Adiabatic topological quantum computing
Cesare, Chris; Landahl, Andrew J.; Bacon, Dave; ...
2015-07-31
Topological quantum computing promises error-resistant quantum computation without active error correction. However, there is a worry that during the process of executing quantum gates by braiding anyons around each other, extra anyonic excitations will be created that will disorder the encoded quantum information. Here, we explore this question in detail by studying adiabatic code deformations on Hamiltonians based on topological codes, notably Kitaev’s surface codes and the more recently discovered color codes. We develop protocols that enable universal quantum computing by adiabatic evolution in a way that keeps the energy gap of the system constant with respect to the computationmore » size and introduces only simple local Hamiltonian interactions. This allows one to perform holonomic quantum computing with these topological quantum computing systems. The tools we develop allow one to go beyond numerical simulations and understand these processes analytically.« less
Quantum and classical dynamics in adiabatic computation
NASA Astrophysics Data System (ADS)
Crowley, P. J. D.; Äńurić, T.; Vinci, W.; Warburton, P. A.; Green, A. G.
2014-10-01
Adiabatic transport provides a powerful way to manipulate quantum states. By preparing a system in a readily initialized state and then slowly changing its Hamiltonian, one may achieve quantum states that would otherwise be inaccessible. Moreover, a judicious choice of final Hamiltonian whose ground state encodes the solution to a problem allows adiabatic transport to be used for universal quantum computation. However, the dephasing effects of the environment limit the quantum correlations that an open system can support and degrade the power of such adiabatic computation. We quantify this effect by allowing the system to evolve over a restricted set of quantum states, providing a link between physically inspired classical optimization algorithms and quantum adiabatic optimization. This perspective allows us to develop benchmarks to bound the quantum correlations harnessed by an adiabatic computation. We apply these to the D-Wave Vesuvius machine with revealing—though inconclusive—results.
Ramsey numbers and adiabatic quantum computing.
Gaitan, Frank; Clark, Lane
2012-01-06
The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers R(m,n) with m, n≥3, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers R(m,n). We show how the computation of R(m,n) can be mapped to a combinatorial optimization problem whose solution can be found using adiabatic quantum evolution. We numerically simulate this adiabatic quantum algorithm and show that it correctly determines the Ramsey numbers R(3,3) and R(2,s) for 5≤s≤7. We then discuss the algorithm's experimental implementation, and close by showing that Ramsey number computation belongs to the quantum complexity class quantum Merlin Arthur.
Adiabatic cluster-state quantum computing
Bacon, Dave; Flammia, Steven T.
2010-09-15
Models of quantum computation (QC) are important because they change the physical requirements for achieving universal QC. For example, one-way QC requires the preparation of an entangled ''cluster'' state, followed by adaptive measurement on this state, a set of requirements which is different from the standard quantum-circuit model. Here we introduce a model based on one-way QC but without measurements (except for the final readout), instead using adiabatic deformation of a Hamiltonian whose initial ground state is the cluster state. Our results could help increase the feasibility of adiabatic schemes by using tools from one-way QC.
Adiabatic graph-state quantum computation
NASA Astrophysics Data System (ADS)
Antonio, B.; Markham, D.; Anders, J.
2014-11-01
Measurement-based quantum computation (MBQC) and holonomic quantum computation (HQC) are two very different computational methods. The computation in MBQC is driven by adaptive measurements executed in a particular order on a large entangled state. In contrast in HQC the system starts in the ground subspace of a Hamiltonian which is slowly changed such that a transformation occurs within the subspace. Following the approach of Bacon and Flammia, we show that any MBQC on a graph state with generalized flow (gflow) can be converted into an adiabatically driven holonomic computation, which we call adiabatic graph-state quantum computation (AGQC). We then investigate how properties of AGQC relate to the properties of MBQC, such as computational depth. We identify a trade-off that can be made between the number of adiabatic steps in AGQC and the norm of \\dot{H} as well as the degree of H, in analogy to the trade-off between the number of measurements and classical post-processing seen in MBQC. Finally the effects of performing AGQC with orderings that differ from standard MBQC are investigated.
Trapped Ion Quantum Computation by Adiabatic Passage
Feng Xuni; Wu Chunfeng; Lai, C. H.; Oh, C. H.
2008-11-07
We propose a new universal quantum computation scheme for trapped ions in thermal motion via the technique of adiabatic passage, which incorporates the advantages of both the adiabatic passage and the model of trapped ions in thermal motion. Our scheme is immune from the decoherence due to spontaneous emission from excited states as the system in our scheme evolves along a dark state. In our scheme the vibrational degrees of freedom are not required to be cooled to their ground states because they are only virtually excited. It is shown that the fidelity of the resultant gate operation is still high even when the magnitude of the effective Rabi frequency moderately deviates from the desired value.
Random matrix model of adiabatic quantum computing
Mitchell, David R.; Adami, Christoph; Lue, Waynn; Williams, Colin P.
2005-05-15
We present an analysis of the quantum adiabatic algorithm for solving hard instances of 3-SAT (an NP-complete problem) in terms of random matrix theory (RMT). We determine the global regularity of the spectral fluctuations of the instantaneous Hamiltonians encountered during the interpolation between the starting Hamiltonians and the ones whose ground states encode the solutions to the computational problems of interest. At each interpolation point, we quantify the degree of regularity of the average spectral distribution via its Brody parameter, a measure that distinguishes regular (i.e., Poissonian) from chaotic (i.e., Wigner-type) distributions of normalized nearest-neighbor spacings. We find that for hard problem instances - i.e., those having a critical ratio of clauses to variables - the spectral fluctuations typically become irregular across a contiguous region of the interpolation parameter, while the spectrum is regular for easy instances. Within the hard region, RMT may be applied to obtain a mathematical model of the probability of avoided level crossings and concomitant failure rate of the adiabatic algorithm due to nonadiabatic Landau-Zener-type transitions. Our model predicts that if the interpolation is performed at a uniform rate, the average failure rate of the quantum adiabatic algorithm, when averaged over hard problem instances, scales exponentially with increasing problem size.
Decoherence in a scalable adiabatic quantum computer
Ashhab, S.; Johansson, J. R.; Nori, Franco
2006-11-15
We consider the effects of decoherence on Landau-Zener crossings encountered in a large-scale adiabatic-quantum-computing setup. We analyze the dependence of the success probability--i.e., the probability for the system to end up in its new ground state--on the noise amplitude and correlation time. We determine the optimal sweep rate that is required to maximize the success probability. We then discuss the scaling of decoherence effects with increasing system size. We find that those effects can be important for large systems, even if they are small for each of the small building blocks.
Number Partitioning via Quantum Adiabatic Computation
NASA Technical Reports Server (NTRS)
Smelyanskiy, Vadim N.; Toussaint, Udo; Clancy, Daniel (Technical Monitor)
2002-01-01
We study both analytically and numerically the complexity of the adiabatic quantum evolution algorithm applied to random instances of combinatorial optimization problems. We use as an example the NP-complete set partition problem and obtain an asymptotic expression for the minimal gap separating the ground and exited states of a system during the execution of the algorithm. We show that for computationally hard problem instances the size of the minimal gap scales exponentially with the problem size. This result is in qualitative agreement with the direct numerical simulation of the algorithm for small instances of the set partition problem. We describe the statistical properties of the optimization problem that are responsible for the exponential behavior of the algorithm.
Irreconcilable difference between quantum walks and adiabatic quantum computing
NASA Astrophysics Data System (ADS)
Wong, Thomas G.; Meyer, David A.
2016-06-01
Continuous-time quantum walks and adiabatic quantum evolution are two general techniques for quantum computing, both of which are described by Hamiltonians that govern their evolutions by Schrödinger's equation. In the former, the Hamiltonian is fixed, while in the latter, the Hamiltonian varies with time. As a result, their formulations of Grover's algorithm evolve differently through Hilbert space. We show that this difference is fundamental; they cannot be made to evolve along each other's path without introducing structure more powerful than the standard oracle for unstructured search. For an adiabatic quantum evolution to evolve like the quantum walk search algorithm, it must interpolate between three fixed Hamiltonians, one of which is complex and introduces structure that is stronger than the oracle for unstructured search. Conversely, for a quantum walk to evolve along the path of the adiabatic search algorithm, it must be a chiral quantum walk on a weighted, directed star graph with structure that is also stronger than the oracle for unstructured search. Thus, the two techniques, although similar in being described by Hamiltonians that govern their evolution, compute by fundamentally irreconcilable means.
Digitized adiabatic quantum computing with a superconducting circuit.
Barends, R; Shabani, A; Lamata, L; Kelly, J; Mezzacapo, A; Las Heras, U; Babbush, R; Fowler, A G; Campbell, B; Chen, Yu; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J Y; Neeley, M; Neill, C; O'Malley, P J J; Quintana, C; Roushan, P; Sank, D; Vainsencher, A; Wenner, J; White, T C; Solano, E; Neven, H; Martinis, John M
2016-06-09
Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.
Digitized adiabatic quantum computing with a superconducting circuit
NASA Astrophysics Data System (ADS)
Barends, R.; Shabani, A.; Lamata, L.; Kelly, J.; Mezzacapo, A.; Heras, U. Las; Babbush, R.; Fowler, A. G.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Lucero, E.; Megrant, A.; Mutus, J. Y.; Neeley, M.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Solano, E.; Neven, H.; Martinis, John M.
2016-06-01
Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.
Noise resistance of adiabatic quantum computation using random matrix theory
Roland, Jeremie; Cerf, Nicolas J.
2005-03-01
Besides the traditional circuit-based model of quantum computation, several quantum algorithms based on a continuous-time Hamiltonian evolution have recently been introduced, including for instance continuous-time quantum walk algorithms as well as adiabatic quantum algorithms. Unfortunately, very little is known today about the behavior of these Hamiltonian algorithms in the presence of noise. Here, we perform a fully analytical study of the resistance to noise of these algorithms using perturbation theory combined with a theoretical noise model based on random matrices drawn from the Gaussian orthogonal ensemble, whose elements vary in time and form a stationary random process.
Adiabatic quantum computing with spin qubits hosted by molecules.
Yamamoto, Satoru; Nakazawa, Shigeaki; Sugisaki, Kenji; Sato, Kazunobu; Toyota, Kazuo; Shiomi, Daisuke; Takui, Takeji
2015-01-28
A molecular spin quantum computer (MSQC) requires electron spin qubits, which pulse-based electron spin/magnetic resonance (ESR/MR) techniques can afford to manipulate for implementing quantum gate operations in open shell molecular entities. Importantly, nuclear spins, which are topologically connected, particularly in organic molecular spin systems, are client qubits, while electron spins play a role of bus qubits. Here, we introduce the implementation for an adiabatic quantum algorithm, suggesting the possible utilization of molecular spins with optimized spin structures for MSQCs. We exemplify the utilization of an adiabatic factorization problem of 21, compared with the corresponding nuclear magnetic resonance (NMR) case. Two molecular spins are selected: one is a molecular spin composed of three exchange-coupled electrons as electron-only qubits and the other an electron-bus qubit with two client nuclear spin qubits. Their electronic spin structures are well characterized in terms of the quantum mechanical behaviour in the spin Hamiltonian. The implementation of adiabatic quantum computing/computation (AQC) has, for the first time, been achieved by establishing ESR/MR pulse sequences for effective spin Hamiltonians in a fully controlled manner of spin manipulation. The conquered pulse sequences have been compared with the NMR experiments and shown much faster CPU times corresponding to the interaction strength between the spins. Significant differences are shown in rotational operations and pulse intervals for ESR/MR operations. As a result, we suggest the advantages and possible utilization of the time-evolution based AQC approach for molecular spin quantum computers and molecular spin quantum simulators underlain by sophisticated ESR/MR pulsed spin technology.
Adiabatically implementing quantum gates
Sun, Jie; Lu, Songfeng Liu, Fang
2014-06-14
We show that, through the approach of quantum adiabatic evolution, all of the usual quantum gates can be implemented efficiently, yielding running time of order O(1). This may be considered as a useful alternative to the standard quantum computing approach, which involves quantum gates transforming quantum states during the computing process.
Simple proof of equivalence between adiabatic quantum computation and the circuit model.
Mizel, Ari; Lidar, Daniel A; Mitchell, Morgan
2007-08-17
We prove the equivalence between adiabatic quantum computation and quantum computation in the circuit model. An explicit adiabatic computation procedure is given that generates a ground state from which the answer can be extracted. The amount of time needed is evaluated by computing the gap. We show that the procedure is computationally efficient.
Adiabatic pipelining: a key to ternary computing with quantum dots.
Pečar, P; Ramšak, A; Zimic, N; Mraz, M; Lebar Bajec, I
2008-12-10
The quantum-dot cellular automaton (QCA), a processing platform based on interacting quantum dots, was introduced by Lent in the mid-1990s. What followed was an exhilarating period with the development of the line, the functionally complete set of logic functions, as well as more complex processing structures, however all in the realm of binary logic. Regardless of these achievements, it has to be acknowledged that the use of binary logic is in computing systems mainly the end result of the technological limitations, which the designers had to cope with in the early days of their design. The first advancement of QCAs to multi-valued (ternary) processing was performed by Lebar Bajec et al, with the argument that processing platforms of the future should not disregard the clear advantages of multi-valued logic. Some of the elementary ternary QCAs, necessary for the construction of more complex processing entities, however, lead to a remarkable increase in size when compared to their binary counterparts. This somewhat negates the advantages gained by entering the ternary computing domain. As it turned out, even the binary QCA had its initial hiccups, which have been solved by the introduction of adiabatic switching and the application of adiabatic pipeline approaches. We present here a study that introduces adiabatic switching into the ternary QCA and employs the adiabatic pipeline approach to successfully solve the issues of elementary ternary QCAs. What is more, the ternary QCAs presented here are sizewise comparable to binary QCAs. This in our view might serve towards their faster adoption.
Schedule path optimization for adiabatic quantum computing and optimization
NASA Astrophysics Data System (ADS)
Zeng, Lishan; Zhang, Jun; Sarovar, Mohan
2016-04-01
Adiabatic quantum computing and optimization have garnered much attention recently as possible models for achieving a quantum advantage over classical approaches to optimization and other special purpose computations. Both techniques are probabilistic in nature and the minimum gap between the ground state and first excited state of the system during evolution is a major factor in determining the success probability. In this work we investigate a strategy for increasing the minimum gap and success probability by introducing intermediate Hamiltonians that modify the evolution path between initial and final Hamiltonians. We focus on an optimization problem relevant to recent hardware implementations and present numerical evidence for the existence of a purely local intermediate Hamiltonian that achieve the optimum performance in terms of pushing the minimum gap to one of the end points of the evolution. As a part of this study we develop a convex optimization formulation of the search for optimal adiabatic schedules that makes this computation more tractable, and which may be of independent interest. We further study the effectiveness of random intermediate Hamiltonians on the minimum gap and success probability, and empirically find that random Hamiltonians have a significant probability of increasing the success probability, but only by a modest amount.
Towards robust dynamical decoupling and high fidelity adiabatic quantum computation
NASA Astrophysics Data System (ADS)
Quiroz, Gregory
Quantum computation (QC) relies on the ability to implement high-fidelity quantum gate operations and successfully preserve quantum state coherence. One of the most challenging obstacles for reliable QC is overcoming the inevitable interaction between a quantum system and its environment. Unwanted interactions result in decoherence processes that cause quantum states to deviate from a desired evolution, consequently leading to computational errors and loss of coherence. Dynamical decoupling (DD) is one such method, which seeks to attenuate the effects of decoherence by applying strong and expeditious control pulses solely to the system. Provided the pulses are applied over a time duration sufficiently shorter than the correlation time associated with the environment dynamics, DD effectively averages out undesirable interactions and preserves quantum states with a low probability of error, or fidelity loss. In this study various aspects of this approach are studied from sequence construction to applications of DD to protecting QC. First, a comprehensive examination of the error suppression properties of a near-optimal DD approach is given to understand the relationship between error suppression capabilities and the number of required DD control pulses in the case of ideal, instantaneous pulses. While such considerations are instructive for examining DD efficiency, i.e., performance vs the number of control pulses, high-fidelity DD in realizable systems is difficult to achieve due to intrinsic pulse imperfections which further contribute to decoherence. As a second consideration, it is shown how one can overcome this hurdle and achieve robustness and recover high-fidelity DD in the presence of faulty control pulses using Genetic Algorithm optimization and sequence symmetrization. Thirdly, to illustrate the implementation of DD in conjunction with QC, the utilization of DD and quantum error correction codes (QECCs) as a protection method for adiabatic quantum
Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network.
Goto, Hayato
2016-02-22
The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.
Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network
NASA Astrophysics Data System (ADS)
Goto, Hayato
2016-02-01
The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.
Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network
Goto, Hayato
2016-01-01
The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence. PMID:26899997
Adiabatic quantum computing with phase modulated laser pulses
Goswami, Debabrata
2005-01-01
Implementation of quantum logical gates for multilevel systems is demonstrated through decoherence control under the quantum adiabatic method using simple phase modulated laser pulses. We make use of selective population inversion and Hamiltonian evolution with time to achieve such goals robustly instead of the standard unitary transformation language. PMID:17195865
Differential geometric treewidth estimation in adiabatic quantum computation
NASA Astrophysics Data System (ADS)
Wang, Chi; Jonckheere, Edmond; Brun, Todd
2016-10-01
The D-Wave adiabatic quantum computing platform is designed to solve a particular class of problems—the Quadratic Unconstrained Binary Optimization (QUBO) problems. Due to the particular "Chimera" physical architecture of the D-Wave chip, the logical problem graph at hand needs an extra process called minor embedding in order to be solvable on the D-Wave architecture. The latter problem is itself NP-hard. In this paper, we propose a novel polynomial-time approximation to the closely related treewidth based on the differential geometric concept of Ollivier-Ricci curvature. The latter runs in polynomial time and thus could significantly reduce the overall complexity of determining whether a QUBO problem is minor embeddable, and thus solvable on the D-Wave architecture.
Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network
NASA Astrophysics Data System (ADS)
Goto, Hayato
The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via its bifurcation with a slowly varying parameter. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing. To distinguish them, we refer to the present approach as bifurcation-based adiabatic quantum computation. Our numerical simulation results suggest that quantum superposition and quantum fluctuation work effectively to find optimal solutions.
Adiabatic Quantum Computing and Quantum Walks: Algorithms and Architectures
2011-02-15
0807.0929 Title: Environment-Assisted Quantum Transport Authors: Patrick Rebentrost, Masoud Mohseni, Ivan Kassal, Seth Lloyd, Alán Aspuru-Guzik...this effect, Environment Assisted Quantum Transport (ENAQT).The use of environmental effects to enhance transport rates appears to be ubiquitous in
Digitized adiabatic quantum computing with a superconducting circuit, part II: Experiment
NASA Astrophysics Data System (ADS)
Barends, R.; Shabani, A.; Lamata, L.; Kelly, J.; Mezzacapo, A.; Las Heras, U.; Babbush, R.; Fowler, A. G.; Campbell, B.; Chen, Y.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Lucero, E.; Megrant, A.; Mutus, J.; Neeley, M.; Neill, C.; O'Malley, P.; Quintana, C.; Roushan, P.; Solano, E.; Neven, H.; Martinis, J.
A major challenge in quantum computing is to solve general problems with limited physical hardware. We implement digitized adiabatic quantum computing, combining the generality of the adiabatic algorithm with the universality of the digital approach, using a superconducting circuit with nine qubits. We probe the adiabatic evolutions, explore the scaling of errors with system size, and quantify the success of the algorithm for random spin problems. We find that the system can approximate the solutions to both frustrated Ising problems and non-stoquastic problem Hamiltonians with a performance that is comparable.
Universal fault-tolerant adiabatic quantum computing with quantum dots or donors
NASA Astrophysics Data System (ADS)
Landahl, Andrew
I will present a conceptual design for an adiabatic quantum computer that can achieve arbitrarily accurate universal fault-tolerant quantum computations with a constant energy gap and nearest-neighbor interactions. This machine can run any quantum algorithm known today or discovered in the future, in principle. The key theoretical idea is adiabatic deformation of degenerate ground spaces formed by topological quantum error-correcting codes. An open problem with the design is making the four-body interactions and measurements it uses more technologically accessible. I will present some partial solutions, including one in which interactions between quantum dots or donors in a two-dimensional array can emulate the desired interactions in second-order perturbation theory. I will conclude with some open problems, including the challenge of reformulating Kitaev's gadget perturbation theory technique so that it preserves fault tolerance. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Non-adiabatic holonomic quantum computation in linear system-bath coupling
Sun, Chunfang; Wang, Gangcheng; Wu, Chunfeng; Liu, Haodi; Feng, Xun-Li; Chen, Jing-Ling; Xue, Kang
2016-01-01
Non-adiabatic holonomic quantum computation in decoherence-free subspaces protects quantum information from control imprecisions and decoherence. For the non-collective decoherence that each qubit has its own bath, we show the implementations of two non-commutable holonomic single-qubit gates and one holonomic nontrivial two-qubit gate that compose a universal set of non-adiabatic holonomic quantum gates in decoherence-free-subspaces of the decoupling group, with an encoding rate of . The proposed scheme is robust against control imprecisions and the non-collective decoherence, and its non-adiabatic property ensures less operation time. We demonstrate that our proposed scheme can be realized by utilizing only two-qubit interactions rather than many-qubit interactions. Our results reduce the complexity of practical implementation of holonomic quantum computation in experiments. We also discuss the physical implementation of our scheme in coupled microcavities. PMID:26846444
Adapting the traveling salesman problem to an adiabatic quantum computer
NASA Astrophysics Data System (ADS)
Warren, Richard H.
2013-04-01
We show how to guide a quantum computer to select an optimal tour for the traveling salesman. This is significant because it opens a rapid solution method for the wide range of applications of the traveling salesman problem, which include vehicle routing, job sequencing and data clustering.
Digitized adiabatic quantum computing with a superconducting circuit, part I: Theory
NASA Astrophysics Data System (ADS)
Lamata, L.; Barends, R.; Shabani, A.; Kelly, J.; Mezzacapo, A.; Las Heras, U.; Babbush, R.; Fowler, A. G.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Lucero, E.; Megrant, A.; Mutus, J. Y.; Neeley, M.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Roushan, P.; Solano, E.; Neven, H.; Martinis, John M.
Adiabatic quantum computing (AQC) is a general-purpose optimization algorithm that in contrast to circuit-model quantum algorithms can be applied to a large set of computational problems. An analog physical realization of AQC has certain limitations that we propose can be overcome by a gate-model equivalence of the AQC. In this talk we discuss the hardware advantages of digitized AQC in particular arbitrary interactions, precision, and coherence. We could experimentally realize the principles of digitized AQC on a chain of nine qubits, and highlight the physics of adiabatic evolutions as well as the Kibble-Zurek mechanism.
NASA Astrophysics Data System (ADS)
Liu, Jun; Dong, Ping; Zhou, Jian; Cao, Zhuo-Liang
2017-05-01
A scheme for implementing the non-adiabatic holonomic quantum computation in decoherence-free subspaces is proposed with the interactions between a microcavity and quantum dots. A universal set of quantum gates can be constructed on the encoded logical qubits with high fidelities. The current scheme can suppress both local and collective noises, which is very important for achieving universal quantum computation. Discussions about the gate fidelities with the experimental parameters show that our schemes can be implemented in current experimental technology. Therefore, our scenario offers a method for universal and robust solid-state quantum computation.
Universal adiabatic quantum computation via the space-time circuit-to-Hamiltonian construction.
Gosset, David; Terhal, Barbara M; Vershynina, Anna
2015-04-10
We show how to perform universal adiabatic quantum computation using a Hamiltonian which describes a set of particles with local interactions on a two-dimensional grid. A single parameter in the Hamiltonian is adiabatically changed as a function of time to simulate the quantum circuit. We bound the eigenvalue gap above the unique ground state by mapping our model onto the ferromagnetic XXZ chain with kink boundary conditions; the gap of this spin chain was computed exactly by Koma and Nachtergaele using its q-deformed version of SU(2) symmetry. We also discuss a related time-independent Hamiltonian which was shown by Janzing to be capable of universal computation. We observe that in the limit of large system size, the time evolution is equivalent to the exactly solvable quantum walk on Young's lattice.
Error Suppression and Error Correction in Adiabatic Quantum Computation: Techniques and Challenges
NASA Astrophysics Data System (ADS)
Young, Kevin C.; Sarovar, Mohan; Blume-Kohout, Robin
2013-10-01
Adiabatic quantum computation (AQC) has been lauded for its inherent robustness to control imperfections and relaxation effects. A considerable body of previous work, however, has shown AQC to be acutely sensitive to noise that causes excitations from the adiabatically evolving ground state. In this paper, we develop techniques to mitigate such noise, and then we point out and analyze some obstacles to further progress. First, we examine two known techniques that leverage quantum error-detecting codes to suppress noise and show that they are intimately related and may be analyzed within the same formalism. Next, we analyze the effectiveness of such error-suppression techniques in AQC, identify critical constraints on their performance, and conclude that large-scale, fault-tolerant AQC will require error correction, not merely suppression. Finally, we study the consequences of encoding AQC in quantum stabilizer codes and discover that generic AQC problem Hamiltonians rapidly convert physical errors into uncorrectable logical errors. We present several techniques to remedy this problem, but all of them require unphysical resources, suggesting that the adiabatic model of quantum computation may be fundamentally incompatible with stabilizer quantum error correction.
Bustos-Marún, Raúl; Refael, Gil; von Oppen, Felix
2013-08-09
When parameters are varied periodically, charge can be pumped through a mesoscopic conductor without applied bias. Here, we consider the inverse effect in which a transport current drives a periodic variation of an adiabatic degree of freedom. This provides a general operating principle for adiabatic quantum motors which we discuss here in general terms. We relate the work performed per cycle on the motor degree of freedom to characteristics of the underlying quantum pump and discuss the motors' efficiency. Quantum motors based on chaotic quantum dots operate solely due to quantum interference, and motors based on Thouless pumps have ideal efficiency.
Quantum adiabatic machine learning
NASA Astrophysics Data System (ADS)
Pudenz, Kristen L.; Lidar, Daniel A.
2013-05-01
We develop an approach to machine learning and anomaly detection via quantum adiabatic evolution. This approach consists of two quantum phases, with some amount of classical preprocessing to set up the quantum problems. In the training phase we identify an optimal set of weak classifiers, to form a single strong classifier. In the testing phase we adiabatically evolve one or more strong classifiers on a superposition of inputs in order to find certain anomalous elements in the classification space. Both the training and testing phases are executed via quantum adiabatic evolution. All quantum processing is strictly limited to two-qubit interactions so as to ensure physical feasibility. We apply and illustrate this approach in detail to the problem of software verification and validation, with a specific example of the learning phase applied to a problem of interest in flight control systems. Beyond this example, the algorithm can be used to attack a broad class of anomaly detection problems.
Adame, J.; Warzel, S.
2015-11-15
In this note, we use ideas of Farhi et al. [Int. J. Quantum. Inf. 6, 503 (2008) and Quantum Inf. Comput. 11, 840 (2011)] who link a lower bound on the run time of their quantum adiabatic search algorithm to an upper bound on the energy gap above the ground-state of the generators of this algorithm. We apply these ideas to the quantum random energy model (QREM). Our main result is a simple proof of the conjectured exponential vanishing of the energy gap of the QREM.
Comment on ``Adiabatic quantum computation with a one-dimensional projector Hamiltonian''
NASA Astrophysics Data System (ADS)
Kay, Alastair
2013-10-01
The partial adiabatic search algorithm was introduced in Tulsi's paper [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.80.052328 80, 052328 (2009)] as a modification of the usual adiabatic algorithm for a quantum search with the idea that most of the interesting computation only happens over a very short range of the adiabatic path. By focusing on that restricted range, one can potentially gain an advantage by reducing the control requirements on the system, enabling a uniform rate of evolution. In this Comment, we point out an oversight in Tulsi's paper [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.80.052328 80, 052328 (2009)] that invalidates its proof. However, the argument can be corrected, and the calculations in Tulsi's paper [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.80.052328 80, 052328 (2009)] are then sufficient to show that the scheme still works. Nevertheless, subsequent works [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.82.034304 82, 034304 (2010), Chin. Phys. BCPBHAJ1674-105610.1088/1674-1056/20/4/040309 20, 040309 (2011), Chin. Phys. BCPBHAJ1674-105610.1088/1674-1056/21/1/010306 21, 010306 (2012), AASRI Procedia 1, 5862 (2012), and Quantum Inf. Process.10.1007/s11128-013-0557-1 12, 2689 (2013)] cannot all be recovered in the same way.
Adiabatic Quantum Search in Open Systems
NASA Astrophysics Data System (ADS)
Wild, Dominik S.; Gopalakrishnan, Sarang; Knap, Michael; Yao, Norman Y.; Lukin, Mikhail D.
2016-10-01
Adiabatic quantum algorithms represent a promising approach to universal quantum computation. In isolated systems, a key limitation to such algorithms is the presence of avoided level crossings, where gaps become extremely small. In open quantum systems, the fundamental robustness of adiabatic algorithms remains unresolved. Here, we study the dynamics near an avoided level crossing associated with the adiabatic quantum search algorithm, when the system is coupled to a generic environment. At zero temperature, we find that the algorithm remains scalable provided the noise spectral density of the environment decays sufficiently fast at low frequencies. By contrast, higher order scattering processes render the algorithm inefficient at any finite temperature regardless of the spectral density, implying that no quantum speedup can be achieved. Extensions and implications for other adiabatic quantum algorithms will be discussed.
Adiabatic Quantum Search in Open Systems.
Wild, Dominik S; Gopalakrishnan, Sarang; Knap, Michael; Yao, Norman Y; Lukin, Mikhail D
2016-10-07
Adiabatic quantum algorithms represent a promising approach to universal quantum computation. In isolated systems, a key limitation to such algorithms is the presence of avoided level crossings, where gaps become extremely small. In open quantum systems, the fundamental robustness of adiabatic algorithms remains unresolved. Here, we study the dynamics near an avoided level crossing associated with the adiabatic quantum search algorithm, when the system is coupled to a generic environment. At zero temperature, we find that the algorithm remains scalable provided the noise spectral density of the environment decays sufficiently fast at low frequencies. By contrast, higher order scattering processes render the algorithm inefficient at any finite temperature regardless of the spectral density, implying that no quantum speedup can be achieved. Extensions and implications for other adiabatic quantum algorithms will be discussed.
Complexity of the Quantum Adiabatic Algorithm
NASA Technical Reports Server (NTRS)
Hen, Itay
2013-01-01
The Quantum Adiabatic Algorithm (QAA) has been proposed as a mechanism for efficiently solving optimization problems on a quantum computer. Since adiabatic computation is analog in nature and does not require the design and use of quantum gates, it can be thought of as a simpler and perhaps more profound method for performing quantum computations that might also be easier to implement experimentally. While these features have generated substantial research in QAA, to date there is still a lack of solid evidence that the algorithm can outperform classical optimization algorithms.
Adiabatic quantum simulation of quantum chemistry.
Babbush, Ryan; Love, Peter J; Aspuru-Guzik, Alán
2014-10-13
We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions.
Adiabatic Quantum Simulation of Quantum Chemistry
NASA Astrophysics Data System (ADS)
Babbush, Ryan; Love, Peter J.; Aspuru-Guzik, Alán
2014-10-01
We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions.
Adiabatic Quantum Simulation of Quantum Chemistry
Babbush, Ryan; Love, Peter J.; Aspuru-Guzik, Alán
2014-01-01
We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions. PMID:25308187
Majorization in quantum adiabatic algorithms
Wei Zhaohui; Ji Zhengfeng; Ying Mingsheng
2006-10-15
The majorization theory has been applied to analyze the mathematical structure of quantum algorithms. An empirical conclusion by numerical simulations obtained in the previous literature indicates that step-by-step majorization seems to appear universally in quantum adiabatic algorithms. In this paper, a rigorous analysis of the majorization arrow in a special class of quantum adiabatic algorithms is carried out. In particular, we prove that for any adiabatic algorithm of this class, step-by-step majorization of the ground state holds exactly. For the actual state, we show that step-by-step majorization holds approximately, and furthermore that the longer the running time of the algorithm, the better the approximation.
An Integrated Development Environment for Adiabatic Quantum Programming
Humble, Travis S; McCaskey, Alex; Bennink, Ryan S; Billings, Jay Jay; D'Azevedo, Eduardo; Sullivan, Blair D; Klymko, Christine F; Seddiqi, Hadayat
2014-01-01
Adiabatic quantum computing is a promising route to the computational power afforded by quantum information processing. The recent availability of adiabatic hardware raises the question of how well quantum programs perform. Benchmarking behavior is challenging since the multiple steps to synthesize an adiabatic quantum program are highly tunable. We present an adiabatic quantum programming environment called JADE that provides control over all the steps taken during program development. JADE captures the workflow needed to rigorously benchmark performance while also allowing a variety of problem types, programming techniques, and processor configurations. We have also integrated JADE with a quantum simulation engine that enables program profiling using numerical calculation. The computational engine supports plug-ins for simulation methodologies tailored to various metrics and computing resources. We present the design, integration, and deployment of JADE and discuss its use for benchmarking adiabatic quantum programs.
An integrated programming and development environment for adiabatic quantum optimization
NASA Astrophysics Data System (ADS)
Humble, T. S.; McCaskey, A. J.; Bennink, R. S.; Billings, J. J.; DʼAzevedo, E. F.; Sullivan, B. D.; Klymko, C. F.; Seddiqi, H.
2014-01-01
Adiabatic quantum computing is a promising route to the computational power afforded by quantum information processing. The recent availability of adiabatic hardware has raised challenging questions about how to evaluate adiabatic quantum optimization (AQO) programs. Processor behavior depends on multiple steps to synthesize an adiabatic quantum program, which are each highly tunable. We present an integrated programming and development environment for AQO called Jade Adiabatic Development Environment (JADE) that provides control over all the steps taken during program synthesis. JADE captures the workflow needed to rigorously specify the AQO algorithm while allowing a variety of problem types, programming techniques, and processor configurations. We have also integrated JADE with a quantum simulation engine that enables program profiling using numerical calculation. The computational engine supports plug-ins for simulation methodologies tailored to various metrics and computing resources. We present the design, integration, and deployment of JADE and discuss its potential use for benchmarking AQO programs by the quantum computer science community.
Generalized Ramsey numbers through adiabatic quantum optimization
NASA Astrophysics Data System (ADS)
Ranjbar, Mani; Macready, William G.; Clark, Lane; Gaitan, Frank
2016-09-01
Ramsey theory is an active research area in combinatorics whose central theme is the emergence of order in large disordered structures, with Ramsey numbers marking the threshold at which this order first appears. For generalized Ramsey numbers r( G, H), the emergent order is characterized by graphs G and H. In this paper we: (i) present a quantum algorithm for computing generalized Ramsey numbers by reformulating the computation as a combinatorial optimization problem which is solved using adiabatic quantum optimization; and (ii) determine the Ramsey numbers r({{T}}m,{{T}}n) for trees of order m,n = 6,7,8, most of which were previously unknown.
Fixed-point adiabatic quantum search
NASA Astrophysics Data System (ADS)
Dalzell, Alexander M.; Yoder, Theodore J.; Chuang, Isaac L.
2017-01-01
Fixed-point quantum search algorithms succeed at finding one of M target items among N total items even when the run time of the algorithm is longer than necessary. While the famous Grover's algorithm can search quadratically faster than a classical computer, it lacks the fixed-point property—the fraction of target items must be known precisely to know when to terminate the algorithm. Recently, Yoder, Low, and Chuang [Phys. Rev. Lett. 113, 210501 (2014), 10.1103/PhysRevLett.113.210501] gave an optimal gate-model search algorithm with the fixed-point property. Previously, it had been discovered by Roland and Cerf [Phys. Rev. A 65, 042308 (2002), 10.1103/PhysRevA.65.042308] that an adiabatic quantum algorithm, operating by continuously varying a Hamiltonian, can reproduce the quadratic speedup of gate-model Grover search. We ask, can an adiabatic algorithm also reproduce the fixed-point property? We show that the answer depends on what interpolation schedule is used, so as in the gate model, there are both fixed-point and non-fixed-point versions of adiabatic search, only some of which attain the quadratic quantum speedup. Guided by geometric intuition on the Bloch sphere, we rigorously justify our claims with an explicit upper bound on the error in the adiabatic approximation. We also show that the fixed-point adiabatic search algorithm can be simulated in the gate model with neither loss of the quadratic Grover speedup nor of the fixed-point property. Finally, we discuss natural uses of fixed-point algorithms such as preparation of a relatively prime state and oblivious amplitude amplification.
A Modified Adiabatic Quantum Algorithm for Evaluation of Boolean Functions
NASA Astrophysics Data System (ADS)
Sun, Jie; Lu, Songfeng; Liu, Fang
2015-09-01
In this paper, we propose a modified construction of the quantum adiabatic algorithm for Boolean functions studied by M. Andrecut et al. [13, 14]. Our algorithm has the time complexity O(1) for the evaluation of Boolean functions, without additional computational cost of implementing the driving Hamiltonian, which is required by the adiabatic evolution described in [13, 14].
Xu, Kebiao; Xie, Tianyu; Li, Zhaokai; Xu, Xiangkun; Wang, Mengqi; Ye, Xiangyu; Kong, Fei; Geng, Jianpei; Duan, Changkui; Shi, Fazhan; Du, Jiangfeng
2017-03-31
The adiabatic quantum computation is a universal and robust method of quantum computing. In this architecture, the problem can be solved by adiabatically evolving the quantum processor from the ground state of a simple initial Hamiltonian to that of a final one, which encodes the solution of the problem. Adiabatic quantum computation has been proved to be a compatible candidate for scalable quantum computation. In this Letter, we report on the experimental realization of an adiabatic quantum algorithm on a single solid spin system under ambient conditions. All elements of adiabatic quantum computation, including initial state preparation, adiabatic evolution (simulated by optimal control), and final state read-out, are realized experimentally. As an example, we found the ground state of the problem Hamiltonian S_{z}I_{z} on our adiabatic quantum processor, which can be mapped to the factorization of 35 into its prime factors 5 and 7.
An interacting adiabatic quantum motor
NASA Astrophysics Data System (ADS)
Viola Kusminskiy, Silvia; Bruch, Anton; von Oppen, Felix
We consider the effect of electron-electron interactions on the performance of an adiabatic quantum motor based on a Thouless pump operating in reverse. We model such a device by electrons in a 1d wire coupled to a slowly moving periodic potential associated with the classical mechanical degree of freedom of the motor. This periodic degree of freedom is set into motion by a bias voltage applied to the 1d electron channel. We investigate the Thouless motor with interacting leads modeled as Luttinger liquids. We show that interactions enhance the energy gap opened by the periodic potential and thus the robustness of the Thouless motor against variations in the chemical potential. We show that the motor degree of freedom can be described as a mobile impurity in a Luttinger liquid obeying Langevin dynamics with renormalized coefficients due to interactions, for which we give explicit expressions.
Accurate Variational Description of Adiabatic Quantum Optimization
NASA Astrophysics Data System (ADS)
Carleo, Giuseppe; Bauer, Bela; Troyer, Matthias
Adiabatic quantum optimization (AQO) is a quantum computing protocol where a system is driven by a time-dependent Hamiltonian. The initial Hamiltonian has an easily prepared ground-state and the final Hamiltonian encodes some desired optimization problem. An adiabatic time evolution then yields a solution to the optimization problem. Several challenges emerge in the theoretical description of this protocol: on one hand, the exact simulation of quantum dynamics is exponentially complex in the size of the optimization problem. On the other hand, approximate approaches such as tensor network states (TNS) are limited to small instances by the amount of entanglement that can be encoded. I will present here an extension of the time-dependent Variational Monte Carlo approach to problems in AQO. This approach is based on a general class of (Jastrow-Feenberg) entangled states, whose parameters are evolved in time according to a stochastic variational principle. We demonstrate this approach for optimization problems of the Ising spin-glass type. A very good accuracy is achieved when compared to exact time-dependent TNS on small instances. We then apply this approach to larger problems, and discuss the efficiency of the quantum annealing scheme in comparison with its classical counterpart.
Relaxation versus adiabatic quantum steady-state preparation
NASA Astrophysics Data System (ADS)
Venuti, Lorenzo Campos; Albash, Tameem; Marvian, Milad; Lidar, Daniel; Zanardi, Paolo
2017-04-01
Adiabatic preparation of the ground states of many-body Hamiltonians in the closed-system limit is at the heart of adiabatic quantum computation, but in reality systems are always open. This motivates a natural comparison between, on the one hand, adiabatic preparation of steady states of Lindbladian generators and, on the other hand, relaxation towards the same steady states subject to the final Lindbladian of the adiabatic process. In this work we thus adopt the perspective that the goal is the most efficient possible preparation of such steady states, rather than ground states. Using known rigorous bounds for the open-system adiabatic theorem and for mixing times, we are then led to a disturbing conclusion that at first appears to doom efforts to build physical quantum annealers: relaxation seems to always converge faster than adiabatic preparation. However, by carefully estimating the adiabatic preparation time for Lindbladians describing thermalization in the low-temperature limit, we show that there is, after all, room for an adiabatic speedup over relaxation. To test the analytically derived bounds for the adiabatic preparation time and the relaxation time, we numerically study three models: a dissipative quasifree fermionic chain, a single qubit coupled to a thermal bath, and the "spike" problem of n qubits coupled to a thermal bath. Via these models we find that the answer to the "which wins" question depends for each model on the temperature and the system-bath coupling strength. In the case of the "spike" problem we find that relaxation during the adiabatic evolution plays an important role in ensuring a speedup over the final-time relaxation procedure. Thus, relaxation-assisted adiabatic preparation can be more efficient than both pure adiabatic evolution and pure relaxation.
New Dynamical Scaling Universality for Quantum Networks Across Adiabatic Quantum Phase Transitions
NASA Astrophysics Data System (ADS)
Acevedo, O. L.; Quiroga, L.; Rodríguez, F. J.; Johnson, N. F.
2014-01-01
We reveal universal dynamical scaling behavior across adiabatic quantum phase transitions in networks ranging from traditional spatial systems (Ising model) to fully connected ones (Dicke and Lipkin-Meshkov-Glick models). Our findings, which lie beyond traditional critical exponent analysis and adiabatic perturbation approximations, are applicable even where excitations have not yet stabilized and, hence, provide a time-resolved understanding of quantum phase transitions encompassing a wide range of adiabatic regimes. We show explicitly that even though two systems may traditionally belong to the same universality class, they can have very different adiabatic evolutions. This implies that more stringent conditions need to be imposed than at present, both for quantum simulations where one system is used to simulate the other and for adiabatic quantum computing schemes.
New Dynamical Scaling Universality for Quantum Networks Across Adiabatic Quantum Phase Transitions
NASA Astrophysics Data System (ADS)
Acevedo, Oscar L.; Rodriguez, Ferney J.; Quiroga, Luis; Johnson, Neil F.; Rey, Ana M.
2014-05-01
We reveal universal dynamical scaling behavior across adiabatic quantum phase transitions in networks ranging from traditional spatial systems (Ising model) to fully connected ones (Dicke and Lipkin-Meshkov-Glick models). Our findings, which lie beyond traditional critical exponent analysis and adiabatic perturbation approximations, are applicable even where excitations have not yet stabilized and, hence, provide a time-resolved understanding of quantum phase transitions encompassing a wide range of adiabatic regimes. We show explicitly that even though two systems may traditionally belong to the same universality class, they can have very different adiabatic evolutions. This implies that more stringent conditions need to be imposed than at present, both for quantum simulations where one system is used to simulate the other and for adiabatic quantum computing schemes.
Markovian quantum master equation beyond adiabatic regime.
Yamaguchi, Makoto; Yuge, Tatsuro; Ogawa, Tetsuo
2017-01-01
By introducing a temporal change time scale τ_{A}(t) for the time-dependent system Hamiltonian, a general formulation of the Markovian quantum master equation is given to go well beyond the adiabatic regime. In appropriate situations, the framework is well justified even if τ_{A}(t) is faster than the decay time scale of the bath correlation function. An application to the dissipative Landau-Zener model demonstrates this general result. The findings are applicable to a wide range of fields, providing a basis for quantum control beyond the adiabatic regime.
Markovian quantum master equation beyond adiabatic regime
NASA Astrophysics Data System (ADS)
Yamaguchi, Makoto; Yuge, Tatsuro; Ogawa, Tetsuo
2017-01-01
By introducing a temporal change time scale τA(t ) for the time-dependent system Hamiltonian, a general formulation of the Markovian quantum master equation is given to go well beyond the adiabatic regime. In appropriate situations, the framework is well justified even if τA(t ) is faster than the decay time scale of the bath correlation function. An application to the dissipative Landau-Zener model demonstrates this general result. The findings are applicable to a wide range of fields, providing a basis for quantum control beyond the adiabatic regime.
General conditions for quantum adiabatic evolution
Comparat, Daniel
2009-07-15
Adiabaticity occurs when, during its evolution, a physical system remains in the instantaneous eigenstate of the Hamiltonian. Unfortunately, existing results, such as the quantum adiabatic theorem based on a slow down evolution [H({epsilon}t),{epsilon}{yields}0], are insufficient to describe an evolution driven by the Hamiltonian H(t) itself. Here we derive general criteria and exact bounds, for the state and its phase, ensuring an adiabatic evolution for any Hamiltonian H(t). As a corollary, we demonstrate that the commonly used condition of a slow Hamiltonian variation rate, compared to the spectral gap, is indeed sufficient to ensure adiabaticity but only when the Hamiltonian is real and nonoscillating (for instance, containing exponential or polynomial but no sinusoidal functions)
Necessary adiabatic run times in quantum optimization
NASA Astrophysics Data System (ADS)
Brady, Lucas T.; van Dam, Wim
2017-03-01
Quantum annealing is guaranteed to find the ground state of optimization problems provided it operates in the adiabatic limit. Recent work [S. Muthukrishnan et al., Phys. Rev. X 6, 031010 (2016), 10.1103/PhysRevX.6.031010] has found that for some barrier tunneling problems, quantum annealing can be run much faster than is adiabatically required. Specifically, an n -qubit optimization problem was presented for which a nonadiabatic, or diabatic, annealing algorithm requires only a constant run time, while an adiabatic annealing algorithm requires a run-time polynomial in n . Here we show that this nonadiabatic speedup is the direct result of a specific symmetry in the studied problem. In the more general case, no such nonadiabatic speedup occurs and we show why the special case achieves this speedup compared to the general case. We also prove that the adiabatic annealing algorithm has a necessary and sufficient run time that is quadratically better than the standard quantum adiabatic condition suggests. We conclude with an observation about the required precision in timing for the diabatic algorithm.
Non-Adiabatic Holonomic Quantum Gates in an atomic system
NASA Astrophysics Data System (ADS)
Azimi Mousolou, Vahid; Canali, Carlo M.; Sjoqvist, Erik
2012-02-01
Quantum computation is essentially the implementation of a universal set of quantum gate operations on a set of qubits, which is reliable in the presence of noise. We propose a scheme to perform robust gates in an atomic four-level system using the idea of non-adiabatic holonomic quantum computation proposed in [1]. The gates are realized by applying sequences of short laser pulses that drive transitions between the four energy levels in such a way that the dynamical phases vanish. [4pt] [1] E. Sjoqvist, D.M. Tong, B. Hessmo, M. Johansson, K. Singh, arXiv:1107.5127v2 [quant-ph
Adiabatic Quantum Optimization for Associative Memory Recall
NASA Astrophysics Data System (ADS)
Seddiqi, Hadayat; Humble, Travis
2014-12-01
Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.
Adiabatic quantum optimization for associative memory recall
Seddiqi, Hadayat; Humble, Travis S.
2014-12-22
Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are storedmore » in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.« less
Adiabatic Theorem for Quantum Spin Systems
NASA Astrophysics Data System (ADS)
Bachmann, S.; De Roeck, W.; Fraas, M.
2017-08-01
The first proof of the quantum adiabatic theorem was given as early as 1928. Today, this theorem is increasingly applied in a many-body context, e.g., in quantum annealing and in studies of topological properties of matter. In this setup, the rate of variation ɛ of local terms is indeed small compared to the gap, but the rate of variation of the total, extensive Hamiltonian, is not. Therefore, applications to many-body systems are not covered by the proofs and arguments in the literature. In this Letter, we prove a version of the adiabatic theorem for gapped ground states of interacting quantum spin systems, under assumptions that remain valid in the thermodynamic limit. As an application, we give a mathematical proof of Kubo's linear response formula for a broad class of gapped interacting systems. We predict that the density of nonadiabatic excitations is exponentially small in the driving rate and the scaling of the exponent depends on the dimension.
Adiabatic Theorem for Quantum Spin Systems.
Bachmann, S; De Roeck, W; Fraas, M
2017-08-11
The first proof of the quantum adiabatic theorem was given as early as 1928. Today, this theorem is increasingly applied in a many-body context, e.g., in quantum annealing and in studies of topological properties of matter. In this setup, the rate of variation ϵ of local terms is indeed small compared to the gap, but the rate of variation of the total, extensive Hamiltonian, is not. Therefore, applications to many-body systems are not covered by the proofs and arguments in the literature. In this Letter, we prove a version of the adiabatic theorem for gapped ground states of interacting quantum spin systems, under assumptions that remain valid in the thermodynamic limit. As an application, we give a mathematical proof of Kubo's linear response formula for a broad class of gapped interacting systems. We predict that the density of nonadiabatic excitations is exponentially small in the driving rate and the scaling of the exponent depends on the dimension.
Adiabatic quantum optimization for associative memory recall
Seddiqi, Hadayat; Humble, Travis S.
2014-12-22
Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.
Li, Shu-Shen; Long, Gui-Lu; Bai, Feng-Shan; Feng, Song-Lin; Zheng, Hou-Zhi
2001-01-01
Quantum computing is a quickly growing research field. This article introduces the basic concepts of quantum computing, recent developments in quantum searching, and decoherence in a possible quantum dot realization. PMID:11562459
On optimal methods for adiabatic quantum state transformations
NASA Astrophysics Data System (ADS)
Somma, Rolando
2013-03-01
Many problems in science could be solved by preparing the low-energy quantum state (or any eigenstate) of a Hamiltonian. A common example is the Boolean satisfiability problem, where each clause can be mapped to the energy of an interacting many-body system, and the problem reduces to minimizing the energy. In quantum computing, adiabatic quantum state transformations (ASTs) provide a tool for preparing the quantum state. ASTs are conventionally implemented via slow or adiabatic perturbations to the Hamiltonian, relying on the quantum adiabatic theorem. Nevertheless, more efficient implementations of ASTs exist. In this talk I will review recently developed methods for ASTs that are more efficient and require less assumptions on the Hamiltonians than the conventional implementation. Such methods involve measurements of the states along the evolution path and have a best-case implementation cost of L/G, where L is the length of the (evolved) state path and G is a lower bound to the spectral gap of the Hamiltonians. I will show that this cost is optimal and comment on results of the gap amplification problem, where the goal is to reduce the cost by increasing G. We acknowledge support from NSF through the CCF program and the LDRD programs at Los Alamos National Laboratory and Sandia National Laboratories.
Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning
NASA Technical Reports Server (NTRS)
Smelyanskiy, Vadius; vonToussaint, Udo V.; Timucin, Dogan A.; Clancy, Daniel (Technical Monitor)
2002-01-01
We have developed a general technique to study the dynamics of the quantum adiabatic evolution algorithm applied to random combinatorial optimization problems in the asymptotic limit of large problem size n. We use as an example the NP-complete Number Partitioning problem and map the algorithm dynamics to that of an auxiliary quantum spin glass system with the slowly varying Hamiltonian. We use a Green function method to obtain the adiabatic eigenstates and the minimum exitation gap, gmin = O(n2(sup -n/2)), corresponding to the exponential complexity of the algorithm for Number Partitioning. The key element of the analysis is the conditional energy distribution computed for the set of all spin configurations generated from a given (ancestor) configuration by simultaneous flipping of a fixed number of spins. For the problem in question this distribution is shown to depend on the ancestor spin configuration only via a certain parameter related to the energy of the configuration. As the result, the algorithm dynamics can be described in terms of one-dimensional quantum diffusion in the energy space. This effect provides a general limitation of a quantum adiabatic computation in random optimization problems. Analytical results are in agreement with the numerical simulation of the algorithm.
Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning
NASA Technical Reports Server (NTRS)
Smelyanskiy, V. N.; Toussaint, U. V.; Timucin, D. A.
2002-01-01
We have developed a general technique to study the dynamics of the quantum adiabatic evolution algorithm applied to random combinatorial optimization problems in the asymptotic limit of large problem size n. We use as an example the NP-complete Number Partitioning problem and map the algorithm dynamics to that of an auxiliary quantum spin glass system with the slowly varying Hamiltonian. We use a Green function method to obtain the adiabatic eigenstates and the minimum excitation gap. g min, = O(n 2(exp -n/2), corresponding to the exponential complexity of the algorithm for Number Partitioning. The key element of the analysis is the conditional energy distribution computed for the set of all spin configurations generated from a given (ancestor) configuration by simultaneous flipping of a fixed number of spins. For the problem in question this distribution is shown to depend on the ancestor spin configuration only via a certain parameter related to 'the energy of the configuration. As the result, the algorithm dynamics can be described in terms of one-dimensional quantum diffusion in the energy space. This effect provides a general limitation of a quantum adiabatic computation in random optimization problems. Analytical results are in agreement with the numerical simulation of the algorithm.
Shortcuts to adiabaticity for quantum annealing
NASA Astrophysics Data System (ADS)
Takahashi, Kazutaka
2017-01-01
We study the Ising Hamiltonian with a transverse field term to simulate the quantum annealing. Using shortcuts to adiabaticity, we design the time dependence of the Hamiltonian. The dynamical invariant is obtained by the mean-field ansatz, and the Hamiltonian is designed by the inverse engineering. We show that the time dependence of physical quantities such as the magnetization is independent of the speed of the Hamiltonian variation in the infinite-range model. We also show that rotating transverse magnetic fields are useful to achieve the ideal time evolution.
Adiabatic Quantum Algorithm for Search Engine Ranking
NASA Astrophysics Data System (ADS)
Garnerone, Silvano; Zanardi, Paolo; Lidar, Daniel A.
2012-06-01
We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this algorithm can prepare the quantum PageRank state in a time which, on average, scales polylogarithmically in the number of web pages. We argue that the main topological feature of the underlying web graph allowing for such a scaling is the out-degree distribution. The top-ranked log(n) entries of the quantum PageRank state can then be estimated with a polynomial quantum speed-up. Moreover, the quantum PageRank state can be used in “q-sampling” protocols for testing properties of distributions, which require exponentially fewer measurements than all classical schemes designed for the same task. This can be used to decide whether to run a classical update of the PageRank.
Adiabatic quantum algorithm for search engine ranking.
Garnerone, Silvano; Zanardi, Paolo; Lidar, Daniel A
2012-06-08
We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this algorithm can prepare the quantum PageRank state in a time which, on average, scales polylogarithmically in the number of web pages. We argue that the main topological feature of the underlying web graph allowing for such a scaling is the out-degree distribution. The top-ranked log(n) entries of the quantum PageRank state can then be estimated with a polynomial quantum speed-up. Moreover, the quantum PageRank state can be used in "q-sampling" protocols for testing properties of distributions, which require exponentially fewer measurements than all classical schemes designed for the same task. This can be used to decide whether to run a classical update of the PageRank.
Quantum-Classical Correspondence of Shortcuts to Adiabaticity
NASA Astrophysics Data System (ADS)
Okuyama, Manaka; Takahashi, Kazutaka
2017-04-01
We formulate the theory of shortcuts to adiabaticity in classical mechanics. For a reference Hamiltonian, the counterdiabatic term is constructed from the dispersionless Korteweg-de Vries (KdV) hierarchy. Then the adiabatic theorem holds exactly for an arbitrary choice of time-dependent parameters. We use the Hamilton-Jacobi theory to define the generalized action. The action is independent of the history of the parameters and is directly related to the adiabatic invariant. The dispersionless KdV hierarchy is obtained from the classical limit of the KdV hierarchy for the quantum shortcuts to adiabaticity. This correspondence suggests some relation between the quantum and classical adiabatic theorems.
Quantum Adiabatic Algorithms and Large Spin Tunnelling
NASA Technical Reports Server (NTRS)
Boulatov, A.; Smelyanskiy, V. N.
2003-01-01
We provide a theoretical study of the quantum adiabatic evolution algorithm with different evolution paths proposed in this paper. The algorithm is applied to a random binary optimization problem (a version of the 3-Satisfiability problem) where the n-bit cost function is symmetric with respect to the permutation of individual bits. The evolution paths are produced, using the generic control Hamiltonians H (r) that preserve the bit symmetry of the underlying optimization problem. In the case where the ground state of H(0) coincides with the totally-symmetric state of an n-qubit system the algorithm dynamics is completely described in terms of the motion of a spin-n/2. We show that different control Hamiltonians can be parameterized by a set of independent parameters that are expansion coefficients of H (r) in a certain universal set of operators. Only one of these operators can be responsible for avoiding the tunnelling in the spin-n/2 system during the quantum adiabatic algorithm. We show that it is possible to select a coefficient for this operator that guarantees a polynomial complexity of the algorithm for all problem instances. We show that a successful evolution path of the algorithm always corresponds to the trajectory of a classical spin-n/2 and provide a complete characterization of such paths.
NASA Astrophysics Data System (ADS)
O'Hare, Anthony; Kusmartsev, F. V.; Kugel, K. I.
2010-12-01
We study the two-dimensional Ising model with competing nearest-neighbour and diagonal interactions and investigate the phase diagram of this model. We show that the ground state at low temperatures is ordered either as stripes or as the Néel antiferromagnet. However, we also demonstrate that the energy of defects and dislocations in the lattice is close to the ground state of the system. Therefore, many locally stable (or metastable) states associated with local energy minima separated by energy barriers may appear forming a glass-like state. We discuss the results in connection with two physically different systems. First, we deal with planar clusters of loops including a Josephson π-junction (a π-rings). Each π-ring carries a persistent current and behaves as a classical orbital moment. The type of particular state associated with the orientation of orbital moments in the cluster depends on the interaction between these orbital moments and can be easily controlled, i.e. by a bias current or by other means. Second, we apply the model to the analysis of the structure of the newly discovered two-dimensional form of carbon, graphene. Carbon atoms in graphene form a planar honeycomb lattice. Actually, the graphene plane is not ideal but corrugated. The displacement of carbon atoms up and down from the plane can be also described in terms of Ising spins, the interaction of which determines the complicated shape of the corrugated graphene plane. The obtained results may be verified in experiments and are also applicable to adiabatic quantum computing where the states are switched adiabatically with the slow change of coupling constant.
NASA Astrophysics Data System (ADS)
O'Hare, Anthony; Kusmartsev, F. V.; Kugel, K. I.
We study the two-dimensional Ising model with competing nearest-neighbour and diagonal interactions and investigate the phase diagram of this model. We show that the ground state at low temperatures is ordered either as stripes or as the Néel antiferromagnet. However, we also demonstrate that the energy of defects and dislocations in the lattice is close to the ground state of the system. Therefore, many locally stable (or metastable) states associated with local energy minima separated by energy barriers may appear forming a glass-like state. We discuss the results in connection with two physically different systems. First, we deal with planar clusters of loops including a Josephson π-junction (a π-rings). Each π-ring carries a persistent current and behaves as a classical orbital moment. The type of particular state associated with the orientation of orbital moments in the cluster depends on the interaction between these orbital moments and can be easily controlled, i.e. by a bias current or by other means. Second, we apply the model to the analysis of the structure of the newly discovered two-dimensional form of carbon, graphene. Carbon atoms in graphene form a planar honeycomb lattice. Actually, the graphene plane is not ideal but corrugated. The displacement of carbon atoms up and down from the plane can be also described in terms of Ising spins, the interaction of which determines the complicated shape of the corrugated graphene plane. The obtained results may be verified in experiments and are also applicable to adiabatic quantum computing where the states are switched adiabatically with the slow change of coupling constant.
Fidelity of adiabatic holonomic quantum gates
NASA Astrophysics Data System (ADS)
Malinovsky, Vladimir; Rudin, Sergey
2016-05-01
During last few years non-Abelian geometric phases are attracting increasing interest due to possible experimental applications in quantum computation. Here we discuss universal set of holonomic quantum gates using the geometric phase that the qubit wave function acquires after a cyclic evolution. The proposed scheme utilizes ultrafast pulses and provides a possibility to substantially suppress transient population of the ancillary states. Fidelity of the holonomic quantum gates in the presence of dephasing and dissipation is discussed. Example of electron spin qubit system in the InGaN/GaN, GaN/AlN quantum dot is considered in details.
Quantum Adiabatic Optimization and Combinatorial Landscapes
NASA Technical Reports Server (NTRS)
Smelyanskiy, V. N.; Knysh, S.; Morris, R. D.
2003-01-01
In this paper we analyze the performance of the Quantum Adiabatic Evolution (QAE) algorithm on a variant of Satisfiability problem for an ensemble of random graphs parametrized by the ratio of clauses to variables, gamma = M / N. We introduce a set of macroscopic parameters (landscapes) and put forward an ansatz of universality for random bit flips. We then formulate the problem of finding the smallest eigenvalue and the excitation gap as a statistical mechanics problem. We use the so-called annealing approximation with a refinement that a finite set of macroscopic variables (verses only energy) is used, and are able to show the existence of a dynamic threshold gamma = gammad, beyond which QAE should take an exponentially long time to find a solution. We compare the results for extended and simplified sets of landscapes and provide numerical evidence in support of our universality ansatz.
Adiabatic following for a three-state quantum system
NASA Astrophysics Data System (ADS)
Huang, Wei; Shore, Bruce W.; Rangelov, Andon; Kyoseva, Elica
2017-01-01
Adiabatic time-evolution - found in various forms of adiabatic following and adiabatic passage - is often advantageous for controlled manipulation of quantum systems due to its insensitivity to deviations in the pulse shapes and timings. In this paper we discuss controlled adiabatic evolution of a three-state quantum system, a natural advance to the widespread use of two-state systems in numerous contemporary applications. We discuss, and illustrate, not only possibilities for population transfer but also for creating, with prescribed relative phase, 50:50 superpositions of two Zeeman sublevels in a letter-vee coupling linkage.
On the Role of Prior Probability in Adiabatic Quantum Algorithms
NASA Astrophysics Data System (ADS)
Sun, Jie; Lu, Songfeng; Yang, Liping
2016-03-01
In this paper, we study the role of prior probability on the efficiency of quantum local adiabatic search algorithm. The following aspects for prior probability are found here: firstly, only the probabilities of marked states affect the running time of the adiabatic evolution; secondly, the prior probability can be used for improving the efficiency of the adiabatic algorithm; thirdly, like the usual quantum adiabatic evolution, the running time for the case of multiple solution states where the number of marked elements are smaller enough than the size of the set assigned that contains them can be significantly bigger than that of the case where the assigned set only contains all the marked states.
Adiabatic Spin Pumping with Quantum Dots
NASA Astrophysics Data System (ADS)
Mucciolo, Eduardo R.
Electronic transport in mesoscopic systems has been intensively studied for more the last three decades. While there is a substantial understanding of the stationary regime, much less is know about phase-coherent nonequilibrium transport when pulses or ac perturbations are used to drive electrons at low temperatures and at small length scales. However, about 20 years ago Thouless proposed to drive nondissipative currents in quantum systems by applying simultaneously two phase-locked external perturbations. The so-called adiabatic pumping mechanism has been revived in the last few years, both theoretically and experimentally, in part because of the development of lateral semiconductor quantum dots. Here we will explain how open dots can be used to create spin-polarized currents with little or no net charge transfer. The pure spin pump we propose is the analog of a charge battery in conventional electronics and may provide a needed circuit element for spin-based electronics. We will also discuss other relevant issues such as rectification and decoherence and point out possible extensions of the mechanism to closed dots.
Computer Code For Turbocompounded Adiabatic Diesel Engine
NASA Technical Reports Server (NTRS)
Assanis, D. N.; Heywood, J. B.
1988-01-01
Computer simulation developed to study advantages of increased exhaust enthalpy in adiabatic turbocompounded diesel engine. Subsytems of conceptual engine include compressor, reciprocator, turbocharger turbine, compounded turbine, ducting, and heat exchangers. Focus of simulation of total system is to define transfers of mass and energy, including release and transfer of heat and transfer of work in each subsystem, and relationship among subsystems. Written in FORTRAN IV.
Computer Code For Turbocompounded Adiabatic Diesel Engine
NASA Technical Reports Server (NTRS)
Assanis, D. N.; Heywood, J. B.
1988-01-01
Computer simulation developed to study advantages of increased exhaust enthalpy in adiabatic turbocompounded diesel engine. Subsytems of conceptual engine include compressor, reciprocator, turbocharger turbine, compounded turbine, ducting, and heat exchangers. Focus of simulation of total system is to define transfers of mass and energy, including release and transfer of heat and transfer of work in each subsystem, and relationship among subsystems. Written in FORTRAN IV.
Communication: Adiabatic and non-adiabatic electron-nuclear motion: Quantum and classical dynamics.
Albert, Julian; Kaiser, Dustin; Engel, Volker
2016-05-07
Using a model for coupled electronic-nuclear motion we investigate the range from negligible to strong non-adiabatic coupling. In the adiabatic case, the quantum dynamics proceeds in a single electronic state, whereas for strong coupling a complete transition between two adiabatic electronic states takes place. It is shown that in all coupling regimes the short-time wave-packet dynamics can be described using ensembles of classical trajectories in the phase space spanned by electronic and nuclear degrees of freedom. We thus provide an example which documents that the quantum concept of non-adiabatic transitions is not necessarily needed if electronic and nuclear motion is treated on the same footing.
Quantum adiabatic optimization and combinatorial landscapes
NASA Astrophysics Data System (ADS)
Smelyanskiy, V. N.; Knysh, S.; Morris, R. D.
2004-09-01
In this paper we analyze the performance of the Quantum Adiabatic Evolution algorithm on a variant of the satisfiability problem for an ensemble of random graphs parametrized by the ratio of clauses to variables, γ=M/N . We introduce a set of macroscopic parameters (landscapes) and put forward an ansatz of universality for random bit flips. We then formulate the problem of finding the smallest eigenvalue and the excitation gap as a statistical mechanics problem. We use the so-called annealing approximation with a refinement that a finite set of macroscopic variables (instead of only energy) is used, and are able to show the existence of a dynamic threshold γ=γd starting with some value of K —the number of variables in each clause. Beyond the dynamic threshold, the algorithm should take an exponentially long time to find a solution. We compare the results for extended and simplified sets of landscapes and provide numerical evidence in support of our universality ansatz. We have been able to map the ensemble of random graphs onto another ensemble with fluctuations significantly reduced. This enabled us to obtain tight upper bounds on the satisfiability transition and to recompute the dynamical transition using the extended set of landscapes.
Quantum state conversion in opto-electro-mechanical systems via shortcut to adiabaticity
NASA Astrophysics Data System (ADS)
Zhou, Xiao; Liu, Bao-Jie; Shao, L.-B.; Zhang, Xin-Ding; Xue, Zheng-Yuan
2017-09-01
Adiabatic processes have found many important applications in modern physics, the distinct merit of which is that accurate control over process timing is not required. However, such processes are slow, which limits their application in quantum computation, due to the limited coherent times of typical quantum systems. Here, we propose a scheme to implement quantum state conversion in opto-electro-mechanical systems via a shortcut to adiabaticity, where the process can be greatly speeded up while precise timing control is still not necessary. In our scheme, by modifying only the coupling strength, we can achieve fast quantum state conversion with high fidelity, where the adiabatic condition does not need to be met. In addition, the population of the unwanted intermediate state can be further suppressed. Therefore, our protocol presents an important step towards practical state conversion between optical and microwave photons, and thus may find many important applications in hybrid quantum information processing.
Acceleration of adiabatic quantum dynamics in electromagnetic fields
Masuda, Shumpei; Nakamura, Katsuhiro
2011-10-15
We show a method to accelerate quantum adiabatic dynamics of wave functions under electromagnetic field (EMF) by developing the preceding theory [Masuda and Nakamura, Proc. R. Soc. London Ser. A 466, 1135 (2010)]. Treating the orbital dynamics of a charged particle in EMF, we derive the driving field which accelerates quantum adiabatic dynamics in order to obtain the final adiabatic states in any desired short time. The scheme is consolidated by describing a way to overcome possible singularities in both the additional phase and driving potential due to nodes proper to wave functions under EMF. As explicit examples, we exhibit the fast forward of adiabatic squeezing and transport of excited Landau states with nonzero angular momentum, obtaining the result consistent with the transitionless quantum driving applied to the orbital dynamics in EMF.
TOPICAL REVIEW: Optimization using quantum mechanics: quantum annealing through adiabatic evolution
NASA Astrophysics Data System (ADS)
Santoro, Giuseppe E.; Tosatti, Erio
2006-09-01
We review here some recent work in the field of quantum annealing, alias adiabatic quantum computation. The idea of quantum annealing is to perform optimization by a quantum adiabatic evolution which tracks the ground state of a suitable time-dependent Hamiltonian, where 'planck' is slowly switched off. We illustrate several applications of quantum annealing strategies, starting from textbook toy-models—double-well potentials and other one-dimensional examples, with and without disorder. These examples display in a clear way the crucial differences between classical and quantum annealing. We then discuss applications of quantum annealing to challenging hard optimization problems, such as the random Ising model, the travelling salesman problem and Boolean satisfiability problems. The techniques used to implement quantum annealing are either deterministic Schrödinger's evolutions, for the toy models, or path-integral Monte Carlo and Green's function Monte Carlo approaches, for the hard optimization problems. The crucial role played by disorder and the associated non-trivial Landau-Zener tunnelling phenomena is discussed and emphasized.
Superadiabatic Controlled Evolutions and Universal Quantum Computation
Santos, Alan C.; Sarandy, Marcelo S.
2015-01-01
Adiabatic state engineering is a powerful technique in quantum information and quantum control. However, its performance is limited by the adiabatic theorem of quantum mechanics. In this scenario, shortcuts to adiabaticity, such as provided by the superadiabatic theory, constitute a valuable tool to speed up the adiabatic quantum behavior. Here, we propose a superadiabatic route to implement universal quantum computation. Our method is based on the realization of piecewise controlled superadiabatic evolutions. Remarkably, they can be obtained by simple time-independent counter-diabatic Hamiltonians. In particular, we discuss the implementation of fast rotation gates and arbitrary n-qubit controlled gates, which can be used to design different sets of universal quantum gates. Concerning the energy cost of the superadiabatic implementation, we show that it is dictated by the quantum speed limit, providing an upper bound for the corresponding adiabatic counterparts. PMID:26511064
Superadiabatic Controlled Evolutions and Universal Quantum Computation.
Santos, Alan C; Sarandy, Marcelo S
2015-10-29
Adiabatic state engineering is a powerful technique in quantum information and quantum control. However, its performance is limited by the adiabatic theorem of quantum mechanics. In this scenario, shortcuts to adiabaticity, such as provided by the superadiabatic theory, constitute a valuable tool to speed up the adiabatic quantum behavior. Here, we propose a superadiabatic route to implement universal quantum computation. Our method is based on the realization of piecewise controlled superadiabatic evolutions. Remarkably, they can be obtained by simple time-independent counter-diabatic Hamiltonians. In particular, we discuss the implementation of fast rotation gates and arbitrary n-qubit controlled gates, which can be used to design different sets of universal quantum gates. Concerning the energy cost of the superadiabatic implementation, we show that it is dictated by the quantum speed limit, providing an upper bound for the corresponding adiabatic counterparts.
Geometric Phase for Adiabatic Evolutions of General Quantum States
Wu, Biao; Liu, Jie; Niu, Qian; Singh, David J
2005-01-01
The concept of a geometric phase (Berry's phase) is generalized to the case of noneigenstates, which is applicable to both linear and nonlinear quantum systems. This is particularly important to nonlinear quantum systems, where, due to the lack of the superposition principle, the adiabatic evolution of a general state cannot be described in terms of eigenstates. For linear quantum systems, our new geometric phase reduces to a statistical average of Berry's phases. Our results are demonstrated with a nonlinear two-level model.
Models of optical quantum computing
NASA Astrophysics Data System (ADS)
Krovi, Hari
2017-03-01
I review some work on models of quantum computing, optical implementations of these models, as well as the associated computational power. In particular, we discuss the circuit model and cluster state implementations using quantum optics with various encodings such as dual rail encoding, Gottesman-Kitaev-Preskill encoding, and coherent state encoding. Then we discuss intermediate models of optical computing such as boson sampling and its variants. Finally, we review some recent work in optical implementations of adiabatic quantum computing and analog optical computing. We also provide a brief description of the relevant aspects from complexity theory needed to understand the results surveyed.
Ladd, T D; Jelezko, F; Laflamme, R; Nakamura, Y; Monroe, C; O'Brien, J L
2010-03-04
Over the past several decades, quantum information science has emerged to seek answers to the question: can we gain some advantage by storing, transmitting and processing information encoded in systems that exhibit unique quantum properties? Today it is understood that the answer is yes, and many research groups around the world are working towards the highly ambitious technological goal of building a quantum computer, which would dramatically improve computational power for particular tasks. A number of physical systems, spanning much of modern physics, are being developed for quantum computation. However, it remains unclear which technology, if any, will ultimately prove successful. Here we describe the latest developments for each of the leading approaches and explain the major challenges for the future.
Nonadiabatic quantum Liouville and master equations in the adiabatic basis.
Jang, Seogjoo
2012-12-14
A compact form of nonadiabatic molecular Hamiltonian in the basis of adiabatic electronic states and nuclear position states is presented. The Hamiltonian, which includes both the first and the second derivative couplings, is hermitian and thus leads to a standard expression for the quantum Liouville equation for the density operator. With the application of a projection operator technique, a quantum master equation for the diagonal components of the density operator is derived. Under the assumption that nuclear states are much more short ranged compared to electronic states and assuming no singularity, a semi-adiabatic approximation is invoked, which results in expressions for the nonadiabatic molecular Hamiltonian and the quantum Liouville equation that are much more amenable to advanced quantum dynamics calculation. The semi-adiabatic approximation is also applied to a resonance energy transfer system consisting of a donor and an acceptor interacting via Coulomb terms, and explicit detailed expressions for exciton-bath Hamiltonian including all the non-adiabatic terms are derived.
Nonadiabatic quantum Liouville and master equations in the adiabatic basis
Jang, Seogjoo
2012-12-14
A compact form of nonadiabatic molecular Hamiltonian in the basis of adiabatic electronic states and nuclear position states is presented. The Hamiltonian, which includes both the first and the second derivative couplings, is Hermitian and thus leads to a standard expression for the quantum Liouville equation for the density operator. With the application of a projection operator technique, a quantum master equation for the diagonal components of the density operator is derived. Under the assumption that nuclear states are much more short ranged compared to electronic states and assuming no singularity, a semi-adiabatic approximation is invoked, which results in expressions for the nonadiabatic molecular Hamiltonian and the quantum Liouville equation that are much more amenable to advanced quantum dynamics calculation. The semi-adiabatic approximation is also applied to a resonance energy transfer system consisting of a donor and an acceptor interacting via Coulomb terms, and explicit detailed expressions for exciton-bath Hamiltonian including all the non-adiabatic terms are derived.
Non-adiabatic molecular dynamics with complex quantum trajectories. II. The adiabatic representation
Zamstein, Noa; Tannor, David J.
2012-12-14
We present a complex quantum trajectory method for treating non-adiabatic dynamics. Each trajectory evolves classically on a single electronic surface but with complex position and momentum. The equations of motion are derived directly from the time-dependent Schroedinger equation, and the population exchange arises naturally from amplitude-transfer terms. In this paper the equations of motion are derived in the adiabatic representation to complement our work in the diabatic representation [N. Zamstein and D. J. Tannor, J. Chem. Phys. 137, 22A517 (2012)]. We apply our method to two benchmark models introduced by John Tully [J. Chem. Phys. 93, 1061 (1990)], and get very good agreement with converged quantum-mechanical calculations. Specifically, we show that decoherence (spatial separation of wavepackets on different surfaces) is already contained in the equations of motion and does not require ad hoc augmentation.
On Models of Nonlinear Evolution Paths in Adiabatic Quantum Algorithms
NASA Astrophysics Data System (ADS)
Sun, Jie; Lu, Song-Feng; Samuel, L. Braunstein
2013-01-01
In this paper, we study two different nonlinear interpolating paths in adiabatic evolution algorithms for solving a particular class of quantum search problems where both the initial and final Hamiltonian are one-dimensional projector Hamiltonians on the corresponding ground state. If the overlap between the initial state and final state of the quantum system is not equal to zero, both of these models can provide a constant time speedup over the usual adiabatic algorithms by increasing some another corresponding “complexity". But when the initial state has a zero overlap with the solution state in the problem, the second model leads to an infinite time complexity of the algorithm for whatever interpolating functions being applied while the first one can still provide a constant running time. However, inspired by a related reference, a variant of the first model can be constructed which also fails for the problem when the overlap is exactly equal to zero if we want to make up the “intrinsic" fault of the second model — an increase in energy. Two concrete theorems are given to serve as explanations why neither of these two models can improve the usual adiabatic evolution algorithms for the phenomenon above. These just tell us what should be noted when using certain nonlinear evolution paths in adiabatic quantum algorithms for some special kind of problems.
1998-04-01
information representation and processing technology, although faster than the wheels and gears of the Charles Babbage computation machine, is still in...the same computational complexity class as the Babbage machine, with bits of information represented by entities which obey classical (non-quantum...nuclear double resonances Charles M Bowden and Jonathan P. Dowling Weapons Sciences Directorate, AMSMI-RD-WS-ST Missile Research, Development, and
Fluctuations of work in nearly adiabatically driven open quantum systems.
Suomela, S; Salmilehto, J; Savenko, I G; Ala-Nissila, T; Möttönen, M
2015-02-01
We extend the quantum jump method to nearly adiabatically driven open quantum systems in a way that allows for an accurate account of the external driving in the system-environment interaction. Using this framework, we construct the corresponding trajectory-dependent work performed on the system and derive the integral fluctuation theorem and the Jarzynski equality for nearly adiabatic driving. We show that such identities hold as long as the stochastic dynamics and work variable are consistently defined. We numerically study the emerging work statistics for a two-level quantum system and find that the conventional diabatic approximation is unable to capture some prominent features arising from driving, such as the continuity of the probability density of work. Our results reveal the necessity of using accurate expressions for the drive-dressed heat exchange in future experiments probing jump time distributions.
Quantum state engineering with flux-biased Josephson phase qubits by rapid adiabatic passages
NASA Astrophysics Data System (ADS)
Nie, W.; Huang, J. S.; Shi, X.; Wei, L. F.
2010-09-01
In this article, the scheme of quantum computing based on the Stark-chirped rapid adiabatic passage (SCRAP) technique [L. F. Wei, J. R. Johansson, L. X. Cen, S. Ashhab, and F. Nori, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.100.113601 100, 113601 (2008)] is extensively applied to implement quantum state manipulations in flux-biased Josephson phase qubits. The broken-parity symmetries of bound states in flux-biased Josephson junctions are utilized to conveniently generate the desirable Stark shifts. Then, assisted by various transition pulses, universal quantum logic gates as well as arbitrary quantum state preparations can be implemented. Compared with the usual π-pulse operations widely used in experiments, the adiabatic population passages proposed here are insensitive to the details of the applied pulses and thus the desirable population transfers can be satisfyingly implemented. The experimental feasibility of the proposal is also discussed.
On a Consistent Quantum Adiabatic Theory of Molecules
NASA Astrophysics Data System (ADS)
Dugić, Miroljub; Jeknić-Dugić, Jasmina
2009-10-01
We point out certain inconsistency in the foundations of the standard adiabatic method in quantum theory of molecules. As an alternative, we develop a particular approach that overcomes the appointed inconsistency. Based on this new approach, some interesting physical results come to the scope. First, we point out that the adiabatic method is substantially state-of-the-molecule dependent. E.g., the method distinguishes the definite conformations as a kind of the preferred states of a molecule. Second, the existence of the local minima for the effective potential for the nuclei system appears as a kind of a necessary condition for the validity of the adiabatic method. However, our approach does not fully answer the fundamental problem of the origin and stability of the definite (semi-classically well-defined) conformations of the large molecules. To this end, a new approach/theory is needed—as recently proposed within the context of the decoherence theory.
Classical and Quantum Shortcuts to Adiabaticity in a Tilted Piston.
Patra, Ayoti; Jarzynski, Christopher
2017-04-20
Adiabatic quantum state evolution can be accelerated through a variety of shortcuts to adiabaticity. In one approach, a counterdiabatic quantum Hamiltonian, ĤCD, is constructed to suppress nonadiabatic excitations. In the analogous classical problem, a counterdiabatic classical Hamiltonian, HCD, ensures that the classical action remains constant even under rapid driving. Both the quantum and classical versions of this problem have been solved for the special case of scale-invariant driving, characterized by linear expansions, contractions, or translations of the system. Here we investigate an example of a non-scale-invariant system, a tilted piston. We solve exactly for the classical counterdiabatic Hamiltonian, HCD(q, p, t), which we then quantize to obtain a Hermitian operator, ĤCD(t). Using numerical simulations, we find that ĤCD effectively suppresses nonadiabatic excitations under rapid driving. These results offer a proof of principle, beyond the special case of scale-invariant driving, that quantum shortcuts to adiabaticity can successfully be constructed from their classical counterparts.
2010-03-04
empty valence-band states ) into a localized poten- tial with discrete energy levels, which is analagous to an electron bound to an atomic nucleus...seminal work, the ideas for implementing quantum computing have diversified, and the DiVincenzo criteria as originally stated are difficult to apply to...many emerging concepts. Here, we rephrase DiVincenzo’s original considerations into three more general criteria; these are stated with the assumption
Multi-excitation adiabatic quantum-flux-parametron
NASA Astrophysics Data System (ADS)
Fang, Kun; Takeuchi, Naoki; Ando, Takumi; Yamanashi, Yuki; Yoshikawa, Nobuyuki
2017-04-01
Adiabatic quantum-flux-parametron (AQFP) circuits are very low-power due to zero static power consumption and adiabatic switching operations. However, compared to other superconducting circuits, such as rapid single-flux-quantum logic, the operation frequency is relatively low and the latency is relatively large. In this work, we propose multi-excitation AQFP (ME-AQFP) circuits for high-speed and low-latency operations. In ME-AQFP, the intrinsic periodicity of the potential energy of a Josephson device with respect to applied magnetic fluxes is utilized to multiply operation frequencies and reduce latency. In a numerical simulation, we demonstrated an ME-AQFP AND gate, which operates at 10 GHz or 20 GHz with 5-GHz excitation currents. We also evaluated the energy efficiency of ME-AQFP circuits. In an experiment, we successfully demonstrated an ME-AQFP XOR gate and an ME-AQFP full adder.
Adiabatic swimming in an ideal quantum gas.
Avron, J E; Gutkin, B; Oaknin, D H
2006-04-07
Interference effects are important for swimming of mesoscopic systems that are small relative to the coherence length of the surrounding quantum medium. Swimming is geometric for slow swimmers and the distance covered in each stroke is determined, explicitly, in terms of the on-shell scattering matrix. Remarkably, for a one-dimensional Fermi gas at zero temperature we find that slow swimming is topological: the swimming distance covered in one stroke is quantized in half integer multiples of the Fermi wavelength. In addition, a careful choice of the swimming stroke can eliminate dissipation.
A quantum-walk-inspired adiabatic algorithm for solving graph isomorphism problems
NASA Astrophysics Data System (ADS)
Tamascelli, Dario; Zanetti, Luca
2014-08-01
We present a quantum algorithm for solving graph isomorphism problems that is based on an adiabatic protocol. We use a collection of continuous time quantum walks, each one generated by an XY Hamiltonian, to visit the configuration space. In this way we avoid a diffusion over all the possible configurations and significantly reduce the dimensionality of the accessible Hilbert space. Within this restricted space, the graph isomorphism problem can be translated into searching for a satisfying assignment to a 2-SAT (satisfiable) formula and mapped onto a 2-local Hamiltonian without resorting to perturbation gadgets or projective techniques. We present an analysis of the time for execution of the algorithm on small graph isomorphism problem instances and discuss the issue of an implementation of the proposed adiabatic scheme on current quantum computing hardware.
More bang for your buck: super-adiabatic quantum engines.
del Campo, A; Goold, J; Paternostro, M
2014-08-28
The practical untenability of the quasi-static assumption makes any realistic engine intrinsically irreversible and its operating time finite, thus implying friction effects at short cycle times. An important technological goal is thus the design of maximally efficient engines working at the maximum possible power. We show that, by utilising shortcuts to adiabaticity in a quantum engine cycle, one can engineer a thermodynamic cycle working at finite power and zero friction. Our findings are illustrated using a harmonic oscillator undergoing a quantum Otto cycle.
More bang for your buck: Super-adiabatic quantum engines
Campo, A. del; Goold, J.; Paternostro, M.
2014-01-01
The practical untenability of the quasi-static assumption makes any realistic engine intrinsically irreversible and its operating time finite, thus implying friction effects at short cycle times. An important technological goal is thus the design of maximally efficient engines working at the maximum possible power. We show that, by utilising shortcuts to adiabaticity in a quantum engine cycle, one can engineer a thermodynamic cycle working at finite power and zero friction. Our findings are illustrated using a harmonic oscillator undergoing a quantum Otto cycle. PMID:25163421
Resonant transition-based quantum computation
NASA Astrophysics Data System (ADS)
Chiang, Chen-Fu; Hsieh, Chang-Yu
2017-05-01
In this article we assess a novel quantum computation paradigm based on the resonant transition (RT) phenomenon commonly associated with atomic and molecular systems. We thoroughly analyze the intimate connections between the RT-based quantum computation and the well-established adiabatic quantum computation (AQC). Both quantum computing frameworks encode solutions to computational problems in the spectral properties of a Hamiltonian and rely on the quantum dynamics to obtain the desired output state. We discuss how one can adapt any adiabatic quantum algorithm to a corresponding RT version and the two approaches are limited by different aspects of Hamiltonians' spectra. The RT approach provides a compelling alternative to the AQC under various circumstances. To better illustrate the usefulness of the novel framework, we analyze the time complexity of an algorithm for 3-SAT problems and discuss straightforward methods to fine tune its efficiency.
Experimental implementation of an adiabatic quantum optimization algorithm
NASA Astrophysics Data System (ADS)
Steffen, Matthias; van Dam, Wim; Hogg, Tad; Breyta, Greg; Chuang, Isaac
2003-03-01
A novel quantum algorithm using adiabatic evolution was recently presented by Ed Farhi [1] and Tad Hogg [2]. This algorithm represents a remarkable discovery because it offers new insights into the usefulness of quantum resources. An experimental demonstration of an adiabatic algorithm has remained beyond reach because it requires an experimentally accessible Hamiltonian which encodes the problem and which must also be smoothly varied over time. We present tools to overcome these difficulties by discretizing the algorithm and extending average Hamiltonian techniques [3]. We used these techniques in the first experimental demonstration of an adiabatic optimization algorithm: solving an instance of the MAXCUT problem using three qubits and nuclear magnetic resonance techniques. We show that there exists an optimal run-time of the algorithm which can be predicted using a previously developed decoherence model. [1] E. Farhi et al., quant-ph/0001106 (2000) [2] T. Hogg, PRA, 61, 052311 (2000) [3] W. Rhim, A. Pines, J. Waugh, PRL, 24,218 (1970)
Quantum computation for quantum chemistry
NASA Astrophysics Data System (ADS)
Aspuru-Guzik, Alan
2010-03-01
Numerically exact simulation of quantum systems on classical computers is in general, an intractable computational problem. Computational chemists have made progress in the development of approximate methods to tackle complex chemical problems. The downside of these approximate methods is that their failure for certain important cases such as long-range charge transfer states in the case of traditional density functional theory. In 1982, Richard Feynman suggested that a quantum device should be able to simulate quantum systems (in our case, molecules) exactly using quantum computers in a tractable fashion. Our group has been working in the development of quantum chemistry algorithms for quantum devices. In this talk, I will describe how quantum computers can be employed to carry out numerically exact quantum chemistry and chemical reaction dynamics calculations, as well as molecular properties. Finally, I will describe our recent experimental quantum computation of the energy of the hydrogen molecule using an optical quantum computer.
Random matrix approach to quantum adiabatic evolution algorithms
Boulatov, A.; Smelyanskiy, V.N.
2005-05-15
We analyze the power of the quantum adiabatic evolution algorithm (QAA) for solving random computationally hard optimization problems within a theoretical framework based on random matrix theory (RMT). We present two types of driven RMT models. In the first model, the driving Hamiltonian is represented by Brownian motion in the matrix space. We use the Brownian motion model to obtain a description of multiple avoided crossing phenomena. We show that nonadiabatic corrections in the QAA are due to the interaction of the ground state with the 'cloud' formed by most of the excited states, confirming that in driven RMT models, the Landau-Zener scenario of pairwise level repulsions is not relevant for the description of nonadiabatic corrections. We show that the QAA has a finite probability of success in a certain range of parameters, implying a polynomial complexity of the algorithm. The second model corresponds to the standard QAA with the problem Hamiltonian taken from the RMT Gaussian unitary ensemble (GUE). We show that the level dynamics in this model can be mapped onto the dynamics in the Brownian motion model. For this reason, the driven GUE model can also lead to polynomial complexity of the QAA. The main contribution to the failure probability of the QAA comes from the nonadiabatic corrections to the eigenstates, which only depend on the absolute values of the transition amplitudes. Due to the mapping between the two models, these absolute values are the same in both cases. Our results indicate that this 'phase irrelevance' is the leading effect that can make both the Markovian- and GUE-type QAAs successful.
Crossover from adiabatic to antiadiabatic quantum pumping with dissipation.
Pellegrini, Franco; Negri, C; Pistolesi, F; Manini, Nicola; Santoro, Giuseppe E; Tosatti, Erio
2011-08-05
Quantum pumping, in its different forms, is attracting attention from different fields, from fundamental quantum mechanics, to nanotechnology, to superconductivity. We investigate the crossover of quantum pumping from the adiabatic to the antiadiabatic regime in the presence of dissipation, and find general and explicit analytical expressions for the pumped current in a minimal model describing a system with the topology of a ring forced by a periodic modulation of frequency ω. The solution allows following in a transparent way the evolution of pumped dc current from much smaller to much larger ω values than the other relevant energy scale, the energy splitting introduced by the modulation. We find and characterize a temperature-dependent optimal value of the frequency for which the pumped current is maximal.
Adiabatic response and quantum thermoelectrics for ac-driven quantum systems
NASA Astrophysics Data System (ADS)
Ludovico, María Florencia; Battista, Francesca; von Oppen, Felix; Arrachea, Liliana
2016-02-01
We generalize the theory of thermoelectrics to include coherent electron systems under adiabatic ac driving, accounting for quantum pumping of charge and heat, as well as for the work exchanged between the electron system and driving potentials. We derive the relevant response coefficients in the adiabatic regime and show that they obey generalized Onsager reciprocity relations. We analyze the consequences of our generalized thermoelectric framework for quantum motors, generators, heat engines, and heat pumps, characterizing them in terms of efficiencies and figures of merit. We illustrate these concepts in a model for a quantum pump.
NASA Astrophysics Data System (ADS)
Oukraou, Hassan; Vittadello, Laura; Coda, Virginie; Ciret, Charles; Alonzo, Massimo; Rangelov, Andon A.; Vitanov, Nikolay V.; Montemezzani, Germano
2017-06-01
Besides longitudinally varying coupling constants, the longitudinal variation of the propagation constants leads to an additional parameter for the control of adiabatic light transfer in coupled waveguide systems. Examples are given using waveguides structures recorded with the help of the photorefractive effect and mimicking the quantum processes of Rapid Adiabatic Passage (RAP) and two-state STImulated Raman Adiabatic Passage (two-state STIRAP).
Kendon, Viv
2014-12-04
Quantum versions of random walks have diverse applications that are motivating experimental implementations as well as theoretical studies. Recent results showing quantum walks are “universal for quantum computation” relate to algorithms, to be run on quantum computers. We consider whether an experimental implementation of a quantum walk could provide useful computation before we have a universal quantum computer.
Vibrational coherent quantum computation
Paternostro, M.; Kim, M.S.; Knight, P.L.
2005-02-01
A long-lived coherent state and nonlinear interaction have been experimentally demonstrated for the vibrational mode of a trapped ion. We propose an implementation of quantum computation using coherent states of the vibrational modes of trapped ions. Differently from earlier experiments, we consider a far-off resonance for the interaction between external fields and the ion in a bidimensional trap. By appropriate choices of the detunings between the external fields, the adiabatic elimination of the ionic excited level from the Hamiltonian of the system allows for beam splitting between orthogonal vibrational modes, production of coherent states, and nonlinear interactions of various kinds. In particular, this model enables the generation of the four coherent Bell states. Furthermore, all the necessary operations for quantum computation, such as preparation of qubits and one-qubit and controlled two-qubit operations, are possible. The detection of the state of a vibrational mode in a Bell state is made possible by the combination of resonant and off-resonant interactions between the ion and some external fields. We show that our read-out scheme provides highly efficient discrimination between all the four Bell states. We extend this to a quantum register composed of many individually trapped ions. In this case, operations on two remote qubits are possible through a cavity mode. We emphasize that our remote-qubit operation scheme does not require a high-quality factor resonator: the cavity field acts as a catalyst for the gate operation.
Superadiabatic holonomic quantum computation in cavity QED
NASA Astrophysics Data System (ADS)
Liu, Bao-Jie; Huang, Zhen-Hua; Xue, Zheng-Yuan; Zhang, Xin-Ding
2017-06-01
Adiabatic quantum control is a powerful tool for quantum engineering and a key component in some quantum computation models, where accurate control over the timing of the involved pulses is not needed. However, the adiabatic condition requires that the process be very slow and thus limits its application in quantum computation, where quantum gates are preferred to be fast due to the limited coherent times of the quantum systems. Here, we propose a feasible scheme to implement universal holonomic quantum computation based on non-Abelian geometric phases with superadiabatic quantum control, where the adiabatic manipulation is sped up while retaining its robustness against errors in the timing control. Consolidating the advantages of both strategies, our proposal is thus both robust and fast. The cavity QED system is adopted as a typical example to illustrate the merits where the proposed scheme can be realized in a tripod configuration by appropriately controlling the pulse shapes and their relative strength. To demonstrate the distinct performance of our proposal, we also compare our scheme with the conventional adiabatic strategy.
Universal quantum computation with a nonlinear oscillator network
NASA Astrophysics Data System (ADS)
Goto, Hayato
2016-05-01
We theoretically show that a nonlinear oscillator network with controllable parameters can be used for universal quantum computation. The initialization is achieved by a quantum-mechanical bifurcation based on quantum adiabatic evolution, which yields a Schrödinger cat state. All the elementary quantum gates are also achieved by quantum adiabatic evolution, in which dynamical phases accompanying the adiabatic evolutions are controlled by the system parameters. Numerical simulation results indicate that high gate fidelities can be achieved, where no dissipation is assumed.
Novel latch for adiabatic quantum-flux-parametron logic
Takeuchi, Naoki Yamanashi, Yuki; Yoshikawa, Nobuyuki; Ortlepp, Thomas
2014-03-14
We herein propose the quantum-flux-latch (QFL) as a novel latch for adiabatic quantum-flux-parametron (AQFP) logic. A QFL is very compact and compatible with AQFP logic gates and can be read out in one clock cycle. Simulation results revealed that the QFL operates at 5 GHz with wide parameter margins of more than ±22%. The calculated energy dissipation was only ∼0.1 aJ/bit, which yields a small energy delay product of 20 aJ·ps. We also designed shift registers using QFLs to demonstrate more complex circuits with QFLs. Finally, we experimentally demonstrated correct operations of the QFL and a 1-bit shift register (a D flip-flop)
Shortcut to Adiabaticity for an Anisotropic Gas Containing Quantum Defects.
Papoular, D J; Stringari, S
2015-07-10
We present a shortcut to adiabaticity (STA) protocol applicable to 3D unitary Fermi gases and 2D weakly interacting Bose gases containing defects such as vortices or solitons. Our protocol relies on a new class of exact scaling solutions in the presence of anisotropic time-dependent harmonic traps. It connects stationary states in initial and final traps having the same frequency ratios. The resulting scaling laws exhibit a universal form and also apply to the classical Boltzmann gas. The duration of the STA can be made very short so as to realize a quantum quench from one stationary state to another. When applied to an anisotropically trapped superfluid gas, the STA conserves the shape of the quantum defects hosted by the cloud, thereby acting like a perfect microscope, which sharply contrasts with their strong distortion occurring during the free expansion of the cloud.
Quantum Computer Games: Quantum Minesweeper
ERIC Educational Resources Information Center
Gordon, Michal; Gordon, Goren
2010-01-01
The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…
Quantum Computer Games: Quantum Minesweeper
ERIC Educational Resources Information Center
Gordon, Michal; Gordon, Goren
2010-01-01
The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…
Conceptual aspects of geometric quantum computation
NASA Astrophysics Data System (ADS)
Sjöqvist, Erik; Azimi Mousolou, Vahid; Canali, Carlo M.
2016-10-01
Geometric quantum computation is the idea that geometric phases can be used to implement quantum gates, i.e., the basic elements of the Boolean network that forms a quantum computer. Although originally thought to be limited to adiabatic evolution, controlled by slowly changing parameters, this form of quantum computation can as well be realized at high speed by using nonadiabatic schemes. Recent advances in quantum gate technology have allowed for experimental demonstrations of different types of geometric gates in adiabatic and nonadiabatic evolution. Here, we address some conceptual issues that arise in the realizations of geometric gates. We examine the appearance of dynamical phases in quantum evolution and point out that not all dynamical phases need to be compensated for in geometric quantum computation. We delineate the relation between Abelian and non-Abelian geometric gates and find an explicit physical example where the two types of gates coincide. We identify differences and similarities between adiabatic and nonadiabatic realizations of quantum computation based on non-Abelian geometric phases.
Quantum computational supremacy
NASA Astrophysics Data System (ADS)
Harrow, Aram W.; Montanaro, Ashley
2017-09-01
The field of quantum algorithms aims to find ways to speed up the solution of computational problems by using a quantum computer. A key milestone in this field will be when a universal quantum computer performs a computational task that is beyond the capability of any classical computer, an event known as quantum supremacy. This would be easier to achieve experimentally than full-scale quantum computing, but involves new theoretical challenges. Here we present the leading proposals to achieve quantum supremacy, and discuss how we can reliably compare the power of a classical computer to the power of a quantum computer.
Quantum robots and quantum computers
Benioff, P.
1998-07-01
Validation of a presumably universal theory, such as quantum mechanics, requires a quantum mechanical description of systems that carry out theoretical calculations and systems that carry out experiments. The description of quantum computers is under active development. No description of systems to carry out experiments has been given. A small step in this direction is taken here by giving a description of quantum robots as mobile systems with on board quantum computers that interact with different environments. Some properties of these systems are discussed. A specific model based on the literature descriptions of quantum Turing machines is presented.
Applications and error correction for adiabatic quantum optimization
NASA Astrophysics Data System (ADS)
Pudenz, Kristen
Adiabatic quantum optimization (AQO) is a fast-developing subfield of quantum information processing which holds great promise in the relatively near future. Here we develop an application, quantum anomaly detection, and an error correction code, Quantum Annealing Correction (QAC), for use with AQO. The motivation for the anomaly detection algorithm is the problematic nature of classical software verification and validation (V&V). The number of lines of code written for safety-critical applications such as cars and aircraft increases each year, and with it the cost of finding errors grows exponentially (the cost of overlooking errors, which can be measured in human safety, is arguably even higher). We approach the V&V problem by using a quantum machine learning algorithm to identify charateristics of software operations that are implemented outside of specifications, then define an AQO to return these anomalous operations as its result. Our error correction work is the first large-scale experimental demonstration of quantum error correcting codes. We develop QAC and apply it to USC's equipment, the first and second generation of commercially available D-Wave AQO processors. We first show comprehensive experimental results for the code's performance on antiferromagnetic chains, scaling the problem size up to 86 logical qubits (344 physical qubits) and recovering significant encoded success rates even when the unencoded success rates drop to almost nothing. A broader set of randomized benchmarking problems is then introduced, for which we observe similar behavior to the antiferromagnetic chain, specifically that the use of QAC is almost always advantageous for problems of sufficient size and difficulty. Along the way, we develop problem-specific optimizations for the code and gain insight into the various on-chip error mechanisms (most prominently thermal noise, since the hardware operates at finite temperature) and the ways QAC counteracts them. We finish by showing
Improving the stimulated Raman adiabatic passage via dissipative quantum dynamics.
Wu, Qi-Cheng; Chen, Ye-Hong; Huang, Bi-Hua; Song, Jie; Xia, Yan; Zheng, Shi-Biao
2016-10-03
We propose a method to improve the stimulated Raman adiabatic passage (STIRAP) via dissipative quantum dynamics, taking into account the dephasing effects. Fast and robust population transfer can be obtained with the scheme by the designed pulses and detuning, even though the initial state of the system is imperfect. With a concrete three-level system as an example, the influences of the imperfect initial state, variations in the control parameters, and various dissipation effects are discussed in detail. The numerical simulation shows that the scheme is insensitive to moderate fluctuations of experimental parameters and the relatively large dissipation effects of the excited state. Furthermore, the dominant dissipative factors, namely, the dephasing effects of the ground states and the imperfect initial state are no longer undesirable, in fact, they are the important resources to the scheme. Therefore, the scheme could provide more choices for the realization of the complete population transfer in the strong dissipative fields where the standard stimulated Raman adiabatic passage or shortcut schemes are invalid.
An Adiabatic Quantum Algorithm for Determining Gracefulness of a Graph
NASA Astrophysics Data System (ADS)
Hosseini, Sayed Mohammad; Davoudi Darareh, Mahdi; Janbaz, Shahrooz; Zaghian, Ali
2017-07-01
Graph labelling is one of the noticed contexts in combinatorics and graph theory. Graceful labelling for a graph G with e edges, is to label the vertices of G with 0, 1, ℒ, e such that, if we specify to each edge the difference value between its two ends, then any of 1, 2, ℒ, e appears exactly once as an edge label. For a given graph, there are still few efficient classical algorithms that determine either it is graceful or not, even for trees - as a well-known class of graphs. In this paper, we introduce an adiabatic quantum algorithm, which for a graceful graph G finds a graceful labelling. Also, this algorithm can determine if G is not graceful. Numerical simulations of the algorithm reveal that its time complexity has a polynomial behaviour with the problem size up to the range of 15 qubits. A general sufficient condition for a combinatorial optimization problem to have a satisfying adiabatic solution is also derived.
Central charge from adiabatic transport of cusp singularities in the quantum Hall effect
NASA Astrophysics Data System (ADS)
Can, Tankut
2017-04-01
We study quantum Hall (QH) states on a punctured Riemann sphere. We compute the Berry curvature under adiabatic motion in the moduli space in the large N limit. The Berry curvature is shown to be finite in the large N limit and controlled by the conformal dimension of the cusp singularity, a local property of the mean density. Utilizing exact sum rules obtained from a Ward identity, we show that for the Laughlin wave function, the dimension of a cusp singularity is given by the central charge, a robust geometric response coefficient in the QHE. Thus, adiabatic transport of curvature singularities can be used to determine the central charge of QH states. We also consider the effects of threaded fluxes and spin-deformed wave functions. Finally, we give a closed expression for all moments of the mean density in the integer QH state on a punctured disk.
Effect of Poisson noise on adiabatic quantum control
NASA Astrophysics Data System (ADS)
Kiely, A.; Muga, J. G.; Ruschhaupt, A.
2017-01-01
We present a detailed derivation of the master equation describing a general time-dependent quantum system with classical Poisson white noise and outline its various properties. We discuss the limiting cases of Poisson white noise and provide approximations for the different noise strength regimes. We show that using the eigenstates of the noise superoperator as a basis can be a useful way of expressing the master equation. Using this, we simulate various settings to illustrate different effects of Poisson noise. In particular, we show a dip in the fidelity as a function of noise strength where high fidelity can occur in the strong-noise regime for some cases. We also investigate recent claims [J. Jing et al., Phys. Rev. A 89, 032110 (2014), 10.1103/PhysRevA.89.032110] that this type of noise may improve rather than destroy adiabaticity.
Adiabatic quantum-flux-parametron cell library adopting minimalist design
Takeuchi, Naoki; Yamanashi, Yuki; Yoshikawa, Nobuyuki
2015-05-07
We herein build an adiabatic quantum-flux-parametron (AQFP) cell library adopting minimalist design and a symmetric layout. In the proposed minimalist design, every logic cell is designed by arraying four types of building block cells: buffer, NOT, constant, and branch cells. Therefore, minimalist design enables us to effectively build and customize an AQFP cell library. The symmetric layout reduces unwanted parasitic magnetic coupling and ensures a large mutual inductance in an output transformer, which enables very long wiring between logic cells. We design and fabricate several logic circuits using the minimal AQFP cell library so as to test logic cells in the library. Moreover, we experimentally investigate the maximum wiring length between logic cells. Finally, we present an experimental demonstration of an 8-bit carry look-ahead adder designed using the minimal AQFP cell library and demonstrate that the proposed cell library is sufficiently robust to realize large-scale digital circuits.
Decoherence in current induced forces: Application to adiabatic quantum motors
NASA Astrophysics Data System (ADS)
Fernández-Alcázar, Lucas J.; Bustos-Marún, Raúl A.; Pastawski, Horacio M.
2015-08-01
Current induced forces are not only related with the discrete nature of electrons but also with its quantum character. It is natural then to wonder about the effect of decoherence. Here, we develop the theory of current induced forces including dephasing processes and we apply it to study adiabatic quantum motors (AQMs). The theory is based on Büttiker's fictitious probe model, which here is reformulated for this particular case. We prove that it accomplishes the fluctuation-dissipation theorem. We also show that, in spite of decoherence, the total work performed by the current induced forces remains equal to the pumped charge per cycle times the voltage. We find that decoherence affects not only the current induced forces of the system but also its intrinsic friction and noise, modifying in a nontrivial way the efficiency of AQMs. We apply the theory to study an AQM inspired by a classical peristaltic pump where we surprisingly find that decoherence can play a crucial role by triggering its operation. Our results can help to understand how environmentally induced dephasing affects the quantum behavior of nanomechanical devices.
Wu, Jin-Lei; Ji, Xin; Zhang, Shou
2017-01-01
We propose a dressed-state scheme to achieve shortcuts to adiabaticity in atom-cavity quantum electrodynamics for speeding up adiabatic two-atom quantum state transfer and maximum entanglement generation. Compared with stimulated Raman adiabatic passage, the dressed-state scheme greatly shortens the operation time in a non-adiabatic way. By means of some numerical simulations, we determine the parameters which can guarantee the feasibility and efficiency both in theory and experiment. Besides, numerical simulations also show the scheme is robust against the variations in the parameters, atomic spontaneous emissions and the photon leakages from the cavity. PMID:28397793
NASA Astrophysics Data System (ADS)
Wu, Jin-Lei; Ji, Xin; Zhang, Shou
2017-04-01
We propose a dressed-state scheme to achieve shortcuts to adiabaticity in atom-cavity quantum electrodynamics for speeding up adiabatic two-atom quantum state transfer and maximum entanglement generation. Compared with stimulated Raman adiabatic passage, the dressed-state scheme greatly shortens the operation time in a non-adiabatic way. By means of some numerical simulations, we determine the parameters which can guarantee the feasibility and efficiency both in theory and experiment. Besides, numerical simulations also show the scheme is robust against the variations in the parameters, atomic spontaneous emissions and the photon leakages from the cavity.
Experimental study of the validity of quantitative conditions in the quantum adiabatic theorem.
Du, Jiangfeng; Hu, Lingzhi; Wang, Ya; Wu, Jianda; Zhao, Meisheng; Suter, Dieter
2008-08-08
The quantum adiabatic theorem plays an important role in quantum mechanics. However, counter-examples were produced recently, indicating that their transition probabilities do not converge as predicted by the adiabatic theorem [K. P. Marzlin et al., Phys. Rev. Lett. 93, 160408 (2004); D. M. Tong et al., Phys. Rev. Lett. 95, 110407 (2005)]. For a special class of Hamiltonians, we examine the standard criterion for adiabatic evolution experimentally and theoretically, as well as three newly suggested adiabatic conditions. We show that the standard criterion is neither sufficient nor necessary.
Optimal Blind Quantum Computation
NASA Astrophysics Data System (ADS)
Mantri, Atul; Pérez-Delgado, Carlos A.; Fitzsimons, Joseph F.
2013-12-01
Blind quantum computation allows a client with limited quantum capabilities to interact with a remote quantum computer to perform an arbitrary quantum computation, while keeping the description of that computation hidden from the remote quantum computer. While a number of protocols have been proposed in recent years, little is currently understood about the resources necessary to accomplish the task. Here, we present general techniques for upper and lower bounding the quantum communication necessary to perform blind quantum computation, and use these techniques to establish concrete bounds for common choices of the client’s quantum capabilities. Our results show that the universal blind quantum computation protocol of Broadbent, Fitzsimons, and Kashefi, comes within a factor of (8)/(3) of optimal when the client is restricted to preparing single qubits. However, we describe a generalization of this protocol which requires exponentially less quantum communication when the client has a more sophisticated device.
Quantum and classical non-adiabatic dynamics of Li_{2}^{+}Ne photodissociation
NASA Astrophysics Data System (ADS)
Pouilly, Brigitte; Monnerville, Maurice; Zanuttini, David; Gervais, Benoît
2015-01-01
The 3D photodissociation dynamics of Li2+Ne system is investigated by quantum calculations using the multi-configuration time-dependent Hartree (MCTDH) method and by classical simulations with the trajectory surface hopping (TSH) approach. Six electronic states of A’ symmetry and two states of A” symmetry are involved in the process. Couplings in the excitation region and two conical intersections in the vicinity of the Franck-Condon zone control the non-adiabatic nuclear dynamics. A diabatic representation including all the states and the couplings is determined. Diabatic and adiabatic populations calculated for initial excitation to pure diabatic and adiabatic states lead to a clear understanding of the mechanisms governing the non-adiabatic photodissociation process. The classical and quantum photodissociation cross-sections for absorption in two adiabatic states of the A’ symmetry are calculated. A remarkable agreement between quantum and classical results is obtained regarding the populations and the absorption cross-sections.
Quantum computing and probability.
Ferry, David K
2009-11-25
Over the past two decades, quantum computing has become a popular and promising approach to trying to solve computationally difficult problems. Missing in many descriptions of quantum computing is just how probability enters into the process. Here, we discuss some simple examples of how uncertainty and probability enter, and how this and the ideas of quantum computing challenge our interpretations of quantum mechanics. It is found that this uncertainty can lead to intrinsic decoherence, and this raises challenges for error correction.
Neuromorphic quantum computation with energy dissipation
Kinjo, Mitsunaga; Sato, Shigeo; Nakamiya, Yuuki; Nakajima, Koji
2005-11-15
Real parallel computing with a quantum computer attracts vast interest due to its extreme high potential. We propose a neuromorphic quantum computation algorithm based on an adiabatic Hamiltonian evolution with energy dissipation. This algorithm can be applied to problems if a cost function can be expressed in a quadratic form. This requirement results from the fact that our Hamiltonian is designed by following a method similar to an artificial neural network (ANN). The state of an ANN is often trapped at local minima, and the network outputs an error. Since the state of a quantum system with the proposed algorithm is always in the ground state according to the adiabatic theorem, it is not necessary to be concerned that the quantum state is trapped at local minima. However, there is no guarantee that a quantum algorithm based on an adiabatic Hamiltonian evolution with degeneration or level crossing is successfully executed. We show successful numerical simulation results with the proposed algorithm by introducing energy dissipation to keep the quantum state staying in the ground state, and then we show an application to the n-queen problem, which is one of the combinatorial optimization problems.
Kendon, Vivien M; Nemoto, Kae; Munro, William J
2010-08-13
We briefly review what a quantum computer is, what it promises to do for us and why it is so hard to build one. Among the first applications anticipated to bear fruit is the quantum simulation of quantum systems. While most quantum computation is an extension of classical digital computation, quantum simulation differs fundamentally in how the data are encoded in the quantum computer. To perform a quantum simulation, the Hilbert space of the system to be simulated is mapped directly onto the Hilbert space of the (logical) qubits in the quantum computer. This type of direct correspondence is how data are encoded in a classical analogue computer. There is no binary encoding, and increasing precision becomes exponentially costly: an extra bit of precision doubles the size of the computer. This has important consequences for both the precision and error-correction requirements of quantum simulation, and significant open questions remain about its practicality. It also means that the quantum version of analogue computers, continuous-variable quantum computers, becomes an equally efficient architecture for quantum simulation. Lessons from past use of classical analogue computers can help us to build better quantum simulators in future.
Random Matrix Approach to Quantum Adiabatic Evolution Algorithms
NASA Technical Reports Server (NTRS)
Boulatov, Alexei; Smelyanskiy, Vadier N.
2004-01-01
We analyze the power of quantum adiabatic evolution algorithms (Q-QA) for solving random NP-hard optimization problems within a theoretical framework based on the random matrix theory (RMT). We present two types of the driven RMT models. In the first model, the driving Hamiltonian is represented by Brownian motion in the matrix space. We use the Brownian motion model to obtain a description of multiple avoided crossing phenomena. We show that the failure mechanism of the QAA is due to the interaction of the ground state with the "cloud" formed by all the excited states, confirming that in the driven RMT models. the Landau-Zener mechanism of dissipation is not important. We show that the QAEA has a finite probability of success in a certain range of parameters. implying the polynomial complexity of the algorithm. The second model corresponds to the standard QAEA with the problem Hamiltonian taken from the Gaussian Unitary RMT ensemble (GUE). We show that the level dynamics in this model can be mapped onto the dynamics in the Brownian motion model. However, the driven RMT model always leads to the exponential complexity of the algorithm due to the presence of the long-range intertemporal correlations of the eigenvalues. Our results indicate that the weakness of effective transitions is the leading effect that can make the Markovian type QAEA successful.
Effects of dissipation on an adiabatic quantum search algorithm
NASA Astrophysics Data System (ADS)
de Vega, Inés; Bañuls, Mari Carmen; Pérez, A.
2010-12-01
According to recent studies (Amin et al 2008 Phys. Rev. Lett. 100 060503), the effect of a thermal bath may improve the performance of a quantum adiabatic search algorithm. In this paper, we compare the effects of such a thermal environment on the algorithm performance with those of a structured environment similar to the one encountered in systems coupled to an electromagnetic field that exists within a photonic crystal. Whereas for all the parameter regimes explored here, the algorithm performance is worsened by contact with a thermal environment, the picture appears to be different when one considers a structured environment. In this case we show that by tuning the environment parameters to certain regimes, the algorithm performance can actually be improved with respect to the closed system case. Additionally, the relevance of considering the dissipation rates as complex quantities is discussed in both cases. More specifically, we find that the imaginary part of the rates cannot be neglected with the usual argument that it simply amounts to an energy shift and in fact influences crucially the system dynamics.
Resource efficient gadgets for compiling adiabatic quantum optimization problems
NASA Astrophysics Data System (ADS)
Babbush, Ryan; O'Gorman, Bryan; Aspuru-Guzik, Alán
2013-11-01
We develop a resource efficient method by which the ground-state of an arbitrary k-local, optimization Hamiltonian can be encoded as the ground-state of a (k-1)-local optimization Hamiltonian. This result is important because adiabatic quantum algorithms are often most easily formulated using many-body interactions but experimentally available interactions are generally 2-body. In this context, the efficiency of a reduction gadget is measured by the number of ancilla qubits required as well as the amount of control precision needed to implement the resulting Hamiltonian. First, we optimize methods of applying these gadgets to obtain 2-local Hamiltonians using the least possible number of ancilla qubits. Next, we show a novel reduction gadget which minimizes control precision and a heuristic which uses this gadget to compile 3-local problems with a significant reduction in control precision. Finally, we present numerics which indicate a substantial decrease in the resources required to implement randomly generated, 3-body optimization Hamiltonians when compared to other methods in the literature.
Scalable optical quantum computer
Manykin, E A; Mel'nichenko, E V
2014-12-31
A way of designing a scalable optical quantum computer based on the photon echo effect is proposed. Individual rare earth ions Pr{sup 3+}, regularly located in the lattice of the orthosilicate (Y{sub 2}SiO{sub 5}) crystal, are suggested to be used as optical qubits. Operations with qubits are performed using coherent and incoherent laser pulses. The operation protocol includes both the method of measurement-based quantum computations and the technique of optical computations. Modern hybrid photon echo protocols, which provide a sufficient quantum efficiency when reading recorded states, are considered as most promising for quantum computations and communications. (quantum computer)
Quantum computer games: quantum minesweeper
NASA Astrophysics Data System (ADS)
Gordon, Michal; Gordon, Goren
2010-07-01
The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical minesweeper the goal of the game is to discover all the mines laid out on a board without triggering them, in the quantum version there are several classical boards in superposition. The goal is to know the exact quantum state, i.e. the precise layout of all the mines in all the superposed classical boards. The player can perform three types of measurement: a classical measurement that probabilistically collapses the superposition; a quantum interaction-free measurement that can detect a mine without triggering it; and an entanglement measurement that provides non-local information. The application of the concepts taught by quantum minesweeper to one-way quantum computing are also presented.
Size Dependence of the Minimum Excitation Gap in the Quantum Adiabatic Algorithm
NASA Astrophysics Data System (ADS)
Young, A. P.; Knysh, S.; Smelyanskiy, V. N.
2008-10-01
We study the typical (median) value of the minimum gap in the quantum version of the exact cover problem using quantum Monte Carlo simulations, in order to understand the complexity of the quantum adiabatic algorithm for much larger sizes than before. For a range of sizes N≤128, where the classical Davis-Putnam algorithm shows exponential median complexity, the quantum adiabatic algorithm shows polynomial median complexity. The bottleneck of the algorithm is an isolated avoided-crossing point of a Landau-Zener type (collision between the two lowest energy levels only).
Quantum adiabatic algorithm and scaling of gaps at first-order quantum phase transitions.
Laumann, C R; Moessner, R; Scardicchio, A; Sondhi, S L
2012-07-20
Motivated by the quantum adiabatic algorithm (QAA), we consider the scaling of the Hamiltonian gap at quantum first-order transitions, generally expected to be exponentially small in the size of the system. However, we show that a quantum antiferromagnetic Ising chain in a staggered field can exhibit a first-order transition with only an algebraically small gap. In addition, we construct a simple classical translationally invariant one-dimensional Hamiltonian containing nearest-neighbor interactions only, which exhibits an exponential gap at a thermodynamic quantum first-order transition of essentially topological origin. This establishes that (i) the QAA can be successful even across first-order transitions but also that (ii) it can fail on exceedingly simple problems readily solved by inspection, or by classical annealing.
NASA Astrophysics Data System (ADS)
Farhi, Edward; Gosset, David; Hen, Itay; Sandvik, A. W.; Shor, Peter; Young, A. P.; Zamponi, Francesco
2012-11-01
In this paper we study the performance of the quantum adiabatic algorithm on random instances of two combinatorial optimization problems, 3-regular 3-XORSAT and 3-regular max-cut. The cost functions associated with these two clause-based optimization problems are similar as they are both defined on 3-regular hypergraphs. For 3-regular 3-XORSAT the clauses contain three variables and for 3-regular max-cut the clauses contain two variables. The quantum adiabatic algorithms we study for these two problems use interpolating Hamiltonians which are amenable to sign-problem free quantum Monte Carlo and quantum cavity methods. Using these techniques we find that the quantum adiabatic algorithm fails to solve either of these problems efficiently, although for different reasons.
Ultrafast adiabatic quantum algorithm for the NP-complete exact cover problem
Wang, Hefeng; Wu, Lian-Ao
2016-01-01
An adiabatic quantum algorithm may lose quantumness such as quantum coherence entirely in its long runtime, and consequently the expected quantum speedup of the algorithm does not show up. Here we present a general ultrafast adiabatic quantum algorithm. We show that by applying a sequence of fast random or regular signals during evolution, the runtime can be reduced substantially, whereas advantages of the adiabatic algorithm remain intact. We also propose a randomized Trotter formula and show that the driving Hamiltonian and the proposed sequence of fast signals can be implemented simultaneously. We illustrate the algorithm by solving the NP-complete 3-bit exact cover problem (EC3), where NP stands for nondeterministic polynomial time, and put forward an approach to implementing the problem with trapped ions. PMID:26923834
Ultrafast adiabatic quantum algorithm for the NP-complete exact cover problem.
Wang, Hefeng; Wu, Lian-Ao
2016-02-29
An adiabatic quantum algorithm may lose quantumness such as quantum coherence entirely in its long runtime, and consequently the expected quantum speedup of the algorithm does not show up. Here we present a general ultrafast adiabatic quantum algorithm. We show that by applying a sequence of fast random or regular signals during evolution, the runtime can be reduced substantially, whereas advantages of the adiabatic algorithm remain intact. We also propose a randomized Trotter formula and show that the driving Hamiltonian and the proposed sequence of fast signals can be implemented simultaneously. We illustrate the algorithm by solving the NP-complete 3-bit exact cover problem (EC3), where NP stands for nondeterministic polynomial time, and put forward an approach to implementing the problem with trapped ions.
Quantum information and computation
Bennett, C.H.
1995-10-01
A new quantum theory of communication and computation is emerging, in which the stuff transmitted or processed is not classical information, but arbitrary superpositions of quantum states. {copyright} 1995 {ital American} {ital Institute} {ital of} {ital Physics}.
Quantum computing classical physics.
Meyer, David A
2002-03-15
In the past decade, quantum algorithms have been found which outperform the best classical solutions known for certain classical problems as well as the best classical methods known for simulation of certain quantum systems. This suggests that they may also speed up the simulation of some classical systems. I describe one class of discrete quantum algorithms which do so--quantum lattice-gas automata--and show how to implement them efficiently on standard quantum computers.
Quantum Computing since Democritus
NASA Astrophysics Data System (ADS)
Aaronson, Scott
2013-03-01
1. Atoms and the void; 2. Sets; 3. Gödel, Turing, and friends; 4. Minds and machines; 5. Paleocomplexity; 6. P, NP, and friends; 7. Randomness; 8. Crypto; 9. Quantum; 10. Quantum computing; 11. Penrose; 12. Decoherence and hidden variables; 13. Proofs; 14. How big are quantum states?; 15. Skepticism of quantum computing; 16. Learning; 17. Interactive proofs and more; 18. Fun with the Anthropic Principle; 19. Free will; 20. Time travel; 21. Cosmology and complexity; 22. Ask me anything.
NASA Astrophysics Data System (ADS)
Dziarmaga, Jacek; Rams, Marek M.
2010-10-01
We consider an inhomogeneous quantum phase transition across a multicritical point of the XY quantum spin chain. This is an example of a Lifshitz transition with a dynamical exponent z=2. Just like in the case z=1 considered by Dziarmaga and Rams (2010 New J. Phys. 12 055007), when a critical front propagates much faster than the maximal group velocity of quasiparticles vq, then the transition is effectively homogeneous: the density of excitations obeys a generalized Kibble-Zurek mechanism and scales with the sixth root of the transition rate. However, unlike for the case z=1, the inhomogeneous transition becomes adiabatic not below vq but at a lower threshold velocity \\hat{v} , proportional to the inhomogeneity of the transition, where the excitations are suppressed exponentially. Interestingly, the adiabatic threshold \\hat{v} is nonzero despite the vanishing minimal group velocity of low-energy quasiparticles. In the adiabatic regime below \\hat{v} , the inhomogeneous transition can be used for efficient adiabatic quantum state preparation in a quantum simulator: the time required for the critical front to sweep across a chain of N spins adiabatically is merely linear in N, while the corresponding time for a homogeneous transition across the multicritical point scales with the sixth power of N. What is more, excitations after the adiabatic inhomogeneous transition, if any, are brushed away by the critical front to the end of the spin chain.
NASA Astrophysics Data System (ADS)
Inoue, Jun-Ichi
2011-03-01
We analytically derive deterministic equations of order parameters such as spontaneous magnetization in infinite-range quantum spin systems obeying quantum Monte Carlo dynamics. By means of the Trotter decomposition, we consider the transition probability of Glauber-type dynamics of microscopic states for the corresponding classical system. Under the static approximation, differential equations with respect to macroscopic order parameters are explicitly obtained from the master equation that describes the microscopic-law. We discuss several possible applications of our approach to disordered spin systems for statistical-mechanical informatics. Especially, we argue the ground state searching for infinite-range random spin systems via quantum adiabatic evolution. We were financially supported by Grant-in-Aid for Scientific Research (C) of Japan Society for the Promotion of Science, No. 22500195.
Dissipative quantum computing with open quantum walks
Sinayskiy, Ilya; Petruccione, Francesco
2014-12-04
An open quantum walk approach to the implementation of a dissipative quantum computing scheme is presented. The formalism is demonstrated for the example of an open quantum walk implementation of a 3 qubit quantum circuit consisting of 10 gates.
Temperature-Driven and Electrochemical-Potential-Driven Adiabatic Pumping via a Quantum Dot
NASA Astrophysics Data System (ADS)
Hasegawa, Masahiro; Kato, Takeo
2017-02-01
We investigate adiabatic pumping via a single level quantum dot induced by periodic modulation of thermodynamic variables of reservoirs, i.e., temperatures and electrochemical potentials. We consider the impurity Anderson model and derive analytical formulas for coherent adiabatic charge pumping applicable to the strong dot-reservoir coupling within the first-order perturbation with respect to Coulomb interaction. We show that charge pumping is induced by rectification effect due to delayed response of the quantum dot to time-dependent reservoir parameters. The presence of interaction is necessary because this delayed response rectifies charge current via Coulomb interaction. For temperature-driven charge pumping, one-way pumping is realized regardless of reservoir temperatures when an energy level of the quantum dot locates near the Fermi level. We clarify that this new feature of adiabatic pumping is caused by level broadening effect of the quantum dot due to strong dot-reservoir coupling.
Di Lisi, Antonio; De Siena, Silvio; Illuminati, Fabrizio; Vitali, David
2005-09-15
We introduce an efficient, quasideterministic scheme to generate maximally entangled states of two atomic ensembles. The scheme is based on quantum nondemolition measurements of total atomic populations and on adiabatic quantum feedback conditioned by the measurements outputs. The high efficiency of the scheme is tested and confirmed numerically for ideal photodetection as well as in the presence of losses.
2001-04-01
example that other students learn to make quantum computers does not quite meet the RQC specification, consider useful in many fields . I also want to...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP010869 TITLE: The Rabi Quantum Computer DISTRIBUTION: Approved for...comprise the compilation report: ADP010865 thru ADP010894 UNCLASSIFIED 5-1 The Rabi Quantum Computer Rudolph A. Krutar Advanced Information Technology’ U.S
Scalable optical quantum computer
NASA Astrophysics Data System (ADS)
Manykin, E. A.; Mel'nichenko, E. V.
2014-12-01
A way of designing a scalable optical quantum computer based on the photon echo effect is proposed. Individual rare earth ions Pr3+, regularly located in the lattice of the orthosilicate (Y2SiO5) crystal, are suggested to be used as optical qubits. Operations with qubits are performed using coherent and incoherent laser pulses. The operation protocol includes both the method of measurement-based quantum computations and the technique of optical computations. Modern hybrid photon echo protocols, which provide a sufficient quantum efficiency when reading recorded states, are considered as most promising for quantum computations and communications.
Determining the Complexity of the Quantum Adiabatic Algorithm using Quantum Monte Carlo Simulations
2012-12-18
of this printing. List the papers, including journal references, in the following categories: Received Paper 12/06/2012 4.00 Itay Hen, A. Young...PhysRevLett.104.020502 12/06/2012 3.00 A. P. Young, Itay Hen. Exponential complexity of the quantum adiabatic algorithm for certain satisfiability problems...Physical Review E, (12 2011): 0. doi: 10.1103/PhysRevE.84.061152 12/06/2012 5.00 Edward Farhi, David Gosset, Itay Hen, A. Sandvik, Peter Shor, A
Adiabatic many-body state preparation and information transfer in quantum dot arrays
NASA Astrophysics Data System (ADS)
Farooq, Umer; Bayat, Abolfazl; Mancini, Stefano; Bose, Sougato
2015-04-01
Quantum simulation of many-body systems are one of the most interesting tasks of quantum technology. Among them is the preparation of a many-body system in its ground state when the vanishing energy gap makes the cooling mechanisms ineffective. Adiabatic theorem, as an alternative to cooling, can be exploited for driving the many-body system to its ground state. In this paper, we study two most common disorders in quantum dot arrays, namely exchange coupling fluctuations and hyperfine interaction, in adiabatic preparation of ground state in such systems. We show that the adiabatic ground-state preparation is highly robust against those disorder effects making it a good analog simulator. Moreover, we also study the adiabatic quantum information transfer, using singlet-triplet states, across a spin chain. In contrast to ground-state preparation the transfer mechanism is highly affected by disorder and in particular, the hyperfine interaction is very destructive for the performance. This suggests that for communication tasks across such arrays adiabatic evolution is not as effective and quantum quenches could be preferable.
Bacon, Dave; Flammia, Steven T
2009-09-18
The difficulty in producing precisely timed and controlled quantum gates is a significant source of error in many physical implementations of quantum computers. Here we introduce a simple universal primitive, adiabatic gate teleportation, which is robust to timing errors and many control errors and maintains a constant energy gap throughout the computation above a degenerate ground state space. This construction allows for geometric robustness based upon the control of two independent qubit interactions. Further, our piecewise adiabatic evolution easily relates to the quantum circuit model, enabling the use of standard methods from fault-tolerance theory for establishing thresholds.
Blind Quantum Signature with Blind Quantum Computation
NASA Astrophysics Data System (ADS)
Li, Wei; Shi, Ronghua; Guo, Ying
2017-04-01
Blind quantum computation allows a client without quantum abilities to interact with a quantum server to perform a unconditional secure computing protocol, while protecting client's privacy. Motivated by confidentiality of blind quantum computation, a blind quantum signature scheme is designed with laconic structure. Different from the traditional signature schemes, the signing and verifying operations are performed through measurement-based quantum computation. Inputs of blind quantum computation are securely controlled with multi-qubit entangled states. The unique signature of the transmitted message is generated by the signer without leaking information in imperfect channels. Whereas, the receiver can verify the validity of the signature using the quantum matching algorithm. The security is guaranteed by entanglement of quantum system for blind quantum computation. It provides a potential practical application for e-commerce in the cloud computing and first-generation quantum computation.
Blind Quantum Signature with Blind Quantum Computation
NASA Astrophysics Data System (ADS)
Li, Wei; Shi, Ronghua; Guo, Ying
2016-12-01
Blind quantum computation allows a client without quantum abilities to interact with a quantum server to perform a unconditional secure computing protocol, while protecting client's privacy. Motivated by confidentiality of blind quantum computation, a blind quantum signature scheme is designed with laconic structure. Different from the traditional signature schemes, the signing and verifying operations are performed through measurement-based quantum computation. Inputs of blind quantum computation are securely controlled with multi-qubit entangled states. The unique signature of the transmitted message is generated by the signer without leaking information in imperfect channels. Whereas, the receiver can verify the validity of the signature using the quantum matching algorithm. The security is guaranteed by entanglement of quantum system for blind quantum computation. It provides a potential practical application for e-commerce in the cloud computing and first-generation quantum computation.
Zhou, Jian; Yu, Wei-Can; Gao, Yu-Mei; Xue, Zheng-Yuan
2015-06-01
A cavity QED implementation of the non-adiabatic holonomic quantum computation in decoherence-free subspaces is proposed with nitrogen-vacancy centers coupled commonly to the whispering-gallery mode of a microsphere cavity, where a universal set of quantum gates can be realized on the qubits. In our implementation, with the assistant of the appropriate driving fields, the quantum evolution is insensitive to the cavity field state, which is only virtually excited. The implemented non-adiabatic holonomies, utilizing optical transitions in the Λ type of three-level configuration of the nitrogen-vacancy centers, can be used to construct a universal set of quantum gates on the encoded logical qubits. Therefore, our scheme opens up the possibility of realizing universal holonomic quantum computation with cavity assisted interaction on solid-state spins characterized by long coherence times.
Quantum dynamics by the constrained adiabatic trajectory method
Leclerc, A.; Jolicard, G.; Guerin, S.; Killingbeck, J. P.
2011-03-15
We develop the constrained adiabatic trajectory method (CATM), which allows one to solve the time-dependent Schroedinger equation constraining the dynamics to a single Floquet eigenstate, as if it were adiabatic. This constrained Floquet state (CFS) is determined from the Hamiltonian modified by an artificial time-dependent absorbing potential whose forms are derived according to the initial conditions. The main advantage of this technique for practical implementation is that the CFS is easy to determine even for large systems since its corresponding eigenvalue is well isolated from the others through its imaginary part. The properties and limitations of the CATM are explored through simple examples.
Reprint of : Nanomagnet coupled to quantum spin Hall edge: An adiabatic quantum motor
NASA Astrophysics Data System (ADS)
Arrachea, Liliana; von Oppen, Felix
2016-08-01
The precessing magnetization of a magnetic islands coupled to a quantum spin Hall edge pumps charge along the edge. Conversely, a bias voltage applied to the edge makes the magnetization precess. We point out that this device realizes an adiabatic quantum motor and discuss the efficiency of its operation based on a scattering matrix approach akin to Landauer-Büttiker theory. Scattering theory provides a microscopic derivation of the Landau-Lifshitz-Gilbert equation for the magnetization dynamics of the device, including spin-transfer torque, Gilbert damping, and Langevin torque. We find that the device can be viewed as a Thouless motor, attaining unit efficiency when the chemical potential of the edge states falls into the magnetization-induced gap. For more general parameters, we characterize the device by means of a figure of merit analogous to the ZT value in thermoelectrics.
Nanomagnet coupled to quantum spin Hall edge: An adiabatic quantum motor
NASA Astrophysics Data System (ADS)
Arrachea, Liliana; von Oppen, Felix
2015-11-01
The precessing magnetization of a magnetic islands coupled to a quantum spin Hall edge pumps charge along the edge. Conversely, a bias voltage applied to the edge makes the magnetization precess. We point out that this device realizes an adiabatic quantum motor and discuss the efficiency of its operation based on a scattering matrix approach akin to Landauer-Büttiker theory. Scattering theory provides a microscopic derivation of the Landau-Lifshitz-Gilbert equation for the magnetization dynamics of the device, including spin-transfer torque, Gilbert damping, and Langevin torque. We find that the device can be viewed as a Thouless motor, attaining unit efficiency when the chemical potential of the edge states falls into the magnetization-induced gap. For more general parameters, we characterize the device by means of a figure of merit analogous to the ZT value in thermoelectrics.
Quantum Computational Cryptography
NASA Astrophysics Data System (ADS)
Kawachi, Akinori; Koshiba, Takeshi
As computational approaches to classical cryptography have succeeded in the establishment of the foundation of the network security, computational approaches even to quantum cryptography are promising, since quantum computational cryptography could offer richer applications than the quantum key distribution. Our project focused especially on the quantum one-wayness and quantum public-key cryptosystems. The one-wayness of functions (or permutations) is one of the most important notions in computational cryptography. First, we give an algorithmic characterization of quantum one-way permutations. In other words, we show a necessary and sufficient condition for quantum one-way permutations in terms of reflection operators. Second, we introduce a problem of distinguishing between two quantum states as a new underlying problem that is harder to solve than the graph automorphism problem. The new problem is a natural generalization of the distinguishability problem between two probability distributions, which are commonly used in computational cryptography. We show that the problem has several cryptographic properties and they enable us to construct a quantum publickey cryptosystem, which is likely to withstand any attack of a quantum adversary.
NASA Technical Reports Server (NTRS)
Zak, M.
1998-01-01
Quantum analog computing is based upon similarity between mathematical formalism of quantum mechanics and phenomena to be computed. It exploits a dynamical convergence of several competing phenomena to an attractor which can represent an externum of a function, an image, a solution to a system of ODE, or a stochastic process.
NASA Technical Reports Server (NTRS)
Zak, M.
1998-01-01
Quantum analog computing is based upon similarity between mathematical formalism of quantum mechanics and phenomena to be computed. It exploits a dynamical convergence of several competing phenomena to an attractor which can represent an externum of a function, an image, a solution to a system of ODE, or a stochastic process.
Wei, Yu-Jia; He, Yu-Ming; Chen, Ming-Cheng; Hu, Yi-Nan; He, Yu; Wu, Dian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Lu, Chao-Yang; Pan, Jian-Wei
2014-11-12
Single photons are attractive candidates of quantum bits (qubits) for quantum computation and are the best messengers in quantum networks. Future scalable, fault-tolerant photonic quantum technologies demand both stringently high levels of photon indistinguishability and generation efficiency. Here, we demonstrate deterministic and robust generation of pulsed resonance fluorescence single photons from a single semiconductor quantum dot using adiabatic rapid passage, a method robust against fluctuation of driving pulse area and dipole moments of solid-state emitters. The emitted photons are background-free, have a vanishing two-photon emission probability of 0.3% and a raw (corrected) two-photon Hong-Ou-Mandel interference visibility of 97.9% (99.5%), reaching a precision that places single photons at the threshold for fault-tolerant surface-code quantum computing. This single-photon source can be readily scaled up to multiphoton entanglement and used for quantum metrology, boson sampling, and linear optical quantum computing.
NASA Astrophysics Data System (ADS)
Kang, Yi-Hao; Wu, Qi-Cheng; Chen, Ye-Hong; Shi, Zhi-Cheng; Song, Jie; Xia, Yan
2017-04-01
In this paper, we investigate the quantum transfer for the system with three-level Λ-type structure, and construct a shortcut to the adiabatic passage via picture transformation to speed up the evolution. We can design the pulses directly without any additional couplings. Moreover, by choosing suitable control parameters, the Rabi frequencies of pulses can be expressed by the linear superpositions of Gaussian functions, which could be easily realized in experiments. Compared with the previous works using the stimulated Raman adiabatic passage, the quantum transfer can be significantly accelerated with the present scheme.
How do quantum numbers generally vary in the adiabatic transformation of an ideal gas?
NASA Astrophysics Data System (ADS)
Yarman, T.; L. Kholmetskii, A.
2011-10-01
We continue to analyse the known law of adiabatic transformation for an ideal gas PV5/3 = Constant, where P is the pressure and V is the volume, and following the approach of non-relativistic quantum mechanics which we suggested in a previous work (Yarman et al. 2010 Int. J. Phys. Sci. 5 1524). We explicitly determine the constant for the general parallelepiped geometry of a container. We also disclose how the quantum numbers associated with molecules of an ideal gas vary through an arbitrary adiabatic transformation. Physical implications of the results obtained are discussed.
Tian, Si-Cong; Wan, Ren-Gang; Wang, Chun-Liang; Shu, Shi-Li; Wang, Li-Jie; Tong, Chun-Zhu
2016-12-01
We propose a scheme for creation and transfer of coherence among ground state and indirect exciton states of triple quantum dots via the technique of stimulated Raman adiabatic passage. Compared with the traditional stimulated Raman adiabatic passage, the Stokes laser pulse is replaced by the tunneling pulse, which can be controlled by the externally applied voltages. By varying the amplitudes and sequences of the pump and tunneling pulses, a complete coherence transfer or an equal coherence distribution among multiple states can be obtained. The investigations can provide further insight for the experimental development of controllable coherence transfer in semiconductor structure and may have potential applications in quantum information processing.
Quantum Information, Computation and Communication
NASA Astrophysics Data System (ADS)
Jones, Jonathan A.; Jaksch, Dieter
2012-07-01
Part I. Quantum Information: 1. Quantum bits and quantum gates; 2. An atom in a laser field; 3. Spins in magnetic fields; 4. Photon techniques; 5. Two qubits and beyond; 6. Measurement and entanglement; Part II. Quantum Computation: 7. Principles of quantum computing; 8. Elementary quantum algorithms; 9. More advanced quantum algorithms; 10. Trapped atoms and ions; 11. Nuclear magnetic resonance; 12. Large scale quantum computers; Part III. Quantum Communication: 13. Basics of information theory; 14. Quantum information; 15. Quantum communication; 16. Testing EPR; 17. Quantum cryptography; Appendixes; References; Index.
Adiabatic and Hamiltonian computing on a 2D lattice with simple two-qubit interactions
NASA Astrophysics Data System (ADS)
Lloyd, Seth; Terhal, Barbara M.
2016-02-01
We show how to perform universal Hamiltonian and adiabatic computing using a time-independent Hamiltonian on a 2D grid describing a system of hopping particles which string together and interact to perform the computation. In this construction, the movement of one particle is controlled by the presence or absence of other particles, an effective quantum field effect transistor that allows the construction of controlled-NOT and controlled-rotation gates. The construction translates into a model for universal quantum computation with time-independent two-qubit ZZ and XX+YY interactions on an (almost) planar grid. The effective Hamiltonian is arrived at by a single use of first-order perturbation theory avoiding the use of perturbation gadgets. The dynamics and spectral properties of the effective Hamiltonian can be fully determined as it corresponds to a particular realization of a mapping between a quantum circuit and a Hamiltonian called the space-time circuit-to-Hamiltonian construction. Because of the simple interactions required, and because no higher-order perturbation gadgets are employed, our construction is potentially realizable using superconducting or other solid-state qubits.
NASA Astrophysics Data System (ADS)
Zlatanov, Kaloyan N.; Vitanov, Nikolay V.
2017-07-01
The common objective of the application of adiabatic techniques in the field of quantum control is to transfer a quantum system from one discrete energy state to another. These techniques feature both high efficiency and insensitivity to variations in the experimental parameters, e.g., variations in the driving field amplitude, duration, frequency, and shape, as well as fluctuations in the environment. Here we explore the potential of adiabatic techniques for creating arbitrary predefined coherent superpositions of two quantum states. We show that an equally weighted coherent superposition can be created by temporal variation of the ratio between the Rabi frequency Ω (t ) and the detuning Δ (t ) from 0 to ∞ (case 1) or vice versa (case 2), as it is readily deduced from the explicit adiabatic solution for the Bloch vector. We infer important differences between cases 1 and 2 in the composition of the created coherent superposition: The latter depends on the dynamical phase of the process in case 2, while it does not depend on this phase in case 1. Furthermore, an arbitrary coherent superposition of unequal weights can be created by using asymptotic ratios of Ω (t )/Δ (t ) different from 0 and ∞ . We supplement the general adiabatic solution with analytic solutions for three exactly soluble models: two trigonometric models and the hyperbolic Demkov-Kunike model. They allow us not only to demonstrate the general predictions in specific cases but also to derive the nonadiabatic corrections to the adiabatic solutions.
The performance of the quantum adiabatic algorithm on spike Hamiltonians
NASA Astrophysics Data System (ADS)
Kong, Linghang; Crosson, Elizabeth
Spike Hamiltonians arise from optimization instances for which the adiabatic algorithm provably out performs classical simulated annealing. In this work, we study the efficiency of the adiabatic algorithm for solving the “the Hamming weight with a spike” problem by analyzing the scaling of the spectral gap at the critical point for various sizes of the barrier. Our main result is a rigorous lower bound on the minimum spectral gap for the adiabatic evolution when the bit-symmetric cost function has a thin but polynomially high barrier, which is based on a comparison argument and an improved variational ansatz for the ground state. We also adapt the discrete WKB method for the case of abruptly changing potentials and compare it with the predictions of the spin coherent instanton method which was previously used by Farhi, Goldstone and Gutmann. Finally, our improved ansatz for the ground state leads to a method for predicting the location of avoided crossings in the excited energy states of the thin spike Hamiltonian, and we use a recursion relation to understand the ordering of some of these avoided crossings as a step towards analyzing the previously observed diabatic cascade phenomenon.
Quantum computing with trapped ions
Hughes, R.J.
1998-01-01
The significance of quantum computation for cryptography is discussed. Following a brief survey of the requirements for quantum computational hardware, an overview of the ion trap quantum computation project at Los Alamos is presented. The physical limitations to quantum computation with trapped ions are analyzed and an assessment of the computational potential of the technology is made.
Inhomogeneous quasi-adiabatic driving of quantum critical dynamics in weakly disordered spin chains
NASA Astrophysics Data System (ADS)
Rams, Marek M.; Mohseni, Masoud; del Campo, Adolfo
2016-12-01
We introduce an inhomogeneous protocol to drive a weakly disordered quantum spin chain quasi-adiabatically across a quantum phase transition and minimize the residual energy of the final state. The number of spins that simultaneously reach the critical point is controlled by the length scale in which the magnetic field is modulated, introducing an effective size that favors adiabatic dynamics. The dependence of the residual energy on this length scale and the velocity at which the magnetic field sweeps out the chain is shown to be nonmonotonic. We determine the conditions for an optimal suppression of the residual energy of the final state and show that inhomogeneous driving can outperform conventional adiabatic schemes based on homogeneous control fields by several orders of magnitude.
Shortcuts to adiabaticity in classical and quantum processes for scale-invariant driving
NASA Astrophysics Data System (ADS)
Deffner, Sebastian; Jarzynski, Christopher; Del Campo, Adolfo
2014-03-01
All real physical processes in classical as well as in quantum devices operate in finite-time. For most applications, however, adiabatic, i.e. infinitely-slow processes, are more favorable, as these do not cause unwanted, parasitic excitations. A shortcut to adiabaticity is a driving protocol which reproduces in a short time the same final state that would result from an adiabatic process. A particular powerful technique to engineer such shortcuts is transitionless quantum driving by means of counterdiabatic fields. However, determining closed form expressions for the counterdiabatic field has generally proven to be a daunting task. In this paper, we introduce a novel approach, with which we find the explicit form of the counterdiabatic driving field in arbitrary scale-invariant dynamical processes, encompassing expansions and transport. Our approach originates in the formalism of generating functions, and unifies previous approaches independently developed for classical and quantum systems. We show how this new approach allows to design shortcuts to adiabaticity for a large class of classical and quantum, single-particle, non-linear, and many-body systems. SD and CJ acknowledge support from the National Science Foundation (USA) under grant DMR-1206971. This research is further supported by the U.S Department of Energy through the LANL/LDRD Program and a LANL J. Robert Oppenheimer fellowship (AdC).
Castagnoli, G. )
1991-08-10
This paper reports that current conceptions of quantum mechanical computers inherit from conventional digital machines two apparently interacting features, machine imperfection and temporal development of the computational process. On account of machine imperfection, the process would become ideally reversible only in the limiting case of zero speed. Therefore the process is irreversible in practice and cannot be considered to be a fundamental quantum one. By giving up classical features and using a linear, reversible and non-sequential representation of the computational process - not realizable in classical machines - the process can be identified with the mathematical form of a quantum steady state. This form of steady quantum computation would seem to have an important bearing on the notion of cognition.
Quantum computing: towards reality
NASA Astrophysics Data System (ADS)
Trabesinger, Andreas
2017-03-01
The concept of computers that harness the laws of quantum mechanics has transformed our thinking about how information can be processed. Now the environment exists to make prototype devices a reality.
From Classical Nonlinear Integrable Systems to Quantum Shortcuts to Adiabaticity
NASA Astrophysics Data System (ADS)
Okuyama, Manaka; Takahashi, Kazutaka
2016-08-01
Using shortcuts to adiabaticity, we solve the time-dependent Schrödinger equation that is reduced to a classical nonlinear integrable equation. For a given time-dependent Hamiltonian, the counterdiabatic term is introduced to prevent nonadiabatic transitions. Using the fact that the equation for the dynamical invariant is equivalent to the Lax equation in nonlinear integrable systems, we obtain the counterdiabatic term exactly. The counterdiabatic term is available when the corresponding Lax pair exists and the solvable systems are classified in a unified and systematic way. Multisoliton potentials obtained from the Korteweg-de Vries equation and isotropic X Y spin chains from the Toda equations are studied in detail.
He, Shuang; Su, Shi-Lei; Wang, Dong-Yang; Sun, Wen-Mei; Bai, Cheng-Hua; Zhu, Ai-Dong; Wang, Hong-Fu; Zhang, Shou
2016-01-01
We propose an effective scheme of shortcuts to adiabaticity for generating a three-dimensional entanglement of two atoms trapped in a cavity using the transitionless quantum driving (TQD) approach. The key point of this approach is to construct an effective Hamiltonian that drives the dynamics of a system along instantaneous eigenstates of a reference Hamiltonian to reproduce the same final state as that of an adiabatic process within a much shorter time. In this paper, the shortcuts to adiabatic passage are constructed by introducing two auxiliary excited levels in each atom and applying extra cavity modes and classical fields to drive the relevant transitions. Thereby, the three-dimensional entanglement is obtained with a faster rate than that in the adiabatic passage. Moreover, the influences of atomic spontaneous emission and photon loss on the fidelity are discussed by numerical simulation. The results show that the speed of entanglement implementation is greatly improved by the use of adiabatic shortcuts and that this entanglement implementation is robust against decoherence. This will be beneficial to the preparation of high-dimensional entanglement in experiment and provides the necessary conditions for the application of high-dimensional entangled states in quantum information processing. PMID:27499169
He, Shuang; Su, Shi-Lei; Wang, Dong-Yang; Sun, Wen-Mei; Bai, Cheng-Hua; Zhu, Ai-Dong; Wang, Hong-Fu; Zhang, Shou
2016-08-08
We propose an effective scheme of shortcuts to adiabaticity for generating a three-dimensional entanglement of two atoms trapped in a cavity using the transitionless quantum driving (TQD) approach. The key point of this approach is to construct an effective Hamiltonian that drives the dynamics of a system along instantaneous eigenstates of a reference Hamiltonian to reproduce the same final state as that of an adiabatic process within a much shorter time. In this paper, the shortcuts to adiabatic passage are constructed by introducing two auxiliary excited levels in each atom and applying extra cavity modes and classical fields to drive the relevant transitions. Thereby, the three-dimensional entanglement is obtained with a faster rate than that in the adiabatic passage. Moreover, the influences of atomic spontaneous emission and photon loss on the fidelity are discussed by numerical simulation. The results show that the speed of entanglement implementation is greatly improved by the use of adiabatic shortcuts and that this entanglement implementation is robust against decoherence. This will be beneficial to the preparation of high-dimensional entanglement in experiment and provides the necessary conditions for the application of high-dimensional entangled states in quantum information processing.
Robust quantum logic in neutral atoms via adiabatic Rydberg dressing
Keating, Tyler; Cook, Robert L.; Hankin, Aaron M.; Jau, Yuan -Yu; Biedermann, Grant W.; Deutsch, Ivan H.
2015-01-28
We study a scheme for implementing a controlled-Z (CZ) gate between two neutral-atom qubits based on the Rydberg blockade mechanism in a manner that is robust to errors caused by atomic motion. By employing adiabatic dressing of the ground electronic state, we can protect the gate from decoherence due to random phase errors that typically arise because of atomic thermal motion. In addition, the adiabatic protocol allows for a Doppler-free configuration that involves counterpropagating lasers in a σ_{+}/σ_{-} orthogonal polarization geometry that further reduces motional errors due to Doppler shifts. The residual motional error is dominated by dipole-dipole forces acting on doubly-excited Rydberg atoms when the blockade is imperfect. As a result, for reasonable parameters, with qubits encoded into the clock states of ^{133}Cs, we predict that our protocol could produce a CZ gate in < 10 μs with error probability on the order of 10^{-3}.
Robust quantum logic in neutral atoms via adiabatic Rydberg dressing
Keating, Tyler; Cook, Robert L.; Hankin, Aaron M.; ...
2015-01-28
We study a scheme for implementing a controlled-Z (CZ) gate between two neutral-atom qubits based on the Rydberg blockade mechanism in a manner that is robust to errors caused by atomic motion. By employing adiabatic dressing of the ground electronic state, we can protect the gate from decoherence due to random phase errors that typically arise because of atomic thermal motion. In addition, the adiabatic protocol allows for a Doppler-free configuration that involves counterpropagating lasers in a σ+/σ- orthogonal polarization geometry that further reduces motional errors due to Doppler shifts. The residual motional error is dominated by dipole-dipole forces actingmore » on doubly-excited Rydberg atoms when the blockade is imperfect. As a result, for reasonable parameters, with qubits encoded into the clock states of 133Cs, we predict that our protocol could produce a CZ gate in < 10 μs with error probability on the order of 10-3.« less
NASA Astrophysics Data System (ADS)
Kashefi, Elham
Over the next five to ten years we will see a state of flux as quantum devices become part of the mainstream computing landscape. However adopting and applying such a highly variable and novel technology is both costly and risky as this quantum approach has an acute verification and validation problem: On the one hand, since classical computations cannot scale up to the computational power of quantum mechanics, verifying the correctness of a quantum-mediated computation is challenging; on the other hand, the underlying quantum structure resists classical certification analysis. Our grand aim is to settle these key milestones to make the translation from theory to practice possible. Currently the most efficient ways to verify a quantum computation is to employ cryptographic methods. I will present the current state of the art of various existing protocols where generally there exists a trade-off between the practicality of the scheme versus their generality, trust assumptions and security level. EK gratefully acknowledges funding through EPSRC Grants EP/N003829/1 and EP/M013243/1.
Adiabatic phase-conserving processes for executing quantum operations with ultracold atoms
NASA Astrophysics Data System (ADS)
Beterov, I. I.; Tret'yakov, D. B.; Entin, V. M.; Yakshina, E. A.; Khamzina, G. N.; Ryabtsev, I. I.
2017-06-01
We have studied the regimes of deterministic single-atom Rydberg excitation in the conditions of Rydberg blockade and the methods of compensation for the dynamic phase of the wave function during the adiabatic passage. Using these methods, we have proposed schemes of single-qubit and two-qubit quantum states with mesoscopic atomic ensembles containing a random number of atoms, considred as quibits. The double adiabatic passage of the Förster resonance for two interacting atoms with a deterministic phase shift can be used for the implementation of two-qubit gates with reduced sensitivity of the gate fidelity to the fluctuations of the interatomic distance.
NASA Astrophysics Data System (ADS)
Baksic, Alexandre; Belyansky, Ron; Ribeiro, Hugo; Clerk, Aashish A.
2017-08-01
We present a method for accelerating adiabatic protocols for systems involving a coupling to a continuum, one that cancels both nonadiabatic errors as well as errors due to dissipation. We focus on applications to a generic quantum state transfer problem, where the goal is to transfer a state between a single level or mode, and a propagating temporal mode in a waveguide or transmission line. Our approach enables perfect adiabatic transfer protocols in this setup, despite a finite protocol speed and a finite waveguide coupling. Our approach even works in highly constrained settings, where there is only a single time-dependent control field available.
Quantum entanglement, quantum communication and the limits of quantum computing
NASA Astrophysics Data System (ADS)
Ambainis, Andris
Quantum entanglement is a term describing the quantum correlations between different parts of a quantum system. Quantum information theory has developed sophisticated techniques to quantify and study quantum entanglement. In this thesis, we show how to apply those techniques to problems in quantum algorithms, complexity theory, communication and cryptography. The main results are: (1) quantum communication protocols that are exponentially more efficient that conventional (classical) communication protocols, (2) unconditionally secure quantum protocols for cryptographic problems, (3) a new "quantum adversary" method for proving lower bounds on quantum algorithms, (4) a study of "one clean qubit computation", a model related to the experimental implementation of quantum computers using NMR (nucleo-magnetic resonance) technology.
Adiabatic holonomic quantum gates for a single qubit
NASA Astrophysics Data System (ADS)
Malinovsky, Vladimir S.; Rudin, Sergey
2014-04-01
A universal set of single qubit holonomic quantum gates using the geometric phase that the qubit wave function acquires after a cyclic evolution is discussed. The proposed scheme utilizes ultrafast linearly chirped pulses and provides a possibility to substantially suppress transient population of the ancillary state in a generic three-level system. That provides a possibility to reduce the decoherence effect and achieve a higher fidelity of the quantum gates.
Non-adiabatic effect in quantum pumping for a spin-boson system
NASA Astrophysics Data System (ADS)
Watanabe, Kota L.; Hayakawa, Hisao
2014-11-01
We clarify the role of non-adiabatic effects in quantum pumping for a spin-boson system. When we sinusoidally control the temperatures of two reservoirs with π /2 phase difference, we find that the pumping current strongly depends on the initial condition, and thus, the current deviates from that predicted by the adiabatic treatment. We also analytically obtain the contribution of non-adiabatic effects in the pumping current proportional to Ω ^3, where Ω is the angular frequency of the temperature control. The validity of the analytic expression is verified by our numerical calculation. Moreover, we extend the steady heat fluctuation theorem to the case for slowly modulated temperatures and large transferred energies.
REVIEWS OF TOPICAL PROBLEMS: Quantum computers and quantum computations
NASA Astrophysics Data System (ADS)
Valiev, Kamil'A.
2005-01-01
This review outlines the principles of operation of quantum computers and their elements. The theory of ideal computers that do not interact with the environment and are immune to quantum decohering processes is presented. Decohering processes in quantum computers are investigated. The review considers methods for correcting quantum computing errors arising from the decoherence of the state of the quantum computer, as well as possible methods for the suppression of the decohering processes. A brief enumeration of proposed quantum computer realizations concludes the review.
Quantum Computational Geodesics
2010-01-01
equation, a well-known nonlinear differential matrix equation, and L and iF (L) are Lax pairs (30–32). Some solutions to the geodesic equation...D2J j Dt2 +Rjikl ∂xi ∂t ∂xl ∂t Jk + Cj = 0, (91) the so-called “lifted Jacobi equation” (1). Nielsen and Dowling used the lifted Jacobi equation...quantum circuits (1, 28, 2). 27 6. References 1. Dowling , M. R.; Nielsen, M. A. The Geometry of Quantum Computation. Quantum Information and
O'Brien, Jeremy L
2007-12-07
In 2001, all-optical quantum computing became feasible with the discovery that scalable quantum computing is possible using only single-photon sources, linear optical elements, and single-photon detectors. Although it was in principle scalable, the massive resource overhead made the scheme practically daunting. However, several simplifications were followed by proof-of-principle demonstrations, and recent approaches based on cluster states or error encoding have dramatically reduced this worrying resource overhead, making an all-optical architecture a serious contender for the ultimate goal of a large-scale quantum computer. Key challenges will be the realization of high-efficiency sources of indistinguishable single photons, low-loss, scalable optical circuits, high-efficiency single-photon detectors, and low-loss interfacing of these components.
Computational quantum chemistry website
1997-08-22
This report contains the contents of a web page related to research on the development of quantum chemistry methods for computational thermochemistry and the application of quantum chemistry methods to problems in material chemistry and chemical sciences. Research programs highlighted include: Gaussian-2 theory; Density functional theory; Molecular sieve materials; Diamond thin-film growth from buckyball precursors; Electronic structure calculations on lithium polymer electrolytes; Long-distance electronic coupling in donor/acceptor molecules; and Computational studies of NOx reactions in radioactive waste storage.
Non-adiabatic molecular dynamics with complex quantum trajectories. I. The diabatic representation.
Zamstein, Noa; Tannor, David J
2012-12-14
We extend a recently developed quantum trajectory method [Y. Goldfarb, I. Degani, and D. J. Tannor, J. Chem. Phys. 125, 231103 (2006)] to treat non-adiabatic transitions. Each trajectory evolves on a single surface according to Newton's laws with complex positions and momenta. The transfer of amplitude between surfaces stems naturally from the equations of motion, without the need for surface hopping. In this paper we derive the equations of motion and show results in the diabatic representation, which is rarely used in trajectory methods for calculating non-adiabatic dynamics. We apply our method to the first two benchmark models introduced by Tully [J. Chem. Phys. 93, 1061 (1990)]. Besides giving the probability branching ratios between the surfaces, the method also allows the reconstruction of the time-dependent wavepacket. Our results are in quantitative agreement with converged quantum mechanical calculations.
Adiabatic elimination of Gaussian subsystems from quantum dynamics under continuous measurement
NASA Astrophysics Data System (ADS)
Černotík, Ondřej; Vasilyev, Denis V.; Hammerer, Klemens
2015-07-01
An ever broader range of physical platforms provides the possibility to study and engineer quantum dynamics under continuous measurements. In many experimental arrangements the system of interest is monitored by means of an ancillary device, whose sole purpose is to transduce the signal from the system to the measurement apparatus. Here we present a method of adiabatic elimination when the transducer consists of an arbitrary number of bosonic modes with Gaussian dynamics while the measured object can be any quantum system. Crucially, our approach can cope with the highly relevant case of finite temperature of the transducer, which is not easily achieved with other methods. We show that this approach provides a significant improvement in the readout of superconducting qubits in circuit QED already for a few thermal excitations and makes it possible to adiabatically eliminate optomechanical transducers relevant for frequency conversion between microwave and optical fields.
Abstract quantum computing machines and quantum computational logics
NASA Astrophysics Data System (ADS)
Chiara, Maria Luisa Dalla; Giuntini, Roberto; Sergioli, Giuseppe; Leporini, Roberto
2016-06-01
Classical and quantum parallelism are deeply different, although it is sometimes claimed that quantum Turing machines are nothing but special examples of classical probabilistic machines. We introduce the concepts of deterministic state machine, classical probabilistic state machine and quantum state machine. On this basis, we discuss the question: To what extent can quantum state machines be simulated by classical probabilistic state machines? Each state machine is devoted to a single task determined by its program. Real computers, however, behave differently, being able to solve different kinds of problems. This capacity can be modeled, in the quantum case, by the mathematical notion of abstract quantum computing machine, whose different programs determine different quantum state machines. The computations of abstract quantum computing machines can be linguistically described by the formulas of a particular form of quantum logic, termed quantum computational logic.
Algorithms Bridging Quantum Computation and Chemistry
NASA Astrophysics Data System (ADS)
McClean, Jarrod Ryan
The design of new materials and chemicals derived entirely from computation has long been a goal of computational chemistry, and the governing equation whose solution would permit this dream is known. Unfortunately, the exact solution to this equation has been far too expensive and clever approximations fail in critical situations. Quantum computers offer a novel solution to this problem. In this work, we develop not only new algorithms to use quantum computers to study hard problems in chemistry, but also explore how such algorithms can help us to better understand and improve our traditional approaches. In particular, we first introduce a new method, the variational quantum eigensolver, which is designed to maximally utilize the quantum resources available in a device to solve chemical problems. We apply this method in a real quantum photonic device in the lab to study the dissociation of the helium hydride (HeH+) molecule. We also enhance this methodology with architecture specific optimizations on ion trap computers and show how linear-scaling techniques from traditional quantum chemistry can be used to improve the outlook of similar algorithms on quantum computers. We then show how studying quantum algorithms such as these can be used to understand and enhance the development of classical algorithms. In particular we use a tool from adiabatic quantum computation, Feynman's Clock, to develop a new discrete time variational principle and further establish a connection between real-time quantum dynamics and ground state eigenvalue problems. We use these tools to develop two novel parallel-in-time quantum algorithms that outperform competitive algorithms as well as offer new insights into the connection between the fermion sign problem of ground states and the dynamical sign problem of quantum dynamics. Finally we use insights gained in the study of quantum circuits to explore a general notion of sparsity in many-body quantum systems. In particular we use
Demonstration of blind quantum computing.
Barz, Stefanie; Kashefi, Elham; Broadbent, Anne; Fitzsimons, Joseph F; Zeilinger, Anton; Walther, Philip
2012-01-20
Quantum computers, besides offering substantial computational speedups, are also expected to preserve the privacy of a computation. We present an experimental demonstration of blind quantum computing in which the input, computation, and output all remain unknown to the computer. We exploit the conceptual framework of measurement-based quantum computation that enables a client to delegate a computation to a quantum server. Various blind delegated computations, including one- and two-qubit gates and the Deutsch and Grover quantum algorithms, are demonstrated. The client only needs to be able to prepare and transmit individual photonic qubits. Our demonstration is crucial for unconditionally secure quantum cloud computing and might become a key ingredient for real-life applications, especially when considering the challenges of making powerful quantum computers widely available.
Geometry and non-adiabatic response in quantum and classical systems
NASA Astrophysics Data System (ADS)
Kolodrubetz, Michael; Sels, Dries; Mehta, Pankaj; Polkovnikov, Anatoli
2017-06-01
In these lecture notes, partly based on a course taught at the Karpacz Winter School in March 2014, we explore the close connections between non-adiabatic response of a system with respect to macroscopic parameters and the geometry of quantum and classical states. We center our discussion around adiabatic gauge potentials, which are the generators of unitary basis transformations in quantum systems and generators of special canonical transformations in classical systems. In quantum systems, eigenstate expectation values of these potentials are the Berry connections and the covariance matrix of these gauge potentials is the geometric tensor, whose antisymmetric part defines the Berry curvature and whose symmetric part is the Fubini-Study metric tensor. In classical systems one simply replaces the eigenstate expectation value by an average over the micro-canonical shell. For complicated interacting systems, we show that a variational principle may be used to derive approximate gauge potentials. We then express the non-adiabatic response of the physical observables of the system through these gauge potentials, specifically demonstrating the close connection of the geometric tensor to the notions of Lorentz force and renormalized mass. We highlight applications of this formalism to deriving counter-diabatic (dissipationless) driving protocols in various systems, as well as to finding equations of motion for slow macroscopic parameters coupled to fast microscopic degrees of freedom that go beyond macroscopic Hamiltonian dynamics. Finally, we illustrate these ideas with a number of simple examples and highlight a few more complicated ones drawn from recent literature.
Undergraduate computational physics projects on quantum computing
NASA Astrophysics Data System (ADS)
Candela, D.
2015-08-01
Computational projects on quantum computing suitable for students in a junior-level quantum mechanics course are described. In these projects students write their own programs to simulate quantum computers. Knowledge is assumed of introductory quantum mechanics through the properties of spin 1/2. Initial, more easily programmed projects treat the basics of quantum computation, quantum gates, and Grover's quantum search algorithm. These are followed by more advanced projects to increase the number of qubits and implement Shor's quantum factoring algorithm. The projects can be run on a typical laptop or desktop computer, using most programming languages. Supplementing resources available elsewhere, the projects are presented here in a self-contained format especially suitable for a short computational module for physics students.
Hybrid annealing: Coupling a quantum simulator to a classical computer
NASA Astrophysics Data System (ADS)
Graß, Tobias; Lewenstein, Maciej
2017-05-01
Finding the global minimum in a rugged potential landscape is a computationally hard task, often equivalent to relevant optimization problems. Annealing strategies, either classical or quantum, explore the configuration space by evolving the system under the influence of thermal or quantum fluctuations. The thermal annealing dynamics can rapidly freeze the system into a low-energy configuration, and it can be simulated well on a classical computer, but it easily gets stuck in local minima. Quantum annealing, on the other hand, can be guaranteed to find the true ground state and can be implemented in modern quantum simulators; however, quantum adiabatic schemes become prohibitively slow in the presence of quasidegeneracies. Here, we propose a strategy which combines ideas from simulated annealing and quantum annealing. In such a hybrid algorithm, the outcome of a quantum simulator is processed on a classical device. While the quantum simulator explores the configuration space by repeatedly applying quantum fluctuations and performing projective measurements, the classical computer evaluates each configuration and enforces a lowering of the energy. We have simulated this algorithm for small instances of the random energy model, showing that it potentially outperforms both simulated thermal annealing and adiabatic quantum annealing. It becomes most efficient for problems involving many quasidegenerate ground states.
A subgradient approach for constrained binary optimization via quantum adiabatic evolution
NASA Astrophysics Data System (ADS)
Karimi, Sahar; Ronagh, Pooya
2017-08-01
Outer approximation method has been proposed for solving the Lagrangian dual of a constrained binary quadratic programming problem via quantum adiabatic evolution in the literature. This should be an efficient prescription for solving the Lagrangian dual problem in the presence of an ideally noise-free quantum adiabatic system. However, current implementations of quantum annealing systems demand methods that are efficient at handling possible sources of noise. In this paper, we consider a subgradient method for finding an optimal primal-dual pair for the Lagrangian dual of a constrained binary polynomial programming problem. We then study the quadratic stable set (QSS) problem as a case study. We see that this method applied to the QSS problem can be viewed as an instance-dependent penalty-term approach that avoids large penalty coefficients. Finally, we report our experimental results of using the D-Wave 2X quantum annealer and conclude that our approach helps this quantum processor to succeed more often in solving these problems compared to the usual penalty-term approaches.
Quantum computers: Definition and implementations
Perez-Delgado, Carlos A.; Kok, Pieter
2011-01-15
The DiVincenzo criteria for implementing a quantum computer have been seminal in focusing both experimental and theoretical research in quantum-information processing. These criteria were formulated specifically for the circuit model of quantum computing. However, several new models for quantum computing (paradigms) have been proposed that do not seem to fit the criteria well. Therefore, the question is what are the general criteria for implementing quantum computers. To this end, a formal operational definition of a quantum computer is introduced. It is then shown that, according to this definition, a device is a quantum computer if it obeys the following criteria: Any quantum computer must consist of a quantum memory, with an additional structure that (1) facilitates a controlled quantum evolution of the quantum memory; (2) includes a method for information theoretic cooling of the memory; and (3) provides a readout mechanism for subsets of the quantum memory. The criteria are met when the device is scalable and operates fault tolerantly. We discuss various existing quantum computing paradigms and how they fit within this framework. Finally, we present a decision tree for selecting an avenue toward building a quantum computer. This is intended to help experimentalists determine the most natural paradigm given a particular physical implementation.
Quantum computers: Definition and implementations
NASA Astrophysics Data System (ADS)
Pérez-Delgado, Carlos A.; Kok, Pieter
2011-01-01
The DiVincenzo criteria for implementing a quantum computer have been seminal in focusing both experimental and theoretical research in quantum-information processing. These criteria were formulated specifically for the circuit model of quantum computing. However, several new models for quantum computing (paradigms) have been proposed that do not seem to fit the criteria well. Therefore, the question is what are the general criteria for implementing quantum computers. To this end, a formal operational definition of a quantum computer is introduced. It is then shown that, according to this definition, a device is a quantum computer if it obeys the following criteria: Any quantum computer must consist of a quantum memory, with an additional structure that (1) facilitates a controlled quantum evolution of the quantum memory; (2) includes a method for information theoretic cooling of the memory; and (3) provides a readout mechanism for subsets of the quantum memory. The criteria are met when the device is scalable and operates fault tolerantly. We discuss various existing quantum computing paradigms and how they fit within this framework. Finally, we present a decision tree for selecting an avenue toward building a quantum computer. This is intended to help experimentalists determine the most natural paradigm given a particular physical implementation.
A Parallel Quantum Computer Simulator
2016-09-01
The unique principles of quantum mechanics may one day enable computers to perform operations that would be impossible on a classical computer...Although no one knows whether it will be possible to build a large-scale, functional, and stable quantum computer, researchers can study quantum- mechanical
Layered Architecture for Quantum Computing
NASA Astrophysics Data System (ADS)
Jones, N. Cody; Van Meter, Rodney; Fowler, Austin G.; McMahon, Peter L.; Kim, Jungsang; Ladd, Thaddeus D.; Yamamoto, Yoshihisa
2012-07-01
We develop a layered quantum-computer architecture, which is a systematic framework for tackling the individual challenges of developing a quantum computer while constructing a cohesive device design. We discuss many of the prominent techniques for implementing circuit-model quantum computing and introduce several new methods, with an emphasis on employing surface-code quantum error correction. In doing so, we propose a new quantum-computer architecture based on optical control of quantum dots. The time scales of physical-hardware operations and logical, error-corrected quantum gates differ by several orders of magnitude. By dividing functionality into layers, we can design and analyze subsystems independently, demonstrating the value of our layered architectural approach. Using this concrete hardware platform, we provide resource analysis for executing fault-tolerant quantum algorithms for integer factoring and quantum simulation, finding that the quantum-dot architecture we study could solve such problems on the time scale of days.
Quantum Computation Toward Quantum Gravity
NASA Astrophysics Data System (ADS)
Zizzi, P. A.
2001-08-01
The aim of this paper is to enlighten the emerging relevance of Quantum Information Theory in the field of Quantum Gravity. As it was suggested by J. A. Wheeler, information theory must play a relevant role in understanding the foundations of Quantum Mechanics (the "It from bit" proposal). Here we suggest that quantum information must play a relevant role in Quantum Gravity (the "It from qubit" proposal). The conjecture is that Quantum Gravity, the theory which will reconcile Quantum Mechanics with General Relativity, can be formulated in terms of quantum bits of information (qubits) stored in space at the Planck scale. This conjecture is based on the following arguments: a) The holographic principle, b) The loop quantum gravity approach and spin networks, c) Quantum geometry and black hole entropy. From the above arguments, as they stand in the literature, it follows that the edges of spin networks pierce the black hole horizon and excite curvature degrees of freedom on the surface. These excitations are micro-states of Chern-Simons theory and account of the black hole entropy which turns out to be a quarter of the area of the horizon, (in units of Planck area), in accordance with the holographic principle. Moreover, the states which dominate the counting correspond to punctures of spin j = 1/2 and one can in fact visualize each micro-state as a bit of information. The obvious generalization of this result is to consider open spin networks with edges labeled by the spin -1/ 2 representation of SU(2) in a superposed state of spin "on" and spin "down." The micro-state corresponding to such a puncture will be a pixel of area which is "on" and "off" at the same time, and it will encode a qubit of information. This picture, when applied to quantum cosmology, describes an early inflationary universe which is a discrete version of the de Sitter universe.
Quantum Walk Schemes for Universal Quantum Computation
NASA Astrophysics Data System (ADS)
Underwood, Michael S.
Random walks are a powerful tool for the efficient implementation of algorithms in classical computation. Their quantum-mechanical analogues, called quantum walks, hold similar promise. Quantum walks provide a model of quantum computation that has recently been shown to be equivalent in power to the standard circuit model. As in the classical case, quantum walks take place on graphs and can undergo discrete or continuous evolution, though quantum evolution is unitary and therefore deterministic until a measurement is made. This thesis considers the usefulness of continuous-time quantum walks to quantum computation from the perspectives of both their fundamental power under various formulations, and their applicability in practical experiments. In one extant scheme, logical gates are effected by scattering processes. The results of an exhaustive search for single-qubit operations in this model are presented. It is shown that the number of distinct operations increases exponentially with the number of vertices in the scattering graph. A catalogue of all graphs on up to nine vertices that implement single-qubit unitaries at a specific set of momenta is included in an appendix. I develop a novel scheme for universal quantum computation called the discontinuous quantum walk, in which a continuous-time quantum walker takes discrete steps of evolution via perfect quantum state transfer through small 'widget' graphs. The discontinuous quantum-walk scheme requires an exponentially sized graph, as do prior discrete and continuous schemes. To eliminate the inefficient vertex resource requirement, a computation scheme based on multiple discontinuous walkers is presented. In this model, n interacting walkers inhabiting a graph with 2n vertices can implement an arbitrary quantum computation on an input of length n, an exponential savings over previous universal quantum walk schemes. This is the first quantum walk scheme that allows for the application of quantum error correction
ADIABATIC MASS LOSS IN BINARY STARS. I. COMPUTATIONAL METHOD
Ge Hongwei; Chen Xuefei; Han Zhanwen; Webbink, Ronald F. E-mail: mshjell@gmail.co
2010-07-10
The asymptotic response of donor stars in interacting binary systems to very rapid mass loss is characterized by adiabatic expansion throughout their interiors. In this limit, energy generation and heat flow through the stellar interior can be neglected. We model this response by constructing model sequences, beginning with a donor star filling its Roche lobe at an arbitrary point in its evolution, holding its specific entropy and composition profiles fixed as mass is removed from the surface. The stellar interior remains in hydrostatic equilibrium. Luminosity profiles in these adiabatic models of mass-losing stars can be reconstructed from the specific entropy profiles and their gradients. These approximations are validated by comparison with time-dependent binary mass transfer calculations. We describe how adiabatic mass-loss sequences can be used to quantify threshold conditions for dynamical timescale mass transfer, and to establish the range of post-common envelope binaries that are allowed energetically. In dynamical timescale mass transfer, the adiabatic response of the donor star drives it to expand beyond its Roche lobe, leading to runaway mass transfer and the formation of a common envelope with its companion star. For donor stars with surface convection zones of any significant depth, this runaway condition is encountered early in mass transfer, if at all; but for main-sequence stars with radiative envelopes, it may be encountered after a prolonged phase of thermal timescale mass transfer, a so-called delayed dynamical instability. We identify the critical binary mass ratio for the onset of dynamical timescale mass transfer as that ratio for which the adiabatic response of the donor star radius to mass loss matches that of its Roche lobe at some point during mass transfer; if the ratio of donor to accretor masses exceeds this critical value, dynamical timescale mass transfer ensues. In common envelope evolution, the dissipation of orbital energy of the
NASA Astrophysics Data System (ADS)
Li, Yi-Chao; Chen, Xi
2016-12-01
Shortcuts to adiabaticity in various quantum systems have attracted much attention with their wide applications in quantum information processing and quantum control. In this paper, we concentrate on a stimulated Raman shortcut-to-adiabatic passage in quantum three-level systems. To implement counterdiabatic driving but without additional coupling, we first reduce the quantum three-level systems to effective two-level problems at large intermediate-level detuning, or on resonance, apply counterdiabatic driving along with the unitary transformation and eventually modify the pump and Stokes pulses for achieving fast and high-fidelity population transfer. The required laser intensity and stability against parameter variation are further discussed, to demonstrate the advantage of shortcuts to adiabaticity.
Quantum computing of semiclassical formulas.
Georgeot, B; Giraud, O
2008-04-01
We show that semiclassical formulas such as the Gutzwiller trace formula can be implemented on a quantum computer more efficiently than on a classical device. We give explicit quantum algorithms which yield quantum observables from classical trajectories, and which alternatively test the semiclassical approximation by computing classical actions from quantum evolution. The gain over classical computation is in general quadratic, and can be larger in some specific cases.
Adiabatic Quantum Search Scheme With Atoms In a Cavity Driven by Lasers
Daems, D.; Guerin, S.
2007-10-26
We propose an implementation of the quantum search algorithm of a marked item in an unsorted list of N items by adiabatic passage in a cavity-laser-atom system. We use an ensemble of N identical three-level atoms trapped in a single-mode cavity and driven by two lasers. In each atom, the same level represents a database entry. One of the atoms is marked by having an energy gap between its two ground states. Appropriate time delays between the two laser pulses allow one to populate the marked state starting from an initial entangled state within a decoherence-free adiabatic subspace. The time to achieve such a process is shown to exhibit the {radical}(N) Grover speedup.
Pulse-driven near-resonant quantum adiabatic dynamics: Lifting of quasidegeneracy
Yatsenko, L.P.; Guerin, S.; Jauslin, H.R.
2004-10-01
We study the quantum dynamics of a two-level system driven by a pulse that starts near-resonant for small amplitudes, yielding nonadiabatic evolution, and induces an adiabatic evolution for larger amplitudes. This problem is analyzed in terms of lifting of degeneracy for rising amplitudes. It is solved exactly for the case of linear and exponential rising. Approximate solutions are given in the case of power-law rising. This allows us to determine approximative formulas for the line shape of resonant excitation by various forms of pulses such as truncated trigonometric pulses. We also analyze and explain the various superpositions of states that can be obtained by the half Stark chirped rapid adiabatic passage process.
Quasi adiabatic dynamics of energy eigenstates for a solvable quantum system at finite temperature
NASA Astrophysics Data System (ADS)
Monnai, Takaaki
2017-09-01
It is a fundamental problem to characterize nonequilibrium processes. For a moving one-dimensional potential, we explore the nonequilibrium dynamics of the initial energy eigenstates for a confined quantum system interacting with a large reservoir. For concreteness, we investigate a dragged harmonic oscillator linearly interacting with an assembly of harmonic oscillators, and explore the deviation from adiabatic processes by rigorously calculating the so-called persistent amplitude. In particular, we show that the phase of the persistent amplitude is considered to be common both for the ground and excited states. Also, we can define the quasi adiabatic processes in a well-defined double limit of small perturbation and a sufficiently long time in terms of the phase and absolute value of the persistent amplitude.
Quantum Computing for Quantum Chemistry
2010-09-01
random walks as the decoherence became strong. Recent experiments on photosynthetic light -harvesting complexes observed long-lived excitonic coherences...by the light -harvesting complex. In Environment-assisted quantum walks in energy transfer of photosynthetic complexes, J. Chem. Phys. 129 (2008...a decohered quantum walk. Motivated by the experiments on the Fenna-Matthews-Olson (FMO) light -harvesting complex of green sulfur bacteria, we
Quantum computing on encrypted data.
Fisher, K A G; Broadbent, A; Shalm, L K; Yan, Z; Lavoie, J; Prevedel, R; Jennewein, T; Resch, K J
2014-01-01
The ability to perform computations on encrypted data is a powerful tool for protecting privacy. Recently, protocols to achieve this on classical computing systems have been found. Here, we present an efficient solution to the quantum analogue of this problem that enables arbitrary quantum computations to be carried out on encrypted quantum data. We prove that an untrusted server can implement a universal set of quantum gates on encrypted quantum bits (qubits) without learning any information about the inputs, while the client, knowing the decryption key, can easily decrypt the results of the computation. We experimentally demonstrate, using single photons and linear optics, the encryption and decryption scheme on a set of gates sufficient for arbitrary quantum computations. As our protocol requires few extra resources compared with other schemes it can be easily incorporated into the design of future quantum servers. These results will play a key role in enabling the development of secure distributed quantum systems.
Quantum computing on encrypted data
NASA Astrophysics Data System (ADS)
Fisher, K. A. G.; Broadbent, A.; Shalm, L. K.; Yan, Z.; Lavoie, J.; Prevedel, R.; Jennewein, T.; Resch, K. J.
2014-01-01
The ability to perform computations on encrypted data is a powerful tool for protecting privacy. Recently, protocols to achieve this on classical computing systems have been found. Here, we present an efficient solution to the quantum analogue of this problem that enables arbitrary quantum computations to be carried out on encrypted quantum data. We prove that an untrusted server can implement a universal set of quantum gates on encrypted quantum bits (qubits) without learning any information about the inputs, while the client, knowing the decryption key, can easily decrypt the results of the computation. We experimentally demonstrate, using single photons and linear optics, the encryption and decryption scheme on a set of gates sufficient for arbitrary quantum computations. As our protocol requires few extra resources compared with other schemes it can be easily incorporated into the design of future quantum servers. These results will play a key role in enabling the development of secure distributed quantum systems.
Quantum Computing's Classical Problem, Classical Computing's Quantum Problem
NASA Astrophysics Data System (ADS)
Van Meter, Rodney
2014-08-01
Tasked with the challenge to build better and better computers, quantum computing and classical computing face the same conundrum: the success of classical computing systems. Small quantum computing systems have been demonstrated, and intermediate-scale systems are on the horizon, capable of calculating numeric results or simulating physical systems far beyond what humans can do by hand. However, to be commercially viable, they must surpass what our wildly successful, highly advanced classical computers can already do. At the same time, those classical computers continue to advance, but those advances are now constrained by thermodynamics, and will soon be limited by the discrete nature of atomic matter and ultimately quantum effects. Technological advances benefit both quantum and classical machinery, altering the competitive landscape. Can we build quantum computing systems that out-compute classical systems capable of some logic gates per month? This article will discuss the interplay in these competing and cooperating technological trends.
NASA Astrophysics Data System (ADS)
Huo, Pengfei; Coker, David F.
2011-11-01
An approach for treating dissipative, non-adiabatic quantum dynamics in general model systems at finite temperature based on linearizing the density matrix evolution in the forward-backward path difference for the environment degrees of freedom is presented. We demonstrate that the approach can capture both short time coherent quantum dynamics and long time thermal equilibration in an application to excitation energy transfer in a model photosynthetic light harvesting complex. Results are also presented for some nonadiabatic scattering models which indicate that, even though the method is based on a "mean trajectory" like scheme, it can accurately capture electronic population branching through multiple avoided crossing regions and that the approach offers a robust and reliable way to treat quantum dynamical phenomena in a wide range of condensed phase applications.
Fluxon-controlled quantum computer
NASA Astrophysics Data System (ADS)
Fujii, Toshiyuki; Matsuo, Shigemasa; Hatakenaka, Noriyuki
2016-11-01
We propose a fluxon-controlled quantum computer incorporated with three-qubit quantum error correction using special gate operations, i.e. joint-phase and SWAP gate operations, inherent in capacitively coupled superconducting flux qubits. The proposed quantum computer acts exactly like a knitting machine at home.
Quantum computing with defects.
Weber, J R; Koehl, W F; Varley, J B; Janotti, A; Buckley, B B; Van de Walle, C G; Awschalom, D D
2010-05-11
Identifying and designing physical systems for use as qubits, the basic units of quantum information, are critical steps in the development of a quantum computer. Among the possibilities in the solid state, a defect in diamond known as the nitrogen-vacancy (NV(-1)) center stands out for its robustness--its quantum state can be initialized, manipulated, and measured with high fidelity at room temperature. Here we describe how to systematically identify other deep center defects with similar quantum-mechanical properties. We present a list of physical criteria that these centers and their hosts should meet and explain how these requirements can be used in conjunction with electronic structure theory to intelligently sort through candidate defect systems. To illustrate these points in detail, we compare electronic structure calculations of the NV(-1) center in diamond with those of several deep centers in 4H silicon carbide (SiC). We then discuss the proposed criteria for similar defects in other tetrahedrally coordinated semiconductors.
Quantum computing with defects
Weber, J. R.; Koehl, W. F.; Varley, J. B.; Janotti, A.; Buckley, B. B.; Van de Walle, C. G.; Awschalom, D. D.
2010-01-01
Identifying and designing physical systems for use as qubits, the basic units of quantum information, are critical steps in the development of a quantum computer. Among the possibilities in the solid state, a defect in diamond known as the nitrogen-vacancy (NV-1) center stands out for its robustness—its quantum state can be initialized, manipulated, and measured with high fidelity at room temperature. Here we describe how to systematically identify other deep center defects with similar quantum-mechanical properties. We present a list of physical criteria that these centers and their hosts should meet and explain how these requirements can be used in conjunction with electronic structure theory to intelligently sort through candidate defect systems. To illustrate these points in detail, we compare electronic structure calculations of the NV-1 center in diamond with those of several deep centers in 4H silicon carbide (SiC). We then discuss the proposed criteria for similar defects in other tetrahedrally coordinated semiconductors. PMID:20404195
Nonlinear charge and energy dynamics of an adiabatically driven interacting quantum dot
NASA Astrophysics Data System (ADS)
Romero, Javier I.; Roura-Bas, Pablo; Aligia, Armando A.; Arrachea, Liliana
2017-06-01
We formulate a general theory to study the time-dependent charge and energy transport of an adiabatically driven interacting quantum dot in contact with a reservoir for arbitrary amplitudes of the driving potential. We study within this framework the Anderson impurity model with a local ac gate voltage. We show that the exact adiabatic quantum dynamics of this system is fully determined by the behavior of the charge susceptibility of the frozen problem. At T =0 , we evaluate the dynamic response functions with the numerical renormalization group (NRG). The time-resolved heat production exhibits a pronounced feature described by an instantaneous Joule law characterized by a universal Büttiker resistance quantum R0=h /(2 e2) for each spin channel. We show that this law holds in the noninteracting as well as in the interacting system and also when the system is spin polarized. In addition, in the presence of a static magnetic field, the interplay between many-body interactions and spin polarization leads to a nontrivial energy exchange between electrons with different spin components.
Quantum computing: Efficient fault tolerance
NASA Astrophysics Data System (ADS)
Gottesman, Daniel
2016-12-01
Dealing with errors in a quantum computer typically requires complex programming and many additional quantum bits. A technique for controlling errors has been proposed that alleviates both of these problems.
Open Quantum Walks and Dissipative Quantum Computing
NASA Astrophysics Data System (ADS)
Petruccione, Francesco
2012-02-01
Open Quantum Walks (OQWs) have been recently introduced as quantum Markov chains on graphs [S. Attal, F. Petruccione, C. Sabot, and I. Sinayskiy, E-print: http://hal.archives-ouvertes.fr/hal-00581553/fr/]. The formulation of the OQWs is exclusively based upon the non-unitary dynamics induced by the environment. It will be shown that OQWs are a very useful tool for the formulation of dissipative quantum computing and quantum state preparation. In particular, it will be shown how to implement single qubit gates and the CNOT gate as OQWs on fully connected graphs. Also, OQWS make possible the dissipative quantum state preparation of arbitrary single qubit states and of all two-qubit Bell states. Finally, it will be shown how to reformulate efficiently a discrete time version of dissipative quantum computing in the language of OQWs.
Parallelizable adiabatic gate teleportation
NASA Astrophysics Data System (ADS)
Nakago, Kosuke; Hajdušek, Michal; Nakayama, Shojun; Murao, Mio
2015-12-01
To investigate how a temporally ordered gate sequence can be parallelized in adiabatic implementations of quantum computation, we modify adiabatic gate teleportation, a model of quantum computation proposed by Bacon and Flammia [Phys. Rev. Lett. 103, 120504 (2009), 10.1103/PhysRevLett.103.120504], to a form deterministically simulating parallelized gate teleportation, which is achievable only by postselection. We introduce a twisted Heisenberg-type interaction Hamiltonian, a Heisenberg-type spin interaction where the coordinates of the second qubit are twisted according to a unitary gate. We develop parallelizable adiabatic gate teleportation (PAGT) where a sequence of unitary gates is performed in a single step of the adiabatic process. In PAGT, numeric calculations suggest the necessary time for the adiabatic evolution implementing a sequence of L unitary gates increases at most as O (L5) . However, we show that it has the interesting property that it can map the temporal order of gates to the spatial order of interactions specified by the final Hamiltonian. Using this property, we present a controlled-PAGT scheme to manipulate the order of gates by a control qubit. In the controlled-PAGT scheme, two differently ordered sequential unitary gates F G and G F are coherently performed depending on the state of a control qubit by simultaneously applying the twisted Heisenberg-type interaction Hamiltonians implementing unitary gates F and G . We investigate why the twisted Heisenberg-type interaction Hamiltonian allows PAGT. We show that the twisted Heisenberg-type interaction Hamiltonian has an ability to perform a transposed unitary gate by just modifying the space ordering of the final Hamiltonian implementing a unitary gate in adiabatic gate teleportation. The dynamics generated by the time-reversed Hamiltonian represented by the transposed unitary gate enables deterministic simulation of a postselected event of parallelized gate teleportation in adiabatic
Duality quantum computer and the efficient quantum simulations
NASA Astrophysics Data System (ADS)
Wei, Shijie; Long, Guilu; Tsinghua National LaboratoryInformation Science; Technology Collaboration; Collaborative Innovation Center of Quantum Matter Collaboration
Duality quantum computer is a new kind of quantum computer which is able to perform an arbitrary sum of unitaries, and therefore a general quantum operator. This gives more computational power than a normal quantum computer. All linear bounded operators can be realized in a duality quantum computer, and unitary operators are just the extreme points of the set of generalized quantum gates. Duality quantum computer can provide flexibility and clear physical picture in designing quantum algorithms, serving as a useful bridge between quantum and classical algorithms. In this report, we will firstly briefly review the theory of duality quantum computer. Then we will introduce the application of duality quantum computer in Hamiltonian simulation. We will show that duality quantum computer can simulate quantum systems more efficiently than ordinary quantum computer by providing descriptions of the recent efficient quantum simulation algorithms.
Quantum Computing and Second Quantization
Makaruk, Hanna Ewa
2017-02-10
Quantum computers are by their nature many particle quantum systems. Both the many-particle arrangement and being quantum are necessary for the existence of the entangled states, which are responsible for the parallelism of the quantum computers. Second quantization is a very important approximate method of describing such systems. This lecture will present the general idea of the second quantization, and discuss shortly some of the most important formulations of second quantization.
Interfacing external quantum devices to a universal quantum computer.
Lagana, Antonio A; Lohe, Max A; von Smekal, Lorenz
2011-01-01
We present a scheme to use external quantum devices using the universal quantum computer previously constructed. We thereby show how the universal quantum computer can utilize networked quantum information resources to carry out local computations. Such information may come from specialized quantum devices or even from remote universal quantum computers. We show how to accomplish this by devising universal quantum computer programs that implement well known oracle based quantum algorithms, namely the Deutsch, Deutsch-Jozsa, and the Grover algorithms using external black-box quantum oracle devices. In the process, we demonstrate a method to map existing quantum algorithms onto the universal quantum computer.
Benabbas, Abdelkrim; Salna, Bridget; Sage, J Timothy; Champion, Paul M
2015-03-21
Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical "gating" distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotope effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working near
Benabbas, Abdelkrim; Salna, Bridget; Sage, J. Timothy; Champion, Paul M.
2015-03-21
Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical “gating” distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotope effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working
Towards quantum chemistry on a quantum computer.
Lanyon, B P; Whitfield, J D; Gillett, G G; Goggin, M E; Almeida, M P; Kassal, I; Biamonte, J D; Mohseni, M; Powell, B J; Barbieri, M; Aspuru-Guzik, A; White, A G
2010-02-01
Exact first-principles calculations of molecular properties are currently intractable because their computational cost grows exponentially with both the number of atoms and basis set size. A solution is to move to a radically different model of computing by building a quantum computer, which is a device that uses quantum systems themselves to store and process data. Here we report the application of the latest photonic quantum computer technology to calculate properties of the smallest molecular system: the hydrogen molecule in a minimal basis. We calculate the complete energy spectrum to 20 bits of precision and discuss how the technique can be expanded to solve large-scale chemical problems that lie beyond the reach of modern supercomputers. These results represent an early practical step toward a powerful tool with a broad range of quantum-chemical applications.
Short Introduction to Quantum Computation
2007-11-02
below. A second type of computing, introduced by Richard Feynman [3, 4], has been termed quantum computing where two-level quantum objects, such as spin...Cellular-automata supercomputers for fluid-dynamics modeling. Physical Review Let- ters, 56(16):1694–1696, 1986. [3] Richard P. Feynman . Simulating...physics with computers. International Journal of Theoretical Physics, 21(6/7):467–488, 1982. [4] Richard P. Feynman . Quantum mechanical com- puters
Spin Glass a Bridge Between Quantum Computation and Statistical Mechanics
NASA Astrophysics Data System (ADS)
Ohzeki, Masayuki
2013-09-01
quantum annealing. The most typical instance is quantum adiabatic computation based on the adiabatic theorem. The quantum adiabatic computation as discussed in the other chapter, unfortunately, has a crucial bottleneck for a part of the optimization problems. We here introduce several recent trials to overcome such a weakpoint by use of developments in statistical mechanics. Through both of the topics, we would shed light on the birth of the interdisciplinary field between quantum mechanics and statistical mechanics.
Spectral-gap analysis for efficient tunneling in quantum adiabatic optimization
NASA Astrophysics Data System (ADS)
Brady, Lucas T.; van Dam, Wim
2016-09-01
We investigate the efficiency of quantum adiabatic optimization when overcoming potential barriers to get from a local to a global minimum. Specifically we look at n qubit systems with symmetric cost functions f :{0,1 } n→R , where the ground state must tunnel through a potential barrier of width nα and height nβ. By the quantum adiabatic theorem the time delay sufficient to ensure tunneling grows quadratically with the inverse spectral gap during this tunneling process. We analyze barrier sizes with 1 /2 ≤α +β and α <1 /2 and show that the minimum gap scales polynomially as n1 /2 -α -β when 2 α +β ≤1 and exponentially as n-β /2exp(-C n(2 α +β -1 )/2) when 1 <2 α +β . Our proof uses elementary techniques and confirms and extends an unpublished folklore result by Goldstone from 2002, which used large spin and instanton methods. Parts of our result also refine recent results by Kong and Crosson [arXiv:1511.06991] and Jiang et al. [arXiv:1603.01293] about the exponential gap scaling.
Hoang, Thai M; Bharath, Hebbe M; Boguslawski, Matthew J; Anquez, Martin; Robbins, Bryce A; Chapman, Michael S
2016-08-23
Spontaneous symmetry breaking occurs in a physical system whenever the ground state does not share the symmetry of the underlying theory, e.g., the Hamiltonian. This mechanism gives rise to massless Nambu-Goldstone modes and massive Anderson-Higgs modes. These modes provide a fundamental understanding of matter in the Universe and appear as collective phase or amplitude excitations of an order parameter in a many-body system. The amplitude excitation plays a crucial role in determining the critical exponents governing universal nonequilibrium dynamics in the Kibble-Zurek mechanism (KZM). Here, we characterize the amplitude excitations in a spin-1 condensate and measure the energy gap for different phases of the quantum phase transition. At the quantum critical point of the transition, finite-size effects lead to a nonzero gap. Our measurements are consistent with this prediction, and furthermore, we demonstrate an adiabatic quench through the phase transition, which is forbidden at the mean field level. This work paves the way toward generating entanglement through an adiabatic phase transition.
NASA Astrophysics Data System (ADS)
Hoang, Thai M.; Bharath, Hebbe M.; Boguslawski, Matthew J.; Anquez, Martin; Robbins, Bryce A.; Chapman, Michael S.
2016-08-01
Spontaneous symmetry breaking occurs in a physical system whenever the ground state does not share the symmetry of the underlying theory, e.g., the Hamiltonian. This mechanism gives rise to massless Nambu-Goldstone modes and massive Anderson-Higgs modes. These modes provide a fundamental understanding of matter in the Universe and appear as collective phase or amplitude excitations of an order parameter in a many-body system. The amplitude excitation plays a crucial role in determining the critical exponents governing universal nonequilibrium dynamics in the Kibble-Zurek mechanism (KZM). Here, we characterize the amplitude excitations in a spin-1 condensate and measure the energy gap for different phases of the quantum phase transition. At the quantum critical point of the transition, finite-size effects lead to a nonzero gap. Our measurements are consistent with this prediction, and furthermore, we demonstrate an adiabatic quench through the phase transition, which is forbidden at the mean field level. This work paves the way toward generating entanglement through an adiabatic phase transition.
Hoang, Thai M.; Bharath, Hebbe M.; Boguslawski, Matthew J.; Anquez, Martin; Robbins, Bryce A.; Chapman, Michael S.
2016-01-01
Spontaneous symmetry breaking occurs in a physical system whenever the ground state does not share the symmetry of the underlying theory, e.g., the Hamiltonian. This mechanism gives rise to massless Nambu–Goldstone modes and massive Anderson–Higgs modes. These modes provide a fundamental understanding of matter in the Universe and appear as collective phase or amplitude excitations of an order parameter in a many-body system. The amplitude excitation plays a crucial role in determining the critical exponents governing universal nonequilibrium dynamics in the Kibble–Zurek mechanism (KZM). Here, we characterize the amplitude excitations in a spin-1 condensate and measure the energy gap for different phases of the quantum phase transition. At the quantum critical point of the transition, finite-size effects lead to a nonzero gap. Our measurements are consistent with this prediction, and furthermore, we demonstrate an adiabatic quench through the phase transition, which is forbidden at the mean field level. This work paves the way toward generating entanglement through an adiabatic phase transition. PMID:27503886
Towards Quantum Computing With Light
NASA Astrophysics Data System (ADS)
Pysher, Matthew
This thesis presents experimental progress towards the realization of an optical quantum computer. Quantum computers replace the bits used in classical computing with quantum systems and promise an exponential speedup over their classical counterparts for certain tasks such as integer factoring and the simulation of quantum systems. A recently proposed quantum computing protocol known as one-way quantum computing has paved the way for the use of light in a functional quantum computer. One-way quantum computing calls for the generation of a large (consisting of many subsystems) entangled state known as a cluster state to serve as a quantum register. Entangled states are comprised of subsystems linked in such a way that the state cannot be separated into individual components. A recent proposal has shown that is possible to make arbitrarily large cluster states by linking the resonant frequency modes of a single optical parametric oscillator (OPO). In this thesis, we present two major steps towards the creation of such a cluster state. Namely, we successfully design and test the exotic nonlinear crystal needed in this proposal and use a slight variation on this proposal to simultaneously create over 15 four-mode cluster states in a single OPO. We also explore the possibility of scaling down the physical size of an optical quantum computer by generating squeezed states of light in a compact optical waveguide. Additionally, we investigate photon-number-resolving measurements on continuous quantum light sources, which will be necessary to obtain the desired speedups for a quantum computer over a classical computer.
Quantum Nash Equilibria and Quantum Computing
NASA Astrophysics Data System (ADS)
Fellman, Philip Vos; Post, Jonathan Vos
In 2004, At the Fifth International Conference on Complex Systems, we drew attention to some remarkable findings by researchers at the Santa Fe Institute (Sato, Farmer and Akiyama, 2001) about hitherto unsuspected complexity in the Nash Equilibrium. As we progressed from these findings about heteroclinic Hamiltonians and chaotic transients hidden within the learning patterns of the simple rock-paper-scissors game to some related findings on the theory of quantum computing, one of the arguments we put forward was just as in the late 1990's a number of new Nash equilibria were discovered in simple bi-matrix games (Shubik and Quint, 1996; Von Stengel, 1997, 2000; and McLennan and Park, 1999) we would begin to see new Nash equilibria discovered as the result of quantum computation. While actual quantum computers remain rather primitive (Toibman, 2004), and the theory of quantum computation seems to be advancing perhaps a bit more slowly than originally expected, there have, nonetheless, been a number of advances in computation and some more radical advances in an allied field, quantum game theory (Huberman and Hogg, 2004) which are quite significant. In the course of this paper we will review a few of these discoveries and illustrate some of the characteristics of these new "Quantum Nash Equilibria". The full text of this research can be found at http://necsi.org/events/iccs6/viewpaper.php?id-234
Causo, Maria Serena; Ciccotti, Giovanni; Montemayor, Daniel; Bonella, Sara; Coker, David F
2005-04-14
We generalize the linearized path integral approach to evaluate quantum time correlation functions for systems best described by a set of nuclear and electronic degrees of freedom, restricting ourselves to the adiabatic approximation. If the operators in the correlation function are nondiagonal in the electronic states, then this adiabatic linearized path integral approximation for the thermal averaged quantum dynamics presents interesting and distinctive features, which we derive and explore in this paper. The capability of these approximations to accurately reproduce the behavior of physical systems is demonstrated by calculating the diffusion constant for an excess electron in a metal-molten salt solution.
Simulating chemistry using quantum computers.
Kassal, Ivan; Whitfield, James D; Perdomo-Ortiz, Alejandro; Yung, Man-Hong; Aspuru-Guzik, Alán
2011-01-01
The difficulty of simulating quantum systems, well known to quantum chemists, prompted the idea of quantum computation. One can avoid the steep scaling associated with the exact simulation of increasingly large quantum systems on conventional computers, by mapping the quantum system to another, more controllable one. In this review, we discuss to what extent the ideas in quantum computation, now a well-established field, have been applied to chemical problems. We describe algorithms that achieve significant advantages for the electronic-structure problem, the simulation of chemical dynamics, protein folding, and other tasks. Although theory is still ahead of experiment, we outline recent advances that have led to the first chemical calculations on small quantum information processors.
Algorithms on ensemble quantum computers.
Boykin, P Oscar; Mor, Tal; Roychowdhury, Vwani; Vatan, Farrokh
2010-06-01
In ensemble (or bulk) quantum computation, all computations are performed on an ensemble of computers rather than on a single computer. Measurements of qubits in an individual computer cannot be performed; instead, only expectation values (over the complete ensemble of computers) can be measured. As a result of this limitation on the model of computation, many algorithms cannot be processed directly on such computers, and must be modified, as the common strategy of delaying the measurements usually does not resolve this ensemble-measurement problem. Here we present several new strategies for resolving this problem. Based on these strategies we provide new versions of some of the most important quantum algorithms, versions that are suitable for implementing on ensemble quantum computers, e.g., on liquid NMR quantum computers. These algorithms are Shor's factorization algorithm, Grover's search algorithm (with several marked items), and an algorithm for quantum fault-tolerant computation. The first two algorithms are simply modified using a randomizing and a sorting strategies. For the last algorithm, we develop a classical-quantum hybrid strategy for removing measurements. We use it to present a novel quantum fault-tolerant scheme. More explicitly, we present schemes for fault-tolerant measurement-free implementation of Toffoli and σ(z)(¼) as these operations cannot be implemented "bitwise", and their standard fault-tolerant implementations require measurement.
Error suppression for Hamiltonian quantum computing in Markovian environments
NASA Astrophysics Data System (ADS)
Marvian, Milad; Lidar, Daniel A.
2017-03-01
Hamiltonian quantum computing, such as the adiabatic and holonomic models, can be protected against decoherence using an encoding into stabilizer subspace codes for error detection and the addition of energy penalty terms. This method has been widely studied since it was first introduced by Jordan, Farhi, and Shor (JFS) in the context of adiabatic quantum computing. Here, we extend the original result to general Markovian environments, not necessarily in Lindblad form. We show that the main conclusion of the original JFS study holds under these general circumstances: Assuming a physically reasonable bath model, it is possible to suppress the initial decay out of the encoded ground state with an energy penalty strength that grows only logarithmically in the system size, at a fixed temperature.
Quantum Computing: Solving Complex Problems
DiVincenzo, David [IBM Watson Research Center
2016-07-12
One of the motivating ideas of quantum computation was that there could be a new kind of machine that would solve hard problems in quantum mechanics. There has been significant progress towards the experimental realization of these machines (which I will review), but there are still many questions about how such a machine could solve computational problems of interest in quantum physics. New categorizations of the complexity of computational problems have now been invented to describe quantum simulation. The bad news is that some of these problems are believed to be intractable even on a quantum computer, falling into a quantum analog of the NP class. The good news is that there are many other new classifications of tractability that may apply to several situations of physical interest.
Molecular Magnets for Quantum Computation
NASA Astrophysics Data System (ADS)
Kuroda, Takayoshi
2009-06-01
We review recent progress in molecular magnets especially in the viewpoint of the application for quantum computing. After a brief introduction to single-molecule magnets (SMMs), a method for qubit manipulation by using non-equidistant spin sublevels of a SMM will be introduced. A weakly-coupled dimer of two SMMs is also a candidate for quantum computing, which shows no quantum tunneling of magnetization (QTM) at zero field. In the AF ring Cr7Ni system, the large tunnel splitting is a great advantage to reduce decoherence during manipulation, which can be a possible candidate to realize quantum computer devices in future.
Quasicrystals and Quantum Computing
NASA Astrophysics Data System (ADS)
Berezin, Alexander A.
1997-03-01
In Quantum (Q) Computing qubits form Q-superpositions for macroscopic times. One scheme for ultra-fast (Q) computing can be based on quasicrystals. Ultrafast processing in Q-coherent structures (and the very existence of durable Q-superpositions) may be 'consequence' of presence of entire manifold of integer arithmetic (A0, aleph-naught of Georg Cantor) at any 4-point of space-time, furthermore, at any point of any multidimensional phase space of (any) N-particle Q-system. The latter, apart from quasicrystals, can include dispersed and/or diluted systems (Berezin, 1994). In such systems such alleged centrepieces of Q-Computing as ability for fast factorization of long integers can be processed by sheer virtue of the fact that entire infinite pattern of prime numbers is instantaneously available as 'free lunch' at any instant/point. Infinitely rich pattern of A0 (including pattern of primes and almost primes) acts as 'independent' physical effect which directly generates Q-dynamics (and physical world) 'out of nothing'. Thus Q-nonlocality can be ultimately based on instantaneous interconnectedness through ever- the-same structure of A0 ('Platonic field' of integers).
Quantum Photonics Beyond Conventional Computing
2015-07-10
computational task making it a key application of quantum technology for chemistry , biology and material science. In contrast to a digital simulation on a...AFRL-AFOSR-UK-TR-2015-0045 Quantum Photonics Beyond Conventional Computing Jeremy OBrien THE UNIVERSITY OF BRISTOL 07/10/2015 Final Report...2015 2. REPORT TYPE Final 3. DATES COVERED (From – To) 15 Mar 2012 – 15 Mar 2015 4. TITLE AND SUBTITLE Quantum Photonics Beyond Conventional
Geometric methods in quantum computation
NASA Astrophysics Data System (ADS)
Zhang, Jun
Recent advances in the physical sciences and engineering have created great hopes for new computational paradigms and substrates. One such new approach is the quantum computer, which holds the promise of enhanced computational power. Analogous to the way a classical computer is built from electrical circuits containing wires and logic gates, a quantum computer is built from quantum circuits containing quantum wires and elementary quantum gates to transport and manipulate quantum information. Therefore, design of quantum gates and quantum circuits is a prerequisite for any real application of quantum computation. In this dissertation we apply geometric control methods from differential geometry and Lie group representation theory to analyze the properties of quantum gates and to design optimal quantum circuits. Using the Cartan decomposition and the Weyl group, we show that the geometric structure of nonlocal two-qubit gates is a 3-Torus. After further reducing the symmetry, the geometric representation of nonlocal gates is seen to be conveniently visualized as a tetrahedron. Each point in this tetrahedron except on the base corresponds to a different equivalent class of nonlocal gates. This geometric representation is one of the cornerstones for the discussion on quantum computation in this dissertation. We investigate the properties of those two-qubit operations that can generate maximal entanglement. It is an astonishing finding that if we randomly choose a two-qubit operation, the probability that we obtain a perfect entangler is exactly one half. We prove that given a two-body interaction Hamiltonian, it is always possible to explicitly construct a quantum circuit for exact simulation of any arbitrary nonlocal two-qubit gate by turning on the two-body interaction for at most three times, together with at most four local gates. We also provide an analytic approach to construct a universal quantum circuit from any entangling gate supplemented with local gates
Efficient Universal Blind Quantum Computation
NASA Astrophysics Data System (ADS)
Giovannetti, Vittorio; Maccone, Lorenzo; Morimae, Tomoyuki; Rudolph, Terry G.
2013-12-01
We give a cheat sensitive protocol for blind universal quantum computation that is efficient in terms of computational and communication resources: it allows one party to perform an arbitrary computation on a second party’s quantum computer without revealing either which computation is performed, or its input and output. The first party’s computational capabilities can be extremely limited: she must only be able to create and measure single-qubit superposition states. The second party is not required to use measurement-based quantum computation. The protocol requires the (optimal) exchange of O(Jlog2(N)) single-qubit states, where J is the computational depth and N is the number of qubits needed for the computation.
Efficient universal blind quantum computation.
Giovannetti, Vittorio; Maccone, Lorenzo; Morimae, Tomoyuki; Rudolph, Terry G
2013-12-06
We give a cheat sensitive protocol for blind universal quantum computation that is efficient in terms of computational and communication resources: it allows one party to perform an arbitrary computation on a second party's quantum computer without revealing either which computation is performed, or its input and output. The first party's computational capabilities can be extremely limited: she must only be able to create and measure single-qubit superposition states. The second party is not required to use measurement-based quantum computation. The protocol requires the (optimal) exchange of O(Jlog2(N)) single-qubit states, where J is the computational depth and N is the number of qubits needed for the computation.
Wang, Li; Tu, Tao; Gong, Bo; Zhou, Cheng; Guo, Guang-Can
2016-01-01
High fidelity universal gates for quantum bits form an essential ingredient of quantum information processing. In particular, geometric gates have attracted attention because they have a higher intrinsic resistance to certain errors. However, their realization remains a challenge because of the need for complicated quantum control on a multi-level structure as well as meeting the adiabatic condition within a short decoherence time. Here, we demonstrate non-adiabatic quantum operations for a two-level system by applying a well-controlled geometric Landau-Zener-Stückelberg interferometry. By characterizing the gate quality, we also investigate the operation in the presence of realistic dephasing. Furthermore, the result provides an essential model suitable for understanding an interplay of geometric phase and Landau-Zener-Stückelberg process which are well explored separately. PMID:26738875
Wang, Li; Tu, Tao; Gong, Bo; Zhou, Cheng; Guo, Guang-Can
2016-01-07
High fidelity universal gates for quantum bits form an essential ingredient of quantum information processing. In particular, geometric gates have attracted attention because they have a higher intrinsic resistance to certain errors. However, their realization remains a challenge because of the need for complicated quantum control on a multi-level structure as well as meeting the adiabatic condition within a short decoherence time. Here, we demonstrate non-adiabatic quantum operations for a two-level system by applying a well-controlled geometric Landau-Zener-Stückelberg interferometry. By characterizing the gate quality, we also investigate the operation in the presence of realistic dephasing. Furthermore, the result provides an essential model suitable for understanding an interplay of geometric phase and Landau-Zener-Stückelberg process which are well explored separately.
NASA Astrophysics Data System (ADS)
Wang, Li; Tu, Tao; Gong, Bo; Zhou, Cheng; Guo, Guang-Can
2016-01-01
High fidelity universal gates for quantum bits form an essential ingredient of quantum information processing. In particular, geometric gates have attracted attention because they have a higher intrinsic resistance to certain errors. However, their realization remains a challenge because of the need for complicated quantum control on a multi-level structure as well as meeting the adiabatic condition within a short decoherence time. Here, we demonstrate non-adiabatic quantum operations for a two-level system by applying a well-controlled geometric Landau-Zener-Stückelberg interferometry. By characterizing the gate quality, we also investigate the operation in the presence of realistic dephasing. Furthermore, the result provides an essential model suitable for understanding an interplay of geometric phase and Landau-Zener-Stückelberg process which are well explored separately.
Quantum Computing and High Performance Computing
2006-12-01
any hardware device. 15. SUBJECT TERMS Quantum Computing, FPGA, Quantum Computer Simulator, Paralelize 16. SECURITY CLASSIFICATION OF: 19a. NAME OF...Case Figure 2 repeatedly references a specific unitary operator—the CNot gate. The definition of the CNot, and any other gate elements that may...standard gate definition , we can reduce the general problem to the specific problem of simulating a gate in standard position, producing the
Toward a superconducting quantum computer
Tsai, Jaw-Shen
2010-01-01
Intensive research on the construction of superconducting quantum computers has produced numerous important achievements. The quantum bit (qubit), based on the Josephson junction, is at the heart of this research. This macroscopic system has the ability to control quantum coherence. This article reviews the current state of quantum computing as well as its history, and discusses its future. Although progress has been rapid, the field remains beset with unsolved issues, and there are still many new research opportunities open to physicists and engineers. PMID:20431256
Quantum Information and Computing
NASA Astrophysics Data System (ADS)
Accardi, L.; Ohya, Masanori; Watanabe, N.
2006-03-01
Preface -- Coherent quantum control of [symbol]-atoms through the stochastic limit / L. Accardi, S. V. Kozyrev and A. N. Pechen -- Recent advances in quantum white noise calculus / L. Accardi and A. Boukas -- Control of quantum states by decoherence / L. Accardi and K. Imafuku -- Logical operations realized on the Ising chain of N qubits / M. Asano, N. Tateda and C. Ishii -- Joint extension of states of fermion subsystems / H. Araki -- Quantum filtering and optimal feedback control of a Gaussian quantum free particle / S. C. Edwards and V. P. Belavkin -- On existence of quantum zeno dynamics / P. Exner and T. Ichinose -- Invariant subspaces and control of decoherence / P. Facchi, V. L. Lepore and S. Pascazio -- Clauser-Horner inequality for electron counting statistics in multiterminal mesoscopic conductors / L. Faoro, F. Taddei and R. Fazio -- Fidelity of quantum teleportation model using beam splittings / K.-H. Fichtner, T. Miyadera and M. Ohya -- Quantum logical gates realized by beam splittings / W. Freudenberg ... [et al.] -- Information divergence for quantum channels / S. J. Hammersley and V. P. Belavkin -- On the uniqueness theorem in quantum information geometry / H. Hasegawa -- Noncanonical representations of a multi-dimensional Brownian motion / Y. Hibino -- Some of future directions of white noise theory / T. Hida -- Information, innovation and elemental random field / T. Hida -- Generalized quantum turing machine and its application to the SAT chaos algorithm / S. Iriyama, M. Ohya and I. Volovich -- A Stroboscopic approach to quantum tomography / A. Jamiolkowski -- Positive maps and separable states in matrix algebras / A. Kossakowski -- Simulating open quantum systems with trapped ions / S. Maniscalco -- A purification scheme and entanglement distillations / H. Nakazato, M. Unoki and K. Yuasa -- Generalized sectors and adjunctions to control micro-macro transitions / I. Ojima -- Saturation of an entropy bound and quantum Markov states / D. Petz -- An
Insecurity of quantum secure computations
NASA Astrophysics Data System (ADS)
Lo, Hoi-Kwong
1997-08-01
It had been widely claimed that quantum mechanics can protect private information during public decision in, for example, the so-called two-party secure computation. If this were the case, quantum smart-cards, storing confidential information accessible only to a proper reader, could prevent fake teller machines from learning the PIN (personal identification number) from the customers' input. Although such optimism has been challenged by the recent surprising discovery of the insecurity of the so-called quantum bit commitment, the security of quantum two-party computation itself remains unaddressed. Here I answer this question directly by showing that all one-sided two-party computations (which allow only one of the two parties to learn the result) are necessarily insecure. As corollaries to my results, quantum one-way oblivious password identification and the so-called quantum one-out-of-two oblivious transfer are impossible. I also construct a class of functions that cannot be computed securely in any two-sided two-party computation. Nevertheless, quantum cryptography remains useful in key distribution and can still provide partial security in ``quantum money'' proposed by Wiesner.
Cryptography, quantum computation and trapped ions
Hughes, Richard J.
1998-03-01
The significance of quantum computation for cryptography is discussed. Following a brief survey of the requirements for quantum computational hardware, an overview of the ion trap quantum computation project at Los Alamos is presented. The physical limitations to quantum computation with trapped ions are analyzed and an assessment of the computational potential of the technology is made.
Universal blind quantum computation for hybrid system
NASA Astrophysics Data System (ADS)
Huang, He-Liang; Bao, Wan-Su; Li, Tan; Li, Feng-Guang; Fu, Xiang-Qun; Zhang, Shuo; Zhang, Hai-Long; Wang, Xiang
2017-08-01
As progress on the development of building quantum computer continues to advance, first-generation practical quantum computers will be available for ordinary users in the cloud style similar to IBM's Quantum Experience nowadays. Clients can remotely access the quantum servers using some simple devices. In such a situation, it is of prime importance to keep the security of the client's information. Blind quantum computation protocols enable a client with limited quantum technology to delegate her quantum computation to a quantum server without leaking any privacy. To date, blind quantum computation has been considered only for an individual quantum system. However, practical universal quantum computer is likely to be a hybrid system. Here, we take the first step to construct a framework of blind quantum computation for the hybrid system, which provides a more feasible way for scalable blind quantum computation.
Quantum Estimation, meet Computational Statistics; Computational Statistics, meet Quantum Estimation
NASA Astrophysics Data System (ADS)
Ferrie, Chris; Granade, Chris; Combes, Joshua
2013-03-01
Quantum estimation, that is, post processing data to obtain classical descriptions of quantum states and processes, is an intractable problem--scaling exponentially with the number of interacting systems. Thankfully there is an entire field, Computational Statistics, devoted to designing algorithms to estimate probabilities for seemingly intractable problems. So, why not look to the most advanced machine learning algorithms for quantum estimation tasks? We did. I'll describe how we adapted and combined machine learning methodologies to obtain an online learning algorithm designed to estimate quantum states and processes.
Quantum computation using geometric algebra
NASA Astrophysics Data System (ADS)
Matzke, Douglas James
This dissertation reports that arbitrary Boolean logic equations and operators can be represented in geometric algebra as linear equations composed entirely of orthonormal vectors using only addition and multiplication Geometric algebra is a topologically based algebraic system that naturally incorporates the inner and anticommutative outer products into a real valued geometric product, yet does not rely on complex numbers or matrices. A series of custom tools was designed and built to simplify geometric algebra expressions into a standard sum of products form, and automate the anticommutative geometric product and operations. Using this infrastructure, quantum bits (qubits), quantum registers and EPR-bits (ebits) are expressed symmetrically as geometric algebra expressions. Many known quantum computing gates, measurement operators, and especially the Bell/magic operators are also expressed as geometric products. These results demonstrate that geometric algebra can naturally and faithfully represent the central concepts, objects, and operators necessary for quantum computing, and can facilitate the design and construction of quantum computing tools.
Experimental quantum computing without entanglement.
Lanyon, B P; Barbieri, M; Almeida, M P; White, A G
2008-11-14
Deterministic quantum computation with one pure qubit (DQC1) is an efficient model of computation that uses highly mixed states. Unlike pure-state models, its power is not derived from the generation of a large amount of entanglement. Instead it has been proposed that other nonclassical correlations are responsible for the computational speedup, and that these can be captured by the quantum discord. In this Letter we implement DQC1 in an all-optical architecture, and experimentally observe the generated correlations. We find no entanglement, but large amounts of quantum discord-except in three cases where an efficient classical simulation is always possible. Our results show that even fully separable, highly mixed, states can contain intrinsically quantum mechanical correlations and that these could offer a valuable resource for quantum information technologies.
Computational Power of Quantum Machines, Quantum Grammars and Feasible Computation
NASA Astrophysics Data System (ADS)
Krishnamurthy, E. V.
This paper studies the computational power of quantum computers to explore as to whether they can recognize properties which are in nondeterministic polynomial-time class (NP) and beyond. To study the computational power, we use the Feynman's path integral (FPI) formulation of quantum mechanics. From a computational point of view the Feynman's path integral computes a quantum dynamical analogue of the k-ary relation computed by an Alternating Turing machine (ATM) using AND-OR Parallelism. Hence, if we can find a suitable mapping function between an instance of a mathematical problem and the corresponding interference problem, using suitable potential functions for which FPI can be integrated exactly, the computational power of a quantum computer can be bounded to that of an alternating Turing machine that can solve problems in NP (e.g, factorization problem) and in polynomial space. Unfortunately, FPI is exactly integrable only for a few problems (e.g., the harmonic oscillator) involving quadratic potentials; otherwise, they may be only approximately computable or noncomputable. This means we cannot in general solve all quantum dynamical problems exactly except for those special cases of quadratic potentials, e.g., harmonic oscillator. Since there is a one to one correspondence between the quantum mechanical problems that can be analytically solved and the path integrals that can be exactly evaluated, we can say that the noncomputability of FPI implies quantum unsolvability. This is the analogue of classical unsolvability. The Feynman's path graph can be considered as a semantic parse graph for the quantum mechanical sentence. It provides a semantic valuation function of the terminal sentence based on probability amplitudes to disambiguate a given quantum description and obtain an interpretation in a linear time. In Feynman's path integral, the kernels are partially ordered over time (different alternate paths acting concurrently at the same time) and multiplied
PERTURBATION APPROACH FOR QUANTUM COMPUTATION
G. P. BERMAN; D. I. KAMENEV; V. I. TSIFRINOVICH
2001-04-01
We discuss how to simulate errors in the implementation of simple quantum logic operations in a nuclear spin quantum computer with many qubits, using radio-frequency pulses. We verify our perturbation approach using the exact solutions for relatively small (L = 10) number of qubits.
Quantum computation: algorithms and implementation in quantum dot devices
NASA Astrophysics Data System (ADS)
Gamble, John King
In this thesis, we explore several aspects of both the software and hardware of quantum computation. First, we examine the computational power of multi-particle quantum random walks in terms of distinguishing mathematical graphs. We study both interacting and non-interacting multi-particle walks on strongly regular graphs, proving some limitations on distinguishing powers and presenting extensive numerical evidence indicative of interactions providing more distinguishing power. We then study the recently proposed adiabatic quantum algorithm for Google PageRank, and show that it exhibits power-law scaling for realistic WWW-like graphs. Turning to hardware, we next analyze the thermal physics of two nearby 2D electron gas (2DEG), and show that an analogue of the Coulomb drag effect exists for heat transfer. In some distance and temperature, this heat transfer is more significant than phonon dissipation channels. After that, we study the dephasing of two-electron states in a single silicon quantum dot. Specifically, we consider dephasing due to the electron-phonon coupling and charge noise, separately treating orbital and valley excitations. In an ideal system, dephasing due to charge noise is strongly suppressed due to a vanishing dipole moment. However, introduction of disorder or anharmonicity leads to large effective dipole moments, and hence possibly strong dephasing. Building on this work, we next consider more realistic systems, including structural disorder systems. We present experiment and theory, which demonstrate energy levels that vary with quantum dot translation, implying a structurally disordered system. Finally, we turn to the issues of valley mixing and valley-orbit hybridization, which occurs due to atomic-scale disorder at quantum well interfaces. We develop a new theoretical approach to study these effects, which we name the disorder-expansion technique. We demonstrate that this method successfully reproduces atomistic tight-binding techniques
Quantum chromodynamics with advanced computing
Kronfeld, Andreas S.; /Fermilab
2008-07-01
We survey results in lattice quantum chromodynamics from groups in the USQCD Collaboration. The main focus is on physics, but many aspects of the discussion are aimed at an audience of computational physicists.
Chen, Ye-Hong; Xia, Yan; Song, Jie; Chen, Qing-Qin
2015-01-01
Berry’s approach on “transitionless quantum driving” shows how to set a Hamiltonian which drives the dynamics of a system along instantaneous eigenstates of a reference Hamiltonian to reproduce the same final result of an adiabatic process in a shorter time. In this paper, motivated by transitionless quantum driving, we construct shortcuts to adiabatic passage in a three-atom system to create the Greenberger-Horne-Zeilinger states with the help of quantum Zeno dynamics and of non-resonant lasers. The influence of various decoherence processes is discussed by numerical simulation and the result proves that the scheme is fast and robust against decoherence and operational imperfection. PMID:26508283
Optimizing Adiabaticity in NMR
NASA Astrophysics Data System (ADS)
Vandermause, Jonathan; Ramanathan, Chandrasekhar
We demonstrate the utility of Berry's superadiabatic formalism for numerically finding control sequences that implement quasi-adiabatic unitary transformations. Using an iterative interaction picture, we design a shortcut to adiabaticity that reduces the time required to perform an adiabatic inversion pulse in liquid state NMR. We also show that it is possible to extend our scheme to two or more qubits to find adiabatic quantum transformations that are allowed by the control algebra, and demonstrate a two-qubit entangling operation in liquid state NMR. We examine the pulse lengths at which the fidelity of these adiabatic transitions break down and compare with the quantum speed limit.
Ground-state geometric quantum computing in superconducting systems
Solinas, P.; Moettoenen, M.
2010-11-15
We present a theoretical proposal for the implementation of geometric quantum computing based on a Hamiltonian which has a doubly degenerate ground state. Thus the system which is steered adiabatically, remains in the ground-state. The proposed physical implementation relies on a superconducting circuit composed of three SQUIDs and two superconducting islands with the charge states encoding the logical states. We obtain a universal set of single-qubit gates and implement a nontrivial two-qubit gate exploiting the mutual inductance between two neighboring circuits, allowing us to realize a fully geometric ground-state quantum computing. The introduced paradigm for the implementation of geometric quantum computing is expected to be robust against environmental effects.
Sato, Taku J; Okuyama, Daisuke; Kimura, Hideo
2016-12-01
A tiny adiabatic-demagnetization refrigerator (T-ADR) has been developed for a commercial superconducting quantum interference device magnetometer [Magnetic Property Measurement System (MPMS) from Quantum Design]. The whole T-ADR system is fit in a cylindrical space of diameter 8.5 mm and length 250 mm, and can be inserted into the narrow sample tube of MPMS. A sorption pump is self-contained in T-ADR, and hence no complex gas handling system is necessary. With the single crystalline Gd3Ga5O12 garnet (∼2 g) used as a magnetic refrigerant, the routinely achievable lowest temperature is ∼0.56 K. The lower detection limit for a magnetization anomaly is ∼1 × 10(-7) emu, estimated from fluctuation of the measured magnetization. The background level is ∼5 × 10(-5) emu below 2 K at H = 100 Oe, which is largely attributable to a contaminating paramagnetic signal from the magnetic refrigerant.
NASA Astrophysics Data System (ADS)
Sato, Taku J.; Okuyama, Daisuke; Kimura, Hideo
2016-12-01
A tiny adiabatic-demagnetization refrigerator (T-ADR) has been developed for a commercial superconducting quantum interference device magnetometer [Magnetic Property Measurement System (MPMS) from Quantum Design]. The whole T-ADR system is fit in a cylindrical space of diameter 8.5 mm and length 250 mm, and can be inserted into the narrow sample tube of MPMS. A sorption pump is self-contained in T-ADR, and hence no complex gas handling system is necessary. With the single crystalline Gd3Ga5O12 garnet (˜2 g) used as a magnetic refrigerant, the routinely achievable lowest temperature is ˜0.56 K. The lower detection limit for a magnetization anomaly is ˜1 × 10-7 emu, estimated from fluctuation of the measured magnetization. The background level is ˜5 × 10-5 emu below 2 K at H = 100 Oe, which is largely attributable to a contaminating paramagnetic signal from the magnetic refrigerant.
Making Classical Ground State Spin Computing Fault-Tolerant
2010-06-24
teleportation ,” Phys. Rev. A, 70 (2004). [15] D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, and O. Regev, “Adiabatic quantum computation is equiv...Adiabatic gate teleportation ,” Phys. Rev. Lett., 103, 120504 (2009). [25] D. Bacon and S. T. Flammia, “Adiabatic cluster state quantum computing...is relevant to quantum dot cellular automata as well as to recent universal adiabatic quantum computing constructions. In its most primitive form
Deng, Jiawen; Wang, Qing-hai; Liu, Zhihao; Hänggi, Peter; Gong, Jiangbin
2013-12-01
Under a general framework, shortcuts to adiabatic processes are shown to be possible in classical systems. We study the distribution function of the work done on a small system initially prepared at thermal equilibrium. We find that the work fluctuations can be significantly reduced via shortcuts to adiabatic processes. For example, in the classical case, probabilities of having very large or almost zero work values are suppressed. In the quantum case, negative work may be totally removed from the otherwise non-positive-definite work values. We also apply our findings to a micro Otto-cycle-based heat engine. It is shown that the use of shortcuts, which directly enhances the engine output power, can also increase the heat-engine efficiency substantially, in both quantum and classical regimes.
Delegating private quantum computations12
NASA Astrophysics Data System (ADS)
Broadbent, Anne
2015-09-01
We give a protocol for the delegation of quantum computation on encrypted data. More specifically, we show that in a client-server scenario, where the client holds the encryption key for an encrypted quantum register held by the server, it is possible for the server to perform a universal set of quantum gates on the quantum data. All Clifford group gates are non-interactive, while the remaining non-Clifford group gate that we implement (the p/8 gate) requires the client to prepare and send a single random auxiliary qubit (chosen among four possibilities), and exchange classical communication. This construction improves on previous work, which requires either multiple auxiliary qubits or two-way quantum communication. Using a reduction to an entanglement-based protocol, we show privacy against any adversarial server according to a simulation-based security definition.
Quantum computing measurement and intelligence
NASA Astrophysics Data System (ADS)
Ezziane, Zoheir
One of the grand challenges in the nanoscopic computing era is guarantees of robustness. Robust computing system design is confronted with quantum physical, probabilistic, and even biological phenomena, and guaranteeing high-reliability is much more difficult than ever before. Scaling devices down to the level of single electron operation will bring forth new challenges due to probabilistic effects and uncertainty in guaranteeing "zero-one" based computing. Minuscule devices imply billions of devices on a single chip, which may help mitigate the challenge of uncertainty by replication and redundancy. However, such device densities will create a design and validation nightmare with the sheer scale. The questions that confront computer engineers regarding the current status of nanocomputing material and the reliability of systems built from such minuscule devices are difficult to articulate and answer. This article illustrates and discusses two types of quantum algorithms as follows: (1) a simple quantum algorithm and (2) a quantum search algorithm. This article also presents a review of recent advances in quantum computing and intelligence and presents major achievements and obstacles for researchers in the near future.
NASA Astrophysics Data System (ADS)
Mukherjee, Nandini; Perreault, William E.; Zare, Richard N.
2017-07-01
We present a multi-color ladder excitation scheme that exploits Stark-induced adiabatic Raman passage to selectively populate a highly excited vibrational level of a molecule. We suggest that this multi-color coherent ladder excitation provides a practical way of accessing levels near the vibrational dissociation limit as well as the dissociative continuum, which would allow the generation of an entangled pair of fragments with near-zero relative kinetic energy. Specifically, we consider four- and six-photon coherent excitation of molecular hydrogen to high vibrational levels via intermediate vibrational levels, which are pairwise coupled by two-photon resonant interaction. Using a sequence of three partially overlapping, single-mode, nanosecond laser pulses we show that the sixth vibrational level of H2, which is too weakly coupled to be easily accessed by direct two-photon Raman excitation from the ground vibrational level, can be efficiently populated without leaving any population stranded in the intermediate level. Furthermore, we show that the fourteenth vibrational level of H2, which is the highest vibrational level in the ground electronic state with a binding energy of 22 meV, can be efficiently and selectively populated using a sequence of four pulses. The present technique offers the unique possibility of preparing entangled quantum states of H atoms without resorting to an ultracold system.
Black hole spectroscopy via adiabatic invariant in a quantum corrected spacetime
NASA Astrophysics Data System (ADS)
Liu, Cheng-Zhou
2012-05-01
Using the modified Kunstatter method, which employs as proper frequency the imaginary part instead of the real part of the quasinormal modes, the entropy spectrum and area spectrum of the modified Schwarzschild black holes in gravity's rainbow are investigated. In the current study, two cases of modified dispersion relations concerning energy dependent and energy independent speed of light are considered. The entropy spectra with equal spacing are derived in these two cases. Furthermore, the obtained entropy spectra are independent of the energy of a test particle and are the same as the one of the usual Schwarzschild black hole. Also, the same area spectrum formulas are obtained in these different dispersion relations. However, due to the quantum effect of spacetime, the obtained area spectra are not equally spaced and are different from the one of the usual Schwarzschild black hole. Besides, in these two cases, the same black hole entropy formulas with logarithmic correction to the standard Bekenstein-Hawking area formula are obtained by the adiabatic invariant. The form of area spacing formulas and entropy formulas are independent of the particle's energy, but the area spacing and entropy can have energy dependence through the area.
NASA Astrophysics Data System (ADS)
Jia, Dongming; Manz, Jörn; Paulus, Beate; Pohl, Vincent; Tremblay, Jean Christophe; Yang, Yonggang
2017-01-01
We design four linearly x- and y-polarized as well as circularly right (+) and left (-) polarized, resonant π / 2 -laser pulses that prepare the model benzene molecule in four different degenerate superposition states. These consist of equal (0.5) populations of the electronic ground state S0 (1A1g) plus one of four degenerate excited states, all of them accessible by dipole-allowed transitions. Specifically, for the molecule aligned in the xy-plane, these excited states include different complex-valued linear combinations of the 1E1u,x and 1E1u,y degenerate states. As a consequence, the laser pulses induce four different types of periodic adiabatic attosecond (as) charge migrations (AACM) in benzene, all with the same period, 504 as, but with four different types of angular fluxes. One of the characteristic differences of these fluxes are the two angles for zero fluxes, which appear as the instantaneous angular positions of the "source" and "sink" of two equivalent, or nearly equivalent branches of the fluxes which flow in pincer-type patterns from one molecular site (the "source") to the opposite one (the "sink"). These angles of zero fluxes are either fixed at the positions of two opposite carbon nuclei in the yz-symmetry plane, or at the centers of two opposite carbon-carbon bonds in the xz-symmetry plane, or the angles of zero fluxes rotate in angular forward (+) or backward (-) directions, respectively. As a resume, our quantum model simulations demonstrate quantum control of the electronic fluxes during AACM in degenerate superposition states, in the attosecond time domain, with the laser polarization as the key knob for control.
A Short Survey on Quantum Computers
Kanamori, Yoshito; Yoo, Seong-Moo; Pan, W. D.; Sheldon, Frederick T
2006-01-01
Quantum computing is an emerging technology. The clock frequency of current computer processor systems may reach about 40 GHz within the next 10 years. By then, one atom may represent one bit. Electrons under such conditions are no longer described by classical physics and a new model of the computer may be necessary by then. The quantum computer is one proposal that may have merit in dealing with the problems associated with the fact that certain important computationally intense problems present that current (classical) computers cannot solve because they require too much processing time. For example, Shor's algorithm performs factoring a large integer in polynomial time while classical factoring algorithms can do it in exponential time. In this paper we briefly survey the current status of quantum computers, quantum computer systems, and quantum simulators. Keywords Classical computers, quantum computers, quantum computer systems, quantum simulators, Shor's algorithm.
Cluster State Quantum Computation
2014-02-01
means of a novel three dimensional architecture that utilizes spatial multiplexing . We have studied the CNOT gate, as an archetypical quantum linear...spontaneous parametric down conversion (SPDC). This is a process where laser pump photons are converted into ‘signal’ and ‘idler’ entangled pairs in...level or the number of photons that can be entangled in given applications. Photon yield is related to laser power, which cannot be increased beyond
Cluster State Quantum Computing
2012-12-01
against the main Approved for Public Release; Distribution Unlimited. 3 error source of photon loss was discussed. With non-unit efficiencies ηS and...entangled photons that greatly increase process efficiency , without increasing laser power, in a regime where high detection quantum efficiency is...their joint spectral function (Figure 5b). Removing this requirement typically increases the useable count rate and overall efficiency
Photonic quantum computing (Conference Presentation)
NASA Astrophysics Data System (ADS)
O'Brien, Jeremy L.
2017-05-01
Of the various approaches to quantum computing, photons are appealing for their low-noise properties and ease of manipulation at the single photon level; while the challenge of entangling interactions between photons can be met via measurement induced non-linearities. However, the real excitement with this architecture is the promise of ultimate manufacturability: All of the components--inc. sources, detectors, filters, switches, delay lines--have been implemented on chip, and increasingly sophisticated integration of these components is being achieved. We will discuss the opportunities and challenges of a fully integrated photonic quantum computer.
Semiconductor adiabatic qubits
Carroll, Malcolm S.; Witzel, Wayne; Jacobson, Noah Tobias; Ganti, Anand; Landahl, Andrew J.; Lilly, Michael; Nguyen, Khoi Thi; Bishop, Nathaniel; Carr, Stephen M.; Bussmann, Ezra; Nielsen, Erik; Levy, James Ewers; Blume-Kohout, Robin J.; Rahman, Rajib
2016-12-27
A quantum computing device that includes a plurality of semiconductor adiabatic qubits is described herein. The qubits are programmed with local biases and coupling terms between qubits that represent a problem of interest. The qubits are initialized by way of a tuneable parameter, a local tunnel coupling within each qubit, such that the qubits remain in a ground energy state, and that initial state is represented by the qubits being in a superposition of |0> and |1> states. The parameter is altered over time adiabatically or such that relaxation mechanisms maintain a large fraction of ground state occupation through decreasing the tunnel coupling barrier within each qubit with the appropriate schedule. The final state when tunnel coupling is effectively zero represents the solution state to the problem represented in the |0> and |1> basis, which can be accurately read at each qubit location.
Atomic physics: A milestone in quantum computing
NASA Astrophysics Data System (ADS)
Bartlett, Stephen D.
2016-08-01
Quantum computers require many quantum bits to perform complex calculations, but devices with more than a few bits are difficult to program. A device based on five atomic quantum bits shows a way forward. See Letter p.63
Nanophotonic quantum computer based on atomic quantum transistor
Andrianov, S N; Moiseev, S A
2015-10-31
We propose a scheme of a quantum computer based on nanophotonic elements: two buses in the form of nanowaveguide resonators, two nanosized units of multiatom multiqubit quantum memory and a set of nanoprocessors in the form of photonic quantum transistors, each containing a pair of nanowaveguide ring resonators coupled via a quantum dot. The operation modes of nanoprocessor photonic quantum transistors are theoretically studied and the execution of main logical operations by means of them is demonstrated. We also discuss the prospects of the proposed nanophotonic quantum computer for operating in high-speed optical fibre networks. (quantum computations)
Continuous-Variable Blind Quantum Computation
NASA Astrophysics Data System (ADS)
Morimae, Tomoyuki
2012-12-01
Blind quantum computation is a secure delegated quantum computing protocol where Alice, who does not have sufficient quantum technology at her disposal, delegates her computation to Bob, who has a fully fledged quantum computer, in such a way that Bob cannot learn anything about Alice’s input, output, and algorithm. Protocols of blind quantum computation have been proposed for several qudit measurement-based computation models, such as the graph state model, the Affleck-Kennedy-Lieb-Tasaki model, and the Raussendorf-Harrington-Goyal topological model. Here, we consider blind quantum computation for the continuous-variable measurement-based model. We show that blind quantum computation is possible for the infinite squeezing case. We also show that the finite squeezing causes no additional problem in the blind setup apart from the one inherent to the continuous-variable measurement-based quantum computation.
Quantum Computation: Entangling with the Future
NASA Technical Reports Server (NTRS)
Jiang, Zhang
2017-01-01
Commercial applications of quantum computation have become viable due to the rapid progress of the field in the recent years. Efficient quantum algorithms are discovered to cope with the most challenging real-world problems that are too hard for classical computers. Manufactured quantum hardware has reached unprecedented precision and controllability, enabling fault-tolerant quantum computation. Here, I give a brief introduction on what principles in quantum mechanics promise its unparalleled computational power. I will discuss several important quantum algorithms that achieve exponential or polynomial speedup over any classical algorithm. Building a quantum computer is a daunting task, and I will talk about the criteria and various implementations of quantum computers. I conclude the talk with near-future commercial applications of a quantum computer.
ASCR Workshop on Quantum Computing for Science
Aspuru-Guzik, Alan; Van Dam, Wim; Farhi, Edward; Gaitan, Frank; Humble, Travis; Jordan, Stephen; Landahl, Andrew J; Love, Peter; Lucas, Robert; Preskill, John; Muller, Richard P.; Svore, Krysta; Wiebe, Nathan; Williams, Carl
2015-06-01
This report details the findings of the DOE ASCR Workshop on Quantum Computing for Science that was organized to assess the viability of quantum computing technologies to meet the computational requirements of the DOE’s science and energy mission, and to identify the potential impact of quantum technologies. The workshop was held on February 17-18, 2015, in Bethesda, MD, to solicit input from members of the quantum computing community. The workshop considered models of quantum computation and programming environments, physical science applications relevant to DOE's science mission as well as quantum simulation, and applied mathematics topics including potential quantum algorithms for linear algebra, graph theory, and machine learning. This report summarizes these perspectives into an outlook on the opportunities for quantum computing to impact problems relevant to the DOE’s mission as well as the additional research required to bring quantum computing to the point where it can have such impact.
Course 10: Basic Concepts in Quantum Computation
NASA Astrophysics Data System (ADS)
Ekert, A.; Hayden, P. M.; Inamori, H.
Contents 1 Qubits, gates and networks 2 Quantum arithmetic and function evaluations 3 Algorithms and their complexity 4 From interferometers to computers 5 The first quantum algorithms 6 Quantum search 7 Optimal phase estimation 8 Periodicity and quantum factoring 9 Cryptography 10 Conditional quantum dynamics 11 Decoherence and recoherence 12 Concluding remarks
An Early Quantum Computing Proposal
Lee, Stephen Russell; Alexander, Francis Joseph; Barros, Kipton Marcos; Daniels, Marcus G.; Gattiker, James R.; Hamada, Michael Scott; Howse, James Walter; Loncaric, Josip; Pakin, Scott D.; Somma, Rolando Diego; Vernon, Louis James
2016-04-04
The D-Wave 2X is the third generation of quantum processing created by D-Wave. NASA (with Google and USRA) and Lockheed Martin (with USC), both own D-Wave systems. Los Alamos National Laboratory (LANL) purchased a D-Wave 2X in November 2015. The D-Wave 2X processor contains (nominally) 1152 quantum bits (or qubits) and is designed to specifically perform quantum annealing, which is a well-known method for finding a global minimum of an optimization problem. This methodology is based on direct execution of a quantum evolution in experimental quantum hardware. While this can be a powerful method for solving particular kinds of problems, it also means that the D-Wave 2X processor is not a general computing processor and cannot be programmed to perform a wide variety of tasks. It is a highly specialized processor, well beyond what NNSA currently thinks of as an “advanced architecture.”A D-Wave is best described as a quantum optimizer. That is, it uses quantum superposition to find the lowest energy state of a system by repeated doses of power and settling stages. The D-Wave produces multiple solutions to any suitably formulated problem, one of which is the lowest energy state solution (global minimum). Mapping problems onto the D-Wave requires defining an objective function to be minimized and then encoding that function in the Hamiltonian of the D-Wave system. The quantum annealing method is then used to find the lowest energy configuration of the Hamiltonian using the current D-Wave Two, two-level, quantum processor. This is not always an easy thing to do, and the D-Wave Two has significant limitations that restrict problem sizes that can be run and algorithmic choices that can be made. Furthermore, as more people are exploring this technology, it has become clear that it is very difficult to come up with general approaches to optimization that can both utilize the D-Wave and that can do better than highly developed algorithms on conventional computers for
Adiabatic manipulations of Majorana fermions in a three-dimensional network of quantum wires
NASA Astrophysics Data System (ADS)
Halperin, Bertrand I.; Oreg, Yuval; Stern, Ady; Refael, Gil; Alicea, Jason; von Oppen, Felix
2012-04-01
It has been proposed that localized zero-energy Majorana states can be realized in a two-dimensional network of quasi-one-dimensional semiconductor wires that are proximity coupled to a bulk superconductor. The wires should have strong spin-orbit coupling with appropriate symmetry, and their electrons should be partially polarized by a strong Zeeman field. Then, if the Fermi level is in an appropriate range, the wire can be in a topological superconducting phase, with Majorana states that occur at wire ends and at Y junctions, where three topological superconductor segments may be joined. Here we generalize these ideas to consider a three-dimensional network. The positions of Majorana states can be manipulated, and their non-Abelian properties made visible, by using external gates to selectively deplete portions of the network or by physically connecting and redividing wire segments. Majorana states can also be manipulated by reorientations of the Zeeman field on a wire segment, by physically rotating the wire about almost any axis, or by evolution of the phase of the order parameter in the proximity-coupled superconductor. We show how to keep track of sign changes in the zero-energy Hilbert space during adiabatic manipulations by monitoring the evolution of each Majorana state separately, rather than keeping track of the braiding of all possible pairs. This has conceptual advantages in the case of a three-dimensional network, and may be computationally useful even in two dimensions, if large numbers of Majorana sites are involved.
Computational quantum field theory
NASA Astrophysics Data System (ADS)
Grobe, Rainer
2006-05-01
I will give an overview on recent attempts to solve the time-dependent Dirac equation for the electron-positron field operator. These numerical solutions permit a first temporally and spatially resolved insight into the mechanisms of how an electron-positron pair can be created from vacuum in a very strong force field. This approach has helped to illuminate a wide range of controversial questions. Some of these questions arise for complicated physical situations such as how an electron scatters off a supercritical potential barrier (Klein paradox). This requires the application of quantum field theory to study the combined effect of the pair-production due to the supercriticality of the potential together with the scattering at the barrier involving the Pauli-principle. Other phenomena include Schr"odinger's Zitterbewegung and the localization problem for a relativistic particle. This work has been supported by the NSF and Research Corporation. P. Krekora, K. Cooley, Q. Su and R. Grobe, Phys. Rev. Lett. 95, 070403 (2005). P. Krekora, Q. Su and R. Grobe, Phys. Rev. Lett. 93, 043004 (2004). P. Krekora, Q. Su and R. Grobe, Phys. Rev. Lett. 92, 040406 (2004).
Adiabatic approximation via hodograph translation and zero-curvature equations
NASA Astrophysics Data System (ADS)
Karasev, M. V.
2014-04-01
For quantum as well classical slow-fast systems, we develop a general method which allows one to compute the adiabatic invariant (approximate integral of motion), its symmetries, the adiabatic guiding center coordinates and the effective scalar Hamiltonian in all orders of a small parameter. The scheme does not exploit eigenvectors or diagonalization, but is based on the ideas of isospectral deformation and zero-curvature equations, where the role of "time" is played by the adiabatic (quantization) parameter. The algorithm includes the construction of the zero-curvature adiabatic connection and its splitting generated by averaging up to an arbitrary order in the small parameter.
Experimental demonstration of blind quantum computing
NASA Astrophysics Data System (ADS)
Barz, Stefanie; Kashefi, Elham; Broadbent, Anne; Fitzsimons, Joe; Zeilinger, Anton; Walther, Philip
2012-02-01
Quantum computers are among the most promising applications of quantum-enhanced technologies. Quantum effects such as superposition and entanglement enable computational speed-ups that are unattainable using classical computers. The challenges in realising quantum computers suggest that in the near future, only a few facilities worldwide will be capable of operating such devices. In order to exploit these computers, users would seemingly have to give up their privacy. It was recently shown that this is not the case and that, via the universal blind quantum computation protocol, quantum mechanics provides a way to guarantee that the user's data remain private. Here, we demonstrate the first experimental version of this protocol using polarisation-entangled photonic qubits. We demonstrate various blind one- and two-qubit gate operations as well as blind versions of the Deutsch's and Grover's algorithms. When the technology to build quantum computers becomes available, this will become an important privacy-preserving feature of quantum information processing.
A counterexample and a modification to the adiabatic approximation theorem in quantum mechanics
NASA Technical Reports Server (NTRS)
Gingold, H.
1991-01-01
A counterexample to the adiabatic approximation theorem is given when degeneracies are present. A formulation of an alternative version is proposed. A complete asymptotic decomposition for n dimensional self-adjoint Hamiltonian systems is restated and used.
A counterexample and a modification to the adiabatic approximation theorem in quantum mechanics
NASA Technical Reports Server (NTRS)
Gingold, H.
1991-01-01
A counterexample to the adiabatic approximation theorem is given when degeneracies are present. A formulation of an alternative version is proposed. A complete asymptotic decomposition for n dimensional self-adjoint Hamiltonian systems is restated and used.
Ancilla-driven universal blind quantum computation
NASA Astrophysics Data System (ADS)
Sueki, Takahiro; Koshiba, Takeshi; Morimae, Tomoyuki
2013-06-01
Blind quantum computation is a new quantum secure protocol, which enables Alice who does not have enough quantum technology to delegate her computation to Bob who has a fully fledged quantum power without revealing her input, output, and algorithm. So far, blind quantum computation has been considered only for the circuit model and the measurement-based model. Here we consider the possibility and the limitation of blind quantum computation in the ancilla-driven model, which is a hybrid of the circuit and the measurement-based models.
Geometry of quantum computation with qutrits.
Li, Bin; Yu, Zu-Huan; Fei, Shao-Ming
2013-01-01
Determining the quantum circuit complexity of a unitary operation is an important problem in quantum computation. By using the mathematical techniques of Riemannian geometry, we investigate the efficient quantum circuits in quantum computation with n qutrits. We show that the optimal quantum circuits are essentially equivalent to the shortest path between two points in a certain curved geometry of SU(3(n)). As an example, three-qutrit systems are investigated in detail.
Unconditionally verifiable blind quantum computation
NASA Astrophysics Data System (ADS)
Fitzsimons, Joseph F.; Kashefi, Elham
2017-07-01
Blind quantum computing (BQC) allows a client to have a server carry out a quantum computation for them such that the client's input, output, and computation remain private. A desirable property for any BQC protocol is verification, whereby the client can verify with high probability whether the server has followed the instructions of the protocol or if there has been some deviation resulting in a corrupted output state. A verifiable BQC protocol can be viewed as an interactive proof system leading to consequences for complexity theory. We previously proposed [A. Broadbent, J. Fitzsimons, and E. Kashefi, in Proceedings of the 50th Annual Symposium on Foundations of Computer Science, Atlanta, 2009 (IEEE, Piscataway, 2009), p. 517] a universal and unconditionally secure BQC scheme where the client only needs to be able to prepare single qubits in separable states randomly chosen from a finite set and send them to the server, who has the balance of the required quantum computational resources. In this paper we extend that protocol with additional functionality allowing blind computational basis measurements, which we use to construct another verifiable BQC protocol based on a different class of resource states. We rigorously prove that the probability of failing to detect an incorrect output is exponentially small in a security parameter, while resource overhead remains polynomial in this parameter. This resource state allows entangling gates to be performed between arbitrary pairs of logical qubits with only constant overhead. This is a significant improvement on the original scheme, which required that all computations to be performed must first be put into a nearest-neighbor form, incurring linear overhead in the number of qubits. Such an improvement has important consequences for efficiency and fault-tolerance thresholds.
Quantum chemistry simulation on quantum computers: theories and experiments.
Lu, Dawei; Xu, Boruo; Xu, Nanyang; Li, Zhaokai; Chen, Hongwei; Peng, Xinhua; Xu, Ruixue; Du, Jiangfeng
2012-07-14
It has been claimed that quantum computers can mimic quantum systems efficiently in the polynomial scale. Traditionally, those simulations are carried out numerically on classical computers, which are inevitably confronted with the exponential growth of required resources, with the increasing size of quantum systems. Quantum computers avoid this problem, and thus provide a possible solution for large quantum systems. In this paper, we first discuss the ideas of quantum simulation, the background of quantum simulators, their categories, and the development in both theories and experiments. We then present a brief introduction to quantum chemistry evaluated via classical computers followed by typical procedures of quantum simulation towards quantum chemistry. Reviewed are not only theoretical proposals but also proof-of-principle experimental implementations, via a small quantum computer, which include the evaluation of the static molecular eigenenergy and the simulation of chemical reaction dynamics. Although the experimental development is still behind the theory, we give prospects and suggestions for future experiments. We anticipate that in the near future quantum simulation will become a powerful tool for quantum chemistry over classical computations.
Optically simulated universal quantum computation
NASA Astrophysics Data System (ADS)
Francisco, D.; Ledesma, S.
2008-04-01
Recently, classical optics based systems to emulate quantum information processing have been proposed. The analogy is based on the possibility of encoding a quantum state of a system with a 2N-dimensional Hilbert space as an image in the input of an optical system. The probability amplitude of each state of a certain basis is associated with the complex amplitude of the electromagnetic field in a given slice of the laser wavefront. Temporal evolution is represented as the change of the complex amplitude of the field when the wavefront pass through a certain optical arrangement. Different modules that represent universal gates for quantum computation have been implemented. For instance, unitary operations acting on the qbits space (or U(2) gates) are represented by means of two phase plates, two spherical lenses and a phase grating in a typical image processing set up. In this work, we present CNOT gates which are emulated by means of a cube prism that splits a pair of adjacent rays incoming from the input image. As an example of application, we present an optical module that can be used to simulate the quantum teleportation process. We also show experimental results that illustrate the validity of the analogy. Although the experimental results obtained are promising and show the capability of the system for simulate the real quantum process, we must take into account that any classical simulation of quantum phenomena, has as fundamental limitation the impossibility of representing non local entanglement. In this classical context, quantum teleportation has only an illustrative interpretation.
Brain Neurons as Quantum Computers:
NASA Astrophysics Data System (ADS)
Bershadskii, A.; Dremencov, E.; Bershadskii, J.; Yadid, G.
The question: whether quantum coherent states can sustain decoherence, heating and dissipation over time scales comparable to the dynamical timescales of brain neurons, has been actively discussed in the last years. A positive answer on this question is crucial, in particular, for consideration of brain neurons as quantum computers. This discussion was mainly based on theoretical arguments. In the present paper nonlinear statistical properties of the Ventral Tegmental Area (VTA) of genetically depressive limbic brain are studied in vivo on the Flinders Sensitive Line of rats (FSL). VTA plays a key role in the generation of pleasure and in the development of psychological drug addiction. We found that the FSL VTA (dopaminergic) neuron signals exhibit multifractal properties for interspike frequencies on the scales where healthy VTA dopaminergic neurons exhibit bursting activity. For high moments the observed multifractal (generalized dimensions) spectrum coincides with the generalized dimensions spectrum calculated for a spectral measure of a quantum system (so-called kicked Harper model, actively used as a model of quantum chaos). This observation can be considered as a first experimental (in vivo) indication in the favor of the quantum (at least partially) nature of brain neurons activity.
Finding Adiabatically Bound Anions of Guanine through a Combinatorial Computational Approach
Haranczyk, Maciej; Gutowski, Maciej S.
2005-09-15
In summary, guanine supports many adiabatically bound valence anions, which result from enamine-imine transformations of the most stable neutral tautomers. These stable anionic tautomers have been found using combinatorial-computational prescreening at the B3LYP level of theory followed by CCSD(T)/aug-cc-pVDZ calculations. The new anionic tautomers contradict a common opinion that guanine has the lowest electron affinity among nucleobases. The new anionic tautomers might be formed in the course of dissociative electron attachment followed by a hydrogen atom attachment to a carbon atom. They might affect the structure and properties of DNA and RNA exposed to low-energy electrons. Chemical transformations of DNA triggered by the new anionic tautomers will be explored in our future studies.
Exploiting Locality in Quantum Computation for Quantum Chemistry.
McClean, Jarrod R; Babbush, Ryan; Love, Peter J; Aspuru-Guzik, Alán
2014-12-18
Accurate prediction of chemical and material properties from first-principles quantum chemistry is a challenging task on traditional computers. Recent developments in quantum computation offer a route toward highly accurate solutions with polynomial cost; however, this solution still carries a large overhead. In this Perspective, we aim to bring together known results about the locality of physical interactions from quantum chemistry with ideas from quantum computation. We show that the utilization of spatial locality combined with the Bravyi-Kitaev transformation offers an improvement in the scaling of known quantum algorithms for quantum chemistry and provides numerical examples to help illustrate this point. We combine these developments to improve the outlook for the future of quantum chemistry on quantum computers.
Multibit gates for quantum computing.
Wang, X; Sørensen, A; Mølmer, K
2001-04-23
We present a general technique to implement products of many qubit operators communicating via a joint harmonic oscillator degree of freedom in a quantum computer. By conditional displacements and rotations we can implement Hamiltonians which are trigonometric functions of qubit operators. With such operators we can effectively implement higher order gates such as Toffoli gates and C(n)-NOT gates, and we show that the entire Grover search algorithm can be implemented in a direct way.
Holonomic Quantum Computation in Subsystems
NASA Astrophysics Data System (ADS)
Oreshkov, Ognyan
2009-08-01
We introduce a generalized method of holonomic quantum computation (HQC) based on encoding in subsystems. As an application, we propose a scheme for applying holonomic gates to unencoded qubits by the use of a noisy ancillary qubit. This scheme does not require initialization in a subspace since all dynamical effects factor out as a transformation on the ancilla. We use this approach to show how fault-tolerant HQC can be realized via 2-local Hamiltonians with perturbative gadgets.
Quantum Computing in a Piece of Glass
2011-01-01
key distribution. Recently a practical method has been demonstrated to produce such MUB states using computer-generated holography with a single...scalability, crosstalk) of this technology. 15. SUBJECT TERMS Linear Optical Quantum Computing, Volume Holography , Quantum Gates 16. SECURITY...Computing, Volume Holography , Quantum Gates 1. PHOTONIC QUANTUM ALGORITHMS WITHIN A VOLUME HOLOGRAM It is the objective of this manuscript to argue that
Quantum Computing and the Onset of Quantum Chaotic Motion
2007-11-02
for Nuclear Theory Program on "Chaos and Interactions: from Nuclei to Quantum Dots’", University of Washington, Seattle, USA, 17 July, 2002. I...to Quantum Dots’", University of Washington, Seattle, USA, 17 July, 2002. G. Casati “Quantum computers and quantum chaos” Institute for Nuclear...Theory Program on "Chaos and Interactions: from Nuclei to Quantum Dots’", University of Washington, Seattle, USA, 17 July, 2002. 2. Scientific
Toward a superconducting quantum computer. Harnessing macroscopic quantum coherence.
Tsai, Jaw-Shen
2010-01-01
Intensive research on the construction of superconducting quantum computers has produced numerous important achievements. The quantum bit (qubit), based on the Josephson junction, is at the heart of this research. This macroscopic system has the ability to control quantum coherence. This article reviews the current state of quantum computing as well as its history, and discusses its future. Although progress has been rapid, the field remains beset with unsolved issues, and there are still many new research opportunities open to physicists and engineers.
Cotton, Stephen J.; Miller, William H.
2013-12-21
A recently described symmetrical windowing methodology [S. J. Cotton and W. H. Miller, J. Phys. Chem. A 117, 7190 (2013)] for quasi-classical trajectory simulations is applied here to the Meyer-Miller [H.-D. Meyer and W. H. Miller, J. Chem. Phys. 70, 3214 (1979)] model for the electronic degrees of freedom in electronically non-adiabatic dynamics. Results generated using this classical approach are observed to be in very good agreement with accurate quantum mechanical results for a variety of test applications, including problems where coherence effects are significant such as the challenging asymmetric spin-boson system.
Universal quantum computation using the discrete-time quantum walk
Lovett, Neil B.; Cooper, Sally; Everitt, Matthew; Trevers, Matthew; Kendon, Viv
2010-04-15
A proof that continuous-time quantum walks are universal for quantum computation, using unweighted graphs of low degree, has recently been presented by A. M. Childs [Phys. Rev. Lett. 102, 180501 (2009)]. We present a version based instead on the discrete-time quantum walk. We show that the discrete-time quantum walk is able to implement the same universal gate set and thus both discrete and continuous-time quantum walks are computational primitives. Additionally, we give a set of components on which the discrete-time quantum walk provides perfect state transfer.
Efficient simulation of open quantum system in duality quantum computing
NASA Astrophysics Data System (ADS)
Wei, Shi-Jie; Long, Gui-Lu
2016-11-01
Practical quantum systems are open systems due to interactions with their environment. Understanding the evolution of open systems dynamics is important for quantum noise processes , designing quantum error correcting codes, and performing simulations of open quantum systems. Here we proposed an efficient quantum algorithm for simulating the evolution of an open quantum system on a duality quantum computer. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality algorithm, the time evolution of open quantum system is realized by using Kraus operators which is naturally realized in duality quantum computing. Compared to the Lloyd's quantum algorithm [Science.273, 1073(1996)] , the dependence on the dimension of the open quantum system in our algorithm is decreased. Moreover, our algorithm uses a truncated Taylor series of the evolution operators, exponentially improving the performance on the precision compared with existing quantum simulation algorithms with unitary evolution operations.
Elucidating reaction mechanisms on quantum computers
NASA Astrophysics Data System (ADS)
Reiher, Markus; Wiebe, Nathan; Svore, Krysta M.; Wecker, Dave; Troyer, Matthias
2017-07-01
With rapid recent advances in quantum technology, we are close to the threshold of quantum devices whose computational powers can exceed those of classical supercomputers. Here, we show that a quantum computer can be used to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical computer simulations used to probe these reaction mechanisms, to significantly increase their accuracy and enable hitherto intractable simulations. Our resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. Our results demonstrate that quantum computers will be able to tackle important problems in chemistry without requiring exorbitant resources.
Elucidating reaction mechanisms on quantum computers.
Reiher, Markus; Wiebe, Nathan; Svore, Krysta M; Wecker, Dave; Troyer, Matthias
2017-07-18
With rapid recent advances in quantum technology, we are close to the threshold of quantum devices whose computational powers can exceed those of classical supercomputers. Here, we show that a quantum computer can be used to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical computer simulations used to probe these reaction mechanisms, to significantly increase their accuracy and enable hitherto intractable simulations. Our resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. Our results demonstrate that quantum computers will be able to tackle important problems in chemistry without requiring exorbitant resources.
Computational multiqubit tunnelling in programmable quantum annealers
Boixo, Sergio; Smelyanskiy, Vadim N.; Shabani, Alireza; Isakov, Sergei V.; Dykman, Mark; Denchev, Vasil S.; Amin, Mohammad H.; Smirnov, Anatoly Yu; Mohseni, Masoud; Neven, Hartmut
2016-01-01
Quantum tunnelling is a phenomenon in which a quantum state traverses energy barriers higher than the energy of the state itself. Quantum tunnelling has been hypothesized as an advantageous physical resource for optimization in quantum annealing. However, computational multiqubit tunnelling has not yet been observed, and a theory of co-tunnelling under high- and low-frequency noises is lacking. Here we show that 8-qubit tunnelling plays a computational role in a currently available programmable quantum annealer. We devise a probe for tunnelling, a computational primitive where classical paths are trapped in a false minimum. In support of the design of quantum annealers we develop a nonperturbative theory of open quantum dynamics under realistic noise characteristics. This theory accurately predicts the rate of many-body dissipative quantum tunnelling subject to the polaron effect. Furthermore, we experimentally demonstrate that quantum tunnelling outperforms thermal hopping along classical paths for problems with up to 200 qubits containing the computational primitive. PMID:26739797
Experimental one-way quantum computing.
Walther, P; Resch, K J; Rudolph, T; Schenck, E; Weinfurter, H; Vedral, V; Aspelmeyer, M; Zeilinger, A
2005-03-10
Standard quantum computation is based on sequences of unitary quantum logic gates that process qubits. The one-way quantum computer proposed by Raussendorf and Briegel is entirely different. It has changed our understanding of the requirements for quantum computation and more generally how we think about quantum physics. This new model requires qubits to be initialized in a highly entangled cluster state. From this point, the quantum computation proceeds by a sequence of single-qubit measurements with classical feedforward of their outcomes. Because of the essential role of measurement, a one-way quantum computer is irreversible. In the one-way quantum computer, the order and choices of measurements determine the algorithm computed. We have experimentally realized four-qubit cluster states encoded into the polarization state of four photons. We characterize the quantum state fully by implementing experimental four-qubit quantum state tomography. Using this cluster state, we demonstrate the feasibility of one-way quantum computing through a universal set of one- and two-qubit operations. Finally, our implementation of Grover's search algorithm demonstrates that one-way quantum computation is ideally suited for such tasks.
On the General Class of Models of Adiabatic Evolution
NASA Astrophysics Data System (ADS)
Sun, Jie; Lu, Songfeng; Liu, Fang
2016-10-01
The general class of models of adiabatic evolution was proposed to speed up the usual adiabatic computation in the case of quantum search problem. It was shown [8] that, by temporarily increasing the ground state energy of a time-dependent Hamiltonian to a suitable quantity, the quantum computation can perform the calculation in time complexity O(1). But it is also known that if the overlap between the initial and final states of the system is zero, then the computation based on the generalized models of adiabatic evolution can break down completely. In this paper, we find another severe limitation for this class of adiabatic evolution-based algorithms, which should be taken into account in applications. That is, it is still possible that this kind of evolution designed to deal with the quantum search problem fails completely if the interpolating paths in the system Hamiltonian are chosen inappropriately, while the usual adiabatic evolutions can do the same job relatively effectively. This implies that it is not always recommendable to use nonlinear paths in adiabatic computation. On the contrary, the usual simple adiabatic evolution may be sufficient for effective use.
The Quantum Human Computer (QHC) Hypothesis
ERIC Educational Resources Information Center
Salmani-Nodoushan, Mohammad Ali
2008-01-01
This article attempts to suggest the existence of a human computer called Quantum Human Computer (QHC) on the basis of an analogy between human beings and computers. To date, there are two types of computers: Binary and Quantum. The former operates on the basis of binary logic where an object is said to exist in either of the two states of 1 and…
The Quantum Human Computer (QHC) Hypothesis
ERIC Educational Resources Information Center
Salmani-Nodoushan, Mohammad Ali
2008-01-01
This article attempts to suggest the existence of a human computer called Quantum Human Computer (QHC) on the basis of an analogy between human beings and computers. To date, there are two types of computers: Binary and Quantum. The former operates on the basis of binary logic where an object is said to exist in either of the two states of 1 and…
Efficient free energy calculations of quantum systems through computer simulations
NASA Astrophysics Data System (ADS)
Antonelli, Alex; Ramirez, Rafael; Herrero, Carlos; Hernandez, Eduardo
2009-03-01
In general, the classical limit is assumed in computer simulation calculations of free energy. This approximation, however, is not justifiable for a class of systems in which quantum contributions for the free energy cannot be neglected. The inclusion of quantum effects is important for the determination of reliable phase diagrams of these systems. In this work, we present a new methodology to compute the free energy of many-body quantum systems [1]. This methodology results from the combination of the path integral formulation of statistical mechanics and efficient non-equilibrium methods to estimate free energy, namely, the adiabatic switching and reversible scaling methods. A quantum Einstein crystal is used as a model to show the accuracy and reliability the methodology. This new method is applied to the calculation of solid-liquid coexistence properties of neon. Our findings indicate that quantum contributions to properties such as, melting point, latent heat of fusion, entropy of fusion, and slope of melting line can be up to 10% of the calculated values using the classical approximation. [1] R. M. Ramirez, C. P. Herrero, A. Antonelli, and E. R. Hernández, Journal of Chemical Physics 129, 064110 (2008)
Fishman, S.; Soffer, A.
2016-07-15
We employ the recently developed multi-time scale averaging method to study the large time behavior of slowly changing (in time) Hamiltonians. We treat some known cases in a new way, such as the Zener problem, and we give another proof of the adiabatic theorem in the gapless case. We prove a new uniform ergodic theorem for slowly changing unitary operators. This theorem is then used to derive the adiabatic theorem, do the scattering theory for such Hamiltonians, and prove some classical propagation estimates and asymptotic completeness.
Adiabatic regularization for gauge fields and the conformal anomaly
NASA Astrophysics Data System (ADS)
Chu, Chong-Sun; Koyama, Yoji
2017-03-01
Adiabatic regularization for quantum field theory in conformally flat spacetime is known for scalar and Dirac fermion fields. In this paper, we complete the construction by establishing the adiabatic regularization scheme for the gauge field. We show that the adiabatic expansion for the mode functions and the adiabatic vacuum can be defined in a similar way using Wentzel-Kramers-Brillouin-type (WKB-type) solutions as the scalar fields. As an application of the adiabatic method, we compute the trace of the energy momentum tensor and reproduce the known result for the conformal anomaly obtained by the other regularization methods. The availability of the adiabatic expansion scheme for the gauge field allows one to study various renormalized physical quantities of theories coupled to (non-Abelian) gauge fields in conformally flat spacetime, such as conformal supersymmetric Yang Mills, inflation, and cosmology.
Quantum computing in molecular magnets.
Leuenberger, M N; Loss, D
2001-04-12
Shor and Grover demonstrated that a quantum computer can outperform any classical computer in factoring numbers and in searching a database by exploiting the parallelism of quantum mechanics. Whereas Shor's algorithm requires both superposition and entanglement of a many-particle system, the superposition of single-particle quantum states is sufficient for Grover's algorithm. Recently, the latter has been successfully implemented using Rydberg atoms. Here we propose an implementation of Grover's algorithm that uses molecular magnets, which are solid-state systems with a large spin; their spin eigenstates make them natural candidates for single-particle systems. We show theoretically that molecular magnets can be used to build dense and efficient memory devices based on the Grover algorithm. In particular, one single crystal can serve as a storage unit of a dynamic random access memory device. Fast electron spin resonance pulses can be used to decode and read out stored numbers of up to 105, with access times as short as 10-10 seconds. We show that our proposal should be feasible using the molecular magnets Fe8 and Mn12.
Energy-efficient quantum computing
NASA Astrophysics Data System (ADS)
Ikonen, Joni; Salmilehto, Juha; Möttönen, Mikko
2017-04-01
In the near future, one of the major challenges in the realization of large-scale quantum computers operating at low temperatures is the management of harmful heat loads owing to thermal conduction of cabling and dissipation at cryogenic components. This naturally raises the question that what are the fundamental limitations of energy consumption in scalable quantum computing. In this work, we derive the greatest lower bound for the gate error induced by a single application of a bosonic drive mode of given energy. Previously, such an error type has been considered to be inversely proportional to the total driving power, but we show that this limitation can be circumvented by introducing a qubit driving scheme which reuses and corrects drive pulses. Specifically, our method serves to reduce the average energy consumption per gate operation without increasing the average gate error. Thus our work shows that precise, scalable control of quantum systems can, in principle, be implemented without the introduction of excessive heat or decoherence.
Stimulated Raman adiabatic passage in a three-level superconducting circuit
Kumar, K. S.; Vepsäläinen, A.; Danilin, S.; Paraoanu, G. S.
2016-01-01
The adiabatic manipulation of quantum states is a powerful technique that opened up new directions in quantum engineering—enabling tests of fundamental concepts such as geometrical phases and topological transitions, and holding the promise of alternative models of quantum computation. Here we benchmark the stimulated Raman adiabatic passage for circuit quantum electrodynamics by employing the first three levels of a transmon qubit. In this ladder configuration, we demonstrate a population transfer efficiency >80% between the ground state and the second excited state using two adiabatic Gaussian-shaped control microwave pulses. By doing quantum tomography at successive moments during the Raman pulses, we investigate the transfer of the population in time domain. Furthermore, we show that this protocol can be reversed by applying a third adiabatic pulse, we study a hybrid nondiabatic–adiabatic sequence, and we present experimental results for a quasi-degenerate intermediate level. PMID:26902454
Cencek, Wojciech; Przybytek, Michał; Komasa, Jacek; Mehl, James B; Jeziorski, Bogumił; Szalewicz, Krzysztof
2012-06-14
The adiabatic, relativistic, and quantum electrodynamics (QED) contributions to the pair potential of helium were computed, fitted separately, and applied, together with the nonrelativistic Born-Oppenheimer (BO) potential, in calculations of thermophysical properties of helium and of the properties of the helium dimer. An analysis of the convergence patterns of the calculations with increasing basis set sizes allowed us to estimate the uncertainties of the total interaction energy to be below 50 ppm for interatomic separations R smaller than 4 bohrs and for the distance R = 5.6 bohrs. For other separations, the relative uncertainties are up to an order of magnitude larger (and obviously still larger near R = 4.8 bohrs where the potential crosses zero) and are dominated by the uncertainties of the nonrelativistic BO component. These estimates also include the contributions from the neglected relativistic and QED terms proportional to the fourth and higher powers of the fine-structure constant α. To obtain such high accuracy, it was necessary to employ explicitly correlated Gaussian expansions containing up to 2400 terms for smaller R (all R in the case of a QED component) and optimized orbital bases up to the cardinal number X = 7 for larger R. Near-exact asymptotic constants were used to describe the large-R behavior of all components. The fitted potential, exhibiting the minimum of -10.996 ± 0.004 K at R = 5.608 0 ± 0.000 1 bohr, was used to determine properties of the very weakly bound (4)He(2) dimer and thermophysical properties of gaseous helium. It is shown that the Casimir-Polder retardation effect, increasing the dimer size by about 2 Å relative to the nonrelativistic BO value, is almost completely accounted for by the inclusion of the Breit-interaction and the Araki-Sucher contributions to the potential, of the order α(2) and α(3), respectively. The remaining retardation effect, of the order of α(4) and higher, is practically negligible for the bound
Quantum computing: In the 'death zone'?
NASA Astrophysics Data System (ADS)
van Dam, Wim
2007-04-01
An event advertised as the first demonstration of a commercial quantum computer raises the question of how far one can go with a 'do not care' attitude towards imperfections, without losing the quantum advantage.
Non-unitary probabilistic quantum computing
NASA Technical Reports Server (NTRS)
Gingrich, Robert M.; Williams, Colin P.
2004-01-01
We present a method for designing quantum circuits that perform non-unitary quantum computations on n-qubit states probabilistically, and give analytic expressions for the success probability and fidelity.
Non-unitary probabilistic quantum computing
NASA Technical Reports Server (NTRS)
Gingrich, Robert M.; Williams, Colin P.
2004-01-01
We present a method for designing quantum circuits that perform non-unitary quantum computations on n-qubit states probabilistically, and give analytic expressions for the success probability and fidelity.
Mineo, H.; Kuo, J. L.; Niu, Y. L.; Lin, S. H.; Fujimura, Y.
2015-08-28
The results of application of the quantum-mechanical adiabatic theory to vibrational predissociation (VPD) of water dimers, (H{sub 2}O){sub 2} and (D{sub 2}O){sub 2}, are presented. We consider the VPD processes including the totally symmetric OH mode of the dimer and the bending mode of the fragment. The VPD in the adiabatic representation is induced by breakdown of the vibrational adiabatic approximation, and two types of nonadiabatic coupling matrix elements are involved: one provides the VPD induced by the low-frequency dissociation mode and the other provides the VPD through channel interactions induced by the low-frequency modes. The VPD rate constants were calculated using the Fermi golden rule expression. A closed form for the nonadiabatic transition matrix element between the discrete and continuum states was derived in the Morse potential model. All of the parameters used were obtained from the potential surfaces of the water dimers, which were calculated by the density functional theory procedures. The VPD rate constants for the two processes were calculated in the non-Condon scheme beyond the so-called Condon approximation. The channel interactions in and between the initial and final states were taken into account, and those are found to increase the VPD rates by 3(1) orders of magnitude for the VPD processes in (H{sub 2}O){sub 2} ((D{sub 2}O){sub 2}). The fraction of the bending-excited donor fragments is larger than that of the bending-excited acceptor fragments. The results obtained by quantum-mechanical approach are compared with both experimental and quasi-classical trajectory calculation results.
Model dynamics for quantum computing
NASA Astrophysics Data System (ADS)
Tabakin, Frank
2017-08-01
A model master equation suitable for quantum computing dynamics is presented. In an ideal quantum computer (QC), a system of qubits evolves in time unitarily and, by virtue of their entanglement, interfere quantum mechanically to solve otherwise intractable problems. In the real situation, a QC is subject to decoherence and attenuation effects due to interaction with an environment and with possible short-term random disturbances and gate deficiencies. The stability of a QC under such attacks is a key issue for the development of realistic devices. We assume that the influence of the environment can be incorporated by a master equation that includes unitary evolution with gates, supplemented by a Lindblad term. Lindblad operators of various types are explored; namely, steady, pulsed, gate friction, and measurement operators. In the master equation, we use the Lindblad term to describe short time intrusions by random Lindblad pulses. The phenomenological master equation is then extended to include a nonlinear Beretta term that describes the evolution of a closed system with increasing entropy. An external Bath environment is stipulated by a fixed temperature in two different ways. Here we explore the case of a simple one-qubit system in preparation for generalization to multi-qubit, qutrit and hybrid qubit-qutrit systems. This model master equation can be used to test the stability of memory and the efficacy of quantum gates. The properties of such hybrid master equations are explored, with emphasis on the role of thermal equilibrium and entropy constraints. Several significant properties of time-dependent qubit evolution are revealed by this simple study.
NASA Astrophysics Data System (ADS)
Takeuchi, Naoki; Suzuki, Hideo; Yoshikawa, Nobuyuki
2017-05-01
Adiabatic quantum-flux-parametron (AQFP) is an energy-efficient superconductor logic. The advantage of AQFP is that the switching energy can be reduced by lowering operation frequencies or by increasing the quality factors of Josephson junctions, while keeping the energy barrier height much larger than thermal energy. In other words, both low energy dissipation and low bit error rates (BERs) can be achieved. In this paper, we report the first measurement results of the low BERs of AQFP logic. We used a superconductor voltage driver with a stack of dc superconducting-quantum-interference-devices to amplify the logic signals of AQFP gates into mV-range voltage signals for the BER measurement. Our measurement results showed 3.3 dB and 2.6 dB operation margins, in which BERs were less than 10-20, for 1 Gbps and 2 Gbps data rates, respectively. While the observed BERs were very low, the estimated switching energy for the 1-Gbps operation was only 2 zJ or 30kBT, where kB is the Boltzmann's constant and T is the temperature. Unlike conventional non-adiabatic logic, BERs are not directly associated with switching energy in AQFP.
Embracing the quantum limit in silicon computing.
Morton, John J L; McCamey, Dane R; Eriksson, Mark A; Lyon, Stephen A
2011-11-16
Quantum computers hold the promise of massive performance enhancements across a range of applications, from cryptography and databases to revolutionary scientific simulation tools. Such computers would make use of the same quantum mechanical phenomena that pose limitations on the continued shrinking of conventional information processing devices. Many of the key requirements for quantum computing differ markedly from those of conventional computers. However, silicon, which plays a central part in conventional information processing, has many properties that make it a superb platform around which to build a quantum computer.
Blind topological measurement-based quantum computation.
Morimae, Tomoyuki; Fujii, Keisuke
2012-01-01
Blind quantum computation is a novel secure quantum-computing protocol that enables Alice, who does not have sufficient quantum technology at her disposal, to delegate her quantum computation to Bob, who has a fully fledged quantum computer, in such a way that Bob cannot learn anything about Alice's input, output and algorithm. A recent proof-of-principle experiment demonstrating blind quantum computation in an optical system has raised new challenges regarding the scalability of blind quantum computation in realistic noisy conditions. Here we show that fault-tolerant blind quantum computation is possible in a topologically protected manner using the Raussendorf-Harrington-Goyal scheme. The error threshold of our scheme is 4.3 × 10(-3), which is comparable to that (7.5 × 10(-3)) of non-blind topological quantum computation. As the error per gate of the order 10(-3) was already achieved in some experimental systems, our result implies that secure cloud quantum computation is within reach.
Contextuality supplies the 'magic' for quantum computation.
Howard, Mark; Wallman, Joel; Veitch, Victor; Emerson, Joseph
2014-06-19
Quantum computers promise dramatic advantages over their classical counterparts, but the source of the power in quantum computing has remained elusive. Here we prove a remarkable equivalence between the onset of contextuality and the possibility of universal quantum computation via 'magic state' distillation, which is the leading model for experimentally realizing a fault-tolerant quantum computer. This is a conceptually satisfying link, because contextuality, which precludes a simple 'hidden variable' model of quantum mechanics, provides one of the fundamental characterizations of uniquely quantum phenomena. Furthermore, this connection suggests a unifying paradigm for the resources of quantum information: the non-locality of quantum theory is a particular kind of contextuality, and non-locality is already known to be a critical resource for achieving advantages with quantum communication. In addition to clarifying these fundamental issues, this work advances the resource framework for quantum computation, which has a number of practical applications, such as characterizing the efficiency and trade-offs between distinct theoretical and experimental schemes for achieving robust quantum computation, and putting bounds on the overhead cost for the classical simulation of quantum algorithms.
Wireless adiabatic power transfer
Rangelov, A.A.; Suchowski, H.; Silberberg, Y.; Vitanov, N.V.
2011-03-15
Research Highlights: > Efficient and robust mid-range wireless energy transfer between two coils. > The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. > Wireless energy transfer is insensitive to any resonant constraints. > Wireless energy transfer is insensitive to noise in the neighborhood of the coils. - Abstract: We propose a technique for efficient mid-range wireless power transfer between two coils, by adapting the process of adiabatic passage for a coherently driven two-state quantum system to the realm of wireless energy transfer. The proposed technique is shown to be robust to noise, resonant constraints, and other interferences that exist in the neighborhood of the coils.
Quantum computation speedup limits from quantum metrological precision bounds
NASA Astrophysics Data System (ADS)
Demkowicz-Dobrzański, Rafał; Markiewicz, Marcin
2015-06-01
We propose a scheme for translating metrological precision bounds into lower bounds on query complexity of quantum search algorithms. Within the scheme the link between quadratic performance enhancement in idealized quantum metrological and quantum computing schemes becomes clear. More importantly, we utilize results from the field of quantum metrology on a generic loss of quadratic quantum precision enhancement in the presence of decoherence to infer an analogous generic loss of quadratic speedup in oracle based quantum computing. While most of our reasoning is rigorous, at one of the final steps, we need to make use of an unproven technical conjecture. We hope that we will be able to amend this deficiency in the near future, but we are convinced that even without the conjecture proven our results provide a deep insight into the relationship between quantum algorithms and quantum metrology protocols.
Mini-maximizing two qubit quantum computations
NASA Astrophysics Data System (ADS)
Khan, Faisal Shah; Phoenix, Simon J. D.
2013-12-01
Two qubit quantum computations are viewed as two player, strictly competitive games and a game-theoretic measure of optimality of these computations is developed. To this end, the geometry of Hilbert space of quantum computations is used to establish the equivalence of game-theoretic solution concepts of Nash equilibrium and mini-max outcomes in games of this type, and quantum mechanisms are designed for realizing these mini-max outcomes.
Quantum computing. Defining and detecting quantum speedup.
Rønnow, Troels F; Wang, Zhihui; Job, Joshua; Boixo, Sergio; Isakov, Sergei V; Wecker, David; Martinis, John M; Lidar, Daniel A; Troyer, Matthias
2014-07-25
The development of small-scale quantum devices raises the question of how to fairly assess and detect quantum speedup. Here, we show how to define and measure quantum speedup and how to avoid pitfalls that might mask or fake such a speedup. We illustrate our discussion with data from tests run on a D-Wave Two device with up to 503 qubits. By using random spin glass instances as a benchmark, we found no evidence of quantum speedup when the entire data set is considered and obtained inconclusive results when comparing subsets of instances on an instance-by-instance basis. Our results do not rule out the possibility of speedup for other classes of problems and illustrate the subtle nature of the quantum speedup question.
Quantum computing with incoherent resources and quantum jumps.
Santos, M F; Cunha, M Terra; Chaves, R; Carvalho, A R R
2012-04-27
Spontaneous emission and the inelastic scattering of photons are two natural processes usually associated with decoherence and the reduction in the capacity to process quantum information. Here we show that, when suitably detected, these photons are sufficient to build all the fundamental blocks needed to perform quantum computation in the emitting qubits while protecting them from deleterious dissipative effects. We exemplify this by showing how to efficiently prepare graph states for the implementation of measurement-based quantum computation.
Prospects for quantum computation with trapped ions
Hughes, R.J.; James, D.F.V.
1997-12-31
Over the past decade information theory has been generalized to allow binary data to be represented by two-state quantum mechanical systems. (A single two-level system has come to be known as a qubit in this context.) The additional freedom introduced into information physics with quantum systems has opened up a variety of capabilities that go well beyond those of conventional information. For example, quantum cryptography allows two parties to generate a secret key even in the presence of eavesdropping. But perhaps the most remarkable capabilities have been predicted in the field of quantum computation. Here, a brief survey of the requirements for quantum computational hardware, and an overview of the in trap quantum computation project at Los Alamos are presented. The physical limitations to quantum computation with trapped ions are discussed.
Some Thoughts Regarding Practical Quantum Computing
NASA Astrophysics Data System (ADS)
Ghoshal, Debabrata; Gomez, Richard; Lanzagorta, Marco; Uhlmann, Jeffrey
2006-03-01
Quantum computing has become an important area of research in computer science because of its potential to provide more efficient algorithmic solutions to certain problems than are possible with classical computing. The ability of performing parallel operations over an exponentially large computational space has proved to be the main advantage of the quantum computing model. In this regard, we are particularly interested in the potential applications of quantum computers to enhance real software systems of interest to the defense, industrial, scientific and financial communities. However, while much has been written in popular and scientific literature about the benefits of the quantum computational model, several of the problems associated to the practical implementation of real-life complex software systems in quantum computers are often ignored. In this presentation we will argue that practical quantum computation is not as straightforward as commonly advertised, even if the technological problems associated to the manufacturing and engineering of large-scale quantum registers were solved overnight. We will discuss some of the frequently overlooked difficulties that plague quantum computing in the areas of memories, I/O, addressing schemes, compilers, oracles, approximate information copying, logical debugging, error correction and fault-tolerant computing protocols.
Disciplines, models, and computers: the path to computational quantum chemistry.
Lenhard, Johannes
2014-12-01
Many disciplines and scientific fields have undergone a computational turn in the past several decades. This paper analyzes this sort of turn by investigating the case of computational quantum chemistry. The main claim is that the transformation from quantum to computational quantum chemistry involved changes in three dimensions. First, on the side of instrumentation, small computers and a networked infrastructure took over the lead from centralized mainframe architecture. Second, a new conception of computational modeling became feasible and assumed a crucial role. And third, the field of computa- tional quantum chemistry became organized in a market-like fashion and this market is much bigger than the number of quantum theory experts. These claims will be substantiated by an investigation of the so-called density functional theory (DFT), the arguably pivotal theory in the turn to computational quantum chemistry around 1990.
Adiabatic quantum state transfer in tight-binding chains using periodic driving fields
NASA Astrophysics Data System (ADS)
Longhi, S.
2014-09-01
A method for high-fidelity coherent adiabatic transport in a zig-zag tight-binding chain, based on application of two external periodic driving fields, is theoretically proposed. The method turns out to be robust against imperfections and disorder of the static lattice Hamiltonian, is tolerant to next-nearest neighborhood interactions, and enables coherent transport in long chains without the need for a local control and timing of the trapping potential.
Preparation of Quantum States of H2 using Stark-induced Adiabatic Raman Passage (SARP)
2013-12-02
diatomic molecule to an excited rovibrational eigenstate. Based on this idea we carried out experiments using a sequence of overlapping pump (532 nm...overlapping pump and Stokes laser pulses it is possible to transfer the complete ground state population of an isolated diatomic molecule to an excited...wide energy gap ( diatoms like H2, D2, HCl, N2) between the ground and excited electronic states, where other adiabatic methods like STIRAP or SCRAP
The Heisenberg representation of quantum computers
Gottesman, D.
1998-06-24
Since Shor`s discovery of an algorithm to factor numbers on a quantum computer in polynomial time, quantum computation has become a subject of immense interest. Unfortunately, one of the key features of quantum computers--the difficulty of describing them on classical computers--also makes it difficult to describe and understand precisely what can be done with them. A formalism describing the evolution of operators rather than states has proven extremely fruitful in understanding an important class of quantum operations. States used in error correction and certain communication protocols can be described by their stabilizer, a group of tensor products of Pauli matrices. Even this simple group structure is sufficient to allow a rich range of quantum effects, although it falls short of the full power of quantum computation.
Quantum computing with realistically noisy devices.
Knill, E
2005-03-03
In theory, quantum computers offer a means of solving problems that would be intractable on conventional computers. Assuming that a quantum computer could be constructed, it would in practice be required to function with noisy devices called 'gates'. These gates cause decoherence of the fragile quantum states that are central to the computer's operation. The goal of so-called 'fault-tolerant quantum computing' is therefore to compute accurately even when the error probability per gate (EPG) is high. Here we report a simple architecture for fault-tolerant quantum computing, providing evidence that accurate quantum computing is possible for EPGs as high as three per cent. Such EPGs have been experimentally demonstrated, but to avoid excessive resource overheads required by the necessary architecture, lower EPGs are needed. Assuming the availability of quantum resources comparable to the digital resources available in today's computers, we show that non-trivial quantum computations at EPGs of as high as one per cent could be implemented.
Multilayer microwave integrated quantum circuits for scalable quantum computing
NASA Astrophysics Data System (ADS)
Brecht, Teresa; Pfaff, Wolfgang; Wang, Chen; Chu, Yiwen; Frunzio, Luigi; Devoret, Michel H.; Schoelkopf, Robert J.
2016-02-01
As experimental quantum information processing (QIP) rapidly advances, an emerging challenge is to design a scalable architecture that combines various quantum elements into a complex device without compromising their performance. In particular, superconducting quantum circuits have successfully demonstrated many of the requirements for quantum computing, including coherence levels that approach the thresholds for scaling. However, it remains challenging to couple a large number of circuit components through controllable channels while suppressing any other interactions. We propose a hardware platform intended to address these challenges, which combines the advantages of integrated circuit fabrication and the long coherence times achievable in three-dimensional circuit quantum electrodynamics. This multilayer microwave integrated quantum circuit platform provides a path towards the realisation of increasingly complex superconducting devices in pursuit of a scalable quantum computer.
Computational quantum-classical boundary of noisy commuting quantum circuits
Fujii, Keisuke; Tamate, Shuhei
2016-01-01
It is often said that the transition from quantum to classical worlds is caused by decoherence originated from an interaction between a system of interest and its surrounding environment. Here we establish a computational quantum-classical boundary from the viewpoint of classical simulatability of a quantum system under decoherence. Specifically, we consider commuting quantum circuits being subject to decoherence. Or equivalently, we can regard them as measurement-based quantum computation on decohered weighted graph states. To show intractability of classical simulation in the quantum side, we utilize the postselection argument and crucially strengthen it by taking noise effect into account. Classical simulatability in the classical side is also shown constructively by using both separable criteria in a projected-entangled-pair-state picture and the Gottesman-Knill theorem for mixed state Clifford circuits. We found that when each qubit is subject to a single-qubit complete-positive-trace-preserving noise, the computational quantum-classical boundary is sharply given by the noise rate required for the distillability of a magic state. The obtained quantum-classical boundary of noisy quantum dynamics reveals a complexity landscape of controlled quantum systems. This paves a way to an experimentally feasible verification of quantum mechanics in a high complexity limit beyond classically simulatable region. PMID:27189039
Computational quantum-classical boundary of noisy commuting quantum circuits.
Fujii, Keisuke; Tamate, Shuhei
2016-05-18
It is often said that the transition from quantum to classical worlds is caused by decoherence originated from an interaction between a system of interest and its surrounding environment. Here we establish a computational quantum-classical boundary from the viewpoint of classical simulatability of a quantum system under decoherence. Specifically, we consider commuting quantum circuits being subject to decoherence. Or equivalently, we can regard them as measurement-based quantum computation on decohered weighted graph states. To show intractability of classical simulation in the quantum side, we utilize the postselection argument and crucially strengthen it by taking noise effect into account. Classical simulatability in the classical side is also shown constructively by using both separable criteria in a projected-entangled-pair-state picture and the Gottesman-Knill theorem for mixed state Clifford circuits. We found that when each qubit is subject to a single-qubit complete-positive-trace-preserving noise, the computational quantum-classical boundary is sharply given by the noise rate required for the distillability of a magic state. The obtained quantum-classical boundary of noisy quantum dynamics reveals a complexity landscape of controlled quantum systems. This paves a way to an experimentally feasible verification of quantum mechanics in a high complexity limit beyond classically simulatable region.
Computational quantum-classical boundary of noisy commuting quantum circuits
NASA Astrophysics Data System (ADS)
Fujii, Keisuke; Tamate, Shuhei
2016-05-01
It is often said that the transition from quantum to classical worlds is caused by decoherence originated from an interaction between a system of interest and its surrounding environment. Here we establish a computational quantum-classical boundary from the viewpoint of classical simulatability of a quantum system under decoherence. Specifically, we consider commuting quantum circuits being subject to decoherence. Or equivalently, we can regard them as measurement-based quantum computation on decohered weighted graph states. To show intractability of classical simulation in the quantum side, we utilize the postselection argument and crucially strengthen it by taking noise effect into account. Classical simulatability in the classical side is also shown constructively by using both separable criteria in a projected-entangled-pair-state picture and the Gottesman-Knill theorem for mixed state Clifford circuits. We found that when each qubit is subject to a single-qubit complete-positive-trace-preserving noise, the computational quantum-classical boundary is sharply given by the noise rate required for the distillability of a magic state. The obtained quantum-classical boundary of noisy quantum dynamics reveals a complexity landscape of controlled quantum systems. This paves a way to an experimentally feasible verification of quantum mechanics in a high complexity limit beyond classically simulatable region.
Quantum Computer Games: Schrodinger Cat and Hounds
ERIC Educational Resources Information Center
Gordon, Michal; Gordon, Goren
2012-01-01
The quantum computer game "Schrodinger cat and hounds" is the quantum extension of the well-known classical game fox and hounds. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. "Schrodinger cat and hounds" demonstrates the effects of superposition, destructive and constructive interference, measurements and…
Quantum Computer Games: Schrodinger Cat and Hounds
ERIC Educational Resources Information Center
Gordon, Michal; Gordon, Goren
2012-01-01
The quantum computer game "Schrodinger cat and hounds" is the quantum extension of the well-known classical game fox and hounds. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. "Schrodinger cat and hounds" demonstrates the effects of superposition, destructive and constructive interference, measurements and…
NASA Astrophysics Data System (ADS)
Rousseaux, B.; Dzsotjan, D.; Colas des Francs, G.; Jauslin, H. R.; Couteau, C.; Guérin, S.
2016-01-01
We show that the interaction of surface plasmons with quantum emitters can be described by an effective model that has the same structure as a lossy multimode cavity quantum electromagnetic interaction. This allows the coherent manipulation of quantum emitters dressed by surface plasmons at the nanoscale. We show that strong coupling in quantum plasmonics can be used to mediate efficiently the interaction between emitters via a decoherence-free channel, immune to the strong plasmon dissipation. Efficient and robust population transfer, as well as the deterministic generation of entanglement between emitters are numerically shown. These results pave the way for an efficient use of the quantum plasmonic platform beyond its inherent losses.
Nonlinear optics quantum computing with circuit QED.
Adhikari, Prabin; Hafezi, Mohammad; Taylor, J M
2013-02-08
One approach to quantum information processing is to use photons as quantum bits and rely on linear optical elements for most operations. However, some optical nonlinearity is necessary to enable universal quantum computing. Here, we suggest a circuit-QED approach to nonlinear optics quantum computing in the microwave regime, including a deterministic two-photon phase gate. Our specific example uses a hybrid quantum system comprising a LC resonator coupled to a superconducting flux qubit to implement a nonlinear coupling. Compared to the self-Kerr nonlinearity, we find that our approach has improved tolerance to noise in the qubit while maintaining fast operation.
Adiabatic state preparation study of methylene
Veis, Libor Pittner, Jiří
2014-06-07
Quantum computers attract much attention as they promise to outperform their classical counterparts in solving certain type of problems. One of them with practical applications in quantum chemistry is simulation of complex quantum systems. An essential ingredient of efficient quantum simulation algorithms are initial guesses of the exact wave functions with high enough fidelity. As was proposed in Aspuru-Guzik et al. [Science 309, 1704 (2005)], the exact ground states can in principle be prepared by the adiabatic state preparation method. Here, we apply this approach to preparation of the lowest lying multireference singlet electronic state of methylene and numerically investigate preparation of this state at different molecular geometries. We then propose modifications that lead to speeding up the preparation process. Finally, we decompose the minimal adiabatic state preparation employing the direct mapping in terms of two-qubit interactions.
Mathematical Aspects of Quantum Computing 2007
NASA Astrophysics Data System (ADS)
Nakahara, Mikio; Rahimi, Robabeh; SaiToh, Akira
2008-04-01
Quantum computing: an overview / M. Nakahara -- Braid group and topological quantum computing / T. Ootsuka, K. Sakuma -- An introduction to entanglement theory / D. J. H. Markham -- Holonomic quantum computing and its optimization / S. Tanimura -- Playing games in quantum mechanical settings: features of quantum games / S. K. Özdemir, J. Shimamura, N. Imoto -- Quantum error-correcting codes / M. Hagiwara -- Poster summaries. Controled teleportation of an arbitrary unknown two-qubit entangled state / V. Ebrahimi, R. Rahimi, M. Nakahara. Notes on the Dür-Cirac classification / Y. Ota, M. Yoshida, I. Ohba. Bang-bang control of entanglement in Spin-Bus-Boson model / R. Rahimi, A. SaiToh, M. Nakahara. Numerical computation of time-dependent multipartite nonclassical correlation / A. SaiToh ... [et al.]. On classical no-cloning theorem under Liouville dynamics and distances / T. Yamano, O. Iguchi.
Geometry of the Adiabatic Theorem
ERIC Educational Resources Information Center
Lobo, Augusto Cesar; Ribeiro, Rafael Antunes; Ribeiro, Clyffe de Assis; Dieguez, Pedro Ruas
2012-01-01
We present a simple and pedagogical derivation of the quantum adiabatic theorem for two-level systems (a single qubit) based on geometrical structures of quantum mechanics developed by Anandan and Aharonov, among others. We have chosen to use only the minimum geometric structure needed for the understanding of the adiabatic theorem for this case.…
Geometry of the Adiabatic Theorem
ERIC Educational Resources Information Center
Lobo, Augusto Cesar; Ribeiro, Rafael Antunes; Ribeiro, Clyffe de Assis; Dieguez, Pedro Ruas
2012-01-01
We present a simple and pedagogical derivation of the quantum adiabatic theorem for two-level systems (a single qubit) based on geometrical structures of quantum mechanics developed by Anandan and Aharonov, among others. We have chosen to use only the minimum geometric structure needed for the understanding of the adiabatic theorem for this case.…
Parallel Environment for Quantum Computing
NASA Astrophysics Data System (ADS)
Tabakin, Frank; Diaz, Bruno Julia
2009-03-01
To facilitate numerical study of noise and decoherence in QC algorithms,and of the efficacy of error correction schemes, we have developed a Fortran 90 quantum computer simulator with parallel processing capabilities. It permits rapid evaluation of quantum algorithms for a large number of qubits and for various ``noise'' scenarios. State vectors are distributed over many processors, to employ a large number of qubits. Parallel processing is implemented by the Message-Passing Interface protocol. A description of how to spread the wave function components over many processors, along with how to efficiently describe the action of general one- and two-qubit operators on these state vectors will be delineated.Grover's search and Shor's factoring algorithms with noise will be discussed as examples. A major feature of this work is that concurrent versions of the algorithms can be evaluated with each version subject to diverse noise effects, corresponding to solving a stochastic Schrodinger equation. The density matrix for the ensemble of such noise cases is constructed using parallel distribution methods to evaluate its associated entropy. Applications of this powerful tool is made to delineate the stability and correction of QC processes using Hamiltonian based dynamics.
Composite nonadiabatic holonomic quantum computation
NASA Astrophysics Data System (ADS)
Xu, G. F.; Zhao, P. Z.; Xing, T. H.; Sjöqvist, Erik; Tong, D. M.
2017-03-01
Nonadiabatic holonomic quantum computation has a robust feature in suppressing control errors because of its holonomic feature. However, this kind of robust feature is challenged since the usual way of realizing nonadiabatic holonomic gates introduces errors due to systematic errors in the control parameters. To resolve this problem, we here propose a composite scheme to realize nonadiabatic holonomic gates. Our scheme can suppress systematic errors while preserving holonomic robustness. It is particularly useful when the evolution period is shorter than the coherence time. We further show that our composite scheme can be protected by decoherence-free subspaces. In this case, the strengthened robust feature of our composite gates and the coherence stabilization virtue of decoherence-free subspaces are combined.
NASA Astrophysics Data System (ADS)
Takeuchi, Naoki; Nagasawa, Shuichi; China, Fumihiro; Ando, Takumi; Hidaka, Mutsuo; Yamanashi, Yuki; Yoshikawa, Nobuyuki
2017-03-01
Adiabatic quantum-flux-parametron (AQFP) logic is an energy-efficient superconductor logic with zero static power consumption and very small switching energy. In this paper, we report a new AQFP cell library designed using the AIST 10 kA cm-2 Nb high-speed standard process (HSTP), which is a high-critical-current-density version of the AIST 2.5 kA cm-2 Nb standard process (STP2). Since the intrinsic damping of the Josephson junction (JJ) of HSTP is relatively strong, shunt resistors for JJs were removed and the energy efficiency improved significantly. Also, excitation transformers in the new cells were redesigned so that the cells can operate in a four-phase excitation mode. We described the detail of HSTP and the AQFP cell library designed using HSTP, and showed experimental results of cell test circuits.
NASA Astrophysics Data System (ADS)
Ando, Takumi; Nagasawa, Shuichi; Takeuchi, Naoki; Tsuji, Naoki; China, Fumihiro; Hidaka, Mutsuo; Yamanashi, Yuki; Yoshikawa, Nobuyuki
2017-07-01
Adiabatic quantum-flux-parametron (AQFP) is an ultra-low-power superconductor logic. In this study, we proposed and designed three-dimensional (3D) AQFP to achieve high circuit density and efficient interconnections. In 3D-AQFP, different AQFP logic circuits can be designed both over and under a ground plane (GP). The 3D-AQFP circuits are fabricated using the AIST 10 kA cm-2 Nb double gate process, in which two active layers are separated by a single GP. Followed by basic logic cell tests, we show an experimental demonstration of a 3D-XOR gate, the building block cells of which are vertically stacked to save circuit area and wiring length. The measurement results showed reasonable excitation current margins of more than ±16% for the 3D-XOR gate.
NASA Astrophysics Data System (ADS)
Junker, Wolfgang
Quasifree states of a linear Klein-Gordon quantum field on globally hyperbolic spacetime manifolds are considered. After a short mathematical review techniques from the theory of pseudodifferential operators and wavefront sets on manifolds are used to develop a criterion for a state to be an Hadamard state. It is proven that ground- and KMS-states on certain static spacetimes and adiabatic vacuum states on Robertson-Walker spaces are Hadamard states. A counterexample is given which shows that the idea of instantaneous positive energy states w.r.t. a Cauchy surface does in general not yield physical states. Finally, the problem of constructing Hadamard states on arbitrary curved spacetimes is solved in principle.
Quantum error correction and fault-tolerant quantum computation
NASA Astrophysics Data System (ADS)
Lai, Ching-Yi
Quantum computers need to be protected by quantum error-correcting codes against decoherence. One of the most interesting and useful classes of quantum codes is the class of quantum stabilizer codes. Entanglement-assisted (EA) quantum codes are a class of stabilizer codes that make use of preshared entanglement between the sender and the receiver. We provide several code constructions for entanglement-assisted quantum codes. The MacWilliams identity for quantum codes leads to linear programming bounds on the minimum distance. We find new constraints on the simplified stabilizer group and the logical group, which help improve the linear programming bounds on entanglement-assisted quantum codes. The results also can be applied to standard stabilizer codes. In the real world, quantum gates are faulty. To implement quantum computation fault-tolerantly, quantum codes with certain properties are needed. We first analyze Knill's postselection scheme in a two-dimensional architecture. The error performance of this scheme is better than other known concatenated codes. Then we propose several methods to protect syndrome extraction against measurement errors.
NASA Astrophysics Data System (ADS)
Kaestner, Bernd; Kashcheyevs, Vyacheslavs
2015-10-01
Precise manipulation of individual charge carriers in nanoelectronic circuits underpins practical applications of their most basic quantum property—the universality and invariance of the elementary charge. A charge pump generates a net current from periodic external modulation of parameters controlling a nanostructure connected to source and drain leads; in the regime of quantized pumping the current varies in steps of {{q}\\text{e}} f as function of control parameters, where {{q}\\text{e}} is the electron charge and f is the frequency of modulation. In recent years, robust and accurate quantized charge pumps have been developed based on semiconductor quantum dots with tunable tunnel barriers. These devices allow modulation of charge exchange rates between the dot and the leads over many orders of magnitude and enable trapping of a precise number of electrons far away from equilibrium with the leads. The corresponding non-adiabatic pumping protocols focus on understanding of separate parts of the pumping cycle associated with charge loading, capture and release. In this report we review realizations, models and metrology applications of quantized charge pumps based on tunable-barrier quantum dots.
Pure spin current induced by adiabatic quantum pumping in zigzag-edged graphene nanoribbons
Souma, Satofumi Ogawa, Matsuto
2014-05-05
We show theoretically that pure spin current can be generated in zigzag edged graphene nanoribbons through the adiabatic pumping by edge selective pumping potentials. The origin of such pure spin current is the spin splitting of the edge localized states, which are oppositely spin polarized at opposite edges. In the proposed device, each edge of the ribbon is covered by two independent time-periodic local gate potentials with a definite phase difference, inducing the edge spin polarized current. When the pumping phase difference is opposite in sign between two edges, the total charge currents is zero and the pure edge spin current is generated.
Experimental demonstration of deterministic one-way quantum computation on a NMR quantum computer
Ju, Chenyong; Zhu Jing; Peng Xinhua; Chong Bo; Zhou Xianyi; Du Jiangfeng
2010-01-15
One-way quantum computing is an important and novel approach to quantum computation. By exploiting the existing particle-particle interactions, we report an experimental realization of the complete process of deterministic one-way quantum Deutsch-Josza algorithm in NMR, including graph state preparation, single-qubit measurements, and feed-forward corrections. The findings in our experiment may shed light on the future scalable one-way quantum computation.
The case for biological quantum computer elements
NASA Astrophysics Data System (ADS)
Baer, Wolfgang; Pizzi, Rita
2009-05-01
An extension to vonNeumann's analysis of quantum theory suggests self-measurement is a fundamental process of Nature. By mapping the quantum computer to the brain architecture we will argue that the cognitive experience results from a measurement of a quantum memory maintained by biological entities. The insight provided by this mapping suggests quantum effects are not restricted to small atomic and nuclear phenomena but are an integral part of our own cognitive experience and further that the architecture of a quantum computer system parallels that of a conscious brain. We will then review the suggestions for biological quantum elements in basic neural structures and address the de-coherence objection by arguing for a self- measurement event model of Nature. We will argue that to first order approximation the universe is composed of isolated self-measurement events which guaranties coherence. Controlled de-coherence is treated as the input/output interactions between quantum elements of a quantum computer and the quantum memory maintained by biological entities cognizant of the quantum calculation results. Lastly we will present stem-cell based neuron experiments conducted by one of us with the aim of demonstrating the occurrence of quantum effects in living neural networks and discuss future research projects intended to reach this objective.
Performing quantum computing experiments in the cloud
NASA Astrophysics Data System (ADS)
Devitt, Simon J.
2016-09-01
Quantum computing technology has reached a second renaissance in the past five years. Increased interest from both the private and public sector combined with extraordinary theoretical and experimental progress has solidified this technology as a major advancement in the 21st century. As anticipated my many, some of the first realizations of quantum computing technology has occured over the cloud, with users logging onto dedicated hardware over the classical internet. Recently, IBM has released the Quantum Experience, which allows users to access a five-qubit quantum processor. In this paper we take advantage of this online availability of actual quantum hardware and present four quantum information experiments. We utilize the IBM chip to realize protocols in quantum error correction, quantum arithmetic, quantum graph theory, and fault-tolerant quantum computation by accessing the device remotely through the cloud. While the results are subject to significant noise, the correct results are returned from the chip. This demonstrates the power of experimental groups opening up their technology to a wider audience and will hopefully allow for the next stage of development in quantum information technology.
Universal quantum computation with little entanglement.
Van den Nest, Maarten
2013-02-08
We show that universal quantum computation can be achieved in the standard pure-state circuit model while the entanglement entropy of every bipartition is small in each step of the computation. The entanglement entropy required for large-scale quantum computation even tends to zero. Moreover we show that the same conclusion applies to many entanglement measures commonly used in the literature. This includes e.g., the geometric measure, localizable entanglement, multipartite concurrence, squashed entanglement, witness-based measures, and more generally any entanglement measure which is continuous in a certain natural sense. These results demonstrate that many entanglement measures are unsuitable tools to assess the power of quantum computers.
Numerical characteristics of quantum computer simulation
NASA Astrophysics Data System (ADS)
Chernyavskiy, A.; Khamitov, K.; Teplov, A.; Voevodin, V.; Voevodin, Vl.
2016-12-01
The simulation of quantum circuits is significantly important for the implementation of quantum information technologies. The main difficulty of such modeling is the exponential growth of dimensionality, thus the usage of modern high-performance parallel computations is relevant. As it is well known, arbitrary quantum computation in circuit model can be done by only single- and two-qubit gates, and we analyze the computational structure and properties of the simulation of such gates. We investigate the fact that the unique properties of quantum nature lead to the computational properties of the considered algorithms: the quantum parallelism make the simulation of quantum gates highly parallel, and on the other hand, quantum entanglement leads to the problem of computational locality during simulation. We use the methodology of the AlgoWiki project (algowiki-project.org) to analyze the algorithm. This methodology consists of theoretical (sequential and parallel complexity, macro structure, and visual informational graph) and experimental (locality and memory access, scalability and more specific dynamic characteristics) parts. Experimental part was made by using the petascale Lomonosov supercomputer (Moscow State University, Russia). We show that the simulation of quantum gates is a good base for the research and testing of the development methods for data intense parallel software, and considered methodology of the analysis can be successfully used for the improvement of the algorithms in quantum information science.
Universal holonomic quantum computing with cat-codes
NASA Astrophysics Data System (ADS)
Albert, Victor V.; Shu, Chi; Krastanov, Stefan; Shen, Chao; Liu, Ren-Bao; Yang, Zhen-Biao; Schoelkopf, Robert J.; Mirrahimi, Mazyar; Devoret, Michel H.; Jiang, Liang
2016-05-01
Universal computation of a quantum system consisting of superpositions of well-separated coherent states of multiple harmonic oscillators can be achieved by three families of adiabatic holonomic gates. The first gate consists of moving a coherent state around a closed path in phase space, resulting in a relative Berry phase between that state and the other states. The second gate consists of ``colliding'' two coherent states of the same oscillator, resulting in coherent population transfer between them. The third gate is an effective controlled-phase gate on coherent states of two different oscillators. Such gates should be realizable via reservoir engineering of systems which support tunable nonlinearities, such as trapped ions and circuit QED.
Quantum Computation Using Optically Coupled Quantum Dot Arrays
NASA Technical Reports Server (NTRS)
Pradhan, Prabhakar; Anantram, M. P.; Wang, K. L.; Roychowhury, V. P.; Saini, Subhash (Technical Monitor)
1998-01-01
A solid state model for quantum computation has potential advantages in terms of the ease of fabrication, characterization, and integration. The fundamental requirements for a quantum computer involve the realization of basic processing units (qubits), and a scheme for controlled switching and coupling among the qubits, which enables one to perform controlled operations on qubits. We propose a model for quantum computation based on optically coupled quantum dot arrays, which is computationally similar to the atomic model proposed by Cirac and Zoller. In this model, individual qubits are comprised of two coupled quantum dots, and an array of these basic units is placed in an optical cavity. Switching among the states of the individual units is done by controlled laser pulses via near field interaction using the NSOM technology. Controlled rotations involving two or more qubits are performed via common cavity mode photon. We have calculated critical times, including the spontaneous emission and switching times, and show that they are comparable to the best times projected for other proposed models of quantum computation. We have also shown the feasibility of accessing individual quantum dots using the NSOM technology by calculating the photon density at the tip, and estimating the power necessary to perform the basic controlled operations. We are currently in the process of estimating the decoherence times for this system; however, we have formulated initial arguments which seem to indicate that the decoherence times will be comparable, if not longer, than many other proposed models.
Quantum Computation Using Optically Coupled Quantum Dot Arrays
NASA Technical Reports Server (NTRS)
Pradhan, Prabhakar; Anantram, M. P.; Wang, K. L.; Roychowhury, V. P.; Saini, Subhash (Technical Monitor)
1998-01-01
A solid state model for quantum computation has potential advantages in terms of the ease of fabrication, characterization, and integration. The fundamental requirements for a quantum computer involve the realization of basic processing units (qubits), and a scheme for controlled switching and coupling among the qubits, which enables one to perform controlled operations on qubits. We propose a model for quantum computation based on optically coupled quantum dot arrays, which is computationally similar to the atomic model proposed by Cirac and Zoller. In this model, individual qubits are comprised of two coupled quantum dots, and an array of these basic units is placed in an optical cavity. Switching among the states of the individual units is done by controlled laser pulses via near field interaction using the NSOM technology. Controlled rotations involving two or more qubits are performed via common cavity mode photon. We have calculated critical times, including the spontaneous emission and switching times, and show that they are comparable to the best times projected for other proposed models of quantum computation. We have also shown the feasibility of accessing individual quantum dots using the NSOM technology by calculating the photon density at the tip, and estimating the power necessary to perform the basic controlled operations. We are currently in the process of estimating the decoherence times for this system; however, we have formulated initial arguments which seem to indicate that the decoherence times will be comparable, if not longer, than many other proposed models.
Universal quantum computation with weakly integral anyons
NASA Astrophysics Data System (ADS)
Cui, Shawn X.; Hong, Seung-Moon; Wang, Zhenghan
2015-08-01
Harnessing non-abelian statistics of anyons to perform quantum computational tasks is getting closer to reality. While the existence of universal anyons by braiding alone such as the Fibonacci anyon is theoretically a possibility, accessible anyons with current technology all belong to a class that is called weakly integral—anyons whose squared quantum dimensions are integers. We analyze the computational power of the first non-abelian anyon system with only integral quantum dimensions—, the quantum double of . Since all anyons in have finite images of braid group representations, they cannot be universal for quantum computation by braiding alone. Based on our knowledge of the images of the braid group representations, we set up three qutrit computational models. Supplementing braidings with some measurements and ancillary states, we find a universal gate set for each model.
Numerical computation for teaching quantum statistics
NASA Astrophysics Data System (ADS)
Price, Tyson; Swendsen, Robert H.
2013-11-01
The study of ideal quantum gases reveals surprising quantum effects that can be observed in macroscopic systems. The properties of bosons are particularly unusual because a macroscopic number of particles can occupy a single quantum state. We describe a computational approach that supplements the usual analytic derivations applicable in the thermodynamic limit. The approach involves directly summing over the quantum states for finite systems and avoids the need for doing difficult integrals. The results display the unusual behavior of quantum gases even for relatively small systems.
Video Encryption and Decryption on Quantum Computers
NASA Astrophysics Data System (ADS)
Yan, Fei; Iliyasu, Abdullah M.; Venegas-Andraca, Salvador E.; Yang, Huamin
2015-08-01
A method for video encryption and decryption on quantum computers is proposed based on color information transformations on each frame encoding the content of the encoding the content of the video. The proposed method provides a flexible operation to encrypt quantum video by means of the quantum measurement in order to enhance the security of the video. To validate the proposed approach, a tetris tile-matching puzzle game video is utilized in the experimental simulations. The results obtained suggest that the proposed method enhances the security and speed of quantum video encryption and decryption, both properties required for secure transmission and sharing of video content in quantum communication.
Quantum state specific reactant preparation in a molecular beam by rapid adiabatic passage
NASA Astrophysics Data System (ADS)
Chadwick, Helen; Hundt, P. Morten; van Reijzen, Maarten E.; Yoder, Bruce L.; Beck, Rainer D.
2014-01-01
Highly efficient preparation of molecules in a specific rovibrationally excited state for gas/surface reactivity measurements is achieved in a molecular beam using tunable infrared (IR) radiation from a single mode continuous wave optical parametric oscillator (cw-OPO). We demonstrate that with appropriate focusing of the IR radiation, molecules in the molecular beam crossing the fixed frequency IR field experience a Doppler tuning that can be adjusted to achieve complete population inversion of a two-level system by rapid adiabatic passage (RAP). A room temperature pyroelectric detector is used to monitor the excited fraction in the molecular beam and the population inversion is detected and quantified using IR bleaching by a second IR-OPO. The second OPO is also used for complete population transfer to an overtone or combination vibration via double resonance excitation using two spatially separated RAP processes.
Quantum state specific reactant preparation in a molecular beam by rapid adiabatic passage
Chadwick, Helen Hundt, P. Morten; Reijzen, Maarten E. van; Yoder, Bruce L.; Beck, Rainer D.
2014-01-21
Highly efficient preparation of molecules in a specific rovibrationally excited state for gas/surface reactivity measurements is achieved in a molecular beam using tunable infrared (IR) radiation from a single mode continuous wave optical parametric oscillator (cw-OPO). We demonstrate that with appropriate focusing of the IR radiation, molecules in the molecular beam crossing the fixed frequency IR field experience a Doppler tuning that can be adjusted to achieve complete population inversion of a two-level system by rapid adiabatic passage (RAP). A room temperature pyroelectric detector is used to monitor the excited fraction in the molecular beam and the population inversion is detected and quantified using IR bleaching by a second IR-OPO. The second OPO is also used for complete population transfer to an overtone or combination vibration via double resonance excitation using two spatially separated RAP processes.
Nesbitt, David J; Dong, Feng
2008-04-21
Large-amplitude tunneling in vinyl radical over a C2v planar transition state involves CCH bending excitation coupled to all other internal coordinates, resulting in a significant dependence of barrier height and shape on vibrational degrees of freedom at the zero-point level. An ab initio potential surface for vinyl radical has been calculated at the CCSD(T) level (AVnZ; n=2, 3, 4, 5) for vibrationally adiabatic 1D motion along the planar CCH bending tunneling coordinate, extrapolated to the complete basis set (CBS) limit and corrected for anharmonic zero-point effects. The polyatomic reduced moment of inertia is calculated explicitly as a function of tunneling coordinate, with eigenvalues and tunneling splittings obtained from numerical solution of the resulting 1D Schrödinger equation. Linear scaling of the CBS potential to match predicted and observed tunneling splittings empirically yields an adiabatic barrier height of DeltaEadiab=1696(20) cm(-1) which, when corrected for zero-point energy contributions, translates into an effective barrier of DeltaEeff=1602(20) cm(-1) consistent with estimates (DeltaE=1580(100) cm(-1)) by Tanaka and coworkers [J. Chem. Phys., 2004, 120, 3604-3618]. These zero-point-corrected potential surfaces are used to predict tunneling dynamics in vibrationally excited states of vinyl radical, providing strong support for previous jet-cooled high-resolution infrared studies [Dong et al., J. Phys. Chem. A, 2006, 110, 3059-3070] in the symmetric CH2 stretch mode.
del Campo, Adolfo; Rams, Marek M; Zurek, Wojciech H
2012-09-14
The dynamics of a quantum phase transition is inextricably woven with the formation of excitations, as a result of critical slowing down in the neighborhood of the critical point. We design a transitionless quantum driving through a quantum critical point, allowing one to access the ground state of the broken-symmetry phase by a finite-rate quench of the control parameter. The method is illustrated in the one-dimensional quantum Ising model in a transverse field. Driving through the critical point is assisted by an auxiliary Hamiltonian, for which the interplay between the range of the interaction and the modes where excitations are suppressed is elucidated.
Hyper-parallel photonic quantum computation with coupled quantum dots
Ren, Bao-Cang; Deng, Fu-Guo
2014-01-01
It is well known that a parallel quantum computer is more powerful than a classical one. So far, there are some important works about the construction of universal quantum logic gates, the key elements in quantum computation. However, they are focused on operating on one degree of freedom (DOF) of quantum systems. Here, we investigate the possibility of achieving scalable hyper-parallel quantum computation based on two DOFs of photon systems. We construct a deterministic hyper-controlled-not (hyper-CNOT) gate operating on both the spatial-mode and the polarization DOFs of a two-photon system simultaneously, by exploiting the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics (QED). This hyper-CNOT gate is implemented by manipulating the four qubits in the two DOFs of a two-photon system without auxiliary spatial modes or polarization modes. It reduces the operation time and the resources consumed in quantum information processing, and it is more robust against the photonic dissipation noise, compared with the integration of several cascaded CNOT gates in one DOF. PMID:24721781
One-way quantum computation with circuit quantum electrodynamics
Wu Chunwang; Han Yang; Chen Pingxing; Li Chengzu; Zhong Xiaojun
2010-03-15
In this Brief Report, we propose a potential scheme to implement one-way quantum computation with circuit quantum electrodynamics (QED). Large cluster states of charge qubits can be generated in just one step with a superconducting transmission line resonator (TLR) playing the role of a dispersive coupler. A single-qubit measurement in the arbitrary basis can be implemented using a single electron transistor with the help of one-qubit gates. By examining the main decoherence sources, we show that circuit QED is a promising architecture for one-way quantum computation.
Pyshkin, P V; Luo, Da-Wei; Jing, Jun; You, J Q; Wu, Lian-Ao
2016-11-25
Holonomic quantum computation (HQC) may not show its full potential in quantum speedup due to the prerequisite of a long coherent runtime imposed by the adiabatic condition. Here we show that the conventional HQC can be dramatically accelerated by using external control fields, of which the effectiveness is exclusively determined by the integral of the control fields in the time domain. This control scheme can be realized with net zero energy cost and it is fault-tolerant against fluctuation and noise, significantly relaxing the experimental constraints. We demonstrate how to realize the scheme via decoherence-free subspaces. In this way we unify quantum robustness merits of this fault-tolerant control scheme, the conventional HQC and decoherence-free subspace, and propose an expedited holonomic quantum computation protocol.
Pyshkin, P. V.; Luo, Da-Wei; Jing, Jun; You, J. Q.; Wu, Lian-Ao
2016-01-01
Holonomic quantum computation (HQC) may not show its full potential in quantum speedup due to the prerequisite of a long coherent runtime imposed by the adiabatic condition. Here we show that the conventional HQC can be dramatically accelerated by using external control fields, of which the effectiveness is exclusively determined by the integral of the control fields in the time domain. This control scheme can be realized with net zero energy cost and it is fault-tolerant against fluctuation and noise, significantly relaxing the experimental constraints. We demonstrate how to realize the scheme via decoherence-free subspaces. In this way we unify quantum robustness merits of this fault-tolerant control scheme, the conventional HQC and decoherence-free subspace, and propose an expedited holonomic quantum computation protocol. PMID:27886234
Scalable quantum information processing and the optical topological quantum computer
NASA Astrophysics Data System (ADS)
Devitt, S.
2010-02-01
Optical quantum computation has represented one of the most successful testbed systems for quantum information processing. Along with ion-traps and nuclear magnetic resonance (NMR), experimentalists have demonstrated control of qubits, multi-gubit gates and small quantum algorithms. However, photonic based qubits suffer from a problematic lack of a large scale architecture for fault-tolerant computation which could conceivably be built in the near future. While optical systems are, in some regards, ideal for quantum computing due to their high mobility and low susceptibility to environmental decoherence, these same properties make the construction of compact, chip based architectures difficult. Here we discuss many of the important issues related to scalable fault-tolerant quantum computation and introduce a feasible architecture design for an optics based computer. We combine the recent development of topological cluster state computation with the photonic module, simple chip based devices which can be utilized to deterministically entangle photons. The integration of this operational unit with one of the most exciting computational models solves many of the existing problems with other optics based architectures and leads to a feasible large scale design which can continuously generate a 3D cluster state with a photonic module resource cost linear in the cross sectional size of the cluster.
Materials Frontiers to Empower Quantum Computing
Taylor, Antoinette Jane; Sarrao, John Louis; Richardson, Christopher
2015-06-11
This is an exciting time at the nexus of quantum computing and materials research. The materials frontiers described in this report represent a significant advance in electronic materials and our understanding of the interactions between the local material and a manufactured quantum state. Simultaneously, directed efforts to solve materials issues related to quantum computing provide an opportunity to control and probe the fundamental arrangement of matter that will impact all electronic materials. An opportunity exists to extend our understanding of materials functionality from electronic-grade to quantum-grade by achieving a predictive understanding of noise and decoherence in qubits and their origins in materials defects and environmental coupling. Realizing this vision systematically and predictively will be transformative for quantum computing and will represent a qualitative step forward in materials prediction and control.
Image segmentation on a quantum computer
NASA Astrophysics Data System (ADS)
Caraiman, Simona; Manta, Vasile I.
2015-05-01
In this paper, we address the field of quantum information processing and analyze the prospects of applying quantum computation concepts to image processing tasks. Specifically, we discuss the development of a quantum version for the image segmentation operation. This is an important technique that comes up in many image processing applications. We consider the threshold-based segmentation and show that a quantum circuit to achieve this operation can be built using a quantum oracle that implements the thresholding function. We discuss the circuit implementation of the oracle operator and provide examples of segmenting synthetic and real images. The main advantage of the quantum version for image segmentation over the classical approach is its speedup and is provided by the special properties of quantum information processing: superposition of states and inherent parallelism.
Reducing computational complexity of quantum correlations
NASA Astrophysics Data System (ADS)
Chanda, Titas; Das, Tamoghna; Sadhukhan, Debasis; Pal, Amit Kumar; SenDe, Aditi; Sen, Ujjwal
2015-12-01
We address the issue of reducing the resource required to compute information-theoretic quantum correlation measures such as quantum discord and quantum work deficit in two qubits and higher-dimensional systems. We show that determination of the quantum correlation measure is possible even if we utilize a restricted set of local measurements. We find that the determination allows us to obtain a closed form of quantum discord and quantum work deficit for several classes of states, with a low error. We show that the computational error caused by the constraint over the complete set of local measurements reduces fast with an increase in the size of the restricted set, implying usefulness of constrained optimization, especially with the increase of dimensions. We perform quantitative analysis to investigate how the error scales with the system size, taking into account a set of plausible constructions of the constrained set. Carrying out a comparative study, we show that the resource required to optimize quantum work deficit is usually higher than that required for quantum discord. We also demonstrate that minimization of quantum discord and quantum work deficit is easier in the case of two-qubit mixed states of fixed ranks and with positive partial transpose in comparison to the corresponding states having nonpositive partial transpose. Applying the methodology to quantum spin models, we show that the constrained optimization can be used with advantage in analyzing such systems in quantum information-theoretic language. For bound entangled states, we show that the error is significantly low when the measurements correspond to the spin observables along the three Cartesian coordinates, and thereby we obtain expressions of quantum discord and quantum work deficit for these bound entangled states.
Experimental comparison of two quantum computing architectures
Linke, Norbert M.; Maslov, Dmitri; Roetteler, Martin; Debnath, Shantanu; Figgatt, Caroline; Landsman, Kevin A.; Wright, Kenneth; Monroe, Christopher
2017-01-01
We run a selection of algorithms on two state-of-the-art 5-qubit quantum computers that are based on different technology platforms. One is a publicly accessible superconducting transmon device (www.research.ibm.com/ibm-q) with limited connectivity, and the other is a fully connected trapped-ion system. Even though the two systems have different native quantum interactions, both can be programed in a way that is blind to the underlying hardware, thus allowing a comparison of identical quantum algorithms between different physical systems. We show that quantum algorithms and circuits that use more connectivity clearly benefit from a better-connected system of qubits. Although the quantum systems here are not yet large enough to eclipse classical computers, this experiment exposes critical factors of scaling quantum computers, such as qubit connectivity and gate expressivity. In addition, the results suggest that codesigning particular quantum applications with the hardware itself will be paramount in successfully using quantum computers in the future. PMID:28325879
Is the Brain a Quantum Computer?
ERIC Educational Resources Information Center
Litt, Abninder; Eliasmith, Chris; Kroon, Frederick W.; Weinstein, Steven; Thagard, Paul
2006-01-01
We argue that computation via quantum mechanical processes is irrelevant to explaining how brains produce thought, contrary to the ongoing speculations of many theorists. First, quantum effects do not have the temporal properties required for neural information processing. Second, there are substantial physical obstacles to any organic…
Is the Brain a Quantum Computer?
ERIC Educational Resources Information Center
Litt, Abninder; Eliasmith, Chris; Kroon, Frederick W.; Weinstein, Steven; Thagard, Paul
2006-01-01
We argue that computation via quantum mechanical processes is irrelevant to explaining how brains produce thought, contrary to the ongoing speculations of many theorists. First, quantum effects do not have the temporal properties required for neural information processing. Second, there are substantial physical obstacles to any organic…
Experimental comparison of two quantum computing architectures.
Linke, Norbert M; Maslov, Dmitri; Roetteler, Martin; Debnath, Shantanu; Figgatt, Caroline; Landsman, Kevin A; Wright, Kenneth; Monroe, Christopher
2017-03-28
We run a selection of algorithms on two state-of-the-art 5-qubit quantum computers that are based on different technology platforms. One is a publicly accessible superconducting transmon device (www. ibm.com/ibm-q) with limited connectivity, and the other is a fully connected trapped-ion system. Even though the two systems have different native quantum interactions, both can be programed in a way that is blind to the underlying hardware, thus allowing a comparison of identical quantum algorithms between different physical systems. We show that quantum algorithms and circuits that use more connectivity clearly benefit from a better-connected system of qubits. Although the quantum systems here are not yet large enough to eclipse classical computers, this experiment exposes critical factors of scaling quantum computers, such as qubit connectivity and gate expressivity. In addition, the results suggest that codesigning particular quantum applications with the hardware itself will be paramount in successfully using quantum computers in the future.
Directional coupling for quantum computing and communication.
Nikolopoulos, Georgios M
2008-11-14
We introduce the concept of directional coupling, i.e., the selective transfer of a state between adjacent quantum wires, in the context of quantum computing and communication. Our analysis rests upon a mathematical analogy between a dual-channel directional coupler and a composite spin system.
Decoherence and a simple quantum computer
Chuang, I.L.; Yamamoto, Y.; Laflamme, R.
1995-10-01
The authors analyze the effect of decoherence on the operation of part of a simple quantum computer. The results indicate that quantum bit coding techniques may be used to mitigate the effects of two sources of decoherence - amplitude damping and phase randomization.
Optimised resource construction for verifiable quantum computation
NASA Astrophysics Data System (ADS)
Kashefi, Elham; Wallden, Petros
2017-04-01
Recent developments have brought the possibility of achieving scalable quantum networks and quantum devices closer. From the computational point of view these emerging technologies become relevant when they are no longer classically simulatable. Hence a pressing challenge is the construction of practical methods to verify the correctness of the outcome produced by universal or non-universal quantum devices. A promising approach that has been extensively explored is the scheme of verification via encryption through blind quantum computation. We present here a new construction that simplifies the required resources for any such verifiable protocol. We obtain an overhead that is linear in the size of the input (computation), while the security parameter remains independent of the size of the computation and can be made exponentially small (with a small extra cost). Furthermore our construction is generic and could be applied to any universal or non-universal scheme with a given underlying graph.
Quantum computing Hyper Terahertz Facility opens
NASA Astrophysics Data System (ADS)
Singh Chadha, Kulvinder
2016-01-01
A new facility has opened at the University of Surrey to use terahertz radiation for quantum computing. The Hyper Terahertz Facility (HTF) is a joint collaboration between the University of Surrey and the National Physical Laboratory (NPL).
Iterated Gate Teleportation and Blind Quantum Computation.
Pérez-Delgado, Carlos A; Fitzsimons, Joseph F
2015-06-05
Blind quantum computation allows a user to delegate a computation to an untrusted server while keeping the computation hidden. A number of recent works have sought to establish bounds on the communication requirements necessary to implement blind computation, and a bound based on the no-programming theorem of Nielsen and Chuang has emerged as a natural limiting factor. Here we show that this constraint only holds in limited scenarios, and show how to overcome it using a novel method of iterated gate teleportations. This technique enables drastic reductions in the communication required for distributed quantum protocols, extending beyond the blind computation setting. Applied to blind quantum computation, this technique offers significant efficiency improvements, and in some scenarios offers an exponential reduction in communication requirements.
Iterated Gate Teleportation and Blind Quantum Computation
NASA Astrophysics Data System (ADS)
Pérez-Delgado, Carlos A.; Fitzsimons, Joseph F.
2015-06-01
Blind quantum computation allows a user to delegate a computation to an untrusted server while keeping the computation hidden. A number of recent works have sought to establish bounds on the communication requirements necessary to implement blind computation, and a bound based on the no-programming theorem of Nielsen and Chuang has emerged as a natural limiting factor. Here we show that this constraint only holds in limited scenarios, and show how to overcome it using a novel method of iterated gate teleportations. This technique enables drastic reductions in the communication required for distributed quantum protocols, extending beyond the blind computation setting. Applied to blind quantum computation, this technique offers significant efficiency improvements, and in some scenarios offers an exponential reduction in communication requirements.
Delayed Commutation in Quantum Computer Networks
NASA Astrophysics Data System (ADS)
García-Escartín, Juan Carlos; Chamorro-Posada, Pedro
2006-09-01
In the same way that classical computer networks connect and enhance the capabilities of classical computers, quantum networks can combine the advantages of quantum information and communication. We propose a nonclassical network element, a delayed commutation switch, that can solve the problem of switching time in packet switching networks. With the help of some local ancillary qubits and superdense codes, we can route a qubit packet after part of it has left the network node.
Quantum Computer Circuit Analysis and Design
2009-02-01
is a first order nonlinear differential matrix equation of the Lax type. This report gives derivations of the Levi-Civita connection, Riemann...computational paths in the )2( nSU manifold. It is a nonlinear first-order differential matrix equation of the same form as the Lax equation for...I. L. Quantum Information and Computation; Cambridge University Press, 2000. 2. Dowling , M. R.; Nielsen, M. A. The Geometry of Quantum
Braid group representation on quantum computation
Aziz, Ryan Kasyfil; Muchtadi-Alamsyah, Intan
2015-09-30
There are many studies about topological representation of quantum computation recently. One of diagram representation of quantum computation is by using ZX-Calculus. In this paper we will make a diagrammatical scheme of Dense Coding. We also proved that ZX-Calculus diagram of maximally entangle state satisfies Yang-Baxter Equation and therefore, we can construct a Braid Group representation of set of maximally entangle state.
Private quantum computation: an introduction to blind quantum computing and related protocols
NASA Astrophysics Data System (ADS)
Fitzsimons, Joseph F.
2017-06-01
Quantum technologies hold the promise of not only faster algorithmic processing of data, via quantum computation, but also of more secure communications, in the form of quantum cryptography. In recent years, a number of protocols have emerged which seek to marry these concepts for the purpose of securing computation rather than communication. These protocols address the task of securely delegating quantum computation to an untrusted device while maintaining the privacy, and in some instances the integrity, of the computation. We present a review of the progress to date in this emerging area.
EDITORIAL: Quantum Computing and the Feynman Festival
NASA Astrophysics Data System (ADS)
Brandt, Howard E.; Kim, Young S.; Man'ko, Margarita A.
2003-12-01
The Feynman Festival is a new interdisciplinary conference developed for studying Richard Feynman and his physics. The first meeting of this new conference series was held at the University of Maryland on 23--28 August 2002 (http://www.physics.umd.edu/robot/feynman.html) and the second meeting is scheduled for August 2004 at the same venue. According to Feynman, the different aspects of nature are different aspects of the same thing. Therefore, the ultimate purpose of the conference is to find Feynman's same thing from all different theories. For this reason, the first meeting of the Festival did not begin with a fixed formula, but composed its scientific programme based on responses from the entire physics community. The conference drew the most enthusiastic response from the community of quantum computing, the field initiated by Feynman. Encouraged by the response, we decided to edit a special issue of Journal of Optics B: Quantum and Semiclassical Optics on quantum computing in connection with the first Feynman Festival. The authorship is not restricted to the participants of the Feynman Festival, and all interested parties were encouraged to submit their papers on this subject. Needless to say, all the papers were peer reviewed according to the well-established standards of the journal. The subject of quantum computing is not restricted to building and operating computers. It requires a deeper understanding of how quantum mechanics works in materials as well as in our minds. Indeed, it covers the basic foundations of quantum mechanics, measurement theory, information theory, quantum optics, atomic physics and condensed matter physics. It may be necessary to develop new mathematical tools to accommodate the language that nature speaks. It is gratifying to note that this special issue contains papers covering all these aspects of quantum computing. As Feynman noted, we could be discussing these diversified issues to study one problem. In our case, this `one
Acausal measurement-based quantum computing
NASA Astrophysics Data System (ADS)
Morimae, Tomoyuki
2014-07-01
In measurement-based quantum computing, there is a natural "causal cone" among qubits of the resource state, since the measurement angle on a qubit has to depend on previous measurement results in order to correct the effect of by-product operators. If we respect the no-signaling principle, by-product operators cannot be avoided. Here we study the possibility of acausal measurement-based quantum computing by using the process matrix framework [Oreshkov, Costa, and Brukner, Nat. Commun. 3, 1092 (2012), 10.1038/ncomms2076]. We construct a resource process matrix for acausal measurement-based quantum computing restricting local operations to projective measurements. The resource process matrix is an analog of the resource state of the standard causal measurement-based quantum computing. We find that if we restrict local operations to projective measurements the resource process matrix is (up to a normalization factor and trivial ancilla qubits) equivalent to the decorated graph state created from the graph state of the corresponding causal measurement-based quantum computing. We also show that it is possible to consider a causal game whose causal inequality is violated by acausal measurement-based quantum computing.
Dynamo magnetic field modes in thin astrophysical disks - An adiabatic computational approximation
NASA Technical Reports Server (NTRS)
Stepinski, T. F.; Levy, E. H.
1991-01-01
An adiabatic approximation is applied to the calculation of turbulent MHD dynamo magnetic fields in thin disks. The adiabatic method is employed to investigate conditions under which magnetic fields generated by disk dynamos permeate the entire disk or are localized to restricted regions of a disk. Two specific cases of Keplerian disks are considered. In the first, magnetic field diffusion is assumed to be dominated by turbulent mixing leading to a dynamo number independent of distance from the center of the disk. In the second, the dynamo number is allowed to vary with distance from the disk's center. Localization of dynamo magnetic field structures is found to be a general feature of disk dynamos, except in the special case of stationary modes in dynamos with constant dynamo number. The implications for the dynamical behavior of dynamo magnetized accretion disks are discussed and the results of these exploratory calculations are examined in the context of the protosolar nebula and accretion disks around compact objects.
Quantum computing in a piece of glass
NASA Astrophysics Data System (ADS)
Miller, Warner A.; Alsing, Paul M.; Kreymerman, Grigoriy; McDonald, Jonathan R.; Tison, Christopher
2011-05-01
Quantum gates and simple quantum algorithms can be designed utilizing the diffraction phenomena of a photon within a multiplexed holographic element. The quantum eigenstates we use are the photon's linear momentum (LM) as measured by the number of waves of tilt across the aperture. Two properties of quantum computing within the circuit model make this approach attractive. First, any conditional measurement can be commuted in time with any unitary quantum gate - the timeless nature of quantum computing. Second, photon entanglement can be encoded as a superposition state of a single photon in a higher-dimensional state space afforded by LM. Our theoretical and numerical results indicate that OptiGrate's photo-thermal refractive (PTR) glass is an enabling technology. We will review our previous design of a quantum projection operator and give credence to this approach on a representative quantum gate grounded on coupled-mode theory and numerical simulations, all with parameters consistent with PTR glass. We discuss the strengths (high efficiencies, robustness to environment) and limitations (scalability, crosstalk) of this technology. While not scalable, the utility and robustness of such optical elements for broader quantum information processing applications can be substantial.
Waveguide-QED-based photonic quantum computation.
Zheng, Huaixiu; Gauthier, Daniel J; Baranger, Harold U
2013-08-30
We propose a new scheme for quantum computation using flying qubits--propagating photons in a one-dimensional waveguide interacting with matter qubits. Photon-photon interactions are mediated by the coupling to a four-level system, based on which photon-photon π-phase gates (CONTROLLED-NOT) can be implemented for universal quantum computation. We show that high gate fidelity is possible, given recent dramatic experimental progress in superconducting circuits and photonic-crystal waveguides. The proposed system can be an important building block for future on-chip quantum networks.
Cat-qubits for quantum computation
NASA Astrophysics Data System (ADS)
Mirrahimi, Mazyar
2016-08-01
The development of quantum Josephson circuits has created a strong expectation for reliable processing of quantum information. While this progress has already led to various proof-of-principle experiments on small-scale quantum systems, a major scaling step is required towards many-qubit protocols. Fault-tolerant computation with protected logical qubits usually comes at the expense of a significant overhead in the hardware. Each of the involved physical qubits still needs to satisfy the best achieved properties (coherence times, coupling strengths and tunability). Here, and in the aim of addressing alternative approaches to deal with these obstacles, I overview a series of recent theoretical proposals, and the experimental developments following these proposals, to enable a hardware-efficient paradigm for quantum memory protection and universal quantum computation. xml:lang="fr"
Quantum Fourier transform in computational basis
NASA Astrophysics Data System (ADS)
Zhou, S. S.; Loke, T.; Izaac, J. A.; Wang, J. B.
2017-03-01
The quantum Fourier transform, with exponential speed-up compared to the classical fast Fourier transform, has played an important role in quantum computation as a vital part of many quantum algorithms (most prominently, Shor's factoring algorithm). However, situations arise where it is not sufficient to encode the Fourier coefficients within the quantum amplitudes, for example in the implementation of control operations that depend on Fourier coefficients. In this paper, we detail a new quantum scheme to encode Fourier coefficients in the computational basis, with fidelity 1 - δ and digit accuracy ɛ for each Fourier coefficient. Its time complexity depends polynomially on log (N), where N is the problem size, and linearly on 1/δ and 1/ɛ . We also discuss an application of potential practical importance, namely the simulation of circulant Hamiltonians.
NASA Astrophysics Data System (ADS)
Teplukhin, Alexander; Babikov, Dmitri
2014-10-01
The adiabatically-adjusting principal-axes hyperspherical (APH) coordinates reviewed in this letter are one of the best coordinate sets developed for computational treatment of spectroscopy and dynamics of triatomic molecules. Unfortunately, it is not so easy to understand and interpret them, compared to other simpler coordinates, like valence coordinates or Jacobi coordinates. To address this issue, we developed a desktop application called APHDemo. This tool visualizes the process of adjustment of the APH coordinates to the shape of a triatomic molecule during molecular vibrations or chemical reaction, and helps to understand their physical meaning without going into complicated math.
Simulating physical phenomena with a quantum computer
NASA Astrophysics Data System (ADS)
Ortiz, Gerardo
2003-03-01
In a keynote speech at MIT in 1981 Richard Feynman raised some provocative questions in connection to the exact simulation of physical systems using a special device named a ``quantum computer'' (QC). At the time it was known that deterministic simulations of quantum phenomena in classical computers required a number of resources that scaled exponentially with the number of degrees of freedom, and also that the probabilistic simulation of certain quantum problems were limited by the so-called sign or phase problem, a problem believed to be of exponential complexity. Such a QC was intended to mimick physical processes exactly the same as Nature. Certainly, remarks coming from such an influential figure generated widespread interest in these ideas, and today after 21 years there are still some open questions. What kind of physical phenomena can be simulated with a QC?, How?, and What are its limitations? Addressing and attempting to answer these questions is what this talk is about. Definitively, the goal of physics simulation using controllable quantum systems (``physics imitation'') is to exploit quantum laws to advantage, and thus accomplish efficient imitation. Fundamental is the connection between a quantum computational model and a physical system by transformations of operator algebras. This concept is a necessary one because in Quantum Mechanics each physical system is naturally associated with a language of operators and thus can be considered as a possible model of quantum computation. The remarkable result is that an arbitrary physical system is naturally simulatable by another physical system (or QC) whenever a ``dictionary'' between the two operator algebras exists. I will explain these concepts and address some of Feynman's concerns regarding the simulation of fermionic systems. Finally, I will illustrate the main ideas by imitating simple physical phenomena borrowed from condensed matter physics using quantum algorithms, and present experimental
Robust dynamical decoupling for quantum computing and quantum memory.
Souza, Alexandre M; Alvarez, Gonzalo A; Suter, Dieter
2011-06-17
Dynamical decoupling (DD) is a popular technique for protecting qubits from the environment. However, unless special care is taken, experimental errors in the control pulses used in this technique can destroy the quantum information instead of preserving it. Here, we investigate techniques for making DD sequences robust against different types of experimental errors while retaining good decoupling efficiency in a fluctuating environment. We present experimental data from solid-state nuclear spin qubits and introduce a new DD sequence that is suitable for quantum computing and quantum memory.
Universal quantum computation in a semiconductor quantum wire network
NASA Astrophysics Data System (ADS)
Sau, Jay D.; Tewari, Sumanta; Das Sarma, S.
2010-11-01
Universal quantum computation (UQC) using Majorana fermions on a two-dimensional topological superconducting (TS) medium remains an outstanding open problem. This is because the quantum gate set that can be generated by braiding of the Majorana fermions does not include any two-qubit gate and also no single-qubit π/8 phase gate. In principle, it is possible to create these crucial extra gates using quantum interference of Majorana fermion currents. However, it is not clear if the motion of the various order parameter defects (vortices, domain walls, etc.), to which the Majorana fermions are bound in a TS medium, can be quantum coherent. We show that these obstacles can be overcome using a semiconductor quantum wire network in the vicinity of an s-wave superconductor, by constructing topologically protected two-qubit gates and any arbitrary single-qubit phase gate in a topologically unprotected manner, which can be error corrected using magic-state distillation. Thus our strategy, using a judicious combination of topologically protected and unprotected gate operations, realizes UQC on a quantum wire network with a remarkably high error threshold of 0.14 as compared to 10-3 to 10-4 in ordinary unprotected quantum computation.
Simulating fermions on a quantum computer
NASA Astrophysics Data System (ADS)
Ortiz, G.; Gubernatis, J. E.; Knill, E.; Laflamme, R.
2002-07-01
The real-time probabilistic simulation of quantum systems in classical computers is known to be limited by the so-called dynamical sign problem, a problem leading to exponential complexity. In 1981 Richard Feynman raised some provocative questions in connection to the "exact imitation" of such systems using a special device named a "quantum computer". Feynman hesitated about the possibility of imitating fermion systems using such a device. Here we address some of his concerns and, in particular, investigate the simulation of fermionic systems. We show how quantum computers avoid the sign problem in some cases by reducing the complexity from exponential to polynomial. Our demonstration is based upon the use of isomorphisms of algebras. We present specific quantum algorithms that illustrate the main points of our algebraic approach.
Prospects for quantum computing: Extremely doubtful
NASA Astrophysics Data System (ADS)
Dyakonov, M. I.
2014-09-01
The quantum computer is supposed to process information by applying unitary transformations to 2N complex amplitudes defining the state of N qubits. A useful machine needing N 103 or more, the number of continuous parameters describing the state of a quantum computer at any given moment is at least 21000 10300 which is much greater than the number of protons in the Universe. However, the theorists believe that the feasibility of large-scale quantum computing has been proved via the “threshold theorem”. Like for any theorem, the proof is based on a number of assumptions considered as axioms. However, in the physical world none of these assumptions can be fulfilled exactly. Any assumption can be only approached with some limited precision. So, the rather meaningless “error per qubit per gate” threshold must be supplemented by a list of the precisions with which all assumptions behind the threshold theorem should hold. Such a list still does not exist. The theory also seems to ignore the undesired free evolution of the quantum computer caused by the energy differences of quantum states entering any given superposition. Another important point is that the hypothetical quantum computer will be a system of 103 -106 qubits PLUS an extremely complex and monstrously sophisticated classical apparatus. This huge and strongly nonlinear system will generally exhibit instabilities and chaotic behavior.
Universality of black hole quantum computing
NASA Astrophysics Data System (ADS)
Dvali, Gia; Gomez, Cesar; Lüst, Dieter; Omar, Yasser; Richter, Benedikt
2017-01-01
By analyzing the key properties of black holes from the point of view of quantum information, we derive a model-independent picture of black hole quantum computing. It has been noticed that this picture exhibits striking similarities with quantum critical condensates, allowing the use of a common language to describe quantum computing in both systems. We analyze such quantum computing by allowing coupling to external modes, under the condition that the external influence must be soft-enough in order not to offset the basic properties of the system. We derive model-independent bounds on some crucial time-scales, such as the times of gate operation, decoherence, maximal entanglement and total scrambling. We show that for black hole type quantum computers all these time-scales are of the order of the black hole half-life time. Furthermore, we construct explicitly a set of Hamiltonians that generates a universal set of quantum gates for the black hole type computer. We find that the gates work at maximal energy efficiency. Furthermore, we establish a fundamental bound on the complexity of quantum circuits encoded on these systems, and characterize the unitary operations that are implementable. It becomes apparent that the computational power is very limited due to the fact that the black hole life-time is of the same order of the gate operation time. As a consequence, it is impossible to retrieve its information, within the life-time of a black hole, by externally coupling to the black hole qubits. However, we show that, in principle, coupling to some of the internal degrees of freedom allows acquiring knowledge about the micro-state. Still, due to the trivial complexity of operations that can be performed, there is no time advantage over the collection of Hawking radiation and subsequent decoding.
Compressed quantum computation using a remote five-qubit quantum computer
NASA Astrophysics Data System (ADS)
Hebenstreit, M.; Alsina, D.; Latorre, J. I.; Kraus, B.
2017-05-01
The notion of compressed quantum computation is employed to simulate the Ising interaction of a one-dimensional chain consisting of n qubits using the universal IBM cloud quantum computer running on log2(n ) qubits. The external field parameter that controls the quantum phase transition of this model translates into particular settings of the quantum gates that generate the circuit. We measure the magnetization, which displays the quantum phase transition, on a two-qubit system, which simulates a four-qubit Ising chain, and show its agreement with the theoretical prediction within a certain error. We also discuss the relevant point of how to assess errors when using a cloud quantum computer with a limited amount of runs. As a solution, we propose to use validating circuits, that is, to run independent controlled quantum circuits of similar complexity to the circuit of interest.
Quantum Optical Implementations of Quantum Computing and Quantum Informatics Protocols
2007-11-20
REPORT NUMBER Institute for Quantum Studies and Department of Physics Texas A&M University College Station, TX 77843- 4242 9. SPONSORING / MONITORING...September 30, 2007 Principal Investigators: Marlan 0. Scully and M. Subail Zubairy Institute for Quantum Studies and Department of Physics Texas A&M...Thus, N has a simple physical meaning: It is the ratio of the delay time of the buffer and the pulse duration and corresponds to the number of
Transitionless driving on adiabatic search algorithm
Oh, Sangchul; Kais, Sabre
2014-12-14
We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.
Transitionless driving on adiabatic search algorithm
NASA Astrophysics Data System (ADS)
Oh, Sangchul; Kais, Sabre
2014-12-01
We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.
Transitionless driving on adiabatic search algorithm.
Oh, Sangchul; Kais, Sabre
2014-12-14
We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.
NASA Astrophysics Data System (ADS)
Krajewski, Florian R.; Müser, Martin H.
2005-07-01
The spectral density of quantum mechanical Frenkel Kontorova chains moving in disordered, external potentials is investigated by means of path-integral molecular dynamics. If the second moment of the embedding potential is well defined (roughness exponent H=0), there is one regime in which the chain is pinned (large masses m of chain particles) and one in which it is unpinned (small m). If the embedding potential can be classified as a random walk on large length scales ( H=1/2), then the chain is always pinned irrespective of the value of m. For H=1/2, two phonon-like branches appear in the spectra.
Efficient quantum circuits for one-way quantum computing.
Tanamoto, Tetsufumi; Liu, Yu-Xi; Hu, Xuedong; Nori, Franco
2009-03-13
While Ising-type interactions are ideal for implementing controlled phase flip gates in one-way quantum computing, natural interactions between solid-state qubits are most often described by either the XY or the Heisenberg models. We show an efficient way of generating cluster states directly using either the imaginary SWAP (iSWAP) gate for the XY model, or the sqrt[SWAP] gate for the Heisenberg model. Our approach thus makes one-way quantum computing more feasible for solid-state devices.
Qubus ancilla-driven quantum computation
Brown, Katherine Louise; De, Suvabrata; Kendon, Viv; Munro, Bill
2014-12-04
Hybrid matter-optical systems offer a robust, scalable path to quantum computation. Such systems have an ancilla which acts as a bus connecting the qubits. We demonstrate how using a continuous variable qubus as the ancilla provides savings in the total number of operations required when computing with many qubits.
Extending matchgates into universal quantum computation
Brod, Daniel J.; Galvao, Ernesto F.
2011-08-15
Matchgates are a family of two-qubit gates associated with noninteracting fermions. They are classically simulatable if acting only on nearest neighbors but become universal for quantum computation if we relax this restriction or use swap gates [Jozsa and Miyake, Proc. R. Soc. A 464, 3089 (2008)]. We generalize this result by proving that any nonmatchgate parity-preserving unitary is capable of extending the computational power of matchgates into universal quantum computation. We identify the single local invariant of parity-preserving unitaries responsible for this, and discuss related results in the context of fermionic systems.
Triple-server blind quantum computation using entanglement swapping
NASA Astrophysics Data System (ADS)
Li, Qin; Chan, Wai Hong; Wu, Chunhui; Wen, Zhonghua
2014-04-01
Blind quantum computation allows a client who does not have enough quantum resources or technologies to achieve quantum computation on a remote quantum server such that the client's input, output, and algorithm remain unknown to the server. Up to now, single- and double-server blind quantum computation have been considered. In this work, we propose a triple-server blind computation protocol where the client can delegate quantum computation to three quantum servers by the use of entanglement swapping. Furthermore, the three quantum servers can communicate with each other and the client is almost classical since one does not require any quantum computational power, quantum memory, and the ability to prepare any quantum states and only needs to be capable of getting access to quantum channels.
Quantum Heterogeneous Computing for Satellite Positioning Optimization
NASA Astrophysics Data System (ADS)
Bass, G.; Kumar, V.; Dulny, J., III
2016-12-01
Hard optimization problems occur in many fields of academic study and practical situations. We present results in which quantum heterogeneous computing is used to solve a real-world optimization problem: satellite positioning. Optimization problems like this can scale very rapidly with problem size, and become unsolvable with traditional brute-force methods. Typically, such problems have been approximately solved with heuristic approaches; however, these methods can take a long time to calculate and are not guaranteed to find optimal solutions. Quantum computing offers the possibility of producing significant speed-up and improved solution quality. There are now commercially available quantum annealing (QA) devices that are designed to solve difficult optimization problems. These devices have 1000+ quantum bits, but they have significant hardware size and connectivity limitations. We present a novel heterogeneous computing stack that combines QA and classical machine learning and allows the use of QA on problems larger than the quantum hardware could solve in isolation. We begin by analyzing the satellite positioning problem with a heuristic solver, the genetic algorithm. The classical computer's comparatively large available memory can explore the full problem space and converge to a solution relatively close to the true optimum. The QA device can then evolve directly to the optimal solution within this more limited space. Preliminary experiments, using the Quantum Monte Carlo (QMC) algorithm to simulate QA hardware, have produced promising results. Working with problem instances with known global minima, we find a solution within 8% in a matter of seconds, and within 5% in a few minutes. Future studies include replacing QMC with commercially available quantum hardware and exploring more problem sets and model parameters. Our results have important implications for how heterogeneous quantum computing can be used to solve difficult optimization problems in any
Quantum learning for a quantum lattice gas computer
NASA Astrophysics Data System (ADS)
Behrman, Elizabeth; Steck, James
2015-03-01
Quantum lattice gas is the logical generalization of quantum cellular automata. In low energy the dynamics are well described by the Gross-Pitaevskii equation in the mean field limit, which is an effective nonlinear interaction model of a Bose-Einstein condensate. In previous work, we have shown in simulation that both spatial and temporal models of quantum learning computers can be used to ``design'' non-trivial quantum algorithms. The advantages of quantum learning over the usual practice of using quantum gate building blocks are, first, the rapidity with which the problem can be solved, without having to decompose the problem; second, the fact that our technique can be used readily even when the problem, or the operator, is not well understood; and, third, that because the interactions are a natural part of the physical system, connectivity is automatic. The advantage to quantum learning obviously grows with the size and the complexity of the problem. We develop and present our learning algorithm as applied to the mean field lattice gas equation, and present a few preliminary results.
Quantum learning in a quantum lattice gas computer
NASA Astrophysics Data System (ADS)
Behrman, Elizabeth; Steck, James
2015-04-01
Quantum lattice gas is the logical generalization of quantum cellular automata. At low energy the dynamics are well described by the Gross-Pitaevskii equation in the mean field limit, which is an effective nonlinear interaction model of a Bose-Einstein condensate. In previous work, we have shown in simulation that both spatial and temporal models of quantum learning computers can be used to ``design'' non-trivial quantum algorithms. The advantages of quantum learning over the usual practice of using quantum gate building blocks are, first, the rapidity with which the problem can be solved, without having to decompose the problem; second, the fact that our technique can be used readily even when the problem, or the operator, is not well understood; and, third, that because the interactions are a natural part of the physical system, connectivity is automatic. The advantage to quantum learning obviously grows with the size and the complexity of the problem. We develop and present our learning algorithm as applied to the mean field lattice gas equation, and present a few preliminary results.
Semiconductor-inspired superconducting quantum computing
NASA Astrophysics Data System (ADS)
Shim, Yun-Pil
Superconducting circuits offer tremendous design flexibility in the quantum regime culminating most recently in the demonstration of few qubit systems supposedly approaching the threshold for fault-tolerant quantum information processing. Competition in the solid-state comes from semiconductor qubits, where nature has bestowed some very useful properties which can be utilized for spin qubit based quantum computing. Here we present an architecture for superconducting quantum computing based on selective design principles deduced from spin-based systems. We propose an encoded qubit approach realizable with state-of-the-art tunable Josephson junction qubits. Our results show that this design philosophy holds promise, enables microwave-free control, and offers a pathway to future qubit designs with new capabilities such as with higher fidelity or, perhaps, operation at higher temperature. The approach is especially suited to qubits based on variable super-semi junctions.
Nanoscale solid-state quantum computing
NASA Astrophysics Data System (ADS)
Ardavan, A.; Austwick, M.; Benjamin, S.C.; Briggs, G.A.D.; Dennis, T.J.S.; Ferguson, A.; Hasko, D.G.; Kanai, M.; Khlobystov, A.N.; Lovett, B.W.; Morley, G.W.; Oliver, R.A.; Pettifor, D.G.; Porfyrakis, K.; Reina, J.H.; Rice, J.H.; Smith, J.D.; Taylor, R.A.; Williams, D.A.; Adelmann, C.; Mariette, H.; Hamers, R.J.
2003-07-01
Most experts agree that it is too early to say how quantum computers will eventually be built, and several nanoscale solid-state schemes are being implemented in a range of materials. Nanofabricated quantum dots can be made in designer configurations, with established technology for controlling interactions and for reading out results. Epitaxial quantum dots can be grown in vertical arrays in semiconductors, and ultrafast optical techniques are available for controlling and measuring their excitations. Single-walled carbon nanotubes can be used for molecular self-assembly of endohedral fullerenes, which can embody quantum information in the electron spin. The challenges of individual addressing in such tiny structures could rapidly become intractable with increasing numbers of qubits, but these schemes are amenable to global addressing methods for computation.
Information-theoretic temporal Bell inequality and quantum computation
Morikoshi, Fumiaki
2006-05-15
An information-theoretic temporal Bell inequality is formulated to contrast classical and quantum computations. Any classical algorithm satisfies the inequality, while quantum ones can violate it. Therefore, the violation of the inequality is an immediate consequence of the quantumness in the computation. Furthermore, this approach suggests a notion of temporal nonlocality in quantum computation.
Plasmon Resonators for Quantum Computing
2007-06-01
quantum dot. For free atoms this strong coupling is achieved using high Q optical resonators, such as ultra-low-loss bulk Fabry - Perot cavities or...TR-07-0487 11. SUPPLEMENTARY NOTES 12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Unlimited UL 13. ABSTRACT (Maximum 200 words) The
Introduction to Quantum Information/Computing
2005-06-01
mωX + iP) sqrt(2mhω) BCS Theory – Named for John Bardeen , Leon Cooper, and Robert Schrieffer. According to theory, the...Theory and Reliable Communication, John Wiley & Sons 1998 2. M.A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information, Cambridge...France and by John Wiley & Sons. 6. H. Goldstein, Classical Mechanics, 1950 Addison-Wesley Publishing Company, Inc. 7. L.S. Brown and G
Entanglement and Quantum Computation: An Overview
Perez, R.B.
2000-06-27
This report presents a selective compilation of basic facts from the fields of particle entanglement and quantum information processing prepared for those non-experts in these fields that may have interest in an area of physics showing counterintuitive, ''spooky'' (Einstein's words) behavior. In fact, quantum information processing could, in the near future, provide a new technology to sustain the benefits to the U.S. economy due to advanced computer technology.
NASA Astrophysics Data System (ADS)
Volkas, Raymond R.; Wong, Yvonne Y. Y.
2000-11-01
We demonstrate that the relic neutrino asymmetry evolution equation derived from the quantum kinetic equations (QKE's) reduces to the Boltzmann limit that is dependent only on the instantaneous neutrino distribution functions, in the adiabatic limit in conjunction with sufficient damping. An original physical and/or geometrical interpretation of the adiabatic approximation is given, which serves as a convenient visual aid for understanding the sharply contrasting resonance behaviors exhibited by the neutrino ensemble in opposing collision regimes. We also present a classical analogue for the evolution of the difference in the να and νs distribution functions which, in the Boltzmann limit, is akin to the behavior of the generic reaction A⇌B with equal forward and reverse reaction rate constants. A new characteristic quantity, the matter and collision-affected mixing angle of the neutrino ensemble, is identified here for the first time. The role of collisions is revealed to be twofold: (i) to wipe out the inherent oscillations, and (ii) to equilibrate the να and νs distribution functions in the long run. Studies on non-adiabatic evolution and its possible relation to rapid oscillations in lepton number generation are also featured, with the introduction of an adiabaticity parameter for collision-affected oscillations.
Computations in quantum mechanics made easy
NASA Astrophysics Data System (ADS)
Korsch, H. J.; Rapedius, K.
2016-09-01
Convenient and simple numerical techniques for performing quantum computations based on matrix representations of Hilbert space operators are presented and illustrated by various examples. The applications include the calculations of spectral and dynamical properties for one-dimensional and two-dimensional single-particle systems as well as bosonic many-particle and open quantum systems. Due to their technical simplicity these methods are well suited as a tool for teaching quantum mechanics to undergraduates and graduates. Explicit implementations of the presented numerical methods in Matlab are given.
Universal dephasing control during quantum computation
Gordon, Goren; Kurizki, Gershon
2007-10-15
Dephasing is a ubiquitous phenomenon that leads to the loss of coherence in quantum systems and the corruption of quantum information. We present a universal dynamical control approach to combat dephasing during all stages of quantum computation, namely, storage and single- and two-qubit operators. We show that (a) tailoring multifrequency gate pulses to the dephasing dynamics can increase fidelity; (b) cross-dephasing, introduced by entanglement, can be eliminated by appropriate control fields; (c) counterintuitively and contrary to previous schemes, one can increase the gate duration, while simultaneously increasing the total gate fidelity.
Efficient quantum computing of complex dynamics.
Benenti, G; Casati, G; Montangero, S; Shepelyansky, D L
2001-11-26
We propose a quantum algorithm which uses the number of qubits in an optimal way and efficiently simulates a physical model with rich and complex dynamics described by the quantum sawtooth map. The numerical study of the effect of static imperfections in the quantum computer hardware shows that the main elements of the phase space structures are accurately reproduced up to a time scale which is polynomial in the number of qubits. The errors generated by these imperfections are more significant than the errors of random noise in gate operations.
Theoretical studies for experimental implementation of quantum computing with trapped ions
NASA Astrophysics Data System (ADS)
Yoshimura, Bryce T.
Certain quantum many-body physics problems, such as the transverse field Ising model are intractable on a classical computer, meaning that as the number of particles grows, or spins, the amount of memory and computational time required to solve the problem exactly increases faster than a polynomial behavior. However, quantum simulators are being developed to efficiently solve quantum problems that are intractable via conventional computing. Some of the most successful quantum simulators are based on ion traps. Their success depends on the ability to achieve long coherence time, precise spin control, and high fidelity in state preparation. In this work, I present calculations that characterizes the oblate Paul trap that creates two-dimensional Coulomb crystals in a triangular lattice and phonon modes. We also calculate the spin-spin Ising-like interaction that can be generated in the oblate Paul trap using the same techinques as the linear radiofrequency Paul trap. In addition, I discuss two possible challenges that arise in the Penning trap: the effects of defects ( namely when Be+ → BeH+) and the creation of a more uniform spin-spin Ising-like interaction. We show that most properties are not significantly influenced by the appearance of defects, and that by adding two potentials to the Penning trap a more uniform spin-spin Ising-like interaction can be achieved. Next, I discuss techniques tfor preparing the ground state of the Ising-like Hamiltonian. In particular, we explore the use of the bang-bang protocol to prepare the ground state and compare optimized results to conventional adiabatic ramps ( the exponential and locally adiabatic ramp ). The bang-bang optimization in general outperforms the exponential; however the locally adiabatic ramp consistently is somewhat better. However, compared to the locally adiabatic ramp, the bang-bang optimization is simpler to implement, and it has the advantage of providingrovide a simple procedure for estimating the
Can the human brain do quantum computing?
Rocha, A F; Massad, E; Coutinho, F A B
2004-01-01
The electrical membrane properties have been the key issues in the understanding of the cerebral physiology for more than almost two centuries. But, molecular neurobiology has now discovered that biochemical transactions play an important role in neuronal computations. Quantum computing (QC) is becoming a reality both from the theoretical point of view as well as from practical applications. Quantum mechanics is the most accurate description at atomic level and it lies behind all chemistry that provides the basis for biology ... maybe the magic of entanglement is also crucial for life. The purpose of the present paper is to discuss the dendrite spine as a quantum computing device, taking into account what is known about the physiology of the glutamate receptors and the cascade of biochemical transactions triggered by the glutamate binding to these receptors.
Ancilla-driven universal quantum computation
Anders, Janet; Browne, Dan E.; Oi, Daniel K. L.; Kashefi, Elham; Andersson, Erika
2010-08-15
We introduce a model of quantum computation intermediate between the gate-based and measurement-based models. A quantum register is manipulated remotely with the help of a single ancilla that ''drives'' the evolution of the register. The fully controlled ancilla qubit is coupled to the computational register only via a fixed unitary two-qubit interaction and then measured in suitable bases, driving both single- and two-qubit operations on the register. Arbitrary single-qubit operations directly on register qubits are not needed. We characterize all interactions E that induce a unitary, stepwise deterministic measurement back-action on the register sufficient to implement any quantum channel. Our scheme offers experimental advantages for computation, state preparation, and generalized measurements, since no tunable control of the register is required.
Universal two-body-Hamiltonian quantum computing
NASA Astrophysics Data System (ADS)
Nagaj, Daniel
2012-03-01
We present a Hamiltonian quantum-computation scheme universal for quantum computation. Our Hamiltonian is a sum of a polynomial number (in the number of gates L in the quantum circuit) of constant-norm, time-independent, two-body interaction terms. Furthermore, each qubit in the system interacts only with a constant number of other qubits in a three-layer, geometrically local layout. The computer runs in three steps—it starts in a simple initial product state, evolves according to a time-independent Hamiltonian for time of order L2 (up to logarithmic factors), and finishes with a two-qubit measurement. Our model improves previous universal two-local-Hamiltonian constructions, as it avoids using perturbation gadgets and large energy-penalty terms in the Hamiltonian, which would result in a large required run time.
Yu Longbao; Ye Liu; Zhang Wenhai
2007-09-15
We propose a simple scheme to realize 1{yields}M economical phase-covariant quantum cloning machine (EPQCM) with superconducting quantum interference device (SQUID) qubits. In our scheme, multi-SQUIDs are fixed into a microwave cavity by adiabatic passage for their manipulation. Based on this model, we can realize the EPQCM with high fidelity via adiabatic quantum computation.
Tempel, David G; Aspuru-Guzik, Alán
2012-01-01
We prove that the theorems of TDDFT can be extended to a class of qubit Hamiltonians that are universal for quantum computation. The theorems of TDDFT applied to universal Hamiltonians imply that single-qubit expectation values can be used as the basic variables in quantum computation and information theory, rather than wavefunctions. From a practical standpoint this opens the possibility of approximating observables of interest in quantum computations directly in terms of single-qubit quantities (i.e. as density functionals). Additionally, we also demonstrate that TDDFT provides an exact prescription for simulating universal Hamiltonians with other universal Hamiltonians that have different, and possibly easier-to-realize two-qubit interactions. This establishes the foundations of TDDFT for quantum computation and opens the possibility of developing density functionals for use in quantum algorithms.
Tempel, David G.; Aspuru-Guzik, Alán
2012-01-01
We prove that the theorems of TDDFT can be extended to a class of qubit Hamiltonians that are universal for quantum computation. The theorems of TDDFT applied to universal Hamiltonians imply that single-qubit expectation values can be used as the basic variables in quantum computation and information theory, rather than wavefunctions. From a practical standpoint this opens the possibility of approximating observables of interest in quantum computations directly in terms of single-qubit quantities (i.e. as density functionals). Additionally, we also demonstrate that TDDFT provides an exact prescription for simulating universal Hamiltonians with other universal Hamiltonians that have different, and possibly easier-to-realize two-qubit interactions. This establishes the foundations of TDDFT for quantum computation and opens the possibility of developing density functionals for use in quantum algorithms. PMID:22553483
Superconducting Qubits for Quantum Computation
2006-05-31
based on the Aharonov - Casher effect for flux tunneling, and the extension of the concept of the quantum non-demolition measurements to the measurement...consists of a Bloch transistor included in the superconducting loop with finite inductance and uses the Aharonov - Casher effect to modulate the flux...tunneling amplitude. The Aharonov - Casher effect in a simple system of Josephson junctions is of considerable interest of its own, and we expect that the
Mizel, Ari
2004-07-01
Ground-state quantum computers mimic quantum-mechanical time evolution within the amplitudes of a time-independent quantum state. We explore the principles that constrain this mimicking. A no-cloning argument is found to impose strong restrictions. It is shown, however, that there is flexibility that can be exploited using quantum teleportation methods to improve ground-state quantum computer design.
Towards universal quantum computation through relativistic motion
Bruschi, David Edward; Sabín, Carlos; Kok, Pieter; Johansson, Göran; Delsing, Per; Fuentes, Ivette
2016-01-01
We show how to use relativistic motion to generate continuous variable Gaussian cluster states within cavity modes. Our results can be demonstrated experimentally using superconducting circuits where tuneable boundary conditions correspond to mirrors moving with velocities close to the speed of light. In particular, we propose the generation of a quadripartite square cluster state as a first example that can be readily implemented in the laboratory. Since cluster states are universal resources for universal one-way quantum computation, our results pave the way for relativistic quantum computation schemes. PMID:26860584
Quantum game simulator, using the circuit model of quantum computation
NASA Astrophysics Data System (ADS)
Vlachos, Panagiotis; Karafyllidis, Ioannis G.
2009-10-01
We present a general two-player quantum game simulator that can simulate any two-player quantum game described by a 2×2 payoff matrix (two strategy games).The user can determine the payoff matrices for both players, their strategies and the amount of entanglement between their initial strategies. The outputs of the simulator are the expected payoffs of each player as a function of the other player's strategy parameters and the amount of entanglement. The simulator also produces contour plots that divide the strategy spaces of the game in regions in which players can get larger payoffs if they choose to use a quantum strategy against any classical one. We also apply the simulator to two well-known quantum games, the Battle of Sexes and the Chicken game. Program summaryProgram title: Quantum Game Simulator (QGS) Catalogue identifier: AEED_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEED_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3416 No. of bytes in distributed program, including test data, etc.: 583 553 Distribution format: tar.gz Programming language: Matlab R2008a (C) Computer: Any computer that can sufficiently run Matlab R2008a Operating system: Any system that can sufficiently run Matlab R2008a Classification: 4.15 Nature of problem: Simulation of two player quantum games described by a payoff matrix. Solution method: The program calculates the matrices that comprise the Eisert setup for quantum games based on the quantum circuit model. There are 5 parameters that can be altered. We define 3 of them as constant. We play the quantum game for all possible values for the other 2 parameters and store the results in a matrix. Unusual features: The software provides an easy way of simulating any two-player quantum games. Running time: Approximately
Random Numbers and Quantum Computers
ERIC Educational Resources Information Center
McCartney, Mark; Glass, David
2002-01-01
The topic of random numbers is investigated in such a way as to illustrate links between mathematics, physics and computer science. First, the generation of random numbers by a classical computer using the linear congruential generator and logistic map is considered. It is noted that these procedures yield only pseudo-random numbers since…
Random Numbers and Quantum Computers
ERIC Educational Resources Information Center
McCartney, Mark; Glass, David
2002-01-01
The topic of random numbers is investigated in such a way as to illustrate links between mathematics, physics and computer science. First, the generation of random numbers by a classical computer using the linear congruential generator and logistic map is considered. It is noted that these procedures yield only pseudo-random numbers since…
A surface code quantum computer in silicon
Hill, Charles D.; Peretz, Eldad; Hile, Samuel J.; House, Matthew G.; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y.; Hollenberg, Lloyd C. L.
2015-01-01
The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel—posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited. PMID:26601310
A surface code quantum computer in silicon.
Hill, Charles D; Peretz, Eldad; Hile, Samuel J; House, Matthew G; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y; Hollenberg, Lloyd C L
2015-10-01
The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel-posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited.
Hybrid quantum computing: semicloning for general database retrieval
NASA Astrophysics Data System (ADS)
Lanzagorta, Marco; Uhlmann, Jeffrey K.
2005-05-01
Quantum computing (QC) has become an important area of research in computer science because of its potential to provide more efficient algorithmic solutions to certain problems than are possible with classical computing (CC). In particular, QC is able to exploit the special properties of quantum superposition to achieve computational parallelism beyond what can be achieved with parallel CC computers. However, these special properties are not applicable for general computation. Therefore, we propose the use of "hybrid quantum computers" (HQCs) that combine both classical and quantum computing architectures in order to leverage the benefits of both. We demonstrate how an HQC can exploit quantum search to support general database operations more efficiently than is possible with CC. Our solution is based on new quantum results that are of independent significance to the field of quantum computing. More specifically, we demonstrate that the most restrictive implications of the quantum No-Cloning Theorem can be avoided through the use of semiclones.
Adiabatic transport of qubits around a black hole
NASA Astrophysics Data System (ADS)
Viennot, David; Moro, Olivia
2017-03-01
We consider localized qubits evolving around a black hole following a quantum adiabatic dynamics. We develop a geometric structure (based on fibre bundles) permitting to describe the quantum states of a qubit and the spacetime geometry in a single framework. The quantum decoherence induced by the black hole on the qubit is analysed in this framework (the role of the dynamical and geometric phases in this decoherence is treated), especially for the quantum teleportation protocol when one qubit falls to the event horizon. A simple formula to compute the fidelity of the teleportation is derived. The case of a Schwarzschild black hole is analysed.
NASA Astrophysics Data System (ADS)
Northrop, J.; Shockley, R. C.; Hansen, P. G.
1980-09-01
Use of the Adiabatic Invariant Approximation (AIA) for determining horizontal sound speeds in a range dependent environment was proposed. Because the method provides a great savings in computer time over conventional ray tracing techniques, it was applied to two very-long-range paths, from Perth, Australia, to Bermuda and to Fernando de Noronha (19763.0 and 14549.3 km, respectively), where measured travel times are available. Results show that the AIA method predicts effective horizontal sound speeds of 1482.3m/s and 1480.4m/s, respectively, for the two propagation paths. These results compare favorably with the measured values of 1484.7 - or - 3.7 m/s and 1480.1 + or - 0.9 m/s.
Blind Quantum Computing with Weak Coherent Pulses
NASA Astrophysics Data System (ADS)
Dunjko, Vedran; Kashefi, Elham; Leverrier, Anthony
2012-05-01
The universal blind quantum computation (UBQC) protocol [A. Broadbent, J. Fitzsimons, and E. Kashefi, in Proceedings of the 50th Annual IEEE Symposiumon Foundations of Computer Science (IEEE Computer Society, Los Alamitos, CA, USA, 2009), pp. 517-526.] allows a client to perform quantum computation on a remote server. In an ideal setting, perfect privacy is guaranteed if the client is capable of producing specific, randomly chosen single qubit states. While from a theoretical point of view, this may constitute the lowest possible quantum requirement, from a pragmatic point of view, generation of such states to be sent along long distances can never be achieved perfectly. We introduce the concept of ɛ blindness for UBQC, in analogy to the concept of ɛ security developed for other cryptographic protocols, allowing us to characterize the robustness and security properties of the protocol under possible imperfections. We also present a remote blind single qubit preparation protocol with weak coherent pulses for the client to prepare, in a delegated fashion, quantum states arbitrarily close to perfect random single qubit states. This allows us to efficiently achieve ɛ-blind UBQC for any ɛ>0, even if the channel between the client and the server is arbitrarily lossy.
Simulations of Probabilities for Quantum Computing
NASA Technical Reports Server (NTRS)
Zak, M.
1996-01-01
It has been demonstrated that classical probabilities, and in particular, probabilistic Turing machine, can be simulated by combining chaos and non-LIpschitz dynamics, without utilization of any man-made devices (such as random number generators). Self-organizing properties of systems coupling simulated and calculated probabilities and their link to quantum computations are discussed.
Blind quantum computing with weak coherent pulses.
Dunjko, Vedran; Kashefi, Elham; Leverrier, Anthony
2012-05-18
The universal blind quantum computation (UBQC) protocol [A. Broadbent, J. Fitzsimons, and E. Kashefi, in Proceedings of the 50th Annual IEEE Symposiumon Foundations of Computer Science (IEEE Computer Society, Los Alamitos, CA, USA, 2009), pp. 517-526.] allows a client to perform quantum computation on a remote server. In an ideal setting, perfect privacy is guaranteed if the client is capable of producing specific, randomly chosen single qubit states. While from a theoretical point of view, this may constitute the lowest possible quantum requirement, from a pragmatic point of view, generation of such states to be sent along long distances can never be achieved perfectly. We introduce the concept of ϵ blindness for UBQC, in analogy to the concept of ϵ security developed for other cryptographic protocols, allowing us to characterize the robustness and security properties of the protocol under possible imperfections. We also present a remote blind single qubit preparation protocol with weak coherent pulses for the client to prepare, in a delegated fashion, quantum states arbitrarily close to perfect random single qubit states. This allows us to efficiently achieve ϵ-blind UBQC for any ϵ>0, even if the channel between the client and the server is arbitrarily lossy.
Simulations of Probabilities for Quantum Computing
NASA Technical Reports Server (NTRS)
Zak, M.
1996-01-01
It has been demonstrated that classical probabilities, and in particular, probabilistic Turing machine, can be simulated by combining chaos and non-LIpschitz dynamics, without utilization of any man-made devices (such as random number generators). Self-organizing properties of systems coupling simulated and calculated probabilities and their link to quantum computations are discussed.
The quantum computer game: citizen science
NASA Astrophysics Data System (ADS)
Damgaard, Sidse; Mølmer, Klaus; Sherson, Jacob
2013-05-01
Progress in the field of quantum computation is hampered by daunting technical challenges. Here we present an alternative approach to solving these by enlisting the aid of computer players around the world. We have previously examined a quantum computation architecture involving ultracold atoms in optical lattices and strongly focused tweezers of light. In The Quantum Computer Game (see http://www.scienceathome.org/), we have encapsulated the time-dependent Schrödinger equation for the problem in a graphical user interface allowing for easy user input. Players can then search the parameter space with real-time graphical feedback in a game context with a global high-score that rewards short gate times and robustness to experimental errors. The game which is still in a demo version has so far been tried by several hundred players. Extensions of the approach to other models such as Gross-Pitaevskii and Bose-Hubbard are currently under development. The game has also been incorporated into science education at high-school and university level as an alternative method for teaching quantum mechanics. Initial quantitative evaluation results are very positive. AU Ideas Center for Community Driven Research, CODER.
Quantum computation with Turaev-Viro codes
Koenig, Robert; Kuperberg, Greg; Reichardt, Ben W.
2010-12-15
For a 3-manifold with triangulated boundary, the Turaev-Viro topological invariant can be interpreted as a quantum error-correcting code. The code has local stabilizers, identified by Levin and Wen, on a qudit lattice. Kitaev's toric code arises as a special case. The toric code corresponds to an abelian anyon model, and therefore requires out-of-code operations to obtain universal quantum computation. In contrast, for many categories, such as the Fibonacci category, the Turaev-Viro code realizes a non-abelian anyon model. A universal set of fault-tolerant operations can be implemented by deforming the code with local gates, in order to implement anyon braiding. We identify the anyons in the code space, and present schemes for initialization, computation and measurement. This provides a family of constructions for fault-tolerant quantum computation that are closely related to topological quantum computation, but for which the fault tolerance is implemented in software rather than coming from a physical medium.
Quantum vertex model for reversible classical computing
NASA Astrophysics Data System (ADS)
Chamon, C.; Mucciolo, E. R.; Ruckenstein, A. E.; Yang, Z.-C.
2017-05-01
Mappings of classical computation onto statistical mechanics models have led to remarkable successes in addressing some complex computational problems. However, such mappings display thermodynamic phase transitions that may prevent reaching solution even for easy problems known to be solvable in polynomial time. Here we map universal reversible classical computations onto a planar vertex model that exhibits no bulk classical thermodynamic phase transition, independent of the computational circuit. Within our approach the solution of the computation is encoded in the ground state of the vertex model and its complexity is reflected in the dynamics of the relaxation of the system to its ground state. We use thermal annealing with and without `learning' to explore typical computational problems. We also construct a mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating an approach to reversible classical computation based on state-of-the-art implementations of quantum annealing.
Quantum vertex model for reversible classical computing.
Chamon, C; Mucciolo, E R; Ruckenstein, A E; Yang, Z-C
2017-05-12
Mappings of classical computation onto statistical mechanics models have led to remarkable successes in addressing some complex computational problems. However, such mappings display thermodynamic phase transitions that may prevent reaching solution even for easy problems known to be solvable in polynomial time. Here we map universal reversible classical computations onto a planar vertex model that exhibits no bulk classical thermodynamic phase transition, independent of the computational circuit. Within our approach the solution of the computation is encoded in the ground state of the vertex model and its complexity is reflected in the dynamics of the relaxation of the system to its ground state. We use thermal annealing with and without 'learning' to explore typical computational problems. We also construct a mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating an approach to reversible classical computation based on state-of-the-art implementations of quantum annealing.
Quantum vertex model for reversible classical computing
Chamon, C.; Mucciolo, E. R.; Ruckenstein, A. E.; Yang, Z.-C.
2017-01-01
Mappings of classical computation onto statistical mechanics models have led to remarkable successes in addressing some complex computational problems. However, such mappings display thermodynamic phase transitions that may prevent reaching solution even for easy problems known to be solvable in polynomial time. Here we map universal reversible classical computations onto a planar vertex model that exhibits no bulk classical thermodynamic phase transition, independent of the computational circuit. Within our approach the solution of the computation is encoded in the ground state of the vertex model and its complexity is reflected in the dynamics of the relaxation of the system to its ground state. We use thermal annealing with and without ‘learning' to explore typical computational problems. We also construct a mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating an approach to reversible classical computation based on state-of-the-art implementations of quantum annealing. PMID:28497790
Error-resistant distributed quantum computation in a trapped ion chain
Braungardt, Sibylle; Sen, Aditi; Sen, Ujjwal; Lewenstein, Maciej
2007-10-15
We consider experimentally feasible chains of trapped ions with pseudospin 1/2 and find models that can potentially be used to implement error-resistant quantum computation. Similar in spirit to classical neural networks, the error resistance of the system is achieved by encoding the qubits distributed over the whole system. We therefore call our system a quantum neural network and present a quantum neural network model of quantum computation. Qubits are encoded in a few quasi degenerated low-energy levels of the whole system, separated by a large gap from the excited states and large energy barriers between themselves. We investigate protocols for implementing a universal set of quantum logic gates in the system by adiabatic passage of a few low-lying energy levels of the whole system. Naturally appearing and potentially dangerous distributed noise in the system leaves the fidelity of the computation virtually unchanged, if it is not too strong. The computation is also naturally resilient to local perturbations of the spins.
Optically Driven Spin Based Quantum Dots for Quantum Computing
2008-01-01
system approach to quantum optics, Lecture Notes in Physics (Springer, Berlin, 1993). [5] H. M. Wiseman and G. J. Milburn, Phys. Rev. Lett. 70, 548 (1993...Electrical Engineering and Computer Science Department of Physics Harrison M. Randall Laboratory of Physics The University of Michigan Ann Arbor, MI...48109 Phone: 734-764-4469 Email: dst@umich.edu Co-Principal Investigator: L.J. Sham Department of Physics The University of California – San
Causo, Maria Serena; Ciccotti, Giovanni; Bonella, Sara; Vuilleumier, Rodolphe
2006-08-17
Linearized mixed quantum-classical simulations are a promising approach for calculating time-correlation functions. At the moment, however, they suffer from some numerical problems that may compromise their efficiency and reliability in applications to realistic condensed-phase systems. In this paper, we present a method that improves upon the convergence properties of the standard algorithm for linearized calculations by implementing a cumulant expansion of the relevant averages. The effectiveness of the new approach is tested by applying it to the challenging computation of the diffusion of an excess electron in a metal-molten salt solution.
Efficient quantum computing using coherent photon conversion.
Langford, N K; Ramelow, S; Prevedel, R; Munro, W J; Milburn, G J; Zeilinger, A
2011-10-12
Single photons are excellent quantum information carriers: they were used in the earliest demonstrations of entanglement and in the production of the highest-quality entanglement reported so far. However, current schemes for preparing, processing and measuring them are inefficient. For example, down-conversion provides heralded, but randomly timed, single photons, and linear optics gates are inherently probabilistic. Here we introduce a deterministic process--coherent photon conversion (CPC)--that provides a new way to generate and process complex, multiquanta states for photonic quantum information applications. The technique uses classically pumped nonlinearities to induce coherent oscillations between orthogonal states of multiple quantum excitations. One example of CPC, based on a pumped four-wave-mixing interaction, is shown to yield a single, versatile process that provides a full set of photonic quantum processing tools. This set satisfies the DiVincenzo criteria for a scalable quantum computing architecture, including deterministic multiqubit entanglement gates (based on a novel form of photon-photon interaction), high-quality heralded single- and multiphoton states free from higher-order imperfections, and robust, high-efficiency detection. It can also be used to produce heralded multiphoton entanglement, create optically switchable quantum circuits and implement an improved form of down-conversion with reduced higher-order effects. Such tools are valuable building blocks for many quantum-enabled technologies. Finally, using photonic crystal fibres we experimentally demonstrate quantum correlations arising from a four-colour nonlinear process suitable for CPC and use these measurements to study the feasibility of reaching the deterministic regime with current technology. Our scheme, which is based on interacting bosonic fields, is not restricted to optical systems but could also be implemented in optomechanical, electromechanical and superconducting
Scheme for Quantum Computing Immune to Decoherence
NASA Technical Reports Server (NTRS)
Williams, Colin; Vatan, Farrokh
2008-01-01
A constructive scheme has been devised to enable mapping of any quantum computation into a spintronic circuit in which the computation is encoded in a basis that is, in principle, immune to quantum decoherence. The scheme is implemented by an algorithm that utilizes multiple physical spins to encode each logical bit in such a way that collective errors affecting all the physical spins do not disturb the logical bit. The scheme is expected to be of use to experimenters working on spintronic implementations of quantum logic. Spintronic computing devices use quantum-mechanical spins (typically, electron spins) to encode logical bits. Bits thus encoded (denoted qubits) are potentially susceptible to errors caused by noise and decoherence. The traditional model of quantum computation is based partly on the assumption that each qubit is implemented by use of a single two-state quantum system, such as an electron or other spin-1.2 particle. It can be surprisingly difficult to achieve certain gate operations . most notably, those of arbitrary 1-qubit gates . in spintronic hardware according to this model. However, ironically, certain 2-qubit interactions (in particular, spin-spin exchange interactions) can be achieved relatively easily in spintronic hardware. Therefore, it would be fortunate if it were possible to implement any 1-qubit gate by use of a spin-spin exchange interaction. While such a direct representation is not possible, it is possible to achieve an arbitrary 1-qubit gate indirectly by means of a sequence of four spin-spin exchange interactions, which could be implemented by use of four exchange gates. Accordingly, the present scheme provides for mapping any 1-qubit gate in the logical basis into an equivalent sequence of at most four spin-spin exchange interactions in the physical (encoded) basis. The complexity of the mathematical derivation of the scheme from basic quantum principles precludes a description within this article; it must suffice to report
Discrete Wigner functions and quantum computational speedup
Galvao, Ernesto F.
2005-04-01
Gibbons et al. [Phys. Rev. A 70, 062101 (2004)] have recently defined a class of discrete Wigner functions W to represent quantum states in a finite Hilbert space dimension d. I characterize the set C{sub d} of states having non-negative W simultaneously in all definitions of W in this class. For d{<=}5 I show C{sub d} is the convex hull of stabilizer states. This supports the conjecture that negativity of W is necessary for exponential speedup in pure-state quantum computation.
Deterministic quantum computation with one photonic qubit
NASA Astrophysics Data System (ADS)
Hor-Meyll, M.; Tasca, D. S.; Walborn, S. P.; Ribeiro, P. H. Souto; Santos, M. M.; Duzzioni, E. I.
2015-07-01
We show that deterministic quantum computing with one qubit (DQC1) can be experimentally implemented with a spatial light modulator, using the polarization and the transverse spatial degrees of freedom of light. The scheme allows the computation of the trace of a high-dimension matrix, being limited by the resolution of the modulator panel and the technical imperfections. In order to illustrate the method, we compute the normalized trace of unitary matrices and implement the Deutsch-Jozsa algorithm. The largest matrix that can be manipulated with our setup is 1080 ×1920 , which is able to represent a system with approximately 21 qubits.
NASA Astrophysics Data System (ADS)
Zheng, An-Shou; Cheng, Yong-Jin; Liu, Ji-Bing; Li, Tie-Ping
We propose an alternative scheme to prepare the Greenberg-Horne-Zeilinger (GHZ) state and realize a SWAP gate by using Superconducting Quantum-interference devices (SQUIDs) coupled to a cavity. The present scheme, based on the adiabatic evolution of dark state, constitutes a decoherence-free method in the sense that spontaneous emission and cavity damping are avoided. Besides, the standard GHZ state can be directly obtained without measurement or any auxiliary SQUIDs and the construction of the SWAP gate does not require a composition of elementary gates from a universal set. Thus the procedure is simplified and decoherence is greatly suppressed.
Ion Trap Quantum Computers: Performance Limits and Experimental Progress
NASA Astrophysics Data System (ADS)
Hughes, Richard
1998-03-01
In a quantum computer information would be represented by the quantum mechanical states of suitable atomic-scale systems. (A single bit of information represented by a two-level quantum system is known as a qubit.) This notion leads to the possibility of computing with quantum mechanical superpositions of numbers ("quantum parallelism"), which for certain problems would make Quantum/quantum.html>quantum computation very much more efficient than classical computation. The possibility of rapidly factoring the large integers used in public-key cryptography is an important example. (Public key cryptosystems derive their security from the difficuty of factoring, and similar problems, with conventional computers.) Quantum computational hardware development is in its infancy, but an experimental study of quantum computation with laser-cooled trapped calcium ions that is under way at Los Alamos will be described. One of the pricipal obstacles to practical quantum computation is the inevitable loss of quantum coherence of the complex quantum states involved. The results of a theoretical analysis showing that quantum factoring of small integers should be possible with trapped ions will be presented. The prospects for larger-scale computations will be discussed.
Error Suppression for Hamiltonian-Based Quantum Computation Using Subsystem Codes.
Marvian, Milad; Lidar, Daniel A
2017-01-20
We present general conditions for quantum error suppression for Hamiltonian-based quantum computation using subsystem codes. This involves encoding the Hamiltonian performing the computation using an error detecting subsystem code and the addition of a penalty term that commutes with the encoded Hamiltonian. The scheme is general and includes the stabilizer formalism of both subspace and subsystem codes as special cases. We derive performance bounds and show that complete error suppression results in the large penalty limit. To illustrate the power of subsystem-based error suppression, we introduce fully two-local constructions for protection against local errors of the swap gate of adiabatic gate teleportation and the Ising chain in a transverse field.
Error Suppression for Hamiltonian-Based Quantum Computation Using Subsystem Codes
NASA Astrophysics Data System (ADS)
Marvian, Milad; Lidar, Daniel A.
2017-01-01
We present general conditions for quantum error suppression for Hamiltonian-based quantum computation using subsystem codes. This involves encoding the Hamiltonian performing the computation using an error detecting subsystem code and the addition of a penalty term that commutes with the encoded Hamiltonian. The scheme is general and includes the stabilizer formalism of both subspace and subsystem codes as special cases. We derive performance bounds and show that complete error suppression results in the large penalty limit. To illustrate the power of subsystem-based error suppression, we introduce fully two-local constructions for protection against local errors of the swap gate of adiabatic gate teleportation and the Ising chain in a transverse field.
Measurement-Based and Universal Blind Quantum Computation
NASA Astrophysics Data System (ADS)
Broadbent, Anne; Fitzsimons, Joseph; Kashefi, Elham
Measurement-based quantum computation (MBQC) is a novel approach to quantum computation where the notion of measurement is the main driving force of computation. This is in contrast with the more traditional circuit model which is based on unitary operation. We review here the mathematical model underlying MBQC and the first quantum cryptographic protocol designed using the unique features of MBQC.
Ensemble quantum computing by NMR spectroscopy
Cory, David G.; Fahmy, Amr F.; Havel, Timothy F.
1997-01-01
A quantum computer (QC) can operate in parallel on all its possible inputs at once, but the amount of information that can be extracted from the result is limited by the phenomenon of wave function collapse. We present a new computational model, which differs from a QC only in that the result of a measurement is the expectation value of the observable, rather than a random eigenvalue thereof. Such an expectation value QC can solve nondeterministic polynomial-time complete problems in polynomial time. This observation is significant precisely because the computational model can be realized, to a certain extent, by NMR spectroscopy on macroscopic ensembles of quantum spins, namely molecules in a test tube. This is made possible by identifying a manifold of statistical spin states, called pseudo-pure states, the mathematical description of which is isomorphic to that of an isolated spin system. The result is a novel NMR computer that can be programmed much like a QC, but in other respects more closely resembles a DNA computer. Most notably, when applied to intractable combinatorial problems, an NMR computer can use an amount of sample, rather than time, which grows exponentially with the size of the problem. Although NMR computers will be limited by current technology to exhaustive searches over only 15 to 20 bits, searches over as much as 50 bits are in principle possible, and more advanced algorithms could greatly extend the range of applicability of such machines. PMID:9050830
Quantum Computation using Arrays of N Polar Molecules in Pendular States.
Wei, Qi; Cao, Yudong; Kais, Sabre; Friedrich, Bretislav; Herschbach, Dudley
2016-11-18
We investigate several aspects of realizing quantum computation using entangled polar molecules in pendular states. Quantum algorithms typically start from a product state |00⋯0⟩ and we show that up to a negligible error, the ground states of polar molecule arrays can be considered as the unentangled qubit basis state |00⋯0⟩ . This state can be prepared by simply allowing the system to reach thermal equilibrium at low temperature (<1 mK). We also evaluate entanglement, characterized by concurrence of pendular state qubits in dipole arrays as governed by the external electric field, dipole-dipole coupling and number N of molecules in the array. In the parameter regime that we consider for quantum computing, we find that qubit entanglement is modest, typically no greater than 10(-4) , confirming the negligible entanglement in the ground state. We discuss methods for realizing quantum computation in the gate model, measurement-based model, instantaneous quantum polynomial time circuits and the adiabatic model using polar molecules in pendular states. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Quantum computing gates via optimal control
NASA Astrophysics Data System (ADS)
Atia, Yosi; Elias, Yuval; Mor, Tal; Weinstein, Yossi
2014-10-01
We demonstrate the use of optimal control to design two entropy-manipulating quantum gates which are more complex than the corresponding, commonly used, gates, such as CNOT and Toffoli (CCNOT): A two-qubit gate called polarization exchange (PE) and a three-qubit gate called polarization compression (COMP) were designed using GRAPE, an optimal control algorithm. Both gates were designed for a three-spin system. Our design provided efficient and robust nuclear magnetic resonance (NMR) radio frequency (RF) pulses for 13C2-trichloroethylene (TCE), our chosen three-spin system. We then experimentally applied these two quantum gates onto TCE at the NMR lab. Such design of these gates and others could be relevant for near-future applications of quantum computing devices.
QDENSITY—A Mathematica quantum computer simulation
NASA Astrophysics Data System (ADS)
Juliá-Díaz, Bruno; Burdis, Joseph M.; Tabakin, Frank
2009-03-01
This Mathematica 6.0 package is a simulation of a Quantum Computer. The program provides a modular, instructive approach for generating the basic elements that make up a quantum circuit. The main emphasis is on using the density matrix, although an approach using state vectors is also implemented in the package. The package commands are defined in Qdensity.m which contains the tools needed in quantum circuits, e.g., multiqubit kets, projectors, gates, etc. New version program summaryProgram title: QDENSITY 2.0 Catalogue identifier: ADXH_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXH_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 26 055 No. of bytes in distributed program, including test data, etc.: 227 540 Distribution format: tar.gz Programming language: Mathematica 6.0 Operating system: Any which supports Mathematica; tested under Microsoft Windows XP, Macintosh OS X, and Linux FC4 Catalogue identifier of previous version: ADXH_v1_0 Journal reference of previous version: Comput. Phys. Comm. 174 (2006) 914 Classification: 4.15 Does the new version supersede the previous version?: Offers an alternative, more up to date, implementation Nature of problem: Analysis and design of quantum circuits, quantum algorithms and quantum clusters. Solution method: A Mathematica package is provided which contains commands to create and analyze quantum circuits. Several Mathematica notebooks containing relevant examples: Teleportation, Shor's Algorithm and Grover's search are explained in detail. A tutorial, Tutorial.nb is also enclosed. Reasons for new version: The package has been updated to make it fully compatible with Mathematica 6.0 Summary of revisions: The package has been updated to make it fully compatible with Mathematica 6.0 Running time: Most examples
Scalable quantum computer architecture with coupled donor-quantum dot qubits
Schenkel, Thomas; Lo, Cheuk Chi; Weis, Christoph; Lyon, Stephen; Tyryshkin, Alexei; Bokor, Jeffrey
2014-08-26
A quantum bit computing architecture includes a plurality of single spin memory donor atoms embedded in a semiconductor layer, a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, wherein a first voltage applied across at least one pair of the aligned quantum dot and donor atom controls a donor-quantum dot coupling. A method of performing quantum computing in a scalable architecture quantum computing apparatus includes arranging a pattern of single spin memory donor atoms in a semiconductor layer, forming a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, applying a first voltage across at least one aligned pair of a quantum dot and donor atom to control a donor-quantum dot coupling, and applying a second voltage between one or more quantum dots to control a Heisenberg exchange J coupling between quantum dots and to cause transport of a single spin polarized electron between quantum dots.
Universal quantum gates for Single Cooper Pair Box based quantum computing
NASA Technical Reports Server (NTRS)
Echternach, P.; Williams, C. P.; Dultz, S. C.; Braunstein, S.; Dowling, J. P.
2000-01-01
We describe a method for achieving arbitrary 1-qubit gates and controlled-NOT gates within the context of the Single Cooper Pair Box (SCB) approach to quantum computing. Such gates are sufficient to support universal quantum computation.
Universal quantum gates for Single Cooper Pair Box based quantum computing
NASA Technical Reports Server (NTRS)
Echternach, P.; Williams, C. P.; Dultz, S. C.; Braunstein, S.; Dowling, J. P.
2000-01-01
We describe a method for achieving arbitrary 1-qubit gates and controlled-NOT gates within the context of the Single Cooper Pair Box (SCB) approach to quantum computing. Such gates are sufficient to support universal quantum computation.
Dual-code quantum computation model
NASA Astrophysics Data System (ADS)
Choi, Byung-Soo
2015-08-01
In this work, we propose the dual-code quantum computation model—a fault-tolerant quantum computation scheme which alternates between two different quantum error-correction codes. Since the chosen two codes have different sets of transversal gates, we can implement a universal set of gates transversally, thereby reducing the overall cost. We use code teleportation to convert between quantum states in different codes. The overall cost is decreased if code teleportation requires fewer resources than the fault-tolerant implementation of the non-transversal gate in a specific code. To analyze the cost reduction, we investigate two cases with different base codes, namely the Steane and Bacon-Shor codes. For the Steane code, neither the proposed dual-code model nor another variation of it achieves any cost reduction since the conventional approach is simple. For the Bacon-Shor code, the three proposed variations of the dual-code model reduce the overall cost. However, as the encoding level increases, the cost reduction decreases and becomes negative. Therefore, the proposed dual-code model is advantageous only when the encoding level is low and the cost of the non-transversal gate is relatively high.
Dual field theories of quantum computation
NASA Astrophysics Data System (ADS)
Vanchurin, Vitaly
2016-06-01
Given two quantum states of N q-bits we are interested to find the shortest quantum circuit consisting of only one- and two- q-bit gates that would transfer one state into another. We call it the quantum maze problem for the reasons described in the paper. We argue that in a large N limit the quantum maze problem is equivalent to the problem of finding a semiclassical trajectory of some lattice field theory (the dual theory) on an N +1 dimensional space-time with geometrically flat, but topologically compact spatial slices. The spatial fundamental domain is an N dimensional hyper-rhombohedron, and the temporal direction describes transitions from an arbitrary initial state to an arbitrary target state and so the initial and final dual field theory conditions are described by these two quantum computational states. We first consider a complex Klein-Gordon field theory and argue that it can only be used to study the shortest quantum circuits which do not involve generators composed of tensor products of multiple Pauli Z matrices. Since such situation is not generic we call it the Z-problem. On the dual field theory side the Z-problem corresponds to massless excitations of the phase (Goldstone modes) that we attempt to fix using Higgs mechanism. The simplest dual theory which does not suffer from the massless excitation (or from the Z-problem) is the Abelian-Higgs model which we argue can be used for finding the shortest quantum circuits. Since every trajectory of the field theory is mapped directly to a quantum circuit, the shortest quantum circuits are identified with semiclassical trajectories. We also discuss the complexity of an actual algorithm that uses a dual theory prospective for solving the quantum maze problem and compare it with a geometric approach. We argue that it might be possible to solve the problem in sub-exponential time in 2 N , but for that we must consider the Klein-Gordon theory on curved spatial geometry and/or more complicated (than N -torus
Computational models for the berry phase in semiconductor quantum dots
Prabhakar, S. Melnik, R. V. N.; Sebetci, A.
2014-10-06
By developing a new model and its finite element implementation, we analyze the Berry phase low-dimensional semiconductor nanostructures, focusing on quantum dots (QDs). In particular, we solve the Schrödinger equation and investigate the evolution of the spin dynamics during the adiabatic transport of the QDs in the 2D plane along circular trajectory. Based on this study, we reveal that the Berry phase is highly sensitive to the Rashba and Dresselhaus spin-orbit lengths.