Science.gov

Sample records for adiabatic saturation temperature

  1. Adiabatic Compression of Oxygen: Real Fluid Temperatures

    NASA Technical Reports Server (NTRS)

    Barragan, Michelle; Wilson, D. Bruce; Stoltzfus, Joel M.

    2000-01-01

    The adiabatic compression of oxygen has been identified as an ignition source for systems operating in enriched oxygen atmospheres. Current practice is to evaluate the temperature rise on compression by treating oxygen as an ideal gas with constant heat capacity. This paper establishes the appropriate thermodynamic analysis for the common occurrence of adiabatic compression of oxygen and in the process defines a satisfactory equation of state (EOS) for oxygen. It uses that EOS to model adiabatic compression as isentropic compression and calculates final temperatures for this system using current approaches for comparison.

  2. The density temperature and the dry and wet virtual adiabats

    NASA Technical Reports Server (NTRS)

    Bartlo, J.; Betts, Alan K.

    1991-01-01

    A density temperature is introduced to represent virtual temperature and potential temperature on thermodynamic diagrams. This study reviews how the dry and wet virtual adiabats can be used to represent stability and air parcel density for unsaturated and cloudy air, and present formula and tabulations.

  3. Does temperature increase or decrease in adiabatic decompression of magma?

    NASA Astrophysics Data System (ADS)

    Kilinc, A. I.; Ghiorso, M. S.; Khan, T.

    2011-12-01

    We have modeled adiabatic decompression of an andesitic and a basaltic magma as an isentropic process using the Melts algorithm. Our modeling shows that during adiabatic decompression temperature of andesitic magma increases but temperature of basaltic magma decreases. In an isentropic process entropy is constant so change of temperature with pressure can be written as dT/dP=T (dV/dT)/Cp where T (dV/dT)/Cp is generally positive. If delta P is negative so is delta T. In general, in the absence of phase change, we expect the temperature to decrease with adiabatic decompression. The effect of crystallization is to turn a more entropic phase (liquid) into a less entropic phase (solid), which must be compensated by raising the temperature. If during adiabatic decompression there is small amount or no crystallization, T (dV/dT)/Cp effect which lowers the temperature overwhelms the small amount of crystallization, which raises the temperature, and overall system temperature decreases.

  4. Spin-Label CW Microwave Power Saturation and Rapid Passage with Triangular Non-Adiabatic Rapid Sweep (NARS) and Adiabatic Rapid Passage (ARP) EPR Spectroscopy

    PubMed Central

    Kittell, Aaron W.; Hyde, James S.

    2015-01-01

    Non-adiabatic rapid passage (NARS) electron paramagnetic resonance (EPR) spectroscopy was introduced by Kittell, A.W., Camenisch, T.G., Ratke, J.J. Sidabras, J.W., Hyde, J.S., 2011 as a general purpose technique to collect the pure absorption response. The technique has been used to improve sensitivity relative to sinusoidal magnetic field modulation, increase the range of inter-spin distances that can be measured under near physiological conditions, and enhance spectral resolution in copper (II) spectra. In the present work, the method is extended to CW microwave power saturation of spin-labeled T4 Lysozyme (T4L). As in the cited papers, rapid triangular sweep of the polarizing magnetic field was superimposed on slow sweep across the spectrum. Adiabatic rapid passage (ARP) effects were encountered in samples undergoing very slow rotational diffusion as the triangular magnetic field sweep rate was increased. The paper reports results of variation of experimental parameters at the interface of adiabatic and non-adiabatic rapid sweep conditions. Comparison of the forward (up) and reverse (down) triangular sweeps is shown to be a good indicator of the presence of rapid passage effects. Spectral turning points can be distinguished from spectral regions between turning points in two ways: differential microwave power saturation and differential passage effects. Oxygen accessibility data are shown under NARS conditions that appear similar to conventional field modulation data. However, the sensitivity is much higher, permitting, in principle, experiments at substantially lower protein concentrations. Spectral displays were obtained that appear sensitive to rotational diffusion in the range of rotational correlation times of 10−3 to 10−7 s in a manner that is analogous to saturation transfer spectroscopy. PMID:25917132

  5. Spin-label CW microwave power saturation and rapid passage with triangular non-adiabatic rapid sweep (NARS) and adiabatic rapid passage (ARP) EPR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kittell, Aaron W.; Hyde, James S.

    2015-06-01

    Non-adiabatic rapid passage (NARS) electron paramagnetic resonance (EPR) spectroscopy was introduced by Kittell et al. (2011) as a general purpose technique to collect the pure absorption response. The technique has been used to improve sensitivity relative to sinusoidal magnetic field modulation, increase the range of inter-spin distances that can be measured under near physiological conditions (Kittell et al., 2012), and enhance spectral resolution in copper (II) spectra (Hyde et al., 2013). In the present work, the method is extended to CW microwave power saturation of spin-labeled T4 Lysozyme (T4L). As in the cited papers, rapid triangular sweep of the polarizing magnetic field was superimposed on slow sweep across the spectrum. Adiabatic rapid passage (ARP) effects were encountered in samples undergoing very slow rotational diffusion as the triangular magnetic field sweep rate was increased. The paper reports results of variation of experimental parameters at the interface of adiabatic and non-adiabatic rapid sweep conditions. Comparison of the forward (up) and reverse (down) triangular sweeps is shown to be a good indicator of the presence of rapid passage effects. Spectral turning points can be distinguished from spectral regions between turning points in two ways: differential microwave power saturation and differential passage effects. Oxygen accessibility data are shown under NARS conditions that appear similar to conventional field modulation data. However, the sensitivity is much higher, permitting, in principle, experiments at substantially lower protein concentrations. Spectral displays were obtained that appear sensitive to rotational diffusion in the range of rotational correlation times of 10-3 to 10-7 s in a manner that is analogous to saturation transfer spectroscopy.

  6. Spin-label CW microwave power saturation and rapid passage with triangular non-adiabatic rapid sweep (NARS) and adiabatic rapid passage (ARP) EPR spectroscopy.

    PubMed

    Kittell, Aaron W; Hyde, James S

    2015-06-01

    Non-adiabatic rapid passage (NARS) electron paramagnetic resonance (EPR) spectroscopy was introduced by Kittell et al. (2011) as a general purpose technique to collect the pure absorption response. The technique has been used to improve sensitivity relative to sinusoidal magnetic field modulation, increase the range of inter-spin distances that can be measured under near physiological conditions (Kittell et al., 2012), and enhance spectral resolution in copper (II) spectra (Hyde et al., 2013). In the present work, the method is extended to CW microwave power saturation of spin-labeled T4 Lysozyme (T4L). As in the cited papers, rapid triangular sweep of the polarizing magnetic field was superimposed on slow sweep across the spectrum. Adiabatic rapid passage (ARP) effects were encountered in samples undergoing very slow rotational diffusion as the triangular magnetic field sweep rate was increased. The paper reports results of variation of experimental parameters at the interface of adiabatic and non-adiabatic rapid sweep conditions. Comparison of the forward (up) and reverse (down) triangular sweeps is shown to be a good indicator of the presence of rapid passage effects. Spectral turning points can be distinguished from spectral regions between turning points in two ways: differential microwave power saturation and differential passage effects. Oxygen accessibility data are shown under NARS conditions that appear similar to conventional field modulation data. However, the sensitivity is much higher, permitting, in principle, experiments at substantially lower protein concentrations. Spectral displays were obtained that appear sensitive to rotational diffusion in the range of rotational correlation times of 10(-3) to 10(-7) s in a manner that is analogous to saturation transfer spectroscopy. PMID:25917132

  7. On the off-stoichiometric peaking of adiabatic flame temperature

    SciTech Connect

    Law, C.K.; Lu, T.F.; Makino, A.

    2006-06-15

    The characteristic rich shifting of the maximum adiabatic flame temperature from the stoichiometric value for mixtures of hydrocarbon and air is demonstrated to be caused by product dissociation and hence reduced amount of heat release. Since the extent of dissociation is greater on the lean side as a result of the stoichiometry of dissociated products, the peaking occurs on the rich side. The specific heat per unit mass of the mixture is shown to increase monotonically with increasing fuel concentration, and as such tends to shift the peak toward the lean side. It is further shown that this is the cause for the lean shifting of the adiabatic flame temperature of oxidizer-enriched mixtures of N{sub m}H{sub n} and F{sub 2} and of NH{sub 3} and O{sub 2}, with various amounts of inert dilution, even though their maximum heat release still peaks on the rich side. (author)

  8. Temperature lapse rates at restricted thermodynamic equilibrium. Part II: Saturated air and further discussions

    NASA Astrophysics Data System (ADS)

    Björnbom, Pehr

    2016-03-01

    In the first part of this work equilibrium temperature profiles in fluid columns with ideal gas or ideal liquid were obtained by numerically minimizing the column energy at constant entropy, equivalent to maximizing column entropy at constant energy. A minimum in internal plus potential energy for an isothermal temperature profile was obtained in line with Gibbs' classical equilibrium criterion. However, a minimum in internal energy alone for adiabatic temperature profiles was also obtained. This led to a hypothesis that the adiabatic lapse rate corresponds to a restricted equilibrium state, a type of state in fact discussed already by Gibbs. In this paper similar numerical results for a fluid column with saturated air suggest that also the saturated adiabatic lapse rate corresponds to a restricted equilibrium state. The proposed hypothesis is further discussed and amended based on the previous and the present numerical results and a theoretical analysis based on Gibbs' equilibrium theory.

  9. HyspIRI High-Temperature Saturation Study

    NASA Technical Reports Server (NTRS)

    Realmuto, V.; Hook, S.; Foote, M.; Csiszar, I.; Dennison, P.; Giglio, L.; Ramsey, M.; Vaughan, R.G.; Wooster, M.; Wright, R.

    2011-01-01

    As part of the precursor activities for the HyspIRI mission, a small team was assembled to determine the optimum saturation level for the mid-infrared (4-?m) channel, which is dedicated to the measurement of hot targets. Examples of hot targets include wildland fires and active lava flows. This determination took into account both the temperature expected for the natural phenomena and the expected performance of the mid-infrared channel as well as its overlap with the other channels in the thermal infrared (7.5-12 ?m) designed to measure the temperature of lower temperature targets. Based on this work, the hot target saturation group recommends a saturation temperature of 1200 K for the mid-infrared channel. The saturation temperature of 1200 K represents a good compromise between the prevention of saturation and sensitivity to ambient temperature.

  10. Adiabatic temperature changes of magma-gas mixtures during ascent and eruption

    USGS Publications Warehouse

    Mastin, L.G.; Ghiorso, M.S.

    2001-01-01

    Most quantitative studies of flow dynamics in eruptive conduits during volcanic eruptions use a simplified energy equation that ignores either temperature changes, or the thermal effects of gas exsolution. In this paper we assess the effects of those simplifications by analyzing the influence of equilibrium gas exsolution and expansion on final temperatures, velocities, and liquid viscosities of magma-gas mixtures during adiabatic decompression. For a given initial pressure (p1), temperature (T1) and melt composition, the final temperature (Tf) and velocity (Umax) will vary depending on the degree to which friction and other irreversible processes reduce mechanical energy within the conduit. The final conditions range between two thermodynamic end members: (1) Constant enthalpy (dh=0), in which Tf is maximal and no energy goes into lifting or acceleration; and (2) constant entropy (ds=0), in which Tf is minimal and maximum energy goes into lifting and acceleration. For ds=0, T1=900 ??C and p1=200 MPa, a water-saturated albitic melt cools by ???200 ??C during decompression, but only about 250 ??C of this temperature decrease can be attributed to the energy of gas exsolution per se: The remainder results from expansion of gas that has already exsolved. For the same T1 and p1, and dh=0, Tf is 10-15 ??C hotter than T1 but is about 10-25 ??C cooler than Tf in similar calculations that ignore the energy of gas exsolution. For ds=0, p1=200 MPa and T1= 9,000 ??C, assuming that all the enthalpy change of decompression goes into kinetic energy, a water-saturated albitic mixture can theoretically accelerate to ???800 m/s. Similar calculations that ignore gas exsolution (but take into account gas expansion) give velocities about 10-15% higher. For the same T1, p1 = 200 MPa, and ds = 0, the cooling associated with gas expansion and exsolution increases final melt viscosity more than 2.5 orders of magnitude. For dh = 0, isenthalpic heating decreases final melt viscosity by about

  11. Space Charge Saturated Sheath Regime and Electron Temperature Saturation in Hall Thrusters

    SciTech Connect

    Y. Raitses; D. Staack; A. Smirnov; N.J. Fisch

    2005-03-16

    Secondary electron emission in Hall thrusters is predicted to lead to space charge saturated wall sheaths resulting in enhanced power losses in the thruster channel. Analysis of experimentally obtained electron-wall collision frequency suggests that the electron temperature saturation, which occurs at high discharge voltages, appears to be caused by a decrease of the Joule heating rather than by the enhancement of the electron energy loss at the walls due to a strong secondary electron emission.

  12. Beneficial Role of the Industrial Wastes to Combat Adiabatic Temperature Rise in Massive Concrete

    NASA Astrophysics Data System (ADS)

    Ashraf, M.; Goyal, A.; Anwar, A. M.; Hattori, K.; Ogata, H.; Guo, S.

    An evaluation was made on the mutual beneficial role of fly ash and ground granulated blast furnace slag in combating adiabatic temperature rise. The experimental program was designed in two stages; the main experiment consisted of two massive concrete specimens with dimensions (50x50x50) cm. In first stage of experiment, an adiabatic rise in temperature of specimens was measured. In second stage, the mechanical properties of massive concrete specimens were measured at the ages of 8, 14, 28, 56 and 91 days. At the age of 91 days, surface core and central cores were extracted from the surface and the central part of massive concrete specimens to determine compressive strength and dynamic modulus of elasticity. In the massive concrete specimen without any additive, the peak temperature noted was 64.5°C at 7th h after casting. While in mineral substituted concrete the maximum adiabatic temperature was 49.6°C at 19th h after casting. Lower rate of temperature rise in mineral substituted concrete has resulted in higher value of ultrasonic pulse velocity and ultimate compressive strength of concrete.

  13. Model-based estimation of adiabatic flame temperature during coal gasification

    NASA Astrophysics Data System (ADS)

    Sarigul, Ihsan Mert

    Coal gasification temperature distribution in the gasifier is one of the important issues. High temperature may increase the risk of corrosion of the gasifier wall or it may cause an increase in the amount of volatile compounds. At the same time, gasification temperature is a dominant factor for high conversion of products and completing the reactions during coal gasification in a short time. In the light of this information it can be said that temperature is one of key parameters of coal gasification to enhance the production of high heating value syngas and maximize refractory longevity. This study aims to predict the adiabatic flame temperatures of Australian bituminous coal and Indonesian roto coal in an entrained flow gasifier using different operating conditions with the ChemCAD simulation and design program. To achieve these objectives, two types of gasification parameters were carried out using simulation of a vertical entrained flow reactor: oxygen-to-coal feed ratio by kg/kg and pressure and steam-to-coal feed ratio by kg/kg and pressure. In the first part of study the adiabatic flame temperatures, coal gasification products and other coal characteristics of two types of coals were determined using ChemCAD software. During all simulations, coal feed rate, coal particle size, initial temperature of coal, water and oxygen were kept constant. The relationships between flame temperature, coal gasification products and operating parameters were fundamentally investigated. The second part of this study addresses the modeling of the flame temperature relation to methane production and other input parameters used previous chapter. The scope of this work was to establish a reasonable model in order to estimate flame temperature without any theoretical calculation. Finally, sensitivity analysis was performed after getting some basic correlations between temperature and input variables. According to the results, oxygen-to-coal feed ratio has the most influential

  14. Large-Strain Time-Temperature Equivalence and Adiabatic Heating of Polyethylene

    SciTech Connect

    Furmanski, Jevan; Brown, Eric; Cady, Carl M.

    2012-06-06

    Time-temperature equivalence is a well-known phenomenon in time-dependent material response, where rapid events at a moderate temperature are indistinguishable from some occurring at modest rates but elevated temperatures. However, there is as-yet little elucidation of how well this equivalence holds for substantial plastic strains. In this work, we demonstrate time-temperature equivalence over a large range in a previously studied high-density polyethylene formulation (HDPE). At strain-rates exceeding 0.1/s, adiabatic heating confounds the comparison of nominally isothermal material response, apparently violating time-temperature equivalence. Strain-rate jumps can be employed to access the instantaneous true strain rate without heating. Adiabatic heating effects were isolated by comparing a locus of isothermal instantaneous flow stress measurements from strain-rate jumps up to 1/s with the predicted equivalent states at 0.01/s and 0.001/s in compression. Excellent agreement between the isothermal jump condition locus and the quasi-static tests was observed up to 50% strain, yielding one effective isothermal plastic response for each material for a given time-temperature equivalent state. These results imply that time-temperature equivalence can be effectively used to predict the deformation response of polymers during extreme mechanical events (large strain and high strain-rate) from measurements taken at reduced temperatures and nominal strain-rates in the laboratory.

  15. Melting temperature, adiabats, and Grueneisen parameter of lithium, sodium, and potassium versus pressure

    SciTech Connect

    Boehler, R.

    1983-05-01

    The pressure dependence of the melting temperatures of Li, Na, and K were measured to 32 kbar with accuracies in pressure and temperature of +- 0.4 percent and +- 0.25/sup 0/C, respectively. The measurements were made in a piston cylinder apparatus with a fluid pressure medium. The adiabatic pressure derivatives of temperature, (par. delta T/par. delta P)/sub s/, were measured to 32 kbar and 400/sup 0/C by a pressure pulse method. The logarithm of (par. delta T/par. delta P)/sub s/ decreases linearly with volume. The changes of (par. delta T/par. delta P)/sub s/ at the liquid-solid transitions fall within the data scatter. The Grueneisen parameter was calculated from ..gamma.. = B/sub s//T (par. delta T/par. delta P)/sub s/, where B/sub s/ is the adiabatic bulk modulus. For all three alkali metals, ..gamma.. decreases with compression in both the solid and the liquid states, and at constant volume, ..gamma.. decreases with temperature.

  16. Large adiabatic temperature and magnetic entropy changes in EuTi O3

    NASA Astrophysics Data System (ADS)

    Midya, A.; Mandal, P.; Rubi, Km.; Chen, Ruofan; Wang, Jiang-Sheng; Mahendiran, R.; Lorusso, G.; Evangelisti, M.

    2016-03-01

    We have investigated the magnetocaloric effect in single and polycrystalline samples of quantum paraelectric EuTi O3 by magnetization and heat capacity measurements. Single crystalline EuTi O3 shows antiferromagnetic ordering due to E u2 + magnetic moments below TN=5.6 K . This compound shows a giant magnetocaloric effect around its Néel temperature. The isothermal magnetic entropy change is 49 J kg-1K-1 , the adiabatic temperature change is 21 K, and the refrigeration capacity is 500 J kg-1 for a field change of 7 T at TN. The single crystal and polycrystalline samples show similar values of the magnetic entropy and adiabatic temperature changes. The large magnetocaloric effect is due to suppression of the spin entropy associated with the localized 4 f moment of E u2 + ions. The giant magnetocaloric effect, together with negligible hysteresis, suggest that EuTi O3 could be a potential material for magnetic refrigeration below 40 K.

  17. Non-linear saturation mechanism of electron temperature gradient modes

    SciTech Connect

    Tokluoglu, E. K.; Sokolov, V.; Sen, A. K.

    2012-10-15

    The electron temperature gradient (ETG) mode is a very plausible candidate to explain the large electron particle transport and thermal conduction. Production and identification of slab ETG modes and measurement electron transport have been already reported [X. Wei, V. Sokolov, and A. K. Sen, Phys. Plasmas 17, 042108 (2010); V. Sokolov and A. K. Sen, Phys. Rev. Lett. (2011)]. Now, we develop a theoretical model of non-linear saturation mechanism of ETG mode based on the three wave coupling of an unstable high frequency ETG mode with a damped ETG radial harmonic and a damped ion acoustic (IA) mode. Bicoherence analysis of Columbia linear machine (CLM) data show coupling between ETG modes ({approx}2.4 MHz) and a low frequency mode ({approx}50 kHz). The large damping drive of the ETG radial harmonic accompanied by the smaller but finite damping of the IA mode presents an energy sink for the unstable ETG mode, thus causing saturation. This model predicts a saturation level of {approx}10% and agrees with the observed levels of ETG modes in the CLM.

  18. Dynamic equilibrium explanation for nanobubbles unusual temperature and saturation dependence

    NASA Astrophysics Data System (ADS)

    Leal, L. Gary

    2013-11-01

    Recent experimental evidence demonstrates that nanobubbles exhibit unusual behavior in response to changes in temperature and gas saturation in the liquid, an observation that may shed light on the mysterious origin of their stability. In this talk, we discuss an alternate formulation of the dynamic equilibrium mechanism for nanobubbles that predicts rich behavior in agreement with these measurements. Namely, we show that stable nanobubbles exist in narrow temperature and dissolved gas concentration ranges, that there is a maximum and minimum possible bubble size, and that nanobubble radii decrease with temperature. We also discuss these predictions in the context of other current hypotheses for nanobubble stability such as the recently-proposed diffusive ``traffic jam'' model.

  19. Temperature calibration of cryoscopic solutions used in the milk industry by adiabatic calorimetry

    NASA Astrophysics Data System (ADS)

    Méndez-Lango, E.; Lira-Cortes, L.; Quiñones-Ibarra, R.

    2013-09-01

    One method to detect extraneous water in milk is through cryoscopy. This method is used to measure the freezing point of milk. For calibration of a cryoscope there are is a set of standardized solution with known freezing points values. These values are related with the solute concentration, based in almost a century old data; it was no found recent results. It was found that reference solution are not certified in temperature: they do not have traceability to the temperature unit or standards. We prepared four solutions and measured them on a cryoscope and on an adiabatic calorimeter. It was found that results obtained with one technique dose not coincide with the other one.

  20. Effect of solution saturation state and temperature on diopside dissolution

    SciTech Connect

    Dixit, S; Carroll, S A

    2007-03-23

    Steady-state dissolution rates of diopside are measured as a function of solution saturation state using a titanium flow-through reactor at pH 7.5 and temperature ranging from 125 to 175 C. Diopside dissolved stoichiometrically under all experimental conditions and rates were not dependent on sample history. At each temperature, rates continuously decreased by two orders of magnitude as equilibrium was approached and did not exhibit a dissolution plateau of constant rates at high degrees of undersaturation. The variation of diopside dissolution rates with solution saturation can be described equally well with a ion exchange model based on transition state theory or pit nucleation model based on crystal growth/dissolution theory from 125 to 175 C. At 175 C, both models over predict dissolution rates by two orders of magnitude indicating that a secondary phase precipitated in the experiments. The ion exchange model assumes the formation of a Si-rich, Mg-deficient precursor complex. Lack of dependence of rates on steady-state aqueous calcium concentration supports the formation of such a complex, which is formed by exchange of protons for magnesium ions at the surface.

  1. Large adiabatic temperature change in magnetoelastic transition in Ni50Mn35Cr2Sn13 Heusler alloy of granular nanostructure

    NASA Astrophysics Data System (ADS)

    Prakash, H. R.; Sharma, S. K.; Ram, S.; Chatterjee, S.

    2016-05-01

    The Ni-Mn-Sn alloys are a pioneering series of magnetocaloric materials of a huge heat-energy exchanger in the martensite transition. A small additive of nearly 2 at% Cr effectively tunes the valence electron density of 8.090 electrons per atom and a large change in the entropy ΔSM←A = 4.428 J/kg-K (ΔSM→A = 3.695 J/kg-K in the recycle) at the martensite ← austenite phase transition as it is useful for the magnetic refrigeration and other cooling devices. The Cr additive tempers the tetragonality with the aspect ratio c/a = 0.903 of the martensite phase and exhibits an adiabatic temperature change of 10 K. At room temperature, a hysteresis loop exhibits 48.91 emu/g saturation magnetization and 82.1Oe coercivity.

  2. Influence of Temperature and Pressure Change on Adiabatic and Isothermal Methanation Processes

    NASA Astrophysics Data System (ADS)

    Porubova, Jekaterina; Klemm, Marco; Kiendl, Isabel; Valters, Karlis; Markova, Darja; Repele, Mara; Bazbauers, Gatis

    2012-09-01

    Energy plans of many countries anticipate an increased use of biomethane for energy supply, i.e., in power and heat production as well as in the transport sector. Existing infrastructure of natural gas storage, supply and application provides a good platform to facilitate transfer to biomethane utilization on a larger scale. One key element of the biomethane system is the upgrade of the biomass-derived synthesis gas originating from different sources, to a quality of natural gas (SNG - Synthesis Natural Gas) via the methanation process for further injection into the natural gas grid.. The maximisation of efficiency of the methanation process is of critical importance in order to make biomethane technology viable for wider application. The aim of the study was to improve efficiency of the methanation process by finding the optimum temperatures and pressure. Theoretical modelling of adiabatic and isothermal methanation processes by using thermodynamic equilibrium calculations was introduced as a method for the study. The results show the impact of temperature and pressure changes on the overall efficiency of methane production. It can be concluded from the study that knowledge about the relation between temperature, pressure and the efficiency of the methanation process makes it possible to optimize the process under various biomass synthesized gas input conditions.

  3. A Compact, Continuous Adiabatic Demagnetization Refrigerator with High Heat Sink Temperature

    NASA Technical Reports Server (NTRS)

    Shirron, P. J.; Canavan, E. R.; DiPirro, M. J.; Jackson, M.; Tuttle, J. G.

    2003-01-01

    In the continuous adiabatic demagnetization refrigerator (ADR), the existence of a constant temperature stage attached to the load breaks the link between the requirements of the load (usually a detector array) and the operation of the ADR. This allows the ADR to be cycled much faster, which yields more than an order of magnitude improvement in cooling power density over single-shot ADRs. Recent effort has focused on developing compact, efficient higher temperature stages. An important part of this work has been the development of passive gas-gap heat switches that transition (from conductive to insulating) at temperatures around 1 K and 4 K without the use of an actively heated getter. We have found that by carefully adjusting available surface area and the number of He-3 monolayers, gas-gap switches can be made to operate passively. Passive operation greatly reduces switching time and eliminates an important parasitic heat load. The current four stage ADR provides 6 micro W of cooling at 50 mK (21 micro W at 100 mK) and weighs less than 8 kg. It operates from a 4.2 K heat sink, which can be provided by an unpumped He bath or many commercially available mechanical cryocoolers. Reduction in critical current with temperature in our fourth stage NbTi magnet presently limits the maximum temperature of our system to approx. 5 K. We are developing compact, low-current Nb3Sn magnets that will raise the maximum heat sink temperature to over 10 K.

  4. Evaluation of lower flammability limits of fuel-air-diluent mixtures using calculated adiabatic flame temperatures.

    PubMed

    Vidal, M; Wong, W; Rogers, W J; Mannan, M S

    2006-03-17

    The lower flammability limit (LFL) of a fuel is the minimum composition in air over which a flame can propagate. Calculated adiabatic flame temperatures (CAFT) are a powerful tool to estimate the LFL of gas mixtures. Different CAFT values are used for the estimation of LFL. SuperChems is used by industry to perform flammability calculations under different initial conditions which depends on the selection of a threshold temperature. In this work, the CAFT at the LFL is suggested for mixtures of fuel-air and fuel-air-diluents. These CAFT can be used as the threshold values in SuperChems to calculate the LFL. This paper discusses an approach to evaluate the LFL in the presence of diluents such as N2 and CO2 by an algebraic method and by the application of SuperChems using CAFT as the basis of the calculations. The CAFT for different paraffinic and unsaturated hydrocarbons are presented as well as an average value per family of chemicals. PMID:16309829

  5. Non-adiabatic ab initio molecular dynamics of supersonic beam epitaxy of silicon carbide at room temperature

    SciTech Connect

    Taioli, Simone; Garberoglio, Giovanni; Simonucci, Stefano; Beccara, Silvio a; Aversa, Lucrezia; Nardi, Marco; Verucchi, Roberto; Iannotta, Salvatore; Dapor, Maurizio; and others

    2013-01-28

    In this work, we investigate the processes leading to the room-temperature growth of silicon carbide thin films by supersonic molecular beam epitaxy technique. We present experimental data showing that the collision of fullerene on a silicon surface induces strong chemical-physical perturbations and, for sufficient velocity, disruption of molecular bonds, and cage breaking with formation of nanostructures with different stoichiometric character. We show that in these out-of-equilibrium conditions, it is necessary to go beyond the standard implementations of density functional theory, as ab initio methods based on the Born-Oppenheimer approximation fail to capture the excited-state dynamics. In particular, we analyse the Si-C{sub 60} collision within the non-adiabatic nuclear dynamics framework, where stochastic hops occur between adiabatic surfaces calculated with time-dependent density functional theory. This theoretical description of the C{sub 60} impact on the Si surface is in good agreement with our experimental findings.

  6. Task technical and QA plan: Thermal effects study: To evaluate saltstone properties associated with performance criteria as a function of extended exposure to temperatures typical of adiabatic curing

    SciTech Connect

    Orebaugh, E.G.

    1990-06-15

    The task to evaluate saltstone properties associated with performance criteria as a function of extended exposure to temperatures typical of adiabatic curing is described in this document and involves extension of previous qualification studies for DWPF Saltstone formulations.

  7. Microstructural characteristics of adiabatic shear localization in a metastable beta titanium alloy deformed at high strain rate and elevated temperatures

    SciTech Connect

    Zhan, Hongyi; Zeng, Weidong; Wang, Gui; Kent, Damon; Dargusch, Matthew

    2015-04-15

    The microstructural evolution and grain refinement within adiabatic shear bands in the Ti6554 alloy deformed at high strain rates and elevated temperatures have been characterized using transmission electron microscopy. No stress drops were observed in the corresponding stress–strain curve, indicating that the initiation of adiabatic shear bands does not lead to the loss of load capacity for the Ti6554 alloy. The outer region of the shear bands mainly consists of cell structures bounded by dislocation clusters. Equiaxed subgrains in the core area of the shear band can be evolved from the subdivision of cell structures or reconstruction and transverse segmentation of dislocation clusters. It is proposed that dislocation activity dominates the grain refinement process. The rotational recrystallization mechanism may operate as the kinetic requirements for it are fulfilled. The coexistence of different substructures across the shear bands implies that the microstructural evolution inside the shear bands is not homogeneous and different grain refinement mechanisms may operate simultaneously to refine the structure. - Graphical abstract: Display Omitted - Highlights: • The microstructure within the adiabatic shear band was characterized by TEM. • No stress drops were observed in the corresponding stress–strain curve. • Dislocation activity dominated the grain refinement process. • The kinetic requirements for rotational recrystallization mechanism were fulfilled. • Different grain refinement mechanisms operated simultaneously to refine the structure.

  8. Dynamic equilibrium explanation for nanobubbles' unusual temperature and saturation dependence

    NASA Astrophysics Data System (ADS)

    Petsev, Nikolai D.; Shell, M. Scott; Leal, L. Gary

    2013-07-01

    The dynamic equilibrium model suggests that surface nanobubbles can be stable due to an influx of gas in the vicinity of the bubble contact line, driven by substrate hydrophobicity, that balances the outflux of gas from the bubble apex. Here, we develop an alternate formulation of this mechanism that predicts rich behavior in agreement with recent experimental measurements. Namely, we find that stable nanobubbles exist in narrow temperature and dissolved gas concentration ranges, that there is a maximum and minimum possible bubble size, and that nanobubble radii decrease with temperature.

  9. A method of computing the transient temperature of thick walls from arbitrary variation of adiabatic-wall temperature and heat-transfer coefficient

    NASA Technical Reports Server (NTRS)

    Hill, P R

    1958-01-01

    A method of calculating the temperature of thick walls has been developed in which the time series and the response to a unit triangle variation of surface temperature concepts are used, together with essentially standard formulas for transient temperature and heat flow into thick walls. The method can be used without knowledge of the mathematical tools of its development. The method is particularly suitable for determining the wall temperature in one-dimensional thermal problems in aeronautics where there is a continuous variation of the heat-transfer coefficient and adiabatic-wall temperature. The method also offers a convenient means for solving the inverse problem of determining the heat-flow history when temperature history is known.

  10. Formation of bubbly horizon in liquid-saturated porous medium by surface temperature oscillation.

    PubMed

    Goldobin, Denis S; Krauzin, Pavel V

    2015-12-01

    We study nonisothermal diffusion transport of a weakly soluble substance in a liquid-saturated porous medium in contact with a reservoir of this substance. The surface temperature of the porous medium half-space oscillates in time, which results in a decaying solubility wave propagating deep into the porous medium. In this system, zones of saturated solution and nondissolved phase coexist with ones of undersaturated solution. The effect is first considered for the case of annual oscillation of the surface temperature of water-saturated ground in contact with the atmosphere. We reveal the phenomenon of formation of a near-surface bubbly horizon due to temperature oscillation. An analytical theory of the phenomenon is developed. Further, the treatment is extended to the case of higher frequency oscillations and the case of weakly soluble solids and liquids. PMID:26764828

  11. Formation of bubbly horizon in liquid-saturated porous medium by surface temperature oscillation

    NASA Astrophysics Data System (ADS)

    Goldobin, Denis S.; Krauzin, Pavel V.

    2015-12-01

    We study nonisothermal diffusion transport of a weakly soluble substance in a liquid-saturated porous medium in contact with a reservoir of this substance. The surface temperature of the porous medium half-space oscillates in time, which results in a decaying solubility wave propagating deep into the porous medium. In this system, zones of saturated solution and nondissolved phase coexist with ones of undersaturated solution. The effect is first considered for the case of annual oscillation of the surface temperature of water-saturated ground in contact with the atmosphere. We reveal the phenomenon of formation of a near-surface bubbly horizon due to temperature oscillation. An analytical theory of the phenomenon is developed. Further, the treatment is extended to the case of higher frequency oscillations and the case of weakly soluble solids and liquids.

  12. Electrical properties of tuff from the ESF as a function of water saturation and temperature

    SciTech Connect

    Roberts, J.J.; Carlberg, E.; Lin, W.

    1998-01-01

    The electrical properties of partially saturated tuff provide information about the microstructure of the matrix and how water is distributed within the pore space as the material undergoes saturation and desaturation cycles. Understanding electrical properties as a function of saturation and temperature is also important because the determination of water saturation during field tests and laboratory experiments depends of reliable laboratory data. Spatial distribution and temporal variation of moisture content in the rock mass in the repository horizontal is one of the most important parameters needed in order to understand coupled TMHC processes. Geophysical methods are required to determine the moisture content in rock masses during thermal tests. These data are currently used in the inversion of electrical resistance tomography (ERT) and ground penetrating radar (GPR) measurements at the LBT, SHT, and the DST tests. This paper contains a description of the experimental procedure, sample preparation, data collection and data analyses for tuff samples from the ESF.

  13. Adiabatic cooling of antiprotons.

    PubMed

    Gabrielse, G; Kolthammer, W S; McConnell, R; Richerme, P; Kalra, R; Novitski, E; Grzonka, D; Oelert, W; Sefzick, T; Zielinski, M; Fitzakerley, D; George, M C; Hessels, E A; Storry, C H; Weel, M; Müllers, A; Walz, J

    2011-02-18

    Adiabatic cooling is shown to be a simple and effective method to cool many charged particles in a trap to very low temperatures. Up to 3×10(6) p are cooled to 3.5 K-10(3) times more cold p and a 3 times lower p temperature than previously reported. A second cooling method cools p plasmas via the synchrotron radiation of embedded e(-) (with many fewer e(-) than p in preparation for adiabatic cooling. No p are lost during either process-a significant advantage for rare particles. PMID:21405511

  14. Adiabatic Cooling of Antiprotons

    SciTech Connect

    Gabrielse, G.; Kolthammer, W. S.; McConnell, R.; Richerme, P.; Kalra, R.; Novitski, E.; Oelert, W.; Grzonka, D.; Sefzick, T.; Zielinski, M.; Fitzakerley, D.; George, M. C.; Hessels, E. A.; Storry, C. H.; Weel, M.; Muellers, A.; Walz, J.

    2011-02-18

    Adiabatic cooling is shown to be a simple and effective method to cool many charged particles in a trap to very low temperatures. Up to 3x10{sup 6} p are cooled to 3.5 K--10{sup 3} times more cold p and a 3 times lower p temperature than previously reported. A second cooling method cools p plasmas via the synchrotron radiation of embedded e{sup -} (with many fewer e{sup -} than p) in preparation for adiabatic cooling. No p are lost during either process--a significant advantage for rare particles.

  15. Calculation of reaction energies and adiabatic temperatures for waste tank reactions

    SciTech Connect

    Burger, L.L.

    1993-03-01

    Continual concern has been expressed over potentially hazardous exothermic reactions that might occur in underground Hanford waste tanks. These tanks contain many different oxidizable compounds covering a wide range of concentrations. Several may be in concentrations and quantities great enough to be considered a hazard in that they could undergo rapid and energetic chemical reactions with nitrate and nitrite salts that are present. The tanks also contain many inorganic compounds inert to oxidation. In this report the computed energy that may be released when various organic and inorganic compounds react is computed as a function of the reaction mix composition and the temperature. The enthalpy, or integrated heat capacity, of these compounds and various reaction products is presented as a function of temperature, and the enthalpy of a given mixture can then be equated to the energy release from various reactions to predict the maximum temperature that may be reached. This is estimated for several different compositions. Alternatively, the amounts of various diluents required to prevent the temperature from reaching a critical value can be estimated.

  16. Calculation of reaction energies and adiabatic temperatures for waste tank reactions

    SciTech Connect

    Burger, L.L.

    1995-10-01

    Continual concern has been expressed over potentially hazardous exothermic reactions that might occur in Hanford Site underground waste storage tanks. These tanks contain many different oxidizable compounds covering a wide range of concentrations. The chemical hazards are a function of several interrelated factors, including the amount of energy (heat) produced, how fast it is produced, and the thermal absorption and heat transfer properties of the system. The reaction path(s) will determine the amount of energy produced and kinetics will determine the rate that it is produced. The tanks also contain many inorganic compounds inert to oxidation. These compounds act as diluents and can inhibit exothermic reactions because of their heat capacity and thus, in contrast to the oxidizable compounds, provide mitigation of hazardous reactions. In this report the energy that may be released when various organic and inorganic compounds react is computed as a function of the reaction-mix composition and the temperature. The enthalpy, or integrated heat capacity, of these compounds and various reaction products is presented as a function of temperature; the enthalpy of a given mixture can then be equated to the energy release from various reactions to predict the maximum temperature which may be reached. This is estimated for several different compositions. Alternatively, the amounts of various diluents required to prevent the temperature from reaching a critical value can be estimated. Reactions taking different paths, forming different products such as N{sub 2}O in place of N{sub 2} are also considered, as are reactions where an excess of caustic is present. Oxidants other than nitrate and nitrite are considered briefly.

  17. Non-invasive temperature mapping using temperature-responsive water saturation shift referencing (T-WASSR) MRI

    PubMed Central

    Liu, Guanshu; Qin, Qin; Chan, Kannie W.Y.; Li, Yuguo; Bulte, Jeff W.M.; McMahon, Michael T.; van Zijl, Peter C.M.; Gilad, Assaf A.

    2014-01-01

    We present a non-invasive MRI approach for assessing the water proton resonance frequency (PRF) shifts associated with changes in temperature. This method is based on Water Saturation Shift Referencing (WASSR), a method first developed for assessing B0 field inhomogeneity. Temperature-induced water PRF shifts were determined by estimating the frequency of the minimum intensity of the water direct saturation spectrum at each temperature using Lorentzian line-shape fitting. The change in temperature was then calculated from the difference in water PRF shifts between temperatures. Optimal acquisition parameters were first estimated using simulations and later confirmed experimentally. Results in vitro and in vivo showed that the temperature changes measured using the temperature-responsive WASSR (T-WASSR) were in good agreement with those obtained with MR spectroscopy or phase mapping-based water PRF measurement methods,. In addition, the feasibility of temperature mapping in fat-containing tissue is demonstrated in vitro. In conclusion, the T-WASSR approach provides an alternative for non-invasive temperature mapping by MRI, especially suitable for temperature measurements in fat-containing tissues. PMID:24395616

  18. Multifactorial modelling of high-temperature treatment of timber in the saturated water steam medium

    NASA Astrophysics Data System (ADS)

    Prosvirnikov, D. B.; Safin, R. G.; Ziatdinova, D. F.; Timerbaev, N. F.; Lashkov, V. A.

    2016-04-01

    The paper analyses experimental data obtained in studies of high-temperature treatment of softwood and hardwood in an environment of saturated water steam. Data were processed in the Curve Expert software for the purpose of statistical modelling of processes and phenomena occurring during this process. The multifactorial modelling resulted in the empirical dependences, allowing determining the main parameters of this type of hydrothermal treatment with high accuracy.

  19. IMPACT OF CURING TEMPERATURE ON THE SATURATED LIQUID PERMEABILITY OF SALTSTONE

    SciTech Connect

    Williams, F.; Harbour, J.

    2011-02-14

    This report focuses on the impact of curing temperature on the performance properties of simulated Saltstone mixes. The key performance property of interest is saturated liquid permeability (measured as hydraulic conductivity), an input to the Performance Assessment (PA) modeling for the Saltstone Disposal Facility (SDF). Therefore, the current study was performed to measure the dependence of saturated hydraulic conductivity on curing temperature of Saltstone mixes, to correlate these results with measurements of Young's moduli on the same samples and to compare the Scanning Electron Microscopy (SEM) images of the microstructure at each curing temperature in an effort to associate this significant changes in permeability with changes in microstructure. This work demonstrated that the saturated liquid permeability of Saltstone mixes depends significantly on the curing temperature. As the curing temperature increases, the hydraulic conductivity can increase over three orders of magnitude from roughly 10{sup -9} cm/sec to 10{sup -6} cm/sec over the temperature range of 20 C to 80 C. Although an increased aluminate concentration (at 0.22 M) in the ARP/MCU waste stream improves (decreases) saturated permeability for samples cured at lower temperatures, the permeabilities for samples cured at 60 C to 80 C are the same as the permeabilities measured for an equivalent mix but with lower aluminate concentration. Furthermore, it was demonstrated that the unsaturated flow apparatus (UFA) system can be used to measure hydraulic conductivity of Saltstone samples. The permeability results obtained using the UFA centrifuge system were equivalent within experimental error to the conventional permeameter results (the falling head method) obtained at MACTEC. In particular the UFA technique is best suited for the range of hydraulic conductivities between 10{sup -10} cm/sec to 10{sup -6} cm/sec. Measurements of dynamic Young's moduli (E) for these mixes revealed a correlation between

  20. Weather Types, temperature and relief relationship in the Iberian Peninsula: A regional adiabatic processes under directional weather types

    NASA Astrophysics Data System (ADS)

    Peña Angulo, Dhais; Trigo, Ricardo; Cortesi, Nicola; Gonzalez-Hidalgo, Jose Carlos

    2016-04-01

    We have analyzed at monthly scale the spatial distribution of Pearson correlation between monthly mean of maximum (Tmax) and minimum (Tmin) temperatures with weather types (WTs) in the Iberian Peninsula (IP), represent them in a high spatial resolution grid (10km x 10km) from MOTEDAS dataset (Gonzalez-Hidalgo et al., 2015a). The WT classification was that developed by Jenkinson and Collison, adapted to the Iberian Peninsula by Trigo and DaCamara, using Sea Level Pressure data from NCAR/NCEP Reanalysis dataset (period 1951-2010). The spatial distribution of Pearson correlations shows a clear zonal gradient in Tmax under the zonal advection produced in westerly (W) and easterly (E) flows, with negative correlation in the coastland where the air mass come from but positive correlation to the inland areas. The same is true under North-West (NW), North-East (NE), South-West (SW) and South-East (SE) WTs. These spatial gradients are coherent with the spatial distribution of the main mountain chain and offer an example of regional adiabatic phenomena that affect the entire IP (Peña-Angulo et al., 2015b). These spatial gradients have not been observed in Tmin. We suggest that Tmin values are less sensitive to changes in Sea Level Pressure and more related to local factors. These directional WT present a monthly frequency over 10 days and could be a valuable tool for downscaling processes. González-Hidalgo J.C., Peña-Angulo D., Brunetti M., Cortesi, C. (2015a): MOTEDAS: a new monthly temperature database for mainland Spain and the trend in temperature (1951-2010). International Journal of Climatology 31, 715-731. DOI: 10.1002/joc.4298 Peña-Angulo, D., Trigo, R., Cortesi, C., González-Hidalgo, J.C. (2015b): The influence of weather types on the monthly average maximum and minimum temperatures in the Iberian Peninsula. Submitted to Hydrology and Earth System Sciences.

  1. Wave-particle interaction and the nonlinear saturation of the electron temperature gradient mode

    NASA Astrophysics Data System (ADS)

    Vadlamani, Srinath; Parker, Scott E.; Chen, Yang; Howard, James E.

    2004-11-01

    It has been proposed that the electron temperature gradient (ETG) driven turbulence is responsible for experimentally relevant electron thermal transport in tokamak plasmas. Significant transport levels are possible by the creation of radially elongated vortices or ``streamers" [1,2], which are sustained by the nonlinear saturation of the instability and are not susceptible to shear flow destruction, as is the case with the ion temperature gradient (ITG) mode. We present a dynamical system to explore the dependence of saturation level due to E × B and E_\\| motion, as well as the effect of radial elongation. With this model, we can predict the nonlinear saturation level of the ETG streamers. We compare our theoretical predictions with a 2D shear-less slab gyrokinetic electron code that includes the E_\\| nonlinearity. [1]F. Jenko, W. Dorland, M Kotschenreuther, and B.N. Rogers, Phys. Plasmas 7, 1904 (2000). [2]C. Holland, and P.H. Diamond, Phys. Plasmas 9, 3857 (2002). [3]W. M. Manheimer, Phys. Fluids 14, 579 (1971). [4]R. A. Smith, John A. Krommes, and W. W. Lee, Phys. Fluids 28, 1069 (1985).

  2. Sulfide saturation of basalt and andesite melts at high pressures and temperatures

    NASA Technical Reports Server (NTRS)

    Wendlandt, R. F.

    1982-01-01

    When the sulfur content of an Fe-bearing magma exceeds the saturation limit for the bulk composition, an immiscible iron sulfide melt fraction separates. For an understanding of the geochemistry of sulfur-bearing magmatic systems, more information is needed regarding the solubility of metal sulfide in silicate melt at its source and the solubility changes as a function of changing intensive and extensive variables. In the present investigation, the sulfur saturation surface is determined for the pressure range from 12.5 to 30 kbar and the temperature range from 1300 to 1460 C for three silicate melt compositions representing a range of SiO2 and FeO compositions.

  3. Enhanced quantum coherence in graphene caused by Pd cluster deposition and its zero-temperature saturation

    NASA Astrophysics Data System (ADS)

    Song, Fengqi; Han, Junhao; Wang, Baigeng; Wang, Guanghou; Nanjing Team

    2014-03-01

    The surface decoration of graphene offers great opportunities because graphene is a fully open system. Functional defects, p/n type doping, spin polarization, and additional spin-orbit interactions can be introduced when atoms are absorbed from an external source. Researchers are even considering inducing topologically nontrivial gaps inside the Dirac cone. Despite the potential advances, however, an important problem remains that surface absorption, along with introducing the required functionality, induces additional electronic scattering Such scattering may suppress the coherence of the Dirac fermions and may even disable these desired quantum states. Here we report on the unexpected increase of the dephasing lengths of a graphene sheet caused by the deposition of Pd nanoclusters, demonstrated by weak localization measurements. The dephasing lengths reached saturated values at low temperatures, essentially related to zero-temperature dephasing. The temperature-dependent dephasing was described by 1/(TlnT) and the saturated dephasing period was found to depend on σle. This reveals disorder-induced zero-temperature dephasing in our defect-enriched graphene. Combined with theoretical calculations, we suggest that competition between surface scattering and charge transfer leads to the improvement of quantum coherence in cluster-decorated graphene. (in review)

  4. Low-Temperature Polymorphic Phase Transition in a Crystalline Tripeptide l-Ala-l-Pro-Gly·H2O Revealed by Adiabatic Calorimetry

    PubMed Central

    Markin, Alexey V.; Markhasin, Evgeny; Sologubov, Semen S.; Ni, Qing Zhe; Smirnova, Natalia N.; Griffin, Robert G.

    2015-01-01

    We demonstrate application of precise adiabatic vacuun calorimetry to observation of phase transition in the tripeptide l-alanyl-l-prolyl-glycine monohydrate (APG) from 6 to 320 K and report the standard thermodynamic properties of the tripeptide in the entire range. Thus, the heat capacity of APG was measured by adiabatic vacuun calorimetry in the above temperature range. The tripeptide exhibits a reversible first-order solid-to-solid phase transition characterized by strong thermal hysteresis. We report the standard thermodynamic characteristics of this transition and show that differential scanning calorimetry can reliably characterize the observed phase transition with <5 mg of the sample. Additionally, the standard entropy of formation from the elemental substances and the standard entropy of hypothetical reaction of synthesis from the amino acids at 298.15 K were calculated for the studied tripeptide. PMID:25588051

  5. Elasticity of water-saturated rocks as a function of temperature and pressure.

    NASA Technical Reports Server (NTRS)

    Takeuchi, S.; Simmons, G.

    1973-01-01

    Compressional and shear wave velocities of water-saturated rocks were measured as a function of both pressure and temperature near the melting point of ice to confining pressure of 2 kb. The pore pressure was kept at about 1 bar before the water froze. The presence of a liquid phase (rather than ice) in microcracks of about 0.3% porosity affected the compressional wave velocity by about 5% and the shear wave velocity by about 10%. The calculated effective bulk modulus of the rocks changes rapidly over a narrow range of temperature near the melting point of ice, but the effective shear modulus changes gradually over a wider range of temperature. This phenomenon, termed elastic anomaly, is attributed to the existence of liquid on the boundary between rock and ice due to local stresses and anomalous melting of ice under pressure.

  6. Enhancement of saturation magnetization in Cr-ion implanted silicon by high temperature annealing

    NASA Astrophysics Data System (ADS)

    Yang, Shuang; Zhang, Wenyong; Chen, Jihong; Zhou, Zhongpo; Ai, Zhiwei; Guo, Liping; Liu, Congxiao; Du, Honglin

    2011-08-01

    Magnetic properties and microstructure of Cr-implanted Si have been investigated by alternating gradient magnetometer (AGM), superconducting quantum interference device (SQUID) magnetometer, and transmission electron microscopy (TEM). p-Type (1 0 0) Si wafers were implanted at 200 keV at room temperature with a dosage of 1 × 10 16 cm -2 Cr ions and then annealed at 600-900 °C for 5 min. The effect of annealing on the structure and magnetic properties of Cr-implanted Si is studied. The as-implanted sample shows a square M-H loop at low temperature. Magnetic signal becomes weaker after short time annealing of the as-implanted sample at 600 °C, 700 °C, and 800 °C. However, the 900 °C annealed sample exhibits large saturation magnetization at room temperature. TEM images reveal that the implanting process caused amorphization of Si, while annealing at 900 °C led to partial recovery of the crystal. The enhancement of saturation magnetization can be explained by the redistribution and accumulation of Cr atoms in the vacancy-rich region of Si during annealing.

  7. High temperature measurement using very high shutter speed to avoid image saturation

    NASA Astrophysics Data System (ADS)

    Ma, Zhen; Zhang, Yang

    2014-04-01

    This paper explores the adaptation of the two-colour principle to develop a high-speed colour temperature correlation system, which is able to cover a range of temperature that is challenging to achieve before. A colour digital camera has built in RGB filters. It is possible to measure the temperature from the ratio of intensity of the green and red pixels using the two-colour principle based on the expansion of the Plank's radiation law. In this study, experiments were carried out using a temperature calibrated tungsten ribbon lamp which can be tuned to vary from 1300 to 2200°C. Using very high shutter speed and small aperture, the high-speed camera successfully captured the tungsten ribbon without image saturation at the full temperature scale. Tests have been carried out at different temperature and camera settings. The sensitivity and errors have been analysed, and experiment results demonstrate the potential of using very high shutter speed is available for measuring the temperature even beyond 2200°C.

  8. High temperature measurement using very high shutter speed to avoid image saturation

    SciTech Connect

    Ma, Zhen; Zhang, Yang

    2014-04-11

    This paper explores the adaptation of the two-colour principle to develop a high-speed colour temperature correlation system, which is able to cover a range of temperature that is challenging to achieve before. A colour digital camera has built in RGB filters. It is possible to measure the temperature from the ratio of intensity of the green and red pixels using the two-colour principle based on the expansion of the Plank’s radiation law. In this study, experiments were carried out using a temperature calibrated tungsten ribbon lamp which can be tuned to vary from 1300 to 2200°C. Using very high shutter speed and small aperture, the high-speed camera successfully captured the tungsten ribbon without image saturation at the full temperature scale. Tests have been carried out at different temperature and camera settings. The sensitivity and errors have been analysed, and experiment results demonstrate the potential of using very high shutter speed is available for measuring the temperature even beyond 2200°C.

  9. Design, Test and Demonstration of Saturable Reactor High-Temperature Superconductor Fault Current Limiters

    SciTech Connect

    Darmann, Frank; Lombaerde, Robert; Moriconi, Franco; Nelson, Albert

    2012-03-01

    Zenergy Power has successfully designed, built, tested, and installed in the US electrical grid a saturable reactor Fault Current Limiter. Beginning in 2007, first as SC Power Systems and from 2008 as Zenergy Power, Inc., ZP used DOE matching grant and ARRA funds to help refine the design of the saturated reactor fault current limiter. ZP ultimately perfected the design of the saturated reactor FCL to the point that ZP could reliably design a suitable FCL for most utility applications. Beginning with a very basic FCL design using 1G HTS for a coil housed in a LN2 cryostat for the DC bias magnet, the technology progressed to a commercial system that was offered for sale internationally. Substantial progress was made in two areas. First, the cryogenics cooling system progressed from a sub-cooled liquid nitrogen container housing the HTS coils to cryostats utilizing dry conduction cooling and reaching temperatures down to less than 20 degrees K. Large, round cryostats with warm bore diameters of 1.7 meters enabled the design of large tanks to hold the AC components. Second, the design of the AC part of the FCL was refined from a six legged spider design to a more compact and lighter design with better fault current limiting capability. Further refinement of the flux path and core shape led to an efficient saturated reactor design requiring less Ampere-turns to saturate the core. In conclusion, the development of the saturable reactor FCL led to a more efficient design not requiring HTS magnets and their associated peripheral equipment, which yielded a more economical product in line with the electric utility industry expectations. The original goal for the DOE funding of the ZP project Design, Test and Demonstration of Saturable Reactor High-Temperature Superconductor Fault Current Limiters was to stimulate the HTS wire industry with, first 1G, then 2G, HTS wire applications. Over the approximately 5 years of ZP's product development program, the amount of HTS wire

  10. Observation of room temperature saturated ferroelectric polarization in Dy substituted BiFeO3 ceramics

    NASA Astrophysics Data System (ADS)

    Zhang, Shuxia; Wang, Lei; Chen, Yao; Wang, Dongliang; Yao, Yingbang; Ma, Yanwei

    2012-04-01

    High quality Bi1-xDyxFeO3 (0 ≤ x ≤ 0.15) ceramics have been fabricated by sintering Dy-doped BiFeO3 (BFO) precursor powders at a low temperature of 780 °C. The magnetic properties of BFO were improved by the introduction of Dy on the Bi-site. More importantly, well saturated ferroelectric hysteresis loops and polarization switching currents have been observed at room temperature. A large remnant polarization (2Pr) value of 62 μC/cm2 is achieved, which is the highest value reported so far for rare-earth-doped BFO ceramics. Moreover, mechanisms for improved multiferroic properties depending on chemical doping-caused structure evolutions have also been discussed.

  11. Calculating water saturation from passive temperature measurements in near-surface sediments: Development of a semi-analytical model

    NASA Astrophysics Data System (ADS)

    Halloran, Landon J. S.; Roshan, Hamid; Rau, Gabriel C.; Andersen, Martin S.

    2016-03-01

    A novel semi-analytical model for the calculation of water saturation levels in the near subsurface using passive temperature measurements is derived. The amplitude and phase of dominant natural diel temperature variations are exploited, although the solution is general so that a cyclical temperature signal of any period could be used. The model is based on the first-principles advection-conduction-dispersion equation, which is fully general for porous media. It requires a single independent soil moisture estimate, but directly considers the spatially variable saturation dependency of thermal conductivity which has been avoided in previous studies. An established empirical model for the thermal conductivity of variably saturated porous media is incorporated and two solutions for saturation are derived. Using data from numerical models, a spatially sequential implementation of one of these solutions is shown to predict the vertical saturation profile to within 2% for a hydraulically stable case and to within the saturation range observed over a single day for percolation rates up to 10 cm/day. The developed model and methodology can aid in the analysis of archived temperature data from the vadose zone and will serve as a powerful tool in future heat-tracing experiments in variably saturated conditions.

  12. Transport of biochar particles in saturated granular media: effects of pyrolysis temperature and particle size.

    PubMed

    Wang, Dengjun; Zhang, Wei; Hao, Xiuzhen; Zhou, Dongmei

    2013-01-15

    Land application of biochar is increasingly being considered for potential agronomic and environmental benefits, e.g., enhancing carbon sequestration, nutrient retention, water holding capacity, and crop productivity; and reducing greenhouse gas emissions and bioavailability of environmental contaminants. However, little is known about the transport of biochar particles in the aqueous environment, which represents a critical knowledge gap because biochar particles can facilitate the transport of adsorbed contaminants. In this study, column experiments were conducted to investigate biochar particle transport and retention in water-saturated quartz sand. Specific factors considered included biochar feedstocks (wheat straw and pine needle), pyrolysis temperature (350 and 550 °C), and particle size (micrometer-particle (MP) and nanoparticle (NP)). Greater mobility was observed for the biochars of lower pyrolysis temperatures and smaller particle sizes. Extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) calculations that considered measured zeta potentials and Lewis acid-base interactions were used to better understand the influence of pyrolysis temperature on biochars particle transport. Most biochars exhibited attractive acid-base interactions that impeded their transport, whereas the biochar with the greatest mobility had repulsive acid-base interaction. Nonetheless, greater retention of the MPs than that of the NPs was in contrast with the XDLVO predictions. Straining and biochar surface charge heterogeneity were found to enhance the retention of biochar MPs, but played an insignificant role in the biochar NP retention. Experimental breakthrough curves and retention profiles were well-described using a two-site kinetic retention model that accounted for depth-dependent retention at one site. Modeled first-order retention coefficients on both sites 1 and 2 increased with increasing pyrolysis temperature and particle size. PMID:23249307

  13. Long-Range Distance Measurements in Proteins at Physiological Temperatures Using Saturation Recovery EPR Spectroscopy

    PubMed Central

    2015-01-01

    Site-directed spin labeling in combination with EPR is a powerful method for providing distances on the nm scale in biological systems. The most popular strategy, double electron–electron resonance (DEER), is carried out at cryogenic temperatures (50–80 K) to increase the short spin–spin relaxation time (T2) upon which the technique relies. A challenge is to measure long-range distances (20–60 Å) in proteins near physiological temperatures. Toward this goal we are investigating an alternative approach based on the distance-dependent enhancement of spin–lattice relaxation rate (T1–1) of a nitroxide spin label by a paramagnetic metal. With a commonly used nitroxide side chain (R1) and Cu2+, it has been found that interspin distances ≤25 Å can be determined in this way (Jun et al. Biochemistry2006, 45, 11666). Here, the upper limit of the accessible distance is extended to ≈40 Å using spin labels with long T1, a high-affinity 5-residue Cu2+ binding loop inserted into the protein sequence, and pulsed saturation recovery to measure relaxation enhancement. Time-domain Cu2+ electron paramagnetic resonance, quantum mechanical calculations, and molecular dynamics simulations provide information on the structure and geometry of the Cu2+ loop and indicate that the metal ion is well-localized in the protein. An important aspect of these studies is that both Cu2+/nitroxide DEER at cryogenic temperatures and T1 relaxation measurements at room temperature can be carried out on the same sample, allowing both validation of the relaxation method and assessment of the effect of freezing on protein structure. PMID:25290172

  14. Effects of episodic low aragonite saturation and elevated temperature on the physiology of Stylophora pistillata

    NASA Astrophysics Data System (ADS)

    Lürig, M.; Kunzmann, A.

    2015-05-01

    As global climate change is predicted to gradually alter the oceans' carbonate system and water temperature, knowledge about the effects an altered marine environment has on the physiology of reef building (hermatypic) coral species is more widely established. However, although it is recognized that seawater temperature and the carbonate system of a coral reef can change rapidly and with great amplitude, little is known about how the interaction of these natural fluctuations with long term effects of climate change may affect the metabolism and productivity of hermatypic corals. To investigate this, we acclimated the hermatypic coral Stylophora pistillata to a "worst case" scenario for carbon dioxide emissions (aragonite saturation state [ΩARAG] = 1.6), and tested how exposure to short term (24 h) elevated temperature (+ 3 °C) and further lowered ΩARAG (-1 unit) affected its photosynthesis and respiration. While episodic exposure to very low ΩARAG had only little effect on S. pistillata's physiology, short term heat stress caused a shift from net oxygen production to consumption and partial coral bleaching. Higher gross coral respiration, and lowered photosynthetic activity under episodically elevated temperature may have been the result of photoinhibition and partial coral bleaching. These findings suggest that fluctuating environmental conditions in combination with a low ΩARAG background signal may impair basic metabolic processes in calcifying corals. In a future high-CO2 world short term stress could be relevant for reef ecosystem processes, and may affect the resilience of coral reefs to other external influences and effects of climate change.

  15. Hydrogenation at low temperatures does not always lead to saturation: the case of HNCO

    NASA Astrophysics Data System (ADS)

    Noble, J. A.; Theule, P.; Congiu, E.; Dulieu, F.; Bonnin, M.; Bassas, A.; Duvernay, F.; Danger, G.; Chiavassa, T.

    2015-04-01

    Context. It is generally agreed that hydrogenation reactions dominate chemistry on grain surfaces in cold, dense molecular cores, saturating the molecules present in ice mantles. Aims: We present a study of the low temperature reactivity of solid phase isocyanic acid (HNCO) with hydrogen atoms, with the aim of elucidating its reaction network. Methods: Fourier transform infrared spectroscopy and mass spectrometry were employed to follow the evolution of pure HNCO ice during bombardment with H atoms. Both multilayer and monolayer regimes were investigated. Results: The hydrogenation of HNCO does not produce detectable amounts of formamide (NH2CHO) as the major product. Experiments using deuterium reveal that deuteration of solid HNCO occurs rapidly, probably via cyclic reaction paths regenerating HNCO. Chemical desorption during these reaction cycles leads to loss of HNCO from the surface. Conclusions: It is unlikely that significant quantities of NH2CHO form from HNCO. In dense regions, however, deuteration of HNCO will occur. HNCO and DNCO will be introduced into the gas phase, even at low temperatures, as a result of chemical desorption.

  16. Effect of defect saturation on terahertz emission and detection properties of low temperature GaAs photoconductive switches

    NASA Astrophysics Data System (ADS)

    Rihani, Samir; Faulks, Richard; Beere, Harvey; Page, Hideaki; Gregory, Ian; Evans, Michael; Ritchie, David A.; Pepper, Michael

    2009-08-01

    We present a study into the properties of terahertz (THz) emission and detection using low temperature grown GaAs photoconductive switches over a range of ex situ anneal temperatures. Our analysis focuses on the effect of defect saturation, which has been confirmed in many experiments. However its effect on the THz emission and detection has so far not been fully investigated. In this letter, we examine the dependence of the radiated THz pulse width (full width at half maximum) upon optical power, and show that the differences in the characteristics with annealing can be theoretically accounted for when defect saturation is taken into account. Defect saturation was found to substantially increase the trapping time of photoexcited electrons, which in turn can cause THz pulse broadening at high optical powers. This effect was found to increase with anneal temperature due to the decrease in defect density. The radiated peak THz amplitude from emitters increases monotonically with increasing optical power across the range of anneal temperatures investigated. In the detector configuration, however, the detected peak THz amplitude reaches a maximum before starting to decrease with increasing optical power. The latter trend was observed for devices annealed at temperatures higher than 300 °C and is attributed to the onset of defect saturation.

  17. Role of secondary long wavelength structures in the saturation of electron temperature gradient driven turbulence

    SciTech Connect

    Li Jiquan; Kishimoto, Y.

    2008-11-15

    The dynamics of secondary long wavelength structures (LWSs) in electron temperature gradient (ETG) driven turbulence are investigated by performing gyrofluid simulations and modeling analyses in a slab geometry with an emphasis of the underlying nonlinear interaction processes. It is shown that the back-reaction of the secondary LWS on the ambient fluctuations essentially contributes to saturating ETG instability and limiting the electron transport. The LWS is nonlinearly generated mainly through the beating of the most unstable ETG modes, even a weak modulation instability. The back-reaction is identified as the enhanced stabilization of the ETG modes due to the streamer-type feature of the LWS, which dominantly produces a local poloidal mode coupling among unstable and highly damped spectral components to form a global mode, besides the suppression effect of the LWS due to the radial shearing decorrelation and/or the radial mode coupling. Finally, the correspondence between the LWS in the slab model and the quasimode observed in toroidal ETG simulation [Z. Lin et al., Phys. Plasmas 12, 056125 (2005)] and the importance of the nonlinear mode coupling in the multiscale turbulence interaction are discussed.

  18. Heating and cooling in adiabatic mixing process

    NASA Astrophysics Data System (ADS)

    Zhou, Jing; Cai, Zi; Zou, Xu-Bo; Guo, Guang-Can

    2010-12-01

    We study the effect of interaction on the temperature change in the process of adiabatic mixing of two components of Fermi gases using the real-space Bogoliubov-de Gennes method. We find that in the process of adiabatic mixing, the competition between the adiabatic expansion and the attractive interaction makes it possible to cool or heat the system depending on the strength of the interaction and the initial temperature of the system. The changes of the temperature in a bulk system and in a trapped system are investigated.

  19. Field study and simulation of diurnal temperature effects on infiltration and variably saturated flow beneath an ephemeral stream

    USGS Publications Warehouse

    Ronan, A.D.; Prudic, D.E.; Thodal, C.E.; Constantz, J.

    1998-01-01

    Two experiments were performed to investigate flow beneath an ephemeral stream and to estimate streambed infiltration rates. Discharge and stream-area measurements were used to determine infiltration rates. Stream and subsurface temperatures were used to interpret subsurface flow through variably saturated sediments beneath the stream. Spatial variations in subsurface temperatures suggest that flow beneath the streambed is dependent on the orientation of the stream in the canyon and the layering of the sediments. Streamflow and infiltration rates vary diurnally: Stream flow is lowest in late afternoon when stream temperature is greatest and highest in early morning when stream temperature is least. The lower afternoon streamflow is attributed to increased infiltration rates; evapotranspiration is insufficient to account for the decreased streamflow. The increased infiltration rates are attributed to viscosity effects on hydraulic conductivity from increased stream temperatures. The first set of field data was used to calibrate a two-dimensional variably saturated flow model that includes heat transport. The model was calibrated to (1) temperature fluctuations in the subsurface and (2) infiltration rates determined from measured stream flow losses. The second set of field data was to evaluate the ability to predict infiltration rates on the basis of temperature measurements alone. Results indicate that the variably saturated subsurface flow depends on downcanyon layering of the sediments. They also support the field observations in indicating that diurnal changes in infiltration can be explained by temperature dependence of hydraulic conductivity. Over the range of temperatures and flows monitored, diurnal stream temperature changes can be used to estimate streambed infiltration rates. It is often impractical to maintain equipment for determining infiltration rates by traditional means; however, once a model is calibrated using both infiltration and temperature data

  20. Temperature effect on the transport of bromide and E. coli NAR in saturated soils

    NASA Astrophysics Data System (ADS)

    Gharabaghi, B.; Safadoust, A.; Mahboubi, A. A.; Mosaddeghi, M. R.; Unc, A.; Ahrens, B.; Sayyad, Gh.

    2015-03-01

    In this study we investigated the transport of nalidixic acid-resistant Escherichia coli (E. coli NAR) and bromide (Br-) through two soils, a sandy loam (SL) and clay loam (CL). Soils were repacked in columns (45 cm length × 22 cm diameter) and subjected to physical (freeze/thaw, and wet/dry cycles) and biological (by earthworms, Eisenia fetida) weathering for 12 months. Saturated flow conditions were maintained using a tension infiltrometer. Tests were carried out at either 5 or 20 °C. After steady-state flow conditions were established, a suspension containing E. coli NAR and Br- was sprayed onto the surface of soil columns. Leachate was sampled at three depths, 15, 30 and 45 cm. Time to maximum concentration (Cmax) of E. coli NAR was greater for SL at all depths. Both tracers had rapid breakthrough curves (BTCs) shortly after the suspension injection followed by prolonged tailing indicating the presence of preferential pathways and thus soil heterogeneity regenerated after the induced physical and biological weathering. About 40% of the E. coli NAR and 79% of the Br- leached through the entire 45 cm soil columns during the experiments. Leaching with cold water (5 °C) led to lower hydraulic conductivity and flow rate and consequently enhanced bacterial filtration for both soils. Very low values for the detachment coefficient for E. coli NAR at 5 °C suggest an irreversible process of bacterial attachment in heterogeneous soils. BTCs were well described by the mobile-immobile model (MIM) in HYDRUS-1D. Soil texture/structure and temperature had a significant effect on the model's fitted parameters.

  1. High-Temperature Saturation Can Produce the [CII] Deficit in LIRGs and ULIRGs

    NASA Astrophysics Data System (ADS)

    Muñoz, Joseph A.; Oh, S. Peng

    2016-08-01

    Current predictions for the line ratios from photo-dissociative regions (PDRs) in galaxies adopt theoretical models that consider only individual parcels of PDR gas each characterized by the local density and far-UV radiation field. However, these quantities are not measured directly from unresolved galaxies, making the connection between theory and observation ambiguous. We develop a model that uses galaxy-averaged, observable inputs to explain and predict measurements of the [CII] fine structure line in luminous and ultra-luminous infrared galaxies. While there are a number of potential explanations for the [CII] deficit observed in the highest IR surface-brightness systems, such as 'dust-bounded' HII regions and grain charging, we propose a simpler solution where the [CII] deficit arises from saturating the upper fine-structure transition state at gas temperatures above 91 K. To reproduce the measured amplitude of the [CII]/FIR ratio in deficit galaxies, we require that [CII] trace approximately 10-17% of all gas in these systems, roughly independent of IR surface brightness and consistent with observed [CII] to CO(1-0) line ratios. Calculating the value of this fraction is a challenge for theoretical models. The difficulty may reside in properly treating the topology of molecular and dissociated gas, different descriptions for which may be observationally distinguished by the [OI]63 μm line in yet-to-be-probed regions of parameter space, allowing PDR emission lines from to probe not only the effects of star formation but also the state and configuration of interstellar gas.

  2. High-Temperature Studies of Glass Dissolution Rates Close to Saturation

    SciTech Connect

    Zavarin, M; Roberts, S; Zhao, P; Williams, R; Rose, T; Rainer, A; Pawloski, G

    2004-06-14

    Most long-lived radionuclides associated with an underground nuclear test are incorporated into a melt glass and are released by glass dissolution to become part of the hydrologic source term (HST) (Pawloski et al., 2001). Although the rates of rhyolite glass dissolution are well known under conditions where the fluid is far from saturation with respect to glass, the rates are not well known under conditions where the fluid approaches saturation. These rates are commonly much lower than the far-fromsaturation rates, often by a factor greater than 100. In recent HST simulations (Pawloski et al., 2001; Pawloski et al., 2000; Tompson et al., 1999), we conservatively estimated steady-state release rates based on a far-from-saturation fluid conditions. In recent CHESHIRE near-field simulations (Pawloski et al., 2001), it was predicted that {approx}30% of the nuclear melt glass dissolved over 1000 years. Although the ''far-from-saturation rate'' approach provides a conservative estimate of glass dissolution, it may greatly overestimate the rates of melt glass dissolution. At CHESHIRE, less conservative estimates suggest that only {approx}1% of the nuclear melt glass will dissolve in 1000 years. Lower glass dissolution rates result in lower radionuclide release rates from nuclear melt glass. The following report documents glass dissolution experiments performed to measure glass dissolution rates close to saturation.

  3. A fiber-optic interferometer based on non-adiabatic fiber taper and long-period fiber grating for simultaneous measurement of magnetic field and temperature

    NASA Astrophysics Data System (ADS)

    Kang, Shouxin; Zhang, Hao; Liu, Bo; Lin, Wei; Zhang, Ning; Miao, Yinping

    2016-01-01

    A dual-parameter sensor based on a fiber-optic interferometer consisting of a non-adiabatic fiber taper and a long-period fiber grating (LPFG) integrated with magnetic nanoparticle fluids has been proposed and experimentally demonstrated. Due to the Mach-Zehnder interference induced by the concatenation of the fiber taper and long-period grating, an interferometric spectrum could be acquired within the transmission resonance spectral envelope of the LPFG. Thanks to different magnetic field and temperature sensitivities of difference interference dips, simultaneous measurement of the magnetic field intensity and environmental temperature could be achieved. Moreover, due to the variation in coupling coefficients of the fiber taper and the LPFG in response to the change of the applied magnetic field intensity, some of the interference dips would exhibit opposite magnetic-field-intensity-dependent transmission loss variation behavior. Magnetic field intensity and temperature sensitivities of 0.017 31 dB Oe-1 and 0.0315 dB K-1, and -0.024 55 dB Oe-1 and -0.056 28 dB K-1 were experimentally acquired for the experimentally monitored interference dips.

  4. Hydration water and peptide dynamics--two sides of a coin. A neutron scattering and adiabatic calorimetry study at low hydration and cryogenic temperatures.

    PubMed

    Bastos, Margarida; Alves, Nuno; Maia, Sílvia; Gomes, Paula; Inaba, Akira; Miyazaki, Yuji; Zanotti, Jean-Marc

    2013-10-21

    In the present work we bridge neutron scattering and calorimetry in the study of a low-hydration sample of a 15-residue hybrid peptide from cecropin and mellitin CA(1-7)M(2-9) of proven antimicrobial activity. Quasielastic and low-frequency inelastic neutron spectra were measured at defined hydration levels - a nominally 'dry' sample (specific residual hydration h = 0.060 g/g), a H2O-hydrated (h = 0.49) and a D2O-hydrated one (h = 0.51). Averaged mean square proton mobilities were derived over a large temperature range (50-300 K) and the vibrational density of states (VDOS) were evaluated for the hydrated samples. The heat capacity of the H2O-hydrated CA(1-7)M(2-9) peptide was measured by adiabatic calorimetry in the temperature range 5-300 K, for different hydration levels. The glass transition and water crystallization temperatures were derived in each case. The existence of different types of water was inferred and their amounts calculated. The heat capacities as obtained from direct calorimetric measurements were compared to the values derived from the neutron spectroscopy by way of integrating appropriately normalized VDOS functions. While there is remarkable agreement with respect to both temperature dependence and glass transition temperatures, the results also show that the VDOS derived part represents only a fraction of the total heat capacity obtained from calorimetry. Finally our results indicate that both hydration water and the peptide are involved in the experimentally observed transitions. PMID:23986181

  5. Temperature dependences of saturated vapor pressure and the enthalpy of vaporization of n-pentyl esters of dicarboxylic acids

    NASA Astrophysics Data System (ADS)

    Portnova, S. V.; Krasnykh, E. L.; Levanova, S. V.

    2016-05-01

    The saturated vapor pressures and enthalpies of vaporization of n-pentyl esters of linear C2-C6 dicarboxylic acids are determined by the transpiration method in the temperature range of 309.2-361.2 K. The dependences of enthalpies of vaporization on the number of carbon atoms in the molecule and on the retention indices have been determined. The predictive capabilities of the existing calculation schemes for estimation of enthalpy of vaporization of the studied compounds have been analyzed.

  6. A study of neutron emission from a deuterium-saturated TiFe alloy at room temperature

    NASA Astrophysics Data System (ADS)

    Lobanov, V. V.; Zetkin, A. S.; Kagan, G. E.; Demin, V. B.; Mil'Man, I. I.; Siurdo, A. I.

    1991-12-01

    Experimental data are presented on neutron emission from a TiFe alloy (46.14 at. pct Fe), saturated by deuterium from the gas phase, when the alloy is held in dynamic vacuum at room temperature. The time dependences of neutron yield feature one to three peaks over the observation period (160 min), with the relative intensity of the peaks varying by more than two orders of magnitude.

  7. Robust adiabatic sum frequency conversion.

    PubMed

    Suchowski, Haim; Prabhudesai, Vaibhav; Oron, Dan; Arie, Ady; Silberberg, Yaron

    2009-07-20

    We discuss theoretically and demonstrate experimentally the robustness of the adiabatic sum frequency conversion method. This technique, borrowed from an analogous scheme of robust population transfer in atomic physics and nuclear magnetic resonance, enables the achievement of nearly full frequency conversion in a sum frequency generation process for a bandwidth up to two orders of magnitude wider than in conventional conversion schemes. We show that this scheme is robust to variations in the parameters of both the nonlinear crystal and of the incoming light. These include the crystal temperature, the frequency of the incoming field, the pump intensity, the crystal length and the angle of incidence. Also, we show that this extremely broad bandwidth can be tuned to higher or lower central wavelengths by changing either the pump frequency or the crystal temperature. The detailed study of the properties of this converter is done using the Landau-Zener theory dealing with the adiabatic transitions in two level systems. PMID:19654679

  8. Effect of the drilling mud filtrate temperature on the resistivity of the stratum saturated by oil and gas

    NASA Astrophysics Data System (ADS)

    Pen'kovskii, V. I.; Korsakova, N. K.; Nesterova, G. V.

    2014-09-01

    A mathematical model of the axisymmetric distribution of the phases in the zone of invasion of the water-based drilling mud into the productive stratum whose porous space can simultaneously contain three immiscible fluids (oil, gas, and natural water) is constructed; the model takes into account the high rate of heat transfer between the fluids and the rock matrix. It is shown that the resistivity of the invaded zone depends not only on saturation of the latter by the fluids and the concentration of salts in the water phase, but also on the drilling mud filtrate temperature. It is also shown that there is a jump in the function of stratum saturation by oil on the thermal front.

  9. Atomic long-range order effects on Curie temperature and adiabatic spin-wave dynamics in strained Fe-Co alloy films

    NASA Astrophysics Data System (ADS)

    Schönecker, Stephan; Li, Xiaoqing; Johansson, Börje; Vitos, Levente

    2016-08-01

    The strained Fe-Co alloy in body-centered tetragonal (bct) structure has raised considerable interest due to its giant uniaxial magnetocrystalline anisotropy energy. On the basis of the classical Heisenberg Hamiltonian with ab initio interatomic exchange interactions, we perform a theoretical study of fundamental finite temperature magnetic properties of Fe1 -xCox alloy films as a function of three variables: chemical composition 0.3 ≤x ≤0.8 , bct geometry [a ,c (a )] arising from in-plane strain and associated out-of-plane relaxation, and atomic long-range order (ALRO). The Curie temperatures TC(x ,a ) obtained from Monte Carlo simulations display a competition between a pronounced dependence on tetragonality, strong ferromagnetism in the Co-rich alloy, and the beginning instability of ferromagnetic order in the Fe-rich alloy when c /a →√{2 } . Atomic ordering enhances TC and arises mainly due to different distributions of atoms in neighboring coordination shells rather than altering exchange interactions significantly. We investigate the ordering effect on the shape of the adiabatic spin-wave spectrum for selected pairs (x ,a ) . Our results indicate that long-wavelength acoustic spin-wave excitations show dependencies on x , a , and ALRO similar to those of TC. The directional anisotropy of the spin-wave stiffness d (x ,a ) peaks in narrow ranges of composition and tetragonality. ALRO exhibits a strong effect on d for near equiconcentration Fe-Co. We also discuss our findings in the context of employing Fe-Co as perpendicular magnetic recording medium.

  10. CaCO/sub 3/ precipitation in high temperature and pressure brines in the presence of scale inhibitors using novel saturation index calculations

    SciTech Connect

    Oddo, J.E.; Sloan, K.B.; Tomson, M.B.; Bebout, D.G.; Bachman, A.L.

    1981-01-01

    A simplified method to calculate CaCO/sub 3/ saturation is developed using only commonly measured field parameters. The calculated saturation index (SI) and pH values are shown to be accurate at high temperatures and pressures in brines and are compared to less sophisticated and more complex calculations.

  11. Effect of temperature on hydration kinetics and polymerization of tricalcium silicate in stirred suspensions of CaO-saturated solutions

    SciTech Connect

    Grant, Steven A. . E-mail: steven.a.grant@usace.army.mil; Boitnott, Ginger E.; Korhonen, Charles J.; Sletten, Ronald S.

    2006-04-15

    Tricalcium silicate was hydrated at 274, 278, 283, 298, and 313 K in stirred suspensions of saturated CaO solutions under a nitrogen-gas atmosphere until the end of deceleratory period. The suspension conductivities and energy flows were measured continuously. The individual reaction rates for tricalcium silicate dissolution, calcium silicate hydrate precipitation, and calcium hydroxide precipitation were calculated from these measurements. The results suggest that the proportion of tricalcium silicate dissolved was determined by the rate of tricalcium silicate dissolution and the time to very rapid calcium hydroxide precipitation. The time to very rapid calcium hydroxide precipitation was more sensitive to changes in temperature than was the rate of tricalcium silicate dissolution, so that the proportion of tricalcium silicate hydration dissolved by the deceleratory period increased with decreasing temperature. The average chain length of the calcium silicate hydrate ascertained by magic-angle spinning nuclear magnetic resonance spectroscopy increased with increasing temperature.

  12. Wireless adiabatic power transfer

    SciTech Connect

    Rangelov, A.A.; Suchowski, H.; Silberberg, Y.; Vitanov, N.V.

    2011-03-15

    Research Highlights: > Efficient and robust mid-range wireless energy transfer between two coils. > The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. > Wireless energy transfer is insensitive to any resonant constraints. > Wireless energy transfer is insensitive to noise in the neighborhood of the coils. - Abstract: We propose a technique for efficient mid-range wireless power transfer between two coils, by adapting the process of adiabatic passage for a coherently driven two-state quantum system to the realm of wireless energy transfer. The proposed technique is shown to be robust to noise, resonant constraints, and other interferences that exist in the neighborhood of the coils.

  13. Adiabatic Compression in a Fire Syringe.

    ERIC Educational Resources Information Center

    Hayn, Carl H.; Baird, Scott C.

    1985-01-01

    Suggests using better materials in fire syringes to obtain more effective results during demonstrations which show the elevation in temperature upon a very rapid (adiabatic) compression of air. Also describes an experiment (using ignition temperatures) which introduces students to the use of thermocouples for high temperature measurements. (DH)

  14. Predictive Relationships for pH and Carbonate Saturation in the Southern California Current System Using Oxygen and Temperature Data

    NASA Astrophysics Data System (ADS)

    Alin, S. R.; Feely, R. A.; Dickson, A. G.; Hernandez-Ayon, J. M.; Juranek, L. W.; Ohman, M. D.; Goericke, R.

    2010-12-01

    The California Current System is expected to experience the ecological impacts of ocean acidification earlier than most other ocean regions because marine waters in the North Pacific are among the oldest in the global oceans and natural upwelling processes in this eastern boundary current system bring CO2-rich water masses to the surface in coastal oceans during late spring-early fall months. We used a multiple linear regression (MLR) approach to generate predictive models using oxygen and temperature as proxy variables to reconstruct pH and carbonate saturation states in the Southern California Bight. The calibration data set included high-quality measurements of dissolved inorganic carbon, alkalinity, oxygen, temperature, salinity, and nutrients and was collected during a cruise from British Columbia to Baja California in May-June 2007. The resulting relationships predicting pH and aragonite and calcite saturation states (Ω) from oxygen and temperature data were robust, with r2 values >0.98 and root mean square errors of 0.020 (pH), 0.048 (Ωarag), and 0.075 (Ωcalc). Predicted vs. measured ocean acidification conditions (i.e. pH, Ωarag, and Ωcalc) matched very well for seven verification data sets collected between 2008 and 2010 during quarterly CalCOFI cruises in the Southern California Bight and during several sampling dates on an Ensenada transect occupied several times between 2006 and 2010. Over sub-decadal time scales, these predictive models provide a valuable tool for reconstructing historical time-series of ocean acidification conditions in the California Current Ecosystem where historical inorganic carbon measurements are scarce. Reconstructed pH and saturation state values based on CalCOFI oxygen and temperature data for all cruises between 2005 and 2010 reveal a seasonal cycle in the upper water column, with higher pH and Ω values present during the winter cruises, and stronger gradients including much lower pH and Ω values during spring through

  15. Frequency and trajectory of abnormalities in respiratory rate, temperature and oxygen saturation in severe pneumonia in children.

    PubMed

    Izadnegahdar, Rasa; Fox, Matthew P; Thea, Donald M; Qazi, Shamim A

    2012-08-01

    The frequency or trajectory of vital sign abnormalities in children with pneumonia has not been described. In a cohort of 2714 patients with severe pneumonia identified and treated as per the World Health Organization definition and recommendations, tachypnea, fever and hypoxia were found in 68.9%, 23.6% and 15.5% of children, respectively. Median oxygen saturation returned to a normal range by 10 hours following initiation of treatment, followed by temperature at 12 hours and respiratory rate at 22 hours for subjects <12 months and at 48 hours for those ≥ 12 months of age. PMID:22531236

  16. Adiabatically driven Brownian pumps.

    PubMed

    Rozenbaum, Viktor M; Makhnovskii, Yurii A; Shapochkina, Irina V; Sheu, Sheh-Yi; Yang, Dah-Yen; Lin, Sheng Hsien

    2013-07-01

    We investigate a Brownian pump which, being powered by a flashing ratchet mechanism, produces net particle transport through a membrane. The extension of the Parrondo's approach developed for reversible Brownian motors [Parrondo, Phys. Rev. E 57, 7297 (1998)] to adiabatically driven pumps is given. We demonstrate that the pumping mechanism becomes especially efficient when the time variation of the potential occurs adiabatically fast or adiabatically slow, in perfect analogy with adiabatically driven Brownian motors which exhibit high efficiency [Rozenbaum et al., Phys. Rev. E 85, 041116 (2012)]. At the same time, the efficiency of the pumping mechanism is shown to be less than that of Brownian motors due to fluctuations of the number of particles in the membrane. PMID:23944411

  17. Effects of Temperature on Solute Transport Parameters in Differently-Textured Soils at Saturated Condition

    NASA Astrophysics Data System (ADS)

    Hamamoto, S.; Arihara, M.; Kawamoto, K.; Nishimura, T.; Komatsu, T.; Moldrup, P.

    2014-12-01

    Subsurface warming driven by global warming, urban heat islands, and increasing use of shallow geothermal heating and cooling systems such as the ground source heat pump, potentially causes changes in subsurface mass transport. Therefore, understanding temperature dependency of the solute transport characteristics is essential to accurately assess environmental risks due to increased subsurface temperature. In this study, one-dimensional solute transport experiments were conducted in soil columns under temperature control to investigate effects of temperature on solute transport parameters, such as solute dispersion and diffusion coefficients, hydraulic conductivity, and retardation factor. Toyoura sand, Kaolin clay, and intact loamy soils were used in the experiments. Intact loamy soils were taken during a deep well boring at the Arakawa Lowland in Saitama Prefecture, Japan. In the transport experiments, the core sample with 5-cm diameter and 4-cm height was first isotropically consolidated, whereafter 0.01M KCl solution was injected to the sample from the bottom. The concentrations of K+ and Cl- in the effluents were analyzed by an ion chromatograph to obtain solute breakthrough curves. The solute transport parameters were calculated from the breakthrough curves. The experiments were conducted under different temperature conditions (15, 25, and 40 oC). The retardation factor for the intact loamy soils decreased with increasing temperature, while water permeability increased due to reduced viscosity of water at higher temperature. Opposite, the effect of temperature on solute dispersivity for the intact loamy soils was insignificant. The effects of soil texture on the temperature dependency of the solute transport characteristics will be further investigated from comparison of results from differently-textured samples.

  18. Temperature-Sensitive Mutants of Escherichia coli Requiring Saturated and Unsaturated Fatty Acids for Growth: Isolation and Properties

    PubMed Central

    Harder, Mark E.; Beacham, Ifor R.; Cronan, John E.; Beacham, Kathryn; Honegger, Joy L.; Silbert, David F.

    1972-01-01

    A procedure is described for selection of temperature-sensitive mutants affecting fatty-acid synthesis based upon radiation suicide of wild-type organisms by tritiated acetate selectively incorporated into fatty acids. At 37°, two of the mutants extensively incorporate fatty-acid supplements provided in the medium, and grow for extended periods only when a trans-unsaturated or a combination of saturated and cis-unsaturated fatty acids is available. In vivo fatty-acid synthesis, measured by [14C]acetate incorporation, is temperature-sensitive in these strains relative to protein synthesis and other non-lipid macromolecular syntheses using acetate. The biochemical nature of these mutations has not been identified. PMID:4564200

  19. Spatial and temporal variation of the surface temperature and heat flux for saturated pool nucleate boiling at lower heat fluxes

    SciTech Connect

    Unal, C.; Pasamehmetoglu, K.O.

    1993-10-01

    The spatial and temporal variations of local surface temperature and heat flux for saturated pool nucleate boiling are investigated parametrically using a numerical model. The numerical model consisted of solving the three-dimensional transient heat conduction equation within the heater subjected to nucleate boiling over its upper surface. The surface topography model to distribute the cavities over the boiling surface used a Monte Carlo scheme. All cavities were assumed to be conical in shape. The cavity radii are obtained using an exponential probability density function with a known mean value. Local surface temperatures showed significant spatial and temporal variations, depending upon the surface topography and the heater material and thickness. However, the surface-averaged temperature showed practically no temporal variation. The temporal variations in local temperatures caused the surface-averaged heat flux to vary significantly. The temporal variations in the surface-averaged heat flux were similar for smooth and rough and thick and thin copper and nickel plates. Results indicated that the use of a classical energy balance equation to evaluate the surface heat flux must consider the spatial variation of the temperature. Results also showed that any thermocouple embedded beneath the surface of the heater does not follow the temporal variations at the surface.

  20. Parallelizable adiabatic gate teleportation

    NASA Astrophysics Data System (ADS)

    Nakago, Kosuke; Hajdušek, Michal; Nakayama, Shojun; Murao, Mio

    2015-12-01

    To investigate how a temporally ordered gate sequence can be parallelized in adiabatic implementations of quantum computation, we modify adiabatic gate teleportation, a model of quantum computation proposed by Bacon and Flammia [Phys. Rev. Lett. 103, 120504 (2009), 10.1103/PhysRevLett.103.120504], to a form deterministically simulating parallelized gate teleportation, which is achievable only by postselection. We introduce a twisted Heisenberg-type interaction Hamiltonian, a Heisenberg-type spin interaction where the coordinates of the second qubit are twisted according to a unitary gate. We develop parallelizable adiabatic gate teleportation (PAGT) where a sequence of unitary gates is performed in a single step of the adiabatic process. In PAGT, numeric calculations suggest the necessary time for the adiabatic evolution implementing a sequence of L unitary gates increases at most as O (L5) . However, we show that it has the interesting property that it can map the temporal order of gates to the spatial order of interactions specified by the final Hamiltonian. Using this property, we present a controlled-PAGT scheme to manipulate the order of gates by a control qubit. In the controlled-PAGT scheme, two differently ordered sequential unitary gates F G and G F are coherently performed depending on the state of a control qubit by simultaneously applying the twisted Heisenberg-type interaction Hamiltonians implementing unitary gates F and G . We investigate why the twisted Heisenberg-type interaction Hamiltonian allows PAGT. We show that the twisted Heisenberg-type interaction Hamiltonian has an ability to perform a transposed unitary gate by just modifying the space ordering of the final Hamiltonian implementing a unitary gate in adiabatic gate teleportation. The dynamics generated by the time-reversed Hamiltonian represented by the transposed unitary gate enables deterministic simulation of a postselected event of parallelized gate teleportation in adiabatic

  1. Temperature and saturation dependence in the vapor sensing of butterfly wing scales.

    PubMed

    Kertész, K; Piszter, G; Jakab, E; Bálint, Zs; Vértesy, Z; Biró, L P

    2014-06-01

    The sensing of gasses/vapors in the ambient air is the focus of attention due to the need to monitor our everyday environment. Photonic crystals are sensing materials of the future because of their strong light-manipulating properties. Natural photonic structures are well-suited materials for testing detection principles because they are significantly cheaper than artificial photonic structures and are available in larger sizes. Additionally, natural photonic structures may provide new ideas for developing novel artificial photonic nanoarchitectures with improved properties. In the present paper, we discuss the effects arising from the sensor temperature and the vapor concentration in air during measurements with a photonic crystal-type optical gas sensor. Our results shed light on the sources of discrepancy between simulated and experimental sensing behaviors of photonic crystal-type structures. Through capillary condensation, the vapors will condensate to a liquid state inside the nanocavities. Due to the temperature and radius of curvature dependence of capillary condensation, the measured signals are affected by the sensor temperature as well as by the presence of a nanocavity size distribution. The sensing materials used are natural photonic nanoarchitectures present in the wing scales of blue butterflies. PMID:24863219

  2. Low temperature bainitic ferrite: Evidence of carbon super-saturation and tetragonality

    DOE PAGESBeta

    Garcia-Mateo, C.; Jimenez, J. A.; Yen, Hung-Wei; Miller, Michael K.; Morales-Rivas, L; Kuntz, M; Ringer, S. P.; Yang, Jer-Ren; Caballero, Francesca G.

    2015-03-31

    Experimental evidence indicates that bainitic ferrite formed by transformation at low temperatures (200-350 °C) includes quantities of carbon in solid solution far beyond those expected from para-equilibrium. A change in the conventional symmetry of the bainitic ferrite lattice from cubic to tetragonal explains the abnormal solid solubility detected. This carbon supersaturation was measured by atom probe tomography, and the tetragonality of the bainitic ferrite, was characterized by means of X-ray diffraction analysis and high resolution transmission electron microscopy.

  3. Chemical characteristics and enzymatic saccharification of lignocellulosic biomass treated using high-temperature saturated steam: comparison of softwood and hardwood.

    PubMed

    Asada, Chikako; Sasaki, Chizuru; Hirano, Takeshi; Nakamura, Yoshitoshi

    2015-04-01

    This study investigated the effect of high-temperature saturated steam treatments on the chemical characteristics and enzymatic saccharification of softwood and hardwood. The weight loss and chemical modification of cedar and beech wood pieces treated at 25, 35, and 45 atm for 5 min were determined. Fourier transform infrared and X-ray diffraction analyses indicated that solubilization and removal of hemicellulose and lignin occurred by the steam treatment. The milling treatment of steam-treated wood enhanced its enzymatic saccharification. Maximum enzymatic saccharification (i.e., 94% saccharification rate of cellulose) was obtained using steam-treated beech at 35 atm for 5 min followed by milling treatment for 1 min. However, the necessity of the milling treatment for efficient enzymatic saccharification is dependent on the wood species. PMID:25704097

  4. Saturating refractive nonlinearities and optical bistability in ZnSe/CdZnSe MQWs at room temperature

    NASA Astrophysics Data System (ADS)

    Li, Hongyu; Shen, De Z.; Zhang, Jiying; Wang, Shumei; Yang, Baojun; Yu, Guangyou

    1998-08-01

    The excitonic nonlinear refractive index was calculated by using Kramers-Kronig relation and the saturating absorption of ZnSe/CdZnSe multiple quantum wells (MQWs) was studied under different pump intensities. The maximum nonlinear refractive index change is about -6.19 X 10-3. Excitonic optical bistability in ZnSe/CdZnSe MQWs is investigated at room temperature. The result indicates that the threshold and contrast ratio for the optical bistability in ZnSe/CdZnSe MQWs are about 210Kw/cm2 and 2:1, respectively. On the basis of the excitonic nonlinear theories and excitonic absorption spectra in the ZnSe/CdZnSe MQWs, we attribute the major nonlinear mechanism of the optical bistability in the ZnSe/CdZnSe MQWs to the phase space filling of excitonic states and excitonic band broadening due to exciton-exciton interactions.

  5. Melting Temperature and Partial Melt Chemistry of H2O-Saturated Mantle Peridotite to 11 Gigapascals

    PubMed

    Kawamoto; Holloway

    1997-04-11

    The H2O-saturated solidus of a model mantle composition (Kilborne Hole peridotite nodule, KLB-1) was determined to be just above 1000°C from 5 to 11 gigapascals. Given reasonable H2O abundances in Earth's mantle, an H2O-rich fluid could exist only in a region defined by the wet solidus and thermal stability limits of hydrous minerals, at depths between 90 and 330 kilometers. The experimental partial melts monotonously became more mafic with increasing pressure from andesitic composition at 1 gigapascal to more mafic than the starting peridotite at 10 gigapascals. Because the chemistry of the experimental partial melts is similar to that of kimberlites, it is suggested that kimberlites may be derived by low-temperature melting of an H2O-rich mantle at depths of 150 to 300 kilometers. PMID:9092469

  6. Towards 9 weight percent, reversible, room temperature hydrogen adsorbents: Hydrogen saturated organometallic bucky balls

    NASA Astrophysics Data System (ADS)

    Zhao, Yufeng

    2005-03-01

    A new concept for high-capacity hydrogen absorbents is introduced by first-principles calculations. Transition metal (TM) atoms bound to fullerenes are proposed as a medium for high density, room temperature, ambient pressure storage of hydrogen. TMs bind to C60 or C48B12 by charge transfer interactions to produce stable organometallic bucky balls (OBBs) and bind to multiple dihydrogen molecules through the so-called Kubas interaction [1]. A particular scandium OBB can bind as many as eleven hydrogen atoms per TM, ten of which are bound in the form of dihydrogen molecular ligands that can be adsorbed and desorbed reversibly. In this case, the calculated binding energy is around 0.3 eV/H2, which is ideal for use on-board vehicles. The theoretical maximum retrievable H2 storage density is about 9 weight percent. This work was supported by the U.S. DOE EERE, BES/MS, and BES/CS under contract No. DEAC36-99GO10337. [1] G.J. Kubas, J. Organometallic Chem. 635, 37 (2001).

  7. The adiabatic phase mixing and heating of electrons in Buneman turbulence

    SciTech Connect

    Che, H.; Goldstein, M. L.; Drake, J. F.; Swisdak, M.

    2013-06-15

    The nonlinear development of the strong Buneman instability and the associated fast electron heating in thin current layers with Ω{sub e}/ω{sub pe}<1 is explored. Phase mixing of the electrons in wave potential troughs and a rapid increase in temperature are observed during the saturation of the instability. We show that the motion of trapped electrons can be described using a Hamiltonian formalism in the adiabatic approximation. The process of separatrix crossing as electrons are trapped and de-trapped is irreversible and guarantees that the resulting electron energy gain is a true heating process.

  8. Crystal Structure of Calcium Silicate Perovskite Synthesized under Water Saturated Conditions at Mantle Related Pressure-Temperature

    NASA Astrophysics Data System (ADS)

    Chen, H.; Shim, S. H. D.; Leinenweber, K. D.; Meng, Y.; Prakapenka, V.

    2014-12-01

    Perovskite-structured CaSiO3 (Ca-Pv) is the third most abundant mineral in the lower mantle. However, its crystal structure is still under debate and the solubility of H2O in Ca-Pv is not well constrained. We have conducted in situ X-ray diffraction measurements on Ca-Pv under H2O saturated conditions in the laser-heated diamond-anvil cell at the GSECARS and HPCAT sectors of the Advanced Photon Source. Glass starting materials were mixed with platinum powder (10 wt%) for laser coupling and internal pressure scale. Cold compressed foils of the mixtures were loaded in the diamond-anvil cell together with Ne or water. The X-ray diffraction patterns of the Ca-Pv sample synthesized in a Ne medium are consistent with a cubic perovskite structure at both 300 K and high temperatures up to 2,400 K at 50 GPa. No clear peak splittings were observed within the resolution of the angle-dispersive powder diffraction technique. However, in the experiments with water, clear splitting of the 200 diffraction line appears during heating to temperatures over 2000 K and remain after temperature quench at 32 GPa. The peak splittings were clearly observed at high temperatures to 2400 K, which is close to the melting point of water at the pressure. The different structural behaviors of Ca-Pv depending on media (Ne and water) may suggest that OH might enter into the crystal structure of nominally anhydrous Ca-Pv phase at high pressure and high temperature.

  9. Triacylglyceride composition and fatty acyl saturation profile of a psychrophilic and psychrotolerant fungal species grown at different temperatures.

    PubMed

    Pannkuk, Evan L; Blair, Hannah B; Fischer, Amy E; Gerdes, Cheyenne L; Gilmore, David F; Savary, Brett J; Risch, Thomas S

    2014-01-01

    Pseudogymnoascus destructans is a psychrophilic fungus that infects cutaneous tissues in cave dwelling bats, and it is the causal agent for white nose syndrome (WNS) in North American (NA) bat populations. Geomyces pannorum is a related psychrotolerant keratinolytic species that is rarely a pathogen of mammals. In this study, we grew P. destructans and G. pannorum in static liquid cultures at favourable and suboptimal temperatures to: 1) determine if triacylglyceride profiles are species-specific, and 2) determine if there are differences in fatty acyl (FA) saturation levels with respect to temperature. Total lipids isolated from both fungal spp. were separated by thin-layer chromatography and determined to be primarily sterols (∼15 %), free fatty acids (FFAs) (∼45 %), and triacylglycerides (TAGs) (∼50 %), with minor amounts of mono-/diacylglycerides and sterol esters. TAG compositions were profiled by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF). Total fatty acid methyl esters (FAMEs) and acyl lipid unsaturation levels were determined by gas chromatography-mass spectrometry (GC-MS). Pseudogymnoascus destructans produced higher proportions of unsaturated 18C fatty acids and TAGs than G. pannorum. Pseudogymnoascus destructans and G. pannorum produced up to a two-fold increase in 18:3 fatty acids at 5 °C than at higher temperatures. TAG proportion for P. destructans at upper and lower temperature growth limits was greater than 50 % of total dried mycelia mass. These results indicate fungal spp. alter acyl lipid unsaturation as a strategy to adapt to cold temperatures. Differences between their glycerolipid profiles also provide evidence for a different metabolic strategy to support psychrophilic growth, which may influence P. destructans' pathogenicity to bats. PMID:25209638

  10. Adiabatically implementing quantum gates

    SciTech Connect

    Sun, Jie; Lu, Songfeng Liu, Fang

    2014-06-14

    We show that, through the approach of quantum adiabatic evolution, all of the usual quantum gates can be implemented efficiently, yielding running time of order O(1). This may be considered as a useful alternative to the standard quantum computing approach, which involves quantum gates transforming quantum states during the computing process.

  11. Entanglement and adiabatic quantum computation

    NASA Astrophysics Data System (ADS)

    Ahrensmeier, D.

    2006-06-01

    Adiabatic quantum computation provides an alternative approach to quantum computation using a time-dependent Hamiltonian. The time evolution of entanglement during the adiabatic quantum search algorithm is studied, and its relevance as a resource is discussed.

  12. Thermal conductivity of water-saturated rocks from the KTB pilot hole at temperatures of 25 to 300°C

    USGS Publications Warehouse

    Pribnow, D.; Williams, C.F.; Sass, J.H.; Keating, R.

    1996-01-01

    The conductivitites of selected gneiss (two) and amphibolite (one) core samples have been measured under conditions of elevated temperature and pressure with a needle-probe. Water-saturated thermal conductivity measurements spanning temperatures from 25 to 300??C and hydrostatic pressures of 0.1 and 34 MPa confirm the general decrease in conductivity with increasing temperature but deviate significantly from results reported from measurements on dry samples over the same temperature range. The thermal conductivity of water-saturated amphibolite decreases with temperature at a rate approximately 40% less than the rate for dry amphibolite, and the conductivity of water-saturated gneiss decreases at a rate approximately 20% less than the rate for dry gneiss. The available evidence points to thermal cracking as the primary cause of the more rapid decrease in dry thermal conductivity with temperature. The effects of thermal cracking were also observed in the water-saturated samples but resulted in a net decrease in room-temperature conductivity of less than 3%. These results highlight the importance of duplicating in-situ conditions when determining thermal conductivity for the deep crust.

  13. Stoichiometry and temperature sensitivity of methanogenesis and CO 2 production from saturated polygonal tundra in Barrow, Alaska

    DOE PAGESBeta

    Roy Chowdhury, Taniya; Herndon, Elizabeth M.; Phelps, Tommy J.; Elias, Dwayne A.; Gu, Baohua; Liang, Liyuan; Wullschleger, Stan D.; Graham, David E.

    2014-11-26

    Arctic permafrost ecosystems store ~50% of global belowground carbon (C) that is vulnerable to increased microbial degradation with warmer active layer temperatures and thawing of the near surface permafrost. We used anoxic laboratory incubations to estimate anaerobic CO2 production and methanogenesis in active layer (organic and mineral soil horizons) and permafrost samples from center, ridge and trough positions of water-saturated low-centered polygon in Barrow Environmental Observatory, Barrow AK, USA. Methane (CH4) and CO2 production rates and concentrations were determined at 2, +4, or +8 C for 60 day incubation period. Temporal dynamics of CO2 production and methanogenesis at 2 Cmore » showed evidence of fundamentally different mechanisms of substrate limitation and inhibited microbial growth at soil water freezing points compared to warmer temperatures. Nonlinear regression better modeled the initial rates and estimates of Q10 values for CO2 that showed higher sensitivity in the organic-rich soils of polygon center and trough than the relatively drier ridge soils. Methanogenesis generally exhibited a lag phase in the mineral soils that was significantly longer at 2 C in all horizons. Such discontinuity in CH4 production between 2 C and the elevated temperatures (+4 and +8 C) indicated the insufficient representation of methanogenesis on the basis of Q10 values estimated from both linear and nonlinear models. Production rates for both CH4 and CO2 were substantially higher in organic horizons (20% to 40% wt. C) at all temperatures relative to mineral horizons (<20% wt. C). Permafrost horizon (~12% wt. C) produced ~5-fold less CO2 than the active layer and negligible CH4. High concentrations of initial exchangeable Fe(II) and increasing accumulation rates signified the role of iron as terminal electron acceptors for anaerobic C degradation in the mineral horizons.« less

  14. Stoichiometry and temperature sensitivity of methanogenesis and CO 2 production from saturated polygonal tundra in Barrow, Alaska

    SciTech Connect

    Roy Chowdhury, Taniya; Herndon, Elizabeth M.; Phelps, Tommy J.; Elias, Dwayne A.; Gu, Baohua; Liang, Liyuan; Wullschleger, Stan D.; Graham, David E.

    2014-11-26

    Arctic permafrost ecosystems store ~50% of global belowground carbon (C) that is vulnerable to increased microbial degradation with warmer active layer temperatures and thawing of the near surface permafrost. We used anoxic laboratory incubations to estimate anaerobic CO2 production and methanogenesis in active layer (organic and mineral soil horizons) and permafrost samples from center, ridge and trough positions of water-saturated low-centered polygon in Barrow Environmental Observatory, Barrow AK, USA. Methane (CH4) and CO2 production rates and concentrations were determined at 2, +4, or +8 C for 60 day incubation period. Temporal dynamics of CO2 production and methanogenesis at 2 C showed evidence of fundamentally different mechanisms of substrate limitation and inhibited microbial growth at soil water freezing points compared to warmer temperatures. Nonlinear regression better modeled the initial rates and estimates of Q10 values for CO2 that showed higher sensitivity in the organic-rich soils of polygon center and trough than the relatively drier ridge soils. Methanogenesis generally exhibited a lag phase in the mineral soils that was significantly longer at 2 C in all horizons. Such discontinuity in CH4 production between 2 C and the elevated temperatures (+4 and +8 C) indicated the insufficient representation of methanogenesis on the basis of Q10 values estimated from both linear and nonlinear models. Production rates for both CH4 and CO2 were substantially higher in organic horizons (20% to 40% wt. C) at all temperatures relative to mineral horizons (<20% wt. C). Permafrost horizon (~12% wt. C) produced ~5-fold less CO2 than the active layer and negligible CH4. High concentrations of initial exchangeable Fe(II) and increasing accumulation rates signified the role of iron as terminal electron acceptors for anaerobic C degradation in the mineral horizons.

  15. Stoichiometry and temperature sensitivity of methanogenesis and CO2 production from saturated polygonal tundra in Barrow, Alaska.

    PubMed

    Roy Chowdhury, Taniya; Herndon, Elizabeth M; Phelps, Tommy J; Elias, Dwayne A; Gu, Baohua; Liang, Liyuan; Wullschleger, Stan D; Graham, David E

    2015-02-01

    Arctic permafrost ecosystems store ~50% of global belowground carbon (C) that is vulnerable to increased microbial degradation with warmer active layer temperatures and thawing of the near surface permafrost. We used anoxic laboratory incubations to estimate anaerobic CO2 production and methanogenesis in active layer (organic and mineral soil horizons) and permafrost samples from center, ridge and trough positions of water-saturated low-centered polygon in Barrow Environmental Observatory, Barrow AK, USA. Methane (CH4 ) and CO2 production rates and concentrations were determined at -2, +4, or +8 °C for 60 day incubation period. Temporal dynamics of CO2 production and methanogenesis at -2 °C showed evidence of fundamentally different mechanisms of substrate limitation and inhibited microbial growth at soil water freezing points compared to warmer temperatures. Nonlinear regression better modeled the initial rates and estimates of Q10 values for CO2 that showed higher sensitivity in the organic-rich soils of polygon center and trough than the relatively drier ridge soils. Methanogenesis generally exhibited a lag phase in the mineral soils that was significantly longer at -2 °C in all horizons. Such discontinuity in CH4 production between -2 °C and the elevated temperatures (+4 and +8 °C) indicated the insufficient representation of methanogenesis on the basis of Q10 values estimated from both linear and nonlinear models. Production rates for both CH4 and CO2 were substantially higher in organic horizons (20% to 40% wt. C) at all temperatures relative to mineral horizons (<20% wt. C). Permafrost horizon (~12% wt. C) produced ~5-fold less CO2 than the active layer and negligible CH4 . High concentrations of initial exchangeable Fe(II) and increasing accumulation rates signified the role of iron as terminal electron acceptors for anaerobic C degradation in the mineral horizons. PMID:25308891

  16. Stoichiometry and temperature sensitivity of methanogenesis and CO2 production from saturated polygonal tundra in Barrow, Alaska

    DOE PAGESBeta

    Roy Chowdhury, Taniya; Herndon, Elizabeth M; Phelps, Tommy Joe; Elias, Dwayne A; Gu, Baohua; Liang, Liyuan; Wullschleger, Stan D; Graham, David E

    2015-01-01

    Arctic permafrost ecosystems store ~50% of global belowground carbon (C) that is vulnerable to increased microbial degradation with warmer active layer temperatures and thawing of the near surface permafrost. We used anoxic laboratory incubations to estimate anaerobic CO2 production and methanogenesis in active layer (organic and mineral soil horizons) and permafrost samples from center, ridge and trough positions of water-saturated low-centered polygon in Barrow Environmental Observatory, Barrow AK, USA. Methane (CH4) and CO2 production rates and concentrations were determined at 2, +4, or +8 C for 60 day incubation period. Temporal dynamics of CO2 production and methanogenesis at 2 Cmore » showed evidence of fundamentally different mechanisms of substrate limitation and inhibited microbial growth at soil water freezing points compared to warmer temperatures. Nonlinear regression better modeled the initial rates and estimates of Q10 values for CO2 that showed higher sensitivity in the organic-rich soils of polygon center and trough than the relatively drier ridge soils. Methanogenesis generally exhibited a lag phase in the mineral soils that was significantly longer at 2 C in all horizons. Such discontinuity in CH4 production between 2 C and the elevated temperatures (+4 and +8 C) indicated the insufficient representation of methanogenesis on the basis of Q10 values estimated from both linear and nonlinear models. Production rates for both CH4 and CO2 were substantially higher in organic horizons (20% to 40% wt. C) at all temperatures relative to mineral horizons (<20% wt. C). Permafrost horizon (~12% wt. C) produced ~5-fold less CO2 than the active layer and negligible CH4. High concentrations of initial exchangeable Fe(II) and increasing accumulation rates signified the role of iron as terminal electron acceptors for anaerobic C degradation in the mineral horizons.« less

  17. Application of the methane saturated dispersion resonance near 2.36 μm over the temperature range of 77-300 K for optical frequency standards

    NASA Astrophysics Data System (ADS)

    Tarabrin, Mikhail K.; Lazarev, Vladimir A.; Karasik, Valeriy E.; Kireev, Alexey N.; Korostelin, Yuri V.; Shelkovnikov, Alexander S.; Tuyrikov, Dmitry A.; Kozlovsky, Vladimir I.; Podmar'kov, Yuri P.; Frolov, Mikhail P.; Gubin, Mikhail A.

    2016-07-01

    New spectroscopic knowledge of the ν1 +ν4 R(2) E line of methane over the temperature range 77-300 K is reported. Theoretical calculations of the absorption coefficient and the amplitudes of saturated dispersion resonances at 4234 cm-1 were derived. The theoretical dependence on the temperature of the amplitudes of the saturated dispersion resonances was obtained. A novel setup based on a Cr2+ : ZnSe laser was used for Doppler-free spectroscopy of methane. The amplitudes of the saturated dispersion resonances of the ν1 +ν4 R(2) E line of methane were measured experimentally at different temperatures. A comparison with theoretical dependence supports the reliability of the experiment. The obtained results are of immediate interest in applications demanding laser frequency stabilization.

  18. Reaction of Water-Saturated Supercritical CO2 with Forsterite: Evidence for Magnesite Formation at Low Temperatures

    SciTech Connect

    Felmy, Andrew R.; Qafoku, Odeta; Arey, Bruce W.; Hu, Jian Z.; Hu, Mary Y.; Schaef, Herbert T.; Ilton, Eugene S.; Hess, Nancy J.; Pearce, Carolyn I.; Feng, Ju; Rosso, Kevin M.

    2012-08-01

    The nature of the reaction products that form on the surfaces of nanometer-sized forsterite particles during reaction with H2O saturated supercritical CO2 (scCO2) at 35 C and 50 C were examined under in situ conditions and ex situ following reaction. The in situ analysis was conducted by X-ray diffraction (XRD). Ex situ analysis consisted of scanning electron microscopy (SEM) examination of the surface phases and chemical characterization of precipitates using a combination of confocal Raman spectroscopy, 13C and 29Si NMR spectroscopy, and energy-dispersive X-ray Spectroscopy (EDS). The results show that the forsterite surface is highly reactive with the primary reaction products being a mixture of nesquehonite (MgCO3.3H2O) and magnesite (MgCO3) at short reaction times ({approx}3-4 days) and then magnesite (MgCO3) and a highly porous amorphous silica phase at longer reaction times (14 days). After 14 days of reaction most of the original forsterite transformed to reaction products. Importantly, the formation of magnesite was observed at temperatures much lower (35 C) than previously thought needed to overcome its well known sluggish precipitation kinetics. The conversion of nesquehonite to magnesite liberates H2O which can potentially facilitate further metal carbonation, as postulated by previous investigators, based upon studies at higher temperature (80 C). The observation that magnesite can form at lower temperatures implies that water recycling may also be important in determining the rate and extent of mineral carbonation in a wide range of potential CO2 storage reservoirs.

  19. Reaction of water-saturated supercritical CO2 with forsterite: Evidence for magnesite formation at low temperatures

    NASA Astrophysics Data System (ADS)

    Felmy, Andrew R.; Qafoku, Odeta; Arey, Bruce W.; Hu, Jian Zhi; Hu, Mary; Todd Schaef, H.; Ilton, Eugene S.; Hess, Nancy J.; Pearce, Carolyn I.; Feng, Ju; Rosso, Kevin M.

    2012-08-01

    The nature of the reaction products that form on the surfaces of nanometer-sized forsterite particles during reaction with H2O-saturated supercritical CO2 (scCO2) at 35 °C and 50 °C were examined under in situ conditions and ex situ following reaction. The in situ analysis was conducted by X-ray diffraction (XRD). Ex situ analysis consisted of scanning electron microscopy (SEM) examination of the surface phases and chemical characterization of precipitates using a combination of confocal Raman spectroscopy, 13C and 29Si NMR spectroscopy, and energy-dispersive X-ray spectroscopy (EDS). The results show that the forsterite surface is highly reactive with the primary reaction products being a mixture of nesquehonite (MgCO3·3H2O) and magnesite (MgCO3) at short reaction times (˜3-4 days) and then magnesite (MgCO3) and a highly porous amorphous silica phase at longer reaction times (14 days). After 14 days of reaction most of the original forsterite transformed to reaction products. Importantly, the formation of magnesite was observed at temperatures much lower (35 °C) than previously thought needed to overcome its well-known sluggish precipitation kinetics. The conversion of nesquehonite to magnesite liberates H2O which can potentially facilitate further metal carbonation, as postulated by previous investigators, based upon studies at higher temperature (80 °C). The observation that magnesite can form at lower temperatures implies that water recycling may also be important in determining the rate and extent of mineral carbonation in a wide range of potential CO2 storage reservoirs.

  20. Adiabatic topological quantum computing

    NASA Astrophysics Data System (ADS)

    Cesare, Chris; Landahl, Andrew J.; Bacon, Dave; Flammia, Steven T.; Neels, Alice

    2015-07-01

    Topological quantum computing promises error-resistant quantum computation without active error correction. However, there is a worry that during the process of executing quantum gates by braiding anyons around each other, extra anyonic excitations will be created that will disorder the encoded quantum information. Here, we explore this question in detail by studying adiabatic code deformations on Hamiltonians based on topological codes, notably Kitaev's surface codes and the more recently discovered color codes. We develop protocols that enable universal quantum computing by adiabatic evolution in a way that keeps the energy gap of the system constant with respect to the computation size and introduces only simple local Hamiltonian interactions. This allows one to perform holonomic quantum computing with these topological quantum computing systems. The tools we develop allow one to go beyond numerical simulations and understand these processes analytically.

  1. Monitoring cerebral oxygen saturation during cardiopulmonary bypass using near-infrared spectroscopy: the relationships with body temperature and perfusion rate

    NASA Astrophysics Data System (ADS)

    Teng, Yichao; Ding, HaiShu; Gong, Qingcheng; Jia, Zaishen; Huang, Lan

    2006-03-01

    During cardiopulmonary bypass (CPB) because of weak arterial pulsation, near-IR spectroscopy (NIRS) is almost the only available method to monitor cerebral oxygenation noninvasively. Our group develops a NIRS oximeter to monitor regional cerebral oxygenation especially its oxygen saturation (rScO2). To achieve optimal coupling between the sensor and human brain, the distances between the light source and the detectors on it are properly chosen. The oximeter is calibrated by blood gas analysis, and the results indicate that its algorithm is little influenced by either background absorption or overlying tissue. We used it to measure the rScO2 of 15 patients during CPB. It is shown that rScO2 is negatively correlated with body temperature and positively with perfusion rate. There are two critical stages during CPB when rScO2 might be relatively low: one is the low-perfusion-rate stage, the other is the early rewarming stage. During cooling, the changes of total hemoglobin concentration (CtHb) compared with its original value is also monitored. It is shown that CtHb decreases to a small extent, which may mainly reflect cerebral vasoconstriction induced by cooling. All these results indicate that NIRS can be used to monitor cerebral oxygenation to protect cerebral tissue during CPB.

  2. Comprehensive characterization of temperature- and pressure-induced bilayer phase transitions for saturated phosphatidylcholines containing longer chain homologs.

    PubMed

    Goto, Masaki; Endo, Takuya; Yano, Takahiro; Tamai, Nobutake; Kohlbrecher, Joachim; Matsuki, Hitoshi

    2015-04-01

    Complete elucidation of the phase behavior of phospholipid bilayers requires information on the subtransition from the lamellar crystal (Lc) phase to the gel phase. However, for bilayers of saturated diacylphosphatidylcholines (CnPCs), especially longer chain homologs, equilibration in the Lc phase is known to be very slow. In this study, bilayer phase transitions of three CnPCs with longer acyl chains, C19PC, C20PC and C21PC, were observed by differential scanning calorimetry under atmospheric pressure and by light-transmittance measurements under high pressure. Using lipid samples treated by thermal annealing enabled the observation of the sub-, pre- and main transitions of the C19PC and C20PC bilayers under atmospheric pressure. Only the pre- and main transitions could be observed for the C21PC bilayer due to very slow kinetics of the Lc phase formation for lipids with long acyl chains. The temperature and pressure phase diagrams constructed and phase-transitions quantities (enthalpy, entropy and volume changes) evaluated for these bilayers were compared with one another and with those of bilayers of the CnPC homologs examined in previous studies. These results allowed us (1) to clarify the temperature- and pressure-dependent phase sequence and phase stability of the CnPC (n=12-22) bilayers as a function of the hydrophobicity of the molecules, (2) to prove the presence of a shorter and a longer limit (n=13 and 21) in the acyl chain length for the pressure-induced bilayer interdigitation and (3) to reveal the chain-length dependence of the thermodynamic quantities of the subtransitions including the volume change. PMID:25779604

  3. Colloid-associated plutonium aged at room temperature: evaluating its transport velocity in saturated coarse-grained granites.

    PubMed

    Xie, Jinchuan; Lin, Jianfeng; Wang, Yu; Li, Mei; Zhang, Jihong; Zhou, Xiaohua; He, Yifeng

    2015-01-01

    The fate and transport of colloidal contaminants in natural media are complicated by physicochemical properties of the contaminants and heterogeneous characteristics of the media. Size and charge exclusion are two key microscopic mechanisms dominating macroscopic transport velocities. Faster velocities of colloid-associated actinides than that of (3)H2O were consistently indicated in many studies. However, dissociation/dissolution of these sorbed actinides (e.g., Pu and Np), caused by their redox reactions on mineral surfaces, possibly occurred under certain chemical conditions. How this dissolution is related to transport velocities remains unanswered. In this study, aging of the colloid-associated Pu (pseudo-colloid) at room temperature and transport through the saturated coarse-grained granites were performed to study whether Pu could exhibit slower velocity than that of (3)H2O (UPu/UT <1). The results show that oxidative dissolution of Pu(IV) associated with the surfaces of colloidal granite particles took place during the aging period. The relative velocity of UPu/UT declined from 1.06 (unaged) to 0.745 (135 d) over time. Size exclusion limited to the uncharged nano-sized particles could not explain such observed UPu/UT <1. Therefore, the decline in UPu/UT was ascribed to the presence of electrostatic attraction between the negatively charged wall of granite pore channels and the Pu(V)O2(+), as evidenced by increasing Pu(V)O2(+) concentrations in the suspensions aged in sealed vessels. As a result of this attraction, Pu(V)O2(+) was excluded from the domain closer to the centerline of pore channels. This reveals that charge exclusion played a more important role in dominating UPu than the size exclusion under the specific conditions, where oxidative dissolution of colloid-associated Pu(IV) was observed in the aged suspensions. PMID:25462640

  4. Colloid-associated plutonium aged at room temperature: evaluating its transport velocity in saturated coarse-grained granites

    NASA Astrophysics Data System (ADS)

    Xie, Jinchuan; Lin, Jianfeng; Wang, Yu; Li, Mei; Zhang, Jihong; Zhou, Xiaohua; He, Yifeng

    2015-01-01

    The fate and transport of colloidal contaminants in natural media are complicated by physicochemical properties of the contaminants and heterogeneous characteristics of the media. Size and charge exclusion are two key microscopic mechanisms dominating macroscopic transport velocities. Faster velocities of colloid-associated actinides than that of 3H2O were consistently indicated in many studies. However, dissociation/dissolution of these sorbed actinides (e.g., Pu and Np), caused by their redox reactions on mineral surfaces, possibly occurred under certain chemical conditions. How this dissolution is related to transport velocities remains unanswered. In this study, aging of the colloid-associated Pu (pseudo-colloid) at room temperature and transport through the saturated coarse-grained granites were performed to study whether Pu could exhibit slower velocity than that of 3H2O (UPu/UT < 1). The results show that oxidative dissolution of Pu(IV) associated with the surfaces of colloidal granite particles took place during the aging period. The relative velocity of UPu/UT declined from 1.06 (unaged) to 0.745 (135 d) over time. Size exclusion limited to the uncharged nano-sized particles could not explain such observed UPu/UT < 1. Therefore, the decline in UPu/UT was ascribed to the presence of electrostatic attraction between the negatively charged wall of granite pore channels and the Pu(V)O2+, as evidenced by increasing Pu(V)O2+ concentrations in the suspensions aged in sealed vessels. As a result of this attraction, Pu(V)O2+ was excluded from the domain closer to the centerline of pore channels. This reveals that charge exclusion played a more important role in dominating UPu than the size exclusion under the specific conditions, where oxidative dissolution of colloid-associated Pu(IV) was observed in the aged suspensions.

  5. Adiabatic Halo Formation

    SciTech Connect

    Bazzani, A.; Turchetti, G.; Benedetti, C.; Rambaldi, S.; Servizi, G.

    2005-06-08

    In a high intensity circular accelerator the synchrotron dynamics introduces a slow modulation in the betatronic tune due to the space-charge tune depression. When the transverse motion is non-linear due to the presence of multipolar effects, resonance islands move in the phase space and change their amplitude. This effect introduces the trapping and detrapping phenomenon and a slow diffusion in the phase space. We apply the neo-adiabatic theory to describe this diffusion mechanism that can contribute to halo formation.

  6. Changes during leaf expansion of ΦPSII temperature optima in Gossypium hirsutum are associated with the degree of fatty acid lipid saturation.

    PubMed

    Hall, Trent D; Chastain, Daryl R; Horn, Patrick J; Chapman, Kent D; Choinski, John S

    2014-03-15

    In this project, we hypothesize that cotton (Gossypium hirsutum) leaf temperature and the responses of leaf photosynthesis to temperature will change as the leaves expand and that differences between young and mature leaves will be associated with the proportion of saturated fatty acids in thylakoid and other membrane lipids. To that end, we studied main stem leaves obtained from plants growing in a temperature controlled greenhouse and at different times in the field season. We found that young leaves (∼5d old) had higher mid day temperatures, lower stomatal conductance and higher thermal optima as measured by ΦPSII temperature curves than did more mature leaves (∼13d old). Young leaves also had significant differences in fatty acid saturation with the warmer, young leaves having a higher proportion of palmitic acid (16:0) and lower linoleic acid (18:3) in total lipid extracts and higher 16:0 and lower palmitoleic acid (16:1) in the chloroplast membrane phosphoglycerides, digalactosyldiacylglycerol (in the greenhouse) and phosphatidylglycerol when compared with cooler, more mature leaves. Later in the growing season, leaf temperature, stomatal conductance and ΦPSII temperature curves for young and more mature leaves were similar and the proportion of 16:0 fatty acids decreased and 16:1 increased in phosphatidylglycerol. We conclude that changes in temperature as cotton leaves expand leads to alterations in the fatty acid composition of thylakoid and other membranes and, consequently, influence photosynthesis/temperature responses. PMID:24594393

  7. Saturation meter

    DOEpatents

    Gregurech, S.

    1984-08-01

    A saturation meter for use in a pressurized water reactor plant comprising a differential pressure transducer having a first and second pressure sensing means and an alarm. The alarm is connected to the transducer and is preset to activate at a level of saturation prior to the formation of a steam void in the reactor vessel.

  8. Adiabatic Quantum Computing

    NASA Astrophysics Data System (ADS)

    Landahl, Andrew

    2012-10-01

    Quantum computers promise to exploit counterintuitive quantum physics principles like superposition, entanglement, and uncertainty to solve problems using fundamentally fewer steps than any conventional computer ever could. The mere possibility of such a device has sharpened our understanding of quantum coherent information, just as lasers did for our understanding of coherent light. The chief obstacle to developing quantum computer technology is decoherence--one of the fastest phenomena in all of physics. In principle, decoherence can be overcome by using clever entangled redundancies in a process called fault-tolerant quantum error correction. However, the quality and scale of technology required to realize this solution appears distant. An exciting alternative is a proposal called ``adiabatic'' quantum computing (AQC), in which adiabatic quantum physics keeps the computer in its lowest-energy configuration throughout its operation, rendering it immune to many decoherence sources. The Adiabatic Quantum Architectures In Ultracold Systems (AQUARIUS) Grand Challenge Project at Sandia seeks to demonstrate this robustness in the laboratory and point a path forward for future hardware development. We are building devices in AQUARIUS that realize the AQC architecture on up to three quantum bits (``qubits'') in two platforms: Cs atoms laser-cooled to below 5 microkelvin and Si quantum dots cryo-cooled to below 100 millikelvin. We are also expanding theoretical frontiers by developing methods for scalable universal AQC in these platforms. We have successfully demonstrated operational qubits in both platforms and have even run modest one-qubit calculations using our Cs device. In the course of reaching our primary proof-of-principle demonstrations, we have developed multiple spinoff technologies including nanofabricated diffractive optical elements that define optical-tweezer trap arrays and atomic-scale Si lithography commensurate with placing individual donor atoms with

  9. Geometry of the Adiabatic Theorem

    ERIC Educational Resources Information Center

    Lobo, Augusto Cesar; Ribeiro, Rafael Antunes; Ribeiro, Clyffe de Assis; Dieguez, Pedro Ruas

    2012-01-01

    We present a simple and pedagogical derivation of the quantum adiabatic theorem for two-level systems (a single qubit) based on geometrical structures of quantum mechanics developed by Anandan and Aharonov, among others. We have chosen to use only the minimum geometric structure needed for the understanding of the adiabatic theorem for this case.…

  10. Effect of Preincubation Temperature on in Vitro Light Saturated Photosystem I Activity in Thylakoids Isolated from Cold Hardened and Nonhardened Rye 1

    PubMed Central

    Reynolds, Tracey L.; Huner, Norman P. A.

    1990-01-01

    Thylakoids isolated from winter rye (Secale cereale L. cv Muskateer) grown at 5°C or 20°C were compared with respect to their capacity to exhibit an increase in light saturated rates of photosystem I (PSI) electron transport (ascorbate/dichlorophenolindophenol → methylviologen) after dark preincubation at temperatures between 0 and 60°C. Thylakoids isolated in the presence or absence of Na+/Mg2+ from 20°C grown rye exhibited transient, 40 to 60% increases in light saturated rates of PSI activity at all preincubation temperatures between 5 and 60°C. This increase in PSI activity appeared to occur independently of the electron donor employed. The capacity to exhibit this in vitro induced increase in PSI activity was examined during biogenesis of rye thylakoids under intermittent light conditions at 20°C. Only after exposure to 48 cycles (1 cycle = 118 minutes dark + 2 min light) of intermittent light did rye thylakoids exhibit an increase in light saturated rates of PSI activity even though PSI activity could be detected after 24 cycles. In contrast to thylakoids from 20°C grown rye, thylakoids isolated from 5°C grown rye in the presence of Na+/Mg2+ exhibited no increase in light saturated PSI activity after preincubation at any temperature between 0 and 60°C. This was not due to damage to PSI electron transport in thylakoids isolated from 5°C grown plants since light saturated PSI activity was 60% higher in 5°C thylakoids than 20°C thylakoids prior to in vitro dark preincubation. However, a two-fold increase in light saturated PSI activity of 5°C thylakoids could be observed after dark preincubation only when 5°C thylakoids were initially isolated in the absence of Na+/Mg2+. We suggest that 5°C rye thylakoids, isolated in the presence of these cations, exhibit light saturated PSI electron transport which may be closer to the maximum rate attainable in vitro than 20°C thylakoids and hence cannot be increased further by dark preincubation. PMID

  11. Complete population inversion of Bose particles by an adiabatic cycle

    NASA Astrophysics Data System (ADS)

    Tanaka, Atushi; Cheon, Taksu

    2016-04-01

    We show that an adiabatic cycle excites Bose particles confined in a one-dimensional box. During the adiabatic cycle, a wall described by a δ-shaped potential is applied and its strength and position are slowly varied. When the system is initially prepared in the ground state, namely, in the zero-temperature equilibrium state, the adiabatic cycle brings all Bosons into the first excited one-particle state, leaving the system in a nonequilibrium state. The absorbed energy during the cycle is proportional to the number of Bosons.

  12. Adiabatic charging of nickel-hydrogen batteries

    NASA Technical Reports Server (NTRS)

    Lurie, Chuck; Foroozan, S.; Brewer, Jeff; Jackson, Lorna

    1995-01-01

    Battery management during prelaunch activities has always required special attention and careful planning. The transition from nickel-cadium to nickel-hydrogen batteries, with their high self discharge rate and lower charge efficiency, as well as longer prelaunch scenarios, has made this aspect of spacecraft battery management even more challenging. The AXAF-I Program requires high battery state of charge at launch. The use of active cooling, to ensure efficient charging, was considered and proved to be difficult and expensive. Alternative approaches were evaluated. Optimized charging, in the absence of cooling, appeared promising and was investigated. Initial testing was conducted to demonstrate the feasibility of the 'Adiabatic Charging' approach. Feasibility was demonstrated and additional testing performed to provide a quantitative, parametric data base. The assumption that the battery is in an adiabatic environment during prelaunch charging is a conservative approximation because the battery will transfer some heat to its surroundings by convective air cooling. The amount is small compared to the heat dissipated during battery overcharge. Because the battery has a large thermal mass, substantial overcharge can occur before the cells get too hot to charge efficiently. The testing presented here simulates a true adiabatic environment. Accordingly the data base may be slightly conservative. The adiabatic charge methodology used in this investigation begins with stabilizing the cell at a given starting temperature. The cell is then fully insulated on all sides. Battery temperature is carefully monitored and the charge terminated when the cell temperature reaches 85 F. Charging has been evaluated with starting temperatures from 55 to 75 F.

  13. Advanced Adiabatic Demagnetization Refrigerators for Continuous Cooling

    NASA Technical Reports Server (NTRS)

    Chu, Paul C. W.

    2004-01-01

    The research at Houston was focused on optimizing the design of superconducting magnets for advanced adiabatic demagnetization refrigerators (ADRs), assessing the feasibility of using high temperature superconducting (HTS) magnets in ADRs in the future, and developing techniques to deposit HTS thin and thick films on high strength, low thermal conductivity substrates for HTS magnet leads. Several approaches have been tested for the suggested superconducting magnets.

  14. Measurements on the flow of vapors near saturation through porous Vycor glass membranes

    NASA Astrophysics Data System (ADS)

    Loimer, Thomas; Reznickova, Jirina; Uchytil, Petr; Setnickova, Katerina

    2012-05-01

    We present experimental data of the flow of butane and isobutane vapors through porous Vycor glass membranes. The pressure driven flow of vapors near and far from saturation through membranes with pore diameters of 20 and 33 nm is investigated. The upstream pressures lie between the saturation pressure at the upstream temperature to approximately half that value. The pressure differences are between a few kPa to about 100 kPa. From an adiabatic description of the flow process, we expect condensation of a vapor close enough to saturation and hence, due to the action of capillary forces, an increase in mass flux with respect to the mass flux of a vapor that remains in a gaseous state. According to the adiabatic description, a vapor that flows through a porous membrane may condense for two reason: One reason is capillary condensation in the pores of the membrane, the second reason is heat conduction from the upstream to the downstream side of the membrane due to the Joule-Thomson effect. If the flux of heat in downstream direction is large enough, a vapor near saturation at the upstream side of the membrane may only release sufficient heat by condensation. Describing the flow in terms of dimensionless groups recovered from an adiabatic description of the flow process, we find that a vapor condenses and the mass flux is increased if (i) a dimensionless permeability of the membrane is larger than one and (ii) if the vapor at the upstream side is close enough to saturation such that a dimensionless group involving the upstream pressure and the pressure difference is also larger than one. Experimental data corroborates condition (i) above and indicates that condition (ii) might be valid.

  15. Effects of water-saturation on strength and ductility of three igneous rocks at effective pressures to 50 MPA and temperatures to partial melting

    SciTech Connect

    Bauer, S.J.; Friedman, M.; Handin, J.

    1981-01-01

    The short-term failure strengths and strains at failure of room-dry and water-saturated, cylindrical specimens (2 by 4 cm) of Charcoal Granodiorite (CG), Mt. Hood Andesite (MHA), and Cuerbio Basalt (CB) at a strain rate of 10/sup -4/s/sup -1/, at effective confining pressures of 0, 50, and 100 MPa and at temperatures to partial melting were investigated. Data from water-saturated specimens of the granodiorite and andesite, compared to room-dry counterparts, indicate (1) the pore pressures are essentially communicated throughout each test specimen so that they are fully effective; (2) at P/sub e/ = 0 and 50 MPa the granodiorite does not water-weaken; (3) at these same effective pressures the more porous and finer-grained andesite begins to exhibit water-weakening at about 600/sup 0/C; (4) at P/sub e/ = 0 and 870 to 900/sup 0/C the andesite's strength averages 20 MPa while the strength of dry specimens at the same P and T exhibit a strength of 100 MPa; (5) at P/sub e/ = 50 MPa compared to 160 MPa dry; (6) the basalt at P/sub e/ = 0, appears to be water-weakened at 800/sup 0/C; (7) water saturated specimens deformed at temperatures less than that of melting exhibit ultimate strengths at less than 2% shortening and then work-soften along faults; (8) again as do the dry counterparts, the wet specimens deform primarily by microscopic fracturing that coalesces into one or more macroscopic faults; and (9) the temperature for incipient melting of the andesite is decreased >150/sup 0/C in the water-saturated tests.

  16. Adiabatic heating in impulsive solar flares

    NASA Technical Reports Server (NTRS)

    Maetzler, C.; Bai, T.; Crannell, C. J.; Frost, K. J.

    1978-01-01

    A study is made of adiabatic heating in two impulsive solar flares on the basis of dynamic X-ray spectra in the 28-254 keV range, H-alpha, microwave, and meter-wave radio observations. It is found that the X-ray spectra of the events are like those of thermal bremsstrahlung from single-temperature plasmas in the 10-60 keV range if photospheric albedo is taken into account. The temperature-emission correlation indicates adiabatic compression followed by adiabatic expansion and that the electron distribution remains isotropic. H-alpha data suggest compressive energy transfer. The projected areas and volumes of the flares are estimated assuming that X-ray and microwave emissions are produced in a single thermal plasma. Electron densities of about 10 to the 9th/cu cm are found for homogeneous, spherically symmetric sources. It is noted that the strong self-absorption of hot-plasma gyrosynchrotron radiation reveals low magnetic field strengths.

  17. An adiabatic demagnetization refrigerator for infrared bolometers

    NASA Technical Reports Server (NTRS)

    Britt, R. D.; Richards, P. L.

    1981-01-01

    Adiabatic demagnetization refrigerators have been built and installed in small portable liquid helium cryostats to test the feasibility of this method of cooling infrared bolometric detectors to temperatures below 0.3 K. Performance has been achieved which suggests that bolometer temperatures of 0.2 K can be maintained for periods of approximately 60 hours. Applications to sensitive infrared detection from ground-based telescopes and space satellites are discussed. Design data are given which permit the evaluation of refrigerator performance for a variety of design parameters.

  18. Non-adiabatic effect on quantum pumping

    NASA Astrophysics Data System (ADS)

    Uchiyama, Chikako

    2014-03-01

    We study quantum pumping for an anharmonic junction model which interacts with two kinds of bosonic environments. We provide an expression for the quantum pumping under a piecewise modulation of environmental temperatures with including non-adiabatic effect under Markovian approximation. The obtained formula is an extension of the one expressed with the geometrical phase(Phys. Rev. Lett. 104,170601 (2010)). This extension shows that the quantum pumping depends on the initial condition of the anharmonic junction just before the modulation, as well as the characteristic environmental parameters such as interaction strength and cut-off frequencies of spectral density other than the conditions of modulation. We clarify that the pumping current including non-adiabatic effect can be larger than that under the adiabatic condition. This means that we can find the optimal condition of the current by adjusting these parameters. (The article has been submitted as http://arxiv.org/submit/848201 and will be appeared soon.) This work is supported by a Grant-in-Aid for Scientific Research (B) (KAKENHI 25287098).

  19. Inertial effects in adiabatically driven flashing ratchets

    NASA Astrophysics Data System (ADS)

    Rozenbaum, Viktor M.; Makhnovskii, Yurii A.; Shapochkina, Irina V.; Sheu, Sheh-Yi; Yang, Dah-Yen; Lin, Sheng Hsien

    2014-05-01

    We study analytically the effect of a small inertial correction on the properties of adiabatically driven flashing ratchets. Parrondo's lemma [J. M. R. Parrondo, Phys. Rev. E 57, 7297 (1998), 10.1103/PhysRevE.57.7297] is generalized to include the inertial term so as to establish the symmetry conditions allowing directed motion (other than in the overdamped massless case) and to obtain a high-temperature expansion of the motion velocity for arbitrary potential profiles. The inertial correction is thus shown to enhance the ratchet effect at all temperatures for sawtooth potentials and at high temperatures for simple potentials described by the first two harmonics. With the special choice of potentials represented by at least the first three harmonics, the correction gives rise to the motion reversal in the high-temperature region. In the low-temperature region, inertia weakens the ratchet effect, with the exception of the on-off model, where diffusion is important. The directed motion adiabatically driven by potential sign fluctuations, though forbidden in the overdamped limit, becomes possible due to purely inertial effects in neither symmetric nor antisymmetric potentials, i.e., not for commonly used sawtooth and two-sinusoid profiles.

  20. Control of the saturation temperature in magnetic heating by using polyethylene-glycol-coated rod-shaped nickel-ferrite (NiFe2O4) nanoparticles

    NASA Astrophysics Data System (ADS)

    Iqbal, Yousaf; Bae, Hongsub; Rhee, Ilsu; Hong, Sungwook

    2016-02-01

    Polyethylene-glycol (PEG)-coated nickel-ferrite nanoparticles were prepared for magnetic hyperthermia applications by using the co-precipitation method. The PEG coating occurred during the synthesis of the nanoparticles. The coated nanoparticles were rod-shaped with an average length of 16 nm and an average diameter of 4.5 nm, as observed using transmission electron microscopy. The PEG coating on the surfaces of the nanoparticles was confirmed from the Fourier-transform infrared spectra. The nanoparticles exhibited superparamagnetic characteristics with negligible coercive force. Further, magnetic heating effects were observed in aqueous solutions of the coated nanoparticles. The saturation temperature could be controlled at 42 ℃ by changing the concentration of the nanoparticles in the aqueous solution. Alternately, the saturation temperature could be controlled for a given concentration of nanoparticles by changing the intensity of the magnetic field. The Curie temperature of the nanoparticles was estimated to be 495 ℃. These results for the PEG-coated nickel-ferrite nanoparticles showed the possibility of utilizing them for controlled magnetic hyperthermia at 42 ℃.

  1. Effects of water-saturation on strength and ductility of three igneous rocks at effective pressures to 50 MPa and temperatures to partial melting

    SciTech Connect

    Bauer, S.J.; Friedman, M.; Handin, J.

    1981-01-01

    Instantaneous-failure strengths and ductilities of water-saturated cylindrical specimens of Charcoal Granodiorite, Mount Hood Andesite, and Cuerbio Basalt are determined at a strain rate of 10{sup -4}s{sup -1} and at effective confining pressures (Pe) of 0 and 50 MPa and at temperatures to partial melting. The data indicate: (1) at Pe = 0 and 50 MPa (Pc and Pp of 50 MPa and of 100 and 50 MPa, respectively) the granodiorite does not water-weaken; (2) at these same Pe the more porous and finer-grained andesite begins to exhibit water-weakening at about 600/sup 0/C; (3) at Pe = 0 and 870-900{sup 0}C the andesite's wet strength averages 20 MPa compared to 100 MPa, dry; (4) at Pe = 50 MPa and 920{sup 0}C its wet strength is 45 MPa compared to 160 MPa dry; (5) at Pe = 0, the basalt appears to be water-weakened above 800{sup 0}C; (6) water-saturated specimens deformed at temperatures less than T{sub m} exhibit ultimate strengths at less than 2 percent shortening and then work-soften along faults; and (7) both dry and wet specimens deform primarily by brittle fracture. Extrapolations indicate: (1) crystalline rocks should be drillable because they remain brittle until partial melting occurs, and penetration rates should increase with temperature because there is a corresponding decrease in brittle fracture strength; (2) boreholes in ''water-filled'' holes will be stable to >10 km at temperatures temperatures are kept to less than or equal to 700{sup 0}C, even open boreholes in granodiorite are apt to be stable to >10 km; and (4) open boreholes in the andesite are apt to be much less stable, and at similar temperatures would fail at 2 to 5-km depth.

  2. Exposure to subfreezing temperature and a freeze-thaw cycle affect freezing tolerance of winter wheat in saturated soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter wheat is sown in the autumn and harvested the following summer, necessitating the ability to survive subfreezing temperatures for several months. Autumn months in wheat–growing regions typically experience significant rainfall and several days or weeks of mild subfreezing temperatures at nig...

  3. The rate of temperature rise of a subbituminous coal during spontaneous combustion in an adiabatic device: The effect of moisture content and drying methods

    SciTech Connect

    Vance, W.E.; Chen, X.D.; Scott, S.C.

    1996-08-01

    This work investigates the effect of the moisture content of coal on its spontaneous ignition in oxygen (40 C--140 C). It has been found that the highest heating rate is achieved at a medium moisture content of {approximately}7 wt% for an initial inherent moisture content of the coal before drying (in dry nitrogen at 65 C) of {approximately}20 wt%. This is particularly noticeable at temperatures below 80 C and tends to support previous studies showing that a maximum oxidation rate occurs at such a moisture content in the same temperature range. Two drying methods have been adopted in the current work and the effects of their operating conditions on the heating rates are described.

  4. Large magnetic entropy change and adiabatic temperature rise of a Gd{sub 55}Al{sub 20}Co{sub 20}Ni{sub 5} bulk metallic glass

    SciTech Connect

    Xia, L.; Tang, M. B.; Chan, K. C.; Dong, Y. D.

    2014-06-14

    Gd{sub 55}Al{sub 20}Co{sub 20}Ni{sub 5} bulk metallic glass (BMG) was synthesized by minor Ni substitution for Co in the Gd{sub 55}Al{sub 20}Co{sub 25} BMG in which excellent glass forming ability (GFA) and magneto-caloric effect were reported previously. The Gd{sub 55}Al{sub 20}Ni{sub 20}Co{sub 5} amorphous rod has a similar GFA to the Gd{sub 55}Al{sub 20}Co{sub 25} BMG but exhibits better magnetic properties. The peak value of magnetic entropy change (−ΔS{sub m}{sup peak}) of the Gd{sub 55}Al{sub 20}Co{sub 20}Ni{sub 5} BMG is 9.8 Jkg{sup −1} K{sup −1}. The field dependence of −ΔS{sub m}{sup peak} follows a −ΔS{sub m}{sup peak}∝H{sup 0.85} relationship. The adiabatic temperature rise of the rod is 4.74 K under 5 T and is larger than of other BMGs previously reported. The improved magnetic properties were supposed to be induced by the enhanced interaction between 4f electron in the rare-earth and 3d electron in the transition metal elements by means of a minor Ni substitution for Co.

  5. A Semi-Analytical Method for Rapid Estimation of Near-Well Saturation, Temperature, Pressure and Stress in Non-Isothermal CO2 Injection

    NASA Astrophysics Data System (ADS)

    LaForce, T.; Ennis-King, J.; Paterson, L.

    2015-12-01

    Reservoir cooling near the wellbore is expected when fluids are injected into a reservoir or aquifer in CO2 storage, enhanced oil or gas recovery, enhanced geothermal systems, and water injection for disposal. Ignoring thermal effects near the well can lead to under-prediction of changes in reservoir pressure and stress due to competition between increased pressure and contraction of the rock in the cooled near-well region. In this work a previously developed semi-analytical model for immiscible, nonisothermal fluid injection is generalised to include partitioning of components between two phases. Advection-dominated radial flow is assumed so that the coupled two-phase flow and thermal conservation laws can be solved analytically. The temperature and saturation profiles are used to find the increase in reservoir pressure, tangential, and radial stress near the wellbore in a semi-analytical, forward-coupled model. Saturation, temperature, pressure, and stress profiles are found for parameters representative of several CO2 storage demonstration projects around the world. General results on maximum injection rates vs depth for common reservoir parameters are also presented. Prior to drilling an injection well there is often little information about the properties that will determine the injection rate that can be achieved without exceeding fracture pressure, yet injection rate and pressure are key parameters in well design and placement decisions. Analytical solutions to simplified models such as these can quickly provide order of magnitude estimates for flow and stress near the well based on a range of likely parameters.

  6. Large-scale stress factors affecting coral reefs: open ocean sea surface temperature and surface seawater aragonite saturation over the next 400 years

    NASA Astrophysics Data System (ADS)

    Meissner, K. J.; Lippmann, T.; Sen Gupta, A.

    2012-06-01

    One-third of the world's coral reefs have disappeared over the last 30 years, and a further third is under threat today from various stress factors. The main global stress factors on coral reefs have been identified as changes in sea surface temperature (SST) and changes in surface seawater aragonite saturation (Ωarag). Here, we use a climate model of intermediate complexity, which includes an ocean general circulation model and a fully coupled carbon cycle, in conjunction with present-day observations of inter-annual SST variability to investigate three IPCC representative concentration pathways (RCP 3PD, RCP 4.5, and RCP 8.5), and their impact on the environmental stressors of coral reefs related to open ocean SST and open ocean Ωarag over the next 400 years. Our simulations show that for the RCP 4.5 and 8.5 scenarios, the threshold of 3.3 for zonal and annual mean Ωarag would be crossed in the first half of this century. By year 2030, 66-85% of the reef locations considered in this study would experience severe bleaching events at least once every 10 years. Regardless of the concentration pathway, virtually every reef considered in this study (>97%) would experience severe thermal stress by year 2050. In all our simulations, changes in surface seawater aragonite saturation lead changes in temperatures.

  7. Strength and ductility of room-dry and water-saturated igneous rocks at low pressures and temperatures to partial melting. Final report

    SciTech Connect

    Friedman, M.; Handin, J.; Higgs, N.G.; Lantz, J.R.; Bauer, S.J.

    1980-11-01

    Rock types that are likely candidates for drilling were tested. Reported herein are the short-time ultimate strengths and ductilities determined at temperatures of 25/sup 0/ to 1050/sup 0/C and a strain rate of 10/sup -4/s/sup -1/ of (a) room-dry Mt. Hood Andesite, Cuerbio Basalt, and Charcoal (St. Cloud Gray) Granodiorite at confining pressures of 0, 50, and 100 MPa, (b) water-saturated specimens of the same three rocks at zero effective pressure (both pore and confining pressures of 50 MPa), and (c) room-dry Newberry Rhyolite Obsidian at 0 and 50 MPa. These strengths are then compared with the stresses developed at the wall of a borehole in an elastic medium at the appropriate temperatures and mean pressures to assess the problem of borehole stability. (MHR)

  8. Distributed Saturation

    NASA Technical Reports Server (NTRS)

    Chung, Ming-Ying; Ciardo, Gianfranco; Siminiceanu, Radu I.

    2007-01-01

    The Saturation algorithm for symbolic state-space generation, has been a recent break-through in the exhaustive veri cation of complex systems, in particular globally-asyn- chronous/locally-synchronous systems. The algorithm uses a very compact Multiway Decision Diagram (MDD) encoding for states and the fastest symbolic exploration algo- rithm to date. The distributed version of Saturation uses the overall memory available on a network of workstations (NOW) to efficiently spread the memory load during the highly irregular exploration. A crucial factor in limiting the memory consumption during the symbolic state-space generation is the ability to perform garbage collection to free up the memory occupied by dead nodes. However, garbage collection over a NOW requires a nontrivial communication overhead. In addition, operation cache policies become critical while analyzing large-scale systems using the symbolic approach. In this technical report, we develop a garbage collection scheme and several operation cache policies to help on solving extremely complex systems. Experiments show that our schemes improve the performance of the original distributed implementation, SmArTNow, in terms of time and memory efficiency.

  9. Adiabatic evolution of plasma equilibrium

    PubMed Central

    Grad, H.; Hu, P. N.; Stevens, D. C.

    1975-01-01

    A new theory of plasma equilibrium is introduced in which adiabatic constraints are specified. This leads to a mathematically nonstandard structure, as compared to the usual equilibrium theory, in which prescription of pressure and current profiles leads to an elliptic partial differential equation. Topologically complex configurations require further generalization of the concept of adiabaticity to allow irreversible mixing of plasma and magnetic flux among islands. Matching conditions across a boundary layer at the separatrix are obtained from appropriate conservation laws. Applications are made to configurations with planned islands (as in Doublet) and accidental islands (as in Tokamaks). Two-dimensional, axially symmetric, helically symmetric, and closed line equilibria are included. PMID:16578729

  10. Adiabatic cooling of solar wind electrons

    NASA Technical Reports Server (NTRS)

    Sandbaek, Ornulf; Leer, Egil

    1992-01-01

    In thermally driven winds emanating from regions in the solar corona with base electron densities of n0 not less than 10 exp 8/cu cm, a substantial fraction of the heat conductive flux from the base is transfered into flow energy by the pressure gradient force. The adiabatic cooling of the electrons causes the electron temperature profile to fall off more rapidly than in heat conduction dominated flows. Alfven waves of solar origin, accelerating the basically thermally driven solar wind, lead to an increased mass flux and enhanced adiabatic cooling. The reduction in electron temperature may be significant also in the subsonic region of the flow and lead to a moderate increase of solar wind mass flux with increasing Alfven wave amplitude. In the solar wind model presented here the Alfven wave energy flux per unit mass is larger than that in models where the temperature in the subsonic flow is not reduced by the wave, and consequently the asymptotic flow speed is higher.

  11. Effects of Compaction and Temperature on Sorption and Diffusion of Cs and HTO in Compacted Bentonite Saturated with Saline Water

    SciTech Connect

    Satoru Suzuki; Masashi Haginuma; Kazunori Suzuki

    2007-07-01

    The sorption and diffusion of Cs and tritiated water (HTO) in compacted bentonite was investigated at temperatures from 30 to 60 deg. C. The apparent (D{sub a}) and effective (D{sub e}) diffusion coefficients were determined by in-diffusion and through-diffusion experiments with a constant boundary concentration maintained. The temperature dependence of De and Da obeyed an Arrhenius-type equation, allowing determination of the activation energy for diffusion of Cs and HTO. The D{sub e} value of Cs was three times the D{sub e} of HTO, which is considered to be a result of surface-excess diffusion. Cs may be concentrated near the surface of the negatively charged clay, thus giving a large diffusive flux. The activation energies for Cs diffusion were 21.4{+-}2.8 kJ/mol and 37.3{+-}1.5 kJ/mol as determined based on D{sub e} and D{sub a}, respectively. This difference was due to the temperature dependence of the distribution coefficient K{sub d} of Cs. (authors)

  12. Pressure Oscillations in Adiabatic Compression

    ERIC Educational Resources Information Center

    Stout, Roland

    2011-01-01

    After finding Moloney and McGarvey's modified adiabatic compression apparatus, I decided to insert this experiment into my physical chemistry laboratory at the last minute, replacing a problematic experiment. With insufficient time to build the apparatus, we placed a bottle between two thick textbooks and compressed it with a third textbook forced…

  13. Adiabatic dynamics of magnetic vortices

    NASA Astrophysics Data System (ADS)

    Papanicolaou, N.

    1994-03-01

    We formulate a reasonably detailed adiabatic conjecture concerning the dynamics of skew deflection of magnetic vortices in a field gradient, which is expected to be valid at sufficiently large values of the winding number. The conjecture is consistent with the golden rule used to describe the dynamics of realistic magnetic bubbles and is verified here numerically within the 2-D isotropic Heisenberg model.

  14. Transitionless driving on adiabatic search algorithm

    SciTech Connect

    Oh, Sangchul; Kais, Sabre

    2014-12-14

    We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.

  15. Transitionless driving on adiabatic search algorithm

    NASA Astrophysics Data System (ADS)

    Oh, Sangchul; Kais, Sabre

    2014-12-01

    We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.

  16. Transitionless driving on adiabatic search algorithm.

    PubMed

    Oh, Sangchul; Kais, Sabre

    2014-12-14

    We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics. PMID:25494733

  17. The effects of temperature and motility on the advective transport of a deep subsurface bacteria through saturated sediment

    SciTech Connect

    McCaulou, D.R.

    1993-10-01

    Replicate column experiments were done to quantify the effects of temperature and bacterial motility on advective transport through repacked, but otherwise unaltered, natural aquifer sediment. The bacteria used in this study, A0500, was a flagellated, spore-forming rod isolated from the deep subsurface at DOE`s Savannah River Laboratory. Motility was controlled by turning on flagellar metabolism at 18{degrees}C but off at 40{degrees}C. Microspheres were used to independently quantify the effects of temperature on the sticking efficiency ({alpha}), estimated using a steady-state filtration model. The observed greater microsphere removal at the higher temperature agreed with the physical-chemical model, but bacteria removal at 18{degrees}C was only half that at 4{degrees}C. The sticking efficiency for non-motile A0500 (4{degrees}C) was over three times that of the motile A0500 (18{degrees}C), 0.073 versus 0.022 respectively. Analysis of complete breakthrough curves using a non-steady, kinetically limited, transport model to estimate the time scales of attachment and detachment suggested that motile A 0500 bacteria traveled twice as far as non-motile A 0500 bacteria before becoming attached. Once attached, non-motile colloids detached on the time scale of 9 to 17 days. The time scale for detachment of motile A0500 bacteria was shorter, 4 to 5 days. Results indicate that bacterial attachment was reversible and detachment was enhanced by bacterial motifity. The kinetic energy of bacterial motility changed the attachment-detachment kinetics in favor of the detached state. The chemical factors responsible for the enhanced transport are not known. However, motility may have caused weakly held bacteria to detach from the secondary minimum, and possibly from the primary minimum, as described by DLVO theory.

  18. Studies in Chaotic adiabatic dynamics

    SciTech Connect

    Jarzynski, C.

    1994-01-01

    Chaotic adiabatic dynamics refers to the study of systems exhibiting chaotic evolution under slowly time-dependent equations of motion. In this dissertation the author restricts his attention to Hamiltonian chaotic adiabatic systems. The results presented are organized around a central theme, namely, that the energies of such systems evolve diffusively. He begins with a general analysis, in which he motivates and derives a Fokker-Planck equation governing this process of energy diffusion. He applies this equation to study the {open_quotes}goodness{close_quotes} of an adiabatic invariant associated with chaotic motion. This formalism is then applied to two specific examples. The first is that of a gas of noninteracting point particles inside a hard container that deforms slowly with time. Both the two- and three-dimensional cases are considered. The results are discussed in the context of the Wall Formula for one-body dissipation in nuclear physics, and it is shown that such a gas approaches, asymptotically with time, an exponential velocity distribution. The second example involves the Fermi mechanism for the acceleration of cosmic rays. Explicit evolution equations are obtained for the distribution of cosmic ray energies within this model, and the steady-state energy distribution that arises when this equation is modified to account for the injection and removal of cosmic rays is discussed. Finally, the author re-examines the multiple-time-scale approach as applied to the study of phase space evolution under a chaotic adiabatic Hamiltonian. This leads to a more rigorous derivation of the above-mentioned Fokker-Planck equation, and also to a new term which has relevance to the problem of chaotic adiabatic reaction forces (the forces acting on slow, heavy degrees of freedom due to their coupling to light, fast chaotic degrees).

  19. A Kinetic Study of the Adiabatic Polymerization of Acrylamide.

    ERIC Educational Resources Information Center

    Thomson, R. A. M.

    1986-01-01

    Discusses theory, procedures, and results for an experiment which demonstrates the application of basic physics to chemical problems. The experiment involves the adiabatic process, in which polymerization carried out in a vacuum flask is compared to the theoretical prediction of the model with the temperature-time curve obtained in practice. (JN)

  20. Fast Quasi-Adiabatic Gas Cooling: An Experiment Revisited

    ERIC Educational Resources Information Center

    Oss, S.; Gratton, L. M.; Calza, G.; Lopez-Arias, T.

    2012-01-01

    The well-known experiment of the rapid expansion and cooling of the air contained in a bottle is performed with a rapidly responsive, yet very cheap thermometer. The adiabatic, low temperature limit is approached quite closely and measured with our apparatus. A straightforward theoretical model for this process is also presented and discussed.…

  1. Adiabatic fluctuations from cosmic strings in a contracting universe

    SciTech Connect

    Brandenberger, Robert H.; Takahashi, Tomo; Yamaguchi, Masahide E-mail: tomot@cc.saga-u.ac.jp

    2009-07-01

    We show that adiabatic, super-Hubble, and almost scale invariant density fluctuations are produced by cosmic strings in a contracting universe. An essential point is that isocurvature perturbations produced by topological defects such as cosmic strings on super-Hubble scales lead to a source term which seeds the growth of curvature fluctuations on these scales. Once the symmetry has been restored at high temperatures, the isocurvature seeds disappear, and the fluctuations evolve as adiabatic ones in the expanding phase. Thus, cosmic strings may be resurrected as a mechanism for generating the primordial density fluctuations observed today.

  2. Saturated fat (image)

    MedlinePlus

    ... saturated fats. Vegetable sources of saturated fat include coconut and palm oils. When looking at a food ... saturated fats. Vegetable sources of saturated fat include coconut and palm oils. When looking at a food ...

  3. Trace element mass balance in hydrous adiabatic mantle melting: The Hydrous Adiabatic Mantle Melting Simulator version 1 (HAMMS1)

    NASA Astrophysics Data System (ADS)

    Kimura, Jun-Ichi; Kawabata, Hiroshi

    2014-06-01

    numerical mass balance calculation model for the adiabatic melting of a dry to hydrous peridotite has been programmed in order to simulate the trace element compositions of basalts from mid-ocean ridges, back-arc basins, ocean islands, and large igneous provinces. The Excel spreadsheet-based calculator, Hydrous Adiabatic Mantle Melting Simulator version 1 (HAMMS1) uses (1) a thermodynamic model of fractional adiabatic melting of mantle peridotite, with (2) the parameterized experimental melting relationships of primitive to depleted mantle sources in terms of pressure, temperature, water content, and degree of partial melting. The trace element composition of the model basalt is calculated from the accumulated incremental melts within the adiabatic melting regime, with consideration for source depletion. The mineralogic mode in the primitive to depleted source mantle in adiabat is calculated using parameterized experimental results. Partition coefficients of the trace elements of mantle minerals are parameterized to melt temperature mostly from a lattice strain model and are tested using the latest compilations of experimental results. The parameters that control the composition of trace elements in the model are as follows: (1) mantle potential temperature, (2) water content in the source mantle, (3) depth of termination of adiabatic melting, and (4) source mantle depletion. HAMMS1 enables us to obtain the above controlling parameters using Monte Carlo fitting calculations and by comparing the calculated basalt compositions to primary basalt compositions. Additionally, HAMMS1 compares melting parameters with a major element model, which uses petrogenetic grids formulated from experimental results, thus providing better constraints on the source conditions.

  4. Pressure sensitivity of adiabatic shear banding in metals

    NASA Astrophysics Data System (ADS)

    Hanina, E.; Rittel, D.; Rosenberg, Z.

    2007-01-01

    Adiabatic shear banding (ASB) is a dynamic failure mode characterized by large plastic strains in a narrow localized band. ASB occurs at high strain rates (ɛ˙⩾103s-1), under adiabatic conditions leading to a significant temperature rise inside the band [H. Tresca, Annales du Conservatoire des Arts et Métiers 4, (1879); Y. L. Bai and B. Dodd, Adiabatic Shear Localization-Occurrence, Theories, and Applications (Pergamon, Oxford, 1992); M. A. Meyers, Dynamic Behavior of Materials (Wiley, New York, 1994).; and J. J. Lewandowski and L. M. Greer, Nat. Mater. 5, 15 (2006)]. Large hydrostatic pressures are experienced in many dynamic applications involving ASB formation (e.g., ballistic penetration, impact, and machining). The relationship between hydrostatic pressure and ASB development remains an open question, although its importance has been often noted. This letter reports original experimental results indicating a linear relationship between the (normalized) dynamic deformation energy and the (normalized) hydrostatic pressure.

  5. Sliding seal materials for adiabatic engines

    NASA Technical Reports Server (NTRS)

    Lankford, J.

    1985-01-01

    The sliding friction coefficients and wear rates of promising carbide, oxide, and nitride materials were measured under temperature, environmental, velocity, loading conditions that are representative of the adiabatic engine environment. In order to provide guidance needed to improve materials for this application, the program stressed fundamental understanding of the mechanisms involved in friction and wear. Microhardness tests were performed on the candidate materials at elevated temperatures, and in atmospheres relevant to the piston seal application, and optical and electron microscopy were used to elucidate the micromechanisms of wear following wear testing. X-ray spectroscopy was used to evaluate interface/environment interactions which seemed to be important in the friction and wear process. Electrical effects in the friction and wear processes were explored in order to evaluate the potential usefulness of such effects in modifying the friction and wear rates in service. However, this factor was found to be of negligible significance in controlling friction and wear.

  6. The HAWC and SAFIRE Adiabatic Demagnetization Refrigerators

    NASA Technical Reports Server (NTRS)

    Tuttle, Jim; Shirron, Peter; DiPirro, Michael; Jackson, Michael; Behr, Jason; Kunes, Evan; Hait, Tom; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    The High-Resolution Airborne Wide-band Camera (HAWC) and Submillimeter and Far Infrared Experiment (SAFIRE) are far-infrared experiments which will fly on the Stratospheric Observatory for Infrared Astronomy (SOFIA) aircraft. HAWC's detectors will operate at 0.2 Kelvin, while those of SAFIRE will be at 0.1 Kelvin. Each instrument will include an adiabatic demagnetization refrigerator (ADR) to cool its detector stage from the liquid helium bath temperature (HAWC's at 4.2 Kelvin and SAFIRE's pumped to about 1.3 Kelvin) to its operating temperature. Except for the magnets used to achieve the cooling and a slight difference in the heat switch design, the two ADRs are nearly identical. We describe the ADR design and present the results of performance testing.

  7. Effect of the Heat Pipe Adiabatic Region.

    PubMed

    Brahim, Taoufik; Jemni, Abdelmajid

    2014-04-01

    The main motivation of conducting this work is to present a rigorous analysis and investigation of the potential effect of the heat pipe adiabatic region on the flow and heat transfer performance of a heat pipe under varying evaporator and condenser conditions. A two-dimensional steady-state model for a cylindrical heat pipe coupling, for both regions, is presented, where the flow of the fluid in the porous structure is described by Darcy-Brinkman-Forchheimer model which accounts for the boundary and inertial effects. The model is solved numerically by using the finite volumes method, and a fortran code was developed to solve the system of equations obtained. The results show that a phase change can occur in the adiabatic region due to temperature gradient created in the porous structure as the heat input increases and the heat pipe boundary conditions change. A recirculation zone may be created at the condenser end section. The effect of the heat transfer rate on the vapor radial velocities and the performance of the heat pipe are discussed. PMID:24895467

  8. Adiabaticity in open quantum systems

    NASA Astrophysics Data System (ADS)

    Venuti, Lorenzo Campos; Albash, Tameem; Lidar, Daniel A.; Zanardi, Paolo

    2016-03-01

    We provide a rigorous generalization of the quantum adiabatic theorem for open systems described by a Markovian master equation with time-dependent Liouvillian L (t ) . We focus on the finite system case relevant for adiabatic quantum computing and quantum annealing. Adiabaticity is defined in terms of closeness to the instantaneous steady state. While the general result is conceptually similar to the closed-system case, there are important differences. Namely, a system initialized in the zero-eigenvalue eigenspace of L (t ) will remain in this eigenspace with a deviation that is inversely proportional to the total evolution time T . In the case of a finite number of level crossings, the scaling becomes T-η with an exponent η that we relate to the rate of the gap closing. For master equations that describe relaxation to thermal equilibrium, we show that the evolution time T should be long compared to the corresponding minimum inverse gap squared of L (t ) . Our results are illustrated with several examples.

  9. Vapor Saturation as The Cause of Volcanic Eruptions at the Lassen Volcanic Center, California, as Inferred from Crystallization Pressures and Temperatures

    NASA Astrophysics Data System (ADS)

    De Los Reyes, A. M. A.; Putirka, K. D.; Clynne, M. A.; Scruggs, M. A.

    2015-12-01

    The last three silicic eruptions at the Lassen Volcanic Center occurred at Lassen Peak (27 ka and 1915-17) and Chaos Crags (1103 yrs BP). Klemetti and Clynne (2014) showed that felsic eruptions at Lassen reflect remobilization of resident rhyodacitic crystal mush by intrusion of mafic magma. To better understand the rejuvenation and eruption triggering process, we calculate crystallization temperatures and pressures from clinopyroxene-liquid equilibria on mafic enclaves that provide our closest approach to the composition of mafic magmas delivered to the shallow system. Our goal is to examine whether and to what extent cooling and crystallization occur after recharge, which bears on whether recharge, mixing, or partial crystallization (and consequent vapor saturation) provide the trigger for eruption. We use results from the cpx-liq barometer (1.7 kbar) as input to calculate T for other phases (plagioclase, olivine and amphibole) found in mafic enclave samples. Cpx crystallizes at 1100-1150 oC and olivine precipitates at similar to slightly higher temperatures. Cpx and ol are followed by plagioclase (1000-1050 oC), amphibole (875-1000 oC), and Fe-Ti oxides (1030-1050 oC). These temperatures indicate that recharge magmas are incompletely crystallized as they enter the shallow reservoir of cooler (~725-750 oC, Quinn et al., 2013) felsic crystal mush, and that significant cooling of the mafic magma occurs during mixing and prior to eruption. Such cooling intervals indicate that recharge is not the proximal cause of eruption, but rather that vapor saturation, following a period of mixing and cooling, leads to increased magma overpressure that causes eruption. Interestingly, the Lassen Peak 27 ka volcanics (at 2.09 km3), have a greater volume than either of Chaos Crags (1.2 km3) and the 1915 (0.03 km3) eruption, but our results indicate that their thermal histories are similar. This suggests that while volumes of mafic recharge may control the degree of interaction with

  10. Breakdown of adiabaticity for electron Maxwellian distribution through a stationary/nonstationary perpendicular supercritical shock.

    NASA Astrophysics Data System (ADS)

    Savoini, P.; Lembege, B.

    2006-12-01

    Test particle simulations are performed in order to analyze in details the dynamics of transmitted electrons through a supercritical strictly perpendicular collisionless shock. Recent analysis has evidenced three different behavior for the electron population: (i) adiabatic, (ii) over-adiabatic characterized by an increase of the gyrating velocity higher than that expected from the conservation of the magnetic moment and (iii) under- adiabatic characterized by a decrease of this velocity and not predicted by any existing theory. Analysis of individual time particle trajectories is performed and completed by statistics based on different upstream distributions (spherical shell and Maxwellian). The use of a Maxwellian distribution function allows us to speak in term of an electronic temperature and we observe in agreement with experimental datas that as the temperature increases (enlarged Maxwellian distribution function) the number of non-adiabatic transmitted electrons drastically decreases. In addition, our study evidenced that both non-adiabatic populations are coming from the core of the electron distribution. All combined nonstationary and nonuniformity effects have a filtering impact on the relative percentages of adiabatic and over-adiabatic populations, in contrast with under- adiabatic population which is relatively poorly affected.

  11. Invalidity of the quantitative adiabatic condition and general conditions for adiabatic approximations

    NASA Astrophysics Data System (ADS)

    Li, Dafa

    2016-05-01

    The adiabatic theorem was proposed about 90 years ago and has played an important role in quantum physics. The quantitative adiabatic condition constructed from eigenstates and eigenvalues of a Hamiltonian is a traditional tool to estimate adiabaticity and has proven to be the necessary and sufficient condition for adiabaticity. However, recently the condition has become a controversial subject. In this paper, we list some expressions to estimate the validity of the adiabatic approximation. We show that the quantitative adiabatic condition is invalid for the adiabatic approximation via the Euclidean distance between the adiabatic state and the evolution state. Furthermore, we deduce general necessary and sufficient conditions for the validity of the adiabatic approximation by different definitions.

  12. Design of the PIXIE Adiabatic Demagnetization Refrigerators

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J.; Kimball, Mark Oliver; Fixsen, Dale J.; Kogut, Alan J.; Li, Xiaoyi; DiPirro, Michael

    2012-01-01

    The Primordial Inflation Explorer (PIXIE) is a proposed mission to densely map the polarization of the cosmic microwave background. It will operate in a scanning mode from a sun-synchronous orbit, using low temperature detectors (at 0.1 K) and located inside a teslescope that is cooled to approximately 2.73 K - to match the background temperature. A mechanical cryocooler operating at 4.5 K establishes a low base temperature from which two adiabatic demagnetization refrigerator (ADR) assemblies will cool the telescope and detectors. To achieve continuous scanning capability, the ADRs must operate continuously. Complicating the design are two factors: 1) the need to systematically vary the temperature of various telescope components in order to separate the small polarization signal variations from those that may arise from temperature drifts and changing gradients within the telescope, and 2) the orbital and monthly variations in lunar irradiance into the telescope barrels. These factors require the telescope ADR to reject quasi-continuous heat loads of 2-3 millwatts, while maintaining a peak heat reject rate of less than 12 milliwatts. The detector heat load at 0.1 K is comparatively small at 1-2 microwatts. This paper will describe the 3-stage and 2-stage continuous ADRs that will be used to meet the cooling power and temperature stability requirements of the PIXIE detectors and telescope.

  13. Design of the PIXIE adiabatic demagnetization refrigerators

    NASA Astrophysics Data System (ADS)

    Shirron, Peter J.; Kimball, Mark O.; Fixsen, Dale J.; Kogut, Alan J.; Li, Xiaoyi; DiPirro, Michael J.

    2012-04-01

    The Primordial Inflation Explorer (PIXIE) is a proposed mission to densely map the polarization of the cosmic microwave background. It will operate in a scanning mode from a sun-synchronous orbit, using low temperature detectors (at 0.1 K) and located inside a telescope that is cooled to approximately 2.73 K - to match the background temperature. A mechanical cryocooler operating at 4.5 K establishes a low base temperature from which two adiabatic demagnetization refrigerator (ADR) assemblies will cool the telescope and detectors. To achieve continuous scanning capability, the ADRs must operate continuously. Complicating the design are two factors: (1) the need to systematically vary the temperature of various telescope components in order to separate the small polarization signal variations from those that may arise from temperature drifts and changing gradients within the telescope, and (2) the orbital and monthly variations in lunar irradiance into the telescope barrels. These factors require the telescope ADR to reject quasi-continuous heat loads of 2-3 mW, while maintaining a peak heat reject rate of less than 12 mW. The detector heat load at 0.1 K is comparatively small at 1-2 μW. This paper will describe the 3-stage and 2-stage continuous ADRs that will be used to meet the cooling power and temperature stability requirements of the PIXIE detectors and telescope.

  14. Simple and highly sensitive measurement method for detection of glass transition temperatures of polymers: application of ESR power saturation phenomenon with conventional spin-probe technique.

    PubMed

    Miwa, Yohei; Yamamoto, Katsuhiro

    2012-08-01

    A combination of the microwave power saturation (MPS) method of electron spin resonance (ESR) and spin probing is proposed as a simple and practical technique for detecting the glass transition temperatures, T(g), of polymers with high sensitivity. Effects of the spin-probe size and concentration on the T(g) value of polystyrene (PS) determined by MPS, T(g,ESR), were first evaluated. Spin-probed PS with four types of nitroxides, namely, di-tert-butyl nitroxide (DBN), 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO), 4-benzoyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl (BZONO), and 4',4'-dimethyl-spiro(5α-cholestane-3,2'-oxazolidin)-3'-yloxy free radical (CHOL), having molecular weights of 144, 156, 276, and 473, respectively, and spin-labeled PS with TEMPO were prepared. The T(g,ESR) values for the spin-probed PS with DBN, TEMPO, BZONO, and CHOL and spin-labeled PS were determined to 360, 363, 374, 374, and 375 K, respectively, within experimental uncertainties of 2 K, whereas the glass transition temperature determined by DSC, T(g,DSC), was 375 K for all samples. A significant decrease in T(g,ESR) for small spin probes was shown to be due to decoupling between the mobilities of small spin probes and PS segments. Concerning the concentration, a decrease in the saturation factor, S, induced by shortening of the spin-spin relaxation time was observed for the spin-probed PS with CHOL when the concentration of CHOL was more than 1.0 wt %. Furthermore, T(g,ESR) decreased slightly with increasing weight fraction of CHOL because of the "plasticizer effect" of CHOL. However, the T(g,ESR) and T(g,DSC) values corresponded for each concentration. Thus, large spin probes, such as CHOL and BZONO, are appropriate for the determination of T(g,ESR) values; the concentration of the spin probes does not affect the T(g,ESR) value unless the overall T(g) value is reduced by blending of excess spin probes. Finally, measurements of T(g,ESR) in PS/silica composites containing more than 95 wt

  15. Equations for Adiabatic but Rotational Steady Gas Flows without Friction

    NASA Technical Reports Server (NTRS)

    Schaefer, Manfred

    1947-01-01

    This paper makes the following assumptions: 1) The flowing gases are assumed to have uniform energy distribution. ("Isoenergetic gas flows," that is valid with the same constants for the the energy equation entire flow.) This is correct, for example, for gas flows issuing from a region of constant pressure, density, temperature, end velocity. This property is not destroyed by compression shocks because of the universal validity of the energy law. 2) The gas behaves adiabatically, not during the compression shock itself but both before and after the shock. However, the adiabatic equation (p/rho(sup kappa) = C) is not valid for the entire gas flow with the same constant C but rather with an appropriate individual constant for each portion of the gas. For steady flows, this means that the constant C of the adiabatic equation is a function of the stream function. Consequently, a gas that has been flowing "isentropically",that is, with the same constant C of the adiabatic equation throughout (for example, in origination from a region of constant density, temperature, and velocity) no longer remains isentropic after a compression shock if the compression shock is not extremely simple (wedge shaped in a two-dimensional flow or cone shaped in a rotationally symmetrical flow). The solution of nonisentropic flows is therefore an urgent necessity.

  16. An adiabatic demagnetization refrigerator for SIRTF

    NASA Technical Reports Server (NTRS)

    Timbie, P. T.; Bernstein, G. M.; Richards, P. L.

    1989-01-01

    An adiabatic demagnetization refrigerator (ADR) has been proposed to cool bolometric infrared detectors on the multiband imaging photometer of the Space Infrared Telescope Facility (SIRTF). One such refrigerator has been built which uses a ferric ammonium alum salt pill suspended by nylon threads in a 3-T solenoid. The resonant modes of this suspension are above 100 Hz. The heat leak to the salt pill is less than 0.5 microW. The system has a hold time at 0.1K of more than 12 h. The cold stage temperature is regulated with a feedback loop that controls the magnetic field. A second, similar refrigerator is being built at a SIRTF prototype to fly on a ballon-borne telescope. It will use a ferromagnetic shield. The possibility of using a high-Tc solenoid-actuated heat switch is also discussed.

  17. Sulfur Concentration of High-FeO* Basalts at Sulfide Saturation at High Pressures and Temperatures - Implications for Deep Sulfur Cycle on Mars (Invited)

    NASA Astrophysics Data System (ADS)

    Dasgupta, R.; Ding, S.

    2013-12-01

    One of the chief influences of magma in the mantles terrestrial planets is its role in outgassing and ingassing of key volatiles and thus affecting planetary dynamics and climate over long timescales. For Mars, magmatic release of greenhouse gases has been argued to be a major factor in creating warm ancient climate. However, the responsible magmatic gas has not been unequivocally identified. SO2 or H2S could have been the main greenhouse gases, yet the magmatic outflux of S from the martian mantle is poorly constrained. Righter et al. [1] showed that the use of sulfur content at sulfide saturation (SCSS) models based on low-FeO*, high-alumina terrestrial basalts to martian basalts leads to significant error. However, experiments on high-FeO* basalts remain limited to ≤0.8 GPa [1], although the onset of melting in the martian mantle may take place at 250-400 km depth (3-5 GPa) [2]. To constrain SCSS of martian magmas at mantle conditions, we simulated basalt-sulfide melt equilibria using two synthesized meteorite compositions, i.e., Yamato980459 (FeO* ˜17 wt.%; Al2O3 ˜6 wt.%) and NWA2990 (FeO* ˜16 wt.%; Al2O3 ˜9 wt.%) in both anhydrous and hydrous conditions at 1-3 GPa and 1500-1700 °C. Experiments were conducted in graphite capsules, using an end-loaded piston cylinder device. Sulfur contents of sulfide melt-saturated experimental quenched basalts were determined using electron microprobe. Our experimental results show that SCSS decreases with increasing pressure and increases with increasing temperature and melt hydration. Based on our experimental SCSS and those from previous low-pressure experiments on high-FeO* martian basalts [2], we developed a new parameterization to predict martian basalt SCSS as a function of depth, temperature, and melt composition. Our model suggests that at the conditions of last equilibration with the sulfide-saturated mantle [2], martian basalts may contain as high as 3500-4700 ppm S and thus S-rich gases might have caused the

  18. Adiabatic Wankel type rotary engine

    NASA Technical Reports Server (NTRS)

    Kamo, R.; Badgley, P.; Doup, D.

    1988-01-01

    This SBIR Phase program accomplished the objective of advancing the technology of the Wankel type rotary engine for aircraft applications through the use of adiabatic engine technology. Based on the results of this program, technology is in place to provide a rotor and side and intermediate housings with thermal barrier coatings. A detailed cycle analysis of the NASA 1007R Direct Injection Stratified Charge (DISC) rotary engine was performed which concluded that applying thermal barrier coatings to the rotor should be successful and that it was unlikely that the rotor housing could be successfully run with thermal barrier coatings as the thermal stresses were extensive.

  19. Saturated fat (image)

    MedlinePlus

    Saturated fat can raise blood cholesterol and can put you at risk for heart disease and stroke. You should ... limit any foods that are high in saturated fat. Sources of saturated fat include whole-milk dairy ...

  20. Protecting and accelerating adiabatic passage with time-delayed pulse sequences.

    PubMed

    Sampedro, Pablo; Chang, Bo Y; Sola, Ignacio R

    2016-05-21

    Using numerical simulations of two-photon electronic absorption with femtosecond pulses in Na2 we show that: (i) it is possible to avoid the characteristic saturation or dumped Rabi oscillations in the yield of absorption by time-delaying the laser pulses; (ii) it is possible to accelerate the onset of adiabatic passage by using the vibrational coherence starting in a wave packet; and (iii) it is possible to prepare the initial wave packet in order to achieve full state-selective transitions with broadband pulses. The findings can be used, for instance, to achieve ultrafast adiabatic passage by light-induced potentials and understand its intrinsic robustness. PMID:27125342

  1. Quasi-adiabatic compression heating of selected foods

    NASA Astrophysics Data System (ADS)

    Landfeld, Ales; Strohalm, Jan; Halama, Radek; Houska, Milan

    2011-03-01

    The quasi-adiabatic temperature increase due to compression heating, during high-pressure (HP) processing (HPP), was studied using specially designed equipment. The temperature increase was evaluated as the difference in temperature, during compression, between atmospheric pressure and nominal pressure. The temperature was measured using a thermocouple in the center of a polyoxymethylene cup, which contained the sample. Fresh meat balls, pork meat pate, and tomato purée temperature increases were measured at three initial temperature levels between 40 and 80 °C. Nominal pressure was either 400 or 500 MPa. Results showed that the fat content had a positive effect on temperature increases. Empirical equations were developed to calculate the temperature increase during HPP at different initial temperatures for pressures of 400 and 500 MPa. This thermal effect data can be used for numerical modeling of temperature histories of foods during HP-assisted pasteurization or sterilization processes.

  2. Degenerate adiabatic perturbation theory: Foundations and applications

    NASA Astrophysics Data System (ADS)

    Rigolin, Gustavo; Ortiz, Gerardo

    2014-08-01

    We present details and expand on the framework leading to the recently introduced degenerate adiabatic perturbation theory [Phys. Rev. Lett. 104, 170406 (2010), 10.1103/PhysRevLett.104.170406], and on the formulation of the degenerate adiabatic theorem, along with its necessary and sufficient conditions [given in Phys. Rev. A 85, 062111 (2012), 10.1103/PhysRevA.85.062111]. We start with the adiabatic approximation for degenerate Hamiltonians that paves the way to a clear and rigorous statement of the associated degenerate adiabatic theorem, where the non-Abelian geometric phase (Wilczek-Zee phase) plays a central role to its quantitative formulation. We then describe the degenerate adiabatic perturbation theory, whose zeroth-order term is the degenerate adiabatic approximation, in its full generality. The parameter in the perturbative power-series expansion of the time-dependent wave function is directly associated to the inverse of the time it takes to drive the system from its initial to its final state. With the aid of the degenerate adiabatic perturbation theory we obtain rigorous necessary and sufficient conditions for the validity of the adiabatic theorem of quantum mechanics. Finally, to illustrate the power and wide scope of the methodology, we apply the framework to a degenerate Hamiltonian, whose closed-form time-dependent wave function is derived exactly, and also to other nonexactly solvable Hamiltonians whose solutions are numerically computed.

  3. Shortcut to adiabatic gate teleportation

    NASA Astrophysics Data System (ADS)

    Santos, Alan C.; Silva, Raphael D.; Sarandy, Marcelo S.

    2016-01-01

    We introduce a shortcut to the adiabatic gate teleportation model of quantum computation. More specifically, we determine fast local counterdiabatic Hamiltonians able to implement teleportation as a universal computational primitive. In this scenario, we provide the counterdiabatic driving for arbitrary n -qubit gates, which allows to achieve universality through a variety of gate sets. Remarkably, our approach maps the superadiabatic Hamiltonian HSA for an arbitrary n -qubit gate teleportation into the implementation of a rotated superadiabatic dynamics of an n -qubit state teleportation. This result is rather general, with the speed of the evolution only dictated by the quantum speed limit. In particular, we analyze the energetic cost for different Hamiltonian interpolations in the context of the energy-time complementarity.

  4. Quantum gates with controlled adiabatic evolutions

    NASA Astrophysics Data System (ADS)

    Hen, Itay

    2015-02-01

    We introduce a class of quantum adiabatic evolutions that we claim may be interpreted as the equivalents of the unitary gates of the quantum gate model. We argue that these gates form a universal set and may therefore be used as building blocks in the construction of arbitrary "adiabatic circuits," analogously to the manner in which gates are used in the circuit model. One implication of the above construction is that arbitrary classical boolean circuits as well as gate model circuits may be directly translated to adiabatic algorithms with no additional resources or complexities. We show that while these adiabatic algorithms fail to exhibit certain aspects of the inherent fault tolerance of traditional quantum adiabatic algorithms, they may have certain other experimental advantages acting as quantum gates.

  5. On a Nonlinear Model in Adiabatic Evolutions

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Lu, Song-Feng

    2016-08-01

    In this paper, we study a kind of nonlinear model of adiabatic evolution in quantum search problem. As will be seen here, for this problem, there always exists a possibility that this nonlinear model can successfully solve the problem, while the linear model can not. Also in the same setting, when the overlap between the initial state and the final stare is sufficiently large, a simple linear adiabatic evolution can achieve O(1) time efficiency, but infinite time complexity for the nonlinear model of adiabatic evolution is needed. This tells us, it is not always a wise choice to use nonlinear interpolations in adiabatic algorithms. Sometimes, simple linear adiabatic evolutions may be sufficient for using. Supported by the National Natural Science Foundation of China under Grant Nos. 61402188 and 61173050. The first author also gratefully acknowledges the support from the China Postdoctoral Science Foundation under Grant No. 2014M552041

  6. Measurements of the viscosities of saturated and compressed fluid 1-chloro-1,2,2,2-tetrafluoroethane (R124) and pentafluoroethane (R125) at temperatures between 120 and 420 K

    SciTech Connect

    Diller, D.E.; Peterson, S.M. )

    1993-01-01

    The shear viscosities of saturated and compressed fluid 1-chloro-1,2,2,2-tetrafluoroethane (R124) and pentafluoroethane (R125) have been measured with two torsional crystal viscometers at temperatures between 120 and 420 K and at pressures up to 50 MPa. At small molar volumes, the fluidity (reciprocal viscosity) increases linearly with molar volume at fixed temperature and weakly with temperature at fixed volume. We have described this behavior with simple empirical equations and have compared the data of Shankland and of Ripple with them. The data of Ripple are in good agreement with our data for both fluids.

  7. Adiabatic shear mechanisms for the hard cutting process

    NASA Astrophysics Data System (ADS)

    Yue, Caixu; Wang, Bo; Liu, Xianli; Feng, Huize; Cai, Chunbin

    2015-05-01

    The most important consequence of adiabatic shear phenomenon is formation of sawtooth chip. Lots of scholars focused on the formation mechanism of sawtooth, and the research often depended on experimental approach. For the present, the mechanism of sawtooth chip formation still remains some ambiguous aspects. This study develops a combined numerical and experimental approach to get deeper understanding of sawtooth chip formation mechanism for Polycrystalline Cubic Boron Nitride (PCBN) tools orthogonal cutting hard steel GCr15. By adopting the Johnson-Cook material constitutive equations, the FEM simulation model established in this research effectively overcomes serious element distortions and cell singularity in high strain domain caused by large material deformation, and the adiabatic shear phenomenon is simulated successfully. Both the formation mechanism and process of sawtooth are simulated. Also, the change features regarding the cutting force as well as its effects on temperature are studied. More specifically, the contact of sawtooth formation frequency with cutting force fluctuation frequency is established. The cutting force and effect of cutting temperature on mechanism of adiabatic shear are investigated. Furthermore, the effects of the cutting condition on sawtooth chip formation are researched. The researching results show that cutting feed has the most important effect on sawtooth chip formation compared with cutting depth and speed. This research contributes a better understanding of mechanism, feature of chip formation in hard turning process, and supplies theoretical basis for the optimization of hard cutting process parameters.

  8. The 0.1K bolometers cooled by adiabatic demagnetization

    NASA Technical Reports Server (NTRS)

    Roellig, T.; Lesyna, L.; Kittel, P.; Werner, M.

    1983-01-01

    The most straightforward way of reducing the noise equivalent power of bolometers is to lower their operating temperature. We have been exploring the possibility of using conventionally constructed bolometers at ultra-low temperatures to achieve NEP's suitable to the background environment of cooled space telescopes. We have chosen the technique of adiabatic demagnetization of a paramagnetic salt as a gravity independent, compact, and low power way to achieve temperatures below pumped He-3 (0.3 K). The demagnetization cryostat we used was capable of reaching temperatures below 0.08 K using Chromium Potassium Alum as a salt from a starting temperature of 1.5 K and a starting magnetic field of 30,000 gauss. Computer control of the magnetic field decay allowed a temperature of 0.2 K to be maintained to within 0.5 mK over a time period exceeding 14 hours. The refrigerator duty cycle was over 90 percent at this temperature. The success of these tests has motivated us to construct a more compact portable adiabatic demagnetization cryostat capable of bolometer optical tests and use at the 5m Hale telescope at 1mm wavelengths.

  9. Multisurface Adiabatic Reactive Molecular Dynamics.

    PubMed

    Nagy, Tibor; Yosa Reyes, Juvenal; Meuwly, Markus

    2014-04-01

    Adiabatic reactive molecular dynamics (ARMD) simulation method is a surface-crossing algorithm for modeling chemical reactions in classical molecular dynamics simulations using empirical force fields. As the ARMD Hamiltonian is time dependent during crossing, it allows only approximate energy conservation. In the current work, the range of applicability of conventional ARMD is explored, and a new multisurface ARMD (MS-ARMD) method is presented, implemented in CHARMM and applied to the vibrationally induced photodissociation of sulfuric acid (H2SO4) in the gas phase. For this, an accurate global potential energy surface (PES) involving 12 H2SO4 and 4 H2O + SO3 force fields fitted to MP2/6-311G++(2d,2p) reference energies is employed. The MS-ARMD simulations conserve total energy and feature both intramolecular H-transfer reactions and water elimination. An analytical treatment of the dynamics in the crossing region finds that conventional ARMD can approximately conserve total energy for limiting cases. In one of them, the reduced mass of the system is large, which often occurs for simulations of solvated biomolecular systems. On the other hand, MS-ARMD is a general approach for modeling chemical reactions including gas-phase, homogeneous, heterogeneous, and enzymatic catalytic reactions while conserving total energy in atomistic simulations. PMID:26580356

  10. Adiabatic limits on Riemannian Heisenberg manifolds

    SciTech Connect

    Yakovlev, A A

    2008-02-28

    An asymptotic formula is obtained for the distribution function of the spectrum of the Laplace operator, in the adiabatic limit for the foliation defined by the orbits of an invariant flow on a compact Riemannian Heisenberg manifold. Bibliography: 21 titles.

  11. Experimental demonstration of composite adiabatic passage

    NASA Astrophysics Data System (ADS)

    Schraft, Daniel; Halfmann, Thomas; Genov, Genko T.; Vitanov, Nikolay V.

    2013-12-01

    We report an experimental demonstration of composite adiabatic passage (CAP) for robust and efficient manipulation of two-level systems. The technique represents a altered version of rapid adiabatic passage (RAP), driven by composite sequences of radiation pulses with appropriately chosen phases. We implement CAP with radio-frequency pulses to invert (i.e., to rephase) optically prepared spin coherences in a Pr3+:Y2SiO5 crystal. We perform systematic investigations of the efficiency of CAP and compare the results with conventional π pulses and RAP. The data clearly demonstrate the superior features of CAP with regard to robustness and efficiency, even under conditions of weakly fulfilled adiabaticity. The experimental demonstration of composite sequences to support adiabatic passage is of significant relevance whenever a high efficiency or robustness of coherent excitation processes need to be maintained, e.g., as required in quantum information technology.

  12. An Adiabatic Architecture for Linear Signal Processing

    NASA Astrophysics Data System (ADS)

    Vollmer, M.; Götze, J.

    2005-05-01

    Using adiabatic CMOS logic instead of the more traditional static CMOS logic can lower the power consumption of a hardware design. However, the characteristic differences between adiabatic and static logic, such as a four-phase clock, have a far reaching influence on the design itself. These influences are investigated in this paper by adapting a systolic array of CORDIC devices to be implemented adiabatically. We present a means to describe adiabatic logic in VHDL and use it to define the systolic array with precise timing and bit-true calculations. The large pipeline bubbles that occur in a naive version of this array are identified and removed to a large degree. As an example, we demonstrate a parameterization of the CORDIC array that carries out adaptive RLS filtering.

  13. General conditions for quantum adiabatic evolution

    SciTech Connect

    Comparat, Daniel

    2009-07-15

    Adiabaticity occurs when, during its evolution, a physical system remains in the instantaneous eigenstate of the Hamiltonian. Unfortunately, existing results, such as the quantum adiabatic theorem based on a slow down evolution [H({epsilon}t),{epsilon}{yields}0], are insufficient to describe an evolution driven by the Hamiltonian H(t) itself. Here we derive general criteria and exact bounds, for the state and its phase, ensuring an adiabatic evolution for any Hamiltonian H(t). As a corollary, we demonstrate that the commonly used condition of a slow Hamiltonian variation rate, compared to the spectral gap, is indeed sufficient to ensure adiabaticity but only when the Hamiltonian is real and nonoscillating (for instance, containing exponential or polynomial but no sinusoidal functions)

  14. Adiabatic invariance of oscillons/I -balls

    NASA Astrophysics Data System (ADS)

    Kawasaki, Masahiro; Takahashi, Fuminobu; Takeda, Naoyuki

    2015-11-01

    Real scalar fields are known to fragment into spatially localized and long-lived solitons called oscillons or I -balls. We prove the adiabatic invariance of the oscillons/I -balls for a potential that allows periodic motion even in the presence of non-negligible spatial gradient energy. We show that such a potential is uniquely determined to be the quadratic one with a logarithmic correction, for which the oscillons/I -balls are absolutely stable. For slightly different forms of the scalar potential dominated by the quadratic one, the oscillons/I -balls are only quasistable, because the adiabatic charge is only approximately conserved. We check the conservation of the adiabatic charge of the I -balls in numerical simulation by slowly varying the coefficient of logarithmic corrections. This unambiguously shows that the longevity of oscillons/I -balls is due to the adiabatic invariance.

  15. Ultrasonic velocity and adiabatic compressibility in dioxane-water mixtures

    NASA Technical Reports Server (NTRS)

    Ciupe, A.; Auslaender, D.

    1974-01-01

    Using a method of diffraction of light on an ultrasonic beam, the velocity of ultrasounds and the adiabatic compressibility in dioxane-water mixtures were determined. The dependence of these quantities on the temperature (in the 15-50 C range) and on the concentration (0-100%) were studied. For each temperature there was found a velocity maximum and a compressibility minimum for a given value of the dioxane concentration. The different behavior of these mixtures is due to intense interactions between the molecules of the two liquids composing the mixture.

  16. Salt materials testing for a spacecraft adiabatic demagnetization refrigerator

    NASA Technical Reports Server (NTRS)

    Savage, M. L.; Kittel, P.; Roellig, T.

    1990-01-01

    As part of a technology development effort to qualify adiabatic demagnetization refrigerators for use in a NASA spacecraft, such as the Space Infrared Telescope Facility, a study of low temperature characteristics, heat capacity and resistance to dehydration was conducted for different salt materials. This report includes results of testing with cerrous metaphosphate, several synthetic rubies, and chromic potassium alum (CPA). Preliminary results show that CPA may be suitable for long-term spacecraft use, provided that the salt is property encapsulated. Methods of salt pill construction and testing for all materials are discussed, as well as reliability tests. Also, the temperature regulation scheme and the test cryostat design are briefly discussed.

  17. Symmetry of the Adiabatic Condition in the Piston Problem

    ERIC Educational Resources Information Center

    Anacleto, Joaquim; Ferreira, J. M.

    2011-01-01

    This study addresses a controversial issue in the adiabatic piston problem, namely that of the piston being adiabatic when it is fixed but no longer so when it can move freely. It is shown that this apparent contradiction arises from the usual definition of adiabatic condition. The issue is addressed here by requiring the adiabatic condition to be…

  18. Novel developments and applications of the classical adiabatic dynamics technique

    NASA Astrophysics Data System (ADS)

    Rosso, Lula

    The present work aims to apply and develop modern molecular dynamics techniques based on a novel analysis of the classical adiabatic dynamics approach. In the first part of this thesis, Car-Parrinello ab-initio molecular dynamics, a successful technique based on adiabatic dynamics, is used to study the charge transport mechanism in solid ammonium perchlorate (AP) crystal exposed to an ammonia-rich environment. AP is a solid-state proton conductor composed of NH+4 and ClO-4 units that can undergo a decomposition process at high temperature, leading to its use such as rocket fuel. After computing IR spectra and carefully analysing the dynamics at different temperatures, we found that the charge transport mechanism in the pure crystal is dominated by diffusion of the ammonium ions and that the translational diffusion is strongly coupled to rotational diffusion of the two types of ions present. When the pure ammonium-perchlorate crystal is doped with neutral ammonia, another mechanism comes into play, namely, the Grotthuss proton hopping mechanism via short-lived N2H+7 complexes. In the second part of this thesis, adiabatic dynamics will be used to develop an alternative approach to the calculation of free energy profiles along reaction paths. The new method (AFED) is based on the creation of an adiabatic separation between the reaction coordinate subspace and the remaining degrees of freedom within a molecular dynamics run. This is achieved by associating with the reaction coordinate(s) a high temperature and large mass. These conditions allow the activated process to occur while permitting the remaining degrees of freedom to respond adiabatically. In this limit, by applying a formal multiple time scale Liouville operator factorization, it can be rigorously shown that the free energy profile is obtained directly from the probability distribution of the reaction coordinate subspace and, therefore, no postprocessing of the output data is required. The new method is

  19. Sulfur Concentration of Martian Magmas at Sulfide Saturation at High Pressures and Temperatures - Implications for Martian Magma Ocean and Magmatic Differentiation

    NASA Astrophysics Data System (ADS)

    Ding, S.; Dasgupta, R.

    2012-12-01

    Sulfur is critical for a wide range of processes of terrestrial planets including thermal evolution of core and atmosphere and geochemistry of mantle and crust. For Mars, sulfur is particularly important because it may be abundant in the core [1] while SO 2 and H2 S might have exerted a strong greenhouse climate in the past [2]. A critical parameter that affects sulfur distribution during differentiation is the sulfur carrying capacity of mantle melts. However, most experiments constraining sulfur content at sulfide saturation (SCSS) are conducted on FeO poor (~5-12 wt.%) basalts [3] and recent experiments on high-FeO (~16-22 wt.%, [4]) Martian basalts are restricted to ≤0.8 GPa [5]. To constrain SCSS of Martian magmas at mantle conditions, we simulated basalt-sulfide melt equilibria (S added as 15-30 wt.% FeS) in Gr capsules using a piston cylinder at 1-3 GPa and 1500-1700 °C. Two starting compositions, equivalent to olivine-phyric shergottites Yamato980459 (Y98; ~17.53 wt.% FeO) and NWA 2990 (NWA; ~16.42 wt.% FeO) and thought to be primary magma [6] were used. A composition Y98+1.4 wt.% H2O was also explored to constrain the effect of water on SCSS. All experiments produced quenched sulfide and silicate melts ± opx . FeS species in the NWA glasses was confirmed from peaks at 300-400 cm-1 in Raman spectra [7]. At 1600 °C, SCSS, measured using EPMA, decreases with pressure, 4800 to 3500 ppm from 1 to 2.5 GPa for Y98, ~5440 to 4380 ppm from 1 to 2 GPa for Y98+1.4 wt.% H2O, and 5000 to 3000 ppm from 1 to 3 GPa for NWA. At 2 GPa, SCSS of NWA increases with temperature, 3300 to 4600 ppm from 1500 to 1700 °C. Combining new and previous experiments on Martian basalts [5] (a total of 28 SCSS data with FeO* of 9.3-32.78 wt.%), a preliminary equation of the form LnS (ppm) = a + b.P + c/T +d.XSiO2 + e.XAl2O3 + f.LnXFeO was fitted, where P is in GPa, T in K, and X represents mole fraction of a given oxide. Our study suggests that at conditions of final melt

  20. Deep proton tunneling in the electronically adiabatic and non-adiabatic limits: Comparison of the quantum and classical treatment of donor-acceptor motion in a protein environment

    SciTech Connect

    Benabbas, Abdelkrim; Salna, Bridget; Sage, J. Timothy; Champion, Paul M.

    2015-03-21

    Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical “gating” distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotope effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working

  1. Deep proton tunneling in the electronically adiabatic and non-adiabatic limits: comparison of the quantum and classical treatment of donor-acceptor motion in a protein environment.

    PubMed

    Benabbas, Abdelkrim; Salna, Bridget; Sage, J Timothy; Champion, Paul M

    2015-03-21

    Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical "gating" distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotope effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working near

  2. Deep proton tunneling in the electronically adiabatic and non-adiabatic limits: Comparison of the quantum and classical treatment of donor-acceptor motion in a protein environment

    NASA Astrophysics Data System (ADS)

    Benabbas, Abdelkrim; Salna, Bridget; Sage, J. Timothy; Champion, Paul M.

    2015-03-01

    Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical "gating" distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotope effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working near

  3. Conditions for super-adiabatic droplet growth after entrainment mixing

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Shaw, Raymond; Xue, Huiwen

    2016-07-01

    Cloud droplet response to entrainment and mixing between a cloud and its environment is considered, accounting for subsequent droplet growth during adiabatic ascent following a mixing event. The vertical profile for liquid water mixing ratio after a mixing event is derived analytically, allowing the reduction to be predicted from the mixing fraction and from the temperature and humidity for both the cloud and environment. It is derived for the limit of homogeneous mixing. The expression leads to a critical height above the mixing level: at the critical height the cloud droplet radius is the same for both mixed and unmixed parcels, and the critical height is independent of the updraft velocity and mixing fraction. Cloud droplets in a mixed parcel are larger than in an unmixed parcel above the critical height, which we refer to as the "super-adiabatic" growth region. Analytical results are confirmed with a bin microphysics cloud model. Using the model, we explore the effects of updraft velocity, aerosol source in the environmental air, and polydisperse cloud droplets. Results show that the mixed parcel is more likely to reach the super-adiabatic growth region when the environmental air is humid and clean. It is also confirmed that the analytical predictions are matched by the volume-mean cloud droplet radius for polydisperse size distributions. The findings have implications for the origin of large cloud droplets that may contribute to onset of collision-coalescence in warm clouds.

  4. Graph isomorphism and adiabatic quantum computing

    NASA Astrophysics Data System (ADS)

    Gaitan, Frank; Clark, Lane

    2014-02-01

    In the graph isomorphism (GI) problem two N-vertex graphs G and G' are given and the task is to determine whether there exists a permutation of the vertices of G that preserves adjacency and transforms G →G'. If yes, then G and G' are said to be isomorphic; otherwise they are nonisomorphic. The GI problem is an important problem in computer science and is thought to be of comparable difficulty to integer factorization. In this paper we present a quantum algorithm that solves arbitrary instances of GI and which also provides an approach to determining all automorphisms of a given graph. We show how the GI problem can be converted to a combinatorial optimization problem that can be solved using adiabatic quantum evolution. We numerically simulate the algorithm's quantum dynamics and show that it correctly (i) distinguishes nonisomorphic graphs; (ii) recognizes isomorphic graphs and determines the permutation(s) that connect them; and (iii) finds the automorphism group of a given graph G. We then discuss the GI quantum algorithm's experimental implementation, and close by showing how it can be leveraged to give a quantum algorithm that solves arbitrary instances of the NP-complete subgraph isomorphism problem. The computational complexity of an adiabatic quantum algorithm is largely determined by the minimum energy gap Δ (N) separating the ground and first-excited states in the limit of large problem size N ≫1. Calculating Δ (N) in this limit is a fundamental open problem in adiabatic quantum computing, and so it is not possible to determine the computational complexity of adiabatic quantum algorithms in general, nor consequently, of the specific adiabatic quantum algorithms presented here. Adiabatic quantum computing has been shown to be equivalent to the circuit model of quantum computing, and so development of adiabatic quantum algorithms continues to be of great interest.

  5. Adiabatic cooling of the artificial Porcupine plasma jet

    NASA Astrophysics Data System (ADS)

    Ruizhin, Iu. Ia.; Treumann, R. A.; Bauer, O. H.; Moskalenko, A. M.

    1987-01-01

    Measurements of the plasma density obtained during the interaction of the artificial plasma jet, fired into the ionosphere with the body of the Porcupine main payload, have been analyzed for times when there was a well-developed wake effect. Using wake theory, the maximum temperature of the quasi-neutral xenon ion beam has been determined for an intermediate distance from the ion beam source when the beam has left the diamagnetic region but is still much denser than the ionospheric background plasma. The beam temperature is found to be about 4 times less than the temperature at injection. This observation is very well explained by adiabatic cooling of the beam during its initial diamagnetic and current-buildup phases at distances r smaller than 10 m. Outside this region, the beam conserves the temperature achieved. The observation proves that the artificial plasma jet passes through an initial gas-like diamagnetic phase restricted to the vicinity of the beam source, where it expands adiabatically. Partial cooling also takes place outside the diamagnetic region where the beam current still builds up. The observations also support a recently developed current-closure model of the quasi-neutral ion beam.

  6. Accurate adiabatic correction in the hydrogen molecule

    SciTech Connect

    Pachucki, Krzysztof; Komasa, Jacek

    2014-12-14

    A new formalism for the accurate treatment of adiabatic effects in the hydrogen molecule is presented, in which the electronic wave function is expanded in the James-Coolidge basis functions. Systematic increase in the size of the basis set permits estimation of the accuracy. Numerical results for the adiabatic correction to the Born-Oppenheimer interaction energy reveal a relative precision of 10{sup −12} at an arbitrary internuclear distance. Such calculations have been performed for 88 internuclear distances in the range of 0 < R ⩽ 12 bohrs to construct the adiabatic correction potential and to solve the nuclear Schrödinger equation. Finally, the adiabatic correction to the dissociation energies of all rovibrational levels in H{sub 2}, HD, HT, D{sub 2}, DT, and T{sub 2} has been determined. For the ground state of H{sub 2} the estimated precision is 3 × 10{sup −7} cm{sup −1}, which is almost three orders of magnitude higher than that of the best previous result. The achieved accuracy removes the adiabatic contribution from the overall error budget of the present day theoretical predictions for the rovibrational levels.

  7. Accurate adiabatic correction in the hydrogen molecule

    NASA Astrophysics Data System (ADS)

    Pachucki, Krzysztof; Komasa, Jacek

    2014-12-01

    A new formalism for the accurate treatment of adiabatic effects in the hydrogen molecule is presented, in which the electronic wave function is expanded in the James-Coolidge basis functions. Systematic increase in the size of the basis set permits estimation of the accuracy. Numerical results for the adiabatic correction to the Born-Oppenheimer interaction energy reveal a relative precision of 10-12 at an arbitrary internuclear distance. Such calculations have been performed for 88 internuclear distances in the range of 0 < R ⩽ 12 bohrs to construct the adiabatic correction potential and to solve the nuclear Schrödinger equation. Finally, the adiabatic correction to the dissociation energies of all rovibrational levels in H2, HD, HT, D2, DT, and T2 has been determined. For the ground state of H2 the estimated precision is 3 × 10-7 cm-1, which is almost three orders of magnitude higher than that of the best previous result. The achieved accuracy removes the adiabatic contribution from the overall error budget of the present day theoretical predictions for the rovibrational levels.

  8. Symmetry-Protected Quantum Adiabatic Transistors

    NASA Astrophysics Data System (ADS)

    Williamson, Dominic J.; Bartlett, Stephen D.

    2014-03-01

    An essential development in the history of computing was the invention of the transistor as it allowed logic circuits to be implemented in a robust and modular way. The physical characteristics of semiconductor materials were the key to building these devices. We aim to present an analogous development for quantum computing by showing that quantum adiabatic transistors (as defined by Flammia et al.) are built upon the essential qualities of symmetry-protected (SP) quantum ordered phases in one dimension. Flammia et al. and Renes et al. have demonstrated schemes for universal adiabatic quantum computation using quantum adiabatic transistors described by interacting spin chain models with specifically chosen Hamiltonian terms. We show that these models can be understood as specific examples of the generic situation in which all SP phases lead to quantum computation on encoded edge degrees of freedom by adiabatically traversing a symmetric phase transition into a trivial symmetric phase. This point of view is advantageous as it allows us to readily see that the computational properties of a quantum adiabatic transistor arise from a phase of matter rather than due to carefully tuned interactions.

  9. Can conduction induce convection? On the non-linear saturation of buoyancy instabilities in dilute plasmas

    NASA Astrophysics Data System (ADS)

    McCourt, Michael; Parrish, Ian J.; Sharma, Prateek; Quataert, Eliot

    2011-05-01

    We study the effects of anisotropic thermal conduction on low-collisionality, astrophysical plasmas using two- and three-dimensional magnetohydrodynamic simulations. Dilute, weakly magnetized plasmas are buoyantly unstable for either sign of the temperature gradient: the heat-flux-driven buoyancy instability (HBI) operates when the temperature increases with radius while the magnetothermal instability (MTI) operates in the opposite limit. In contrast to previous results, we show that the MTI can drive strong turbulence and operate as an efficient magnetic dynamo, akin to standard, adiabatic convection. Together, the turbulent and magnetic energies may contribute up to ˜10 per cent of the pressure support in the plasma. In addition, the MTI drives a large convective heat flux, up to ˜1.5 per cent ×ρc3s. These findings are robust even in the presence of an external source of strong turbulence. Our results for the non-linear saturation of the HBI are consistent with previous studies but we explain physically why the HBI saturates quiescently, while the MTI saturates by generating sustained turbulence. We also systematically study how an external source of turbulence affects the saturation of the HBI: such turbulence can disrupt the HBI only on scales where the shearing rate of the turbulence is faster than the growth rate of the HBI. The HBI reorients the magnetic field and suppresses the conductive heat flux through the plasma, and our results provide a simple mapping between the level of turbulence in a plasma and the effective isotropic thermal conductivity. We discuss the astrophysical implications of these findings, with a particular focus on the intracluster medium of galaxy clusters.

  10. CORE SATURATION BLOCKING OSCILLATOR

    DOEpatents

    Spinrad, R.J.

    1961-10-17

    A blocking oscillator which relies on core saturation regulation to control the output pulse width is described. In this arrangement an external magnetic loop is provided in which a saturable portion forms the core of a feedback transformer used with the thermionic or semi-conductor active element. A first stationary magnetic loop establishes a level of flux through the saturation portion of the loop. A second adjustable magnet moves the flux level to select a saturation point giving the desired output pulse width. (AEC)

  11. Properties of a two stage adiabatic demagnetization refrigerator

    NASA Astrophysics Data System (ADS)

    Fukuda, H.; Ueda, S.; Arai, R.; Li, J.; Saito, A. T.; Nakagome, H.; Numazawa, T.

    2015-12-01

    Currently, many space missions using cryogenic temperatures are being planned. In particular, high resolution sensors such as Transition Edge Sensors need very low temperatures, below 100 mK. It is well known that the adiabatic demagnetization refrigerator (ADR) is one of most useful tools for producing ultra-low temperatures in space because it is gravity independent. We studied a continuous ADR system consisting of 4 stages and demonstrated it could provide continuous temperatures around 100 mK. However, there was some heat leakage from the power leads which resulted in reduced cooling power. Our efforts to upgrade our ADR system are presented. We show the effect of using the HTS power leads and discuss a cascaded Carnot cycle consisting of 2 ADR units.

  12. Nonadiabatic exchange dynamics during adiabatic frequency sweeps

    NASA Astrophysics Data System (ADS)

    Barbara, Thomas M.

    2016-04-01

    A Bloch equation analysis that includes relaxation and exchange effects during an adiabatic frequency swept pulse is presented. For a large class of sweeps, relaxation can be incorporated using simple first order perturbation theory. For anisochronous exchange, new expressions are derived for exchange augmented rotating frame relaxation. For isochronous exchange between sites with distinct relaxation rate constants outside the extreme narrowing limit, simple criteria for adiabatic exchange are derived and demonstrate that frequency sweeps commonly in use may not be adiabatic with regard to exchange unless the exchange rates are much larger than the relaxation rates. Otherwise, accurate assessment of the sensitivity to exchange dynamics will require numerical integration of the rate equations. Examples of this situation are given for experimentally relevant parameters believed to hold for in-vivo tissue. These results are of significance in the study of exchange induced contrast in magnetic resonance imaging.

  13. Adiabatic approximation for the density matrix

    NASA Astrophysics Data System (ADS)

    Band, Yehuda B.

    1992-05-01

    An adiabatic approximation for the Liouville density-matrix equation which includes decay terms is developed. The adiabatic approximation employs the eigenvectors of the non-normal Liouville operator. The approximation is valid when there exists a complete set of eigenvectors of the non-normal Liouville operator (i.e., the eigenvectors span the density-matrix space), the time rate of change of the Liouville operator is small, and an auxiliary matrix is nonsingular. Numerical examples are presented involving efficient population transfer in a molecule by stimulated Raman scattering, with the intermediate level of the molecule decaying on a time scale that is fast compared with the pulse durations of the pump and Stokes fields. The adiabatic density-matrix approximation can be simply used to determine the density matrix for atomic or molecular systems interacting with cw electromagnetic fields when spontaneous emission or other decay mechanisms prevail.

  14. Extensive Adiabatic Invariants for Nonlinear Chains

    NASA Astrophysics Data System (ADS)

    Giorgilli, Antonio; Paleari, Simone; Penati, Tiziano

    2012-09-01

    We look for extensive adiabatic invariants in nonlinear chains in the thermodynamic limit. Considering the quadratic part of the Klein-Gordon Hamiltonian, by a linear change of variables we transform it into a sum of two parts in involution. At variance with the usual method of introducing normal modes, our constructive procedure allows us to exploit the complete resonance, while keeping the extensive nature of the system. Next we construct a nonlinear approximation of an extensive adiabatic invariant for a perturbation of the discrete nonlinear Schrödinger model. The fluctuations of this quantity are controlled via Gibbs measure estimates independent of the system size, for a large set of initial data at low specific energy. Finally, by numerical calculations we show that our adiabatic invariant is well conserved for times much longer than predicted by our first order theory, with fluctuation much smaller than expected according to standard statistical estimates.

  15. Anderson localization makes adiabatic quantum optimization fail

    PubMed Central

    Altshuler, Boris; Krovi, Hari; Roland, Jérémie

    2010-01-01

    Understanding NP-complete problems is a central topic in computer science (NP stands for nondeterministic polynomial time). This is why adiabatic quantum optimization has attracted so much attention, as it provided a new approach to tackle NP-complete problems using a quantum computer. The efficiency of this approach is limited by small spectral gaps between the ground and excited states of the quantum computer’s Hamiltonian. We show that the statistics of the gaps can be analyzed in a novel way, borrowed from the study of quantum disordered systems in statistical mechanics. It turns out that due to a phenomenon similar to Anderson localization, exponentially small gaps appear close to the end of the adiabatic algorithm for large random instances of NP-complete problems. This implies that unfortunately, adiabatic quantum optimization fails: The system gets trapped in one of the numerous local minima. PMID:20616043

  16. Spontaneous emission in stimulated Raman adiabatic passage

    SciTech Connect

    Ivanov, P. A.; Vitanov, N. V.; Bergmann, K.

    2005-11-15

    This work explores the effect of spontaneous emission on the population transfer efficiency in stimulated Raman adiabatic passage (STIRAP). The approach uses adiabatic elimination of weakly coupled density matrix elements in the Liouville equation, from which a very accurate analytic approximation is derived. The loss of population transfer efficiency is found to decrease exponentially with the factor {omega}{sub 0}{sup 2}/{gamma}, where {gamma} is the spontaneous emission rate and {omega}{sub 0} is the peak Rabi frequency. The transfer efficiency increases with the pulse delay and reaches a steady value. For large pulse delay and large spontaneous emission rate STIRAP degenerates into optical pumping.

  17. Adiabatic Hyperspherical Analysis of Realistic Nuclear Potentials

    NASA Astrophysics Data System (ADS)

    Daily, K. M.; Kievsky, Alejandro; Greene, Chris H.

    2015-12-01

    Using the hyperspherical adiabatic method with the realistic nuclear potentials Argonne V14, Argonne V18, and Argonne V18 with the Urbana IX three-body potential, we calculate the adiabatic potentials and the triton bound state energies. We find that a discrete variable representation with the slow variable discretization method along the hyperradial degree of freedom results in energies consistent with the literature. However, using a Laguerre basis results in missing energy, even when extrapolated to an infinite number of basis functions and channels. We do not include the isospin T = 3/2 contribution in our analysis.

  18. On black hole spectroscopy via adiabatic invariance

    NASA Astrophysics Data System (ADS)

    Jiang, Qing-Quan; Han, Yan

    2012-12-01

    In this Letter, we obtain the black hole spectroscopy by combining the black hole property of adiabaticity and the oscillating velocity of the black hole horizon. This velocity is obtained in the tunneling framework. In particular, we declare, if requiring canonical invariance, the adiabatic invariant quantity should be of the covariant form Iadia = ∮pi dqi. Using it, the horizon area of a Schwarzschild black hole is quantized independently of the choice of coordinates, with an equally spaced spectroscopy always given by ΔA = 8 π lp2 in the Schwarzschild and Painlevé coordinates.

  19. Complexity of the Quantum Adiabatic Algorithm

    NASA Technical Reports Server (NTRS)

    Hen, Itay

    2013-01-01

    The Quantum Adiabatic Algorithm (QAA) has been proposed as a mechanism for efficiently solving optimization problems on a quantum computer. Since adiabatic computation is analog in nature and does not require the design and use of quantum gates, it can be thought of as a simpler and perhaps more profound method for performing quantum computations that might also be easier to implement experimentally. While these features have generated substantial research in QAA, to date there is still a lack of solid evidence that the algorithm can outperform classical optimization algorithms.

  20. Adiabatic approximation for nucleus-nucleus scattering

    SciTech Connect

    Johnson, R.C.

    2005-10-14

    Adiabatic approximations to few-body models of nuclear scattering are described with emphasis on reactions with deuterons and halo nuclei (frozen halo approximation) as projectiles. The different ways the approximation should be implemented in a consistent theory of elastic scattering, stripping and break-up are explained and the conditions for the theory's validity are briefly discussed. A formalism which links few-body models and the underlying many-body system is outlined and the connection between the adiabatic and CDCC methods is reviewed.

  1. Sliding Seal Materials for Adiabatic Engines, Phase 2

    NASA Technical Reports Server (NTRS)

    Lankford, J.; Wei, W.

    1986-01-01

    An essential task in the development of the heavy-duty adiabatic diesel engine is identification and improvements of reliable, low-friction piston seal materials. In the present study, the sliding friction coefficients and wear rates of promising carbide, oxide, and nitride materials were measured under temperature, environmental, velocity, and loading conditions that are representative of the adiabatic engine environment. In addition, silicon nitride and partially stabilized zirconia disks were ion implanted with TiNi, Ni, Co, and Cr, and subsequently run against carbide pins, with the objective of producing reduced friction via solid lubrication at elevated temperature. In order to provide guidance needed to improve materials for this application, the program stressed fundamental understanding of the mechanisms involved in friction and wear. Electron microscopy was used to elucidate the micromechanisms of wear following wear testing, and Auger electron spectroscopy was used to evaluate interface/environment interactions which seemed to be important in the friction and wear process. Unmodified ceramic sliding couples were characterized at all temperatures by friction coefficients of 0.24 and above. The coefficient at 800 C in an oxidizing environment was reduced to below 0.1, for certain material combinations, by the ion implanation of TiNi or Co. This beneficial effect was found to derive from lubricious Ti, Ni, and Co oxides.

  2. Substoichiometry and Saturation Analysis

    ERIC Educational Resources Information Center

    Willett, J. E.; Servant, D. M.

    1977-01-01

    Two experiments are described and appropriate discussion is given to illustrate the use of substoichiometry and saturation analysis techniques with undergraduates. The first experiment is the determination of silver content in photographic film. The second is the estimation of a hormone concentration using saturation analysis and a commercially…

  3. Influence of viscosity and the adiabatic index on planetary migration

    NASA Astrophysics Data System (ADS)

    Bitsch, B.; Boley, A.; Kley, W.

    2013-02-01

    Context. The strength and direction of migration of low mass embedded planets depends on the disk's thermodynamic state. It has been shown that in active disks, where the internal dissipation is balanced by radiative transport, migration can be directed outwards, a process which extends the lifetime of growing embryos. Very important parameters determining the structure of disks, and hence the direction of migration, are the viscosity and the adiabatic index. Aims: In this paper we investigate the influence of different viscosity prescriptions (α-type and constant) and adiabatic indices on disk structures. We then determine how this affects the migration rate of planets embedded in such disks. Methods: We perform three-dimensional numerical simulations of accretion disks with embedded planets. We use the explicit/implicit hydrodynamical code NIRVANA that includes full tensor viscosity and radiation transport in the flux-limited diffusion approximation, as well as a proper equation of state for molecular hydrogen. The migration of embedded 20 MEarth planets is studied. Results: Low-viscosity disks have cooler temperatures and the migration rates of embedded planets tend toward the isothermal limit. Hence, in these disks, planets migrate inwards even in the fully radiative case. The effect of outward migration can only be sustained if the viscosity in the disk is large. Overall, the differences between the treatments for the equation of state seem to play a more important role in disks with higher viscosity. A change in the adiabatic index and in the viscosity changes the zero-torque radius that separates inward from outward migration. Conclusions: For larger viscosities, temperatures in the disk become higher and the zero-torque radius moves to larger radii, allowing outward migration of a 20-MEarth planet to persist over an extended radial range. In combination with large disk masses, this may allow for an extended period of the outward migration of growing

  4. Saturation curve of SiO{sub 2} component in rutile-type GeO{sub 2}: A recoverable high-temperature pressure standard from 3 GPa to 10 GPa

    SciTech Connect

    Leinenweber, Kurt; Gullikson, Amber L.; Stoyanov, Emil; Malik, Abds-Sami

    2015-09-15

    The accuracy and precision of pressure measurements and the pursuit of reliable and readily available pressure scales at simultaneous high temperatures and pressures are still topics in development in high pressure research despite many years of work. In situ pressure scales based on x-ray diffraction are widely used but require x-ray access, which is lacking outside of x-ray beam lines. Other methods such as fixed points require several experiments to bracket a pressure calibration point. In this study, a recoverable high-temperature pressure gauge for pressures ranging from 3 GPa to 10 GPa is presented. The gauge is based on the pressure-dependent solubility of an SiO{sub 2} component in the rutile-structured phase of GeO{sub 2} (argutite), and is valid when the argutite solid solution coexists with coesite. The solid solution varies strongly in composition, mainly in pressure but also somewhat in temperature, and the compositional variations are easily detected by x-ray diffraction of the recovered products because of significant changes in the lattice parameters. The solid solution is measured here on two isotherms, one at 1200 °C and the other at 1500 °C, and is developed as a pressure gauge by calibrating it against three fixed points for each temperature and against the lattice parameter of MgO measured in situ at a total of three additional points. A somewhat detailed thermodynamic analysis is then presented that allows the pressure gauge to be used at other temperatures. This provides a way to accurately and reproducibly evaluate the pressure in high pressure experiments and applications in this pressure-temperature range, and could potentially be used as a benchmark to compare various other pressure scales under high temperature conditions. - Graphical abstract: The saturation curve of SiO{sub 2} in TiO{sub 2} shows a strong pressure dependence and a strong dependence of unit cell volume on composition. This provides an opportunity to use this

  5. Utilizing Temperature and Resistivity Data as a Way to Characterize Water and Solute Movement and Groundwater-Surface Water Interaction in Variably Saturated Porous Media

    NASA Astrophysics Data System (ADS)

    Scotch, C.; Murgulet, D.; Hay, R.

    2012-12-01

    This study utilizes a multidisciplinary approach to better analyze the extent to which groundwater and surface water interact in the Oso Creek water shed of South Texas using temperature data, electrical resistivity and numerical modeling methods. The three primary objectives of this study are to: (1) identify primary areas of streambed groundwater-surface water interaction using temperature time series and resistivity soundings; (2) improve understanding of solute flow and groundwater, surface water, and sediment interaction in a semiarid, urban coastal area; (3) improve our understanding of groundwater contribution to contaminant transport and discharge to the bays and estuaries and ultimately the Gulf of Mexico. Temperature data was acquired over a one year period, using temperature loggers, from June 11, 2009 to May 18, 2010 at 15-minute intervals from 17 monitoring sites along Oso Creek and its tributaries. Each monitoring site consisted of 4 temperature loggers equally vertically spaced from the stream surface down to a depth of one meter. Furthermore, groundwater temperatures and water levels were collected from wells adjacent to the temperature monitoring sites. In order to fulfill the objectives of this study, existing hydrogeologic, stratigraphic, and other ancillary data are being integrated into a finite difference model developed using the USGS VS2DT software for the Oso Creek Watershed. The model will be calibrated using existing temperature and water level data and a resistivity component will also be added to assure accuracy of the model and temperature data by helping to identify varying lithologies and water conductivities. Compiling a time-series of temperature data and incorporating available hydrostratigraphic, geomorphologic and water level data will enable the development of a comprehensive database. This database is necessary to develop the detailed flow model that will enable an understanding of the extent of groundwater surface water

  6. Gluon saturation in a saturated environment

    SciTech Connect

    Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Ivan

    2011-07-15

    A bootstrap equation for self-quenched gluon shadowing leads to a reduced magnitude of broadening for partons propagating through a nucleus. Saturation of small-x gluons in a nucleus, which has the form of transverse momentum broadening of projectile gluons in pA collisions in the nuclear rest frame, leads to a modification of the parton distribution functions in the beam compared with pp collisions. In nucleus-nucleus collisions all participating nucleons acquire enhanced gluon density at small x, which boosts further the saturation scale. Solution of the reciprocity equations for central collisions of two heavy nuclei demonstrate a significant, up to several times, enhancement of Q{sub sA}{sup 2}, in AA compared with pA collisions.

  7. Gluon saturation in a saturated environment

    NASA Astrophysics Data System (ADS)

    Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Ivan

    2011-07-01

    A bootstrap equation for self-quenched gluon shadowing leads to a reduced magnitude of broadening for partons propagating through a nucleus. Saturation of small-x gluons in a nucleus, which has the form of transverse momentum broadening of projectile gluons in pA collisions in the nuclear rest frame, leads to a modification of the parton distribution functions in the beam compared with pp collisions. In nucleus-nucleus collisions all participating nucleons acquire enhanced gluon density at small x, which boosts further the saturation scale. Solution of the reciprocity equations for central collisions of two heavy nuclei demonstrate a significant, up to several times, enhancement of QsA2, in AA compared with pA collisions.

  8. Growth kinetics of step edges on celestite (0 0 1) surfaces as a function of temperature, saturation state, ionic strength, and aqueous strontium:sulfate ratio: An in-situ atomic force microscopy study

    NASA Astrophysics Data System (ADS)

    Bracco, Jacquelyn N.; Gooijer, Yiscka; Higgins, Steven R.

    2016-02-01

    Step velocities on the celestite (0 0 1) surface have been measured as a function of temperature (23-45 °C), saturation state (S = 1.1-2.2), ionic strength (I = 0.01, 0.06, and 0.1 M), and aqueous strontium:sulfate ratio (r = 0.01-100) using atomic force microscopy (AFM). Celestite growth hillocks were flanked by [0 1 0]-aligned step edges, which are polar, and step edges vicinal to <1 2 0>, which are non-polar. [0 1 0] step velocities increased with temperature and saturation state, however step velocities did not vary significantly with ionic strength. Step velocities were non-linear with saturation state, suggesting a change in mechanism at high S as compared with low S. At constant S, the step velocities were maximized at r = 1 and decreased significantly at extreme r, demonstrating the governing role of solute stoichiometry. We successfully fit the step velocity data as a function of r using the Stack and Grantham (2010) nucleation and propagation model. Based on the results as a function of ionic strength and r, the mechanism at low S is likely ion-by-ion attachment to the step with an activation energy of 75 (±10) kJ mol-1. At high S the mechanism is a combination of the one at low S and possibly attachment of a neutral species such as an ion pair with an activation energy of 43 (±9) kJ mol-1.

  9. Growth kinetics of step edges on celestite (0 0 1) surfaces as a function of temperature, saturation state, ionic strength, and aqueous strontium:sulface ratio: An in-situ atomic force microscopy study

    SciTech Connect

    Bracco, Jacquelyn N.; Gooijer, Yiscka; Higgins, Steven R.

    2015-12-12

    Step velocities on the celestite (0 0 1) surface have been measured as a function of temperature (23–45 °C), saturation state (S = 1.1–2.2), ionic strength (I = 0.01, 0.06, and 0.1 M), and aqueous strontium:sulfate ratio (r = 0.01–100) using atomic force microscopy (AFM). Celestite growth hillocks were flanked by [0 1 0]-aligned step edges, which are polar, and step edges vicinal to <1 2 0>, which are non-polar. [0 1 0] step velocities increased with temperature and saturation state, however step velocities did not vary significantly with ionic strength. Step velocities were non-linear with saturation state, suggesting a change in mechanism at high S as compared with low S. At constant S, the step velocities were maximized at r = 1 and decreased significantly at extreme r, demonstrating the governing role of solute stoichiometry. We successfully fit the step velocity data as a function of r using the Stack and Grantham (2010) nucleation and propagation model. Based on the results as a function of ionic strength and r, the mechanism at low S is likely ion-by-ion attachment to the step with an activation energy of 75 (±10) kJ mol–1. In conclusion, at high S the mechanism is a combination of the one at low S and possibly attachment of a neutral species such as an ion pair with an activation energy of 43 (±9) kJ mol–1.

  10. Growth kinetics of step edges on celestite (0 0 1) surfaces as a function of temperature, saturation state, ionic strength, and aqueous strontium:sulface ratio: An in-situ atomic force microscopy study

    DOE PAGESBeta

    Bracco, Jacquelyn N.; Gooijer, Yiscka; Higgins, Steven R.

    2015-12-12

    Step velocities on the celestite (0 0 1) surface have been measured as a function of temperature (23–45 °C), saturation state (S = 1.1–2.2), ionic strength (I = 0.01, 0.06, and 0.1 M), and aqueous strontium:sulfate ratio (r = 0.01–100) using atomic force microscopy (AFM). Celestite growth hillocks were flanked by [0 1 0]-aligned step edges, which are polar, and step edges vicinal to <1 2 0>, which are non-polar. [0 1 0] step velocities increased with temperature and saturation state, however step velocities did not vary significantly with ionic strength. Step velocities were non-linear with saturation state, suggesting amore » change in mechanism at high S as compared with low S. At constant S, the step velocities were maximized at r = 1 and decreased significantly at extreme r, demonstrating the governing role of solute stoichiometry. We successfully fit the step velocity data as a function of r using the Stack and Grantham (2010) nucleation and propagation model. Based on the results as a function of ionic strength and r, the mechanism at low S is likely ion-by-ion attachment to the step with an activation energy of 75 (±10) kJ mol–1. In conclusion, at high S the mechanism is a combination of the one at low S and possibly attachment of a neutral species such as an ion pair with an activation energy of 43 (±9) kJ mol–1.« less

  11. Apparatus to Measure Adiabatic and Isothermal Processes.

    ERIC Educational Resources Information Center

    Lamb, D. W.; White, G. M.

    1996-01-01

    Describes a simple manual apparatus designed to serve as an effective demonstration of the differences between isothermal and adiabatic processes for the general or elementary physics student. Enables students to verify Boyle's law for slow processes and identify the departure from this law for rapid processes and can also be used to give a clear…

  12. Sulfur Saturation Limits in Silicate Melts and their Implications for Core Formation Scenarios for Terrestrial Planets

    NASA Technical Reports Server (NTRS)

    Holzheid, Astrid; Grove, Timothy L.

    2002-01-01

    This study explores the controls of temperature, pressure, and silicate melt composition on S solubility in silicate liquids. The solubility of S in FeO-containing silicate melts in equilibrium with metal sulfide increases significantly with increasing temperature but decreases with increasing pressure. The silicate melt structure also exercises a control on S solubility. Increasing the degree of polymerization of the silicate melt structure lowers the S solubility in the silicate liquid. The new set of experimental data is used to expand the model of Mavrogenes and O'Neill(1999) for S solubility in silicate liquids by incorporating the influence of the silicate melt structure. The expected S solubility in the ascending magma is calculated using the expanded model. Because the negative pressure dependence of S solubility is more influential than the positive temperature dependence, decompression and adiabatic ascent of a formerly S-saturated silicate magma will lead to S undersaturation. A primitive magma that is S-saturated in its source region will, therefore, become S-undersaturated as it ascends to shallower depth. In order to precipitate magmatic sulfides, the magma must first cool and undergo fractional crystallization to reach S saturation. The S content in a metallic liquid that is in equilibrium with a magma ocean that contains approx. 200 ppm S (i.e., Earth's bulk mantle S content) ranges from 5.5 to 12 wt% S. This range of S values encompasses the amount of S (9 to 12 wt%) that would be present in the outer core if S is the light element. Thus, the Earth's proto-mantle could be in equilibrium (in terms of the preserved S abundance) with a core-forming metallic phase.

  13. Communication: Adiabatic and non-adiabatic electron-nuclear motion: Quantum and classical dynamics

    NASA Astrophysics Data System (ADS)

    Albert, Julian; Kaiser, Dustin; Engel, Volker

    2016-05-01

    Using a model for coupled electronic-nuclear motion we investigate the range from negligible to strong non-adiabatic coupling. In the adiabatic case, the quantum dynamics proceeds in a single electronic state, whereas for strong coupling a complete transition between two adiabatic electronic states takes place. It is shown that in all coupling regimes the short-time wave-packet dynamics can be described using ensembles of classical trajectories in the phase space spanned by electronic and nuclear degrees of freedom. We thus provide an example which documents that the quantum concept of non-adiabatic transitions is not necessarily needed if electronic and nuclear motion is treated on the same footing.

  14. The dynamic instability of adiabatic blast waves

    NASA Technical Reports Server (NTRS)

    Ryu, Dongsu; Vishniac, Ethan T.

    1991-01-01

    Adiabatic blastwaves, which have a total energy injected from the center E varies as t(sup q) and propagate through a preshock medium with a density rho(sub E) varies as r(sup -omega) are described by a family of similarity solutions. Previous work has shown that adiabatic blastwaves with increasing or constant postshock entropy behind the shock front are susceptible to an oscillatory instability, caused by the difference between the nature of the forces on the two sides of the dense shell behind the shock front. This instability sets in if the dense postshock layer is sufficiently thin. The stability of adiabatic blastwaves with a decreasing postshock entropy is considered. Such blastwaves, if they are decelerating, always have a region behind the shock front which is subject to convection. Some accelerating blastwaves also have such region, depending on the values of q, omega, and gamma where gamma is the adiabatic index. However, since the shock interface stabilizes dynamically induced perturbations, blastwaves become convectively unstable only if the convective zone is localized around the origin or a contact discontinuity far from the shock front. On the other hand, the contact discontinuity of accelerating blastwaves is subject to a strong Rayleigh-Taylor instability. The frequency spectra of the nonradial, normal modes of adiabatic blastwaves have been calculated. The results have been applied to the shocks propagating through supernovae envelopes. It is shown that the metal/He and He/H interfaces are strongly unstable against the Rayleigh-Taylor instability. This instability will induce mixing in supernovae envelopes. In addition the implications of this work for the evolution of planetary nebulae is discussed.

  15. Adiabatic circuits: converter for static CMOS signals

    NASA Astrophysics Data System (ADS)

    Fischer, J.; Amirante, E.; Bargagli-Stoffi, A.; Schmitt-Landsiedel, D.

    2003-05-01

    Ultra low power applications can take great advantages from adiabatic circuitry. In this technique a multiphase system is used which consists ideally of trapezoidal voltage signals. The input signals to be processed will often come from a function block realized in static CMOS. The static rectangular signals must be converted for the oscillating multiphase system of the adiabatic circuitry. This work shows how to convert the input signals to the proposed pulse form which is synchronized to the appropriate supply voltage. By means of adder structures designed for a 0.13µm technology in a 4-phase system there will be demonstrated, which additional circuits are necessary for the conversion. It must be taken into account whether the data arrive in parallel or serial form. Parallel data are all in one phase and therefore it is advantageous to use an adder structure with a proper input stage, e.g. a Carry Lookahead Adder (CLA). With a serial input stage it is possible to read and to process four signals during one cycle due to the adiabatic 4-phase system. Therefore input signals with a frequency four times higher than the adiabatic clock frequency can be used. This reduces the disadvantage of the slow clock period typical for adiabatic circuits. By means of an 8 bit Ripple Carry Adder (8 bit RCA) the serial reading will be introduced. If the word width is larger than 4 bits the word can be divided in 4 bit words which are processed in parallel. This is the most efficient way to minimize the number of input lines and pads. At the same time a high throughput is achieved.

  16. The dynamic instability of adiabatic blast waves

    NASA Astrophysics Data System (ADS)

    Ryu, Dongsu; Vishniac, Ethan T.

    1991-02-01

    Adiabatic blastwaves, which have a total energy injected from the center E varies as tq and propagate through a preshock medium with a density rhoE varies as r-omega are described by a family of similarity solutions. Previous work has shown that adiabatic blastwaves with increasing or constant postshock entropy behind the shock front are susceptible to an oscillatory instability, caused by the difference between the nature of the forces on the two sides of the dense shell behind the shock front. This instability sets in if the dense postshock layer is sufficiently thin. The stability of adiabatic blastwaves with a decreasing postshock entropy is considered. Such blastwaves, if they are decelerating, always have a region behind the shock front which is subject to convection. Some accelerating blastwaves also have such region, depending on the values of q, omega, and gamma where gamma is the adiabatic index. However, since the shock interface stabilizes dynamically induced perturbations, blastwaves become convectively unstable only if the convective zone is localized around the origin or a contact discontinuity far from the shock front. On the other hand, the contact discontinuity of accelerating blastwaves is subject to a strong Rayleigh-Taylor instability. The frequency spectra of the nonradial, normal modes of adiabatic blastwaves have been calculated. The results have been applied to the shocks propagating through supernovae envelopes. It is shown that the metal/He and He/H interfaces are strongly unstable against the Rayleigh-Taylor instability. This instability will induce mixing in supernovae envelopes. In addition the implications of this work for the evolution of planetary nebulae is discussed.

  17. The dynamic instability of adiabatic blastwaves

    NASA Astrophysics Data System (ADS)

    Ryu, Dongsu; Vishniac, Ethan T.

    1990-05-01

    Adiabatic blastwaves, which have a total energy injected from the center E varies as t(sup q) and propagate through a preshock medium with a density rho(sub E) varies as r(sup -omega) are described by a family of similarity solutions. Previous work has shown that adiabatic blastwaves with increasing or constant postshock entropy behind the shock front are susceptible to an oscillatory instability, caused by the difference between the nature of the forces on the two sides of the dense shell behind the shock front. This instability sets in if the dense postshock layer is sufficiently thin. The stability of adiabatic blastwaves with a decreasing postshock entropy is considered. Such blastwaves, if they are decelerating, always have a region behind the shock front which is subject to convection. Some accelerating blastwaves also have such region, depending on the values of q, omega, and gamma where gamma is the adiabatic index. However, since the shock interface stabilizes dynamically induced perturbations, blastwaves become convectively unstable only if the convective zone is localized around the origin or a contact discontinuity far from the shock front. On the other hand, the contact discontinuity of accelerating blastwaves is subject to a strong Rayleigh-Taylor instability. The frequency spectra of the nonradial, normal modes of adiabatic blastwaves have been calculated. The results have been applied to the shocks propagating through supernovae envelopes. It is shown that the metal/He and He/H interfaces are strongly unstable against the Rayleigh-Taylor instability. This instability will induce mixing in supernovae envelopes. In addition the implications of this work for the evolution of planetary nebulae is discussed.

  18. Adiabatic burst evaporation from bicontinuous nanoporous membranes

    PubMed Central

    Ichilmann, Sachar; Rücker, Kerstin; Haase, Markus; Enke, Dirk

    2015-01-01

    Evaporation of volatile liquids from nanoporous media with bicontinuous morphology and pore diameters of a few 10 nm is an ubiquitous process. For example, such drying processes occur during syntheses of nanoporous materials by sol–gel chemistry or by spinodal decomposition in the presence of solvents as well as during solution impregnation of nanoporous hosts with functional guests. It is commonly assumed that drying is endothermic and driven by non-equilibrium partial pressures of the evaporating species in the gas phase. We show that nearly half of the liquid evaporates in an adiabatic mode involving burst-like liquid-to-gas conversions. During single adiabatic burst evaporation events liquid volumes of up to 107 μm3 are converted to gas. The adiabatic liquid-to-gas conversions occur if air invasion fronts get unstable because of the built-up of high capillary pressures. Adiabatic evaporation bursts propagate avalanche-like through the nanopore systems until the air invasion fronts have reached new stable configurations. Adiabatic cavitation bursts thus compete with Haines jumps involving air invasion front relaxation by local liquid flow without enhanced mass transport out of the nanoporous medium and prevail if the mean pore diameter is in the range of a few 10 nm. The results reported here may help optimize membrane preparation via solvent-based approaches, solution-loading of nanopore systems with guest materials as well as routine use of nanoporous membranes with bicontinuous morphology and may contribute to better understanding of adsorption/desorption processes in nanoporous media. PMID:25926406

  19. Investigations of the internal wave characteristics and saturation degree in the Earth's atmosphere by using radiosonde measurements of wind and temperature and their applications to the RO wave studies

    NASA Astrophysics Data System (ADS)

    Kirillovich, Ivan; Gubenko, Vladimir; Pavelyev, Alexander

    Internal gravity waves (IGWs) affect the structure and circulation of the Earth’s atmosphere by transporting energy and momentum upward from lower atmosphere. Observations of the temperature and wind velocity fluctuations in the middle atmosphere have shown that wave amplitudes grow with increasing altitude, however, no quickly enough in order to correspond to amplitude growth due to exponential decrease of density in the absence of energy dissipation. The theory of saturated IGWs explains such rate of the wave amplitude growth in the following way: any wave amplitude in excess of the threshold value will lead to instability and the production of turbulence that acts to prevent further growth of the wave amplitude. The mechanisms that contribute most to the dissipation and saturation of the dominant IGW motions in the atmosphere are thought to be the dynamical (shear) and convective instability. For high-frequency waves, the threshold amplitude required to achieve shear instability is virtually identical to that required for convective instability. But for low-frequency IGWs, the shear instability threshold falls well below that necessary for convective instability. The knowledge of actual and threshold wave amplitudes is important when the effect of IGWs on the background atmosphere is to be assessed. The internal wave saturation assumption plays the key role for radio occultation (RO) investigations of IGWs in planetary atmospheres [Gubenko et al., 2008, 2011, 2012], therefore a radiosonde study of wave saturation processes in the Earth’s atmosphere is actual task. The results of determination of the actual and threshold amplitudes, saturation degree and other characteristics for identified IGWs in the Earth’s atmosphere found from high-resolution radiosonde measurements SPARC (http://www.sparc.sunysb.edu/) of horizontal wind and temperature are presented. The usefulness of these observations in conjunction with RO studies of IGWs is discussed. The work was

  20. Adiabatic evolution of an irreversible two level system

    SciTech Connect

    Kvitsinsky, A.; Putterman, S. )

    1991-05-01

    The adiabatic dynamics of a two level atom with spontaneous decay is studied. The existence of a complex adiabatic phase shift is established: The real part being the usual Berry's phase. A closed-form expression for this phase and the adiabatic transition amplitudes is obtained. Incorporation of a finite preparation time for the initial state yields a new asymptotic form for the adiabatic transition amplitudes which is significantly different from the standard Landau--Zener--Dykhne formula.

  1. Adiabatic evaporation of binary liquid mixtures on the porous ball surface

    NASA Astrophysics Data System (ADS)

    Terekhov, V. I.; Shishkin, N. E.

    2009-06-01

    Measured data for the temperature of a porous spherical surface to which an evaporating binary liquid mixture was supplied are reported. In the experiments, solutions of ethyl and methyl alcohols in water, and also solutions of acetone in water, were used. The concentration of mixture components was varied throughout the widest possible range of X L = 0-1, and the temperature of dry air flow past the sphere was in the range t 0 = 15-300 °C. In the present study, a strong influence of the composition of the mixtures on their adiabatic evaporation temperature was established. In the heat- and mass-transfer process, the air temperature is also of paramount importance. An experimental correlation is obtained which generalizes data on adiabatic evaporation temperature in a broad range of component concentrations and temperatures for the experimentally examined binary liquid mixtures.

  2. Studies of non-isothermal flow in saturated and partially saturated porous media

    SciTech Connect

    Ho, C.K.; Maki, K.S.; Glass, R.J.

    1993-12-31

    Physical and numerical experiments have been performed to investigate the behavior of nonisothermal flow in two-dimensional saturated and partially saturated porous media. The physical experiments were performed to identify non-isothermal flow fields and temperature distributions in fully saturated, half-saturated, and residually saturated two-dimensional porous media with bottom heating and top cooling. Two counter-rotating liquid-phase convective cells were observed to develop in the saturated regions of all three cases. Gas-phase convection was also evidenced in the unsaturated regions of the partially saturated experiments. TOUGH2 numerical simulations of the saturated case were found to be strongly dependent on the assumed boundary conditions of the physical system. Models including heat losses through the boundaries of the test cell produced temperature and flow fields that were in better agreement with the observed temperature and flow fields than models that assumed insulated boundary conditions. A sensitivity analysis also showed that a reduction of the bulk permeability of the porous media in the numerical simulations depressed the effects of convection, flattening the temperature profiles across the test cell.

  3. Studies of non-isothermal flow in saturated and partially saturated porous media

    SciTech Connect

    Ho, C.K.; Maki, K.S.; Glass, R.J.

    1994-12-31

    Coupled thermal and hydrologic flow processes in unsaturated fractured rocks are important in the evaluation of Yucca Mountain as a potential repository for high level nuclear waste. Physical and numerical experiments have been performed to investigate the behavior of non-isothermal flow in two-dimensional saturated and partially saturated porous media. The physical experiments were performed to identify non-isothermal flow fields and temperature distributions in fully saturated, half-saturated, and residually saturated two-dimensional porous media with bottom heating and top cooling. Two counter-rotating liquid-phase convective cells were observed to develop in the saturated regions of all three cases. Gas-phase convection was also evidenced in the unsaturated regions of the partially saturated experiments. TOUGH2 numerical simulations of the saturated case were found to be strongly dependent on the assumed boundary conditions of the physical system. Models including heat losses through the boundaries of the test cell produced temperature and flow fields that were in better agreement with the observed temperature and flow fields than models that assumed insulated boundary conditions. A sensitivity analysis also showed that a reduction of the bulk permeability of the porous media in the numerical simulations depressed the effect of convection, flattening the temperature profiles across the test cell.

  4. Influence of Commercial Saturated Monoglyceride, Mono-/Diglycerides Mixtures, Vegetable Oil, Stirring Speed, and Temperature on the Physical Properties of Organogels

    PubMed Central

    Rocha-Amador, Omar Gerardo; Huang, Qingrong; Rocha-Guzman, Nuria Elizabeth; Moreno-Jimenez, Martha Rocio; Gonzalez-Laredo, Ruben F.

    2014-01-01

    The objective of this study was to evaluate the influence of gelator, vegetable oil, stirring speed, and temperature on the physical properties of obtained organogels. They were prepared under varying independent conditions and applying a fractional experimental design. From there a rheological characterization was developed. The physical characterization also included polarized light microscopy and calorimetric analysis. Once these data were obtained, X-Ray diffraction was applied to selected samples and a microstructure lattice was confirmed. Commonly, the only conditions that affect crystallization have been analyzed (temperature, solvent, gelator, and cooling rate). We found that stirring speed is the most important parameter in the organogel preparation. PMID:26904637

  5. Bimolecular recombination reactions: K-adiabatic and K-active forms of the bimolecular master equations and analytic solutions.

    PubMed

    Ghaderi, Nima

    2016-03-28

    Expressions for a K-adiabatic master equation for a bimolecular recombination rate constant krec are derived for a bimolecular reaction forming a complex with a single well or complexes with multiple well, where K is the component of the total angular momentum along the axis of least moment of inertia of the recombination product. The K-active master equation is also considered. The exact analytic solutions, i.e., the K-adiabatic and K-active steady-state population distribution function of reactive complexes, g(EJK) and g(EJ), respectively, are derived for the K-adiabatic and K-active master equation cases using properties of inhomogeneous integral equations (Fredholm type). The solutions accommodate arbitrary intermolecular energy transfer models, e.g., the single exponential, double exponential, Gaussian, step-ladder, and near-singularity models. At the high pressure limit, the krec for both the K-adiabatic and K-active master equations reduce, respectively, to the K-adiabatic and K-active bimolecular Rice-Ramsperger-Kassel-Marcus theory (high pressure limit expressions). Ozone and its formation from O + O2 are known to exhibit an adiabatic K. The ratio of the K-adiabatic to the K-active recombination rate constants for ozone formation at the high pressure limit is calculated to be ∼0.9 at 300 K. Results on the temperature and pressure dependence of the recombination rate constants and populations of O3 will be presented elsewhere. PMID:27036434

  6. Bimolecular recombination reactions: K-adiabatic and K-active forms of the bimolecular master equations and analytic solutions

    NASA Astrophysics Data System (ADS)

    Ghaderi, Nima

    2016-03-01

    Expressions for a K-adiabatic master equation for a bimolecular recombination rate constant krec are derived for a bimolecular reaction forming a complex with a single well or complexes with multiple well, where K is the component of the total angular momentum along the axis of least moment of inertia of the recombination product. The K-active master equation is also considered. The exact analytic solutions, i.e., the K-adiabatic and K-active steady-state population distribution function of reactive complexes, g(EJK) and g(EJ), respectively, are derived for the K-adiabatic and K-active master equation cases using properties of inhomogeneous integral equations (Fredholm type). The solutions accommodate arbitrary intermolecular energy transfer models, e.g., the single exponential, double exponential, Gaussian, step-ladder, and near-singularity models. At the high pressure limit, the krec for both the K-adiabatic and K-active master equations reduce, respectively, to the K-adiabatic and K-active bimolecular Rice-Ramsperger-Kassel-Marcus theory (high pressure limit expressions). Ozone and its formation from O + O2 are known to exhibit an adiabatic K. The ratio of the K-adiabatic to the K-active recombination rate constants for ozone formation at the high pressure limit is calculated to be ˜0.9 at 300 K. Results on the temperature and pressure dependence of the recombination rate constants and populations of O3 will be presented elsewhere.

  7. Lipid order, saturation and surface property relationships: a study of human meibum saturation.

    PubMed

    Mudgil, Poonam; Borchman, Douglas; Yappert, Marta C; Duran, Diana; Cox, Gregory W; Smith, Ryan J; Bhola, Rahul; Dennis, Gary R; Whitehall, John S

    2013-11-01

    Tear film stability decreases with age however the cause(s) of the instability are speculative. Perhaps the more saturated meibum from infants may contribute to tear film stability. The meibum lipid phase transition temperature and lipid hydrocarbon chain order at physiological temperature (33 °C) decrease with increasing age. It is reasonable that stronger lipid-lipid interactions could stabilize the tear film since these interactions must be broken for tear break up to occur. In this study, meibum from a pool of adult donors was saturated catalytically. The influence of saturation on meibum hydrocarbon chain order was determined by infrared spectroscopy. Meibum is in an anhydrous state in the meibomian glands and on the surface of the eyelid. The influence of saturation on the surface properties of meibum was determined using Langmuir trough technology. Saturation of native human meibum did not change the minimum or maximum values of hydrocarbon chain order so at temperatures far above or below the phase transition of human meibum, saturation does not play a role in ordering or disordering the lipid hydrocarbon chains. Saturation did increase the phase transition temperature in human meibum by over 20 °C, a relatively high amount. Surface pressure-area studies showing the late take off and higher maximum surface pressure of saturated meibum compared to native meibum suggest that the saturated meibum film is quite molecularly ordered (stiff molecular arrangement) and elastic (molecules are able to rearrange during compression and expansion) compared with native meibum films which are more fluid agreeing with the infrared spectroscopic results of this study. In saturated meibum, the formation of compacted ordered islands of lipids above the surfactant layer would be expected to decrease the rate of evaporation compared to fluid and more loosely packed native meibum. Higher surface pressure observed with films of saturated meibum compared to native meibum

  8. The Adiabatic Expansion of Gases and the Determination of Heat Capacity Ratios: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Moore, William M.

    1984-01-01

    Describes the procedures and equipment for an experiment on the adiabatic expansion of gases suitable for demonstration and discussion in the physical chemical laboratory. The expansion produced shows how the process can change temperature and still return to a different location on an isotherm. (JN)

  9. Non-equilibrium scale invariance and shortcuts to adiabaticity in a one-dimensional Bose gas

    PubMed Central

    Rohringer, W.; Fischer, D.; Steiner, F.; Mazets, I. E.; Schmiedmayer, J.; Trupke, M.

    2015-01-01

    We present experimental evidence for scale invariant behaviour of the excitation spectrum in phase-fluctuating quasi-1d Bose gases after a rapid change of the external trapping potential. Probing density correlations in free expansion, we find that the temperature of an initial thermal state scales with the spatial extension of the cloud as predicted by a model based on adiabatic rescaling of initial eigenmodes with conserved quasiparticle occupation numbers. Based on this result, we demonstrate that shortcuts to adiabaticity for the rapid expansion or compression of the gas do not induce additional heating. PMID:25867640

  10. Non-equilibrium scale invariance and shortcuts to adiabaticity in a one-dimensional Bose gas.

    PubMed

    Rohringer, W; Fischer, D; Steiner, F; Mazets, I E; Schmiedmayer, J; Trupke, M

    2015-01-01

    We present experimental evidence for scale invariant behaviour of the excitation spectrum in phase-fluctuating quasi-1d Bose gases after a rapid change of the external trapping potential. Probing density correlations in free expansion, we find that the temperature of an initial thermal state scales with the spatial extension of the cloud as predicted by a model based on adiabatic rescaling of initial eigenmodes with conserved quasiparticle occupation numbers. Based on this result, we demonstrate that shortcuts to adiabaticity for the rapid expansion or compression of the gas do not induce additional heating. PMID:25867640

  11. Coherent tunnelling adiabatic passage in optical fibres using superimposed long-period fiber gratings

    NASA Astrophysics Data System (ADS)

    Thyagarajan, K.; Gupta, Ruchi

    2016-08-01

    In this paper, we present the optical analogue of stimulated Raman adiabatic passage (STIRAP) technique for three level atomic system in optical fibre geometry. Considering linearly polarized modes of an optical fibre, it is shown that using a pair of superimposed long-period gratings with peak refractive index perturbation varying spatially along the propagation axis, light can be transferred adiabatically from one core mode to another core mode via an intermediate cladding mode which itself does not get appreciably excited; thus acting like a dark mode. We compare the transmission spectrum of superimposed long-period gratings involved in adiabatic transfer with the transmission spectrum of conventional long-period grating. The analogue output is further analysed for its tolerance to the changes in the ambient refractive index, temperature and other fabrication parameters.

  12. Adiabatic passage with spin locking in Tm3+:YAG

    NASA Astrophysics Data System (ADS)

    Pascual-Winter, M. F.; Tongning, R. C.; Lauro, R.; Louchet-Chauvet, A.; Chanelière, T.; Le Gouët, J.-L.

    2012-08-01

    In low-concentration Tm3+:YAG, we observe efficient adiabatic rapid passage (ARP) of thulium nuclear spin over flipping times much longer than T2. Efficient ARP with long flipping time has been observed in monoatomic solids for decades and has been analyzed in terms of spin temperature and of the thermodynamic equilibrium of a coupled spin ensemble. In low-concentration impurity-doped crystals the spin temperature concept may be questioned. A single spin model should be preferred since the impurity ions are weakly coupled together but interact with the numerous off-resonant matrix ions that originate the spin-spin relaxation. The experiment takes place in the context of quantum information investigation, involving impurity-doped crystals, spin hyperpolarization by optical pumping, and optical detection of the spin evolution.

  13. Passive gas-gap heat switch for adiabatic demagnetization refrigerator

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J. (Inventor); Di Pirro, Michael J. (Inventor)

    2005-01-01

    A passive gas-gap heat switch for use with a multi-stage continuous adiabatic demagnetization refrigerator (ADR). The passive gas-gap heat switch turns on automatically when the temperature of either side of the switch rises above a threshold value and turns off when the temperature on either side of the switch falls below this threshold value. One of the heat switches in this multistage process must be conductive in the 0.25? K to 0.3? K range. All of the heat switches must be capable of switching off in a short period of time (1-2 minutes), and when off to have a very low thermal conductance. This arrangement allows cyclic cooling cycles to be used without the need for separate heat switch controls.

  14. [A simple apparatus for the determination of the resistance of bioindicators to saturated steam at temperatures less than 100 degrees C., tested with Enterococcus faecium as test microbe].

    PubMed

    Spicher, G; Borchers, U; Peters, J

    1991-09-01

    An apparatus is described by means of which the resistance of microbiological indicators to water vapor at temperatures below 100 degrees C can be determined. The apparatus can be assembled from parts generally available in laboratories. The principle of the apparatus consists in the production of water vapor of the desired temperature under conditions of reduced pressure and its recondensation to water after having passed a special chamber. Accordingly, the device consists of a heated round-bottom flask serving as steam generator, an exposure chamber (B), and a condenser (D) attached to a receiver (E). The bioindicators are exposed to the water vapor in the exposure chamber. A bypass located between the steam generator and the condenser allows for continuous operation even when the exposure chamber is opened. The reduced pressure was achieved by means of a waterjet pump and adjusted by two tandem-joined pressure-regulating valves as needed. The apparatus was tested using water vapor of 73, 75 and 77 degrees C, respectively, and bioindicators containing Enterococcus faecium as test organism. In the range of exposure periods in which bioindicators change from the status "all indicators having surviving test organisms" to the status "all indicators free from surviving test organisms" the bioindicators showed D values of 5.7, 4.4 and 2.9 min, respectively. For the temperature dependence of resistance a z value of 12.5 Kelvin resulted. PMID:1953932

  15. Adiabatic fast passage application in solid state NMR study of cross relaxation and molecular dynamics in heteronuclear systems.

    PubMed

    Baranowski, M; Woźniak-Braszak, A; Jurga, K

    2016-01-01

    The paper presents the benefits of using fast adiabatic passage for the study of molecular dynamics in the solid state heteronuclear systems in the laboratory frame. A homemade pulse spectrometer operating at the frequency of 30.2MHz and 28.411MHz for protons and fluorines, respectively, has been enhanced with microcontroller direct digital synthesizer DDS controller [1-4]. This work briefly describes how to construct a low-cost and easy-to-assemble adiabatic extension set for homemade and commercial spectrometers based on recently very popular Arduino shields. The described set was designed for fast adiabatic generation. Timing and synchronization problems are discussed. The cross-relaxation experiments with different initial states of the two spin systems have been performed. Contrary to our previous work [5] where the steady-state NOE experiments were conducted now proton spins (1)H are polarized in the magnetic field B0 while fluorine spins (19)F are perturbed by selective saturation for a short time and then the system is allowed to evolve for a period in the absence of a saturating field. The adiabatic passage application leads to a reversal of magnetization of fluorine spins and increases the amplitude of the signal. PMID:26705906

  16. Adiabatic fast passage application in solid state NMR study of cross relaxation and molecular dynamics in heteronuclear systems

    NASA Astrophysics Data System (ADS)

    Baranowski, M.; Woźniak-Braszak, A.; Jurga, K.

    2016-01-01

    The paper presents the benefits of using fast adiabatic passage for the study of molecular dynamics in the solid state heteronuclear systems in the laboratory frame. A homemade pulse spectrometer operating at the frequency of 30.2 MHz and 28.411 MHz for protons and fluorines, respectively, has been enhanced with microcontroller direct digital synthesizer DDS controller [1-4]. This work briefly describes how to construct a low-cost and easy-to-assemble adiabatic extension set for homemade and commercial spectrometers based on recently very popular Arduino shields. The described set was designed for fast adiabatic generation. Timing and synchronization problems are discussed. The cross-relaxation experiments with different initial states of the two spin systems have been performed. Contrary to our previous work [5] where the steady-state NOE experiments were conducted now proton spins 1H are polarized in the magnetic field B0 while fluorine spins 19F are perturbed by selective saturation for a short time and then the system is allowed to evolve for a period in the absence of a saturating field. The adiabatic passage application leads to a reversal of magnetization of fluorine spins and increases the amplitude of the signal.

  17. Non-adiabatic perturbations in multi-component perfect fluids

    SciTech Connect

    Koshelev, N.A.

    2011-04-01

    The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models.

  18. Meteorology (Temperature)

    Atmospheric Science Data Center

    2014-09-25

    ... daily earth temperature minimum and maximum.   Frost Days (days) The number of days for which the temperature falls below 0 degrees Celsius.   Dew/Frost Point Temperature (° C) Temperature at which air is saturated ...

  19. Adiabatic Far Field Sub-Diffraction Imaging

    PubMed Central

    Cang, Hu; Salandrino, Alessandro; Wang, Yuan; Zhang, Xiang

    2015-01-01

    The limited resolution of a conventional optical imaging system stems from the fact that the fine feature information of an object is carried by evanescent waves, which exponentially decay in space thus cannot reach the imaging plane. We introduce here a new concept of adiabatic lens, which utilizes a geometrically conformal surface to mediate the interference of slowly decompressed electromagnetic waves at far field to form images. The decompression is satisfying an adiabatic condition, and by bridging the gap between far field and near field, it allows far field optical systems to project an image of the near field features directly. Using these designs, we demonstrated the magnification can be up to 20 times and it is possible to achieve sub-50nm imaging resolution in visible. Our approach provides a means to extend the domain of geometrical optics to a deep sub-wavelength scale. PMID:26258769

  20. Shortcuts to adiabaticity from linear response theory.

    PubMed

    Acconcia, Thiago V; Bonança, Marcus V S; Deffner, Sebastian

    2015-10-01

    A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. With the help of phenomenological response functions, a simple expression for the excess work is found-quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. Finally, we propose a degenerate family of protocols, which facilitates shortcuts to adiabaticity for specific and very short driving times. PMID:26565209

  1. Arbitrary qudit gates by adiabatic passage

    NASA Astrophysics Data System (ADS)

    Rousseaux, B.; Guérin, S.; Vitanov, N. V.

    2013-03-01

    We derive an adiabatic technique that implements the most general SU(d) transformation in a quantum system of d degenerate states, featuring a qudit. This technique is based on the factorization of the SU(d) transformation into d generalized quantum Householder reflections, each of which is implemented by a two-shot stimulated Raman adiabatic passage with appropriate static phases. The energy of the lasers needed to synthesize a single Householder reflection is shown to be remarkably constant as a function of d. This technique is directly applicable to a linear trapped ion system with d+1 ions. We implement the quantum Fourier transform numerically in a qudit with d=4 (defined as a quartit) as an example.

  2. Trapped Ion Quantum Computation by Adiabatic Passage

    SciTech Connect

    Feng Xuni; Wu Chunfeng; Lai, C. H.; Oh, C. H.

    2008-11-07

    We propose a new universal quantum computation scheme for trapped ions in thermal motion via the technique of adiabatic passage, which incorporates the advantages of both the adiabatic passage and the model of trapped ions in thermal motion. Our scheme is immune from the decoherence due to spontaneous emission from excited states as the system in our scheme evolves along a dark state. In our scheme the vibrational degrees of freedom are not required to be cooled to their ground states because they are only virtually excited. It is shown that the fidelity of the resultant gate operation is still high even when the magnitude of the effective Rabi frequency moderately deviates from the desired value.

  3. Adiabatic Quantum Optimization for Associative Memory Recall

    NASA Astrophysics Data System (ADS)

    Seddiqi, Hadayat; Humble, Travis

    2014-12-01

    Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.

  4. Quantum adiabatic evolution with energy degeneracy levels

    NASA Astrophysics Data System (ADS)

    Zhang, Qi

    2016-01-01

    A classical-kind phase-space formalism is developed to address the tiny intrinsic dynamical deviation from what is predicted by Wilczek-Zee theorem during quantum adiabatic evolution on degeneracy levels. In this formalism, the Hilbert space and the aggregate of degenerate eigenstates become the classical-kind phase space and a high-dimensional subspace in the phase space, respectively. Compared with the previous analogous study by a different method, the current result is qualitatively different in that the first-order deviation derived here is always perpendicular to the degeneracy subspace. A tripod-scheme Hamiltonian with two degenerate dark states is employed to illustrate the adiabatic deviation with degeneracy levels.

  5. Shortcuts to adiabaticity from linear response theory

    NASA Astrophysics Data System (ADS)

    Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian

    2015-10-01

    A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. With the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. Finally, we propose a degenerate family of protocols, which facilitates shortcuts to adiabaticity for specific and very short driving times.

  6. Adiabatic quantum optimization for associative memory recall

    DOE PAGESBeta

    Seddiqi, Hadayat; Humble, Travis S.

    2014-12-22

    Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are storedmore » in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.« less

  7. Adiabatic quantum optimization for associative memory recall

    SciTech Connect

    Seddiqi, Hadayat; Humble, Travis S.

    2014-12-22

    Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.

  8. Shortcuts to adiabaticity from linear response theory

    SciTech Connect

    Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian

    2015-10-23

    A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. Moreover, with the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. We finally propose a degenerate family of protocols, which facilitates shortcuts to adiabaticity for specific and very short driving times.

  9. Shortcuts to adiabaticity from linear response theory

    DOE PAGESBeta

    Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian

    2015-10-23

    A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. Moreover, with the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. We finally propose a degenerate family of protocols, which facilitates shortcuts tomore » adiabaticity for specific and very short driving times.« less

  10. Adiabatic Quantization of Andreev Quantum Billiard Levels

    NASA Astrophysics Data System (ADS)

    Silvestrov, P. G.; Goorden, M. C.; Beenakker, C. W.

    2003-03-01

    We identify the time T between Andreev reflections as a classical adiabatic invariant in a ballistic chaotic cavity (Lyapunov exponent λ), coupled to a superconductor by an N-mode constriction. Quantization of the adiabatically invariant torus in phase space gives a discrete set of periods Tn, which in turn generate a ladder of excited states ɛnm=(m+1/2)πℏ/Tn. The largest quantized period is the Ehrenfest time T0=λ-1ln(N. Projection of the invariant torus onto the coordinate plane shows that the wave functions inside the cavity are squeezed to a transverse dimension W/(N), much below the width W of the constriction.

  11. Adiabatic state preparation study of methylene

    SciTech Connect

    Veis, Libor Pittner, Jiří

    2014-06-07

    Quantum computers attract much attention as they promise to outperform their classical counterparts in solving certain type of problems. One of them with practical applications in quantum chemistry is simulation of complex quantum systems. An essential ingredient of efficient quantum simulation algorithms are initial guesses of the exact wave functions with high enough fidelity. As was proposed in Aspuru-Guzik et al. [Science 309, 1704 (2005)], the exact ground states can in principle be prepared by the adiabatic state preparation method. Here, we apply this approach to preparation of the lowest lying multireference singlet electronic state of methylene and numerically investigate preparation of this state at different molecular geometries. We then propose modifications that lead to speeding up the preparation process. Finally, we decompose the minimal adiabatic state preparation employing the direct mapping in terms of two-qubit interactions.

  12. Adiabatic Quantum Simulation of Quantum Chemistry

    PubMed Central

    Babbush, Ryan; Love, Peter J.; Aspuru-Guzik, Alán

    2014-01-01

    We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions. PMID:25308187

  13. Pulse sequences in photoassociation via adiabatic passage

    NASA Astrophysics Data System (ADS)

    Li, Xuan; Dupre, William; Parker, Gregory A.

    2012-07-01

    We perform a detailed study of pulse sequences in a photoassociation via adiabatic passage (PAP) process to transfer population from an ensemble of ultracold atomic clouds to a vibrationally cold molecular state. We show that an appreciable final population of ultracold NaCs molecules can be achieved with optimized pulses in either the ‘counter-intuitive’ (tP > tS) or ‘intuitive’ (tP < tS) PAP pulse sequences, with tP and tS denoting the temporal centers of the pump and Stokes pulses, respectively. By investigating the dependence of the reactive yield on pulse sequences, in a wide range of tP-tS, we show that there is not a fundamental preference to either pulse sequence in a PAP process. We explain this no-sequence-preference phenomenon by analyzing a multi-bound model so that an analogy can be drawn to the conventional stimulated Raman adiabatic passage.

  14. Conditions for super-adiabatic droplet growth after entrainment mixing

    DOE PAGESBeta

    Yang, Fan; Shaw, Raymond; Xue, Huiwen

    2016-07-29

    Cloud droplet response to entrainment and mixing between a cloud and its environment is considered, accounting for subsequent droplet growth during adiabatic ascent following a mixing event. The vertical profile for liquid water mixing ratio after a mixing event is derived analytically, allowing the reduction to be predicted from the mixing fraction and from the temperature and humidity for both the cloud and environment. It is derived for the limit of homogeneous mixing. The expression leads to a critical height above the mixing level: at the critical height the cloud droplet radius is the same for both mixed and unmixedmore » parcels, and the critical height is independent of the updraft velocity and mixing fraction. Cloud droplets in a mixed parcel are larger than in an unmixed parcel above the critical height, which we refer to as the “super-adiabatic” growth region. Analytical results are confirmed with a bin microphysics cloud model. Using the model, we explore the effects of updraft velocity, aerosol source in the environmental air, and polydisperse cloud droplets. Results show that the mixed parcel is more likely to reach the super-adiabatic growth region when the environmental air is humid and clean. It is also confirmed that the analytical predictions are matched by the volume-mean cloud droplet radius for polydisperse size distributions. The findings have implications for the origin of large cloud droplets that may contribute to onset of collision–coalescence in warm clouds.« less

  15. Adiabatic Processes Realized with a Trapped Brownian Particle

    NASA Astrophysics Data System (ADS)

    Martínez, Ignacio A.; Roldán, Édgar; Dinis, Luis; Petrov, Dmitri; Rica, Raúl A.

    2015-03-01

    The ability to implement adiabatic processes in the mesoscale is of key importance in the study of artificial or biological micro- and nanoengines. Microadiabatic processes have been elusive to experimental implementation due to the difficulty in isolating Brownian particles from their fluctuating environment. Here we report on the experimental realization of a microscopic quasistatic adiabatic process employing a trapped Brownian particle. We circumvent the complete isolation of the Brownian particle by designing a protocol where both characteristic volume and temperature of the system are changed in such a way that the entropy of the system is conserved along the process. We compare the protocols that follow from either the overdamped or underdamped descriptions, demonstrating that the latter is mandatory in order to obtain a vanishing average heat flux to the particle. We provide analytical expressions for the distributions of the fluctuating heat and entropy and verify them experimentally. Our protocols could serve to implement the first microscopic engine that is able to attain the fundamental limit for the efficiency set by Carnot.

  16. Adiabatic processes realized with a trapped Brownian particle.

    PubMed

    Martínez, Ignacio A; Roldán, Édgar; Dinis, Luis; Petrov, Dmitri; Rica, Raúl A

    2015-03-27

    The ability to implement adiabatic processes in the mesoscale is of key importance in the study of artificial or biological micro- and nanoengines. Microadiabatic processes have been elusive to experimental implementation due to the difficulty in isolating Brownian particles from their fluctuating environment. Here we report on the experimental realization of a microscopic quasistatic adiabatic process employing a trapped Brownian particle. We circumvent the complete isolation of the Brownian particle by designing a protocol where both characteristic volume and temperature of the system are changed in such a way that the entropy of the system is conserved along the process. We compare the protocols that follow from either the overdamped or underdamped descriptions, demonstrating that the latter is mandatory in order to obtain a vanishing average heat flux to the particle. We provide analytical expressions for the distributions of the fluctuating heat and entropy and verify them experimentally. Our protocols could serve to implement the first microscopic engine that is able to attain the fundamental limit for the efficiency set by Carnot. PMID:25860731

  17. Computer Code For Turbocompounded Adiabatic Diesel Engine

    NASA Technical Reports Server (NTRS)

    Assanis, D. N.; Heywood, J. B.

    1988-01-01

    Computer simulation developed to study advantages of increased exhaust enthalpy in adiabatic turbocompounded diesel engine. Subsytems of conceptual engine include compressor, reciprocator, turbocharger turbine, compounded turbine, ducting, and heat exchangers. Focus of simulation of total system is to define transfers of mass and energy, including release and transfer of heat and transfer of work in each subsystem, and relationship among subsystems. Written in FORTRAN IV.

  18. Siphon flows in isolated magnetic flux tubes. II - Adiabatic flows

    NASA Technical Reports Server (NTRS)

    Montesinos, Benjamin; Thomas, John H.

    1989-01-01

    This paper extends the study of steady siphon flows in isolated magnetic flux tubes surrounded by field-free gas to the case of adiabatic flows. The basic equations governing steady adiabatic siphon flows in a thin, isolated magnetic flux tube are summarized, and qualitative features of adiabatic flows in elevated, arched flux tubes are discussed. The equations are then cast in nondimensional form and the results of numerical computations of adiabatic siphon flows in arched flux tubes are presented along with comparisons between isothermal and adiabatic flows. The effects of making the interior of the flux tube hotter or colder than the surrounding atmosphere at the upstream footpoint of the arch is considered. In this case, is it found that the adiabatic flows are qualitatively similar to the isothermal flows, with adiabatic cooling producing quantitative differences. Critical flows can produce a bulge point in the rising part of the arch and a concentration of magnetic flux above the bulge point.

  19. Random matrix model of adiabatic quantum computing

    SciTech Connect

    Mitchell, David R.; Adami, Christoph; Lue, Waynn; Williams, Colin P.

    2005-05-15

    We present an analysis of the quantum adiabatic algorithm for solving hard instances of 3-SAT (an NP-complete problem) in terms of random matrix theory (RMT). We determine the global regularity of the spectral fluctuations of the instantaneous Hamiltonians encountered during the interpolation between the starting Hamiltonians and the ones whose ground states encode the solutions to the computational problems of interest. At each interpolation point, we quantify the degree of regularity of the average spectral distribution via its Brody parameter, a measure that distinguishes regular (i.e., Poissonian) from chaotic (i.e., Wigner-type) distributions of normalized nearest-neighbor spacings. We find that for hard problem instances - i.e., those having a critical ratio of clauses to variables - the spectral fluctuations typically become irregular across a contiguous region of the interpolation parameter, while the spectrum is regular for easy instances. Within the hard region, RMT may be applied to obtain a mathematical model of the probability of avoided level crossings and concomitant failure rate of the adiabatic algorithm due to nonadiabatic Landau-Zener-type transitions. Our model predicts that if the interpolation is performed at a uniform rate, the average failure rate of the quantum adiabatic algorithm, when averaged over hard problem instances, scales exponentially with increasing problem size.

  20. Aspects of adiabatic population transfer and control

    NASA Astrophysics Data System (ADS)

    Demirplak, Mustafa

    This thesis explores two different questions. The first question we answer is how to restore a given population transfer scenario given that it works efficiently in the adiabatic limit but fails because of lack of intensity and/or short duration. We derive a very simple algorithm to do this and apply it to both toy and realistic models. Two results emerge from this study. While the mathematical existence of the programme is certain it might not always be physically desirable. The restoration of adiabaticity is phase sensitive. The second question that is answered in this thesis is not how to invent new control paradigms, but rather what would happen to them in the presence of stochastic perturbers. We first use a phenomenological model to study the effect of stochastic dephasing on population transfer by stimulated Raman adiabatic passage. The results of this Monte Carlo calculation are qualitatively explained with a perturbation theoretical result in the dressed state basis. The reliability of our phenomenological model is questioned through a more rigorous hybrid quantal-classical simulation of controlled population transfer in HCl in Ar.

  1. An adiabatic approximation for grain alignment theory

    NASA Astrophysics Data System (ADS)

    Roberge, W. G.

    1997-10-01

    The alignment of interstellar dust grains is described by the joint distribution function for certain `internal' and `external' variables, where the former describe the orientation of the axes of a grain with respect to its angular momentum, J, and the latter describe the orientation of J relative to the interstellar magnetic field. I show how the large disparity between the dynamical time-scales of the internal and external variables - which is typically 2-3 orders of magnitude - can be exploited to simplify calculations of the required distribution greatly. The method is based on an `adiabatic approximation' which closely resembles the Born-Oppenheimer approximation in quantum mechanics. The adiabatic approximation prescribes an analytic distribution function for the `fast' dynamical variables and a simplified Fokker-Planck equation for the `slow' variables which can be solved straightforwardly using various techniques. These solutions are accurate to O(epsilon), where epsilon is the ratio of the fast and slow dynamical time-scales. As a simple illustration of the method, I derive an analytic solution for the joint distribution established when Barnett relaxation acts in concert with gas damping. The statistics of the analytic solution agree with the results of laborious numerical calculations which do not exploit the adiabatic approximation.

  2. An Adiabatic Approximation for Grain Alignment Theory

    NASA Astrophysics Data System (ADS)

    Roberge, W. G.

    1997-12-01

    The alignment of interstellar dust grains is described by the joint distribution function for certain ``internal'' and ``external'' variables, where the former describe the orientation of a grain's axes with respect to its angular momentum, J, and the latter describe the orientation of J relative to the interstellar magnetic field. I show how the large disparity between the dynamical timescales of the internal and external variables--- which is typically 2--3 orders of magnitude--- can be exploited to greatly simplify calculations of the required distribution. The method is based on an ``adiabatic approximation'' which closely resembles the Born-Oppenheimer approximation in quantum mechanics. The adiabatic approximation prescribes an analytic distribution function for the ``fast'' dynamical variables and a simplified Fokker-Planck equation for the ``slow'' variables which can be solved straightforwardly using various techniques. These solutions are accurate to cal {O}(epsilon ), where epsilon is the ratio of the fast and slow dynamical timescales. As a simple illustration of the method, I derive an analytic solution for the joint distribution established when Barnett relaxation acts in concert with gas damping. The statistics of the analytic solution agree with the results of laborious numerical calculations which do not exploit the adiabatic approximation.

  3. Effect of Strain on Microstructure Evolution of 1Cr18Ni9Ti Stainless Steel During Adiabatic Shearing

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Jiang, L. H.; Luo, S. H.; Hu, H. B.; Tang, T. G.; Zhang, Q. M.

    2016-01-01

    Dynamic shear test was conducted on the hat-shaped specimen of the thermo-mechanical-processed 1Cr18Ni9Ti stainless steel by using the split Hopkinson pressure bar at ambient temperature. The effect of the shear strain on the microstructure evolution was investigated during adiabatic shearing. The results revealed that the development of adiabatic shear localization went through three stages, including the incubation period, the development stage, and the maturity period. TEM observations showed that the grains in the shear region were elongated, and the elongated grains were gradually evolved into equiaxed nano-grains of 100 nm as shear strain increased. The rotational dynamic recrystallization kinetics calculation showed that subgrains had sufficient time to generate an equiaxed microcrystalline structure by rotation within the deformation time. Based on the observation of the evolution of dislocations and sub-grains in the adiabatic shear region, a model of the microstructure evolution was established during the adiabatic shearing.

  4. Saturation in coupled oscillators

    NASA Astrophysics Data System (ADS)

    Roman, Ahmed; Hanna, James

    2015-03-01

    We consider a weakly nonlinear system consisting of a resonantly forced oscillator coupled to an unforced oscillator. It has long been known that, for quadratic nonlinearities and a 2:1 resonance between the oscillators, a perturbative solution of the dynamics exhibits a phenomenon known as saturation. At low forcing, the forced oscillator responds, while the unforced oscillator is quiescent. Above a critical value of the forcing, the forced oscillator's steady-state amplitude reaches a plateau, while that of the unforced oscillator increases without bound. We show that, contrary to established folklore, saturation is not unique to quadratically nonlinear systems. We present conditions on the form of the nonlinear couplings and resonance that lead to saturation. Our results elucidate a mechanism for localization or diversion of energy in systems of coupled oscillators, and suggest new approaches for the control or suppression of vibrations in engineered systems.

  5. Phase relations and adiabats in boiling seafloor geothermal systems

    NASA Astrophysics Data System (ADS)

    Bischoff, James L.; Pitzer, Kenneth S.

    1985-11-01

    Observations of large salinity variations and vent temperatures in the range of 380-400°C suggest that boiling or two-phase separation may be occurring in some seafloor geothermal systems. Consideration of flow rates and the relatively small differences in density between vapors and liquids at the supercritical pressures at depth in these systems suggests that boiling is occurring under closed-system conditions. Salinity and temperature of boiling vents can be used to estimate the pressure-temperature point in the subsurface at which liquid seawater first reached the two-phase boundary. Data are reviewed to construct phase diagrams of coexisting brines and vapors in the two-phase region at pressures corresponding to those of the seafloor geothermal systems. A method is developed for calculating the enthalpy and entropy of the coexisting mixtures, and results are used to construct adiabats from the seafloor to the P-T two-phase boundary. Results for seafloor vents discharging at 2300 m below sea level indicate that a 385°C vent is composed of a brine (7% NaCl equivalent) in equilibrium with a vapor (0.1% NaCl). Brine constitutes 45% by weight of the mixture, and the fluid first boiled at approximately 1 km below the seafloor at 415°C, 330 bar. A 400°C vent is primarily vapor (88 wt.%, 0.044% NaCl) with a small amount of brine (26% NaCl) and first boiled at 2.9 km below the seafloor at 500°C, 520 bar. These results show that adiabatic decompression in the two-phase region results in dramatic cooling of the fluid mixture when there is a large fraction of vapor.

  6. A study on the high temperature-dependence of the electrical properties in a solution-deposited zinc-tin-oxide thin-film transistor operated in the saturation region

    NASA Astrophysics Data System (ADS)

    Yu, Kyeong Min; Bae, Byung Seong; Jung, Myunghee; Yun, Eui-Jung

    2016-06-01

    We investigate the effects of high temperatures in the range of 292 - 393 K on the electrical properties of solution-processed amorphous zinc-tin-oxide (a-ZTO) thin-film transistors (TFTs) operated in the saturation region. The fabricated a-ZTO TFTs have a non-patterned bottom gate and top contact structure, and they use a heavily-doped Si wafer and SiO2 as a gate electrode and a gate insulator layer, respectively. In a-ZTO TFTs, the trap release energy ( E TR ) was deduced by using Maxwell-Boltzmann statistics. The decreasing E TR toward zero with increasing gate voltage (the density of trap states ( n s )) in the a-ZTO active layer can be attributed to a shift of the Fermi level toward the mobility edge with increasing gate voltage. The TFTs with low gate voltage (low n s ) exhibit multiple trap and release characteristics and show thermally-activated behavior. In TFTs with a high gate voltage (high n s ), however, we observe decreasing mobility and conductivity with increasing temperature at temperatures ranging from 303 to 363 K. This confirms that the E TR can drop to zero, indicating a shift of the Fermi level beyond the mobility edge. Hence, the mobility edge is detected at the cusp between thermally-activated transport and band transport.

  7. High temperature refrigerator

    DOEpatents

    Steyert, Jr., William A.

    1978-01-01

    A high temperature magnetic refrigerator which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle said working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot.

  8. A flightworthy ADR for use in the AXAF/XRS. [adiabatic demagnetization refrigerator

    NASA Technical Reports Server (NTRS)

    Serlemitsos, Aristides T.; Sansebastian, Marcelino; Kunes, Evan S.

    1991-01-01

    NASA-Goddard has undertaken the development of an adiabatic demagnetization refrigerator (ADR) for cooling the detectors of the Advanced X-ray Astrophysical Facility's X-ray Spectrometer (XRS) to the requisite 0.065 K-operation temperature. The XRS ADR's intricate thermal bus system furnished excellent thermal conductance for both the low parasitic heat leak heat switch during the magnetization cycle, and the detectors during low temperature operation. Attention is given to the ADR's operating principles, construction, and suspension system.

  9. Pump for Saturated Liquids

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.

    1986-01-01

    Boiling liquids pumped by device based on proven components. Expanding saturated liquid in nozzle and diverting its phases along separate paths in liquid/vapor separator raises pressure of liquid. Liquid cooled in process. Pump makes it unnecessary to pressurize cryogenic liquids in order to pump them. Problems of introducing noncondensable pressurizing gas avoided.

  10. A Multi-Stage Continuous-Duty Adiabatic Demagnetization Refrigerator

    NASA Technical Reports Server (NTRS)

    Shirron, P. J.; Blumenstock, K. A.; Canavan, E. R.; DiPirro, M. J.; Tuttle, J. G.; Voellmer, G. M.; Yeager, C. J.

    1999-01-01

    The design for a multi-stage adiabatic demagnetization refrigerator (ADR) that can provide continuous cooling at very low temperatures is presented. The ADR is being developed for use in x-ray, IR and sub-millimeter space astronomy missions which will employ large format detector arrays operating at 50 mK and lower and which may dissipate up to 10 microwatts. It is also being designed to reject heat slowly to a relatively warm heat sink (in the 6-10 K range), so that future missions may use mechanical cryocoolers instead of liquid helium for pre-cooling. The continuous nature of the device gives it a much higher cooling power per unit mass, allowing it to be much smaller and lighter than existing ADRs with comparable performance. Design details are discussed along with prototype test results.

  11. Model of TPTC Stirling engine with adiabatic working spaces

    NASA Astrophysics Data System (ADS)

    Renfroe, D. A.; Counts, M.

    1988-10-01

    A Stirling engine incorporating a phase-changing component of the working fluid has been modeled with the assumption that the compression and expansion space are adiabatic, and that the heat exchanger consists of a cooler, regenerator, and heater of finite size where the fluid follows an idealized temperature profile. Differential equations for the rate of change of mass in any cell and pressure over the entire engine were derived from the energy, continuity, state equations, and Dalton's law. From the simultaneous solution of these equations, all of the information necessary for calculation of power output and efficiency were obtained. Comparison of the results from this model with previous studies shows that the advantage of adding a phase-changing component to the working fluid may have been overstated.

  12. Ferromagnetism and adiabatic to non-adiabatic switching process in La0.33Sr0.67Mn1-xFexO3 (0≤x≤0.02) manganite

    NASA Astrophysics Data System (ADS)

    Ahmed, Hilal; Khan, Shakeel; Khan, Wasi; Nongjai, Razia; Khan, Imran

    2014-11-01

    We have systematically investigated structural, electrical and magnetic properties of Fe doped La0.33Sr0.67MnO3 manganites synthesized through solid-state reaction-route. All the samples are found to have rhombohedral crystal structure. The crystallite sizes obtained by XRD data are much smaller than the average grain size obtained by scanning electron microscope (SEM). Temperature dependent resistivity data were fitted using Mott's variable-range hopping (VRH) and small polaron hopping (SPH) models for obtaining different parameters. The adiabatic SPH conduction mechanism is followed almost for both samples in the absence of magnetic field but a switching from adiabatic to non-adiabatic SPH conduction mechanism is found in the presence of magnetic field. Temperature dependent magnetization (M-T) measurements confirm the decrease in Curie-temperature (TC) with Fe doping. Both the samples exhibited ferromagnetic behavior at 10 K and 300 K with a small hysteresis loop and low coercivity.

  13. Saturated solar ponds: 3. Experimental verification

    SciTech Connect

    Subhakar, D.; Murthy, S.S. )

    1994-12-01

    An experimental saturated solar pond is constructed using magnesium chloride salt. The temperature and concentration gradients are developed by heating the pond from the bottom and adding finely powdered salt from the top. The development of a temperature profile in the pond exposed to direct sunlight and its daily variation are studied. The predictions of the temperature profiles, using the authors' mathematical model, match the experiments better than the concentration profiles.

  14. A Continuous Adiabatic Demagnetization Refrigerator for Use with Mechanical Coolers

    NASA Technical Reports Server (NTRS)

    Shirron, P.; Abbondante, N.; Canavan, E.; DiPirro, M.; Grabowski, M.; Hirsch, M.; Jackson, M.; Tuttle, J.

    2000-01-01

    We have begun developing an adiabatic demagnetization refrigerator (ADR) which can produce continuous cooling at temperatures of 50 mK or lower, with high cooling power (goal of 10 PW). The design uses multiple stages to cascade heat from a continuously-cooled stage up to a heat sink. The serial arrangement makes it possible to add stages to extend the operating range to lower temperature, or to raise the heat rejection temperature. Compared to conventional single-shot ADRS, this system achieves higher cooling power per unit mass and is able to reject its heat at a more uniform rate. For operation with a mechanical cryocooler, this latter feature stabilizes the heat sink temperature and allows both the ADR and cryocooler to operate more efficiently. The ADR is being designed to operate with a heat sink as warm as 10-12 K to make it compatible with a wide variety of mechanical coolers as part of a versatile, cryogen-free low temperature cooling system. A two-stage system has been constructed and a proof-of-principle demonstration was conducted at 100 mK. Details of the design and test results, as well as the direction of future work, are discussed.

  15. Adiabatic calorimetric decomposition studies of 50 wt.% hydroxylamine/water.

    PubMed

    Cisneros, L O; Rogers, W J; Mannan, M S

    2001-03-19

    Calorimetric data can provide a basis for determining potential hazards in reactions, storage, and transportation of process chemicals. This work provides calorimetric data for the thermal decomposition behavior in air of 50wt.% hydroxylamine/water (HA), both with and without added stabilizers, which was measured in closed cells with an automatic pressure tracking adiabatic calorimeter (APTAC). Among the data provided are onset temperatures, reaction order, activation energies, pressures of noncondensable products, thermal stability at 100 degrees C, and the effect of HA storage time. Discussed also are the catalytic effects of carbon steel, stainless steel, stainless steel with silica coating, inconel, titanium, and titanium with silica coating on the reaction self-heat rates and onset temperatures. In borosilicate glass cells, HA was relatively stable at temperatures up to 133 degrees C, where the HA decomposition self-heat rate reached 0.05 degrees C/min. The added stabilizers appeared to reduce HA decomposition rates in glass cells and at ambient temperatures. The tested metals and metal surfaces coated with silica acted as catalysts to lower the onset temperatures and increase the self-heat rates. PMID:11165058

  16. Wigner phase space distribution via classical adiabatic switching.

    PubMed

    Bose, Amartya; Makri, Nancy

    2015-09-21

    Evaluation of the Wigner phase space density for systems of many degrees of freedom presents an extremely demanding task because of the oscillatory nature of the Fourier-type integral. We propose a simple and efficient, approximate procedure for generating the Wigner distribution that avoids the computational difficulties associated with the Wigner transform. Starting from a suitable zeroth-order Hamiltonian, for which the Wigner density is available (either analytically or numerically), the phase space distribution is propagated in time via classical trajectories, while the perturbation is gradually switched on. According to the classical adiabatic theorem, each trajectory maintains a constant action if the perturbation is switched on infinitely slowly. We show that the adiabatic switching procedure produces the exact Wigner density for harmonic oscillator eigenstates and also for eigenstates of anharmonic Hamiltonians within the Wentzel-Kramers-Brillouin (WKB) approximation. We generalize the approach to finite temperature by introducing a density rescaling factor that depends on the energy of each trajectory. Time-dependent properties are obtained simply by continuing the integration of each trajectory under the full target Hamiltonian. Further, by construction, the generated approximate Wigner distribution is invariant under classical propagation, and thus, thermodynamic properties are strictly preserved. Numerical tests on one-dimensional and dissipative systems indicate that the method produces results in very good agreement with those obtained by full quantum mechanical methods over a wide temperature range. The method is simple and efficient, as it requires no input besides the force fields required for classical trajectory integration, and is ideal for use in quasiclassical trajectory calculations. PMID:26395694

  17. Wigner phase space distribution via classical adiabatic switching

    SciTech Connect

    Bose, Amartya; Makri, Nancy

    2015-09-21

    Evaluation of the Wigner phase space density for systems of many degrees of freedom presents an extremely demanding task because of the oscillatory nature of the Fourier-type integral. We propose a simple and efficient, approximate procedure for generating the Wigner distribution that avoids the computational difficulties associated with the Wigner transform. Starting from a suitable zeroth-order Hamiltonian, for which the Wigner density is available (either analytically or numerically), the phase space distribution is propagated in time via classical trajectories, while the perturbation is gradually switched on. According to the classical adiabatic theorem, each trajectory maintains a constant action if the perturbation is switched on infinitely slowly. We show that the adiabatic switching procedure produces the exact Wigner density for harmonic oscillator eigenstates and also for eigenstates of anharmonic Hamiltonians within the Wentzel-Kramers-Brillouin (WKB) approximation. We generalize the approach to finite temperature by introducing a density rescaling factor that depends on the energy of each trajectory. Time-dependent properties are obtained simply by continuing the integration of each trajectory under the full target Hamiltonian. Further, by construction, the generated approximate Wigner distribution is invariant under classical propagation, and thus, thermodynamic properties are strictly preserved. Numerical tests on one-dimensional and dissipative systems indicate that the method produces results in very good agreement with those obtained by full quantum mechanical methods over a wide temperature range. The method is simple and efficient, as it requires no input besides the force fields required for classical trajectory integration, and is ideal for use in quasiclassical trajectory calculations.

  18. Many-body effects on adiabatic passage through Feshbach resonances

    SciTech Connect

    Tikhonenkov, I.; Pazy, E.; Band, Y. B.; Vardi, A.; Fleischhauer, M.

    2006-04-15

    We theoretically study the dynamics of an adiabatic sweep through a Feshbach resonance, thereby converting a degenerate quantum gas of fermionic atoms into a degenerate quantum gas of bosonic dimers. Our analysis relies on a zero temperature mean-field theory which accurately accounts for initial molecular quantum fluctuations, triggering the association process. The structure of the resulting semiclassical phase space is investigated, highlighting the dynamical instability of the system towards association, for sufficiently small detuning from resonance. It is shown that this instability significantly modifies the finite-rate efficiency of the sweep, transforming the single-pair exponential Landau-Zener behavior of the remnant fraction of atoms {gamma} on sweep rate {alpha}, into a power-law dependence as the number of atoms increases. The obtained nonadiabaticity is determined from the interplay of characteristic time scales for the motion of adiabatic eigenstates and for fast periodic motion around them. Critical slowing-down of these precessions near the instability leads to the power-law dependence. A linear power law {gamma}{proportional_to}{alpha} is obtained when the initial molecular fraction is smaller than the 1/N quantum fluctuations, and a cubic-root power law {gamma}{proportional_to}{alpha}{sup 1/3} is attained when it is larger. Our mean-field analysis is confirmed by exact calculations, using Fock-space expansions. Finally, we fit experimental low temperature Feshbach sweep data with a power-law dependence. While the agreement with the experimental data is well within experimental error bars, similar accuracy can be obtained with an exponential fit, making additional data highly desirable.

  19. Wigner phase space distribution via classical adiabatic switching

    NASA Astrophysics Data System (ADS)

    Bose, Amartya; Makri, Nancy

    2015-09-01

    Evaluation of the Wigner phase space density for systems of many degrees of freedom presents an extremely demanding task because of the oscillatory nature of the Fourier-type integral. We propose a simple and efficient, approximate procedure for generating the Wigner distribution that avoids the computational difficulties associated with the Wigner transform. Starting from a suitable zeroth-order Hamiltonian, for which the Wigner density is available (either analytically or numerically), the phase space distribution is propagated in time via classical trajectories, while the perturbation is gradually switched on. According to the classical adiabatic theorem, each trajectory maintains a constant action if the perturbation is switched on infinitely slowly. We show that the adiabatic switching procedure produces the exact Wigner density for harmonic oscillator eigenstates and also for eigenstates of anharmonic Hamiltonians within the Wentzel-Kramers-Brillouin (WKB) approximation. We generalize the approach to finite temperature by introducing a density rescaling factor that depends on the energy of each trajectory. Time-dependent properties are obtained simply by continuing the integration of each trajectory under the full target Hamiltonian. Further, by construction, the generated approximate Wigner distribution is invariant under classical propagation, and thus, thermodynamic properties are strictly preserved. Numerical tests on one-dimensional and dissipative systems indicate that the method produces results in very good agreement with those obtained by full quantum mechanical methods over a wide temperature range. The method is simple and efficient, as it requires no input besides the force fields required for classical trajectory integration, and is ideal for use in quasiclassical trajectory calculations.

  20. Bond selective chemistry beyond the adiabatic approximation

    SciTech Connect

    Butler, L.J.

    1993-12-01

    One of the most important challenges in chemistry is to develop predictive ability for the branching between energetically allowed chemical reaction pathways. Such predictive capability, coupled with a fundamental understanding of the important molecular interactions, is essential to the development and utilization of new fuels and the design of efficient combustion processes. Existing transition state and exact quantum theories successfully predict the branching between available product channels for systems in which each reaction coordinate can be adequately described by different paths along a single adiabatic potential energy surface. In particular, unimolecular dissociation following thermal, infrared multiphoton, or overtone excitation in the ground state yields a branching between energetically allowed product channels which can be successfully predicted by the application of statistical theories, i.e. the weakest bond breaks. (The predictions are particularly good for competing reactions in which when there is no saddle point along the reaction coordinates, as in simple bond fission reactions.) The predicted lack of bond selectivity results from the assumption of rapid internal vibrational energy redistribution and the implicit use of a single adiabatic Born-Oppenheimer potential energy surface for the reaction. However, the adiabatic approximation is not valid for the reaction of a wide variety of energetic materials and organic fuels; coupling between the electronic states of the reacting species play a a key role in determining the selectivity of the chemical reactions induced. The work described below investigated the central role played by coupling between electronic states in polyatomic molecules in determining the selective branching between energetically allowed fragmentation pathways in two key systems.

  1. Phase avalanches in near-adiabatic evolutions

    SciTech Connect

    Vertesi, T.; Englman, R.

    2006-02-15

    In the course of slow, nearly adiabatic motion of a system, relative changes in the slowness can cause abrupt and high magnitude phase changes, ''phase avalanches,'' superimposed on the ordinary geometric phases. The generality of this effect is examined for arbitrary Hamiltonians and multicomponent (>2) wave packets and is found to be connected (through the Blaschke term in the theory of analytic signals) to amplitude zeros in the lower half of the complex time plane. Motion on a nonmaximal circle on the Poincare-sphere suppresses the effect. A spectroscopic transition experiment can independently verify the phase-avalanche magnitudes.

  2. Adiabatic chaos in the spin orbit problem

    NASA Astrophysics Data System (ADS)

    Benettin, Giancarlo; Guzzo, Massimiliano; Marini, Valerio

    2008-05-01

    We provide evidences that the angular momentum of a symmetric rigid body in a spin orbit resonance can perform large scale chaotic motions on time scales which increase polynomially with the inverse of the oblateness of the body. This kind of irregular precession appears as soon as the orbit of the center of mass is non-circular and the angular momentum of the body is far from the principal directions with minimum (maximum) moment of inertia. We also provide a quantitative explanation of these facts by using the theory of adiabatic invariants, and we provide numerical applications to the cases of the 1:1 and 1:2 spin orbit resonances.

  3. Experimental breaking of an adiabatic invariant

    NASA Astrophysics Data System (ADS)

    Notte, J.; Fajans, J.; Chu, R.; Wurtele, J. S.

    1993-06-01

    When a cylindrical pure electron plasma is displaced from the center of the trap, it performs a bulk circular orbital motion known as the l=1 diocotron mode. The slow application of a perturbing potential to a patch on the trap wall distorts the orbit into a noncircular closed path. Experiments and a simple theoretical model indicate that the area by the loop is an adiabatic invariant. Detailed studies are made of the breaking of the invariant when perturbations are rapidly applied. When the perturbation is applied with discontinuous time derivatives, the invariant breaking greatly exceeds the predictions of the standard theory for smooth perturbations.

  4. [Bond selective chemistry beyond the adiabatic approximation

    SciTech Connect

    Butler, L.J.

    1993-02-28

    The adiabatic Born-Oppenheimer potential energy surface approximation is not valid for reaction of a wide variety of energetic materials and organic fuels; coupling between electronic states of reacting species plays a key role in determining the selectivity of the chemical reactions induced. This research program initially studies this coupling in (1) selective C-Br bond fission in 1,3- bromoiodopropane, (2) C-S:S-H bond fission branching in CH[sub 3]SH, and (3) competition between bond fission channels and H[sub 2] elimination in CH[sub 3]NH[sub 2].

  5. Adiabatic passage in the presence of noise

    NASA Astrophysics Data System (ADS)

    Noel, T.; Dietrich, M. R.; Kurz, N.; Shu, G.; Wright, J.; Blinov, B. B.

    2012-02-01

    We report on an experimental investigation of rapid adiabatic passage (RAP) in a trapped barium ion system. RAP is implemented on the transition from the 6S1/2 ground state to the metastable 5D5/2 level by applying a laser at 1.76 μm. We focus on the interplay of laser frequency noise and laser power in shaping the effectiveness of RAP, which is commonly assumed to be a robust tool for high-efficiency population transfer. However, we note that reaching high state transfer fidelity requires a combination of small laser linewidth and large Rabi frequency.

  6. Adiabatic demagnetization refrigerator for space use

    NASA Technical Reports Server (NTRS)

    Serlemitsos, A. T.; Warner, B. A.; Castles, S.; Breon, S. R.; San Sebastian, M.; Hait, T.

    1990-01-01

    An Adiabatic Demagnetization Refrigerator (ADR) for space use is under development at NASA's Goddard Space Flight Center (GSFC). The breadboard ADR operated at 100 mK for 400 minutes. Some significant changes to that ADR, designed to eliminate shortcomings revealed during tests, are reported. To increase thermal contact, the ferric ammonium sulfate crystals were grown directly on gold-plated copper wires which serve as the thermal bus. The thermal link to the X-ray sensors was also markedly improved. To speed up the testing required to determine the best design parameters for the gas gap heat switch, the new heat switch has a modular design and is easy to disassemble.

  7. Generalized Ramsey numbers through adiabatic quantum optimization

    NASA Astrophysics Data System (ADS)

    Ranjbar, Mani; Macready, William G.; Clark, Lane; Gaitan, Frank

    2016-06-01

    Ramsey theory is an active research area in combinatorics whose central theme is the emergence of order in large disordered structures, with Ramsey numbers marking the threshold at which this order first appears. For generalized Ramsey numbers r(G, H), the emergent order is characterized by graphs G and H. In this paper we: (i) present a quantum algorithm for computing generalized Ramsey numbers by reformulating the computation as a combinatorial optimization problem which is solved using adiabatic quantum optimization; and (ii) determine the Ramsey numbers r({{T}}m,{{T}}n) for trees of order m,n = 6,7,8 , most of which were previously unknown.

  8. Decoherence in a scalable adiabatic quantum computer

    SciTech Connect

    Ashhab, S.; Johansson, J. R.; Nori, Franco

    2006-11-15

    We consider the effects of decoherence on Landau-Zener crossings encountered in a large-scale adiabatic-quantum-computing setup. We analyze the dependence of the success probability--i.e., the probability for the system to end up in its new ground state--on the noise amplitude and correlation time. We determine the optimal sweep rate that is required to maximize the success probability. We then discuss the scaling of decoherence effects with increasing system size. We find that those effects can be important for large systems, even if they are small for each of the small building blocks.

  9. Local entanglement generation in the adiabatic regime

    SciTech Connect

    Cliche, M.; Veitia, Andrzej

    2010-09-15

    We study entanglement generation in a pair of qubits interacting with an initially correlated system. Using time-independent perturbation theory and the adiabatic theorem, we show conditions under which the qubits become entangled as the joint system evolves into the ground state of the interacting theory. We then apply these results to the case of qubits interacting with a scalar quantum field. We study three different variations of this setup; a quantum field subject to Dirichlet boundary conditions, a quantum field interacting with a classical potential, and a quantum field that starts in a thermal state.

  10. Geometry of an adiabatic passage at a level crossing

    SciTech Connect

    Cholascinski, Mateusz

    2005-06-15

    We discuss adiabatic quantum phenomena at a level crossing. Given a path in the parameter space which passes through a degeneracy point, we find a criterion which determines whether the adiabaticity condition can be satisfied. For paths that can be traversed adiabatically we also derive a differential equation which specifies the time dependence of the system parameters, for which transitions between distinct energy levels can be neglected. We also generalize the well-known geometric connections to the case of adiabatic paths containing arbitrarily many level-crossing points and degenerate levels.

  11. Geometrical representation of sum frequency generation and adiabatic frequency conversion

    NASA Astrophysics Data System (ADS)

    Suchowski, Haim; Oron, Dan; Arie, Ady; Silberberg, Yaron

    2008-12-01

    We present a geometrical representation of the process of sum frequency generation in the undepleted pump approximation, in analogy with the known optical Bloch equations. We use this analogy to propose a technique for achieving both high efficiency and large bandwidth in sum frequency conversion using the adiabatic inversion scheme. The process is analogous with rapid adiabatic passage in NMR, and adiabatic constraints are derived in this context. This adiabatic frequency conversion scheme is realized experimentally using an aperiodically poled potassium titanyl phosphate (KTP) device, where we achieved high efficiency signal-to-idler conversion over a bandwidth of 140nm .

  12. On the Role of Prior Probability in Adiabatic Quantum Algorithms

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Lu, Songfeng; Yang, Liping

    2016-03-01

    In this paper, we study the role of prior probability on the efficiency of quantum local adiabatic search algorithm. The following aspects for prior probability are found here: firstly, only the probabilities of marked states affect the running time of the adiabatic evolution; secondly, the prior probability can be used for improving the efficiency of the adiabatic algorithm; thirdly, like the usual quantum adiabatic evolution, the running time for the case of multiple solution states where the number of marked elements are smaller enough than the size of the set assigned that contains them can be significantly bigger than that of the case where the assigned set only contains all the marked states.

  13. Capillary saturation and desaturation

    NASA Astrophysics Data System (ADS)

    Hilfer, R.; Armstrong, R. T.; Berg, S.; Georgiadis, A.; Ott, H.

    2015-12-01

    Capillary desaturation experiments produce disconnected (trapped) ganglia of mesoscopic sizes intermediate between pore size and system size. Experimental evidence for interactions between these mesoscale clusters during desaturation is analyzed and discussed within the established microscopic and macroscopic laws of Newton, Young-Laplace, and Darcy. A theoretical expression for capillary number correlations is introduced that seems to have remained unnoticed. It expresses capillary desaturation curves in terms of stationary capillary pressures and relative permeabilities. The theoretical expression shows that the plateau saturation in capillary desaturation curves may in general differ from the residual nonwetting saturation defined through the saturation limit of the main hysteresis loop. Hysteresis effects as well as the difference between wetting and nonwetting fluids are introduced into the analysis of capillary desaturation experiments. The article examines experiments with different desaturation protocols and discusses the existence of a mesoscopic length scale intermediate between pore scale and sample scale. The theoretical expression is derived entirely within the existing traditional theory of two-phase flow in porous media and compared to a recent experiment.

  14. Salt pill design and fabrication for adiabatic demagnetization refrigerators

    NASA Astrophysics Data System (ADS)

    Shirron, Peter J.; McCammon, Dan

    2014-07-01

    The performance of an adiabatic demagnetization refrigerator (ADR) is critically dependent on the design and construction of the salt pills that produce cooling. In most cases, the primary goal is to obtain the largest cooling capacity at the low temperature end of the operating range. The realizable cooling capacity depends on a number of factors, including refrigerant mass, and how efficiently it absorbs heat from the various instrument loads. The design and optimization of “salt pills” for ADR systems depend not only on the mechanical, chemical and thermal properties of the refrigerant, but also on the range of heat fluxes that the salt pill must accommodate. Despite the fairly wide variety of refrigerants available, those used at very low temperature tend to be hydrated salts that require a dedicated thermal bus and must be hermetically sealed, while those used at higher temperature - greater than about 0.5 K - tend to be single- or poly-crystals that have much simpler requirements for thermal and mechanical packaging. This paper presents a summary of strategies and techniques for designing, optimizing and fabricating salt pills for both low- and mid-temperature applications.

  15. Salt Pill Design and Fabrication for Adiabatic Demagnetization Refrigerators

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J.; Mccammon, Dan

    2014-01-01

    The performance of an adiabatic demagnetization refrigerator (ADR) is critically dependent on the design and construction of the salt pills that produce cooling. In most cases, the primary goal is to obtain the largest cooling capacity at the low temperature end of the operating range. The realizable cooling capacity depends on a number of factors, including refrigerant mass, and how efficiently it absorbs heat from the various instrument loads. The design and optimization of "salt pills" for ADR systems depend not only on the mechanical, chemical and thermal properties of the refrigerant, but also on the range of heat fluxes that the salt pill must accommodate. Despite the fairly wide variety of refrigerants available, those used at very low temperature tend to be hydrated salts that require a dedicated thermal bus and must be hermetically sealed, while those used at higher temperature - greater than about 0.5 K - tend to be single-­- or poly-­-crystals that have much simpler requirements for thermal and mechanical packaging. This paper presents a summary of strategies and techniques for designing, optimizing and fabricating salt pills for both low-­- and mid-­-temperature applications.

  16. Adiabatic demagnetization refrigerator for use in zero gravity

    NASA Technical Reports Server (NTRS)

    Dingus, Michael L.

    1988-01-01

    In this effort, a new design concept for an adiabatic demagnetization refrigerator (ADR) that is capable of operation in zero gravity has been developed. The design uses a vortex precooler to lower the initial temperature of magnetic salt from the initial space superfluid helium dewar of 1.8 K to 1.1 K. This reduces the required maximum magnetic field from 4 Tesla to 2 Tesla. The laboratory prototype vortex precooler reached a minimum temperature of 0.78 K, and had a cooling power of 1 mW at 1.1 K. A study was conducted to determine the dependence of vortex cooler performance on system element configuration. A superfluid filled capillary heat switch was used in the design. The laboratory prototype ADR reached a minimum temperature of 0.107 K, and maintained temperatures below 0.125 K for 90 minutes. Demagnetization was carried out from a maximum field of 2 T. A soft iron shield was developed that reduced the radial central field to 1 gauss at 0.25 meters.

  17. Quantum Adiabatic Algorithms and Large Spin Tunnelling

    NASA Technical Reports Server (NTRS)

    Boulatov, A.; Smelyanskiy, V. N.

    2003-01-01

    We provide a theoretical study of the quantum adiabatic evolution algorithm with different evolution paths proposed in this paper. The algorithm is applied to a random binary optimization problem (a version of the 3-Satisfiability problem) where the n-bit cost function is symmetric with respect to the permutation of individual bits. The evolution paths are produced, using the generic control Hamiltonians H (r) that preserve the bit symmetry of the underlying optimization problem. In the case where the ground state of H(0) coincides with the totally-symmetric state of an n-qubit system the algorithm dynamics is completely described in terms of the motion of a spin-n/2. We show that different control Hamiltonians can be parameterized by a set of independent parameters that are expansion coefficients of H (r) in a certain universal set of operators. Only one of these operators can be responsible for avoiding the tunnelling in the spin-n/2 system during the quantum adiabatic algorithm. We show that it is possible to select a coefficient for this operator that guarantees a polynomial complexity of the algorithm for all problem instances. We show that a successful evolution path of the algorithm always corresponds to the trajectory of a classical spin-n/2 and provide a complete characterization of such paths.

  18. Nonadiabatic Transitions in Adiabatic Rapid Passage

    NASA Astrophysics Data System (ADS)

    Lu, T.; Miao, X.; Metcalf, H.

    2006-05-01

    Optical forces much larger than the ordinary radiative force can be achieved on a two-level atom by multiple repetitions of adiabatic rapid passage sweeps with counterpropagating light beams. Chirped light pulses drive the atom-laser system up a ladder of dressed state energy sheets on sequential trajectories, thereby decreasing the atomic kinetic energy. Nonadiabatic transitions between the energy sheets must be avoided for this process to be effective. We have calculated the nonadiabatic transition probability for various chirped light pulses numerically. These results were compared to the first Demkov-Kunike model and the well-known Landau-Zener model. In addition, an analytical form of the nonadiabatic transition probability has been found for linearly chirped pulses and an approximate form for generic symmetric finite-time pulses has been found for the entire parameter space using the technique of unitary integration. From this, the asymptotic transition probability in the adiabatic limit was derived. T. Lu, X. Miao, and H. Metcalf, Phys., Rev. A 71 061405(R) (2005). Yu. Demkov and M. Kunike, Vestn. Leningr. Univ. Fis. Khim., 16, 39 (1969); K.-A. Suominen and B. Garraway, Phys. Rev. A45, 374 (1992)

  19. Adiabatic Mass Loss Model in Binary Stars

    NASA Astrophysics Data System (ADS)

    Ge, H. W.

    2012-07-01

    Rapid mass transfer process in the interacting binary systems is very complicated. It relates to two basic problems in the binary star evolution, i.e., the dynamically unstable Roche-lobe overflow and the common envelope evolution. Both of the problems are very important and difficult to be modeled. In this PhD thesis, we focus on the rapid mass loss process of the donor in interacting binary systems. The application to the criterion of dynamically unstable mass transfer and the common envelope evolution are also included. Our results based on the adiabatic mass loss model could be used to improve the binary evolution theory, the binary population synthetic method, and other related aspects. We build up the adiabatic mass loss model. In this model, two approximations are included. The first one is that the energy generation and heat flow through the stellar interior can be neglected, hence the restructuring is adiabatic. The second one is that he stellar interior remains in hydrostatic equilibrium. We model this response by constructing model sequences, beginning with a donor star filling its Roche lobe at an arbitrary point in its evolution, holding its specific entropy and composition profiles fixed. These approximations are validated by the comparison with the time-dependent binary mass transfer calculations and the polytropic model for low mass zero-age main-sequence stars. In the dynamical time scale mass transfer, the adiabatic response of the donor star drives it to expand beyond its Roche lobe, leading to runaway mass transfer and the formation of a common envelope with its companion star. For donor stars with surface convection zones of any significant depth, this runaway condition is encountered early in mass transfer, if at all; but for main sequence stars with radiative envelopes, it may be encountered after a prolonged phase of thermal time scale mass transfer, so-called delayed dynamical instability. We identify the critical binary mass ratio for the

  20. Sensitivity of inertial confinement fusion hot spot properties to the deuterium-tritium fuel adiabat

    NASA Astrophysics Data System (ADS)

    Melvin, J.; Lim, H.; Rana, V.; Cheng, B.; Glimm, J.; Sharp, D. H.; Wilson, D. C.

    2015-02-01

    We determine the dependence of key Inertial Confinement Fusion (ICF) hot spot simulation properties on the deuterium-tritium fuel adiabat, here modified by addition of energy to the cold shell. Variation of this parameter reduces the simulation to experiment discrepancy in some, but not all, experimentally inferred quantities. Using simulations with radiation drives tuned to match experimental shots N120321 and N120405 from the National Ignition Campaign (NIC), we carry out sets of simulations with varying amounts of added entropy and examine the sensitivities of important experimental quantities. Neutron yields, burn widths, hot spot densities, and pressures follow a trend approaching their experimentally inferred quantities. Ion temperatures and areal densities are sensitive to the adiabat changes, but do not necessarily converge to their experimental quantities with the added entropy. This suggests that a modification to the simulation adiabat is one of, but not the only explanation of the observed simulation to experiment discrepancies. In addition, we use a theoretical model to predict 3D mix and observe a slight trend toward less mixing as the entropy is enhanced. Instantaneous quantities are assessed at the time of maximum neutron production, determined dynamically within each simulation. These trends contribute to ICF science, as an effort to understand the NIC simulation to experiment discrepancy, and in their relation to the high foot experiments, which features a higher adiabat in the experimental design and an improved neutron yield in the experimental results.

  1. Sensitivity of inertial confinement fusion hot spot properties to the deuterium-tritium fuel adiabat

    SciTech Connect

    Melvin, J.; Lim, H.; Rana, V.; Glimm, J.; Cheng, B.; Sharp, D. H.; Wilson, D. C.

    2015-02-15

    We determine the dependence of key Inertial Confinement Fusion (ICF) hot spot simulation properties on the deuterium-tritium fuel adiabat, here modified by addition of energy to the cold shell. Variation of this parameter reduces the simulation to experiment discrepancy in some, but not all, experimentally inferred quantities. Using simulations with radiation drives tuned to match experimental shots N120321 and N120405 from the National Ignition Campaign (NIC), we carry out sets of simulations with varying amounts of added entropy and examine the sensitivities of important experimental quantities. Neutron yields, burn widths, hot spot densities, and pressures follow a trend approaching their experimentally inferred quantities. Ion temperatures and areal densities are sensitive to the adiabat changes, but do not necessarily converge to their experimental quantities with the added entropy. This suggests that a modification to the simulation adiabat is one of, but not the only explanation of the observed simulation to experiment discrepancies. In addition, we use a theoretical model to predict 3D mix and observe a slight trend toward less mixing as the entropy is enhanced. Instantaneous quantities are assessed at the time of maximum neutron production, determined dynamically within each simulation. These trends contribute to ICF science, as an effort to understand the NIC simulation to experiment discrepancy, and in their relation to the high foot experiments, which features a higher adiabat in the experimental design and an improved neutron yield in the experimental results.

  2. Development of a semi-adiabatic isoperibol solution calorimeter

    NASA Astrophysics Data System (ADS)

    Venkata Krishnan, R.; Jogeswararao, G.; Parthasarathy, R.; Premalatha, S.; Prabhakar Rao, J.; Gunasekaran, G.; Ananthasivan, K.

    2014-12-01

    A semi-adiabatic isoperibol solution calorimeter has been indigenously developed. The measurement system comprises modules for sensitive temperature measurement probe, signal processing, data collection, and joule calibration. The sensitivity of the temperature measurement module was enhanced by using a sensitive thermistor coupled with a lock-in amplifier based signal processor. A microcontroller coordinates the operation and control of these modules. The latter in turn is controlled through personal computer (PC) based custom made software developed with LabView. An innovative summing amplifier concept was used to cancel out the base resistance of the thermistor. The latter was placed in the dewar. The temperature calibration was carried out with a standard platinum resistance (PT100) sensor coupled with an 8½ digit multimeter. The water equivalent of this calorimeter was determined by using electrical calibration with the joule calibrator. The experimentally measured values of the quantum of heat were validated by measuring heats of dissolution of pure KCl (for endotherm) and tris (hydroxyl methyl) amino-methane (for exotherm). The uncertainity in the measurements was found to be within ±3%.

  3. Development of a semi-adiabatic isoperibol solution calorimeter

    SciTech Connect

    Venkata Krishnan, R.; Jogeswararao, G.; Parthasarathy, R.; Premalatha, S.; Prabhakar Rao, J.; Gunasekaran, G.; Ananthasivan, K.

    2014-12-15

    A semi-adiabatic isoperibol solution calorimeter has been indigenously developed. The measurement system comprises modules for sensitive temperature measurement probe, signal processing, data collection, and joule calibration. The sensitivity of the temperature measurement module was enhanced by using a sensitive thermistor coupled with a lock-in amplifier based signal processor. A microcontroller coordinates the operation and control of these modules. The latter in turn is controlled through personal computer (PC) based custom made software developed with LabView. An innovative summing amplifier concept was used to cancel out the base resistance of the thermistor. The latter was placed in the dewar. The temperature calibration was carried out with a standard platinum resistance (PT100) sensor coupled with an 8½ digit multimeter. The water equivalent of this calorimeter was determined by using electrical calibration with the joule calibrator. The experimentally measured values of the quantum of heat were validated by measuring heats of dissolution of pure KCl (for endotherm) and tris (hydroxyl methyl) amino-methane (for exotherm). The uncertainity in the measurements was found to be within ±3%.

  4. Adiabat-shaping in indirect drive inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Baker, K. L.; Robey, H. F.; Milovich, J. L.; Jones, O. S.; Smalyuk, V. A.; Casey, D. T.; MacPhee, A. G.; Pak, A.; Celliers, P. M.; Clark, D. S.; Landen, O. L.; Peterson, J. L.; Berzak-Hopkins, L. F.; Weber, C. R.; Haan, S. W.; Döppner, T. D.; Dixit, S.; Giraldez, E.; Hamza, A. V.; Jancaitis, K. S.; Kroll, J. J.; Lafortune, K. N.; MacGowan, B. J.; Moody, J. D.; Nikroo, A.; Widmayer, C. C.

    2015-05-01

    Adiabat-shaping techniques were investigated in indirect drive inertial confinement fusion experiments on the National Ignition Facility as a means to improve implosion stability, while still maintaining a low adiabat in the fuel. Adiabat-shaping was accomplished in these indirect drive experiments by altering the ratio of the picket and trough energies in the laser pulse shape, thus driving a decaying first shock in the ablator. This decaying first shock is designed to place the ablation front on a high adiabat while keeping the fuel on a low adiabat. These experiments were conducted using the keyhole experimental platform for both three and four shock laser pulses. This platform enabled direct measurement of the shock velocities driven in the glow-discharge polymer capsule and in the liquid deuterium, the surrogate fuel for a DT ignition target. The measured shock velocities and radiation drive histories are compared to previous three and four shock laser pulses. This comparison indicates that in the case of adiabat shaping the ablation front initially drives a high shock velocity, and therefore, a high shock pressure and adiabat. The shock then decays as it travels through the ablator to pressures similar to the original low-adiabat pulses when it reaches the fuel. This approach takes advantage of initial high ablation velocity, which favors stability, and high-compression, which favors high stagnation pressures.

  5. Quantum adiabatic algorithm for factorization and its experimental implementation.

    PubMed

    Peng, Xinhua; Liao, Zeyang; Xu, Nanyang; Qin, Gan; Zhou, Xianyi; Suter, Dieter; Du, Jiangfeng

    2008-11-28

    We propose an adiabatic quantum algorithm capable of factorizing numbers, using fewer qubits than Shor's algorithm. We implement the algorithm in a NMR quantum information processor and experimentally factorize the number 21. In the range that our classical computer could simulate, the quantum adiabatic algorithm works well, providing evidence that the running time of this algorithm scales polynomially with the problem size. PMID:19113467

  6. Adiabat-shaping in indirect drive inertial confinement fusion

    SciTech Connect

    Baker, K. L.; Robey, H. F.; Milovich, J. L.; Jones, O. S.; Smalyuk, V. A.; Casey, D. T.; MacPhee, A. G.; Pak, A.; Celliers, P. M.; Clark, D. S.; Landen, O. L.; Peterson, J. L.; Berzak-Hopkins, L. F.; Weber, C. R.; Haan, S. W.; Döppner, T. D.; Dixit, S.; Hamza, A. V.; Jancaitis, K. S.; Kroll, J. J.; and others

    2015-05-15

    Adiabat-shaping techniques were investigated in indirect drive inertial confinement fusion experiments on the National Ignition Facility as a means to improve implosion stability, while still maintaining a low adiabat in the fuel. Adiabat-shaping was accomplished in these indirect drive experiments by altering the ratio of the picket and trough energies in the laser pulse shape, thus driving a decaying first shock in the ablator. This decaying first shock is designed to place the ablation front on a high adiabat while keeping the fuel on a low adiabat. These experiments were conducted using the keyhole experimental platform for both three and four shock laser pulses. This platform enabled direct measurement of the shock velocities driven in the glow-discharge polymer capsule and in the liquid deuterium, the surrogate fuel for a DT ignition target. The measured shock velocities and radiation drive histories are compared to previous three and four shock laser pulses. This comparison indicates that in the case of adiabat shaping the ablation front initially drives a high shock velocity, and therefore, a high shock pressure and adiabat. The shock then decays as it travels through the ablator to pressures similar to the original low-adiabat pulses when it reaches the fuel. This approach takes advantage of initial high ablation velocity, which favors stability, and high-compression, which favors high stagnation pressures.

  7. Kinetic Theory Derivation of the Adiabatic Law for Ideal Gases.

    ERIC Educational Resources Information Center

    Sobel, Michael I.

    1980-01-01

    Discusses how the adiabatic law for ideal gases can be derived from the assumption of a Maxwell-Boltzmann (or any other) distribution of velocities--in contrast to the usual derivations from thermodynamics alone, and the higher-order effect that leads to one-body viscosity. An elementary derivation of the adiabatic law is given. (Author/DS)

  8. The Adiabatic Invariance of the Action Variable in Classical Dynamics

    ERIC Educational Resources Information Center

    Wells, Clive G.; Siklos, Stephen T. C.

    2007-01-01

    We consider one-dimensional classical time-dependent Hamiltonian systems with quasi-periodic orbits. It is well known that such systems possess an adiabatic invariant which coincides with the action variable of the Hamiltonian formalism. We present a new proof of the adiabatic invariance of this quantity and illustrate our arguments by means of…

  9. Adiabatic theory for anisotropic cold molecule collisions

    SciTech Connect

    Pawlak, Mariusz; Shagam, Yuval; Narevicius, Edvardas; Moiseyev, Nimrod

    2015-08-21

    We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment {sup 4}He(1s2s {sup 3}S) + HD(1s{sup 2}) → {sup 4}He(1s{sup 2}) + HD{sup +}(1s) + e{sup −} [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings.

  10. Quantum Adiabatic Optimization and Combinatorial Landscapes

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, V. N.; Knysh, S.; Morris, R. D.

    2003-01-01

    In this paper we analyze the performance of the Quantum Adiabatic Evolution (QAE) algorithm on a variant of Satisfiability problem for an ensemble of random graphs parametrized by the ratio of clauses to variables, gamma = M / N. We introduce a set of macroscopic parameters (landscapes) and put forward an ansatz of universality for random bit flips. We then formulate the problem of finding the smallest eigenvalue and the excitation gap as a statistical mechanics problem. We use the so-called annealing approximation with a refinement that a finite set of macroscopic variables (verses only energy) is used, and are able to show the existence of a dynamic threshold gamma = gammad, beyond which QAE should take an exponentially long time to find a solution. We compare the results for extended and simplified sets of landscapes and provide numerical evidence in support of our universality ansatz.

  11. Design of a spaceworthy adiabatic demagnetization refrigerator

    NASA Technical Reports Server (NTRS)

    Serlemitsos, A. T.; Kunes, E.; Sansebastian, M.

    1992-01-01

    A spaceworthy adiabatic demagnetization refrigerator (ADR) under development at NASA-Goddard is presented. A baseline model heat switch was tested extensively with an on/off ratio of about 10,000 and a parasitic heat leak of 10 micro-W. Data obtained from the breadboard models were used to design an ADR with improved structural integrity. The core of the ADR is the salt pill which consists of the paramagnetic salt crystal and the thermal bus. When a magnetic field is applied to the salt it forces the alignment of the magnetic moments, thereby decreasing the entropy of the salt. Preliminary tests results showed a net crystal mass of 680 g instead of the expected 740 g, which indicate that there are gaps in the salt pill. A partial fix was accomplished by sealing helium gas in the salt pill at a pressure of 2 bar, which improved the thermal contact during salt magnetization, at about 2 K.

  12. Differential topology of adiabatically controlled quantum processes

    NASA Astrophysics Data System (ADS)

    Jonckheere, Edmond A.; Rezakhani, Ali T.; Ahmad, Farooq

    2013-03-01

    It is shown that in a controlled adiabatic homotopy between two Hamiltonians, H 0 and H 1, the gap or "anti-crossing" phenomenon can be viewed as the development of cusps and swallow tails in the region of the complex plane where two critical value curves of the quadratic map associated with the numerical range of H 0 + i H 1 come close. The "near crossing" in the energy level plots happens to be a generic situation, in the sense that a crossing is a manifestation of the quadratic numerical range map being unstable in the sense of differential topology. The stable singularities that can develop are identified and it is shown that they could occur near the gap, making those singularities of paramount importance. Various applications, including the quantum random walk, are provided to illustrate this theory.

  13. Reversible logic gate using adiabatic superconducting devices

    PubMed Central

    Takeuchi, N.; Yamanashi, Y.; Yoshikawa, N.

    2014-01-01

    Reversible computing has been studied since Rolf Landauer advanced the argument that has come to be known as Landauer's principle. This principle states that there is no minimum energy dissipation for logic operations in reversible computing, because it is not accompanied by reductions in information entropy. However, until now, no practical reversible logic gates have been demonstrated. One of the problems is that reversible logic gates must be built by using extremely energy-efficient logic devices. Another difficulty is that reversible logic gates must be both logically and physically reversible. Here we propose the first practical reversible logic gate using adiabatic superconducting devices and experimentally demonstrate the logical and physical reversibility of the gate. Additionally, we estimate the energy dissipation of the gate, and discuss the minimum energy dissipation required for reversible logic operations. It is expected that the results of this study will enable reversible computing to move from the theoretical stage into practical usage. PMID:25220698

  14. Entropy in Adiabatic Regions of Convection Simulations

    NASA Astrophysics Data System (ADS)

    Tanner, Joel D.; Basu, Sarbani; Demarque, Pierre

    2016-05-01

    One of the largest sources of uncertainty in stellar models is caused by the treatment of convection in stellar envelopes. One-dimensional stellar models often make use of the mixing length or equivalent approximations to describe convection, all of which depend on various free parameters. There have been attempts to rectify this by using 3D radiative-hydrodynamic simulations of stellar convection, and in trying to extract an equivalent mixing length from the simulations. In this Letter, we show that the entropy of the deeper, adiabatic layers in these simulations can be expressed as a simple function of {log}g and {log}{T}{{eff}}, which holds potential for calibrating stellar models in a simple and more general manner.

  15. Symmetry-protected adiabatic quantum transistors

    NASA Astrophysics Data System (ADS)

    Williamson, Dominic J.; Bartlett, Stephen D.

    2015-05-01

    Adiabatic quantum transistors (AQT) allow quantum logic gates to be performed by applying a large field to a quantum many-body system prepared in its ground state, without the need for local control. The basic operation of such a device can be viewed as driving a spin chain from a symmetry-protected (SP) phase to a trivial phase. This perspective offers an avenue to generalize the AQT and to design several improvements. The performance of quantum logic gates is shown to depend only on universal symmetry properties of a SP phase rather than any fine tuning of the Hamiltonian, and it is possible to implement a universal set of logic gates in this way by combining several different types of SP matter. Such SP AQTs are argued to be robust to a range of relevant noise processes.

  16. Number Partitioning via Quantum Adiabatic Computation

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, Vadim N.; Toussaint, Udo; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We study both analytically and numerically the complexity of the adiabatic quantum evolution algorithm applied to random instances of combinatorial optimization problems. We use as an example the NP-complete set partition problem and obtain an asymptotic expression for the minimal gap separating the ground and exited states of a system during the execution of the algorithm. We show that for computationally hard problem instances the size of the minimal gap scales exponentially with the problem size. This result is in qualitative agreement with the direct numerical simulation of the algorithm for small instances of the set partition problem. We describe the statistical properties of the optimization problem that are responsible for the exponential behavior of the algorithm.

  17. Geometric Adiabatic Transport in Quantum Hall States

    NASA Astrophysics Data System (ADS)

    Klevtsov, S.; Wiegmann, P.

    2015-08-01

    We argue that in addition to the Hall conductance and the nondissipative component of the viscous tensor, there exists a third independent transport coefficient, which is precisely quantized. It takes constant values along quantum Hall plateaus. We show that the new coefficient is the Chern number of a vector bundle over moduli space of surfaces of genus 2 or higher and therefore cannot change continuously along the plateau. As such, it does not transpire on a sphere or a torus. In the linear response theory, this coefficient determines intensive forces exerted on electronic fluid by adiabatic deformations of geometry and represents the effect of the gravitational anomaly. We also present the method of computing the transport coefficients for quantum Hall states.

  18. Geometric Adiabatic Transport in Quantum Hall States.

    PubMed

    Klevtsov, S; Wiegmann, P

    2015-08-21

    We argue that in addition to the Hall conductance and the nondissipative component of the viscous tensor, there exists a third independent transport coefficient, which is precisely quantized. It takes constant values along quantum Hall plateaus. We show that the new coefficient is the Chern number of a vector bundle over moduli space of surfaces of genus 2 or higher and therefore cannot change continuously along the plateau. As such, it does not transpire on a sphere or a torus. In the linear response theory, this coefficient determines intensive forces exerted on electronic fluid by adiabatic deformations of geometry and represents the effect of the gravitational anomaly. We also present the method of computing the transport coefficients for quantum Hall states. PMID:26340197

  19. Adiabatic connection at negative coupling strengths

    SciTech Connect

    Seidl, Michael; Gori-Giorgi, Paola

    2010-01-15

    The adiabatic connection of density functional theory (DFT) for electronic systems is generalized here to negative values of the coupling strength alpha (with attractive electrons). In the extreme limit alpha->-infinity a simple physical solution is presented and its implications for DFT (as well as its limitations) are discussed. For two-electron systems (a case in which the present solution can be calculated exactly), we find that an interpolation between the limit alpha->-infinity and the opposite limit of infinitely strong repulsion (alpha->+infinity) yields a rather accurate estimate of the second-order correlation energy E{sub c}{sup GL2}[rho] for several different densities rho, without using virtual orbitals. The same procedure is also applied to the Be isoelectronic series, analyzing the effects of near degeneracy.

  20. Adiabatic theory for anisotropic cold molecule collisions.

    PubMed

    Pawlak, Mariusz; Shagam, Yuval; Narevicius, Edvardas; Moiseyev, Nimrod

    2015-08-21

    We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment (4)He(1s2s (3)S) + HD(1s(2)) → (4)He(1s(2)) + HD(+)(1s) + e(-) [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings. PMID:26298122

  1. Adiabatically-tapered fiber mode multiplexers.

    PubMed

    Yerolatsitis, S; Gris-Sánchez, I; Birks, T A

    2014-01-13

    Simple all-fiber three-mode multiplexers were made by adiabatically merging three dissimilar single-mode cores into one multimode core. This was achieved by collapsing air holes in a photonic crystal fiber and (in a separate device) by fusing and tapering separate telecom fibers in a fluorine-doped silica capillary. In each case the LP01 mode and both LP11 modes were individually excited from three separate input cores, with losses below 0.3 and 0.7 dB respectively and mode purities exceeding 10 dB. Scaling to more modes is challenging, but would be assisted by using single-mode fibers with a smaller ratio of cladding to core diameter. PMID:24515021

  2. A progress report on bolometers operating at 0.1 K using adiabatic demagnetization refrigeration

    NASA Technical Reports Server (NTRS)

    Roellig, T.; Lesyna, L.; Werner, M.; Kittel, P.

    1986-01-01

    Bolometers are still the detectors of choice for low background infrared observations at wavelengths longer than 200 microns. In the low background limit, bolometers become more sensitive as their operating temperature decreases, due to fundamental thermodynamic laws. The adiabatic demagnetization technique was evaluated by building a bolometer detection system operating at a wavelength of 1 millimeter for use at a ground based telescope. The system was fit checked at the telescope and is expected to take its first data in November, 1985.

  3. An integrated programming and development environment for adiabatic quantum optimization

    NASA Astrophysics Data System (ADS)

    Humble, T. S.; McCaskey, A. J.; Bennink, R. S.; Billings, J. J.; DʼAzevedo, E. F.; Sullivan, B. D.; Klymko, C. F.; Seddiqi, H.

    2014-01-01

    Adiabatic quantum computing is a promising route to the computational power afforded by quantum information processing. The recent availability of adiabatic hardware has raised challenging questions about how to evaluate adiabatic quantum optimization (AQO) programs. Processor behavior depends on multiple steps to synthesize an adiabatic quantum program, which are each highly tunable. We present an integrated programming and development environment for AQO called Jade Adiabatic Development Environment (JADE) that provides control over all the steps taken during program synthesis. JADE captures the workflow needed to rigorously specify the AQO algorithm while allowing a variety of problem types, programming techniques, and processor configurations. We have also integrated JADE with a quantum simulation engine that enables program profiling using numerical calculation. The computational engine supports plug-ins for simulation methodologies tailored to various metrics and computing resources. We present the design, integration, and deployment of JADE and discuss its potential use for benchmarking AQO programs by the quantum computer science community.

  4. An Integrated Development Environment for Adiabatic Quantum Programming

    SciTech Connect

    Humble, Travis S; McCaskey, Alex; Bennink, Ryan S; Billings, Jay Jay; D'Azevedo, Eduardo; Sullivan, Blair D; Klymko, Christine F; Seddiqi, Hadayat

    2014-01-01

    Adiabatic quantum computing is a promising route to the computational power afforded by quantum information processing. The recent availability of adiabatic hardware raises the question of how well quantum programs perform. Benchmarking behavior is challenging since the multiple steps to synthesize an adiabatic quantum program are highly tunable. We present an adiabatic quantum programming environment called JADE that provides control over all the steps taken during program development. JADE captures the workflow needed to rigorously benchmark performance while also allowing a variety of problem types, programming techniques, and processor configurations. We have also integrated JADE with a quantum simulation engine that enables program profiling using numerical calculation. The computational engine supports plug-ins for simulation methodologies tailored to various metrics and computing resources. We present the design, integration, and deployment of JADE and discuss its use for benchmarking adiabatic quantum programs.

  5. Non-adiabatic molecular dynamics with complex quantum trajectories. II. The adiabatic representation

    NASA Astrophysics Data System (ADS)

    Zamstein, Noa; Tannor, David J.

    2012-12-01

    We present a complex quantum trajectory method for treating non-adiabatic dynamics. Each trajectory evolves classically on a single electronic surface but with complex position and momentum. The equations of motion are derived directly from the time-dependent Schrödinger equation, and the population exchange arises naturally from amplitude-transfer terms. In this paper the equations of motion are derived in the adiabatic representation to complement our work in the diabatic representation [N. Zamstein and D. J. Tannor, J. Chem. Phys. 137, 22A517 (2012)], 10.1063/1.4739845. We apply our method to two benchmark models introduced by John Tully [J. Chem. Phys. 93, 1061 (1990)], 10.1063/1.459170, and get very good agreement with converged quantum-mechanical calculations. Specifically, we show that decoherence (spatial separation of wavepackets on different surfaces) is already contained in the equations of motion and does not require ad hoc augmentation.

  6. Non-adiabatic molecular dynamics with complex quantum trajectories. II. The adiabatic representation

    SciTech Connect

    Zamstein, Noa; Tannor, David J.

    2012-12-14

    We present a complex quantum trajectory method for treating non-adiabatic dynamics. Each trajectory evolves classically on a single electronic surface but with complex position and momentum. The equations of motion are derived directly from the time-dependent Schroedinger equation, and the population exchange arises naturally from amplitude-transfer terms. In this paper the equations of motion are derived in the adiabatic representation to complement our work in the diabatic representation [N. Zamstein and D. J. Tannor, J. Chem. Phys. 137, 22A517 (2012)]. We apply our method to two benchmark models introduced by John Tully [J. Chem. Phys. 93, 1061 (1990)], and get very good agreement with converged quantum-mechanical calculations. Specifically, we show that decoherence (spatial separation of wavepackets on different surfaces) is already contained in the equations of motion and does not require ad hoc augmentation.

  7. Saturated Zone Colloid Transport

    SciTech Connect

    H. S. Viswanathan

    2004-10-07

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R{sub col} is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R{sub col} that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k{sub att}, and detachment rate constants, k{sub det}, of colloids to the fracture surface have been measured for the fractured volcanics, and separate R{sub col} uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant retardation

  8. Boundary Layer Dynamics and Sub-Adiabaticity in Convecting Planetary Mantles

    NASA Astrophysics Data System (ADS)

    Moore, W. B.

    2007-05-01

    A broad range of phenomena are influenced by the behavior of thermal boundary layers in planetary mantles including plume temperatures, lithospheric stresses, resistance to plate motions, and the temperature structure of the mantle as a whole. The textbook picture of the temperature profile in a convecting layer consists of two boundary layers separated by a well-mixed, adiabatic interior. The sum of the temperature drops across the upper and lower boundary layers is equal to super-adiabatic temperature drop across the entire layer. This picture does not accurately describe, however, the horizontally averaged temperature structure derived from numerical solutions of the equations of infinite Prandtl number, Boussinesq convection. The sum of the average temperature drops across the boundary layers in such models is always greater than the super-adiabatic drop across the whole layer, with the result that some portions of the interior are sub-adiabatic. The excess average temperature drop across each boundary layer is due to the arrival of material from the other boundary layer which has not equilibrated with the well-mixed interior. It is this material which transfers heat conductively across the boundary and thus controls the heat transport of the layer. Internal heating breaks the symmetry of the boundary layers (as does temperature dependence of viscosity), and it is the interaction between the two boundary layers that sets the equilibrium temperature drops. The scaling of the temperature drop across each boundary layer is controlled by two competing factors which depend on the Rayleigh number in different ways: the scale of boundary layer instabilities and the velocity of plumes (hot and cold). Furthermore, these scalings change as the system becomes time-dependent at moderate Rayleigh number. At very high Rayleigh number, beyond that of most planetary mantles, the plumes do equilibrate with the interior and the textbook picture applies. A scaling theory for the

  9. Adiabatic-Nonadiabatic Transition in Warm Long-Range Interacting Systems: The Transport of Intense Inhomogeneous Beams

    NASA Astrophysics Data System (ADS)

    Souza, Everton G.; Endler, Antonio; Rizzato, Felipe B.; Pakter, Renato

    2012-08-01

    We investigate the role of the temperature in the onset of singularities and the consequent breakdown in a macroscopic fluid model for long-range interacting systems. In particular, we consider an adiabatic fluid description for the transport of intense inhomogeneous charged particle beams. We find that there exists a critical temperature below which the fluid model always develops a singularity and breaks down as the system evolves. As the critical temperature is approached, however, the time for the occurrence of the singularity diverges. Therefore, the critical temperature separates two distinct dynamical phases: a nonadiabatic transport at lower temperatures and a completely adiabatic evolution at higher temperatures. These findings are verified with the aid of self-consistent N-particle simulations.

  10. Adiabatic Heat of Hydration Calorimetric Measurements for Reference Saltstone Waste

    SciTech Connect

    Bollinger, James

    2006-01-12

    The production of nuclear materials for weapons, medical, and space applications from the mid-1950's through the late-1980's at the Savannah River Site (SRS) generated approximately 35 million gallons of liquid high-level radioactive waste, which is currently being processed into vitrified glass for long-term storage. Upstream of the vitrification process, the waste is separated into three components: high activity insoluble sludge, high activity insoluble salt, and very low activity soluble salts. The soluble salt represents 90% of the 35 million gallons of overall waste and is processed at the SRS Saltstone Facility, where it mixed with cement, blast furnace slag, and flyash, creating a grout-like mixture. The resulting grout is pumped into aboveground storage vaults, where it hydrates into concrete monoliths, called saltstone, thus immobilizing the low-level radioactive salt waste. As the saltstone hydrates, it generates heat that slowly diffuses out of the poured material. To ensure acceptable grout properties for disposal and immobilization of the salt waste, the grout temperature must not exceed 95 C during hydration. Adiabatic calorimetric measurements of the heat generated for a representative sample of saltstone were made to determine the time-dependent heat source term. These measurements subsequently were utilized as input to a numerical conjugate heat transfer model to determine the expected peak temperatures for the saltstone vaults.

  11. Progress in the Development of a Continuous Adiabatic Demagnetization Refrigerator

    NASA Technical Reports Server (NTRS)

    Shirron, Peter; Canavan, Edgar; DiPirro, Michael; Jackson, Michael; King, Todd; Tuttle, James; Krebs, Carolyn A. (Technical Monitor)

    2002-01-01

    We report on recent progress in the development of a continuous adiabatic demagnetization refrigerator (CADR). Continuous operation avoids the constraints of long hold times and short recycle times that lead to the generally large mass of single-shot ADRs, allowing us to achieve an order of magnitude larger cooling power per unit mass. Our current design goal is 10 micro W of cooling at 50 mK using a 6-10 K heat sink. The estimated mass is less than 10 kg, including magnetic shielding of each stage. The relatively high heat rejection capability allows it to operate with a mechanical cryocooler as part of a cryogen-free, low temperature cooling system. This has the advantages of long mission life and reduced complexity and cost. We have assembled a three-stage CADR and have demonstrated continuous cooling using a superfluid helium bath as the heat sink. The temperature stability is 8 micro K rms or better over the entire cycle, and the cooling power is 2.5 micro W at 60 mK rising to 10 micro W at 100 mK.

  12. Thermal explosion hazards on 18650 lithium ion batteries with a VSP2 adiabatic calorimeter.

    PubMed

    Jhu, Can-Yong; Wang, Yih-Wen; Shu, Chi-Min; Chang, Jian-Chuang; Wu, Hung-Chun

    2011-08-15

    Thermal abuse behaviors relating to adiabatic runaway reactions in commercial 18650 lithium ion batteries (LiCoO(2)) are being studied in an adiabatic calorimeter, vent sizing package 2 (VSP2). We select four worldwide battery producers, Sony, Sanyo, Samsung and LG, and tested their Li-ion batteries, which have LiCoO(2) cathodes, to determine their thermal instabilities and adiabatic runaway features. The charged (4.2V) and uncharged (3.7 V) 18650 Li-ion batteries are tested using a VSP2 with a customized stainless steel test can to evaluate their thermal hazard characteristics, such as the initial exothermic temperature (T(0)), the self-heating rate (dT/dt), the pressure rise rate (dP/dt), the pressure-temperature profiles and the maximum temperature (T(max)) and pressure (P(max)). The T(max) and P(max) of the charged Li-ion battery during the runaway reaction reach 903.0°C and 1565.9 psig (pound-force per square inch gauge), respectively. This result leads to a thermal explosion, and the heat of reaction is 26.2 kJ. The thermokinetic parameters of the reaction of LiCoO(2) batteries are also determined using the Arrhenius model. The thermal reaction mechanism of the Li-ion battery (pack) proved to be an important safety concern for energy storage. Additionally, use of the VSP2 to classify the self-reactive ratings of the various Li-ion batteries demonstrates a new application of the adiabatic calorimetric methodology. PMID:21612866

  13. H2O-fluid-saturated melting of subducted continental crust facilitates exhumation of ultrahigh-pressure rocks in continental subduction zones

    NASA Astrophysics Data System (ADS)

    Labrousse, L.; Duretz, T.; Gerya, T.

    2015-10-01

    We present two-dimensional numerical models of plate subduction and collision inspired by the Scandinavian Caledonian orogeny to investigate the possible impact of continental crust partial melting on the exhumation of ultra-high pressure metamorphic rocks. Three possible reactions were tested: low temperature solidus representing H2O-fluid-saturated partial melting, and two end-member reaction curves for dehydration melting. Thermo-mechanical effects of partial melting were implemented as (1) a viscosity decrease as a determined rheologically critical melt percentage was reached (here 0.1), (2) a change in effective heat capacity and adiabatic heating/cooling accounting for a latent heat term in the heat equation. Among the 3 tested reactions, only H2O-fluid-saturated partial melting drastically modifies the collision dynamics from the non-melting reference model holding all other parameters constant. A substantially low general viscosity truncation (here 1017 Pa s) is needed to properly resolve the effect of partial melting on deep collision processes. Low temperature melting indeed induces the development of a low viscosity buoyant plume prior to slab detachment, where migmatites exhume from UHP conditions at rates and with pressure-temperature paths similar to the natural values acknowledged for the Norwegian Caledonides. High temperature melting has no drastic influence on early collision dynamics. While positive buoyancy remains the first order driver for the exhumation of buried continental rocks, exhumation initiates in these cases with eduction subsequent to slab detachment. Melting and formation of a migmatite plume can later occur along decompression path while continental crust undergoes thermal reequilibration at temperatures above 900 °C. Some of the partially molten material can also relaminate in the overriding plate rather than exhume within the collision zone. Even if minor in terms of amount of magma produced, H2O-fluid-saturated partial melting

  14. Non-adiabatic perturbations in Ricci dark energy model

    SciTech Connect

    Karwan, Khamphee; Thitapura, Thiti E-mail: nanodsci2523@hotmail.com

    2012-01-01

    We show that the non-adiabatic perturbations between Ricci dark energy and matter can grow both on superhorizon and subhorizon scales, and these non-adiabatic perturbations on subhorizon scales can lead to instability in this dark energy model. The rapidly growing non-adiabatic modes on subhorizon scales always occur when the equation of state parameter of dark energy starts to drop towards -1 near the end of matter era, except that the parameter α of Ricci dark energy equals to 1/2. In the case where α = 1/2, the rapidly growing non-adiabatic modes disappear when the perturbations in dark energy and matter are adiabatic initially. However, an adiabaticity between dark energy and matter perturbations at early time implies a non-adiabaticity between matter and radiation, this can influence the ordinary Sachs-Wolfe (OSW) effect. Since the amount of Ricci dark energy is not small during matter domination, the integrated Sachs-Wolfe (ISW) effect is greatly modified by density perturbations of dark energy, leading to a wrong shape of CMB power spectrum. The instability in Ricci dark energy is difficult to be alleviated if the effects of coupling between baryon and photon on dark energy perturbations are included.

  15. Large magnetocaloric effect and adiabatic demagnetization refrigeration with YbPt2Sn

    PubMed Central

    Jang, Dongjin; Gruner, Thomas; Steppke, Alexander; Mitsumoto, Keisuke; Geibel, Christoph; Brando, Manuel

    2015-01-01

    Adiabatic demagnetization is currently gaining strong interest in searching for alternatives to 3He-based refrigeration techniques for achieving temperatures below 2 K. The main reasons for that are the recent shortage and high price of the rare helium isotope 3He. Here we report the discovery of a large magnetocaloric effect in the intermetallic compound YbPt2Sn, which allows adiabatic demagnetization cooling from 2 K down to 0.2 K. We demonstrate this with a home-made refrigerator. Other materials, for example, paramagnetic salts, are commonly used for the same purpose but none of them is metallic, a severe limitation for low-temperature applications. YbPt2Sn is a good metal with an extremely rare weak magnetic coupling between the Yb atoms, which prevents them from ordering above 0.25 K, leaving enough entropy free for use in adiabatic demagnetization cooling. The large volumetric entropy capacity of YbPt2Sn guarantees also a good cooling power. PMID:26493166

  16. Large magnetocaloric effect and adiabatic demagnetization refrigeration with YbPt2Sn.

    PubMed

    Jang, Dongjin; Gruner, Thomas; Steppke, Alexander; Mitsumoto, Keisuke; Geibel, Christoph; Brando, Manuel

    2015-01-01

    Adiabatic demagnetization is currently gaining strong interest in searching for alternatives to (3)He-based refrigeration techniques for achieving temperatures below 2 K. The main reasons for that are the recent shortage and high price of the rare helium isotope (3)He. Here we report the discovery of a large magnetocaloric effect in the intermetallic compound YbPt2Sn, which allows adiabatic demagnetization cooling from 2 K down to 0.2 K. We demonstrate this with a home-made refrigerator. Other materials, for example, paramagnetic salts, are commonly used for the same purpose but none of them is metallic, a severe limitation for low-temperature applications. YbPt2Sn is a good metal with an extremely rare weak magnetic coupling between the Yb atoms, which prevents them from ordering above 0.25 K, leaving enough entropy free for use in adiabatic demagnetization cooling. The large volumetric entropy capacity of YbPt2Sn guarantees also a good cooling power. PMID:26493166

  17. Dynamics of Charged Particles in an Adiabatic Thermal Beam Equilibrium

    NASA Astrophysics Data System (ADS)

    Chen, Chiping; Wei, Haofei

    2010-11-01

    Charged-particle motion is studied in the self-electric and self-magnetic fields of a well-matched, intense charged-particle beam and an applied periodic solenoidal magnetic focusing field. The beam is assumed to be in a state of adiabatic thermal equilibrium. The phase space is analyzed and compared with that of the well-known Kapchinskij-Vladimirskij (KV)-type beam equilibrium. It is found that the widths of nonlinear resonances in the adiabatic thermal beam equilibrium are narrower than those in the KV-type beam equilibrium. Numerical evidence is presented, indicating almost complete elimination of chaotic particle motion in the adiabatic thermal beam equilibrium.

  18. Dephasing effects on stimulated Raman adiabatic passage in tripod configurations

    SciTech Connect

    Lazarou, C.; Vitanov, N. V.

    2010-09-15

    We present an analytic description of the effects of dephasing processes on stimulated Raman adiabatic passage in a tripod quantum system. To this end, we develop an effective two-level model. Our analysis makes use of the adiabatic approximation in the weak dephasing regime. An effective master equation for a two-level system formed by two dark states is derived, where analytic solutions are obtained by utilizing the Demkov-Kunike model. From these, it is found that the fidelity for the final coherent superposition state decreases exponentially for increasing dephasing rates. Depending on the pulse ordering and for adiabatic evolution, the pulse delay can have an inverse effect.

  19. Facts about saturated fats

    MedlinePlus

    ... at room temperature. Foods like butter, palm and coconut oils, cheese, and red meat have high amounts ... cream, cheese, whole milk) Solid fats such as coconut oil, palm, and palm kernel oils (found in ...

  20. Graph isomorphism and adiabatic quantum computing

    NASA Astrophysics Data System (ADS)

    Gaitan, Frank; Clark, Lane

    2014-03-01

    In the Graph Isomorphism (GI) problem two N-vertex graphs G and G' are given and the task is to determine whether there exists a permutation of the vertices of G that preserves adjacency and maps G --> G'. If yes (no), then G and G' are said to be isomorphic (non-isomorphic). The GI problem is an important problem in computer science and is thought to be of comparable difficulty to integer factorization. We present a quantum algorithm that solves arbitrary instances of GI, and which provides a novel approach to determining all automorphisms of a graph. The algorithm converts a GI instance to a combinatorial optimization problem that can be solved using adiabatic quantum evolution. Numerical simulation of the algorithm's quantum dynamics shows that it correctly distinguishes non-isomorphic graphs; recognizes isomorphic graphs; and finds the automorphism group of a graph. We also discuss the algorithm's experimental implementation and show how it can be leveraged to solve arbitrary instances of the NP-Complete Sub-Graph Isomorphism problem.

  1. Adiabatic Quantum Computation with Neutral Atoms

    NASA Astrophysics Data System (ADS)

    Biedermann, Grant

    2013-03-01

    We are implementing a new platform for adiabatic quantum computation (AQC)[2] based on trapped neutral atoms whose coupling is mediated by the dipole-dipole interactions of Rydberg states. Ground state cesium atoms are dressed by laser fields in a manner conditional on the Rydberg blockade mechanism,[3,4] thereby providing the requisite entangling interactions. As a benchmark we study a Quadratic Unconstrained Binary Optimization (QUBO) problem whose solution is found in the ground state spin configuration of an Ising-like model. In collaboration with Lambert Parazzoli, Sandia National Laboratories; Aaron Hankin, Center for Quantum Information and Control (CQuIC), University of New Mexico; James Chin-Wen Chou, Yuan-Yu Jau, Peter Schwindt, Cort Johnson, and George Burns, Sandia National Laboratories; Tyler Keating, Krittika Goyal, and Ivan Deutsch, Center for Quantum Information and Control (CQuIC), University of New Mexico; and Andrew Landahl, Sandia National Laboratories. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories

  2. Adiabatic Quantum Algorithm for Search Engine Ranking

    NASA Astrophysics Data System (ADS)

    Garnerone, Silvano; Zanardi, Paolo; Lidar, Daniel A.

    2012-06-01

    We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this algorithm can prepare the quantum PageRank state in a time which, on average, scales polylogarithmically in the number of web pages. We argue that the main topological feature of the underlying web graph allowing for such a scaling is the out-degree distribution. The top-ranked log⁡(n) entries of the quantum PageRank state can then be estimated with a polynomial quantum speed-up. Moreover, the quantum PageRank state can be used in “q-sampling” protocols for testing properties of distributions, which require exponentially fewer measurements than all classical schemes designed for the same task. This can be used to decide whether to run a classical update of the PageRank.

  3. Adiabaticity and spectral splits in collective neutrino transformations

    SciTech Connect

    Raffelt, Georg G.; Smirnov, Alexei Yu.

    2007-12-15

    Neutrinos streaming off a supernova core transform collectively by neutrino-neutrino interactions, leading to 'spectral splits' where an energy E{sub split} divides the transformed spectrum sharply into parts of almost pure but different flavors. We present a detailed description of the spectral-split phenomenon which is conceptually and quantitatively understood in an adiabatic treatment of neutrino-neutrino effects. Central to this theory is a self-consistency condition in the form of two sum rules (integrals over the neutrino spectra that must equal certain conserved quantities). We provide explicit analytic and numerical solutions for various neutrino spectra. We introduce the concept of the adiabatic reference frame and elaborate on the relative adiabatic evolution. Violating adiabaticity leads to the spectral split being 'washed out'. The sharpness of the split appears to be represented by a surprisingly universal function.

  4. Acceleration of adiabatic quantum dynamics in electromagnetic fields

    SciTech Connect

    Masuda, Shumpei; Nakamura, Katsuhiro

    2011-10-15

    We show a method to accelerate quantum adiabatic dynamics of wave functions under electromagnetic field (EMF) by developing the preceding theory [Masuda and Nakamura, Proc. R. Soc. London Ser. A 466, 1135 (2010)]. Treating the orbital dynamics of a charged particle in EMF, we derive the driving field which accelerates quantum adiabatic dynamics in order to obtain the final adiabatic states in any desired short time. The scheme is consolidated by describing a way to overcome possible singularities in both the additional phase and driving potential due to nodes proper to wave functions under EMF. As explicit examples, we exhibit the fast forward of adiabatic squeezing and transport of excited Landau states with nonzero angular momentum, obtaining the result consistent with the transitionless quantum driving applied to the orbital dynamics in EMF.

  5. Adiabatic and isocurvature perturbation projections in multi-field inflation

    NASA Astrophysics Data System (ADS)

    Gordon, Chris; Saffin, Paul M.

    2013-08-01

    Current data are in good agreement with the predictions of single field inflation. However, the hemispherical asymmetry, seen in the cosmic microwave background data, may hint at a potential problem. Generalizing to multi-field models may provide one possible explanation. A useful way of modeling perturbations in multi-field inflation is to investigate the projection of the perturbation along and perpendicular to the background fields' trajectory. These correspond to the adiabatic and isocurvature perturbations. However, it is important to note that in general there are no corresponding adiabatic and isocurvature fields. The purpose of this article is to highlight the distinction between a field redefinition and a perturbation projection. We provide a detailed derivation of the evolution of the isocurvature perturbation to show that no assumption of an adiabatic or isocurvature field is needed. We also show how this evolution equation is consistent with the field covariant evolution equations for the adiabatic perturbation in the flat field space limit.

  6. Startup of the RFP in a quasi-adiabatic mode

    SciTech Connect

    Caramana, E.J.

    1980-01-01

    The equations describing the purely adiabatic formation of the reversed-field pinch are solved. This method of formation in principle remedies the problem of flux consumption during the startup phase of this device.

  7. Ultrafast stimulated Raman parallel adiabatic passage by shaped pulses

    SciTech Connect

    Dridi, G.; Guerin, S.; Hakobyan, V.; Jauslin, H. R.; Eleuch, H.

    2009-10-15

    We present a general and versatile technique of population transfer based on parallel adiabatic passage by femtosecond shaped pulses. Their amplitude and phase are specifically designed to optimize the adiabatic passage corresponding to parallel eigenvalues at all times. We show that this technique allows the robust adiabatic population transfer in a Raman system with the total pulse area as low as 3{pi}, corresponding to a fluence of one order of magnitude below the conventional stimulated Raman adiabatic passage process. This process of short duration, typically picosecond and subpicosecond, is easily implementable with the modern pulse shaper technology and opens the possibility of ultrafast robust population transfer with interesting applications in quantum information processing.

  8. Quantum Monte Carlo simulations of tunneling in quantum adiabatic optimization

    NASA Astrophysics Data System (ADS)

    Brady, Lucas T.; van Dam, Wim

    2016-03-01

    We explore to what extent path-integral quantum Monte Carlo methods can efficiently simulate quantum adiabatic optimization algorithms during a quantum tunneling process. Specifically we look at symmetric cost functions defined over n bits with a single potential barrier that a successful quantum adiabatic optimization algorithm will have to tunnel through. The height and width of this barrier depend on n , and by tuning these dependencies, we can make the optimization algorithm succeed or fail in polynomial time. In this article we compare the strength of quantum adiabatic tunneling with that of path-integral quantum Monte Carlo methods. We find numerical evidence that quantum Monte Carlo algorithms will succeed in the same regimes where quantum adiabatic optimization succeeds.

  9. Kinetic theory of plasma adiabatic major radius compression in tokamaks

    NASA Astrophysics Data System (ADS)

    Gorelenkova, M. V.; Gorelenkov, N. N.; Azizov, E. A.; Romannikov, A. N.; Herrmann, H. W.

    1998-05-01

    In order to understand the individual charged particle behavior as well as plasma macroparameters (temperature, density, etc.) during the adiabatic major radius compression (R-compression) in a tokamak, a kinetic approach is used. The perpendicular electric field from the Ohm's law at zero resistivity is made use of in order to describe particle motion during the R-compression. Expressions for both passing and trapped particle energy and pitch angle change are derived for a plasma with high aspect ratio and circular magnetic surfaces. The particle behavior near the passing trapped boundary during the compression is studied to simulate the compression-induced collisional losses of alpha particles. Qualitative agreement is obtained with the alphas loss measurements in deuterium-tritium (D-T) experiments in the Tokamak Fusion Test Reactor (TFTR) [World Survey of Activities in Controlled Fusion Research [Nucl. Fusion special supplement (1991)] (International Atomic Energy Agency, Vienna, 1991)]. The plasma macroparameters evolution at the R-compression is calculated by solving the gyroaveraged drift kinetic equation.

  10. Nonequilibrium adiabatic molecular dynamics simulations of methane clathrate hydrate decomposition

    NASA Astrophysics Data System (ADS)

    Alavi, Saman; Ripmeester, J. A.

    2010-04-01

    Nonequilibrium, constant energy, constant volume (NVE) molecular dynamics simulations are used to study the decomposition of methane clathrate hydrate in contact with water. Under adiabatic conditions, the rate of methane clathrate decomposition is affected by heat and mass transfer arising from the breakup of the clathrate hydrate framework and release of the methane gas at the solid-liquid interface and diffusion of methane through water. We observe that temperature gradients are established between the clathrate and solution phases as a result of the endothermic clathrate decomposition process and this factor must be considered when modeling the decomposition process. Additionally we observe that clathrate decomposition does not occur gradually with breakup of individual cages, but rather in a concerted fashion with rows of structure I cages parallel to the interface decomposing simultaneously. Due to the concerted breakup of layers of the hydrate, large amounts of methane gas are released near the surface which can form bubbles that will greatly affect the rate of mass transfer near the surface of the clathrate phase. The effects of these phenomena on the rate of methane hydrate decomposition are determined and implications on hydrate dissociation in natural methane hydrate reservoirs are discussed.

  11. Adiabatic Compression Sensitivity of Liquid Fuels and Monopropellants

    NASA Technical Reports Server (NTRS)

    Ismail, Ismail M. K.; Hawkins, Tom W.

    2000-01-01

    Liquid rocket propellants can be sensitive to rapid compression. Such liquids may undergo decomposition and their handling may be accompanied with risk. Decomposition produces small gas bubbles in the liquid, which upon rapid compression may cause catastrophic explosions. The rapid compression can result from mechanical shocks applied on the tank containing the liquid or from rapid closure of the valves installed on the lines. It is desirable to determine the conditions that may promote explosive reactions. At Air Force Research Laboratory (AFRL), we constructed an apparatus and established a safe procedure for estimating the sensitivity of propellant materials towards mechanical shocks (Adiabatic Compression Tester). A sample is placed on a stainless steel U-tube, held isothermally at a temperature between 20 and 150 C then exposed to an abrupt mechanical shock of nitrogen gas at a pressure between 6.9 and 20.7 MPa (1000 to 3000 psi). The apparatus is computer interfaced and is driven with LABTECH NOTEBOOK-pro (registered) Software. In this presentation, the design of the apparatus is shown, the operating procedure is outlined, and the safety issues are addressed. The results obtained on different energetic materials are presented.

  12. Nonadiabatic transitions in finite-time adiabatic rapid passage

    NASA Astrophysics Data System (ADS)

    Lu, T.; Miao, X.; Metcalf, H.

    2007-06-01

    To apply the adiabatic rapid passage process repetitively [T. Lu, X. Miao, and H. Metcalf, Phys. Rev. A 71, 061405(R) (2005)], the nonadiabatic transition probability of a two-level atom subject to chirped light pulses over a finite period of time needs to be calculated. Using a unitary first-order perturbation method in the rotating adiabatic frame, an approximate formula has been derived for such transition probabilities in the entire parameter space of the pulses.

  13. Realization of adiabatic Aharonov-Bohm scattering with neutrons

    NASA Astrophysics Data System (ADS)

    Sjöqvist, Erik; Almquist, Martin; Mattsson, Ken; Gürkan, Zeynep Nilhan; Hessmo, Björn

    2015-11-01

    The adiabatic Aharonov-Bohm (AB) effect is a manifestation of the Berry phase acquired when some slow variables take a planar spin around a loop. While the effect has been observed in molecular spectroscopy, direct measurement of the topological phase shift in a scattering experiment has been elusive in the past. Here, we demonstrate an adiabatic AB effect by explicit simulation of the dynamics of unpolarized very slow neutrons that scatter on a long straight current-carrying wire.

  14. Shortcuts to adiabaticity for non-Hermitian systems

    SciTech Connect

    Ibanez, S.; Martinez-Garaot, S.; Torrontegui, E.; Muga, J. G.; Chen Xi

    2011-08-15

    Adiabatic processes driven by non-Hermitian, time-dependent Hamiltonians may be sped up by generalizing inverse engineering techniques based on counter-diabatic (transitionless driving) algorithms or on dynamical invariants. We work out the basic theory and examples described by two-level Hamiltonians: the acceleration of rapid adiabatic passage with a decaying excited level and of the dynamics of a classical particle on an expanding harmonic oscillator.

  15. Results from Boiling Temperature Measurements for Saturated Solutions in the Systems NaCl + Ca(NO3)2 + H2O, NaNO3 + KNO3 + H2O, and NaCl + KNO3 + H2O, and Dry Out Temperatures for NaCl + NaNO3 + KNO3 + Ca(NO3)2 + H2O

    SciTech Connect

    Rard, J A

    2005-11-29

    Boiling temperature measurements have been made for saturated ternary solutions of NaCl + KNO{sub 3} + H{sub 2}O and NaNO{sub 3} + KNO{sub 3} + H{sub 2}O at three selected salt ratios and for NaCl + Ca(NO{sub 3}){sub 2} + H{sub 2}O over the full composition range. The maximum boiling temperature found for the NaCl + Ca(NO{sub 3}){sub 2} + H{sub 2}O system is 164.7 {+-} 0.6 C, and the composition is estimated to occur at x(Ca(NO{sub 3}){sub 2}) {approx} 0.25. Experiments were also performed for the five component NaCl + NaNO{sub 3} + KNO{sub 3} + Ca(NO{sub 3}){sub 2} + H{sub 2}O mixtures with the molar ratio of NaCl:NaNO{sub 3}:KNO{sub 3} held essentially constant at 1:0.9780:1.1468 as the solute mole fraction of Ca(NO{sub 3}){sub 2}, x(Ca(NO{sub 3}){sub 2}), was varied between 0 and 0.25. The NaCl + NaNO{sub 3} + KNO{sub 3} + Ca(NO{sub 3}){sub 2} + H{sub 2}O system forms low melting mixtures and thus boiling temperatures for saturated were not determined. Instead, the temperatures corresponding to the cessation of boiling (i.e., dry out temperatures) of these liquid mixtures were determined. These dry out temperatures range from {approx} 300 C when x(Ca(NO{sub 3}){sub 2}) = 0 to {ge} 400 C when x(Ca(NO{sub 3}){sub 2}) = 0.20 and 0.25. The investigated mixture compositions correspond to some of the major mineral assemblages that are predicted to control the deliquescence relative humidity of salts formed by leaching dust samples from the proposed nuclear repository at Yucca Mountain, Nevada.

  16. Experimental aspects of the adiabatic approach in estimating the effect of electron screening on alpha decay

    SciTech Connect

    Karpeshin, F. F.; Trzhaskovskaya, M. B.

    2015-12-15

    Special features of the effect of the electron shell on alpha decay that have important experimental implications are studied within the adiabatic approach. The magnitude of the effect is about several tenths of a percent or smaller, depending on the transition energy and on the atomic number. A dominant role of inner shells is shown: more than 80% of the effect is saturated by 1s electrons. This circumstance plays a crucial role for experiments, making it possible to measure this small effect by a difference method in the same storage rings via a comparison of, for example, decay probabilities in bare nuclei and heliumlike ions. The reasons behind the relative success and the applicability limits of the frozen-shell model, which has been used to calculate the effect in question for more than half a century, are analyzed. An interesting experiment aimed at studying charged alpha-particle states is proposed. This experiment will furnish unique information for testing our ideas of the interplay of nonadiabatic and adiabatic processes.

  17. Controls on Highly Siderophile Element Concentrations in Martian Basalt: Sulfide Saturation and Under-Saturation

    NASA Technical Reports Server (NTRS)

    Righter, Kevin

    2009-01-01

    Highly siderophile elements (HSE; Re, Au and the platinum group elements) in shergottites exhibit a wide range from very high, similar to the terrestrial mantle, to very low, similar to sulfide saturated mid ocean ridge basalt (e.g., [1]). This large range has been difficult to explain without good constraints on sulfide saturation or under-saturation [2]. A new model for prediction of sulfide saturation places new constraints on this problem [3]. Shergottite data: For primitive shergottites, pressure and temperature estimates are between 1.2-1.5 GPa, and 1350-1470 C [4]. The range of oxygen fugacities is from FMQ-2 to IW, where the amount of Fe2O3 is low and thus does not have a significant effect on the S saturation values. Finally, the bulk compositions of shergottites have been reported in many recent studies (e.g., [5]). All of this information will be used to test whether shergottites are sulfide saturated [3]. Modeling values and results: The database for HSE partition coefficients has been growing with many new data for silicates and oxides [6-8] to complement a large sulfide database [9- 11]. Combining these data with simple batch melting models allows HSE contents of mantle melts to be estimated for sulfide-bearing vs. sulfide-free mantle. Combining such models with fractional crystallization modeling (e.g., [12]) allows HSE contents of more evolved liquids to be modeled. Most primitive shergottites have high HSE contents (and low S contents) that can be explained by sulfide under-saturated melting of the mantle. An exception is Dhofar 019 which has high S contents and very low HSE contents suggesting sulfide saturation. Most evolved basaltic shergottites have lower S contents than saturation, and intermediate HSE contents that can be explained by olivine, pyroxene, and chromite fractionation. An exception is EET A79001 lithology B, which has very low HSE contents and S contents higher than sulfide saturation values . evidence for sulfide saturation

  18. Experimental Study of the Thermodynamic Properties of Diethyl Ether (DEE) at Saturation

    NASA Astrophysics Data System (ADS)

    Polikhronidi, N. G.; Abdulagatov, I. M.; Batyrova, R. G.; Stepanov, G. V.; Ustuzhanin, E. E.; Wu, J. T.

    2011-03-01

    The isochoric heat capacities {({C_{V1}^' ,{C_{V1}^'',{C_{V2}^',{C_{V2}^'')}, saturation densities ({ρ _S^' and ({ρ_S^'')}), vapor pressures ( P S), thermal-pressure coefficients {γ_V=left({partial P/partial T}right)_V}, and first temperature derivatives of the vapor pressure γ S = (d P S/d T) of diethyl ether (DEE) on the liquid-gas coexistence curve near the critical point have been measured with a high-temperature and high-pressure nearly constant-volume adiabatic piezo-calorimeter. The measurements of {({C_{V1}^' ,{C_{V1}^'',{C_{V2}^',{C_{V2}^'')} were made in the liquid and vapor one- and two-phase regions along the coexistence curve. The calorimeter was additionally supplied with a calibrated extensometer to accurately and simultaneously measure the PVT, C V VT, and thermal-pressure coefficient, γ V , along the saturation curve. The measurements were carried out in the temperature range from 416 K to 466.845 K (the critical temperature) for 17 liquid and vapor densities from 212.6 kg · m-3 to 534.6 kg · m-3. The quasi-static thermo- (reading of PRT, T - τ plot) and baro-gram (readings of the tensotransducer, P - τ plot) techniques were used to accurately measure the phase-transition parameters ( P S , ρ S , T S) and γ V . The total experimental uncertainty of density ( ρ S), pressure ( P S), temperature ( T S), isochoric heat capacities {({C_{V1}^' ,{C_{V1}^'',{C_{V2}^',{C_{V2}^'')}, and thermal-pressure coefficient, γ V , were estimated to be 0.02 % to 0.05 %, 0.05 %, 15 mK, 2 % to 3 %, and 0.12 % to 1.5 %, respectively. The measured values of saturated caloric {({C_{V1}^' ,{C_{V1}^'',{C_{V2}^',{C_{V2}^'')} and saturated thermal ( P S, ρ S, T S) properties were used to calculate other derived thermodynamic properties C P , C S, W, K T , P int, Δ H vap, and {left({partial V/partial T}right)_P^' of DEE near the critical point. The second temperature derivatives of the vapor pressure, (d2 P S/d T 2), and chemical potential, (d2 μ/d T 2), were

  19. Adaptive dynamics of saturated polymorphisms.

    PubMed

    Kisdi, Éva; Geritz, Stefan A H

    2016-03-01

    We study the joint adaptive dynamics of n scalar-valued strategies in ecosystems where n is the maximum number of coexisting strategies permitted by the (generalized) competitive exclusion principle. The adaptive dynamics of such saturated systems exhibits special characteristics, which we first demonstrate in a simple example of a host-pathogen-predator model. The main part of the paper characterizes the adaptive dynamics of saturated polymorphisms in general. In order to investigate convergence stability, we give a new sufficient condition for absolute stability of an arbitrary (not necessarily saturated) polymorphic singularity and show that saturated evolutionarily stable polymorphisms satisfy it. For the case [Formula: see text], we also introduce a method to construct different pairwise invasibility plots of the monomorphic population without changing the selection gradients of the saturated dimorphism. PMID:26676357

  20. Effects of dephasing on quantum adiabatic pumping with nonequilibrium initial states

    NASA Astrophysics Data System (ADS)

    Zhou, Longwen; Tan, Da Yang; Gong, Jiangbin

    2015-12-01

    Thouless's quantum adiabatic pumping is of fundamental interest to condensed-matter physics. It originally considered a zero-temperature equilibrium state uniformly occupying all the bands below a Fermi surface. In light of recent direct simulations of Thouless's concept in cold-atom systems, this paper investigates the dynamics of quantum adiabatic pumping subject to dephasing for rather general initial states with nonuniform populations and possibly interband coherence. Using a theory based on pure-dephasing Lindblad evolution, we find that the pumping is contributed by two parts of different nature: a dephasing-modified geometric part weighted by initial Bloch state populations and an interband-coherence-induced part compromised by dephasing, both of them being independent of the pumping time scale. The overall pumping reflects an interplay of the band topology, initial state populations, initial state coherence, and dephasing. Theoretical results are carefully checked in a Chern insulator model coupled to a pure-dephasing environment, providing a useful starting point to understand and coherently control quantum adiabatic pumping in general situations.

  1. Adiabatic Effectiveness and Heat Transfer Coefficient on a Film-Cooled Rotating Blade

    NASA Technical Reports Server (NTRS)

    Garg, Vijay K.

    1997-01-01

    three-dimensional Navier-Stokes code has been used to compute the adiabatic effectiveness and heat transfer coefficient on a rotating film-cooled turbine blade. The blade chosen is the United Technologies Research Center(UTRC) rotor with five film-cooling rows containing 83 holes, including three rows on the shower head with 49 holes, covering about 86% of the blade span. The mainstream is akin to that under real engine conditions with stagnation temperature 1900 K and stagnation pressure 3 MPa. The blade speed is taken to be 5200 rpm. The adiabatic effectiveness is higher for a rotating blade as compared to that for a stationary blade. Also, the direction of coolant injection from the shower-head holes considerably affects the effectiveness and heat transfer coefficient values on both the pressure and suction surfaces. In all cases the heat transfer coefficient and adiabatic effectiveness are highly three-dimensional in the vicinity of holes but tend to become two-dimensional far downstream.

  2. Saturation current spikes eliminated in saturable core transformers

    NASA Technical Reports Server (NTRS)

    Schwarz, F. C.

    1971-01-01

    Unsaturating composite magnetic core transformer, consisting of two separate parallel cores designed so impending core saturation causes signal generation, terminates high current spike in converter primary circuit. Simplified waveform, demonstrates transformer effectiveness in eliminating current spikes.

  3. Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling

    PubMed Central

    Tokiwa, Yoshifumi; Piening, Boy; Jeevan, Hirale S.; Bud’ko, Sergey L.; Canfield, Paul C.; Gegenwart, Philipp

    2016-01-01

    Low-temperature refrigeration is of crucial importance in fundamental research of condensed matter physics, because the investigations of fascinating quantum phenomena, such as superconductivity, superfluidity, and quantum criticality, often require refrigeration down to very low temperatures. Currently, cryogenic refrigerators with 3He gas are widely used for cooling below 1 K. However, usage of the gas has been increasingly difficult because of the current worldwide shortage. Therefore, it is important to consider alternative methods of refrigeration. We show that a new type of refrigerant, the super-heavy electron metal YbCo2Zn20, can be used for adiabatic demagnetization refrigeration, which does not require 3He gas. This method has a number of advantages, including much better metallic thermal conductivity compared to the conventional insulating refrigerants. We also demonstrate that the cooling performance is optimized in Yb1−xScxCo2Zn20 by partial Sc substitution, with x ~ 0.19. The substitution induces chemical pressure that drives the materials to a zero-field quantum critical point. This leads to an additional enhancement of the magnetocaloric effect in low fields and low temperatures, enabling final temperatures well below 100 mK. This performance has, up to now, been restricted to insulators. For nearly a century, the same principle of using local magnetic moments has been applied for adiabatic demagnetization cooling. This study opens new possibilities of using itinerant magnetic moments for cryogen-free refrigeration. PMID:27626073

  4. Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling.

    PubMed

    Tokiwa, Yoshifumi; Piening, Boy; Jeevan, Hirale S; Bud'ko, Sergey L; Canfield, Paul C; Gegenwart, Philipp

    2016-09-01

    Low-temperature refrigeration is of crucial importance in fundamental research of condensed matter physics, because the investigations of fascinating quantum phenomena, such as superconductivity, superfluidity, and quantum criticality, often require refrigeration down to very low temperatures. Currently, cryogenic refrigerators with (3)He gas are widely used for cooling below 1 K. However, usage of the gas has been increasingly difficult because of the current worldwide shortage. Therefore, it is important to consider alternative methods of refrigeration. We show that a new type of refrigerant, the super-heavy electron metal YbCo2Zn20, can be used for adiabatic demagnetization refrigeration, which does not require (3)He gas. This method has a number of advantages, including much better metallic thermal conductivity compared to the conventional insulating refrigerants. We also demonstrate that the cooling performance is optimized in Yb1-x Sc x Co2Zn20 by partial Sc substitution, with x ~ 0.19. The substitution induces chemical pressure that drives the materials to a zero-field quantum critical point. This leads to an additional enhancement of the magnetocaloric effect in low fields and low temperatures, enabling final temperatures well below 100 mK. This performance has, up to now, been restricted to insulators. For nearly a century, the same principle of using local magnetic moments has been applied for adiabatic demagnetization cooling. This study opens new possibilities of using itinerant magnetic moments for cryogen-free refrigeration. PMID:27626073

  5. Adiabatic condition and the quantum hitting time of Markov chains

    SciTech Connect

    Krovi, Hari; Ozols, Maris; Roland, Jeremie

    2010-08-15

    We present an adiabatic quantum algorithm for the abstract problem of searching marked vertices in a graph, or spatial search. Given a random walk (or Markov chain) P on a graph with a set of unknown marked vertices, one can define a related absorbing walk P{sup '} where outgoing transitions from marked vertices are replaced by self-loops. We build a Hamiltonian H(s) from the interpolated Markov chain P(s)=(1-s)P+sP{sup '} and use it in an adiabatic quantum algorithm to drive an initial superposition over all vertices to a superposition over marked vertices. The adiabatic condition implies that, for any reversible Markov chain and any set of marked vertices, the running time of the adiabatic algorithm is given by the square root of the classical hitting time. This algorithm therefore demonstrates a novel connection between the adiabatic condition and the classical notion of hitting time of a random walk. It also significantly extends the scope of previous quantum algorithms for this problem, which could only obtain a full quadratic speedup for state-transitive reversible Markov chains with a unique marked vertex.

  6. Landsliding in partially saturated materials

    USGS Publications Warehouse

    Godt, J.W.; Baum, R.L.; Lu, N.

    2009-01-01

    [1] Rainfall-induced landslides are pervasive in hillslope environments around the world and among the most costly and deadly natural hazards. However, capturing their occurrence with scientific instrumentation in a natural setting is extremely rare. The prevailing thinking on landslide initiation, particularly for those landslides that occur under intense precipitation, is that the failure surface is saturated and has positive pore-water pressures acting on it. Most analytic methods used for landslide hazard assessment are based on the above perception and assume that the failure surface is located beneath a water table. By monitoring the pore water and soil suction response to rainfall, we observed shallow landslide occurrence under partially saturated conditions for the first time in a natural setting. We show that the partially saturated shallow landslide at this site is predictable using measured soil suction and water content and a novel unified effective stress concept for partially saturated earth materials. Copyright 2009 by the American Geophysical Union.

  7. Linewidth measurement of external grating cavity quantum cascade laser using saturation spectroscopy

    NASA Astrophysics Data System (ADS)

    Mukherjee, Nandini; Go, Rowel; Patel, C. Kumar N.

    2008-03-01

    A room temperature external grating cavity (EGC) quantum cascade laser (QCL) is characterized using saturation spectroscopy of NO2. The presence of two strong EGC QCL waveguide modes is evident from the saturation spectra. A linewidth of 21MHz for each EGC-QCL mode is measured from the width of the saturation peak at 10mTorr pressure of NO2.

  8. Saturation of CVD Diamond Detectors

    SciTech Connect

    Lucile S. Dauffy; Richard A. Lerche; Greg J. Schmid; Jeffrey A. Koch; Christopher Silbernagel

    2005-01-01

    A 5 x 0.25 mm Chemical Vapor Deposited (CVD) diamond detector, with a voltage bias of + 250V, was excited by a 400 nm laser (3.1 eV photons) in order to study the saturation of the wafer and its surrounding electronics. In a first experiment, the laser beam energy was increased from a few tens of a pJ to about 100 µJ, and the signal from the diamond was recorded until full saturation of the detection system was achieved. Clear saturation of the detection system was observed at about 40 V, which corresponds with the expected saturation at 10% of the applied bias (250V). The results indicate that the interaction mechanism of the 3.1 eV photons in the diamond (Ebandgap = 5.45 eV) is not a multi-photon process but is linked to the impurities and defects of the crystal. In a second experiment, the detector was irradiated by a saturating first laser pulse and then by a delayed laser pulse of equal or smaller amplitude with delays of 5, 10, and 20 ns. The results suggest that the diamond and associated electronics recover within 10 to 20 ns after a strong saturating pulse.

  9. Applications and error correction for adiabatic quantum optimization

    NASA Astrophysics Data System (ADS)

    Pudenz, Kristen

    Adiabatic quantum optimization (AQO) is a fast-developing subfield of quantum information processing which holds great promise in the relatively near future. Here we develop an application, quantum anomaly detection, and an error correction code, Quantum Annealing Correction (QAC), for use with AQO. The motivation for the anomaly detection algorithm is the problematic nature of classical software verification and validation (V&V). The number of lines of code written for safety-critical applications such as cars and aircraft increases each year, and with it the cost of finding errors grows exponentially (the cost of overlooking errors, which can be measured in human safety, is arguably even higher). We approach the V&V problem by using a quantum machine learning algorithm to identify charateristics of software operations that are implemented outside of specifications, then define an AQO to return these anomalous operations as its result. Our error correction work is the first large-scale experimental demonstration of quantum error correcting codes. We develop QAC and apply it to USC's equipment, the first and second generation of commercially available D-Wave AQO processors. We first show comprehensive experimental results for the code's performance on antiferromagnetic chains, scaling the problem size up to 86 logical qubits (344 physical qubits) and recovering significant encoded success rates even when the unencoded success rates drop to almost nothing. A broader set of randomized benchmarking problems is then introduced, for which we observe similar behavior to the antiferromagnetic chain, specifically that the use of QAC is almost always advantageous for problems of sufficient size and difficulty. Along the way, we develop problem-specific optimizations for the code and gain insight into the various on-chip error mechanisms (most prominently thermal noise, since the hardware operates at finite temperature) and the ways QAC counteracts them. We finish by showing

  10. Development of an Adiabatic Demagnetization Refrigerator for X-ray Microcalorimeter Operations

    NASA Astrophysics Data System (ADS)

    Fujimoto, Ryuichi; Sato, Kosuke; Wada, Akane; Yatsu, Takahiro; Hoshino, Akio; Murakami, Toshio; Shinozaki, Keisuke

    2010-10-01

    An X-ray microcalorimeter is a non-dispersive spectrometer that measures the energy of an incident X-ray photon as a temperature rise. Operated at <0.1 K, it achieves very high resolving power. We are developing X-ray microcalorimeters for future γ-ray burst observations, and are now setting up a compact adiabatic demagnetization refrigerator (ADR) for X-ray microcalorimeter operations. We fabricated a paramagnetic salt pill, and integrated it with a superconducting magnet and a heat-switch in a dedicated He cryostat. By applying a magnetic field of 2.6 T at the bath temperature of 1.8 K, it achieved 0.1 K. The attainable temperature and the hold time were, however, limited due to unexpected heat load. We also successfully measured a resistance-temperature characteristics of a superconducting transition edge.

  11. Heat and mass transfer at adiabatic evaporation of binary zeotropic solutions

    NASA Astrophysics Data System (ADS)

    Makarov, M. S.; Makarova, S. N.

    2016-01-01

    Results of numerical simulation of heat and mass transfer in a laminar flow of three-component gas at adiabatic evaporation of binary solutions from a flat plate are presented. The studies were carried out for the perfect solution of ethanol/methanol and zeotrope solutions of water/acetone, benzene/acetone, and ethanol/acetone. The liquid-vapor equilibrium is described by the Raoult law for the ideal solution and Carlson-Colburn model for real solutions. The effect of gas temperature and liquid composition on the heat and diffusion flows, and temperature of vapor-gas mixture at the interface is analyzed. The formula for calculating the temperature of the evaporation surface for the binary liquid mixtures using the similarity of heat and mass transfer was proposed. Data of numerical simulations are in a good agreement with the results of calculations based on the proposed dependence for all examined liquid mixtures in the considered range of temperatures and pressures.

  12. Integrated polarization rotator/converter by stimulated Raman adiabatic passage.

    PubMed

    Xiong, Xiao; Zou, Chang-Ling; Ren, Xi-Feng; Guo, Guang-Can

    2013-07-15

    We proposed a polarization rotator inspired by stimulated Raman adiabatic passage model from quantum optics, which is composed of a signal waveguide and an ancillary waveguide. The two orthogonal modes in signal waveguide and the oblique mode in ancillary waveguide form a Λ-type three-level system. By controlling the width of signal waveguide and the gap between two waveguides, adiabatic conversion between two orthogonal modes can be realized in the signal waveguide. With such adiabatic passage, polarization conversion is completed within 150 μm length, with the efficiencies over 99% for both conversions between horizontal polarization and vertical polarization. In addition, such a polarization rotator is quite robust against fabrication error, allowing a wide range of tolerances for the rotator geometric parameters. Our work is not only significative to photonic simulations of coherent quantum phenomena with engineered photonic waveguides, but also enlightens the practical applications of these phenomena in optical device designs. PMID:23938558

  13. Adiabatic compressibility of myoglobin. Effect of axial ligand and denaturation.

    PubMed

    Leung, W P; Cho, K C; Lo, Y M; Choy, C L

    1986-03-01

    An ultrasonic technique has been employed to study the adiabatic compressibility of three metmyoglobin derivatives (aquomet-, fluoromet- and azidometmyoglobin) at neutral pH, and aquometmyoglobin as a function of pH in the frequency range of 1-10 MHz at 20 degrees C. No difference was observed in the adiabatic compressibility of the various derivatives. This indicates that the binding of different axial ligands to myoglobin does not affect significantly the conformational fluctuations of the protein. The finding is consistent with the results of the hydrogen exchange rate experiment, indicating that both types of measurements are useful for the study of protein dynamics. Upon acid-induced denaturation, the adiabatic compressibility of myoglobin drops from 5.3 X 10(-12) cm2/dyn to 0.5 X 10(-12) cm2/dyn. Plausible reasons for such a decrease are discussed. PMID:3947645

  14. Effect of dephasing on stimulated Raman adiabatic passage

    SciTech Connect

    Ivanov, P.A.; Vitanov, N.V.; Bergmann, K.

    2004-12-01

    This work explores the effect of phase relaxation on the population transfer efficiency in stimulated Raman adiabatic passage (STIRAP). The study is based on the Liouville equation, which is solved analytically in the adiabatic limit. The transfer efficiency of STIRAP is found to decrease exponentially with the dephasing rate; this effect is stronger for shorter pulse delays and weaker for larger delays, since the transition time is found to be inversely proportional to the pulse delay. Moreover, it is found that the transfer efficiency of STIRAP in the presence of dephasing does not depend on the peak Rabi frequencies at all, as long as they are sufficiently large to enforce adiabatic evolution; hence increasing the field intensity cannot reduce the dephasing losses. It is shown also that for any dephasing rate, the final populations of the initial state and the intermediate state are equal. For strong dephasing all three populations tend to (1/3)

  15. Interaction-induced adiabatic cooling for antiferromagnetism in optical lattices

    SciTech Connect

    Dare, A.-M.; Raymond, L.; Albinet, G.; Tremblay, A.-M. S.

    2007-08-01

    In the experimental context of cold-fermion optical lattices, we discuss the possibilities to approach the pseudogap or ordered phases by manipulating the scattering length or the strength of the laser-induced lattice potential. Using the two-particle self-consistent approach, as well as quantum Monte Carlo simulations, we provide isentropic curves for the two- and three-dimensional Hubbard models at half-filling. These quantitative results are important for practical attempts to reach the ordered antiferromagnetic phase in experiments on optical lattices of two-component fermions. We find that adiabatically turning on the interaction in two dimensions to cool the system is not very effective. In three dimensions, adiabatic cooling to the antiferromagnetic phase can be achieved in such a manner, although the cooling efficiency is not as high as initially suggested by dynamical mean-field theory. Adiabatic cooling by turning off the repulsion beginning at strong coupling is possible in certain cases.

  16. Adiabatic Quantum Programming: Minor Embedding With Hard Faults

    SciTech Connect

    Klymko, Christine F; Sullivan, Blair D; Humble, Travis S

    2013-01-01

    Adiabatic quantum programming defines the time-dependent mapping of a quantum algorithm into the hardware or logical fabric. An essential programming step is the embedding of problem-specific information into the logical fabric to define the quantum computational transformation. We present algorithms for embedding arbitrary instances of the adiabatic quantum optimization algorithm into a square lattice of specialized unit cells. Our methods are shown to be extensible in fabric growth, linear in time, and quadratic in logical footprint. In addition, we provide methods for accommodating hard faults in the logical fabric without invoking approximations to the original problem. These hard fault-tolerant embedding algorithms are expected to prove useful for benchmarking the adiabatic quantum optimization algorithm on existing quantum logical hardware. We illustrate this versatility through numerical studies of embeddabilty versus hard fault rates in square lattices of complete bipartite unit cells.

  17. Shortcuts to adiabaticity in a time-dependent box

    PubMed Central

    Campo, A. del; Boshier, M. G.

    2012-01-01

    A method is proposed to drive an ultrafast non-adiabatic dynamics of an ultracold gas trapped in a time-dependent box potential. The resulting state is free from spurious excitations associated with the breakdown of adiabaticity, and preserves the quantum correlations of the initial state up to a scaling factor. The process relies on the existence of an adiabatic invariant and the inversion of the dynamical self-similar scaling law dictated by it. Its physical implementation generally requires the use of an auxiliary expulsive potential. The method is extended to a broad family of interacting many-body systems. As illustrative examples we consider the ultrafast expansion of a Tonks-Girardeau gas and of Bose-Einstein condensates in different dimensions, where the method exhibits an excellent robustness against different regimes of interactions and the features of an experimentally realizable box potential. PMID:22970340

  18. Adiabatic quantum programming: minor embedding with hard faults

    NASA Astrophysics Data System (ADS)

    Klymko, Christine; Sullivan, Blair D.; Humble, Travis S.

    2013-11-01

    Adiabatic quantum programming defines the time-dependent mapping of a quantum algorithm into an underlying hardware or logical fabric. An essential step is embedding problem-specific information into the quantum logical fabric. We present algorithms for embedding arbitrary instances of the adiabatic quantum optimization algorithm into a square lattice of specialized unit cells. These methods extend with fabric growth while scaling linearly in time and quadratically in footprint. We also provide methods for handling hard faults in the logical fabric without invoking approximations to the original problem and illustrate their versatility through numerical studies of embeddability versus fault rates in square lattices of complete bipartite unit cells. The studies show that these algorithms are more resilient to faulty fabrics than naive embedding approaches, a feature which should prove useful in benchmarking the adiabatic quantum optimization algorithm on existing faulty hardware.

  19. Design, fabrication and delivery of a prototype saturator for ACPL

    NASA Technical Reports Server (NTRS)

    Keyser, G.; Rogers, C. F.; Squires, P.

    1979-01-01

    The design configuration and performance characteristics of a saturator developed to provide ground-based simulation for some of the experiments for ACPL-1 first flights of Spacelab are described, some difficulties encountered with the apparatus are discussed, and recommendations concerning testing of this type of instrument are presented. The saturators provide a means of accurately fixing the water vapor mixing ratio of an aerosol sample. Dew point temperatures from almost freezing to ambient room temperatures can be attained with high precision. The instruments can accommodate aerosol flow rates approaching 1000 cc/s. Provisions were made to inject aerosols upstream of these saturators, although downstream injection can be accomplished as well. A device of this type will be used in the ACPL-1 to condition various aerosols delivered concurrently to a CFD, expansion chamber, and static diffusion chamber used in zero gravity cloud-forming experiments. The saturator was designed to meet the requirements projected for the flight instrument.

  20. Zircon Saturation Re-Revisited

    NASA Astrophysics Data System (ADS)

    Boehnke, P.; Trail, D.; Schmitt, A. K.; Watson, E. B.; Harrison, M.

    2011-12-01

    Zircon saturation in silicate melts has been utilized for magma thermometry and predicting the survival of zircon xenocrysts in crustal melts for nearly 30 years. The original calibration, which assumed only compositional (M = [2Ca+Na+K]/[AlxSi]) and temperature controls, was bolstered by subsequent experimental investigations and thermometry of volcanic rocks and glasses. These latter studies, while confirming the general predictions of the model, suggested that other environmental parameters (e.g., pressure, H 2O, halogens, [Fe], oxygen fugacity, etc.) might have second-order effects. Given the tremendous advances in micro-analytical capabilities over the intervening three decades, we have returned to this question with a view to obtaining a refined zircon solubility calibration as a function of P, T, [H2O] and FM (= [Na+K+2(Ca+Mg+Fe)]/[AlxSi]). Detailed SEM imaging of the original low-temperature crystallization experiments (1.2-2.1 kbar) revealed limitations of this approach and we chose instead to use a new experimental design in which shattered Mud Tank zircon is infiltrated by melts of selected composition and water contents. 10 kbar hydrothermal experiments (925o and 850oC) were run for sufficiently long durations (2 to 3 days) to ensure microscale diffusive equilibration of Zr released by zircon dissolution into the intercrystalline melt pools. Sectioned run products were analyzed by SIMS ion imaging of selected areas where glass is exposed in close proximity to or surrounded by Mud Tank zircon fragments. Ion imaging has the advantage of permitting high spatial resolution (3 μm) analysis of the glasses allowing assessment of Zr equilibration. Using synthetic glass standards, we found [Zr] in anhydrous glasses to be enhanced by ca. 20% relative to hydrous (at 6 wt.% H2O). Our new experiments and re-analysis of the earlier glasses broadly reproduce the original calibration, albeit with substantially enhanced (factor of five) precision compared to the

  1. Statistical mechanics of Roskilde liquids: Configurational adiabats, specific heat contours, and density dependence of the scaling exponent

    SciTech Connect

    Bailey, Nicholas P.; Bøhling, Lasse; Veldhorst, Arno A.; Schrøder, Thomas B.; Dyre, Jeppe C.

    2013-11-14

    We derive exact results for the rate of change of thermodynamic quantities, in particular, the configurational specific heat at constant volume, C{sub V}, along configurational adiabats (curves of constant excess entropy S{sub ex}). Such curves are designated isomorphs for so-called Roskilde liquids, in view of the invariance of various structural and dynamical quantities along them. The slope of the isomorphs in a double logarithmic representation of the density-temperature phase diagram, γ, can be interpreted as one third of an effective inverse power-law potential exponent. We show that in liquids where γ increases (decreases) with density, the contours of C{sub V} have smaller (larger) slope than configurational adiabats. We clarify also the connection between γ and the pair potential. A fluctuation formula for the slope of the C{sub V}-contours is derived. The theoretical results are supported with data from computer simulations of two systems, the Lennard-Jones fluid, and the Girifalco fluid. The sign of dγ/dρ is thus a third key parameter in characterizing Roskilde liquids, after γ and the virial-potential energy correlation coefficient R. To go beyond isomorph theory we compare invariance of a dynamical quantity, the self-diffusion coefficient, along adiabats and C{sub V}-contours, finding it more invariant along adiabats.

  2. Non Adiabatic Evolution of Elliptical Galaxies by Dynamical Friction

    NASA Astrophysics Data System (ADS)

    Arena, S. E.; Bertin, G.; Liseikina, T.; Pegoraro, F.

    2007-05-01

    Many astrophysical problems, ranging from structure formation in cosmology to dynamics of elliptical galaxies, refer to slow processes of evolution of essentially collisionless self-gravitating systems. In order to determine the relevant quasi-equilibrium configuration at time t from given initial conditions, it is often argued that such slow evolution may be approximated in terms of adiabatic evolution, for the calculation of which efficient semi--analytical techniques are available. Here we focus on the slow process of evolution, induced by dynamical friction of a host stellar system on a minority component of "satellites", to determine to what extent an adiabatic description might be applied. The study is realized by means of N--body simulations of the evolution of the total system (the stellar system plus the minority component), in a controlled numerical environment. In particular, we compare the evolution from initial to final configurations of the system subject to dynamical friction with that of the same system evolved adiabatically (in the absence of dynamical friction). We consider two classes of galaxy models characterized by significantly different density and pressure anisotropy profiles. We demonstrate that, for the examined process, the evolution driven by dynamical friction is significantly different from the adiabatic case, not only quantitatively, but also qualitatively. The two classes of galaxy models considered in this investigation exhibit generally similar trends in evolution, with one exception: concentrated models reach a final total density profile, in the internal region, shallower than the initial one, while galaxy models with a broad core show the opposite behaviour. The evolution of elliptical galaxies induced by dynamical friction is a slow process but it is not adiabatic. The results of our investigation should be taken as a warning against the indiscriminate use of adiabatic growth prescriptions in studies of the structure of

  3. Adiabatic invariants, diffusion and acceleration in rigid body dynamics

    NASA Astrophysics Data System (ADS)

    Borisov, Alexey V.; Mamaev, Ivan S.

    2016-03-01

    The onset of adiabatic chaos in rigid body dynamics is considered. A comparison of the analytically calculated diffusion coefficient describing probabilistic effects in the zone of chaos with a numerical experiment is made. An analysis of the splitting of asymptotic surfaces is performed and uncertainty curves are constructed in the Poincaré-Zhukovsky problem. The application of Hamiltonian methods to nonholonomic systems is discussed. New problem statements are given which are related to the destruction of an adiabatic invariant and to the acceleration of the system (Fermi's acceleration).

  4. Adiabatic Rosen-Zener interferometry with ultracold atoms

    SciTech Connect

    Fu Libin; Ye Defa; Lee Chaohong; Zhang Weiping; Liu Jie

    2009-07-15

    We propose a time-domain 'interferometer' based on double-well ultracold atoms through a so-called adiabatic Rosen-Zener process, that is, the barrier between two wells is ramped down slowly, held for a while, and then ramped back. After the adiabatic Rosen-Zener process, we count the particle population in each well. We find that the final occupation probability shows nice interference fringes. The fringe pattern is sensitive to the initial state as well as the intrinsic parameters of the system such as interatomic interaction or energy bias between two wells. The underlying mechanism is revealed and possible applications are discussed.

  5. Quantum dynamics by the constrained adiabatic trajectory method

    SciTech Connect

    Leclerc, A.; Jolicard, G.; Guerin, S.; Killingbeck, J. P.

    2011-03-15

    We develop the constrained adiabatic trajectory method (CATM), which allows one to solve the time-dependent Schroedinger equation constraining the dynamics to a single Floquet eigenstate, as if it were adiabatic. This constrained Floquet state (CFS) is determined from the Hamiltonian modified by an artificial time-dependent absorbing potential whose forms are derived according to the initial conditions. The main advantage of this technique for practical implementation is that the CFS is easy to determine even for large systems since its corresponding eigenvalue is well isolated from the others through its imaginary part. The properties and limitations of the CATM are explored through simple examples.

  6. Speeding up Adiabatic Quantum State Transfer by Using Dressed States

    NASA Astrophysics Data System (ADS)

    Baksic, Alexandre; Ribeiro, Hugo; Clerk, Aashish A.

    2016-06-01

    We develop new pulse schemes to significantly speed up adiabatic state transfer protocols. Our general strategy involves adding corrections to an initial control Hamiltonian that harness nonadiabatic transitions. These corrections define a set of dressed states that the system follows exactly during the state transfer. We apply this approach to stimulated Raman adiabatic passage protocols and show that a suitable choice of dressed states allows one to design fast protocols that do not require additional couplings, while simultaneously minimizing the occupancy of the "intermediate" level.

  7. Gravitational Chern-Simons and the adiabatic limit

    SciTech Connect

    McLellan, Brendan

    2010-12-15

    We compute the gravitational Chern-Simons term explicitly for an adiabatic family of metrics using standard methods in general relativity. We use the fact that our base three-manifold is a quasiregular K-contact manifold heavily in this computation. Our key observation is that this geometric assumption corresponds exactly to a Kaluza-Klein Ansatz for the metric tensor on our three-manifold, which allows us to translate our problem into the language of general relativity. Similar computations have been performed by Guralnik et al.[Ann. Phys. 308, 222 (2008)], although not in the adiabatic context.

  8. Spatial adiabatic passage: a review of recent progress

    NASA Astrophysics Data System (ADS)

    Menchon-Enrich, R.; Benseny, A.; Ahufinger, V.; Greentree, A. D.; Busch, Th; Mompart, J.

    2016-07-01

    Adiabatic techniques are known to allow for engineering quantum states with high fidelity. This requirement is currently of large interest, as applications in quantum information require the preparation and manipulation of quantum states with minimal errors. Here we review recent progress on developing techniques for the preparation of spatial states through adiabatic passage, particularly focusing on three state systems. These techniques can be applied to matter waves in external potentials, such as cold atoms or electrons, and to classical waves in waveguides, such as light or sound.

  9. Spatial adiabatic passage: a review of recent progress.

    PubMed

    Menchon-Enrich, R; Benseny, A; Ahufinger, V; Greentree, A D; Busch, Th; Mompart, J

    2016-07-01

    Adiabatic techniques are known to allow for engineering quantum states with high fidelity. This requirement is currently of large interest, as applications in quantum information require the preparation and manipulation of quantum states with minimal errors. Here we review recent progress on developing techniques for the preparation of spatial states through adiabatic passage, particularly focusing on three state systems. These techniques can be applied to matter waves in external potentials, such as cold atoms or electrons, and to classical waves in waveguides, such as light or sound. PMID:27245462

  10. Quantum Adiabatic Pumping by Modulating Tunnel Phase in Quantum Dots

    NASA Astrophysics Data System (ADS)

    Taguchi, Masahiko; Nakajima, Satoshi; Kubo, Toshihiro; Tokura, Yasuhiro

    2016-08-01

    In a mesoscopic system, under zero bias voltage, a finite charge is transferred by quantum adiabatic pumping by adiabatically and periodically changing two or more control parameters. We obtained expressions for the pumped charge for a ring of three quantum dots (QDs) by choosing the magnetic flux penetrating the ring as one of the control parameters. We found that the pumped charge shows a steplike behavior with respect to the variance of the flux. The value of the step heights is not universal but depends on the trajectory of the control parameters. We discuss the physical origin of this behavior on the basis of the Fano resonant condition of the ring.

  11. Classical nuclear motion coupled to electronic non-adiabatic transitions

    NASA Astrophysics Data System (ADS)

    Agostini, Federica; Abedi, Ali; Gross, E. K. U.

    2014-12-01

    Based on the exact factorization of the electron-nuclear wave function, we have recently proposed a mixed quantum-classical scheme [A. Abedi, F. Agostini, and E. K. U. Gross, Europhys. Lett. 106, 33001 (2014)] to deal with non-adiabatic processes. Here we present a comprehensive description of the formalism, including the full derivation of the equations of motion. Numerical results are presented for a model system for non-adiabatic charge transfer in order to test the performance of the method and to validate the underlying approximations.

  12. Classical nuclear motion coupled to electronic non-adiabatic transitions

    SciTech Connect

    Agostini, Federica; Abedi, Ali; Gross, E. K. U.

    2014-12-07

    Based on the exact factorization of the electron-nuclear wave function, we have recently proposed a mixed quantum-classical scheme [A. Abedi, F. Agostini, and E. K. U. Gross, Europhys. Lett. 106, 33001 (2014)] to deal with non-adiabatic processes. Here we present a comprehensive description of the formalism, including the full derivation of the equations of motion. Numerical results are presented for a model system for non-adiabatic charge transfer in order to test the performance of the method and to validate the underlying approximations.

  13. Non-adiabatic and adiabatic transitions at level crossing with decay: two- and three-level systems

    NASA Astrophysics Data System (ADS)

    Kenmoe, M. B.; Mkam Tchouobiap, S. E.; Kenfack Sadem, C.; Tchapda, A. B.; Fai, L. C.

    2015-03-01

    We investigate the Landau-Zener (LZ) like dynamics of decaying two- and three-level systems with decay rates {{Γ }1} and {{Γ }2} for levels with minimum and maximum spin projection. Non-adiabatic and adiabatic transition probabilities are calculated from diabatic and adiabatic bases for two- and three-level systems. We extend the familiar two-level model of atoms with decay from the excited state out of the system into the hierarchy of three-level models which can be solved analytically or computationally in a non-perturbative manner. Exact analytical solutions are obtained within the framework of an extended form of the proposed procedure which enables to take into account all possible initial moments rather than large negative time {{t}0}=-∞ as in standard LZ problems. We elucidate the applications of our results from a unified theoretical basis that numerically analyzes the dynamics of a system as probed by experiments.

  14. Slow light and saturable absorption

    NASA Astrophysics Data System (ADS)

    Selden, A. C.

    2009-06-01

    Quantitative analysis of slow light experiments utilising coherent population oscillation (CPO) in a range of saturably absorbing media, including ruby and alexandrite, Er3+:Y2SiO5, bacteriorhodopsin, semiconductor quantum devices and erbium-doped optical fibres, shows that the observations may be more simply interpreted as saturable absorption phenomena. A basic two-level model of a saturable absorber displays all the effects normally associated with slow light, namely phase shift and modulation gain of the transmitted signal, hole burning in the modulation frequency spectrum and power broadening of the spectral hole, each arising from the finite response time of the non-linear absorption. Only where hole-burning in the optical spectrum is observed (using independent pump and probe beams), or pulse delays exceeding the limits set by saturable absorption are obtained, can reasonable confidence be placed in the observation of slow light in such experiments. Superluminal (“fast light”) phenomena in media with reverse saturable absorption (RSA) may be similarly explained.

  15. Transpolar potential saturation models compared

    NASA Astrophysics Data System (ADS)

    Siscoe, G.; Raeder, J.; Ridley, A. J.

    2004-09-01

    We compare four explanations of transpolar potential saturation: (1) the magnetic field at the stagnation point weakens, thereby limiting magnetic reconnection; (2) a dimple develops at the stagnation point, which limits the inflow rate to the reconnection line; (3) the magnetopause becomes blunt and the bow shock recedes, thus giving more room for the solar wind to flow around the magnetosphere, thereby reducing the need for magnetic reconnection; (4) the region 1 current system usurps the Chapman-Ferraro current system and saturates when the J × B force it generates balances solar wind ram pressure. The paper's point is that all four mechanisms involve a limit on the strength of the region 1 current system and that the criterion for the onset of transpolar potential saturation in each mechanism is that the region 1 current system generates a magnetic field that is about as strong as the dipole field at the dayside magnetopause. This circumstance prevents tests to discriminate between the four mechanisms based on predictions that relate to their dependencies on the region 1 current system. The group as a whole, however, can be tested to see whether their common criterion that relates the onset of transpolar potential saturation to the total current flowing in the region 1 system holds. The criterion can be formulated in terms of predictions that relate transpolar potential saturation to the strength of the interplanetary electric field, solar wind ram pressure, and ionospheric conductance. Published data analyses and MHD simulations reasonably confirm these predictions.

  16. Saturation and pulsed FEL dynamics

    SciTech Connect

    Giannessi, L.; Mezi, L.

    1995-12-31

    The behavior of a FEL operating in the saturated pulsed regime, may be reproduced by the linear FEL integral equation, suitably modified to include saturation effects through a gain depression coefficient depending on the laser intensity. This simple method allows to evaluate several FEL parameters like gain, efficiency, band-width and optical pulse duration as functions of the optical cavity length, only with a numerical integration. The predictions have been compared with available experimental and numerical data, and the method has been applied to estimate the operating characteristics of some planned FEL experiments.

  17. Ion thermal effects on slow mode solitary waves in plasmas with two adiabatic ion species

    SciTech Connect

    Nsengiyumva, F. Hellberg, M. A. Mace, R. L.

    2015-09-15

    Using both the Sagdeev and Korteweg-de Vries (KdV) methods, ion thermal effects on slow mode ion acoustic solitons and double layers are investigated in a plasma with two adiabatic positive ion species. It is found that reducing the gap between the two ion thermal speeds by increasing the relative temperature of the cool ions increases the typical soliton/double layer speeds for all values of the ion-ion density ratio and reduces the range in the density ratio that supports double layers. The effect of increasing the relative cool ion temperature on the soliton/double layer amplitudes depends on the relative densities. For lower values of the ion density ratio, an increase in cool ion temperature leads to a significant decrease in soliton/double layer amplitude, so one may find that solitons of all permissible speeds lie within the range of KdV theory.

  18. Adiabatic quantum computing with phase modulated laser pulses

    PubMed Central

    Goswami, Debabrata

    2005-01-01

    Implementation of quantum logical gates for multilevel systems is demonstrated through decoherence control under the quantum adiabatic method using simple phase modulated laser pulses. We make use of selective population inversion and Hamiltonian evolution with time to achieve such goals robustly instead of the standard unitary transformation language. PMID:17195865

  19. The flat Grothendieck-Riemann-Roch theorem without adiabatic techniques

    NASA Astrophysics Data System (ADS)

    Ho, Man-Ho

    2016-09-01

    In this paper we give a simplified proof of the flat Grothendieck-Riemann-Roch theorem. The proof makes use of the local family index theorem and basic computations of the Chern-Simons form. In particular, it does not involve any adiabatic limit computation of the reduced eta-invariant.

  20. Failure of geometric electromagnetism in the adiabatic vector Kepler problem

    SciTech Connect

    Anglin, J.R.; Schmiedmayer, J.

    2004-02-01

    The magnetic moment of a particle orbiting a straight current-carrying wire may precess rapidly enough in the wire's magnetic field to justify an adiabatic approximation, eliminating the rapid time dependence of the magnetic moment and leaving only the particle position as a slow degree of freedom. To zeroth order in the adiabatic expansion, the orbits of the particle in the plane perpendicular to the wire are Keplerian ellipses. Higher-order postadiabatic corrections make the orbits precess, but recent analysis of this 'vector Kepler problem' has shown that the effective Hamiltonian incorporating a postadiabatic scalar potential ('geometric electromagnetism') fails to predict the precession correctly, while a heuristic alternative succeeds. In this paper we resolve the apparent failure of the postadiabatic approximation, by pointing out that the correct second-order analysis produces a third Hamiltonian, in which geometric electromagnetism is supplemented by a tensor potential. The heuristic Hamiltonian of Schmiedmayer and Scrinzi is then shown to be a canonical transformation of the correct adiabatic Hamiltonian, to second order. The transformation has the important advantage of removing a 1/r{sup 3} singularity which is an artifact of the adiabatic approximation.

  1. When an Adiabatic Irreversible Expansion or Compression Becomes Reversible

    ERIC Educational Resources Information Center

    Anacleto, Joaquim; Ferreira, J. M.; Soares, A. A.

    2009-01-01

    This paper aims to contribute to a better understanding of the concepts of a "reversible process" and "entropy". For this purpose, an adiabatic irreversible expansion or compression is analysed, by considering that an ideal gas is expanded (compressed), from an initial pressure P[subscript i] to a final pressure P[subscript f], by being placed in…

  2. Digitized adiabatic quantum computing with a superconducting circuit.

    PubMed

    Barends, R; Shabani, A; Lamata, L; Kelly, J; Mezzacapo, A; Las Heras, U; Babbush, R; Fowler, A G; Campbell, B; Chen, Yu; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J Y; Neeley, M; Neill, C; O'Malley, P J J; Quintana, C; Roushan, P; Sank, D; Vainsencher, A; Wenner, J; White, T C; Solano, E; Neven, H; Martinis, John M

    2016-06-01

    Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable. PMID:27279216

  3. Digitized adiabatic quantum computing with a superconducting circuit

    NASA Astrophysics Data System (ADS)

    Barends, R.; Shabani, A.; Lamata, L.; Kelly, J.; Mezzacapo, A.; Heras, U. Las; Babbush, R.; Fowler, A. G.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Lucero, E.; Megrant, A.; Mutus, J. Y.; Neeley, M.; Neill, C.; O’Malley, P. J. J.; Quintana, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Solano, E.; Neven, H.; Martinis, John M.

    2016-06-01

    Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.

  4. Nonadiabatic quantum Liouville and master equations in the adiabatic basis

    SciTech Connect

    Jang, Seogjoo

    2012-12-14

    A compact form of nonadiabatic molecular Hamiltonian in the basis of adiabatic electronic states and nuclear position states is presented. The Hamiltonian, which includes both the first and the second derivative couplings, is Hermitian and thus leads to a standard expression for the quantum Liouville equation for the density operator. With the application of a projection operator technique, a quantum master equation for the diagonal components of the density operator is derived. Under the assumption that nuclear states are much more short ranged compared to electronic states and assuming no singularity, a semi-adiabatic approximation is invoked, which results in expressions for the nonadiabatic molecular Hamiltonian and the quantum Liouville equation that are much more amenable to advanced quantum dynamics calculation. The semi-adiabatic approximation is also applied to a resonance energy transfer system consisting of a donor and an acceptor interacting via Coulomb terms, and explicit detailed expressions for exciton-bath Hamiltonian including all the non-adiabatic terms are derived.

  5. Adiabatic single scan two-dimensional NMR spectrocopy.

    PubMed

    Pelupessy, Philippe

    2003-10-01

    New excitation schemes, based on the use adiabatic pulses, for single scan two-dimensional NMR experiments (Frydman et al., Proc. Nat. Acad. Sci. 2002, 99, 15 858-15 862) are introduced. The advantages are discussed. Applications in homo- and heteronuclear experiments are presented. PMID:14519020

  6. SIMULATION OF CONTINUOUS-CONTACT SEPARATION PROCESSES: MULTICOMPONENT, ADIABATIC ABSORPTION

    EPA Science Inventory

    A new algorithm has been developed for the steady-state simulation of multicomponent, adiabatic absorption in packed columns. The system of differential model equations that describe the physical absorption process is reduced to algebraic equations by using a finite difference me...

  7. Direct heating rates associated with gravity wave saturation

    NASA Astrophysics Data System (ADS)

    Becker, Erich

    2004-04-01

    Analysis of filtering out subscale motions is applied for internal gravity waves. This leads to a new perspective of the planetary-scale sensible heat budget of the upper mesosphere/lower thermosphere. In line with previous results of Becker and Schmitz, the present paper recapitulates that the dissipation of gravity wave kinetic energy and the local adiabatic conversion of mean enthalpy into gravity wave kinetic energy cannot be neglected, and that the net effect of both cools the upper mesosphere/lower thermosphere. In addition, the importance of the wave entropy flux-an effect which is ignored in customary gravity wave parameterizations for global circulation models-is stressed. We show that, when evaluated on the basis of Lindzen's saturation assumption, the wave entropy flux convergence behaves like a vertical diffusion of the mean stratification, where the wave-induced diffusion coefficient is involved with a Prandtl number of 2. This result imposes an upper bound of 2 for the effective Prandtl number which scales the combined entropy flux owing to turbulence and gravity waves. The direct heating rates generated by gravity wave saturation are assessed quantitatively, using an idealized general circulation model completed by a Lindzen-type gravity wave parameterization.

  8. Dissolution of Quartz, Albite and K-feldspar Into H2O-Saturated Haplogranitic Melt at 800oC and 200 MPa: Diffusive Transport Properties of Granitic Melts at Crustal Anatectic Temperatures

    NASA Astrophysics Data System (ADS)

    Acosta, A.; London, D.; Dewers, T.; Morgan, G.

    2002-12-01

    With the aim of investigating the diffusive transport properties of granitic melts at crustal anatectic conditions and obtaining some constraints on speciation and coordination in the melt, we conducted albite, K-feldspar and quartz dissolution experiments in H2O-saturated metaluminous haplogranitic glass (nominal composition of the 200 MPa H2O-saturated haplogranite eutectic of Tuttle and Bowen, 1958) at 800oC and 200 MPa. Mineral and glass cylinders were juxtaposed against flat polished surfaces inside platinum or gold capsules, then run for durations in the range 120-960 h. Based on the time dependence of interface retreat dissolution is interface reaction-controlled up to 700 h, and becomes diffusion-controlled afterwards. Upon dissolution of albite, Al and Na entering the melt decouple and Na diffuses away from the interface to maintain a constant Al/Na molar ratio throughout the entire melt column. Potassium from the bulk melt diffuses uphill towards the albite-melt interface to maintain a constant Aluminum Saturation Index (ASI=molar Al2O3/Na2O+K2O) of 1.00 throughout the entire melt column. Dissolution of K-feldspar results in migration of K away from the interface and uphill diffusion of Na from the bulk melt towards the interface, again maintaining constant Al/Na and ASI ratios in the bulk melt. Dissolution of quartz produces enrichment in SiO2 versus dilution of the rest of components in the interface melt. These results indicate that in the five-component H2O-saturated metaluminous haplogranite system, uncoupled diffusion takes place along the following four directions in composition space: SiO2; Na2O; K2O; and a combination of Al2O3 and alkalis such that the Al/Na molar ratio is equal to that in the bulk melt, and the Al2O3/Na2O+K2O molar ratio is equal to the equilibrium ASI of the melt. These observations are in accord with results obtained from corundum and andalusite dissolution experiments in the same system and P-T-X conditions (Acosta-Vigil et

  9. Non-adiabatic response of relativistic radiation belt electrons to GEM magnetic storms

    NASA Astrophysics Data System (ADS)

    McAdams, K. L.; Reeves, G. D.

    The importance of fully adiabatic effects in the relativistic radiation belt electron response to magnetic storms is poorly characterized due to many difficulties in calculating adiabatic flux response. Using the adiabatic flux model of Kim and Chan [1997a] and Los Alamos National Laboratory geosynchronous satellite data, we examine the relative timing of the adiabatic and non-adiabatic flux responses. In the three storms identified by the GEM community for in depth study, the non-adiabatic energization occurs hours earlier than the adiabatic re-energization. The adiabatic energization can account for only 10-20% of the flux increases in the first recovery stages, and only 1% of the flux increase if there is continuing activity.

  10. Volume crossover in deeply supercooled water adiabatically freezing under isobaric conditions.

    PubMed

    Aliotta, Francesco; Giaquinta, Paolo V; Pochylski, Mikolaj; Ponterio, Rosina C; Prestipino, Santi; Saija, Franz; Vasi, Cirino

    2013-05-14

    The irreversible return of a supercooled liquid to stable thermodynamic equilibrium often begins as a fast process which adiabatically drives the system to solid-liquid coexistence. Only at a later stage will solidification proceed with the expected exchange of thermal energy with the external bath. In this paper we discuss some aspects of the adiabatic freezing of metastable water at constant pressure. In particular, we investigated the thermal behavior of the isobaric gap between the molar volume of supercooled water and that of the warmer ice-water mixture which eventually forms at equilibrium. The available experimental data at ambient pressure, extrapolated into the metastable region within the scheme provided by the reference IAPWS-95 formulation, show that water ordinarily expands upon (partially) freezing under isenthalpic conditions. However, the same scheme also suggests that, for increasing undercoolings, the volume gap is gradually reduced and eventually vanishes at a temperature close to the currently estimated homogeneous ice nucleation temperature. This behavior is contrasted with that of substances which do not display a volumetric anomaly. The effect of increasing pressures on the alleged volume crossover from an expanded to a contracted ice-water mixture is also discussed. PMID:23676053

  11. Volume crossover in deeply supercooled water adiabatically freezing under isobaric conditions

    NASA Astrophysics Data System (ADS)

    Aliotta, Francesco; Giaquinta, Paolo V.; Pochylski, Mikolaj; Ponterio, Rosina C.; Prestipino, Santi; Saija, Franz; Vasi, Cirino

    2013-05-01

    The irreversible return of a supercooled liquid to stable thermodynamic equilibrium often begins as a fast process which adiabatically drives the system to solid-liquid coexistence. Only at a later stage will solidification proceed with the expected exchange of thermal energy with the external bath. In this paper we discuss some aspects of the adiabatic freezing of metastable water at constant pressure. In particular, we investigated the thermal behavior of the isobaric gap between the molar volume of supercooled water and that of the warmer ice-water mixture which eventually forms at equilibrium. The available experimental data at ambient pressure, extrapolated into the metastable region within the scheme provided by the reference IAPWS-95 formulation, show that water ordinarily expands upon (partially) freezing under isenthalpic conditions. However, the same scheme also suggests that, for increasing undercoolings, the volume gap is gradually reduced and eventually vanishes at a temperature close to the currently estimated homogeneous ice nucleation temperature. This behavior is contrasted with that of substances which do not display a volumetric anomaly. The effect of increasing pressures on the alleged volume crossover from an expanded to a contracted ice-water mixture is also discussed.

  12. Pulsed spheromak reactor with adiabatic compression

    SciTech Connect

    Fowler, T K

    1999-03-29

    Extrapolating from the Pulsed Spheromak reactor and the LINUS concept, we consider ignition achieved by injecting a conducting liquid into the flux conserver to compress a low temperature spheromak created by gun injection and ohmic heating. The required energy to achieve ignition and high gain by compression is comparable to that required for ohmic ignition and the timescale is similar so that the mechanical power to ignite by compression is comparable to the electrical power to ignite ohmically. Potential advantages and problems are discussed. Like the High Beta scenario achieved by rapid fueling of an ohmically ignited plasma, compression must occur on timescales faster than Taylor relaxation.

  13. Saturation by Noise and CW Signals in SIS Mixers

    NASA Astrophysics Data System (ADS)

    Kerr, A. R.

    2002-03-01

    In ALMA Memo 321, Plambeck points out that saturation (gain compression) is likely to be a significant factor limiting the calibration accuracy of ALMA observations. In this paper, saturation by broadband noise and CW signals is analyzed for representative SIS receivers operating at different frequencies. Many SIS mixers in current use are expected to exhibit a significant degree of gain compression when connected to a room-temperature source. Previous analyses of saturation in SIS mixers have applied only to CW signals. To analyze saturation by noise, the statistics of the output voltage are derived from those of the input signal. A single constant, applicable to all SIS mixers, is determined experimentally by fitting the predicted CW gain compression curve to measured data.

  14. Solid-state lamps with optimized color saturation ability.

    PubMed

    Zukauskas, Artūras; Vaicekauskas, Rimantas; Shur, Michael

    2010-02-01

    Spectral power distribution of trichromatic clusters of light-emitting diodes (LEDs) was optimized for rendering the highest number of colors with a perceptually noticeable gain in chroma (color saturation) out of 1269 Munsell samples. The basic tradeoffs of the number of colors rendered with increased saturation with the number of colors rendered with high fidelity and with luminous efficacy of radiation were established. High-saturation RGB clusters composed of commercially available AlGaInP and InGaN LEDs were modeled for a standard set of correlated color temperatures and the stability of the color saturation ability of the clusters against the drift of peak wavelengths was investigated. PMID:20174057

  15. Non-adiabatic resonant conversion of solar neutrinos in three generations

    NASA Astrophysics Data System (ADS)

    Kim, C. W.; Nussinov, S.; Sze, W. K.

    1987-02-01

    The survival probability of solar electron neutrinos after non-adiabatic passage through the resonance-oscillation region in the Sun is discussed for the case of three generations. A method to calculate three-generation Landau-Zener transition probabilities between adiabatic states is described. We also discuss how the Landua-Zener probability is modified in the extreme non-adiabatic case.

  16. Thermal saturation in dielectric four-terminal nanostructures

    NASA Astrophysics Data System (ADS)

    Yang, Ping; Zhong, Wei-Rong; He, Yafeng; Hu, Bambi

    2010-05-01

    We propose a theoretical model to investigate the nonlinear thermal properties in dielectric four-terminal nanostructures at low temperatures. In this model, the gate temperature effect on the thermal flow from source to drain is built based on mesoscopic ballistic-phonon transport. Thermal flow versus temperature difference between source and drain is calculated for the fixed gate temperature. Saturation of thermal flow is showed with increasing the temperature difference. A reasonable explanation for the phenomenon is given by the nonlinear variation in temperature dependence of propagating phonon modes in source and drain terminals. The research results suggest the possibility of the nanothermal transistor fabrication.

  17. Magnetite Nucleation in Mantle Xenoliths During Quasi-Adiabatic Ascent

    NASA Astrophysics Data System (ADS)

    Walsh, K. B., Jr.; Filiberto, J.; Friedman, S. A.; Knafelc, J.; Conder, J. A.; Ferre, E. C.; Khakhalova, E.; Feinberg, J. M.; Neal, C. R.; Ionov, D. A.; Hernandez, F. M.

    2014-12-01

    Can magnetite be a stable phase in the lithospheric mantle? Equilibrium-based thermodynamic calculations and petrologic models predict that it should not be stable. Studies of mantle xenoliths during the 1980s concluded that even though there were rare exceptions, mantle rocks do not host sufficient concentrations of ferromagnetic minerals and are too hot to allow any magnetic remanence. Thus, conventional wisdom dictates that the Moho constitutes a fundamental magnetic boundary. Yet, growing evidence from a more complete global mantle xenolith survey indicates the presence of ferromagnetic minerals in mantle materials. Examination of mantle xenoliths devoid of serpentinization and meteoric alteration show the presence of ferromagnetic minerals within primary silicate mineral phases, including olivine, pyroxene, and spinel. Nucleation of these magnetic minerals could occur at three different stages: in-situ in the mantle, upon ascent, and at the surface. This study reports the results of laboratory-based quasi-adiabatic decompression experiments that aim to simulate the ascent of mantle xenoliths through the lithosphere and test if magnetite growth is promoted during the process. The starting material for these experiments is San Carlos olivine, which holds a magnetic remanence of less than ~10-10 A/m2-1kg2 (the detection limit of the vibrating sample magnetometer). This low starting remanence will allow us to identify whether new magnetic minerals are formed during the decompression experiments using either vibrating sample magnetometry or SQUID-based rock magnetometers. All olivine grains in these experiments were hand-picked under a light microscope in an effort to avoid the inclusion of grains with spurious magnetic minerals. Olivine powders from these carefully selected grains will be used to represent average mantle olivine compositions (Fo90-Fo92). Experiments will start at 1 GPa and be decompressed to 0.3 GPa over 60 hrs at constant temperature (1200° C

  18. Autoignition of adiabatically compressed combustible gas mixtures

    SciTech Connect

    Hu, H.; Keck, J.

    1987-01-01

    Measurements of explosion limits for fuel/air/diluent mixtures compressed by an expanding laminar flame have been made in a constant volume spherical bomb. The fuels studied to date range from butane to octane at fuel/air equivalence ratios from 0.8 to 1.3. The explosion pressures and temperatures range from 10 to 100 atm and 650 to 850 K. The pressure versus time curves show the behavior typical of the two-stage ignition process observed in rapid compression machines. A branched chain kinetic model has been developed to correlate the data. The model has been used to predict both the explosion limits measured in the current bomb experiments and ignition delays measured in prior rapid compression machine experiments. Good agreement between experiment and theory can be achieved with minor adjustment in published rate constants.

  19. Thermal characterization of starch-water system by photopyroelectric technique and adiabatic scanning calorimetry

    NASA Astrophysics Data System (ADS)

    Cruz-Orea, A.; Bentefour, E. H.; Jamée, P.; Chirtoc, M.; Glorieux, C.; Pitsi, G.; Thoen, J.

    2003-01-01

    Starch is one of the most important carbohydrate sources in human nutrition. For the thermal analysis of starch, techniques such as differential scanning calorimetry have been extensively used. As an alternative, we have applied a photopyroelectric (PPE) configuration and adiabatic scanning calorimetry (ASC) to study the thermal properties of starch-water systems. For this study we used nixtamalized corn flour and potato starch with different quantities of distilled water, in order to obtain samples with different moisture content. By using PPE and ASC methods we have measured, for each technique separately, the heat capacity by unit volume (ρcp) at room temperature for a corn flour sample at 90% moisture. The obtained values agree within experimental uncertainty. By using these techniques we also studied the thermal behavior of potato starch, at 80% moisture, in the temperature range where phase transitions occur. In this case the PPE signal phase could be used as a sensitive and versatile monitor for phase transitions.

  20. In-Flight Measurements of Capsule Adiabats in Laser Driven Spherical Implosions

    SciTech Connect

    Kritcher, A L; Doppner, T; Fortman, C; Ma, T; Landen, O L; Wallace, R; Glenzer, S H

    2011-03-07

    We present the first x-ray Thomson scattering measurements of temperature and density from spherically imploding matter. The shape of the Compton downscattered spectrum provides a first-principles measurement of the electron velocity distribution function, dependent on T{sub e} and the Fermi temperature T{sub F} {approx} n{sub e}{sup 2/3}. In flight compressions of Be and CH targets reach 6-13 times solid density, with T{sub e}/T{sub F} {approx} 0.4-0.7, resulting in minimum adiabats of {approx}1.6-2. These measurements are consistent with low-entropy implosions and predictions by simulations using radiation-hydrodynamic modeling.

  1. Criteria for saturated magnetization loop

    NASA Astrophysics Data System (ADS)

    Harres, A.; Mikhov, M.; Skumryev, V.; Andrade, A. M. H. de; Schmidt, J. E.; Geshev, J.

    2016-03-01

    Proper estimation of magnetization curve parameters is vital in studying magnetic systems. In the present article, criteria for discrimination non-saturated (minor) from saturated (major) hysteresis loops are proposed. These employ the analysis of (i) derivatives of both ascending and descending branches of the loop, (ii) remanent magnetization curves, and (iii) thermomagnetic curves. Computational simulations are used in order to demonstrate their validity. Examples illustrating the applicability of these criteria to well-known real systems, namely Fe3O4 and Ni fine particles, are provided. We demonstrate that the anisotropy-field value estimated from a visual examination of an only apparently major hysteresis loop could be more than two times lower than the real one.

  2. Necessary and sufficient condition for quantum adiabatic evolution by unitary control fields

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-Yu; Plenio, Martin B.

    2016-05-01

    We decompose the quantum adiabatic evolution as the products of gauge invariant unitary operators and obtain the exact nonadiabatic correction in the adiabatic approximation. A necessary and sufficient condition that leads to adiabatic evolution with geometric phases is provided, and we determine that in the adiabatic evolution, while the eigenstates are slowly varying, the eigenenergies and degeneracy of the Hamiltonian can change rapidly. We exemplify this result by the example of the adiabatic evolution driven by parametrized pulse sequences. For driving fields that are rotating slowly with the same average energy and evolution path, fast modulation fields can have smaller nonadiabatic errors than obtained under the traditional approach with a constant amplitude.

  3. Saturation of the turbulent dynamo.

    PubMed

    Schober, J; Schleicher, D R G; Federrath, C; Bovino, S; Klessen, R S

    2015-08-01

    The origin of strong magnetic fields in the Universe can be explained by amplifying weak seed fields via turbulent motions on small spatial scales and subsequently transporting the magnetic energy to larger scales. This process is known as the turbulent dynamo and depends on the properties of turbulence, i.e., on the hydrodynamical Reynolds number and the compressibility of the gas, and on the magnetic diffusivity. While we know the growth rate of the magnetic energy in the linear regime, the saturation level, i.e., the ratio of magnetic energy to turbulent kinetic energy that can be reached, is not known from analytical calculations. In this paper we present a scale-dependent saturation model based on an effective turbulent resistivity which is determined by the turnover time scale of turbulent eddies and the magnetic energy density. The magnetic resistivity increases compared to the Spitzer value and the effective scale on which the magnetic energy spectrum is at its maximum moves to larger spatial scales. This process ends when the peak reaches a characteristic wave number k☆ which is determined by the critical magnetic Reynolds number. The saturation level of the dynamo also depends on the type of turbulence and differs for the limits of large and small magnetic Prandtl numbers Pm. With our model we find saturation levels between 43.8% and 1.3% for Pm≫1 and between 2.43% and 0.135% for Pm≪1, where the higher values refer to incompressible turbulence and the lower ones to highly compressible turbulence. PMID:26382506

  4. Saturating the holographic entropy bound

    SciTech Connect

    Bousso, Raphael; Freivogel, Ben; Leichenauer, Stefan

    2010-10-15

    The covariant entropy bound states that the entropy, S, of matter on a light sheet cannot exceed a quarter of its initial area, A, in Planck units. The gravitational entropy of black holes saturates this inequality. The entropy of matter systems, however, falls short of saturating the bound in known examples. This puzzling gap has led to speculation that a much stronger bound, S < or approx. A{sup 3/4}, may hold true. In this note, we exhibit light sheets whose entropy exceeds A{sup 3/4} by arbitrarily large factors. In open Friedmann-Robertson-Walker universes, such light sheets contain the entropy visible in the sky; in the limit of early curvature domination, the covariant bound can be saturated but not violated. As a corollary, we find that the maximum observable matter and radiation entropy in universes with positive (negative) cosmological constant is of order {Lambda}{sup -1} ({Lambda}{sup -2}), and not |{Lambda}|{sup -3/4} as had hitherto been believed. Our results strengthen the evidence for the covariant entropy bound, while showing that the stronger bound S < or approx. A{sup 3/4} is not universally valid. We conjecture that the stronger bound does hold for static, weakly gravitating systems.

  5. Experimental implementation of adiabatic passage between different topological orders.

    PubMed

    Peng, Xinhua; Luo, Zhihuang; Zheng, Wenqiang; Kou, Supeng; Suter, Dieter; Du, Jiangfeng

    2014-08-22

    Topological orders are exotic phases of matter existing in strongly correlated quantum systems, which are beyond the usual symmetry description and cannot be distinguished by local order parameters. Here we report an experimental quantum simulation of the Wen-plaquette spin model with different topological orders in a nuclear magnetic resonance system, and observe the adiabatic transition between two Z(2) topological orders through a spin-polarized phase by measuring the nonlocal closed-string (Wilson loop) operator. Moreover, we also measure the entanglement properties of the topological orders. This work confirms the adiabatic method for preparing topologically ordered states and provides an experimental tool for further studies of complex quantum systems. PMID:25192080

  6. Adiabatic and diabatic process of sum frequency conversion.

    PubMed

    Liqing, Ren; Yongfang, Li; Baihong, Li; Lei, Wang; Zhaohua, Wang

    2010-09-13

    Based on the dressed state formalism, we obtain the adiabatic criterion of the sum frequency conversion. We show that this constraint restricts the energy conversion between the two dressed fields, which are superpositions of the signal field and the sum frequency field. We also show that the evolution of the populations of the dressed fields, which in turn describes the conversion of light photons from the seed frequency to the sum frequency during propagation through the nonlinear crystal. Take the quasiphased matched (QPM) scheme as an example, we calculate the expected bandwidth of the frequency conversion process, and its dependence on the length of the crystal. We demonstrate that the evolutionary patterns of the sum frequency field's energy are similar to the Fresnel diffraction of a light field. We finally show that the expected bandwidth can be also deduced from the evolution of the adiabaticity of the dressed fileds. PMID:20940935

  7. Microscopic expression for heat in the adiabatic basis.

    PubMed

    Polkovnikov, Anatoli

    2008-11-28

    We derive a microscopic expression for the instantaneous diagonal elements of the density matrix rho(nn)(t) in the adiabatic basis for an arbitrary time-dependent process in a closed Hamiltonian system. If the initial density matrix is stationary (diagonal) then this expression contains only squares of absolute values of matrix elements of the evolution operator, which can be interpreted as transition probabilities. We then derive the microscopic expression for the heat defined as the energy generated due to transitions between instantaneous energy levels. If the initial density matrix is passive [diagonal with rho(nn)(0) monotonically decreasing with energy] then the heat is non-negative in agreement with basic expectations of thermodynamics. Our findings also can be used for systematic expansion of various observables around the adiabatic limit. PMID:19113464

  8. Non-adiabatic dynamics of molecules in optical cavities

    NASA Astrophysics Data System (ADS)

    Kowalewski, Markus; Bennett, Kochise; Mukamel, Shaul

    2016-02-01

    Strong coupling of molecules to the vacuum field of micro cavities can modify the potential energy surfaces thereby opening new photophysical and photochemical reaction pathways. While the influence of laser fields is usually described in terms of classical field, coupling to the vacuum state of a cavity has to be described in terms of dressed photon-matter states (polaritons) which require quantized fields. We present a derivation of the non-adiabatic couplings for single molecules in the strong coupling regime suitable for the calculation of the dressed state dynamics. The formalism allows to use quantities readily accessible from quantum chemistry codes like the adiabatic potential energy surfaces and dipole moments to carry out wave packet simulations in the dressed basis. The implications for photochemistry are demonstrated for a set of model systems representing typical situations found in molecules.

  9. Fastest Effectively Adiabatic Transitions for a Collection of Harmonic Oscillators.

    PubMed

    Boldt, Frank; Salamon, Peter; Hoffmann, Karl Heinz

    2016-05-19

    We discuss fastest effectively adiabatic transitions (FEATs) for a collection of noninteracting harmonic oscillators with shared controllable real frequencies. The construction of such transitions is presented for given initial and final equilibrium states, and the dependence of the minimum time control on the interval of achievable frequencies is discussed. While the FEAT times and associated FEAT processes are important in their own right as optimal controls, the FEAT time is an added feature which provides a measure of the quality of a shortcut to adiabaticity (STA). The FEAT time is evaluated for a previously reported experiment, wherein a cloud of Rb atoms is cooled following a STA recipe that took about twice as long as the FEAT speed limit, a time efficiency of 50%. PMID:26811863

  10. Ultrafast adiabatic manipulation of slow light in a photonic crystal

    SciTech Connect

    Kampfrath, T.; Kuipers, L.; Beggs, D. M.; White, T. P.; Krauss, T. F.; Melloni, A.

    2010-04-15

    We demonstrate by experiment and theory that a light pulse propagating through a Si-based photonic-crystal waveguide is adiabatically blueshifted when the refractive index of the Si is reduced on a femtosecond time scale. Thanks to the use of slow-light modes, we are able to shift a 1.3-ps pulse at telecom frequencies by 0.3 THz with an efficiency as high as 80% in a waveguide as short as 19{mu}m. An analytic theory reproduces the experimental data excellently, which shows that adiabatic dynamics are possible even on the femtosecond time scale as long as the external stimulus conserves the spatial symmetry of the system.

  11. Adiabatic tapered optical fiber fabrication in two step etching

    NASA Astrophysics Data System (ADS)

    Chenari, Z.; Latifi, H.; Ghamari, S.; Hashemi, R. S.; Doroodmand, F.

    2016-01-01

    A two-step etching method using HF acid and Buffered HF is proposed to fabricate adiabatic biconical optical fiber tapers. Due to the fact that the etching rate in second step is almost 3 times slower than the previous droplet etching method, terminating the fabrication process is controllable enough to achieve a desirable fiber diameter. By monitoring transmitted spectrum, final diameter and adiabaticity of tapers are deduced. Tapers with losses about 0.3 dB in air and 4.2 dB in water are produced. The biconical fiber taper fabricated using this method is used to excite whispering gallery modes (WGMs) on a microsphere surface in an aquatic environment. So that they are suitable to be used in applications like WGM biosensors.

  12. Fluctuations of work in nearly adiabatically driven open quantum systems.

    PubMed

    Suomela, S; Salmilehto, J; Savenko, I G; Ala-Nissila, T; Möttönen, M

    2015-02-01

    We extend the quantum jump method to nearly adiabatically driven open quantum systems in a way that allows for an accurate account of the external driving in the system-environment interaction. Using this framework, we construct the corresponding trajectory-dependent work performed on the system and derive the integral fluctuation theorem and the Jarzynski equality for nearly adiabatic driving. We show that such identities hold as long as the stochastic dynamics and work variable are consistently defined. We numerically study the emerging work statistics for a two-level quantum system and find that the conventional diabatic approximation is unable to capture some prominent features arising from driving, such as the continuity of the probability density of work. Our results reveal the necessity of using accurate expressions for the drive-dressed heat exchange in future experiments probing jump time distributions. PMID:25768477

  13. The adiabatic motion of charged dust grains in rotating magnetospheres

    NASA Astrophysics Data System (ADS)

    Northrop, T. G.; Hill, J. R.

    1983-01-01

    Adiabatic equations of motion are derived for the micrometer-sized dust grains detected in the Jovian and Saturn magnetospheres by the Pioneer 10 and 11 spacecraft. The adiabatic theory of charged particle motion is extended to the case of variable grain charge. Attention is focused on the innermost and outermost limits to the grain orbit evolution, with all orbits tending to become circular with time. The parameters such as the center equation of motion, the drift velocity, and the parallel equation of motion are obtained for grains in a rotating magnetosphere. Consideration is given to the effects of periodic grain charge-discharge, which are affected by the ambient plasma properties and the grain plasma velocity. The charge-discharge process at the gyrofrequency is determined to eliminate the invariance of the magnetic moment and cause the grain to exhibit radial movement. The magnetic moment increases or decreases as a function of the gyrophase of the charge variation.

  14. Adiabatic Berry phase in an atom-molecule conversion system

    SciTech Connect

    Fu Libin; Liu Jie

    2010-11-15

    We investigate the Berry phase of adiabatic quantum evolution in the atom-molecule conversion system that is governed by a nonlinear Schroedinger equation. We find that the Berry phase consists of two parts: the usual Berry connection term and a novel term from the nonlinearity brought forth by the atom-molecule coupling. The total geometric phase can be still viewed as the flux of the magnetic field of a monopole through the surface enclosed by a closed path in parameter space. The charge of the monopole, however, is found to be one third of the elementary charge of the usual quantized monopole. We also derive the classical Hannay angle of a geometric nature associated with the adiabatic evolution. It exactly equals minus Berry phase, indicating a novel connection between Berry phase and Hannay angle in contrast to the usual derivative form.

  15. Adiabatic creation of atomic squeezing in dark states versus decoherences

    SciTech Connect

    Gong, Z. R.; Sun, C. P.; Wang Xiaoguang

    2010-07-15

    We study the multipartite correlations of the multiatom dark states, which are characterized by the atomic squeezing beyond the pairwise entanglement. It is shown that, in the photon storage process with atomic ensemble via the electromagnetically induced transparency (EIT) mechanism, the atomic squeezing and the pairwise entanglement can be created by adiabatically manipulating the Rabi frequency of the classical light field on the atomic ensemble. We also consider the sudden death for the atomic squeezing and the pairwise entanglement under various decoherence channels. An optimal time for generating the greatest atomic squeezing and pairwise entanglement is obtained by studying in detail the competition between the adiabatic creation of quantum correlation in the atomic ensemble and the decoherence that we describe with three typical decoherence channels.

  16. Steam bottoming cycle for an adiabatic diesel engine

    NASA Technical Reports Server (NTRS)

    Poulin, E.; Demier, R.; Krepchin, I.; Walker, D.

    1984-01-01

    Steam bottoming cycles using adiabatic diesel engine exhaust heat which projected substantial performance and economic benefits for long haul trucks were studied. Steam cycle and system component variables, system cost, size and performance were analyzed. An 811 K/6.90 MPa state of the art reciprocating expander steam system with a monotube boiler and radiator core condenser was selected for preliminary design. The costs of the diesel with bottoming system (TC/B) and a NASA specified turbocompound adiabatic diesel with aftercooling with the same total output were compared, the annual fuel savings less the added maintenance cost was determined to cover the increase initial cost of the TC/B system in a payback period of 2.3 years. Steam bottoming system freeze protection strategies were developed, technological advances required for improved system reliability are considered and the cost and performance of advanced systes are evaluated.

  17. Engineering adiabaticity at an avoided crossing with optimal control

    NASA Astrophysics Data System (ADS)

    Chasseur, T.; Theis, L. S.; Sanders, Y. R.; Egger, D. J.; Wilhelm, F. K.

    2015-04-01

    We investigate ways to optimize adiabaticity and diabaticity in the Landau-Zener model with nonuniform sweeps. We show how diabaticity can be engineered with a pulse consisting of a linear sweep augmented by an oscillating term. We show that the oscillation leads to jumps in populations whose value can be accurately modeled using a model of multiple, photon-assisted Landau-Zener transitions, which generalizes work by Wubs et al. [New J. Phys. 7, 218 (2005)], 10.1088/1367-2630/7/1/218. We extend the study on diabaticity using methods derived from optimal control. We also show how to preserve adiabaticity with optimal pulses at limited time, finding a nonuniform quantum speed limit.

  18. Adiabatic Tip-Plasmon Focusing for Nano-Raman Spectroscopy

    SciTech Connect

    Berweger, Samuel; Atkin, Joanna M.; Olmon, Robert L.; Raschke, Markus Bernd

    2010-12-16

    True nanoscale optical spectroscopy requires the efficient delivery of light for a spatially nanoconfined excitation. We utilize adiabatic plasmon focusing to concentrate an optical field into the apex of a scanning probe tip of {approx}10 nm in radius. The conical tips with the ability for two-stage optical mode matching of the surface plasmon polariton (SPP) grating-coupling and the adiabatic propagating SPP conversion into a localized SPP at the tip apex represent a special optical antenna concept for far-field transduction into nanoscale excitation. The resulting high nanofocusing efficiency and the spatial separation of the plasmonic grating coupling element on the tip shaft from the near-field apex probe region allows for true background-free nanospectroscopy. As an application, we demonstrate tip-enhanced Raman spectroscopy (TERS) of surface molecules with enhanced contrast and its extension into the near-IR with 800 nm excitation.

  19. Adiabatic far-field sub-diffraction imaging

    NASA Astrophysics Data System (ADS)

    Cang, Hu; Salandrino, Alessandro; Wang, Yuan; Zhang, Xiang

    2015-08-01

    The limited resolution of a conventional optical imaging system stems from the fact that the fine feature information of an object is carried by evanescent waves, which exponentially decays in space and thus cannot reach the imaging plane. We introduce here an adiabatic lens, which utilizes a geometrically conformal surface to mediate the interference of slowly decompressed electromagnetic waves at far field to form images. The decompression is satisfying an adiabatic condition, and by bridging the gap between far field and near field, it allows far-field optical systems to project an image of the near-field features directly. Using these designs, we demonstrated the magnification can be up to 20 times and it is possible to achieve sub-50 nm imaging resolution in visible. Our approach provides a means to extend the domain of geometrical optics to a deep sub-wavelength scale.

  20. Adiabatic nonlinear waves with trapped particles. II. Wave dispersion

    SciTech Connect

    Dodin, I. Y.; Fisch, N. J.

    2012-01-15

    A general nonlinear dispersion relation is derived in a nondifferential form for an adiabatic sinusoidal Langmuir wave in collisionless plasma, allowing for an arbitrary distribution of trapped electrons. The linear dielectric function is generalized, and the nonlinear kinetic frequency shift {omega}{sub NL} is found analytically as a function of the wave amplitude a. Smooth distributions yield {omega}{sub NL}{proportional_to}{radical}(a), as usual. However, beam-like distributions of trapped electrons result in different power laws, or even a logarithmic nonlinearity, which are derived as asymptotic limits of the same dispersion relation. Such beams are formed whenever the phase velocity changes, because the trapped distribution is in autoresonance and thus evolves differently from the passing distribution. Hence, even adiabatic {omega}{sub NL}(a) is generally nonlocal.

  1. New empirical correlations for sizing adiabatic capillary tubes in refrigeration systems

    NASA Astrophysics Data System (ADS)

    Shodiya, S.; Aahar, A. A.; Henry, N.; Darus, A. N.

    2012-06-01

    This paper presents new empirical correlations that have been developed for sizing adiabatic capillary tubes used in small vapor compression refrigeration and air-conditioning systems. A numerical model which is based on the basic equations of conservation of mass, momentum and energy was developed. Colebrook's formulation was used to determine the single phase friction factor. The two-phase viscosity models - Cicchitti et al., Dukler et al. and McAdam et al. were used based on the recommendation from literature to determine the two-phase viscosity factor. The developed numerical model was validated using the experimental data from literature. The numerical model was used to study the effects of relevant parameters on capillary tube length and the results showed that the length of capillary tube increase with increase in condensing temperature, subcooling, and inner diameter of tube but decrease with increase in surface roughness and mass flow rate. Thereafter, empirical correlation of the capillary tube length with the five dependent variables was presented. The empirical models are validated using experimental data from literature. Different from the previous studies, the empirical models have a large set of refrigerants and wide operating conditions. The developed correlation can be used as an effective tool for sizing adiabatic capillary tube with system models working with alternative refrigerants.

  2. Characterization of adiabatic shear bands in AM60B magnesium alloy under ballistic impact

    SciTech Connect

    Zou, D.L.; Zhen, L. Xu, C.Y.; Shao, W.Z.

    2011-05-15

    Adiabatic shear bands in Mg alloy under ballistic impact at a velocity of 0.5 km.s{sup -1} were characterized by means of optical microscope, scanning electron microscope, transmission electron microscope and indenter technique. The results show that adiabatic shear bands were formed around the impacted crater, and the deformed and transformed bands were distinguished by etching colors in metallographic observation. TEM observation shows that the deformed bands were composed of the elongated grains and high density dislocations, while the transformed bands composed of the ultrafine and equiaxed grains were confirmed. In initial stage, the severe localized plastic deformation led to the formation of elongated grains in the deformed bands. With localized strain increasing, the severe localized deformation assisted with the plastic temperature rising led to the severe deformation grains evolved into the ultrafine and equiaxed grains, while the deformed bands were developed into transformed bands. The formation of the ultrafine and equiaxed grains in the transformed bands should be attributed to the twinning-induced rotational dynamic recrystallization mechanism. High microhardness in the bands was obtained because of the strain hardening, grain refining and content concentration. - Research Highlights: {yields} Deformed and transformed bands are found in Mg alloy under ballistic impact. {yields} The microstructures in the deformed and transformed bands are characterized. {yields} The evolution process of the microstructure in the bands is discussed.

  3. Risk evaluation on the basis of pressure rate measured by automatic pressure tracking adiabatic calorimeter.

    PubMed

    Iwata, Yusaku; Koseki, Hiroshi

    2008-11-15

    An automatic pressure tracking adiabatic calorimeter (APTAC) had been employed to obtain the thermokinetic and the vapor pressure data during runaway reactions. The APTAC is an adiabatic calorimeter with a large-scale sample mass and low thermal inertia, and is an extremely useful tool for assessing thermal hazards of reactive chemicals. The data obtained by the APTAC are important information for the design of the safe industrial process. The thermodynamics parameters and the gas production were discussed on the basis of the experimental data of various concentrations and weights of di-tert-butyl peroxide (DTBP)/toluene solution for the purpose of investigating the properties of the APTAC data. The thermal decomposition of DTBP was studied on the basis of the temperature data and the pressure data obtained by the APTAC. The activation energy and the frequency factor of DTBP are nearly constant and the same as the literature values in the concentrations between 20 and 60 wt.%. The pressure rise due to gas production is important data for designing the relief vent of a reactor. The time history of the gas production was investigated with various weights and concentrations. The total gas production index, which had the vapor pressure correction, was 1.0 in the decomposition of DTBP. PMID:18313846

  4. Zero-point energy, tunneling, and vibrational adiabaticity in the Mu + H2 reaction

    SciTech Connect

    Mielke, Steven L.; Garrett, Bruce C.; Fleming, Donald G.; Truhlar, Donald G.

    2015-01-09

    Abstract: Isotopic substitution of muonium for hydrogen provides an unparalleled opportunity to deepen our understanding of quantum mass effects on chemical reactions. A recent topical review [Aldegunde et al., Mol. Phys. 111, 3169 (2013)] of the thermal and vibrationally-stateselected reaction of Mu with H2 raises a number of issues that are addressed here. We show that some earlier quantum mechanical calculations of the Mu + H2 reaction, which are highlighted in this review and which have been used to benchmark approximate methods, are in error by as much as 19% in the low-temperature limit. We demonstrate that an approximate treatment of the Born–Oppenheimer diagonal correction that was used in some recent studies is not valid for treating the vibrationally-state-selected reaction. We also discuss why vibrationally adiabatic potentials that neglect bend zero-point energy are not a useful analytical tool for understanding reaction rates and why vibrationally nonadiabatic transitions cannot be understood by considering tunneling through vibrationally adiabatic potentials. Finally, we present calculations on a hierarchical family of potential energy surfaces to assess the sensitivity of rate constants to the quality of the potential surface.

  5. Reduction of thioredoxin significantly decreases its partial specific volume and adiabatic compressibility.

    PubMed Central

    Kaminsky, S. M.; Richards, F. M.

    1992-01-01

    The partial specific volume and adiabatic compressibility were determined at several temperatures for oxidized and reduced Escherichia coli thioredoxin. Oxidized thioredoxin had a partial specific volume of 0.785-0.809 mL/g at the observed upper limit for all proteins whereas the partial specific volume of reduced thioredoxin was 0.745-0.755 mL/g, a value in the range found for a majority of proteins. The adiabatic compressibility of oxidized thioredoxin was also much larger (9.8-18 x 10(-12) cm2 dyne-1) than that of the reduced protein (3.8-7.3 x 10(-12)). Apart from the region immediately around the small disulfide loop, the structures of the oxidized (X-ray, crystal) and reduced protein (nuclear magnetic resonance, solution) are reported to be very similar. It would appear that alterations in the solvent layer in contact with the protein surface must play a major role in producing these large changes in the apparent specific volumes and compressibilities in this system. Some activities of thioredoxin require the reduced structure but are not electron transfer reactions. The large changes in physical parameters reported here suggest the possibility of a reversible metabolic control function for the SS bond. PMID:1304879

  6. Adiabatic trapping in coupled kinetic Alfven-acoustic waves

    SciTech Connect

    Shah, H. A.; Ali, Z.; Masood, W.

    2013-03-15

    In the present work, we have discussed the effects of adiabatic trapping of electrons on obliquely propagating Alfven waves in a low {beta} plasma. Using the two potential theory and employing the Sagdeev potential approach, we have investigated the existence of arbitrary amplitude coupled kinetic Alfven-acoustic solitary waves in both the sub and super Alfvenic cases. The results obtained have been analyzed and presented graphically and can be applied to regions of space where the low {beta} assumption holds true.

  7. Adiabaticity and gravity theory independent conservation laws for cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Romano, Antonio Enea; Mooij, Sander; Sasaki, Misao

    2016-04-01

    We carefully study the implications of adiabaticity for the behavior of cosmological perturbations. There are essentially three similar but different definitions of non-adiabaticity: one is appropriate for a thermodynamic fluid δPnad, another is for a general matter field δPc,nad, and the last one is valid only on superhorizon scales. The first two definitions coincide if cs2 = cw2 where cs is the propagation speed of the perturbation, while cw2 = P ˙ / ρ ˙ . Assuming the adiabaticity in the general sense, δPc,nad = 0, we derive a relation between the lapse function in the comoving slicing Ac and δPnad valid for arbitrary matter field in any theory of gravity, by using only momentum conservation. The relation implies that as long as cs ≠cw, the uniform density, comoving and the proper-time slicings coincide approximately for any gravity theory and for any matter field if δPnad = 0 approximately. In the case of general relativity this gives the equivalence between the comoving curvature perturbation Rc and the uniform density curvature perturbation ζ on superhorizon scales, and their conservation. This is realized on superhorizon scales in standard slow-roll inflation. We then consider an example in which cw =cs, where δPnad = δPc,nad = 0 exactly, but the equivalence between Rc and ζ no longer holds. Namely we consider the so-called ultra slow-roll inflation. In this case both Rc and ζ are not conserved. In particular, as for ζ, we find that it is crucial to take into account the next-to-leading order term in ζ's spatial gradient expansion to show its non-conservation, even on superhorizon scales. This is an example of the fact that adiabaticity (in the thermodynamic sense) is not always enough to ensure the conservation of Rc or ζ.

  8. Geometric Phase for Adiabatic Evolutions of General Quantum States

    SciTech Connect

    Wu, Biao; Liu, Jie; Niu, Qian; Singh, David J

    2005-01-01

    The concept of a geometric phase (Berry's phase) is generalized to the case of noneigenstates, which is applicable to both linear and nonlinear quantum systems. This is particularly important to nonlinear quantum systems, where, due to the lack of the superposition principle, the adiabatic evolution of a general state cannot be described in terms of eigenstates. For linear quantum systems, our new geometric phase reduces to a statistical average of Berry's phases. Our results are demonstrated with a nonlinear two-level model.

  9. Breakdown of adiabaticity when loading ultracold atoms in optical lattices

    NASA Astrophysics Data System (ADS)

    Zakrzewski, Jakub; Delande, Dominique

    2009-07-01

    Realistic simulations of current ultracold atom experiments in optical lattices show that the ramping up of the optical lattice is significantly nonadiabatic, implying that experimentally prepared Mott insulators are not really in the ground state of the atomic system. The nonadiabaticity is even larger in the presence of a secondary quasiperiodic lattice simulating “disorder.” Alternative ramping schemes are suggested that improve the adiabaticity when the disorder is not too large.

  10. Complete Cycle Experiments Using the Adiabatic Gas Law Apparatus

    NASA Astrophysics Data System (ADS)

    Kutzner, Mickey D.; Plantak, Mateja

    2014-10-01

    The ability of our society to make informed energy-usage decisions in the future depends partly on current science and engineering students retaining a deep understanding of the thermodynamics of heat engines. Teacher imaginations and equipment budgets can both be taxed in the effort to engage students in hands-on heat engine activities. The experiments described in this paper, carried out using the Adiabatic Gas Law Apparatus1 (AGLA), quantitatively explore popular complete cycle heat engine processes.

  11. Non-adiabatic Dynamics of Molecules in Optical Cavities

    NASA Astrophysics Data System (ADS)

    Kowalewski, Markus; Bennett, Kochise; Mukamel, Shaul

    Molecular systems coupled to optical cavities are promising candidates for a novel kind of photo chemistry. Strong coupling to the vacuum field of the cavity can modify the potential energy surfaces opening up new reaction pathways. We present a derivation of the non-adiabatic couplings for single molecules in the strong coupling regime. The possibilities for photo chemistry are demonstrated for a set of model systems representing typical situations found in molecules. Supported by the Alexander von Humboldt Foundation.

  12. Saturation diving; physiology and pathophysiology.

    PubMed

    Brubakk, Alf O; Ross, John A S; Thom, Stephen R

    2014-07-01

    In saturation diving, divers stay under pressure until most of their tissues are saturated with breathing gas. Divers spend a long time in isolation exposed to increased partial pressure of oxygen, potentially toxic gases, bacteria, and bubble formation during decompression combined with shift work and long periods of relative inactivity. Hyperoxia may lead to the production of reactive oxygen species (ROS) that interact with cell structures, causing damage to proteins, lipids, and nucleic acid. Vascular gas-bubble formation and hyperoxia may lead to dysfunction of the endothelium. The antioxidant status of the diver is an important mechanism in the protection against injury and is influenced both by diet and genetic factors. The factors mentioned above may lead to production of heat shock proteins (HSP) that also may have a negative effect on endothelial function. On the other hand, there is a great deal of evidence that HSPs may also have a "conditioning" effect, thus protecting against injury. As people age, their ability to produce antioxidants decreases. We do not currently know the capacity for antioxidant defense, but it is reasonable to assume that it has a limit. Many studies have linked ROS to disease states such as cancer, insulin resistance, diabetes mellitus, cardiovascular diseases, and atherosclerosis as well as to old age. However, ROS are also involved in a number of protective mechanisms, for instance immune defense, antibacterial action, vascular tone, and signal transduction. Low-grade oxidative stress can increase antioxidant production. While under pressure, divers change depth frequently. After such changes and at the end of the dive, divers must follow procedures to decompress safely. Decompression sickness (DCS) used to be one of the major causes of injury in saturation diving. Improved decompression procedures have significantly reduced the number of reported incidents; however, data indicate considerable underreporting of injuries

  13. Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo

    DOE PAGESBeta

    White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; Mozyrsky, Dmitry

    2015-07-07

    Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficientmore » as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In many cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.« less

  14. Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, V. N.; Toussaint, U. V.; Timucin, D. A.

    2002-01-01

    We have developed a general technique to study the dynamics of the quantum adiabatic evolution algorithm applied to random combinatorial optimization problems in the asymptotic limit of large problem size n. We use as an example the NP-complete Number Partitioning problem and map the algorithm dynamics to that of an auxiliary quantum spin glass system with the slowly varying Hamiltonian. We use a Green function method to obtain the adiabatic eigenstates and the minimum excitation gap. g min, = O(n 2(exp -n/2), corresponding to the exponential complexity of the algorithm for Number Partitioning. The key element of the analysis is the conditional energy distribution computed for the set of all spin configurations generated from a given (ancestor) configuration by simultaneous flipping of a fixed number of spins. For the problem in question this distribution is shown to depend on the ancestor spin configuration only via a certain parameter related to 'the energy of the configuration. As the result, the algorithm dynamics can be described in terms of one-dimensional quantum diffusion in the energy space. This effect provides a general limitation of a quantum adiabatic computation in random optimization problems. Analytical results are in agreement with the numerical simulation of the algorithm.

  15. Steam bottoming cycle for an adiabatic diesel engine

    SciTech Connect

    Poulin, E.; Demler, R.; Krepchin, I.; Walker, D.

    1984-03-01

    A study of steam bottoming cycles using adiabatic diesel engine exhaust heat projected substantial performance and economic benefits for long haul trucks. A parametric analysis of steam cycle and system component variables, system cost, size and performance was conducted. An 811 K/6.90 MPa state-of-the-art reciprocating expander steam system with a monotube boiler and radiator core condenser was selected for preliminary design. When applied to a NASA specified turbo-charged adiabatic diesel the bottoming system increased the diesel output by almost 18%. In a comparison of the costs of the diesel with bottoming system (TC/B) and a NASA specified turbocompound adiabatic diesel with after-cooling with the same total output, the annual fuel savings less the added maintenance cost was determined to cover the increased initial cost of the TC/B system in a payback period of 2.3 years. Also during this program steam bottoming system freeze protection strategies were developed, technological advances required for improved system reliability were considered and the cost and performance of advanced systems were evaluated.

  16. Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo

    SciTech Connect

    White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; Mozyrsky, Dmitry

    2015-07-07

    Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficient as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In many cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.

  17. Irreconcilable difference between quantum walks and adiabatic quantum computing

    NASA Astrophysics Data System (ADS)

    Wong, Thomas G.; Meyer, David A.

    2016-06-01

    Continuous-time quantum walks and adiabatic quantum evolution are two general techniques for quantum computing, both of which are described by Hamiltonians that govern their evolutions by Schrödinger's equation. In the former, the Hamiltonian is fixed, while in the latter, the Hamiltonian varies with time. As a result, their formulations of Grover's algorithm evolve differently through Hilbert space. We show that this difference is fundamental; they cannot be made to evolve along each other's path without introducing structure more powerful than the standard oracle for unstructured search. For an adiabatic quantum evolution to evolve like the quantum walk search algorithm, it must interpolate between three fixed Hamiltonians, one of which is complex and introduces structure that is stronger than the oracle for unstructured search. Conversely, for a quantum walk to evolve along the path of the adiabatic search algorithm, it must be a chiral quantum walk on a weighted, directed star graph with structure that is also stronger than the oracle for unstructured search. Thus, the two techniques, although similar in being described by Hamiltonians that govern their evolution, compute by fundamentally irreconcilable means.

  18. Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo

    SciTech Connect

    White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; Mozyrsky, Dmitry

    2015-07-07

    Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficient as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In most cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.

  19. Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, Vadius; vonToussaint, Udo V.; Timucin, Dogan A.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We have developed a general technique to study the dynamics of the quantum adiabatic evolution algorithm applied to random combinatorial optimization problems in the asymptotic limit of large problem size n. We use as an example the NP-complete Number Partitioning problem and map the algorithm dynamics to that of an auxiliary quantum spin glass system with the slowly varying Hamiltonian. We use a Green function method to obtain the adiabatic eigenstates and the minimum exitation gap, gmin = O(n2(sup -n/2)), corresponding to the exponential complexity of the algorithm for Number Partitioning. The key element of the analysis is the conditional energy distribution computed for the set of all spin configurations generated from a given (ancestor) configuration by simultaneous flipping of a fixed number of spins. For the problem in question this distribution is shown to depend on the ancestor spin configuration only via a certain parameter related to the energy of the configuration. As the result, the algorithm dynamics can be described in terms of one-dimensional quantum diffusion in the energy space. This effect provides a general limitation of a quantum adiabatic computation in random optimization problems. Analytical results are in agreement with the numerical simulation of the algorithm.

  20. NMR implementation of adiabatic SAT algorithm using strongly modulated pulses.

    PubMed

    Mitra, Avik; Mahesh, T S; Kumar, Anil

    2008-03-28

    NMR implementation of adiabatic algorithms face severe problems in homonuclear spin systems since the qubit selective pulses are long and during this period, evolution under the Hamiltonian and decoherence cause errors. The decoherence destroys the answer as it causes the final state to evolve to mixed state and in homonuclear systems, evolution under the internal Hamiltonian causes phase errors preventing the initial state to converge to the solution state. The resolution of these issues is necessary before one can proceed to implement an adiabatic algorithm in a large system where homonuclear coupled spins will become a necessity. In the present work, we demonstrate that by using "strongly modulated pulses" (SMPs) for the creation of interpolating Hamiltonian, one can circumvent both the problems and successfully implement the adiabatic SAT algorithm in a homonuclear three qubit system. This work also demonstrates that the SMPs tremendously reduce the time taken for the implementation of the algorithm, can overcome problems associated with decoherence, and will be the modality in future implementation of quantum information processing by NMR. PMID:18376911

  1. NMR implementation of adiabatic SAT algorithm using strongly modulated pulses

    NASA Astrophysics Data System (ADS)

    Mitra, Avik; Mahesh, T. S.; Kumar, Anil

    2008-03-01

    NMR implementation of adiabatic algorithms face severe problems in homonuclear spin systems since the qubit selective pulses are long and during this period, evolution under the Hamiltonian and decoherence cause errors. The decoherence destroys the answer as it causes the final state to evolve to mixed state and in homonuclear systems, evolution under the internal Hamiltonian causes phase errors preventing the initial state to converge to the solution state. The resolution of these issues is necessary before one can proceed to implement an adiabatic algorithm in a large system where homonuclear coupled spins will become a necessity. In the present work, we demonstrate that by using "strongly modulated pulses" (SMPs) for the creation of interpolating Hamiltonian, one can circumvent both the problems and successfully implement the adiabatic SAT algorithm in a homonuclear three qubit system. This work also demonstrates that the SMPs tremendously reduce the time taken for the implementation of the algorithm, can overcome problems associated with decoherence, and will be the modality in future implementation of quantum information processing by NMR.

  2. Adiabatic corrections to density functional theory energies and wave functions.

    PubMed

    Mohallem, José R; Coura, Thiago de O; Diniz, Leonardo G; de Castro, Gustavo; Assafrão, Denise; Heine, Thomas

    2008-09-25

    The adiabatic finite-nuclear-mass-correction (FNMC) to the electronic energies and wave functions of atoms and molecules is formulated for density-functional theory and implemented in the deMon code. The approach is tested for a series of local and gradient corrected density functionals, using MP2 results and diagonal-Born-Oppenheimer corrections from the literature for comparison. In the evaluation of absolute energy corrections of nonorganic molecules the LDA PZ81 functional works surprisingly better than the others. For organic molecules the GGA BLYP functional has the best performance. FNMC with GGA functionals, mainly BLYP, show a good performance in the evaluation of relative corrections, except for nonorganic molecules containing H atoms. The PW86 functional stands out with the best evaluation of the barrier of linearity of H2O and the isotopic dipole moment of HDO. In general, DFT functionals display an accuracy superior than the common belief and because the corrections are based on a change of the electronic kinetic energy they are here ranked in a new appropriate way. The approach is applied to obtain the adiabatic correction for full atomization of alcanes C(n)H(2n+2), n = 4-10. The barrier of 1 mHartree is approached for adiabatic corrections, justifying its insertion into DFT. PMID:18537228

  3. Turbulence induced fluctuations in cloud saturation ratio: Doppler radar measurements and implications for drizzle formation

    NASA Astrophysics Data System (ADS)

    McGraw, R. L.; Luke, E. P.; Kollias, P.

    2010-12-01

    This paper presents a statistical examination of in-cloud updraft and downdraft velocities using Doppler cloud radar and radiosonde measurements collected by the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) climate research facility. The measurements, including moments and other statistical properties derived from them are used in conjunction with adiabatic parcel and entrainment models to derive the properties of turbulence-induced fluctuations in saturation ratio and cloud droplet size. An especially important parameter for models of cloud droplet evolution and dispersion and also for predicting conditions at the drizzle threshold is the ratio of saturation ratio fluctuation variance to correlation time [McGraw and Liu, GRL, 33, L03802 (2006)]. The goal of the present analysis is to develop methods to estimate this key turbulence parameter needed in the kinetic potential theory of drizzle formation from remote sensing methods and in particular from the Doppler radar measurements.

  4. Piezoelectric control of the mobility of a domain wall driven by adiabatic and non-adiabatic torques

    NASA Astrophysics Data System (ADS)

    de Ranieri, E.; Roy, P. E.; Fang, D.; Vehsthedt, E. K.; Irvine, A. C.; Heiss, D.; Casiraghi, A.; Campion, R. P.; Gallagher, B. L.; Jungwirth, T.; Wunderlich, J.

    2013-09-01

    The rich internal degrees of freedom of magnetic domain walls make them an attractive complement to electron charge for exploring new concepts of storage, transport and processing of information. Here we use the tunable internal structure of a domain wall in a perpendicularly magnetized GaMnAsP/GaAs ferromagnetic semiconductor and demonstrate devices in which piezoelectrically controlled magnetic anisotropy yields up to 500% mobility variations for an electrical-current-driven domain wall. We observe current-induced domain wall motion over a wide range of current-pulse amplitudes and report a direct observation and the piezoelectric control of the Walker breakdown separating two regimes with different mobilities. Our work demonstrates that in spin-orbit-coupled ferromagnets with weak extrinsic domain wall pinning, the piezoelectric control allows one to experimentally assess the upper and lower boundaries of the characteristic ratio of adiabatic and non-adiabatic spin-transfer torques in the current-driven domain wall motion.

  5. Calculation of the thermodynamic properties at elevated temperatures and pressures of saturated and aromatic high molecular weight solid and liquid hydrocarbons in kerogen, bitumen, petroleum, and other organic matter of biogeochemical interest

    NASA Astrophysics Data System (ADS)

    Richard, Laurent; Helgeson, Harold C.

    1998-12-01

    To supplement the relatively sparse set of calorimetric data available for the multitude of high molecular weight organic compounds of biogeochemical interest, group additivity algorithms have been developed to estimate heat capacity power function coefficients and the standard molal thermodynamic properties at 25°C and 1 bar of high molecular weight compounds in hydrocarbon source rocks and reservoirs, including crystalline and liquid isoprenoids, steroids, tricyclic diterpenoids, hopanoids, and polynuclear aromatic hydrocarbons. A total of ninety-six group contributions for each coefficient and property were generated from the thermodynamic properties of lower molecular weight reference species for which calorimetric data are available in the literature. These group contributions were then used to compute corresponding coefficients and properties for ˜360 representative solid and liquid high molecular weight compounds in kerogen, bitumen, and petroleum for which few or no experimental data are available. The coefficients and properties of these high molecular weight compounds are summarized in tables, together with those of the groups and reference species from which they were generated. The tabulated heat capacity power function coefficients and standard molal thermodynamic properties at 25°C and 1 bar include selected crystalline and liquid regular, irregular and highly branched isoprenoids, tricyclic diterpanes, 17α(H)- and 17β(H)-hopanes, 5α(H),14α(H)-, 5β(H),14α(H)-, 5α(H),14β(H)-, and 5β(H),14β(H)-steranes, double ether- and ester-bonded n-alkanes, and various polynuclear aromatic hydrocarbons, including methylated biphenyls, naphthalenes, phenanthrenes, anthracenes, pyrenes, and chrysenes. However, corresponding coefficients and properties for many more saturated and unsaturated high molecular weight hydrocarbons can be estimated from the equations of state group additivity algorithms. Calculations of this kind permit comprehensive

  6. Calculation of the thermodynamic properties at elevated temperatures and pressures of saturated and aromatic high molecular weight solid and liquid hydrocarbons in kerogen, bitumen, petroleum, and other organic matter of biogeochemical interest

    SciTech Connect

    Richard, L.; Helgeson, H.C.

    1998-12-01

    To supplement the relatively sparse set of calorimetric data available for the multitude of high molecular weight organic compounds of biogeochemical interest, group additivity algorithms have been developed to estimate heat capacity power function coefficients and the standard molal thermodynamic properties at 25 C and 1 bar of high molecular weight compounds in hydrocarbon source rocks and reservoirs, including crystalline and liquid isoprenoids, steroids, tricyclic diterpenoids, hopanoids, and polynuclear aromatic hydrocarbons. A total of ninety-six group contributions for each coefficient and property were generated from the thermodynamic properties of lower molecular weight reference species for which calorimetric data are available in the literature. These group contributions were then used to compute corresponding coefficients and properties for {approximately}360 representative solid and liquid high molecular weight compounds in kerogen, bitumen, and petroleum for which few or no experimental data are available. The coefficients and properties of these high molecular weight compounds are summarized in tables, together with those of the groups and reference species from which they were generated. The tabulated heat capacity power function coefficients and standard molal thermodynamic properties at 25 C and 1 bar include selected crystalline and liquid regular, irregular and highly branched isoprenoids, tricyclic diterpanes, 17{alpha}(H)- and 17{beta}(H)-hopanes, 5{alpha}(H),14{alpha}(H)-, 5{beta}(H),14{alpha}(H)-, 5{alpha}(H),14{beta}(H)-, and 5{beta}(H),14{beta}(H)-steranes, double ether- and ester-bonded n-alkanes, and various polynuclear aromatic hydrocarbons, including methylated biphenyls, naphthalenes, phenanthrenes, anthracenes, pyrenes, and chrysenes. However, corresponding coefficients and properties for many more saturated and unsaturated high molecular weight hydrocarbons can be estimated from the equations of state group additivity algorithms

  7. Saturation of repeated quantum measurements

    NASA Astrophysics Data System (ADS)

    Haapasalo, Erkka; Heinosaari, Teiko; Kuramochi, Yui

    2016-08-01

    We study sequential measurement scenarios where the system is repeatedly subjected to the same measurement process. We first provide examples of such repeated measurements where further repetitions of the measurement do not increase our knowledge on the system after some finite number of measurement steps. We also prove, however, that repeating the Lüders measurement of an unsharp two-outcome observable never saturates in this sense, and we characterize the observable measured in the limit of infinitely many repetitions. Our result implies that a repeated measurement can be used to correct the inherent noise of an unsharp observable.

  8. Gluon Evolution and Saturation Proceedings

    SciTech Connect

    McLerran, L.D.

    2010-05-26

    Almost 40 years ago, Gribov and colleagues at the Leningrad Nuclear Physics Institute developed the ideas that led to the Dokhsitzer-Gribov-Altarelli-Parisi the Baltisky-Fadin-Kuraev-Lipatov equations. These equations describe the evolution of the distributions for quarks and gluon inside a hadron to increased resolution scale of a probe or to smaller values of the fractional momentum of a hadronic constituent. I motivate and discuss the generalization required of these equations needed for high energy processes when the density of constituents is large. This leads to a theory of saturation realized by the Color Glass Condensate

  9. Gain saturation in semiconductor lasers - Theory and experiment

    NASA Technical Reports Server (NTRS)

    Kasemset, D.; Fonstad, C. G., Jr.

    1982-01-01

    The semiconductor stimulated gain saturation model of Zee has been extended using reasonable approximations to obtain an analytical solution for the gain saturation process in PbSnTe and to determine the limit to single mode power directly from the gain expression, the intraband relaxation time, and device and material parameters. The theoretical results are compared with experimental observations for single transverse mode cavity narrow stripe buried heterostructure PbSnTe lasers. Those results are interpreted in terms of an intraband relaxation time on the order of 2 x 10 to the -12th s in the temperature range 20-80 K.

  10. Extended adiabatic blast waves and a model of the soft X-ray background. [interstellar matter

    NASA Technical Reports Server (NTRS)

    Cox, D. P.; Anderson, P. R.

    1981-01-01

    An analytical approximation is generated which follows the development of an adiabatic spherical blast wave in a homogeneous ambient medium of finite pressure. An analytical approximation is also presented for the electron temperature distribution resulting from coulomb collisional heating. The dynamical, thermal, ionization, and spectral structures are calculated for blast waves of energy E sub 0 = 5 x 10 to the 50th power ergs in a hot low-density interstellar environment. A formula is presented for estimating the luminosity evolution of such explosions. The B and C bands of the soft X-ray background, it is shown, are reproduced by such a model explosion if the ambient density is about .000004 cm, the blast radius is roughly 100 pc, and the solar system is located inside the shocked region. Evolution in a pre-existing cavity with a strong density gradient may, it is suggested, remove both the M band and OVI discrepancies.

  11. Thermal behavior, specific heat capacity and adiabatic time-to-explosion of G(FOX-7).

    PubMed

    Xu, Kangzhen; Song, Jirong; Zhao, Fengqi; Ma, Haixia; Gao, Hongxu; Chang, Chunran; Ren, Yinghui; Hu, Rongzu

    2008-10-30

    [H(2)N=C(NH(2))(2)](+)(FOX-7)(-)-G(FOX-7) was prepared by mixing FOX-7 and guanidinium chloride solution in potassium hydroxide solution. Its thermal decomposition was studied under the non-isothermal conditions with DSC and TG/DTG methods. The apparent activation energy (E) and pre-exponential constant (A) of the two exothermic decomposition stages were obtained by Kissinger's method and Ozawa's method, respectively. The critical temperature of thermal explosion (T(b)) was obtained as 201.72 degrees C. The specific heat capacity of G(FOX-7) was determined with Micro-DSC method and theoretical calculation method and the standard molar specific heat capacity is 282.025 J mol(-1) K(-1) at 298.15 K. Adiabatic time-to-explosion of G(FOX-7) was also calculated to be a certain value between 13.95 and 15.66 s. PMID:18336998

  12. Quantum state specific reactant preparation in a molecular beam by rapid adiabatic passage

    SciTech Connect

    Chadwick, Helen Hundt, P. Morten; Reijzen, Maarten E. van; Yoder, Bruce L.; Beck, Rainer D.

    2014-01-21

    Highly efficient preparation of molecules in a specific rovibrationally excited state for gas/surface reactivity measurements is achieved in a molecular beam using tunable infrared (IR) radiation from a single mode continuous wave optical parametric oscillator (cw-OPO). We demonstrate that with appropriate focusing of the IR radiation, molecules in the molecular beam crossing the fixed frequency IR field experience a Doppler tuning that can be adjusted to achieve complete population inversion of a two-level system by rapid adiabatic passage (RAP). A room temperature pyroelectric detector is used to monitor the excited fraction in the molecular beam and the population inversion is detected and quantified using IR bleaching by a second IR-OPO. The second OPO is also used for complete population transfer to an overtone or combination vibration via double resonance excitation using two spatially separated RAP processes.

  13. Quantum state specific reactant preparation in a molecular beam by rapid adiabatic passage

    NASA Astrophysics Data System (ADS)

    Chadwick, Helen; Hundt, P. Morten; van Reijzen, Maarten E.; Yoder, Bruce L.; Beck, Rainer D.

    2014-01-01

    Highly efficient preparation of molecules in a specific rovibrationally excited state for gas/surface reactivity measurements is achieved in a molecular beam using tunable infrared (IR) radiation from a single mode continuous wave optical parametric oscillator (cw-OPO). We demonstrate that with appropriate focusing of the IR radiation, molecules in the molecular beam crossing the fixed frequency IR field experience a Doppler tuning that can be adjusted to achieve complete population inversion of a two-level system by rapid adiabatic passage (RAP). A room temperature pyroelectric detector is used to monitor the excited fraction in the molecular beam and the population inversion is detected and quantified using IR bleaching by a second IR-OPO. The second OPO is also used for complete population transfer to an overtone or combination vibration via double resonance excitation using two spatially separated RAP processes.

  14. Quantum state specific reactant preparation in a molecular beam by rapid adiabatic passage.

    PubMed

    Chadwick, Helen; Hundt, P Morten; van Reijzen, Maarten E; Yoder, Bruce L; Beck, Rainer D

    2014-01-21

    Highly efficient preparation of molecules in a specific rovibrationally excited state for gas/surface reactivity measurements is achieved in a molecular beam using tunable infrared (IR) radiation from a single mode continuous wave optical parametric oscillator (cw-OPO). We demonstrate that with appropriate focusing of the IR radiation, molecules in the molecular beam crossing the fixed frequency IR field experience a Doppler tuning that can be adjusted to achieve complete population inversion of a two-level system by rapid adiabatic passage (RAP). A room temperature pyroelectric detector is used to monitor the excited fraction in the molecular beam and the population inversion is detected and quantified using IR bleaching by a second IR-OPO. The second OPO is also used for complete population transfer to an overtone or combination vibration via double resonance excitation using two spatially separated RAP processes. PMID:25669393

  15. Adiabatic loading of one-dimensional SU(N) alkaline-earth-atom fermions in optical lattices.

    PubMed

    Bonnes, Lars; Hazzard, Kaden R A; Manmana, Salvatore R; Rey, Ana Maria; Wessel, Stefan

    2012-11-16

    Ultracold fermionic alkaline earth atoms confined in optical lattices realize Hubbard models with internal SU(N) symmetries, where N can be as large as ten. Such systems are expected to harbor exotic magnetic physics at temperatures below the superexchange energy scale. Employing quantum Monte Carlo simulations to access the low-temperature regime of one-dimensional chains, we show that after adiabatically loading a weakly interacting gas into the strongly interacting regime of an optical lattice, the final temperature decreases with increasing N. Furthermore, we estimate the temperature scale required to probe correlations associated with low-temperature SU(N) magnetism. Our findings are encouraging for the exploration of exotic large-N magnetic states in ongoing experiments. PMID:23215502

  16. ADIABATIC MASS LOSS IN BINARY STARS. I. COMPUTATIONAL METHOD

    SciTech Connect

    Ge Hongwei; Chen Xuefei; Han Zhanwen; Webbink, Ronald F. E-mail: mshjell@gmail.co

    2010-07-10

    The asymptotic response of donor stars in interacting binary systems to very rapid mass loss is characterized by adiabatic expansion throughout their interiors. In this limit, energy generation and heat flow through the stellar interior can be neglected. We model this response by constructing model sequences, beginning with a donor star filling its Roche lobe at an arbitrary point in its evolution, holding its specific entropy and composition profiles fixed as mass is removed from the surface. The stellar interior remains in hydrostatic equilibrium. Luminosity profiles in these adiabatic models of mass-losing stars can be reconstructed from the specific entropy profiles and their gradients. These approximations are validated by comparison with time-dependent binary mass transfer calculations. We describe how adiabatic mass-loss sequences can be used to quantify threshold conditions for dynamical timescale mass transfer, and to establish the range of post-common envelope binaries that are allowed energetically. In dynamical timescale mass transfer, the adiabatic response of the donor star drives it to expand beyond its Roche lobe, leading to runaway mass transfer and the formation of a common envelope with its companion star. For donor stars with surface convection zones of any significant depth, this runaway condition is encountered early in mass transfer, if at all; but for main-sequence stars with radiative envelopes, it may be encountered after a prolonged phase of thermal timescale mass transfer, a so-called delayed dynamical instability. We identify the critical binary mass ratio for the onset of dynamical timescale mass transfer as that ratio for which the adiabatic response of the donor star radius to mass loss matches that of its Roche lobe at some point during mass transfer; if the ratio of donor to accretor masses exceeds this critical value, dynamical timescale mass transfer ensues. In common envelope evolution, the dissipation of orbital energy of the

  17. Kibble-Zurek mechanism beyond adiabaticity: Finite-time scaling with critical initial slip

    NASA Astrophysics Data System (ADS)

    Huang, Yingyi; Yin, Shuai; Hu, Qijun; Zhong, Fan

    2016-01-01

    The Kibble-Zurek mechanism demands an initial adiabatic stage before an impulse stage to have a frozen correlation length that generates topological defects in a cooling phase transition. Here we study such a driven critical dynamics but with an initial condition that is near the critical point and that is far away from equilibrium. In this case, there is no initial adiabatic stage at all and thus adiabaticity is broken. However, we show that there again exists a finite length scale arising from the driving that divides the evolution into three stages. A relaxation-finite-time-scaling-adiabatic scenario is then proposed in place of the adiabatic-impulse-adiabatic scenario of the original Kibble-Zurek mechanism. A unified scaling theory, which combines finite-time scaling with critical initial slip, is developed to describe the universal behavior and is confirmed with numerical simulations of a two-dimensional classical Ising model.

  18. Optimized sympathetic cooling of atomic mixtures via fast adiabatic strategies

    SciTech Connect

    Choi, Stephen; Sundaram, Bala; Onofrio, Roberto

    2011-11-15

    We discuss fast frictionless cooling techniques in the framework of sympathetic cooling of cold atomic mixtures. It is argued that optimal cooling of an atomic species--in which the deepest quantum degeneracy regime is achieved--may be obtained by means of sympathetic cooling with another species whose trapping frequency is dynamically changed to maintain constancy of the Lewis-Riesenfeld adiabatic invariant. Advantages and limitations of this cooling strategy are discussed, with particular regard to the possibility of cooling Fermi gases to a deeper degenerate regime.

  19. Magnetic shielding for a spaceborne adiabatic demagnetization refrigerator (ADR)

    NASA Technical Reports Server (NTRS)

    Warner, Brent A.; Shirron, Peter J.; Castles, Stephen H.; Serlemitsos, Aristides T.

    1991-01-01

    The Goddard Space Flight Center has studied magnetic shielding for an adiabatic demagnetization refrigerator. Four types of shielding were studied: active coils, passive ferromagnetic shells, passive superconducting coils, and passive superconducting shells. The passive superconducting shells failed by allowing flux penetration. The other three methods were successful, singly or together. Experimental studies of passive ferromagnetic shielding are compared with calculations made using the Poisson Group of programs, distributed by the Los Alamos Accelerator Code Group of the Los Alamos National Laboratory. Agreement between calculation and experiment is good. The ferromagnetic material is a silicon iron alloy.

  20. Modeling of the Adiabatic and Isothermal Methanation Process

    NASA Astrophysics Data System (ADS)

    Porubova, Jekaterina; Bazbauers, Gatis; Markova, Darja

    2011-01-01

    Increased use of biomass offers one of the ways to reduce anthropogenic impact on the environment. Using various biomass conversion processes, it is possible to obtain different types of fuels: • solid, e.g. bio-carbon; • liquid, e.g. biodiesel and ethanol; • gaseous, e.g. biomethane. Biomethane can be used in the transport and energy sector, and the total methane production efficiency can reach 65%. By modeling adiabatic and isothermal methanation processes, the most effective one from the methane production point of view is defined. Influence of the process parameters on the overall efficiency of the methane production is determined.

  1. Relativistic blast waves in two dimensions. I - The adiabatic case

    NASA Technical Reports Server (NTRS)

    Shapiro, P. R.

    1979-01-01

    Approximate solutions are presented for the dynamical evolution of strong adiabatic relativistic blast waves which result from a point explosion in an ambient gas in which the density varies both with distance from the explosion center and with polar angle in axisymmetry. Solutions are analytical or quasi-analytical for the extreme relativistic case and numerical for the arbitrarily relativistic case. Some general properties of nonplanar relativistic shocks are also discussed, including the incoherence of spherical ultrarelativistic blast-wave fronts on angular scales greater than the reciprocal of the shock Lorentz factor, as well as the conditions for producing blast-wave acceleration.

  2. Stimulated Raman adiabatic passage in Tm{sup 3+}:YAG

    SciTech Connect

    Alexander, A. L.; Lauro, R.; Louchet, A.; Chaneliere, T.; Le Goueet, J. L.

    2008-10-01

    We report on the experimental demonstration of stimulated Raman adiabatic passage in a Tm{sup 3+}:YAG crystal. Tm{sup 3+}:YAG is a promising material for use in quantum information processing applications, but as yet there are few experimental investigations of coherent Raman processes in this material. We investigate the effect of inhomogeneous broadening and Rabi frequency on the transfer efficiency and the width of the two-photon spectrum. Simulations of the complete Tm{sup 3+}:YAG system are presented along with the corresponding experimental results.

  3. Nonlinear effects generation in non-adiabatically tapered fibres

    NASA Astrophysics Data System (ADS)

    Palací, Jesús; Mas, Sara; Monzón-Hernández, David; Martí, Javier

    2015-12-01

    Nonlinear effects are observed in a non-adiabatically tapered optical fibre. The designed structure allows for the introduction of self-phase modulation, which is observed through pulse breaking and spectral broadening, in approximately a centimetre of propagation using a commercial telecom laser. These devices are simple to fabricate and suitable to generate and control a variety of nonlinear effects in practical applications because they do not experience short-term degradation as previously reported approaches. Experimental and theoretical results are obtained, showing a good agreement.

  4. Plasma heating via adiabatic magnetic compression-expansion cycle

    NASA Astrophysics Data System (ADS)

    Avinash, K.; Sengupta, M.; Ganesh, R.

    2016-06-01

    Heating of collisionless plasmas in closed adiabatic magnetic cycle comprising of a quasi static compression followed by a non quasi static constrained expansion against a constant external pressure is proposed. Thermodynamic constraints are derived to show that the plasma always gains heat in cycles having at least one non quasi static process. The turbulent relaxation of the plasma to the equilibrium state at the end of the non quasi static expansion is discussed and verified via 1D Particle in Cell (PIC) simulations. Applications of this scheme to heating plasmas in open configurations (mirror machines) and closed configurations (tokamak, reverse field pinche) are discussed.

  5. Quantum corrections during inflation and conservation of adiabatic perturbations

    SciTech Connect

    Campo, David

    2010-02-15

    The possibility that quantum corrections break the conservation of superhorizon adiabatic perturbations in single field inflation is examined. I consider the lowest order corrections from massless matter fields in the Hamiltonian formalism. Particular emphasis is therefore laid on the renormalization. The counterterms are the same as in the Lagrangian formalism. The renormalized value of the tadpole is zero. I find a possible secular dependence of the power spectrum at one loop due to the trace anomaly, but this result depends on the approximation of the modes and is inconclusive. The symmetry (not) violated by the quantum corrections is the invariance by dilatation. Perspectives on the backreaction problem are briefly discussed.

  6. More bang for your buck: Super-adiabatic quantum engines

    PubMed Central

    Campo, A. del; Goold, J.; Paternostro, M.

    2014-01-01

    The practical untenability of the quasi-static assumption makes any realistic engine intrinsically irreversible and its operating time finite, thus implying friction effects at short cycle times. An important technological goal is thus the design of maximally efficient engines working at the maximum possible power. We show that, by utilising shortcuts to adiabaticity in a quantum engine cycle, one can engineer a thermodynamic cycle working at finite power and zero friction. Our findings are illustrated using a harmonic oscillator undergoing a quantum Otto cycle. PMID:25163421

  7. Gravitational radiation reaction and inspiral waveforms in the adiabatic limit.

    PubMed

    Hughes, Scott A; Drasco, Steve; Flanagan, Eanna E; Franklin, Joel

    2005-06-10

    We describe progress evolving an important limit of binaries in general relativity: stellar mass compact objects spiraling into much larger black holes. Such systems are of great observational interest. We have developed tools to compute for the first time the radiation from generic orbits. Using global conservation laws, we find the orbital evolution and waveforms for special cases. For generic orbits, inspirals and waveforms can be found by augmenting our approach with an adiabatic self-force rule due to Mino. Such waveforms should be accurate enough for gravitational-wave searches. PMID:16090377

  8. From Classical Nonlinear Integrable Systems to Quantum Shortcuts to Adiabaticity

    NASA Astrophysics Data System (ADS)

    Okuyama, Manaka; Takahashi, Kazutaka

    2016-08-01

    Using shortcuts to adiabaticity, we solve the time-dependent Schrödinger equation that is reduced to a classical nonlinear integrable equation. For a given time-dependent Hamiltonian, the counterdiabatic term is introduced to prevent nonadiabatic transitions. Using the fact that the equation for the dynamical invariant is equivalent to the Lax equation in nonlinear integrable systems, we obtain the counterdiabatic term exactly. The counterdiabatic term is available when the corresponding Lax pair exists and the solvable systems are classified in a unified and systematic way. Multisoliton potentials obtained from the Korteweg-de Vries equation and isotropic X Y spin chains from the Toda equations are studied in detail.

  9. More bang for your buck: super-adiabatic quantum engines.

    PubMed

    del Campo, A; Goold, J; Paternostro, M

    2014-01-01

    The practical untenability of the quasi-static assumption makes any realistic engine intrinsically irreversible and its operating time finite, thus implying friction effects at short cycle times. An important technological goal is thus the design of maximally efficient engines working at the maximum possible power. We show that, by utilising shortcuts to adiabaticity in a quantum engine cycle, one can engineer a thermodynamic cycle working at finite power and zero friction. Our findings are illustrated using a harmonic oscillator undergoing a quantum Otto cycle. PMID:25163421

  10. Stimulated Raman adiabatic passage through permanent dipole moment transitions

    SciTech Connect

    Niu Yingyu; Wang Rong; Qiu Minghui

    2010-04-15

    The rovibrational dynamics of stimulated Raman adiabatic passage (STIRAP) through permanent dipole moment transitions are investigated theoretically using a time-dependent quantum wave packet method for the ground electronic state of an HF molecule. The two basic STIRAP processes, {Lambda} and ladder systems, are simulated. The calculated results show that nearly 100% of the population can be transferred to the target state. Besides the interested transitions, the pulses can induce other transitions which affect the dynamics of STIRAP. The final populations of the initial and target states depend on delay time.

  11. Local shortcut to adiabaticity for quantum many-body systems

    NASA Astrophysics Data System (ADS)

    Mukherjee, Victor; Montangero, Simone; Fazio, Rosario

    2016-06-01

    We study the environmentally assisted local transitionless dynamics in closed spin systems driven through quantum critical points. In general the shortcut to adaiabaticity (STA) in quantum critical systems requires highly nonlocal control Hamiltonians. In this work we develop an approach to achieve local shortcuts to adiabaticity (LSTA) in spin chains, using local control fields which scale polynomially with the system size, following universal critical exponents. We relate the control fields to reduced fidelity susceptibility and use the transverse Ising model in one dimension to exemplify our generic results. We also extend our analysis to achieve LSTA in central spin models.

  12. Steady-state coherent transfer by adiabatic passage.

    PubMed

    Huneke, Jan; Platero, Gloria; Kohler, Sigmund

    2013-01-18

    We propose steady-state electron transport based on coherent transfer by adiabatic passage (CTAP) in a linearly arranged triple quantum dot with leads attached to the outer dots. Its main feature is repeated steering of single electrons from the first dot to the last dot without relevant occupation of the middle dot. The coupling to leads enables a steady-state current, whose shot noise is significantly suppressed provided that the CTAP protocol performs properly. This represents an indication for the direct transfer between spatially separated dots and, thus, may resolve the problem of finding experimental evidence for the nonoccupation of the middle dot. PMID:23373941

  13. Perception of saturation in natural scenes.

    PubMed

    Schiller, Florian; Gegenfurtner, Karl R

    2016-03-01

    We measured how well perception of color saturation in natural scenes can be predicted by different measures that are available in the literature. We presented 80 color images of natural scenes or their gray-scale counterparts to our observers, who were asked to choose the pixel from each image that appeared to be the most saturated. We compared our observers' choices to the predictions of seven popular saturation measures. For the color images, all of the measures predicted perception of saturation quite well, with CIECAM02 performing best. Differences between the measures were small but systematic. When gray-scale images were viewed, observers still chose pixels whose counterparts in the color images were saturated above average. This indicates that image structure and prior knowledge can be relevant to perception of saturation. Nevertheless, our results also show that saturation in natural scenes can be specified quite well without taking these factors into account. PMID:26974924

  14. Seasonal variations of halite saturation in the Dead Sea

    NASA Astrophysics Data System (ADS)

    Sirota, Ido; Arnon, Ali; Lensky, Nadav

    2016-04-01

    Thermohaline stratification in hypersaline lakes expected having influence upon the brine's degree of saturation, due to the dependency of halite solubility on temperature and salinity. Spatio-temporal variations of halite degree of saturation is unknown, thus, a systematic field study is requires in order to quantify super and under-saturation of the brine. The Dead Sea is a hypersaline terminal lake, experiencing a continuous level drop since the mid-20th century. Transition to monomictic conditions at the beginning of the 1980's caused supersaturation of the brine and initiated precipitation of halite. Evaporation from the brine surface results in an upper warmer-saltier layer (epilimnion), separated from the lower colder-less salty layer (hypolimnion) by a 20-30m deep thermocline. However, linkage between limnologic seasonal cycle and halite degree of saturation is unclear. Direct evidence of brine density and temperature, halite crystallization rates and photography of Dead Sea floor reflect limnological conditions and halite crystallization pattern, and were therefore used in this study. Here we show simultaneous existence of opposite evaporitic environments, governed by depth, in the Dead Sea. During summer, the epilimnion is under-saturated with respect to halite, and halite dissolution dominates, while the hypolimnion is super-saturated with respect to halite, thus, precipitation dominates. During winter continuous halite precipitation is evident along the water column. Our results show that non-uniform vertical halite precipitation can occur in a compositional homogeneous water body, controlled by the limnologic conditions. These findings can be used for interpretation of depositional environment of halite sequences.

  15. Shortcut to Adiabatic Passage in Two- and Three-Level Atoms

    SciTech Connect

    Chen Xi; Lizuain, I.; Muga, J. G.; Ruschhaupt, A.; Guery-Odelin, D.

    2010-09-17

    We propose a method to speed up adiabatic passage techniques in two-level and three-level atoms extending to the short-time domain their robustness with respect to parameter variations. It supplements or substitutes the standard laser beam setups with auxiliary pulses that steer the system along the adiabatic path. Compared to other strategies, such as composite pulses or the original adiabatic techniques, it provides a fast and robust approach to population control.

  16. Fractional adiabatic passage in two-level systems: Mirrors and beam splitters for atomic interferometry

    SciTech Connect

    Bateman, James; Freegarde, Tim

    2007-07-15

    Atom interferometers require atom mirrors and beam splitters that can maintain high fidelity even when experimental parameters vary from the ideal. We address the use of chirped laser pulses to provide such elements via rapid adiabatic passage, and present a prescription for practical pulses that offer controlled adiabaticity throughout. Full- and half-adiabatic pulses, providing mirrors and beam splitters, respectively, are derived, and the latter examined for robustness and suitability for experimental implementations.

  17. Tunneling conductance through the half-metal/conical magnet/superconductor junctions in the adiabatic and non-adiabatic regimes: Self-consistent calculations

    NASA Astrophysics Data System (ADS)

    Wójcik, P.; Zegrodnik, M.; Rzeszotarski, B.; Adamowski, J.

    2016-09-01

    The tunneling conductance through the half-metal/conical magnet/superconductor (HM/CM/SC) junctions is investigated with the use of the Bogoliubov-de Gennes equations in the framework of Blonder-Tinkham-Klapwijk formalism. Due to the spin band separation in the HM, the conductance in the subgap region is mainly determined by the anomalous Andreev reflection, the probability of which strongly depends on the spin transmission in the CM layer. We show that the spins of electrons injected from the HM can be transmitted through the CM to the SC either adiabatically or non-adiabatically depending on the period of the spatial modulation of the exchange field. We find that the conductance in the subgap region oscillates as a function of the CM layer thickness wherein the oscillations transform from the irregular pattern in the non-adiabatic regime to the regular one in the adiabatic regime. For both adiabatic and non-adiabatic transport regimes the conductance is studied over a broad range of parameters determining the spiral magnetization in the CM. We find that in the non-adiabatic regime, the decrease of the exchange field amplitude in the CM leads to the emergence of the conductance peak for the particular CM thickness in agreement with recent experiments.

  18. Multi-minimum adiabatic potential in the single crystal normal spinel ZnAl(2)O(4), doped by Cu(2+) ions.

    PubMed

    Shapovalov, V A; Zhitlukhina, E S; Lamonova, K V; Shapovalov, V V; Rafailovich, M; Schwarz, S A; Jahoda, R; Reidy, V J; Orel, S M; Pashkevich, Yu G

    2010-06-23

    Spectroscopic investigations of a ZnAl(2)O(4) spinel doped with bivalent copper ions of 0.05% concentration have been carried out in the temperature range 4.2-290 K using a 3 cm(-1) range electron paramagnetic resonance (EPR) spectrometer having an operational frequency f = (9.241 ± 0.001) GHz. The spectrum can be represented as a superposition of two components: a low-temperature (LT) and a high-temperature (HT) one. Redistribution of integrated intensity between HT and LT components of the spectra occurs with temperature change that is typical of systems with multi-minimum adiabatic potential. Spectra observed are explained within the modified theory of crystalline field (MTCF). The electron levels of a Cu(2+) ion placed in an octahedral coordination center with trigonal distortion [CuO(6)](10-) have been calculated. The influence of possible types of oxygen octahedron distortions and possible displacement of copper ions from the symmetry center on the electron spectrum, as well as the shape of the adiabatic potential, has been analyzed. It is shown that in the low-temperature phase the multiple minima of the adiabatic potential occur due to tetragonal distortions while the depth of a minimum is determined by the degree of trigonal octahedron distortions. Tetragonal distortion values and multi-minimum potential barrier heights have been determined. PMID:21393785

  19. Development of an adiabatic calorimeter in the range 54K-273K in frame of a scientific collaboration LNE-NIS

    NASA Astrophysics Data System (ADS)

    Ahmed, M. G.; Hermier, Y.

    2013-09-01

    The National Institute for Standards (NIS), in cooperation with the French National Metrology Institute (LNE-CNAM), has recently developed a new adiabatic calorimeter, to realize the International Temperature Scale of 1990 (ITS-90) in the temperature range between 54 K and 273 K using Capsule Standard Platinum Resistance Thermometers (CSPRTs). The work has been realized through an international scientific-cooperation project "IMHOTEP" between the two sides. The new calorimeter comprises a cylindrical double-wall vacuum-tight stainless steel Dewar that withstands evacuation on the liquid nitrogen to reach a temperature close to the oxygen triple point. The thermal shield accommodates a multi-compartment cell containing the oxygen and argon triple-points cells. The temperature control for best adiabatic conditions is achieved through PID software, running under LABVIEW environment. Two calorimeters have been constructed. The first one was installed at LNE-CNAM and tested for optimum adiabatic conditions. The system was then transferred to NIS. The second calorimeter was tested and stayed at LNE-CNAM. Experiments, at NIS, showed the possibility of reaching a temperature close to the oxygen triple point. Uncertainties for CSPRTs calibrations were 0.27 and 0.25 mK for triple points of oxygen and argon respectively.

  20. Singularity of the time-energy uncertainty in adiabatic perturbation and cycloids on a Bloch sphere.

    PubMed

    Oh, Sangchul; Hu, Xuedong; Nori, Franco; Kais, Sabre

    2016-01-01

    Adiabatic perturbation is shown to be singular from the exact solution of a spin-1/2 particle in a uniformly rotating magnetic field. Due to a non-adiabatic effect, its quantum trajectory on a Bloch sphere is a cycloid traced by a circle rolling along an adiabatic path. As the magnetic field rotates more and more slowly, the time-energy uncertainty, proportional to the length of the quantum trajectory, calculated by the exact solution is entirely different from the one obtained by the adiabatic path traced by the instantaneous eigenstate. However, the non-adiabatic Aharonov-Anandan geometric phase, measured by the area enclosed by the exact path, approaches smoothly the adiabatic Berry phase, proportional to the area enclosed by the adiabatic path. The singular limit of the time-energy uncertainty and the regular limit of the geometric phase are associated with the arc length and arc area of the cycloid on a Bloch sphere, respectively. Prolate and curtate cycloids are also traced by different initial states outside and inside of the rolling circle, respectively. The axis trajectory of the rolling circle, parallel to the adiabatic path, is shown to be an example of transitionless driving. The non-adiabatic resonance is visualized by the number of cycloid arcs. PMID:26916031