Science.gov

Sample records for adiabatic potential surface

  1. Calibration-quality adiabatic potential energy surfaces for H3+ and its isotopologues

    NASA Astrophysics Data System (ADS)

    Pavanello, Michele; Adamowicz, Ludwik; Alijah, Alexander; Zobov, Nikolai F.; Mizus, Irina I.; Polyansky, Oleg L.; Tennyson, Jonathan; Szidarovszky, Tamás; Császár, Attila G.

    2012-05-01

    Calibration-quality ab initio adiabatic potential energy surfaces (PES) have been determined for all isotopologues of the molecular ion H_3^+. The underlying Born-Oppenheimer electronic structure computations used optimized explicitly correlated shifted Gaussian functions. The surfaces include diagonal Born-Oppenheimer corrections computed from the accurate electronic wave functions. A fit to the 41 655 ab initio points is presented which gives a standard deviation better than 0.1 cm-1 when restricted to the points up to 6000 cm-1 above the first dissociation asymptote. Nuclear motion calculations utilizing this PES, called GLH3P, and an exact kinetic energy operator given in orthogonal internal coordinates are presented. The ro-vibrational transition frequencies for H_3^+, H2D+, and HD_2^+ are compared with high resolution measurements. The most sophisticated and complete procedure employed to compute ro-vibrational energy levels, which makes explicit allowance for the inclusion of non-adiabatic effects, reproduces all the known ro-vibrational levels of the H_3^+ isotopologues considered to better than 0.2 cm-1. This represents a significant (order-of-magnitude) improvement compared to previous studies of transitions in the visible. Careful treatment of linear geometries is important for high frequency transitions and leads to new assignments for some of the previously observed lines. Prospects for further investigations of non-adiabatic effects in the H_3^+ isotopologues are discussed. In short, the paper presents (a) an extremely accurate global potential energy surface of H_3^+ resulting from high accuracy ab initio computations and global fit, (b) very accurate nuclear motion calculations of all available experimental line data up to 16 000 cm-1, and (c) results suggest that we can predict accurately the lines of H_3^+ towards dissociation and thus facilitate their experimental observation.

  2. Representing Adiabatic Potential Energy Surfaces Coupled by Conical Intersections in their Full Dimensionality Using Coupled Quasi-Diabatic States

    NASA Astrophysics Data System (ADS)

    Yarkony, David

    2015-03-01

    The construction of fit single state potential energy surfaces (PESs), analytic representations of ab initio electronic energies and energy gradients, is now well established. These single state PESs, which are essential for accurate quantum dynamics and have found wide application in more approximate quasi-classical treatments, have revolutionized adiabatic dynamics. The situation for nonadiabatic processes involving dissociative and large amplitude motion is less sanguine. In these cases, compared to single electronic state dynamics, both the electronic structure data and the representation are more challenging to determine. We describe the recent development and applications of algorithms that enable description of multiple adiabatic electronic potential energy surfaces coupled by conical intersections in their full dimensionality using coupled quasi-diabatic states. These representations are demonstrably quasi-diabatic, provide accurate representations of conical intersection seams and can smooth out the discontinuities in electronic structure energies due to changing active orbital spaces that routinely afflict global multistate representations.

  3. Ab initio ground and the first excited adiabatic and quasidiabatic potential energy surfaces of H + + CO system

    NASA Astrophysics Data System (ADS)

    George, D. X. F.; Kumar, Sanjay

    2010-08-01

    Ab initio global adiabatic as well as quasidiabatic potential energy surfaces for the ground and the first excited electronic states of the H + + CO system have been computed as a function of the Jacobi coordinates ( R, r, γ) using Dunning's cc-pVTZ basis set at the internally contracted multi-reference (single and double) configuration interaction level of accuracy. In addition, nonadiabatic coupling matrix elements arising from radial motion, mixing angle and coupling potential have been computed using the ab initio procedure [Simah et al. (1999) [66

  4. Excited-state nuclear forces on adiabatic potential-energy surfaces by time-dependent density-functional theory

    NASA Astrophysics Data System (ADS)

    Haruyama, Jun; Suzuki, Takahiro; Hu, Chunping; Watanabe, Kazuyuki

    2012-01-01

    We present a simple and computationally efficient method to calculate excited-state nuclear forces on adiabatic potential-energy surfaces (APES) from linear-response time-dependent density-functional theory within a real-space framework. The Casida ansatz, which has been validated for computing first-order nonadiabatic couplings in previous studies, was applied to the calculation of the excited-state forces. Our method is validated by the consistency of results in the lower excited states, which reproduce well those obtained by the numerical derivative of each APES. We emphasize the usefulness of this technique by demonstrating the excited-state molecular-dynamics simulation.

  5. Ab initio adiabatic and quasidiabatic potential energy surfaces of lowest four electronic states of the H++O2 system

    NASA Astrophysics Data System (ADS)

    Xavier, F. George D.; Kumar, Sanjay

    2010-10-01

    Ab initio global adiabatic and quasidiabatic potential energy surfaces of lowest four electronic (1-4 A3″) states of the H++O2 system have been computed in the Jacobi coordinates (R,r,γ) using Dunning's cc-pVTZ basis set at the internally contracted multireference (single and double) configuration interaction level of accuracy, which are relevant to the dynamics studies of inelastic vibrational and charge transfer processes observed in the scattering experiments. The computed equilibrium geometry parameters of the bound [HO2]+ ion in the ground electronic state and other parameters for the transition state for the isomerization process, HOO+⇌OOH+ are in good quantitative agreement with those available from the high level ab initio calculations, thus lending credence to the accuracy of the potential energy surfaces. The nonadiabatic couplings between the electronic states have been analyzed in both the adiabatic and quasidiabatic frameworks by computing the nonadiabatic coupling matrix elements and the coupling potentials, respectively. It is inferred that the dynamics of energy transfer processes in the scattering experiments carried out in the range of 9.5-23 eV would involve all the four electronic states.

  6. Topology of the Adiabatic Potential Energy Surfaces for theResonance States of the Water Anion

    SciTech Connect

    Haxton, Daniel J.; Rescigno, Thomas N.; McCurdy, C. William

    2005-04-15

    The potential energy surfaces corresponding to the long-lived fixed-nuclei electron scattering resonances of H{sub 2}O relevant to the dissociative electron attachment process are examined using a combination of ab initio scattering and bound-state calculations. These surfaces have a rich topology, characterized by three main features: a conical intersection between the {sup 2}A{sub 1} and {sup 2}B{sub 2} Feshbach resonance states; charge-transfer behavior in the OH ({sup 2}{Pi}) + H{sup -} asymptote of the {sup 2}B{sub 1} and {sup 2}A{sub 1} resonances; and an inherent double-valuedness of the surface for the {sup 2}B{sub 2} state the C{sub 2v} geometry, arising from a branch-point degeneracy with a {sup 2}B{sub 2} shape resonance. In total, eight individual seams of degeneracy among these resonances are located.

  7. Adiabatic Hyperspherical Analysis of Realistic Nuclear Potentials

    NASA Astrophysics Data System (ADS)

    Daily, K. M.; Kievsky, Alejandro; Greene, Chris H.

    2015-12-01

    Using the hyperspherical adiabatic method with the realistic nuclear potentials Argonne V14, Argonne V18, and Argonne V18 with the Urbana IX three-body potential, we calculate the adiabatic potentials and the triton bound state energies. We find that a discrete variable representation with the slow variable discretization method along the hyperradial degree of freedom results in energies consistent with the literature. However, using a Laguerre basis results in missing energy, even when extrapolated to an infinite number of basis functions and channels. We do not include the isospin T = 3/2 contribution in our analysis.

  8. Ab initio adiabatic and quasidiabatic potential energy surfaces of H+ + CO system: A study of the ground and the first three excited electronic states

    NASA Astrophysics Data System (ADS)

    Saheer, V. C.; Kumar, Sanjay

    2016-01-01

    The global ground and first three excited electronic state adiabatic as well as the corresponding quasidiabatic potential energy surfaces is reported as a function of nuclear geometries in the Jacobi coordinates ( R → , r → , γ ) using Dunning's cc-pVTZ basis set at the internally contracted multi-reference (single and double) configuration interaction level of accuracy. Nonadiabatic couplings, arising out of relative motion of proton and the vibrational motion of CO, are also reported in terms of coupling potentials. The quasidiabatic potential energy surfaces and the coupling potentials have been obtained using the ab initio procedure [Simah et al., J. Chem. Phys. 111, 4523 (1999)] for the purpose of dynamics studies.

  9. On the representation of coupled adiabatic potential energy surfaces using quasi-diabatic Hamiltonians: A distributed origins expansion approach

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaolei; Yarkony, David R.

    2012-05-01

    In two previous papers we have introduced a method to generate coupled quasi-diabatic Hamiltonians (Hd) that are capable of representing adiabatic energies, energy gradients, and derivative couplings over a wide range of geometries including seams of conical intersection. In this work, two new synergistic features are introduced. Firstly, the functional form of Hd is generalized. Rather than requiring there to be a low energy point of high symmetry to serve as the unique origin, functions centered on points distributed in nuclear coordinate space are used in the polynomials that comprise the matrix elements in Hd. The use of functions with distributed origins, allows reproduction of the ab initio data with lower order expansions, and offers the possibility of describing multichannel dissociation. The fitting algorithm is combined with a three-step procedure in which the domain of Hd is extended from a core set of nuclear configurations to a region of nuclear coordinate space appropriate for nuclear dynamics, with a prescribed accuracy. This significant extension of the domain of definition compared to our original work, which is facilitated by the distributed origin approach, is achieved largely through the use of surface hopping trajectories. The 1,21A states of NH3, which provide an archetypical example of nonadiabatic dynamics, are used to demonstrate the utility of this approach. The representation describes 21 points on the 11A-21A seam of conical intersection and their local topography flawlessly and on the entire domain, the electronic structure data is represented to an accuracy of 77.00 (46.90) cm-1, as measured by the root mean square (mean unsigned) error for energies lower than 50 000 cm-1. This error is a factor of 10 lower than that of the most accurate representation of high quality ab initio data, on a comparable domain, previously reported for this system.

  10. Spectroscopic evidence for the coexistence of tetragonal and trigonal minima within the exited state adiabatic potential energy surfaces of hexachlorotellurate and -selenate complexes

    NASA Astrophysics Data System (ADS)

    Cremers, C.; Degen, J.

    1998-11-01

    Coexistence of Jahn-Teller minima resulting from the coupling to different accepting modes within the adiabatic potential energy surface (APES) is not possible within the framework of linear vibronic coupling theory. For the lowest exited triplet state 3T1u of inorganic complexes with s2 electronic ground-state configuration, such a coexistence, due to quadratic coupling effects, is discussed. As a direct experimental evidence two vibronic progressions with different accepting modes in the emission spectra resulting from a single electronic state are observed in the emission spectra of the title compounds. The observation of vibronic finestructure in the emission spectra of [TeCl6]2- is reported for the first time.

  11. Electron wavepacket dynamics in highly quasi-degenerate coupled electronic states: A theory for chemistry where the notion of adiabatic potential energy surface loses the sense

    NASA Astrophysics Data System (ADS)

    Yonehara, Takehiro; Takatsuka, Kazuo

    2012-12-01

    We develop a theory and the method of its application for chemical dynamics in systems, in which the adiabatic potential energy hyper-surfaces (PES) are densely quasi-degenerate to each other in a wide range of molecular geometry. Such adiabatic electronic states tend to couple each other through strong nonadiabatic interactions. Technically, therefore, it is often extremely hard to accurately single out the individual PES in those systems. Moreover, due to the mutual nonadiabatic couplings that may spread wide in space and due to the energy-time uncertainty relation, the notion of the isolated and well-defined potential energy surface should lose the sense. On the other hand, such dense electronic states should offer a very interesting molecular field in which chemical reactions to proceed in characteristic manners. However, to treat these systems, the standard theoretical framework of chemical reaction dynamics, which starts from the Born-Oppenheimer approximation and ends up with quantum nuclear wavepacket dynamics, is not very useful. We here explore this problem with our developed nonadiabatic electron wavepacket theory, which we call the phase-space averaging and natural branching (PSANB) method [T. Yonehara and K. Takatsuka, J. Chem. Phys. 129, 134109 (2008)], 10.1063/1.2987302, or branching-path representation, in which the packets are propagated in time along the non-Born-Oppenheimer branching paths. In this paper, after outlining the basic theory, we examine using a one-dimensional model how well the PSANB method works with such densely quasi-degenerate nonadiabatic systems. To do so, we compare the performance of PSANB with the full quantum mechanical results and those given by the fewest switches surface hopping (FSSH) method, which is known to be one of the most reliable and flexible methods to date. It turns out that the PSANB electron wavepacket approach actually yields very good results with far fewer initial sampling paths. Then we apply the

  12. Electron wavepacket dynamics in highly quasi-degenerate coupled electronic states: a theory for chemistry where the notion of adiabatic potential energy surface loses the sense.

    PubMed

    Yonehara, Takehiro; Takatsuka, Kazuo

    2012-12-14

    We develop a theory and the method of its application for chemical dynamics in systems, in which the adiabatic potential energy hyper-surfaces (PES) are densely quasi-degenerate to each other in a wide range of molecular geometry. Such adiabatic electronic states tend to couple each other through strong nonadiabatic interactions. Technically, therefore, it is often extremely hard to accurately single out the individual PES in those systems. Moreover, due to the mutual nonadiabatic couplings that may spread wide in space and due to the energy-time uncertainty relation, the notion of the isolated and well-defined potential energy surface should lose the sense. On the other hand, such dense electronic states should offer a very interesting molecular field in which chemical reactions to proceed in characteristic manners. However, to treat these systems, the standard theoretical framework of chemical reaction dynamics, which starts from the Born-Oppenheimer approximation and ends up with quantum nuclear wavepacket dynamics, is not very useful. We here explore this problem with our developed nonadiabatic electron wavepacket theory, which we call the phase-space averaging and natural branching (PSANB) method [T. Yonehara and K. Takatsuka, J. Chem. Phys. 129, 134109 (2008)], or branching-path representation, in which the packets are propagated in time along the non-Born-Oppenheimer branching paths. In this paper, after outlining the basic theory, we examine using a one-dimensional model how well the PSANB method works with such densely quasi-degenerate nonadiabatic systems. To do so, we compare the performance of PSANB with the full quantum mechanical results and those given by the fewest switches surface hopping (FSSH) method, which is known to be one of the most reliable and flexible methods to date. It turns out that the PSANB electron wavepacket approach actually yields very good results with far fewer initial sampling paths. Then we apply the electron wavepacket

  13. Communication: MULTIMODE calculations of low-lying vibrational states of NO3 using an adiabatic potential energy surface

    NASA Astrophysics Data System (ADS)

    Homayoon, Zahra; Bowman, Joel M.

    2014-10-01

    A semi-global, permutationally invariant potential energy surface for NO3 is constructed from a subset of roughly 5000 Multi-State CASPT2 calculations (MS-CAS(17e,13o)PT2/aug-cc-pVTZ) reported by Morokuma and co-workers [H. Xiao, S. Maeda, and K. Morokuma, J. Chem. Theory Comput. 8, 2600 (2012)]. The PES, with empirical adjustments to modify the energies of two fundamentals and a hot-band transition, is used in full-dimensional vibrational self-consistent field/virtual state configuration interaction calculations using the code MULTIMODE. Vibrational energies and assignments are given for the fundamentals and low-lying combination states, including two that have been the focus of some controversy. Energies of a number of overtone and combinations are shown to be in good agreement with experiment and previous calculations using a model vibronic Hamiltonian [C. S. Simmons, T. Ichino, and J. F. Stanton, J. Phys. Chem. Lett. 3, 1946 (2012)]. Notably, the fundamental v3 is calculated to be at 1099 cm-1 in accord with the prediction from the vibronic analysis, although roughly 30 cm-1 higher. The state at 1493 cm-1 is assigned as v3 + v4, which is also in agreement with the vibronic analysis and some experiments. Vibrational energies for 15NO3 are also presented and these are also in good agreement with experiment.

  14. An improved quasi-diabatic representation of the 1, 2, 3(1)A coupled adiabatic potential energy surfaces of phenol in the full 33 internal coordinates.

    PubMed

    Zhu, Xiaolei; Malbon, Christopher L; Yarkony, David R

    2016-03-28

    In a recent work we constructed a quasi-diabatic representation, H(d), of the 1, 2, 3(1)A adiabatic states of phenol from high level multireference single and double excitation configuration interaction electronic structure data, energies, energy gradients, and derivative couplings. That H(d) accurately describes surface minima, saddle points, and also regions of strong nonadiabatic interactions, reproducing the locus of conical intersection seams and the coordinate dependence of the derivative couplings. The present work determines the accuracy of H(d) for describing phenol photodissociation. Additionally, we demonstrate that a modest energetic shift of two diabats yields a quantifiably more accurate H(d) compared with experimental energetics. The analysis shows that in favorable circumstances it is possible to use single point energies obtained from the most reliable electronic structure methods available, including methods for which the energy gradients and derivative couplings are not available, to improve the quality of a global representation of several coupled potential energy surfaces. Our data suggest an alternative interpretation of kinetic energy release measurements near λphot ∼ 248 nm.

  15. An improved quasi-diabatic representation of the 1, 2, 31A coupled adiabatic potential energy surfaces of phenol in the full 33 internal coordinates

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaolei; Malbon, Christopher L.; Yarkony, David R.

    2016-03-01

    In a recent work we constructed a quasi-diabatic representation, Hd, of the 1, 2, 31A adiabatic states of phenol from high level multireference single and double excitation configuration interaction electronic structure data, energies, energy gradients, and derivative couplings. That Hd accurately describes surface minima, saddle points, and also regions of strong nonadiabatic interactions, reproducing the locus of conical intersection seams and the coordinate dependence of the derivative couplings. The present work determines the accuracy of Hd for describing phenol photodissociation. Additionally, we demonstrate that a modest energetic shift of two diabats yields a quantifiably more accurate Hd compared with experimental energetics. The analysis shows that in favorable circumstances it is possible to use single point energies obtained from the most reliable electronic structure methods available, including methods for which the energy gradients and derivative couplings are not available, to improve the quality of a global representation of several coupled potential energy surfaces. Our data suggest an alternative interpretation of kinetic energy release measurements near λphot ˜ 248 nm.

  16. Radical ions with nearly degenerate ground state: correlation between the rate of spin-lattice relaxation and the structure of adiabatic potential energy surface.

    PubMed

    Borovkov, V I; Beregovaya, I V; Shchegoleva, L N; Potashov, P A; Bagryansky, V A; Molin, Y N

    2012-09-14

    Paramagnetic spin-lattice relaxation (SLR) in radical cations (RCs) of the cycloalkane series in liquid solution was studied and analyzed from the point of view of the correlation between the relaxation rate and the structure of the adiabatic potential energy surface (PES) of the RCs. SLR rates in the RCs formed in x-ray irradiated n-hexane solutions of the cycloalkanes studied were measured with the method of time-resolved magnetic field effect in the recombination fluorescence of spin-correlated radical ion pairs. Temperature and, for some cycloalkanes, magnetic field dependences of the relaxation rate were determined. It was found that the conventional Redfield theory of the paramagnetic relaxation as applied to the results on cyclohexane RC, gave a value of about 0.2 ps for the correlation time of the perturbation together with an unrealistically high value of 0.1 T in field units for the matrix element of the relaxation transition. The PES structure was obtained with the DFT quantum-chemical calculations. It was found that for all of the cycloalkanes RCs considered, including low symmetric alkyl-substituted ones, the adiabatic PESes were surfaces of pseudorotation due to avoided crossing. In the RCs studied, a correlation between the SLR rate and the calculated barrier height to the pseudorotation was revealed. For RCs with a higher relaxation rate, the apparent activation energies for the SLR were similar to the calculated heights of the barrier. To rationalize the data obtained it was assumed that the vibronic states degeneracy, which is specific for Jahn-Teller active cyclohexane RC, was approximately kept in the RCs of substituted cycloalkanes for the vibronic states with the energies above and close to the barrier height to the pseudorotation. It was proposed that the effective spin-lattice relaxation in a radical with nearly degenerate low-lying vibronic states originated from stochastic crossings of the vibronic levels that occur due to fluctuations of

  17. Non-adiabatic effects within a single thermally averaged potential energy surface: thermal expansion and reaction rates of small molecules.

    PubMed

    Alonso, J L; Castro, A; Clemente-Gallardo, J; Echenique, P; Mazo, J J; Polo, V; Rubio, A; Zueco, D

    2012-12-14

    At non-zero temperature and when a system has low-lying excited electronic states, the ground-state Born-Oppenheimer approximation breaks down and the low-lying electronic states are involved in any chemical process. In this work, we use a temperature-dependent effective potential for the nuclei which can accommodate the influence of an arbitrary number of electronic states in a simple way, while at the same time producing the correct Boltzmann equilibrium distribution for the electronic part. With the help of this effective potential, we show that thermally activated low-lying electronic states can have a significant effect in molecular properties for which electronic excitations are oftentimes ignored. We study the thermal expansion of the Manganese dimer, Mn(2), where we find that the average bond length experiences a change larger than the present experimental accuracy upon the inclusion of the excited states into the picture. We also show that, when these states are taken into account, reaction-rate constants are modified. In particular, we study the opening of the ozone molecule, O(3), and show that in this case the rate is modified as much as a 20% with respect to the ground-state Born-Oppenheimer prediction.

  18. Functional representation for the born-oppenheimer diagonal correction and born-huang adiabatic potential energy surfaces for isotopomers of H3.

    PubMed

    Mielke, Steven L; Schwenke, David W; Schatz, George C; Garrett, Bruce C; Peterson, Kirk A

    2009-04-23

    Multireference configuration interaction (MRCI) calculations of the Born-Oppenheimer diagonal correction (BODC) for H(3) were performed at 1397 symmetry-unique configurations using the Handy-Yamaguchi-Schaefer approach; isotopic substitution leads to 4041 symmetry-unique configurations for the DH(2) mass combination. These results were then fit to a functional form that permits calculation of the BODC for any combination of isotopes. Mean unsigned fitting errors on a test grid of configurations not included in the fitting process were 0.14, 0.12, and 0.65 cm(-1) for the H(3), DH(2), and MuH(2) isotopomers, respectively. This representation can be combined with any Born-Oppenheimer potential energy surface (PES) to yield Born-Huang (BH) PESs; herein, we choose the CCI potential energy surface, the uncertainties of which ( approximately 0.01 kcal/mol) are much smaller than the magnitude of the BODC. Fortran routines to evaluate these BH surfaces are provided. Variational transition state theory calculations are presented comparing thermal rate constants for reactions on the BO and BH surfaces to provide an initial estimate of the significance of the diagonal correction for the dynamics. PMID:19290604

  19. New ab initio adiabatic potential energy surfaces and bound state calculations for the singlet ground X˜ 1A1 and excited C˜ 1B2(21A') states of SO2

    NASA Astrophysics Data System (ADS)

    Kłos, Jacek; Alexander, Millard H.; Kumar, Praveen; Poirier, Bill; Jiang, Bin; Guo, Hua

    2016-05-01

    We report new and more accurate adiabatic potential energy surfaces (PESs) for the ground X˜ 1A1 and electronically excited C˜ 1B2(21A') states of the SO2 molecule. Ab initio points are calculated using the explicitly correlated internally contracted multi-reference configuration interaction (icMRCI-F12) method. A second less accurate PES for the ground X ˜ state is also calculated using an explicitly correlated single-reference coupled-cluster method with single, double, and non-iterative triple excitations [CCSD(T)-F12]. With these new three-dimensional PESs, we determine energies of the vibrational bound states and compare these values to existing literature data and experiment.

  20. A quantum equation of motion for chemical reaction systems on an adiabatic double-well potential surface in solution based on the framework of mixed quantum-classical molecular dynamics.

    PubMed

    Yamada, Atsushi; Okazaki, Susumu

    2008-01-28

    We present a quantum equation of motion for chemical reaction systems on an adiabatic double-well potential surface in solution in the framework of mixed quantum-classical molecular dynamics, where the reactant and product states are explicitly defined by dividing the double-well potential into the reactant and product wells. The equation can describe quantum reaction processes such as tunneling and thermal excitation and relaxation assisted by the solvent. Fluctuations of the zero-point energy level, the height of the barrier, and the curvature of the well are all included in the equation. Here, the equation was combined with the surface hopping technique in order to describe the motion of the classical solvent. Applying the present method to model systems, we show two numerical examples in order to demonstrate the potential power of the present method. The first example is a proton transfer by tunneling where the high-energy product state was stabilized very rapidly by solvation. The second example shows a thermal activation mechanism, i.e., the initial vibrational excitation in the reactant well followed by the reacting transition above the barrier and the final vibrational relaxation in the product well.

  1. Conical Intersections Between Vibrationally Adiabatic Surfaces in Methanol

    NASA Astrophysics Data System (ADS)

    Dawadi, Mahesh B.; Perry, David S.

    2014-06-01

    The discovery of a set of seven conical intersections (CI's) between vibrationally adiabatic surfaces in methanol is reported. The intersecting surfaces represent the energies of the two asymmetric CH stretch vibrations, νb{2} and νb{9}, regarded as adiabatic functions of the torsional angle, γ, and COH bend angle, ρ. One conical intersection, required by symmetry, is located at the C3v geometry where the COH group is linear (ρ = 0°); the other six are in eclipsed conformations with ρ = 62° and 94°. The three CI's at ρ = 62° are close to the equilibrium geometry (ρ = 71.4°), within the zero-point amplitude of the COH bending vibration. CI's between electronic surfaces have long been recognized as crucial conduits for ultrafast relaxation, and recently Hamm, and Stock have shown that vibrational CI's may also provide a mechanism for ultrafast vibrational relaxation. The ab initio data reported here are well described by an extended Zwanziger and Grant model for E ⊗ e Jahn-Teller systems in which Renner-Teller coupling is also active. However, in the present case, the distortion ρ from C3v symmetry is much larger than is typical in the Jahn-Teller coupling of electronic surfaces and accordingly higher-order terms in ρ are required. The present results are also consistent with the two-state model of Xu et al. The cusp-like features, which they found along the internal-rotation path, are explained in the context of the present work in terms of proximity to the CI's. The presence of multiple CI's near the torsional minimum energy path impacts the role of geometric phase in this three-fold internal-rotor system. When the dimensionality of the low-frequency space is extended to include the CO bond length as well as γ and ρ, the individual CI's become seams of CI's. It is shown that the CI's at ρ = 62° and 94° lie along the same seam of CI's in this higher dimensional space. P. Hamm and G. Stock, Phys. Rev. Lett., 109, 173201, (2012) P. Hamm, and G

  2. Non-adiabatic dynamics around a conical intersection with surface-hopping coupled coherent states.

    PubMed

    Humeniuk, Alexander; Mitrić, Roland

    2016-06-21

    A surface-hopping extension of the coupled coherent states-method [D. Shalashilin and M. Child, Chem. Phys. 304, 103-120 (2004)] for simulating non-adiabatic dynamics with quantum effects of the nuclei is put forward. The time-dependent Schrödinger equation for the motion of the nuclei is solved in a moving basis set. The basis set is guided by classical trajectories, which can hop stochastically between different electronic potential energy surfaces. The non-adiabatic transitions are modelled by a modified version of Tully's fewest switches algorithm. The trajectories consist of Gaussians in the phase space of the nuclei (coherent states) combined with amplitudes for an electronic wave function. The time-dependent matrix elements between different coherent states determine the amplitude of each trajectory in the total multistate wave function; the diagonal matrix elements determine the hopping probabilities and gradients. In this way, both interference effects and non-adiabatic transitions can be described in a very compact fashion, leading to the exact solution if convergence with respect to the number of trajectories is achieved and the potential energy surfaces are known globally. The method is tested on a 2D model for a conical intersection [A. Ferretti, J. Chem. Phys. 104, 5517 (1996)], where a nuclear wavepacket encircles the point of degeneracy between two potential energy surfaces and interferes with itself. These interference effects are absent in classical trajectory-based molecular dynamics but can be fully incorpo rated if trajectories are replaced by surface hopping coupled coherent states. PMID:27334155

  3. Non-adiabatic dynamics around a conical intersection with surface-hopping coupled coherent states

    NASA Astrophysics Data System (ADS)

    Humeniuk, Alexander; Mitrić, Roland

    2016-06-01

    A surface-hopping extension of the coupled coherent states-method [D. Shalashilin and M. Child, Chem. Phys. 304, 103-120 (2004)] for simulating non-adiabatic dynamics with quantum effects of the nuclei is put forward. The time-dependent Schrödinger equation for the motion of the nuclei is solved in a moving basis set. The basis set is guided by classical trajectories, which can hop stochastically between different electronic potential energy surfaces. The non-adiabatic transitions are modelled by a modified version of Tully's fewest switches algorithm. The trajectories consist of Gaussians in the phase space of the nuclei (coherent states) combined with amplitudes for an electronic wave function. The time-dependent matrix elements between different coherent states determine the amplitude of each trajectory in the total multistate wave function; the diagonal matrix elements determine the hopping probabilities and gradients. In this way, both interference effects and non-adiabatic transitions can be described in a very compact fashion, leading to the exact solution if convergence with respect to the number of trajectories is achieved and the potential energy surfaces are known globally. The method is tested on a 2D model for a conical intersection [A. Ferretti, J. Chem. Phys. 104, 5517 (1996)], where a nuclear wavepacket encircles the point of degeneracy between two potential energy surfaces and interferes with itself. These interference effects are absent in classical trajectory-based molecular dynamics but can be fully incorpo rated if trajectories are replaced by surface hopping coupled coherent states.

  4. Coverage dependent non-adiabaticity of CO on a copper surface

    SciTech Connect

    Omiya, Takuma; Arnolds, Heike

    2014-12-07

    We have studied the coverage-dependent energy transfer dynamics between hot electrons and CO on Cu(110) with femtosecond visible pump, sum frequency probe spectroscopy. We find that transients of the C–O stretch frequency display a red shift, which increases from 3 cm{sup −1} at 0.1 ML to 9 cm{sup −1} at 0.77 ML. Analysis of the transients reveals that the non-adiabatic coupling between the adsorbate vibrational motion and the electrons becomes stronger with increasing coverage. This trend requires the frustrated rotational mode to be the cause of the non-adiabatic behavior, even for relatively weak laser excitation of the adsorbate. We attribute the coverage dependence to both an increase in the adsorbate electronic density of states and an increasingly anharmonic potential energy surface caused by repulsive interactions between neighboring CO adsorbates. This work thus reveals adsorbate-adsorbate interactions as a new way to control adsorbate non-adiabaticity.

  5. Recent developments in trapping and manipulation of atoms with adiabatic potentials

    NASA Astrophysics Data System (ADS)

    Garraway, Barry M.; Perrin, Hélène

    2016-09-01

    A combination of static and oscillating magnetic fields can be used to ‘dress’ atoms with radio-frequency (RF), or microwave, radiation. The spatial variation of these fields can be used to create an enormous variety of traps for ultra-cold atoms and quantum gases. This article reviews the type and character of these adiabatic traps and the applications which include atom interferometry and the study of low-dimensional quantum systems. We introduce the main concepts of magnetic traps leading to adiabatic dressed traps. The concept of adiabaticity is discussed in the context of the Landau-Zener model. The first bubble trap experiment is reviewed together with the method used for loading it. Experiments based on atom chips show the production of double wells and ring traps. Dressed atom traps can be evaporatively cooled with an additional RF field, and a weak RF field can be used to probe the spectroscopy of the adiabatic potentials. Several approaches to ring traps formed from adiabatic potentials are discussed, including those based on atom chips, time-averaged adiabatic potentials and induction methods. Several proposals for adiabatic lattices with dressed atoms are also reviewed.

  6. Geometric phase of an atom inside an adiabatic radio-frequency potential

    SciTech Connect

    Zhang, P.; You, L.

    2007-09-15

    We investigate the geometric phase of an atom inside an adiabatic radio-frequency (rf) potential created from a static magnetic field (B field) and a time-dependent rf field. The spatial motion of the atomic center of mass is shown to give rise to a geometric phase, or Berry's phase, in the adiabatically evolving atomic hyperfine spin along the local B field. This phase is found to depend on both the static B field along the semiclassical trajectory of the atomic center of mass and an effective magnetic field consisting of the total B field, including the oscillating rf field. Specific calculations are provided for several recent atom interferometry experiments and proposals utilizing adiabatic rf potentials.

  7. Density-matrix-spectroscopic algorithm for excited-state adiabatic surfaces and molecular dynamics of a protonated Schiff base

    NASA Astrophysics Data System (ADS)

    Tsiper, E. V.; Chernyak, V.; Tretiak, S.; Mukamel, S.

    1999-05-01

    Excited-state potentials of a short protonated Schiff base cation which serves as a model for the photoisomerization of retinal are computed by combining a semi-empirical ground-state adiabatic surface with excitation energies obtained using the time-dependent coupled electronic oscillator (CEO) approach. Excited-state molecular dynamic simulation of the in-plane motion of cis-C5H6NH2+ following impulsive optical excitation reveals a dominating 1754 cm-1 π-conjugation mode. A new molecular dynamics algorithm is proposed which resembles the Car-Parinello ground-state technique and is based on the adiabatic propagation of the ground-state single-electron density matrix and the collective electronic modes along the trajectory.

  8. Dressed adiabatic and diabatic potentials to study conical intersections for F + H2

    NASA Astrophysics Data System (ADS)

    Das, Anita; Sahoo, Tapas; Mukhopadhyay, Debasis; Adhikari, Satrajit; Baer, Michael

    2012-02-01

    We follow a suggestion by Lipoff and Herschbach [Mol. Phys. 108, 1133 (2010), 10.1080/00268971003662912] and compare dressed and bare adiabatic potentials to get insight regarding the low-energy dynamics (e.g., cold reaction) taking place in molecular systems. In this particular case, we are interested to study the effect of conical intersections (ci) on the interacting atoms. For this purpose, we consider vibrational dressed adiabatic and vibrational dressed diabatic potentials in the entrance channel of reactive systems. According to our study, the most one should expect, in case of F + H2, is a mild effect of the (1, 2) ci on its reactive/exchange process-an outcome also supported by experiment. This happens although the corresponding dressed and bare potential barriers (and the corresponding van der Waals potential wells) differ significantly from each other.

  9. Accurate ab initio-based adiabatic global potential energy surface for the 2{sup 2}A″ state of NH{sub 2} by extrapolation to the complete basis set limit

    SciTech Connect

    Li, Y. Q.; Ma, F. C.; Sun, M. T.

    2013-10-21

    A full three-dimensional global potential energy surface is reported first time for the title system, which is important for the photodissociation processes. It is obtained using double many-body expansion theory and an extensive set of accurate ab initio energies extrapolated to the complete basis set limit. Such a work can be recommended for dynamics studies of the N({sup 2}D) + H{sub 2} reaction, a reliable theoretical treatment of the photodissociation dynamics and as building blocks for constructing the double many-body expansion potential energy surface of larger nitrogen/hydrogen containing systems. In turn, a preliminary theoretical study of the reaction N({sup 2}D)+H{sub 2}(X{sup 1}Σ{sub g}{sup +})(ν=0,j=0)→NH(a{sup 1}Δ)+H({sup 2}S) has been carried out with the method of quasi-classical trajectory on the new potential energy surface. Integral cross sections and thermal rate constants have been calculated, providing perhaps the most reliable estimate of the integral cross sections and the rate constants known thus far for such a reaction.

  10. Non-adiabatic dynamics close to conical intersections and the surface hopping perspective

    PubMed Central

    Malhado, João Pedro; Bearpark, Michael J.; Hynes, James T.

    2014-01-01

    Conical intersections play a major role in the current understanding of electronic de-excitation in polyatomic molecules, and thus in the description of photochemistry and photophysics of molecular systems. This article reviews aspects of the basic theory underlying the description of non-adiabatic transitions at conical intersections, with particular emphasis on the important case when the dynamics of the nuclei are treated classically. Within this classical nuclear motion framework, the main aspects of the surface hopping methodology in the conical intersection context are presented. The emerging picture from this treatment is that of electronic transitions around conical intersections dominated by the interplay of the nuclear velocity and the derivative non-adiabatic coupling vector field. PMID:25485263

  11. Adiabatic isometric mapping algorithm for embedding 2-surfaces in Euclidean 3-space

    NASA Astrophysics Data System (ADS)

    Ray, Shannon; Miller, Warner A.; Alsing, Paul M.; Yau, Shing-Tung

    2015-12-01

    Alexandrov proved that any simplicial complex homeomorphic to a sphere with strictly non-negative Gaussian curvature at each vertex can be isometrically embedded uniquely in {{{R}}}3 as a convex polyhedron. Due to the nonconstructive nature of his proof, there have yet to be any algorithms, that we know of, that realizes the Alexandrov embedding in polynomial time. Following his proof, we developed the adiabatic isometric mapping (AIM) algorithm. AIM uses a guided adiabatic pull-back procedure on a given polyhedral metric to produce an embedding that approximates the unique Alexandrov polyhedron. Tests of AIM applied to two different polyhedral metrics suggests that its run time is sub cubic with respect to the number of vertices. Although Alexandrov’s theorem specifically addresses the embedding of convex polyhedral metrics, we tested AIM on a broader class of polyhedral metrics that included regions of negative Gaussian curvature. One test was on a surface just outside the ergosphere of a Kerr black hole.

  12. Non-classical role of potential energy in adiabatic quantum annealing

    NASA Astrophysics Data System (ADS)

    Das, Arnab

    2009-12-01

    Adiabatic quantum annealing is a paradigm of analog quantum computation, where a given computational job is converted to the task of finding the global minimum of some classical potential energy function and the search for the global potential minimum is performed by employing external kinetic quantum fluctuations and subsequent slow reduction (annealing) of them. In this method, the entire potential energy landscape (PEL) may be accessed simultaneously through a delocalized wave-function, in contrast to a classical search, where the searcher has to visit different points in the landscape (i.e., individual classical configurations) sequentially. Thus in such searches, the role of the potential energy might be significantly different in the two cases. Here we discuss this in the context of searching of a single isolated hole (potential minimum) in a golf-course type gradient free PEL. We show, that the quantum particle would be able to locate the hole faster if the hole is deeper, while the classical particle of course would have no scope to exploit the depth of the hole. We also discuss the effect of the underlying quantum phase transition on the adiabatic dynamics.

  13. Density matrix treatment of non-adiabatic photoinduced electron transfer at a semiconductor surface.

    PubMed

    Micha, David A

    2012-12-14

    Photoinduced electron transfer at a nanostructured surface leads to localized transitions and involves three different types of non-adiabatic couplings: vertical electronic transitions induced by light absorption emission, coupling of electronic states by the momentum of atomic motions, and their coupling due to interactions with electronic density fluctuations and vibrational motions in the substrate. These phenomena are described in a unified way by a reduced density matrix (RDM) satisfying an equation of motion that contains dissipative rates. The RDM treatment is used here to distinguish non-adiabatic phenomena that are localized from those due to interaction with a medium. The fast decay of localized state populations due to electronic density fluctuations in the medium has been treated within the Lindblad formulation of rates. The formulation is developed introducing vibronic states constructed from electron orbitals available from density functional calculations, and from vibrational states describing local atomic displacements. Related ab initio molecular dynamics calculations have provided diabatic momentum couplings between excited electronic states. This has been done in detail for an indirect photoexcitation mechanism of the surface Ag(3)Si(111):H, which leads to long lasting electronic charge separation. The resulting coupled density matrix equations are solved numerically to obtain the population of the final charge-separated state as it changes over time, for several values of the diabatic momentum coupling. New insight and unexpected results are presented here which can be understood in terms of photoinduced non-adiabatic transitions involving many vibronic states. It is found that the population of long lasting charge separation states is larger for smaller momentum coupling, and that their population grows faster for smaller coupling.

  14. Diffusion of a massive particle in a periodic potential: Application to adiabatic ratchets

    NASA Astrophysics Data System (ADS)

    Rozenbaum, Viktor M.; Makhnovskii, Yurii A.; Shapochkina, Irina V.; Sheu, Sheh-Yi; Yang, Dah-Yen; Lin, Sheng Hsien

    2015-12-01

    We generalize a theory of diffusion of a massive particle by the way in which transport characteristics are described by analytical expressions that formally coincide with those for the overdamped massless case but contain a factor comprising the particle mass which can be calculated in terms of Risken's matrix continued fraction method (MCFM). Using this generalization, we aim to elucidate how large gradients of a periodic potential affect the current in a tilted periodic potential and the average current of adiabatically driven on-off flashing ratchets. For this reason, we perform calculations for a sawtooth potential of the period L with an arbitrary sawtooth length (l potentials typically considered in MCFM-solvable problems. We find nonanalytic behavior of the transport characteristics calculated for the sharp extremely asymmetric sawtooth potential at l →0 which appears due to the inertial effect. Analysis of the temperature dependences of the quantities under study reveals the dominant role of inertia in the high-temperature region. In particular, we show, by the analytical strong-inertia approach developed for this region, that the temperature-dependent contribution to the mobility at zero force and to the related effective diffusion coefficient are proportional to T-3 /2 and T-1 /2, respectively, and have a logarithmic singularity at l →0 .

  15. Diffusion of a massive particle in a periodic potential: Application to adiabatic ratchets.

    PubMed

    Rozenbaum, Viktor M; Makhnovskii, Yurii A; Shapochkina, Irina V; Sheu, Sheh-Yi; Yang, Dah-Yen; Lin, Sheng Hsien

    2015-12-01

    We generalize a theory of diffusion of a massive particle by the way in which transport characteristics are described by analytical expressions that formally coincide with those for the overdamped massless case but contain a factor comprising the particle mass which can be calculated in terms of Risken's matrix continued fraction method (MCFM). Using this generalization, we aim to elucidate how large gradients of a periodic potential affect the current in a tilted periodic potential and the average current of adiabatically driven on-off flashing ratchets. For this reason, we perform calculations for a sawtooth potential of the period L with an arbitrary sawtooth length (lpotentials typically considered in MCFM-solvable problems. We find nonanalytic behavior of the transport characteristics calculated for the sharp extremely asymmetric sawtooth potential at l→0 which appears due to the inertial effect. Analysis of the temperature dependences of the quantities under study reveals the dominant role of inertia in the high-temperature region. In particular, we show, by the analytical strong-inertia approach developed for this region, that the temperature-dependent contribution to the mobility at zero force and to the related effective diffusion coefficient are proportional to T(-3/2) and T(-1/2), respectively, and have a logarithmic singularity at l→0. PMID:26764657

  16. Laser propulsion of nanobullets by adiabatic compression of surface plasmon polaritons

    PubMed Central

    Folli, Viola; Ruocco, Giancarlo; Conti, Claudio

    2015-01-01

    Laser propulsion and guide of nanosized objects is fundamental for a wide number of applications. These applications are often limited by the fact that the optical forces acting on nanoparticles are almost negligible even in the favorable case of metallic particles and hence large laser powers are needed to accelerate and guide nanosize devices in practical applications. Furthermore, metallic nanoparticles exhibit strong absorption bands and scattering and this makes more difficult controlling nanopropulsion. Thus, finding some mechanism enhancing the optomechanical interaction at the nanoscale controlled by laser is specifically challenging and pivotal. Here, we demonstrate a novel physical effect where the well-known adiabatic localization of the enhanced plasmonic surface field on the apex of metallic nanocones produces a significant optical pressure employable as a propulsive mechanism. The proposed method gives the possibility to develop new photonics devices to accelerate metallic nanobullets over long distances for a variety of applications. PMID:26631719

  17. Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons.

    PubMed

    De Angelis, Francesco; Das, Gobind; Candeloro, Patrizio; Patrini, Maddalena; Galli, Matteo; Bek, Alpan; Lazzarino, Marco; Maksymov, Ivan; Liberale, Carlo; Andreani, Lucio Claudio; Di Fabrizio, Enzo

    2010-01-01

    The fields of plasmonics, Raman spectroscopy and atomic force microscopy have recently undergone considerable development, but independently of one another. By combining these techniques, a range of complementary information could be simultaneously obtained at a single molecule level. Here, we report the design, fabrication and application of a photonic-plasmonic device that is fully compatible with atomic force microscopy and Raman spectroscopy. Our approach relies on the generation and localization of surface plasmon polaritons by means of adiabatic compression through a metallic tapered waveguide to create strongly enhanced Raman excitation in a region just a few nanometres across. The tapered waveguide can also be used as an atomic force microscope tip. Using the device, topographic, chemical and structural information about silicon nanocrystals may be obtained with a spatial resolution of 7 nm.

  18. Adiabatic splitting, transport, and self-trapping of a Bose-Einstein condensate in a double-well potential

    SciTech Connect

    Ottaviani, C.; Corbalan, R.; Mompart, J.; Ahufinger, V.

    2010-04-15

    We show that the adiabatic dynamics of a Bose-Einstein condensate (BEC) in a double-well potential can be described in terms of a dark variable resulting from the combination of the population imbalance and the spatial atomic coherence between the two wells. By means of this dark variable, we extend, to the nonlinear matter-wave case, the recent proposal by Vitanov and Shore [Phys. Rev. A 73, 053402 (2006)] on adiabatic passage techniques to coherently control the population of two internal levels of an atom or molecule. We investigate the conditions to adiabatically split or transport a BEC as well as to prepare an adiabatic self-trapping state by the optimal delayed temporal variation of the tunneling rate via either the energy bias between the two wells or the BEC nonlinearity. The emergence of nonlinear eigenstates and unstable stationary solutions of the system as well as their role in the breaking down of the adiabatic dynamics is investigated in detail.

  19. Rotational excitation of H2O by para-H2 from an adiabatically reduced dimensional potential

    NASA Astrophysics Data System (ADS)

    Scribano, Yohann; Faure, Alexandre; Lauvergnat, David

    2012-03-01

    Cross sections and rate coefficients for low lying rotational transitions in H2O colliding with para-hydrogen pH2 are computed using an adiabatic approximation which reduces the dimensional dynamics from a 5D to a 3D problem. Calculations have been performed at the close-coupling level using the recent potential of Valiron et al. [J. Chem. Phys. 129, 134306 (2008), 10.1063/1.2988314]. A good agreement is found between the reduced adiabatic calculations and the 5D exact calculations, with an impressive time saving and memory gain. This adiabatic reduction of dimensionality seems very promising for scattering studies involving the excitation of a heavy target molecule by a light molecular projectile.

  20. Self-consistent calculation of hyperfine fields and adiabatic potential of impurities in iron

    NASA Astrophysics Data System (ADS)

    Kanamori, Junjiro; Akai, Hisazumi; Akai, Masako

    1984-01-01

    Hyperfine fields of impurities of the atomic number Z=1 56 at the substitutional site and those of light impurities of Z=1 9 at the interstitial sites in ferromagnetic iron are calculated by the KKR method adapted to the system containing a single impurity atom. The potential of the impurity atom is determined self-consistently by use of the local spin density functional formalism. The results for nonmagnetic sp valence impurities agree with those of the previous nonself-consistent calculation by Katayama-Yoshida, Terakura and Kanamori except for a few cases, confirming their theory of the systematic variation of hyperfine fields. The calculation for magnetic impurities of transition elements is presented for the first time in this paper. The calculations mentioned so far assume that impurities are situated at the center of each site. For the purpose of discussing the stability of the impurity positions, the change of the adiabatic potential due to displacements from the center is calculated by carrying out similar self-consistent calculations for off-center impurity positions. It is concluded that positive muon and some light impurities including boron will be displaced from the center when trapped in a vacancy.

  1. Size-Reduction Template Stripping of Smooth Curved Metallic Tips for Adiabatic Nanofocusing of Surface Plasmons.

    PubMed

    Johnson, Timothy W; Klemme, Daniel J; Oh, Sang-Hyun

    2016-06-01

    We present a new technique to engineer metallic interfaces to produce sharp tips with smooth curved surfaces and variable tip angles, as well as ridges with arbitrary contour shapes, all of which can be integrated with grating couplers for applications in plasmonics and nanophotonics. We combine template stripping, a nanofabrication scheme, with atomic layer deposition (ALD) to produce the ultrasharp nanoscale tips and wedges using only conventional photolithography. Conformal ALD coating of insulators over silicon trench molds of various shapes reduces their widths to make nanoscale features without high-resolution lithography. Along with a metal deposition and template stripping, this size-reduction scheme can mass-produce narrow and ultrasharp (<10 nm radius of curvature) metallic wedges and tips over an entire 4 in. wafer. This size-reduction scheme can create metallic tips out of arbitrary trench patterns that have smooth curved surfaces to facilitate efficient adiabatic nanofocusing which will benefit applications in near-field optical spectroscopy, plasmonic waveguides, particle trapping, hot-electron plasmonics, and nonlinear optics. PMID:27156522

  2. Nonintuitive Diabatic Potential Energy Surfaces for Thioanisole.

    PubMed

    Li, Shaohong L; Xu, Xuefei; Hoyer, Chad E; Truhlar, Donald G

    2015-09-01

    Diabatization of potential energy surfaces is a technique that enables convenient molecular dynamics simulations of electronically nonadiabatic processes, but diabatization itself is nonunique and can be inconvenient; the best methods to achieve diabatization are still under study. Here, we present the diabatization of two electronic states of thioanisole in the S-CH3 bond stretching and C-C-S-C torsion two-dimensional nuclear coordinate space containing a conical intersection. We use two systematic methods: the (orbital-dependent) 4-fold way and the (orbital-free) Boys localization diabatization method. These very different methods yield strikingly similar diabatic potential energy surfaces that cross at geometries where the adiabatic surfaces are well separated and do not exhibit avoided crossings, and the contours of the diabatic gap and diabatic coupling are similar for the two methods. The validity of the diabatization is supported by comparing the nonadiabatic couplings calculated from the diabatic matrix elements to those calculated by direct differentiation of the adiabatic states.

  3. Molecular wave function and effective adiabatic potentials calculated by extended multi-configuration time-dependent Hartree-Fock method

    SciTech Connect

    Kato, Tsuyoshi; Ide, Yoshihiro; Yamanouchi, Kaoru

    2015-12-31

    We first calculate the ground-state molecular wave function of 1D model H{sub 2} molecule by solving the coupled equations of motion formulated in the extended multi-configuration time-dependent Hartree-Fock (MCTDHF) method by the imaginary time propagation. From the comparisons with the results obtained by the Born-Huang (BH) expansion method as well as with the exact wave function, we observe that the memory size required in the extended MCTDHF method is about two orders of magnitude smaller than in the BH expansion method to achieve the same accuracy for the total energy. Second, in order to provide a theoretical means to understand dynamical behavior of the wave function, we propose to define effective adiabatic potential functions and compare them with the conventional adiabatic electronic potentials, although the notion of the adiabatic potentials is not used in the extended MCTDHF approach. From the comparison, we conclude that by calculating the effective potentials we may be able to predict the energy differences among electronic states even for a time-dependent system, e.g., time-dependent excitation energies, which would be difficult to be estimated within the BH expansion approach.

  4. Slowly changing potential problems in Quantum Mechanics: Adiabatic theorems, ergodic theorems, and scattering

    NASA Astrophysics Data System (ADS)

    Fishman, S.; Soffer, A.

    2016-07-01

    We employ the recently developed multi-time scale averaging method to study the large time behavior of slowly changing (in time) Hamiltonians. We treat some known cases in a new way, such as the Zener problem, and we give another proof of the adiabatic theorem in the gapless case. We prove a new uniform ergodic theorem for slowly changing unitary operators. This theorem is then used to derive the adiabatic theorem, do the scattering theory for such Hamiltonians, and prove some classical propagation estimates and asymptotic completeness.

  5. Electrostatic energy, potential energy, and energy dissipation for a width-variable capacitor system during adiabatic charging

    NASA Astrophysics Data System (ADS)

    Nakata, Shunji; Katagiri, Yoshitada; Matsuno, Shun-ichi

    2007-02-01

    This paper considers the energy consumed by charging and discharging a width-variable capacitor. The capacitor with plate distance d is coupled with repulsive mechanical potential energy, which is proportional to 1/dn. In this capacitor model, there is a stable point between attractive electrical force and repulsive mechanical force. All energies, including the electrostatic energy, potential energy, and energy dissipation, are proportional not to the ordinary value V2 but to V2/(n-1)+2, where V is the abrupt power supply voltage. We apply N-stepwise adiabatic charging to the width-variable capacitor system. It is shown that the energy consumption after charging and discharging (or recycling) can be 1/N times smaller than that of the conventional abrupt operation. By increasing the step number N, the adiabatic operation can ideally charge and discharge the width-variable capacitor system with absolutely no energy dissipation, although the voltage dependence of energies is quite different from the usual one. Adiabatic charging is very promising for realizing dissipationless operation in the proposed system.

  6. Non-adiabatic processes in the charge transfer reaction of O{sub 2} molecules with potassium surfaces without dissociation

    SciTech Connect

    Krix, David; Nienhaus, Hermann

    2014-08-21

    Thin potassium films grown on Si(001) substrates are used to measure internal chemicurrents and the external emission of exoelectrons simultaneously during adsorption of molecular oxygen on K surfaces at 120 K. The experiments clarify the dynamics of electronic excitations at a simple metal with a narrow valence band. X-ray photoemission reveals that for exposures below 5 L almost exclusively peroxide K{sub 2}O{sub 2} is formed, i.e., no dissociation of the molecule occurs during interaction. Still a significant chemicurrent and a delayed exoelectron emission are detected due to a rapid injection of unoccupied molecular levels below the Fermi level. Since the valence band width of potassium is approximately equal to the potassium work function (2.4 eV) the underlying mechanism of exoemission is an Auger relaxation whereas chemicurrents are detected after resonant charge transfer from the metal valence band into the injected level. The change of the chemicurrent and exoemission efficiencies with oxygen coverage can be deduced from the kinetics of the reaction and the recorded internal and external emission currents traces. It is shown that the non-adiabaticity of the reaction increases with coverage due to a reduction of the electronic density of states at the surface while the work function does not vary significantly. Therefore, the peroxide formation is one of the first reaction systems which exhibits varying non-adiabaticity and efficiencies during the reaction. Non-adiabatic calculations based on model Hamiltonians and density functional theory support the picture of chemicurrent generation and explain the rapid injection of hot hole states by an intramolecular motion, i.e., the expansion of the oxygen molecule on the timescale of a quarter of a vibrational period.

  7. Modelling non-adiabatic effects in H_3^+: Solution of the rovibrational Schrödinger equation with motion-dependent masses and mass surfaces

    NASA Astrophysics Data System (ADS)

    Mátyus, Edit; Szidarovszky, Tamás; Császár, Attila G.

    2014-10-01

    Introducing different rotational and vibrational masses in the nuclear-motion Hamiltonian is a simple phenomenological way to model rovibrational non-adiabaticity. It is shown on the example of the molecular ion H_3^+, for which a global adiabatic potential energy surface accurate to better than 0.1 cm-1 exists [M. Pavanello, L. Adamowicz, A. Alijah, N. F. Zobov, I. I. Mizus, O. L. Polyansky, J. Tennyson, T. Szidarovszky, A. G. Császár, M. Berg et al., Phys. Rev. Lett. 108, 023002 (2012)], that the motion-dependent mass concept yields much more accurate rovibrational energy levels but, unusually, the results are dependent upon the choice of the embedding of the molecule-fixed frame. Correct degeneracies and an improved agreement with experimental data are obtained if an Eckart embedding corresponding to a reference structure of D3h point-group symmetry is employed. The vibrational mass of the proton in H_3^+ is optimized by minimizing the root-mean-square (rms) deviation between the computed and recent high-accuracy experimental transitions. The best vibrational mass obtained is larger than the nuclear mass of the proton by approximately one third of an electron mass, m^(v)_opt,p=m_nuc,p+0.31224 m_e. This optimized vibrational mass, along with a nuclear rotational mass, reduces the rms deviation of the experimental and computed rovibrational transitions by an order of magnitude. Finally, it is shown that an extension of the algorithm allowing the use of motion-dependent masses can deal with coordinate-dependent mass surfaces in the rovibrational Hamiltonian, as well.

  8. Modelling non-adiabatic effects in H{sub 3}{sup +}: Solution of the rovibrational Schrödinger equation with motion-dependent masses and mass surfaces

    SciTech Connect

    Mátyus, Edit; Szidarovszky, Tamás

    2014-10-21

    Introducing different rotational and vibrational masses in the nuclear-motion Hamiltonian is a simple phenomenological way to model rovibrational non-adiabaticity. It is shown on the example of the molecular ion H{sub 3}{sup +}, for which a global adiabatic potential energy surface accurate to better than 0.1 cm{sup −1} exists [M. Pavanello, L. Adamowicz, A. Alijah, N. F. Zobov, I. I. Mizus, O. L. Polyansky, J. Tennyson, T. Szidarovszky, A. G. Császár, M. Berg et al., Phys. Rev. Lett. 108, 023002 (2012)], that the motion-dependent mass concept yields much more accurate rovibrational energy levels but, unusually, the results are dependent upon the choice of the embedding of the molecule-fixed frame. Correct degeneracies and an improved agreement with experimental data are obtained if an Eckart embedding corresponding to a reference structure of D{sub 3h} point-group symmetry is employed. The vibrational mass of the proton in H{sub 3}{sup +} is optimized by minimizing the root-mean-square (rms) deviation between the computed and recent high-accuracy experimental transitions. The best vibrational mass obtained is larger than the nuclear mass of the proton by approximately one third of an electron mass, m{sub opt,p}{sup (v)}=m{sub nuc,p}+0.31224 m{sub e}. This optimized vibrational mass, along with a nuclear rotational mass, reduces the rms deviation of the experimental and computed rovibrational transitions by an order of magnitude. Finally, it is shown that an extension of the algorithm allowing the use of motion-dependent masses can deal with coordinate-dependent mass surfaces in the rovibrational Hamiltonian, as well.

  9. Three flavor neutrino oscillations in matter: Flavor diagonal potentials, the adiabatic basis, and the CP phase

    SciTech Connect

    Kneller, James P.; McLaughlin, Gail C.

    2009-09-01

    We discuss the three neutrino flavor evolution problem with general, flavor-diagonal, matter potentials and a fully parametrized mixing matrix that includes CP violation, and derive expressions for the eigenvalues, mixing angles, and phases. We demonstrate that, in the limit that the mu and tau potentials are equal, the eigenvalues and matter mixing angles {theta}-tilde{sub 12} and {theta}-tilde{sub 13} are independent of the CP phase, although {theta}-tilde{sub 23} does have CP dependence. Since we are interested in developing a framework that can be used for S matrix calculations of neutrino flavor transformation, it is useful to work in a basis that contains only off-diagonal entries in the Hamiltonian. We derive the 'nonadiabaticity' parameters that appear in the Hamiltonian in this basis. We then introduce the neutrino S matrix, derive its evolution equation and the integral solution. We find that this new Hamiltonian, and therefore the S matrix, in the limit that the {mu} and {tau} neutrino potentials are the same, is independent of both {theta}-tilde{sub 23} and the CP violating phase. In this limit, any CP violation in the flavor basis can only be introduced via the rotation matrices, and so effects which derive from the CP phase are then straightforward to determine. We then show explicitly that the electron neutrino and electron antineutrino survival probability is independent of the CP phase in this limit. Conversely, if the CP phase is nonzero and mu and tau matter potentials are not equal, then the electron neutrino survival probability cannot be independent of the CP phase.

  10. The /A 1 Sigma +/ - /X 1 Sigma +/ system of the isotopic lithium hydrides - The molecular constants, potential energy curves, and their adiabatic corrections

    NASA Technical Reports Server (NTRS)

    Vidal, C. R.; Stwalley, W. C.

    1982-01-01

    The molecular constants and their adiabatic corrections have been determined for the (A 1 Sigma +) - (X 1 Sigma +) system of the isotopic lithium hydrides: (Li-6)H, (Li-7)H, (Li-6)D, and (Li-7)D. Using a fully quantum mechanical variational method, the potential energy curves (IPA potentials) are determined. Extending the variational method, we have obtained for the first time adiabatic corrections of potential energy curves from isotopic spectroscopic data. A significant difference between the potential energy curves of the lithium hydrides and the lithium deuterides has been observed. When Li-6 was replaced by Li-7, a significant difference was only observed for the (A 1 Sigma +) state, but not for the (X 1 Sigma +) state.

  11. Adiabatic mode coupler on ion-exchanged waveguides for the efficient excitation of surface plasmon modes (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Beltran Madrigal, Josslyn; Berthel, Martin; Gardillou, Florent; Tellez Limon, Ricardo; Couteau, Christophe; Barbier, Denis; Drezet, Aurelien; Salas-Montiel, Rafael; Huant, Serge; Blaize, Sylvain; Geng, Wei

    2015-10-01

    Several works have already shown that the excitation of plasmonic structures through waveguides enables a strong light confinement and low propagation losses [1]. This kind of excitation is currently exploited in areas such as biosensing [2], nanocircuits[3] and spectroscopy[4]. The efficient excitation of surface plasmon modes (SPP) with guided modes supported by high-index-contrast waveguides, such as silicon-on-insulator waveguides, had already been shown [1,5]. However, the use of weakconfined guided modes of a glass ion exchanged waveguide as a SPP excitation source represents a technological challenge, because the mismatch between the size of their respective electromagnetic modes is so high that the resultant coupling loss is unacceptable for practical applications. In this work, we describe how an adiabatic taper structure formed by an intermediate high-index-contrast layer placed between a plasmonic structure and an ion-exchanged waveguide decreases the mismatch between effective indices, size, and shape of the guided modes. This hybrid structure concentrates the electromagnetic energy from the micrometer to the nanometer scale with low coupling losses to radiative modes. The electromagnetic mode confined to the high-index-contrast waveguide then works as an efficient source of SPP supported by metallic nanostructures placed on its surface. We theoretically studied the modal properties and field distribution along the adiabatic coupler structure. In addition, we fabricated a high-index-contrast waveguide by electron beam lithography and thermal evaporation on top of an ion-exchanged waveguide on glass. This structure was characterized with the use of near field scanning optical microscopy (NSOM). Numerical simulations were compared with the experimental results. [1] N. Djaker, R. Hostein, E. Devaux, T. W. Ebbesen, and H. Rigneault, and J. Wenger, J. Phys. Chem. C 114, 16250 (2010). [2] P. Debackere, S. Scheerlinck, P. Bienstman, R. Baets, Opt. Express 14

  12. Surface-effect corrections for solar-like oscillations using 3D hydrodynamical simulations. I. Adiabatic oscillations

    NASA Astrophysics Data System (ADS)

    Sonoi, T.; Samadi, R.; Belkacem, K.; Ludwig, H.-G.; Caffau, E.; Mosser, B.

    2015-11-01

    Context. The CoRoT and Kepler space-borne missions have provided us with a wealth of high-quality observational data that allows for seismic inferences of stellar interiors. This requires the computation of precise and accurate theoretical frequencies, but imperfect modeling of the uppermost stellar layers introduces systematic errors. To overcome this problem, an empirical correction has been introduced by Kjeldsen et al. (2008, ApJ, 683, L175) and is now commonly used for seismic inferences. Nevertheless, we still lack a physical justification allowing for the quantification of the surface-effect corrections. Aims: Our aim is to constrain the surface-effect corrections across the Hertzsprung-Russell (HR) diagram using a set of 3D hydrodynamical simulations. Methods: We used a grid of these simulations computed with the CO5BOLD code to model the outer layers of solar-like stars. Upper layers of the corresponding 1D standard models were then replaced by the layers obtained from the horizontally averaged 3D models. The frequency differences between these patched models and the 1D standard models were then calculated using the adiabatic approximation and allowed us to constrain the Kjeldsen et al. power law, as well as a Lorentzian formulation. Results: We find that the surface effects on modal frequencies depend significantly on both the effective temperature and the surface gravity. We further provide the variation in the parameters related to the surface-effect corrections using their power law as well as a Lorentzian formulation. Scaling relations between these parameters and the elevation (related to the Mach number) is also provided. The Lorentzian formulation is shown to be more robust for the whole frequency spectrum, while the power law is not suitable for the frequency shifts in the frequency range above νmax. Finally, we show that, owing to turbulent pressure, the elevation of the uppermost layers modifies the location of the hydrogen ionization zone and

  13. Effects of adiabatic, relativistic, and quantum electrodynamics interactions on the pair potential and thermophysical properties of helium.

    PubMed

    Cencek, Wojciech; Przybytek, Michał; Komasa, Jacek; Mehl, James B; Jeziorski, Bogumił; Szalewicz, Krzysztof

    2012-06-14

    The adiabatic, relativistic, and quantum electrodynamics (QED) contributions to the pair potential of helium were computed, fitted separately, and applied, together with the nonrelativistic Born-Oppenheimer (BO) potential, in calculations of thermophysical properties of helium and of the properties of the helium dimer. An analysis of the convergence patterns of the calculations with increasing basis set sizes allowed us to estimate the uncertainties of the total interaction energy to be below 50 ppm for interatomic separations R smaller than 4 bohrs and for the distance R = 5.6 bohrs. For other separations, the relative uncertainties are up to an order of magnitude larger (and obviously still larger near R = 4.8 bohrs where the potential crosses zero) and are dominated by the uncertainties of the nonrelativistic BO component. These estimates also include the contributions from the neglected relativistic and QED terms proportional to the fourth and higher powers of the fine-structure constant α. To obtain such high accuracy, it was necessary to employ explicitly correlated Gaussian expansions containing up to 2400 terms for smaller R (all R in the case of a QED component) and optimized orbital bases up to the cardinal number X = 7 for larger R. Near-exact asymptotic constants were used to describe the large-R behavior of all components. The fitted potential, exhibiting the minimum of -10.996 ± 0.004 K at R = 5.608 0 ± 0.000 1 bohr, was used to determine properties of the very weakly bound (4)He(2) dimer and thermophysical properties of gaseous helium. It is shown that the Casimir-Polder retardation effect, increasing the dimer size by about 2 Å relative to the nonrelativistic BO value, is almost completely accounted for by the inclusion of the Breit-interaction and the Araki-Sucher contributions to the potential, of the order α(2) and α(3), respectively. The remaining retardation effect, of the order of α(4) and higher, is practically negligible for the bound

  14. On the accuracy of surface hopping dynamics in condensed phase non-adiabatic problems

    NASA Astrophysics Data System (ADS)

    Chen, Hsing-Ta; Reichman, David R.

    2016-03-01

    We perform extensive benchmark comparisons of surface hopping dynamics with numerically exact calculations for the spin-boson model over a wide range of energetic and coupling parameters as well as temperature. We find that deviations from golden-rule scaling in the Marcus regime are generally small and depend sensitively on the energetic bias between electronic states. Fewest switches surface hopping (FSSH) is found to be surprisingly accurate over a large swath of parameter space. The inclusion of decoherence corrections via the augmented FSSH algorithm improves the accuracy of dynamical behavior compared to exact simulations, but the effects are generally not dramatic, at least for the case of an environment modeled with the commonly used Debye spectral density.

  15. SHARC: ab Initio Molecular Dynamics with Surface Hopping in the Adiabatic Representation Including Arbitrary Couplings.

    PubMed

    Richter, Martin; Marquetand, Philipp; González-Vázquez, Jesús; Sola, Ignacio; González, Leticia

    2011-05-10

    We present a semiclassical surface-hopping method which is able to treat arbitrary couplings in molecular systems including all degrees of freedom. A reformulation of the standard surface-hopping scheme in terms of a unitary transformation matrix allows for the description of interactions like spin-orbit coupling or transitions induced by laser fields. The accuracy of our method is demonstrated in two systems. The first one, consisting of two model electronic states, validates the semiclassical approach in the presence of an electric field. In the second one, the dynamics in the IBr molecule in the presence of spin-orbit coupling after laser excitation is investigated. Due to an avoided crossing that originates from spin-orbit coupling, IBr dissociates into two channels: I + Br((2)P3/2) and I + Br*((2)P1/2). In both systems, the obtained results are in very good agreement with those calculated from exact quantum dynamical simulations.

  16. Formal redox potentials of organic molecules in ionic liquids on the basis of quaternary nitrogen cations as adiabatic electron affinities.

    PubMed

    Seto, Kunimasa; Nakayama, Tatsushi; Uno, Bunji

    2013-09-19

    Formal redox potentials E°' involving neutral species R and radical anions R(•-) in ionic liquids (ILs) composed of ammonium, pyridinium, and imidazolium cations are discussed from the point of view of the adiabatic electron affinity as a molecular property. The dependence of the 1,4-benzoquinone (BQ)/BQ(•-) redox process in CH2Cl2 and CH3CN is primarily investigated over a wide concentration range of ILs as the supporting electrolyte. A logarithmic relationship involving a positive shift of E°' with increasing concentration is obtained when the concentration is changed from 0.01 to 1.0 M. The relationship of E°' at IL concentrations greater than 1.0 M gradually reaches a plateau and remains there even for the neat ILs. It is found that the E°' values in the neat ILs are not influenced by the measurement conditions, and that they remain considerably dependent on the nature and concentration of the electrolyte when measured using the traditional method involving molecular solvents combined with a supporting electrolyte (0.1-0.5 M). The difference in the E°' values observed in the ammonium and pyridinium ILs is only several millivolts. In addition, ESR and self-consistent isodensity polarized continuum model calculation results reveal that the potential shift toward positive values upon the transition from molecular solvents containing ILs to neat ILs is adequately accounted for by changes in the electrostatic interaction of R(•-) taken into the cavity composed of the solvent and IL. On the other hand, the first reduction waves of quinones, electron-accepting molecules, and polynuclear aromatic hydrocarbons are reversibly or quasi-reversibly observed in the ILs. The electrochemical stability of the ILs is exploited in the facile measurement of these quasi-reversible waves at quite negative potentials, such as for the naphthalene (NP)/NP(•-) couple. Notably, the E°' values obtained in the ammonium ILs correlate well with the calculated standard redox

  17. Formal redox potentials of organic molecules in ionic liquids on the basis of quaternary nitrogen cations as adiabatic electron affinities.

    PubMed

    Seto, Kunimasa; Nakayama, Tatsushi; Uno, Bunji

    2013-09-19

    Formal redox potentials E°' involving neutral species R and radical anions R(•-) in ionic liquids (ILs) composed of ammonium, pyridinium, and imidazolium cations are discussed from the point of view of the adiabatic electron affinity as a molecular property. The dependence of the 1,4-benzoquinone (BQ)/BQ(•-) redox process in CH2Cl2 and CH3CN is primarily investigated over a wide concentration range of ILs as the supporting electrolyte. A logarithmic relationship involving a positive shift of E°' with increasing concentration is obtained when the concentration is changed from 0.01 to 1.0 M. The relationship of E°' at IL concentrations greater than 1.0 M gradually reaches a plateau and remains there even for the neat ILs. It is found that the E°' values in the neat ILs are not influenced by the measurement conditions, and that they remain considerably dependent on the nature and concentration of the electrolyte when measured using the traditional method involving molecular solvents combined with a supporting electrolyte (0.1-0.5 M). The difference in the E°' values observed in the ammonium and pyridinium ILs is only several millivolts. In addition, ESR and self-consistent isodensity polarized continuum model calculation results reveal that the potential shift toward positive values upon the transition from molecular solvents containing ILs to neat ILs is adequately accounted for by changes in the electrostatic interaction of R(•-) taken into the cavity composed of the solvent and IL. On the other hand, the first reduction waves of quinones, electron-accepting molecules, and polynuclear aromatic hydrocarbons are reversibly or quasi-reversibly observed in the ILs. The electrochemical stability of the ILs is exploited in the facile measurement of these quasi-reversible waves at quite negative potentials, such as for the naphthalene (NP)/NP(•-) couple. Notably, the E°' values obtained in the ammonium ILs correlate well with the calculated standard redox

  18. Chemisorbed-molecule potential energy surfaces and DIET processes

    NASA Astrophysics Data System (ADS)

    Jennison, D. R.; Stechel, E. B.; Burns, A. R.; Li, Y. S.

    1995-06-01

    We report the use of the local-density approximation, with and without gradient corrections, for the calculation of ground-state potential energy surfaces (PESs) for chemisorbed molecules. We focus on chemisorbed NO and ammonia on Pd(1 1 1) and compare our results with the latest experimental information. We then turn to two aspects of excited-state PESs. First, we compare first-principles calculations of the forces on an ammonia ion as a function of distance from the surface. We find that the image-charge model fails significantly at distances which are the most relevant for dynamics, closer than ˜3 Å, and discuss reasons for the failure. We then summarize a purely electronic adiabatic model of the moleuule-surface bond and use empirical parameters to estimate hot carrier-produced excited states of chemisorbed NO. We find multiple PESs and a novel interpretation of the π ∗ resonance, seen in inverse photoemission.

  19. Accurate potential energy functions, non-adiabatic and spin-orbit couplings in the ZnH(+) system.

    PubMed

    Liang, Guiying; Liu, Xiaoting; Zhang, Xiaomei; Xu, Haifeng; Yan, Bing

    2016-03-01

    A high-level ab initio calculation on the ZnH(+) cation has been carried out with the multi-reference configuration interaction method plus Davison correction (MRCI+Q). The scalar relativistic effect is included by using the Douglas-Kroll-Hess (DKH) method. The calculated potential energy curves (PECs) of the 7 Λ-S states are associated with the dissociation limits of Zn(+)((2)Sg)+H((2)Sg), Zn((1)Sg)+H(+)((1)Sg), and Zn(+)((2)Pu)+H((2)Sg), respectively (The Λ-S state is labeled as (2S+1)Λ, in which Λ is the quantum number for the projection along the internuclear axis of the total electronic orbital angular momentum and S is the total electron spin). The spectroscopic constants of the bound states are determined and in good agreement with the available theoretical and experimental results. The permanent dipole moments (PDMs) of Λ-S states and the spin-orbit (SO) matrix elements between Λ-S states are also computed. The results show that the abrupt changes of the PDMs and SO matrix elements come into being for the reason of the avoided crossing between the states with the same symmetry. In addition, the non-adiabatic couplings matrix elements between Λ-S states are also evaluated. Finally, the spin-orbit couplings (SOCs) for the low-lying states are considered with Breit-Pauli operator. The SOC effect makes the 7 Λ-S states of the ZnH(+) cation split into 12 Ω states (Ω=Λ+Sz, in which Sz is projection of the total electron spin S along the internuclear Z-axis). For the (3)0(+) state, the two energy minima exhibit in the potential, which could be attributed to the formation of the new avoided crossing point. The transition dipole moments (TDMs), Franck-Condon factors, and the radiative lifetimes of the selected transitions (2)0(+)-X0(+), (3)0(+)-X0(+), (2)1-X0(+) and (3)1-X0(+) have been reported.

  20. Accurate potential energy functions, non-adiabatic and spin-orbit couplings in the ZnH+ system

    NASA Astrophysics Data System (ADS)

    Liang, Guiying; Liu, Xiaoting; Zhang, Xiaomei; Xu, Haifeng; Yan, Bing

    2016-03-01

    A high-level ab initio calculation on the ZnH+ cation has been carried out with the multi-reference configuration interaction method plus Davison correction (MRCI + Q). The scalar relativistic effect is included by using the Douglas-Kroll-Hess (DKH) method. The calculated potential energy curves (PECs) of the 7 Λ-S states are associated with the dissociation limits of Zn+(2Sg) + H(2Sg), Zn(1Sg) + H+(1Sg), and Zn+(2Pu) + H(2Sg), respectively (The Λ-S state is labeled as 2S + 1Λ, in which Λ is the quantum number for the projection along the internuclear axis of the total electronic orbital angular momentum and S is the total electron spin). The spectroscopic constants of the bound states are determined and in good agreement with the available theoretical and experimental results. The permanent dipole moments (PDMs) of Λ-S states and the spin-orbit (SO) matrix elements between Λ-S states are also computed. The results show that the abrupt changes of the PDMs and SO matrix elements come into being for the reason of the avoided crossing between the states with the same symmetry. In addition, the non-adiabatic couplings matrix elements between Λ-S states are also evaluated. Finally, the spin-orbit couplings (SOCs) for the low-lying states are considered with Breit-Pauli operator. The SOC effect makes the 7 Λ-S states of the ZnH+ cation split into 12 Ω states (Ω = Λ + Sz, in which Sz is projection of the total electron spin S along the internuclear Z-axis). For the (3)0+ state, the two energy minima exhibit in the potential, which could be attributed to the formation of the new avoided crossing point. The transition dipole moments (TDMs), Franck-Condon factors, and the radiative lifetimes of the selected transitions (2)0+-X0+, (3)0+-X0+, (2)1-X0+ and (3)1-X0+ have been reported.

  1. Adiabatic topological quantum computing

    NASA Astrophysics Data System (ADS)

    Cesare, Chris; Landahl, Andrew J.; Bacon, Dave; Flammia, Steven T.; Neels, Alice

    2015-07-01

    Topological quantum computing promises error-resistant quantum computation without active error correction. However, there is a worry that during the process of executing quantum gates by braiding anyons around each other, extra anyonic excitations will be created that will disorder the encoded quantum information. Here, we explore this question in detail by studying adiabatic code deformations on Hamiltonians based on topological codes, notably Kitaev's surface codes and the more recently discovered color codes. We develop protocols that enable universal quantum computing by adiabatic evolution in a way that keeps the energy gap of the system constant with respect to the computation size and introduces only simple local Hamiltonian interactions. This allows one to perform holonomic quantum computing with these topological quantum computing systems. The tools we develop allow one to go beyond numerical simulations and understand these processes analytically.

  2. Numerical adiabatic potentials of orthorhombic Jahn-Teller effects retrieved from ultrasound attenuation experiments. Application to the SrF2:Cr crystal

    NASA Astrophysics Data System (ADS)

    Zhevstovskikh, I. V.; Bersuker, I. B.; Gudkov, V. V.; Averkiev, N. S.; Sarychev, M. N.; Zherlitsyn, S.; Yasin, S.; Shakurov, G. S.; Ulanov, V. A.; Surikov, V. T.

    2016-06-01

    A methodology is worked out to retrieve the numerical values of all the main parameters of the six-dimensional adiabatic potential energy surface (APES) of a polyatomic system with a quadratic T-term Jahn-Teller effect (JTE) from the ultrasound experiments. The method is based on a verified assumption that ultrasound attenuation and speed encounter anomalies when the direction of propagation and polarization of its wave of strain coincides with the characteristic directions of symmetry breaking in the JTE. For the SrF2:Cr crystal, employed as a basic example, we observed anomaly peaks in the temperature dependence of attenuation of ultrasound at frequencies of 50-160 MHz in the temperature interval of 40-60 K for the wave propagating along the [110] direction, for both the longitudinal and the shear modes, the latter with two polarizations along the [001] and [1 1 ¯ 0 ] axes, respectively. We show that these anomalies are due to the ultrasound relaxation by the system of non-interacting Cr2+ JT centers with orthorhombic local distortions. The interpretation of the experimental findings is based on the T2 g⊗(eg+t2 g) JTE problem including the linear and the quadratic terms of vibronic interactions in the Hamiltonian and the same-symmetry modes reduced to one interaction mode. Combining the experimental results with a theoretical analysis, we show that on the complicated six-dimensional APES of this system with three tetragonal, four trigonal, and six orthorhombic extrema points, the latter are global minima, while the former are saddle points, and we estimate numerically all the main parameters of this surface, including the linear and quadratic vibronic coupling constants, the primary force constants, the coordinates of all the extrema points and their energies, the energy barrier between the orthorhombic minima, and the tunneling splitting of the ground vibrational states. To our knowledge, such a based-on-experimental-data numerical reconstruction of the APES

  3. Band gaps, ionization potentials, and electron affinities of periodic electron systems via the adiabatic-connection fluctuation-dissipation theorem

    NASA Astrophysics Data System (ADS)

    Trushin, Egor; Betzinger, Markus; Blügel, Stefan; Görling, Andreas

    2016-08-01

    An approach to calculate fundamental band gaps, ionization energies, and electron affinities of periodic electron systems is explored. Starting from total energies obtained with the help of the adiabatic-connection fluctuation-dissipation (ACFD) theorem, these physical observables are calculated according to their basic definition by differences of the total energies of the N -, (N -1 ) -, and (N +1 ) -electron system. The response functions entering the ACFD theorem are approximated here by the direct random phase approximation (dRPA). For a set of prototypical semiconductors and insulators it is shown that even with this quite drastic approximation the resulting band gaps are very close to experiment and of a similar quality to those from the computationally more involved G W approximation. By going beyond the dRPA in the future the accuracy of the calculated band gaps may be significantly improved further.

  4. Exam Question Exchange: Potential Energy Surfaces.

    ERIC Educational Resources Information Center

    Alexander, John J., Ed.

    1988-01-01

    Presents three examination questions, graded in difficulty, that explore the topic of potential energy surfaces using a diagrammatic approach. Provides and discusses acceptable solutions including diagrams. (CW)

  5. Bond selective chemistry beyond the adiabatic approximation

    SciTech Connect

    Butler, L.J.

    1993-12-01

    One of the most important challenges in chemistry is to develop predictive ability for the branching between energetically allowed chemical reaction pathways. Such predictive capability, coupled with a fundamental understanding of the important molecular interactions, is essential to the development and utilization of new fuels and the design of efficient combustion processes. Existing transition state and exact quantum theories successfully predict the branching between available product channels for systems in which each reaction coordinate can be adequately described by different paths along a single adiabatic potential energy surface. In particular, unimolecular dissociation following thermal, infrared multiphoton, or overtone excitation in the ground state yields a branching between energetically allowed product channels which can be successfully predicted by the application of statistical theories, i.e. the weakest bond breaks. (The predictions are particularly good for competing reactions in which when there is no saddle point along the reaction coordinates, as in simple bond fission reactions.) The predicted lack of bond selectivity results from the assumption of rapid internal vibrational energy redistribution and the implicit use of a single adiabatic Born-Oppenheimer potential energy surface for the reaction. However, the adiabatic approximation is not valid for the reaction of a wide variety of energetic materials and organic fuels; coupling between the electronic states of the reacting species play a a key role in determining the selectivity of the chemical reactions induced. The work described below investigated the central role played by coupling between electronic states in polyatomic molecules in determining the selective branching between energetically allowed fragmentation pathways in two key systems.

  6. The adiabatic energy change of plasma electrons and the frame dependence of the cross-shock potential at collisionless magnetosonic shock waves

    NASA Technical Reports Server (NTRS)

    Goodrich, C. C.; Scudder, J. D.

    1984-01-01

    The adiabatic energy gain of electrons in the stationary electric and magnetic field structure of collisionless shock waves was examined analytically in reference to conditions of the earth's bow shock. The study was performed to characterize the behavior of electrons interacting with the cross-shock potential. A normal incidence frame (NIF) was adopted in order to calculate the reversible energy change across a time stationary shock, and comparisons were made with predictions made by the de Hoffman-Teller (HT) model (1950). The electron energy gain, about 20-50 eV, is demonstrated to be consistent with a 200-500 eV potential jump in the bow shock quasi-perpendicular geometry. The electrons lose energy working against the solar wind motional electric field. The reversible energy process is close to that modeled by HT, which predicts that the motional electric field vanishes and the electron energy gain from the electric potential is equated to the ion energy loss to the potential.

  7. Elementary examples of adiabatic invariance

    NASA Astrophysics Data System (ADS)

    Crawford, Frank S.

    1990-04-01

    Simple classical one-dimensional systems subject to adiabatic (gradual) perturbations are examined. The first examples are well known: the adiabatic invariance of the product Eτ of energy E and period τ for the simple pendulum and for the simple harmonic oscillator. Next, the adiabatic invariants of the vertical bouncer are found—a ball bouncing elastically from the floor of a rising elevator having slowly varying velocity and acceleration. These examples lead to consideration of adiabatic invariance for one-dimensional systems with potentials of the form V=axn, with a=a(t) slowly varying in time. Then, the horizontal bouncer is considered—a mass sliding on a smooth floor, bouncing back and forth between two impenetrable walls, one of which is slowly moving. This example is generalized to a particle in a bound state of a general potential with one slowly moving ``turning point.'' Finally, circular motion of a charged particle in a magnetic field slowly varying in time under three different configurations is considered: (a) a free particle in a uniform field; (b) a free particle in a nonuniform ``betatron'' field; and (c) a particle constrained to a circular orbit in a uniform field.

  8. Isothermal and Adiabatic Measurements.

    ERIC Educational Resources Information Center

    McNairy, William W.

    1996-01-01

    Describes the working of the Adiabatic Gas Law Apparatus, a useful tool for measuring the pressure, temperature, and volume of a variety of gases undergoing compressions and expansions. Describes the adaptation of this apparatus to perform isothermal measurements and discusses the theory behind the adiabatic and isothermal processes. (JRH)

  9. Techniques for Measuring Surface Potentials in Space

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Parker, Linda Neergaard

    2015-01-01

    Materials exposed to the space plasma environment charge to a net potential relative to the ambient plasma. The charging process is due to differential currents to the material surface that results in a net surface charge density. While this process is termed "spacecraft surface charging" when applied to aerospace hardware, it also applies to the surfaces of astronomical objects in direct contact with the space plasma environment including a number of planetary bodies, asteroids, and dust particles. The ability to measure surface potentials is important to many techniques used in conducting fundamental heliospheric science, spacecraft engineering operations, and space technology development activities. This presentation provides a survey of current technologies used to measure surface potentials of spacecraft and planetary bodies with examples of their application to space science and technology programs.

  10. Adiabatic invariance of oscillons/I -balls

    NASA Astrophysics Data System (ADS)

    Kawasaki, Masahiro; Takahashi, Fuminobu; Takeda, Naoyuki

    2015-11-01

    Real scalar fields are known to fragment into spatially localized and long-lived solitons called oscillons or I -balls. We prove the adiabatic invariance of the oscillons/I -balls for a potential that allows periodic motion even in the presence of non-negligible spatial gradient energy. We show that such a potential is uniquely determined to be the quadratic one with a logarithmic correction, for which the oscillons/I -balls are absolutely stable. For slightly different forms of the scalar potential dominated by the quadratic one, the oscillons/I -balls are only quasistable, because the adiabatic charge is only approximately conserved. We check the conservation of the adiabatic charge of the I -balls in numerical simulation by slowly varying the coefficient of logarithmic corrections. This unambiguously shows that the longevity of oscillons/I -balls is due to the adiabatic invariance.

  11. Scanning Surface Potential Microscopy of Spore Adhesion on Surfaces

    SciTech Connect

    Lee, Ida; Chung, Eunhyea; Kweon, Hyojin; Yiacoumi, Sotira; Tsouris, Costas

    2012-01-01

    The adhesion of spores of Bacillus anthracis - the cause of anthrax and a likely biological threat - to solid surfaces is an important consideration in cleanup after an accidental or deliberate release. However, because of safety concerns, directly studying B. anthracis spores with advanced instrumentation is problematic. As a first step, we are examining the electrostatic potential of Bacillus thuringiensis (Bt), which is a closely related species that is often used as a simulant to study B. anthracis. Scanning surface potential microscopy (SSPM), also known as Kelvin probe force microscopy (KPFM), was used to investigate the influence of relative humidity (RH) on the surface electrostatic potential of Bt that had adhered to silica, mica, or gold substrates. AFM/SSPM side-by-side images were obtained separately in air, at various values of RH, after an aqueous droplet with spores was applied on each surface and allowed to dry before measurements. In the SSPM images, a negative potential on the surface of the spores was observed compared with that of the substrates. The surface potential decreased as the humidity increased. Spores were unable to adhere to a surface with an extremely negative potential, such as mica.

  12. Boiling point determination using adiabatic Gibbs ensemble Monte Carlo simulations: application to metals described by embedded-atom potentials.

    PubMed

    Gelb, Lev D; Chakraborty, Somendra Nath

    2011-12-14

    The normal boiling points are obtained for a series of metals as described by the "quantum-corrected Sutton Chen" (qSC) potentials [S.-N. Luo, T. J. Ahrens, T. Çağın, A. Strachan, W. A. Goddard III, and D. C. Swift, Phys. Rev. B 68, 134206 (2003)]. Instead of conventional Monte Carlo simulations in an isothermal or expanded ensemble, simulations were done in the constant-NPH adabatic variant of the Gibbs ensemble technique as proposed by Kristóf and Liszi [Chem. Phys. Lett. 261, 620 (1996)]. This simulation technique is shown to be a precise tool for direct calculation of boiling temperatures in high-boiling fluids, with results that are almost completely insensitive to system size or other arbitrary parameters as long as the potential truncation is handled correctly. Results obtained were validated using conventional NVT-Gibbs ensemble Monte Carlo simulations. The qSC predictions for boiling temperatures are found to be reasonably accurate, but substantially underestimate the enthalpies of vaporization in all cases. This appears to be largely due to the systematic overestimation of dimer binding energies by this family of potentials, which leads to an unsatisfactory description of the vapor phase.

  13. Adiabatic molecular-dynamics-simulation-method studies of kinetic friction

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Sokoloff, J. B.

    2005-06-01

    An adiabatic molecular-dynamics method is developed and used to study the Muser-Robbins model for dry friction (i.e., nonzero kinetic friction in the slow sliding speed limit). In this model, dry friction between two crystalline surfaces rotated with respect to each other is due to mobile molecules (i.e., dirt particles) adsorbed at the interface. Our adiabatic method allows us to quickly locate interface potential-well minima, which become unstable during sliding of the surfaces. Since dissipation due to friction in the slow sliding speed limit results from mobile molecules dropping out of such unstable wells, our method provides a way to calculate dry friction, which agrees extremely well with results found by conventional molecular dynamics for the same system, but our method is more than a factor of 10 faster.

  14. Wireless adiabatic power transfer

    SciTech Connect

    Rangelov, A.A.; Suchowski, H.; Silberberg, Y.; Vitanov, N.V.

    2011-03-15

    Research Highlights: > Efficient and robust mid-range wireless energy transfer between two coils. > The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. > Wireless energy transfer is insensitive to any resonant constraints. > Wireless energy transfer is insensitive to noise in the neighborhood of the coils. - Abstract: We propose a technique for efficient mid-range wireless power transfer between two coils, by adapting the process of adiabatic passage for a coherently driven two-state quantum system to the realm of wireless energy transfer. The proposed technique is shown to be robust to noise, resonant constraints, and other interferences that exist in the neighborhood of the coils.

  15. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.; Levin, Eugene

    1993-01-01

    A new global potential energy surface (PES) is being generated for O(P-3) + H2 yields OH + H. This surface is being fit using the rotated Morse oscillator method, which was used to fit the previous POL-CI surface. The new surface is expected to be more accurate and also includes a much more complete sampling of bent geometries. A new study has been undertaken of the reaction N + O2 yields NO + O. The new studies have focused on the region of the surface near a possible minimum corresponding to the peroxy form of NOO. A large portion of the PES for this second reaction has been mapped out. Since state to state cross sections for the reaction are important in the chemistry of high temperature air, these studies will probably be extended to permit generation of a new global potential for reaction.

  16. Low-adiabat rugby hohlraum experiments on the National Ignition Facility: Comparison with high-flux modeling and the potential for gas-wall interpenetration

    SciTech Connect

    Amendt, Peter Ross, J. Steven; Milovich, Jose L.; Schneider, Marilyn; Storm, Erik; Callahan, Debra A.; Hinkel, Denise; Lasinski, Barbara; Meeker, Don; Michel, Pierre; Moody, John; Strozzi, David

    2014-11-15

    Rugby-shaped gold hohlraums driven by a nominal low-adiabat laser pulse shape have been tested on the National Ignition Facility. The rugby affords a higher coupling efficiency than a comparably sized cylinder hohlraum or, alternatively, improved drive symmetry and laser beam clearances for a larger hohlraum with similar cylinder wall area and laser energy. A first (large rugby hohlraum) shot at low energy (0.75 MJ) to test laser backscatter resulted in a moderately oblate CH capsule implosion, followed by a high energy shot (1.3 MJ) that gave a highly oblate compressed core according to both time-integrated and –resolved x-ray images. These implosions used low wavelength separation (1.0 Å) between the outer and inner cones to provide an alternative platform free of significant cross-beam energy transfer for simplified hohlraum dynamics. Post-shot 2- and 3-D radiation-hydrodynamic simulations using the high-flux model [M. D. Rosen et al., High Energy Density Phys. 7, 180 (2011)], however, give nearly round implosions for both shots, in striking contrast with observations. An analytic assessment of Rayleigh-Taylor hydrodynamic instability growth on the gold–helium gas-fill interface shows the potential for significant linear growth, saturation and transition to a highly nonlinear state. Candidate seeds for instability growth include laser speckle during the early-time laser picket episode in the presence of only partial temporal beam smoothing (1-D smoothing by spectral dispersion and polarization smoothing) and intensity modulations from quad-to-quad and beam overlap. Radiation-hydrodynamic 2-D simulations adapted to include a dynamic fall-line mix model across the unstable Au-He interface show good agreement with the observed implosion symmetry for both shots using an interface-to-fall-line penetration fraction of 100%. Physically, the potential development of an instability layer in a rugby hohlraum is tantamount to an enhanced wall motion leading to

  17. Low-adiabat rugby hohlraum experiments on the National Ignition Facility: Comparison with high-flux modeling and the potential for gas-wall interpenetration

    NASA Astrophysics Data System (ADS)

    Amendt, Peter; Ross, J. Steven; Milovich, Jose L.; Schneider, Marilyn; Storm, Erik; Callahan, Debra A.; Hinkel, Denise; Lasinski, Barbara; Meeker, Don; Michel, Pierre; Moody, John; Strozzi, David

    2014-11-01

    Rugby-shaped gold hohlraums driven by a nominal low-adiabat laser pulse shape have been tested on the National Ignition Facility. The rugby affords a higher coupling efficiency than a comparably sized cylinder hohlraum or, alternatively, improved drive symmetry and laser beam clearances for a larger hohlraum with similar cylinder wall area and laser energy. A first (large rugby hohlraum) shot at low energy (0.75 MJ) to test laser backscatter resulted in a moderately oblate CH capsule implosion, followed by a high energy shot (1.3 MJ) that gave a highly oblate compressed core according to both time-integrated and -resolved x-ray images. These implosions used low wavelength separation (1.0 Å) between the outer and inner cones to provide an alternative platform free of significant cross-beam energy transfer for simplified hohlraum dynamics. Post-shot 2- and 3-D radiation-hydrodynamic simulations using the high-flux model [M. D. Rosen et al., High Energy Density Phys. 7, 180 (2011)], however, give nearly round implosions for both shots, in striking contrast with observations. An analytic assessment of Rayleigh-Taylor hydrodynamic instability growth on the gold-helium gas-fill interface shows the potential for significant linear growth, saturation and transition to a highly nonlinear state. Candidate seeds for instability growth include laser speckle during the early-time laser picket episode in the presence of only partial temporal beam smoothing (1-D smoothing by spectral dispersion and polarization smoothing) and intensity modulations from quad-to-quad and beam overlap. Radiation-hydrodynamic 2-D simulations adapted to include a dynamic fall-line mix model across the unstable Au-He interface show good agreement with the observed implosion symmetry for both shots using an interface-to-fall-line penetration fraction of 100%. Physically, the potential development of an instability layer in a rugby hohlraum is tantamount to an enhanced wall motion leading to hindered

  18. Efficient surface reconstruction using generalized coulomb potentials.

    PubMed

    Jalba, Andrei C; Roerdink, Jos B T M

    2007-01-01

    We propose a novel, geometrically adaptive method for surface reconstruction from noisy and sparse point clouds, without orientation information. The method employs a fast convection algorithm to attract the evolving surface towards the data points. The force field in which the surface is convected is based on generalized Coulomb potentials evaluated on an adaptive grid (i.e., an octree) using a fast, hierarchical algorithm. Formulating reconstruction as a convection problem in a velocity field generated by Coulomb potentials offers a number of advantages. Unlike methods which compute the distance from the data set to the implicit surface, which are sensitive to noise due to the very reliance on the distance transform, our method is highly resilient to shot noise since global, generalized Coulomb potentials can be used to disregard the presence of outliers due to noise. Coulomb potentials represent long-range interactions that consider all data points at once, and thus they convey global information which is crucial in the fitting process. Both the spatial and temporal complexities of our spatially-adaptive method are proportional to the size of the reconstructed object, which makes our method compare favorably with respect to previous approaches in terms of speed and flexibility. Experiments with sparse as well as noisy data sets show that the method is capable of delivering crisp and detailed yet smooth surfaces.

  19. Parallelizable adiabatic gate teleportation

    NASA Astrophysics Data System (ADS)

    Nakago, Kosuke; Hajdušek, Michal; Nakayama, Shojun; Murao, Mio

    2015-12-01

    To investigate how a temporally ordered gate sequence can be parallelized in adiabatic implementations of quantum computation, we modify adiabatic gate teleportation, a model of quantum computation proposed by Bacon and Flammia [Phys. Rev. Lett. 103, 120504 (2009), 10.1103/PhysRevLett.103.120504], to a form deterministically simulating parallelized gate teleportation, which is achievable only by postselection. We introduce a twisted Heisenberg-type interaction Hamiltonian, a Heisenberg-type spin interaction where the coordinates of the second qubit are twisted according to a unitary gate. We develop parallelizable adiabatic gate teleportation (PAGT) where a sequence of unitary gates is performed in a single step of the adiabatic process. In PAGT, numeric calculations suggest the necessary time for the adiabatic evolution implementing a sequence of L unitary gates increases at most as O (L5) . However, we show that it has the interesting property that it can map the temporal order of gates to the spatial order of interactions specified by the final Hamiltonian. Using this property, we present a controlled-PAGT scheme to manipulate the order of gates by a control qubit. In the controlled-PAGT scheme, two differently ordered sequential unitary gates F G and G F are coherently performed depending on the state of a control qubit by simultaneously applying the twisted Heisenberg-type interaction Hamiltonians implementing unitary gates F and G . We investigate why the twisted Heisenberg-type interaction Hamiltonian allows PAGT. We show that the twisted Heisenberg-type interaction Hamiltonian has an ability to perform a transposed unitary gate by just modifying the space ordering of the final Hamiltonian implementing a unitary gate in adiabatic gate teleportation. The dynamics generated by the time-reversed Hamiltonian represented by the transposed unitary gate enables deterministic simulation of a postselected event of parallelized gate teleportation in adiabatic

  20. POTHMF: A program for computing potential curves and matrix elements of the coupled adiabatic radial equations for a hydrogen-like atom in a homogeneous magnetic field

    NASA Astrophysics Data System (ADS)

    Chuluunbaatar, O.; Gusev, A. A.; Gerdt, V. P.; Rostovtsev, V. A.; Vinitsky, S. I.; Abrashkevich, A. G.; Kaschiev, M. S.; Serov, V. V.

    2008-02-01

    A FORTRAN 77 program is presented which calculates with the relative machine precision potential curves and matrix elements of the coupled adiabatic radial equations for a hydrogen-like atom in a homogeneous magnetic field. The potential curves are eigenvalues corresponding to the angular oblate spheroidal functions that compose adiabatic basis which depends on the radial variable as a parameter. The matrix elements of radial coupling are integrals in angular variables of the following two types: product of angular functions and the first derivative of angular functions in parameter, and product of the first derivatives of angular functions in parameter, respectively. The program calculates also the angular part of the dipole transition matrix elements (in the length form) expressed as integrals in angular variables involving product of a dipole operator and angular functions. Moreover, the program calculates asymptotic regular and irregular matrix solutions of the coupled adiabatic radial equations at the end of interval in radial variable needed for solving a multi-channel scattering problem by the generalized R-matrix method. Potential curves and radial matrix elements computed by the POTHMF program can be used for solving the bound state and multi-channel scattering problems. As a test desk, the program is applied to the calculation of the energy values, a short-range reaction matrix and corresponding wave functions with the help of the KANTBP program. Benchmark calculations for the known photoionization cross-sections are presented. Program summaryProgram title:POTHMF Catalogue identifier:AEAA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAA_v1_0.html Program obtainable from:CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.:8123 No. of bytes in distributed program, including test data

  1. Electrical surface potential of pulmonary surfactant.

    PubMed

    Leonenko, Zoya; Rodenstein, Mathias; Döhner, Jana; Eng, Lukas M; Amrein, Matthias

    2006-11-21

    Pulmonary surfactant is a mixed lipid protein substance of defined composition that self-assembles at the air-lung interface into a molecular film and thus reduces the interfacial tension to close to zero. A very low surface tension is required for maintaining the alveolar structure. The pulmonary surfactant film is also the first barrier for airborne particles entering the lung upon breathing. We explored by frequency modulation Kelvin probe force microscopy (FM-KPFM) the structure and local electrical surface potential of bovine lipid extract surfactant (BLES) films. BLES is a clinically used surfactant replacement and here served as a realistic model surfactant system. The films were distinguished by a pattern of molecular monolayer areas, separated by patches of lipid bilayer stacks. The stacks were at positive electrical potential with respect to the surrounding monolayer areas. We propose a particular molecular arrangement of the lipids and proteins in the film to explain the topographic and surface potential maps. We also discuss how this locally variable surface potential may influence the retention of charged or polar airborne particles in the lung.

  2. Effect of RANS-Type Turbulence Models on Adiabatic Film Cooling Effectiveness over a Scaled Up Gas Turbine Blade Leading Edge Surface

    NASA Astrophysics Data System (ADS)

    Yepuri, Giridhara Babu; Talanki Puttarangasetty, Ashok Babu; Kolke, Deepak Kumar; Jesuraj, Felix

    2016-06-01

    Increasing the gas turbine inlet temperature is one of the key technologies in raising gas turbine engine power output. Film cooling is one of the efficient cooling techniques to cool the hot section components of a gas turbine engines in turn the turbine inlet temperature can be increased. This study aims at investigating the effect of RANS-type turbulence models on adiabatic film cooling effectiveness over a scaled up gas turbine blade leading edge surfaces. For the evaluation, five different two equation RANS-type turbulent models have been taken in consideration, which are available in the ANSYS-Fluent. For this analysis, the gas turbine blade leading edge configuration is generated using Solid Works. The meshing is done using ANSYS-Workbench Mesh and ANSYS-Fluent is used as a solver to solve the flow field. The considered gas turbine blade leading edge model is having five rows of film cooling circular holes, one at stagnation line and the two each on either side of stagnation line at 30° and 60° respectively. Each row has the five holes with the hole diameter of 4 mm, pitch of 21 mm arranged in staggered manner and has the hole injection angle of 30° in span wise direction. The experiments are carried in a subsonic cascade tunnel facility at heat transfer lab of CSIR-National Aerospace Laboratory with a Reynolds number of 1,00,000 based on leading edge diameter. From the Computational Fluid Dynamics (CFD) evaluation it is found that K-ɛ Realizable model gives more acceptable results with the experimental values, compared to the other considered turbulence models for this type of geometries. Further the CFD evaluated results, using K-ɛ Realizable model at different blowing ratios are compared with the experimental results.

  3. Adiabatic capture and debunching

    SciTech Connect

    Ng, K.Y.; /Fermilab

    2012-03-01

    In the study of beam preparation for the g-2 experiment, adiabatic debunching and adiabatic capture are revisited. The voltage programs for these adiabbatic processes are derived and their properties discussed. Comparison is made with some other form of adiabatic capture program. The muon g-2 experiment at Fermilab calls for intense proton bunches for the creation of muons. A booster batch of 84 bunches is injected into the Recycler Ring, where it is debunched and captured into 4 intense bunches with the 2.5-MHz rf. The experiment requires short bunches with total width less than 100 ns. The transport line from the Recycler to the muon-production target has a low momentum aperture of {approx} {+-}22 MeV. Thus each of the 4 intense proton bunches required to have an emittance less than {approx} 3.46 eVs. The incoming booster bunches have total emittance {approx} 8.4 eVs, or each one with an emittance {approx} 0.1 eVs. However, there is always emittance increase when the 84 booster bunches are debunched. There will be even larger emittance increase during adiabatic capture into the buckets of the 2.5-MHz rf. In addition, the incoming booster bunches may have emittances larger than 0.1 eVs. In this article, we will concentrate on the analysis of the adiabatic capture process with the intention of preserving the beam emittance as much as possible. At this moment, beam preparation experiment is being performed at the Main Injector. Since the Main Injector and the Recycler Ring have roughly the same lattice properties, we are referring to adiabatic capture in the Main Injector instead in our discussions.

  4. Adiabatic gate teleportation.

    PubMed

    Bacon, Dave; Flammia, Steven T

    2009-09-18

    The difficulty in producing precisely timed and controlled quantum gates is a significant source of error in many physical implementations of quantum computers. Here we introduce a simple universal primitive, adiabatic gate teleportation, which is robust to timing errors and many control errors and maintains a constant energy gap throughout the computation above a degenerate ground state space. This construction allows for geometric robustness based upon the control of two independent qubit interactions. Further, our piecewise adiabatic evolution easily relates to the quantum circuit model, enabling the use of standard methods from fault-tolerance theory for establishing thresholds.

  5. Photodissociation of methane: Exploring potential energy surfaces

    NASA Astrophysics Data System (ADS)

    van Harrevelt, Rob

    2006-09-01

    The potential energy surface for the first excited singlet state (S1) of methane is explored using multireference singles and doubles configuration interaction calculations, employing a valence triple zeta basis set. A larger valence quadruple zeta basis is used to calculate the vertical excitation energy and dissociation energies. All stationary points found on the S1 surface are saddle points and have imaginary frequencies for symmetry-breaking vibrations. By studying several two-dimensional cuts through the potential energy surfaces, it is argued that CH4 in the S1 state will distort to planar structures. Several conical intersection seams between the ground state surface S0 and the S1 surface have been identified at planar geometries. The conical intersections provide electronically nonadiabatic pathways towards products CH3(X˜A2″2)+H, CH2(ãA11)+H2, or CH2(X˜B13)+H +H. The present results thereby make it plausible that the CH3(X˜A2″2)+H and CH2(ãA11)+H2 channels are major dissociation channels, as has been observed experimentally.

  6. Constructing polyatomic potential energy surfaces by interpolating diabatic Hamiltonian matrices with demonstration on green fluorescent protein chromophore

    NASA Astrophysics Data System (ADS)

    Park, Jae Woo; Rhee, Young Min

    2014-04-01

    Simulating molecular dynamics directly on quantum chemically obtained potential energy surfaces is generally time consuming. The cost becomes overwhelming especially when excited state dynamics is aimed with multiple electronic states. The interpolated potential has been suggested as a remedy for the cost issue in various simulation settings ranging from fast gas phase reactions of small molecules to relatively slow condensed phase dynamics with complex surrounding. Here, we present a scheme for interpolating multiple electronic surfaces of a relatively large molecule, with an intention of applying it to studying nonadiabatic behaviors. The scheme starts with adiabatic potential information and its diabatic transformation, both of which can be readily obtained, in principle, with quantum chemical calculations. The adiabatic energies and their derivatives on each interpolation center are combined with the derivative coupling vectors to generate the corresponding diabatic Hamiltonian and its derivatives, and they are subsequently adopted in producing a globally defined diabatic Hamiltonian function. As a demonstration, we employ the scheme to build an interpolated Hamiltonian of a relatively large chromophore, para-hydroxybenzylidene imidazolinone, in reference to its all-atom analytical surface model. We show that the interpolation is indeed reliable enough to reproduce important features of the reference surface model, such as its adiabatic energies and derivative couplings. In addition, nonadiabatic surface hopping simulations with interpolation yield population transfer dynamics that is well in accord with the result generated with the reference analytic surface. With these, we conclude by suggesting that the interpolation of diabatic Hamiltonians will be applicable for studying nonadiabatic behaviors of sizeable molecules.

  7. Constructing polyatomic potential energy surfaces by interpolating diabatic Hamiltonian matrices with demonstration on green fluorescent protein chromophore.

    PubMed

    Park, Jae Woo; Rhee, Young Min

    2014-04-28

    Simulating molecular dynamics directly on quantum chemically obtained potential energy surfaces is generally time consuming. The cost becomes overwhelming especially when excited state dynamics is aimed with multiple electronic states. The interpolated potential has been suggested as a remedy for the cost issue in various simulation settings ranging from fast gas phase reactions of small molecules to relatively slow condensed phase dynamics with complex surrounding. Here, we present a scheme for interpolating multiple electronic surfaces of a relatively large molecule, with an intention of applying it to studying nonadiabatic behaviors. The scheme starts with adiabatic potential information and its diabatic transformation, both of which can be readily obtained, in principle, with quantum chemical calculations. The adiabatic energies and their derivatives on each interpolation center are combined with the derivative coupling vectors to generate the corresponding diabatic Hamiltonian and its derivatives, and they are subsequently adopted in producing a globally defined diabatic Hamiltonian function. As a demonstration, we employ the scheme to build an interpolated Hamiltonian of a relatively large chromophore, para-hydroxybenzylidene imidazolinone, in reference to its all-atom analytical surface model. We show that the interpolation is indeed reliable enough to reproduce important features of the reference surface model, such as its adiabatic energies and derivative couplings. In addition, nonadiabatic surface hopping simulations with interpolation yield population transfer dynamics that is well in accord with the result generated with the reference analytic surface. With these, we conclude by suggesting that the interpolation of diabatic Hamiltonians will be applicable for studying nonadiabatic behaviors of sizeable molecules.

  8. Theoretical studies of potential energy surfaces.

    SciTech Connect

    Harding, L. B.

    2006-01-01

    The goal of this program is to calculate accurate potential energy surfaces for both reactive and nonreactive systems. To do this the electronic Schroedinger equation must be solved. Our approach starts with multiconfiguration self-consistent field (MCSCF) reference wave functions. These reference wavefunctions are designed to be sufficiently flexible to accurately describe changes in electronic structure over a broad range of geometries. Dynamical electron correlation effects are included via multireference, singles and doubles configuration interaction (MRCI) calculations. With this approach, we are able to provide chemically useful predictions of the energetics for many systems. A second aspect of this program is the development of techniques to fit multi-dimensional potential surfaces to convenient, global, analytic functions that can then be used in dynamics calculations.

  9. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1994-01-01

    Quantum mechanical methods have been used to compute potential energy surfaces for chemical reactions. The reactions studied were among those believed to be important to the NASP and HSR programs and included the recombination of two H atoms with several different third bodies; the reactions in the thermal Zeldovich mechanism; the reactions of H atom with O2, N2, and NO; reactions involved in the thermal De-NO(x) process; and the reaction of CH(squared Pi) with N2 (leading to 'prompt NO'). These potential energy surfaces have been used to compute reaction rate constants and rates of unimolecular decomposition. An additional application was the calculation of transport properties of gases using a semiclassical approximation (and in the case of interactions involving hydrogen inclusion of quantum mechanical effects).

  10. Mechanical surface waves accompany action potential propagation.

    PubMed

    El Hady, Ahmed; Machta, Benjamin B

    2015-01-01

    Many diverse studies have shown that a mechanical displacement of the axonal membrane accompanies the electrical pulse defining the action potential (AP). We present a model for these mechanical displacements as arising from the driving of surface wave modes in which potential energy is stored in elastic properties of the neuronal membrane and cytoskeleton while kinetic energy is carried by the axoplasmic fluid. In our model, these surface waves are driven by the travelling wave of electrical depolarization characterizing the AP, altering compressive electrostatic forces across the membrane. This driving leads to co-propagating mechanical displacements, which we term Action Waves (AWs). Our model allows us to estimate the shape of the AW that accompanies any travelling wave of voltage, making predictions that are in agreement with results from several experimental systems. Our model can serve as a framework for understanding the physical origins and possible functional roles of these AWs. PMID:25819404

  11. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1990-01-01

    The objective was to obtain accurate potential energy surfaces (PES's) for a number of reactions which are important in the H/N/O combustion process. The interest in this is centered around the design of the SCRAM jet engine for the National Aerospace Plane (NASP), which was envisioned as an air-breathing hydrogen-burning vehicle capable of reaching velocities as large as Mach 25. Preliminary studies indicated that the supersonic flow in the combustor region of the scram jet engine required accurate reaction rate data for reactions in the H/N/O system, some of which was not readily available from experiment. The most important class of combustion reactions from the standpoint of the NASP project are radical recombinaton reactions, since these reactions result in most of the heat release in the combustion process. Theoretical characterizations of the potential energy surfaces for these reactions are presented and discussed.

  12. Mechanical surface waves accompany action potential propagation

    NASA Astrophysics Data System (ADS)

    El Hady, Ahmed; Machta, Benjamin B.

    2015-03-01

    Many diverse studies have shown that a mechanical displacement of the axonal membrane accompanies the electrical pulse defining the action potential (AP). We present a model for these mechanical displacements as arising from the driving of surface wave modes in which potential energy is stored in elastic properties of the neuronal membrane and cytoskeleton while kinetic energy is carried by the axoplasmic fluid. In our model, these surface waves are driven by the travelling wave of electrical depolarization characterizing the AP, altering compressive electrostatic forces across the membrane. This driving leads to co-propagating mechanical displacements, which we term Action Waves (AWs). Our model allows us to estimate the shape of the AW that accompanies any travelling wave of voltage, making predictions that are in agreement with results from several experimental systems. Our model can serve as a framework for understanding the physical origins and possible functional roles of these AWs.

  13. Adiabatic processes in monatomic gases

    NASA Astrophysics Data System (ADS)

    Carrera-Patiño, Martin E.

    1988-08-01

    A kinetic model is used to predict the temperature evolution of a monatomic ideal gas undergoing an adiabatic expansion or compression at a constant finite rate, and it is then generalized to treat real gases. The effects of interatomic forces are considered, using as examples the gas with the square-well potential and the van der Waals gas. The model is integrated into a Carnot cycle operating at a finite rate to compare the efficiency's rate-dependent behavior with the reversible result. Limitations of the model, rate penalties, and their importance are discussed.

  14. Adiabatically implementing quantum gates

    SciTech Connect

    Sun, Jie; Lu, Songfeng Liu, Fang

    2014-06-14

    We show that, through the approach of quantum adiabatic evolution, all of the usual quantum gates can be implemented efficiently, yielding running time of order O(1). This may be considered as a useful alternative to the standard quantum computing approach, which involves quantum gates transforming quantum states during the computing process.

  15. Entanglement and adiabatic quantum computation

    NASA Astrophysics Data System (ADS)

    Ahrensmeier, D.

    2006-06-01

    Adiabatic quantum computation provides an alternative approach to quantum computation using a time-dependent Hamiltonian. The time evolution of entanglement during the adiabatic quantum search algorithm is studied, and its relevance as a resource is discussed.

  16. Assessment of total efficiency in adiabatic engines

    NASA Astrophysics Data System (ADS)

    Mitianiec, W.

    2016-09-01

    The paper presents influence of ceramic coating in all surfaces of the combustion chamber of SI four-stroke engine on working parameters mainly on heat balance and total efficiency. Three cases of engine were considered: standard without ceramic coating, fully adiabatic combustion chamber and engine with different thickness of ceramic coating. Consideration of adiabatic or semi-adiabatic engine was connected with mathematical modelling of heat transfer from the cylinder gas to the cooling medium. This model takes into account changeable convection coefficient based on the experimental formulas of Woschni, heat conductivity of multi-layer walls and also small effect of radiation in SI engines. The simulation model was elaborated with full heat transfer to the cooling medium and unsteady gas flow in the engine intake and exhaust systems. The computer program taking into account 0D model of engine processes in the cylinder and 1D model of gas flow was elaborated for determination of many basic engine thermodynamic parameters for Suzuki DR-Z400S 400 cc SI engine. The paper presents calculation results of influence of the ceramic coating thickness on indicated pressure, specific fuel consumption, cooling and exhaust heat losses. Next it were presented comparisons of effective power, heat losses in the cooling and exhaust systems, total efficiency in function of engine rotational speed and also comparison of temperature inside the cylinder for standard, semi-adiabatic and full adiabatic engine. On the basis of the achieved results it was found higher total efficiency of adiabatic engines at 2500 rpm from 27% for standard engine to 37% for full adiabatic engine.

  17. Conical intersections and diabatic potential energy surfaces for the three lowest electronic singlet states of H{sub 3}{sup +}

    SciTech Connect

    Mukherjee, Saikat; Adhikari, Satrajit; Mukhopadhyay, Debasis

    2014-11-28

    We calculate the adiabatic Potential Energy Surfaces (PESs) and the Non-Adiabatic Coupling Terms (NACTs) for the three lowest singlet states of H{sub 3}{sup +} in hyperspherical coordinates as functions of hyperangles (θ and ϕ) for a grid of fixed values of hyperradius (1.5 ⩽ ρ ⩽ 20 bohrs) using the MRCI level of methodology employing ab initio quantum chemistry package (MOLPRO). The NACT between the ground and the first excited state translates along the seams on the θ − ϕ space, i.e., there are six Conical Intersections (CIs) at each θ (60° ⩽ θ ⩽ 90°) within the domain, 0 ⩽ ϕ ⩽ 2π. While transforming the adiabatic PESs to the diabatic ones, such surfaces show up six crossings along those seams. Our beyond Born-Oppenheimer approach could incorporate the effect of NACTs accurately and construct single-valued, continuous, smooth, and symmetric diabatic PESs. Since the location of CIs and the spatial amplitudes of NACTs are most prominent around ρ = 10 bohrs, generally only those results are depicted.

  18. Theoretical studies of potential energy surfaces

    SciTech Connect

    Harding, L.B.

    1993-12-01

    The goal of this program is to calculate accurate potential energy surfaces (PES) for both reactive and nonreactive systems. To do this the electronic Schrodinger equation must be solved. Our approach to this problem starts with multiconfiguration self-consistent field (MCSCF) reference wavefunctions. These reference wavefunctions are designed to be sufficiently flexible to accurately describe changes in electronic structure over a broad range of geometries. Electron correlation effects are included via multireference, singles and doubles configuration interaction (MRSDCI) calculations. With this approach, the authors are able to provide useful predictions of the energetics for a broad range of systems.

  19. Sparse representation for a potential energy surface

    NASA Astrophysics Data System (ADS)

    Seko, Atsuto; Takahashi, Akira; Tanaka, Isao

    2014-07-01

    We propose a simple scheme to estimate the potential energy surface (PES) for which the accuracy can be easily controlled and improved. It is based on model selection within the framework of linear regression using the least absolute shrinkage and selection operator (LASSO) technique. Basis functions are selected from a systematic large set of candidate functions. The sparsity of the PES significantly reduces the computational cost of evaluating the energy and force in molecular dynamics simulations without losing accuracy. The usefulness of the scheme for describing the elemental metals Na and Mg is clearly demonstrated.

  20. Accurate adiabatic correction in the hydrogen molecule

    NASA Astrophysics Data System (ADS)

    Pachucki, Krzysztof; Komasa, Jacek

    2014-12-01

    A new formalism for the accurate treatment of adiabatic effects in the hydrogen molecule is presented, in which the electronic wave function is expanded in the James-Coolidge basis functions. Systematic increase in the size of the basis set permits estimation of the accuracy. Numerical results for the adiabatic correction to the Born-Oppenheimer interaction energy reveal a relative precision of 10-12 at an arbitrary internuclear distance. Such calculations have been performed for 88 internuclear distances in the range of 0 < R ⩽ 12 bohrs to construct the adiabatic correction potential and to solve the nuclear Schrödinger equation. Finally, the adiabatic correction to the dissociation energies of all rovibrational levels in H2, HD, HT, D2, DT, and T2 has been determined. For the ground state of H2 the estimated precision is 3 × 10-7 cm-1, which is almost three orders of magnitude higher than that of the best previous result. The achieved accuracy removes the adiabatic contribution from the overall error budget of the present day theoretical predictions for the rovibrational levels.

  1. Accurate adiabatic correction in the hydrogen molecule

    SciTech Connect

    Pachucki, Krzysztof; Komasa, Jacek

    2014-12-14

    A new formalism for the accurate treatment of adiabatic effects in the hydrogen molecule is presented, in which the electronic wave function is expanded in the James-Coolidge basis functions. Systematic increase in the size of the basis set permits estimation of the accuracy. Numerical results for the adiabatic correction to the Born-Oppenheimer interaction energy reveal a relative precision of 10{sup −12} at an arbitrary internuclear distance. Such calculations have been performed for 88 internuclear distances in the range of 0 < R ⩽ 12 bohrs to construct the adiabatic correction potential and to solve the nuclear Schrödinger equation. Finally, the adiabatic correction to the dissociation energies of all rovibrational levels in H{sub 2}, HD, HT, D{sub 2}, DT, and T{sub 2} has been determined. For the ground state of H{sub 2} the estimated precision is 3 × 10{sup −7} cm{sup −1}, which is almost three orders of magnitude higher than that of the best previous result. The achieved accuracy removes the adiabatic contribution from the overall error budget of the present day theoretical predictions for the rovibrational levels.

  2. Accurate adiabatic correction in the hydrogen molecule.

    PubMed

    Pachucki, Krzysztof; Komasa, Jacek

    2014-12-14

    A new formalism for the accurate treatment of adiabatic effects in the hydrogen molecule is presented, in which the electronic wave function is expanded in the James-Coolidge basis functions. Systematic increase in the size of the basis set permits estimation of the accuracy. Numerical results for the adiabatic correction to the Born-Oppenheimer interaction energy reveal a relative precision of 10(-12) at an arbitrary internuclear distance. Such calculations have been performed for 88 internuclear distances in the range of 0 < R ⩽ 12 bohrs to construct the adiabatic correction potential and to solve the nuclear Schrödinger equation. Finally, the adiabatic correction to the dissociation energies of all rovibrational levels in H2, HD, HT, D2, DT, and T2 has been determined. For the ground state of H2 the estimated precision is 3 × 10(-7) cm(-1), which is almost three orders of magnitude higher than that of the best previous result. The achieved accuracy removes the adiabatic contribution from the overall error budget of the present day theoretical predictions for the rovibrational levels. PMID:25494728

  3. Potential energy surfaces of superheavy nuclei

    SciTech Connect

    Bender, M.; Rutz, K.; Maruhn, J.A.; Greiner, W.; Reinhard, P.-G. Rutz, K.; Maruhn, J.A.; Greiner, W.

    1998-10-01

    We investigate the structure of the potential energy surfaces of the superheavy nuclei {sub 158}{sup 258}Fm{sub 100}, {sub 156}{sup 264}Hs{sub 108}, {sub 166}{sup 278}112, {sub 184}{sup 298}114, and {sub 172}{sup 292}120 within the framework of self-consistent nuclear models, i.e., the Skyrme-Hartree-Fock approach and the relativistic mean-field model. We compare results obtained with one representative parametrization of each model which is successful in describing superheavy nuclei. We find systematic changes as compared to the potential energy surfaces of heavy nuclei in the uranium region: there is no sufficiently stable fission isomer any more, the importance of triaxial configurations to lower the first barrier fades away, and asymmetric fission paths compete down to rather small deformation. Comparing the two models, it turns out that the relativistic mean-field model gives generally smaller fission barriers. {copyright} {ital 1998} {ital The American Physical Society}

  4. Tensor decomposition in potential energy surface representations.

    PubMed

    Ostrowski, Lukas; Ziegler, Benjamin; Rauhut, Guntram

    2016-09-14

    In order to reduce the operation count in vibration correlation methods, e.g., vibrational configuration interaction (VCI) theory, a tensor decomposition approach has been applied to the analytical representations of multidimensional potential energy surfaces (PESs). It is shown that a decomposition of the coefficients within the individual n-mode coupling terms in a multimode expansion of the PES is feasible and allows for convenient contractions of one-dimensional integrals with these newly determined factor matrices. Deviations in the final VCI frequencies of a set of small molecules were found to be negligible once the rank of the factors matrices is chosen appropriately. Recommendations for meaningful ranks are provided and different algorithms are discussed. PMID:27634247

  5. A finite-element visualization of quantum reactive scattering. II. Nonadiabaticity on coupled potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Warehime, Mick; Kłos, Jacek; Alexander, Millard H.

    2015-01-01

    This is the second in a series of papers detailing a MATLAB based implementation of the finite element method applied to collinear triatomic reactions. Here, we extend our previous work to reactions on coupled potential energy surfaces. The divergence of the probability current density field associated with the two electronically adiabatic states allows us to visualize in a novel way where and how nonadiabaticity occurs. A two-dimensional investigation gives additional insight into nonadiabaticity beyond standard one-dimensional models. We study the F(2P) + HCl and F(2P) + H2 reactions as model applications. Our publicly available code (http://www2.chem.umd.edu/groups/alexander/FEM) is general and easy to use.

  6. A finite-element visualization of quantum reactive scattering. II. Nonadiabaticity on coupled potential energy surfaces

    SciTech Connect

    Warehime, Mick; Kłos, Jacek; Alexander, Millard H.

    2015-01-21

    This is the second in a series of papers detailing a MATLAB based implementation of the finite element method applied to collinear triatomic reactions. Here, we extend our previous work to reactions on coupled potential energy surfaces. The divergence of the probability current density field associated with the two electronically adiabatic states allows us to visualize in a novel way where and how nonadiabaticity occurs. A two-dimensional investigation gives additional insight into nonadiabaticity beyond standard one-dimensional models. We study the F({sup 2}P) + HCl and F({sup 2}P) + H{sub 2} reactions as model applications. Our publicly available code (http://www2.chem.umd.edu/groups/alexander/FEM) is general and easy to use.

  7. Adiabatic Halo Formation

    SciTech Connect

    Bazzani, A.; Turchetti, G.; Benedetti, C.; Rambaldi, S.; Servizi, G.

    2005-06-08

    In a high intensity circular accelerator the synchrotron dynamics introduces a slow modulation in the betatronic tune due to the space-charge tune depression. When the transverse motion is non-linear due to the presence of multipolar effects, resonance islands move in the phase space and change their amplitude. This effect introduces the trapping and detrapping phenomenon and a slow diffusion in the phase space. We apply the neo-adiabatic theory to describe this diffusion mechanism that can contribute to halo formation.

  8. Energy conservation potential of surface modification technologies

    SciTech Connect

    Le, H.K.; Horne, D.M.; Silberglitt, R.S.

    1985-09-01

    This report assesses the energy conservation impact of surface modification technologies on the metalworking industries. The energy conservation impact of surface modification technologies on the metalworking industries is assessed by estimating their friction and wear tribological sinks and the subsequent reduction in these sinks when surface modified tools are used. Ion implantation, coatings, and laser and electron beam surface modifications are considered.

  9. An integrated programming and development environment for adiabatic quantum optimization

    NASA Astrophysics Data System (ADS)

    Humble, T. S.; McCaskey, A. J.; Bennink, R. S.; Billings, J. J.; DʼAzevedo, E. F.; Sullivan, B. D.; Klymko, C. F.; Seddiqi, H.

    2014-01-01

    Adiabatic quantum computing is a promising route to the computational power afforded by quantum information processing. The recent availability of adiabatic hardware has raised challenging questions about how to evaluate adiabatic quantum optimization (AQO) programs. Processor behavior depends on multiple steps to synthesize an adiabatic quantum program, which are each highly tunable. We present an integrated programming and development environment for AQO called Jade Adiabatic Development Environment (JADE) that provides control over all the steps taken during program synthesis. JADE captures the workflow needed to rigorously specify the AQO algorithm while allowing a variety of problem types, programming techniques, and processor configurations. We have also integrated JADE with a quantum simulation engine that enables program profiling using numerical calculation. The computational engine supports plug-ins for simulation methodologies tailored to various metrics and computing resources. We present the design, integration, and deployment of JADE and discuss its potential use for benchmarking AQO programs by the quantum computer science community.

  10. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1988-01-01

    The minimum energy path for the addition of a hydrogen atom to N2 is characterized in CASSCF/CCI calculations using the (4s3p2d1f/3s2p1d) basis set, with additional single point calculations at the stationary points of the potential energy surface using the (5s4p3d2f/4s3p2d) basis set. These calculations represent the most extensive set of ab initio calculations completed to date, yielding a zero point corrected barrier for HN2 dissociation of approx. 8.5 kcal mol/1. The lifetime of the HN2 species is estimated from the calculated geometries and energetics using both conventional Transition State Theory and a method which utilizes an Eckart barrier to compute one dimensional quantum mechanical tunneling effects. It is concluded that the lifetime of the HN2 species is very short, greatly limiting its role in both termolecular recombination reactions and combustion processes.

  11. Advanced Potential Energy Surfaces for Molecular Simulation.

    PubMed

    Albaugh, Alex; Boateng, Henry A; Bradshaw, Richard T; Demerdash, Omar N; Dziedzic, Jacek; Mao, Yuezhi; Margul, Daniel T; Swails, Jason; Zeng, Qiao; Case, David A; Eastman, Peter; Wang, Lee-Ping; Essex, Jonathan W; Head-Gordon, Martin; Pande, Vijay S; Ponder, Jay W; Shao, Yihan; Skylaris, Chris-Kriton; Todorov, Ilian T; Tuckerman, Mark E; Head-Gordon, Teresa

    2016-09-22

    Advanced potential energy surfaces are defined as theoretical models that explicitly include many-body effects that transcend the standard fixed-charge, pairwise-additive paradigm typically used in molecular simulation. However, several factors relating to their software implementation have precluded their widespread use in condensed-phase simulations: the computational cost of the theoretical models, a paucity of approximate models and algorithmic improvements that can ameliorate their cost, underdeveloped interfaces and limited dissemination in computational code bases that are widely used in the computational chemistry community, and software implementations that have not kept pace with modern high-performance computing (HPC) architectures, such as multicore CPUs and modern graphics processing units (GPUs). In this Feature Article we review recent progress made in these areas, including well-defined polarization approximations and new multipole electrostatic formulations, novel methods for solving the mutual polarization equations and increasing the MD time step, combining linear-scaling electronic structure methods with new QM/MM methods that account for mutual polarization between the two regions, and the greatly improved software deployment of these models and methods onto GPU and CPU hardware platforms. We have now approached an era where multipole-based polarizable force fields can be routinely used to obtain computational results comparable to state-of-the-art density functional theory while reaching sampling statistics that are acceptable when compared to that obtained from simpler fixed partial charge force fields.

  12. Advanced Potential Energy Surfaces for Molecular Simulation.

    PubMed

    Albaugh, Alex; Boateng, Henry A; Bradshaw, Richard T; Demerdash, Omar N; Dziedzic, Jacek; Mao, Yuezhi; Margul, Daniel T; Swails, Jason; Zeng, Qiao; Case, David A; Eastman, Peter; Wang, Lee-Ping; Essex, Jonathan W; Head-Gordon, Martin; Pande, Vijay S; Ponder, Jay W; Shao, Yihan; Skylaris, Chris-Kriton; Todorov, Ilian T; Tuckerman, Mark E; Head-Gordon, Teresa

    2016-09-22

    Advanced potential energy surfaces are defined as theoretical models that explicitly include many-body effects that transcend the standard fixed-charge, pairwise-additive paradigm typically used in molecular simulation. However, several factors relating to their software implementation have precluded their widespread use in condensed-phase simulations: the computational cost of the theoretical models, a paucity of approximate models and algorithmic improvements that can ameliorate their cost, underdeveloped interfaces and limited dissemination in computational code bases that are widely used in the computational chemistry community, and software implementations that have not kept pace with modern high-performance computing (HPC) architectures, such as multicore CPUs and modern graphics processing units (GPUs). In this Feature Article we review recent progress made in these areas, including well-defined polarization approximations and new multipole electrostatic formulations, novel methods for solving the mutual polarization equations and increasing the MD time step, combining linear-scaling electronic structure methods with new QM/MM methods that account for mutual polarization between the two regions, and the greatly improved software deployment of these models and methods onto GPU and CPU hardware platforms. We have now approached an era where multipole-based polarizable force fields can be routinely used to obtain computational results comparable to state-of-the-art density functional theory while reaching sampling statistics that are acceptable when compared to that obtained from simpler fixed partial charge force fields. PMID:27513316

  13. Timescales for adiabatic photodissociation dynamics from the {tilde A} state of ammonia

    NASA Astrophysics Data System (ADS)

    Chatterley, Adam S.; Roberts, Gareth M.; Stavros, Vasilios G.

    2013-07-01

    Photodissociation dynamics after excitation of the {tilde A} state ν'2 = 4 (umbrella) level of ammonia are investigated using ultrafast time-resolved velocity map ion imaging (TR-VMI). These studies extend upon previous TR-VMI measurements [K. L. Wells, G. Perriam, and V. G. Stavros, J. Chem. Phys. 130, 074308 (2009)], 10.1063/1.3072763, which reported the appearance timescales for ground state NH_2 {(tilde X)} + H photoproducts, born from non-adiabatic passage through an {tilde X/tilde A} state conical intersection (CI) at elongated H-NH2 bond distances. In particular, the present work sheds new light on the formation timescales for electronically excited NH_2 {(tilde A)} + H species, generated from NH3 parent molecules that avoid the CI and dissociate adiabatically. The results reveal a step-wise dynamical picture for the production of NH_2 {(tilde A)} + H products, where nascent dissociative flux can become temporarily trapped/impeded around the upper cone of the CI on the {tilde A} state potential energy surface (PES), while on course towards the adiabatic dissociation asymptote - this behavior contrasts the concerted mechanism previously observed for non-adiabatic dissociation into H-atoms associated with ro-vibrationally "cold" NH_2 {(tilde X)}. Initially, non-planar NH3 molecules (species which have the capacity to yield adiabatic photoproducts) are found to evolve out of the vertical Franck-Condon excitation region and towards the CI region of the {tilde A} state PES with a time-constant of 113 ± 46 fs. Subsequently, transient population encircling the CI then progresses to finally form NH_2 {(tilde A)} + H photoproducts from the CI region of the tildeA state PES with a slower time-constant of 415 ± 25 fs. Non-adiabatic dissociation into ro-vibrationally "hot" NH_2 {(tilde X)} radicals together with H-atoms is also evidenced to occur via a qualitatively similar process.

  14. Timescales for adiabatic photodissociation dynamics from the à state of ammonia.

    PubMed

    Chatterley, Adam S; Roberts, Gareth M; Stavros, Vasilios G

    2013-07-21

    Photodissociation dynamics after excitation of the à state ν'2 = 4 (umbrella) level of ammonia are investigated using ultrafast time-resolved velocity map ion imaging (TR-VMI). These studies extend upon previous TR-VMI measurements [K. L. Wells, G. Perriam, and V. G. Stavros, J. Chem. Phys. 130, 074308 (2009)], which reported the appearance timescales for ground state NH2(X̃)+H photoproducts, born from non-adiabatic passage through an X̃/à state conical intersection (CI) at elongated H-NH2 bond distances. In particular, the present work sheds new light on the formation timescales for electronically excited NH2(Ã)+H species, generated from NH3 parent molecules that avoid the CI and dissociate adiabatically. The results reveal a step-wise dynamical picture for the production of NH2(Ã)+H products, where nascent dissociative flux can become temporarily trapped∕impeded around the upper cone of the CI on the à state potential energy surface (PES), while on course towards the adiabatic dissociation asymptote - this behavior contrasts the concerted mechanism previously observed for non-adiabatic dissociation into H-atoms associated with ro-vibrationally "cold" NH2(X̃). Initially, non-planar NH3 molecules (species which have the capacity to yield adiabatic photoproducts) are found to evolve out of the vertical Franck-Condon excitation region and towards the CI region of the à state PES with a time-constant of 113 ± 46 fs. Subsequently, transient population encircling the CI then progresses to finally form NH2(Ã)+H photoproducts from the CI region of the à state PES with a slower time-constant of 415 ± 25 fs. Non-adiabatic dissociation into ro-vibrationally "hot" NH2(X̃) radicals together with H-atoms is also evidenced to occur via a qualitatively similar process. PMID:23883038

  15. Novel developments and applications of the classical adiabatic dynamics technique

    NASA Astrophysics Data System (ADS)

    Rosso, Lula

    applied to a variety of model problems and extended to calculate conformational surfaces of small peptides and the chemical potential of a Lennard-Jones liquid. The comparison with established methods shows that the new approach calculates free energy profiles with greater ease and efficiency.

  16. Geometry of the Adiabatic Theorem

    ERIC Educational Resources Information Center

    Lobo, Augusto Cesar; Ribeiro, Rafael Antunes; Ribeiro, Clyffe de Assis; Dieguez, Pedro Ruas

    2012-01-01

    We present a simple and pedagogical derivation of the quantum adiabatic theorem for two-level systems (a single qubit) based on geometrical structures of quantum mechanics developed by Anandan and Aharonov, among others. We have chosen to use only the minimum geometric structure needed for the understanding of the adiabatic theorem for this case.…

  17. Zero-point energy, tunnelling, and vibrational adiabaticity in the Mu + H2 reaction

    NASA Astrophysics Data System (ADS)

    Mielke, Steven L.; Garrett, Bruce C.; Fleming, Donald G.; Truhlar, Donald G.

    2015-01-01

    Isotopic substitution of muonium for hydrogen provides an unparalleled opportunity to deepen our understanding of quantum mass effects on chemical reactions. A recent topical review in this journal of the thermal and vibrationally state-selected reaction of Mu with H2 raises a number of issues that are addressed here. We show that some earlier quantum mechanical calculations of the Mu + H2 reaction, which are highlighted in this review, and which have been used to benchmark approximate methods, are in error by as much as 19% in the low-temperature limit. We demonstrate that an approximate treatment of the Born-Oppenheimer diagonal correction that was used in some recent studies is not valid for treating the vibrationally state-selected reaction. We also discuss why vibrationally adiabatic potentials that neglect bend zero-point energy are not a useful analytical tool for understanding reaction rates, and why vibrationally non-adiabatic transitions cannot be understood by considering tunnelling through vibrationally adiabatic potentials. Finally, we present calculations on a hierarchical family of potential energy surfaces to assess the sensitivity of rate constants to the quality of the potential surface.

  18. Urban Surfaces and Heat Island Mitigation Potentials

    SciTech Connect

    Akbari, Hashem; Akbari, Hashem; Shea Rose, Leanna

    2007-06-14

    Data on materials and surface types that comprise a city, i.e. urban fabric, are needed in order to estimate the effects of light-colored surfaces (roofs and pavements) and urban vegetation (trees, grass, shrubs) on the meteorology and air quality of a city. We discuss the results of a semi-automatic statistical approach used to develop data on surface-type distribution and urban-fabric makeup using aerial color orthophotography, for four metropolitan areas of Chicago, IL, Houston, TX, Sacramento, CA, and Salt Lake City, UT. The digital high resolution (0.3 to 0.5-m) aerial photographs for each of these metropolitan areas covers representative urban areas ranging from 30 km{sup 2} to 52 km{sup 2}. Major land-use types examined included: commercial, residential, industrial, educational, and transportation. On average, for the metropolitan areas studied, vegetation covers about 29-41% of the area, roofs 19-25%, and paved surfaces 29-39%. For the most part, trees shade streets, parking lots, grass, and sidewalks. At ground level, i.e., view from below the tree canopies, vegetation covers about 20-37% of the area, roofs 20-25%, and paved surfaces 29-36%.

  19. Vibrational dynamics of the bifluoride ion. II. Adiabatic separation and proton dynamics

    NASA Astrophysics Data System (ADS)

    Epa, V. C.; Thorson, W. R.

    1990-01-01

    Vibrational dynamics of the bifluoride ion FHF-, which exhibits strongly anharmonic and nonseparable vibrations, is studied using the extended ab initio model potential surface described in the first paper of this series. Adiabatic separation of the proton motion from the F-F (ν1) motion forms a zero-order basis for description, although strong coupling of adiabatic states by the ν1 motion is important in higher vibrational levels and must be considered to understand the spectrum. The adiabatic protonic eigenstates at F-F separations R from 3.75 to 6.40 a.u. have been determined using the self-consistent field approximation in prolate spheroidal coordinates to provide a basis set for configuration interaction expansion of the exact eigenstates. 78 SCF eigenstates (21 σg, 21 σu, 21 πu, and 15 πg) were computed by ``exact'' numerical solution of the SCF equations. The adiabatic CI eigenstates are shown to be converged in energy to better than 1.0 cm-1 for the ground state of each symmetry type and usually better than 10 cm-1 for the lowest three to five states, and pass critical tests of accuracy such as the Hellmann-Feynman theorem. The resulting CI potential energy curves closely resemble corresponding SCF energy curves and justify the concept of mode separation even in this very anharmonic system. The adiabatic CI potential energy curves explain most aspects of the dynamics relevant to the IR and Raman spectra of FHF- (e.g., in KHF2), and calculations of ν1 dynamics within the adiabatic approximation suffice to assign most of the observed IR spectrum of KHF2(s) (to about 6000 cm-1). States corresponding qualitatively to modal overtone and combination levels such as 3ν2 and (ν2+2ν3) however exhibit avoided crossings in the neighborhood of the equilibrium configuration and ``Fermi resonance'' involving interactions of two or more such adiabatic states via the ν1 motion must be treated by close-coupling to predict both frequencies and intensities in the

  20. Rapid potential decay on surface fluorinated epoxy resin samples

    NASA Astrophysics Data System (ADS)

    Liu, Yaqiang; An, Zhenlian; Yin, Qianqian; Zheng, Feihu; Zhang, Yewen; Lei, Qingquan

    2013-04-01

    Epoxy resin samples were surface fluorinated using a F2/N2 mixture with 12.5% F2 by volume at 50 °C and 0.1 MPa for different times of 10, 30, and 60 min. Surface potential measurements at room temperature and different relative humidity levels of 20% to 60% on the surface fluorinated epoxy samples charged by corona discharge showed a low initial surface potential and a rapid potential decay, depending on the ambient humidity and fluorination time, in comparison with the charged unfluorinated epoxy sample. Surface conductivity measurements at the different relative humidity levels further indicated a higher surface conductivity of the fluorinated samples than the unfluorinated sample by over three orders of magnitude and an increase or decrease in surface conductivity with the ambient humidity or fluorination time, in accordance with the results of surface potential measurements. Attenuated total reflection infrared analyses and scanning electron microscope surface and cross section observations on the unfluorinated and surface fluorinated samples revealed substantial differences in physicochemical characteristics between the surface layers. The composition and structure characteristics of the surface layers are responsible for their intrinsic electrical properties and surface wettability, although surface morphology also influences the surface wettability.

  1. Adiabatic Heating of Contracting Turbulent Fluids

    NASA Astrophysics Data System (ADS)

    Robertson, Brant; Goldreich, Peter

    2012-05-01

    Turbulence influences the behavior of many astrophysical systems, frequently by providing non-thermal pressure support through random bulk motions. Although turbulence is commonly studied in systems with constant volume and mean density, turbulent astrophysical gases often expand or contract under the influence of pressure or gravity. Here, we examine the behavior of turbulence in contracting volumes using idealized models of compressed gases. Employing numerical simulations and an analytical model, we identify a simple mechanism by which the turbulent motions of contracting gases "adiabatically heat," experiencing an increase in their random bulk velocities until the largest eddies in the gas circulate over a Hubble time of the contraction. Adiabatic heating provides a mechanism for sustaining turbulence in gases where no large-scale driving exists. We describe this mechanism in detail and discuss some potential applications to turbulence in astrophysical settings.

  2. ADIABATIC HEATING OF CONTRACTING TURBULENT FLUIDS

    SciTech Connect

    Robertson, Brant; Goldreich, Peter

    2012-05-10

    Turbulence influences the behavior of many astrophysical systems, frequently by providing non-thermal pressure support through random bulk motions. Although turbulence is commonly studied in systems with constant volume and mean density, turbulent astrophysical gases often expand or contract under the influence of pressure or gravity. Here, we examine the behavior of turbulence in contracting volumes using idealized models of compressed gases. Employing numerical simulations and an analytical model, we identify a simple mechanism by which the turbulent motions of contracting gases 'adiabatically heat', experiencing an increase in their random bulk velocities until the largest eddies in the gas circulate over a Hubble time of the contraction. Adiabatic heating provides a mechanism for sustaining turbulence in gases where no large-scale driving exists. We describe this mechanism in detail and discuss some potential applications to turbulence in astrophysical settings.

  3. Protein adsorption kinetics in different surface potentials

    NASA Astrophysics Data System (ADS)

    Quinn, A.; Mantz, H.; Jacobs, K.; Bellion, M.; Santen, L.

    2008-03-01

    We have studied the adsorption kinetics of the protein amylase at solid/liquid interfaces. Offering substrates with tailored properties, we are able to separate the impact of short- and long-range interactions. By means of a colloidal Monte Carlo approach including conformational changes of the adsorbed proteins induced by density fluctuations, we develop a scenario that is consistent with the experimentally observed three-step kinetics on specific substrates. Our observations show that not only the surface chemistry determines the properties of an adsorbed protein layer but also the van der Waals contributions of a composite substrate may lead to non-negligible effects.

  4. Adiabatic and isocurvature perturbation projections in multi-field inflation

    SciTech Connect

    Gordon, Chris; Saffin, Paul M. E-mail: Paul.Saffin@nottingham.ac.uk

    2013-08-01

    Current data are in good agreement with the predictions of single field inflation. However, the hemispherical asymmetry, seen in the cosmic microwave background data, may hint at a potential problem. Generalizing to multi-field models may provide one possible explanation. A useful way of modeling perturbations in multi-field inflation is to investigate the projection of the perturbation along and perpendicular to the background fields' trajectory. These correspond to the adiabatic and isocurvature perturbations. However, it is important to note that in general there are no corresponding adiabatic and isocurvature fields. The purpose of this article is to highlight the distinction between a field redefinition and a perturbation projection. We provide a detailed derivation of the evolution of the isocurvature perturbation to show that no assumption of an adiabatic or isocurvature field is needed. We also show how this evolution equation is consistent with the field covariant evolution equations for the adiabatic perturbation in the flat field space limit.

  5. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Heinemann, K.; Walch, Stephen P.

    1992-01-01

    The work on the NH + NO system which was described in the last progress report was written up and a draft of the manuscript is included in the appendix. The appendix also contains a draft of a manuscript on an Ar + H + H surface. New work which was completed in the last six months includes the following: (1) calculations on the (1)CH2 + H2O, H2 + HCOH, and H2 + H2CO product channels in the CH3 + OH reaction; (2) calculations for the NH2 + O reaction; (3) calculations for the CH3 + O2 reaction; and (4) calculations for CH3O and the two decomposition channels--CH2OH and H + H2CO. Detailed descriptions of this work will be given in manuscripts; however, brief descriptions of the CH3 + OH and CH3 + O2 projects are given.

  6. Use of scaled external correlation, a double many-body expansion, and variational transition state theory to calibrate a potential energy surface for FH2

    NASA Technical Reports Server (NTRS)

    Lynch, Gillian C.; Steckler, Rozeanne; Varandas, Antonio J. C.; Truhlar, Donald G.; Schwenke, David W.

    1991-01-01

    New ab initio results and a double many-body expansion formalism have been used to parameterize a new FH2 potential energy surface with improved properties near the saddle point and in the region of long-range attraction. The functional form of the new surface includes dispersion forces by a double many-body expansion. Stationary point properties for the new surface are calculated along with the product-valley barrier maxima of vibrationally adiabatic potential curves for F + H2 - HF(nu-prime = 3) + H, F + HD - HF(nu-prime = 3) + D, and F + D2 - DF(nu-prime = 4) + D. The new surface should prove useful for studying the effect on dynamics of a low, early barrier with a wide, flat bend potential.

  7. Tunneling Dynamics and Gauge Potentials in Optical Lattices

    NASA Astrophysics Data System (ADS)

    Dutta, S. K.; Teo, B. K.; Raithel, G.

    1999-09-01

    We study periodic well-to-well tunneling of 87Rb atoms on adiabatic potential surfaces of a 1D optical lattice. The observed dependence of the lowest-band tunneling period on the depth of the adiabatic potential can only be explained by an additional intensity-independent gauge potential predicted by Dum et al. The experimental data are in excellent agreement with our quantum Monte Carlo wave-function simulations and band structure calculations.

  8. Potential energy surfaces of Polonium isotopes

    NASA Astrophysics Data System (ADS)

    Nerlo-Pomorska, B.; Pomorski, K.; Schmitt, C.; Bartel, J.

    2015-11-01

    The evolution of the potential energy landscape is analysed in detail for ten even-even polonium isotopes in the mass range 188\\lt A\\lt 220 as obtained within the macroscopic-microscopic approach, relying on the Lublin-Strasbourg drop model and the Yukawa-folded single-particle energies for calculating the microscopic shell and pairing corrections. A variant of the modified Funny-Hills nuclear shape parametrization is used to efficiently map possible fission paths. The approach explains the main features of the fragment partition as measured in low-energy fission along the polonium chain. The latter lies in a transitional region of the nuclear chart, and will be essential to consistently understand the evolution of fission properties from neutron-deficient mercury to heavy actinides. The ability of our method to predict fission observables over such an extended region looks promising.

  9. Lunar electric fields, surface potential and associated plasma sheaths

    NASA Technical Reports Server (NTRS)

    Freeman, J. W.; Ibrahim, M.

    1975-01-01

    A review is given of studies of the electric-field environment of the moon. Surface electric potentials are reported for the dayside and terminator regions, electron and ion densities in the plasma sheath adjacent to each surface-potential regime are evaluated, and the corresponding Debye lengths are estimated. The electric fields, which are approximated by the surface potential over the Debye length, are shown to be at least three orders of magnitude higher than the pervasive solar-wind electric field and to be confined to within a few tens of meters of the lunar surface.

  10. Non-adiabatic dark fluid cosmology

    SciTech Connect

    Hipólito-Ricaldi, W.S.; Velten, H.E.S.; Zimdahl, W. E-mail: velten@cce.ufes.br

    2009-06-01

    We model the dark sector of the cosmic substratum by a viscous fluid with an equation of state p = −ζΘ, where Θ is the fluid-expansion scalar and ζ is the coefficient of bulk viscosity for which we assume a dependence ζ∝ρ{sup ν} on the energy density ρ. The homogeneous and isotropic background dynamics coincides with that of a generalized Chaplygin gas with equation of state p = −A/ρ{sup α}. The perturbation dynamics of the viscous model, however, is intrinsically non-adiabatic and qualitatively different from the Chaplygin-gas case. In particular, it avoids short-scale instabilities and/or oscillations which apparently have ruled out unified models of the Chaplygin-gas type. We calculate the matter power spectrum and demonstrate that the non-adiabatic model is compatible with the data from the 2dFGRS and the SDSS surveys. A χ{sup 2}-analysis shows, that for certain parameter combinations the viscous-dark-fluid (VDF) model is well competitive with the ΛCDM model. These results indicate that non-adiabatic unified models can be seen as potential contenders for a General-Relativity-based description of the cosmic substratum.

  11. Non-adiabatic molecular dynamics with complex quantum trajectories. II. The adiabatic representation

    SciTech Connect

    Zamstein, Noa; Tannor, David J.

    2012-12-14

    We present a complex quantum trajectory method for treating non-adiabatic dynamics. Each trajectory evolves classically on a single electronic surface but with complex position and momentum. The equations of motion are derived directly from the time-dependent Schroedinger equation, and the population exchange arises naturally from amplitude-transfer terms. In this paper the equations of motion are derived in the adiabatic representation to complement our work in the diabatic representation [N. Zamstein and D. J. Tannor, J. Chem. Phys. 137, 22A517 (2012)]. We apply our method to two benchmark models introduced by John Tully [J. Chem. Phys. 93, 1061 (1990)], and get very good agreement with converged quantum-mechanical calculations. Specifically, we show that decoherence (spatial separation of wavepackets on different surfaces) is already contained in the equations of motion and does not require ad hoc augmentation.

  12. Potential-Energy Surfaces, the Born-Oppenheimer Approximations, and the Franck-Condon Principle: Back to the Roots.

    PubMed

    Mustroph, Heinz

    2016-09-01

    The concept of a potential-energy surface (PES) is central to our understanding of spectroscopy, photochemistry, and chemical kinetics. However, the terminology used in connection with the basic approximations is variously, and somewhat confusingly, represented with such phrases as "adiabatic", "Born-Oppenheimer", or "Born-Oppenheimer adiabatic" approximation. Concerning the closely relevant and important Franck-Condon principle (FCP), the IUPAC definition differentiates between a classical and quantum mechanical formulation. Consequently, in many publications we find terms such as "Franck-Condon (excited) state", or a vertical transition to the "Franck-Condon point" with the "Franck-Condon geometry" that relaxes to the excited-state equilibrium geometry. The Born-Oppenheimer approximation and the "classical" model of the Franck-Condon principle are typical examples of misused terms and lax interpretations of the original theories. In this essay, we revisit the original publications of pioneers of the PES concept and the FCP to help stimulate a lively discussion and clearer thinking around these important concepts.

  13. Adiabatic computation: A toy model

    NASA Astrophysics Data System (ADS)

    Ribeiro, Pedro; Mosseri, Rémy

    2006-10-01

    We discuss a toy model for adiabatic quantum computation which displays some phenomenological properties expected in more realistic implementations. This model has two free parameters: the adiabatic evolution parameter s and the α parameter, which emulates many-variable constraints in the classical computational problem. The proposed model presents, in the s-α plane, a line of first-order quantum phase transition that ends at a second-order point. The relation between computation complexity and the occurrence of quantum phase transitions is discussed. We analyze the behavior of the ground and first excited states near the quantum phase transition, the gap, and the entanglement content of the ground state.

  14. Adiabatic computation: A toy model

    SciTech Connect

    Ribeiro, Pedro; Mosseri, Remy

    2006-10-15

    We discuss a toy model for adiabatic quantum computation which displays some phenomenological properties expected in more realistic implementations. This model has two free parameters: the adiabatic evolution parameter s and the {alpha} parameter, which emulates many-variable constraints in the classical computational problem. The proposed model presents, in the s-{alpha} plane, a line of first-order quantum phase transition that ends at a second-order point. The relation between computation complexity and the occurrence of quantum phase transitions is discussed. We analyze the behavior of the ground and first excited states near the quantum phase transition, the gap, and the entanglement content of the ground state.

  15. Adiabatic evolution of plasma equilibrium

    PubMed Central

    Grad, H.; Hu, P. N.; Stevens, D. C.

    1975-01-01

    A new theory of plasma equilibrium is introduced in which adiabatic constraints are specified. This leads to a mathematically nonstandard structure, as compared to the usual equilibrium theory, in which prescription of pressure and current profiles leads to an elliptic partial differential equation. Topologically complex configurations require further generalization of the concept of adiabaticity to allow irreversible mixing of plasma and magnetic flux among islands. Matching conditions across a boundary layer at the separatrix are obtained from appropriate conservation laws. Applications are made to configurations with planned islands (as in Doublet) and accidental islands (as in Tokamaks). Two-dimensional, axially symmetric, helically symmetric, and closed line equilibria are included. PMID:16578729

  16. Strongly Emitting Surfaces Unable to Float below Plasma Potential

    DOE PAGES

    Campanell, M. D.; Umansky, M. V.

    2016-02-25

    One important unresolved question in plasma physics concerns the effect of strong electron emission on plasma-surface interactions. Previous papers reported solutions with negative and positive floating potentials relative to the plasma edge. For these two models a very different predictions for particle and energy balance is given. Here we show that the positive potential state is the only possible equilibrium in general. Even if a negative floating potential existed at t=0, the ionization collisions near the surface will force a transition to the positive floating potential state. Moreover, this transition is demonstrated with a new simulation code.

  17. Shortcuts to adiabaticity in a time-dependent box

    PubMed Central

    Campo, A. del; Boshier, M. G.

    2012-01-01

    A method is proposed to drive an ultrafast non-adiabatic dynamics of an ultracold gas trapped in a time-dependent box potential. The resulting state is free from spurious excitations associated with the breakdown of adiabaticity, and preserves the quantum correlations of the initial state up to a scaling factor. The process relies on the existence of an adiabatic invariant and the inversion of the dynamical self-similar scaling law dictated by it. Its physical implementation generally requires the use of an auxiliary expulsive potential. The method is extended to a broad family of interacting many-body systems. As illustrative examples we consider the ultrafast expansion of a Tonks-Girardeau gas and of Bose-Einstein condensates in different dimensions, where the method exhibits an excellent robustness against different regimes of interactions and the features of an experimentally realizable box potential. PMID:22970340

  18. Shortcuts to adiabaticity in a time-dependent box.

    PubMed

    del Campo, A; Boshier, M G

    2012-01-01

    A method is proposed to drive an ultrafast non-adiabatic dynamics of an ultracold gas trapped in a time-dependent box potential. The resulting state is free from spurious excitations associated with the breakdown of adiabaticity, and preserves the quantum correlations of the initial state up to a scaling factor. The process relies on the existence of an adiabatic invariant and the inversion of the dynamical self-similar scaling law dictated by it. Its physical implementation generally requires the use of an auxiliary expulsive potential. The method is extended to a broad family of interacting many-body systems. As illustrative examples we consider the ultrafast expansion of a Tonks-Girardeau gas and of Bose-Einstein condensates in different dimensions, where the method exhibits an excellent robustness against different regimes of interactions and the features of an experimentally realizable box potential.

  19. Shortcuts to adiabaticity in a time-dependent box

    NASA Astrophysics Data System (ADS)

    Del Campo, A.; Boshier, M. G.

    2012-09-01

    A method is proposed to drive an ultrafast non-adiabatic dynamics of an ultracold gas trapped in a time-dependent box potential. The resulting state is free from spurious excitations associated with the breakdown of adiabaticity, and preserves the quantum correlations of the initial state up to a scaling factor. The process relies on the existence of an adiabatic invariant and the inversion of the dynamical self-similar scaling law dictated by it. Its physical implementation generally requires the use of an auxiliary expulsive potential. The method is extended to a broad family of interacting many-body systems. As illustrative examples we consider the ultrafast expansion of a Tonks-Girardeau gas and of Bose-Einstein condensates in different dimensions, where the method exhibits an excellent robustness against different regimes of interactions and the features of an experimentally realizable box potential.

  20. Local entanglement generation in the adiabatic regime

    SciTech Connect

    Cliche, M.; Veitia, Andrzej

    2010-09-15

    We study entanglement generation in a pair of qubits interacting with an initially correlated system. Using time-independent perturbation theory and the adiabatic theorem, we show conditions under which the qubits become entangled as the joint system evolves into the ground state of the interacting theory. We then apply these results to the case of qubits interacting with a scalar quantum field. We study three different variations of this setup; a quantum field subject to Dirichlet boundary conditions, a quantum field interacting with a classical potential, and a quantum field that starts in a thermal state.

  1. Interaction potential between a helium atom and metal surfaces

    NASA Technical Reports Server (NTRS)

    Takada, Y.; Kohn, W.

    1985-01-01

    By employing an S-matrix theory for evanescent waves, the repulsive potential between a helium atom and corrugated metal surfaces has been calculated. P-wave interactions and intra-atomic correlation effects were found to be very important. The corrugation part of the interaction potential is much weaker than predicted by the effective-medium theory. Application to Cu, Ni, and Ag (110) surfaces gives good agreement with experiment without any adjustable parameters.

  2. Surface properties of a single perfluoroalkyl group on water surfaces studied by surface potential measurements.

    PubMed

    Shimoaka, Takafumi; Tanaka, Yuki; Shioya, Nobutaka; Morita, Kohei; Sonoyama, Masashi; Amii, Hideki; Takagi, Toshiyuki; Kanamori, Toshiyuki; Hasegawa, Takeshi

    2016-12-01

    A discriminative study of a single perfluoroalkyl (Rf) group from a bulk material is recently recognized to be necessary toward the total understanding of Rf compounds based on a primary chemical structure. The single molecule and the bulk matter have an interrelationship via an intrinsic two-dimensional (2D) aggregation property of an Rf group, which is theorized by the stratified dipole-arrays (SDA) theory. Since an Rf group has dipole moments along many C-F bonds, a single Rf group would possess a hydrophilic-like character on the surface. To reveal the hydration character of a single Rf group, in the present study, surface potential (ΔV) measurements are performed for Langmuir monolayers of Rf-containing compounds. From a comparative study with a monolayer of a normal hydrocarbon compound, the hydration/dehydration dynamics of a lying Rf group on water has first been monitored by ΔV measurements, through which a single Rf group has been revealed to have a unique "dipole-interactive" character, which enables the Rf group interacted with the water 'surface.' In addition, the SDA theory proves to be useful to predict the 2D aggregation property across the phase transition temperature of 19°C by use of the ΔV measurements.

  3. Surface properties of a single perfluoroalkyl group on water surfaces studied by surface potential measurements.

    PubMed

    Shimoaka, Takafumi; Tanaka, Yuki; Shioya, Nobutaka; Morita, Kohei; Sonoyama, Masashi; Amii, Hideki; Takagi, Toshiyuki; Kanamori, Toshiyuki; Hasegawa, Takeshi

    2016-12-01

    A discriminative study of a single perfluoroalkyl (Rf) group from a bulk material is recently recognized to be necessary toward the total understanding of Rf compounds based on a primary chemical structure. The single molecule and the bulk matter have an interrelationship via an intrinsic two-dimensional (2D) aggregation property of an Rf group, which is theorized by the stratified dipole-arrays (SDA) theory. Since an Rf group has dipole moments along many C-F bonds, a single Rf group would possess a hydrophilic-like character on the surface. To reveal the hydration character of a single Rf group, in the present study, surface potential (ΔV) measurements are performed for Langmuir monolayers of Rf-containing compounds. From a comparative study with a monolayer of a normal hydrocarbon compound, the hydration/dehydration dynamics of a lying Rf group on water has first been monitored by ΔV measurements, through which a single Rf group has been revealed to have a unique "dipole-interactive" character, which enables the Rf group interacted with the water 'surface.' In addition, the SDA theory proves to be useful to predict the 2D aggregation property across the phase transition temperature of 19°C by use of the ΔV measurements. PMID:27569518

  4. Pressure Oscillations in Adiabatic Compression

    ERIC Educational Resources Information Center

    Stout, Roland

    2011-01-01

    After finding Moloney and McGarvey's modified adiabatic compression apparatus, I decided to insert this experiment into my physical chemistry laboratory at the last minute, replacing a problematic experiment. With insufficient time to build the apparatus, we placed a bottle between two thick textbooks and compressed it with a third textbook forced…

  5. Transitionless driving on adiabatic search algorithm

    SciTech Connect

    Oh, Sangchul; Kais, Sabre

    2014-12-14

    We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.

  6. Studies in Chaotic adiabatic dynamics

    SciTech Connect

    Jarzynski, C.

    1994-01-01

    Chaotic adiabatic dynamics refers to the study of systems exhibiting chaotic evolution under slowly time-dependent equations of motion. In this dissertation the author restricts his attention to Hamiltonian chaotic adiabatic systems. The results presented are organized around a central theme, namely, that the energies of such systems evolve diffusively. He begins with a general analysis, in which he motivates and derives a Fokker-Planck equation governing this process of energy diffusion. He applies this equation to study the {open_quotes}goodness{close_quotes} of an adiabatic invariant associated with chaotic motion. This formalism is then applied to two specific examples. The first is that of a gas of noninteracting point particles inside a hard container that deforms slowly with time. Both the two- and three-dimensional cases are considered. The results are discussed in the context of the Wall Formula for one-body dissipation in nuclear physics, and it is shown that such a gas approaches, asymptotically with time, an exponential velocity distribution. The second example involves the Fermi mechanism for the acceleration of cosmic rays. Explicit evolution equations are obtained for the distribution of cosmic ray energies within this model, and the steady-state energy distribution that arises when this equation is modified to account for the injection and removal of cosmic rays is discussed. Finally, the author re-examines the multiple-time-scale approach as applied to the study of phase space evolution under a chaotic adiabatic Hamiltonian. This leads to a more rigorous derivation of the above-mentioned Fokker-Planck equation, and also to a new term which has relevance to the problem of chaotic adiabatic reaction forces (the forces acting on slow, heavy degrees of freedom due to their coupling to light, fast chaotic degrees).

  7. Surface tension, surface energy, and chemical potential due to their difference.

    PubMed

    Hui, C-Y; Jagota, A

    2013-09-10

    It is well-known that surface tension and surface energy are distinct quantities for solids. Each can be regarded as a thermodynamic property related first by Shuttleworth. Mullins and others have suggested that the difference between surface tension and surface energy cannot be sustained and that the two will approach each other over time. In this work we show that in a single-component system where changes in elastic energy can be neglected, the chemical potential difference between the surface and bulk is proportional to the difference between surface tension and surface energy. By further assuming that mass transfer is driven by this chemical potential difference, we establish a model for the kinetics by which mass transfer removes the difference between surface tension and surface energy.

  8. Ab initio Potential Energy Surface for H-H2

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- (mu)E(sub h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(sub 0) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  9. Geometric and potential driving formation and evolution of biomolecular surfaces.

    PubMed

    Bates, P W; Chen, Zhan; Sun, Yuhui; Wei, Guo-Wei; Zhao, Shan

    2009-08-01

    This paper presents new geometrical flow equations for the theoretical modeling of biomolecular surfaces in the context of multiscale implicit solvent models. To account for the local variations near the biomolecular surfaces due to interactions between solvent molecules, and between solvent and solute molecules, we propose potential driven geometric flows, which balance the intrinsic geometric forces that would occur for a surface separating two homogeneous materials with the potential forces induced by the atomic interactions. Stochastic geometric flows are introduced to account for the random fluctuation and dissipation in density and pressure near the solvent-solute interface. Physical properties, such as free energy minimization (area decreasing) and incompressibility (volume preserving), are realized by some of our geometric flow equations. The proposed approach for geometric and potential forces driving the formation and evolution of biological surfaces is illustrated by extensive numerical experiments and compared with established minimal molecular surfaces and molecular surfaces. Local modification of biomolecular surfaces is demonstrated with potential driven geometric flows. High order geometric flows are also considered and tested in the present work for surface generation. Biomolecular surfaces generated by these approaches are typically free of geometric singularities. As the speed of surface generation is crucial to implicit solvent model based molecular dynamics, four numerical algorithms, a semi-implicit scheme, a Crank-Nicolson scheme, and two alternating direction implicit (ADI) schemes, are constructed and tested. Being either stable or conditionally stable but admitting a large critical time step size, these schemes overcome the stability constraint of the earlier forward Euler scheme. Aided with the Thomas algorithm, one of the ADI schemes is found to be very efficient as it balances the speed and accuracy.

  10. A new ab initio potential energy surface for the collisional excitation of N{sub 2}H{sup +} by H{sub 2}

    SciTech Connect

    Spielfiedel, Annie; Balança, Christian; Feautrier, Nicole; Senent, Maria Luisa; Kalugina, Yulia; Scribano, Yohann; Lique, François

    2015-07-14

    We compute a new potential energy surface (PES) for the study of the inelastic collisions between N{sub 2}H{sup +} and H{sub 2} molecules. A preliminary study of the reactivity of N{sub 2}H{sup +} with H{sub 2} shows that neglecting reactive channels in collisional excitation studies is certainly valid at low temperatures. The four dimensional (4D) N{sub 2}H{sup +}–H{sub 2} PES is obtained from electronic structure calculations using the coupled cluster with single, double, and perturbative triple excitation level of theory. The atoms are described by the augmented correlation consistent triple zeta basis set. Both molecules were treated as rigid rotors. The potential energy surface exhibits a well depth of ≃2530 cm{sup −1}. Considering this very deep well, it appears that converged scattering calculations that take into account the rotational structure of both N{sub 2}H{sup +} and H{sub 2} should be very difficult to carry out. To overcome this difficulty, the “adiabatic-hindered-rotor” treatment, which allows para-H{sub 2}(j = 0) to be treated as if it were spherical, was used in order to reduce the scattering calculations to a 2D problem. The validity of this approach is checked and we find that cross sections and rate coefficients computed from the adiabatic reduced surface are in very good agreement with the full 4D calculations.

  11. The exact forces on classical nuclei in non-adiabatic charge transfer.

    PubMed

    Agostini, Federica; Abedi, Ali; Suzuki, Yasumitsu; Min, Seung Kyu; Maitra, Neepa T; Gross, E K U

    2015-02-28

    The decomposition of electronic and nuclear motion presented in Abedi et al. [Phys. Rev. Lett. 105, 123002 (2010)] yields a time-dependent potential that drives the nuclear motion and fully accounts for the coupling to the electronic subsystem. Here, we show that propagation of an ensemble of independent classical nuclear trajectories on this exact potential yields dynamics that are essentially indistinguishable from the exact quantum dynamics for a model non-adiabatic charge transfer problem. We point out the importance of step and bump features in the exact potential that are critical in obtaining the correct splitting of the quasiclassical nuclear wave packet in space after it passes through an avoided crossing between two Born-Oppenheimer surfaces and analyze their structure. Finally, an analysis of the exact potentials in the context of trajectory surface hopping is presented, including preliminary investigations of velocity-adjustment and the force-induced decoherence effect.

  12. The exact forces on classical nuclei in non-adiabatic charge transfer.

    PubMed

    Agostini, Federica; Abedi, Ali; Suzuki, Yasumitsu; Min, Seung Kyu; Maitra, Neepa T; Gross, E K U

    2015-02-28

    The decomposition of electronic and nuclear motion presented in Abedi et al. [Phys. Rev. Lett. 105, 123002 (2010)] yields a time-dependent potential that drives the nuclear motion and fully accounts for the coupling to the electronic subsystem. Here, we show that propagation of an ensemble of independent classical nuclear trajectories on this exact potential yields dynamics that are essentially indistinguishable from the exact quantum dynamics for a model non-adiabatic charge transfer problem. We point out the importance of step and bump features in the exact potential that are critical in obtaining the correct splitting of the quasiclassical nuclear wave packet in space after it passes through an avoided crossing between two Born-Oppenheimer surfaces and analyze their structure. Finally, an analysis of the exact potentials in the context of trajectory surface hopping is presented, including preliminary investigations of velocity-adjustment and the force-induced decoherence effect. PMID:25725727

  13. The exact forces on classical nuclei in non-adiabatic charge transfer

    SciTech Connect

    Agostini, Federica; Abedi, Ali; Suzuki, Yasumitsu; Min, Seung Kyu; Gross, E. K. U.; Maitra, Neepa T.

    2015-02-28

    The decomposition of electronic and nuclear motion presented in Abedi et al. [Phys. Rev. Lett. 105, 123002 (2010)] yields a time-dependent potential that drives the nuclear motion and fully accounts for the coupling to the electronic subsystem. Here, we show that propagation of an ensemble of independent classical nuclear trajectories on this exact potential yields dynamics that are essentially indistinguishable from the exact quantum dynamics for a model non-adiabatic charge transfer problem. We point out the importance of step and bump features in the exact potential that are critical in obtaining the correct splitting of the quasiclassical nuclear wave packet in space after it passes through an avoided crossing between two Born-Oppenheimer surfaces and analyze their structure. Finally, an analysis of the exact potentials in the context of trajectory surface hopping is presented, including preliminary investigations of velocity-adjustment and the force-induced decoherence effect.

  14. Potential energy surfaces and reaction dynamics of polyatomic molecules

    SciTech Connect

    Chang, Yan-Tyng.

    1991-11-01

    A simple empirical valence bond (EVB) model approach is suggested for constructing global potential energy surfaces for reactions of polyatomic molecular systems. This approach produces smooth and continuous potential surfaces which can be directly utilized in a dynamical study. Two types of reactions are of special interest, the unimolecular dissociation and the unimolecular isomerization. For the first type, the molecular dissociation dynamics of formaldehyde on the ground electronic surface is investigated through classical trajectory calculations on EVB surfaces. The product state distributions and vector correlations obtained from this study suggest very similar behaviors seen in the experiments. The intramolecular hydrogen atom transfer in the formic acid dimer is an example of the isomerization reaction. High level ab initio quantum chemistry calculations are performed to obtain optimized equilibrium and transition state dimer geometries and also the harmonic frequencies.

  15. Influence of surface potential on the adhesive force of radioactive gold surfaces.

    PubMed

    Kweon, Hyojin; Yiacoumi, Sotira; Lee, Ida; McFarlane, Joanna; Tsouris, Costas

    2013-09-24

    Radioactive particles may acquire surface potential through self-charging, and thus can behave differently from natural aerosols in atmospheric systems with respect to aggregation, deposition, resuspension, and transport to areas surrounding a radioactive source. This work focuses on the adhesive force between radioactive particles and metallic surfaces, which relates to the deposition and resuspension of particles on surrounding surfaces. Scanning surface potential microscopy was employed to measure the surface potential of radioactive gold foil. Atomic force microscopy was used to investigate the adhesive force for gold that acquired surface charge either by irradiation or by application of an equivalent electrical bias. Overall, the adhesive force increases with increasing surface potential or relative humidity. However, a behavior that does not follow the general trend was observed for the irradiated gold at a high decay rate. A comparison between experimental measurements and calculated values revealed that the surface potential promotes adhesion. The contribution of the electrostatic force at high levels of relative humidity was lower than the one found using theoretical calculations due to the effects caused by enhanced adsorption rate of water molecules under a high surface charge density. The results of this study can be used to provide a better understanding of the behavior of radioactive particles in atmospheric systems.

  16. Zero-point energy, tunneling, and vibrational adiabaticity in the Mu + H2 reaction

    SciTech Connect

    Mielke, Steven L.; Garrett, Bruce C.; Fleming, Donald G.; Truhlar, Donald G.

    2015-01-09

    Abstract: Isotopic substitution of muonium for hydrogen provides an unparalleled opportunity to deepen our understanding of quantum mass effects on chemical reactions. A recent topical review [Aldegunde et al., Mol. Phys. 111, 3169 (2013)] of the thermal and vibrationally-stateselected reaction of Mu with H2 raises a number of issues that are addressed here. We show that some earlier quantum mechanical calculations of the Mu + H2 reaction, which are highlighted in this review and which have been used to benchmark approximate methods, are in error by as much as 19% in the low-temperature limit. We demonstrate that an approximate treatment of the Born–Oppenheimer diagonal correction that was used in some recent studies is not valid for treating the vibrationally-state-selected reaction. We also discuss why vibrationally adiabatic potentials that neglect bend zero-point energy are not a useful analytical tool for understanding reaction rates and why vibrationally nonadiabatic transitions cannot be understood by considering tunneling through vibrationally adiabatic potentials. Finally, we present calculations on a hierarchical family of potential energy surfaces to assess the sensitivity of rate constants to the quality of the potential surface.

  17. An adaptive interpolation scheme for molecular potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Kowalewski, Markus; Larsson, Elisabeth; Heryudono, Alfa

    2016-08-01

    The calculation of potential energy surfaces for quantum dynamics can be a time consuming task—especially when a high level of theory for the electronic structure calculation is required. We propose an adaptive interpolation algorithm based on polyharmonic splines combined with a partition of unity approach. The adaptive node refinement allows to greatly reduce the number of sample points by employing a local error estimate. The algorithm and its scaling behavior are evaluated for a model function in 2, 3, and 4 dimensions. The developed algorithm allows for a more rapid and reliable interpolation of a potential energy surface within a given accuracy compared to the non-adaptive version.

  18. An adaptive interpolation scheme for molecular potential energy surfaces.

    PubMed

    Kowalewski, Markus; Larsson, Elisabeth; Heryudono, Alfa

    2016-08-28

    The calculation of potential energy surfaces for quantum dynamics can be a time consuming task-especially when a high level of theory for the electronic structure calculation is required. We propose an adaptive interpolation algorithm based on polyharmonic splines combined with a partition of unity approach. The adaptive node refinement allows to greatly reduce the number of sample points by employing a local error estimate. The algorithm and its scaling behavior are evaluated for a model function in 2, 3, and 4 dimensions. The developed algorithm allows for a more rapid and reliable interpolation of a potential energy surface within a given accuracy compared to the non-adaptive version. PMID:27586901

  19. An adaptive interpolation scheme for molecular potential energy surfaces.

    PubMed

    Kowalewski, Markus; Larsson, Elisabeth; Heryudono, Alfa

    2016-08-28

    The calculation of potential energy surfaces for quantum dynamics can be a time consuming task-especially when a high level of theory for the electronic structure calculation is required. We propose an adaptive interpolation algorithm based on polyharmonic splines combined with a partition of unity approach. The adaptive node refinement allows to greatly reduce the number of sample points by employing a local error estimate. The algorithm and its scaling behavior are evaluated for a model function in 2, 3, and 4 dimensions. The developed algorithm allows for a more rapid and reliable interpolation of a potential energy surface within a given accuracy compared to the non-adaptive version.

  20. Spatial adiabatic passage: a review of recent progress

    NASA Astrophysics Data System (ADS)

    Menchon-Enrich, R.; Benseny, A.; Ahufinger, V.; Greentree, A. D.; Busch, Th; Mompart, J.

    2016-07-01

    Adiabatic techniques are known to allow for engineering quantum states with high fidelity. This requirement is currently of large interest, as applications in quantum information require the preparation and manipulation of quantum states with minimal errors. Here we review recent progress on developing techniques for the preparation of spatial states through adiabatic passage, particularly focusing on three state systems. These techniques can be applied to matter waves in external potentials, such as cold atoms or electrons, and to classical waves in waveguides, such as light or sound.

  1. Spatial adiabatic passage: a review of recent progress.

    PubMed

    Menchon-Enrich, R; Benseny, A; Ahufinger, V; Greentree, A D; Busch, Th; Mompart, J

    2016-07-01

    Adiabatic techniques are known to allow for engineering quantum states with high fidelity. This requirement is currently of large interest, as applications in quantum information require the preparation and manipulation of quantum states with minimal errors. Here we review recent progress on developing techniques for the preparation of spatial states through adiabatic passage, particularly focusing on three state systems. These techniques can be applied to matter waves in external potentials, such as cold atoms or electrons, and to classical waves in waveguides, such as light or sound. PMID:27245462

  2. Ab Initio Potential Energy Surface for H-H2

    NASA Technical Reports Server (NTRS)

    Patridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- 3 micro E(h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces (25-70 kcal/mol above the H-H2 asymptote) at small interatomic separations; the Boothroyd, Keogh, Martin, and Peterson (BKMP) potential energy surface is found to agree with results of the present calculations within the expected uncertainty (+/- 1 kcal/mol) of the fit. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(0)) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  3. Lunar Surface Potential Increases during Terrestrial Bow Shock Traversals

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Stubbs, Timothy J.; Hills, H. Kent; Halekas, Jasper; Farrell, William M.; Delory, Greg T.; Espley, Jared; Freeman, John W.; Vondrak, Richard R.; Kasper, Justin

    2009-01-01

    Since the Apollo era the electric potential of the Moon has been a subject of interest and debate. Deployed by three Apollo missions, Apollo 12, Apollo 14 and Apollo 15, the Suprathermal Ion Detector Experiment (SIDE) determined the sunlit lunar surface potential to be about +10 Volts using the energy spectra of lunar ionospheric thermal ions accelerated toward the Moon. We present an analysis of Apollo 14 SIDE "resonance" events that indicate the lunar surface potential increases when the Moon traverses the dawn bow shock. By analyzing Wind spacecraft crossings of the terrestrial bow shock at approximately this location and employing current balancing models of the lunar surface, we suggest causes for the increasing potential. Determining the origin of this phenomenon will improve our ability to predict the lunar surface potential in support of human exploration as well as provide models for the behavior of other airless bodies when they traverse similar features such as interplanetary shocks, both of which are goals of the NASA Lunar Science Institute's Dynamic Response of the Environment At the Moon (DREAM) team.

  4. Locating potential biosignatures on Europa from surface geology observations.

    PubMed

    Figueredo, Patricio H; Greeley, Ronald; Neuer, Susanne; Irwin, Louis; Schulze-Makuch, Dirk

    2003-01-01

    We evaluated the astrobiological potential of the major classes of geologic units on Europa with respect to possible biosignatures preservation on the basis of surface geology observations. These observations are independent of any formational model and therefore provide an objective, though preliminary, evaluation. The assessment criteria include high mobility of material, surface concentration of non-ice components, relative youth, textural roughness, and environmental stability. Our review determined that, as feature classes, low-albedo smooth plains, smooth bands, and chaos hold the highest potential, primarily because of their relative young age, the emplacement of low-viscosity material, and indications of material exchange with the subsurface. Some lineaments and impact craters may be promising sites for closer study despite the comparatively lower astrobiological potential of their classes. This assessment will be expanded by multidisciplinary examination of the potential for habitability of specific features.

  5. Surface potential of the water liquid-vapor interface

    NASA Technical Reports Server (NTRS)

    Wilson, Michael A.; Pohorille, Andrew; Pratt, Lawrence R.

    1988-01-01

    An analysis of an extended molecular dynamics calculation of the surface potential (SP) of the water liquid-vapor interface is presented. The SP predicted by the TIP4P model is -(130 + or - 50) mV. This value is of reasonable magnitude but of opposite sign to the expectations based on laboratory experiments. The electrostatic potential shows a nonmonotonic variation with depth into the liquid.

  6. Invalidity of the quantitative adiabatic condition and general conditions for adiabatic approximations

    NASA Astrophysics Data System (ADS)

    Li, Dafa

    2016-05-01

    The adiabatic theorem was proposed about 90 years ago and has played an important role in quantum physics. The quantitative adiabatic condition constructed from eigenstates and eigenvalues of a Hamiltonian is a traditional tool to estimate adiabaticity and has proven to be the necessary and sufficient condition for adiabaticity. However, recently the condition has become a controversial subject. In this paper, we list some expressions to estimate the validity of the adiabatic approximation. We show that the quantitative adiabatic condition is invalid for the adiabatic approximation via the Euclidean distance between the adiabatic state and the evolution state. Furthermore, we deduce general necessary and sufficient conditions for the validity of the adiabatic approximation by different definitions.

  7. Effect of the Heat Pipe Adiabatic Region.

    PubMed

    Brahim, Taoufik; Jemni, Abdelmajid

    2014-04-01

    The main motivation of conducting this work is to present a rigorous analysis and investigation of the potential effect of the heat pipe adiabatic region on the flow and heat transfer performance of a heat pipe under varying evaporator and condenser conditions. A two-dimensional steady-state model for a cylindrical heat pipe coupling, for both regions, is presented, where the flow of the fluid in the porous structure is described by Darcy-Brinkman-Forchheimer model which accounts for the boundary and inertial effects. The model is solved numerically by using the finite volumes method, and a fortran code was developed to solve the system of equations obtained. The results show that a phase change can occur in the adiabatic region due to temperature gradient created in the porous structure as the heat input increases and the heat pipe boundary conditions change. A recirculation zone may be created at the condenser end section. The effect of the heat transfer rate on the vapor radial velocities and the performance of the heat pipe are discussed. PMID:24895467

  8. Potential Energy Surface Database of Group II Dimer

    National Institute of Standards and Technology Data Gateway

    SRD 143 NIST Potential Energy Surface Database of Group II Dimer (Web, free access)   This database provides critical atomic and molecular data needed in order to evaluate the feasibility of using laser cooled and trapped Group II atomic species (Mg, Ca, Sr, and Ba) for ultra-precise optical clocks or quantum information processing devices.

  9. An Exercise in Evaluating the Contamination Potential of Surface Impoundments.

    ERIC Educational Resources Information Center

    Tinker, John R., Jr.

    1982-01-01

    Outlines a laboratory procedure which enables students to evaluate the contamination potential of surface impoundments and apply basic principles of hydrogeology to the land disposal of waste material. Includes a list of materials needed and directions for the instructor. (Author/DC)

  10. Communication: Separable potential energy surfaces from multiplicative artificial neural networks

    SciTech Connect

    Koch, Werner Zhang, Dong H.

    2014-07-14

    We present a potential energy surface fitting scheme based on multiplicative artificial neural networks. It has the sum of products form required for efficient computation of the dynamics of multidimensional quantum systems with the multi configuration time dependent Hartree method. Moreover, it results in analytic potential energy matrix elements when combined with quantum dynamics methods using Gaussian basis functions, eliminating the need for a local harmonic approximation. Scaling behavior with respect to the complexity of the potential as well as the requested accuracy is discussed.

  11. Semi-infinite jellium: Thermodynamic potential, chemical potential, and surface energy

    NASA Astrophysics Data System (ADS)

    Kostrobij, P. P.; Markovych, B. M.

    2015-08-01

    A general expression for the thermodynamic potential of the model of semi-infinite jellium is obtained. By using this expression, the surface energy for the infinite barrier model is calculated. The behavior of the surface energy and of the chemical potential as functions of the Wigner-Seitz radius and the influence of the Coulomb interaction between electrons on the calculated values is studied. It is shown that taking into account the Coulomb interaction between electrons leads to growth of the surface energy. The surface energy is positive in the entire area of the Wigner-Seitz radius. It is shown that taking into account the Coulomb interaction between electrons leads to a decrease of the chemical potential.

  12. Communication: Fitting potential energy surfaces with fundamental invariant neural network

    NASA Astrophysics Data System (ADS)

    Shao, Kejie; Chen, Jun; Zhao, Zhiqiang; Zhang, Dong H.

    2016-08-01

    A more flexible neural network (NN) method using the fundamental invariants (FIs) as the input vector is proposed in the construction of potential energy surfaces for molecular systems involving identical atoms. Mathematically, FIs finitely generate the permutation invariant polynomial (PIP) ring. In combination with NN, fundamental invariant neural network (FI-NN) can approximate any function to arbitrary accuracy. Because FI-NN minimizes the size of input permutation invariant polynomials, it can efficiently reduce the evaluation time of potential energy, in particular for polyatomic systems. In this work, we provide the FIs for all possible molecular systems up to five atoms. Potential energy surfaces for OH3 and CH4 were constructed with FI-NN, with the accuracy confirmed by full-dimensional quantum dynamic scattering and bound state calculations.

  13. Communication: Fitting potential energy surfaces with fundamental invariant neural network.

    PubMed

    Shao, Kejie; Chen, Jun; Zhao, Zhiqiang; Zhang, Dong H

    2016-08-21

    A more flexible neural network (NN) method using the fundamental invariants (FIs) as the input vector is proposed in the construction of potential energy surfaces for molecular systems involving identical atoms. Mathematically, FIs finitely generate the permutation invariant polynomial (PIP) ring. In combination with NN, fundamental invariant neural network (FI-NN) can approximate any function to arbitrary accuracy. Because FI-NN minimizes the size of input permutation invariant polynomials, it can efficiently reduce the evaluation time of potential energy, in particular for polyatomic systems. In this work, we provide the FIs for all possible molecular systems up to five atoms. Potential energy surfaces for OH3 and CH4 were constructed with FI-NN, with the accuracy confirmed by full-dimensional quantum dynamic scattering and bound state calculations.

  14. Apatite nucleation on silica surface: a zeta potential approach.

    PubMed

    Coreño, J; Martínez, A; Bolarín, A; Sánchez, F

    2001-10-01

    Zeta potential measurements on pure silica, prepared by the sol-gel method from tetraethoxysilane under acidic conditions, are reported in different suspensions. Water suspensions and suspensions containing calcium or phosphate ions with and without NaCl were tested. zeta potential measurements were carried out as a function of the pH and ion concentration. Also, calcium and phosphate adsorption on silica was determined experimentally. The results of zeta potential and adsorption measurements suggest that both calcium and phosphate ions can be adsorbed on the silica surface; however, calcium adsorption is stronger than phosphate adsorption. When calcium and sodium ions are present in the suspension, calcium adsorption decreases. It seems that certain sites on the silica surface are specific for calcium adsorption.

  15. Communication: Fitting potential energy surfaces with fundamental invariant neural network.

    PubMed

    Shao, Kejie; Chen, Jun; Zhao, Zhiqiang; Zhang, Dong H

    2016-08-21

    A more flexible neural network (NN) method using the fundamental invariants (FIs) as the input vector is proposed in the construction of potential energy surfaces for molecular systems involving identical atoms. Mathematically, FIs finitely generate the permutation invariant polynomial (PIP) ring. In combination with NN, fundamental invariant neural network (FI-NN) can approximate any function to arbitrary accuracy. Because FI-NN minimizes the size of input permutation invariant polynomials, it can efficiently reduce the evaluation time of potential energy, in particular for polyatomic systems. In this work, we provide the FIs for all possible molecular systems up to five atoms. Potential energy surfaces for OH3 and CH4 were constructed with FI-NN, with the accuracy confirmed by full-dimensional quantum dynamic scattering and bound state calculations. PMID:27544080

  16. Theoretical characterization of the potential energy surface for NH + NO

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1992-01-01

    The potential energy surface (PES) for NH + NO was characterized using complete active space self-consistent field (CASSCF) gradient calculations to determine the stationary point geometries and frequencies followed by CASSCF/internally contracted configuration interaction (CCI) calculations to refine the energetics. The present results are in qualitative accord with the BAC-MP4 calculations, but there are differences as large as 8 kcal/mol in the detailed energetics. Addition of NH to NO on a (2)A' surface, which correlated with N2 + OH or H + N2O products, involves barriers of 3.2 kcal/mol (trans) and 6.3 kcal/mol (cis). Experimental evidence for these barriers is found in earlier works. The (2)A' surface has no barrier to addition, but does not correlate with products. Surface crossings between the barrierless (2)A' surface and the (2)A' surface may be important. Production of N2 + OH products is predicted to occur via a planar saddle point of (2)A' symmetry. This is in accord with the preferential formation of II(A') lambda doublet levels of OH in earlier experiments. Addition of NH (1)delta to NO is found to occur on an excited state surface and is predicted to lead to N2O product as observed in earlier works.

  17. An accurate full-dimensional potential energy surface for H-Au(111): Importance of nonadiabatic electronic excitation in energy transfer and adsorption.

    PubMed

    Janke, Svenja M; Auerbach, Daniel J; Wodtke, Alec M; Kandratsenka, Alexander

    2015-09-28

    We have constructed a potential energy surface (PES) for H-atoms interacting with fcc Au(111) based on fitting the analytic form of the energy from Effective Medium Theory (EMT) to ab initio energy values calculated with density functional theory. The fit used input from configurations of the H-Au system with Au atoms at their lattice positions as well as configurations with the Au atoms displaced from their lattice positions. It reproduces the energy, in full dimension, not only for the configurations used as input but also for a large number of additional configurations derived from ab initio molecular dynamics (AIMD) trajectories at finite temperature. Adiabatic molecular dynamics simulations on this PES reproduce the energy loss behavior of AIMD. EMT also provides expressions for the embedding electron density, which enabled us to develop a self-consistent approach to simulate nonadiabatic electron-hole pair excitation and their effect on the motion of the incident H-atoms. For H atoms with an energy of 2.7 eV colliding with Au, electron-hole pair excitation is by far the most important energy loss pathway, giving an average energy loss ≈3 times that of the adiabatic case. This increased energy loss enhances the probability of the H-atom remaining on or in the Au slab by a factor of 2. The most likely outcome for H-atoms that are not scattered also depends prodigiously on the energy transfer mechanism; for the nonadiabatic case, more than 50% of the H-atoms which do not scatter are adsorbed on the surface, while for the adiabatic case more than 50% pass entirely through the 4 layer simulation slab.

  18. An accurate full-dimensional potential energy surface for H–Au(111): Importance of nonadiabatic electronic excitation in energy transfer and adsorption

    SciTech Connect

    Janke, Svenja M.; Auerbach, Daniel J.; Kandratsenka, Alexander; Wodtke, Alec M.

    2015-09-28

    We have constructed a potential energy surface (PES) for H-atoms interacting with fcc Au(111) based on fitting the analytic form of the energy from Effective Medium Theory (EMT) to ab initio energy values calculated with density functional theory. The fit used input from configurations of the H–Au system with Au atoms at their lattice positions as well as configurations with the Au atoms displaced from their lattice positions. It reproduces the energy, in full dimension, not only for the configurations used as input but also for a large number of additional configurations derived from ab initio molecular dynamics (AIMD) trajectories at finite temperature. Adiabatic molecular dynamics simulations on this PES reproduce the energy loss behavior of AIMD. EMT also provides expressions for the embedding electron density, which enabled us to develop a self-consistent approach to simulate nonadiabatic electron-hole pair excitation and their effect on the motion of the incident H-atoms. For H atoms with an energy of 2.7 eV colliding with Au, electron-hole pair excitation is by far the most important energy loss pathway, giving an average energy loss ≈3 times that of the adiabatic case. This increased energy loss enhances the probability of the H-atom remaining on or in the Au slab by a factor of 2. The most likely outcome for H-atoms that are not scattered also depends prodigiously on the energy transfer mechanism; for the nonadiabatic case, more than 50% of the H-atoms which do not scatter are adsorbed on the surface, while for the adiabatic case more than 50% pass entirely through the 4 layer simulation slab.

  19. Geometric Adiabatic Transport in Quantum Hall States.

    PubMed

    Klevtsov, S; Wiegmann, P

    2015-08-21

    We argue that in addition to the Hall conductance and the nondissipative component of the viscous tensor, there exists a third independent transport coefficient, which is precisely quantized. It takes constant values along quantum Hall plateaus. We show that the new coefficient is the Chern number of a vector bundle over moduli space of surfaces of genus 2 or higher and therefore cannot change continuously along the plateau. As such, it does not transpire on a sphere or a torus. In the linear response theory, this coefficient determines intensive forces exerted on electronic fluid by adiabatic deformations of geometry and represents the effect of the gravitational anomaly. We also present the method of computing the transport coefficients for quantum Hall states. PMID:26340197

  20. Geometric Adiabatic Transport in Quantum Hall States.

    PubMed

    Klevtsov, S; Wiegmann, P

    2015-08-21

    We argue that in addition to the Hall conductance and the nondissipative component of the viscous tensor, there exists a third independent transport coefficient, which is precisely quantized. It takes constant values along quantum Hall plateaus. We show that the new coefficient is the Chern number of a vector bundle over moduli space of surfaces of genus 2 or higher and therefore cannot change continuously along the plateau. As such, it does not transpire on a sphere or a torus. In the linear response theory, this coefficient determines intensive forces exerted on electronic fluid by adiabatic deformations of geometry and represents the effect of the gravitational anomaly. We also present the method of computing the transport coefficients for quantum Hall states.

  1. Environmental surface cleanliness and the potential for contamination during handwashing.

    PubMed

    Griffith, Christopher J; Malik, Rifhat; Cooper, Rose A; Looker, Nick; Michaels, Barry

    2003-04-01

    Effective handwashing (including drying) is important in infection control. The ability of the various stages of handwashing to decrease skin-surface microbial counts has been documented. However, an important element, environmental surface cleanliness, and the potential for contamination of hands during the process has not been well studied or quantified. An examination of the adenosine triphosphate (a measure of residual organic soil), bacterial, and staphylococcal load on ward handwash station surfaces, which could be touched during handwashing, is reported. Hand contact surfaces tested consisted of approximately 620 each of: faucet handles, soap dispenser activator mechanisms, and folded paper-towel dispenser exits. Failure rates in excess of benchmark clean values were higher with adenosine triphosphate assays than microbial counts. This could indicate the presence of a higher level of general organic debris (eg, skin cells) as opposed to microbial contamination or could reflect greater assay sensitivity. Faucet handles were more likely to be contaminated and be in excess of benchmark values than paper-towel dispenser exits. However, the latter are likely to be the final surface touched during the handwashing process and overall nearly 20% were above microbiologic benchmark values. Many of the organisms isolated were staphylococci and the results are discussed within the context of microbial cross-contamination and potential pathogen spread. PMID:12665742

  2. Can atom-surface potential measurements test atomic structure models?

    PubMed

    Lonij, Vincent P A; Klauss, Catherine E; Holmgren, William F; Cronin, Alexander D

    2011-06-30

    van der Waals (vdW) atom-surface potentials can be excellent benchmarks for atomic structure calculations. This is especially true if measurements are made with two different types of atoms interacting with the same surface sample. Here we show theoretically how ratios of vdW potential strengths (e.g., C₃(K)/C₃(Na)) depend sensitively on the properties of each atom, yet these ratios are relatively insensitive to properties of the surface. We discuss how C₃ ratios depend on atomic core electrons by using a two-oscillator model to represent the contribution from atomic valence electrons and core electrons separately. We explain why certain pairs of atoms are preferable to study for future experimental tests of atomic structure calculations. A well chosen pair of atoms (e.g., K and Na) will have a C₃ ratio that is insensitive to the permittivity of the surface, whereas a poorly chosen pair (e.g., K and He) will have a ratio of C₃ values that depends more strongly on the permittivity of the surface.

  3. Adiabatic Wankel type rotary engine

    NASA Technical Reports Server (NTRS)

    Kamo, R.; Badgley, P.; Doup, D.

    1988-01-01

    This SBIR Phase program accomplished the objective of advancing the technology of the Wankel type rotary engine for aircraft applications through the use of adiabatic engine technology. Based on the results of this program, technology is in place to provide a rotor and side and intermediate housings with thermal barrier coatings. A detailed cycle analysis of the NASA 1007R Direct Injection Stratified Charge (DISC) rotary engine was performed which concluded that applying thermal barrier coatings to the rotor should be successful and that it was unlikely that the rotor housing could be successfully run with thermal barrier coatings as the thermal stresses were extensive.

  4. Adiabatic preparation of Floquet condensates

    NASA Astrophysics Data System (ADS)

    Heinisch, Christoph; Holthaus, Martin

    2016-10-01

    We argue that a Bose-Einstein condensate can be transformed into a Floquet condensate, that is, into a periodically time-dependent many-particle state possessing the coherence properties of a mesoscopically occupied single-particle Floquet state. Our reasoning is based on the observation that the denseness of the many-body system's quasienergy spectrum does not necessarily obstruct effectively adiabatic transport. Employing the idealized model of a driven bosonic Josephson junction, we demonstrate that only a small amount of Floquet entropy is generated when a driving force with judiciously chosen frequency and maximum amplitude is turned on smoothly.

  5. On the question of adiabatic invariants

    NASA Astrophysics Data System (ADS)

    Mitropol'Skii, Iu. A.

    Some aspects of the construction of adiabadic invariants for dynamic systems with a single degree of freedom are discussed. Adiabatic invariants are derived using classical principles and the method proposed by Djukic (1981). The discussion covers an adiabatic invariant for a dynamic system with slowly varying parameters; derivation of an expression for an adiabatic invariant by the Djukic method for a second-order equation with a variable mass; and derivation of an expression for the adiabatic invariant for a nearly integrable differential equation.

  6. The biofouling potential of flow on corrugated surfaces

    NASA Astrophysics Data System (ADS)

    Miño, Gastón L.; Rusconi, Roberto; Kantsler, Vasily; Stocker, Roman

    2015-11-01

    Both natural and man-made surfaces are rarely smooth, and are instead often characterized by geometric heterogeneity or roughness over a broad range of scales. Because of the predicted importance of the local interaction between microorganisms and surfaces, roughness at the microbial scale can be an important element in determining the outcome of microbe-surface interactions, which represent the first step in biofilm formation and biofouling. In microbial habitats this interaction often occurs in flowing fluids, which can be important because regions with high hydrodynamic shear can induce a strong reorientation of bacteria towards surfaces, promoting attachment. Here we study the combination of flow and surface topography using video microscopy of Escherichia coli in corrugated microfluidic channels. We report that flow preferentially promotes attachment to specific regions of a corrugated surface, as result of the hydrodynamics of bacteria swimming in flow. We compute from the data a ``Local Biofouling Potential'' (LBP) and compare this successfully with predictions of a mathematical model, yielding one step towards the ability to mechanistically predict and thus ultimately either prevent or induce biofouling.

  7. Trace element mass balance in hydrous adiabatic mantle melting: The Hydrous Adiabatic Mantle Melting Simulator version 1 (HAMMS1)

    NASA Astrophysics Data System (ADS)

    Kimura, Jun-Ichi; Kawabata, Hiroshi

    2014-06-01

    numerical mass balance calculation model for the adiabatic melting of a dry to hydrous peridotite has been programmed in order to simulate the trace element compositions of basalts from mid-ocean ridges, back-arc basins, ocean islands, and large igneous provinces. The Excel spreadsheet-based calculator, Hydrous Adiabatic Mantle Melting Simulator version 1 (HAMMS1) uses (1) a thermodynamic model of fractional adiabatic melting of mantle peridotite, with (2) the parameterized experimental melting relationships of primitive to depleted mantle sources in terms of pressure, temperature, water content, and degree of partial melting. The trace element composition of the model basalt is calculated from the accumulated incremental melts within the adiabatic melting regime, with consideration for source depletion. The mineralogic mode in the primitive to depleted source mantle in adiabat is calculated using parameterized experimental results. Partition coefficients of the trace elements of mantle minerals are parameterized to melt temperature mostly from a lattice strain model and are tested using the latest compilations of experimental results. The parameters that control the composition of trace elements in the model are as follows: (1) mantle potential temperature, (2) water content in the source mantle, (3) depth of termination of adiabatic melting, and (4) source mantle depletion. HAMMS1 enables us to obtain the above controlling parameters using Monte Carlo fitting calculations and by comparing the calculated basalt compositions to primary basalt compositions. Additionally, HAMMS1 compares melting parameters with a major element model, which uses petrogenetic grids formulated from experimental results, thus providing better constraints on the source conditions.

  8. Failure of geometric electromagnetism in the adiabatic vector Kepler problem

    SciTech Connect

    Anglin, J.R.; Schmiedmayer, J.

    2004-02-01

    The magnetic moment of a particle orbiting a straight current-carrying wire may precess rapidly enough in the wire's magnetic field to justify an adiabatic approximation, eliminating the rapid time dependence of the magnetic moment and leaving only the particle position as a slow degree of freedom. To zeroth order in the adiabatic expansion, the orbits of the particle in the plane perpendicular to the wire are Keplerian ellipses. Higher-order postadiabatic corrections make the orbits precess, but recent analysis of this 'vector Kepler problem' has shown that the effective Hamiltonian incorporating a postadiabatic scalar potential ('geometric electromagnetism') fails to predict the precession correctly, while a heuristic alternative succeeds. In this paper we resolve the apparent failure of the postadiabatic approximation, by pointing out that the correct second-order analysis produces a third Hamiltonian, in which geometric electromagnetism is supplemented by a tensor potential. The heuristic Hamiltonian of Schmiedmayer and Scrinzi is then shown to be a canonical transformation of the correct adiabatic Hamiltonian, to second order. The transformation has the important advantage of removing a 1/r{sup 3} singularity which is an artifact of the adiabatic approximation.

  9. Physisorbed H2@Cu(100) surface: potential and spectroscopy.

    PubMed

    Bernard, Eddy; Houriez, Céline; Mitrushchenkov, Alexander O; Guitou, Marie; Chambaud, Gilberte

    2015-02-01

    Using an embedding approach, a 2-D potential energy function has been calculated to describe the physisorption interaction of H2 with a Cu(100) surface. For this purpose, a cluster model of the system calculated with highly correlated wavefunctions is combined with a periodic Density-Functional-Theory method using van der Waals-DF2 functional. Rotational and vibrational energy levels of physisorbed H2, as well as D2 and HD, are calculated using the 2D embedding corrected potential energy function. The calculated transitions are in a very good agreement with Electron-Energy-Loss-Spectroscopy observations. PMID:25662656

  10. A global potential energy surface for ArH2

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Walch, Stephen P.; Taylor, Peter R.

    1992-01-01

    We describe a simple analytic representation of the ArH2 potential energy surface which well reproduces the results of extensive ab initio electronic structure calculations. The analytic representation smoothly interpolates between the dissociated H2 and strong bonding limits. In the fitting process, emphasis is made on accurately reproducing regions of the potential expected to be important for high temperature (ca. 3000 K) collision processes. Overall, the anisotropy and H2 bond length dependence of the analytic representation well reproduce the input data.

  11. A global potential energy surface for ArH2

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Walch, Stephen P.; Taylor, Peter R.

    1993-01-01

    We describe a simple analytic representation of the ArH2 potential energy surface which well reproduces the results of extensive ab initio electronic structure calculations. The analytic representation smoothly interpolates between the dissociated H2 and strong bonding limits. In the fitting process, emphasis is made on accurately reproducing regions of the potential expected to be important for high temperature (ca. 3000 K) collision processes. Overall, the anisotropy and H2 bond length dependence of the analytic representation well reproduce the input data.

  12. Sliding seal materials for adiabatic engines

    NASA Technical Reports Server (NTRS)

    Lankford, J.

    1985-01-01

    The sliding friction coefficients and wear rates of promising carbide, oxide, and nitride materials were measured under temperature, environmental, velocity, loading conditions that are representative of the adiabatic engine environment. In order to provide guidance needed to improve materials for this application, the program stressed fundamental understanding of the mechanisms involved in friction and wear. Microhardness tests were performed on the candidate materials at elevated temperatures, and in atmospheres relevant to the piston seal application, and optical and electron microscopy were used to elucidate the micromechanisms of wear following wear testing. X-ray spectroscopy was used to evaluate interface/environment interactions which seemed to be important in the friction and wear process. Electrical effects in the friction and wear processes were explored in order to evaluate the potential usefulness of such effects in modifying the friction and wear rates in service. However, this factor was found to be of negligible significance in controlling friction and wear.

  13. Three-dimensional potential energy surface of Ar–CO

    SciTech Connect

    Sumiyoshi, Yoshihiro; Endo, Yasuki

    2015-01-14

    A three-dimensional intermolecular potential energy surface of the Ar–CO complex has been determined by fitting most of the previously reported spectroscopic data, where observed transition frequencies by microwave, millimeter-wave, submillimeter-wave, and infrared spectroscopy were reproduced simultaneously within their experimental accuracies. A free rotor model Hamiltonian considering all the freedom of motions for an atom-diatom system was applied to calculate vibration-rotation energies. A three-dimensional potential energy surface obtained by ab initio calculations at the CCSD(T)-F12b/aug-cc-pV5Z level of theory was parameterized by a model function consisting of 46 parameters. They were used as initial values for the least-squares analysis of the experimental data. A total of 20 parameters were optimized to reproduce all the spectroscopic data.

  14. Electronic structure, molecular bonding and potential energy surfaces

    SciTech Connect

    Ruedenberg, K.

    1993-12-01

    By virtue of the universal validity of the generalized Born-Oppenheimer separation, potential energy surfaces (PES`) represent the central conceptual as well as quantitative entities of chemical physics and provide the basis for the understanding of most physicochemical phenomena in many diverse fields. The research in this group deals with the elucidation of general properties of PES` as well as with the quantitative determination of PES` for concrete systems, in particular pertaining to reactions involving carbon, oxygen, nitrogen and hydrogen molecules.

  15. Theoretical characterization of the potential energy surface for NH + NO

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1993-01-01

    The potential energy surface for NH + NO was characterized using complete active space self-consistent field (CASSCF) gradient calculation to determine the stationary point geometries and frequencies followed by CASSCF/internally contracted configuration interaction calculations to refine the energetics. The present results are in qualitative accord with the BAC-MP4 calculations, but there are differences as large as 8 kcal/mol in the detailed energetics.

  16. MCSCF potential energy surface for photodissociation of formaldehyde

    NASA Technical Reports Server (NTRS)

    Jaffe, R. L.; Morokuma, K.

    1976-01-01

    The ground state potential energy surface for the dissociation of formaldehyde (H2CO to H2 and CO) is calculated with the ab initio MCSCF method with an extended (4-31G) basis set. The location, barrier height, and force constants of the transition state are determined, and the normal coordinate analysis is carried out. The calculated barrier height is 4.5 eV. Based on the calculated quantities, the detailed mechanism of the photochemical dissociation is discussed.

  17. Theoretical studies of potential energy surfaces and computational methods.

    SciTech Connect

    Shepard, R.

    2006-01-01

    This project involves the development, implementation, and application of theoretical methods for the calculation and characterization of potential energy surfaces (PES) involving molecular species that occur in hydrocarbon combustion. These potential energy surfaces require an accurate and balanced treatment of reactants, intermediates, and products. Most of our work focuses on general multiconfiguration self-consistent-field (MCSCF) and multireference single- and double-excitation configuration interaction (MRSDCI) methods. In contrast to the more common single-reference electronic structure methods, this approach is capable of describing accurately molecular systems that are highly distorted away from their equilibrium geometries, including reactant, fragment, and transition-state geometries, and of describing regions of the potential surface that are associated with electronic wave functions of widely varying nature. The MCSCF reference wave functions are designed to be sufficiently flexible to describe qualitatively the changes in the electronic structure over the broad range of molecular geometries of interest. The necessary mixing of ionic, covalent, and Rydberg contributions, along with the appropriate treatment of the different electron-spin components (e.g. closed shell, high-spin open-shell, low-spin open shell, radical, diradical, etc.) of the wave functions are treated correctly at this level. Further treatment of electron correlation effects is included using large scale multireference CI wave functions, particularly including the single and double excitations relative to the MCSCF reference space. This leads to the most flexible and accurate large-scale MRSDCI wave functions that have been used to date in global PES studies.

  18. Theoretical studies of potential energy surfaces and computational methods

    SciTech Connect

    Shepard, R.

    1993-12-01

    This project involves the development, implementation, and application of theoretical methods for the calculation and characterization of potential energy surfaces involving molecular species that occur in hydrocarbon combustion. These potential energy surfaces require an accurate and balanced treatment of reactants, intermediates, and products. This difficult challenge is met with general multiconfiguration self-consistent-field (MCSCF) and multireference single- and double-excitation configuration interaction (MRSDCI) methods. In contrast to the more common single-reference electronic structure methods, this approach is capable of describing accurately molecular systems that are highly distorted away from their equilibrium geometries, including reactant, fragment, and transition-state geometries, and of describing regions of the potential surface that are associated with electronic wave functions of widely varying nature. The MCSCF reference wave functions are designed to be sufficiently flexible to describe qualitatively the changes in the electronic structure over the broad range of geometries of interest. The necessary mixing of ionic, covalent, and Rydberg contributions, along with the appropriate treatment of the different electron-spin components (e.g. closed shell, high-spin open-shell, low-spin open shell, radical, diradical, etc.) of the wave functions, are treated correctly at this level. Further treatment of electron correlation effects is included using large scale multireference CI wave functions, particularly including the single and double excitations relative to the MCSCF reference space. This leads to the most flexible and accurate large-scale MRSDCI wave functions that have been used to date in global PES studies.

  19. A Global Analytical Representation of the Potential Energy Surface of the FHF(-) Anion.

    PubMed

    Cornaton, Yann; Marquardt, Roberto

    2016-08-01

    A global analytical representation of the potential energy hypersurface of the lowest adiabatic electronic state of the FHF(-) anion is derived from ab initio calculations at the coupled cluster level of theory with full single and double and perturbative triple excitations using explicitly correlated atomic basis functions. The new compact function of interatomic distances combines covalent short-range and long-range electrostatic interaction forms and assesses accurately both the lowest reaction channels between the F(-) and HF fragments, with reaction enthalpies to within 1 kJ mol(-1), as well as vibrational terms to within 1.5 cm(-1) deviation from experimental values.

  20. A Global Analytical Representation of the Potential Energy Surface of the FHF(-) Anion.

    PubMed

    Cornaton, Yann; Marquardt, Roberto

    2016-08-01

    A global analytical representation of the potential energy hypersurface of the lowest adiabatic electronic state of the FHF(-) anion is derived from ab initio calculations at the coupled cluster level of theory with full single and double and perturbative triple excitations using explicitly correlated atomic basis functions. The new compact function of interatomic distances combines covalent short-range and long-range electrostatic interaction forms and assesses accurately both the lowest reaction channels between the F(-) and HF fragments, with reaction enthalpies to within 1 kJ mol(-1), as well as vibrational terms to within 1.5 cm(-1) deviation from experimental values. PMID:27400137

  1. Efficient surface reconstruction from noisy data using regularized membrane potentials.

    PubMed

    Jalba, Andrei C; Roerdink, Jos B T M

    2009-05-01

    A physically motivated method for surface reconstruction is proposed that can recover smooth surfaces from noisy and sparse data sets. No orientation information is required. By a new technique based on regularized-membrane potentials the input sample points are aggregated, leading to improved noise tolerability and outlier removal, without sacrificing much with respect to detail (feature) recovery. After aggregating the sample points on a volumetric grid, a novel, iterative algorithm is used to classify grid points as exterior or interior to the surface. This algorithm relies on intrinsic properties of the smooth scalar field on the grid which emerges after the aggregation step. Second, a mesh-smoothing paradigm based on a mass-spring system is introduced. By enhancing this system with a bending-energy minimizing term we ensure that the final triangulated surface is smoother than piecewise linear. In terms of speed and flexibility, the method compares favorably with respect to previous approaches. Most parts of the method are implemented on modern graphics processing units (GPUs). Results in a wide variety of settings are presented, ranging from surface reconstruction on noise-free point clouds to grayscale image segmentation.

  2. Nuclear momentum distribution and potential energy surface in hexagonal ice

    NASA Astrophysics Data System (ADS)

    Lin, Lin; Morrone, Joseph; Car, Roberto; Parrinello, Michele

    2011-03-01

    The proton momentum distribution in ice Ih has been recently measured by deep inelastic neutron scattering and calculated from open path integral Car-Parrinello simulation. Here we report a detailed investigation of the relation between momentum distribution and potential energy surface based on both experiment and simulation results. The potential experienced by the proton is largely harmonic and characterized by 3 principal frequencies, which can be associated to weighted averages of phonon frequencies via lattice dynamics calculations. This approach also allows us to examine the importance of quantum effects on the dynamics of the oxygen nuclei close to the melting temperature. Finally we quantify the anharmonicity that is present in the potential acting on the protons. This work is supported by NSF and by DOE.

  3. Novel mixture model for the representation of potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Pham, Tien Lam; Kino, Hiori; Terakura, Kiyoyuki; Miyake, Takashi; Dam, Hieu Chi

    2016-10-01

    We demonstrate that knowledge of chemical physics on a materials system can be automatically extracted from first-principles calculations using a data mining technique; this information can then be utilized to construct a simple empirical atomic potential model. By using unsupervised learning of the generative Gaussian mixture model, physically meaningful patterns of atomic local chemical environments can be detected automatically. Based on the obtained information regarding these atomic patterns, we propose a chemical-structure-dependent linear mixture model for estimating the atomic potential energy. Our experiments show that the proposed mixture model significantly improves the accuracy of the prediction of the potential energy surface for complex systems that possess a large diversity in their local structures.

  4. Degenerate adiabatic perturbation theory: Foundations and applications

    NASA Astrophysics Data System (ADS)

    Rigolin, Gustavo; Ortiz, Gerardo

    2014-08-01

    We present details and expand on the framework leading to the recently introduced degenerate adiabatic perturbation theory [Phys. Rev. Lett. 104, 170406 (2010), 10.1103/PhysRevLett.104.170406], and on the formulation of the degenerate adiabatic theorem, along with its necessary and sufficient conditions [given in Phys. Rev. A 85, 062111 (2012), 10.1103/PhysRevA.85.062111]. We start with the adiabatic approximation for degenerate Hamiltonians that paves the way to a clear and rigorous statement of the associated degenerate adiabatic theorem, where the non-Abelian geometric phase (Wilczek-Zee phase) plays a central role to its quantitative formulation. We then describe the degenerate adiabatic perturbation theory, whose zeroth-order term is the degenerate adiabatic approximation, in its full generality. The parameter in the perturbative power-series expansion of the time-dependent wave function is directly associated to the inverse of the time it takes to drive the system from its initial to its final state. With the aid of the degenerate adiabatic perturbation theory we obtain rigorous necessary and sufficient conditions for the validity of the adiabatic theorem of quantum mechanics. Finally, to illustrate the power and wide scope of the methodology, we apply the framework to a degenerate Hamiltonian, whose closed-form time-dependent wave function is derived exactly, and also to other nonexactly solvable Hamiltonians whose solutions are numerically computed.

  5. Methods for finding transition states on reduced potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Burger, Steven K.; Ayers, Paul W.

    2010-06-01

    Three new algorithms are presented for determining transition state (TS) structures on the reduced potential energy surface, that is, for problems in which a few important degrees of freedom can be isolated. All three methods use constrained optimization to rapidly find the TS without an initial Hessian evaluation. The algorithms highlight how efficiently the TS can be located on a reduced surface, where the rest of the degrees of freedom are minimized. The first method uses a nonpositive definite quasi-Newton update for the reduced degrees of freedom. The second uses Shepard interpolation to fit the Hessian and starts from a set of points that bound the TS. The third directly uses a finite difference scheme to calculate the reduced degrees of freedom of the Hessian of the entire system, and searches for the TS on the full potential energy surface. All three methods are tested on an epoxide hydrolase cluster, and the ring formations of cyclohexane and cyclobutenone. The results indicate that all the methods are able to converge quite rapidly to the correct TS, but that the finite difference approach is the most efficient.

  6. Potential energy surface of triplet N2O2

    NASA Astrophysics Data System (ADS)

    Varga, Zoltan; Meana-Pañeda, Rubén; Song, Guoliang; Paukku, Yuliya; Truhlar, Donald G.

    2016-01-01

    We present a global ground-state triplet potential energy surface for the N2O2 system that is suitable for treating high-energy vibrational-rotational energy transfer and collision-induced dissociation. The surface is based on multi-state complete-active-space second-order perturbation theory/minimally augmented correlation-consistent polarized valence triple-zeta electronic structure calculations plus dynamically scaled external correlation. In the multireference calculations, the active space has 14 electrons in 12 orbitals. The calculations cover nine arrangements corresponding to dissociative diatom-diatom collisions of N2, O2, and nitric oxide (NO), the interaction of a triatomic molecule (N2O and NO2) with the fourth atom, and the interaction of a diatomic molecule with a single atom (i.e., the triatomic subsystems). The global ground-state potential energy surface was obtained by fitting the many-body interaction to 54 889 electronic structure data points with a fitting function that is a permutationally invariant polynomial in terms of bond-order functions of the six interatomic distances.

  7. Potential energy surface of triplet N2O2.

    PubMed

    Varga, Zoltan; Meana-Pañeda, Rubén; Song, Guoliang; Paukku, Yuliya; Truhlar, Donald G

    2016-01-14

    We present a global ground-state triplet potential energy surface for the N2O2 system that is suitable for treating high-energy vibrational-rotational energy transfer and collision-induced dissociation. The surface is based on multi-state complete-active-space second-order perturbation theory/minimally augmented correlation-consistent polarized valence triple-zeta electronic structure calculations plus dynamically scaled external correlation. In the multireference calculations, the active space has 14 electrons in 12 orbitals. The calculations cover nine arrangements corresponding to dissociative diatom-diatom collisions of N2, O2, and nitric oxide (NO), the interaction of a triatomic molecule (N2O and NO2) with the fourth atom, and the interaction of a diatomic molecule with a single atom (i.e., the triatomic subsystems). The global ground-state potential energy surface was obtained by fitting the many-body interaction to 54 889 electronic structure data points with a fitting function that is a permutationally invariant polynomial in terms of bond-order functions of the six interatomic distances.

  8. Calculation of rotation-vibration energy levels of the ammonia molecule based on an ab initio potential energy surface

    NASA Astrophysics Data System (ADS)

    Polyansky, Oleg L.; Ovsyannikov, Roman I.; Kyuberis, Aleksandra A.; Lodi, Lorenzo; Tennyson, Jonathan; Yachmenev, Andrey; Yurchenko, Sergei N.; Zobov, Nikolai F.

    2016-09-01

    An ab initio potential energy surface (PES) for gas-phase ammonia NH3 has been computed using the methodology pioneered for water (Polyansky et al., 2013). Multireference configuration interaction calculations are performed at about 50 000 points using the aug-cc-pCVQZ and aug-cc-pCV5Z basis sets and basis set extrapolation. Relativistic and adiabatic surfaces are also computed. The points are fitted to a suitable analytical form, producing the most accurate ab initio PES for this molecule available. The rotation-vibration energy levels are computed using nuclear motion program TROVE in both linearised and curvilinear coordinates. Better convergence is obtained using curvilinear coordinates. Our results are used to assign the visible spectrum of 14NH3 recorded by Coy and Lehmann (1986). Rotation-vibration energy levels for the isotopologues NH2D, NHD2, ND3 and 15NH3 are also given. An ab initio value for the dissociation energy D0 of 14NH3 is also presented.

  9. On a Nonlinear Model in Adiabatic Evolutions

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Lu, Song-Feng

    2016-08-01

    In this paper, we study a kind of nonlinear model of adiabatic evolution in quantum search problem. As will be seen here, for this problem, there always exists a possibility that this nonlinear model can successfully solve the problem, while the linear model can not. Also in the same setting, when the overlap between the initial state and the final stare is sufficiently large, a simple linear adiabatic evolution can achieve O(1) time efficiency, but infinite time complexity for the nonlinear model of adiabatic evolution is needed. This tells us, it is not always a wise choice to use nonlinear interpolations in adiabatic algorithms. Sometimes, simple linear adiabatic evolutions may be sufficient for using. Supported by the National Natural Science Foundation of China under Grant Nos. 61402188 and 61173050. The first author also gratefully acknowledges the support from the China Postdoctoral Science Foundation under Grant No. 2014M552041

  10. Quantum and classical dynamics in adiabatic computation

    NASA Astrophysics Data System (ADS)

    Crowley, P. J. D.; Äńurić, T.; Vinci, W.; Warburton, P. A.; Green, A. G.

    2014-10-01

    Adiabatic transport provides a powerful way to manipulate quantum states. By preparing a system in a readily initialized state and then slowly changing its Hamiltonian, one may achieve quantum states that would otherwise be inaccessible. Moreover, a judicious choice of final Hamiltonian whose ground state encodes the solution to a problem allows adiabatic transport to be used for universal quantum computation. However, the dephasing effects of the environment limit the quantum correlations that an open system can support and degrade the power of such adiabatic computation. We quantify this effect by allowing the system to evolve over a restricted set of quantum states, providing a link between physically inspired classical optimization algorithms and quantum adiabatic optimization. This perspective allows us to develop benchmarks to bound the quantum correlations harnessed by an adiabatic computation. We apply these to the D-Wave Vesuvius machine with revealing—though inconclusive—results.

  11. Pseudospectral Gaussian quantum dynamics: Efficient sampling of potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Heaps, Charles W.; Mazziotti, David A.

    2016-04-01

    Trajectory-based Gaussian basis sets have been tremendously successful in describing high-dimensional quantum molecular dynamics. In this paper, we introduce a pseudospectral Gaussian-based method that achieves accurate quantum dynamics using efficient, real-space sampling of the time-dependent basis set. As in other Gaussian basis methods, we begin with a basis set expansion using time-dependent Gaussian basis functions guided by classical mechanics. Unlike other Gaussian methods but characteristic of the pseudospectral and collocation methods, the basis set is tested with N Dirac delta functions, where N is the number of basis functions, rather than using the basis function as test functions. As a result, the integration for matrix elements is reduced to function evaluation. Pseudospectral Gaussian dynamics only requires O ( N ) potential energy calculations, in contrast to O ( N 2 ) evaluations in a variational calculation. The classical trajectories allow small basis sets to sample high-dimensional potentials. Applications are made to diatomic oscillations in a Morse potential and a generalized version of the Henon-Heiles potential in two, four, and six dimensions. Comparisons are drawn to full analytical evaluation of potential energy integrals (variational) and the bra-ket averaged Taylor (BAT) expansion, an O ( N ) approximation used in Gaussian-based dynamics. In all cases, the pseudospectral Gaussian method is competitive with full variational calculations that require a global, analytical, and integrable potential energy surface. Additionally, the BAT breaks down when quantum mechanical coherence is particularly strong (i.e., barrier reflection in the Morse oscillator). The ability to obtain variational accuracy using only the potential energy at discrete points makes the pseudospectral Gaussian method a promising avenue for on-the-fly dynamics, where electronic structure calculations become computationally significant.

  12. Pseudospectral Gaussian quantum dynamics: Efficient sampling of potential energy surfaces.

    PubMed

    Heaps, Charles W; Mazziotti, David A

    2016-04-28

    Trajectory-based Gaussian basis sets have been tremendously successful in describing high-dimensional quantum molecular dynamics. In this paper, we introduce a pseudospectral Gaussian-based method that achieves accurate quantum dynamics using efficient, real-space sampling of the time-dependent basis set. As in other Gaussian basis methods, we begin with a basis set expansion using time-dependent Gaussian basis functions guided by classical mechanics. Unlike other Gaussian methods but characteristic of the pseudospectral and collocation methods, the basis set is tested with N Dirac delta functions, where N is the number of basis functions, rather than using the basis function as test functions. As a result, the integration for matrix elements is reduced to function evaluation. Pseudospectral Gaussian dynamics only requires O(N) potential energy calculations, in contrast to O(N(2)) evaluations in a variational calculation. The classical trajectories allow small basis sets to sample high-dimensional potentials. Applications are made to diatomic oscillations in a Morse potential and a generalized version of the Henon-Heiles potential in two, four, and six dimensions. Comparisons are drawn to full analytical evaluation of potential energy integrals (variational) and the bra-ket averaged Taylor (BAT) expansion, an O(N) approximation used in Gaussian-based dynamics. In all cases, the pseudospectral Gaussian method is competitive with full variational calculations that require a global, analytical, and integrable potential energy surface. Additionally, the BAT breaks down when quantum mechanical coherence is particularly strong (i.e., barrier reflection in the Morse oscillator). The ability to obtain variational accuracy using only the potential energy at discrete points makes the pseudospectral Gaussian method a promising avenue for on-the-fly dynamics, where electronic structure calculations become computationally significant.

  13. Pseudospectral Gaussian quantum dynamics: Efficient sampling of potential energy surfaces.

    PubMed

    Heaps, Charles W; Mazziotti, David A

    2016-04-28

    Trajectory-based Gaussian basis sets have been tremendously successful in describing high-dimensional quantum molecular dynamics. In this paper, we introduce a pseudospectral Gaussian-based method that achieves accurate quantum dynamics using efficient, real-space sampling of the time-dependent basis set. As in other Gaussian basis methods, we begin with a basis set expansion using time-dependent Gaussian basis functions guided by classical mechanics. Unlike other Gaussian methods but characteristic of the pseudospectral and collocation methods, the basis set is tested with N Dirac delta functions, where N is the number of basis functions, rather than using the basis function as test functions. As a result, the integration for matrix elements is reduced to function evaluation. Pseudospectral Gaussian dynamics only requires O(N) potential energy calculations, in contrast to O(N(2)) evaluations in a variational calculation. The classical trajectories allow small basis sets to sample high-dimensional potentials. Applications are made to diatomic oscillations in a Morse potential and a generalized version of the Henon-Heiles potential in two, four, and six dimensions. Comparisons are drawn to full analytical evaluation of potential energy integrals (variational) and the bra-ket averaged Taylor (BAT) expansion, an O(N) approximation used in Gaussian-based dynamics. In all cases, the pseudospectral Gaussian method is competitive with full variational calculations that require a global, analytical, and integrable potential energy surface. Additionally, the BAT breaks down when quantum mechanical coherence is particularly strong (i.e., barrier reflection in the Morse oscillator). The ability to obtain variational accuracy using only the potential energy at discrete points makes the pseudospectral Gaussian method a promising avenue for on-the-fly dynamics, where electronic structure calculations become computationally significant. PMID:27131532

  14. On the Potential Predictability of Seasonal Land-Surface Climate

    SciTech Connect

    Phillips, T J

    2001-10-01

    The chaotic behavior of the continental climate of an atmospheric general circulation model is investigated from an ensemble of decadal simulations with common specifications of radiative forcings and monthly ocean boundary conditions, but different initial states of atmosphere and land. The variability structures of key model land-surface processes appear to agree sufficiently with observational estimates to warrant detailed examination of their predictability on seasonal time scales. This predictability is inferred from several novel measures of spatio-temporal reproducibility applied to eleven model variables. The reproducibility statistics are computed for variables in which the seasonal cycle is included or excluded, the former case being most pertinent to climate model simulations, and the latter to predictions of the seasonal anomalies. Because the reproducibility metrics in the latter case are determined in the context of a ''perfectly'' known ocean state, they are properly viewed as estimates of the potential predictability of seasonal climate. Inferences based on these reproducibility metrics are shown to be in general agreement with those derived from more conventional measures of potential predictability. It is found that the land-surface variables which include the seasonal cycle are impacted only marginally by changes in initial conditions; moreover, their seasonal climatologies exhibit high spatial reproducibility. In contrast, the reproducibility of a seasonal land-surface anomaly is generally low, although it is considerably higher in the Tropics; its spatial reproducibility also fluctuates in tandem with warm and cold phases of the El Nino/Southern Oscillation phenomenon. However, the detailed sensitivities to initial conditions depend somewhat on the land-surface process: pressure and temperature anomalies exhibit the highest temporal reproducibilities, while hydrological and turbulent flux anomalies show the highest spatial reproducibilities

  15. Non-adiabatic effects in thermochemistry, spectroscopy and kinetics: the general importance of all three Born-Oppenheimer breakdown corrections.

    PubMed

    Reimers, Jeffrey R; McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S

    2015-10-14

    Using a simple model Hamiltonian, the three correction terms for Born-Oppenheimer (BO) breakdown, the adiabatic diagonal correction (DC), the first-derivative momentum non-adiabatic correction (FD), and the second-derivative kinetic-energy non-adiabatic correction (SD), are shown to all contribute to thermodynamic and spectroscopic properties as well as to thermal non-diabatic chemical reaction rates. While DC often accounts for >80% of thermodynamic and spectroscopic property changes, the commonly used practice of including only the FD correction in kinetics calculations is rarely found to be adequate. For electron-transfer reactions not in the inverted region, the common physical picture that diabatic processes occur because of surface hopping at the transition state is proven inadequate as the DC acts first to block access, increasing the transition state energy by (ℏω)(2)λ/16J(2) (where λ is the reorganization energy, J the electronic coupling and ω the vibration frequency). However, the rate constant in the weakly-coupled Golden-Rule limit is identified as being only inversely proportional to this change rather than exponentially damped, owing to the effects of tunneling and surface hopping. Such weakly-coupled long-range electron-transfer processes should therefore not be described as "non-adiabatic" processes as they are easily described by Born-Huang ground-state adiabatic surfaces made by adding the DC to the BO surfaces; instead, they should be called just "non-Born-Oppenheimer" processes. The model system studied consists of two diabatic harmonic potential-energy surfaces coupled linearly through a single vibration, the "two-site Holstein model". Analytical expressions are derived for the BO breakdown terms, and the model is solved over a large parameter space focusing on both the lowest-energy spectroscopic transitions and the quantum dynamics of coherent-state wavepackets. BO breakdown is investigated pertinent to: ammonia inversion, aromaticity

  16. Non-adiabatic effects in thermochemistry, spectroscopy and kinetics: the general importance of all three Born-Oppenheimer breakdown corrections.

    PubMed

    Reimers, Jeffrey R; McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S

    2015-10-14

    Using a simple model Hamiltonian, the three correction terms for Born-Oppenheimer (BO) breakdown, the adiabatic diagonal correction (DC), the first-derivative momentum non-adiabatic correction (FD), and the second-derivative kinetic-energy non-adiabatic correction (SD), are shown to all contribute to thermodynamic and spectroscopic properties as well as to thermal non-diabatic chemical reaction rates. While DC often accounts for >80% of thermodynamic and spectroscopic property changes, the commonly used practice of including only the FD correction in kinetics calculations is rarely found to be adequate. For electron-transfer reactions not in the inverted region, the common physical picture that diabatic processes occur because of surface hopping at the transition state is proven inadequate as the DC acts first to block access, increasing the transition state energy by (ℏω)(2)λ/16J(2) (where λ is the reorganization energy, J the electronic coupling and ω the vibration frequency). However, the rate constant in the weakly-coupled Golden-Rule limit is identified as being only inversely proportional to this change rather than exponentially damped, owing to the effects of tunneling and surface hopping. Such weakly-coupled long-range electron-transfer processes should therefore not be described as "non-adiabatic" processes as they are easily described by Born-Huang ground-state adiabatic surfaces made by adding the DC to the BO surfaces; instead, they should be called just "non-Born-Oppenheimer" processes. The model system studied consists of two diabatic harmonic potential-energy surfaces coupled linearly through a single vibration, the "two-site Holstein model". Analytical expressions are derived for the BO breakdown terms, and the model is solved over a large parameter space focusing on both the lowest-energy spectroscopic transitions and the quantum dynamics of coherent-state wavepackets. BO breakdown is investigated pertinent to: ammonia inversion, aromaticity

  17. Bifurcations on Potential Energy Surfaces of Organic Reactions

    PubMed Central

    Ess, Daniel H.; Wheeler, Steven E.; Iafe, Robert G.; Xu, Lai; Çelebi-Ölçüm, Nihan; Houk, K. N.

    2009-01-01

    A single transition state may lead to multiple intermediates or products if there is a post-transition state reaction path bifurcation. These bifurcations arise when there are sequential transition states with no intervening energy minimum. For such systems, the shape of the potential energy surface and dynamic effects control selectivity rather than transition state energetics. This minireview covers recent investigations of organic reactions exhibiting reaction pathway bifurcations. Such phenomena are surprisingly general and affect experimental observables such as kinetic isotope effects and product distributions. PMID:18767086

  18. Potential of surface acoustic wave biosensors for early sepsis diagnosis.

    PubMed

    Csete, Marie; Hunt, William D

    2013-08-01

    Early diagnosis of sepsis is a difficult problem for intensivists and new biomarkers for early diagnosis have been difficult to come by. Here we discuss the potential of adapting a technology from the electronics industry, surface acoustic wave (SAW) sensors, for diagnosis of multiple markers of sepsis in real time, using non-invasive assays of exhaled breath condensate. The principles and advantages of the SAW technology are reviewed as well as a proposed plan for adapting this flexible technology to early sepsis detection. PMID:23471596

  19. Estimation of the electrical potential distribution along metallic casing from surface self-potential profile

    NASA Astrophysics Data System (ADS)

    Maineult, Alexis

    2016-06-01

    Corroding casings of wells generate negative self-potential (SP) anomalies, increasing from about - 10 to - 500 mV in the vicinity of the well to 0 mV at large distances. As reported in previous laboratory experiment, SP can be used to retrieve the distribution of electrical potential along the casing, which is somehow a proxy for the corrosion state of the casing. These studies used 3D (whole space) or surface 2D (whole surface) measurements of SP distribution; here we reported a field example, for which only a 1D surface SP profile is available. In order to retrieve the most probable associated potential distribution (defined by a spline) along the 11.1-m long metallic casing, we develop a direct model based on geometrical and geoelectrical properties of the medium, which was then used in a (non-deterministic) optimization procedure by simulated annealing, including some physical constrains. Tests carried out on a synthetic case allowed the initial source to be correctly retrieved, provided that the number of nodes used for the spline defining the potential distribution along the casing is large enough. The inversion of real field data provided a dipolar anomaly, with minimal negative amplitude of around - 600 mV at 5 m, and maximal positive amplitude of about 1100 mV at 9 m (close to the level of the water table), this shape being in agreement with the results of previous laboratory studies.

  20. Coupling of surface energy with electric potential makes superhydrophobic surfaces corrosion-resistant.

    PubMed

    Ramachandran, Rahul; Nosonovsky, Michael

    2015-10-14

    We study the correlation of wetting properties and corrosion rates on hydrophobized cast iron. Samples of different surface roughnesses (abraded by sandpaper) are studied without coating and with two types of hydrophobic coatings (stearic acid and a liquid repelling spray). The contact angles and contact angle hysteresis are measured using a goniometer while corrosion rates are measured by a potentiodynamic polarization test. The data show a decrease in corrosion current density and an increase in corrosion potential after superhydrophobization. A similar trend is also found in the recent literature data. We conclude that a decrease in the corrosion rate can be attributed to the changing open circuit potential of a coated surface and increased surface area making the non-homogeneous (Cassie-Baxter) state possible. We interpret these results in light of the idea that the inherent surface energy is coupled with the electric potential in accordance with the Lippmann law of electrowetting and Le Châtelier's principle and, therefore, hydrophobization leads to a decrease in the corrosion potential. This approach can be used for novel anti-corrosive coatings. PMID:26344151

  1. Accurate global potential energy surface for the H + OH+ collision

    NASA Astrophysics Data System (ADS)

    Gannouni, M. A.; Jaidane, N. E.; Halvick, P.; Stoecklin, T.; Hochlaf, M.

    2014-05-01

    We mapped the global three-dimensional potential energy surface (3D-PES) of the water cation at the MRCI/aug-cc-pV5Z including the basis set superposition (BSSE) correction. This PES covers the molecular region and the long ranges close to the H + OH+(X3Σ-), the O + H2+(X2Σg+), and the hydrogen exchange channels. The quality of the PES is checked after comparison to previous experimental and theoretical results of the spectroscopic constants of H2O+(tilde X2B1) and of the diatomic fragments, the vibronic spectrum, the dissociation energy, and the barrier to linearity for H2O+(tilde X2B1). Our data nicely approach those measured and computed previously. The long range parts reproduce quite well the diatomic potentials. In whole, a good agreement is found, which validates our 3D-PES.

  2. Computed rotational rainbows from realistic potential energy surfaces

    SciTech Connect

    Gianturco, F.A.; Palma, A.

    1985-08-01

    The quantal IOS approximation in here employed to study interference structures in the rotationally inelastic, state-to-state differential cross sections for polar diatomic targets (LiH, FH, and CO) interacting with He atoms. Quite realistic expressions are used to describe the relevant potential energy surfaces (PES) which were taken from previous works that tested them against accurate experimental findings for total and partial differential cross sections. Specific features like short-range anisotropy and well depth, long-range attractive regions and overall range of action for each potential employed are analyzed and discussed in relation to their influence on rotational rainbows appearance and on the possible observation of cross section extrema in rotational energy distributions.

  3. Adiabatic calorimetric decomposition studies of 50 wt.% hydroxylamine/water.

    PubMed

    Cisneros, L O; Rogers, W J; Mannan, M S

    2001-03-19

    Calorimetric data can provide a basis for determining potential hazards in reactions, storage, and transportation of process chemicals. This work provides calorimetric data for the thermal decomposition behavior in air of 50wt.% hydroxylamine/water (HA), both with and without added stabilizers, which was measured in closed cells with an automatic pressure tracking adiabatic calorimeter (APTAC). Among the data provided are onset temperatures, reaction order, activation energies, pressures of noncondensable products, thermal stability at 100 degrees C, and the effect of HA storage time. Discussed also are the catalytic effects of carbon steel, stainless steel, stainless steel with silica coating, inconel, titanium, and titanium with silica coating on the reaction self-heat rates and onset temperatures. In borosilicate glass cells, HA was relatively stable at temperatures up to 133 degrees C, where the HA decomposition self-heat rate reached 0.05 degrees C/min. The added stabilizers appeared to reduce HA decomposition rates in glass cells and at ambient temperatures. The tested metals and metal surfaces coated with silica acted as catalysts to lower the onset temperatures and increase the self-heat rates. PMID:11165058

  4. Adiabatic calorimetric decomposition studies of 50 wt.% hydroxylamine/water.

    PubMed

    Cisneros, L O; Rogers, W J; Mannan, M S

    2001-03-19

    Calorimetric data can provide a basis for determining potential hazards in reactions, storage, and transportation of process chemicals. This work provides calorimetric data for the thermal decomposition behavior in air of 50wt.% hydroxylamine/water (HA), both with and without added stabilizers, which was measured in closed cells with an automatic pressure tracking adiabatic calorimeter (APTAC). Among the data provided are onset temperatures, reaction order, activation energies, pressures of noncondensable products, thermal stability at 100 degrees C, and the effect of HA storage time. Discussed also are the catalytic effects of carbon steel, stainless steel, stainless steel with silica coating, inconel, titanium, and titanium with silica coating on the reaction self-heat rates and onset temperatures. In borosilicate glass cells, HA was relatively stable at temperatures up to 133 degrees C, where the HA decomposition self-heat rate reached 0.05 degrees C/min. The added stabilizers appeared to reduce HA decomposition rates in glass cells and at ambient temperatures. The tested metals and metal surfaces coated with silica acted as catalysts to lower the onset temperatures and increase the self-heat rates.

  5. Surface characterization of hemodialysis membranes based on streaming potential measurements.

    PubMed

    Werner, C; Jacobasch, H J; Reichelt, G

    1995-01-01

    Hemodialysis membranes made from cellulose (CUPROPHAN, HEMOPHAN) and sulfonated polyethersulfone (SPES) were characterized using the streaming potential technique to determine the zeta potential at their interfaces against well-defined aqueous solutions of varied pH and potassium chloride concentrations. Streaming potential measurements enable distinction between different membrane materials. In addition to parameters of the electrochemical double layer at membrane interfaces, thermodynamic characteristics of adsorption of different solved species were evaluated. For that aim a description of double layer formation as suggested by Börner and Jacobasch (in: Electrokinetic Phenomena, p. 231. Institut für Technologie der Polymere, Dresden (1989)) was applied which is based on the generally accepted model of the electrochemical double layer according to Stern (Z. Elektrochemie 30, 508 (1924)) and Grahame (Chem. Rev. 41, 441 (1947)). The membranes investigated show different surface acidic/basic and polar/nonpolar behavior. Furthermore, alterations of membrane interfaces through adsorption processes of components of biologically relevant solutions were shown to be detectable by streaming potential measurements.

  6. Permutation invariant polynomial neural network approach to fitting potential energy surfaces. III. Molecule-surface interactions.

    PubMed

    Jiang, Bin; Guo, Hua

    2014-07-21

    The permutation invariant polynomial-neural network (PIP-NN) method for constructing highly accurate potential energy surfaces (PESs) for gas phase molecules is extended to molecule-surface interaction PESs. The symmetry adaptation in the NN fitting of a PES is achieved by employing as the input symmetry functions that fulfill both the translational symmetry of the surface and permutation symmetry of the molecule. These symmetry functions are low-order PIPs of the primitive symmetry functions containing the surface periodic symmetry. It is stressed that permutationally invariant cross terms are needed to avoid oversymmetrization. The accuracy and efficiency are demonstrated in fitting both a model PES for the H2 + Cu(111) system and density functional theory points for the H2 + Ag(111) system.

  7. Permutation invariant polynomial neural network approach to fitting potential energy surfaces. III. Molecule-surface interactions

    NASA Astrophysics Data System (ADS)

    Jiang, Bin; Guo, Hua

    2014-07-01

    The permutation invariant polynomial-neural network (PIP-NN) method for constructing highly accurate potential energy surfaces (PESs) for gas phase molecules is extended to molecule-surface interaction PESs. The symmetry adaptation in the NN fitting of a PES is achieved by employing as the input symmetry functions that fulfill both the translational symmetry of the surface and permutation symmetry of the molecule. These symmetry functions are low-order PIPs of the primitive symmetry functions containing the surface periodic symmetry. It is stressed that permutationally invariant cross terms are needed to avoid oversymmetrization. The accuracy and efficiency are demonstrated in fitting both a model PES for the H2 + Cu(111) system and density functional theory points for the H2 + Ag(111) system.

  8. An Ab Initio Based Potential Energy Surface for Water

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Schwenke, David W.; Langhoff, Stephen R. (Technical Monitor)

    1996-01-01

    We report a new determination of the water potential energy surface. A high quality ab initio potential energy surface (PES) and dipole moment function of water have been computed. This PES is empirically adjusted to improve the agreement between the computed line positions and those from the HITRAN 92 data base. The adjustment is small, nonetheless including an estimate of core (oxygen 1s) electron correlation greatly improves the agreement with experiment. Of the 27,245 assigned transitions in the HITRAN 92 data base for H2(O-16), the overall root mean square (rms) deviation between the computed and observed line positions is 0.125/cm. However the deviations do not correspond to a normal distribution: 69% of the lines have errors less than 0.05/cm. Overall, the agreement between the line intensities computed in the present work and those contained in the data base is quite good, however there are a significant number of line strengths which differ greatly.

  9. Adiabatic two-photon quantum gate operations using a long-range photonic bus

    NASA Astrophysics Data System (ADS)

    Hope, Anthony P.; Nguyen, Thach G.; Mitchell, Arnan; Greentree, Andrew D.

    2015-03-01

    Adiabatic techniques have much potential to realize practical and robust optical waveguide devices. Traditionally, photonic elements are limited to coupling schemes that rely on proximity to nearest neighbour elements. We combine adiabatic passage with a continuum based long-range optical bus to break free from such topological restraints and thereby outline a new approach to photonic quantum gate design. We explicitly show designs for adiabatic quantum gates that produce a Hadamard, 50:50 and 1/3:2/3 beam splitter, and non-deterministic controlled NOT gate based on planar thin, shallow ridge waveguides. Our calculations are performed under conditions of one and two-photon inputs.

  10. Arbitrary Amplitude DIA and DA Solitary Waves in Adiabatic Dusty Plasmas

    SciTech Connect

    Mamun, A. A.; Jahan, N.; Shukla, P. K.

    2008-10-15

    The dust-ion-acoustic (DIA) as well as the dust-acoustic (DA) solitary waves (SWs) in an adiabatic dusty plasma are investigated by the pseudo-potential approach which is valid for arbitrary amplitude SWs. The role of the adiabaticity of electrons and ions in modifying the basic features (polarity, speed, amplitude and width) of arbitrary amplitude DIA and DA SWs are explicitly examined. It is found that the effects of the adiabaticity of electrons and ions significantly modify the basic features (polarity, speed, amplitude and width) of the DIA and DA SWs. The implications of our results in space and laboratory dusty plasmas are briefly discussed.

  11. Surface-wave potential for triggering tectonic (nonvolcanic) tremor

    USGS Publications Warehouse

    Hill, D.P.

    2010-01-01

    Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle is anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45?? incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia mega-thrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction, ????? 0.2). However, documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, is associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (?? ~ 0.6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.

  12. Contact Potentials, Fermi Level Equilibration, and Surface Charging.

    PubMed

    Peljo, Pekka; Manzanares, José A; Girault, Hubert H

    2016-06-14

    This article focuses on contact electrification from thermodynamic equilibration of the electrochemical potential of the electrons of two conductors upon contact. The contact potential difference generated in bimetallic macro- and nanosystems, the Fermi level after the contact, and the amount and location of the charge transferred from one metal to the other are discussed. The three geometries considered are spheres in contact, Janus particles, and core-shell particles. In addition, the force between the two spheres in contact with each other is calculated and is found to be attractive. A simple electrostatic model for calculating charge distribution and potential profiles in both vacuum and an aqueous electrolyte solution is described. Immersion of these bimetallic systems into an electrolyte solution leads to the formation of an electric double layer at the metal-electrolyte interface. This Fermi level equilibration and the associated charge transfer can at least partly explain experimentally observed different electrocatalytic, catalytic, and optical properties of multimetallic nanosystems in comparison to systems composed of pure metals. For example, the shifts in the surface plasmon resonance peaks in bimetallic core-shell particles seem to result at least partly from contact charging. PMID:27176729

  13. Power-Law Scaling in the Brain Surface Electric Potential

    PubMed Central

    Miller, Kai J.; Sorensen, Larry B.; Ojemann, Jeffrey G.; den Nijs, Marcel

    2009-01-01

    Recent studies have identified broadband phenomena in the electric potentials produced by the brain. We report the finding of power-law scaling in these signals using subdural electrocorticographic recordings from the surface of human cortex. The power spectral density (PSD) of the electric potential has the power-law form from 80 to 500 Hz. This scaling index, , is conserved across subjects, area in the cortex, and local neural activity levels. The shape of the PSD does not change with increases in local cortical activity, but the amplitude, , increases. We observe a “knee” in the spectra at , implying the existence of a characteristic time scale . Below , we explore two-power-law forms of the PSD, and demonstrate that there are activity-related fluctuations in the amplitude of a power-law process lying beneath the rhythms. Finally, we illustrate through simulation how, small-scale, simplified neuronal models could lead to these power-law observations. This suggests a new paradigm of non-oscillatory “asynchronous,” scale-free, changes in cortical potentials, corresponding to changes in mean population-averaged firing rate, to complement the prevalent “synchronous” rhythm-based paradigm. PMID:20019800

  14. A geometric criterion for adiabatic chaos

    SciTech Connect

    Kaper, T.J. ); Kovacic, G. )

    1994-03-01

    Chaos in adiabatic Hamiltonian systems is a recent discovery and a pervasive phenomenon in physics. In this work, a geometric criterion is discussed based on the theory of action from classical mechanics to detect the existence of Smale horseshoe chaos in adiabatic systems. It is used to show that generic adiabatic planar Hamiltonian systems exhibit stochastic dynamics in large regions of phase space. To illustrate the method, results are obtained for three problems concerning relativistic particle dynamics, fluid mechanics, and passage through resonance, results which either could not be obtained with existing methods, or which were difficult and analytically impractical to obtain with them.

  15. Heating and cooling in adiabatic mixing process

    SciTech Connect

    Zhou Jing; Zou Xubo; Guo Guangcan; Cai Zi

    2010-12-15

    We study the effect of interaction on the temperature change in the process of adiabatic mixing of two components of Fermi gases using the real-space Bogoliubov-de Gennes method. We find that in the process of adiabatic mixing, the competition between the adiabatic expansion and the attractive interaction makes it possible to cool or heat the system depending on the strength of the interaction and the initial temperature of the system. The changes of the temperature in a bulk system and in a trapped system are investigated.

  16. Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo

    SciTech Connect

    White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; Mozyrsky, Dmitry

    2015-07-07

    Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficient as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In most cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.

  17. Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo.

    PubMed

    White, Alexander J; Gorshkov, Vyacheslav N; Tretiak, Sergei; Mozyrsky, Dmitry

    2015-07-01

    Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficient as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In most cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems. PMID:26156473

  18. Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo

    DOE PAGES

    White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; Mozyrsky, Dmitry

    2015-07-07

    Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficientmore » as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In many cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.« less

  19. Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo

    SciTech Connect

    White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; Mozyrsky, Dmitry

    2015-07-07

    Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficient as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In many cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.

  20. Adiabatic far-field sub-diffraction imaging

    PubMed Central

    Cang, Hu; Salandrino, Alessandro; Wang, Yuan; Zhang, Xiang

    2015-01-01

    The limited resolution of a conventional optical imaging system stems from the fact that the fine feature information of an object is carried by evanescent waves, which exponentially decays in space and thus cannot reach the imaging plane. We introduce here an adiabatic lens, which utilizes a geometrically conformal surface to mediate the interference of slowly decompressed electromagnetic waves at far field to form images. The decompression is satisfying an adiabatic condition, and by bridging the gap between far field and near field, it allows far-field optical systems to project an image of the near-field features directly. Using these designs, we demonstrated the magnification can be up to 20 times and it is possible to achieve sub-50 nm imaging resolution in visible. Our approach provides a means to extend the domain of geometrical optics to a deep sub-wavelength scale. PMID:26258769

  1. An exploration of the ozone dimer potential energy surface

    SciTech Connect

    Azofra, Luis Miguel; Alkorta, Ibon; Scheiner, Steve

    2014-06-28

    The (O{sub 3}){sub 2} dimer potential energy surface is thoroughly explored at the ab initio CCSD(T) computational level. Five minima are characterized with binding energies between 0.35 and 2.24 kcal/mol. The most stable may be characterized as slipped parallel, with the two O{sub 3} monomers situated in parallel planes. Partitioning of the interaction energy points to dispersion and exchange as the prime contributors to the stability, with varying contributions from electrostatic energy, which is repulsive in one case. Atoms in Molecules analysis of the wavefunction presents specific O⋯O bonding interactions, whose number is related to the overall stability of each dimer. All internal vibrational frequencies are shifted to the red by dimerization, particularly the antisymmetric stretching mode whose shift is as high as 111 cm{sup −1}. In addition to the five minima, 11 higher-order stationary points are identified.

  2. Stabilized quasi-Newton optimization of noisy potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Schaefer, Bastian; Ghasemi, S. Alireza; Roy, Shantanu; Goedecker, Stefan; Goedecker Group Team

    Optimizations of atomic positions belong to the most frequently performed tasks in electronic structure calculations. Many simulations like global minimum searches or the identification of chemical reaction pathways can require the computation of hundreds or thousands of minimizations or saddle points. To automatize these tasks, optimization algorithms must not only be efficient but also very reliable. Unfortunately, computational noise in forces and energies is inherent to electronic structure codes. This computational noise poses a severe problem to the stability of efficient optimization methods like the limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm. In this talk a recently published technique that allows to obtain significant curvature information of noisy potential energy surfaces is presented. This technique was used to construct both, a stabilized quasi-Newton minimization method and a stabilized quasi-Newton saddle finding approach. With the help of benchmarks both the minimizer and the saddle finding approach were demonstrated to be superior to comparable existing methods.

  3. Stabilized quasi-Newton optimization of noisy potential energy surfaces

    SciTech Connect

    Schaefer, Bastian; Goedecker, Stefan; Alireza Ghasemi, S.; Roy, Shantanu

    2015-01-21

    Optimizations of atomic positions belong to the most commonly performed tasks in electronic structure calculations. Many simulations like global minimum searches or characterizations of chemical reactions require performing hundreds or thousands of minimizations or saddle computations. To automatize these tasks, optimization algorithms must not only be efficient but also very reliable. Unfortunately, computational noise in forces and energies is inherent to electronic structure codes. This computational noise poses a severe problem to the stability of efficient optimization methods like the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm. We here present a technique that allows obtaining significant curvature information of noisy potential energy surfaces. We use this technique to construct both, a stabilized quasi-Newton minimization method and a stabilized quasi-Newton saddle finding approach. We demonstrate with the help of benchmarks that both the minimizer and the saddle finding approach are superior to comparable existing methods.

  4. Improved DFT Potential Energy Surfaces via Improved Densities.

    PubMed

    Kim, Min-Cheol; Park, Hansol; Son, Suyeon; Sim, Eunji; Burke, Kieron

    2015-10-01

    Density-corrected DFT is a method that cures several failures of self-consistent semilocal DFT calculations by using a more accurate density instead. A novel procedure employs the Hartree-Fock density to bonds that are more severely stretched than ever before. This substantially increases the range of accurate potential energy surfaces obtainable from semilocal DFT for many heteronuclear molecules. We show that this works for both neutral and charged molecules. We explain why and explore more difficult cases, for example, CH(+), where density-corrected DFT results are even better than sophisticated methods like CCSD. We give a simple criterion for when DC-DFT should be more accurate than self-consistent DFT that can be applied for most cases. PMID:26722874

  5. Stabilized quasi-Newton optimization of noisy potential energy surfaces.

    PubMed

    Schaefer, Bastian; Alireza Ghasemi, S; Roy, Shantanu; Goedecker, Stefan

    2015-01-21

    Optimizations of atomic positions belong to the most commonly performed tasks in electronic structure calculations. Many simulations like global minimum searches or characterizations of chemical reactions require performing hundreds or thousands of minimizations or saddle computations. To automatize these tasks, optimization algorithms must not only be efficient but also very reliable. Unfortunately, computational noise in forces and energies is inherent to electronic structure codes. This computational noise poses a severe problem to the stability of efficient optimization methods like the limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm. We here present a technique that allows obtaining significant curvature information of noisy potential energy surfaces. We use this technique to construct both, a stabilized quasi-Newton minimization method and a stabilized quasi-Newton saddle finding approach. We demonstrate with the help of benchmarks that both the minimizer and the saddle finding approach are superior to comparable existing methods.

  6. A highly accurate ab initio potential energy surface for methane

    NASA Astrophysics Data System (ADS)

    Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter

    2016-09-01

    A new nine-dimensional potential energy surface (PES) for methane has been generated using state-of-the-art ab initio theory. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit and incorporates a range of higher-level additive energy corrections. These include core-valence electron correlation, higher-order coupled cluster terms beyond perturbative triples, scalar relativistic effects, and the diagonal Born-Oppenheimer correction. Sub-wavenumber accuracy is achieved for the majority of experimentally known vibrational energy levels with the four fundamentals of 12CH4 reproduced with a root-mean-square error of 0.70 cm-1. The computed ab initio equilibrium C-H bond length is in excellent agreement with previous values despite pure rotational energies displaying minor systematic errors as J (rotational excitation) increases. It is shown that these errors can be significantly reduced by adjusting the equilibrium geometry. The PES represents the most accurate ab initio surface to date and will serve as a good starting point for empirical refinement.

  7. A highly accurate ab initio potential energy surface for methane.

    PubMed

    Owens, Alec; Yurchenko, Sergei N; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter

    2016-09-14

    A new nine-dimensional potential energy surface (PES) for methane has been generated using state-of-the-art ab initio theory. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit and incorporates a range of higher-level additive energy corrections. These include core-valence electron correlation, higher-order coupled cluster terms beyond perturbative triples, scalar relativistic effects, and the diagonal Born-Oppenheimer correction. Sub-wavenumber accuracy is achieved for the majority of experimentally known vibrational energy levels with the four fundamentals of (12)CH4 reproduced with a root-mean-square error of 0.70 cm(-1). The computed ab initio equilibrium C-H bond length is in excellent agreement with previous values despite pure rotational energies displaying minor systematic errors as J (rotational excitation) increases. It is shown that these errors can be significantly reduced by adjusting the equilibrium geometry. The PES represents the most accurate ab initio surface to date and will serve as a good starting point for empirical refinement. PMID:27634258

  8. A highly accurate ab initio potential energy surface for methane.

    PubMed

    Owens, Alec; Yurchenko, Sergei N; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter

    2016-09-14

    A new nine-dimensional potential energy surface (PES) for methane has been generated using state-of-the-art ab initio theory. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit and incorporates a range of higher-level additive energy corrections. These include core-valence electron correlation, higher-order coupled cluster terms beyond perturbative triples, scalar relativistic effects, and the diagonal Born-Oppenheimer correction. Sub-wavenumber accuracy is achieved for the majority of experimentally known vibrational energy levels with the four fundamentals of (12)CH4 reproduced with a root-mean-square error of 0.70 cm(-1). The computed ab initio equilibrium C-H bond length is in excellent agreement with previous values despite pure rotational energies displaying minor systematic errors as J (rotational excitation) increases. It is shown that these errors can be significantly reduced by adjusting the equilibrium geometry. The PES represents the most accurate ab initio surface to date and will serve as a good starting point for empirical refinement.

  9. Restructuring of an Ir(210) electrode surface by potential cycling

    PubMed Central

    Soliman, Khaled A; Kolb, Dieter M; Jacob, Timo

    2014-01-01

    Summary This study addresses the electrochemical surface faceting and restructuring of Ir(210) single crystal electrodes. Cyclic voltammetry measurements and in situ scanning tunnelling microscopy are used to probe structural changes and variations in the electrochemical behaviour after potential cycling of Ir(210) in 0.1 M H2SO4. Faceted structures are obtained electrochemically as a function of time by cycling at a scanrate of 1 V·s−1 between −0.28 and 0.70 V vs SCE, i.e., between the onset of hydrogen evolution and the surface oxidation regime. The electrochemical behaviour in sulfuric acid solution is compared with that of thermally faceted Ir(210), which shows a sharp characteristic voltammetric peak for (311) facets. Structures similar to thermally-induced faceted Ir(210) are obtained electrochemically, which typically correspond to polyoriented facets at nano-pyramids. These structures grow anisotropically in a preferred direction and reach a height of about 5 nm after 4 h of cycling. The structural changes are reflected in variations of the electrocatalytic activity towards carbon monoxide adlayer oxidation. PMID:25247118

  10. An approach to optimised calculations of the potential energy surfaces for the case of electron transfer reactions at a metal/solution interface

    NASA Astrophysics Data System (ADS)

    Bronshtein, Michael D.; Nazmutdinov, Renat R.; Schmickler, Wolfgang

    2004-12-01

    An effective computational scheme to construct the adiabatic potential energy surfaces (APES) along the reaction coordinates for an electron transfer reaction occurring by two steps at a metal electrode is considered in the framework of the Anderson-Newns model. Two Theorems have been proved which predict the existence of all possible solutions of the Anderson-Newns equations at arbitrary values of the key parameters and point out the region for each solution. Asymptotic formulas for solutions near multiple roots have been derived and combined in an effective way with numerical routines. The analysis of some important properties of the APES, which can be of interest for modelling the electrochemical electron transfer processes, is presented as well. The APES describing the reduction of Zn(II) and In(III) aqua-complexes at a mercury electrode have been built and discussed.

  11. Simulation of periodically focused, adiabatic thermal beams

    SciTech Connect

    Chen, C.; Akylas, T. R.; Barton, T. J.; Field, D. M.; Lang, K. M.; Mok, R. V.

    2012-12-21

    Self-consistent particle-in-cell simulations are performed to verify earlier theoretical predictions of adiabatic thermal beams in a periodic solenoidal magnetic focusing field [K.R. Samokhvalova, J. Zhou and C. Chen, Phys. Plasma 14, 103102 (2007); J. Zhou, K.R. Samokhvalova and C. Chen, Phys. Plasma 15, 023102 (2008)]. In particular, results are obtained for adiabatic thermal beams that do not rotate in the Larmor frame. For such beams, the theoretical predictions of the rms beam envelope, the conservations of the rms thermal emittances, the adiabatic equation of state, and the Debye length are verified in the simulations. Furthermore, the adiabatic thermal beam is found be stable in the parameter regime where the simulations are performed.

  12. Adiabatic Motion of Fault Tolerant Qubits

    NASA Astrophysics Data System (ADS)

    Drummond, David Edward

    This work proposes and analyzes the adiabatic motion of fault tolerant qubits in two systems as candidates for the building blocks of a quantum computer. The first proposal examines a pair of electron spins in double quantum dots, finding that the leading source of decoherence, hyperfine dephasing, can be suppressed by adiabatic rotation of the dots in real space. The additional spin-orbit effects introduced by this motion are analyzed, simulated, and found to result in an infidelity below the error-correction threshold. The second proposal examines topological qubits formed by Majorana zero modes theorized to exist at the ends of semiconductor nanowires coupled to conventional superconductors. A model is developed to design adiabatic movements of the Majorana bound states to produce entangled qubits. Analysis and simulations indicate that these adiabatic operations can also be used to demonstrate entanglement experimentally by testing Bell's theorem.

  13. General conditions for quantum adiabatic evolution

    SciTech Connect

    Comparat, Daniel

    2009-07-15

    Adiabaticity occurs when, during its evolution, a physical system remains in the instantaneous eigenstate of the Hamiltonian. Unfortunately, existing results, such as the quantum adiabatic theorem based on a slow down evolution [H({epsilon}t),{epsilon}{yields}0], are insufficient to describe an evolution driven by the Hamiltonian H(t) itself. Here we derive general criteria and exact bounds, for the state and its phase, ensuring an adiabatic evolution for any Hamiltonian H(t). As a corollary, we demonstrate that the commonly used condition of a slow Hamiltonian variation rate, compared to the spectral gap, is indeed sufficient to ensure adiabaticity but only when the Hamiltonian is real and nonoscillating (for instance, containing exponential or polynomial but no sinusoidal functions)

  14. Adiabatic Quantum Search in Open Systems

    NASA Astrophysics Data System (ADS)

    Wild, Dominik S.; Gopalakrishnan, Sarang; Knap, Michael; Yao, Norman Y.; Lukin, Mikhail D.

    2016-10-01

    Adiabatic quantum algorithms represent a promising approach to universal quantum computation. In isolated systems, a key limitation to such algorithms is the presence of avoided level crossings, where gaps become extremely small. In open quantum systems, the fundamental robustness of adiabatic algorithms remains unresolved. Here, we study the dynamics near an avoided level crossing associated with the adiabatic quantum search algorithm, when the system is coupled to a generic environment. At zero temperature, we find that the algorithm remains scalable provided the noise spectral density of the environment decays sufficiently fast at low frequencies. By contrast, higher order scattering processes render the algorithm inefficient at any finite temperature regardless of the spectral density, implying that no quantum speedup can be achieved. Extensions and implications for other adiabatic quantum algorithms will be discussed.

  15. Experimental demonstration of composite adiabatic passage

    NASA Astrophysics Data System (ADS)

    Schraft, Daniel; Halfmann, Thomas; Genov, Genko T.; Vitanov, Nikolay V.

    2013-12-01

    We report an experimental demonstration of composite adiabatic passage (CAP) for robust and efficient manipulation of two-level systems. The technique represents a altered version of rapid adiabatic passage (RAP), driven by composite sequences of radiation pulses with appropriately chosen phases. We implement CAP with radio-frequency pulses to invert (i.e., to rephase) optically prepared spin coherences in a Pr3+:Y2SiO5 crystal. We perform systematic investigations of the efficiency of CAP and compare the results with conventional π pulses and RAP. The data clearly demonstrate the superior features of CAP with regard to robustness and efficiency, even under conditions of weakly fulfilled adiabaticity. The experimental demonstration of composite sequences to support adiabatic passage is of significant relevance whenever a high efficiency or robustness of coherent excitation processes need to be maintained, e.g., as required in quantum information technology.

  16. Adiabatic limits on Riemannian Heisenberg manifolds

    SciTech Connect

    Yakovlev, A A

    2008-02-28

    An asymptotic formula is obtained for the distribution function of the spectrum of the Laplace operator, in the adiabatic limit for the foliation defined by the orbits of an invariant flow on a compact Riemannian Heisenberg manifold. Bibliography: 21 titles.

  17. A new diabatic representation of the coupled potential energy surfaces for Na(3p P-2) + H2 yields Na(3s S-2) + H2 or NaH + H

    NASA Technical Reports Server (NTRS)

    Halvick, Philippe; Truhlar, Donald G.

    1992-01-01

    A diabatic representation is presented of the coupled potential-energy surfaces for Na(3p P-2) + H2 yields Na (3s S-2) + H2 or NaH + H. The representation is designed to yield, upon diagonalization, realistic values for the two lowest energy adiabatic states at both asymptotes of the chemical reaction as well as near the conical intersection in the three-body interaction region. It is economical to evaluate and portable. It is suitable for dynamics calculations on both the quenching process and the electronically nonadiabatic chemical reaction.

  18. Microscopically derived potential energy surfaces from mostly structural considerations

    NASA Astrophysics Data System (ADS)

    Ermamatov, M. J.; Hess, Peter O.

    2016-08-01

    A simple procedure to estimate the quadrupole Potential-Energy-Surface (PES) is presented, using mainly structural information, namely the content of the shell model space and the Pauli exclusion principle. Further microscopic properties are implicitly contained through the use of results from the Möller and Nix tables or experimental information. A mapping to the geometric potential is performed yielding the PES. The General Collective Model is used in order to obtain an estimate on the spectrum and quadrupole transitions, adjusting only the mass parameter. First, we test the conjecture on known nuclei, deriving the PES and compare them to known data. We will see that the PES approximates very well the structure expected. Having acquired a certain confidence, we predict the PES of several chain of isotopes of heavy and super-heavy nuclei and at the end we investigate the structure of nuclei in the supposed island of stability. One of the main points to show is that simple assumptions can provide already important information on the structure of nuclei outside known regions and that spectra and electromagnetic transitions can be estimated without using involved calculations and assumptions. The procedure does not allow to calculate binding energies. The method presented can be viewed as a starting point for further improvements.

  19. Adiabatic Demagnetization Cooler For Far Infrared Detector

    NASA Astrophysics Data System (ADS)

    Sato, Akio; Yazawa, Takashi; Yamamoto, Junya

    1988-11-01

    An small adiabatic demagnetization cooler for an astronomical far infrared detector has been built. Single crystals of manganese ammonium sulphate and chromium potassium alum, were prepared as magnetic substances. The superconducting magnet was indirectly cooled and operated by small current up to 13.3 A, the maximum field being 3.5 T. As a preliminary step, adiabatic demagnetization to zero field was implemented. The lowest temperature obtained was 0.5 K, for 5.0 K initial temperature.

  20. Topological States and Adiabatic Pumping in Quasicrystals

    NASA Astrophysics Data System (ADS)

    Kraus, Yaakov; Lahini, Yoav; Ringel, Zohar; Verbin, Mor; Zilberberg, Oded

    2012-02-01

    We find a connection between quasicrystals and topological matter, namely that quasicrystals exhibit non-trivial topological phases attributed to dimensions higher than their own [1]. Quasicrystals are materials which are neither ordered nor disordered, i.e. they exhibit only long-range order [2]. This long-range order is usually expressed as a projection from a higher dimensional ordered system. Recently, the unrelated discovery of Topological Insulators [3] defined a new type of materials classified by their topology. We show theoretically and experimentally using photonic lattices, that one-dimensional quasicrystals exhibit topologically-protected boundary states equivalent to the edge states of the two-dimensional Integer Quantum Hall Effect. We harness this property to adiabatically pump light across the quasicrystal, and generalize our results to higher dimensional systems. Hence, quasicrystals offer a new platform for the study of topological phases while their topology may better explain their surface properties.[4pt] [1] Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and O. Zilberberg, arXiv:1109.5983 (2011).[0pt] [2] C. Janot, Quasicrystals (Clarendon, Oxford, 1994), 2nd ed.[0pt] [3] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

  1. Symmetry of the Adiabatic Condition in the Piston Problem

    ERIC Educational Resources Information Center

    Anacleto, Joaquim; Ferreira, J. M.

    2011-01-01

    This study addresses a controversial issue in the adiabatic piston problem, namely that of the piston being adiabatic when it is fixed but no longer so when it can move freely. It is shown that this apparent contradiction arises from the usual definition of adiabatic condition. The issue is addressed here by requiring the adiabatic condition to be…

  2. Hierarchical theory of quantum adiabatic evolution

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Gong, Jiangbin; Wu, Biao

    2014-12-01

    Quantum adiabatic evolution is a dynamical evolution of a quantum system under slow external driving. According to the quantum adiabatic theorem, no transitions occur between nondegenerate instantaneous energy eigenstates in such a dynamical evolution. However, this is true only when the driving rate is infinitesimally small. For a small nonzero driving rate, there are generally small transition probabilities between the energy eigenstates. We develop a classical mechanics framework to address the small deviations from the quantum adiabatic theorem order by order. A hierarchy of Hamiltonians is constructed iteratively with the zeroth-order Hamiltonian being determined by the original system Hamiltonian. The kth-order deviations are governed by a kth-order Hamiltonian, which depends on the time derivatives of the adiabatic parameters up to the kth-order. Two simple examples, the Landau-Zener model and a spin-1/2 particle in a rotating magnetic field, are used to illustrate our hierarchical theory. Our analysis also exposes a deep, previously unknown connection between classical adiabatic theory and quantum adiabatic theory.

  3. Laboratory Measurements of Adiabatic and Isothermal Processes

    NASA Astrophysics Data System (ADS)

    McNairy, W. W.

    1997-04-01

    Adiabatic and isothermal measurements on various of gases are made possible by using the Adiabatic Gas Law apparatus made by PASCO Scientific(Much of this work was published by the author in "The Physics Teacher", vol. 34, March 1996, p. 178-80.). By using a computer interface, undergraduates are able to data for monatomic, diatomic and polyatomic gases for both compression and expansion processes. Designed principally to obtain adiabatic data, the apparatus may be easily modified for use in isothermal processes. The various sets of data are imported into a spreadsheet program where fits may be made to the ideal gas law and the adiabatic gas law. Excellent results are obtained for the natural logarithm of pressure versus the natural logarithm of volume for both the isothermal data (expected slope equal to -1 in all cases) and the adiabatic data (slope equal to -1 times the ratio of specific heats for the particular gas). An overview of the lab procedure used at VMI will be presented along with data obtained for several adiabatic and isothermal processes.

  4. Excitation energies along a range-separated adiabatic connection

    SciTech Connect

    Rebolini, Elisa Toulouse, Julien Savin, Andreas; Teale, Andrew M.; Helgaker, Trygve

    2014-07-28

    We present a study of the variation of total energies and excitation energies along a range-separated adiabatic connection. This connection links the non-interacting Kohn–Sham electronic system to the physical interacting system by progressively switching on the electron–electron interactions whilst simultaneously adjusting a one-electron effective potential so as to keep the ground-state density constant. The interactions are introduced in a range-dependent manner, first introducing predominantly long-range, and then all-range, interactions as the physical system is approached, as opposed to the conventional adiabatic connection where the interactions are introduced by globally scaling the standard Coulomb interaction. Reference data are reported for the He and Be atoms and the H{sub 2} molecule, obtained by calculating the short-range effective potential at the full configuration-interaction level using Lieb's Legendre-transform approach. As the strength of the electron–electron interactions increases, the excitation energies, calculated for the partially interacting systems along the adiabatic connection, offer increasingly accurate approximations to the exact excitation energies. Importantly, the excitation energies calculated at an intermediate point of the adiabatic connection are much better approximations to the exact excitation energies than are the corresponding Kohn–Sham excitation energies. This is particularly evident in situations involving strong static correlation effects and states with multiple excitation character, such as the dissociating H{sub 2} molecule. These results highlight the utility of long-range interacting reference systems as a starting point for the calculation of excitation energies and are of interest for developing and analyzing practical approximate range-separated density-functional methodologies.

  5. Suppression of repeated adiabatic shear banding by dynamic large strain extrusion machining

    NASA Astrophysics Data System (ADS)

    Cai, S. L.; Dai, L. H.

    2014-12-01

    High speed machining (HSM) is an advanced production technology with great future potential. Chip serration or segmentation is a commonly observed phenomenon during high speed machining of metals, which is found to be ascribed to a repeated shear band formation fueled by thermo-plastic instability occurring within the primary shear zone. The occurrence of serrated chips leads to the cutting force fluctuation, decreased tool life, degradation of the surface finish and less accuracy in machine parts during high speed machining. Hence, understanding and controlling serrated chip formation in HSM are extremely important. In this work, a novel dynamic large strain extrusion machining (DLSEM) technique is developed for suppressing formation of serrated chips. The systematic DLSEM experiments of Ti-6Al-4V and Inconel 718 alloy with varying degrees of imposed extrusion constraint were carried out. It is found that there is a prominent chip morphology transition from serrated to continuous state and shear band spacing decreases with the constraint degree increasing. In order to uncover underlying mechanism of the imposed extrusion constraint suppressing repeated adiabatic shear banding in DLSEM, new theoretical models are developed where the effects of extrusion constraint, material convection due to chip flow and momentum diffusion during shear band propagation are included. The analytical expressions for the onset criterion of adiabatic shear band and shear band spacing in DLSEM are obtained. The theoretical predictions are in agreement with the experimental results.

  6. Surface electrochemical properties of red mud (bauxite residue): zeta potential and surface charge density.

    PubMed

    Liu, Yanju; Naidu, Ravendra; Ming, Hui

    2013-03-15

    The surface electrochemical properties of red mud (bauxite residue) from different alumina refineries in Australia and China were studied by electrophoresis and measuring surface charge density obtained from acid/base potentiometric titrations. The electrophoretic properties were measured from zeta potentials obtained in the presence of 0.01 and 0.001 M KNO(3) over a wide pH range (3.5-10) by titration. The isoelectric point (IEP) values were found to vary from 6.35 to 8.70 for the red mud samples. Further investigation into the surface charge density of one sample (RRM) by acid/base potentiometric titration showed similar results for pH(PZC) with pH(IEP) obtained from electrokinetic measurements. The pH(IEP) determined from zeta potential measurements can be used as a characteristic property of red mud. The minerals contained in red mud contributed to the different values of pH(IEP) of samples obtained from different refineries. Different relationships of pH(IEP) with Al/Fe and Al/Si ratios (molar basis) were also found for different red mud samples. PMID:23270758

  7. Analysis of hyperspherical adiabatic curves of helium: A classical dynamics study

    NASA Astrophysics Data System (ADS)

    Simonović, N. S.; Solov'ev, E. A.

    2013-05-01

    adiabatic lines that are related to different types of PO cross mutually. Finally, a class of hidden crossings which is located near the saddle point of the potential is related to the Langmuir orbit. The large spacing between adiabatic curves at the positions of these hidden crossings is explained by high instability of the Langmuir PO compared to the AS and ASC POs.

  8. Constrained Broyden Dimer Method with Bias Potential for Exploring Potential Energy Surface of Multistep Reaction Process.

    PubMed

    Shang, Cheng; Liu, Zhi-Pan

    2012-07-10

    To predict the chemical activity of new matter is an ultimate goal in chemistry. The identification of reaction pathways using modern quantum mechanics calculations, however, often requires a high demand in computational power and good chemical intuition on the reaction. Here, a new reaction path searching method is developed by combining our recently developed transition state (TS) location method, namely, the constrained Broyden dimer method, with a basin-filling method via bias potentials, which allows the system to walk out from the energy traps at a given reaction direction. In the new method, the reaction path searching starts from an initial state without the need for preguessing the TS-like or final state structure and can proceed iteratively to the final state by locating all related TSs and intermediates. In each elementary reaction step, a reaction direction, such as a bond breaking, needs to be specified, the information of which is refined and preserved as a normal mode through biased dimer rotation. The method is tested successfully on the Baker reaction system (50 elementary reactions) with good efficiency and stability and is also applied to the potential energy surface exploration of multistep reaction processes in the gas phase and on the surface. The new method can be applied for the computational screening of new catalytic materials with a minimum requirement of chemical intuition.

  9. Use of models to map potential capture of surface water

    USGS Publications Warehouse

    Leake, Stanley A.

    2006-01-01

    The effects of ground-water withdrawals on surface-water resources and riparian vegetation have become important considerations in water-availability studies. Ground water withdrawn by a well initially comes from storage around the well, but with time can eventually increase inflow to the aquifer and (or) decrease natural outflow from the aquifer. This increased inflow and decreased outflow is referred to as “capture.” For a given time, capture can be expressed as a fraction of withdrawal rate that is accounted for as increased rates of inflow and decreased rates of outflow. The time frames over which capture might occur at different locations commonly are not well understood by resource managers. A ground-water model, however, can be used to map potential capture for areas and times of interest. The maps can help managers visualize the possible timing of capture over large regions. The first step in the procedure to map potential capture is to run a ground-water model in steady-state mode without withdrawals to establish baseline total flow rates at all sources and sinks. The next step is to select a time frame and appropriate withdrawal rate for computing capture. For regional aquifers, time frames of decades to centuries may be appropriate. The model is then run repeatedly in transient mode, each run with one well in a different model cell in an area of interest. Differences in inflow and outflow rates from the baseline conditions for each model run are computed and saved. The differences in individual components are summed and divided by the withdrawal rate to obtain a single capture fraction for each cell. Values are contoured to depict capture fractions for the time of interest. Considerations in carrying out the analysis include use of realistic physical boundaries in the model, understanding the degree of linearity of the model, selection of an appropriate time frame and withdrawal rate, and minimizing error in the global mass balance of the model.

  10. Mapping Resources Potential of the Lunar Surface for Human Exploration

    NASA Astrophysics Data System (ADS)

    Garvin, James

    2005-07-01

    We propose to use the ACS/HRC to delineate UV through visible color units at three test sites on the lunar surface for the purpose of identifying localized areas enriched in potential resources, including TiO2. This pathfinding experiment will make use of HST's unique high resolution imaging capabilities in the near UV. We will observe the Apollo 15 and 17 sites to establish an empirical calibration against sampled lunar soils. We will then observe the Aristarchus Plateau in search of regions enriched in TiO2 at levels that could permit in situ resources utilization activities that support sustained human exploration. Precision mapping of TiO2 abundance and other chemical proxies by virtue of HST's high angular resolution in near UV wavelengths will extend lower resolution Visible-NIR results obtained from orbit by Clementine, and set the stage for future orbital surveys later in the decade. Understanding whether there are lunar near-side sites with adequate resource potential to target human "sorties" and related robotic precursor missions represents an important decision point in NASA's implementation of the President's Vision for Space Exploration. The proposed HST ACS/HRC test data directly support near-term engineering trades associated with the optimal location for the first human return missions to the Moon. No past, current, or planned future lunar orbiting spacecraft will have the ability to investigate the near UV aspects of the lunar spectrum at such scales { 50m}, so the results of the proposed HST observations are unique and relevant to NASA's mission.

  11. Efficient characterization of stationary points on potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Deglmann, Peter; Furche, Filipp

    2002-12-01

    Traditional methods for characterizing an optimized molecular structure as a minimum or as a saddle point on the nuclear potential energy surface require the full Hessian. However, if f denotes the number of nuclear degrees of freedom, a full Hessian calculation is more expensive than a single point geometry optimization step by the order of magnitude of f. Here we present a method which allows to determine the lowest vibrational frequencies of a molecule at significantly lower cost. Our approach takes advantage of the fact that only a few perturbed first-order wave functions need to be computed in an iterative diagonalization scheme instead of f ones in a full Hessian calculation. We outline an implementation for Hartree-Fock and density functional methods. Applications indicate a scaling similar to that of a single point energy or gradient calculation, but with a larger prefactor. Depending on the number of soft vibrational modes, the iterative method becomes effective for systems with more than 30-50 atoms.

  12. Standardization of surface potential measurements of graphene domains

    PubMed Central

    Panchal, Vishal; Pearce, Ruth; Yakimova, Rositza; Tzalenchuk, Alexander; Kazakova, Olga

    2013-01-01

    We compare the three most commonly used scanning probe techniques to obtain a reliable value of the work function in graphene domains of different thickness. The surface potential (SP) of graphene is directly measured in Hall bar geometry via a combination of electrical functional microscopy and spectroscopy techniques, which enables calibrated work function measurements of graphene domains in ambient conditions with values Φ1LG ~4.55 ± 0.02 eV and Φ2LG ~ 4.44 ± 0.02 eV for single- and bi-layer, respectively. We demonstrate that frequency-modulated Kelvin probe force microscopy (FM-KPFM) provides more accurate measurement of the SP than amplitude-modulated (AM)-KPFM. The discrepancy between experimental results obtained by different techniques is discussed. In addition, we use FM-KPFM for contactless measurements of the specific components of the device resistance. We show a strong non-Ohmic behavior of the electrode-graphene contact resistance and extract the graphene channel resistivity. PMID:24008915

  13. An Accurate Potential Energy Surface for H2O

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    We have carried out extensive high quality ab initio electronic structure calculations of the ground state potential energy surface (PES) and dipole moment function (DMF) for H2O. A small adjustment is made to the PES to improve the agreement of line positions from theory and experiment. The theoretical line positions are obtained from variational ro-vibrational calculations using the exact kinetic energy operator. For the lines being fitted, the root-mean-square error was reduced from 6.9 to 0.08 /cm. We were then able to match 30,092 of the 30,117 lines from the HITRAN 96 data base to theoretical lines, and 80% of the line positions differed less than 0.1 /cm. About 3% of the line positions in the experimental data base appear to be incorrect. Theory predicts the existence of many additional weak lines with intensities above the cutoff used in the data base. To obtain results of similar accuracy for HDO, a mass dependent correction to the PH is introduced and is parameterized by simultaneously fitting line positions for HDO and D2O. The mass dependent PH has good predictive value for T2O and HTO. Nonadiabatic effects are not explicitly included. Line strengths for vibrational bands summed over rotational levels usually agree well between theory and experiment, but individual line strengths can differ greatly. A high temperature line list containing about 380 million lines has been generated using the present PES and DMF

  14. Surface potential determination in metal-oxide-semiconductor capacitors

    NASA Astrophysics Data System (ADS)

    Moragues, J. M.; Ciantar, E.; Jerisian, R.; Sagnes, B.; Oualid, J.

    1994-11-01

    Different methods using the relationship between surface potential Psi(sub S) and gate bias V(sub G) in metal-oxide-semiconductor (MOS) capacitors have been compared. These methods can be applied even if the doping profile is very abrupt and the interface state density very high. The shifts of midgap, flatband, and threshold voltages, observed after Fowler-Nordheim electron injection, and deduced from the various Psi(sub S(V (sub G)) relationships obtained by these different methods, are in good agreement. These shifts give the number of effective oxide trapped charges (N(sub ox)) per unit area and acceptor-like and donor-like interface states (N(sub SS)A and N(sub SS)D) which are created during the electron injection. We reveal that the number of positive charges created in the gate oxide, unlike the number of generated interface states, strongly depends on the position of the post-metallization annealing step in the process. After relaxation of the stressed MOS capacitors, most of the generated positive charges can be attributed, in the MOS capacitors studied, to hydrogen-related species. It seems that the interface states are essentially created by the recombination of holes generated by electron impact.

  15. Graph isomorphism and adiabatic quantum computing

    NASA Astrophysics Data System (ADS)

    Gaitan, Frank; Clark, Lane

    2014-02-01

    In the graph isomorphism (GI) problem two N-vertex graphs G and G' are given and the task is to determine whether there exists a permutation of the vertices of G that preserves adjacency and transforms G →G'. If yes, then G and G' are said to be isomorphic; otherwise they are nonisomorphic. The GI problem is an important problem in computer science and is thought to be of comparable difficulty to integer factorization. In this paper we present a quantum algorithm that solves arbitrary instances of GI and which also provides an approach to determining all automorphisms of a given graph. We show how the GI problem can be converted to a combinatorial optimization problem that can be solved using adiabatic quantum evolution. We numerically simulate the algorithm's quantum dynamics and show that it correctly (i) distinguishes nonisomorphic graphs; (ii) recognizes isomorphic graphs and determines the permutation(s) that connect them; and (iii) finds the automorphism group of a given graph G. We then discuss the GI quantum algorithm's experimental implementation, and close by showing how it can be leveraged to give a quantum algorithm that solves arbitrary instances of the NP-complete subgraph isomorphism problem. The computational complexity of an adiabatic quantum algorithm is largely determined by the minimum energy gap Δ (N) separating the ground and first-excited states in the limit of large problem size N ≫1. Calculating Δ (N) in this limit is a fundamental open problem in adiabatic quantum computing, and so it is not possible to determine the computational complexity of adiabatic quantum algorithms in general, nor consequently, of the specific adiabatic quantum algorithms presented here. Adiabatic quantum computing has been shown to be equivalent to the circuit model of quantum computing, and so development of adiabatic quantum algorithms continues to be of great interest.

  16. Detectability of Potentially Entrained Microorganisms at the Surface of Europa

    NASA Technical Reports Server (NTRS)

    Dalton, J. B.

    2002-01-01

    New spectral measurements of bacteria taken at cryogenic temperatures provide insights on the surface composition of Europa as well as the detectability of microbes on the surface. Additional information is contained in the original extended abstract.

  17. Initial adsorption of O 2 on Si(1 0 0): Non-adiabaticity originating both from a discrete and a continuous set of electronic excitations

    NASA Astrophysics Data System (ADS)

    Hellman, A.

    2009-01-01

    The initial adsorption of O2 on Si(1 0 0) is investigated by density-functional theory calculations. The potential energy surface shows strong corrugations which can be interpreted as precursor states, however, there are also large areas where adsorption proceeds without a barrier. Furthermore, the initial sticking probability as a function of translational energy using first-principles molecular dynamics is calculated. The result is in disagreement with measurements of sticking probability which vary from high-low-high values as the translational energy of the oxygen molecules increase. A simple non-adiabatic model is put-forth that explains not only the measured sticking probability, but also have a novel interpretation of the increased sticking probability owing to tensile stress. The model deals with non-adiabatic effects originating both from a discrete and continuous set of electronic excitations. The implications are general and can be applied to other systems.

  18. Water adsorption behavior on metal surfaces and its influence on surface potential studied by in situ SPM

    NASA Astrophysics Data System (ADS)

    Guo, L. Q.; Zhao, X. M.; Bai, Y.; Qiao, L. J.

    2012-09-01

    The water adsorption behavior on the surfaces of chromium, copper and gold and its effect on the surface potential at various relative humidity were studied by in situ scanning Kelvin probe force microscopy (SKPFM) combined with force calibration. The thickness of water layer on different surfaces was obtained from the force-distance curve. It increases with the rise of humidity. The Volta potential map was measured using SKPFM within a wide humidity range of 20-100% as a function of the thickness of water layers. The surface potential decreases with the increasing thickness of water layers on the metal surfaces. The difference in the water adsorption behavior and its effect on surface potential originates from the different surface properties of three metals, such as the roughness and contact angle.

  19. Quantum dynamics on a three-sheeted six-dimensional ab initio potential-energy surface of the phosphine cation: Simulation of the photoelectron spectrum and the ultrafast radiationless decay dynamics

    SciTech Connect

    Bhattacharyya, Swarnendu Domcke, Wolfgang; Dai, Zuyang

    2015-11-21

    A diabatic three-sheeted six-dimensional potential-energy surface has been constructed for the ground state and the lowest excited state of the PH{sub 3}{sup +} cation. Coupling terms of Jahn-Teller and pseudo-Jahn-Teller origin up to eighth order had to be included to describe the pronounced anharmonicity of the surface due to multiple conical intersections. The parameters of the diabatic Hamiltonian have been optimized by fitting the eigenvalues of the potential-energy matrix to ab initio data calculated at the CASSCF/MRCI level employing the correlation-consistent triple-ζ basis. The theoretical photoelectron spectrum of phosphine and the non-adiabatic nuclear dynamics of the phosphine cation have been computed by propagating nuclear wave packets with the multiconfiguration time-dependent Hartree method. The theoretical photoelectron bands obtained by Fourier transformation of the autocorrelation function agree well with the experimental results. It is shown that the ultrafast non-radiative decay dynamics of the first excited state of PH{sub 3}{sup +} is dominated by the exceptionally strong Jahn-Teller coupling of the asymmetric bending vibrational mode together with a hyperline of conical intersections with the electronic ground state induced by the umbrella mode. Time-dependent population probabilities have been computed for the three adiabatic electronic states. The non-adiabatic Jahn-Teller dynamics within the excited state takes place within ≈5 fs. Almost 80% of the excited-state population decay to the ground state within about 10 fs. The wave packets become highly complex and delocalized after 20 fs and no further significant transfer of electronic population seems to occur up to 100 fs propagation time.

  20. The stability of TiC surfaces in the environment with various carbon chemical potential and surface defects

    NASA Astrophysics Data System (ADS)

    Mao, Jianjun; Li, Shasha; Zhang, Yanxing; Chu, Xingli; Yang, Zongxian

    2016-11-01

    The low-index surfaces of TiC are studied using the first-principles method based on density functional theory. The surface energy of TiC is calculated with consideration of the surface orientation, termination and carbon chemical potential, as well as the influence of surface vacancy defects of various concentrations. It is found that the surface relaxation results in rumpling of the (001) and (110) surfaces and the contraction of the (111) surfaces. The relative stability of the low-index surfaces of TiC varies with the carbon chemical potential, surface defects and vacancy concentrations, which will have an effect on the nanoparticles morphology and catalytic performance in practical applications. The results will serve as a guidance for understanding and designing novel TiC nanocatalysts with special morphology.

  1. Energy efficiency of adiabatic superconductor logic

    NASA Astrophysics Data System (ADS)

    Takeuchi, Naoki; Yamanashi, Yuki; Yoshikawa, Nobuyuki

    2015-01-01

    Adiabatic superconductor logic (ASL), including adiabatic quantum-flux-parametron (AQFP) logic, exhibits high energy efficiency because its bit energy can be decreased below the thermal energy through adiabatic switching operations. In the present paper, we present the general scaling laws of ASL and compare the energy efficiency of ASL with those of other energy-efficient logics. Also, we discuss the minimum energy-delay product (EDP) of ASL at finite temperature. Our study shows that there is a maximum temperature at which the EDP can reach the quantum limit given by ħ/2, which is dependent on the superconductor material and the Josephson junction quality, and that it is reasonable to operate ASL at cryogenic temperatures in order to achieve an EDP that approaches ħ/2.

  2. Adiabatic approximation for the density matrix

    NASA Astrophysics Data System (ADS)

    Band, Yehuda B.

    1992-05-01

    An adiabatic approximation for the Liouville density-matrix equation which includes decay terms is developed. The adiabatic approximation employs the eigenvectors of the non-normal Liouville operator. The approximation is valid when there exists a complete set of eigenvectors of the non-normal Liouville operator (i.e., the eigenvectors span the density-matrix space), the time rate of change of the Liouville operator is small, and an auxiliary matrix is nonsingular. Numerical examples are presented involving efficient population transfer in a molecule by stimulated Raman scattering, with the intermediate level of the molecule decaying on a time scale that is fast compared with the pulse durations of the pump and Stokes fields. The adiabatic density-matrix approximation can be simply used to determine the density matrix for atomic or molecular systems interacting with cw electromagnetic fields when spontaneous emission or other decay mechanisms prevail.

  3. Adiabaticity and viscosity in deep mantle convection

    NASA Technical Reports Server (NTRS)

    Quareni, F.; Yuen, D. A.; Saari, M. R.

    1986-01-01

    A study has been conducted of steady convection with adiabatic and viscous heating for variable viscosity in the Boussinesq limit using the mean-field theory. A strong nonlinear coupling is found between the thermodynamic constants governing adiabatic heating and the rheological parameters. The range of rheological values for which adiabaticity would occur throughout the mantle has been established. Too large an activation volume, greater than 6 cu cm/mol for the cases examined, would produce unreasonably high temperature at the bottom of the mantle (greater than 6000 K) and superadiabatic gradients, especially in the lower mantle. Radiogenic heating plays a profound role in controlling dynamically mantle temperatures. Present values for the averaged mantle heat production would yield objectionably high temperatures in the lower mantle.

  4. Nonadiabatic exchange dynamics during adiabatic frequency sweeps

    NASA Astrophysics Data System (ADS)

    Barbara, Thomas M.

    2016-04-01

    A Bloch equation analysis that includes relaxation and exchange effects during an adiabatic frequency swept pulse is presented. For a large class of sweeps, relaxation can be incorporated using simple first order perturbation theory. For anisochronous exchange, new expressions are derived for exchange augmented rotating frame relaxation. For isochronous exchange between sites with distinct relaxation rate constants outside the extreme narrowing limit, simple criteria for adiabatic exchange are derived and demonstrate that frequency sweeps commonly in use may not be adiabatic with regard to exchange unless the exchange rates are much larger than the relaxation rates. Otherwise, accurate assessment of the sensitivity to exchange dynamics will require numerical integration of the rate equations. Examples of this situation are given for experimentally relevant parameters believed to hold for in-vivo tissue. These results are of significance in the study of exchange induced contrast in magnetic resonance imaging.

  5. On adiabatic invariant in generalized Galileon theories

    SciTech Connect

    Ema, Yohei; Jinno, Ryusuke; Nakayama, Kazunori; Mukaida, Kyohei E-mail: jinno@hep-th.phys.s.u-tokyo.ac.jp E-mail: kazunori@hep-th.phys.s.u-tokyo.ac.jp

    2015-10-01

    We consider background dynamics of generalized Galileon theories in the context of inflation, where gravity and inflaton are non-minimally coupled to each other. In the inflaton oscillation regime, the Hubble parameter and energy density oscillate violently in many cases, in contrast to the Einstein gravity with minimally coupled inflaton. However, we find that there is an adiabatic invariant in the inflaton oscillation regime in any generalized Galileon theory. This adiabatic invariant is useful in estimating the expansion law of the universe and also the particle production rate due to the oscillation of the Hubble parameter.

  6. Spontaneous emission in stimulated Raman adiabatic passage

    SciTech Connect

    Ivanov, P. A.; Vitanov, N. V.; Bergmann, K.

    2005-11-15

    This work explores the effect of spontaneous emission on the population transfer efficiency in stimulated Raman adiabatic passage (STIRAP). The approach uses adiabatic elimination of weakly coupled density matrix elements in the Liouville equation, from which a very accurate analytic approximation is derived. The loss of population transfer efficiency is found to decrease exponentially with the factor {omega}{sub 0}{sup 2}/{gamma}, where {gamma} is the spontaneous emission rate and {omega}{sub 0} is the peak Rabi frequency. The transfer efficiency increases with the pulse delay and reaches a steady value. For large pulse delay and large spontaneous emission rate STIRAP degenerates into optical pumping.

  7. Complexity of the Quantum Adiabatic Algorithm

    NASA Technical Reports Server (NTRS)

    Hen, Itay

    2013-01-01

    The Quantum Adiabatic Algorithm (QAA) has been proposed as a mechanism for efficiently solving optimization problems on a quantum computer. Since adiabatic computation is analog in nature and does not require the design and use of quantum gates, it can be thought of as a simpler and perhaps more profound method for performing quantum computations that might also be easier to implement experimentally. While these features have generated substantial research in QAA, to date there is still a lack of solid evidence that the algorithm can outperform classical optimization algorithms.

  8. A global potential energy surface and dipole moment surface for silane

    SciTech Connect

    Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Thiel, Walter

    2015-12-28

    A new nine-dimensional potential energy surface (PES) and dipole moment surface (DMS) for silane have been generated using high-level ab initio theory. The PES, CBS-F12{sup HL}, reproduces all four fundamental term values for {sup 28}SiH{sub 4} with sub-wavenumber accuracy, resulting in an overall root-mean-square error of 0.63 cm{sup −1}. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit, and incorporates a range of higher-level additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, and scalar relativistic effects. Systematic errors in computed intra-band rotational energy levels are reduced by empirically refining the equilibrium geometry. The resultant Si–H bond length is in excellent agreement with previous experimental and theoretical values. Vibrational transition moments, absolute line intensities of the ν{sub 3} band, and the infrared spectrum for {sup 28}SiH{sub 4} including states up to J = 20 and vibrational band origins up to 5000 cm{sup −1} are calculated and compared with available experimental results. The DMS tends to marginally overestimate the strength of line intensities. Despite this, band shape and structure across the spectrum are well reproduced and show good agreement with experiment. We thus recommend the PES and DMS for future use.

  9. A global potential energy surface and dipole moment surface for silane

    NASA Astrophysics Data System (ADS)

    Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Thiel, Walter

    2015-12-01

    A new nine-dimensional potential energy surface (PES) and dipole moment surface (DMS) for silane have been generated using high-level ab initio theory. The PES, CBS-F12HL, reproduces all four fundamental term values for 28SiH4 with sub-wavenumber accuracy, resulting in an overall root-mean-square error of 0.63 cm-1. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit, and incorporates a range of higher-level additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, and scalar relativistic effects. Systematic errors in computed intra-band rotational energy levels are reduced by empirically refining the equilibrium geometry. The resultant Si-H bond length is in excellent agreement with previous experimental and theoretical values. Vibrational transition moments, absolute line intensities of the ν3 band, and the infrared spectrum for 28SiH4 including states up to J = 20 and vibrational band origins up to 5000 cm-1 are calculated and compared with available experimental results. The DMS tends to marginally overestimate the strength of line intensities. Despite this, band shape and structure across the spectrum are well reproduced and show good agreement with experiment. We thus recommend the PES and DMS for future use.

  10. A global potential energy surface and dipole moment surface for silane.

    PubMed

    Owens, Alec; Yurchenko, Sergei N; Yachmenev, Andrey; Thiel, Walter

    2015-12-28

    A new nine-dimensional potential energy surface (PES) and dipole moment surface (DMS) for silane have been generated using high-level ab initio theory. The PES, CBS-F12(HL), reproduces all four fundamental term values for (28)SiH4 with sub-wavenumber accuracy, resulting in an overall root-mean-square error of 0.63 cm(-1). The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit, and incorporates a range of higher-level additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, and scalar relativistic effects. Systematic errors in computed intra-band rotational energy levels are reduced by empirically refining the equilibrium geometry. The resultant Si-H bond length is in excellent agreement with previous experimental and theoretical values. Vibrational transition moments, absolute line intensities of the ν3 band, and the infrared spectrum for (28)SiH4 including states up to J = 20 and vibrational band origins up to 5000 cm(-1) are calculated and compared with available experimental results. The DMS tends to marginally overestimate the strength of line intensities. Despite this, band shape and structure across the spectrum are well reproduced and show good agreement with experiment. We thus recommend the PES and DMS for future use.

  11. From Classical Nonlinear Integrable Systems to Quantum Shortcuts to Adiabaticity.

    PubMed

    Okuyama, Manaka; Takahashi, Kazutaka

    2016-08-12

    Using shortcuts to adiabaticity, we solve the time-dependent Schrödinger equation that is reduced to a classical nonlinear integrable equation. For a given time-dependent Hamiltonian, the counterdiabatic term is introduced to prevent nonadiabatic transitions. Using the fact that the equation for the dynamical invariant is equivalent to the Lax equation in nonlinear integrable systems, we obtain the counterdiabatic term exactly. The counterdiabatic term is available when the corresponding Lax pair exists and the solvable systems are classified in a unified and systematic way. Multisoliton potentials obtained from the Korteweg-de Vries equation and isotropic XY spin chains from the Toda equations are studied in detail.

  12. From Classical Nonlinear Integrable Systems to Quantum Shortcuts to Adiabaticity

    NASA Astrophysics Data System (ADS)

    Okuyama, Manaka; Takahashi, Kazutaka

    2016-08-01

    Using shortcuts to adiabaticity, we solve the time-dependent Schrödinger equation that is reduced to a classical nonlinear integrable equation. For a given time-dependent Hamiltonian, the counterdiabatic term is introduced to prevent nonadiabatic transitions. Using the fact that the equation for the dynamical invariant is equivalent to the Lax equation in nonlinear integrable systems, we obtain the counterdiabatic term exactly. The counterdiabatic term is available when the corresponding Lax pair exists and the solvable systems are classified in a unified and systematic way. Multisoliton potentials obtained from the Korteweg-de Vries equation and isotropic X Y spin chains from the Toda equations are studied in detail.

  13. The hydrogen peroxide-rare gas systems: quantum chemical calculations and hyperspherical harmonic representation of the potential energy surface for atom-floppy molecule interactions.

    PubMed

    Barreto, Patricia R P; Vilela, Alessandra F A; Lombardi, Andrea; Maciel, Glauciete S; Palazzetti, Federico; Aquilanti, Vincenzo

    2007-12-13

    A quantum chemical exploration is reported on the interaction potentials of H2O2 with the rare gases, He, Ne, Ar, Kr, and Xe. Hydrogen peroxide (the simplest example of chiral molecule in its equilibrium geometry) is modeled as rigid except for the torsional mode around the O-O bond. However, on the basis of previous work (Maciel, G. S.; et al. Chem. Phys. Lett. 2006 432, 383), the internal mode description is based, rather than on the vectors of the usual valence picture, on the orthogonal local representation, which was demonstrated useful for molecular dynamics simulations, because the torsion around the vector joining the center-of-mass of the two OH radicals mimics accurately the adiabatic reaction path for chirality changing isomerization, following the torsional potential energy profile from equilibrium through the barriers for the trans and cis geometries. The basic motivation of this work is the determination of potential energy surfaces for the interactions to be used in classical and quantum simulations of molecular collisions, specifically those leading to chirality changes of possible relevance in the modeling of prebiotic phenomena. Particular attention is devoted to the definition of coordinates and expansion formulas for the potentials, allowing for a faithful representation of geometrical and symmetry properties of these systems, prototypical of the interaction of an atom with a floppy molecule.

  14. Towards fault tolerant adiabatic quantum computation.

    PubMed

    Lidar, Daniel A

    2008-04-25

    I show how to protect adiabatic quantum computation (AQC) against decoherence and certain control errors, using a hybrid methodology involving dynamical decoupling, subsystem and stabilizer codes, and energy gaps. Corresponding error bounds are derived. As an example, I show how to perform decoherence-protected AQC against local noise using at most two-body interactions.

  15. Dynamical aspects of an adiabatic piston.

    PubMed

    Munakata, T; Ogawa, H

    2001-09-01

    Dynamical aspects of an adiabatic piston are investigated, based on the mass ratio expansion of the master equation for the piston velocity distribution function. Simple theory for piston motion and relaxation of an ideal gas in a cylinder turns out to reproduce our numerical experiments quantitatively.

  16. Adiabatic reversible compression: a molecular view

    NASA Astrophysics Data System (ADS)

    Miranda, E. N.

    2002-07-01

    The adiabatic compression (or expansion) of an ideal gas has been analysed. Using the kinetic theory of gases the usual relation between temperature and volume is obtained, while textbooks follow a thermodynamic approach. In this way we show, once again, the agreement between a macroscopic view (thermodynamics) and a microscopic one (kinetic theory).

  17. Dynamical aspects of an adiabatic piston

    NASA Astrophysics Data System (ADS)

    Munakata, Toyonori; Ogawa, Hideki

    2001-09-01

    Dynamical aspects of an adiabatic piston are investigated, based on the mass ratio expansion of the master equation for the piston velocity distribution function. Simple theory for piston motion and relaxation of an ideal gas in a cylinder turns out to reproduce our numerical experiments quantitatively.

  18. Adiabatic Compression in a Fire Syringe.

    ERIC Educational Resources Information Center

    Hayn, Carl H.; Baird, Scott C.

    1985-01-01

    Suggests using better materials in fire syringes to obtain more effective results during demonstrations which show the elevation in temperature upon a very rapid (adiabatic) compression of air. Also describes an experiment (using ignition temperatures) which introduces students to the use of thermocouples for high temperature measurements. (DH)

  19. Time dependence of adiabatic particle number

    NASA Astrophysics Data System (ADS)

    Dabrowski, Robert; Dunne, Gerald V.

    2016-09-01

    We consider quantum field theoretic systems subject to a time-dependent perturbation, and discuss the question of defining a time-dependent particle number not just at asymptotic early and late times, but also during the perturbation. Naïvely, this is not a well-defined notion for such a nonequilibrium process, as the particle number at intermediate times depends on a basis choice of reference states with respect to which particles and antiparticles are defined, even though the final late-time particle number is independent of this basis choice. The basis choice is associated with a particular truncation of the adiabatic expansion. The adiabatic expansion is divergent, and we show that if this divergent expansion is truncated at its optimal order, a universal time dependence is obtained, confirming a general result of Dingle and Berry. This optimally truncated particle number provides a clear picture of quantum interference effects for perturbations with nontrivial temporal substructure. We illustrate these results using several equivalent definitions of adiabatic particle number: the Bogoliubov, Riccati, spectral function and Schrödinger picture approaches. In each approach, the particle number may be expressed in terms of the tiny deviations between the exact and adiabatic solutions of the Ermakov-Milne equation for the associated time-dependent oscillators.

  20. Apparatus to Measure Adiabatic and Isothermal Processes.

    ERIC Educational Resources Information Center

    Lamb, D. W.; White, G. M.

    1996-01-01

    Describes a simple manual apparatus designed to serve as an effective demonstration of the differences between isothermal and adiabatic processes for the general or elementary physics student. Enables students to verify Boyle's law for slow processes and identify the departure from this law for rapid processes and can also be used to give a clear…

  1. Adiabatic Mass Parameters for Spontaneous Fission

    SciTech Connect

    Baran, A.; Sheikh, J. A.; Nazarewicz, Witold

    2009-01-01

    The collective mass tensor derived from the adiabatic time-dependent Hartree-Fock-Bogoliubov theory, perturbative cranking approximation, and the Gaussian overlap approximation to the generator-coordinate method is discussed. Illustrative calculations are carried out for ^{252}Fm using the nuclear density functional theory with Skyrme interaction SkM* and seniority pairing.

  2. Quantum-mechanical approach to predissociation of water dimers in the vibrational adiabatic representation: Importance of channel interactions

    SciTech Connect

    Mineo, H.; Kuo, J. L.; Niu, Y. L.; Lin, S. H.; Fujimura, Y.

    2015-08-28

    The results of application of the quantum-mechanical adiabatic theory to vibrational predissociation (VPD) of water dimers, (H{sub 2}O){sub 2} and (D{sub 2}O){sub 2}, are presented. We consider the VPD processes including the totally symmetric OH mode of the dimer and the bending mode of the fragment. The VPD in the adiabatic representation is induced by breakdown of the vibrational adiabatic approximation, and two types of nonadiabatic coupling matrix elements are involved: one provides the VPD induced by the low-frequency dissociation mode and the other provides the VPD through channel interactions induced by the low-frequency modes. The VPD rate constants were calculated using the Fermi golden rule expression. A closed form for the nonadiabatic transition matrix element between the discrete and continuum states was derived in the Morse potential model. All of the parameters used were obtained from the potential surfaces of the water dimers, which were calculated by the density functional theory procedures. The VPD rate constants for the two processes were calculated in the non-Condon scheme beyond the so-called Condon approximation. The channel interactions in and between the initial and final states were taken into account, and those are found to increase the VPD rates by 3(1) orders of magnitude for the VPD processes in (H{sub 2}O){sub 2} ((D{sub 2}O){sub 2}). The fraction of the bending-excited donor fragments is larger than that of the bending-excited acceptor fragments. The results obtained by quantum-mechanical approach are compared with both experimental and quasi-classical trajectory calculation results.

  3. Quantum-mechanical approach to predissociation of water dimers in the vibrational adiabatic representation: Importance of channel interactions

    NASA Astrophysics Data System (ADS)

    Mineo, H.; Niu, Y. L.; Kuo, J. L.; Lin, S. H.; Fujimura, Y.

    2015-08-01

    The results of application of the quantum-mechanical adiabatic theory to vibrational predissociation (VPD) of water dimers, (H2O)2 and (D2O)2, are presented. We consider the VPD processes including the totally symmetric OH mode of the dimer and the bending mode of the fragment. The VPD in the adiabatic representation is induced by breakdown of the vibrational adiabatic approximation, and two types of nonadiabatic coupling matrix elements are involved: one provides the VPD induced by the low-frequency dissociation mode and the other provides the VPD through channel interactions induced by the low-frequency modes. The VPD rate constants were calculated using the Fermi golden rule expression. A closed form for the nonadiabatic transition matrix element between the discrete and continuum states was derived in the Morse potential model. All of the parameters used were obtained from the potential surfaces of the water dimers, which were calculated by the density functional theory procedures. The VPD rate constants for the two processes were calculated in the non-Condon scheme beyond the so-called Condon approximation. The channel interactions in and between the initial and final states were taken into account, and those are found to increase the VPD rates by 3(1) orders of magnitude for the VPD processes in (H2O)2 ((D2O)2). The fraction of the bending-excited donor fragments is larger than that of the bending-excited acceptor fragments. The results obtained by quantum-mechanical approach are compared with both experimental and quasi-classical trajectory calculation results.

  4. Electronic states and potential energy surfaces of H2Te, H2Po, and their positive ions

    NASA Astrophysics Data System (ADS)

    Sumathi, K.; Balasubramanian, K.

    1990-06-01

    Geometries, bond energies, ionization potentials, dipole moments, other one-electron properties, and potential energy surfaces of six valence electronic states of H2Te and H2Po species are obtained using the relativistic complete active space multiconfiguration self-consistent field (CASSCF) followed by full second-order configuration interaction (SOCI) and relativistic configuration interaction (RCI) calculations including spin-orbit coupling. In addition, Rydberg states of H2Te and H2Se are studied to interpret the experimental spectra. The potential energy surfaces of two electronic states of H2Te+ and H2Po+ are obtained. The ground states of both H2Te and H2Po are found to be of X 1A1(A1) symmetry with bent (C2v) equilibrium geometries of H2Te:re =1.668 Å, θe=91.2°; and H2Po:re =1.835 Å and θe=90.9°. The ground states of H2Te+ and H2Po+ are X 2B1 with H2Te+:re =1.676 Å, θe=90.7° and H2Po+:re =1.828 Å and θe=88°. The De (HTe-H) and De (HPo-H) including spin-orbit effects are calculated as 63.2 and 39.4 kcal/mol, respectively. The X 2B1(E)-A 2A1(E) energy separations of H2Te+ and H2Po+ ions are calculated as 66.6 and 76 kcal/mol, respectively. The adiabatic IPs of H2Te and H2Po are calculated as 8.47 and 7.79 eV, respectively. In addition CASSCF/SOCI/RCI calculations are also carried out on the X 2Π3/2 and 2Π1/2 states of TeH and PoH diatomics. The X 2Π3/2-2Π1/2 energy separations of TeH and PoH are computed as 3710 and 9920 cm-1, respectively. Spin-orbit effects are thus found to be very significant for PoH and H2Po. All excited states of H2Te and H2Po are above 3.7 and 3.1 eV, respectively. Properties and energy separations of H2Te and H2Po are compared with the lighter group (VI) H2Ch species.

  5. Potential Biosignificant Interest and Surface Activity of Efficient Heterocyclic Derivatives.

    PubMed

    El-Sayed, Refat; Althagafi, Ismail

    2016-01-01

    Some functionalized pyridine and fused system derivatives were synthesized using enaminonitrile derivative 5 as a starting material for the reaction, with various reagents under different conditions. Propoxylation of these compounds using different moles of propylene oxide (3, 5 and 7 moles) leads to a novel group of surface active agents. The antimicrobial and surface activities of the synthesized compounds were investigated. Most of the evaluated compounds proved to be active as antibacterial and antifungal agents and showed good surface activity, which makes them suitable for diverse applications such as the manufacturing of emulsifiers, cosmetics, drugs, pesticides, etc. Additionally, biodegradation testing exhibits significant breakdown within six to seven days, and hence, lowers the toxicity to human beings and becomes environmentally friendly.

  6. Communication: Adiabatic and non-adiabatic electron-nuclear motion: Quantum and classical dynamics

    NASA Astrophysics Data System (ADS)

    Albert, Julian; Kaiser, Dustin; Engel, Volker

    2016-05-01

    Using a model for coupled electronic-nuclear motion we investigate the range from negligible to strong non-adiabatic coupling. In the adiabatic case, the quantum dynamics proceeds in a single electronic state, whereas for strong coupling a complete transition between two adiabatic electronic states takes place. It is shown that in all coupling regimes the short-time wave-packet dynamics can be described using ensembles of classical trajectories in the phase space spanned by electronic and nuclear degrees of freedom. We thus provide an example which documents that the quantum concept of non-adiabatic transitions is not necessarily needed if electronic and nuclear motion is treated on the same footing.

  7. Communication: Adiabatic and non-adiabatic electron-nuclear motion: Quantum and classical dynamics.

    PubMed

    Albert, Julian; Kaiser, Dustin; Engel, Volker

    2016-05-01

    Using a model for coupled electronic-nuclear motion we investigate the range from negligible to strong non-adiabatic coupling. In the adiabatic case, the quantum dynamics proceeds in a single electronic state, whereas for strong coupling a complete transition between two adiabatic electronic states takes place. It is shown that in all coupling regimes the short-time wave-packet dynamics can be described using ensembles of classical trajectories in the phase space spanned by electronic and nuclear degrees of freedom. We thus provide an example which documents that the quantum concept of non-adiabatic transitions is not necessarily needed if electronic and nuclear motion is treated on the same footing.

  8. Transient Particle Energies in Shortcuts to Adiabatic Expansions of Harmonic Traps.

    PubMed

    Cui, Yang-Yang; Chen, Xi; Muga, J G

    2016-05-19

    The expansion of a harmonic potential that holds a quantum particle may be realized without any final particle excitation but much faster than adiabatically via "shortcuts to adiabaticity" (STA). While ideally the process time can be reduced to zero, practical limitations and constraints impose minimal finite times for the externally controlled time-dependent frequency protocols. We examine the role of different time-averaged energies (total, kinetic, potential, nonadiabatic) and of the instantaneous power in characterizing or selecting different protocols. Specifically, we prove a virial theorem for STA processes, set minimal energies (or times) for given times (or energies), and discuss their realizability by means of Dirac impulses or otherwise.

  9. Transient Particle Energies in Shortcuts to Adiabatic Expansions of Harmonic Traps.

    PubMed

    Cui, Yang-Yang; Chen, Xi; Muga, J G

    2016-05-19

    The expansion of a harmonic potential that holds a quantum particle may be realized without any final particle excitation but much faster than adiabatically via "shortcuts to adiabaticity" (STA). While ideally the process time can be reduced to zero, practical limitations and constraints impose minimal finite times for the externally controlled time-dependent frequency protocols. We examine the role of different time-averaged energies (total, kinetic, potential, nonadiabatic) and of the instantaneous power in characterizing or selecting different protocols. Specifically, we prove a virial theorem for STA processes, set minimal energies (or times) for given times (or energies), and discuss their realizability by means of Dirac impulses or otherwise. PMID:26237328

  10. Fuel models and fire potential from satellite and surface observations

    USGS Publications Warehouse

    Burgan, R.E.; Klaver, R.W.; Klarer, J.M.

    1998-01-01

    A national 1-km resolution fire danger fuel model map was derived through use of previously mapped land cover classes and ecoregions, and extensive ground sample data, then refined through review by fire managers familiar with various portions of the U.S. The fuel model map will be used in the next generation fire danger rating system for the U.S., but it also made possible immediate development of a satellite and ground based fire potential index map. The inputs and algorithm of the fire potential index are presented, along with a case study of the correlation between the fire potential index and fire occurrence in California and Nevada. Application of the fire potential index in the Mediterranean ecosystems of Spain, Chile, and Mexico will be tested.

  11. The dynamic instability of adiabatic blast waves

    NASA Technical Reports Server (NTRS)

    Ryu, Dongsu; Vishniac, Ethan T.

    1991-01-01

    Adiabatic blastwaves, which have a total energy injected from the center E varies as t(sup q) and propagate through a preshock medium with a density rho(sub E) varies as r(sup -omega) are described by a family of similarity solutions. Previous work has shown that adiabatic blastwaves with increasing or constant postshock entropy behind the shock front are susceptible to an oscillatory instability, caused by the difference between the nature of the forces on the two sides of the dense shell behind the shock front. This instability sets in if the dense postshock layer is sufficiently thin. The stability of adiabatic blastwaves with a decreasing postshock entropy is considered. Such blastwaves, if they are decelerating, always have a region behind the shock front which is subject to convection. Some accelerating blastwaves also have such region, depending on the values of q, omega, and gamma where gamma is the adiabatic index. However, since the shock interface stabilizes dynamically induced perturbations, blastwaves become convectively unstable only if the convective zone is localized around the origin or a contact discontinuity far from the shock front. On the other hand, the contact discontinuity of accelerating blastwaves is subject to a strong Rayleigh-Taylor instability. The frequency spectra of the nonradial, normal modes of adiabatic blastwaves have been calculated. The results have been applied to the shocks propagating through supernovae envelopes. It is shown that the metal/He and He/H interfaces are strongly unstable against the Rayleigh-Taylor instability. This instability will induce mixing in supernovae envelopes. In addition the implications of this work for the evolution of planetary nebulae is discussed.

  12. Adiabatic burst evaporation from bicontinuous nanoporous membranes

    PubMed Central

    Ichilmann, Sachar; Rücker, Kerstin; Haase, Markus; Enke, Dirk

    2015-01-01

    Evaporation of volatile liquids from nanoporous media with bicontinuous morphology and pore diameters of a few 10 nm is an ubiquitous process. For example, such drying processes occur during syntheses of nanoporous materials by sol–gel chemistry or by spinodal decomposition in the presence of solvents as well as during solution impregnation of nanoporous hosts with functional guests. It is commonly assumed that drying is endothermic and driven by non-equilibrium partial pressures of the evaporating species in the gas phase. We show that nearly half of the liquid evaporates in an adiabatic mode involving burst-like liquid-to-gas conversions. During single adiabatic burst evaporation events liquid volumes of up to 107 μm3 are converted to gas. The adiabatic liquid-to-gas conversions occur if air invasion fronts get unstable because of the built-up of high capillary pressures. Adiabatic evaporation bursts propagate avalanche-like through the nanopore systems until the air invasion fronts have reached new stable configurations. Adiabatic cavitation bursts thus compete with Haines jumps involving air invasion front relaxation by local liquid flow without enhanced mass transport out of the nanoporous medium and prevail if the mean pore diameter is in the range of a few 10 nm. The results reported here may help optimize membrane preparation via solvent-based approaches, solution-loading of nanopore systems with guest materials as well as routine use of nanoporous membranes with bicontinuous morphology and may contribute to better understanding of adsorption/desorption processes in nanoporous media. PMID:25926406

  13. Electric Potential Near The Extraction Region In Negative Ion Sources With Surface Produced Negative Ions

    SciTech Connect

    Fukano, A.; Hatayama, A.

    2011-09-26

    The potential distribution near the extraction region in negative ion sources for the plasma with the surface produced negative ions is studied analytically. The potential is derived analytically by using a plasma-sheath equation, where negative ions produced on the Plasma Grid (PG) surface are considered in addition to positive ions and electrons. A negative potential peak is formed in the sheath region near the PG surface for the case of strong surface production of negative ions or for low energy negative ions. Negative ions are reflected by the negative potential peak near the PG and returned to the PG surface. This reflection mechanism by the negative potential peak possibly becomes a factor in negative ion extraction. It is also indicated that the potential difference between the plasma region and the wall decreases by the surface produced negative ions. This also has the possibility to contribute to the negative ion extraction.

  14. Transport of ultracold atoms between concentric traps via spatial adiabatic passage

    NASA Astrophysics Data System (ADS)

    Polo, J.; Benseny, A.; Busch, Th; Ahufinger, V.; Mompart, J.

    2016-01-01

    Spatial adiabatic passage processes for ultracold atoms trapped in tunnel-coupled cylindrically symmetric concentric potentials are investigated. Specifically, we discuss the matter-wave analog of the rapid adiabatic passage (RAP) technique for a high fidelity and robust loading of a single atom into a harmonic ring potential from a harmonic trap, and for its transport between two concentric rings. We also consider a system of three concentric rings and investigate the transport of a single atom between the innermost and the outermost rings making use of the matter-wave analog of the stimulated Raman adiabatic passage (STIRAP) technique. We describe the RAP-like and STIRAP-like dynamics by means of a two- and a three-state model, respectively, obtaining good agreement with the numerical simulations of the corresponding two-dimensional Schrödinger equation.

  15. Wright Valley Sediments as Potential Analogs for Martian Surface Processes

    NASA Astrophysics Data System (ADS)

    Englert, P. A. J.; Bishop, J. L.; Patel, S.; Gibson, E. K.; Koeberl, C.

    2015-12-01

    The Antarctic Dry Valleys (ADV) may provide a unique terrestrial analog for current Martian surface processes. The Wright Valley located in the ADV contains streams, lakes and ponds that host highly saline, sedimentary environments. This project highlights comparisons of formation and salt accumulation processes at the Don Juan Pond (DJP) and Don Quixote Pond (DQP). These are located in the north and south forks of the Wright Valley, which are unique areas where unusual terrestrial processes can be studied. DQP is located in the western part of the north fork about 100 m above mean seawater level. The DQP Valley walls are up to 2500 m high and the brine is seasonally frozen. DJP from the south fork is located ~9 km west of Lake Vanda. The basin floor is 117 m above mean seawater level with activity to the north and south rising above 1000 m. The DJP brine does not freeze and may be a model environment for Ca and Cl weathering and distribution on Mars. Our findings indicate that DJP and DQP have formed in similar climatic and geological environments, but likely experienced different formation conditions. Samples were collected from surface, soil pits and depth profiles during the 1979/1980, the 1990/1991 and the 2005/2006 field seasons. Elemental abundances and mineralogy were evaluated for several sets of sediments. The DJP basin shows low surface abundances of halite and relatively high abundances of sulfates throughout with gypsum or anhydrite dominating at different locations. The DQP area has high surface abundances of halite with gypsum present as the major sulfate. Two models have been proposed to explain these differences: DQP may have formed through a combination of shallow and some deep groundwater influx, while deep groundwater upwelling likely played the dominant role of salt formation at DJP. Our study seeks to understand the formation of DQP and DJP as unique terrestrial processes and as models for Ca, Cl, and S weathering and distribution on Mars.

  16. Adsorption of lysozyme on base metal surfaces in the presence of an external electric potential.

    PubMed

    Ei Ei, Htwe; Nakama, Yuhi; Tanaka, Hiroshi; Imanaka, Hiroyuki; Ishida, Naoyuki; Imamura, Koreyoshi

    2016-11-01

    The impact of external electric potential on the adsorption of a protein to base metal surfaces was examined. Hen egg white lysozyme (LSZ) and six types of base metal plates (stainless steel SUS316L (St), Ti, Ta, Zr, Cr, or Ni) were used as the protein and adsorption surface, respectively. LSZ was allowed to adsorb on the surface under different conditions (surface potential, pH, electrolyte type and concentration, surface material), which was monitored using an ellipsometer. LSZ adsorption was minimized in the potential range above a certain threshold and, in the surface potential range below the threshold, decreasing the surface potential increased the amount of protein adsorbed. The threshold potential for LSZ adsorption was shifted toward a positive value with increasing pH and was lower for Ta and Zr than for the others. A divalent anion salt (K2SO4) as an electrolyte exhibited the adsorption of LSZ in the positive potential range while a monovalent salt (KCl) did not. A comprehensive consideration of the obtained results suggests that two modes of interactions, namely the electric force by an external electric field and electrostatic interactions with ionized surface hydroxyl groups, act on the LSZ molecules and determine the extent of suppression of LSZ adsorption. All these findings appear to support the view that a base metal surface can be controlled for the affinity to a protein by manipulating the surface electric potential as has been reported on some electrode materials. PMID:27478958

  17. Adsorption of lysozyme on base metal surfaces in the presence of an external electric potential.

    PubMed

    Ei Ei, Htwe; Nakama, Yuhi; Tanaka, Hiroshi; Imanaka, Hiroyuki; Ishida, Naoyuki; Imamura, Koreyoshi

    2016-11-01

    The impact of external electric potential on the adsorption of a protein to base metal surfaces was examined. Hen egg white lysozyme (LSZ) and six types of base metal plates (stainless steel SUS316L (St), Ti, Ta, Zr, Cr, or Ni) were used as the protein and adsorption surface, respectively. LSZ was allowed to adsorb on the surface under different conditions (surface potential, pH, electrolyte type and concentration, surface material), which was monitored using an ellipsometer. LSZ adsorption was minimized in the potential range above a certain threshold and, in the surface potential range below the threshold, decreasing the surface potential increased the amount of protein adsorbed. The threshold potential for LSZ adsorption was shifted toward a positive value with increasing pH and was lower for Ta and Zr than for the others. A divalent anion salt (K2SO4) as an electrolyte exhibited the adsorption of LSZ in the positive potential range while a monovalent salt (KCl) did not. A comprehensive consideration of the obtained results suggests that two modes of interactions, namely the electric force by an external electric field and electrostatic interactions with ionized surface hydroxyl groups, act on the LSZ molecules and determine the extent of suppression of LSZ adsorption. All these findings appear to support the view that a base metal surface can be controlled for the affinity to a protein by manipulating the surface electric potential as has been reported on some electrode materials.

  18. Rotationally adiabatic pair interactions of para- and ortho-hydrogen with the halogen molecules F2, Cl2, and Br2

    NASA Astrophysics Data System (ADS)

    Berg, Matthias; Accardi, Antonio; Paulus, Beate; Schmidt, Burkhard

    2014-08-01

    The present work is concerned with the weak interactions between hydrogen and halogen molecules, i.e., the interactions of pairs H2-X2 with X = F, Cl, Br, which are dominated by dispersion and quadrupole-quadrupole forces. The global minimum of the four-dimensional (4D) coupled cluster with singles and doubles and perturbative triples (CCSD(T)) pair potentials is always a T shaped structure where H2 acts as the hat of the T, with well depths (De) of 1.3, 2.4, and 3.1 kJ/mol for F2, Cl2, and Br2, respectively. MP2/AVQZ results, in reasonable agreement with CCSD(T) results extrapolated to the basis set limit, are used for detailed scans of the potentials. Due to the large difference in the rotational constants of the monomers, in the adiabatic approximation, one can solve the rotational Schrödinger equation for H2 in the potential of the X2 molecule. This yields effective two-dimensional rotationally adiabatic potential energy surfaces where pH2 and oH2 are point-like particles. These potentials for the H2-X2 complexes have global and local minima for effective linear and T-shaped complexes, respectively, which are separated by 0.4-1.0 kJ/mol, where oH2 binds stronger than pH2 to X2, due to higher alignment to minima structures of the 4D-pair potential. Further, we provide fits of an analytical function to the rotationally adiabatic potentials.

  19. Towards converging non-adiabatic direct dynamics calculations using frozen-width variational gaussian product basis functions.

    PubMed

    Mendive-Tapia, David; Lasorne, Benjamin; Worth, Graham A; Robb, Michael A; Bearpark, Michael J

    2012-12-14

    In this article, we investigate the convergence of quantum dynamics calculations with coupled variationally optimized gaussian product basis functions, describing wavepacket motion on regions of molecular potential energy surfaces calculated on the fly. As a benchmark system, we model the radiationless decay of fulvene from its first electronic excited state through an extended S(1)∕S(0) conical intersection seam and monitor two associated properties: the spatial extent to which the conical intersection seam is sampled and the timescale and stepwise nature of the population transfer. We suggest that the fully variational description reviewed here (direct dynamics-variational multi-configuration gaussian) provides a way to balance accuracy against computational cost for molecules of comparable sizes by choosing the number of coupled gaussian product basis functions and a middle way forward between grid based and trajectory surface hopping approaches to non-adiabatic molecular quantum dynamics calculations.

  20. Surface chemistry dependent immunostimulative potential of porous silicon nanoplatforms.

    PubMed

    Shahbazi, Mohammad-Ali; Fernández, Tahia D; Mäkilä, Ermei M; Le Guével, Xavier; Mayorga, Cristobalina; Kaasalainen, Martti H; Salonen, Jarno J; Hirvonen, Jouni T; Santos, Hélder A

    2014-11-01

    Nanoparticles (NPs) have been suggested for immunotherapy applications in order to optimize the delivery of immuno-stimulative or -suppressive molecules. However, low attention towards the impact of the NPs' physicochemical properties has presented a major hurdle for developing efficient immunotherapeutic agents. Here, the effects of porous silicon (PSi) NPs with different surface chemistries were evaluated on human monocyte-derived dendritic cells (MDDCs) and lymphocytes in order to highlight the importance of the NPs selection in immuno-stimulative or -suppressive treatment. Although all the PSi NPs showed high biocompatibility, only thermally oxidized PSi (TOPSi) and thermally hydrocarbonized PSi (THCPSi) NPs were able to induce very high rate of immunoactivation by enhancing the expression of surface co-stimulatory markers of the MDDCs (CD80, CD83, CD86, and HLA-DR), inducing T-cell proliferation, and also the secretion of interleukins (IL-1β, IL-4, IL-6, IL-10, IL-12, IFN-γ, and TNF-α). These results indicated a balanced increase in the secretion of Th1, Th2, and Treg cytokines. Moreover, undecylenic acid functionalized THCPSi, as well as poly(methyl vinyl ether-alt-maleic acid) conjugated to (3-aminopropyl)triethoxysilane functionalized thermally carbonized PSi and polyethyleneimine conjugated undecylenic acid functionalized THCPSi NPs showed moderate immunoactivation due to the mild increase in the above-mentioned markers. By contrast, thermally carbonized PSi (TCPSi) and (3-aminopropyl)triethoxysilane functionalized TCPSi NPs did not induce any immunological responses, suggesting that their application could be in the delivery of immunosuppressive molecules. Overall, our findings suggest all the NPs containing more nitrogen or oxygen on the outermost backbone layer have lower immunostimulatory effect than NPs with higher C-H structures on the surface.

  1. Influence of surface conductivity on the apparent zeta potential of calcite.

    PubMed

    Li, Shuai; Leroy, Philippe; Heberling, Frank; Devau, Nicolas; Jougnot, Damien; Chiaberge, Christophe

    2016-04-15

    Zeta potential is a physicochemical parameter of particular importance in describing the surface electrical properties of charged porous media. However, the zeta potential of calcite is still poorly known because of the difficulty to interpret streaming potential experiments. The Helmholtz-Smoluchowski (HS) equation is widely used to estimate the apparent zeta potential from these experiments. However, this equation neglects the influence of surface conductivity on streaming potential. We present streaming potential and electrical conductivity measurements on a calcite powder in contact with an aqueous NaCl electrolyte. Our streaming potential model corrects the apparent zeta potential of calcite by accounting for the influence of surface conductivity and flow regime. We show that the HS equation seriously underestimates the zeta potential of calcite, particularly when the electrolyte is diluted (ionic strength ⩽ 0.01 M) because of calcite surface conductivity. The basic Stern model successfully predicted the corrected zeta potential by assuming that the zeta potential is located at the outer Helmholtz plane, i.e. without considering a stagnant diffuse layer at the calcite-water interface. The surface conductivity of calcite crystals was inferred from electrical conductivity measurements and computed using our basic Stern model. Surface conductivity was also successfully predicted by our surface complexation model. PMID:26852350

  2. Influence of surface conductivity on the apparent zeta potential of calcite.

    PubMed

    Li, Shuai; Leroy, Philippe; Heberling, Frank; Devau, Nicolas; Jougnot, Damien; Chiaberge, Christophe

    2016-04-15

    Zeta potential is a physicochemical parameter of particular importance in describing the surface electrical properties of charged porous media. However, the zeta potential of calcite is still poorly known because of the difficulty to interpret streaming potential experiments. The Helmholtz-Smoluchowski (HS) equation is widely used to estimate the apparent zeta potential from these experiments. However, this equation neglects the influence of surface conductivity on streaming potential. We present streaming potential and electrical conductivity measurements on a calcite powder in contact with an aqueous NaCl electrolyte. Our streaming potential model corrects the apparent zeta potential of calcite by accounting for the influence of surface conductivity and flow regime. We show that the HS equation seriously underestimates the zeta potential of calcite, particularly when the electrolyte is diluted (ionic strength ⩽ 0.01 M) because of calcite surface conductivity. The basic Stern model successfully predicted the corrected zeta potential by assuming that the zeta potential is located at the outer Helmholtz plane, i.e. without considering a stagnant diffuse layer at the calcite-water interface. The surface conductivity of calcite crystals was inferred from electrical conductivity measurements and computed using our basic Stern model. Surface conductivity was also successfully predicted by our surface complexation model.

  3. Transport signatures of surface potentials on three-dimensional topological insulators

    NASA Astrophysics Data System (ADS)

    Roy, Sthitadhi; Das, Sourin

    2016-02-01

    The spin-momentum-locked nature of the robust surface states of three-dimensional topological insulators (3D TIs) makes them promising candidates for spintronics applications. Surface potentials which respect time-reversal symmetry can exist at the surface between a 3D TI and the trivial vacuum. These potentials can distort the spin texture of the surface states while retaining their gapless nature. In this work, the effect of all such surface potentials on the spin textures is studied. Since a tunnel magnetoresistance signal carries the information of the spin texture, it is proposed that spin-polarized tunneling of electrons to a 3D TI surface can be used to uniquely identify the surface potentials and quantitatively characterize them.

  4. Wave front adaptation using a deformable mirror for adiabatic nanofocusing along an ultrasharp gold taper.

    PubMed

    Schmidt, Slawa; Engelke, Pascal; Piglosiewicz, Björn; Esmann, Martin; Becker, Simon F; Yoo, Kyungwan; Park, Namkyoo; Lienau, Christoph; Groß, Petra

    2013-11-01

    We describe and demonstrate the use of an adaptive wave front optimization scheme for enhancing the efficiency of adiabatic nanofocusing of surface plasmon polariton (SPP) waves along an ultrasharp conical gold taper. Adiabatic nanofocusing is an emerging and promising scheme for controlled focusing of far field light into nanometric volumes. It comprises three essential steps: SPP excitation by coupling far field light to an SPP waveguide, SPP propagation along the waveguide and adiabatic SPP nanofocusing towards a geometric singularity. For commonly used complex waveguide geometries, such as, e.g., conical metal tapers, a realistic modeling and efficiency optimization is challenging. Here, we use a deformable mirror to adaptively control the wave front of the incident far field light. We demonstrate an eight-fold enhancement in nanofocusing efficiency and analyze the shape of the resulting optimized wave front. The introduced wave front optimization scheme is of general interest for guiding and controlling light on the nanoscale.

  5. Measurement of a release adiabat from {approx}8 Mbar in lead using magnetically driven flyer impact

    SciTech Connect

    Rothman, S.D.; Parker, K.; Robinson, C.; Knudson, M.D.

    2004-12-01

    Using magnetically driven aluminium flyers to generate {approx}8 Mbar shocks in lead, which were then transmitted into lower-impedance material samples, points on a lead release adiabat have been measured. The pressure-particle-velocity points were calculated from known sample principal Hugoniots and from shock velocities measured using arrays of fiber-optic active and passive shock breakout diagnostics, and point and line velocity interferometer for a surface of any reflectivity (VISARs). The measured points agree closely with adiabats calculated using models which do not include ionization, or do include it both with, and without, atomic shell effects. Though the data are not sufficient to discriminate between widely different models we may qualitatively identify errors within these models. This is the first attempt to measure a release adiabat from such high pressures.

  6. Deep proton tunneling in the electronically adiabatic and non-adiabatic limits: comparison of the quantum and classical treatment of donor-acceptor motion in a protein environment.

    PubMed

    Benabbas, Abdelkrim; Salna, Bridget; Sage, J Timothy; Champion, Paul M

    2015-03-21

    Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical "gating" distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotope effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working near

  7. Deep proton tunneling in the electronically adiabatic and non-adiabatic limits: Comparison of the quantum and classical treatment of donor-acceptor motion in a protein environment

    SciTech Connect

    Benabbas, Abdelkrim; Salna, Bridget; Sage, J. Timothy; Champion, Paul M.

    2015-03-21

    Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical “gating” distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotope effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working

  8. Deep proton tunneling in the electronically adiabatic and non-adiabatic limits: comparison of the quantum and classical treatment of donor-acceptor motion in a protein environment.

    PubMed

    Benabbas, Abdelkrim; Salna, Bridget; Sage, J Timothy; Champion, Paul M

    2015-03-21

    Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical "gating" distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotope effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working near

  9. Non-adiabatic perturbations in multi-component perfect fluids

    SciTech Connect

    Koshelev, N.A.

    2011-04-01

    The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models.

  10. Effect of surface potential on epithelial cell adhesion, proliferation and morphology.

    PubMed

    Chang, Hsun-Yun; Kao, Wei-Lun; You, Yun-Wen; Chu, Yi-Hsuan; Chu, Kuo-Jui; Chen, Peng-Jen; Wu, Chen-Yi; Lee, Yu-Hsuan; Shyue, Jing-Jong

    2016-05-01

    Cell adhesion is the basis of individual cell survival, division and motility. Hence, understanding the effects that the surface properties have on cell adhesion, proliferation and morphology are crucial. In particular, surface charge/potential has been identified as an important factor that affects cell behavior. However, how cells respond to incremental changes in surface potential remains unclear. By using binary self-assembled monolayer (SAM) modified Au surfaces that are similar in mechanical/chemical properties and provide a series of surface potentials, the effect of surface potential on the behavior of cells can be studied. In this work, the effect of surface potential on epithelial cells, including human embryonic kidney (HEK293T) and human hepatocellular carcinoma (HepG2), were examined. The results showed that the adhesion density of epithelial cells increased with increasing surface potential, which is similar to but varied more significantly compared with fibroblasts. The proliferation rate is found to be independent of surface potential in both cell types. Furthermore, epithelial cells show no morphological change with respect to surface potential, whereas the morphology of the fibroblasts clearly changed with the surface potential. These differences between the cell types were rationalized by considering the difference in extracellular matrix composition. Laminin-dominant epithelial cells showed higher adhesion density and less morphological change than did fibronectin-dominant fibroblasts because the more significant adsorption of positively charged laminin on the surface enhanced the adhesion of epithelial cells. In contrast, due to the dominance of negatively charged fibronectin that adsorbed weakly on the surface, fibroblasts had to change their morphology to fit the inhomogeneous fibronectin-adsorbed area.

  11. On the Definition of Surface Potentials for Finite-Difference Operators

    NASA Technical Reports Server (NTRS)

    Tsynkov, S. V.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    For a class of linear constant-coefficient finite-difference operators of the second order, we introduce the concepts similar to those of conventional single- and double-layer potentials for differential operators. The discrete potentials are defined completely independently of any notion related to the approximation of the continuous potentials on the grid. We rather use all approach based on differentiating, and then inverting the differentiation of a function with surface discontinuity of a particular kind, which is the most general way of introducing surface potentials in the theory of distributions. The resulting finite-difference "surface" potentials appear to be solutions of the corresponding continuous potentials. Primarily, this pertains to the possibility of representing a given solution to the homogeneous equation on the domain as a variety of surface potentials, with the density defined on the domain's boundary. At the same time the discrete surface potentials can be interpreted as one specific realization of the generalized potentials of Calderon's type, and consequently, their approximation properties can be studied independently in the framework of the difference potentials method by Ryaben'kii. The motivation for introducing and analyzing the discrete surface potentials was provided by the problems of active shielding and control of sound, in which the aforementioned source terms that drive the potentials are interpreted as the acoustic control sources that cancel out the unwanted noise on a predetermined region of interest.

  12. An accurate global potential energy surface, dipole moment surface, and rovibrational frequencies for NH3

    NASA Astrophysics Data System (ADS)

    Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.

    2008-12-01

    A global potential energy surface (PES) that includes short and long range terms has been determined for the NH3 molecule. The singles and doubles coupled-cluster method that includes a perturbational estimate of connected triple excitations and the internally contracted averaged coupled-pair functional electronic structure methods have been used in conjunction with very large correlation-consistent basis sets, including diffuse functions. Extrapolation to the one-particle basis set limit was performed and core correlation and scalar relativistic contributions were included directly, while the diagonal Born-Oppenheimer correction was added. Our best purely ab initio PES, denoted "mixed," is constructed from two PESs which differ in whether the ic-ACPF higher-order correlation correction was added or not. Rovibrational transition energies computed from the mixed PES agree well with experiment and the best previous theoretical studies, but most importantly the quality does not deteriorate even up to 10300cm-1 above the zero-point energy (ZPE). The mixed PES was improved further by empirical refinement using the most reliable J =0-2 rovibrational transitions in the HITRAN 2004 database. Agreement between high-resolution experiment and rovibrational transition energies computed from our refined PES for J =0-6 is excellent. Indeed, the root mean square (rms) error for 13 HITRAN 2004 bands for J =0-2 is 0.023cm-1 and that for each band is always ⩽0.06cm-1. For J =3-5 the rms error is always ⩽0.15cm-1. This agreement means that transition energies computed with our refined PES should be useful in the assignment of new high-resolution NH3 spectra and in correcting mistakes in previous assignments. Ideas for further improvements to our refined PES and for extension to other isotopolog are discussed.

  13. Adiabatic quantum simulation of quantum chemistry.

    PubMed

    Babbush, Ryan; Love, Peter J; Aspuru-Guzik, Alán

    2014-10-13

    We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions.

  14. Quantum adiabatic evolution with energy degeneracy levels

    NASA Astrophysics Data System (ADS)

    Zhang, Qi

    2016-01-01

    A classical-kind phase-space formalism is developed to address the tiny intrinsic dynamical deviation from what is predicted by Wilczek-Zee theorem during quantum adiabatic evolution on degeneracy levels. In this formalism, the Hilbert space and the aggregate of degenerate eigenstates become the classical-kind phase space and a high-dimensional subspace in the phase space, respectively. Compared with the previous analogous study by a different method, the current result is qualitatively different in that the first-order deviation derived here is always perpendicular to the degeneracy subspace. A tripod-scheme Hamiltonian with two degenerate dark states is employed to illustrate the adiabatic deviation with degeneracy levels.

  15. Adiabatic quantum optimization for associative memory recall

    SciTech Connect

    Seddiqi, Hadayat; Humble, Travis S.

    2014-12-22

    Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.

  16. Adiabatic quantum optimization for associative memory recall

    DOE PAGES

    Seddiqi, Hadayat; Humble, Travis S.

    2014-12-22

    Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are storedmore » in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.« less

  17. Trapped Ion Quantum Computation by Adiabatic Passage

    SciTech Connect

    Feng Xuni; Wu Chunfeng; Lai, C. H.; Oh, C. H.

    2008-11-07

    We propose a new universal quantum computation scheme for trapped ions in thermal motion via the technique of adiabatic passage, which incorporates the advantages of both the adiabatic passage and the model of trapped ions in thermal motion. Our scheme is immune from the decoherence due to spontaneous emission from excited states as the system in our scheme evolves along a dark state. In our scheme the vibrational degrees of freedom are not required to be cooled to their ground states because they are only virtually excited. It is shown that the fidelity of the resultant gate operation is still high even when the magnitude of the effective Rabi frequency moderately deviates from the desired value.

  18. Ramsey numbers and adiabatic quantum computing.

    PubMed

    Gaitan, Frank; Clark, Lane

    2012-01-01

    The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers R(m,n) with m, n≥3, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers R(m,n). We show how the computation of R(m,n) can be mapped to a combinatorial optimization problem whose solution can be found using adiabatic quantum evolution. We numerically simulate this adiabatic quantum algorithm and show that it correctly determines the Ramsey numbers R(3,3) and R(2,s) for 5≤s≤7. We then discuss the algorithm's experimental implementation, and close by showing that Ramsey number computation belongs to the quantum complexity class quantum Merlin Arthur.

  19. Adiabatic Quantum Simulation of Quantum Chemistry

    NASA Astrophysics Data System (ADS)

    Babbush, Ryan; Love, Peter J.; Aspuru-Guzik, Alán

    2014-10-01

    We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions.

  20. Shortcuts to adiabaticity from linear response theory

    SciTech Connect

    Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian

    2015-10-23

    A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. Moreover, with the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. We finally propose a degenerate family of protocols, which facilitates shortcuts to adiabaticity for specific and very short driving times.

  1. Shortcuts to adiabaticity from linear response theory

    DOE PAGES

    Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian

    2015-10-23

    A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. Moreover, with the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. We finally propose a degenerate family of protocols, which facilitates shortcuts tomore » adiabaticity for specific and very short driving times.« less

  2. Dynamic potential and surface morphology study of sertraline membrane sensors

    PubMed Central

    Khater, M.M.; Issa, Y.M.; Hassib, H.B.; Mohammed, S.H.

    2014-01-01

    New rapid, sensitive and simple electrometric method was developed to determine sertraline hydrochloride (Ser-Cl) in its pure raw material and pharmaceutical formulations. Membrane sensors based on heteropolyacids as ion associating material were prepared. Silicomolybdic acid (SMA), silicotungstic acid (STA) and phosphomolybdic acid (PMA) were used. The slope and limit of detection are 50.00, 60.00 and 53.24 mV/decade and 2.51, 5.62 and 4.85 μmol L−1 for Ser-ST, Ser-PM and Ser-SM membrane sensors, respectively. Linear range is 0.01–10.00 for the three sensors. These new sensors were used for the potentiometric titration of Ser-Cl using sodium tetraphenylborate as titrant. The surface morphologies of the prepared membranes with and without the modifier (ion-associate) were studied using scanning and atomic force microscopes. PMID:26257944

  3. Adiabatic theory of the linear hose instability of a relativistic electron beam propagating in resistive plasma

    SciTech Connect

    O'Brien, K.J.

    1985-01-01

    It is demonstrated that the cold Vlasov beam, the circle-limit of the warm Vlasov beam, the spread-mass model, and the energy-group model of a relativistic electron beam undergoing linear hose instability, are all formally equivalent. Therefore, the circle-orbit beam is the natural starting point for a higher order theory. Introducing the next order in non-circularity the author makes contact with the adiabatic theory for warm beams. The adiabatic theory is founded upon the existence of transverse action invariants that remain sufficiently well-defined, despite the nonaxisymmetric potential and the coupling resonances driven by linear hose instability. The existence of action invariants enables the elimination of a fast variable, analogous to gyro-motion, called vortex-gyration. One problem with adiabatic beam theory is that coupling resonances between the degrees of freedom could destroy the adiabatic invariants upon which the theory rests. KAM theory is employed here to study the destruction of action invariants due to linear hose instability. Nonaxisymmetric adiabatic beams are defined to be those for which KAM tori exist in the transverse phase space. For hose deflections of the magnitude considered in linear theory, KAM tori persist, preventing the destruction of the invariants.

  4. Siphon flows in isolated magnetic flux tubes. II - Adiabatic flows

    NASA Technical Reports Server (NTRS)

    Montesinos, Benjamin; Thomas, John H.

    1989-01-01

    This paper extends the study of steady siphon flows in isolated magnetic flux tubes surrounded by field-free gas to the case of adiabatic flows. The basic equations governing steady adiabatic siphon flows in a thin, isolated magnetic flux tube are summarized, and qualitative features of adiabatic flows in elevated, arched flux tubes are discussed. The equations are then cast in nondimensional form and the results of numerical computations of adiabatic siphon flows in arched flux tubes are presented along with comparisons between isothermal and adiabatic flows. The effects of making the interior of the flux tube hotter or colder than the surrounding atmosphere at the upstream footpoint of the arch is considered. In this case, is it found that the adiabatic flows are qualitatively similar to the isothermal flows, with adiabatic cooling producing quantitative differences. Critical flows can produce a bulge point in the rising part of the arch and a concentration of magnetic flux above the bulge point.

  5. Siphon flows in isolated magnetic flux tubes. II. Adiabatic flows

    SciTech Connect

    Montesinos, B.; Thomas, J.H.

    1989-02-01

    This paper extends the study of steady siphon flows in isolated magnetic flux tubes surrounded by field-free gas to the case of adiabatic flows. The basic equations governing steady adiabatic siphon flows in a thin, isolated magnetic flux tube are summarized, and qualitative features of adiabatic flows in elevated, arched flux tubes are discussed. The equations are then cast in nondimensional form and the results of numerical computations of adiabatic siphon flows in arched flux tubes are presented along with comparisons between isothermal and adiabatic flows. The effects of making the interior of the flux tube hotter or colder than the surrounding atmosphere at the upstream footpoint of the arch is considered. In this case, is it found that the adiabatic flows are qualitatively similar to the isothermal flows, with adiabatic cooling producing quantitative differences. Critical flows can produce a bulge point in the rising part of the arch and a concentration of magnetic flux above the bulge point. 15 references.

  6. Computer Code For Turbocompounded Adiabatic Diesel Engine

    NASA Technical Reports Server (NTRS)

    Assanis, D. N.; Heywood, J. B.

    1988-01-01

    Computer simulation developed to study advantages of increased exhaust enthalpy in adiabatic turbocompounded diesel engine. Subsytems of conceptual engine include compressor, reciprocator, turbocharger turbine, compounded turbine, ducting, and heat exchangers. Focus of simulation of total system is to define transfers of mass and energy, including release and transfer of heat and transfer of work in each subsystem, and relationship among subsystems. Written in FORTRAN IV.

  7. Adiabatic charging of nickel-hydrogen batteries

    NASA Astrophysics Data System (ADS)

    Lurie, Chuck; Foroozan, S.; Brewer, Jeff; Jackson, Lorna

    1995-02-01

    Battery management during prelaunch activities has always required special attention and careful planning. The transition from nickel-cadium to nickel-hydrogen batteries, with their high self discharge rate and lower charge efficiency, as well as longer prelaunch scenarios, has made this aspect of spacecraft battery management even more challenging. The AXAF-I Program requires high battery state of charge at launch. The use of active cooling, to ensure efficient charging, was considered and proved to be difficult and expensive. Alternative approaches were evaluated. Optimized charging, in the absence of cooling, appeared promising and was investigated. Initial testing was conducted to demonstrate the feasibility of the 'Adiabatic Charging' approach. Feasibility was demonstrated and additional testing performed to provide a quantitative, parametric data base. The assumption that the battery is in an adiabatic environment during prelaunch charging is a conservative approximation because the battery will transfer some heat to its surroundings by convective air cooling. The amount is small compared to the heat dissipated during battery overcharge. Because the battery has a large thermal mass, substantial overcharge can occur before the cells get too hot to charge efficiently. The testing presented here simulates a true adiabatic environment. Accordingly the data base may be slightly conservative. The adiabatic charge methodology used in this investigation begins with stabilizing the cell at a given starting temperature. The cell is then fully insulated on all sides. Battery temperature is carefully monitored and the charge terminated when the cell temperature reaches 85 F. Charging has been evaluated with starting temperatures from 55 to 75 F.

  8. Advanced Adiabatic Demagnetization Refrigerators for Continuous Cooling

    NASA Technical Reports Server (NTRS)

    Chu, Paul C. W.

    2004-01-01

    The research at Houston was focused on optimizing the design of superconducting magnets for advanced adiabatic demagnetization refrigerators (ADRs), assessing the feasibility of using high temperature superconducting (HTS) magnets in ADRs in the future, and developing techniques to deposit HTS thin and thick films on high strength, low thermal conductivity substrates for HTS magnet leads. Several approaches have been tested for the suggested superconducting magnets.

  9. Intermolecular potential energy surface and thermophysical properties of ethylene oxide

    SciTech Connect

    Crusius, Johann-Philipp Hassel, Egon; Hellmann, Robert; Bich, Eckard

    2014-10-28

    A six-dimensional potential energy hypersurface (PES) for two interacting rigid ethylene oxide (C{sub 2}H{sub 4}O) molecules was determined from high-level quantum-chemical ab initio calculations. The counterpoise-corrected supermolecular approach at the MP2 and CCSD(T) levels of theory was utilized to determine interaction energies for 10178 configurations of two molecules. An analytical site-site potential function with 19 sites per ethylene oxide molecule was fitted to the interaction energies and fine tuned to agree with data for the second acoustic virial coefficient from accurate speed of sound measurements. The PES was validated by computing the second virial coefficient, shear viscosity, and thermal conductivity. The values of these properties are substantiated by the best experimental data as they tend to fall within the uncertainty intervals and also obey the experimental temperature functions, except for viscosity, where experimental data are insufficient. Due to the lack of reliable data, especially for the transport properties, our calculated values are currently the most accurate estimates for these properties of ethylene oxide.

  10. Random matrix model of adiabatic quantum computing

    SciTech Connect

    Mitchell, David R.; Adami, Christoph; Lue, Waynn; Williams, Colin P.

    2005-05-15

    We present an analysis of the quantum adiabatic algorithm for solving hard instances of 3-SAT (an NP-complete problem) in terms of random matrix theory (RMT). We determine the global regularity of the spectral fluctuations of the instantaneous Hamiltonians encountered during the interpolation between the starting Hamiltonians and the ones whose ground states encode the solutions to the computational problems of interest. At each interpolation point, we quantify the degree of regularity of the average spectral distribution via its Brody parameter, a measure that distinguishes regular (i.e., Poissonian) from chaotic (i.e., Wigner-type) distributions of normalized nearest-neighbor spacings. We find that for hard problem instances - i.e., those having a critical ratio of clauses to variables - the spectral fluctuations typically become irregular across a contiguous region of the interpolation parameter, while the spectrum is regular for easy instances. Within the hard region, RMT may be applied to obtain a mathematical model of the probability of avoided level crossings and concomitant failure rate of the adiabatic algorithm due to nonadiabatic Landau-Zener-type transitions. Our model predicts that if the interpolation is performed at a uniform rate, the average failure rate of the quantum adiabatic algorithm, when averaged over hard problem instances, scales exponentially with increasing problem size.

  11. New XDM-corrected potential energy surfaces for Ar–NO(X{sup 2}Π): A comparison with CCSD(T) calculations and experiments

    SciTech Connect

    Warehime, Michael; Johnson, Erin R.; Kłos, Jacek

    2015-01-14

    We report new potential energy surfaces for the ground state Ar–NO(X{sup 2}Π) van der Waals system calculated using the unrestricted Hartree-Fock (UHF) method with the addition of the Becke-Roussel correlation functional and exchange-hole dipole moment dispersion correction (XDM). We compare UHFBR-XDM surfaces and those previously reported by Alexander from coupled cluster CCSD(T) calculations [J. Chem. Phys. 111, 7426 (1999)]. The bound states of Ar–NO have been investigated with these new UHFBR-XDM surfaces, including relative energy-level spacing, adiabatic bender states and wave functions, and spectroscopic data. These results have been found to be in good agreement with calculations based on the CCSD(T) PESs. These new PESs are used to investigate the inelastic scattering of NO(X) by Ar. Full close-coupling integral cross sections at collision energies of 442 cm{sup −1}, 1774 cm{sup −1} and differential cross sections at collision energy of 530 cm{sup −1} were determined for transitions out of the lowest NO(X) rotational level (j = ω = 1/2,f). These cross sections are in good agreement with those calculated with CCSD(T) and accordingly in good agreement with the most recent initial and final state resolved experimental data. The UHFBR-XDM scheme yields high-quality potential surfaces with computational cost comparable to the Hartree-Fock method and our results may serve as a benchmark for application of this scheme to collisions between larger molecules.

  12. 3D Printed Potential and Free Energy Surfaces for Teaching Fundamental Concepts in Physical Chemistry

    ERIC Educational Resources Information Center

    Kaliakin, Danil S.; Zaari, Ryan R.; Varganov, Sergey A.

    2015-01-01

    Teaching fundamental physical chemistry concepts such as the potential energy surface, transition state, and reaction path is a challenging task. The traditionally used oversimplified 2D representation of potential and free energy surfaces makes this task even more difficult and often confuses students. We show how this 2D representation can be…

  13. Shortcut to adiabaticity in full-wave optics for ultra-compact waveguide junctions

    NASA Astrophysics Data System (ADS)

    Della Valle, Giuseppe; Perozziello, Gerardo; Longhi, Stefano

    2016-09-01

    We extend the concept of shortcuts to adiabaticity to full-wave optics and provide an application to the design of an ultra-compact waveguide junction. In particular, we introduce a procedure allowing one to synthesize a purely dielectric optical potential that precisely compensates for non-adiabatic losses of the transverse electric fundamental mode in any (sufficiently regular) two-dimensional waveguide junction. Our results are corroborated by finite-element method numerical simulations in a Pöschl–Teller waveguide mode expander.

  14. Protecting and accelerating adiabatic passage with time-delayed pulse sequences.

    PubMed

    Sampedro, Pablo; Chang, Bo Y; Sola, Ignacio R

    2016-05-21

    Using numerical simulations of two-photon electronic absorption with femtosecond pulses in Na2 we show that: (i) it is possible to avoid the characteristic saturation or dumped Rabi oscillations in the yield of absorption by time-delaying the laser pulses; (ii) it is possible to accelerate the onset of adiabatic passage by using the vibrational coherence starting in a wave packet; and (iii) it is possible to prepare the initial wave packet in order to achieve full state-selective transitions with broadband pulses. The findings can be used, for instance, to achieve ultrafast adiabatic passage by light-induced potentials and understand its intrinsic robustness. PMID:27125342

  15. Adiabatic response and quantum thermoelectrics for ac-driven quantum systems

    NASA Astrophysics Data System (ADS)

    Ludovico, María Florencia; Battista, Francesca; von Oppen, Felix; Arrachea, Liliana

    2016-02-01

    We generalize the theory of thermoelectrics to include coherent electron systems under adiabatic ac driving, accounting for quantum pumping of charge and heat, as well as for the work exchanged between the electron system and driving potentials. We derive the relevant response coefficients in the adiabatic regime and show that they obey generalized Onsager reciprocity relations. We analyze the consequences of our generalized thermoelectric framework for quantum motors, generators, heat engines, and heat pumps, characterizing them in terms of efficiencies and figures of merit. We illustrate these concepts in a model for a quantum pump.

  16. Protecting and accelerating adiabatic passage with time-delayed pulse sequences.

    PubMed

    Sampedro, Pablo; Chang, Bo Y; Sola, Ignacio R

    2016-05-21

    Using numerical simulations of two-photon electronic absorption with femtosecond pulses in Na2 we show that: (i) it is possible to avoid the characteristic saturation or dumped Rabi oscillations in the yield of absorption by time-delaying the laser pulses; (ii) it is possible to accelerate the onset of adiabatic passage by using the vibrational coherence starting in a wave packet; and (iii) it is possible to prepare the initial wave packet in order to achieve full state-selective transitions with broadband pulses. The findings can be used, for instance, to achieve ultrafast adiabatic passage by light-induced potentials and understand its intrinsic robustness.

  17. Non-equilibrium scale invariance and shortcuts to adiabaticity in a one-dimensional Bose gas

    PubMed Central

    Rohringer, W.; Fischer, D.; Steiner, F.; Mazets, I. E.; Schmiedmayer, J.; Trupke, M.

    2015-01-01

    We present experimental evidence for scale invariant behaviour of the excitation spectrum in phase-fluctuating quasi-1d Bose gases after a rapid change of the external trapping potential. Probing density correlations in free expansion, we find that the temperature of an initial thermal state scales with the spatial extension of the cloud as predicted by a model based on adiabatic rescaling of initial eigenmodes with conserved quasiparticle occupation numbers. Based on this result, we demonstrate that shortcuts to adiabaticity for the rapid expansion or compression of the gas do not induce additional heating. PMID:25867640

  18. Non-equilibrium scale invariance and shortcuts to adiabaticity in a one-dimensional Bose gas

    NASA Astrophysics Data System (ADS)

    Rohringer, W.; Fischer, D.; Steiner, F.; Mazets, I. E.; Schmiedmayer, J.; Trupke, M.

    2015-04-01

    We present experimental evidence for scale invariant behaviour of the excitation spectrum in phase-fluctuating quasi-1d Bose gases after a rapid change of the external trapping potential. Probing density correlations in free expansion, we find that the temperature of an initial thermal state scales with the spatial extension of the cloud as predicted by a model based on adiabatic rescaling of initial eigenmodes with conserved quasiparticle occupation numbers. Based on this result, we demonstrate that shortcuts to adiabaticity for the rapid expansion or compression of the gas do not induce additional heating.

  19. Non-equilibrium scale invariance and shortcuts to adiabaticity in a one-dimensional Bose gas.

    PubMed

    Rohringer, W; Fischer, D; Steiner, F; Mazets, I E; Schmiedmayer, J; Trupke, M

    2015-04-13

    We present experimental evidence for scale invariant behaviour of the excitation spectrum in phase-fluctuating quasi-1d Bose gases after a rapid change of the external trapping potential. Probing density correlations in free expansion, we find that the temperature of an initial thermal state scales with the spatial extension of the cloud as predicted by a model based on adiabatic rescaling of initial eigenmodes with conserved quasiparticle occupation numbers. Based on this result, we demonstrate that shortcuts to adiabaticity for the rapid expansion or compression of the gas do not induce additional heating.

  20. Dynamics of an optomechanical system with quadratic coupling: Effect of first order correction to adiabatic elimination

    PubMed Central

    Jiang, Cheng; Cui, Yuanshun; Chen, Guibin

    2016-01-01

    We explore theoretically the dynamics of an optomechanical system in which a resonantly driven cavity mode is quadratically coupled to the displacement of a mechanical resonator. Considering the first order correction to adiabatic elimination, we obtain the analytical expression of optomechanical damping rate which is negative and depends on the position of the mechanical resonator. After comparing the numerical results between the full simulation of Langevin equations, adiabatic elimination, and first order correction to adiabatic elimination, we explain the dynamics of the system in terms of overall mechanical potential and optomechanical damping rate. The antidamping induced by radiation pressure can result in self-sustained oscillation of the mechanical resonator. Finally, we discuss the time evolution of the intracavity photon number, which also shows that the effect of first order correction cannot be neglected when the ratio of the cavity decay rate to the mechanical resonance frequency becomes smaller than a critical value. PMID:27752125

  1. Separation of enantiomers by ultraviolet laser pulses in H2POSH: π pulses versus adiabatic transitions

    NASA Astrophysics Data System (ADS)

    González, Leticia; Kröner, Dominik; Solá, Ignacio R.

    2001-08-01

    Different strategies to separate enantiomers from a racemate using analytical laser pulses in the ultraviolet frequency domain are proposed for the prototype model system H2POSH. Wave-packet propagations on ab initio ground- and electronic-excited state potentials show that it is possible to produce 100% of enantiomeric excess in a sub-picosecond time scale using a sequence of π and half-π pulses. Alternatively, the previous transitions can be substituted by adiabatic counterparts, using chirped laser pulses and a half-STIRAP (stimulated Raman adiabatic passage) method which only transfers half of the population between appropriate levels. Such an overall adiabatic mechanism gains stability concerning the pulse areas and frequencies at the expense of introducing new control variables, like the chirp and time delay.

  2. Accurate non-adiabatic quantum dynamics from pseudospectral sampling of time-dependent Gaussian basis sets

    NASA Astrophysics Data System (ADS)

    Heaps, Charles W.; Mazziotti, David A.

    2016-08-01

    Quantum molecular dynamics requires an accurate representation of the molecular potential energy surface from a minimal number of electronic structure calculations, particularly for nonadiabatic dynamics where excited states are required. In this paper, we employ pseudospectral sampling of time-dependent Gaussian basis functions for the simulation of non-adiabatic dynamics. Unlike other methods, the pseudospectral Gaussian molecular dynamics tests the Schrödinger equation with N Dirac delta functions located at the centers of the Gaussian functions reducing the scaling of potential energy evaluations from O ( N 2 ) to O ( N ) . By projecting the Gaussian basis onto discrete points in space, the method is capable of efficiently and quantitatively describing the nonadiabatic population transfer and intra-surface quantum coherence. We investigate three model systems: the photodissociation of three coupled Morse oscillators, the bound state dynamics of two coupled Morse oscillators, and a two-dimensional model for collinear triatomic vibrational dynamics. In all cases, the pseudospectral Gaussian method is in quantitative agreement with numerically exact calculations. The results are promising for nonadiabatic molecular dynamics in molecular systems where strongly correlated ground or excited states require expensive electronic structure calculations.

  3. Analytical approximation of the InGaZnO thin-film transistors surface potential

    NASA Astrophysics Data System (ADS)

    Colalongo, Luigi

    2016-10-01

    Surface-potential-based mathematical models are among the most accurate and physically based compact models of thin-film transistors, and in turn of indium gallium zinc oxide TFTs, available today. However, the need of iterative computations of the surface potential limits their computational efficiency and diffusion in CAD applications. The existing closed-form approximations of the surface potential are based on regional approximations and empirical smoothing functions that could result not accurate enough in particular to model transconductances and transcapacitances. In this work we present an extremely accurate (in the range of nV) and computationally efficient non-iterative approximation of the surface potential that can serve as a basis for advanced surface-potential-based indium gallium zinc oxide TFTs models.

  4. Accurate analytical approximation of the OTFTs surface potential by means of the Lagrange Reversion Theorem

    NASA Astrophysics Data System (ADS)

    Colalongo, Luigi; Ghittorelli, Matteo; Torricelli, Fabrizio; Kovács-Vajna, Zsolt Miklos

    2015-12-01

    Surface-potential-based mathematical models are among the most accurate and physically based compact models of Thin-Film Transistors (TFTs) and, in turn, of Organic Thin-Film Transistors (OTFTs), available today. However, the need for iterative computations of the surface potential limits their computational efficiency and diffusion in CAD applications. The existing closed-form approximations of the surface potential are based on regional approximations and empirical smoothing functions that could result not enough accurate to model OTFTs and, in particular, transconductances and transcapacitances. In this paper we present an accurate and computationally efficient closed-form approximation of the surface potential, based on the Lagrange Reversion Theorem, that can be exploited in advanced surface-potential-based OTFTs and TFTs device models.

  5. Topological classification of integrable Hamiltonian systems in a potential field on surfaces of revolution

    NASA Astrophysics Data System (ADS)

    Kantonistova, E. O.

    2016-03-01

    A topological classification, up to Liouville (leafwise) equivalence of integrable Hamiltonian systems given by flows with a smooth potential on two-dimensional surfaces of revolution is presented. It is shown that the restrictions of such systems to three-dimensional isoenergy surfaces can be modelled by the geodesic flows (without potential) of certain surfaces of revolution. It is also shown that in many important cases the systems under consideration are equivalent to other well-known mechanical systems. Bibliography: 29 titles.

  6. Microbial population and functional dynamics associated with surface potential and carbon metabolism

    PubMed Central

    Ishii, Shun'ichi; Suzuki, Shino; Norden-Krichmar, Trina M; Phan, Tony; Wanger, Greg; Nealson, Kenneth H; Sekiguchi, Yuji; Gorby, Yuri A; Bretschger, Orianna

    2014-01-01

    Microbial extracellular electron transfer (EET) to solid surfaces is an important reaction for metal reduction occurring in various anoxic environments. However, it is challenging to accurately characterize EET-active microbial communities and each member's contribution to EET reactions because of changes in composition and concentrations of electron donors and solid-phase acceptors. Here, we used bioelectrochemical systems to systematically evaluate the synergistic effects of carbon source and surface redox potential on EET-active microbial community development, metabolic networks and overall electron transfer rates. The results indicate that faster biocatalytic rates were observed under electropositive electrode surface potential conditions, and under fatty acid-fed conditions. Temporal 16S rRNA-based microbial community analyses showed that Geobacter phylotypes were highly diverse and apparently dependent on surface potentials. The well-known electrogenic microbes affiliated with the Geobacter metallireducens clade were associated with lower surface potentials and less current generation, whereas Geobacter subsurface clades 1 and 2 were associated with higher surface potentials and greater current generation. An association was also observed between specific fermentative phylotypes and Geobacter phylotypes at specific surface potentials. When sugars were present, Tolumonas and Aeromonas phylotypes were preferentially associated with lower surface potentials, whereas Lactococcus phylotypes were found to be closely associated with Geobacter subsurface clades 1 and 2 phylotypes under higher surface potential conditions. Collectively, these results suggest that surface potentials provide a strong selective pressure, at the species and strain level, for both solid surface respirators and fermentative microbes throughout the EET-active community development. PMID:24351938

  7. Determination of caloric values of agricultural crops and crop waste by Adiabatic Bomb Calorimetry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calorific values of agricultural crops and their waste were measured by adiabatic bomb calorimetry. Sustainable farming techniques require that all potential sources of revenue be utilized. A wide variety of biomass is beginning to be used as alternative fuels all over the world. The energy potentia...

  8. Potential surfaces for O atom-polymer reactions

    NASA Technical Reports Server (NTRS)

    Laskowski, B. C.; Jaffe, R. L.

    1987-01-01

    Ab initio quantum chemistry methods are used to study the energetics of interactions of O atoms with organic compounds. Polyethylene (CH2)n has been chosen as the model system to study the interactions of O(3P) and O(1D) atoms with polymers. In particular, H abstraction is investigated and polyethylene is represented by a C3 (propane) oligomeric model. The gradient method, as implemented in the GRADSCF package of programs, is used to determine the geometries and energies of products and reactants. The saddle point, barrier geometry is determined by minimizing the squares of the gradients of the potential with respect to the internal coordinates. To correctly describe the change in bonding during the reaction at least a two configuration MCSCF (multiconfiguration self consistent field) or GVB (generalized valence bond) wave function has to be used. Basis sets include standard Pople and Dunning sets, however, increased with polarization functions and diffuse p functions on both the C and O atoms. The latter is important due to the O(-) character of the wave function at the saddle point and products. Normal modes and vibrational energy levels are given for the reactants, saddle points and products. Finally, quantitative energetics are obtained by implementing a small CAS (complete active space) approach followed by limited configuration interaction (CI) calculations. Comparisons are made with available experimental data.

  9. Characterization of the thrombogenic potential of surface oxides on stainless steel for implant purposes

    NASA Astrophysics Data System (ADS)

    Shih, Chun-Che; Shih, Chun-Ming; Su, Yea-Yang; Chang, Mau-Song; Lin, Shing-Jong

    2003-12-01

    Marketed stents are manufactured from various metals and passivated with different degrees of surface oxidation. The functional surface oxides on the degree of antithrombotic potential were explored through a canine femoral extracorporeal circuit model. Related properties of these oxide films were studied by open-circuit potential, current density detected at open-circuit potential, the electrochemical impedance spectroscopy, transmission electron microscopy, Auger spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy. Experimental evidences showed that blood clot weight after a 30-min follow-up was significantly lower for the stainless steel wire passivated with amorphous oxide (AO) compared to the wire passivated with polycrystalline oxide (PO) or commercial as-received wire coils (AS). Surface characterizations showed that a stable negative current density at open-circuit potential and a significant lower potential were found for the wire surface passivated with AO than for the surface passivated with PO. Time constant of AO is about 25 times larger than that of polycrystalline oxide. Significant difference in oxide grain sizes was found between PO and AO. Surface chemistries revealed by the AES and XPS spectra indicated the presence of a Cr- and oxygen-rich surface oxide for AO, and a Fe-rich and oxygen-lean surface oxide for PO. These remarkable characteristics of AO surface film might have a potential to provide for excellent antithrombotic characteristics for the 316L stainless steel stents.

  10. Potential effects of forest management on surface albedo

    NASA Astrophysics Data System (ADS)

    Otto, J.; Bréon, F.-M.; Schelhaas, M.-J.; Pinty, B.; Luyssaert, S.

    2012-04-01

    Currently 70% of the world's forests are managed and this figure is likely to rise due to population growth and increasing demand for wood based products. Forest management has been put forward by the Kyoto-Protocol as one of the key instruments in mitigating climate change. For temperate and boreal forests, the effects of forest management on the stand-level carbon balance are reasonably well understood, but the biophysical effects, for example through changes in the albedo, remain elusive. Following a modeling approach, we aim to quantify the variability in albedo that can be attributed to forest management through changes in canopy structure and density. The modelling approach chains three separate models: (1) a forest gap model to describe stand dynamics, (2) a Monte-Carlo model to estimate the probability density function of the optical path length of photons through the canopy and (3) a physically-based canopy transfer model to estimate the interaction between photons and leaves. The forest gap model provides, on a monthly time step the position, height, diameter, crown size and leaf area index of individual trees. The Monte-Carlo model computes from this the probability density function of the distance a photon travels through crown volumes to determine the direct light reaching the forest floor. This information is needed by the canopy transfer model to calculate the effective leaf area index - a quantity that allows it to correctly represent a 3D process with a 1D model. Outgoing radiation is calculated as the result of multiple processes involving the scattering due to the canopy layer and the forest floor. Finally, surface albedo is computed as the ratio between incident solar radiation and calculated outgoing radiation. The study used two time series representing thinning from below of a beech and a Scots pine forest. The results show a strong temporal evolution in albedo during stand establishment followed by a relatively stable albedo once the canopy

  11. The electrophoretic mobility of montmorillonite. Zeta potential and surface conductivity effects.

    PubMed

    Leroy, Philippe; Tournassat, Christophe; Bernard, Olivier; Devau, Nicolas; Azaroual, Mohamed

    2015-08-01

    Clay minerals have remarkable adsorption properties because of their high specific surface area and surface charge density, which give rise to high electrochemical properties. These electrochemical properties cannot be directly measured, and models must be developed to estimate the electrostatic potential at the vicinity of clay mineral surfaces. In this context, an important model prediction is the zeta potential, which is thought to be representative of the electrostatic potential at the plane of shear. The zeta potential is usually deduced from electrophoretic measurements but for clay minerals, high surface conductivity decreases their mobility, thereby impeding straightforward interpretation of these measurements. By combining a surface complexation, conductivity and electrophoretic mobility model, we were able to reconcile zeta potential predictions with electrophoretic measurements on montmorillonite immersed in NaCl aqueous solutions. The electrochemical properties of the Stern and diffuse layers of the basal surfaces were computed by a triple-layer model. Computed zeta potentials have considerably higher amplitudes than measured zeta potentials calculated with the Smoluchowski equation. Our model successfully reproduced measured electrophoretic mobilities. This confirmed our assumptions that surface conductivity may be responsible for montmorillonite's low electrophoretic mobility and that the zeta potential may be located at the beginning of the diffuse layer.

  12. Non-adiabatic effects in near-adiabatic mixed-field orientation and alignment

    NASA Astrophysics Data System (ADS)

    Maan, Anjali; Ahlawat, Dharamvir Singh; Prasad, Vinod

    2016-11-01

    We present a theoretical study of the impact of a pair of moderate electric fields tilted an angle with respect to one another on a molecule. As a prototype, we consider a molecule with large rotational constant (with corresponding small rotational period) and moderate dipole moment. Within rigid-rotor approximation, the time-dependent Schrodinger equation is solved using fourth-order Runge-Kutta method. We have analysed that lower rotational states are significantly influenced by variation in pulse durations, the tilt angle between the fields and also on the electric field strengths. We also suggest a control scheme of how the rotational dynamics, orientation and alignment of a molecule can be enhanced by a combination of near-adiabatic pulses in comparision to non-adiabatic or adiabatic pulses.

  13. He-LiF surface interaction potential from fast atom diffraction

    SciTech Connect

    Schueller, A.; Winter, H.; Gravielle, M. S.; Miraglia, J. E.; Pruneda, J. M.

    2009-12-15

    Diffraction patterns produced by grazing scattering of fast atoms from insulator surfaces are used to examine the atom-surface interaction. The method is applied to He atoms colliding with a LiF(001) surface along axial crystallographic channels. The projectile-surface potential is obtained from an accurate density-functional theory calculation, which includes polarization effects and surface relaxation. For the description of the collision process we employ the surface eikonal approximation, which takes into account quantum interference between different projectile paths. The dependence of projectile spectra on the parallel and perpendicular incident energies is experimentally and theoretically analyzed, demonstrating the range of applicability of the proposed model.

  14. Potential energy surface of H2O on Al{111} and Rh{111} from theoretical methods

    NASA Astrophysics Data System (ADS)

    Ranea, Víctor A.

    2012-11-01

    The potential energy surfaces of molecular water on the Al{111} and on the Rh{111} metal surfaces have been investigated using density functional theory. Similar landscapes were found on both surfaces. In the only minimum found, the water molecule is monocoordinated to the surface via the oxygen atom (top configuration) with its plane nearly parallel to the surface. The maxima are around the bridge and hollow configurations and no local minima or maxima were found. Along the investigated minimum energy pathways, no strong preferential orientation of the water dipole was found, as long as the molecular plane is nearly parallel to the surface.

  15. Non-adiabatic molecular dynamics with complex quantum trajectories. I. The diabatic representation.

    PubMed

    Zamstein, Noa; Tannor, David J

    2012-12-14

    We extend a recently developed quantum trajectory method [Y. Goldfarb, I. Degani, and D. J. Tannor, J. Chem. Phys. 125, 231103 (2006)] to treat non-adiabatic transitions. Each trajectory evolves on a single surface according to Newton's laws with complex positions and momenta. The transfer of amplitude between surfaces stems naturally from the equations of motion, without the need for surface hopping. In this paper we derive the equations of motion and show results in the diabatic representation, which is rarely used in trajectory methods for calculating non-adiabatic dynamics. We apply our method to the first two benchmark models introduced by Tully [J. Chem. Phys. 93, 1061 (1990)]. Besides giving the probability branching ratios between the surfaces, the method also allows the reconstruction of the time-dependent wavepacket. Our results are in quantitative agreement with converged quantum mechanical calculations.

  16. Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Schreck, Simon; Pietzsch, Annette; Kennedy, Brian; Såthe, Conny; Miedema, Piter S.; Techert, Simone; Strocov, Vladimir N.; Schmitt, Thorsten; Hennies, Franz; Rubensson, Jan-Erik; Föhlisch, Alexander

    2016-01-01

    Thermally driven chemistry as well as materials’ functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future.

  17. Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering

    PubMed Central

    Schreck, Simon; Pietzsch, Annette; Kennedy, Brian; Såthe, Conny; Miedema, Piter S.; Techert, Simone; Strocov, Vladimir N.; Schmitt, Thorsten; Hennies, Franz; Rubensson, Jan-Erik; Föhlisch, Alexander

    2016-01-01

    Thermally driven chemistry as well as materials’ functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future. PMID:26821751

  18. Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering.

    PubMed

    Schreck, Simon; Pietzsch, Annette; Kennedy, Brian; Såthe, Conny; Miedema, Piter S; Techert, Simone; Strocov, Vladimir N; Schmitt, Thorsten; Hennies, Franz; Rubensson, Jan-Erik; Föhlisch, Alexander

    2016-01-01

    Thermally driven chemistry as well as materials' functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future.

  19. Calculation of the structure, potential energy surface, vibrational dynamics, and electric dipole properties for the Xe:HI van der Waals complex.

    PubMed

    Preller, M; Grunenberg, J; Bulychev, V P; Bulanin, M O

    2011-05-01

    We report the structure and spectroscopic characteristics for the Xe:HI van der Waals binary isomers determined from variational solutions of two-dimensional and three-dimensional (3D) vibrational Schrödinger equations. The solutions are based on a potential energy surface computed at the coupled-cluster level of theory including single and double excitations and a non-iterative perturbation treatment of triple excitations [CCSD(T)]. The dipole moment surface was calculated using quadratic configuration interaction (QCISD). The global potential minimum is shown to be located at the anti-hydrogen-bonded Xe-IH isomer, 21 cm(-1) below the secondary local minimum associated with the hydrogen-bonded Xe-HI isomeric form. The dissociation energy from the global minimum is 245.9 cm(-1). 3D Schrödinger equations are solved for the rotational quantum numbers J = k = 0, 1, and 2, without invoking an adiabatic separation of high- and low-frequency degrees of freedom. The vibrational ground state resides in the Xe-HI potential well, while the first excited state, 8.59 cm(-1) above the ground, occupies the Xe-IH well. We find that intra-complex dynamics exhibits a sudden transformation upon increase of the r(HI) bond length, accompanied by abrupt changes in the geometric and dipole parameters. A similar chaotic behavior is predicted to occur for Xe:DI at a shorter r(DI) bond length, which implies stronger coupling between low- and high-frequency motions in the heavier complex. Our calculations confirm a strong enhancement for the r(HI) stretch fundamental and a significant weakening for the first overtone vibrational transitions in Xe:HI, as compared to those in the free HI molecule. A qualitative explanation of this, earlier experimentally detected effect is suggested.

  20. Calculation of the structure, potential energy surface, vibrational dynamics, and electric dipole properties for the Xe:HI van der Waals complex

    NASA Astrophysics Data System (ADS)

    Preller, M.; Grunenberg, J.; Bulychev, V. P.; Bulanin, M. O.

    2011-05-01

    We report the structure and spectroscopic characteristics for the Xe:HI van der Waals binary isomers determined from variational solutions of two-dimensional and three-dimensional (3D) vibrational Schrödinger equations. The solutions are based on a potential energy surface computed at the coupled-cluster level of theory including single and double excitations and a non-iterative perturbation treatment of triple excitations [CCSD(T)]. The dipole moment surface was calculated using quadratic configuration interaction (QCISD). The global potential minimum is shown to be located at the anti-hydrogen-bonded Xe-IH isomer, 21 cm-1 below the secondary local minimum associated with the hydrogen-bonded Xe-HI isomeric form. The dissociation energy from the global minimum is 245.9 cm-1. 3D Schrödinger equations are solved for the rotational quantum numbers J = k = 0, 1, and 2, without invoking an adiabatic separation of high- and low-frequency degrees of freedom. The vibrational ground state resides in the Xe-HI potential well, while the first excited state, 8.59 cm-1 above the ground, occupies the Xe-IH well. We find that intra-complex dynamics exhibits a sudden transformation upon increase of the r(HI) bond length, accompanied by abrupt changes in the geometric and dipole parameters. A similar chaotic behavior is predicted to occur for Xe:DI at a shorter r(DI) bond length, which implies stronger coupling between low- and high-frequency motions in the heavier complex. Our calculations confirm a strong enhancement for the r(HI) stretch fundamental and a significant weakening for the first overtone vibrational transitions in Xe:HI, as compared to those in the free HI molecule. A qualitative explanation of this, earlier experimentally detected effect is suggested.

  1. Calculation of the structure, potential energy surface, vibrational dynamics, and electric dipole properties for the Xe:HI van der Waals complex.

    PubMed

    Preller, M; Grunenberg, J; Bulychev, V P; Bulanin, M O

    2011-05-01

    We report the structure and spectroscopic characteristics for the Xe:HI van der Waals binary isomers determined from variational solutions of two-dimensional and three-dimensional (3D) vibrational Schrödinger equations. The solutions are based on a potential energy surface computed at the coupled-cluster level of theory including single and double excitations and a non-iterative perturbation treatment of triple excitations [CCSD(T)]. The dipole moment surface was calculated using quadratic configuration interaction (QCISD). The global potential minimum is shown to be located at the anti-hydrogen-bonded Xe-IH isomer, 21 cm(-1) below the secondary local minimum associated with the hydrogen-bonded Xe-HI isomeric form. The dissociation energy from the global minimum is 245.9 cm(-1). 3D Schrödinger equations are solved for the rotational quantum numbers J = k = 0, 1, and 2, without invoking an adiabatic separation of high- and low-frequency degrees of freedom. The vibrational ground state resides in the Xe-HI potential well, while the first excited state, 8.59 cm(-1) above the ground, occupies the Xe-IH well. We find that intra-complex dynamics exhibits a sudden transformation upon increase of the r(HI) bond length, accompanied by abrupt changes in the geometric and dipole parameters. A similar chaotic behavior is predicted to occur for Xe:DI at a shorter r(DI) bond length, which implies stronger coupling between low- and high-frequency motions in the heavier complex. Our calculations confirm a strong enhancement for the r(HI) stretch fundamental and a significant weakening for the first overtone vibrational transitions in Xe:HI, as compared to those in the free HI molecule. A qualitative explanation of this, earlier experimentally detected effect is suggested. PMID:21548682

  2. Effect of zeta potentials on bovine serum albumin adsorption to hydroxyapatite surfaces.

    PubMed

    Miyake, Nahoko; Sato, Toru; Maki, Yoshinobu

    2013-01-01

    The aim of the present study was to examine the adsorption of bovine serum albumin (BSA) to hydroxyapatite surfaces by means of zeta potential. The electrophoretic mobility of both hydroxyapatite and BSA were negative, with BSA itself less negative than hydroxyapatite. The zeta potential of the surface of BSA-adsorbed hydroxyapatite was significantly more negative than that of hydroxyapatite alone (p<0.0001). The BSA histogram indicated two negative peaks, and the zeta potential of BSA-adsorbed hydroxyapatite also showed two similar negative peaks. These results suggest that BSA adsorption to hydroxyapatite surfaces is related to electrostatic interaction. PMID:23903580

  3. Structure and stability of pyrophyllite edge surfaces: Effect of temperature and water chemical potential

    NASA Astrophysics Data System (ADS)

    Kwon, Kideok D.; Newton, Aric G.

    2016-10-01

    The surfaces of clay minerals, which are abundant in atmospheric mineral dust, serve as an important medium to catalyze ice nucleation. The lateral edge surface of 2:1 clay minerals is postulated to be a potential site for ice nucleation. However, experimental investigations of the edge surface structure itself have been limited compared to the basal planes of clay minerals. Density functional theory (DFT) computational studies have provided insights into the pyrophyllite edge surface. Pyrophyllite is an ideal surrogate mineral for the edge surfaces of 2:1 clay minerals as it possesses no or little structural charge. Of the two most-common hydrated edge surfaces, the AC edge, (1 1 0) surface in the monoclinic polytype notation, is predicted to be more stable than the B edge, (0 1 0) surface. These stabilities, however, were determined based on the total energies calculated at 0 K and did not consider environmental effects such as temperature and humidity. In this study, atomistic thermodynamics based on periodic DFT electronic calculations was applied to examine the effects of environmental variables on the structure and thermodynamic stability of the common edge surfaces in equilibrium with bulk pyrophyllite and water vapor. We demonstrate that the temperature-dependent vibrational energy of sorbed water molecules at the edge surface is a significant component of the surface free energy and cannot be neglected when determining the surface stability of pyrophyllite. The surface free energies were calculated as a function of temperature from 240 to 600 K and water chemical potential corresponding to conditions from ultrahigh vacuum to the saturation vapor pressure of water. We show that at lower water chemical potentials (dry conditions), the AC and B edge surfaces possessed similar stabilities; at higher chemical potentials (humid conditions) the AC edge surface was more stable than the B edge surface. At high temperatures, both surfaces showed similar stabilities

  4. Development of a "First Principles" Water Potential with Flexible Monomers: Dimer Potential Energy Surface, VRT Spectrum, and Second Virial Coefficient.

    PubMed

    Babin, Volodymyr; Leforestier, Claude; Paesani, Francesco

    2013-12-10

    The development of a "first principles" water potential with flexible monomers (MB-pol) for molecular simulations of water systems from gas to condensed phases is described. MB-pol is built upon the many-body expansion of the intermolecular interactions, and the specific focus of this study is on the two-body term (V2B) representing the full-dimensional intermolecular part of the water dimer potential energy surface. V2B is constructed by fitting 40,000 dimer energies calculated at the CCSD(T)/CBS level of theory and imposing the correct asymptotic behavior at long-range as predicted from "first principles". The comparison of the calculated vibration-rotation tunneling (VRT) spectrum and second virial coefficient with the corresponding experimental results demonstrates the accuracy of the MB-pol dimer potential energy surface.

  5. Global triplet potential energy surfaces for the N2(X1Σ) + O(3P) → NO(X2Π) + N(4S) reaction

    NASA Astrophysics Data System (ADS)

    Lin, Wei; Varga, Zoltan; Song, Guoliang; Paukku, Yuliya; Truhlar, Donald G.

    2016-01-01

    This work presents two global triplet potential energy surfaces (PESs) for the high-energy reaction N2(X1Σ) + O(3P) → NO(X2Π) + N(4S)—in particular, for the lowest energy 3A' and 3A″ PESs. In order to obtain the energies needed for fitting analytic surfaces, we carried out multireference configuration interaction (MRCI) calculations based on wave functions obtained from state-averaged complete active space self-consistent field calculations for 2280 geometries for the three lowest 3A″ states and for 2298 geometries for the three lowest 3A' states. The lowest-energy 3A' and 3A″ states at each of these geometries were then improved by applying the dynamically scaled external correlation (DSEC) method to all MRCI points, and the resulting DSEC energies were used for construction of the ground-state PES for each symmetry. The many-body component of the DSEC energies for the three-dimensional 3A' and 3A″ PESs was then least-squares fitted in terms of permutationally invariant polynomials in mixed exponential-Gaussian bond order variables. The global and local minima as well as the transition structures of both the 3A' and the 3A″ analytic PES were explored. In agreement with previous work, we find that the reverse reaction is barrierless on the 3A″ surface along the minimum energy pathway. However, we have explored several new local minima and transition structures on the 3A' PES. Furthermore, based on the newly found minima and transition structures, two independent reaction mechanisms have been illustrated for the reaction path on the 3A' PES. The analytic surfaces may be used for dynamics calculations of electronically adiabatic reactive scattering and energy transfer.

  6. Global triplet potential energy surfaces for the N2(X(1)Σ) + O((3)P) → NO(X(2)Π) + N((4)S) reaction.

    PubMed

    Lin, Wei; Varga, Zoltan; Song, Guoliang; Paukku, Yuliya; Truhlar, Donald G

    2016-01-14

    This work presents two global triplet potential energy surfaces (PESs) for the high-energy reaction N2(X(1)Σ) + O((3)P) → NO(X(2)Π) + N((4)S)-in particular, for the lowest energy (3)A' and (3)A″ PESs. In order to obtain the energies needed for fitting analytic surfaces, we carried out multireference configuration interaction (MRCI) calculations based on wave functions obtained from state-averaged complete active space self-consistent field calculations for 2280 geometries for the three lowest (3)A″ states and for 2298 geometries for the three lowest (3)A' states. The lowest-energy (3)A' and (3)A″ states at each of these geometries were then improved by applying the dynamically scaled external correlation (DSEC) method to all MRCI points, and the resulting DSEC energies were used for construction of the ground-state PES for each symmetry. The many-body component of the DSEC energies for the three-dimensional (3)A' and (3)A″ PESs was then least-squares fitted in terms of permutationally invariant polynomials in mixed exponential-Gaussian bond order variables. The global and local minima as well as the transition structures of both the (3)A' and the (3)A″ analytic PES were explored. In agreement with previous work, we find that the reverse reaction is barrierless on the (3)A″ surface along the minimum energy pathway. However, we have explored several new local minima and transition structures on the (3)A' PES. Furthermore, based on the newly found minima and transition structures, two independent reaction mechanisms have been illustrated for the reaction path on the (3)A' PES. The analytic surfaces may be used for dynamics calculations of electronically adiabatic reactive scattering and energy transfer.

  7. Shortcut to adiabaticity in spinor condensates

    NASA Astrophysics Data System (ADS)

    Sala, Arnau; Núñez, David López; Martorell, Joan; De Sarlo, Luigi; Zibold, Tilman; Gerbier, Fabrice; Polls, Artur; Juliá-Díaz, Bruno

    2016-10-01

    We devise a method to shortcut the adiabatic evolution of a spin-1 Bose gas with an external magnetic field as the control parameter. An initial many-body state with almost all bosons populating the Zeeman sublevel m =0 is evolved to a final state very close to a macroscopic spin-singlet condensate, a fragmented state with three macroscopically occupied Zeeman states. The shortcut protocol, obtained by an approximate mapping to a harmonic oscillator Hamiltonian, is compared to linear and exponential variations of the control parameter. We find a dramatic speedup of the dynamics when using the shortcut protocol.

  8. On adiabatic perturbations in the ekpyrotic scenario

    SciTech Connect

    Linde, A.; Mukhanov, V.; Vikman, A. E-mail: Viatcheslav.Mukhanov@physik.uni-muenchen.de

    2010-02-01

    In a recent paper, Khoury and Steinhardt proposed a way to generate adiabatic cosmological perturbations with a nearly flat spectrum in a contracting Universe. To produce these perturbations they used a regime in which the equation of state exponentially rapidly changed during a short time interval. Leaving aside the singularity problem and the difficult question about the possibility to transmit these perturbations from a contracting Universe to the expanding phase, we will show that the methods used in Khoury are inapplicable for the description of the cosmological evolution and of the process of generation of perturbations in this scenario.

  9. Generalized Ramsey numbers through adiabatic quantum optimization

    NASA Astrophysics Data System (ADS)

    Ranjbar, Mani; Macready, William G.; Clark, Lane; Gaitan, Frank

    2016-09-01

    Ramsey theory is an active research area in combinatorics whose central theme is the emergence of order in large disordered structures, with Ramsey numbers marking the threshold at which this order first appears. For generalized Ramsey numbers r( G, H), the emergent order is characterized by graphs G and H. In this paper we: (i) present a quantum algorithm for computing generalized Ramsey numbers by reformulating the computation as a combinatorial optimization problem which is solved using adiabatic quantum optimization; and (ii) determine the Ramsey numbers r({{T}}m,{{T}}n) for trees of order m,n = 6,7,8, most of which were previously unknown.

  10. Cavity-state preparation using adiabatic transfer

    NASA Astrophysics Data System (ADS)

    Larson, Jonas; Andersson, Erika

    2005-05-01

    We show how to prepare a variety of cavity field states for multiple cavities. The state preparation technique used is related to the method of stimulated adiabatic Raman passage. The cavity modes are coupled by atoms, making it possible to transfer an arbitrary cavity field state from one cavity to another and also to prepare nontrivial cavity field states. In particular, we show how to prepare entangled states of two or more cavities, such as an Einstein-Podolsky-Rosen state and a W state, as well as various entangled superpositions of coherent states in different cavities, including Schrödinger cat states. The theoretical considerations are supported by numerical simulations.

  11. Phase avalanches in near-adiabatic evolutions

    SciTech Connect

    Vertesi, T.; Englman, R.

    2006-02-15

    In the course of slow, nearly adiabatic motion of a system, relative changes in the slowness can cause abrupt and high magnitude phase changes, ''phase avalanches,'' superimposed on the ordinary geometric phases. The generality of this effect is examined for arbitrary Hamiltonians and multicomponent (>2) wave packets and is found to be connected (through the Blaschke term in the theory of analytic signals) to amplitude zeros in the lower half of the complex time plane. Motion on a nonmaximal circle on the Poincare-sphere suppresses the effect. A spectroscopic transition experiment can independently verify the phase-avalanche magnitudes.

  12. An adiabatic demagnetization refrigerator for infrared bolometers

    NASA Technical Reports Server (NTRS)

    Britt, R. D.; Richards, P. L.

    1981-01-01

    Adiabatic demagnetization refrigerators have been built and installed in small portable liquid helium cryostats to test the feasibility of this method of cooling infrared bolometric detectors to temperatures below 0.3 K. Performance has been achieved which suggests that bolometer temperatures of 0.2 K can be maintained for periods of approximately 60 hours. Applications to sensitive infrared detection from ground-based telescopes and space satellites are discussed. Design data are given which permit the evaluation of refrigerator performance for a variety of design parameters.

  13. Novel GaAs surface phases via direct control of chemical potential

    NASA Astrophysics Data System (ADS)

    Zheng, C. X.; Tersoff, J.; Tang, W. X.; Morreau, A.; Jesson, D. E.

    2016-05-01

    Using in situ surface electron microscopy, we show that the surface chemical potential of GaAs (001), and hence the surface phase, can be systematically controlled by varying temperature with liquid Ga droplets present as Ga reservoirs. With decreasing temperature, the surface approaches equilibrium with liquid Ga. This provides access to a regime where we find phases ultrarich in Ga, extending the range of surface phases available in this technologically important system. The same behavior is expected to occur for similar binary or multicomponent semiconductors such as InGaAs.

  14. Hot-electron-mediated desorption rates calculated from excited-state potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Olsen, Thomas; Gavnholt, Jeppe; Schiøtz, Jakob

    2009-01-01

    We present a model for desorption induced by (multiple) electronic transitions [DIET (DIMET)] based on potential energy surfaces calculated with the delta self-consistent field extension of density-functional theory. We calculate potential energy surfaces of CO and NO molecules adsorbed on various transition-metal surfaces and show that classical nuclear dynamics does not suffice for propagation in the excited state. We present a simple Hamiltonian describing the system with parameters obtained from the excited-state potential energy surface and show that this model can describe desorption dynamics in both the DIET and DIMET regimes and reproduce the power-law behavior observed experimentally. We observe that the internal stretch degree of freedom in the molecules is crucial for the energy transfer between the hot electrons and the molecule when the coupling to the surface is strong.

  15. Calculation of Rotation-Vibration Energy Levels of the Water Molecule with Near-Experimental Accuracy Based on an ab Initio Potential Energy Surface

    NASA Astrophysics Data System (ADS)

    Polyansky, Oleg L.; Ovsyannikov, Roman I.; Kyuberis, Aleksandra A.; Lodi, Lorenzo; Tennyson, Jonathan; Zobov, Nikolai F.

    2013-10-01

    A recently computed, high-accuracy ab initio Born-Oppenheimer (BO) potential energy surface (PES) for the water molecule is combined with relativistic, adiabatic, quantum electrodynamics, and, crucially, nonadiabatic corrections. Calculations of ro-vibrational levels are presented for several water isotopologues and shown to have unprecedented accuracy. A purely ab initio calculation reproduces some 200 known band origins associated with seven isotopologues of water with a standard deviation (σ) of about 0.35 cm-1. Introducing three semiempirical scaling parameters, two affecting the BO PES and one controlling nonadiabatic effects, reduces σ below 0.1 cm-1. Introducing one further rotational nonadiabatic parameter gives σ better than 0.1 cm-1 for all observed ro-vibrational energy levels up to J = 25. We conjecture that the energy levels of closed-shell molecules with roughly the same number of electrons as water, such as NH3, CH4, and H3O+, could be calculated to this accuracy using an analogous procedure. This means that near-ab initio calculations are capable of predicting transition frequencies with an accuracy only about a factor of 5 worse than high resolution experiments.

  16. Nucleon-deuteron scattering using the adiabatic projection method

    NASA Astrophysics Data System (ADS)

    Elhatisari, Serdar; Lee, Dean; Meißner, Ulf-G.; Rupak, Gautam

    2016-06-01

    In this paper we discuss the adiabatic projection method, a general framework for scattering and reaction calculations on the lattice. We also introduce several new techniques developed to study nucleus-nucleus scattering and reactions on the lattice. We present technical details of the method for large-scale problems. To estimate the systematic errors of the calculations we consider simple two-particle scattering on the lattice. Then we benchmark the accuracy and efficiency of the numerical methods by applying these to calculate fermion-dimer scattering in lattice effective field theory with and without a long-range Coulomb potential. The fermion-dimer calculations correspond to neutron-deuteron and proton-deuteron scattering in the spin-quartet channel at leading order in the pionless effective field theory.

  17. From Classical Nonlinear Integrable Systems to Quantum Shortcuts to Adiabaticity.

    PubMed

    Okuyama, Manaka; Takahashi, Kazutaka

    2016-08-12

    Using shortcuts to adiabaticity, we solve the time-dependent Schrödinger equation that is reduced to a classical nonlinear integrable equation. For a given time-dependent Hamiltonian, the counterdiabatic term is introduced to prevent nonadiabatic transitions. Using the fact that the equation for the dynamical invariant is equivalent to the Lax equation in nonlinear integrable systems, we obtain the counterdiabatic term exactly. The counterdiabatic term is available when the corresponding Lax pair exists and the solvable systems are classified in a unified and systematic way. Multisoliton potentials obtained from the Korteweg-de Vries equation and isotropic XY spin chains from the Toda equations are studied in detail. PMID:27563938

  18. Adiabatic cooling of solar wind electrons

    NASA Technical Reports Server (NTRS)

    Sandbaek, Ornulf; Leer, Egil

    1992-01-01

    In thermally driven winds emanating from regions in the solar corona with base electron densities of n0 not less than 10 exp 8/cu cm, a substantial fraction of the heat conductive flux from the base is transfered into flow energy by the pressure gradient force. The adiabatic cooling of the electrons causes the electron temperature profile to fall off more rapidly than in heat conduction dominated flows. Alfven waves of solar origin, accelerating the basically thermally driven solar wind, lead to an increased mass flux and enhanced adiabatic cooling. The reduction in electron temperature may be significant also in the subsonic region of the flow and lead to a moderate increase of solar wind mass flux with increasing Alfven wave amplitude. In the solar wind model presented here the Alfven wave energy flux per unit mass is larger than that in models where the temperature in the subsonic flow is not reduced by the wave, and consequently the asymptotic flow speed is higher.

  19. Quantum Adiabatic Algorithms and Large Spin Tunnelling

    NASA Technical Reports Server (NTRS)

    Boulatov, A.; Smelyanskiy, V. N.

    2003-01-01

    We provide a theoretical study of the quantum adiabatic evolution algorithm with different evolution paths proposed in this paper. The algorithm is applied to a random binary optimization problem (a version of the 3-Satisfiability problem) where the n-bit cost function is symmetric with respect to the permutation of individual bits. The evolution paths are produced, using the generic control Hamiltonians H (r) that preserve the bit symmetry of the underlying optimization problem. In the case where the ground state of H(0) coincides with the totally-symmetric state of an n-qubit system the algorithm dynamics is completely described in terms of the motion of a spin-n/2. We show that different control Hamiltonians can be parameterized by a set of independent parameters that are expansion coefficients of H (r) in a certain universal set of operators. Only one of these operators can be responsible for avoiding the tunnelling in the spin-n/2 system during the quantum adiabatic algorithm. We show that it is possible to select a coefficient for this operator that guarantees a polynomial complexity of the algorithm for all problem instances. We show that a successful evolution path of the algorithm always corresponds to the trajectory of a classical spin-n/2 and provide a complete characterization of such paths.

  20. Streaming potential revisited: the influence of convection on the surface conductivity.

    PubMed

    Saini, Rakesh; Garg, Abhinandan; Barz, Dominik P J

    2014-09-16

    Electrokinetic phenomena play an important role in the electrical characterization of surfaces. In terms of planar or porous substrates, streaming potential and/or streaming current measurements can be used to determine the zeta potential of the substrates in contact with aqueous electrolytes. In this work, we perform electrical impedance spectroscopy measurements to infer the electrical resistance in a microchannel with the same conditions as for a streaming potential experiment. Novel correlations are derived to relate the streaming current and streaming potential to the Reynolds number of the channel flow. Our results not only quantify the influence of surface conductivity, and here especially the contribution of the stagnant layer, but also reveal that channel resistance and therefore zeta potential are influenced by the flow in the case of low ionic strengths. We conclude that convection can have a significant impact on the electrical double layer configuration which is reflected by changes in the surfaces conductivity.

  1. Adiabat Shaping of ICF Capsules Using Ramped Pressure Profiles

    NASA Astrophysics Data System (ADS)

    Anderson, K.; Betti, R.; Collins, T. J. B.; Marinak, M. M.; Haan, S. W.

    2002-11-01

    Target design of direct-drive ICF capsules has historically involved a compromise between high 1-D (clean) yield and capsule stability. Low-adiabat fuel is desirable to achieve high compression and, hence, high yield. A higher adiabat at the ablation front reduces the growth rate of the Raleigh--Taylor instability due to higher ablation velocity. An optimal target design will take advantage of both by shaping the adiabat of the capsule to allow for high adiabat in the material that is to be ablated and low adiabat in the remaining fuel. We present here a method of adiabat shaping using a low-intensity prepulse followed by laser shutoff before beginning the main drive pulse. This creates a decaying shock with a ramped pressure profile behind it. Since the prepulse is low intensity, the adiabat is not strongly affected by the prepulse. The main shock is then launched up this ramped pressure profile to set the adiabat. Because the main shock sees an increasing pressure profile, the effective strength of the shock decreases as it propagates through the shell, thus creating a smooth adiabat profile from high outer-shell adiabat to low inner-shell adiabat. Results of simulations using 1-D LILAC and 2-D DRACO (LLE), as well as 1-D and 2-D HYDRA (LLNL), are presented. This work was supported by the U.S. DOE Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460 and by the University of California LLNL under contract No. W-7405-Eng-48.

  2. Ion-Step Method for Surface Potential Sensing of Silicon Nanowires.

    PubMed

    Chen, Songyue; van Nieuwkasteele, Jan W; van den Berg, Albert; Eijkel, Jan C T

    2016-08-16

    This paper presents a novel stimulus-response method for surface potential sensing of silicon nanowire (Si-NW) field-effect transistors. When an "ion-step" from low to high ionic strength is given as a stimulus to the gate oxide surface, an increase of double layer capacitance is therefore expected. Thus, a change of conductance through the Si-NWs is measured. The surface potential on the Si-NW gate is changed from negative for a bare SiO2 surface to neutral/positive when there is poly-l-lysine adsorption at certain pH, which also indicates a shift of point-of-zero charge pH after surface modification. This change is measured by a drop of current variation at the ion-step. The ion-step is performed to the Si-NW through a polydimethylsiloxane microfluidic chip with automatic sample switching. A reduction of the ion-step response from 2 nA to almost zero at pH 5.0 is observed by increasing the potassium ion concentration from 10 mM to 50 mM, which corresponds to a surface potential change of ∼12 mV. We show that this method can be used as an alternative method for surface potential sensing, making it less sensitive to drift.

  3. Ion-Step Method for Surface Potential Sensing of Silicon Nanowires.

    PubMed

    Chen, Songyue; van Nieuwkasteele, Jan W; van den Berg, Albert; Eijkel, Jan C T

    2016-08-16

    This paper presents a novel stimulus-response method for surface potential sensing of silicon nanowire (Si-NW) field-effect transistors. When an "ion-step" from low to high ionic strength is given as a stimulus to the gate oxide surface, an increase of double layer capacitance is therefore expected. Thus, a change of conductance through the Si-NWs is measured. The surface potential on the Si-NW gate is changed from negative for a bare SiO2 surface to neutral/positive when there is poly-l-lysine adsorption at certain pH, which also indicates a shift of point-of-zero charge pH after surface modification. This change is measured by a drop of current variation at the ion-step. The ion-step is performed to the Si-NW through a polydimethylsiloxane microfluidic chip with automatic sample switching. A reduction of the ion-step response from 2 nA to almost zero at pH 5.0 is observed by increasing the potassium ion concentration from 10 mM to 50 mM, which corresponds to a surface potential change of ∼12 mV. We show that this method can be used as an alternative method for surface potential sensing, making it less sensitive to drift. PMID:27457611

  4. Analytical Complementary Relationship Between Actual and Potential Evaporation Defined by Steady State Reference Surface Temperature

    NASA Astrophysics Data System (ADS)

    Or, D.; Aminzadeh, M.; Roderick, M. L.

    2015-12-01

    The definition of potential evaporation remains widely debated despite its centrality for hydrologic and climatic models. We employed an analytical pore-scale representation of evaporation from porous surfaces to define potential evaporation using a hypothetical steady-state reference temperature for air and evaporating surface. The feedback between drying land surfaces and overlaying air properties is implicitly incorporated in the hypothetical steady-state where the sensible heat flux vanishes and available energy is consumed by evaporation. Potential evaporation based on steady-state surface temperature was in surprisingly good agreement with class A pan evaporation measurements suggesting that pan evaporation occurs with negligible sensible heat flux. The model facilitates a new analytical generalization of the asymmetric complementary relationship across a wide range of meteorological conditions with good agreement between measured and predicted actual evaporation.

  5. The PyPES library of high quality semi-global potential energy surfaces.

    PubMed

    Sibaev, Marat; Crittenden, Deborah L

    2015-11-01

    In this article, we present a Python-based library of high quality semi-global potential energy surfaces for 50 polyatomic molecules with up to six atoms. We anticipate that these surfaces will find widespread application in the testing of new potential energy surface construction algorithms and nuclear ro-vibrational structure theories. To this end, we provide the ability to generate the energy derivatives required for Taylor series expansions to sixth order about any point on the potential energy surface in a range of common coordinate systems, including curvilinear internal, Cartesian, and normal mode coordinates. The PyPES package, along with FORTRAN, C, MATLAB and Mathematica wrappers, is available at http://sourceforge.net/projects/pypes-lib.

  6. Distribution of the surface potential of epitaxial HgCdTe

    SciTech Connect

    Novikov, V. A. Grigoryev, D. V.; Bezrodnyy, D. A.; Dvoretsky, S. A.

    2014-09-08

    We studied the distribution of surface potential of the Hg{sub 1−x}Cd{sub x}Te epitaxial films grown by molecular beam epitaxy. The studies showed that the variation of the spatial distribution of surface potential in the region of the V-defect can be related to the variation of the material composition of epitaxial film. The V-defect is characterized by increased of Hg content with respect to the composition of the solid solution of Hg{sub 1−x}Cd{sub x}Te epitaxial film. In this paper, it was demonstrated that the unformed V-defects can be observed together with the macroscopic V-defects on the epitaxial film surface. These unformed V-defects can allow the creation of a complex surface potential distribution profile due to the redistribution of the solid solution composition.

  7. The PyPES library of high quality semi-global potential energy surfaces.

    PubMed

    Sibaev, Marat; Crittenden, Deborah L

    2015-11-01

    In this article, we present a Python-based library of high quality semi-global potential energy surfaces for 50 polyatomic molecules with up to six atoms. We anticipate that these surfaces will find widespread application in the testing of new potential energy surface construction algorithms and nuclear ro-vibrational structure theories. To this end, we provide the ability to generate the energy derivatives required for Taylor series expansions to sixth order about any point on the potential energy surface in a range of common coordinate systems, including curvilinear internal, Cartesian, and normal mode coordinates. The PyPES package, along with FORTRAN, C, MATLAB and Mathematica wrappers, is available at http://sourceforge.net/projects/pypes-lib. PMID:26407838

  8. On the Electronic Nature of the Surface Potential at the Vapor-Liquid Interface of Water

    SciTech Connect

    Kathmann, S M; Kuo, I; Mundy, C J

    2008-02-05

    The surface potential at the vapor-liquid interface of water is relevant to many areas of chemical physics. Measurement of the surface potential has been experimentally attempted many times, yet there has been little agreement as to its magnitude and sign (-1.1 to +0.5 mV). We present the first computation of the surface potential of water using ab initio molecular dynamics. We find that the surface potential {chi} = -18 mV with a maximum interfacial electric field = 8.9 x 10{sup 7} V/m. A comparison is made between our quantum mechanical results and those from previous molecular simulations. We find that explicit treatment of the electronic density makes a dramatic contribution to the electric properties of the vapor-liquid interface of water. The E-field can alter interfacial reactivity and transport while the surface potential can be used to determine the 'chemical' contribution to the real and electrochemical potentials for ionic transport through the vapor-liquid interface.

  9. Adiabatic quantum optimization in the presence of discrete noise: Reducing the problem dimensionality

    NASA Astrophysics Data System (ADS)

    Mandrà, Salvatore; Guerreschi, Gian Giacomo; Aspuru-Guzik, Alán

    2015-12-01

    Adiabatic quantum optimization is a procedure to solve a vast class of optimization problems by slowly changing the Hamiltonian of a quantum system. The evolution time necessary for the algorithm to be successful scales inversely with the minimum energy gap encountered during the dynamics. Unfortunately, the direct calculation of the gap is strongly limited by the exponential growth in the dimensionality of the Hilbert space associated to the quantum system. Although many special-purpose methods have been devised to reduce the effective dimensionality, they are strongly limited to particular classes of problems with evident symmetries. Moreover, little is known about the computational power of adiabatic quantum optimizers in real-world conditions. Here we propose and implement a general purposes reduction method that does not rely on any explicit symmetry and which requires, under certain general conditions, only a polynomial amount of classical resources. Thanks to this method, we are able to analyze the performance of "nonideal" quantum adiabatic optimizers to solve the well-known Grover problem, namely the search of target entries in an unsorted database, in the presence of discrete local defects. In this case, we show that adiabatic quantum optimization, even if affected by random noise, is still potentially faster than any classical algorithm.

  10. The Adiabatic Invariance of the Action Variable in Classical Dynamics

    ERIC Educational Resources Information Center

    Wells, Clive G.; Siklos, Stephen T. C.

    2007-01-01

    We consider one-dimensional classical time-dependent Hamiltonian systems with quasi-periodic orbits. It is well known that such systems possess an adiabatic invariant which coincides with the action variable of the Hamiltonian formalism. We present a new proof of the adiabatic invariance of this quantity and illustrate our arguments by means of…

  11. Generation of atomic NOON states via shortcuts to adiabatic passage

    NASA Astrophysics Data System (ADS)

    Song, Chong; Su, Shi-Lei; Bai, Cheng-Hua; Ji, Xin; Zhang, Shou

    2016-10-01

    Based on Lewis-Riesenfeld invariants and quantum Zeno dynamics, we propose an effective scheme for generating atomic NOON states via shortcuts to adiabatic passage. The photon losses are efficiently suppressed by engineering shortcuts to adiabatic passage in the scheme. The numerical simulation shows that the atomic NOON states can be generated with high fidelity.

  12. Kinetic Theory Derivation of the Adiabatic Law for Ideal Gases.

    ERIC Educational Resources Information Center

    Sobel, Michael I.

    1980-01-01

    Discusses how the adiabatic law for ideal gases can be derived from the assumption of a Maxwell-Boltzmann (or any other) distribution of velocities--in contrast to the usual derivations from thermodynamics alone, and the higher-order effect that leads to one-body viscosity. An elementary derivation of the adiabatic law is given. (Author/DS)

  13. Adiabat-shaping in indirect drive inertial confinement fusion

    SciTech Connect

    Baker, K. L.; Robey, H. F.; Milovich, J. L.; Jones, O. S.; Smalyuk, V. A.; Casey, D. T.; MacPhee, A. G.; Pak, A.; Celliers, P. M.; Clark, D. S.; Landen, O. L.; Peterson, J. L.; Berzak-Hopkins, L. F.; Weber, C. R.; Haan, S. W.; Döppner, T. D.; Dixit, S.; Hamza, A. V.; Jancaitis, K. S.; Kroll, J. J.; and others

    2015-05-15

    Adiabat-shaping techniques were investigated in indirect drive inertial confinement fusion experiments on the National Ignition Facility as a means to improve implosion stability, while still maintaining a low adiabat in the fuel. Adiabat-shaping was accomplished in these indirect drive experiments by altering the ratio of the picket and trough energies in the laser pulse shape, thus driving a decaying first shock in the ablator. This decaying first shock is designed to place the ablation front on a high adiabat while keeping the fuel on a low adiabat. These experiments were conducted using the keyhole experimental platform for both three and four shock laser pulses. This platform enabled direct measurement of the shock velocities driven in the glow-discharge polymer capsule and in the liquid deuterium, the surrogate fuel for a DT ignition target. The measured shock velocities and radiation drive histories are compared to previous three and four shock laser pulses. This comparison indicates that in the case of adiabat shaping the ablation front initially drives a high shock velocity, and therefore, a high shock pressure and adiabat. The shock then decays as it travels through the ablator to pressures similar to the original low-adiabat pulses when it reaches the fuel. This approach takes advantage of initial high ablation velocity, which favors stability, and high-compression, which favors high stagnation pressures.

  14. Quantifying the anisotropy of intermolecular potential energy surfaces: a critical assessment of available N2-N2 potentials.

    PubMed

    Karimi-Jafari, M H; Ashouri, M

    2011-05-28

    Based on definition of angular central moments, a quantitative measure is proposed for comparative assessment of the anisotropy of different intermolecular potential energy surfaces at different intermolecular distances. Angular spreadness, skewness and peakedness are three features of anisotropy that are used here to describe the distribution of values of interaction energy around its isotropic component. In agreement with qualitative interpretations, the proposed measure exhibits a sharp change in the R-dependent pattern of anisotropy at an intermediate distance where the repulsive forces on the average overcome the attractive ones. The R-dependence of anisotropy of available N(2)-N(2) potentials is examined in comparison with bare ab initio data and considerable discrepancies are found at distances shorter than the onset of repulsion. It is shown that the full experimentally derived potentials with simplified functional forms do not reproduce the correct anisotropy of interaction energy.

  15. O(6) algebraic approach to three bound identical particles in the hyperspherical adiabatic representation

    NASA Astrophysics Data System (ADS)

    Salom, Igor; Dmitrašinović, V.

    2016-05-01

    We construct the three-body permutation symmetric O (6) hyperspherical harmonics and use them to solve the non-relativistic three-body Schrödinger equation in three spatial dimensions. We label the states with eigenvalues of the U (1) ⊗ SO(3)rot ⊂ U (3) ⊂ O (6) chain of algebras, and we present the K ≤ 4 harmonics and tables of their matrix elements. That leads to closed algebraic form of low-K energy spectra in the adiabatic approximation for factorizable potentials with square-integrable hyper-angular parts. This includes homogeneous pairwise potentials of degree α ≥ - 1. More generally, a simplification is achieved in numerical calculations of non-adiabatic approximations to non-factorizable potentials by using our harmonics.

  16. Decoherence and adiabatic transport in semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Switkes, Michael

    2000-10-01

    I present research on ballistic electron transport in lateral GaAs/AlGaAs quantum dots connected to the environment with leads supporting one or more fully transmitting quantum modes. The first part of this dissertation examines electron the phenomena which mediate the transition from quantum mechanical to classical behavior in these quantum dots. Measurements of electron phase coherence time based on the magnitude of weak localization correction are presented as a function both of temperature and of applied bias. The coherence time is found to depend on temperature approximately as a sum of two power laws, tauφ ≈ AT-1 + BT-2, in agreement with the prediction for diffusive two dimensional systems but not with predictions for closed quantum dots or ballistic 2D systems. The effects of a large applied bias can be described with an elevated effective electron temperature calculated from the balance of Joule heating and cooling by Wiedemann-Franz out diffusion of hot electrons. The limits this imposes for quantum dot based technologies are examined through the detailed analysis of a quantum dot magnetometer. The second part of the work presented here focuses on a novel form of electron transport, adiabatic quantum electron pumping, in which a current is driven by cyclic changes in the wave function of a mesoscopic system rather than by an externally imposed bias. After a brief review of other mechanisms which produce a dc current from an ac excitation, measurements of adiabatic pumping are presented. The pumped current (or voltage) is sinusoidal in the phase difference between the two ac voltages deforming the dot potential and fluctuates in both magnitude and direction with small changes in external parameters such as magnetic field. Dependencies of pumping on the strength of the deformations, temperature, and breaking of time-reversal symmetry are also investigated.

  17. Adiabatic principles in atom-diatom collisional energy transfer

    SciTech Connect

    Hovingh, W.J.

    1993-01-01

    This work describes the application of numerical methods to the solution of the time dependent Schroedinger equation for non-reactive atom-diatom collisions in which only one of the degrees of freedom has been removed. The basic method involves expanding the wave function in a basis set in two of the diatomic coordinates in a body-fixed frame (with respect to the triatomic complex) and defining the coefficients in that expansion as functions on a grid in the collision coordinate. The wave function is then propagated in time using a split operator method. The bulk of this work is devoted to the application of this formalism to the study of internal rotational predissociation in NeHF, in which quasibound states of the triatom predissociate through the transfer of energy from rotation of the diatom into translational energy in the atom-diatom separation coordinate. The author analyzes the computed time dependent wave functions to calculate the lifetimes for several quasibound states; these are in agreement with time independent quantum calculations using the same potential. Moreover, the time dependent behavior of the wave functions themselves sheds light on the dynamics of the predissociation processes. Finally, the partial cross sections of the products in those processes is determined with multiple exit channels. These show strong selectivity in the orbital angular momentum of the outgoing fragments, which the author explains with an adiabatic channel interpretation of the wave function's dynamics. The author also suggests that the same formalism might profitably be used to investigate the quantum dynamics of [open quotes]quasiresonant vibration-rotation transfer[close quotes], in which remarkably strong propensity rules in certain inelastic atom-diatom collision arise from classical adiabatic invariance theory.

  18. Semiclassical Monte-Carlo approach for modelling non-adiabatic dynamics in extended molecules

    PubMed Central

    Gorshkov, Vyacheslav N.; Tretiak, Sergei; Mozyrsky, Dmitry

    2013-01-01

    Modelling of non-adiabatic dynamics in extended molecular systems and solids is a next frontier of atomistic electronic structure theory. The underlying numerical algorithms should operate only with a few quantities (that can be efficiently obtained from quantum chemistry), provide a controlled approximation (which can be systematically improved) and capture important phenomena such as branching (multiple products), detailed balance and evolution of electronic coherences. Here we propose a new algorithm based on Monte-Carlo sampling of classical trajectories, which satisfies the above requirements and provides a general framework for existing surface hopping methods for non-adiabatic dynamics simulations. In particular, our algorithm can be viewed as a post-processing technique for analysing numerical results obtained from the conventional surface hopping approaches. Presented numerical tests for several model problems demonstrate efficiency and accuracy of the new method. PMID:23864100

  19. Semiclassical Monte-Carlo approach for modelling non-adiabatic dynamics in extended molecules.

    PubMed

    Gorshkov, Vyacheslav N; Tretiak, Sergei; Mozyrsky, Dmitry

    2013-01-01

    Modelling of non-adiabatic dynamics in extended molecular systems and solids is a next frontier of atomistic electronic structure theory. The underlying numerical algorithms should operate only with a few quantities (that can be efficiently obtained from quantum chemistry), provide a controlled approximation (which can be systematically improved) and capture important phenomena such as branching (multiple products), detailed balance and evolution of electronic coherences. Here we propose a new algorithm based on Monte-Carlo sampling of classical trajectories, which satisfies the above requirements and provides a general framework for existing surface hopping methods for non-adiabatic dynamics simulations. In particular, our algorithm can be viewed as a post-processing technique for analysing numerical results obtained from the conventional surface hopping approaches. Presented numerical tests for several model problems demonstrate efficiency and accuracy of the new method. PMID:23864100

  20. An adiabatic demagnetization refrigerator for SIRTF

    NASA Technical Reports Server (NTRS)

    Timbie, P. T.; Bernstein, G. M.; Richards, P. L.

    1989-01-01

    An adiabatic demagnetization refrigerator (ADR) has been proposed to cool bolometric infrared detectors on the multiband imaging photometer of the Space Infrared Telescope Facility (SIRTF). One such refrigerator has been built which uses a ferric ammonium alum salt pill suspended by nylon threads in a 3-T solenoid. The resonant modes of this suspension are above 100 Hz. The heat leak to the salt pill is less than 0.5 microW. The system has a hold time at 0.1K of more than 12 h. The cold stage temperature is regulated with a feedback loop that controls the magnetic field. A second, similar refrigerator is being built at a SIRTF prototype to fly on a ballon-borne telescope. It will use a ferromagnetic shield. The possibility of using a high-Tc solenoid-actuated heat switch is also discussed.

  1. An adiabatic demagnetization refrigerator for SIRTF

    SciTech Connect

    Timbie, P.T.; Bernstein, G.M.; Richards, P.L.

    1989-02-01

    An adiabatic demagnetization refrigerator (ADR) has been proposed to cool bolometric infrared detectors on the Multiband Imaging Photometer of the Space Infrared Telescope Facility (SIRTF). The authors have built one such refrigerator which employs a ferric ammonium alum salt pill suspended by nylon threads in a 3 Tesla solenoid. The resonant modes of this suspension are above 100 Hz. The heat leak to the salt pill is <0.5 ..mu..W. The system has a hold time at 0.1 /sup 0/K of >12 hours. The cold stage temperature is regulated with a feedback loop that controls the magnetic field. A second, similar refrigerator is being built as a SIRTF prototype to fly on a balloon-borne telescope. It will employ a ferromagnetic shield. The possibility of using high T/sub c/ leads to the superconducting magnet and a solenoid-actuated heat switch are also discussed.

  2. The HAWC and SAFIRE Adiabatic Demagnetization Refrigerators

    NASA Technical Reports Server (NTRS)

    Tuttle, Jim; Shirron, Peter; DiPirro, Michael; Jackson, Michael; Behr, Jason; Kunes, Evan; Hait, Tom; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    The High-Resolution Airborne Wide-band Camera (HAWC) and Submillimeter and Far Infrared Experiment (SAFIRE) are far-infrared experiments which will fly on the Stratospheric Observatory for Infrared Astronomy (SOFIA) aircraft. HAWC's detectors will operate at 0.2 Kelvin, while those of SAFIRE will be at 0.1 Kelvin. Each instrument will include an adiabatic demagnetization refrigerator (ADR) to cool its detector stage from the liquid helium bath temperature (HAWC's at 4.2 Kelvin and SAFIRE's pumped to about 1.3 Kelvin) to its operating temperature. Except for the magnets used to achieve the cooling and a slight difference in the heat switch design, the two ADRs are nearly identical. We describe the ADR design and present the results of performance testing.

  3. Number Partitioning via Quantum Adiabatic Computation

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, Vadim N.; Toussaint, Udo; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We study both analytically and numerically the complexity of the adiabatic quantum evolution algorithm applied to random instances of combinatorial optimization problems. We use as an example the NP-complete set partition problem and obtain an asymptotic expression for the minimal gap separating the ground and exited states of a system during the execution of the algorithm. We show that for computationally hard problem instances the size of the minimal gap scales exponentially with the problem size. This result is in qualitative agreement with the direct numerical simulation of the algorithm for small instances of the set partition problem. We describe the statistical properties of the optimization problem that are responsible for the exponential behavior of the algorithm.

  4. Differential topology of adiabatically controlled quantum processes

    NASA Astrophysics Data System (ADS)

    Jonckheere, Edmond A.; Rezakhani, Ali T.; Ahmad, Farooq

    2013-03-01

    It is shown that in a controlled adiabatic homotopy between two Hamiltonians, H 0 and H 1, the gap or "anti-crossing" phenomenon can be viewed as the development of cusps and swallow tails in the region of the complex plane where two critical value curves of the quadratic map associated with the numerical range of H 0 + i H 1 come close. The "near crossing" in the energy level plots happens to be a generic situation, in the sense that a crossing is a manifestation of the quadratic numerical range map being unstable in the sense of differential topology. The stable singularities that can develop are identified and it is shown that they could occur near the gap, making those singularities of paramount importance. Various applications, including the quantum random walk, are provided to illustrate this theory.

  5. Quantum Adiabatic Optimization and Combinatorial Landscapes

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, V. N.; Knysh, S.; Morris, R. D.

    2003-01-01

    In this paper we analyze the performance of the Quantum Adiabatic Evolution (QAE) algorithm on a variant of Satisfiability problem for an ensemble of random graphs parametrized by the ratio of clauses to variables, gamma = M / N. We introduce a set of macroscopic parameters (landscapes) and put forward an ansatz of universality for random bit flips. We then formulate the problem of finding the smallest eigenvalue and the excitation gap as a statistical mechanics problem. We use the so-called annealing approximation with a refinement that a finite set of macroscopic variables (verses only energy) is used, and are able to show the existence of a dynamic threshold gamma = gammad, beyond which QAE should take an exponentially long time to find a solution. We compare the results for extended and simplified sets of landscapes and provide numerical evidence in support of our universality ansatz.

  6. Adiabatic frequency conversion of ultrafast pulses

    NASA Astrophysics Data System (ADS)

    Suchowski, H.; Bruner, B. D.; Ganany-Padowicz, A.; Juwiler, I.; Arie, A.; Silberberg, Y.

    2011-12-01

    A new method for efficient, broadband sum and difference frequency generation of ultrafast pulses is demonstrated. The principles of the method follow from an analogy between frequency conversion and coherent optical excitation of a two-level system. For conversion of ultrafast pulses, the concepts of adiabatic conversion are developed further in order to account for dispersion and group velocity mismatch. The scheme was implemented using aperiodically poled nonlinear crystals and a single step nonlinear mixing process, leading to conversion of near-IR (˜790 nm) ultrafast pulses into the blue (˜450 nm) and mid-IR (˜3.15 μm) spectral regions. Conversion bandwidths up to 15 THz FWHM and efficiencies up to 50% are reported.

  7. Stirling engine with one adiabatic cylinder

    NASA Astrophysics Data System (ADS)

    West, C. D.

    1982-03-01

    It is shown that integration around the P-V loop of a Stirling-like cycle with an adiabatic expansion or compression space is possible through careful application of the ideal gas laws. The result is a set of closed-form solutions or the work output, work input, and efficiency for ideal gases. Previous analyses yielded closed-form solutions only for machines in which all spaces behave isothermally, or that have other limitations that simplify the arithmetic but omit important aspects of real machines. The results of this analysis, although still far removed from the exact behavior of real, practical engines, yield important insights into the effects observed in computer models and experimental machines. These results are especially illuminating for machines intended to operate with fairly small temperature differences. Heat pumps and low-technology solar-powered engines might be included in this category.

  8. Adiabatic connection at negative coupling strengths

    SciTech Connect

    Seidl, Michael; Gori-Giorgi, Paola

    2010-01-15

    The adiabatic connection of density functional theory (DFT) for electronic systems is generalized here to negative values of the coupling strength alpha (with attractive electrons). In the extreme limit alpha->-infinity a simple physical solution is presented and its implications for DFT (as well as its limitations) are discussed. For two-electron systems (a case in which the present solution can be calculated exactly), we find that an interpolation between the limit alpha->-infinity and the opposite limit of infinitely strong repulsion (alpha->+infinity) yields a rather accurate estimate of the second-order correlation energy E{sub c}{sup GL2}[rho] for several different densities rho, without using virtual orbitals. The same procedure is also applied to the Be isoelectronic series, analyzing the effects of near degeneracy.

  9. Adiabatic theory for anisotropic cold molecule collisions

    SciTech Connect

    Pawlak, Mariusz; Shagam, Yuval; Narevicius, Edvardas; Moiseyev, Nimrod

    2015-08-21

    We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment {sup 4}He(1s2s {sup 3}S) + HD(1s{sup 2}) → {sup 4}He(1s{sup 2}) + HD{sup +}(1s) + e{sup −} [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings.

  10. Lattice Boltzmann method for adiabatic acoustics.

    PubMed

    Li, Yanbing; Shan, Xiaowen

    2011-06-13

    The lattice Boltzmann method (LBM) has been proved to be a useful tool in many areas of computational fluid dynamics, including computational aero-acoustics (CAA). However, for historical reasons, its applications in CAA have been largely restricted to simulations of isothermal (Newtonian) sound waves. As the recent kinetic theory-based reformulation establishes a theoretical framework in which LBM can be extended to recover the full Navier-Stokes-Fourier (NS) equations and beyond, in this paper, we show that, at least at the low-frequency limit (sound frequency much less than molecular collision frequency), adiabatic sound waves can be accurately simulated by the LBM provided that the lattice and the distribution function ensure adequate recovery of the full NS equations.

  11. An Integrated Development Environment for Adiabatic Quantum Programming

    SciTech Connect

    Humble, Travis S; McCaskey, Alex; Bennink, Ryan S; Billings, Jay Jay; D'Azevedo, Eduardo; Sullivan, Blair D; Klymko, Christine F; Seddiqi, Hadayat

    2014-01-01

    Adiabatic quantum computing is a promising route to the computational power afforded by quantum information processing. The recent availability of adiabatic hardware raises the question of how well quantum programs perform. Benchmarking behavior is challenging since the multiple steps to synthesize an adiabatic quantum program are highly tunable. We present an adiabatic quantum programming environment called JADE that provides control over all the steps taken during program development. JADE captures the workflow needed to rigorously benchmark performance while also allowing a variety of problem types, programming techniques, and processor configurations. We have also integrated JADE with a quantum simulation engine that enables program profiling using numerical calculation. The computational engine supports plug-ins for simulation methodologies tailored to various metrics and computing resources. We present the design, integration, and deployment of JADE and discuss its use for benchmarking adiabatic quantum programs.

  12. The sea surface currents as a potential factor in the estimation and monitoring of wave energy potential

    NASA Astrophysics Data System (ADS)

    Zodiatis, George; Galanis, George; Nikolaidis, Andreas; Stylianoy, Stavros; Liakatas, Aristotelis

    2015-04-01

    The use of wave energy as an alternative renewable is receiving attention the last years under the shadow of the economic crisis in Europe and in the light of the promising corresponding potential especially for countries with extended coastline. Monitoring and studying the corresponding resources is further supported by a number of critical advantages of wave energy compared to other renewable forms, like the reduced variability and the easier adaptation to the general grid, especially when is jointly approached with wind power. Within the framework, a number of countries worldwide have launched research and development projects and a significant number of corresponding studies have been presented the last decades. However, in most of them the impact of wave-sea surface currents interaction on the wave energy potential has not been taken into account neglecting in this way a factor of potential importance. The present work aims at filling this gap for a sea area with increased scientific and economic interest, the Eastern Mediterranean Sea. Based on a combination of high resolution numerical modeling approach with advanced statistical tools, a detailed analysis is proposed for the quantification of the impact of sea surface currents, which produced from downscaling the MyOcean-FO regional data, to wave energy potential. The results although spatially sensitive, as expected, prove beyond any doubt that the wave- sea surface currents interaction should be taken into account for similar resource analysis and site selection approaches since the percentage of impact to the available wave power may reach or even exceed 20% at selected areas.

  13. Probing surface charge potentials of clay basal planes and edges by direct force measurements.

    PubMed

    Zhao, Hongying; Bhattacharjee, Subir; Chow, Ross; Wallace, Dean; Masliyah, Jacob H; Xu, Zhenghe

    2008-11-18

    The dispersion and gelation of clay suspensions have major impact on a number of industries, such as ceramic and composite materials processing, paper making, cement production, and consumer product formulation. To fundamentally understand controlling mechanisms of clay dispersion and gelation, it is necessary to study anisotropic surface charge properties and colloidal interactions of clay particles. In this study, a colloidal probe technique was employed to study the interaction forces between a silica probe and clay basal plane/edge surfaces. A muscovite mica was used as a representative of 2:1 phyllosilicate clay minerals. The muscovite basal plane was prepared by cleavage, while the edge surface was obtained by a microtome cutting technique. Direct force measurements demonstrated the anisotropic surface charge properties of the basal plane and edge surface. For the basal plane, the long-range forces were monotonically repulsive within pH 6-10 and the measured forces were pH-independent, thereby confirming that clay basal planes have permanent surface charge from isomorphic substitution of lattice elements. The measured interaction forces were fitted well with the classical DLVO theory. The surface potentials of muscovite basal plane derived from the measured force profiles were in good agreement with those reported in the literature. In the case of edge surfaces, the measured forces were monotonically repulsive at pH 10, decreasing with pH, and changed to be attractive at pH 5.6, strongly suggesting that the charge on the clay edge surfaces is pH-dependent. The measured force profiles could not be reasonably fitted with the classical DLVO theory, even with very small surface potential values, unless the surface roughness was considered. The surface element integration (SEI) method was used to calculate the DLVO forces to account for the surface roughness. The surface potentials of the muscovite edges were derived by fitting the measured force profiles with the

  14. Efficient algorithms for the simulation of non-adiabatic electron transfer in complex molecular systems: application to DNA.

    PubMed

    Kubař, Tomáš; Elstner, Marcus

    2013-04-28

    In this work, a fragment-orbital density functional theory-based method is combined with two different non-adiabatic schemes for the propagation of the electronic degrees of freedom. This allows us to perform unbiased simulations of electron transfer processes in complex media, and the computational scheme is applied to the transfer of a hole in solvated DNA. It turns out that the mean-field approach, where the wave function of the hole is driven into a superposition of adiabatic states, leads to over-delocalization of the hole charge. This problem is avoided using a surface hopping scheme, resulting in a smaller rate of hole transfer. The method is highly efficient due to the on-the-fly computation of the coarse-grained DFT Hamiltonian for the nucleobases, which is coupled to the environment using a QM/MM approach. The computational efficiency and partial parallel character of the methodology make it possible to simulate electron transfer in systems of relevant biochemical size on a nanosecond time scale. Since standard non-polarizable force fields are applied in the molecular-mechanics part of the calculation, a simple scaling scheme was introduced into the electrostatic potential in order to simulate the effect of electronic polarization. It is shown that electronic polarization has an important effect on the features of charge transfer. The methodology is applied to two kinds of DNA sequences, illustrating the features of transfer along a flat energy landscape as well as over an energy barrier. The performance and relative merit of the mean-field scheme and the surface hopping for this application are discussed. PMID:23493847

  15. Communication: On the competition between adiabatic and nonadiabatic dynamics in vibrationally mediated ammonia photodissociation in its A band

    SciTech Connect

    Xie, Changjian; Zhu, Xiaolei; Yarkony, David R. E-mail: yarkony@jhu.edu E-mail: hguo@unm.edu; Ma, Jianyi E-mail: yarkony@jhu.edu E-mail: hguo@unm.edu; Xie, Daiqian E-mail: yarkony@jhu.edu E-mail: hguo@unm.edu; Guo, Hua E-mail: yarkony@jhu.edu E-mail: hguo@unm.edu

    2015-03-07

    Non-adiabatic processes play an important role in photochemistry, but the mechanism for conversion of electronic energy to chemical energy is still poorly understood. To explore the possibility of vibrational control of non-adiabatic dynamics in a prototypical photoreaction, namely, the A-band photodissociation of NH{sub 3}(X{sup ~1}A{sub 1}), full-dimensional state-to-state quantum dynamics of symmetric or antisymmetric stretch excited NH{sub 3}(X{sup ~1}A{sub 1}) is investigated on recently developed coupled diabatic potential energy surfaces. The experimentally observed H atom kinetic energy distributions are reproduced. However, contrary to previous inferences, the NH{sub 2}(A{sup ~2}A{sub 1})/NH{sub 2}(X{sup ~2}B{sub 1}) branching ratio is found to be small regardless of the initial preparation of NH{sub 3}(X{sup ~1}A{sub 1}), while the internal state distribution of the preeminent fragment, NH{sub 2}(X{sup ~2}B{sub 1}), is found to depend strongly on the initial vibrational excitation of NH{sub 3}(X{sup ~1}A{sub 1}). The slow H atoms in photodissociation mediated by the antisymmetric stretch fundamental state are due to energy sequestered in the internally excited NH{sub 2}(X{sup ~2}B{sub 1}) fragment, rather than in NH{sub 2}(A{sup ~2}A{sub 1}) as previously proposed. The high internal excitation of the NH{sub 2}(X{sup ~2}B{sub 1}) fragment is attributed to the torques exerted on the molecule as it passes through the conical intersection seam to the ground electronic state of NH{sub 3}. Thus in this system, contrary to previous assertions, the control of electronic state branching by selective excitation of ground state vibrational modes is concluded to be ineffective. The juxtaposition of precise quantum mechanical results with complementary results based on quasi-classical surface hopping trajectories provides significant insights into the non-adiabatic process.

  16. Non-Adiabatic, Multi-State Ring-Polymer Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Bell, Franziska; Menzeleev, Artur; Miller, Thomas, III

    2014-03-01

    Ring-polymer molecular dynamics (RPMD) has been shown to be a promising method for studying mechanisms and rates in large systems which require the inclusion of quantum effects, such as zero-point energies and tunneling. Examples involve electron and/or proton transfer reactions in enzymes and artificial catalysts. However, the traditional formulation of RPMD has several shortcomings: (i) it is restricted to migrations of only one distinguishable electron, (ii) it cannot describe photophysical processes, and (iii) it cannot be used in conjunction with potential energy surfaces obtained from electronic structure methods. Here I present a parameter-free extension of the RPMD method that addresses these issues and allows for the direct simulation of non-adiabatic processes involving many-electron wavefunctions without prior assumptions of the reaction mechanism. The new approach is demonstrated to provide a quantitative description of electron-transfer reaction rates and mechanisms throughout (i) the normal and inverted regimes and (ii) the weak- and strong-coupling regimes. I would like to thank the APS for financial support in form of a New Investigator Travel Award.

  17. Prediction of physicochemical properties of organic molecules using van der Waals surface electrostatic potentials.

    PubMed

    Kim, Chan Kyung; Lee, Kyung A; Hyun, Kwan Hoon; Park, Heung Jin; Kwack, In Young; Kim, Chang Kon; Lee, Hai Whang; Lee, Bon-Su

    2004-12-01

    The generalized interaction properties function (GIPF) methodology developed by Politzer and coworkers, which calculated molecular surface electrostatic potential (MSESP) on a density envelope surface, was modified by calculating the MSESP on a much simpler van der Waals (vdW) surface of a molecule. In this work, vdW molecular surfaces were obtained from the fully optimized structures confirmed by frequency calculations at B3LYP/6-31G(d) level of theory. Multiple linear regressions for normal boiling point, heats of vaporization, heats of sublimation, heats of fusion, liquid density, and solid density were performed using GIPF variables from vdW model surface. Results from our model are compared with those from Politzer and coworkers. The surface-dependent beta (and gamma) values are dependent on the surface models but the surface-independent alpha and regression coefficients (r) are constant when vdW surface and density surface with 0.001 a.u. contour value are compared. This interesting phenomenon is explained by linear dependencies of GIPF variables.

  18. Is the isentropic surface always impermeable to the potential vorticity substance?

    NASA Astrophysics Data System (ADS)

    Kieu, Chanh Q.; Zhang, Da-Lin

    2012-01-01

    The impermeability of isentropic surfaces by the potential vorticity substance (PVS) has often been used to help understand the generation of potential vorticity in the presence of diabatic heating and friction. In this study, we examined singularities of isentropic surfaces that may develop in the presence of diabatic heating and the fictitious movements of the isentropic surfaces that are involved in deriving the PVS impermeability theorem. Our results show that such singularities could occur in the upper troposphere as a result of intense convective-scale motion, at the cloud top due to radiative cooling, or within the well-mixed boundary layer. These locally ill-defined conditions allow PVS to penetrate across an isentropic surface. We conclude that the PVS impermeability theorem is generally valid for the stably stratified atmosphere in the absence of diabatic heating.

  19. High volume hydraulic fracturing operations: potential impacts on surface water and human health.

    PubMed

    Mrdjen, Igor; Lee, Jiyoung

    2016-08-01

    High volume, hydraulic fracturing (HVHF) processes, used to extract natural gas and oil from underground shale deposits, pose many potential hazards to the environment and human health. HVHF can negatively affect the environment by contaminating soil, water, and air matrices with potential pollutants. Due to the relatively novel nature of the process, hazards to surface waters and human health are not well known. The purpose of this article is to link the impacts of HVHF operations on surface water integrity, with human health consequences. Surface water contamination risks include: increased structural failure rates of unconventional wells, issues with wastewater treatment, and accidental discharge of contaminated fluids. Human health risks associated with exposure to surface water contaminated with HVHF chemicals include increased cancer risk and turbidity of water, leading to increased pathogen survival time. Future research should focus on modeling contamination spread throughout the environment, and minimizing occupational exposure to harmful chemicals.

  20. High volume hydraulic fracturing operations: potential impacts on surface water and human health.

    PubMed

    Mrdjen, Igor; Lee, Jiyoung

    2016-08-01

    High volume, hydraulic fracturing (HVHF) processes, used to extract natural gas and oil from underground shale deposits, pose many potential hazards to the environment and human health. HVHF can negatively affect the environment by contaminating soil, water, and air matrices with potential pollutants. Due to the relatively novel nature of the process, hazards to surface waters and human health are not well known. The purpose of this article is to link the impacts of HVHF operations on surface water integrity, with human health consequences. Surface water contamination risks include: increased structural failure rates of unconventional wells, issues with wastewater treatment, and accidental discharge of contaminated fluids. Human health risks associated with exposure to surface water contaminated with HVHF chemicals include increased cancer risk and turbidity of water, leading to increased pathogen survival time. Future research should focus on modeling contamination spread throughout the environment, and minimizing occupational exposure to harmful chemicals. PMID:26608711

  1. Modeling Solar-Wind Heavy-Ions' Potential Sputtering of Lunar KREEP Surface

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.; Meyer, F. W.; Harris, R. P.; Adams, J. H., Jr.

    2012-01-01

    Recent laboratory data suggest that potential sputtering may be an important weathering mechanism that can affect the composition of both the lunar surface and its tenuous exosphere; its role and implications, however, remain unclear. Using a relatively simple kinetic model, we will demonstrate that solar-wind heavy ions induced sputtering of KREEP surfaces is critical in establishing the timescale of the overall solar-wind sputtering process of the lunar surface. We will also also show that potential sputtering leads to a more pronounced and significant differentiation between depleted and enriched surface elements. We briefly discuss the impacts of enhanced sputtering on the composition of the regolith and the exosphere, as well as of solar-wind sputtering as a source of hydrogen and water on the moon.

  2. Surface and subsurface geologic risk factors to ground water affecting brownfield redevelopment potential.

    PubMed

    Kaufman, Martin M; Murray, Kent S; Rogers, Daniel T

    2003-01-01

    A model is created for assessing the redevelopment potential of brownfields. The model is derived from a space and time conceptual framework that identifies and measures the surface and subsurface risk factors present at brownfield sites. The model then combines these factors with a contamination extent multiplier at each site to create an index of redevelopment potential. Results from the application of the model within an urbanized watershed demonstrate clear differences between the redevelopment potential present within five different near-surface geologic units, with those units containing clay being less vulnerable to subsurface contamination. With and without the extent multiplier, the total risk present at the brownfield sites within all the geologic units is also strongly correlated to the actual costs of remediation. Thus, computing the total surface and subsurface risk within a watershed can help guide the remediation efforts at broad geographic scales, and prioritize the locations for redevelopment. PMID:12708672

  3. Surface and subsurface geologic risk factors to ground water affecting brownfield redevelopment potential.

    PubMed

    Kaufman, Martin M; Murray, Kent S; Rogers, Daniel T

    2003-01-01

    A model is created for assessing the redevelopment potential of brownfields. The model is derived from a space and time conceptual framework that identifies and measures the surface and subsurface risk factors present at brownfield sites. The model then combines these factors with a contamination extent multiplier at each site to create an index of redevelopment potential. Results from the application of the model within an urbanized watershed demonstrate clear differences between the redevelopment potential present within five different near-surface geologic units, with those units containing clay being less vulnerable to subsurface contamination. With and without the extent multiplier, the total risk present at the brownfield sites within all the geologic units is also strongly correlated to the actual costs of remediation. Thus, computing the total surface and subsurface risk within a watershed can help guide the remediation efforts at broad geographic scales, and prioritize the locations for redevelopment.

  4. Temperature change effect on BaTiO3 single crystal surface potential around domain walls

    NASA Astrophysics Data System (ADS)

    He, D. Y.; Xing, X. R.; Qiao, L. J.; Volinsky, Alex A.

    2014-08-01

    Temperature dependence of the surface potential distribution on the BaTiO3 (0 0 1) single crystal ferroelectric domain walls was investigated by the scanning Kelvin probe microscopy. After decreasing the single crystal temperature below the Curie point (TC), high potential (∼600 mV) stripes were immediately observed near the 90° a-c domain wall surface. The potential stripes were not stable and decayed with time. The adjacent c domain surface screening charges and their mobility play a dominant role in this experiment. The corrugation topography at the 90° a-c domain wall acts as a natural charge trap and should not be neglected. Besides, the polarization and the strain variations across the wall induce large physical changes of the material.

  5. Permutation invariant potential energy surfaces for polyatomic reactions using atomistic neural networks

    NASA Astrophysics Data System (ADS)

    Kolb, Brian; Zhao, Bin; Li, Jun; Jiang, Bin; Guo, Hua

    2016-06-01

    The applicability and accuracy of the Behler-Parrinello atomistic neural network method for fitting reactive potential energy surfaces is critically examined in three systems, H + H2 → H2 + H, H + H2O → H2 + OH, and H + CH4 → H2 + CH3. A pragmatic Monte Carlo method is proposed to make efficient choice of the atom-centered mapping functions. The accuracy of the potential energy surfaces is not only tested by fitting errors but also validated by direct comparison in dynamically important regions and by quantum scattering calculations. Our results suggest this method is both accurate and efficient in representing multidimensional potential energy surfaces even when dissociation continua are involved.

  6. Quantum Dynamics of Vinylidene Photodetachment on an Accurate Global Acetylene-Vinylidene Potential Energy Surface.

    PubMed

    Guo, Lifen; Han, Huixian; Ma, Jianyi; Guo, Hua

    2015-08-01

    Vinylidene is a high-energy isomer of acetylene, and the rearrangement of bonds in the two species serves as a prototype for isomerization reactions. Here, a full-dimensional quantum mechanical study of the vinylidene vibration is carried out on a recently developed global acetylene-vinylidene potential energy surface by simulating the photodetachment dynamics of the vinylidene anion. Several low-lying vibrational levels of the anion were first determined on a new ab initio based potential energy surface, and their photoelectron spectra were obtained within the Condon approximation. The vibrational features of the vinylidene isomer are found to agree well with the experiment in both positions and intensities, validating the global acetylene-vinylidene potential energy surface.

  7. Permutation invariant potential energy surfaces for polyatomic reactions using atomistic neural networks.

    PubMed

    Kolb, Brian; Zhao, Bin; Li, Jun; Jiang, Bin; Guo, Hua

    2016-06-14

    The applicability and accuracy of the Behler-Parrinello atomistic neural network method for fitting reactive potential energy surfaces is critically examined in three systems, H + H2 → H2 + H, H + H2O → H2 + OH, and H + CH4 → H2 + CH3. A pragmatic Monte Carlo method is proposed to make efficient choice of the atom-centered mapping functions. The accuracy of the potential energy surfaces is not only tested by fitting errors but also validated by direct comparison in dynamically important regions and by quantum scattering calculations. Our results suggest this method is both accurate and efficient in representing multidimensional potential energy surfaces even when dissociation continua are involved.

  8. New potential energy surface for the HCS(+)-He system and inelastic rate coefficients.

    PubMed

    Dubernet, Marie-Lise; Quintas-Sánchez, Ernesto; Tuckey, Philip

    2015-07-28

    A new high quality potential energy surface is calculated at a coupled-cluster single double triple level with an aug-cc-pV5Z basis set for the HCS(+)-He system. This potential energy surface is used in low energy quantum scattering calculations to provide a set of (de)-excitation cross sections and rate coefficients among the first 20 rotational levels of HCS(+) by He in the range of temperature from 5 K to 100 K. The paper discusses the impact of the new ab initio potential energy surface on the cross sections at low energy and provides a comparison with the HCO(+)-He system. The HCS(+)-He rate coefficients for the strongest transitions differ by factors of up to 2.5 from previous rate coefficients; thus, analysis of astrophysical spectra should be reconsidered with the new rate coefficients.

  9. Excited-State Tautomerization of 7-Azaindole in Nonpolar Solution: A Theoretical Study Based on Liquid-Phase Potential Surfaces of Mean Force.

    PubMed

    Fang, Hua; Kim, Yongho

    2013-08-13

    Excited state tautomerization of a 7-azaindole (7AI) complex with one methanol molecule in heptane was studied using variational transition state theory including multidimensional tunneling (VTST/MT) with the dielectric continuum model for the solvent effect. Electronic structures and energies for reactants and transition state (TS) in solution were computed at the complete active space self-consistent field (CASSCF) level with second-order multireference perturbation theory (MRPT2) to take into consideration of dynamic electron correlation. The polarizable continuum model using the integral equation formalism (IEFPCM) and the SMD model were used for the excited-state solvent effect. Excited-state surfaces of potential of the mean force in solution were generated for the first time at the MRPT2//SMD/CASSCF(10,9)/6-31G(d,p) level. The position of TS on the reaction coordinate substantially depended on the dynamic electron correlation. The two protons in the excited-state tautomerization were transferred in a concerted but asynchronous process. Calculated HH/DD kinetic isotope effect (KIE) and the ratio of Arrhenius pre-exponential factors, A(HH)/A(DD), agreed very well with the corresponding experimental values. The shape of the adiabatic energy surfaces in the excited-state strongly depended on the position of isotopes due to the asynchronicity of the reaction path, and the tunneling effect was essential for reproducing experimental KIEs. The pyrrolic proton moved a twice longer distance by tunneling than the hydroxyl proton in the most probable tunneling path at 292 K. This study strongly suggests that the mechanism of the excited-state double proton transfer in heptane is triggered by proton transfer from the pyrrolic nitrogen of 7AI to alcohol (protolytic pathway), rather than by proton transfer from alcohol to the pyridine nitrogen of 7AI (solvolytic pathway).

  10. ``Adiabatic-hindered-rotor'' treatment of the parahydrogen-water complex

    NASA Astrophysics Data System (ADS)

    Zeng, Tao; Li, Hui; Le Roy, Robert J.; Roy, Pierre-Nicholas

    2011-09-01

    Inspired by a recent successful adiabatic-hindered-rotor treatment for parahydrogen pH2 in CO2-H2 complexes [H. Li, P.-N. Roy, and R. J. Le Roy, J. Chem. Phys. 133, 104305 (2010); H. Li, R. J. Le Roy, P.-N. Roy, and A. R. W. McKellar, Phys. Rev. Lett. 105, 133401 (2010)], we apply the same approximation to the more challenging H2O-H2 system. This approximation reduces the dimension of the H2O-H2 potential from 5D to 3D and greatly enhances the computational efficiency. The global minimum of the original 5D potential is missing from the adiabatic 3D potential for reasons based on solution of the hindered-rotor Schrödinger equation of the pH2. Energies and wave functions of the discrete rovibrational levels of H2O-pH2 complexes obtained from the adiabatic 3D potential are in good agreement with the results from calculations with the full 5D potential. This comparison validates our approximation, although it is a relatively cruder treatment for pH2-H2O than it is for pH2-CO2. This adiabatic approximation makes large-scale simulations of H2O-pH2 systems possible via a pairwise additive interaction model in which pH2 is treated as a point-like particle. The poor performance of the diabatically spherical treatment of pH2 rotation excludes the possibility of approximating pH2 as a simple sphere in its interaction with H2O.

  11. Effects of PV Module Soiling on Glass Surface Resistance and Potential-Induced Degradation

    SciTech Connect

    Hacke, Peter; Button, Patrick; Hendrickson, Alex; Spataru, Sergiu; Glick, Stephen

    2015-06-14

    The goals of the project were: Determine applicability of transmission line method (TLM) to evaluate sheet resistance of soils on module glass;
    Evaluate various soils on glass for changes in surface resistance and their ability to promote potential-induced degradation with humidity (PID);
    Evaluate PID characteristics, rate, and leakage current increases on full-size mc-Si modules associated with a conductive soil on the surface.

  12. Synthesis and surface activity of diether-linked phosphoglycerols: potential applications for exogenous lung surfactants.

    PubMed

    Notter, Robert H; Wang, Zhongyi; Wang, Zhengdong; Davy, Jason A; Schwan, Adrian L

    2007-01-01

    The synthesis of three phosphoglycerols is described, one of which contains the previously unknown phosphonoglycerol headgroup. The surface tension-lowering capabilities of synthetic lung surfactant mixtures containing the PG analogs were measured on the pulsating bubble surfactometer and compared to known controls. The PG-containing mixtures exhibited superior surface tension-lowering properties indicating the significant potential of these analogs as components in synthetic exogenous lung surfactants.

  13. The molecular potential energy surface and vibrational energy levels of methyl fluoride. Part II.

    PubMed

    Manson, Steven A; Law, Mark M; Atkinson, Ian A; Thomson, Grant A

    2006-06-28

    New analytical bending and stretching, ground electronic state, potential energy surfaces for CH(3)F are reported. The surfaces are expressed in bond-length, bond-angle internal coordinates. The four-dimensional stretching surface is an accurate, least squares fit to over 2000 symmetrically unique ab initio points calculated at the CCSD(T) level. Similarly, the five-dimensional bending surface is a fit to over 1200 symmetrically unique ab initio points. This is an important first stage towards a full nine-dimensional potential energy surface for the prototype CH(3)F molecule. Using these surfaces, highly excited stretching and (separately) bending vibrational energy levels of CH(3)F are calculated variationally using a finite basis representation method. The method uses the exact vibrational kinetic energy operator derived for XY(3)Z systems by Manson and Law (preceding paper, Part I, Phys. Chem. Chem. Phys., 2006, 8, DOI: 10.1039/b603106d). We use the full C(3v) symmetry and the computer codes are designed to use an arbitrary potential energy function. Ultimately, these results will be used to design a compact basis for fully coupled stretch-bend calculations of the vibrational energy levels of the CH(3)F system.

  14. Construction of an accurate potential energy surface by interpolation with Cartesian weighting coordinates

    NASA Astrophysics Data System (ADS)

    Rhee, Young Min

    2000-10-01

    A modified method to construct an accurate potential energy surface by interpolation is presented. The modification is based on the use of Cartesian coordinates in the weighting function. The translational and rotational invariance of the potential is incorporated by a proper definition of the distance between two Cartesian configurations. A numerical algorithm to find the distance is developed. It is shown that the present method is more exact in describing a planar system compared to the previous methods with weightings in internal coordinates. The applicability of the method to reactive systems is also demonstrated by performing classical trajectory simulations on the surface.

  15. Exploiting initial-state dependence to improve the performance of adiabatic TDDFT

    NASA Astrophysics Data System (ADS)

    Fuks, Johanna I.; Nielsen, Soeren E. B.; Ruggenthaler, Michael; Maitra, Neepa T.; Hunter college City University of New York Collaboration; Max-Planck-Institut für Struktur und Dynamik der Materie, Hamburg Collaboration

    Although time-dependent density functional theory (TDDFT) descriptions of dynamics in non-equilibrium situations have seen exciting successes recently, there have also been studies that throw into doubt the reliability of the approximate exchange-correlation functionals to accurately describe the dynamics. Here we study exact exchange-correlation potentials for few electron systems, found using the global fixed-point iteration method [NRL]. We find that the size of dynamical correlation features that are missing in the currently-used adiabatic approximations depend strongly on the choice of the initial Kohn-Sham wavefunction. With a judicious choice, the dynamical effects can be small over a finite time duration, but sometimes they can get large at longer times. We also examine different starting points, in particular an orbital-dependent potential directly obtained from the Kohn-Sham hole [LFSEM14], for approximate xc functionals: instead of building on an adiabatic approximation.

  16. Temperature gradients due to adiabatic plasma expansion in a magnetic nozzle

    NASA Astrophysics Data System (ADS)

    Sheehan, J. P.; Longmier, B. W.; Bering, E. A.; Olsen, C. S.; Squire, J. P.; Ballenger, M. G.; Carter, M. D.; Cassady, L. D.; Díaz, F. R. Chang; Glover, T. W.; Ilin, A. V.

    2014-08-01

    A mechanism for ambipolar ion acceleration in a magnetic nozzle is proposed. The plasma is adiabatic (i.e., does not exchange energy with its surroundings) in the diverging section of a magnetic nozzle so any energy lost by the electrons must be transferred to the ions via the electric field. Fluid theory indicates that the change in plasma potential is proportional to the change in average electron energy. These predictions were compared to measurements in the VX-200 experiment which has conditions conducive to ambipolar ion acceleration. A planar Langmuir probe was used to measure the plasma potential, electron density, and electron temperature for a range of mass flow rates and power levels. Axial profiles of those parameters were also measured, showing consistency with the adiabatic ambipolar fluid theory.

  17. Effect of Surface Elasticity on the Piezoelectric Potential of a Bent ZnO Nanowire

    NASA Astrophysics Data System (ADS)

    Yao, Haiyan; Yun, Guohong; Bai, Narsu; Li, Jiangang

    2012-07-01

    The influence of surface elasticity on the piezoelectric potential distribution of a deformed ZnO nanowire is investigated by the effective Young's modulus based upon elastic and piezoelectric theory. When the nanowire in radius 25 nm subjects to an lateral applied force 5 nN, the maximum piezoelectric potential of the nanowire we derived is about 13.8 mV, which approaches much more closely to the experiment measurement value (˜10 mV) [Z. L. Wang and J. H. Song: Science 312 (2006) 242]. Moreover, a comprehensive analysis of maximum piezoelectric potential between the cases with and without the effect of surface elasticity is analyzed. The results show that the values of piezoelectric potential generated in ZnO nanowires are decreased due to the surface stiffening. From the theoretical analysis, the effect of surface elasticity has a significant impact on the piezoelectric potential for a bent ZnO nanowire, actually it reduces the gap between theoretical estimation and experiment measurements.

  18. Shock compression and adiabatic release of a titaniferous mare basalt

    NASA Technical Reports Server (NTRS)

    Ahrens, T. J.; Jackson, I.; Jeanloz, R.

    1977-01-01

    A report is presented regarding the dynamic properties of a rock indigenous to the mare basins of the moon. The reported data were obtained in a study of sample 70215, a very titanium-rich basalt (58% pyroxene, 18% ilmenite, 15% plagioclase, 6% olivine, and 3% quartz by weight). This rock is probably representative of a class of the earliest mare-filling extrusive rocks which are exposed on the present lunar surface. Two series of experiments were performed. One set of experiments involved the measuring of Hugoniot and release adiabats to 15.7 GPa with a propellant gun apparatus. In the second set of experiments, a light-gas gun was employed to yield Hugoniot data at about 120 GPa and release states at about 90 GPa. Lunar basalt 70215 appears to be among the densest rocks in the present lunar sample collection, having a crystal density of 3.38 g/cu cm and a porosity of about 1.3%. The results of the experiments have important implications for both the degree of shock metamorphism expected for impact processes and the extent of ejecta transport on mare surfaces with high-titanium basalt composition.

  19. [ASSESSMENT OF POTENTIAL RISK FOR CONTAMINATION OF SURFACE WATER RESERVOIRS BY PATHOGENS OF HUMAN PARASITIC DISEASES].

    PubMed

    Khromenkova, E P; Dimidova, L L; Dumbadze, O S; Aidinov, G T; Shendo, G L; Agirov, A Kh; Batchaev, Kh Kh

    2015-01-01

    Sanitary and parasitological studies of the waste effluents and surface reservoir waters were conducted in the south of Russia. The efficiency of purification of waste effluents from the pathogens of parasitic diseases was investigated in the region's sewage-purification facilities. The water of the surface water reservoirs was found to contain helminthic eggs and larvae and intestinal protozoan cysts because of the poor purification and disinfection of service fecal sewage waters. The poor purification and disinvasion of waste effluents in the region determine the potential risk of contamination of the surface water reservoirs and infection of the population with the pathogens of human parasitic diseases.

  20. Dynamic dependence of interaction potentials for keV atoms at metal surfaces

    SciTech Connect

    Schueller, A.; Adamov, G.; Wethekam, S.; Maass, K.; Mertens, A.; Winter, H.

    2004-05-01

    He and N atoms are scattered with keV energies under a grazing angle of incidence from clean and flat Ag(111) and Al(111) surfaces. For incidence along low index crystallographic directions in the surface plane, atomic projectiles are steered by rows of atoms (''axial surface channeling'') giving rise to characteristic rainbows in their angular distribution. From the analysis of this effect we derive effective scattering potentials which reveal pronounced dynamical effects. We attribute our observation to the embedding energy for penetration of atoms in the electron gas of a metal.

  1. A comparison of interatomic potentials for modeling tungsten-hydrogen-helium plasma-surface interactions

    NASA Astrophysics Data System (ADS)

    Cusentino, Mary Alice; Hammond, Karl D.; Sefta, Faiza; Juslin, Niklas; Wirth, Brian D.

    2015-08-01

    We compare the hydrogen and helium clustering characteristics of three interatomic potential energy models intended for simulation of plasma-facing materials for fusion applications. Our simulations compare a Finnis-Sinclair potential and two different Tersoff-style bond order potentials created by Juslin et al. (2005) and Li et al. (2011), respectively, with respect to both helium and hydrogen clustering behavior in tungsten. We find significant differences between the Juslin and Li potentials in terms of both hydrogen and helium clustering behavior as well as the spatial distribution of hydrogen below the surface. These simulations are an important test on the road to more accurate models of gas clustering and surface evolution of tungsten divertors in ITER and other plasma devices.

  2. Spatial potential ripples of azimuthal surface modes in topological insulator Bi2Te3 nanowires

    PubMed Central

    Muñoz Rojo, Miguel; Zhang, Yingjie; Manzano, Cristina V.; Alvaro, Raquel; Gooth, Johannes; Salmeron, Miquel; Martin-Gonzalez, Marisol

    2016-01-01

    Topological insulators (TI) nanowires (NW) are an emerging class of structures, promising both novel quantum effects and potential applications in low-power electronics, thermoelectrics and spintronics. However, investigating the electronic states of TI NWs is complicated, due to their small lateral size, especially at room temperature. Here, we perform scanning probe based nanoscale imaging to resolve the local surface potential landscapes of Bi2Te3 nanowires (NWs) at 300 K. We found equipotential rings around the NWs perimeter that we attribute to azimuthal 1D modes. Along the NW axis, these modes are altered, forming potential ripples in the local density of states, due to intrinsic disturbances. Potential mapping of electrically biased NWs enabled us to accurately determine their conductivity which was found to increase with the decrease of NW diameter, consistent with surface dominated transport. Our results demonstrate that TI NWs can pave the way to both exotic quantum states and novel electronic devices. PMID:26751282

  3. Spatial potential ripples of azimuthal surface modes in topological insulator Bi2Te3 nanowires.

    PubMed

    Muñoz Rojo, Miguel; Zhang, Yingjie; Manzano, Cristina V; Alvaro, Raquel; Gooth, Johannes; Salmeron, Miquel; Martin-Gonzalez, Marisol

    2016-01-01

    Topological insulators (TI) nanowires (NW) are an emerging class of structures, promising both novel quantum effects and potential applications in low-power electronics, thermoelectrics and spintronics. However, investigating the electronic states of TI NWs is complicated, due to their small lateral size, especially at room temperature. Here, we perform scanning probe based nanoscale imaging to resolve the local surface potential landscapes of Bi2Te3 nanowires (NWs) at 300 K. We found equipotential rings around the NWs perimeter that we attribute to azimuthal 1D modes. Along the NW axis, these modes are altered, forming potential ripples in the local density of states, due to intrinsic disturbances. Potential mapping of electrically biased NWs enabled us to accurately determine their conductivity which was found to increase with the decrease of NW diameter, consistent with surface dominated transport. Our results demonstrate that TI NWs can pave the way to both exotic quantum states and novel electronic devices.

  4. Spatial potential ripples of azimuthal surface modes in topological insulator Bi2Te3 nanowires.

    PubMed

    Muñoz Rojo, Miguel; Zhang, Yingjie; Manzano, Cristina V; Alvaro, Raquel; Gooth, Johannes; Salmeron, Miquel; Martin-Gonzalez, Marisol

    2016-01-01

    Topological insulators (TI) nanowires (NW) are an emerging class of structures, promising both novel quantum effects and potential applications in low-power electronics, thermoelectrics and spintronics. However, investigating the electronic states of TI NWs is complicated, due to their small lateral size, especially at room temperature. Here, we perform scanning probe based nanoscale imaging to resolve the local surface potential landscapes of Bi2Te3 nanowires (NWs) at 300 K. We found equipotential rings around the NWs perimeter that we attribute to azimuthal 1D modes. Along the NW axis, these modes are altered, forming potential ripples in the local density of states, due to intrinsic disturbances. Potential mapping of electrically biased NWs enabled us to accurately determine their conductivity which was found to increase with the decrease of NW diameter, consistent with surface dominated transport. Our results demonstrate that TI NWs can pave the way to both exotic quantum states and novel electronic devices. PMID:26751282

  5. Conservation of the pure adiabatic state in Ehrenfest dynamics of the photoisomerization of molecules

    PubMed Central

    Miyamoto, Yoshiyuki; Tateyama, Yoshitaka; Oyama, Norihisa; Ohno, Takahisa

    2015-01-01

    We examined real-time-propagation time-dependent density functional theory (rtp-TDDFT) coupled with molecular dynamics (MD), which uses single-particle representation of time-evolving wavefunctions allowing exchange of orbital characteristics between occupied and empty states making the effective Kohn-Sham Hamiltonian dependent on the potential energy surfaces (PESs). This scheme is expected to lead to mean-field average of adiabatic potential energy surfaces (PESs), and is one of Ehrenfest (mean-field) approaches. However, we demonstrate that the mean-field average can be absent in simulating photoisomerization of azobenzene and ethylene molecules. A transition from the S2 to the S1 excited state without the mean- field average was observed after examining several rtp-TDDFT-MD trajectories of a photoexcited azobenzene molecule. The subsequent trans-cis isomerization was observed in our simulation, which is consistent with experimental observation and supported by previous calculations. The absence of the mean-field average of PESs was also observed for the transition between the S1 and S0 states, indicating that the MD simulation was on a single PES. Conversely, we found no transition to the ground state (S0 state) when we performed a MD simulation of an S1 excited ethylene molecule owing to the constraint on the occupation number of each molecular orbital. Thus, we conclude that, at least for azobenzene and ethylene molecules, the rtp-TDDFT-MD is an on-the-fly simulation that can automatically see the transition among the PESs of excited states without the mean-field average unless the simulation reaches the PES of the S0 state. PMID:26658633

  6. Improved Potential Energy Surface of Ozone Constructed Using the Fitting by Permutationally Invariant Polynomial Function

    DOE PAGES

    Ayouz, Mehdi; Babikov, Dmitri

    2012-01-01

    New global potential energy surface for the ground electronic state of ozone is constructed at the complete basis set level of the multireference configuration interaction theory. A method of fitting the data points by analytical permutationally invariant polynomial function is adopted. A small set of 500 points is preoptimized using the old surface of ozone. In this procedure the positions of points in the configuration space are chosen such that the RMS deviation of the fit is minimized. New ab initio calculations are carried out at these points and are used to build new surface. Additional points are addedmore » to the vicinity of the minimum energy path in order to improve accuracy of the fit, particularly in the region where the surface of ozone exhibits a shallow van der Waals well. New surface can be used to study formation of ozone at thermal energies and its spectroscopy near the dissociation threshold.« less

  7. Superhydrophobic poly(L-lactic acid) surface as potential bacterial colonization substrate

    PubMed Central

    2011-01-01

    Hydrophobicity is a very important surface property and there is a growing interest in the production and characterization of superhydrophobic surfaces. Accordingly, it was recently shown how to obtain a superhydrophobic surface using a simple and cost-effective method on a polymer named poly(L-lactic acid) (PLLA). To evaluate the ability of such material as a substrate for bacterial colonization, this work assessed the capability of different bacteria to colonize a biomimetic rough superhydrophobic (SH) PLLA surface and also a smooth hydrophobic (H) one. The interaction between these surfaces and bacteria with different morphologies and cell walls was studied using one strain of Staphylococcus aureus and one of Pseudomonas aeruginosa. Results showed that both bacterial strains colonized the surfaces tested, although significantly higher numbers of S. aureus cells were found on SH surfaces comparing to H ones. Moreover, scanning electron microscopy images showed an extracellular matrix produced by P. aeruginosa on SH PLLA surfaces, indicating that this bacterium is able to form a biofilm on such substratum. Bacterial removal through lotus leaf effect was also tested, being more efficient on H coupons than on SH PLLA ones. Overall, the results showed that SH PLLA surfaces can be used as a substrate for bacterial colonization and, thus, have an exceptional potential for biotechnology applications. PMID:22018163

  8. Effects of EOS adiabat on hot spot dynamics

    NASA Astrophysics Data System (ADS)

    Cheng, Baolian; Kwan, Thomas; Wang, Yi-Ming; Batha, Steven

    2013-10-01

    Equation of state (EOS) and adiabat of the pusher play significant roles in the dynamics and formation of the hot spot of an ignition capsule. For given imploding energy, they uniquely determine the partition of internal energy, mass, and volume between the pusher and the hot spot. In this work, we apply the new scaling laws recently derived by Cheng et al. to the National Ignition Campaign (NIC) ignition capsules and study the impacts of EOS and adiabat of the pusher on the hot spot dynamics by using the EOS adiabat index as an adjustable model parameter. We compare our analysis with the NIC data, specifically, for shots N120321 and N120205, and with the numerical simulations of these shots. The predictions from our theoretical model are in good agreements with the NIC data when a hot adiabat was used for the pusher, and with code simulations when a cold adiabat was used for the pusher. Our analysis indicates that the actual adiabat of the pusher in NIC experiments may well be higher than the adiabat assumed in the simulations. This analysis provides a physical and systematic explanation to the ongoing disagreements between the NIC experimental results and the multi-dimensional numerical simulations. This work was performed under the auspices of the U.S. Department of Energy by the Los Alamos National Laboratory under contract number W-7405-ENG-36.

  9. Anti-icing potential of superhydrophobic Ti6Al4V surfaces: ice nucleation and growth.

    PubMed

    Shen, Yizhou; Tao, Jie; Tao, Haijun; Chen, Shanlong; Pan, Lei; Wang, Tao

    2015-10-01

    On the basis of the icing-delay performance and ice adhesion strength, the anti-icing potential of the superhydrophobic surface has been well-investigated in the past few years. The present work mainly emphasized the investigations of ice nucleation and growth to fully explore the anti-icing potential of the superhydrophobic surface. We took the various surfaces ranging from hydrophilic to superhydrophobic as the research objects and, combining the classical nucleation theory, discussed the ice nucleation behaviors of the water droplets on these sample surfaces under the condition of supercooling. Meanwhile, the macroscopical growth processes of ice on these surfaces were analyzed on the basis of the growth mechanism of the ice nucleus. It was found that the superhydrophobic surface could greatly reduce the solid-liquid interface nucleation rate, owing to the extremely low actual solid-liquid contact area caused by the composite micro-nanoscale hierarchical structures trapping air pockets, leading to the bulk nucleation dominating the entire ice nucleation at the lower temperatures. Furthermore, ice on the superhydrophobic surface possessed a lower macroscopical growth velocity as a result of the less ice nucleation rate and the insulating action of the trapped air pockets. PMID:26367109

  10. Surface plasmon resonance biomolecular recognition nanosystem: influence of the interfacial electrical potential.

    PubMed

    Lopatynskyi, Andrii; Guiver, Michael; Chegel, Volodymyr

    2014-09-01

    It is shown that the response of a surface plasmon resonance nanosystem designed according to Kretschmann geometry on the application of an external electric potential to the gold-electrolyte interface is well described by the proposed mathematical model, which takes into account the geometric surface imperfection and dependence of optical constants of the surface layer of gold film and capacitance of the electrical double layer on applied voltage. This model allows the appropriate correction for results of electrochemical surface plasmon resonance measurements. The dependence of a value of biomolecules adsorption in a surface plasmon resonance nanosystem on applied electric potential is shown for the first time. It is found that a shift of surface plasmon resonance angular position (Δθ(SPR)) and a change of capacitance of electrical double layer on the surface of gold (ΔC(dl)) for the adsorption of proteins under applied voltage are related to the nonlinear dependence Δθ(SPR) = (a + b x ΔC(dl))(-1). This phenomenon can be exploited in biochemical analysis to monitor the interaction of biomolecules, enhance response of biosensors, block unwanted adsorption, etc.

  11. Foraging on the potential energy surface: a swarm intelligence-based optimizer for molecular geometry.

    PubMed

    Wehmeyer, Christoph; Falk von Rudorff, Guido; Wolf, Sebastian; Kabbe, Gabriel; Schärf, Daniel; Kühne, Thomas D; Sebastiani, Daniel

    2012-11-21

    We present a stochastic, swarm intelligence-based optimization algorithm for the prediction of global minima on potential energy surfaces of molecular cluster structures. Our optimization approach is a modification of the artificial bee colony (ABC) algorithm which is inspired by the foraging behavior of honey bees. We apply our modified ABC algorithm to the problem of global geometry optimization of molecular cluster structures and show its performance for clusters with 2-57 particles and different interatomic interaction potentials. PMID:23181297

  12. Foraging on the potential energy surface: A swarm intelligence-based optimizer for molecular geometry

    NASA Astrophysics Data System (ADS)

    Wehmeyer, Christoph; Falk von Rudorff, Guido; Wolf, Sebastian; Kabbe, Gabriel; Schärf, Daniel; Kühne, Thomas D.; Sebastiani, Daniel

    2012-11-01

    We present a stochastic, swarm intelligence-based optimization algorithm for the prediction of global minima on potential energy surfaces of molecular cluster structures. Our optimization approach is a modification of the artificial bee colony (ABC) algorithm which is inspired by the foraging behavior of honey bees. We apply our modified ABC algorithm to the problem of global geometry optimization of molecular cluster structures and show its performance for clusters with 2-57 particles and different interatomic interaction potentials.

  13. The polarized interface between quadrupolar insulators: Maxwell stress tensor, surface tension, and potential.

    PubMed

    Slavchov, Radomir I; Dimitrova, Iglika M; Ivanov, Tzanko

    2015-10-21

    The quadrupolar Maxwell electrostatic equations predict several qualitatively different results compared to Poisson's classical equation in their description of the properties of a dielectric interface. All interfaces between dielectrics possess surface dipole moment which results in a measurable surface potential jump. The surface dipole moment is conjugated to the bulk quadrupole moment density (the quadrupolarization) similarly to Gauss's relation between surface charge and bulk polarization. However, the classical macroscopic Maxwell equations completely neglect the quadrupolarization of the medium. Therefore, the electrostatic potential distribution near an interface of intrinsic dipole moment can be correctly described only within the quadrupolar macroscopic equations of electrostatics. They predict that near the polarized interface a diffuse dipole layer exists, which bears many similarities to the diffuse charge layer near a charged surface, in agreement with existing molecular dynamics simulation data. It turns out that when the quadrupole terms are kept in the multipole expansion of the laws of electrostatics, the solutions for the potential and the electric field are continuous functions at the surface. A well-defined surface electric field exists, interacting with the adsorbed dipoles. This allows for a macroscopic description of the surface dipole-surface dipole and the surface dipole-bulk quadrupole interactions. They are shown to have considerable contribution to the interfacial tension-of the order of tens of mN/m! To evaluate it, the Maxwell stress tensor in quadrupolar medium is deduced, including the electric field gradient action on the quadrupoles, as well as quadrupolar image force and quadrupolar electrostriction. The dependence of the interfacial tension on the external normal electric field (the dielectrocapillary curve) is predicted and the dielectric susceptibility of the dipolar double layer is related to the quadrupolarizabilities of

  14. The polarized interface between quadrupolar insulators: Maxwell stress tensor, surface tension, and potential.

    PubMed

    Slavchov, Radomir I; Dimitrova, Iglika M; Ivanov, Tzanko

    2015-10-21

    The quadrupolar Maxwell electrostatic equations predict several qualitatively different results compared to Poisson's classical equation in their description of the properties of a dielectric interface. All interfaces between dielectrics possess surface dipole moment which results in a measurable surface potential jump. The surface dipole moment is conjugated to the bulk quadrupole moment density (the quadrupolarization) similarly to Gauss's relation between surface charge and bulk polarization. However, the classical macroscopic Maxwell equations completely neglect the quadrupolarization of the medium. Therefore, the electrostatic potential distribution near an interface of intrinsic dipole moment can be correctly described only within the quadrupolar macroscopic equations of electrostatics. They predict that near the polarized interface a diffuse dipole layer exists, which bears many similarities to the diffuse charge layer near a charged surface, in agreement with existing molecular dynamics simulation data. It turns out that when the quadrupole terms are kept in the multipole expansion of the laws of electrostatics, the solutions for the potential and the electric field are continuous functions at the surface. A well-defined surface electric field exists, interacting with the adsorbed dipoles. This allows for a macroscopic description of the surface dipole-surface dipole and the surface dipole-bulk quadrupole interactions. They are shown to have considerable contribution to the interfacial tension-of the order of tens of mN/m! To evaluate it, the Maxwell stress tensor in quadrupolar medium is deduced, including the electric field gradient action on the quadrupoles, as well as quadrupolar image force and quadrupolar electrostriction. The dependence of the interfacial tension on the external normal electric field (the dielectrocapillary curve) is predicted and the dielectric susceptibility of the dipolar double layer is related to the quadrupolarizabilities of

  15. The polarized interface between quadrupolar insulators: Maxwell stress tensor, surface tension, and potential

    NASA Astrophysics Data System (ADS)

    Slavchov, Radomir I.; Dimitrova, Iglika M.; Ivanov, Tzanko

    2015-10-01

    The quadrupolar Maxwell electrostatic equations predict several qualitatively different results compared to Poisson's classical equation in their description of the properties of a dielectric interface. All interfaces between dielectrics possess surface dipole moment which results in a measurable surface potential jump. The surface dipole moment is conjugated to the bulk quadrupole moment density (the quadrupolarization) similarly to Gauss's relation between surface charge and bulk polarization. However, the classical macroscopic Maxwell equations completely neglect the quadrupolarization of the medium. Therefore, the electrostatic potential distribution near an interface of intrinsic dipole moment can be correctly described only within the quadrupolar macroscopic equations of electrostatics. They predict that near the polarized interface a diffuse dipole layer exists, which bears many similarities to the diffuse charge layer near a charged surface, in agreement with existing molecular dynamics simulation data. It turns out that when the quadrupole terms are kept in the multipole expansion of the laws of electrostatics, the solutions for the potential and the electric field are continuous functions at the surface. A well-defined surface electric field exists, interacting with the adsorbed dipoles. This allows for a macroscopic description of the surface dipole-surface dipole and the surface dipole-bulk quadrupole interactions. They are shown to have considerable contribution to the interfacial tension—of the order of tens of mN/m! To evaluate it, the Maxwell stress tensor in quadrupolar medium is deduced, including the electric field gradient action on the quadrupoles, as well as quadrupolar image force and quadrupolar electrostriction. The dependence of the interfacial tension on the external normal electric field (the dielectrocapillary curve) is predicted and the dielectric susceptibility of the dipolar double layer is related to the quadrupolarizabilities of

  16. Adiabatic optical bus for long-range coupling between silicon photonic waveguides

    NASA Astrophysics Data System (ADS)

    Hope, A. P.; Nguyen, T. G.; Greentree, A. D.; Mitchell, A.

    2014-05-01

    We present a new approach to planar photonic interconnects based on spatial adiabatic passage between thin ridge silicon waveguides. Our approach provides robust coupling between arbitrary pairs of well-separated waveguides across a single chip, potentially bypassing intermediate waveguides and structures. This new technique presents opportunities for waveguide routing and device topologies that cannot be achieved using traditional evanescent coupling, while remaining compatible with conventional CMOS fabrication techniques.

  17. Unconventional nanotubes self-assembled in alumina channels: morphology and surface potential of isolated nanostructures at surfaces.

    PubMed

    Palermo, Vincenzo; Liscio, Andrea; Talarico, Anna Maria; Zhi, Linjie; Müllen, Klaus; Samorì, Paolo

    2007-06-15

    Synthetic nanographenes have been self-assembled from solution on the surface of nanometric channels of an alumina membrane template. By controlling the interplay between intermolecular and interfacial interactions, the molecules have been adsorbed either 'face-on' or 'edge-on' on the pore's surfaces, leading to the formation of columnar stacks in the latter case. Upon thermal treatment at high temperature, the molecular cross-linking of the columns has been triggered, transforming the delicate supramolecular arrangement into robust carbon nanotubes, with the graphitic planes at predetermined orientations with respect to the tube axis. Scanning force microscopy characterization of single nanotubes deposited from suspensions on mica showed that the nanotubes can self-assemble on flat surfaces adopting preferential alignments which reflect the threefold symmetry of the mica substrate. Kelvin probe force microscopy studies revealed that the nanotubes possess a surface potential much smaller than the work function of both graphite and conventional vacuum-processed nanotubes, providing evidence for their more confined electronic structure.

  18. Optimality of partial adiabatic search and its circuit model

    NASA Astrophysics Data System (ADS)

    Mei, Ying; Sun, Jie; Lu, Songfeng; Gao, Chao

    2014-08-01

    In this paper, we first uncover a fact that a partial adiabatic quantum search with time complexity is in fact optimal, in which is the total number of elements in an unstructured database, and () of them are the marked ones(one) . We then discuss how to implement a partial adiabatic search algorithm on the quantum circuit model. From the implementing procedure on the circuit model, we can find out that the approximating steps needed are always in the same order of the time complexity of the adiabatic algorithm.

  19. Adiabatic control of atomic dressed states for transport and sensing

    NASA Astrophysics Data System (ADS)

    Cooper, N. R.; Rey, A. M.

    2015-08-01

    We describe forms of adiabatic transport that arise for dressed-state atoms in optical lattices. Focusing on the limit of weak tunnel-coupling between nearest-neighbor lattice sites, we explain how adiabatic variation of optical dressing allows control of atomic motion between lattice sites: allowing adiabatic particle transport in a direction that depends on the internal state, and force measurements via spectroscopic preparation and readout. For uniformly filled bands these systems display topologically quantized particle transport. An implementation of the dressing scheme using optical transitions in alkaline-earth atoms is discussed as well as its favorable features for precise force sensing.

  20. Vibrational dynamics of the bifluoride ion. I. Construction of a model potential surface

    NASA Astrophysics Data System (ADS)

    Epa, V. C.; Choi, J. H.; Klobukowski, M.; Thorson, W. R.

    1990-01-01

    Construction of an extended model potential surface for the bifluoride ion [FHF-] is described, based on ab initio calculations for the free ion at the CID (configuration interaction, double replacement) level with a Huzinaga-Dunning double-zeta basis set. 710 data points were generated, for displacements in the three noncyclic vibrational coordinates exploring the potential surface to a height at least 30 000 cm-1 above its minimum, and giving a realistic account of the dissociation into HF+F-. Analogous calculations were made for HF and F- using the same basis. The predicted hydrogen bond energy (De) is 48.13 kcal/mol, with equilibrium F-F separation Re =4.2905 a.u., in good agreement with other recent calculations. A model potential has been constructed, based on a superposition of Morse potentials associated with each H-F distance plus a fairly structureless correction function expressible as a 36-term least-squares polynomial in the prolate spheroidal coordinates used to describe vibrational displacements. The resulting model surface fits all 710 ab initio data points with an r.m.s. deviation of 65.6 cm-1, and points less than 15 000 cm-1 above the minimum with a deviation of 26.3 cm-1. This surface provides the basis for a series of vibrational dynamics studies on the FHF- system being done in this laboratory.

  1. Dopant gas effect on silicon chemical vapor depositions: A surface potential model

    NASA Technical Reports Server (NTRS)

    Chang, C. A.

    1975-01-01

    A surface potential model is proposed to consistently explain the known dopant gas effects on silicon chemical vapor deposition. This model predicts that the effects of the same dopant gases on the diamond deposition rate using methane and carbon tetrachloride should be opposite and similar to those of silane, respectively. Available data are in agreement with this prediction.

  2. POTENTIAL INHALATION EXPOSURE TO VOLATILE CHEMICALS IN WATER-BASED HARD-SURFACE CLEANERS

    EPA Science Inventory

    Potential inhalation exposure of building occupants to volatile chemicals in water-based hard-surface cleaners was evaluated by analyzing 267 material safety data sheets (MSDSs). Among the 154 chemicals reported, 44 are volatile or semi-volatile. Hazardous air pollutants (HAPs) r...

  3. Surface study of films formed on copper and brass at open circuit potential

    NASA Astrophysics Data System (ADS)

    Procaccini, R.; Schreiner, W. H.; Vázquez, M.; Ceré, S.

    2013-03-01

    The corrosion resistance of Cu-Zn alloys strongly depends on the quality of the protective passive film. This study focuses on the influence of Zn on the composition of oxide films on copper and brass (Cu77Zn21Al2) in borax 0.1 mol L-1 (pH 9.2) solution, where the solubility of copper oxides is minimal. The effect of the presence of chloride ions at low concentration (0.01 mol L-1) in the electrolyte was also evaluated. Both conditions were studied using a set of different electrochemical, optical and surface techniques such as cyclic voltammetry, differential reflectance, X-ray photoelectron spectroscopy and Raman spectroscopy. A duplex Cu2O/CuO layer forms on copper at potentials positive to the open circuit potential (OCP), while in the case of brass, zinc compounds are also incorporated to the surface film. It also became evident that a surface film can be formed on these materials even at potentials negative to the OCP. Zn(II) species are the main constituents of the films growing on brass, while copper oxides are incorporated to the surface film when approaching the OCP. The presence of chloride ions at low concentrations contributes to the dissolution of the oxo-hydroxides formed during the early stages of the aging process at open circuit potential. Also, copper chloro-compounds are formed, as shown by Raman spectroscopy for both copper and brass electrodes.

  4. Lunar Surface Electric Potential Changes Associated with Traversals through the Earth's Foreshock

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Hills, H. Kent; Stubbs, Timothy J.; Halekas, Jasper S.; Delory, Gregory T.; Espley, Jared; Farrell, William M.; Freeman, John W.; Vondrak, Richard

    2011-01-01

    We report an analysis of one year of Suprathermal Ion Detector Experiment (SIDE) Total Ion Detector (TID) resonance events observed between January 1972 and January 1973. The study includes only those events during which upstream solar wind conditions were readily available. The analysis shows that these events are associated with lunar traversals through the dawn flank of the terrestrial magnetospheric bow shock. We propose that the events result from an increase in lunar surface electric potential effected by secondary electron emission due to primary electrons in the Earth's foreshock region (although primary ions may play a role as well). This work establishes (1) the lunar surface potential changes as the Moon moves through the terrestrial bow shock, (2) the lunar surface achieves potentials in the upstream foreshock region that differ from those in the downstream magnetosheath region, (3) these differences can be explained by the presence of energetic electron beams in the upstream foreshock region and (4) if this explanation is correct, the location of the Moon with respect to the terrestrial bow shock influences lunar surface potential.

  5. Two-Dimensional Imaging of Potential Waves in Electrochemical Systems by Surface Plasmon Microscopy

    NASA Astrophysics Data System (ADS)

    Flatgen, Georg; Krischer, Katharina; Pettinger, Bruno; Doblhofer, Karl; Junkes, Heinz; Ertl, Gerhard

    1995-08-01

    The potential dependence of resonance conditions for the excitation of surface plasmons was exploited to obtain two-dimensional images of the potential distribution of an electrode with high temporal resolution. This method allows the study of spatiotemporal patterns in electrochemical systems. Potential waves traveling across the electrode with a speed on the order of meters per second were observed in the bistable regime of an oscillatory electrochemical reaction. This velocity is close to that of excitation waves in nerve fibers and is far greater than the velocity of reaction-diffusion waves observed in other chemical systems.

  6. Non-Hermitian quantum mechanics: wave packet propagation on autoionizing potential energy surfaces.

    PubMed

    Moiseyev, N; Scheit, S; Cederbaum, L S

    2004-07-01

    The correspondence between the time-dependent and time-independent molecular dynamic formalisms is shown for autoionizing processes. We demonstrate that the definition of the inner product in non-Hermitian quantum mechanics plays a key role in the proof. When the final state of the process is dissociative, it is technically favorable to introduce a complex absorbing potential into the calculations. The conditions which this potential should fulfill are briefly discussed. An illustrative numerical example is presented involving three potential energy surfaces. PMID:15260598

  7. Adiabatic nanofocusing: spectroscopy, transport and imaging investigation of the nano world

    NASA Astrophysics Data System (ADS)

    Giugni, A.; Allione, M.; Torre, B.; Das, G.; Francardi, M.; Moretti, M.; Malerba, M.; Perozziello, G.; Candeloro, P.; Di Fabrizio, E.

    2014-11-01

    Adiabatic compression plays a fundamental role in the realization of localized enhanced electromagnetic field hot spots, it provides the possibility to focus at nanoscale optical excitation. It differs from the well-known lightning rod effect since it is based on the lossless propagation of surface plasmon polaritons (SPPs) up to a nano-sized metal tip where the energy density is largely enhanced. Here we discuss two important applications of adiabatic compression: Raman and hot electron spectroscopy at nanometric resolution. The underlying phenomena are the conversion of SPPs into photons or hot electrons. New scanning probe spectroscopy techniques along with experimental results are discussed. We foresee that these techniques will play a key role in relating the functional and structural properties of matter at the nanoscale.

  8. Fully adiabatic 31P 2D-CSI with reduced chemical shift displacement error at 7 T--GOIA-1D-ISIS/2D-CSI.

    PubMed

    Chmelík, M; Kukurová, I Just; Gruber, S; Krššák, M; Valkovič, L; Trattnig, S; Bogner, W

    2013-05-01

    A fully adiabatic phosphorus (31P) two-dimensional (2D) chemical shift spectroscopic imaging sequence with reduced chemical shift displacement error for 7 T, based on 1D-image-selected in vivo spectroscopy, combined with 2D-chemical shift spectroscopic imaging selection, was developed. Slice-selective excitation was achieved by a spatially selective broadband GOIA-W(16,4) inversion pulse with an interleaved subtraction scheme before nonselective adiabatic excitation, and followed by 2D phase encoding. The use of GOIA-W(16,4) pulses (bandwidth 4.3-21.6 kHz for 10-50 mm slices) reduced the chemical shift displacement error in the slice direction ∼1.5-7.7 fold, compared to conventional 2D-chemical shift spectroscopic imaging with Sinc3 selective pulses (2.8 kHz). This reduction was experimentally demonstrated with measurements of an MR spectroscopy localization phantom and with experimental evaluation of pulse profiles. In vivo experiments in clinically acceptable measurement times were demonstrated in the calf muscle (nominal voxel volume, 5.65 ml in 6 min 53 s), brain (10 ml, 6 min 32 s), and liver (8.33 ml, 8 min 14 s) of healthy volunteers at 7 T. High reproducibility was found in the calf muscle at 7 T. In combination with adiabatic excitation, this sequence is insensitive to the B1 inhomogeneities associated with surface coils. This sequence, which is termed GOIA-1D-ISIS/2D-CSI (goISICS), has the potential to be applied in both clinical research and in the clinical routine.

  9. Intrinsic Charge Trapping Observed as Surface Potential Variations in diF-TES-ADT Films.

    PubMed

    Hoffman, Benjamin C; McAfee, Terry; Conrad, Brad R; Loth, Marsha A; Anthony, John E; Ade, Harald W; Dougherty, Daniel B

    2016-08-24

    Spatial variations in surface potential are measured with Kelvin probe force microscopy for thin films of 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophenes (diF-TES-ADT) grown on SiO2 and silane-treated SiO2 substrates by organic molecular beam deposition. The variations are observed both between and within grains of the polycrystalline organic film and are quantitatively different than electrostatic variations on the substrate surfaces. The skewness of surface potential distributions is larger on SiO2 than on HMDS-treated substrates. This observation is attributed to the impact of substrate functionalization on minimizing intrinsic crystallographic defects in the organic film that can trap charge.

  10. Detection of a strongly negative surface potential at Saturn's moon Hyperion

    PubMed Central

    Nordheim, T A; Jones, G H; Roussos, E; Leisner, J S; Coates, A J; Kurth, W S; Khurana, K K; Krupp, N; Dougherty, M K; Waite, J H

    2014-01-01

    On 26 September 2005, Cassini conducted its only close targeted flyby of Saturn's small, irregularly shaped moon Hyperion. Approximately 6 min before the closest approach, the electron spectrometer (ELS), part of the Cassini Plasma Spectrometer (CAPS) detected a field-aligned electron population originating from the direction of the moon's surface. Plasma wave activity detected by the Radio and Plasma Wave instrument suggests electron beam activity. A dropout in energetic electrons was observed by both CAPS-ELS and the Magnetospheric Imaging Instrument Low-Energy Magnetospheric Measurement System, indicating that the moon and the spacecraft were magnetically connected when the field-aligned electron population was observed. We show that this constitutes a remote detection of a strongly negative (∼ −200 V) surface potential on Hyperion, consistent with the predicted surface potential in regions near the solar terminator. PMID:26074639

  11. Distortion of surface plasmon polariton propagation on graphene due to chemical potential variation

    NASA Astrophysics Data System (ADS)

    Amanatiadis, Stamatios; Kantartzis, Nikolaos

    2016-04-01

    The variation of graphene chemical potential owing to surface plasmon polariton excitation and its influence on the propagation properties of the latter is systematically examined in this paper. Although the chemical potential is controlled via a constant electric field bias, the excitation of the highly confined surface wave can considerably affect it, thus disrupting the wave natural propagation. To this aim, the propagation properties of the surface wave are extracted to reliably estimate the aforesaid distortion effect with regard to frequency. Numerical results, obtained in terms of an accurate finite-difference time-domain scheme, certify this interesting convention. Furthermore, the electrodynamic forces on the free electrons of the graphene layer are calculated to justify the electrostatic assumption.

  12. A generalized complementary relationship between actual and potential evaporation defined by a reference surface temperature

    NASA Astrophysics Data System (ADS)

    Aminzadeh, Milad; Roderick, Michael L.; Or, Dani

    2016-01-01

    The definition of potential evaporation remains widely debated despite its centrality for hydrologic and climatic models. We employed an analytical pore-scale representation of evaporation from terrestrial surfaces to define potential evaporation using a hypothetical steady state reference temperature that is common to both air and evaporating surface. The feedback between drying land surfaces and overlaying air properties, central in the Bouchet (1963) complementary relationship, is implicitly incorporated in the hypothetical steady state where the sensible heat flux vanishes and the available energy is consumed by evaporation. Evaporation rates predicted based on the steady state reference temperature hypothesis were in good agreement with class A pan evaporation measurements suggesting that evaporation from pans occurs with negligible sensible heat flux. The model facilitates a new generalization of the asymmetric complementary relationship with the asymmetry parameter b analytically predicted for a wide range of meteorological conditions with initial tests yielding good agreement between measured and predicted actual evaporation.

  13. Intrinsic Charge Trapping Observed as Surface Potential Variations in diF-TES-ADT Films.

    PubMed

    Hoffman, Benjamin C; McAfee, Terry; Conrad, Brad R; Loth, Marsha A; Anthony, John E; Ade, Harald W; Dougherty, Daniel B

    2016-08-24

    Spatial variations in surface potential are measured with Kelvin probe force microscopy for thin films of 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophenes (diF-TES-ADT) grown on SiO2 and silane-treated SiO2 substrates by organic molecular beam deposition. The variations are observed both between and within grains of the polycrystalline organic film and are quantitatively different than electrostatic variations on the substrate surfaces. The skewness of surface potential distributions is larger on SiO2 than on HMDS-treated substrates. This observation is attributed to the impact of substrate functionalization on minimizing intrinsic crystallographic defects in the organic film that can trap charge. PMID:27466823

  14. Analysis of surface potential and magnetic properties of Fe3O4/graphene oxide nanocomposites

    NASA Astrophysics Data System (ADS)

    Mishra, Amodini; Mohanty, Tanuja

    2016-05-01

    Nanocomposite of magnetite/graphene oxide (Fe3O4/GO) has been synthesized by co-precipitation method. The phase formation of the magnetite nanoparticles (Fe3O4 NPs) was confirmed by X-ray diffraction (XRD) analysis. Effect of Fe3O4 NPs on the Raman spectra and on the surface potential of GO has been analyzed. Due to incorporation of NPs, change in the characteristic Raman peaks and also on the surface potential of GO is observed. Transmission electron microscopic (TEM) study has been carried out for surface morphology. Magnetic property measurement was carried out by using physical property measurement system (PPMS) at two different temperatures (30 K and 300K).

  15. AFM-assisted fabrication of thiol SAM pattern with alternating quantified surface potential

    PubMed Central

    2011-01-01

    Thiol self-assembled monolayers (SAMs) are widely used in many nano- and bio-technology applications. We report a new approach to create and characterize a thiol SAMs micropattern with alternating charges on a flat gold-coated substrate using atomic force microscopy (AFM) and Kelvin probe force microscopy (KPFM). We produced SAMs-patterns made of alternating positively charged, negatively charged, and hydrophobic-terminated thiols by an automated AFM-assisted manipulation, or nanografting. We show that these thiol patterns possess only small topographical differences as revealed by AFM, and distinguished differences in surface potential (20-50 mV), revealed by KPFM. The pattern can be helpful in the development of biosensor technologies, specifically for selective binding of biomolecules based on charge and hydrophobicity, and serve as a model for creating surfaces with quantified alternating surface potential distribution. PMID:21711703

  16. Spatial distribution of potential near surface moisture flux at Yucca Mountain

    SciTech Connect

    Flint, A.L.; Flint, L.E.

    1994-12-31

    An estimate of the areal distribution of present-day surface liquid moisture flux at Yucca Mountain was made using field measured water contents and laboratory measured rock properties. Using available data for physical and hydrologic properties (porosity, saturated hydraulic conductivity moisture retention functions) of the volcanic rocks, surface lithologic units that are hydrologically similar were delineated. Moisture retention and relative permeability functions were assigned to each surface unit based on the similarity of the mean porosity and saturated hydraulic conductivity of the surface unit to laboratory samples of the same lithology. The potential flux into the mountain was estimated for each surface hydrologic unit using the mean saturated hydraulic conductivity for each unit and assuming all matrix flow. Using measured moisture profiles for each of the surface units, estimates were made of the depth at which seasonal fluctuations diminish and steady state downward flux conditions are likely to exist. The hydrologic properties at that depth were used with the current relative saturation of the tuff, to estimate flux as the unsaturated hydraulic conductivity. This method assumes a unit gradient. The range in estimated flux was 0.02 mm/yr for the welded Tiva Canyon to 13.4 mm/yr for the nonwelded Paintbrush Tuff. The areally averaged flux was 1.4 mm/yr. The major zones of high flux occur to the north of the potential repository boundary where the nonwelded tuffs are exposed in the major drainages.

  17. Spatial distribution of potential near surface moisture flux at Yucca Mountain

    SciTech Connect

    Flint, A.L.; Flint, L.E.

    1994-12-31

    An estimate of the areal distribution of present-day surface liquid moisture flux at Yucca Mountain was made using field measured water contents and laboratory measured rock properties. Using available data for physical and hydrologic properties (porosity, saturated hydraulic conductivity, moisture retention functions) of the volcanic rocks, surface lithologic units that are hydrologically similar were delineated. Moisture retention and relative permeability functions were assigned to each surface unit based on the similarity of the mean porosity and saturated hydraulic conductivity of the surface unit to laboratory samples of the same lithology. The potential flux into the mountain was estimated for each surface hydrologic unit using the mean saturated hydraulic conductivity for each unit and assuming all matrix flow. Using measured moisture profiles for each of the surface units, estimates were made of the depth at which seasonal fluctuations diminish and steady state downward flux conditions are likely to exist. The hydrologic properties at that depth were used with the current relative saturation of the tuff, to estimate flux as the unsaturated hydraulic conductivity. This method assumes a unit gradient. The range in estimated flux was 0.02 mm/yr for the welded Tiva Canyon to 13.4 mm/yr for the nonwelded Paintbrush Tuff. The areally averaged flux was 1.4 mm/yr. The major zones of high flux occur to the north of the potential repository boundary where the nonwelded tuffs are exposed in the major drainages.

  18. On the influence of the intermolecular potential on the wetting properties of water on silica surfaces

    NASA Astrophysics Data System (ADS)

    Pafong, E.; Geske, J.; Drossel, B.

    2016-09-01

    We study the wetting properties of water on silica surfaces using molecular dynamics (MD) simulations. To describe the intermolecular interaction between water and silica atoms, two types of interaction potential models are used: the standard BródkA and Zerda (BZ) model and the Gulmen and Thompson (GT) model. We perform an in-depth analysis of the influence of the choice of the potential on the arrangement of the water molecules in partially filled pores and on top of silica slabs. We find that at moderate pore filling ratios, the GT silica surface is completely wetted by water molecules, which agrees well with experimental findings, while the commonly used BZ surface is less hydrophilic and is only partially wetted. We interpret our simulation results using an analytical calculation of the phase diagram of water in partially filled pores. Moreover, an evaluation of the contact angle of the water droplet on top of the silica slab reveals that the interaction becomes more hydrophilic with increasing slab thickness and saturates around 2.5-3 nm, in agreement with the experimentally found value. Our analysis also shows that the hydroaffinity of the surface is mainly determined by the electrostatic interaction, but the van der Waals interaction nevertheless is strong enough that it can turn a hydrophobic surface into a hydrophilic surface.

  19. Recent characterization activities of Midway Valley as a potential repository surface facility site

    SciTech Connect

    Gibson, J.D.; Wesling, J.R.; Swan, F.H.; Bullard, T.F.

    1992-01-31

    Midway Valley, located at the eastern base of Yucca Mountain, Nye County, Nevada, has been identified as a possible location for the surface facilities of a potential high-level nuclear-waste repository. This structural and topographic valley is bounded by two north- trending, down-to-the-west normal faults: the Paintbrush Canyon fault on the east and the Bow Ridge fault on the west. Surface and near-surface geological data have been acquired from Midway Valley during the past three years with particular emphasis on evaluating the existence of Quaternary faults. A detailed (1:6000) surficial geological map has been prepared based on interpretation of new and existing aerial photographs, field mapping, soil pits, and trenches. No evidence was found that would indicate displacement of these surficial deposits along previously unrecognized faults. However, given the low rates of Quaternary faulting and the extensive areas that are covered by late Pleistocene to Holocene deposits south of Sever Wash, Quaternary faulting between known faults cannot be precluded based on surface evidence alone. Middle to late Pleistocene alluvial fan deposits (Unit Q3) exist at or near the surface throughout Midway Valley. Confidence is increased that the potential for surface fault rupture in Midway Valley can be assessed by excavations that expose the deposits and soils associated with Unit Q3 or older units (middle Pleistocene or earlier).

  20. On the persistence of adiabatic shear bands

    NASA Astrophysics Data System (ADS)

    Boakye-Yiadom, S.; Bassim, M. N.; Al-Ameeri, S.

    2012-08-01

    It is generally agreed that the initiation and development of adiabatic shear bands (ASBs) are manifestations of damage in metallic materials subjected to high strain rates and large strains as those due to impact in a Hopkinson Bar system. Models for evolution of these bands have been described in the literature. One question that has not received attention is how persistent these bands are and whether their presence and effect can be reversed or eliminated by using a process of thermal (heat treatment) or thermo-mechanical treatment that would relieve the material from the high strain associated with ASBs and their role as precursors to crack initiation and subsequent failure. Since ASBs are more prevalent and more defined in BCC metals including steels, a study was conducted to investigate the best conditions of generating ASBs in a heat treatable steel, followed by determining the best conditions for heat treatment of specimens already damaged by the presence of ASBs in order to relieve the strains due to ASBs and restore the material to an apparent microstructure without the "scars" due to the previous presence of ASBs. It was found that heat treatment achieves the curing from ASBs. This presentation documents the process undertaken to achieve this objective.