs) for a collection of noninteracting harmonic oscillators with shared controllable real frequencies. The construction of such transitions is presented for given initial and final equilibrium states, and the dependence of the minimum time control on the interval of achievable frequencies is discussed. While the FEAT times and associated FEAT processes are important in their own right as optimal controls, the FEAT time is an added feature which provides a measure of the quality of a shortcut to adiabaticity (STA). The FEAT time is evaluated for a previously reported experiment, wherein a cloud of Rb atoms is cooled following a STA recipe that took about twice as long as the FEAT speed limit, a time efficiency of 50%. PMID:26811863

  18. Adiabatic tapered optical fiber fabrication in two step etching

    NASA Astrophysics Data System (ADS)

    Chenari, Z.; Latifi, H.; Ghamari, S.; Hashemi, R. S.; Doroodmand, F.

    2016-01-01

    A two-step etching method using HF acid and Buffered HF is proposed to fabricate adiabatic biconical optical fiber tapers. Due to the fact that the etching rate in second step is almost 3 times slower than the previous droplet etching method, terminating the fabrication process is controllable enough to achieve a desirable fiber diameter. By monitoring transmitted spectrum, final diameter and adiabaticity of tapers are deduced. Tapers with losses about 0.3 dB in air and 4.2 dB in water are produced. The biconical fiber taper fabricated using this method is used to excite whispering gallery modes (WGMs) on a microsphere surface in an aquatic environment. So that they are suitable to be used in applications like WGM biosensors.

  19. The adiabatic motion of charged dust grains in rotating magnetospheres

    NASA Astrophysics Data System (ADS)

    Northrop, T. G.; Hill, J. R.

    1983-01-01

    Adiabatic equations of motion are derived for the micrometer-sized dust grains detected in the Jovian and Saturn magnetospheres by the Pioneer 10 and 11 spacecraft. The adiabatic theory of charged particle motion is extended to the case of variable grain charge. Attention is focused on the innermost and outermost limits to the grain orbit evolution, with all orbits tending to become circular with time. The parameters such as the center equation of motion, the drift velocity, and the parallel equation of motion are obtained for grains in a rotating magnetosphere. Consideration is given to the effects of periodic grain charge-discharge, which are affected by the ambient plasma properties and the grain plasma velocity. The charge-discharge process at the gyrofrequency is determined to eliminate the invariance of the magnetic moment and cause the grain to exhibit radial movement. The magnetic moment increases or decreases as a function of the gyrophase of the charge variation.

  20. Adiabatic creation of atomic squeezing in dark states versus decoherences

    SciTech Connect

    Gong, Z. R.; Sun, C. P.; Wang Xiaoguang

    2010-07-15

    We study the multipartite correlations of the multiatom dark states, which are characterized by the atomic squeezing beyond the pairwise entanglement. It is shown that, in the photon storage process with atomic ensemble via the electromagnetically induced transparency (EIT) mechanism, the atomic squeezing and the pairwise entanglement can be created by adiabatically manipulating the Rabi frequency of the classical light field on the atomic ensemble. We also consider the sudden death for the atomic squeezing and the pairwise entanglement under various decoherence channels. An optimal time for generating the greatest atomic squeezing and pairwise entanglement is obtained by studying in detail the competition between the adiabatic creation of quantum correlation in the atomic ensemble and the decoherence that we describe with three typical decoherence channels.

  1. Automated passage control for security, cost efficiency, and convenience

    SciTech Connect

    Smart, D.C.

    1990-01-01

    The purpose of this paper is to describe new methods of passage control through automatic computer processes and electromechanical identity and surveillance devices. It is now possible for a person to be identified with objective certainty by computer without interaction of a guard or duty officer. In addition, the presence of just one person is also confirmed automatically BEFORE passage is allowed into a secured area. There can be no tailgating of intruders during a valid, authorized entry process. The advantage to the facility using this new equipment is improved security through elimination of the subjective decision process of guards who may be right on or who may be off that day. The objective decisions of the automated passage control computers determine a positive identity and passage authority, or else interdicts the passage attempt. There can be no indecision, argument, or waffling about authorization to enter. Each person's Logical Presence is known at all times, and a permanent audit trail is maintained. There is an almost immediate return on investment through the furloughing of expensive guards and inspectors at entry points.

  2. Graph isomorphism and adiabatic quantum computing

    NASA Astrophysics Data System (ADS)

    Gaitan, Frank; Clark, Lane

    2014-02-01

    In the graph isomorphism (GI) problem two N-vertex graphs G and G' are given and the task is to determine whether there exists a permutation of the vertices of G that preserves adjacency and transforms G →G'. If yes, then G and G' are said to be isomorphic; otherwise they are nonisomorphic. The GI problem is an important problem in computer science and is thought to be of comparable difficulty to integer factorization. In this paper we present a quantum algorithm that solves arbitrary instances of GI and which also provides an approach to determining all automorphisms of a given graph. We show how the GI problem can be converted to a combinatorial optimization problem that can be solved using adiabatic quantum evolution. We numerically simulate the algorithm's quantum dynamics and show that it correctly (i) distinguishes nonisomorphic graphs; (ii) recognizes isomorphic graphs and determines the permutation(s) that connect them; and (iii) finds the automorphism group of a given graph G. We then discuss the GI quantum algorithm's experimental implementation, and close by showing how it can be leveraged to give a quantum algorithm that solves arbitrary instances of the NP-complete subgraph isomorphism problem. The computational complexity of an adiabatic quantum algorithm is largely determined by the minimum energy gap Δ (N) separating the ground and first-excited states in the limit of large problem size N ≫1. Calculating Δ (N) in this limit is a fundamental open problem in adiabatic quantum computing, and so it is not possible to determine the computational complexity of adiabatic quantum algorithms in general, nor consequently, of the specific adiabatic quantum algorithms presented here. Adiabatic quantum computing has been shown to be equivalent to the circuit model of quantum computing, and so development of adiabatic quantum algorithms continues to be of great interest.

  3. Piezoelectric control of the mobility of a domain wall driven by adiabatic and non-adiabatic torques

    NASA Astrophysics Data System (ADS)

    de Ranieri, E.; Roy, P. E.; Fang, D.; Vehsthedt, E. K.; Irvine, A. C.; Heiss, D.; Casiraghi, A.; Campion, R. P.; Gallagher, B. L.; Jungwirth, T.; Wunderlich, J.

    2013-09-01

    The rich internal degrees of freedom of magnetic domain walls make them an attractive complement to electron charge for exploring new concepts of storage, transport and processing of information. Here we use the tunable internal structure of a domain wall in a perpendicularly magnetized GaMnAsP/GaAs ferromagnetic semiconductor and demonstrate devices in which piezoelectrically controlled magnetic anisotropy yields up to 500% mobility variations for an electrical-current-driven domain wall. We observe current-induced domain wall motion over a wide range of current-pulse amplitudes and report a direct observation and the piezoelectric control of the Walker breakdown separating two regimes with different mobilities. Our work demonstrates that in spin-orbit-coupled ferromagnets with weak extrinsic domain wall pinning, the piezoelectric control allows one to experimentally assess the upper and lower boundaries of the characteristic ratio of adiabatic and non-adiabatic spin-transfer torques in the current-driven domain wall motion.

  4. Improved wax mold technique forms complex passages in solid structures

    NASA Technical Reports Server (NTRS)

    Hellbaum, R. F.; Page, A. D.; Phillips, A. R.

    1971-01-01

    Low-cost fabricating technique produces minute, complex air passages in fluidic devices. Air jet interactions in these function as electronic and electromechanical control systems. Wax cores are fabricated without distortion by two-wax process using nonsoluble pattern-wax and water-soluble wax. Significant steps in fabrication process are discussed.

  5. Accurate adiabatic correction in the hydrogen molecule

    SciTech Connect

    Pachucki, Krzysztof; Komasa, Jacek

    2014-12-14

    A new formalism for the accurate treatment of adiabatic effects in the hydrogen molecule is presented, in which the electronic wave function is expanded in the James-Coolidge basis functions. Systematic increase in the size of the basis set permits estimation of the accuracy. Numerical results for the adiabatic correction to the Born-Oppenheimer interaction energy reveal a relative precision of 10{sup −12} at an arbitrary internuclear distance. Such calculations have been performed for 88 internuclear distances in the range of 0 < R ⩽ 12 bohrs to construct the adiabatic correction potential and to solve the nuclear Schrödinger equation. Finally, the adiabatic correction to the dissociation energies of all rovibrational levels in H{sub 2}, HD, HT, D{sub 2}, DT, and T{sub 2} has been determined. For the ground state of H{sub 2} the estimated precision is 3 × 10{sup −7} cm{sup −1}, which is almost three orders of magnitude higher than that of the best previous result. The achieved accuracy removes the adiabatic contribution from the overall error budget of the present day theoretical predictions for the rovibrational levels.

  6. Accurate adiabatic correction in the hydrogen molecule

    NASA Astrophysics Data System (ADS)

    Pachucki, Krzysztof; Komasa, Jacek

    2014-12-01

    A new formalism for the accurate treatment of adiabatic effects in the hydrogen molecule is presented, in which the electronic wave function is expanded in the James-Coolidge basis functions. Systematic increase in the size of the basis set permits estimation of the accuracy. Numerical results for the adiabatic correction to the Born-Oppenheimer interaction energy reveal a relative precision of 10-12 at an arbitrary internuclear distance. Such calculations have been performed for 88 internuclear distances in the range of 0 < R ⩽ 12 bohrs to construct the adiabatic correction potential and to solve the nuclear Schrödinger equation. Finally, the adiabatic correction to the dissociation energies of all rovibrational levels in H2, HD, HT, D2, DT, and T2 has been determined. For the ground state of H2 the estimated precision is 3 × 10-7 cm-1, which is almost three orders of magnitude higher than that of the best previous result. The achieved accuracy removes the adiabatic contribution from the overall error budget of the present day theoretical predictions for the rovibrational levels.

  7. Symmetry-Protected Quantum Adiabatic Transistors

    NASA Astrophysics Data System (ADS)

    Williamson, Dominic J.; Bartlett, Stephen D.

    2014-03-01

    An essential development in the history of computing was the invention of the transistor as it allowed logic circuits to be implemented in a robust and modular way. The physical characteristics of semiconductor materials were the key to building these devices. We aim to present an analogous development for quantum computing by showing that quantum adiabatic transistors (as defined by Flammia et al.) are built upon the essential qualities of symmetry-protected (SP) quantum ordered phases in one dimension. Flammia et al. and Renes et al. have demonstrated schemes for universal adiabatic quantum computation using quantum adiabatic transistors described by interacting spin chain models with specifically chosen Hamiltonian terms. We show that these models can be understood as specific examples of the generic situation in which all SP phases lead to quantum computation on encoded edge degrees of freedom by adiabatically traversing a symmetric phase transition into a trivial symmetric phase. This point of view is advantageous as it allows us to readily see that the computational properties of a quantum adiabatic transistor arise from a phase of matter rather than due to carefully tuned interactions.

  8. Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo

    DOE PAGESBeta

    White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; Mozyrsky, Dmitry

    2015-07-07

    Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficientmore » as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In many cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.« less

  9. Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo

    SciTech Connect

    White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; Mozyrsky, Dmitry

    2015-07-07

    Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficient as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In many cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.

  10. Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo

    SciTech Connect

    White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; Mozyrsky, Dmitry

    2015-07-07

    Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficient as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In most cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.

  11. NMR implementation of adiabatic SAT algorithm using strongly modulated pulses.

    PubMed

    Mitra, Avik; Mahesh, T S; Kumar, Anil

    2008-03-28

    NMR implementation of adiabatic algorithms face severe problems in homonuclear spin systems since the qubit selective pulses are long and during this period, evolution under the Hamiltonian and decoherence cause errors. The decoherence destroys the answer as it causes the final state to evolve to mixed state and in homonuclear systems, evolution under the internal Hamiltonian causes phase errors preventing the initial state to converge to the solution state. The resolution of these issues is necessary before one can proceed to implement an adiabatic algorithm in a large system where homonuclear coupled spins will become a necessity. In the present work, we demonstrate that by using "strongly modulated pulses" (SMPs) for the creation of interpolating Hamiltonian, one can circumvent both the problems and successfully implement the adiabatic SAT algorithm in a homonuclear three qubit system. This work also demonstrates that the SMPs tremendously reduce the time taken for the implementation of the algorithm, can overcome problems associated with decoherence, and will be the modality in future implementation of quantum information processing by NMR. PMID:18376911

  12. NMR implementation of adiabatic SAT algorithm using strongly modulated pulses

    NASA Astrophysics Data System (ADS)

    Mitra, Avik; Mahesh, T. S.; Kumar, Anil

    2008-03-01

    NMR implementation of adiabatic algorithms face severe problems in homonuclear spin systems since the qubit selective pulses are long and during this period, evolution under the Hamiltonian and decoherence cause errors. The decoherence destroys the answer as it causes the final state to evolve to mixed state and in homonuclear systems, evolution under the internal Hamiltonian causes phase errors preventing the initial state to converge to the solution state. The resolution of these issues is necessary before one can proceed to implement an adiabatic algorithm in a large system where homonuclear coupled spins will become a necessity. In the present work, we demonstrate that by using "strongly modulated pulses" (SMPs) for the creation of interpolating Hamiltonian, one can circumvent both the problems and successfully implement the adiabatic SAT algorithm in a homonuclear three qubit system. This work also demonstrates that the SMPs tremendously reduce the time taken for the implementation of the algorithm, can overcome problems associated with decoherence, and will be the modality in future implementation of quantum information processing by NMR.

  13. Nonadiabatic exchange dynamics during adiabatic frequency sweeps

    NASA Astrophysics Data System (ADS)

    Barbara, Thomas M.

    2016-04-01

    A Bloch equation analysis that includes relaxation and exchange effects during an adiabatic frequency swept pulse is presented. For a large class of sweeps, relaxation can be incorporated using simple first order perturbation theory. For anisochronous exchange, new expressions are derived for exchange augmented rotating frame relaxation. For isochronous exchange between sites with distinct relaxation rate constants outside the extreme narrowing limit, simple criteria for adiabatic exchange are derived and demonstrate that frequency sweeps commonly in use may not be adiabatic with regard to exchange unless the exchange rates are much larger than the relaxation rates. Otherwise, accurate assessment of the sensitivity to exchange dynamics will require numerical integration of the rate equations. Examples of this situation are given for experimentally relevant parameters believed to hold for in-vivo tissue. These results are of significance in the study of exchange induced contrast in magnetic resonance imaging.

  14. Adiabatic approximation for the density matrix

    NASA Astrophysics Data System (ADS)

    Band, Yehuda B.

    1992-05-01

    An adiabatic approximation for the Liouville density-matrix equation which includes decay terms is developed. The adiabatic approximation employs the eigenvectors of the non-normal Liouville operator. The approximation is valid when there exists a complete set of eigenvectors of the non-normal Liouville operator (i.e., the eigenvectors span the density-matrix space), the time rate of change of the Liouville operator is small, and an auxiliary matrix is nonsingular. Numerical examples are presented involving efficient population transfer in a molecule by stimulated Raman scattering, with the intermediate level of the molecule decaying on a time scale that is fast compared with the pulse durations of the pump and Stokes fields. The adiabatic density-matrix approximation can be simply used to determine the density matrix for atomic or molecular systems interacting with cw electromagnetic fields when spontaneous emission or other decay mechanisms prevail.

  15. Extensive Adiabatic Invariants for Nonlinear Chains

    NASA Astrophysics Data System (ADS)

    Giorgilli, Antonio; Paleari, Simone; Penati, Tiziano

    2012-09-01

    We look for extensive adiabatic invariants in nonlinear chains in the thermodynamic limit. Considering the quadratic part of the Klein-Gordon Hamiltonian, by a linear change of variables we transform it into a sum of two parts in involution. At variance with the usual method of introducing normal modes, our constructive procedure allows us to exploit the complete resonance, while keeping the extensive nature of the system. Next we construct a nonlinear approximation of an extensive adiabatic invariant for a perturbation of the discrete nonlinear Schrödinger model. The fluctuations of this quantity are controlled via Gibbs measure estimates independent of the system size, for a large set of initial data at low specific energy. Finally, by numerical calculations we show that our adiabatic invariant is well conserved for times much longer than predicted by our first order theory, with fluctuation much smaller than expected according to standard statistical estimates.

  16. Anderson localization makes adiabatic quantum optimization fail

    PubMed Central

    Altshuler, Boris; Krovi, Hari; Roland, Jérémie

    2010-01-01

    Understanding NP-complete problems is a central topic in computer science (NP stands for nondeterministic polynomial time). This is why adiabatic quantum optimization has attracted so much attention, as it provided a new approach to tackle NP-complete problems using a quantum computer. The efficiency of this approach is limited by small spectral gaps between the ground and excited states of the quantum computer’s Hamiltonian. We show that the statistics of the gaps can be analyzed in a novel way, borrowed from the study of quantum disordered systems in statistical mechanics. It turns out that due to a phenomenon similar to Anderson localization, exponentially small gaps appear close to the end of the adiabatic algorithm for large random instances of NP-complete problems. This implies that unfortunately, adiabatic quantum optimization fails: The system gets trapped in one of the numerous local minima. PMID:20616043

  17. Novel developments and applications of the classical adiabatic dynamics technique

    NASA Astrophysics Data System (ADS)

    Rosso, Lula

    The present work aims to apply and develop modern molecular dynamics techniques based on a novel analysis of the classical adiabatic dynamics approach. In the first part of this thesis, Car-Parrinello ab-initio molecular dynamics, a successful technique based on adiabatic dynamics, is used to study the charge transport mechanism in solid ammonium perchlorate (AP) crystal exposed to an ammonia-rich environment. AP is a solid-state proton conductor composed of NH+4 and ClO-4 units that can undergo a decomposition process at high temperature, leading to its use such as rocket fuel. After computing IR spectra and carefully analysing the dynamics at different temperatures, we found that the charge transport mechanism in the pure crystal is dominated by diffusion of the ammonium ions and that the translational diffusion is strongly coupled to rotational diffusion of the two types of ions present. When the pure ammonium-perchlorate crystal is doped with neutral ammonia, another mechanism comes into play, namely, the Grotthuss proton hopping mechanism via short-lived N2H+7 complexes. In the second part of this thesis, adiabatic dynamics will be used to develop an alternative approach to the calculation of free energy profiles along reaction paths. The new method (AFED) is based on the creation of an adiabatic separation between the reaction coordinate subspace and the remaining degrees of freedom within a molecular dynamics run. This is achieved by associating with the reaction coordinate(s) a high temperature and large mass. These conditions allow the activated process to occur while permitting the remaining degrees of freedom to respond adiabatically. In this limit, by applying a formal multiple time scale Liouville operator factorization, it can be rigorously shown that the free energy profile is obtained directly from the probability distribution of the reaction coordinate subspace and, therefore, no postprocessing of the output data is required. The new method is

  18. Adiabatic Hyperspherical Analysis of Realistic Nuclear Potentials

    NASA Astrophysics Data System (ADS)

    Daily, K. M.; Kievsky, Alejandro; Greene, Chris H.

    2015-12-01

    Using the hyperspherical adiabatic method with the realistic nuclear potentials Argonne V14, Argonne V18, and Argonne V18 with the Urbana IX three-body potential, we calculate the adiabatic potentials and the triton bound state energies. We find that a discrete variable representation with the slow variable discretization method along the hyperradial degree of freedom results in energies consistent with the literature. However, using a Laguerre basis results in missing energy, even when extrapolated to an infinite number of basis functions and channels. We do not include the isospin T = 3/2 contribution in our analysis.

  19. On black hole spectroscopy via adiabatic invariance

    NASA Astrophysics Data System (ADS)

    Jiang, Qing-Quan; Han, Yan

    2012-12-01

    In this Letter, we obtain the black hole spectroscopy by combining the black hole property of adiabaticity and the oscillating velocity of the black hole horizon. This velocity is obtained in the tunneling framework. In particular, we declare, if requiring canonical invariance, the adiabatic invariant quantity should be of the covariant form Iadia = ∮pi dqi. Using it, the horizon area of a Schwarzschild black hole is quantized independently of the choice of coordinates, with an equally spaced spectroscopy always given by ΔA = 8 π lp2 in the Schwarzschild and Painlevé coordinates.

  20. Complexity of the Quantum Adiabatic Algorithm

    NASA Technical Reports Server (NTRS)

    Hen, Itay

    2013-01-01

    The Quantum Adiabatic Algorithm (QAA) has been proposed as a mechanism for efficiently solving optimization problems on a quantum computer. Since adiabatic computation is analog in nature and does not require the design and use of quantum gates, it can be thought of as a simpler and perhaps more profound method for performing quantum computations that might also be easier to implement experimentally. While these features have generated substantial research in QAA, to date there is still a lack of solid evidence that the algorithm can outperform classical optimization algorithms.

  1. Adiabatic approximation for nucleus-nucleus scattering

    SciTech Connect

    Johnson, R.C.

    2005-10-14

    Adiabatic approximations to few-body models of nuclear scattering are described with emphasis on reactions with deuterons and halo nuclei (frozen halo approximation) as projectiles. The different ways the approximation should be implemented in a consistent theory of elastic scattering, stripping and break-up are explained and the conditions for the theory's validity are briefly discussed. A formalism which links few-body models and the underlying many-body system is outlined and the connection between the adiabatic and CDCC methods is reviewed.

  2. Rites of passage in Italy.

    PubMed

    Field, Carol

    2010-01-01

    Unlike the vast number of public celebrations in Italy that are almost always associated with specific foods, rites of passage in that country are focused on pivotal private moments after the ceremonial crossing of a threshold; and food may or may not be a primary focus of the event. Recognition of birth, marriage, and death—the three major turning points in the intimate life of a family—may still be observed with dishes or ingredients traceable to the Renaissance, but many older traditions have been modified or forgotten entirely in the last thirty years. Financial constraints once preserved many customs, especially in the south, but regional borders have become porous, and new food trends may no longer reflect the authentic tradition. Can new movements, such as Slow Food, promote ancient values as the form and food of traditional events continue to change? PMID:21495289

  3. Crushing runtimes in adiabatic quantum computation with Energy Landscape Manipulation (ELM): Application to Quantum Factoring

    NASA Astrophysics Data System (ADS)

    Dattani, Nike; Tanburn, Richard; Lunt, Oliver

    We introduce two methods for speeding up adiabatic quantum computations by increasing the energy between the ground and first excited states. Our methods are even more general. They can be used to shift a Hamiltonian's density of states away from the ground state, so that fewer states occupy the low-lying energies near the minimum, hence allowing for faster adiabatic passages to find the ground state with less risk of getting caught in an undesired low-lying excited state during the passage. Even more generally, our methods can be used to transform a discrete optimization problem into a new one whose unique minimum still encodes the desired answer, but with the objective function's values forming a different landscape. Aspects of the landscape such as the objective function's range, or the values of certain coefficients, or how many different inputs lead to a given output value, can be decreased *or* increased. One of the many examples for which these methods are useful is in finding the ground state of a Hamiltonian using NMR. We apply our methods to an AQC algorithm for integer factorization, and the first method reduces the maximum runtime in our example by up to 754%, and the second method reduces the maximum runtime of another example by up to 250%.

  4. Effect of Content Instruction on Cloze Passage Performance.

    ERIC Educational Resources Information Center

    Kaufman, Maurice

    A study examined the use of cloze procedure as a measure of learning from content instruction. Subjects were 35 physician assistant (PA) students in a cancer prevention course and 31 education students (ED) enrolled in reading instruction courses. Cloze passages were constructed from published selections on the reading process and occupationally…

  5. First-passage phenomena in hierarchical networks

    NASA Astrophysics Data System (ADS)

    Tavani, Flavia; Agliari, Elena

    2016-02-01

    In this paper we study Markov processes and related first-passage problems on a class of weighted, modular graphs which generalize the Dyson hierarchical model. In these networks, the coupling strength between two nodes depends on their distance and is modulated by a parameter σ . We find that, in the thermodynamic limit, ergodicity is lost and the "distant" nodes cannot be reached. Moreover, for finite-sized systems, there exists a threshold value for σ such that, when σ is relatively large, the inhomogeneity of the coupling pattern prevails and "distant" nodes are hardly reached. The same analysis is carried on also for generic hierarchical graphs, where interactions are meant to involve p -plets (p >2 ) of nodes, finding that ergodicity is still broken in the thermodynamic limit, but no threshold value for σ is evidenced, ultimately due to a slow growth of the network diameter with the size.

  6. Adiabatic Compression in a Fire Syringe.

    ERIC Educational Resources Information Center

    Hayn, Carl H.; Baird, Scott C.

    1985-01-01

    Suggests using better materials in fire syringes to obtain more effective results during demonstrations which show the elevation in temperature upon a very rapid (adiabatic) compression of air. Also describes an experiment (using ignition temperatures) which introduces students to the use of thermocouples for high temperature measurements. (DH)

  7. Mid-range adiabatic wireless energy transfer via a mediator coil

    SciTech Connect

    Rangelov, A.A. Vitanov, N.V.

    2012-09-15

    A technique for efficient mid-range wireless energy transfer between two coils via a mediator coil is proposed. By varying the coil frequencies, three resonances are created: emitter-mediator (EM), mediator-receiver (MR) and emitter-receiver (ER). If the frequency sweeps are adiabatic and such that the EM resonance precedes the MR resonance, the energy flows sequentially along the chain emitter-mediator-receiver. If the MR resonance precedes the EM resonance, then the energy flows directly from the emitter to the receiver via the ER resonance; then the losses from the mediator are suppressed. This technique is robust against noise, resonant constraints and external interferences. - Highlights: Black-Right-Pointing-Pointer Efficient and robust mid-range wireless energy transfer via a mediator coil. Black-Right-Pointing-Pointer The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. Black-Right-Pointing-Pointer Wireless energy transfer is insensitive to any resonant constraints. Black-Right-Pointing-Pointer Wireless energy transfer is insensitive to noise in the neighborhood of the coils.

  8. Communication: Adiabatic and non-adiabatic electron-nuclear motion: Quantum and classical dynamics

    NASA Astrophysics Data System (ADS)

    Albert, Julian; Kaiser, Dustin; Engel, Volker

    2016-05-01

    Using a model for coupled electronic-nuclear motion we investigate the range from negligible to strong non-adiabatic coupling. In the adiabatic case, the quantum dynamics proceeds in a single electronic state, whereas for strong coupling a complete transition between two adiabatic electronic states takes place. It is shown that in all coupling regimes the short-time wave-packet dynamics can be described using ensembles of classical trajectories in the phase space spanned by electronic and nuclear degrees of freedom. We thus provide an example which documents that the quantum concept of non-adiabatic transitions is not necessarily needed if electronic and nuclear motion is treated on the same footing.

  9. The dynamic instability of adiabatic blast waves

    NASA Technical Reports Server (NTRS)

    Ryu, Dongsu; Vishniac, Ethan T.

    1991-01-01

    Adiabatic blastwaves, which have a total energy injected from the center E varies as t(sup q) and propagate through a preshock medium with a density rho(sub E) varies as r(sup -omega) are described by a family of similarity solutions. Previous work has shown that adiabatic blastwaves with increasing or constant postshock entropy behind the shock front are susceptible to an oscillatory instability, caused by the difference between the nature of the forces on the two sides of the dense shell behind the shock front. This instability sets in if the dense postshock layer is sufficiently thin. The stability of adiabatic blastwaves with a decreasing postshock entropy is considered. Such blastwaves, if they are decelerating, always have a region behind the shock front which is subject to convection. Some accelerating blastwaves also have such region, depending on the values of q, omega, and gamma where gamma is the adiabatic index. However, since the shock interface stabilizes dynamically induced perturbations, blastwaves become convectively unstable only if the convective zone is localized around the origin or a contact discontinuity far from the shock front. On the other hand, the contact discontinuity of accelerating blastwaves is subject to a strong Rayleigh-Taylor instability. The frequency spectra of the nonradial, normal modes of adiabatic blastwaves have been calculated. The results have been applied to the shocks propagating through supernovae envelopes. It is shown that the metal/He and He/H interfaces are strongly unstable against the Rayleigh-Taylor instability. This instability will induce mixing in supernovae envelopes. In addition the implications of this work for the evolution of planetary nebulae is discussed.

  10. The dynamic instability of adiabatic blast waves

    NASA Astrophysics Data System (ADS)

    Ryu, Dongsu; Vishniac, Ethan T.

    1991-02-01

    Adiabatic blastwaves, which have a total energy injected from the center E varies as tq and propagate through a preshock medium with a density rhoE varies as r-omega are described by a family of similarity solutions. Previous work has shown that adiabatic blastwaves with increasing or constant postshock entropy behind the shock front are susceptible to an oscillatory instability, caused by the difference between the nature of the forces on the two sides of the dense shell behind the shock front. This instability sets in if the dense postshock layer is sufficiently thin. The stability of adiabatic blastwaves with a decreasing postshock entropy is considered. Such blastwaves, if they are decelerating, always have a region behind the shock front which is subject to convection. Some accelerating blastwaves also have such region, depending on the values of q, omega, and gamma where gamma is the adiabatic index. However, since the shock interface stabilizes dynamically induced perturbations, blastwaves become convectively unstable only if the convective zone is localized around the origin or a contact discontinuity far from the shock front. On the other hand, the contact discontinuity of accelerating blastwaves is subject to a strong Rayleigh-Taylor instability. The frequency spectra of the nonradial, normal modes of adiabatic blastwaves have been calculated. The results have been applied to the shocks propagating through supernovae envelopes. It is shown that the metal/He and He/H interfaces are strongly unstable against the Rayleigh-Taylor instability. This instability will induce mixing in supernovae envelopes. In addition the implications of this work for the evolution of planetary nebulae is discussed.

  11. The dynamic instability of adiabatic blastwaves

    NASA Astrophysics Data System (ADS)

    Ryu, Dongsu; Vishniac, Ethan T.

    1990-05-01

    Adiabatic blastwaves, which have a total energy injected from the center E varies as t(sup q) and propagate through a preshock medium with a density rho(sub E) varies as r(sup -omega) are described by a family of similarity solutions. Previous work has shown that adiabatic blastwaves with increasing or constant postshock entropy behind the shock front are susceptible to an oscillatory instability, caused by the difference between the nature of the forces on the two sides of the dense shell behind the shock front. This instability sets in if the dense postshock layer is sufficiently thin. The stability of adiabatic blastwaves with a decreasing postshock entropy is considered. Such blastwaves, if they are decelerating, always have a region behind the shock front which is subject to convection. Some accelerating blastwaves also have such region, depending on the values of q, omega, and gamma where gamma is the adiabatic index. However, since the shock interface stabilizes dynamically induced perturbations, blastwaves become convectively unstable only if the convective zone is localized around the origin or a contact discontinuity far from the shock front. On the other hand, the contact discontinuity of accelerating blastwaves is subject to a strong Rayleigh-Taylor instability. The frequency spectra of the nonradial, normal modes of adiabatic blastwaves have been calculated. The results have been applied to the shocks propagating through supernovae envelopes. It is shown that the metal/He and He/H interfaces are strongly unstable against the Rayleigh-Taylor instability. This instability will induce mixing in supernovae envelopes. In addition the implications of this work for the evolution of planetary nebulae is discussed.

  12. Adiabatic evolution of an irreversible two level system

    SciTech Connect

    Kvitsinsky, A.; Putterman, S. )

    1991-05-01

    The adiabatic dynamics of a two level atom with spontaneous decay is studied. The existence of a complex adiabatic phase shift is established: The real part being the usual Berry's phase. A closed-form expression for this phase and the adiabatic transition amplitudes is obtained. Incorporation of a finite preparation time for the initial state yields a new asymptotic form for the adiabatic transition amplitudes which is significantly different from the standard Landau--Zener--Dykhne formula.

  13. Plasma heating via adiabatic magnetic compression-expansion cycle

    NASA Astrophysics Data System (ADS)

    Avinash, K.; Sengupta, M.; Ganesh, R.

    2016-06-01

    Heating of collisionless plasmas in closed adiabatic magnetic cycle comprising of a quasi static compression followed by a non quasi static constrained expansion against a constant external pressure is proposed. Thermodynamic constraints are derived to show that the plasma always gains heat in cycles having at least one non quasi static process. The turbulent relaxation of the plasma to the equilibrium state at the end of the non quasi static expansion is discussed and verified via 1D Particle in Cell (PIC) simulations. Applications of this scheme to heating plasmas in open configurations (mirror machines) and closed configurations (tokamak, reverse field pinche) are discussed.

  14. Method for constructing shortcuts to adiabaticity by a substitute of counterdiabatic driving terms

    NASA Astrophysics Data System (ADS)

    Chen, Ye-Hong; Xia, Yan; Wu, Qi-Cheng; Huang, Bi-Hua; Song, Jie

    2016-05-01

    We propose an efficient method to construct shortcuts to adiabaticity through designing a substitute Hamiltonian to try to avoid the defect in which the speed-up protocols' Hamiltonian may involve terms which are difficult to realize in practice. We show that as long as the counterdiabatic coupling terms—even only some of them—have been nullified by the additional Hamiltonian, the corresponding shortcuts to the adiabatic process could be constructed and the adiabatic process would be sped up. As an application example, we apply this method to the popular Landau-Zener model for the realization of fast population inversion. The results show that in both Hermitian and non-Hermitian systems, we can design different additional Hamiltonians to replace the traditional counterdiabatic driving Hamiltonian to speed up the process. This method provides many choices for designing additional terms of the Hamiltonian such that one can choose a realizable model in practice.

  15. Refractory inserts used to form cooling passages in cast superalloy turbine vanes

    NASA Technical Reports Server (NTRS)

    Terpay, A.

    1973-01-01

    Economical technique has been developed for manufacturing air-cooled turbine blades and vanes for gas turbine engines. Process uses tungsten inserts to form coolant passages. After casting, inserts are reduced to tungsten oxide during sublimation with oxygen at elevated temperature. Tungsten oxide is leached out of coolant passages with a molten salt solution.

  16. Passage of American shad: paradigms and realities

    USGS Publications Warehouse

    Haro, Alex; Castro-Santos, Theodore

    2012-01-01

    Despite more than 250 years of development, the passage of American shad Alosa sapidissima at dams and other barriers frequently remains problematic. Few improvements in design based on knowledge of the swimming, schooling, and migratory behaviors of American shad have been incorporated into passage structures. Large-scale technical fishways designed for the passage of adult salmonids on the Columbia River have been presumed to have good performance for American shad but have never been rigorously evaluated for this species. Similar but smaller fishway designs on the East Coast frequently have poor performance. Provision of effective downstream passage for both juvenile and postspawning adult American shad has been given little consideration in most passage projects. Ways to attract and guide American shad to both fishway entrances and downstream bypasses remain marginally understood. The historical development of passage structures for American shad has resulted in assumptions and paradigms about American shad behavior and passage that are frequently unsubstantiated by supporting data or appropriate experimentation. We propose that many of these assumptions and paradigms are either unfounded or invalid and that significant improvements to American shad upstream and downstream passage can be made via a sequential program of behavioral experimentation, application of experimental results to the physical and hydraulic design of new structures, and controlled tests of large-scale prototype structures in the laboratory and field.

  17. Risk Taking and Rites of Passage

    ERIC Educational Resources Information Center

    Larson, Scott; Martin, Lloyd

    2012-01-01

    Throughout history, young people earned adult roles through observing, imitating, and interacting with adults around them. Rituals of initiation such as the Jewish bar mitzvah and bat mitzvah are very important rite of passage ceremonies. Many churches confer baptism, confirmation, or catechism as rites of passage to adulthood. Without such…

  18. Transient Particle Energies in Shortcuts to Adiabatic Expansions of Harmonic Traps.

    PubMed

    Cui, Yang-Yang; Chen, Xi; Muga, J G

    2016-05-19

    The expansion of a harmonic potential that holds a quantum particle may be realized without any final particle excitation but much faster than adiabatically via "shortcuts to adiabaticity" (STA). While ideally the process time can be reduced to zero, practical limitations and constraints impose minimal finite times for the externally controlled time-dependent frequency protocols. We examine the role of different time-averaged energies (total, kinetic, potential, nonadiabatic) and of the instantaneous power in characterizing or selecting different protocols. Specifically, we prove a virial theorem for STA processes, set minimal energies (or times) for given times (or energies), and discuss their realizability by means of Dirac impulses or otherwise. PMID:26237328

  19. Comparison of textbook passages, nonfiction trade book passages and fiction trade book passages as instructional tools for learning science

    NASA Astrophysics Data System (ADS)

    Kelly, Cynthia

    This study examined the impact of different types of text on student achievement in elementary school science. Gender was also examined to see if the type of text passage read had any differential effect on boys' and girls' achievement. This study was a pretest/posttest/retention test design. Eighty-four fourth grade students from a public charter elementary school in South Florida were randomly assigned a passage from a physical science textbook, a physical science nonfiction trade book, a physical science fiction trade book, a biological science textbook or a biological science nonfiction trade book. Results in the physical science content area revealed that students in the textbook passage group had higher posttest and retention test results than students in the nonfiction and fiction trade book passage groups. There was no difference on the posttest results of students in the biological science textbook and nonfiction trade book passage groups. Students in the biological science textbook passage group had higher retention results than students in the biological science nonfiction passage group. Gender results in the physical science content area revealed that boys had a higher retention score than girls in the fiction trade book passage group. There were no gender achievement differences as a result of the text passage read in the biological science content area. It was concluded that no definitive answer as to the efficacy of textbooks versus trade books was possible based upon results of the study. Recommendations for future research include examining the effects of different types of texts in conjunction with other authentic teaching methods.

  20. Non-adiabatic perturbations in multi-component perfect fluids

    SciTech Connect

    Koshelev, N.A.

    2011-04-01

    The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models.

  1. Non-adiabatic generation of NOON states in a Tonks-Girardeau gas

    NASA Astrophysics Data System (ADS)

    Schloss, James; Benseny, Albert; Gillet, Jérémie; Swain, Jacob; Busch, Thomas

    2016-03-01

    Adiabatic techniques can be used to control quantum states with high fidelity while exercising limited control over the parameters of a system. However, because these techniques are slow compared to other timescales in the system, they are usually not suitable for creating highly unstable states or performing time-critical processes. Both of these situations arise in quantum information processing, where entangled states may be isolated from the environment only for a short time and where quantum computers require high-fidelity operations to be performed quickly. Recently it has been shown that techniques like optimal control and shortcuts to adiabaticity can be used to prepare quantum states non-adiabatically with high fidelity. Here we present two examples of how these techniques can be used to create maximally entangled many-body NOON states in one-dimensional Tonks-Girardeau gases. Dedicated to the memory of Marvin D Girardeau.

  2. Adiabatic Far Field Sub-Diffraction Imaging

    PubMed Central

    Cang, Hu; Salandrino, Alessandro; Wang, Yuan; Zhang, Xiang

    2015-01-01

    The limited resolution of a conventional optical imaging system stems from the fact that the fine feature information of an object is carried by evanescent waves, which exponentially decay in space thus cannot reach the imaging plane. We introduce here a new concept of adiabatic lens, which utilizes a geometrically conformal surface to mediate the interference of slowly decompressed electromagnetic waves at far field to form images. The decompression is satisfying an adiabatic condition, and by bridging the gap between far field and near field, it allows far field optical systems to project an image of the near field features directly. Using these designs, we demonstrated the magnification can be up to 20 times and it is possible to achieve sub-50nm imaging resolution in visible. Our approach provides a means to extend the domain of geometrical optics to a deep sub-wavelength scale. PMID:26258769

  3. Adiabatic Quantum Optimization for Associative Memory Recall

    NASA Astrophysics Data System (ADS)

    Seddiqi, Hadayat; Humble, Travis

    2014-12-01

    Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.

  4. Quantum adiabatic evolution with energy degeneracy levels

    NASA Astrophysics Data System (ADS)

    Zhang, Qi

    2016-01-01

    A classical-kind phase-space formalism is developed to address the tiny intrinsic dynamical deviation from what is predicted by Wilczek-Zee theorem during quantum adiabatic evolution on degeneracy levels. In this formalism, the Hilbert space and the aggregate of degenerate eigenstates become the classical-kind phase space and a high-dimensional subspace in the phase space, respectively. Compared with the previous analogous study by a different method, the current result is qualitatively different in that the first-order deviation derived here is always perpendicular to the degeneracy subspace. A tripod-scheme Hamiltonian with two degenerate dark states is employed to illustrate the adiabatic deviation with degeneracy levels.

  5. Adiabatic quantum optimization for associative memory recall

    DOE PAGESBeta

    Seddiqi, Hadayat; Humble, Travis S.

    2014-12-22

    Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are storedmore » in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.« less

  6. Adiabatic quantum optimization for associative memory recall

    SciTech Connect

    Seddiqi, Hadayat; Humble, Travis S.

    2014-12-22

    Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.

  7. Adiabatic Quantization of Andreev Quantum Billiard Levels

    NASA Astrophysics Data System (ADS)

    Silvestrov, P. G.; Goorden, M. C.; Beenakker, C. W.

    2003-03-01

    We identify the time T between Andreev reflections as a classical adiabatic invariant in a ballistic chaotic cavity (Lyapunov exponent λ), coupled to a superconductor by an N-mode constriction. Quantization of the adiabatically invariant torus in phase space gives a discrete set of periods Tn, which in turn generate a ladder of excited states ɛnm=(m+1/2)πℏ/Tn. The largest quantized period is the Ehrenfest time T0=λ-1ln(N. Projection of the invariant torus onto the coordinate plane shows that the wave functions inside the cavity are squeezed to a transverse dimension W/(N), much below the width W of the constriction.

  8. Adiabatic Quantum Simulation of Quantum Chemistry

    PubMed Central

    Babbush, Ryan; Love, Peter J.; Aspuru-Guzik, Alán

    2014-01-01

    We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions. PMID:25308187

  9. Influence of viscosity and the adiabatic index on planetary migration

    NASA Astrophysics Data System (ADS)

    Bitsch, B.; Boley, A.; Kley, W.

    2013-02-01

    Context. The strength and direction of migration of low mass embedded planets depends on the disk's thermodynamic state. It has been shown that in active disks, where the internal dissipation is balanced by radiative transport, migration can be directed outwards, a process which extends the lifetime of growing embryos. Very important parameters determining the structure of disks, and hence the direction of migration, are the viscosity and the adiabatic index. Aims: In this paper we investigate the influence of different viscosity prescriptions (α-type and constant) and adiabatic indices on disk structures. We then determine how this affects the migration rate of planets embedded in such disks. Methods: We perform three-dimensional numerical simulations of accretion disks with embedded planets. We use the explicit/implicit hydrodynamical code NIRVANA that includes full tensor viscosity and radiation transport in the flux-limited diffusion approximation, as well as a proper equation of state for molecular hydrogen. The migration of embedded 20 MEarth planets is studied. Results: Low-viscosity disks have cooler temperatures and the migration rates of embedded planets tend toward the isothermal limit. Hence, in these disks, planets migrate inwards even in the fully radiative case. The effect of outward migration can only be sustained if the viscosity in the disk is large. Overall, the differences between the treatments for the equation of state seem to play a more important role in disks with higher viscosity. A change in the adiabatic index and in the viscosity changes the zero-torque radius that separates inward from outward migration. Conclusions: For larger viscosities, temperatures in the disk become higher and the zero-torque radius moves to larger radii, allowing outward migration of a 20-MEarth planet to persist over an extended radial range. In combination with large disk masses, this may allow for an extended period of the outward migration of growing

  10. Adiabatic charging of nickel-hydrogen batteries

    NASA Technical Reports Server (NTRS)

    Lurie, Chuck; Foroozan, S.; Brewer, Jeff; Jackson, Lorna

    1995-01-01

    Battery management during prelaunch activities has always required special attention and careful planning. The transition from nickel-cadium to nickel-hydrogen batteries, with their high self discharge rate and lower charge efficiency, as well as longer prelaunch scenarios, has made this aspect of spacecraft battery management even more challenging. The AXAF-I Program requires high battery state of charge at launch. The use of active cooling, to ensure efficient charging, was considered and proved to be difficult and expensive. Alternative approaches were evaluated. Optimized charging, in the absence of cooling, appeared promising and was investigated. Initial testing was conducted to demonstrate the feasibility of the 'Adiabatic Charging' approach. Feasibility was demonstrated and additional testing performed to provide a quantitative, parametric data base. The assumption that the battery is in an adiabatic environment during prelaunch charging is a conservative approximation because the battery will transfer some heat to its surroundings by convective air cooling. The amount is small compared to the heat dissipated during battery overcharge. Because the battery has a large thermal mass, substantial overcharge can occur before the cells get too hot to charge efficiently. The testing presented here simulates a true adiabatic environment. Accordingly the data base may be slightly conservative. The adiabatic charge methodology used in this investigation begins with stabilizing the cell at a given starting temperature. The cell is then fully insulated on all sides. Battery temperature is carefully monitored and the charge terminated when the cell temperature reaches 85 F. Charging has been evaluated with starting temperatures from 55 to 75 F.

  11. Advanced Adiabatic Demagnetization Refrigerators for Continuous Cooling

    NASA Technical Reports Server (NTRS)

    Chu, Paul C. W.

    2004-01-01

    The research at Houston was focused on optimizing the design of superconducting magnets for advanced adiabatic demagnetization refrigerators (ADRs), assessing the feasibility of using high temperature superconducting (HTS) magnets in ADRs in the future, and developing techniques to deposit HTS thin and thick films on high strength, low thermal conductivity substrates for HTS magnet leads. Several approaches have been tested for the suggested superconducting magnets.

  12. Computer Code For Turbocompounded Adiabatic Diesel Engine

    NASA Technical Reports Server (NTRS)

    Assanis, D. N.; Heywood, J. B.

    1988-01-01

    Computer simulation developed to study advantages of increased exhaust enthalpy in adiabatic turbocompounded diesel engine. Subsytems of conceptual engine include compressor, reciprocator, turbocharger turbine, compounded turbine, ducting, and heat exchangers. Focus of simulation of total system is to define transfers of mass and energy, including release and transfer of heat and transfer of work in each subsystem, and relationship among subsystems. Written in FORTRAN IV.

  13. Siphon flows in isolated magnetic flux tubes. II - Adiabatic flows

    NASA Technical Reports Server (NTRS)

    Montesinos, Benjamin; Thomas, John H.

    1989-01-01

    This paper extends the study of steady siphon flows in isolated magnetic flux tubes surrounded by field-free gas to the case of adiabatic flows. The basic equations governing steady adiabatic siphon flows in a thin, isolated magnetic flux tube are summarized, and qualitative features of adiabatic flows in elevated, arched flux tubes are discussed. The equations are then cast in nondimensional form and the results of numerical computations of adiabatic siphon flows in arched flux tubes are presented along with comparisons between isothermal and adiabatic flows. The effects of making the interior of the flux tube hotter or colder than the surrounding atmosphere at the upstream footpoint of the arch is considered. In this case, is it found that the adiabatic flows are qualitatively similar to the isothermal flows, with adiabatic cooling producing quantitative differences. Critical flows can produce a bulge point in the rising part of the arch and a concentration of magnetic flux above the bulge point.

  14. Random matrix model of adiabatic quantum computing

    SciTech Connect

    Mitchell, David R.; Adami, Christoph; Lue, Waynn; Williams, Colin P.

    2005-05-15

    We present an analysis of the quantum adiabatic algorithm for solving hard instances of 3-SAT (an NP-complete problem) in terms of random matrix theory (RMT). We determine the global regularity of the spectral fluctuations of the instantaneous Hamiltonians encountered during the interpolation between the starting Hamiltonians and the ones whose ground states encode the solutions to the computational problems of interest. At each interpolation point, we quantify the degree of regularity of the average spectral distribution via its Brody parameter, a measure that distinguishes regular (i.e., Poissonian) from chaotic (i.e., Wigner-type) distributions of normalized nearest-neighbor spacings. We find that for hard problem instances - i.e., those having a critical ratio of clauses to variables - the spectral fluctuations typically become irregular across a contiguous region of the interpolation parameter, while the spectrum is regular for easy instances. Within the hard region, RMT may be applied to obtain a mathematical model of the probability of avoided level crossings and concomitant failure rate of the adiabatic algorithm due to nonadiabatic Landau-Zener-type transitions. Our model predicts that if the interpolation is performed at a uniform rate, the average failure rate of the quantum adiabatic algorithm, when averaged over hard problem instances, scales exponentially with increasing problem size.

  15. Adiabatic heating in impulsive solar flares

    NASA Technical Reports Server (NTRS)

    Maetzler, C.; Bai, T.; Crannell, C. J.; Frost, K. J.

    1978-01-01

    A study is made of adiabatic heating in two impulsive solar flares on the basis of dynamic X-ray spectra in the 28-254 keV range, H-alpha, microwave, and meter-wave radio observations. It is found that the X-ray spectra of the events are like those of thermal bremsstrahlung from single-temperature plasmas in the 10-60 keV range if photospheric albedo is taken into account. The temperature-emission correlation indicates adiabatic compression followed by adiabatic expansion and that the electron distribution remains isotropic. H-alpha data suggest compressive energy transfer. The projected areas and volumes of the flares are estimated assuming that X-ray and microwave emissions are produced in a single thermal plasma. Electron densities of about 10 to the 9th/cu cm are found for homogeneous, spherically symmetric sources. It is noted that the strong self-absorption of hot-plasma gyrosynchrotron radiation reveals low magnetic field strengths.

  16. Non-adiabatic effect on quantum pumping

    NASA Astrophysics Data System (ADS)

    Uchiyama, Chikako

    2014-03-01

    We study quantum pumping for an anharmonic junction model which interacts with two kinds of bosonic environments. We provide an expression for the quantum pumping under a piecewise modulation of environmental temperatures with including non-adiabatic effect under Markovian approximation. The obtained formula is an extension of the one expressed with the geometrical phase(Phys. Rev. Lett. 104,170601 (2010)). This extension shows that the quantum pumping depends on the initial condition of the anharmonic junction just before the modulation, as well as the characteristic environmental parameters such as interaction strength and cut-off frequencies of spectral density other than the conditions of modulation. We clarify that the pumping current including non-adiabatic effect can be larger than that under the adiabatic condition. This means that we can find the optimal condition of the current by adjusting these parameters. (The article has been submitted as http://arxiv.org/submit/848201 and will be appeared soon.) This work is supported by a Grant-in-Aid for Scientific Research (B) (KAKENHI 25287098).

  17. An adiabatic approximation for grain alignment theory

    NASA Astrophysics Data System (ADS)

    Roberge, W. G.

    1997-10-01

    The alignment of interstellar dust grains is described by the joint distribution function for certain `internal' and `external' variables, where the former describe the orientation of the axes of a grain with respect to its angular momentum, J, and the latter describe the orientation of J relative to the interstellar magnetic field. I show how the large disparity between the dynamical time-scales of the internal and external variables - which is typically 2-3 orders of magnitude - can be exploited to simplify calculations of the required distribution greatly. The method is based on an `adiabatic approximation' which closely resembles the Born-Oppenheimer approximation in quantum mechanics. The adiabatic approximation prescribes an analytic distribution function for the `fast' dynamical variables and a simplified Fokker-Planck equation for the `slow' variables which can be solved straightforwardly using various techniques. These solutions are accurate to O(epsilon), where epsilon is the ratio of the fast and slow dynamical time-scales. As a simple illustration of the method, I derive an analytic solution for the joint distribution established when Barnett relaxation acts in concert with gas damping. The statistics of the analytic solution agree with the results of laborious numerical calculations which do not exploit the adiabatic approximation.

  18. An Adiabatic Approximation for Grain Alignment Theory

    NASA Astrophysics Data System (ADS)

    Roberge, W. G.

    1997-12-01

    The alignment of interstellar dust grains is described by the joint distribution function for certain ``internal'' and ``external'' variables, where the former describe the orientation of a grain's axes with respect to its angular momentum, J, and the latter describe the orientation of J relative to the interstellar magnetic field. I show how the large disparity between the dynamical timescales of the internal and external variables--- which is typically 2--3 orders of magnitude--- can be exploited to greatly simplify calculations of the required distribution. The method is based on an ``adiabatic approximation'' which closely resembles the Born-Oppenheimer approximation in quantum mechanics. The adiabatic approximation prescribes an analytic distribution function for the ``fast'' dynamical variables and a simplified Fokker-Planck equation for the ``slow'' variables which can be solved straightforwardly using various techniques. These solutions are accurate to cal {O}(epsilon ), where epsilon is the ratio of the fast and slow dynamical timescales. As a simple illustration of the method, I derive an analytic solution for the joint distribution established when Barnett relaxation acts in concert with gas damping. The statistics of the analytic solution agree with the results of laborious numerical calculations which do not exploit the adiabatic approximation.

  19. The study of adiabatic shear band instability in a pearlitic 4340 steel using a dynamic punch test

    SciTech Connect

    Zurek, A.K. )

    1994-11-01

    At low strain rates and moderate levels of strain, slip and twinning are the most common deformation mechanisms in metals and alloys. Both mechanisms are highly correlated with the crystallography of the material. At higher strain rates and levels of strain, deformation instabilities, such as adiabatic shear bands (ASB), may develop. These bands are planar in nature, and their formation is related more to the specimen geometry, deformation process, and mechanical properties of a material than to its local crystallography. The formation of adiabatic shear band instabilities in a pearlitic 4340 steel using a dynamic punch test has been studied. The dynamic punch-impact test produced white-etching adiabatic shear bands. The average strain of 0.5 was sufficient to produce adiabatic shear bands in this steel at an average strain rate of 18,000 s[sup [minus]1]. Nanohardness variations found across the adiabatic shear at an average strain rate of 18,000 s[sup [minus]1]. Nanohardness variations found across the adiabatic shear band are thought to be caused by the fragmentation and spheriodization of the Fe[sub 3]C and the overall deformation and work hardening of the pearlitic microstructure. The cracks formed at the termination of the adiabatic shear band caused the sample to fracture in a ductile mode.

  20. ADIABATIC MASS LOSS IN BINARY STARS. I. COMPUTATIONAL METHOD

    SciTech Connect

    Ge Hongwei; Chen Xuefei; Han Zhanwen; Webbink, Ronald F. E-mail: mshjell@gmail.co

    2010-07-10

    binary provides the energy to eject the common envelope; the energy budget for this process consists essentially of the initial orbital energy of the binary and the initial self-energies of the binary components. We emphasize that, because the stellar core and envelope contribute mutually to each other's gravitational potential energy, proper evaluation of the total energy of a star requires integration over the entire stellar interior, and not just over the ejected envelope alone as commonly assumed. We show that the change in total energy of the donor star, as a function of its remaining mass along an adiabatic mass-loss sequence, can be calculated either by integration over initial and final models, or by a path integral along the mass-loss sequence. That change in total energy of the donor star, combined with the requirement that both remnant donor and its companion star fit within their respective Roche lobes, then circumscribes energetically possible survivors of common envelope evolution.

  1. Differential ablator-fuel adiabat tuning in indirect-drive implosions

    NASA Astrophysics Data System (ADS)

    Peterson, J. L.; Berzak Hopkins, L. F.; Jones, O. S.; Clark, D. S.

    2015-03-01

    We propose a design adjustment to the high foot laser pulse [T. R. Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014), 10.1103/PhysRevLett.112.055002] that is predicted to lower the fuel adiabat, increase compression and neutron production, but maintain similar ablation front growth. This is accomplished by lowering the laser power between the first and the second pulses (the "trough") so that the first shock remains strong initially but decays as it transits the ablator and enters the capsule fuel in a process similar to direct-drive "adiabat shaping" [S. E. Bodner et al., Phys. Plasmas 7, 2298 (2000), 10.1063/1.874063]. Integrated hohlraum simulations show that hohlraum cooling is sufficient to launch decaying shocks with adequate symmetry control, suggesting that adiabat shaping may be possible with indirect-drive implosions. Initial experiments show the efficacy of this technique.

  2. Local T2 measurement employing longitudinal Hadamard encoding and adiabatic inversion pulses in porous media.

    PubMed

    Vashaee, S; Newling, B; Balcom, B J

    2015-12-01

    Band selective adiabatic inversion radio frequency pulses were employed for multi-slice T2 distribution measurements in porous media samples. Multi-slice T2 measurement employing longitudinal Hadamard encoding has an inherent sensitivity advantage over slice-by-slice local T2 measurements. The slice selection process is rendered largely immune to B1 variation by employing hyperbolic secant adiabatic inversion pulses, which simultaneously invert spins in several well-defined slices. While Hadamard encoding is well established for local spectroscopy, the current work is the first use of Hadamard encoding for local T2 measurement. PMID:26580063

  3. Local T2 measurement employing longitudinal Hadamard encoding and adiabatic inversion pulses in porous media

    NASA Astrophysics Data System (ADS)

    Vashaee, S.; Newling, B.; Balcom, B. J.

    2015-12-01

    Band selective adiabatic inversion radio frequency pulses were employed for multi-slice T2 distribution measurements in porous media samples. Multi-slice T2 measurement employing longitudinal Hadamard encoding has an inherent sensitivity advantage over slice-by-slice local T2 measurements. The slice selection process is rendered largely immune to B1 variation by employing hyperbolic secant adiabatic inversion pulses, which simultaneously invert spins in several well-defined slices. While Hadamard encoding is well established for local spectroscopy, the current work is the first use of Hadamard encoding for local T2 measurement.

  4. Passage relevance models for genomics search

    PubMed Central

    Urbain, Jay; Frieder, Ophir; Goharian, Nazli

    2009-01-01

    We present a passage relevance model for integrating syntactic and semantic evidence of biomedical concepts and topics using a probabilistic graphical model. Component models of topics, concepts, terms, and document are represented as potential functions within a Markov Random Field. The probability of a passage being relevant to a biologist's information need is represented as the joint distribution across all potential functions. Relevance model feedback of top ranked passages is used to improve distributional estimates of query concepts and topics in context, and a dimensional indexing strategy is used for efficient aggregation of concept and term statistics. By integrating multiple sources of evidence including dependencies between topics, concepts, and terms, we seek to improve genomics literature passage retrieval precision. Using this model, we are able to demonstrate statistically significant improvements in retrieval precision using a large genomics literature corpus. PMID:19344479

  5. Skeptical notes on a physics of passage.

    PubMed

    Huggett, Nick

    2014-10-01

    This paper investigates the mathematical representation of time in physics. In existing theories, time is represented by the real numbers, hence their formal properties represent properties of time: these are surveyed. The central question of the paper is whether the existing representation of time is adequate, or whether it can or should be supplemented: especially, do we need a physics incorporating some kind of "dynamical passage" of time? The paper argues that the existing mathematical framework is resistant to such changes, and might have to be rejected by anyone seeking a physics of passage. Then it rebuts two common arguments for incorporating passage into physics, especially the claim that it is an element of experience. Finally, the paper investigates whether, as has been claimed, causal set theory provides a physics of passage. PMID:25183288

  6. Sliding Seal Materials for Adiabatic Engines, Phase 2

    NASA Technical Reports Server (NTRS)

    Lankford, J.; Wei, W.

    1986-01-01

    An essential task in the development of the heavy-duty adiabatic diesel engine is identification and improvements of reliable, low-friction piston seal materials. In the present study, the sliding friction coefficients and wear rates of promising carbide, oxide, and nitride materials were measured under temperature, environmental, velocity, and loading conditions that are representative of the adiabatic engine environment. In addition, silicon nitride and partially stabilized zirconia disks were ion implanted with TiNi, Ni, Co, and Cr, and subsequently run against carbide pins, with the objective of producing reduced friction via solid lubrication at elevated temperature. In order to provide guidance needed to improve materials for this application, the program stressed fundamental understanding of the mechanisms involved in friction and wear. Electron microscopy was used to elucidate the micromechanisms of wear following wear testing, and Auger electron spectroscopy was used to evaluate interface/environment interactions which seemed to be important in the friction and wear process. Unmodified ceramic sliding couples were characterized at all temperatures by friction coefficients of 0.24 and above. The coefficient at 800 C in an oxidizing environment was reduced to below 0.1, for certain material combinations, by the ion implanation of TiNi or Co. This beneficial effect was found to derive from lubricious Ti, Ni, and Co oxides.

  7. Fast Ion Non-adiabaticity in Spherical Tokamaks

    SciTech Connect

    V.A. Yavorskij; D. Darrow; V.Ya. Goloborod'ko; S.N. Reznik; U. Holzmueller-Steinacker; N. Gorelenkov; K. Schoepf

    2002-08-01

    Transport processes of fast ions in axisymmetric low-aspect-ratio spherical torus (ST) plasmas are investigated, which are induced by the non-conservation of the magnetic moment {mu}. The reason for non-conservation of {mu} of fast ions in ST's is the relatively large adiabaticity parameter epsilon typically exceeding the value 0.1 (epsilon = ratio of ion gyroradius to the gradient scale length of the magnetic field). Both analytical and numerical evaluations of the magnitude of nonadiabatic variations of {mu} are performed. Nonadiabaticity effects are shown to be most significant for fast ions for which the bounce oscillations are in resonance with the gyromotion, i.e., for ions with omega(subscript)B - lomega(subscript)b = 0, where omega(subscript)B and omega(subscript)b represent the bounce-averaged gyrofrequency and the bounce frequency, respectively, and l is an integer. The critical threshold of the adiabaticity parameter, epsilon(subscript)cr, to be exceeded for the transition to stochastic behavior of fast ions in axisymmetric ST's is inspected. Nonadiabatic variations of {mu} are shown to lead to collisionless transformation of trapped orbits into circulating ones and vice versa. For the case of strong nonadiabaticity, epsilon > epsilon(subscript)cr, we assess the transport coefficients describing intense collisionless pitch-angle diffusion, whereas, in the case of weak nonadiabaticity, epsilon > epsilon(subscript)cr, the more substantial coefficients of enhanced collisional radial diffusion and convection of fast ions gyrating resonantly with the bounce oscillations are estimated.

  8. Breakup of three particles within the adiabatic expansion method

    NASA Astrophysics Data System (ADS)

    Garrido, E.; Kievsky, A.; Viviani, M.

    2014-07-01

    General expressions for the breakup cross sections in the laboratory frame for 1+2 reactions are given in terms of the hyperspherical adiabatic basis. The three-body wave function is expanded in this basis and the corresponding hyperradial functions are obtained by solving a set of second order differential equations. The S matrix is computed by using two recently derived integral relations. Even though the method is shown to be well suited to describe 1+2 processes, there are particular configurations in the breakup channel (for example, those in which two particles move away close to each other in a relative zero-energy state) that need a huge number of basis states. This pathology manifests itself in the extremely slow convergence of the breakup amplitude in terms of the hyperspherical harmonic basis used to construct the adiabatic channels. To overcome this difficulty the breakup amplitude is extracted from an integral relation as well. For the sake of illustration, we consider neutron-deuteron scattering. The results are compared to the available benchmark calculations.

  9. 1,3-Dinitrobenzene neurotoxicity - Passage effect in immortalized astrocytes.

    PubMed

    Maurer, Laura L; Latham, Jackelyn D; Landis, Rory W; Song, Dong Hoon; Epstein, Tamir; Philbert, Martin A

    2016-03-01

    Age-related disturbances in astrocytic mitochondrial function are linked to loss of neuroprotection and decrements in neurological function. The immortalized rat neocortical astrocyte-derived cell line, DI-TNC1, provides a convenient model for the examination of cellular aging processes that are difficult to study in primary cell isolates from aged brain. Successive passages in culture may serve as a surrogate of aging in which time-dependent adaptation to culture conditions may result in altered responses to xenobiotic challenge. To investigate the hypothesis that astrocytic mitochondrial homeostatic function is decreased with time in culture, low passage DI-TNC1 astrocytes (LP; #2-8) and high passage DI-TNC1 astrocytes (HP; #17-28) were exposed to the mitochondrial neurotoxicant 1,3-dinitrobenzene (DNB). Cells were exposed in either monoculture or in co-culture with primary cortical neurons. Astrocyte mitochondrial membrane potential, morphology, ATP production and proliferation were monitored in monoculture, and the ability of DI-TNC1 cells to buffer K(+)-induced neuronal depolarization was examined in co-cultures. In HP DI-TNC1 cells, DNB exposure decreased proliferation, reduced mitochondrial membrane potential and significantly decreased mitochondrial form factor. Low passage DI-TNC1 cells effectively attenuated K(+)-induced neuronal depolarization in the presence of DNB whereas HP counterparts were unable to buffer K(+) in DNB challenge. Following DNB challenge, LP DI-TNC1 cells exhibited greater viability in co-culture than HP. The data provide compelling evidence that there is an abrupt phenotypic change in DI-TNC1 cells between passage #9-16 that significantly diminishes the ability of DI-TNC1 cells to compensate for neurotoxic challenge and provide neuroprotective spatial buffering. Whether or not these functional changes have an in vivo analog in aging brain remains to be determined. PMID:26769196

  10. Brook trout passage performance through culverts

    USGS Publications Warehouse

    Goerig, Elsa; Castro-Santos, Theodore R.; Bergeron, Normand

    2016-01-01

    Culverts can restrict access to habitat for stream-dwelling fishes. We used passive integrated transponder telemetry to quantify passage performance of >1000 wild brook trout (Salvelinus fontinalis) attempting to pass 13 culverts in Quebec under a range of hydraulic and environmental conditions. Several variables influenced passage success, including complex interactions between physiology and behavior, hydraulics, and structural characteristics. The probability of successful passage was greater through corrugated metal culverts than through smooth ones, particularly among smaller fish. Trout were also more likely to pass at warmer temperatures, but this effect diminished above 15 °C. Passage was impeded at higher flows, through culverts with steep slopes, and those with deep downstream pools. This study provides insight on factors influencing brook trout capacity to pass culverts as well as a model to estimate passage success under various conditions, with an improved resolution and accuracy over existing approaches. It also presents methods that could be used to investigate passage success of other species, with implications for connectivity of the riverscape.

  11. The Adiabatic Expansion of Gases and the Determination of Heat Capacity Ratios: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Moore, William M.

    1984-01-01

    Describes the procedures and equipment for an experiment on the adiabatic expansion of gases suitable for demonstration and discussion in the physical chemical laboratory. The expansion produced shows how the process can change temperature and still return to a different location on an isotherm. (JN)

  12. Calculating and Visualizing Thermodynamic Equilibrium: A Tutorial on the Isolated System with an Internal Adiabatic Piston

    ERIC Educational Resources Information Center

    Ferreira, Joao Paulo M.

    2007-01-01

    The problem of the equilibrium state of an isolated composite system with a movable internal adiabatic wall is a recurrent one in the literature. Classical equilibrium thermodynamics is unable to predict the equilibrium state, unless supplemented with information about the process taking place. This conclusion is clearly demonstrated in this…

  13. Quasi-adiabatic compression heating of selected foods

    NASA Astrophysics Data System (ADS)

    Landfeld, Ales; Strohalm, Jan; Halama, Radek; Houska, Milan

    2011-03-01

    The quasi-adiabatic temperature increase due to compression heating, during high-pressure (HP) processing (HPP), was studied using specially designed equipment. The temperature increase was evaluated as the difference in temperature, during compression, between atmospheric pressure and nominal pressure. The temperature was measured using a thermocouple in the center of a polyoxymethylene cup, which contained the sample. Fresh meat balls, pork meat pate, and tomato purée temperature increases were measured at three initial temperature levels between 40 and 80 °C. Nominal pressure was either 400 or 500 MPa. Results showed that the fat content had a positive effect on temperature increases. Empirical equations were developed to calculate the temperature increase during HPP at different initial temperatures for pressures of 400 and 500 MPa. This thermal effect data can be used for numerical modeling of temperature histories of foods during HP-assisted pasteurization or sterilization processes.

  14. Piezoelectric control of the mobility of a domain wall driven by adiabatic and non-adiabatic torques.

    PubMed

    De Ranieri, E; Roy, P E; Fang, D; Vehsthedt, E K; Irvine, A C; Heiss, D; Casiraghi, A; Campion, R P; Gallagher, B L; Jungwirth, T; Wunderlich, J

    2013-09-01

    The rich internal degrees of freedom of magnetic domain walls make them an attractive complement to electron charge for exploring new concepts of storage, transport and processing of information. Here we use the tunable internal structure of a domain wall in a perpendicularly magnetized GaMnAsP/GaAs ferromagnetic semiconductor and demonstrate devices in which piezoelectrically controlled magnetic anisotropy yields up to 500% mobility variations for an electrical-current-driven domain wall. We observe current-induced domain wall motion over a wide range of current-pulse amplitudes and report a direct observation and the piezoelectric control of the Walker breakdown separating two regimes with different mobilities. Our work demonstrates that in spin-orbit-coupled ferromagnets with weak extrinsic domain wall pinning, the piezoelectric control allows one to experimentally assess the upper and lower boundaries of the characteristic ratio of adiabatic and non-adiabatic spin-transfer torques in the current-driven domain wall motion. PMID:23749266

  15. Effect of Strain on Microstructure Evolution of 1Cr18Ni9Ti Stainless Steel During Adiabatic Shearing

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Jiang, L. H.; Luo, S. H.; Hu, H. B.; Tang, T. G.; Zhang, Q. M.

    2016-01-01

    Dynamic shear test was conducted on the hat-shaped specimen of the thermo-mechanical-processed 1Cr18Ni9Ti stainless steel by using the split Hopkinson pressure bar at ambient temperature. The effect of the shear strain on the microstructure evolution was investigated during adiabatic shearing. The results revealed that the development of adiabatic shear localization went through three stages, including the incubation period, the development stage, and the maturity period. TEM observations showed that the grains in the shear region were elongated, and the elongated grains were gradually evolved into equiaxed nano-grains of 100 nm as shear strain increased. The rotational dynamic recrystallization kinetics calculation showed that subgrains had sufficient time to generate an equiaxed microcrystalline structure by rotation within the deformation time. Based on the observation of the evolution of dislocations and sub-grains in the adiabatic shear region, a model of the microstructure evolution was established during the adiabatic shearing.

  16. Phase avalanches in near-adiabatic evolutions

    SciTech Connect

    Vertesi, T.; Englman, R.

    2006-02-15

    In the course of slow, nearly adiabatic motion of a system, relative changes in the slowness can cause abrupt and high magnitude phase changes, ''phase avalanches,'' superimposed on the ordinary geometric phases. The generality of this effect is examined for arbitrary Hamiltonians and multicomponent (>2) wave packets and is found to be connected (through the Blaschke term in the theory of analytic signals) to amplitude zeros in the lower half of the complex time plane. Motion on a nonmaximal circle on the Poincare-sphere suppresses the effect. A spectroscopic transition experiment can independently verify the phase-avalanche magnitudes.

  17. Adiabatic chaos in the spin orbit problem

    NASA Astrophysics Data System (ADS)

    Benettin, Giancarlo; Guzzo, Massimiliano; Marini, Valerio

    2008-05-01

    We provide evidences that the angular momentum of a symmetric rigid body in a spin orbit resonance can perform large scale chaotic motions on time scales which increase polynomially with the inverse of the oblateness of the body. This kind of irregular precession appears as soon as the orbit of the center of mass is non-circular and the angular momentum of the body is far from the principal directions with minimum (maximum) moment of inertia. We also provide a quantitative explanation of these facts by using the theory of adiabatic invariants, and we provide numerical applications to the cases of the 1:1 and 1:2 spin orbit resonances.

  18. Experimental breaking of an adiabatic invariant

    NASA Astrophysics Data System (ADS)

    Notte, J.; Fajans, J.; Chu, R.; Wurtele, J. S.

    1993-06-01

    When a cylindrical pure electron plasma is displaced from the center of the trap, it performs a bulk circular orbital motion known as the l=1 diocotron mode. The slow application of a perturbing potential to a patch on the trap wall distorts the orbit into a noncircular closed path. Experiments and a simple theoretical model indicate that the area by the loop is an adiabatic invariant. Detailed studies are made of the breaking of the invariant when perturbations are rapidly applied. When the perturbation is applied with discontinuous time derivatives, the invariant breaking greatly exceeds the predictions of the standard theory for smooth perturbations.

  19. [Bond selective chemistry beyond the adiabatic approximation

    SciTech Connect

    Butler, L.J.

    1993-02-28

    The adiabatic Born-Oppenheimer potential energy surface approximation is not valid for reaction of a wide variety of energetic materials and organic fuels; coupling between electronic states of reacting species plays a key role in determining the selectivity of the chemical reactions induced. This research program initially studies this coupling in (1) selective C-Br bond fission in 1,3- bromoiodopropane, (2) C-S:S-H bond fission branching in CH[sub 3]SH, and (3) competition between bond fission channels and H[sub 2] elimination in CH[sub 3]NH[sub 2].

  20. Adiabatic demagnetization refrigerator for space use

    NASA Technical Reports Server (NTRS)

    Serlemitsos, A. T.; Warner, B. A.; Castles, S.; Breon, S. R.; San Sebastian, M.; Hait, T.

    1990-01-01

    An Adiabatic Demagnetization Refrigerator (ADR) for space use is under development at NASA's Goddard Space Flight Center (GSFC). The breadboard ADR operated at 100 mK for 400 minutes. Some significant changes to that ADR, designed to eliminate shortcomings revealed during tests, are reported. To increase thermal contact, the ferric ammonium sulfate crystals were grown directly on gold-plated copper wires which serve as the thermal bus. The thermal link to the X-ray sensors was also markedly improved. To speed up the testing required to determine the best design parameters for the gas gap heat switch, the new heat switch has a modular design and is easy to disassemble.

  1. An adiabatic demagnetization refrigerator for infrared bolometers

    NASA Technical Reports Server (NTRS)

    Britt, R. D.; Richards, P. L.

    1981-01-01

    Adiabatic demagnetization refrigerators have been built and installed in small portable liquid helium cryostats to test the feasibility of this method of cooling infrared bolometric detectors to temperatures below 0.3 K. Performance has been achieved which suggests that bolometer temperatures of 0.2 K can be maintained for periods of approximately 60 hours. Applications to sensitive infrared detection from ground-based telescopes and space satellites are discussed. Design data are given which permit the evaluation of refrigerator performance for a variety of design parameters.

  2. Generalized Ramsey numbers through adiabatic quantum optimization

    NASA Astrophysics Data System (ADS)

    Ranjbar, Mani; Macready, William G.; Clark, Lane; Gaitan, Frank

    2016-06-01

    Ramsey theory is an active research area in combinatorics whose central theme is the emergence of order in large disordered structures, with Ramsey numbers marking the threshold at which this order first appears. For generalized Ramsey numbers r(G, H), the emergent order is characterized by graphs G and H. In this paper we: (i) present a quantum algorithm for computing generalized Ramsey numbers by reformulating the computation as a combinatorial optimization problem which is solved using adiabatic quantum optimization; and (ii) determine the Ramsey numbers r({{T}}m,{{T}}n) for trees of order m,n = 6,7,8 , most of which were previously unknown.

  3. Decoherence in a scalable adiabatic quantum computer

    SciTech Connect

    Ashhab, S.; Johansson, J. R.; Nori, Franco

    2006-11-15

    We consider the effects of decoherence on Landau-Zener crossings encountered in a large-scale adiabatic-quantum-computing setup. We analyze the dependence of the success probability--i.e., the probability for the system to end up in its new ground state--on the noise amplitude and correlation time. We determine the optimal sweep rate that is required to maximize the success probability. We then discuss the scaling of decoherence effects with increasing system size. We find that those effects can be important for large systems, even if they are small for each of the small building blocks.

  4. Local entanglement generation in the adiabatic regime

    SciTech Connect

    Cliche, M.; Veitia, Andrzej

    2010-09-15

    We study entanglement generation in a pair of qubits interacting with an initially correlated system. Using time-independent perturbation theory and the adiabatic theorem, we show conditions under which the qubits become entangled as the joint system evolves into the ground state of the interacting theory. We then apply these results to the case of qubits interacting with a scalar quantum field. We study three different variations of this setup; a quantum field subject to Dirichlet boundary conditions, a quantum field interacting with a classical potential, and a quantum field that starts in a thermal state.

  5. Slow evolution of elliptical galaxies induced by dynamical friction. II. Non-adiabatic effects

    NASA Astrophysics Data System (ADS)

    Arena, S. E.; Bertin, G.; Liseikina, T.; Pegoraro, F.

    2006-07-01

    Context: .Many astrophysical problems, ranging from structure formation in cosmology to dynamics of elliptical galaxies, refer to slow processes of evolution of essentially collisionless self-gravitating systems. In order to determine the relevant quasi-equilibrium configuration at time t from given initial conditions, it is often argued that such slow evolution may be approximated in terms of adiabatic evolution, for the calculation of which efficient semi-analytical techniques are available. Aims: .Here we focus on the slow process of evolution, induced by dynamical friction of a host stellar system on a minority component of "satellites", that we have investigated in a previous paper, to determine to what extent an adiabatic description might be applied. Methods: .The study is realized by comparing directly N-body simulations of the stellar system evolution (in two significantly different models) from initial to final conditions in a controlled numerical environment. Results: .We demonstrate that for the examined process the adiabatic description is going to provide incorrect answers, not only quantitatively, but also qualitatively. The two classes of models considered exhibit generally similar trends in evolution, with one exception noted in relation to the evolution of the total density profile. Conclusions: .This simple conclusion should be taken as a warning against the indiscriminate use of adiabatic growth prescriptions in studies of structure of galaxies.

  6. On the Role of Prior Probability in Adiabatic Quantum Algorithms

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Lu, Songfeng; Yang, Liping

    2016-03-01

    In this paper, we study the role of prior probability on the efficiency of quantum local adiabatic search algorithm. The following aspects for prior probability are found here: firstly, only the probabilities of marked states affect the running time of the adiabatic evolution; secondly, the prior probability can be used for improving the efficiency of the adiabatic algorithm; thirdly, like the usual quantum adiabatic evolution, the running time for the case of multiple solution states where the number of marked elements are smaller enough than the size of the set assigned that contains them can be significantly bigger than that of the case where the assigned set only contains all the marked states.

  7. Quantum Adiabatic Algorithms and Large Spin Tunnelling

    NASA Technical Reports Server (NTRS)

    Boulatov, A.; Smelyanskiy, V. N.

    2003-01-01

    We provide a theoretical study of the quantum adiabatic evolution algorithm with different evolution paths proposed in this paper. The algorithm is applied to a random binary optimization problem (a version of the 3-Satisfiability problem) where the n-bit cost function is symmetric with respect to the permutation of individual bits. The evolution paths are produced, using the generic control Hamiltonians H (r) that preserve the bit symmetry of the underlying optimization problem. In the case where the ground state of H(0) coincides with the totally-symmetric state of an n-qubit system the algorithm dynamics is completely described in terms of the motion of a spin-n/2. We show that different control Hamiltonians can be parameterized by a set of independent parameters that are expansion coefficients of H (r) in a certain universal set of operators. Only one of these operators can be responsible for avoiding the tunnelling in the spin-n/2 system during the quantum adiabatic algorithm. We show that it is possible to select a coefficient for this operator that guarantees a polynomial complexity of the algorithm for all problem instances. We show that a successful evolution path of the algorithm always corresponds to the trajectory of a classical spin-n/2 and provide a complete characterization of such paths.

  8. Effect of the Heat Pipe Adiabatic Region.

    PubMed

    Brahim, Taoufik; Jemni, Abdelmajid

    2014-04-01

    The main motivation of conducting this work is to present a rigorous analysis and investigation of the potential effect of the heat pipe adiabatic region on the flow and heat transfer performance of a heat pipe under varying evaporator and condenser conditions. A two-dimensional steady-state model for a cylindrical heat pipe coupling, for both regions, is presented, where the flow of the fluid in the porous structure is described by Darcy-Brinkman-Forchheimer model which accounts for the boundary and inertial effects. The model is solved numerically by using the finite volumes method, and a fortran code was developed to solve the system of equations obtained. The results show that a phase change can occur in the adiabatic region due to temperature gradient created in the porous structure as the heat input increases and the heat pipe boundary conditions change. A recirculation zone may be created at the condenser end section. The effect of the heat transfer rate on the vapor radial velocities and the performance of the heat pipe are discussed. PMID:24895467

  9. Adiabatic cooling of solar wind electrons

    NASA Technical Reports Server (NTRS)

    Sandbaek, Ornulf; Leer, Egil

    1992-01-01

    In thermally driven winds emanating from regions in the solar corona with base electron densities of n0 not less than 10 exp 8/cu cm, a substantial fraction of the heat conductive flux from the base is transfered into flow energy by the pressure gradient force. The adiabatic cooling of the electrons causes the electron temperature profile to fall off more rapidly than in heat conduction dominated flows. Alfven waves of solar origin, accelerating the basically thermally driven solar wind, lead to an increased mass flux and enhanced adiabatic cooling. The reduction in electron temperature may be significant also in the subsonic region of the flow and lead to a moderate increase of solar wind mass flux with increasing Alfven wave amplitude. In the solar wind model presented here the Alfven wave energy flux per unit mass is larger than that in models where the temperature in the subsonic flow is not reduced by the wave, and consequently the asymptotic flow speed is higher.

  10. Inertial effects in adiabatically driven flashing ratchets

    NASA Astrophysics Data System (ADS)

    Rozenbaum, Viktor M.; Makhnovskii, Yurii A.; Shapochkina, Irina V.; Sheu, Sheh-Yi; Yang, Dah-Yen; Lin, Sheng Hsien

    2014-05-01

    We study analytically the effect of a small inertial correction on the properties of adiabatically driven flashing ratchets. Parrondo's lemma [J. M. R. Parrondo, Phys. Rev. E 57, 7297 (1998), 10.1103/PhysRevE.57.7297] is generalized to include the inertial term so as to establish the symmetry conditions allowing directed motion (other than in the overdamped massless case) and to obtain a high-temperature expansion of the motion velocity for arbitrary potential profiles. The inertial correction is thus shown to enhance the ratchet effect at all temperatures for sawtooth potentials and at high temperatures for simple potentials described by the first two harmonics. With the special choice of potentials represented by at least the first three harmonics, the correction gives rise to the motion reversal in the high-temperature region. In the low-temperature region, inertia weakens the ratchet effect, with the exception of the on-off model, where diffusion is important. The directed motion adiabatically driven by potential sign fluctuations, though forbidden in the overdamped limit, becomes possible due to purely inertial effects in neither symmetric nor antisymmetric potentials, i.e., not for commonly used sawtooth and two-sinusoid profiles.

  11. First-passage-probability analysis of active transport in live cells

    NASA Astrophysics Data System (ADS)

    Kenwright, David A.; Harrison, Andrew W.; Waigh, Thomas A.; Woodman, Philip G.; Allan, Victoria J.

    2012-09-01

    The first-passage-probability can be used as an unbiased method for determining the phases of motion of individual organelles within live cells. Using high speed microscopy, we observe individual lipid droplet tracks and analyze the motor protein driven motion. At short passage lengths (<10-2μm), a log-normal distribution in the first-passage-probability as a function of time is observed, which switches to a Gaussian distribution at longer passages due to the running motion of the motor proteins. The mean first-passage times () as a function of the passage length (L), averaged over a number of runs for a single lipid droplet, follow a power law distribution ˜Lα, α>2, at short times due to a passive subdiffusive process. This changes to another power law at long times where 1<α<2, corresponding to sub-ballistic superdiffusive motion, an active process. Subdiffusive passive mean square displacements are observed as a function of time, r2˜tβ, where 0<β<1 at short times again crossing over to an active sub-ballistic superdiffusive result 1<β<2 at longer times. Consecutive runs of the lipid droplets add additional independent Gaussian peaks to a cumulative first-passage-probability distribution indicating that the speeds of sequential phases of motion are independent and biochemically well regulated. As a result we propose a model for motor driven lipid droplets that exhibits a sequential run behavior with occasional pauses.

  12. Optimal Stochastic Restart Renders Fluctuations in First Passage Times Universal.

    PubMed

    Reuveni, Shlomi

    2016-04-29

    Stochastic restart may drastically reduce the expected run time of a computer algorithm, expedite the completion of a complex search process, or increase the turnover rate of an enzymatic reaction. These diverse first-passage-time (FPT) processes seem to have very little in common but it is actually quite the other way around. Here we show that the relative standard deviation associated with the FPT of an optimally restarted process, i.e., one that is restarted at a constant (nonzero) rate which brings the mean FPT to a minimum, is always unity. We interpret, further generalize, and discuss this finding and the implications arising from it. PMID:27176510

  13. Optimal Stochastic Restart Renders Fluctuations in First Passage Times Universal

    NASA Astrophysics Data System (ADS)

    Reuveni, Shlomi

    2016-04-01

    Stochastic restart may drastically reduce the expected run time of a computer algorithm, expedite the completion of a complex search process, or increase the turnover rate of an enzymatic reaction. These diverse first-passage-time (FPT) processes seem to have very little in common but it is actually quite the other way around. Here we show that the relative standard deviation associated with the FPT of an optimally restarted process, i.e., one that is restarted at a constant (nonzero) rate which brings the mean FPT to a minimum, is always unity. We interpret, further generalize, and discuss this finding and the implications arising from it.

  14. Differential geometric treewidth estimation in adiabatic quantum computation

    NASA Astrophysics Data System (ADS)

    Wang, Chi; Jonckheere, Edmond; Brun, Todd

    2016-07-01

    The D-Wave adiabatic quantum computing platform is designed to solve a particular class of problems—the Quadratic Unconstrained Binary Optimization (QUBO) problems. Due to the particular "Chimera" physical architecture of the D-Wave chip, the logical problem graph at hand needs an extra process called minor embedding in order to be solvable on the D-Wave architecture. The latter problem is itself NP-hard. In this paper, we propose a novel polynomial-time approximation to the closely related treewidth based on the differential geometric concept of Ollivier-Ricci curvature. The latter runs in polynomial time and thus could significantly reduce the overall complexity of determining whether a QUBO problem is minor embeddable, and thus solvable on the D-Wave architecture.

  15. Robust entanglement via optomechanical dark mode: adiabatic scheme

    NASA Astrophysics Data System (ADS)

    Tian, Lin; Wang, Ying-Dan; Huang, Sumei; Clerk, Aashish

    2013-03-01

    Entanglement is a powerful resource for studying quantum effects in macroscopic objects and for quantum information processing. Here, we show that robust entanglement between cavity modes with distinct frequencies can be generated via a mechanical dark mode in an optomechanical quantum interface. Due to quantum interference, the effect of the mechanical noise is cancelled in a way that is similar to the electromagnetically induced transparency. We derive the entanglement in the strong coupling regime by solving the quantum Langevin equation using a perturbation theory approach. The entanglement in the adiabatic scheme is then compared with the entanglement in the stationary state scheme. Given the robust entanglement schemes and our previous schemes on quantum wave length conversion, the optomechanical interface hence forms an effective building block for a quantum network. This work is supported by DARPA-ORCHID program, NSF-DMR-0956064, NSF-CCF-0916303, and NSF-COINS.

  16. Laser-nucleus interactions: The quasi-adiabatic regime

    NASA Astrophysics Data System (ADS)

    Pálffy, Adriana; Buss, Oliver; Hoefer, Axel; Weidenmüller, Hans A.

    2015-10-01

    The interaction between nuclei and a strong zeptosecond laser pulse with coherent MeV photons is investigated theoretically. We provide a first semiquantitative study of the quasi-adiabatic regime where the photon absorption rate is comparable to the nuclear equilibration rate. In that regime, multiple photon absorption leads to the formation of a compound nucleus in the so-far unexplored regime of excitation energies several hundred MeV above the yrast line. The temporal dynamics of the process is investigated by means of a set of master equations that account for dipole absorption, stimulated dipole emission, neutron decay, and induced fission in a chain of nuclei. That set is solved numerically by means of state-of-the-art matrix exponential methods also used in nuclear fuel burn-up and radioactivity transport calculations. Our quantitative estimates predict the excitation path and range of nuclei reached by neutron decay and provide relevant information for the layout of future experiments.

  17. Passive gas-gap heat switch for adiabatic demagnetization refrigerator

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J. (Inventor); Di Pirro, Michael J. (Inventor)

    2005-01-01

    A passive gas-gap heat switch for use with a multi-stage continuous adiabatic demagnetization refrigerator (ADR). The passive gas-gap heat switch turns on automatically when the temperature of either side of the switch rises above a threshold value and turns off when the temperature on either side of the switch falls below this threshold value. One of the heat switches in this multistage process must be conductive in the 0.25? K to 0.3? K range. All of the heat switches must be capable of switching off in a short period of time (1-2 minutes), and when off to have a very low thermal conductance. This arrangement allows cyclic cooling cycles to be used without the need for separate heat switch controls.

  18. The Northwest Passage opens for bowhead whales.

    PubMed

    Heide-Jørgensen, Mads Peter; Laidre, Kristin L; Quakenbush, Lori T; Citta, John J

    2012-04-23

    The loss of Arctic sea ice is predicted to open up the Northwest Passage, shortening shipping routes and facilitating the exchange of marine organisms between the Atlantic and the Pacific oceans. Here, we present the first observations of distribution overlap of bowhead whales (Balaena mysticetus) from the two oceans in the Northwest Passage, demonstrating this route is already connecting whales from two populations that have been assumed to be separated by sea ice. Previous satellite tracking has demonstrated that bowhead whales from West Greenland and Alaska enter the ice-infested channels of the Canadian High Arctic during summer. In August 2010, two bowhead whales from West Greenland and Alaska entered the Northwest Passage from opposite directions and spent approximately 10 days in the same area, documenting overlap between the two populations. PMID:21937490

  19. Bipolar membranes with fluid distribution passages

    NASA Technical Reports Server (NTRS)

    Hitchens, G. Duncan (Inventor); Archer, Shivaun (Inventor); Tennakoon, Charles L. (Inventor); Gonzalez-Martin, Anuncia (Inventor); Cisar, Alan J. (Inventor)

    1999-01-01

    The present invention provides a bipolar membrane and methods for making and using the membrane. The bipolar membrane comprises a cation-selective region, an anion-selective region, an interfacial region between the anion-selective region and the cation-selective region, and means for delivering fluid directly into the interfacial region. The means for delivering fluid includes passages that may comprise a fluid-permeable material, a wicking material, an open passage disposed within the membrane or some combination thereof. The passages may be provided in many shapes, sizes and configurations, but preferably deliver fluid directly to the interfacial region so that the rate of electrodialysis is no longer limited by the diffusion of fluid through the cation- or anion-selective regions to the interfacial region.

  20. Insertable fluid flow passage bridgepiece and method

    DOEpatents

    Jones, Daniel O.

    2000-01-01

    A fluid flow passage bridgepiece for insertion into an open-face fluid flow channel of a fluid flow plate is provided. The bridgepiece provides a sealed passage from a columnar fluid flow manifold to the flow channel, thereby preventing undesirable leakage into and out of the columnar fluid flow manifold. When deployed in the various fluid flow plates that are used in a Proton Exchange Membrane (PEM) fuel cell, bridgepieces of this invention prevent mixing of reactant gases, leakage of coolant or humidification water, and occlusion of the fluid flow channel by gasket material. The invention also provides a fluid flow plate assembly including an insertable bridgepiece, a fluid flow plate adapted for use with an insertable bridgepiece, and a method of manufacturing a fluid flow plate with an insertable fluid flow passage bridgepiece.

  1. The Northwest Passage opens for bowhead whales

    PubMed Central

    Heide-Jørgensen, Mads Peter; Laidre, Kristin L.; Quakenbush, Lori T.; Citta, John J.

    2012-01-01

    The loss of Arctic sea ice is predicted to open up the Northwest Passage, shortening shipping routes and facilitating the exchange of marine organisms between the Atlantic and the Pacific oceans. Here, we present the first observations of distribution overlap of bowhead whales (Balaena mysticetus) from the two oceans in the Northwest Passage, demonstrating this route is already connecting whales from two populations that have been assumed to be separated by sea ice. Previous satellite tracking has demonstrated that bowhead whales from West Greenland and Alaska enter the ice-infested channels of the Canadian High Arctic during summer. In August 2010, two bowhead whales from West Greenland and Alaska entered the Northwest Passage from opposite directions and spent approximately 10 days in the same area, documenting overlap between the two populations. PMID:21937490

  2. Adiabatic principles in atom-diatom collisional energy transfer

    SciTech Connect

    Hovingh, W.J.

    1993-01-01

    This work describes the application of numerical methods to the solution of the time dependent Schroedinger equation for non-reactive atom-diatom collisions in which only one of the degrees of freedom has been removed. The basic method involves expanding the wave function in a basis set in two of the diatomic coordinates in a body-fixed frame (with respect to the triatomic complex) and defining the coefficients in that expansion as functions on a grid in the collision coordinate. The wave function is then propagated in time using a split operator method. The bulk of this work is devoted to the application of this formalism to the study of internal rotational predissociation in NeHF, in which quasibound states of the triatom predissociate through the transfer of energy from rotation of the diatom into translational energy in the atom-diatom separation coordinate. The author analyzes the computed time dependent wave functions to calculate the lifetimes for several quasibound states; these are in agreement with time independent quantum calculations using the same potential. Moreover, the time dependent behavior of the wave functions themselves sheds light on the dynamics of the predissociation processes. Finally, the partial cross sections of the products in those processes is determined with multiple exit channels. These show strong selectivity in the orbital angular momentum of the outgoing fragments, which the author explains with an adiabatic channel interpretation of the wave function's dynamics. The author also suggests that the same formalism might profitably be used to investigate the quantum dynamics of [open quotes]quasiresonant vibration-rotation transfer[close quotes], in which remarkably strong propensity rules in certain inelastic atom-diatom collision arise from classical adiabatic invariance theory.

  3. The Contribution of Passage and Non-Passage Factors to Item Performance on the SAT Reading Task.

    ERIC Educational Resources Information Center

    Katz, Stuart; Lautenschlager, Gary J.

    2001-01-01

    Conducted a regression analysis to assess the contributions of passage and no-passage factors to item variance on the Scholastic Aptitude Test reading comprehension task. Results show that no-passage factors play a larger role than do passage factors, accounting for as much as three-fourths of systematic variance in item difficulty and more than…

  4. Aquatic organism passage at road-stream crossings—synthesis and guidelines for effectiveness monitoring

    USGS Publications Warehouse

    Hoffman, Robert L.; Dunham, Jason B.; Hansen, Bruce P.

    2012-01-01

    Restoration and maintenance of passage for aquatic organisms at road-stream crossings represents a major management priority, involving an investment of hundreds of millions of dollars (for example, U.S. Government Accounting Office, 2001). In recent years, passage at hundreds of crossings has been restored, primarily by replacing barrier road culverts with bridges or stream simulation culverts designed to pass all species and all life stages of aquatic life and simulate natural hydro-geomorphic processes (U.S. Forest Service, 2008). The current situation has motivated two general questions: 1. Are current design standards for stream simulation culverts adequately re-establishing passage for aquatic biota? and 2. How do we monitor and evaluate effectiveness of passage restoration? To address the latter question, a national workshop was held in March 2010, in Portland, Oregon. The workshop included experts on aquatic organism passage from across the nation (see table of participants, APPENDIX) who addressed four classes of methods for monitoring effectiveness of aquatic organism passage—individual movement, occupancy, demography, and genetics. This report has been written, in part, for field biologists who will be undertaking and evaluating the effectiveness of aquatic organism passage restoration projects at road-stream crossings. The report outlines basic methods for evaluating road-stream crossing passage impairment and restoration and discusses under what circumstances and conditions each method will be useful; what questions each method can potentially answer; how to design and implement an evaluation study; and points out the fundamental reality that most evaluation projects will require special funding and partnerships among researchers and resource managers. The report is organized into the following sections, which can be read independently: 1. Historical context: In this section, we provide a brief history of events leading up to the present situation

  5. The passage of fast electrons through matter

    NASA Astrophysics Data System (ADS)

    Sorini, Adam P.

    This work regards the passage of fast electrons through matter, and in particular how electrons scatter and lose energy within a solid. The basic quantum theory of these scattering processes was first considered in the early- to mid-20th century by Bohr, Bethe, Fermi, and others. This work extends our understanding of how a relativistic electron scatters off, and loses energy to, a complex many-body system. The main idea of this work is that it is now possible to calculate, from first-principles, the inelastic losses of relativistic electrons in condensed matter. We present ab initio calculations based on a real-space Green's function approach, implemented in the FEFF8 computer program[1]. Our work focuses on three topics: Relativistic stopping power and associated loss parameters, electron energy loss spectroscopy in high energy transmission electron microscopes, and the inelastic electron scattering mixed dynamic form factor. We calculate, for the first time, ab initio stopping powers and inelastic mean free paths in real materials. The stopping powers are calculated over a broad energy range, from ten eV to above ten MeV. We also present the first ab initio calculations of the "mean excitation energy". We develop a relativistic theory of inelastic electron scattering, based on ab initio calculations of dielectric response, and the generalized Lorenz gauge. Using our relativistic dielectric theory, we calculate the EELS magic angle ratio for boron nitride and for graphite. In these anisotropic materials we find large relativistic corrections to the magic angle for high energy electron microscopes. We also predict and calculate large deviations in the EELS magic angle from the relativistic vacuum predictions in the low energy-loss regime. Finally, we present calculations of mixed dynamic form factor.

  6. Adiabat-shaping in indirect drive inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Baker, K. L.; Robey, H. F.; Milovich, J. L.; Jones, O. S.; Smalyuk, V. A.; Casey, D. T.; MacPhee, A. G.; Pak, A.; Celliers, P. M.; Clark, D. S.; Landen, O. L.; Peterson, J. L.; Berzak-Hopkins, L. F.; Weber, C. R.; Haan, S. W.; Döppner, T. D.; Dixit, S.; Giraldez, E.; Hamza, A. V.; Jancaitis, K. S.; Kroll, J. J.; Lafortune, K. N.; MacGowan, B. J.; Moody, J. D.; Nikroo, A.; Widmayer, C. C.

    2015-05-01

    Adiabat-shaping techniques were investigated in indirect drive inertial confinement fusion experiments on the National Ignition Facility as a means to improve implosion stability, while still maintaining a low adiabat in the fuel. Adiabat-shaping was accomplished in these indirect drive experiments by altering the ratio of the picket and trough energies in the laser pulse shape, thus driving a decaying first shock in the ablator. This decaying first shock is designed to place the ablation front on a high adiabat while keeping the fuel on a low adiabat. These experiments were conducted using the keyhole experimental platform for both three and four shock laser pulses. This platform enabled direct measurement of the shock velocities driven in the glow-discharge polymer capsule and in the liquid deuterium, the surrogate fuel for a DT ignition target. The measured shock velocities and radiation drive histories are compared to previous three and four shock laser pulses. This comparison indicates that in the case of adiabat shaping the ablation front initially drives a high shock velocity, and therefore, a high shock pressure and adiabat. The shock then decays as it travels through the ablator to pressures similar to the original low-adiabat pulses when it reaches the fuel. This approach takes advantage of initial high ablation velocity, which favors stability, and high-compression, which favors high stagnation pressures.

  7. Quantum adiabatic algorithm for factorization and its experimental implementation.

    PubMed

    Peng, Xinhua; Liao, Zeyang; Xu, Nanyang; Qin, Gan; Zhou, Xianyi; Suter, Dieter; Du, Jiangfeng

    2008-11-28

    We propose an adiabatic quantum algorithm capable of factorizing numbers, using fewer qubits than Shor's algorithm. We implement the algorithm in a NMR quantum information processor and experimentally factorize the number 21. In the range that our classical computer could simulate, the quantum adiabatic algorithm works well, providing evidence that the running time of this algorithm scales polynomially with the problem size. PMID:19113467

  8. Adiabat-shaping in indirect drive inertial confinement fusion

    SciTech Connect

    Baker, K. L.; Robey, H. F.; Milovich, J. L.; Jones, O. S.; Smalyuk, V. A.; Casey, D. T.; MacPhee, A. G.; Pak, A.; Celliers, P. M.; Clark, D. S.; Landen, O. L.; Peterson, J. L.; Berzak-Hopkins, L. F.; Weber, C. R.; Haan, S. W.; Döppner, T. D.; Dixit, S.; Hamza, A. V.; Jancaitis, K. S.; Kroll, J. J.; and others

    2015-05-15

    Adiabat-shaping techniques were investigated in indirect drive inertial confinement fusion experiments on the National Ignition Facility as a means to improve implosion stability, while still maintaining a low adiabat in the fuel. Adiabat-shaping was accomplished in these indirect drive experiments by altering the ratio of the picket and trough energies in the laser pulse shape, thus driving a decaying first shock in the ablator. This decaying first shock is designed to place the ablation front on a high adiabat while keeping the fuel on a low adiabat. These experiments were conducted using the keyhole experimental platform for both three and four shock laser pulses. This platform enabled direct measurement of the shock velocities driven in the glow-discharge polymer capsule and in the liquid deuterium, the surrogate fuel for a DT ignition target. The measured shock velocities and radiation drive histories are compared to previous three and four shock laser pulses. This comparison indicates that in the case of adiabat shaping the ablation front initially drives a high shock velocity, and therefore, a high shock pressure and adiabat. The shock then decays as it travels through the ablator to pressures similar to the original low-adiabat pulses when it reaches the fuel. This approach takes advantage of initial high ablation velocity, which favors stability, and high-compression, which favors high stagnation pressures.

  9. Kinetic Theory Derivation of the Adiabatic Law for Ideal Gases.

    ERIC Educational Resources Information Center

    Sobel, Michael I.

    1980-01-01

    Discusses how the adiabatic law for ideal gases can be derived from the assumption of a Maxwell-Boltzmann (or any other) distribution of velocities--in contrast to the usual derivations from thermodynamics alone, and the higher-order effect that leads to one-body viscosity. An elementary derivation of the adiabatic law is given. (Author/DS)

  10. The Adiabatic Invariance of the Action Variable in Classical Dynamics

    ERIC Educational Resources Information Center

    Wells, Clive G.; Siklos, Stephen T. C.

    2007-01-01

    We consider one-dimensional classical time-dependent Hamiltonian systems with quasi-periodic orbits. It is well known that such systems possess an adiabatic invariant which coincides with the action variable of the Hamiltonian formalism. We present a new proof of the adiabatic invariance of this quantity and illustrate our arguments by means of…

  11. Adiabatic theory for anisotropic cold molecule collisions

    SciTech Connect

    Pawlak, Mariusz; Shagam, Yuval; Narevicius, Edvardas; Moiseyev, Nimrod

    2015-08-21

    We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment {sup 4}He(1s2s {sup 3}S) + HD(1s{sup 2}) → {sup 4}He(1s{sup 2}) + HD{sup +}(1s) + e{sup −} [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings.

  12. Quantum Adiabatic Optimization and Combinatorial Landscapes

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, V. N.; Knysh, S.; Morris, R. D.

    2003-01-01

    In this paper we analyze the performance of the Quantum Adiabatic Evolution (QAE) algorithm on a variant of Satisfiability problem for an ensemble of random graphs parametrized by the ratio of clauses to variables, gamma = M / N. We introduce a set of macroscopic parameters (landscapes) and put forward an ansatz of universality for random bit flips. We then formulate the problem of finding the smallest eigenvalue and the excitation gap as a statistical mechanics problem. We use the so-called annealing approximation with a refinement that a finite set of macroscopic variables (verses only energy) is used, and are able to show the existence of a dynamic threshold gamma = gammad, beyond which QAE should take an exponentially long time to find a solution. We compare the results for extended and simplified sets of landscapes and provide numerical evidence in support of our universality ansatz.

  13. An adiabatic demagnetization refrigerator for SIRTF

    NASA Technical Reports Server (NTRS)

    Timbie, P. T.; Bernstein, G. M.; Richards, P. L.

    1989-01-01

    An adiabatic demagnetization refrigerator (ADR) has been proposed to cool bolometric infrared detectors on the multiband imaging photometer of the Space Infrared Telescope Facility (SIRTF). One such refrigerator has been built which uses a ferric ammonium alum salt pill suspended by nylon threads in a 3-T solenoid. The resonant modes of this suspension are above 100 Hz. The heat leak to the salt pill is less than 0.5 microW. The system has a hold time at 0.1K of more than 12 h. The cold stage temperature is regulated with a feedback loop that controls the magnetic field. A second, similar refrigerator is being built at a SIRTF prototype to fly on a ballon-borne telescope. It will use a ferromagnetic shield. The possibility of using a high-Tc solenoid-actuated heat switch is also discussed.

  14. Design of a spaceworthy adiabatic demagnetization refrigerator

    NASA Technical Reports Server (NTRS)

    Serlemitsos, A. T.; Kunes, E.; Sansebastian, M.

    1992-01-01

    A spaceworthy adiabatic demagnetization refrigerator (ADR) under development at NASA-Goddard is presented. A baseline model heat switch was tested extensively with an on/off ratio of about 10,000 and a parasitic heat leak of 10 micro-W. Data obtained from the breadboard models were used to design an ADR with improved structural integrity. The core of the ADR is the salt pill which consists of the paramagnetic salt crystal and the thermal bus. When a magnetic field is applied to the salt it forces the alignment of the magnetic moments, thereby decreasing the entropy of the salt. Preliminary tests results showed a net crystal mass of 680 g instead of the expected 740 g, which indicate that there are gaps in the salt pill. A partial fix was accomplished by sealing helium gas in the salt pill at a pressure of 2 bar, which improved the thermal contact during salt magnetization, at about 2 K.

  15. Reversible logic gate using adiabatic superconducting devices

    PubMed Central

    Takeuchi, N.; Yamanashi, Y.; Yoshikawa, N.

    2014-01-01

    Reversible computing has been studied since Rolf Landauer advanced the argument that has come to be known as Landauer's principle. This principle states that there is no minimum energy dissipation for logic operations in reversible computing, because it is not accompanied by reductions in information entropy. However, until now, no practical reversible logic gates have been demonstrated. One of the problems is that reversible logic gates must be built by using extremely energy-efficient logic devices. Another difficulty is that reversible logic gates must be both logically and physically reversible. Here we propose the first practical reversible logic gate using adiabatic superconducting devices and experimentally demonstrate the logical and physical reversibility of the gate. Additionally, we estimate the energy dissipation of the gate, and discuss the minimum energy dissipation required for reversible logic operations. It is expected that the results of this study will enable reversible computing to move from the theoretical stage into practical usage. PMID:25220698

  16. Entropy in Adiabatic Regions of Convection Simulations

    NASA Astrophysics Data System (ADS)

    Tanner, Joel D.; Basu, Sarbani; Demarque, Pierre

    2016-05-01

    One of the largest sources of uncertainty in stellar models is caused by the treatment of convection in stellar envelopes. One-dimensional stellar models often make use of the mixing length or equivalent approximations to describe convection, all of which depend on various free parameters. There have been attempts to rectify this by using 3D radiative-hydrodynamic simulations of stellar convection, and in trying to extract an equivalent mixing length from the simulations. In this Letter, we show that the entropy of the deeper, adiabatic layers in these simulations can be expressed as a simple function of {log}g and {log}{T}{{eff}}, which holds potential for calibrating stellar models in a simple and more general manner.

  17. Number Partitioning via Quantum Adiabatic Computation

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, Vadim N.; Toussaint, Udo; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We study both analytically and numerically the complexity of the adiabatic quantum evolution algorithm applied to random instances of combinatorial optimization problems. We use as an example the NP-complete set partition problem and obtain an asymptotic expression for the minimal gap separating the ground and exited states of a system during the execution of the algorithm. We show that for computationally hard problem instances the size of the minimal gap scales exponentially with the problem size. This result is in qualitative agreement with the direct numerical simulation of the algorithm for small instances of the set partition problem. We describe the statistical properties of the optimization problem that are responsible for the exponential behavior of the algorithm.

  18. Geometric Adiabatic Transport in Quantum Hall States

    NASA Astrophysics Data System (ADS)

    Klevtsov, S.; Wiegmann, P.

    2015-08-01

    We argue that in addition to the Hall conductance and the nondissipative component of the viscous tensor, there exists a third independent transport coefficient, which is precisely quantized. It takes constant values along quantum Hall plateaus. We show that the new coefficient is the Chern number of a vector bundle over moduli space of surfaces of genus 2 or higher and therefore cannot change continuously along the plateau. As such, it does not transpire on a sphere or a torus. In the linear response theory, this coefficient determines intensive forces exerted on electronic fluid by adiabatic deformations of geometry and represents the effect of the gravitational anomaly. We also present the method of computing the transport coefficients for quantum Hall states.

  19. Geometric Adiabatic Transport in Quantum Hall States.

    PubMed

    Klevtsov, S; Wiegmann, P

    2015-08-21

    We argue that in addition to the Hall conductance and the nondissipative component of the viscous tensor, there exists a third independent transport coefficient, which is precisely quantized. It takes constant values along quantum Hall plateaus. We show that the new coefficient is the Chern number of a vector bundle over moduli space of surfaces of genus 2 or higher and therefore cannot change continuously along the plateau. As such, it does not transpire on a sphere or a torus. In the linear response theory, this coefficient determines intensive forces exerted on electronic fluid by adiabatic deformations of geometry and represents the effect of the gravitational anomaly. We also present the method of computing the transport coefficients for quantum Hall states. PMID:26340197

  20. Adiabatic connection at negative coupling strengths

    SciTech Connect

    Seidl, Michael; Gori-Giorgi, Paola

    2010-01-15

    The adiabatic connection of density functional theory (DFT) for electronic systems is generalized here to negative values of the coupling strength alpha (with attractive electrons). In the extreme limit alpha->-infinity a simple physical solution is presented and its implications for DFT (as well as its limitations) are discussed. For two-electron systems (a case in which the present solution can be calculated exactly), we find that an interpolation between the limit alpha->-infinity and the opposite limit of infinitely strong repulsion (alpha->+infinity) yields a rather accurate estimate of the second-order correlation energy E{sub c}{sup GL2}[rho] for several different densities rho, without using virtual orbitals. The same procedure is also applied to the Be isoelectronic series, analyzing the effects of near degeneracy.

  1. Adiabatic theory for anisotropic cold molecule collisions.

    PubMed

    Pawlak, Mariusz; Shagam, Yuval; Narevicius, Edvardas; Moiseyev, Nimrod

    2015-08-21

    We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment (4)He(1s2s (3)S) + HD(1s(2)) → (4)He(1s(2)) + HD(+)(1s) + e(-) [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings. PMID:26298122

  2. Adiabatically-tapered fiber mode multiplexers.

    PubMed

    Yerolatsitis, S; Gris-Sánchez, I; Birks, T A

    2014-01-13

    Simple all-fiber three-mode multiplexers were made by adiabatically merging three dissimilar single-mode cores into one multimode core. This was achieved by collapsing air holes in a photonic crystal fiber and (in a separate device) by fusing and tapering separate telecom fibers in a fluorine-doped silica capillary. In each case the LP01 mode and both LP11 modes were individually excited from three separate input cores, with losses below 0.3 and 0.7 dB respectively and mode purities exceeding 10 dB. Scaling to more modes is challenging, but would be assisted by using single-mode fibers with a smaller ratio of cladding to core diameter. PMID:24515021

  3. The HAWC and SAFIRE Adiabatic Demagnetization Refrigerators

    NASA Technical Reports Server (NTRS)

    Tuttle, Jim; Shirron, Peter; DiPirro, Michael; Jackson, Michael; Behr, Jason; Kunes, Evan; Hait, Tom; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    The High-Resolution Airborne Wide-band Camera (HAWC) and Submillimeter and Far Infrared Experiment (SAFIRE) are far-infrared experiments which will fly on the Stratospheric Observatory for Infrared Astronomy (SOFIA) aircraft. HAWC's detectors will operate at 0.2 Kelvin, while those of SAFIRE will be at 0.1 Kelvin. Each instrument will include an adiabatic demagnetization refrigerator (ADR) to cool its detector stage from the liquid helium bath temperature (HAWC's at 4.2 Kelvin and SAFIRE's pumped to about 1.3 Kelvin) to its operating temperature. Except for the magnets used to achieve the cooling and a slight difference in the heat switch design, the two ADRs are nearly identical. We describe the ADR design and present the results of performance testing.

  4. Non-adiabatic molecular dynamics with complex quantum trajectories. II. The adiabatic representation

    NASA Astrophysics Data System (ADS)

    Zamstein, Noa; Tannor, David J.

    2012-12-01

    We present a complex quantum trajectory method for treating non-adiabatic dynamics. Each trajectory evolves classically on a single electronic surface but with complex position and momentum. The equations of motion are derived directly from the time-dependent Schrödinger equation, and the population exchange arises naturally from amplitude-transfer terms. In this paper the equations of motion are derived in the adiabatic representation to complement our work in the diabatic representation [N. Zamstein and D. J. Tannor, J. Chem. Phys. 137, 22A517 (2012)], 10.1063/1.4739845. We apply our method to two benchmark models introduced by John Tully [J. Chem. Phys. 93, 1061 (1990)], 10.1063/1.459170, and get very good agreement with converged quantum-mechanical calculations. Specifically, we show that decoherence (spatial separation of wavepackets on different surfaces) is already contained in the equations of motion and does not require ad hoc augmentation.

  5. Non-adiabatic molecular dynamics with complex quantum trajectories. II. The adiabatic representation

    SciTech Connect

    Zamstein, Noa; Tannor, David J.

    2012-12-14

    We present a complex quantum trajectory method for treating non-adiabatic dynamics. Each trajectory evolves classically on a single electronic surface but with complex position and momentum. The equations of motion are derived directly from the time-dependent Schroedinger equation, and the population exchange arises naturally from amplitude-transfer terms. In this paper the equations of motion are derived in the adiabatic representation to complement our work in the diabatic representation [N. Zamstein and D. J. Tannor, J. Chem. Phys. 137, 22A517 (2012)]. We apply our method to two benchmark models introduced by John Tully [J. Chem. Phys. 93, 1061 (1990)], and get very good agreement with converged quantum-mechanical calculations. Specifically, we show that decoherence (spatial separation of wavepackets on different surfaces) is already contained in the equations of motion and does not require ad hoc augmentation.

  6. Estimation of mean first passage time for bursty gene expression

    NASA Astrophysics Data System (ADS)

    Shreshtha, Mayank; Surendran, Anudeep; Ghosh, Anandamohan

    2016-06-01

    Gene expression is an intrinsically noisy process, typically, producing mRNAs and proteins in bursts. An important description of such stochastic processes can be done in terms of the mean first passage time (MFPT), i.e., the time taken by mRNAs/proteins to reach a particular threshold. We study the role of burstiness on MFPT and obtain an analytical expression for different models of transcriptional and translational bursts. Our analytical results and numerical simulations confirm that MFPT monotonically decreases with burstiness.

  7. Non-adiabatic spin-transfer torque independent of the spin relaxation rate

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung-Whan; Lee, Kyung-Jin; Lee, Hyun-Woo; Stiles, Mark

    Non-adiabatic spin-transfer torques play an important role in magnetization dynamics. For example, they determine current-induced magnetic domain wall velocity. A well-known mechanism for non-adiabatic spin-transfer torques arises from spin relaxation and is directly proportional to the spin relaxation rate. Here we report mechanism that is independent of the spin relaxation rate. This mechanism is related to the recently reported intrinsic damping-like spin-orbit torque, which is proportional to an electric field but is independent of the conductivity, and hence the scattering rate. Likewise, the mechanism we report is independent of the scattering rate. It originates from the effective spin-orbit coupling that arises in systems with magnetic textures as we previously reported for related processes. In this work, we demonstrate the existence of such a spin-transfer torque, which is a contribution to the non-adiabatic spin-transfer torque and is independent of scattering rates. We also demonstrate that the magnitude of this torque can be much larger than other mechanisms for non-adiabatic spin-transfer torques, and may be the dominant contribution in some systems.

  8. CYANOBACTERIA PASSAGE DURING FILTER PERTURBATION EPISODES

    EPA Science Inventory

    Eight pilot-scale in-line filtration trials were performed to evaluate the passage of cyanobacterial cells through drinking water filters after sudden increases in hydraulic loading rates. Trials were performed at 30 C using two coagulant combinations (aluminum sulfate and cati...

  9. Charles Johnson's "Middle Passage" as Historiographic Metafiction.

    ERIC Educational Resources Information Center

    Thaden, Barbara Z.

    1997-01-01

    Suggests that what makes Charles Johnson's "Middle Passage" significant and eminently teachable is that it is an accessible example of "historiographic metafiction"--bestselling postmodern novels set in the past. Notes that students find the novel "easy" and enjoyable and that teaching the novel with some of its intertexts, such as H. Melville's…

  10. Passage Recall: Schema Change and Cognitive Flexibility.

    ERIC Educational Resources Information Center

    Hertel, Paula T.; And Others

    1980-01-01

    The effects of subsequent related information and cognitive flexibility on prose recall were studied. Subjects read a passage; then were given either consistent or contradictory information. Errors in cued recall, reflecting the subsequent information, were more frequently produced after a three-week delay than after two days. (Author/GDC)

  11. Yakima Basin Fish Passage Project, Phase 2

    SciTech Connect

    Not Available

    1991-08-01

    Implementation of the Yakima Basin Fish Passage Project -- Phase 2 would significantly improve the production of anadromous fish in the Yakima River system. The project would provide offsite mitigation and help to compensate for lower Columbia River hydroelectric fishery losses. The Phase 2 screens would allow greater numbers of juvenile anadromous fish to survive. As a consequence, there would be higher returns of adult salmon and steelhead to the Yakima River. The proposed action would play an integral part in the overall Yakima River anadromous fish enhancement program (fish passage improvement, habitat enhancement, hatchery production increases, and harvest management). These would be environmental benefits associated with implementation of the Fish Passage and Protective Facilities Phase 2 Project. Based on the evaluation presented in this assessment, there would be no significant adverse environmental impacts if the proposed action was carried forward. No significant adverse environmental effects have been identified from construction and operation of the Yakima Phase 2 fish passage project. Proper design and implementation of the project will ensure no adverse effects will occur. Based on the information in this environmental analysis, BPA's and Reclamation's proposal to construct these facilities does not constitute a major Federal action that could significantly affect the quality of the human environment. 8 refs., 4 figs., 6 tabs.

  12. Transient energy excitation in shortcuts to adiabaticity for the time-dependent harmonic oscillator

    SciTech Connect

    Chen Xi; Muga, J. G.

    2010-11-15

    We study for the time-dependent harmonic oscillator the transient energy excitation in speed-up processes ('shortcuts to adiabaticity') designed to reproduce the initial populations at some predetermined final frequency and time. We provide lower bounds and examples. Implications for the limits imposed to the process times and for the principle of unattainability of the absolute zero, in a single expansion or in quantum refrigerator cycles, are drawn.

  13. School science as a rite of passage: A new frame for familiar problems

    NASA Astrophysics Data System (ADS)

    Costa, Victoria Brookhart

    The purpose of this article is twofold: to characterize and describe school science as a rite of passage, and to expose problems in school science that are made visible through the use of this metaphor. Like other rite-of-passage studies by van Gennep, Turner, and White, school-science-as-a-rite-of-passage follows the classic model: First, science students are separated from other students through their enrollment in introductory science classes and laboratory (the phase of separation). Science students are then secluded in the classroom and laboratory where a specialized body of knowledge unique to the scientific community is transmitted to them (the phase of transition). Eventually, students are presented via graduation ceremonies to the ordinary world with accompanying changes in their status and rights (the phase of reincorporation). However, unlike traditional passage rites, school science is a lengthy and ambiguous process that muddles the points of separation and reincorporation and fails to clarify the value of transition rituals.

  14. Non-adiabatic perturbations in Ricci dark energy model

    SciTech Connect

    Karwan, Khamphee; Thitapura, Thiti E-mail: nanodsci2523@hotmail.com

    2012-01-01

    We show that the non-adiabatic perturbations between Ricci dark energy and matter can grow both on superhorizon and subhorizon scales, and these non-adiabatic perturbations on subhorizon scales can lead to instability in this dark energy model. The rapidly growing non-adiabatic modes on subhorizon scales always occur when the equation of state parameter of dark energy starts to drop towards -1 near the end of matter era, except that the parameter α of Ricci dark energy equals to 1/2. In the case where α = 1/2, the rapidly growing non-adiabatic modes disappear when the perturbations in dark energy and matter are adiabatic initially. However, an adiabaticity between dark energy and matter perturbations at early time implies a non-adiabaticity between matter and radiation, this can influence the ordinary Sachs-Wolfe (OSW) effect. Since the amount of Ricci dark energy is not small during matter domination, the integrated Sachs-Wolfe (ISW) effect is greatly modified by density perturbations of dark energy, leading to a wrong shape of CMB power spectrum. The instability in Ricci dark energy is difficult to be alleviated if the effects of coupling between baryon and photon on dark energy perturbations are included.

  15. Effects of rotation on coolant passage heat transfer. Volume 1: Coolant passages with smooth walls

    NASA Technical Reports Server (NTRS)

    Hajek, T. J.; Wagner, J. H.; Johnson, B. V.; Higgins, A. W.; Steuber, G. D.

    1991-01-01

    An experimental program was conducted to investigate heat transfer and pressure loss characteristics of rotating multipass passages, for configurations and dimensions typical of modern turbine blades. The immediate objective was the generation of a data base of heat transfer and pressure loss data required to develop heat transfer correlations and to assess computational fluid dynamic techniques for rotating coolant passages. Experiments were conducted in a smooth wall large scale heat transfer model.

  16. Experimental study of the influence of flow passage subtle variation on mixed-flow pump performance

    NASA Astrophysics Data System (ADS)

    Bing, Hao; Cao, Shuliang

    2014-05-01

    In the mixed-flow pump design, the shape of the flow passage can directly affect the flow capacity and the internal flow, thus influencing hydraulic performance, cavitation performance and operation stability of the mixed-flow pump. However, there is currently a lack of experimental research on the influence mechanism. Therefore, in order to analyze the effects of subtle variations of the flow passage on the mixed-flow pump performance, the frustum cone surface of the end part of inlet contraction flow passage of the mixed-flow pump is processed into a cylindrical surface and a test rig is built to carry out the hydraulic performance experiment. In this experiment, parameters, such as the head, the efficiency, and the shaft power, are measured, and the pressure fluctuation and the noise signal are also collected. The research results suggest that after processing the inlet flow passage, the head of the mixed-flow pump significantly goes down; the best efficiency of the mixed-flow pump drops by approximately 1.5%, the efficiency decreases more significantly under the large flow rate; the shaft power slightly increases under the large flow rate, slightly decreases under the small flow rate. In addition, the pressure fluctuation amplitudes on both the impeller inlet and the diffuser outlet increase significantly with more drastic pressure fluctuations and significantly lower stability of the internal flow of the mixed-flow pump. At the same time, the noise dramatically increases. Overall speaking, the subtle variation of the inlet flow passage leads to a significant change of the mixed-flow pump performance, thus suggesting a special attention to the optimization of flow passage. This paper investigates the influence of the flow passage variation on the mixed-flow pump performance by experiment, which will benefit the optimal design of the flow passage of the mixed-flow pump.

  17. Dynamics of Charged Particles in an Adiabatic Thermal Beam Equilibrium

    NASA Astrophysics Data System (ADS)

    Chen, Chiping; Wei, Haofei

    2010-11-01

    Charged-particle motion is studied in the self-electric and self-magnetic fields of a well-matched, intense charged-particle beam and an applied periodic solenoidal magnetic focusing field. The beam is assumed to be in a state of adiabatic thermal equilibrium. The phase space is analyzed and compared with that of the well-known Kapchinskij-Vladimirskij (KV)-type beam equilibrium. It is found that the widths of nonlinear resonances in the adiabatic thermal beam equilibrium are narrower than those in the KV-type beam equilibrium. Numerical evidence is presented, indicating almost complete elimination of chaotic particle motion in the adiabatic thermal beam equilibrium.

  18. Complete population inversion of Bose particles by an adiabatic cycle

    NASA Astrophysics Data System (ADS)

    Tanaka, Atushi; Cheon, Taksu

    2016-04-01

    We show that an adiabatic cycle excites Bose particles confined in a one-dimensional box. During the adiabatic cycle, a wall described by a δ-shaped potential is applied and its strength and position are slowly varied. When the system is initially prepared in the ground state, namely, in the zero-temperature equilibrium state, the adiabatic cycle brings all Bosons into the first excited one-particle state, leaving the system in a nonequilibrium state. The absorbed energy during the cycle is proportional to the number of Bosons.

  19. Adiabatic Heat of Hydration Calorimetric Measurements for Reference Saltstone Waste

    SciTech Connect

    Bollinger, James

    2006-01-12

    The production of nuclear materials for weapons, medical, and space applications from the mid-1950's through the late-1980's at the Savannah River Site (SRS) generated approximately 35 million gallons of liquid high-level radioactive waste, which is currently being processed into vitrified glass for long-term storage. Upstream of the vitrification process, the waste is separated into three components: high activity insoluble sludge, high activity insoluble salt, and very low activity soluble salts. The soluble salt represents 90% of the 35 million gallons of overall waste and is processed at the SRS Saltstone Facility, where it mixed with cement, blast furnace slag, and flyash, creating a grout-like mixture. The resulting grout is pumped into aboveground storage vaults, where it hydrates into concrete monoliths, called saltstone, thus immobilizing the low-level radioactive salt waste. As the saltstone hydrates, it generates heat that slowly diffuses out of the poured material. To ensure acceptable grout properties for disposal and immobilization of the salt waste, the grout temperature must not exceed 95 C during hydration. Adiabatic calorimetric measurements of the heat generated for a representative sample of saltstone were made to determine the time-dependent heat source term. These measurements subsequently were utilized as input to a numerical conjugate heat transfer model to determine the expected peak temperatures for the saltstone vaults.

  20. Design of the PIXIE Adiabatic Demagnetization Refrigerators

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J.; Kimball, Mark Oliver; Fixsen, Dale J.; Kogut, Alan J.; Li, Xiaoyi; DiPirro, Michael

    2012-01-01

    The Primordial Inflation Explorer (PIXIE) is a proposed mission to densely map the polarization of the cosmic microwave background. It will operate in a scanning mode from a sun-synchronous orbit, using low temperature detectors (at 0.1 K) and located inside a teslescope that is cooled to approximately 2.73 K - to match the background temperature. A mechanical cryocooler operating at 4.5 K establishes a low base temperature from which two adiabatic demagnetization refrigerator (ADR) assemblies will cool the telescope and detectors. To achieve continuous scanning capability, the ADRs must operate continuously. Complicating the design are two factors: 1) the need to systematically vary the temperature of various telescope components in order to separate the small polarization signal variations from those that may arise from temperature drifts and changing gradients within the telescope, and 2) the orbital and monthly variations in lunar irradiance into the telescope barrels. These factors require the telescope ADR to reject quasi-continuous heat loads of 2-3 millwatts, while maintaining a peak heat reject rate of less than 12 milliwatts. The detector heat load at 0.1 K is comparatively small at 1-2 microwatts. This paper will describe the 3-stage and 2-stage continuous ADRs that will be used to meet the cooling power and temperature stability requirements of the PIXIE detectors and telescope.

  1. Design of the PIXIE adiabatic demagnetization refrigerators

    NASA Astrophysics Data System (ADS)

    Shirron, Peter J.; Kimball, Mark O.; Fixsen, Dale J.; Kogut, Alan J.; Li, Xiaoyi; DiPirro, Michael J.

    2012-04-01

    The Primordial Inflation Explorer (PIXIE) is a proposed mission to densely map the polarization of the cosmic microwave background. It will operate in a scanning mode from a sun-synchronous orbit, using low temperature detectors (at 0.1 K) and located inside a telescope that is cooled to approximately 2.73 K - to match the background temperature. A mechanical cryocooler operating at 4.5 K establishes a low base temperature from which two adiabatic demagnetization refrigerator (ADR) assemblies will cool the telescope and detectors. To achieve continuous scanning capability, the ADRs must operate continuously. Complicating the design are two factors: (1) the need to systematically vary the temperature of various telescope components in order to separate the small polarization signal variations from those that may arise from temperature drifts and changing gradients within the telescope, and (2) the orbital and monthly variations in lunar irradiance into the telescope barrels. These factors require the telescope ADR to reject quasi-continuous heat loads of 2-3 mW, while maintaining a peak heat reject rate of less than 12 mW. The detector heat load at 0.1 K is comparatively small at 1-2 μW. This paper will describe the 3-stage and 2-stage continuous ADRs that will be used to meet the cooling power and temperature stability requirements of the PIXIE detectors and telescope.

  2. Graph isomorphism and adiabatic quantum computing

    NASA Astrophysics Data System (ADS)

    Gaitan, Frank; Clark, Lane

    2014-03-01

    In the Graph Isomorphism (GI) problem two N-vertex graphs G and G' are given and the task is to determine whether there exists a permutation of the vertices of G that preserves adjacency and maps G --> G'. If yes (no), then G and G' are said to be isomorphic (non-isomorphic). The GI problem is an important problem in computer science and is thought to be of comparable difficulty to integer factorization. We present a quantum algorithm that solves arbitrary instances of GI, and which provides a novel approach to determining all automorphisms of a graph. The algorithm converts a GI instance to a combinatorial optimization problem that can be solved using adiabatic quantum evolution. Numerical simulation of the algorithm's quantum dynamics shows that it correctly distinguishes non-isomorphic graphs; recognizes isomorphic graphs; and finds the automorphism group of a graph. We also discuss the algorithm's experimental implementation and show how it can be leveraged to solve arbitrary instances of the NP-Complete Sub-Graph Isomorphism problem.

  3. Adiabatic Quantum Computation with Neutral Atoms

    NASA Astrophysics Data System (ADS)

    Biedermann, Grant

    2013-03-01

    We are implementing a new platform for adiabatic quantum computation (AQC)[2] based on trapped neutral atoms whose coupling is mediated by the dipole-dipole interactions of Rydberg states. Ground state cesium atoms are dressed by laser fields in a manner conditional on the Rydberg blockade mechanism,[3,4] thereby providing the requisite entangling interactions. As a benchmark we study a Quadratic Unconstrained Binary Optimization (QUBO) problem whose solution is found in the ground state spin configuration of an Ising-like model. In collaboration with Lambert Parazzoli, Sandia National Laboratories; Aaron Hankin, Center for Quantum Information and Control (CQuIC), University of New Mexico; James Chin-Wen Chou, Yuan-Yu Jau, Peter Schwindt, Cort Johnson, and George Burns, Sandia National Laboratories; Tyler Keating, Krittika Goyal, and Ivan Deutsch, Center for Quantum Information and Control (CQuIC), University of New Mexico; and Andrew Landahl, Sandia National Laboratories. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories

  4. Adiabatic Quantum Algorithm for Search Engine Ranking

    NASA Astrophysics Data System (ADS)

    Garnerone, Silvano; Zanardi, Paolo; Lidar, Daniel A.

    2012-06-01

    We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this algorithm can prepare the quantum PageRank state in a time which, on average, scales polylogarithmically in the number of web pages. We argue that the main topological feature of the underlying web graph allowing for such a scaling is the out-degree distribution. The top-ranked log⁡(n) entries of the quantum PageRank state can then be estimated with a polynomial quantum speed-up. Moreover, the quantum PageRank state can be used in “q-sampling” protocols for testing properties of distributions, which require exponentially fewer measurements than all classical schemes designed for the same task. This can be used to decide whether to run a classical update of the PageRank.

  5. Coolant passage heat transfer with rotation

    NASA Astrophysics Data System (ADS)

    Hajek, T. J.; Higgins, A. W.

    1985-10-01

    The objective is to develop a heat transfer and pressure drop data base, computational fluid dynamic techniques, and correlations for multi-pass rotating coolant passages with and without flow turbulators. The experimental effort is focused on the simulation of configurations and conditions expected in the blades of advanced aircraft high pressure turbines. With the use of this data base, the effects of Coriolis and buoyancy forces on the coolant side flow can be included in the design of turbine blades.

  6. 37. INTERIOR VIEW, CENTRAL PASSAGE AND STAIRCASE LEADING TO THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. INTERIOR VIEW, CENTRAL PASSAGE AND STAIRCASE LEADING TO THE SECOND FLOOR; THE STAIR RISES AT THE EAST WALL OF THE PASSAGE - Arlington Place, 331 Cotton Avenue, Southwest, Birmingham, Jefferson County, AL

  7. Ring structures and mean first passage time in networks

    NASA Astrophysics Data System (ADS)

    Baronchelli, Andrea; Loreto, Vittorio

    2006-02-01

    In this paper we address the problem of the calculation of the mean first passage time on generic graphs. We focus in particular on the mean first passage time on a node s for a random walker starting from a generic, unknown, node x . We introduce an approximate scheme of calculation which maps the original process in a Markov process in the space of the so-called rings, described by a transition matrix of size O(lnN/ln⟨k⟩×lnN/ln⟨k⟩) , where N is the size of the graph and ⟨k⟩ the average degree in the graph. In this way one has a drastic reduction of degrees of freedom with respect to the size N of the transition matrix of the original process, corresponding to an extremely low computational cost. We first apply the method to the Erdös-Renyi random graphs for which the method allows for almost perfect agreement with numerical simulations. Then we extend the approach to the Barabási-Albert graph, as an example of scale-free graph, for which one obtains excellent results. Finally we test the method with two real-world graphs, Internet and a network of the brain, for which we obtain accurate results.

  8. Adiabatic demagnetization of spin-1/2 antiferromagnetic J1-J2 Heisenberg hexagon

    NASA Astrophysics Data System (ADS)

    Deb, Moumita; Ghosh, Asim Kumar

    2016-05-01

    Analytic expressions of exact eigenvalues of the antiferromagnetic spin-1/2 J1-J2 Heisenberg hexagon in the presence of magnetic field have been obtained. Studies on the magnetization process, nature of isentrops and properties of magnetocaloric effect in terms of adiabatic demagnetization have been carried out. Magnetocaloric effect of the spin-1/2 Heisenberg hexagonal compound Cu3WO6 has been investigated with the help of these theoretical findings.

  9. Adiabatic demagnetization of the antiferromagnetic spin-1/2 Heisenberg hexagonal cluster

    NASA Astrophysics Data System (ADS)

    Deb, Moumita; Ghosh, Asim Kumar

    2016-05-01

    Exact analytic expressions of eigenvalues of the antiferromagnetic spin-1/2 Heisenberg hexagon in the presence of uniform magnetic field have been obtained. Magnetization process, nature of isentrops and properties of magneto caloric effect in terms of adiabatic demagnetization have been investigated. Theoretical results have been used to study the magneto caloric effect of the spin-1/2 Heisenberg hexagonal compound Cu3WO6.

  10. Adiabaticity and spectral splits in collective neutrino transformations

    SciTech Connect

    Raffelt, Georg G.; Smirnov, Alexei Yu.

    2007-12-15

    Neutrinos streaming off a supernova core transform collectively by neutrino-neutrino interactions, leading to 'spectral splits' where an energy E{sub split} divides the transformed spectrum sharply into parts of almost pure but different flavors. We present a detailed description of the spectral-split phenomenon which is conceptually and quantitatively understood in an adiabatic treatment of neutrino-neutrino effects. Central to this theory is a self-consistency condition in the form of two sum rules (integrals over the neutrino spectra that must equal certain conserved quantities). We provide explicit analytic and numerical solutions for various neutrino spectra. We introduce the concept of the adiabatic reference frame and elaborate on the relative adiabatic evolution. Violating adiabaticity leads to the spectral split being 'washed out'. The sharpness of the split appears to be represented by a surprisingly universal function.

  11. Acceleration of adiabatic quantum dynamics in electromagnetic fields

    SciTech Connect

    Masuda, Shumpei; Nakamura, Katsuhiro

    2011-10-15

    We show a method to accelerate quantum adiabatic dynamics of wave functions under electromagnetic field (EMF) by developing the preceding theory [Masuda and Nakamura, Proc. R. Soc. London Ser. A 466, 1135 (2010)]. Treating the orbital dynamics of a charged particle in EMF, we derive the driving field which accelerates quantum adiabatic dynamics in order to obtain the final adiabatic states in any desired short time. The scheme is consolidated by describing a way to overcome possible singularities in both the additional phase and driving potential due to nodes proper to wave functions under EMF. As explicit examples, we exhibit the fast forward of adiabatic squeezing and transport of excited Landau states with nonzero angular momentum, obtaining the result consistent with the transitionless quantum driving applied to the orbital dynamics in EMF.

  12. Adiabatic and isocurvature perturbation projections in multi-field inflation

    NASA Astrophysics Data System (ADS)

    Gordon, Chris; Saffin, Paul M.

    2013-08-01

    Current data are in good agreement with the predictions of single field inflation. However, the hemispherical asymmetry, seen in the cosmic microwave background data, may hint at a potential problem. Generalizing to multi-field models may provide one possible explanation. A useful way of modeling perturbations in multi-field inflation is to investigate the projection of the perturbation along and perpendicular to the background fields' trajectory. These correspond to the adiabatic and isocurvature perturbations. However, it is important to note that in general there are no corresponding adiabatic and isocurvature fields. The purpose of this article is to highlight the distinction between a field redefinition and a perturbation projection. We provide a detailed derivation of the evolution of the isocurvature perturbation to show that no assumption of an adiabatic or isocurvature field is needed. We also show how this evolution equation is consistent with the field covariant evolution equations for the adiabatic perturbation in the flat field space limit.

  13. Startup of the RFP in a quasi-adiabatic mode

    SciTech Connect

    Caramana, E.J.

    1980-01-01

    The equations describing the purely adiabatic formation of the reversed-field pinch are solved. This method of formation in principle remedies the problem of flux consumption during the startup phase of this device.

  14. 75 FR 61479 - Western Passage OCGenTM

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... Energy Regulatory Commission Western Passage OCGen\\TM\\ Power Project; Notice of Preliminary Permit... Western Passage OCGen\\TM\\ Power Project, located in Western Passage, in the vicinity of the City of... consist of: (1) 2 OCGen\\TM\\ hydrokinetic tidal devices each consisting of four 150-kilowatt...

  15. Response of Juvenile Pacific Lamprey to Turbine Passage

    SciTech Connect

    Dauble, D.

    2009-09-14

    To help determine the Pacific lamprey’s ability to survive turbine passage, Pacific Northwest National Laboratory scientists conducted laboratory tests designed to simulate a fish’s passage through the turbine environment. Juvenile Pacific lamprey were subjected to two of three aspects of passage: pressure drop and shear stress. The third aspect, blade strike, was not tested.

  16. Interior view, ground floor passage crossing the main corridor at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view, ground floor passage crossing the main corridor at its center, looking east through the doorway linking the two perpendicular axes. The door at the end of the passage opens onto a passage running under the entrance portico bearing ground floor exterior doors at each end. - U. S. Naval Asylum, Biddle Hall, Gray's Ferry Avenue, Philadelphia, Philadelphia County, PA

  17. Safe Passage: Making It through Adolescence in a Risky Society.

    ERIC Educational Resources Information Center

    Dryfoos, Joy G.

    The primary job of parents is to ensure safe passage for their children from infancy through adolescence to adulthood. Research has indicated many things schools can do to turn the privilege of safe passage into a right. Three research-based programs that work to achieve safe passage are described. The first is Caring Connection, a "one-stop-shop"…

  18. Measuring Gains in Reading Ability with Passage Reading Fluency

    ERIC Educational Resources Information Center

    Jenkins, Joseph R.; Zumeta, Rebecca; Dupree, Opio; Kent Johnson

    2005-01-01

    This study examined several aspects of Passage Reading Fluency (PRF) including performance variability across passages alternative designs for measuring PRF gain, and effects on PRF level from retesting with the same passages. Participants were 33 students from grades 2 to 10 attending a school for students with learning disabilities. PRF was…

  19. Realization of adiabatic Aharonov-Bohm scattering with neutrons

    NASA Astrophysics Data System (ADS)

    Sjöqvist, Erik; Almquist, Martin; Mattsson, Ken; Gürkan, Zeynep Nilhan; Hessmo, Björn

    2015-11-01

    The adiabatic Aharonov-Bohm (AB) effect is a manifestation of the Berry phase acquired when some slow variables take a planar spin around a loop. While the effect has been observed in molecular spectroscopy, direct measurement of the topological phase shift in a scattering experiment has been elusive in the past. Here, we demonstrate an adiabatic AB effect by explicit simulation of the dynamics of unpolarized very slow neutrons that scatter on a long straight current-carrying wire.

  20. Nonequilibrium adiabatic molecular dynamics simulations of methane clathrate hydrate decomposition

    NASA Astrophysics Data System (ADS)

    Alavi, Saman; Ripmeester, J. A.

    2010-04-01

    Nonequilibrium, constant energy, constant volume (NVE) molecular dynamics simulations are used to study the decomposition of methane clathrate hydrate in contact with water. Under adiabatic conditions, the rate of methane clathrate decomposition is affected by heat and mass transfer arising from the breakup of the clathrate hydrate framework and release of the methane gas at the solid-liquid interface and diffusion of methane through water. We observe that temperature gradients are established between the clathrate and solution phases as a result of the endothermic clathrate decomposition process and this factor must be considered when modeling the decomposition process. Additionally we observe that clathrate decomposition does not occur gradually with breakup of individual cages, but rather in a concerted fashion with rows of structure I cages parallel to the interface decomposing simultaneously. Due to the concerted breakup of layers of the hydrate, large amounts of methane gas are released near the surface which can form bubbles that will greatly affect the rate of mass transfer near the surface of the clathrate phase. The effects of these phenomena on the rate of methane hydrate decomposition are determined and implications on hydrate dissociation in natural methane hydrate reservoirs are discussed.

  1. Mean first-passage times of non-Markovian random walkers in confinement

    NASA Astrophysics Data System (ADS)

    Guérin, T.; Levernier, N.; Bénichou, O.; Voituriez, R.

    2016-06-01

    The first-passage time, defined as the time a random walker takes to reach a target point in a confining domain, is a key quantity in the theory of stochastic processes. Its importance comes from its crucial role in quantifying the efficiency of processes as varied as diffusion-limited reactions, target search processes or the spread of diseases. Most methods of determining the properties of first-passage time in confined domains have been limited to Markovian (memoryless) processes. However, as soon as the random walker interacts with its environment, memory effects cannot be neglected: that is, the future motion of the random walker does not depend only on its current position, but also on its past trajectory. Examples of non-Markovian dynamics include single-file diffusion in narrow channels, or the motion of a tracer particle either attached to a polymeric chain or diffusing in simple or complex fluids such as nematics, dense soft colloids or viscoelastic solutions. Here we introduce an analytical approach to calculate, in the limit of a large confining volume, the mean first-passage time of a Gaussian non-Markovian random walker to a target. The non-Markovian features of the dynamics are encompassed by determining the statistical properties of the fictitious trajectory that the random walker would follow after the first-passage event takes place, which are shown to govern the first-passage time kinetics. This analysis is applicable to a broad range of stochastic processes, which may be correlated at long times. Our theoretical predictions are confirmed by numerical simulations for several examples of non-Markovian processes, including the case of fractional Brownian motion in one and higher dimensions. These results reveal, on the basis of Gaussian processes, the importance of memory effects in first-passage statistics of non-Markovian random walkers in confinement.

  2. Mean first-passage times of non-Markovian random walkers in confinement.

    PubMed

    Guérin, T; Levernier, N; Bénichou, O; Voituriez, R

    2016-06-16

    The first-passage time, defined as the time a random walker takes to reach a target point in a confining domain, is a key quantity in the theory of stochastic processes. Its importance comes from its crucial role in quantifying the efficiency of processes as varied as diffusion-limited reactions, target search processes or the spread of diseases. Most methods of determining the properties of first-passage time in confined domains have been limited to Markovian (memoryless) processes. However, as soon as the random walker interacts with its environment, memory effects cannot be neglected: that is, the future motion of the random walker does not depend only on its current position, but also on its past trajectory. Examples of non-Markovian dynamics include single-file diffusion in narrow channels, or the motion of a tracer particle either attached to a polymeric chain or diffusing in simple or complex fluids such as nematics, dense soft colloids or viscoelastic solutions. Here we introduce an analytical approach to calculate, in the limit of a large confining volume, the mean first-passage time of a Gaussian non-Markovian random walker to a target. The non-Markovian features of the dynamics are encompassed by determining the statistical properties of the fictitious trajectory that the random walker would follow after the first-passage event takes place, which are shown to govern the first-passage time kinetics. This analysis is applicable to a broad range of stochastic processes, which may be correlated at long times. Our theoretical predictions are confirmed by numerical simulations for several examples of non-Markovian processes, including the case of fractional Brownian motion in one and higher dimensions. These results reveal, on the basis of Gaussian processes, the importance of memory effects in first-passage statistics of non-Markovian random walkers in confinement. PMID:27306185

  3. Mean First Passage Time in Single File Dynamics

    NASA Astrophysics Data System (ADS)

    Flomenbom, Ophir

    2016-01-01

    We derive the general scaling law of the mean first passage time (MFPT) in single file dynamics; the process where many real particles move in a channel of length L with absorbing boundaries, where the particles and the channel have about the same cross section. We derive the relation MFPT ˜ f(n)MFPTfree, here we compute the MFPT when the channel is free (all particles are absorbed, where the average is over many trajectories), n is the number of particles in the channel at initiation, f(n) is the many-particle effect and the quantity MFPTfree is the MFPT of the free particle. When at initiation the density is fixed in basic files f(n) ˜n and therefore e.g. MFPT ˜ L2.5 (basic stochastic dynamics). We also compute the MFPT in diverse files; for example, in a file with heterogeneous particles, in deterministic files, in slow files and in files with long-range interactions. When the particle density is not fixed yet scales with 1/length from the origin, f(n) < n; yet, interactions might increase (attractive) or decrease (repulsive) the many-particle effect relative to n. In slow files, MFPT ˜ L3 (in the number of jumps). We explain these valuable results with various methods and approaches, e.g., we derive a general mapping from the mean square displacement scaling law to the MFPT scaling law. We also connect the results with real life activities. Special Issue Comments: Mean first passage scaling law in single file dynamics and various particular results in files are derived in this project. The project is related to the Special Issue projects about heterogeneous files and slow files,27 expansions in files,26 files with force32 and the first passage time in files.23

  4. Adiabatically reduced magnetohydrodynamic equations for a cylindrical plasma with an anisotropic pressure

    SciTech Connect

    Nebogatov, V. A.; Pastukhov, V. P.

    2013-06-15

    A closed set of reduced equations describing low-frequency nonlinear flute magnetohydrodynamic (MHD) convection and the resulting nondiffusive processes of particle and energy transport in a weakly collisional cylindrical plasma with an anisotropic pressure is derived. The Chew-Goldberger-Low anisotropic magnetohydrodynamics is used as the basic dynamic model, because this model is applicable to describing flute convection in a cylindrical plasma column even in the low-frequency limit. The reduced set of equations was derived using the method of adiabatic separation of fast and slow motions. It is shown that the structure of the adiabatic transformation and the corresponding velocity field are identical to those obtained earlier in the isotropic MHD model. However, the derived heat transfer equations differ drastically from the isotropic pressure model. In particular, they indicate a tendency toward maintaining different radial profiles of the longitudinal and transverse pressures.

  5. Transition time of nonlinear Landau-Zener model in adiabatic limit

    NASA Astrophysics Data System (ADS)

    Liu, Xuan-Zuo; Tian, Dong-Ping; Chong, Bo

    2016-06-01

    The impact of nonlinear interaction on the loop structure of lower energy level and on the time evolution curve of canonical momentum which corresponds to the lower eigenstate are analyzed respectively. We find that the curve changes from single-valued to multi-valued as nonlinear interaction grows. The fascinating part is that the time range delimited by turning points in the loop of energy level and the period between two inflexion points on the multi-valued part of the evolution curve of canonical momentum are the same. Therefore, we propose a characteristic time in the transition process of nonlinear Landau-Zener model in adiabatic limit. Last, the physical meaning of the transition time as a measure of how much time the system experiences a structural change which directly results in the breakdown of adiabaticity is discussed.

  6. Dressed adiabatic and diabatic potentials to study conical intersections for F + H2

    NASA Astrophysics Data System (ADS)

    Das, Anita; Sahoo, Tapas; Mukhopadhyay, Debasis; Adhikari, Satrajit; Baer, Michael

    2012-02-01

    We follow a suggestion by Lipoff and Herschbach [Mol. Phys. 108, 1133 (2010), 10.1080/00268971003662912] and compare dressed and bare adiabatic potentials to get insight regarding the low-energy dynamics (e.g., cold reaction) taking place in molecular systems. In this particular case, we are interested to study the effect of conical intersections (ci) on the interacting atoms. For this purpose, we consider vibrational dressed adiabatic and vibrational dressed diabatic potentials in the entrance channel of reactive systems. According to our study, the most one should expect, in case of F + H2, is a mild effect of the (1, 2) ci on its reactive/exchange process-an outcome also supported by experiment. This happens although the corresponding dressed and bare potential barriers (and the corresponding van der Waals potential wells) differ significantly from each other.

  7. Adiabatic evaporation of binary liquid mixtures on the porous ball surface

    NASA Astrophysics Data System (ADS)

    Terekhov, V. I.; Shishkin, N. E.

    2009-06-01

    Measured data for the temperature of a porous spherical surface to which an evaporating binary liquid mixture was supplied are reported. In the experiments, solutions of ethyl and methyl alcohols in water, and also solutions of acetone in water, were used. The concentration of mixture components was varied throughout the widest possible range of X L = 0-1, and the temperature of dry air flow past the sphere was in the range t 0 = 15-300 °C. In the present study, a strong influence of the composition of the mixtures on their adiabatic evaporation temperature was established. In the heat- and mass-transfer process, the air temperature is also of paramount importance. An experimental correlation is obtained which generalizes data on adiabatic evaporation temperature in a broad range of component concentrations and temperatures for the experimentally examined binary liquid mixtures.

  8. Kinetically constrained ring-polymer molecular dynamics for non-adiabatic chemical reactions.

    PubMed

    Menzeleev, Artur R; Bell, Franziska; Miller, Thomas F

    2014-02-14

    We extend ring-polymer molecular dynamics (RPMD) to allow for the direct simulation of general, electronically non-adiabatic chemical processes. The kinetically constrained (KC) RPMD method uses the imaginary-time path-integral representation in the set of nuclear coordinates and electronic states to provide continuous equations of motion that describe the quantized, electronically non-adiabatic dynamics of the system. KC-RPMD preserves the favorable properties of the usual RPMD formulation in the position representation, including rigorous detailed balance, time-reversal symmetry, and invariance of reaction rate calculations to the choice of dividing surface. However, the new method overcomes significant shortcomings of position-representation RPMD by enabling the description of non-adiabatic transitions between states associated with general, many-electron wavefunctions and by accurately describing deep-tunneling processes across asymmetric barriers. We demonstrate that KC-RPMD yields excellent numerical results for a range of model systems, including a simple avoided-crossing reaction and condensed-phase electron-transfer reactions across multiple regimes for the electronic coupling and thermodynamic driving force. PMID:24527896

  9. Kinetically constrained ring-polymer molecular dynamics for non-adiabatic chemical reactions

    SciTech Connect

    Menzeleev, Artur R.; Bell, Franziska; Miller, Thomas F.

    2014-02-14

    We extend ring-polymer molecular dynamics (RPMD) to allow for the direct simulation of general, electronically non-adiabatic chemical processes. The kinetically constrained (KC) RPMD method uses the imaginary-time path-integral representation in the set of nuclear coordinates and electronic states to provide continuous equations of motion that describe the quantized, electronically non-adiabatic dynamics of the system. KC-RPMD preserves the favorable properties of the usual RPMD formulation in the position representation, including rigorous detailed balance, time-reversal symmetry, and invariance of reaction rate calculations to the choice of dividing surface. However, the new method overcomes significant shortcomings of position-representation RPMD by enabling the description of non-adiabatic transitions between states associated with general, many-electron wavefunctions and by accurately describing deep-tunneling processes across asymmetric barriers. We demonstrate that KC-RPMD yields excellent numerical results for a range of model systems, including a simple avoided-crossing reaction and condensed-phase electron-transfer reactions across multiple regimes for the electronic coupling and thermodynamic driving force.

  10. A model study of assisted adiabatic transfer of population in the presence of collisional dephasing

    SciTech Connect

    Masuda, Shumpei; Rice, Stuart A.

    2015-06-28

    Previous studies have demonstrated that when experimental conditions generate non-adiabatic dynamics that prevents highly efficient population transfer between states of an isolated system by stimulated Raman adiabatic passage (STIRAP), the addition of an auxiliary counter-diabatic field (CDF) can restore most or all of that efficiency. This paper examines whether that strategy is also successful in a non-isolated system in which the energies of the states fluctuate, e.g., when a solute is subject to collisions with solvent. We study population transfer in two model systems: (i) the three-state system used by Demirplak and Rice [J. Chem. Phys. 116, 8028 (2002)] and (ii) a four-state system, derived from the simulation studies of Demirplak and Rice [J. Chem. Phys. 125, 194517 (2006)], that mimics HCl in liquid Ar. Simulation studies of the vibrational manifold of HCl in dense fluid Ar show that the collision induced vibrational energy level fluctuations have asymmetric distributions. Representations of these asymmetric energy level fluctuation distributions are used in both models (i) and (ii). We identify three sources of degradation of the efficiency of STIRAP generated selective population transfer in model (ii): too small pulse areas of the laser fields, unwanted interference arising from use of strong fields, and the vibrational detuning. For both models (i) and (ii), our examination of the efficiency of STIRAP + CDF population transfer under the influence of the asymmetric distribution of the vibrational energy fluctuations shows that there is a range of field strengths and pulse durations under which STIRAP + CDF control of population transfer has greater efficiency than does STIRAP generated population transfer.

  11. A model study of assisted adiabatic transfer of population in the presence of collisional dephasing.

    PubMed

    Masuda, Shumpei; Rice, Stuart A

    2015-06-28

    Previous studies have demonstrated that when experimental conditions generate non-adiabatic dynamics that prevents highly efficient population transfer between states of an isolated system by stimulated Raman adiabatic passage (STIRAP), the addition of an auxiliary counter-diabatic field (CDF) can restore most or all of that efficiency. This paper examines whether that strategy is also successful in a non-isolated system in which the energies of the states fluctuate, e.g., when a solute is subject to collisions with solvent. We study population transfer in two model systems: (i) the three-state system used by Demirplak and Rice [J. Chem. Phys. 116, 8028 (2002)] and (ii) a four-state system, derived from the simulation studies of Demirplak and Rice [J. Chem. Phys. 125, 194517 (2006)], that mimics HCl in liquid Ar. Simulation studies of the vibrational manifold of HCl in dense fluid Ar show that the collision induced vibrational energy level fluctuations have asymmetric distributions. Representations of these asymmetric energy level fluctuation distributions are used in both models (i) and (ii). We identify three sources of degradation of the efficiency of STIRAP generated selective population transfer in model (ii): too small pulse areas of the laser fields, unwanted interference arising from use of strong fields, and the vibrational detuning. For both models (i) and (ii), our examination of the efficiency of STIRAP + CDF population transfer under the influence of the asymmetric distribution of the vibrational energy fluctuations shows that there is a range of field strengths and pulse durations under which STIRAP + CDF control of population transfer has greater efficiency than does STIRAP generated population transfer. PMID:26133424

  12. A model study of assisted adiabatic transfer of population in the presence of collisional dephasing

    NASA Astrophysics Data System (ADS)

    Masuda, Shumpei; Rice, Stuart A.

    2015-06-01

    Previous studies have demonstrated that when experimental conditions generate non-adiabatic dynamics that prevents highly efficient population transfer between states of an isolated system by stimulated Raman adiabatic passage (STIRAP), the addition of an auxiliary counter-diabatic field (CDF) can restore most or all of that efficiency. This paper examines whether that strategy is also successful in a non-isolated system in which the energies of the states fluctuate, e.g., when a solute is subject to collisions with solvent. We study population transfer in two model systems: (i) the three-state system used by Demirplak and Rice [J. Chem. Phys. 116, 8028 (2002)] and (ii) a four-state system, derived from the simulation studies of Demirplak and Rice [J. Chem. Phys. 125, 194517 (2006)], that mimics HCl in liquid Ar. Simulation studies of the vibrational manifold of HCl in dense fluid Ar show that the collision induced vibrational energy level fluctuations have asymmetric distributions. Representations of these asymmetric energy level fluctuation distributions are used in both models (i) and (ii). We identify three sources of degradation of the efficiency of STIRAP generated selective population transfer in model (ii): too small pulse areas of the laser fields, unwanted interference arising from use of strong fields, and the vibrational detuning. For both models (i) and (ii), our examination of the efficiency of STIRAP + CDF population transfer under the influence of the asymmetric distribution of the vibrational energy fluctuations shows that there is a range of field strengths and pulse durations under which STIRAP + CDF control of population transfer has greater efficiency than does STIRAP generated population transfer.

  13. Improving hydroturbine pressures to enhance salmon passage survival and recovery

    SciTech Connect

    Trumbo, Bradly A.; Ahmann, Martin L.; Renholods, Jon F.; Brown, Richard S.; Colotelo, Alison H. A.; Deng, Zhiqun

    2013-12-12

    This paper provides an overview of turbine pressure data collection and barotrauma studies relative to fish passage through large Kaplan turbines and how this information may be applied to safer fish passage through turbines. The specific objectives are to 1) discuss turbine pressures defined by Sensor Fish releases; 2) discuss what has been learned about pressure effects on fish and the factors influencing barotrauma associated with simulated turbine passage; 3) elucidate data gaps associated with fish behavior and passage that influence barotrauma during turbine passage; 4) discuss how the results of these studies have led to turbine design criteria for safer fish passage; and 5) relate this information to salmon recovery efforts and safer fish passage for Atlantic and Pacific salmonids.

  14. Inverse design of a turbine cascade passage and DNS of a stationary and rotating serpentine passage

    NASA Astrophysics Data System (ADS)

    Laskowski, Gregory Michael

    2005-12-01

    Experimental investigations of the flow physics past a single stationary transonic turbine blade in a cascade are complicated by the periodic nature of the problem. Typically up to seven blades in a cascade are required to guarantee periodicity about the center blade that, in turn, requires large compressors at transonic speeds. One possibility to circumvent the constraint of so many blades, and allow the necessary optical access, is to place a single blade in a passage consisting of two plexiglass walls that are designed to obtain certain representative periodic flowfield characteristics. Using an optimization procedure based on the method of steepest descent and the RANS equations, the walls were designed to ensure that the Surface Isentropic Mach Number (SIMN) distribution on the blade matched the SIMN of the same blade in an infinite cascade. The experimental setup imposed an additional constraint requiring the flow remained attached along both passage walls. A robust and autonomous design method using a weighted composite cost function was developed and successfully applied. Excellent agreement was achieved between CFD of the infinite cascade SIMN, CFD of the designed double passage SIMN, and the experimentally measured SIMN. Serpentine passages are found in a number of engineering applications including turbine blade cooling passages. The serpentine passage is an ideal candidate for conducting a thorough DNS study due to its geometric simplicity but complex flow physics. The serpentine passage geometry investigated has dimensions 12pidelta x 2delta x 3pidelta and radius of curvature delta/r c = 0.5 in the curved section. Simulations of a test matrix consisting of two different Reynolds numbers, Retau = 180 and Retau = 250, subjected to two different orthogonal rotation numbers, Ro tau = 0 and Rotau = 5 was conducted. Whereas the stationary case results in a symmetric flowfield for the two U-bends constituting the passage, the effect of rotation coupled with

  15. Multiple coupled landscapes and non-adiabatic dynamics with applications to self-activating genes.

    PubMed

    Chen, Cong; Zhang, Kun; Feng, Haidong; Sasai, Masaki; Wang, Jin

    2015-11-21

    Many physical, chemical and biochemical systems (e.g. electronic dynamics and gene regulatory networks) are governed by continuous stochastic processes (e.g. electron dynamics on a particular electronic energy surface and protein (gene product) synthesis) coupled with discrete processes (e.g. hopping among different electronic energy surfaces and on and off switching of genes). One can also think of the underlying dynamics as the continuous motion on a particular landscape and discrete hoppings among different landscapes. The main difference of such systems from the intra-landscape dynamics alone is the emergence of the timescale involved in transitions among different landscapes in addition to the timescale involved in a particular landscape. The adiabatic limit when inter-landscape hoppings are fast compared to continuous intra-landscape dynamics has been studied both analytically and numerically, but the analytical treatment of the non-adiabatic regime where the inter-landscape hoppings are slow or comparable to continuous intra-landscape dynamics remains challenging. In this study, we show that there exists mathematical mapping of the dynamics on 2(N) discretely coupled N continuous dimensional landscapes onto one single landscape in 2N dimensional extended continuous space. On this 2N dimensional landscape, eddy current emerges as a sign of non-equilibrium non-adiabatic dynamics and plays an important role in system evolution. Many interesting physical effects such as the enhancement of fluctuations, irreversibility, dissipation and optimal kinetics emerge due to non-adiabaticity manifested by the eddy current illustrated for an N = 1 self-activator. We further generalize our theory to the N-gene network with multiple binding sites and multiple synthesis rates for discretely coupled non-equilibrium stochastic physical and biological systems. PMID:26455835

  16. Modeling drug passage into human milk.

    PubMed

    Anderson, P O; Sauberan, J B

    2016-07-01

    Breastfeeding has positive health consequences for both the breastfed infant and the nursing mother.(1,2) Although information on drug use during lactation is available through sites such as LactMed,(3) available information is often incomplete. Unlike pregnancy, in which large numbers of pregnant women need to be studied to assure safety, measurement of drug concentrations in breastmilk in a relatively few subjects can provide valuable information to assess drug safety. This article reviews methods of measuring and predicting drug passage into breastmilk. PMID:27060684

  17. Turbine engine component with cooling passages

    DOEpatents

    Arrell, Douglas J.; James, Allister W.

    2012-01-17

    A component for use in a turbine engine including a first member and a second member associated with the first member. The second member includes a plurality of connecting elements extending therefrom. The connecting elements include securing portions at ends thereof that are received in corresponding cavities formed in the first member to attach the second member to the first member. The connecting elements are constructed to space apart a first surface of the second member from a first surface of the first member such that at least one cooling passage is formed between adjacent connecting elements and the first surface of the second member and the first surface of the first member.

  18. Development of a semi-adiabatic isoperibol solution calorimeter

    NASA Astrophysics Data System (ADS)

    Venkata Krishnan, R.; Jogeswararao, G.; Parthasarathy, R.; Premalatha, S.; Prabhakar Rao, J.; Gunasekaran, G.; Ananthasivan, K.

    2014-12-01

    A semi-adiabatic isoperibol solution calorimeter has been indigenously developed. The measurement system comprises modules for sensitive temperature measurement probe, signal processing, data collection, and joule calibration. The sensitivity of the temperature measurement module was enhanced by using a sensitive thermistor coupled with a lock-in amplifier based signal processor. A microcontroller coordinates the operation and control of these modules. The latter in turn is controlled through personal computer (PC) based custom made software developed with LabView. An innovative summing amplifier concept was used to cancel out the base resistance of the thermistor. The latter was placed in the dewar. The temperature calibration was carried out with a standard platinum resistance (PT100) sensor coupled with an 8½ digit multimeter. The water equivalent of this calorimeter was determined by using electrical calibration with the joule calibrator. The experimentally measured values of the quantum of heat were validated by measuring heats of dissolution of pure KCl (for endotherm) and tris (hydroxyl methyl) amino-methane (for exotherm). The uncertainity in the measurements was found to be within ±3%.

  19. Thermodynamics analysis of refinery sludge gasification in adiabatic updraft gasifier.

    PubMed

    Ahmed, Reem; Sinnathambi, Chandra M; Eldmerdash, Usama; Subbarao, Duvvuri

    2014-01-01

    Limited information is available about the thermodynamic evaluation for biomass gasification process using updraft gasifier. Therefore, to minimize errors, the gasification of dry refinery sludge (DRS) is carried out in adiabatic system at atmospheric pressure under ambient air conditions. The objectives of this paper are to investigate the physical and chemical energy and exergy of product gas at different equivalent ratios (ER). It will also be used to determine whether the cold gas, exergy, and energy efficiencies of gases may be maximized by using secondary air injected to gasification zone under various ratios (0, 0.5, 1, and 1.5) at optimum ER of 0.195. From the results obtained, it is indicated that the chemical energy and exergy of producer gas are magnified by 5 and 10 times higher than their corresponding physical values, respectively. The cold gas, energy, and exergy efficiencies of DRS gasification are in the ranges of 22.9-55.5%, 43.7-72.4%, and 42.5-50.4%, respectively. Initially, all 3 efficiencies increase until they reach a maximum at the optimum ER of 0.195; thereafter, they decline with further increase in ER values. The injection of secondary air to gasification zone is also found to increase the cold gas, energy, and exergy efficiencies. A ratio of secondary air to primary air of 0.5 is found to be the optimum ratio for all 3 efficiencies to reach the maximum values. PMID:24672368

  20. Adiabatic calorimetric decomposition studies of 50 wt.% hydroxylamine/water.

    PubMed

    Cisneros, L O; Rogers, W J; Mannan, M S

    2001-03-19

    Calorimetric data can provide a basis for determining potential hazards in reactions, storage, and transportation of process chemicals. This work provides calorimetric data for the thermal decomposition behavior in air of 50wt.% hydroxylamine/water (HA), both with and without added stabilizers, which was measured in closed cells with an automatic pressure tracking adiabatic calorimeter (APTAC). Among the data provided are onset temperatures, reaction order, activation energies, pressures of noncondensable products, thermal stability at 100 degrees C, and the effect of HA storage time. Discussed also are the catalytic effects of carbon steel, stainless steel, stainless steel with silica coating, inconel, titanium, and titanium with silica coating on the reaction self-heat rates and onset temperatures. In borosilicate glass cells, HA was relatively stable at temperatures up to 133 degrees C, where the HA decomposition self-heat rate reached 0.05 degrees C/min. The added stabilizers appeared to reduce HA decomposition rates in glass cells and at ambient temperatures. The tested metals and metal surfaces coated with silica acted as catalysts to lower the onset temperatures and increase the self-heat rates. PMID:11165058

  1. Development of a semi-adiabatic isoperibol solution calorimeter

    SciTech Connect

    Venkata Krishnan, R.; Jogeswararao, G.; Parthasarathy, R.; Premalatha, S.; Prabhakar Rao, J.; Gunasekaran, G.; Ananthasivan, K.

    2014-12-15

    A semi-adiabatic isoperibol solution calorimeter has been indigenously developed. The measurement system comprises modules for sensitive temperature measurement probe, signal processing, data collection, and joule calibration. The sensitivity of the temperature measurement module was enhanced by using a sensitive thermistor coupled with a lock-in amplifier based signal processor. A microcontroller coordinates the operation and control of these modules. The latter in turn is controlled through personal computer (PC) based custom made software developed with LabView. An innovative summing amplifier concept was used to cancel out the base resistance of the thermistor. The latter was placed in the dewar. The temperature calibration was carried out with a standard platinum resistance (PT100) sensor coupled with an 8½ digit multimeter. The water equivalent of this calorimeter was determined by using electrical calibration with the joule calibrator. The experimentally measured values of the quantum of heat were validated by measuring heats of dissolution of pure KCl (for endotherm) and tris (hydroxyl methyl) amino-methane (for exotherm). The uncertainity in the measurements was found to be within ±3%.

  2. Shortcuts to Adiabaticity in Transport of a Single Trapped Ion

    NASA Astrophysics Data System (ADS)

    An, Shuoming; Lv, Dingshun; Campo, Adolfo Del; Kim, Kihwan

    2015-05-01

    We report an experimental study on shortcuts to adiabaticity in the transport of a single 171Yb+ ion trapped in a harmonic potential. In these driving schemes, the application of a force induces a nonadiabatic dynamics in which excitations are tailored so as to preserve the ion motional state in the ground state upon completion of the process. We experimentally apply the laser induced force and realize three different protocols: (1) a transitionless driving with a counterdiabatic term out of phase with the displacement force, (2) a classical protocol assisted by counterdiabatic fields in phase with the main force, (3) and an engineered transport protocol based on the Fourier transform of the trap acceleration. We experimentally compare and discuss the robustness of these protocols under given experimental limitations such as trap frequency drifts. This work was supported by the National Basic Research Program of China under Grants No. 2011CBA00300 (No. 2011CBA00301), the National Natural Science Foundation of China 11374178, and the University of Massachusetts Boston (No. P20150000029279).

  3. Adiabatic quantum pump in a zigzag graphene nanoribbon junction

    NASA Astrophysics Data System (ADS)

    Zhang, Lin

    2015-11-01

    The adiabatic electron transport is theoretically studied in a zigzag graphene nanoribbon (ZGNR) junction with two time-dependent pumping electric fields. By modeling a ZGNR p-n junction and applying the Keldysh Green’s function method, we find that a pumped charge current is flowing in the device at a zero external bias, which mainly comes from the photon-assisted tunneling process and the valley selection rule in an even-chain ZGNR junction. The pumped charge current and its ON and OFF states can be efficiently modulated by changing the system parameters such as the pumping frequency, the pumping phase difference, and the Fermi level. A ferromagnetic ZGNR device is also studied to generate a pure spin current and a fully polarized spin current due to the combined spin pump effect and the valley valve effect. Our finding might pave the way to manipulate the degree of freedom of electrons in a graphene-based electronic device. Project supported by the National Natural Science Foundation of China (Grant No. 110704033), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2010416), and the Natural Science Foundation for Colleges and Universities in Jiangsu Province, China (Grant No. 13KJB140005).

  4. Shock compression and adiabatic release of a titaniferous mare basalt

    NASA Technical Reports Server (NTRS)

    Ahrens, T. J.; Jackson, I.; Jeanloz, R.

    1977-01-01

    A report is presented regarding the dynamic properties of a rock indigenous to the mare basins of the moon. The reported data were obtained in a study of sample 70215, a very titanium-rich basalt (58% pyroxene, 18% ilmenite, 15% plagioclase, 6% olivine, and 3% quartz by weight). This rock is probably representative of a class of the earliest mare-filling extrusive rocks which are exposed on the present lunar surface. Two series of experiments were performed. One set of experiments involved the measuring of Hugoniot and release adiabats to 15.7 GPa with a propellant gun apparatus. In the second set of experiments, a light-gas gun was employed to yield Hugoniot data at about 120 GPa and release states at about 90 GPa. Lunar basalt 70215 appears to be among the densest rocks in the present lunar sample collection, having a crystal density of 3.38 g/cu cm and a porosity of about 1.3%. The results of the experiments have important implications for both the degree of shock metamorphism expected for impact processes and the extent of ejecta transport on mare surfaces with high-titanium basalt composition.

  5. Decoherence in current induced forces: Application to adiabatic quantum motors

    NASA Astrophysics Data System (ADS)

    Fernández-Alcázar, Lucas J.; Bustos-Marún, Raúl A.; Pastawski, Horacio M.

    2015-08-01

    Current induced forces are not only related with the discrete nature of electrons but also with its quantum character. It is natural then to wonder about the effect of decoherence. Here, we develop the theory of current induced forces including dephasing processes and we apply it to study adiabatic quantum motors (AQMs). The theory is based on Büttiker's fictitious probe model, which here is reformulated for this particular case. We prove that it accomplishes the fluctuation-dissipation theorem. We also show that, in spite of decoherence, the total work performed by the current induced forces remains equal to the pumped charge per cycle times the voltage. We find that decoherence affects not only the current induced forces of the system but also its intrinsic friction and noise, modifying in a nontrivial way the efficiency of AQMs. We apply the theory to study an AQM inspired by a classical peristaltic pump where we surprisingly find that decoherence can play a crucial role by triggering its operation. Our results can help to understand how environmentally induced dephasing affects the quantum behavior of nanomechanical devices.

  6. Thermodynamics Analysis of Refinery Sludge Gasification in Adiabatic Updraft Gasifier

    PubMed Central

    Ahmed, Reem; Sinnathambi, Chandra M.; Eldmerdash, Usama; Subbarao, Duvvuri

    2014-01-01

    Limited information is available about the thermodynamic evaluation for biomass gasification process using updraft gasifier. Therefore, to minimize errors, the gasification of dry refinery sludge (DRS) is carried out in adiabatic system at atmospheric pressure under ambient air conditions. The objectives of this paper are to investigate the physical and chemical energy and exergy of product gas at different equivalent ratios (ER). It will also be used to determine whether the cold gas, exergy, and energy efficiencies of gases may be maximized by using secondary air injected to gasification zone under various ratios (0, 0.5, 1, and 1.5) at optimum ER of 0.195. From the results obtained, it is indicated that the chemical energy and exergy of producer gas are magnified by 5 and 10 times higher than their corresponding physical values, respectively. The cold gas, energy, and exergy efficiencies of DRS gasification are in the ranges of 22.9–55.5%, 43.7–72.4%, and 42.5–50.4%, respectively. Initially, all 3 efficiencies increase until they reach a maximum at the optimum ER of 0.195; thereafter, they decline with further increase in ER values. The injection of secondary air to gasification zone is also found to increase the cold gas, energy, and exergy efficiencies. A ratio of secondary air to primary air of 0.5 is found to be the optimum ratio for all 3 efficiencies to reach the maximum values. PMID:24672368

  7. Evolution of f{sub NL} to the adiabatic limit

    SciTech Connect

    Elliston, Joseph; Mulryne, David J.; Tavakol, Reza; Seery, David E-mail: D.Mulryne@qmul.ac.uk E-mail: R.Tavakol@qmul.ac.uk

    2011-11-01

    We study inflationary perturbations in multiple-field models, for which ζ typically evolves until all isocurvature modes decay — the {sup a}diabatic limit{sup .} We use numerical methods to explore the sensitivity of the local-shape bispectrum to the process by which this limit is achieved, finding an appreciable dependence on model-specific data such as the time at which slow-roll breaks down or the timescale of reheating. In models with a sum-separable potential where the isocurvature modes decay before the end of the slow-roll phase we give an analytic criterion for the asymptotic value of f{sub NL} to be large. Other examples can be constructed using a waterfall field to terminate inflation while f{sub NL} is transiently large, caused by descent from a ridge or convergence into a valley. We show that these two types of evolution are distinguished by the sign of the bispectrum, and give approximate expressions for the peak f{sub NL}.

  8. First-passage times in integrate-and-fire neurons with stochastic thresholds

    NASA Astrophysics Data System (ADS)

    Braun, Wilhelm; Matthews, Paul C.; Thul, Rüdiger

    2015-05-01

    We consider a leaky integrate-and-fire neuron with deterministic subthreshold dynamics and a firing threshold that evolves as an Ornstein-Uhlenbeck process. The formulation of this minimal model is motivated by the experimentally observed widespread variation of neural firing thresholds. We show numerically that the mean first-passage time can depend nonmonotonically on the noise amplitude. For sufficiently large values of the correlation time of the stochastic threshold the mean first-passage time is maximal for nonvanishing noise. We provide an explanation for this effect by analytically transforming the original model into a first-passage-time problem for Brownian motion. This transformation also allows for a perturbative calculation of the first-passage-time histograms. In turn this provides quantitative insights into the mechanisms that lead to the nonmonotonic behavior of the mean first-passage time. The perturbation expansion is in excellent agreement with direct numerical simulations. The approach developed here can be applied to any deterministic subthreshold dynamics and any Gauss-Markov processes for the firing threshold. This opens up the possibility to incorporate biophysically detailed components into the subthreshold dynamics, rendering our approach a powerful framework that sits between traditional integrate-and-fire models and complex mechanistic descriptions of neural dynamics.

  9. D Surveying & Modeling of Underground Passages in Wwi Fortifications

    NASA Astrophysics Data System (ADS)

    Rodríguez-Gonzálvez, P.; Nocerino, E.; Menna, F.; Minto, S.; Remondino, F.

    2015-02-01

    The virtual reconstruction of subterranean structures is a suitable scenario for the integration of different geomatics techniques although narrow passages, lack of light and irregular surface can arise various problems in the data acquisition as well as processing procedures. Generally the final product is a dense and detailed 3D model, whose number of triangles increases quickly according to the complexity of the object. This complexity reduces the efficient use and dissemination of the produced information therefore innovative solutions are sought. The article presents the 3D surveying and modelling of underground passages of World War I (WWI) fortifications. After the acquisition of dense point clouds by means of terrestrial scanning (TLS), a simplification and optimization workflow is performed with the aim of generating a lightweight product that keeps the maximum amount of significant information. A continuous scene representation with a 87% triangle reduction is generated, while the final precision is preserved according to a tolerance predefined by the final user. Such 3D product can be employed as basis for reconstruction, consolidation, preservation and valorisation of the WWI tunnels.

  10. Effects of Drake Passage on a strongly eddying global ocean

    NASA Astrophysics Data System (ADS)

    Viebahn, Jan P.; Heydt, Anna S.; Le Bars, Dewi; Dijkstra, Henk A.

    2016-05-01

    The climate impact of ocean gateway openings during the Eocene-Oligocene transition is still under debate. Previous model studies employed grid resolutions at which the impact of mesoscale eddies has to be parameterized. We present results of a state-of-the-art eddy-resolving global ocean model with a closed Drake Passage and compare with results of the same model at noneddying resolution. An analysis of the pathways of heat by decomposing the meridional heat transport into eddy, horizontal, and overturning circulation components indicates that the model behavior on the large scale is qualitatively similar at both resolutions. Closing Drake Passage induces (i) sea surface warming around Antarctica due to equatorward expansion of the subpolar gyres, (ii) the collapse of the overturning circulation related to North Atlantic Deep Water formation leading to surface cooling in the North Atlantic, and (iii) significant equatorward eddy heat transport near Antarctica. However, quantitative details significantly depend on the chosen resolution. The warming around Antarctica is substantially larger for the noneddying configuration (˜5.5°C) than for the eddying configuration (˜2.5°C). This is a consequence of the subpolar mean flow which partitions differently into gyres and circumpolar current at different resolutions. We conclude that for a deciphering of the different mechanisms active in Eocene-Oligocene climate change detailed analyses of the pathways of heat in the different climate subsystems are crucial in order to clearly identify the physical processes actually at work.

  11. Ice Thickness in the Northwest Passage

    NASA Astrophysics Data System (ADS)

    Haas, C.; Howell, S.

    2015-12-01

    Recently the feasibility of commercial shipping in the ice-prone Northwest Passage has attracted a lot of attention. However, very little ice thickness information actually exists. We present results of the first-ever airborne electromagnetic ice thickness surveys over the NWP carried out in April and May 2011 and 2015 over first-year and multiyear ice. Results show modal thicknesses between 1.8 and 2.0 m in all regions. Mean thicknesses over 3 m and thick, deformed ice were observed over some multiyear ice regimes shown to originate from the Arctic Ocean. Thick ice features more than 100 m wide and thicker than 4 m occurred frequently. There are few other data to compare with to evaluate if the ice of the Northwest Passage has transitioned as other parts of the Arctic have. Although likely thinner than some 20 or more years ago, ice conditions must still be considered severe, and the Canadian Arctic Archipelao may well be considered the last ice refuge of the Arctic. These results have important implications for the prediction of ice break-up and summer ice conditions, and the assessment of sea ice hazards during the summer shipping season.

  12. Understanding cell passage through constricted microfluidic channels

    NASA Astrophysics Data System (ADS)

    Cartas-Ayala, Marco A.; Karnik, Rohit

    2012-11-01

    Recently, several microfluidic platforms have been proposed to characterize cells based on their behaviour during cell passage through constricted channels. Variables like transit time have been analyzed in disease states like sickle cell anemia, malaria and sepsis. Nevertheless, it is hard to make direct comparisons between different platforms and cell types. We present experimental results of the relationship between solid deformable particle properties, i.e. stiffness and relative particle size, and flow properties, i.e. particle's velocity. We measured the hydrodynamic variables during the flow of HL-60 cells, a white myeloid cell type, in narrow microfluidic square channels using a microfluidic differential manometer. We measured the flow force required to move cells of different sizes through microchannels and quantified friction forces opposing cell passage. We determined the non-dimensional parameters that influence the flow of cells and we used them to obtain a non dimensional expression that can be used to predict the forces needed to drive cells through microchannels. We found that the friction force needed to flow HL-60 through a microfluidic channel is the sum of two parts. The first part is a static friction force that is proportional to the force needed to keep the force compressed. The second part is a factor that is proportional to the cell velocity, hence a dynamic term, and slightly sensitive to the compressive force. We thank CONACYT (Mexican Science and Technology Council) for supporting this project, grant 205899.

  13. Transplacental passage of insulin complexed to antibody.

    PubMed Central

    Bauman, W A; Yalow, R S

    1981-01-01

    The passage of plasma proteins across the placental barrier in humans is known to be highly selective. Thus, free maternal insulin has been reported not to cross the normal maternofetal barrier, although insulin-binding antibodies have been detected in newborn infants whose diabetic mothers received insulin therapy. In this report we demonstrate, with the use of a human antiserum that permits distinction between human and animal insulins, that insulin in the cord blood of each of two neonates of insulin-treated diabetic mothers was, in part, animal insulin. The higher the antibody titer of the mother the greater was the total insulin in the cord plasma and the greater was the fraction that was animal insulin. In case 1 cord plasma insulin was 0.7 unit/liter, of which 10% was animal insulin; in case 2 cord plasma insulin was 3.5 units/liter, of which 25% was animal insulin. The demonstration that antigen restricted from transplacental passage can be transferred while complexed to antibody raises the question whether such fetal exposure would induce partial or total immunologic unresponsiveness subsequently if the fetus were rechallenged with the same antigen. PMID:7027265

  14. Adiabatic condition and the quantum hitting time of Markov chains

    SciTech Connect

    Krovi, Hari; Ozols, Maris; Roland, Jeremie

    2010-08-15

    We present an adiabatic quantum algorithm for the abstract problem of searching marked vertices in a graph, or spatial search. Given a random walk (or Markov chain) P on a graph with a set of unknown marked vertices, one can define a related absorbing walk P{sup '} where outgoing transitions from marked vertices are replaced by self-loops. We build a Hamiltonian H(s) from the interpolated Markov chain P(s)=(1-s)P+sP{sup '} and use it in an adiabatic quantum algorithm to drive an initial superposition over all vertices to a superposition over marked vertices. The adiabatic condition implies that, for any reversible Markov chain and any set of marked vertices, the running time of the adiabatic algorithm is given by the square root of the classical hitting time. This algorithm therefore demonstrates a novel connection between the adiabatic condition and the classical notion of hitting time of a random walk. It also significantly extends the scope of previous quantum algorithms for this problem, which could only obtain a full quadratic speedup for state-transitive reversible Markov chains with a unique marked vertex.

  15. Adiabatic femtosecond pulse compression and control by using quadratic cascading nonlinearity

    NASA Astrophysics Data System (ADS)

    Zeng, Xianglong; Ashihara, Satoshi; Shimura, Tsutomu; Kuroda, Kazuo

    2008-01-01

    We experimentally demonstrate that adiabatic compression of femtosecond pulse can be achieved by employing the management of quadratic cascading nonlinearity in quasi-phase-matching gratings. Cascading nonlinearity is not a simple analogy with third-order optical nonlinearity in term of the engineering properties of the magnitude and focusing (or defocusing) nonlinearity. Femtosecond pulse compression is investigated based on type-I (e: o + o) collinear QPM geometry of aperiodically poled MgO-doped LiNbO 3 (MgO: LN). Group-velocity-matching condition is chosen to generate quadratic femtosecond soliton consisting of fundamental (FF) and second harmonic (SH) pulses. Adiabatic-like compression process is observed in the length of 50 mm linearly chirped QPM. Cascading nonlinearity is local managed, instead of dispersion management used in fiber adiabatic soliton compression. Quadratic soliton including FF and SH pulses are obtained from the compression of 95 fs FF pulse in the initial experiments. Dependence on the phase mismatch and group velocity mismatch, cascading nonlinearity has a flexible property and presents a new challenge for exploring femtosecond pulse shaping and control. The demonstrated pulse compression and control based on cascading nonlinearity is useful for generation of shorter pulses with clean temporal profiles, efficient femtosecond second harmonic generation and group-velocity control.

  16. Performance evaluation of quantitative adiabatic (13)C NMR pulse sequences for site-specific isotopic measurements.

    PubMed

    Thibaudeau, Christophe; Remaud, Gérald; Silvestre, Virginie; Akoka, Serge

    2010-07-01

    (2)H/(1)H and (13)C/(12)C site-specific isotope ratios determined by NMR spectroscopy may be used to discriminate pharmaceutically active ingredients based on the synthetic process used in production. Extending the Site-specific Natural Isotope Fractionation NMR (SNIF-NMR) method to (13)C is highly beneficial for complex organic molecules when measurements of (2)H/(1)H ratios lead to poorly defined molecular fingerprints. The current NMR methodology to determine (13)C/(12)C site-specific isotope ratios suffers from poor sensitivity and long experimental times. In this work, several NMR pulse sequences based on polarization transfer were evaluated and optimized to measure precise quantitative (13)C NMR spectra within a short time. Adiabatic 180 degrees (1)H and (13)C pulses were incorporated into distortionless enhancement by polarization transfer (DEPT) and refocused insensitive nuclei enhanced by polarization transfer (INEPT) to minimize the influence of 180 degrees pulse imperfections and of off-resonance effects on the precision of the measured (13)C peak areas. The adiabatic DEPT sequence was applied to draw up a precise site-specific (13)C isotope profile of ibuprofen. A modified heteronuclear cross-polarization (HCP) experiment featuring (1)H and (13)C spin-locks with adiabatic 180 degrees pulses is also introduced. This sequence enables efficient magnetization transfer across a wide (13)C frequency range although not enough for an application in quantitative (13)C isotopic analysis. PMID:20527737

  17. Comment on ``Adiabatic quantum computation with a one-dimensional projector Hamiltonian''

    NASA Astrophysics Data System (ADS)

    Kay, Alastair

    2013-10-01

    The partial adiabatic search algorithm was introduced in Tulsi's paper [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.80.052328 80, 052328 (2009)] as a modification of the usual adiabatic algorithm for a quantum search with the idea that most of the interesting computation only happens over a very short range of the adiabatic path. By focusing on that restricted range, one can potentially gain an advantage by reducing the control requirements on the system, enabling a uniform rate of evolution. In this Comment, we point out an oversight in Tulsi's paper [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.80.052328 80, 052328 (2009)] that invalidates its proof. However, the argument can be corrected, and the calculations in Tulsi's paper [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.80.052328 80, 052328 (2009)] are then sufficient to show that the scheme still works. Nevertheless, subsequent works [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.82.034304 82, 034304 (2010), Chin. Phys. BCPBHAJ1674-105610.1088/1674-1056/20/4/040309 20, 040309 (2011), Chin. Phys. BCPBHAJ1674-105610.1088/1674-1056/21/1/010306 21, 010306 (2012), AASRI Procedia 1, 5862 (2012), and Quantum Inf. Process.10.1007/s11128-013-0557-1 12, 2689 (2013)] cannot all be recovered in the same way.

  18. Semiclassical Monte Carlo: A first principles approach to non-adiabatic molecular dynamics

    SciTech Connect

    White, Alexander J.; Gorshkov, Vyacheslav N.; Wang, Ruixi; Tretiak, Sergei; Mozyrsky, Dmitry

    2014-11-14

    Modeling the dynamics of photophysical and (photo)chemical reactions in extended molecular systems is a new frontier for quantum chemistry. Many dynamical phenomena, such as intersystem crossing, non-radiative relaxation, and charge and energy transfer, require a non-adiabatic description which incorporate transitions between electronic states. Additionally, these dynamics are often highly sensitive to quantum coherences and interference effects. Several methods exist to simulate non-adiabatic dynamics; however, they are typically either too expensive to be applied to large molecular systems (10's-100's of atoms), or they are based on ad hoc schemes which may include severe approximations due to inconsistencies in classical and quantum mechanics. We present, in detail, an algorithm based on Monte Carlo sampling of the semiclassical time-dependent wavefunction that involves running simple surface hopping dynamics, followed by a post-processing step which adds little cost. The method requires only a few quantities from quantum chemistry calculations, can systematically be improved, and provides excellent agreement with exact quantum mechanical results. Here we show excellent agreement with exact solutions for scattering results of standard test problems. Additionally, we find that convergence of the wavefunction is controlled by complex valued phase factors, the size of the non-adiabatic coupling region, and the choice of sampling function. These results help in determining the range of applicability of the method, and provide a starting point for further improvement.

  19. Semiclassical Monte Carlo: A first principles approach to non-adiabatic molecular dynamics

    NASA Astrophysics Data System (ADS)

    White, Alexander J.; Gorshkov, Vyacheslav N.; Wang, Ruixi; Tretiak, Sergei; Mozyrsky, Dmitry

    2014-11-01

    Modeling the dynamics of photophysical and (photo)chemical reactions in extended molecular systems is a new frontier for quantum chemistry. Many dynamical phenomena, such as intersystem crossing, non-radiative relaxation, and charge and energy transfer, require a non-adiabatic description which incorporate transitions between electronic states. Additionally, these dynamics are often highly sensitive to quantum coherences and interference effects. Several methods exist to simulate non-adiabatic dynamics; however, they are typically either too expensive to be applied to large molecular systems (10's-100's of atoms), or they are based on ad hoc schemes which may include severe approximations due to inconsistencies in classical and quantum mechanics. We present, in detail, an algorithm based on Monte Carlo sampling of the semiclassical time-dependent wavefunction that involves running simple surface hopping dynamics, followed by a post-processing step which adds little cost. The method requires only a few quantities from quantum chemistry calculations, can systematically be improved, and provides excellent agreement with exact quantum mechanical results. Here we show excellent agreement with exact solutions for scattering results of standard test problems. Additionally, we find that convergence of the wavefunction is controlled by complex valued phase factors, the size of the non-adiabatic coupling region, and the choice of sampling function. These results help in determining the range of applicability of the method, and provide a starting point for further improvement.

  20. Adiabatic compressibility of myoglobin. Effect of axial ligand and denaturation.

    PubMed

    Leung, W P; Cho, K C; Lo, Y M; Choy, C L

    1986-03-01

    An ultrasonic technique has been employed to study the adiabatic compressibility of three metmyoglobin derivatives (aquomet-, fluoromet- and azidometmyoglobin) at neutral pH, and aquometmyoglobin as a function of pH in the frequency range of 1-10 MHz at 20 degrees C. No difference was observed in the adiabatic compressibility of the various derivatives. This indicates that the binding of different axial ligands to myoglobin does not affect significantly the conformational fluctuations of the protein. The finding is consistent with the results of the hydrogen exchange rate experiment, indicating that both types of measurements are useful for the study of protein dynamics. Upon acid-induced denaturation, the adiabatic compressibility of myoglobin drops from 5.3 X 10(-12) cm2/dyn to 0.5 X 10(-12) cm2/dyn. Plausible reasons for such a decrease are discussed. PMID:3947645

  1. Interaction-induced adiabatic cooling for antiferromagnetism in optical lattices

    SciTech Connect

    Dare, A.-M.; Raymond, L.; Albinet, G.; Tremblay, A.-M. S.

    2007-08-01

    In the experimental context of cold-fermion optical lattices, we discuss the possibilities to approach the pseudogap or ordered phases by manipulating the scattering length or the strength of the laser-induced lattice potential. Using the two-particle self-consistent approach, as well as quantum Monte Carlo simulations, we provide isentropic curves for the two- and three-dimensional Hubbard models at half-filling. These quantitative results are important for practical attempts to reach the ordered antiferromagnetic phase in experiments on optical lattices of two-component fermions. We find that adiabatically turning on the interaction in two dimensions to cool the system is not very effective. In three dimensions, adiabatic cooling to the antiferromagnetic phase can be achieved in such a manner, although the cooling efficiency is not as high as initially suggested by dynamical mean-field theory. Adiabatic cooling by turning off the repulsion beginning at strong coupling is possible in certain cases.

  2. Adiabatic Quantum Programming: Minor Embedding With Hard Faults

    SciTech Connect

    Klymko, Christine F; Sullivan, Blair D; Humble, Travis S

    2013-01-01

    Adiabatic quantum programming defines the time-dependent mapping of a quantum algorithm into the hardware or logical fabric. An essential programming step is the embedding of problem-specific information into the logical fabric to define the quantum computational transformation. We present algorithms for embedding arbitrary instances of the adiabatic quantum optimization algorithm into a square lattice of specialized unit cells. Our methods are shown to be extensible in fabric growth, linear in time, and quadratic in logical footprint. In addition, we provide methods for accommodating hard faults in the logical fabric without invoking approximations to the original problem. These hard fault-tolerant embedding algorithms are expected to prove useful for benchmarking the adiabatic quantum optimization algorithm on existing quantum logical hardware. We illustrate this versatility through numerical studies of embeddabilty versus hard fault rates in square lattices of complete bipartite unit cells.

  3. Pressure sensitivity of adiabatic shear banding in metals

    NASA Astrophysics Data System (ADS)

    Hanina, E.; Rittel, D.; Rosenberg, Z.

    2007-01-01

    Adiabatic shear banding (ASB) is a dynamic failure mode characterized by large plastic strains in a narrow localized band. ASB occurs at high strain rates (ɛ˙⩾103s-1), under adiabatic conditions leading to a significant temperature rise inside the band [H. Tresca, Annales du Conservatoire des Arts et Métiers 4, (1879); Y. L. Bai and B. Dodd, Adiabatic Shear Localization-Occurrence, Theories, and Applications (Pergamon, Oxford, 1992); M. A. Meyers, Dynamic Behavior of Materials (Wiley, New York, 1994).; and J. J. Lewandowski and L. M. Greer, Nat. Mater. 5, 15 (2006)]. Large hydrostatic pressures are experienced in many dynamic applications involving ASB formation (e.g., ballistic penetration, impact, and machining). The relationship between hydrostatic pressure and ASB development remains an open question, although its importance has been often noted. This letter reports original experimental results indicating a linear relationship between the (normalized) dynamic deformation energy and the (normalized) hydrostatic pressure.

  4. Adiabatic quantum programming: minor embedding with hard faults

    NASA Astrophysics Data System (ADS)

    Klymko, Christine; Sullivan, Blair D.; Humble, Travis S.

    2013-11-01

    Adiabatic quantum programming defines the time-dependent mapping of a quantum algorithm into an underlying hardware or logical fabric. An essential step is embedding problem-specific information into the quantum logical fabric. We present algorithms for embedding arbitrary instances of the adiabatic quantum optimization algorithm into a square lattice of specialized unit cells. These methods extend with fabric growth while scaling linearly in time and quadratically in footprint. We also provide methods for handling hard faults in the logical fabric without invoking approximations to the original problem and illustrate their versatility through numerical studies of embeddability versus fault rates in square lattices of complete bipartite unit cells. The studies show that these algorithms are more resilient to faulty fabrics than naive embedding approaches, a feature which should prove useful in benchmarking the adiabatic quantum optimization algorithm on existing faulty hardware.

  5. Heat transfer in serpentine flow passages with rotation

    NASA Astrophysics Data System (ADS)

    Mochizuki, S.; Takamura, J.; Yamawaki, S.; Yang, Wen-Jei

    1992-06-01

    Results are reported of an experimental study tracing heat transfer performance in a rotating serpentine flow passage of a square cross section. The test section is preceded by a hydrodynamic calming region. The test model is a blow-up (by seven times) of actual winding flow passages in rotor blades. It is concluded that the flow in the 180-deg bends exhibits strong 3D structure. The heat transfer coefficient in the bend is substantially higher than in the straight flow passages. The average heat transfer characteristics over the entire flow passage is greatly affected by flow at the 180-deg bends. Due to secondary flow induced by the Coriolis force, the heat transfer coefficient in the radially outward flow passages diminish on the leading surface, but increase on the trailing surface, with an increase in rotational speed. The trend is reversed in the radially inward flow passages.

  6. Partially turbulated trailing edge cooling passages for gas turbine nozzles

    DOEpatents

    Thatcher, Jonathan Carl; Burdgick, Steven Sebastian

    2001-01-01

    A plurality of passages are spaced one from the other along the length of a trailing edge of a nozzle vane in a gas turbine. The passages lie in communication with a cavity in the vane for flowing cooling air from the cavity through the passages through the tip of the trailing edge into the hot gas path. Each passage is partially turbulated and includes ribs in an aft portion thereof to provide enhanced cooling effects adjacent the tip of the trailing edge. The major portions of the passages are smooth bore. By this arrangement, reduced temperature gradients across the trailing edge metal are provided. Additionally, the inlets to each of the passages have a restriction whereby a reduced magnitude of compressor bleed discharge air is utilized for trailing edge cooling purposes.

  7. Ice thickness in the Northwest Passage

    NASA Astrophysics Data System (ADS)

    Haas, Christian; Howell, Stephen E. L.

    2015-09-01

    Recently, the feasibility of commercial shipping in the ice-prone Northwest Passage (NWP) has attracted a lot of attention. However, very little ice thickness information actually exists. We present results of the first ever airborne electromagnetic ice thickness surveys over the NWP carried out in April and May 2011 and 2015 over first-year and multiyear ice. These show modal thicknesses between 1.8 and 2.0 m in all regions. Mean thicknesses over 3 m and thick, deformed ice were observed over some multiyear ice regimes shown to originate from the Arctic Ocean. Thick ice features more than 100 m wide and thicker than 4 m occurred frequently. Results indicate that even in today's climate, ice conditions must still be considered severe. These results have important implications for the prediction of ice breakup and summer ice conditions, and the assessment of sea ice hazards during the summer shipping season.

  8. The Eskimos of the Northwest Passage

    PubMed Central

    Davies, L. E. C.; Hanson, S.

    1965-01-01

    In 1959 and 1960, during the annual survey conducted by the Federal Northern Health Services in the area of the Northwest Passage, the diet and living conditions of some 1500 Eskimos who live in this area were studied and blood and urine samples were obtained from 40-50% of this population. Hemoglobin, blood cell morphology, serum protein-bound iodine, serum proteins, serum lipids and serum total cholesterol estimations, urinalyses, and agglutination studies for brucellosis were carried out. Hemoglobin levels were in the normal range; however, increased contact with civilization appeared to be associated with lower hemoglobin levels. Eleven per cent of the Eskimos showed eosinophilia. Serum proteins were normal. Serum lipids and serum cholesterol levels were higher in Eskimo children living in a government residential school than in a comparable group living on the Barren Lands. Serum protein-bound iodine levels were in the upper euthyroid range. Diabetes mellitus occurs among Eskimos. Sporadic cases of brucellosis also occur. PMID:14246293

  9. Coolant passage heat transfer with rotation

    NASA Astrophysics Data System (ADS)

    Hajek, T. J.; Wagner, J.; Johnson, B. V.

    1986-10-01

    In current and advanced gas turbine engines, increased speeds, pressures and temperatures are used to reduce specific fuel consumption and increase thrust/weight ratios. Hence, the turbine airfoils are subjected to increased heat loads escalating the cooling requirements to satisfy life goals. The efficient use of cooling air requires that the details of local geometry and flow conditions be adequately modeled to predict local heat loads and the corresponding heat transfer coefficients. The objective of this program is to develop a heat transfer and pressure drop data base, computational fluid dynamic techniques and correlations for multi-pass rotating coolant passages with and without flow turbulators. The experimental effort is focused on the simulation of configurations and conditions expected in the blades of advanced aircraft high pressure turbines. With the use of this data base, the effects of Coriolis and buoyancy forces on the coolant side flow can be included in the design of turbine blades.

  10. Membrane with internal passages to permit fluid flow and an electrochemical cell containing the same

    NASA Technical Reports Server (NTRS)

    Cisar, Alan J. (Inventor); Gonzalez-Martin, Anuncia (Inventor); Hitchens, G. Duncan (Inventor); Murphy, Oliver J. (Inventor)

    1997-01-01

    The invention provides an improved proton exchange membrane for use in electrochemical cells having internal passages parallel to the membrane surface, an apparatus and process for making the membrane, membrane and electrode assemblies fabricated using the membrane, and the application of the membrane and electrode assemblies to a variety of devices, both electrochemical and otherwise. The passages in the membrane extend from one edge of the membrane to another and allow fluid flow through the membrane and give access directly to the membrane for purposes of hydration.

  11. Parameters estimation using the first passage times method in a jump-diffusion model

    NASA Astrophysics Data System (ADS)

    Khaldi, K.; Meddahi, S.

    2016-06-01

    The main purposes of this paper are two contributions: (1) it presents a new method, which is the first passage time (FPT method) generalized for all passage times (GPT method), in order to estimate the parameters of stochastic Jump-Diffusion process. (2) it compares in a time series model, share price of gold, the empirical results of the estimation and forecasts obtained with the GPT method and those obtained by the moments method and the FPT method applied to the Merton Jump-Diffusion (MJD) model.

  12. Passage time statistics in the formation of ultracold dimers from fermionic atoms

    NASA Astrophysics Data System (ADS)

    Uys, Hermann

    2005-05-01

    We investigate the temporal fluctuations characteristic of the formation of molecular dimers from ultracold fermionic atoms via either photoassociation or a Feshbach resonance. The quantum fluctuations inherent to the initial atomic state result in large fluctuations in the passage time from atoms to molecules. A heuristic classical stochastic model yields an excellent agreement with the full quantum treatment in the initial stages of the dynamics. We also show that in contrast to the association of atoms into dimers, the reverse process of dissociation from a condensate of bosonic dimers exhibits little passage time fluctuations.

  13. The adiabatic phase mixing and heating of electrons in Buneman turbulence

    SciTech Connect

    Che, H.; Goldstein, M. L.; Drake, J. F.; Swisdak, M.

    2013-06-15

    The nonlinear development of the strong Buneman instability and the associated fast electron heating in thin current layers with Ω{sub e}/ω{sub pe}<1 is explored. Phase mixing of the electrons in wave potential troughs and a rapid increase in temperature are observed during the saturation of the instability. We show that the motion of trapped electrons can be described using a Hamiltonian formalism in the adiabatic approximation. The process of separatrix crossing as electrons are trapped and de-trapped is irreversible and guarantees that the resulting electron energy gain is a true heating process.

  14. Tectonic reconstructions for paleobathymetry in Drake Passage

    NASA Astrophysics Data System (ADS)

    Eagles, Graeme; Jokat, Wilfried

    2014-01-01

    A minimum-complexity tectonic reconstruction, based on published and new basin opening models, depicts how the Scotia Sea grew by Cenozoic plate divergence, dismembering a Jurassic sheared margin of Gondwana. Part of the Jurassic-early Cretaceous ocean that accreted to this margin forms the core of the Central Scotia Plate, the arc plate above a trench at the eastern end of the Scotia Sea, which migrated east away from the Antarctic and South American plates. A sequence of extensional basins opened on the western edge of the Central Scotia Plate at 50-30 Ma, decoupled from the South American Plate to the northwest by slow motion on a long transform fault. Succeeding the basins, seafloor spreading started around 30 Ma on the West Scotia Ridge, which propagated northwards in the 23-17 Ma period and ceased to operate at 6 Ma. The circuits of plate motions inside and outside the Scotia Arc are joined via rotations that describe Antarctic-Central Scotia plate motion in Powell Basin until 20 Ma, and along the South Scotia Ridge thereafter. The modelled relative motion at the northern edge of the Scotia Sea is thus constrained only by the plate circuit, but nonetheless resembles that known coarsely from the geological record of Tierra del Fuego. A paleobathymetric interpretation of nine time slices in the model shows Drake Passage developing as an intermediate-depth oceanographic gateway at 50-30 Ma, with deep flow possible afterwards. Initially, this deep flow would have been made tortuous by numerous intermediate and shallow barriers. A frontal pattern resembling that in the modern Scotia Sea would have awaited the clearance of significant barriers by continuing seafloor spreading in the Scotia Sea at ~ 18.5 Ma, at Shag Rocks Passage, and after 10 Ma southeast of South Georgia.

  15. Binary fish passage models for uniform and nonuniform flows

    SciTech Connect

    Neary, Vincent S

    2011-01-01

    Binary fish passage models are considered by many fisheries managers to be the best 21 available practice for culvert inventory assessments and for fishway and barrier design. 22 Misunderstandings between different binary passage modeling approaches often arise, 23 however, due to differences in terminology, application and presentation. In this paper 24 one-dimensional binary fish passage models are reviewed and refined to clarify their 25 origins and applications. For uniform flow, a simple exhaustion-threshold (ET) model 26 equation is derived that predicts the flow speed threshold in a fishway or velocity barrier 27 that causes exhaustion at a given maximum distance of ascent. Flow speeds at or above 28 the threshold predict failure to pass (exclusion). Flow speeds below the threshold predict 29 passage. The binary ET model is therefore intuitive and easily applied to predict passage 30 or exclusion. It is also shown to be consistent with the distance-maximizing model. The 31 ET model s limitation to uniform flow is addressed by deriving a passage model that 32 accounts for nonuniform flow conditions more commonly found in the field, including 33 backwater profiles and drawdown curves. Comparison of these models with 34 experimental observations of volitional passage for Gambusia affinis in uniform and 35 nonuniform flows indicates reasonable prediction of binary outcomes (passage or 36 exclusion) if the flow speed is not near the threshold flow velocity. More research is 37 needed on fish behavior, passage strategies under nonuniform flow regimes and 38 stochastic methods that account for individual differences in swimming performance at or 39 near the threshold flow speed. Future experiments should track and measure ground 40 speeds of ascending fish to test nonuniform flow passage strategies and to improve model 41 predictions. Stochastic models, such as Monte-Carlo techniques, that account for 42 different passage performance among individuals and allow

  16. The Sensor Fish: Measuring Fish Passage in Severe Hydraulic Conditions

    SciTech Connect

    Carlson, Thomas J. ); Duncan, Joanne P. ); Gilbride, Theresa L. )

    2003-05-28

    This article describes PNNL's efforts to develop the Sensor Fish, a waterproof sensor package that travels thru the turbines of spillways of hydroelectric dam to collect pressure and acceleration data on the conditions experienced by live salmon smolts during dam passage. Sensor Fish development is sponsored by the DOE Advanced Hydropower Turbine Survival Program. The article also gave two recent examples of Sensor Fish use: turbine passage at a McNary Kaplan turbine and spill passage in topspill at Rock Island Dam.

  17. Integrity of genome-wide genotype data from low passage lymphoblastoid cell lines.

    PubMed

    McCarthy, Nina S; Allan, Spencer M; Chandler, David; Jablensky, Assen; Morar, Bharti

    2016-09-01

    We compared genotype data from the HumanExomeCore Array in peripheral blood mononuclear cells and low passage lymphoblastoid cell lines from the same 24 individuals to test for genotypic errors caused by the Epstein-Barr Virus transformation process. Genotype concordance across the 24 comparisons was 99.57% for unfiltered genotype data, and 99.63% following standard genotype quality control filters. Mendelian error rates and levels of heterozygosity were not significantly different between lymphoblastoid cell lines and their parent peripheral blood mononuclear cells. These results show that at low passage numbers, genotype discrepancies are minimal even before stringent quality control, and extend current evidence qualifying the use of low-passage lymphoblastoid cell lines as a reliable DNA source for genotype analysis. PMID:27330997

  18. Innovative technologies for fish passage: Aspects of development and implementation. Summary and recommendations

    SciTech Connect

    Smith, G.J.C.

    1995-06-01

    A number of vendors of innovative systems designed to facilitate fish passage through hydroelectric facilities were interviewed for this study. They identified several significant barriers to the development and commercialization of their technologies. This study examined a number of fish passage technologies that were identified as innovative. These systems encompassed a range of new (or at least relatively untried in the sense of an established setting) and creative ideas that impinge on various points in the process of fish passage downstream. Technologies examined ranged from variations on established technologies (such as screens) to completely new and alternative systems for the generation of electricity from the potential energy of flowing water without the intervention of high head dams.

  19. Adiabatic invariants, diffusion and acceleration in rigid body dynamics

    NASA Astrophysics Data System (ADS)

    Borisov, Alexey V.; Mamaev, Ivan S.

    2016-03-01

    The onset of adiabatic chaos in rigid body dynamics is considered. A comparison of the analytically calculated diffusion coefficient describing probabilistic effects in the zone of chaos with a numerical experiment is made. An analysis of the splitting of asymptotic surfaces is performed and uncertainty curves are constructed in the Poincaré-Zhukovsky problem. The application of Hamiltonian methods to nonholonomic systems is discussed. New problem statements are given which are related to the destruction of an adiabatic invariant and to the acceleration of the system (Fermi's acceleration).

  20. Quantum dynamics by the constrained adiabatic trajectory method

    SciTech Connect

    Leclerc, A.; Jolicard, G.; Guerin, S.; Killingbeck, J. P.

    2011-03-15

    We develop the constrained adiabatic trajectory method (CATM), which allows one to solve the time-dependent Schroedinger equation constraining the dynamics to a single Floquet eigenstate, as if it were adiabatic. This constrained Floquet state (CFS) is determined from the Hamiltonian modified by an artificial time-dependent absorbing potential whose forms are derived according to the initial conditions. The main advantage of this technique for practical implementation is that the CFS is easy to determine even for large systems since its corresponding eigenvalue is well isolated from the others through its imaginary part. The properties and limitations of the CATM are explored through simple examples.

  1. Gravitational Chern-Simons and the adiabatic limit

    SciTech Connect

    McLellan, Brendan

    2010-12-15

    We compute the gravitational Chern-Simons term explicitly for an adiabatic family of metrics using standard methods in general relativity. We use the fact that our base three-manifold is a quasiregular K-contact manifold heavily in this computation. Our key observation is that this geometric assumption corresponds exactly to a Kaluza-Klein Ansatz for the metric tensor on our three-manifold, which allows us to translate our problem into the language of general relativity. Similar computations have been performed by Guralnik et al.[Ann. Phys. 308, 222 (2008)], although not in the adiabatic context.

  2. Adiabatic fluctuations from cosmic strings in a contracting universe

    SciTech Connect

    Brandenberger, Robert H.; Takahashi, Tomo; Yamaguchi, Masahide E-mail: tomot@cc.saga-u.ac.jp

    2009-07-01

    We show that adiabatic, super-Hubble, and almost scale invariant density fluctuations are produced by cosmic strings in a contracting universe. An essential point is that isocurvature perturbations produced by topological defects such as cosmic strings on super-Hubble scales lead to a source term which seeds the growth of curvature fluctuations on these scales. Once the symmetry has been restored at high temperatures, the isocurvature seeds disappear, and the fluctuations evolve as adiabatic ones in the expanding phase. Thus, cosmic strings may be resurrected as a mechanism for generating the primordial density fluctuations observed today.

  3. Quantum Adiabatic Pumping by Modulating Tunnel Phase in Quantum Dots

    NASA Astrophysics Data System (ADS)

    Taguchi, Masahiko; Nakajima, Satoshi; Kubo, Toshihiro; Tokura, Yasuhiro

    2016-08-01

    In a mesoscopic system, under zero bias voltage, a finite charge is transferred by quantum adiabatic pumping by adiabatically and periodically changing two or more control parameters. We obtained expressions for the pumped charge for a ring of three quantum dots (QDs) by choosing the magnetic flux penetrating the ring as one of the control parameters. We found that the pumped charge shows a steplike behavior with respect to the variance of the flux. The value of the step heights is not universal but depends on the trajectory of the control parameters. We discuss the physical origin of this behavior on the basis of the Fano resonant condition of the ring.

  4. Vortex generating flow passage design for increased film-cooling effectiveness and surface coverage. [aircraft engine blade cooling

    NASA Technical Reports Server (NTRS)

    Papell, S. S.

    1984-01-01

    The fluid mechanics of the basic discrete hole film cooling process is described as an inclined jet in crossflow and a cusp shaped coolant flow channel contour that increases the efficiency of the film cooling process is hypothesized. The design concept requires the channel to generate a counter rotating vortex pair secondary flow within the jet stream by virture of flow passage geometry. The interaction of the vortex structures generated by both geometry and crossflow was examined in terms of film cooling effectiveness and surface coverage. Comparative data obtained with this vortex generating coolant passage showed up to factors of four increases in both effectiveness and surface coverage over that obtained with a standard round cross section flow passage. A streakline flow visualization technique was used to support the concept of the counter rotating vortex pair generating capability of the flow passage design.

  5. A Comparison of Study Strategies for Passages: Rereading, Answering Questions, and Generating Questions

    ERIC Educational Resources Information Center

    Weinstein, Yana; McDermott, Kathleen B.; Roediger, Henry L., III

    2010-01-01

    Students are often encouraged to generate and answer their own questions on to-be-remembered material, because this interactive process is thought to enhance memory. But does this strategy actually work? In three experiments, all participants read the same passage, answered questions, and took a test to get accustomed to the materials in a…

  6. The Effect of Mnemonic Strategy Variations on Students' Recall of Potentially Confusable Prose Passages.

    ERIC Educational Resources Information Center

    McCormick, Christine B.

    A study was conducted to demonstrate the value of a mnemonic strategy in remembering information from prose passages and to assess processing differences associated with three variations of the mnemonic strategy. The subjects were 220 eighth grade students who read four short fictional biographies and answered recall questions that were either…

  7. Observations of a diapycnal shortcut to adiabatic upwelling of Antarctic Circumpolar Deep Water

    NASA Astrophysics Data System (ADS)

    Silvester, J. Mead; Lenn, Yueng-Djern; Polton, Jeff A.; Rippeth, Tom P.; Maqueda, M. Morales

    2014-11-01

    In the Southern Ocean, small-scale turbulence causes diapycnal mixing which influences important water mass transformations, in turn impacting large-scale ocean transports such as the Meridional Overturning Circulation (MOC), a key controller of Earth's climate. We present direct observations of mixing over the Antarctic continental slope between water masses that are part of the Southern Ocean MOC. A 12 h time series of microstructure turbulence measurements, hydrography, and velocity observations off Elephant Island, north of the Antarctic Peninsula, reveals two concurrent bursts of elevated dissipation of O(10-6) W kg-1, resulting in heat fluxes ˜10 times higher than basin-integrated Drake Passage estimates. This occurs across the boundary between adjacent adiabatic upwelling and downwelling overturning cells. Ray tracing to nearby topography shows mixing between 300 and 400 m is consistent with the breaking of locally generated internal tidal waves. Since similar conditions extend to much of the Antarctic continental slope where these water masses outcrop, diapycnal mixing may contribute significantly to upwelling.

  8. First-Passage Times in d -Dimensional Heterogeneous Media

    NASA Astrophysics Data System (ADS)

    Vaccario, G.; Antoine, C.; Talbot, J.

    2015-12-01

    Although there are many theoretical studies of the mean first-passage time (MFPT), most neglect the diffusive heterogeneity of real systems. We present exact analytical expressions for the MFPT and residence times of a pointlike particle diffusing in a spherically symmetric d -dimensional heterogeneous system composed of two concentric media with different diffusion coefficients with an absorbing inner boundary (target) and a reflecting outer boundary. By varying the convention, e.g., Itō, Stratonovich, or isothermal, chosen to interpret the overdamped Langevin equation with multiplicative noise describing the diffusion process, we find different predictions and counterintuitive results for the residence time in the outer region and hence for the MFPT, while the residence time in the inner region is independent of the convention. This convention dependence of residence times and the MFPT could provide insights about the heterogeneous diffusion in a cell or in a tumor, or for animal and insect searches inside their home range.

  9. Passage of particles through the wall of the gastrointestinal tract

    PubMed Central

    Volkheimer, Gerhard

    1974-01-01

    In the normal process of digestion, not only substances in solution are absorbed. Solid, undissolved particles in macrocorpuscular form, are “kneaded” into the mucosa during their passage through the digestive tract. These particles in the micrometer size range pass between the epithelial cells into the subepithelial layer. From here they are transmitted both by the lymph vessels and by the mesenteric veins into the circulation, where they remain for a considerable time. This phenomenon, termed persorption, was investigated in detail. Imagesfig. 6 6Afig. 6 6Bfig. 6 6CFIGURE 8. 8AFIGURE 8. 8BFIGURE 8. 8CFIGURE 8. 8DFIGURE 8. 8EFIGURE 4. 4AFIGURE 4. 4BFIGURE 4. 4CFIGURE 4. 4DFIGURE 4. 4EFIGURE 4. 4FFIGURE 4. 4GFIGURE 4. 4H PMID:4470938

  10. Non-adiabatic and adiabatic transitions at level crossing with decay: two- and three-level systems

    NASA Astrophysics Data System (ADS)

    Kenmoe, M. B.; Mkam Tchouobiap, S. E.; Kenfack Sadem, C.; Tchapda, A. B.; Fai, L. C.

    2015-03-01

    We investigate the Landau-Zener (LZ) like dynamics of decaying two- and three-level systems with decay rates {{Γ }1} and {{Γ }2} for levels with minimum and maximum spin projection. Non-adiabatic and adiabatic transition probabilities are calculated from diabatic and adiabatic bases for two- and three-level systems. We extend the familiar two-level model of atoms with decay from the excited state out of the system into the hierarchy of three-level models which can be solved analytically or computationally in a non-perturbative manner. Exact analytical solutions are obtained within the framework of an extended form of the proposed procedure which enables to take into account all possible initial moments rather than large negative time {{t}0}=-∞ as in standard LZ problems. We elucidate the applications of our results from a unified theoretical basis that numerically analyzes the dynamics of a system as probed by experiments.

  11. Trace element mass balance in hydrous adiabatic mantle melting: The Hydrous Adiabatic Mantle Melting Simulator version 1 (HAMMS1)

    NASA Astrophysics Data System (ADS)

    Kimura, Jun-Ichi; Kawabata, Hiroshi

    2014-06-01

    numerical mass balance calculation model for the adiabatic melting of a dry to hydrous peridotite has been programmed in order to simulate the trace element compositions of basalts from mid-ocean ridges, back-arc basins, ocean islands, and large igneous provinces. The Excel spreadsheet-based calculator, Hydrous Adiabatic Mantle Melting Simulator version 1 (HAMMS1) uses (1) a thermodynamic model of fractional adiabatic melting of mantle peridotite, with (2) the parameterized experimental melting relationships of primitive to depleted mantle sources in terms of pressure, temperature, water content, and degree of partial melting. The trace element composition of the model basalt is calculated from the accumulated incremental melts within the adiabatic melting regime, with consideration for source depletion. The mineralogic mode in the primitive to depleted source mantle in adiabat is calculated using parameterized experimental results. Partition coefficients of the trace elements of mantle minerals are parameterized to melt temperature mostly from a lattice strain model and are tested using the latest compilations of experimental results. The parameters that control the composition of trace elements in the model are as follows: (1) mantle potential temperature, (2) water content in the source mantle, (3) depth of termination of adiabatic melting, and (4) source mantle depletion. HAMMS1 enables us to obtain the above controlling parameters using Monte Carlo fitting calculations and by comparing the calculated basalt compositions to primary basalt compositions. Additionally, HAMMS1 compares melting parameters with a major element model, which uses petrogenetic grids formulated from experimental results, thus providing better constraints on the source conditions.

  12. Applications and error correction for adiabatic quantum optimization

    NASA Astrophysics Data System (ADS)

    Pudenz, Kristen

    Adiabatic quantum optimization (AQO) is a fast-developing subfield of quantum information processing which holds great promise in the relatively near future. Here we develop an application, quantum anomaly detection, and an error correction code, Quantum Annealing Correction (QAC), for use with AQO. The motivation for the anomaly detection algorithm is the problematic nature of classical software verification and validation (V&V). The number of lines of code written for safety-critical applications such as cars and aircraft increases each year, and with it the cost of finding errors grows exponentially (the cost of overlooking errors, which can be measured in human safety, is arguably even higher). We approach the V&V problem by using a quantum machine learning algorithm to identify charateristics of software operations that are implemented outside of specifications, then define an AQO to return these anomalous operations as its result. Our error correction work is the first large-scale experimental demonstration of quantum error correcting codes. We develop QAC and apply it to USC's equipment, the first and second generation of commercially available D-Wave AQO processors. We first show comprehensive experimental results for the code's performance on antiferromagnetic chains, scaling the problem size up to 86 logical qubits (344 physical qubits) and recovering significant encoded success rates even when the unencoded success rates drop to almost nothing. A broader set of randomized benchmarking problems is then introduced, for which we observe similar behavior to the antiferromagnetic chain, specifically that the use of QAC is almost always advantageous for problems of sufficient size and difficulty. Along the way, we develop problem-specific optimizations for the code and gain insight into the various on-chip error mechanisms (most prominently thermal noise, since the hardware operates at finite temperature) and the ways QAC counteracts them. We finish by showing

  13. Adiabatic quantum computing with phase modulated laser pulses

    PubMed Central

    Goswami, Debabrata

    2005-01-01

    Implementation of quantum logical gates for multilevel systems is demonstrated through decoherence control under the quantum adiabatic method using simple phase modulated laser pulses. We make use of selective population inversion and Hamiltonian evolution with time to achieve such goals robustly instead of the standard unitary transformation language. PMID:17195865

  14. The flat Grothendieck-Riemann-Roch theorem without adiabatic techniques

    NASA Astrophysics Data System (ADS)

    Ho, Man-Ho

    2016-09-01

    In this paper we give a simplified proof of the flat Grothendieck-Riemann-Roch theorem. The proof makes use of the local family index theorem and basic computations of the Chern-Simons form. In particular, it does not involve any adiabatic limit computation of the reduced eta-invariant.

  15. Failure of geometric electromagnetism in the adiabatic vector Kepler problem

    SciTech Connect

    Anglin, J.R.; Schmiedmayer, J.

    2004-02-01

    The magnetic moment of a particle orbiting a straight current-carrying wire may precess rapidly enough in the wire's magnetic field to justify an adiabatic approximation, eliminating the rapid time dependence of the magnetic moment and leaving only the particle position as a slow degree of freedom. To zeroth order in the adiabatic expansion, the orbits of the particle in the plane perpendicular to the wire are Keplerian ellipses. Higher-order postadiabatic corrections make the orbits precess, but recent analysis of this 'vector Kepler problem' has shown that the effective Hamiltonian incorporating a postadiabatic scalar potential ('geometric electromagnetism') fails to predict the precession correctly, while a heuristic alternative succeeds. In this paper we resolve the apparent failure of the postadiabatic approximation, by pointing out that the correct second-order analysis produces a third Hamiltonian, in which geometric electromagnetism is supplemented by a tensor potential. The heuristic Hamiltonian of Schmiedmayer and Scrinzi is then shown to be a canonical transformation of the correct adiabatic Hamiltonian, to second order. The transformation has the important advantage of removing a 1/r{sup 3} singularity which is an artifact of the adiabatic approximation.

  16. Digitized adiabatic quantum computing with a superconducting circuit.

    PubMed

    Barends, R; Shabani, A; Lamata, L; Kelly, J; Mezzacapo, A; Las Heras, U; Babbush, R; Fowler, A G; Campbell, B; Chen, Yu; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J Y; Neeley, M; Neill, C; O'Malley, P J J; Quintana, C; Roushan, P; Sank, D; Vainsencher, A; Wenner, J; White, T C; Solano, E; Neven, H; Martinis, John M

    2016-06-01

    Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable. PMID:27279216

  17. Digitized adiabatic quantum computing with a superconducting circuit

    NASA Astrophysics Data System (ADS)

    Barends, R.; Shabani, A.; Lamata, L.; Kelly, J.; Mezzacapo, A.; Heras, U. Las; Babbush, R.; Fowler, A. G.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Lucero, E.; Megrant, A.; Mutus, J. Y.; Neeley, M.; Neill, C.; O’Malley, P. J. J.; Quintana, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Solano, E.; Neven, H.; Martinis, John M.

    2016-06-01

    Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.

  18. Nonadiabatic quantum Liouville and master equations in the adiabatic basis

    SciTech Connect

    Jang, Seogjoo

    2012-12-14

    A compact form of nonadiabatic molecular Hamiltonian in the basis of adiabatic electronic states and nuclear position states is presented. The Hamiltonian, which includes both the first and the second derivative couplings, is Hermitian and thus leads to a standard expression for the quantum Liouville equation for the density operator. With the application of a projection operator technique, a quantum master equation for the diagonal components of the density operator is derived. Under the assumption that nuclear states are much more short ranged compared to electronic states and assuming no singularity, a semi-adiabatic approximation is invoked, which results in expressions for the nonadiabatic molecular Hamiltonian and the quantum Liouville equation that are much more amenable to advanced quantum dynamics calculation. The semi-adiabatic approximation is also applied to a resonance energy transfer system consisting of a donor and an acceptor interacting via Coulomb terms, and explicit detailed expressions for exciton-bath Hamiltonian including all the non-adiabatic terms are derived.

  19. The density temperature and the dry and wet virtual adiabats

    NASA Technical Reports Server (NTRS)

    Bartlo, J.; Betts, Alan K.

    1991-01-01

    A density temperature is introduced to represent virtual temperature and potential temperature on thermodynamic diagrams. This study reviews how the dry and wet virtual adiabats can be used to represent stability and air parcel density for unsaturated and cloudy air, and present formula and tabulations.

  20. Adiabatic single scan two-dimensional NMR spectrocopy.

    PubMed

    Pelupessy, Philippe

    2003-10-01

    New excitation schemes, based on the use adiabatic pulses, for single scan two-dimensional NMR experiments (Frydman et al., Proc. Nat. Acad. Sci. 2002, 99, 15 858-15 862) are introduced. The advantages are discussed. Applications in homo- and heteronuclear experiments are presented. PMID:14519020

  1. Equations for Adiabatic but Rotational Steady Gas Flows without Friction

    NASA Technical Reports Server (NTRS)

    Schaefer, Manfred

    1947-01-01

    This paper makes the following assumptions: 1) The flowing gases are assumed to have uniform energy distribution. ("Isoenergetic gas flows," that is valid with the same constants for the the energy equation entire flow.) This is correct, for example, for gas flows issuing from a region of constant pressure, density, temperature, end velocity. This property is not destroyed by compression shocks because of the universal validity of the energy law. 2) The gas behaves adiabatically, not during the compression shock itself but both before and after the shock. However, the adiabatic equation (p/rho(sup kappa) = C) is not valid for the entire gas flow with the same constant C but rather with an appropriate individual constant for each portion of the gas. For steady flows, this means that the constant C of the adiabatic equation is a function of the stream function. Consequently, a gas that has been flowing "isentropically",that is, with the same constant C of the adiabatic equation throughout (for example, in origination from a region of constant density, temperature, and velocity) no longer remains isentropic after a compression shock if the compression shock is not extremely simple (wedge shaped in a two-dimensional flow or cone shaped in a rotationally symmetrical flow). The solution of nonisentropic flows is therefore an urgent necessity.

  2. A DIRECT METHOD TO DETERMINE THE PARALLEL MEAN FREE PATH OF SOLAR ENERGETIC PARTICLES WITH ADIABATIC FOCUSING

    SciTech Connect

    He, H.-Q.; Wan, W. E-mail: wanw@mail.iggcas.ac.cn

    2012-03-01

    The parallel mean free path of solar energetic particles (SEPs), which is determined by physical properties of SEPs as well as those of solar wind, is a very important parameter in space physics to study the transport of charged energetic particles in the heliosphere, especially for space weather forecasting. In space weather practice, it is necessary to find a quick approach to obtain the parallel mean free path of SEPs for a solar event. In addition, the adiabatic focusing effect caused by a spatially varying mean magnetic field in the solar system is important to the transport processes of SEPs. Recently, Shalchi presented an analytical description of the parallel diffusion coefficient with adiabatic focusing. Based on Shalchi's results, in this paper we provide a direct analytical formula as a function of parameters concerning the physical properties of SEPs and solar wind to directly and quickly determine the parallel mean free path of SEPs with adiabatic focusing. Since all of the quantities in the analytical formula can be directly observed by spacecraft, this direct method would be a very useful tool in space weather research. As applications of the direct method, we investigate the inherent relations between the parallel mean free path and various parameters concerning physical properties of SEPs and solar wind. Comparisons of parallel mean free paths with and without adiabatic focusing are also presented.

  3. Surface Layer Turbulence During a Frontal Passage

    SciTech Connect

    Piper, M; Lundquist, J K

    2004-06-15

    calculations using these techniques are employed using data from both the sonic and hotwire anemometers, when possible. Unfortunately, direct calculations of {var_epsilon} were not possible during a part of the frontal passage because the high wind speeds concurrent with the frontal passage demand very high frequency resolution, beyond that possible with the hotwire anemometer, for direct {var_epsilon} calculations. The calculations resulting from these three techniques are presented for the cold front as a time series. Quantitative comparisons of the direct and indirect calculation techniques are also given. More detail, as well as a discussion of energy spectra, can be found in Piper & Lundquist(2004).

  4. Adiabatic shear banding and scaling laws in chip formation with application to cutting of Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Molinari, A.; Soldani, X.; Miguélez, M. H.

    2013-11-01

    The phenomenon of adiabatic shear banding is analyzed theoretically in the context of metal cutting. The mechanisms of material weakening that are accounted for are (i) thermal softening and (ii) material failure related to a critical value of the accumulated plastic strain. Orthogonal cutting is viewed as a unique configuration where adiabatic shear bands can be experimentally produced under well controlled loading conditions by individually tuning the cutting speed, the feed (uncut chip thickness) and the tool geometry. The role of cutting conditions on adiabatic shear banding and chip serration is investigated by combining finite element calculations and analytical modeling. This leads to the characterization and classification of different regimes of shear banding and the determination of scaling laws which involve dimensionless parameters representative of thermal and inertia effects. The analysis gives new insights into the physical aspects of plastic flow instability in chip formation. The originality with respect to classical works on adiabatic shear banding stems from the various facets of cutting conditions that influence shear banding and from the specific role exercised by convective flow on the evolution of shear bands. Shear bands are generated at the tool tip and propagate towards the chip free surface. They grow within the chip formation region while being convected away by chip flow. It is shown that important changes in the mechanism of shear banding take place when the characteristic time of shear band propagation becomes equal to a characteristic convection time. Application to Ti-6Al-4V titanium are considered and theoretical predictions are compared to available experimental data in a wide range of cutting speeds and feeds. The fundamental knowledge developed in this work is thought to be useful not only for the understanding of metal cutting processes but also, by analogy, to similar problems where convective flow is also interfering with

  5. Non-adiabatic response of relativistic radiation belt electrons to GEM magnetic storms

    NASA Astrophysics Data System (ADS)

    McAdams, K. L.; Reeves, G. D.

    The importance of fully adiabatic effects in the relativistic radiation belt electron response to magnetic storms is poorly characterized due to many difficulties in calculating adiabatic flux response. Using the adiabatic flux model of Kim and Chan [1997a] and Los Alamos National Laboratory geosynchronous satellite data, we examine the relative timing of the adiabatic and non-adiabatic flux responses. In the three storms identified by the GEM community for in depth study, the non-adiabatic energization occurs hours earlier than the adiabatic re-energization. The adiabatic energization can account for only 10-20% of the flux increases in the first recovery stages, and only 1% of the flux increase if there is continuing activity.

  6. Neutron Imaging for Selective Laser Melting Inconel Hardware with Internal Passages

    NASA Technical Reports Server (NTRS)

    Tramel, Terri L.; Norwood, Joseph K.; Bilheux, Hassina

    2014-01-01

    Additive Manufacturing is showing great promise for the development of new innovative designs and large potential life cycle cost reduction for the Aerospace Industry. However, more development work is required to move this technology into space flight hardware production. With selective laser melting (SLM), hardware that once consisted of multiple, carefully machined and inspected pieces, joined together can be made in one part. However standard inspection techniques cannot be used to verify that the internal passages are within dimensional tolerances or surface finish requirements. NASA/MSFC traveled to Oak Ridge National Lab's (ORNL) Spallation Neutron Source to perform some non-destructive, proof of concept imaging measurements to assess the capabilities to understand internal dimensional tolerances and internal passages surface roughness. This presentation will describe 1) the goals of this proof of concept testing, 2) the lessons learned when designing and building these Inconel 718 test specimens to minimize beam time, 3) the neutron imaging test setup and test procedure to get the images, 4) the initial results in images, volume and a video, 4) the assessment of using this imaging technique to gather real data for designing internal flow passages in SLM manufacturing aerospace hardware, and lastly 5) how proper cleaning of the internal passages is critically important. In summary, the initial results are very promising and continued development of a technique to assist in SLM development for aerospace components is desired by both NASA and ORNL. A plan forward that benefits both ORNL and NASA will also be presented, based on the promising initial results. The initial images and volume reconstruction showed that clean, clear images of the internal passages geometry are obtainable. These clear images of the internal passages of simple geometries will be compared to the build model to determine any differences. One surprising result was that a new cleaning

  7. Optimal Number of Gaps in C-Test Passages

    ERIC Educational Resources Information Center

    Baghaei, Purya

    2011-01-01

    This study addresses the issue of the optimal number of gaps in C-Test passages. An English C-Test battery containing four passages each having 40 blanks was given to 104 undergraduate students of English. The data were entered into SPSS spreadsheet. Out of the complete data with 160 blanks seven additional datasets were constructed. In the first…

  8. 49 CFR 192.150 - Passage of internal inspection devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Passage of internal inspection devices. 192.150... Components § 192.150 Passage of internal inspection devices. (a) Except as provided in paragraphs (b) and (c... of instrumented internal inspection devices. (b) This section does not apply to: (1) Manifolds;...

  9. 49 CFR 192.150 - Passage of internal inspection devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Passage of internal inspection devices. 192.150... Components § 192.150 Passage of internal inspection devices. (a) Except as provided in paragraphs (b) and (c... of instrumented internal inspection devices. (b) This section does not apply to: (1) Manifolds;...

  10. Middle Passage in the Triangular Slave Trade: The West Indies

    ERIC Educational Resources Information Center

    Sawh, Ruth; Scales, Alice M.

    2006-01-01

    Our narrative focuses on the middle passage of the slave trade in the West Indies. Herein we describe why more men, women, and children were imported in the West Indies than other islands. Specifically, our aim was to address how slaves in the middle passage of the triangular slave trade were treated, how they sustained themselves, and how they…

  11. INTERIOR VIEW, PASSAGE AND DOOR LETTING ONTO THE SOUTHEAST BED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW, PASSAGE AND DOOR LETTING ONTO THE SOUTHEAST BED CHAMBER. THE ANGLED PASSAGE RUNS PARALLEL TO WHAT WAS AN EXTERIOR WALL OF THE THREE-SIDED WINDOW BOW PRESENT IN THE HOUSE’S ORIGINAL CA. 1770 STATE - The Woodlands, 4000 Woodlands Avenue, Philadelphia, Philadelphia County, PA

  12. INTERIOR VIEW, SECONDSTORY PASSAGE FROM THE EAST CHAMBER OVER THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW, SECOND-STORY PASSAGE FROM THE EAST CHAMBER OVER THE SALOON. THE STAIRS UP FROM THE MAIN PASSAGE ACCOMMODATE THE ADDED HEIGHT OF THE SALOON’S CEILING. THE ARCHED DOOR OPENING AT CENTER ACCESSES THE SERVICE STAIR - The Woodlands, 4000 Woodlands Avenue, Philadelphia, Philadelphia County, PA

  13. Bilingual Listeners' Perception of Temporally Manipulated English Passages

    ERIC Educational Resources Information Center

    Shi, Lu-Feng; Farooq, Nadia

    2012-01-01

    Purpose: The current study measured, objectively and subjectively, how changes in speech rate affect recognition of English passages in bilingual listeners. Method: Ten native monolingual, 20 English-dominant bilingual, and 20 non-English-dominant bilingual listeners repeated target words in English passages at five speech rates (unprocessed, two…

  14. Tick passage results in enhanced attenuation of babesia bovis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Serial blood passage of virulent Babesia bovis in splenectomized cattle results in attenuated derivatives that do not cause neurologic disease. Tick transmissibility can be lost with attenuation, and has been reported to result in a reversion to virulence following tick passage. This study provides ...

  15. Gender Differences in Implicit and Explicit Memory for Affective Passages

    ERIC Educational Resources Information Center

    Burton, Leslie A.; Rabin, Laura; Vardy, Susan Bernstein.; Frohlich, Jonathan; Wyatt, Gwinne; Dimitri, Diana; Constante, Shimon; Guterman, Elan

    2004-01-01

    Thirty-two participants were administered 4 verbal tasks, an Implicit Affective Task, an Implicit Neutral Task, an Explicit Affective Task, and an Explicit Neutral Task. For the Implicit Tasks, participants were timed while reading passages aloud as quickly as possible, but not so quickly that they did not understand. A target verbal passage was…

  16. The Use of Ritual in Rites of Passage.

    ERIC Educational Resources Information Center

    Ferguson, Gary

    2001-01-01

    Humans move through difficult transitions best when guided by ceremony and ritual. The components of traditional rites of passage mirror exactly many of today's most promising psychological theories. Four components of rites of passage that comprise life transitions are discussed: letting go of an old identity, the wandering, the new identity, and…

  17. Rites of Passage in Emerging Adulthood: Perspectives of Young Mormons.

    ERIC Educational Resources Information Center

    Nelson, Larry J.

    2003-01-01

    Explored the role of rites of passage in emerging adulthood among Mormon college students. Found that the majority supported individualistic criteria for adulthood, but most also believed that rites of passage specific to their religion were necessary to become an adult. Determined that emerging adulthood is a distinct period of the life course…

  18. Alcohol Use and Abuse as a Rite of Passage.

    ERIC Educational Resources Information Center

    Butler, Edward R.

    1998-01-01

    Rites of passage are a normal part of a young person's growth from adolescence to adulthood and many are marked with the use and abuse of alcohol. Describes three phases of the rites of passage (separation, liminal, and reincorporation) that youth undergo. Suggests that educators and advisors help them create meaningful rituals without resorting…

  19. Fast passage dynamic nuclear polarization on rotating solids

    NASA Astrophysics Data System (ADS)

    Mentink-Vigier, Frederic; Akbey, Ümit; Hovav, Yonatan; Vega, Shimon; Oschkinat, Hartmut; Feintuch, Akiva

    2012-11-01

    Magic Angle Spinning (MAS) Dynamic Nuclear Polarization (DNP) has proven to be a very powerful way to improve the signal to noise ratio of NMR experiments on solids. The experiments have in general been interpreted considering the Solid-Effect (SE) and Cross-Effect (CE) DNP mechanisms while ignoring the influence of sample spinning. In this paper, we show experimental data of MAS-DNP enhancements of 1H and 13C in proline and SH3 protein in glass forming water/glycerol solvent containing TOTAPOL. We also introduce a theoretical model that aims at explaining how the nuclear polarization is built in MAS-DNP experiments. By using Liouville space based simulations to include relaxation on two simple spin models, {electron-nucleus} and {electron-electron-nucleus}, we explain how the basic MAS-SE-DNP and MAS-CE-DNP processes work. The importance of fast energy passages and short level anti-crossing is emphasized and the differences between static DNP and MAS-DNP is explained. During a single rotor cycle the enhancement in the {electron-electron-nucleus} system arises from MAS-CE-DNP involving at least three kinds of two-level fast passages: an electron-electron dipolar anti-crossing, a single quantum electron MW encounter and an anti-crossing at the CE condition inducing nuclear polarization in- or decrements. Numerical, powder-averaged, simulations were performed in order to check the influence of the experimental parameters on the enhancement efficiencies. In particular we show that the spinning frequency dependence of the theoretical MAS-CE-DNP enhancement compares favorably with the experimental 1H and 13C MAS-DNP enhancements of proline and SH3.

  20. On the work distribution for the adiabatic compression of a diluteclassical gas

    SciTech Connect

    Crooks, Gavin E.; Jarzynski, Christopher

    2006-02-23

    We consider the adiabatic and quasi-static compression of adilute classical gas, confined in a piston and initially equilibratedwith a heat bath. We find that the work performed during this process isdescribed statistically by a gamma distribution. We use this result toshow that the model satisfies the non-equilibrium work and fluctuationtheorems, but not the fluctation-dissipation relation. We discuss therare but dominant realizations that contribute most to the exponentialaverage of the work, and relate our results to potentially universal workdistributions.