ERIC Educational Resources Information Center
Gillespie, A.
1975-01-01
Describes a method for the determination of the velocity of sound using a dual oscilloscope on which is displayed the sinusoidal input into a loudspeaker and the signal picked up by a microphone. (GS)
ERIC Educational Resources Information Center
Frank, Michael T.; Kluk, Edward
1991-01-01
Presents experiments to measure the velocity of sound through metals and other amorphous materials. Describes the equipment used to make the measurements and the possibility of interfacing with a microcomputer. (MDH)
Heat capacity and sound velocities of low dimensional Fermi gases
NASA Astrophysics Data System (ADS)
Salas, P.; Solis, M. A.
2014-03-01
We report the heat capacity ratio and sound velocities for an interactionless Fermi gas immersed in periodic structures such as penetrable multilayers or multitubes created by one (planes) or two perpendicular (tubes) external Dirac comb potentials. The isobaric specific heat of the fermion gas presents the dimensional crossover previously observed in the isochoric specific heat - from 3D to 2D or to 1D -. The quotient between the two quantities has a prominent bump related to the confinement, and as the temperature increases, it goes towards the monoatomic classical gas value 5/3. We present the isothermal and the adiabatic sound velocities of the fermion gas which show anomalous behavior at temperatures below TF due to the dimensionality of the system, while at higher temperatures again we recover the behavior of a classical Fermi gas. Furthermore, as the temperature goes to zero the sound velocity has a finite value, as expected.
Ultrasonic velocity and adiabatic compressibility in dioxane-water mixtures
NASA Technical Reports Server (NTRS)
Ciupe, A.; Auslaender, D.
1974-01-01
Using a method of diffraction of light on an ultrasonic beam, the velocity of ultrasounds and the adiabatic compressibility in dioxane-water mixtures were determined. The dependence of these quantities on the temperature (in the 15-50 C range) and on the concentration (0-100%) were studied. For each temperature there was found a velocity maximum and a compressibility minimum for a given value of the dioxane concentration. The different behavior of these mixtures is due to intense interactions between the molecules of the two liquids composing the mixture.
Sediment sound velocities from sonobuoys: Arabian Fan
NASA Astrophysics Data System (ADS)
Bachman, Richard T.; Hamilton, Edwin L.
1980-02-01
Eight variable-angle seismic reflection stations in the Arabian Fan, Northwestern Indian Ocean, provided 40 determinations of sound velocity in sediment and sedimentary rock. Sound velocity in the homogeneous, largely terrigenous fan increases smoothly with depth. Regression analysis yielded the velocity-time relationship V (km/s) = 1.510 + 1.863t, where V is instantaneous velocity and t is one-way travel time below the sea floor to 1 s. The velocity-depth function is V (km/s) = 1.510 + 1.200h; - 0.253h2 + 0.034h3, where h is subbottom depth in km.
Sediment sound velocities from sonobuoys: Arabian fan
Bachman, R.T.; Hamilton, E.L.
1980-02-10
Eight variable-angle seismic reflection stations in the Arabian Fan, Northwestern Indian Ocean, provided 40 determinations of sound velocity in sediment and sedimentary rock. Sound velocity in the homogeneous, largely terrigenous fan increases smoothly with depth. Regression analysis yielded the velocity-time relationship V (km/s)=1.510+1.863t, where V is instantaneous velocity and t is one-way travel time below the sea floor to 1 s. The velocity-depth function is V (km/s)=1.510+1.200h-0.253h/sup 2/+ 0.034h/sup 3/, where h is subbottom depth in km.
The molecular velocity of sound. [aqueous solutions
NASA Technical Reports Server (NTRS)
Auslaender, D.; Onitiu, L.
1974-01-01
The molecular velocity of sound was calculated according to Rao's formula and the temperature and concentration dependences of this value were studied in aqueous solutions of alkali and alkaline-earth halides. Study of relative association brought to light characteristic effects of ions. The variation of the relative association can be explained by a breaking of hydrogen bonds by ions and thermal agitation.
Sound velocity anisotropy in cubic crystals
NASA Technical Reports Server (NTRS)
Tsang, T.; Park, H. Y.
1983-01-01
Simple analytical expressions may be derived for sound velocities in cubic crystals by using lattice harmonics or functions which are invariant under the crystal symmetry operations. These expressions are in good agreement with the exact results for typical crystals such as metallic iron and potassium fluoride.
Relationship among shock-wave velocity, particle velocity, and adiabatic exponent for dry air
NASA Astrophysics Data System (ADS)
Kim, In H.; Hong, Sang H.; Jhung, Kyu S.; Oh, Ki-Hwan; Yoon, Yo K.
1991-07-01
Using the results of the detailed numerical calculations, it is shown that the relationship between the shock-wave velocity U sub s and the particle velocity U sub p for shock-compressed dry air can be represented accurately by the linear relation U sub s = a(P0) + b(P0)U sub p in a wide range of U sub p (U sub p = 2 to 9 ) km/s and initial pressure P0 = 10 to the -6th to 1 atm, where a and b are given by the cubic polynomials of log10P0. Based on the linear U sub s - U sub p relation, an analytic expression has been obtained for the adiabatic exponent gamma as a function of particle velocity.
Sound Velocity Bound and Neutron Stars
Bedaque, Paulo; Steiner, Andrew W
2015-01-01
It has been conjectured that the velocity of sound in any medium is smaller than the velocity of light in vacuum divided by sqrt(3). Simple arguments support this bound in nonrelativistic and/or weakly coupled theories. The bound has been demonstrated in several classes of strongly coupled theories with gravity duals and is saturated only in conformal theories. We point out that the existence of neutron stars with masses around two solar masses combined with the knowledge of the equation of state of hadronic matter at low densities is in strong tension with this bound.
Sound velocity in shock compressed molybdenum obtained by ab initio molecular dynamics
NASA Astrophysics Data System (ADS)
Lukinov, T.; Simak, S. I.; Belonoshko, A. B.
2015-08-01
The sound velocity of Mo along the Hugoniot adiabat is calculated from first principles using density-functional theory based molecular dynamics. These data are compared to the sound velocity as measured in recent experiments. The theoretical and experimental Hugoniot and sound velocities are in very good agreement up to pressures of 210 GPa and temperatures of 3700 K on the Hugoniot. However, above that point the experiment and theory diverge. This implies that Mo undergoes a phase transition at about the same point. Considering that the melting point of Mo is likely much higher at that pressure, the related change in the sound velocity in experiment can be ascribed to a solid-solid transition.
Sound velocity in shock compressed molybdenum obtained by ab initio molecular dynamics
NASA Astrophysics Data System (ADS)
Lukinov, Tymofiy; Belonoshko, Anatoly; Simak, Sergey
The sound velocity of Mo along the Hugoniot adiabat is calculated from first principles using density-functional theory based molecular dynamics. These data are compared to the sound velocity as measured in recent experiments. The theoretical and experimental Hugoniot and sound velocities are in very good agreement up to pressures of 210 GPa and temperatures of 3700 K on the Hugoniot. However, above that point the experiment and theory diverge. This implies that Mo undergoes a phase transition at about the same point. Considering that the melting point of Mo is likely much higher at that pressure, the related change in the sound velocity in experiment can be ascribed to a solid-solid transition.
Sound velocity estimation: A system theoretic approach
Candy, J.V.; Sullivan, E.J.
1993-07-30
A system-theoretic approach is proposed to investigate the feasibility of reconstructing a sound velocity profile (SVP) from acoustical hydrophone measurements. This problem is based on a state-space representation of the normal-mode propagation model. It is shown that this representation can be utilized to investigate the so-called observability of the SVP from noisy measurement data. A model-based processor is developed to extract this information and it is shown that even in cases where limited SVP information is available, the SVP can be estimated using this approach.
Velocity and attenuation of sound in arterial tissues
NASA Technical Reports Server (NTRS)
Rooney, J. A.; Gammell, P. M.; Hestenes, J. D.; Chin, H. P.; Blankenhorn, D. H.
1982-01-01
The velocity of sound in excised human and canine arterial tissues is measured in order to serve as a basis for the development and application of ultrasonic techniques for the diagnosis of atherosclerotic lesions. Measurements of sound velocity at different regions of 11 human and six canine aortas were made by a time delay spectrometer technique at frequencies from 2 to 10 MHz, and compared with ultrasonic attenuation parameters and the results of biochemical assays. Sound velocity is found to increase with increasing attenuation at all frequencies, and with increasing collagen content. A strong dependence of sound velocity on cholesterol content or low calcium contents is not observed, although velocities of up to 2000 m/sec are observed in highly organized calcified lesions. A decrease in velocity with decreasing temperature is also noted. It is thus concluded that it is principally the differences in tissue collagen levels that contribute to image formation according to sound velocity.
Accurate Sound Velocity Measurement in Ocean Near-Surface Layer
NASA Astrophysics Data System (ADS)
Lizarralde, D.; Xu, B. L.
2015-12-01
Accurate sound velocity measurement is essential in oceanography because sound is the only wave that can propagate in sea water. Due to its measuring difficulties, sound velocity is often not measured directly but instead calculated from water temperature, salinity, and depth, which are much easier to obtain. This research develops a new method to directly measure the sound velocity in the ocean's near-surface layer using multi-channel seismic (MCS) hydrophones. This system consists of a device to make a sound pulse and a long cable with hundreds of hydrophones to record the sound. The distance between the source and each receiver is the offset. The time it takes the pulse to arrive to each receiver is the travel time.The errors of measuring offset and travel time will affect the accuracy of sound velocity if we calculated with just one offset and one travel time. However, by analyzing the direct arrival signal from hundreds of receivers, the velocity can be determined as the slope of a straight line in the travel time-offset graph. The errors in distance and time measurement result in only an up or down shift of the line and do not affect the slope. This research uses MCS data of survey MGL1408 obtained from the Marine Geoscience Data System and processed with Seismic Unix. The sound velocity can be directly measured to an accuracy of less than 1m/s. The included graph shows the directly measured velocity verses the calculated velocity along 100km across the Mid-Atlantic continental margin. The directly measured velocity shows a good coherence to the velocity computed from temperature and salinity. In addition, the fine variations in the sound velocity can be observed, which is hardly seen from the calculated velocity. Using this methodology, both large area acquisition and fine resolution can be achieved. This directly measured sound velocity will be a new and powerful tool in oceanography.
Dark energy with non-adiabatic sound speed: initial conditions and detectability
Ballesteros, Guillermo; Lesgourgues, Julien E-mail: julien.lesgourgues@cern.ch
2010-10-01
Assuming that the universe contains a dark energy fluid with a constant linear equation of state and a constant sound speed, we study the prospects of detecting dark energy perturbations using CMB data from Planck, cross-correlated with galaxy distribution maps from a survey like LSST. We update previous estimates by carrying a full exploration of the mock data likelihood for key fiducial models. We find that it will only be possible to exclude values of the sound speed very close to zero, while Planck data alone is not powerful enough for achieving any detection, even with lensing extraction. We also discuss the issue of initial conditions for dark energy perturbations in the radiation and matter epochs, generalizing the usual adiabatic conditions to include the sound speed effect. However, for most purposes, the existence of attractor solutions renders the perturbation evolution nearly independent of these initial conditions.
Measurement of sound velocity profiles in fluids for process monitoring
NASA Astrophysics Data System (ADS)
Wolf, M.; Kühnicke, E.; Lenz, M.; Bock, M.
2012-12-01
In ultrasonic measurements, the time of flight to the object interface is often the only information that is analysed. Conventionally it is only possible to determine distances or sound velocities if the other value is known. The current paper deals with a novel method to measure the sound propagation path length and the sound velocity in media with moving scattering particles simultaneously. Since the focal position also depends on sound velocity, it can be used as a second parameter. Via calibration curves it is possible to determine the focal position and sound velocity from the measured time of flight to the focus, which is correlated to the maximum of averaged echo signal amplitude. To move focal position along the acoustic axis, an annular array is used. This allows measuring sound velocity locally resolved without any previous knowledge of the acoustic media and without a reference reflector. In previous publications the functional efficiency of this method was shown for media with constant velocities. In this work the accuracy of these measurements is improved. Furthermore first measurements and simulations are introduced for non-homogeneous media. Therefore an experimental set-up was created to generate a linear temperature gradient, which also causes a gradient of sound velocity.
Sound velocity of liquid 4He in aerogel
NASA Astrophysics Data System (ADS)
Matsumoto, Koichi; Arai, Osamu; Okuda, Yuichi; Tajiri, Koji
2000-07-01
The sound velocity and attenuation of liquid 4He in 93.7% and 94.6% porosity aerogels were measured for a frequency of 10 MHz. The sound velocity in 93.7% aerogel was larger than that in bulk 4He, whereas that in 94.6% was smaller. A model of the aerogel- 4He composite gave satisfactory agreement with the dependence of the sound velocity on the temperature and the aerogel density. This shows that the normal fluid is clamped to aerogel strands, although the viscous penetration depth is comparable to the typical size of a void in the aerogel.
Kozlov, E. A.; Tarzhanov, V. I.; Pankratov, D. G.; Yakunin, A. K.; Yelkin, V. M.; Mikhailov, V. N.
2006-08-03
Registration results of longitudinal CL({sigma}XX) and volume CB({sigma}XX) sound velocities in shock-compressed aluminum alloy are presented. Experimental data were obtained in wide range of longitudinal stress, including the stress, corresponding to solid-liquid shock-induced transformation. By using experimentally measured values of sound velocities, the changes of Poisson ratio and shear modulus were calculated along the shock adiabat. These data are needed for calibration of resent elastic-viscous-plastic models.
NASA Astrophysics Data System (ADS)
Smith, David Eugene
Little basic research has been reported on the physical structure of aqueous solutions of saccharides. Sound velocimeters can be used to study physical structure of solutions, non-destructively. The La Place relationship was used to calculate adiabatic compressibility values for solutions from experimentally determined values for sound velocity and density. Using a sound velocimeter, aqueous solutions of twelve alditols and saccharides were studied at various concentrations and temperatures. Data indicated that over most of the temperature range employed (20 to 70 C) adiabatic compressibility of the solutions was the dominant factor in defining sound velocity through and structural rigidity of solution. As concentration of solute increased, more rigid structures were formed in solution, which caused sound velocity values to increase with increasing concentrations of solute; maximum sound velocity values were obtained at progressively lower temperatures. Analysis of data for sound velocity, density and adiabatic compressibility of various solutions provided partial insight into effects of each solute molecule on structure of solutions. A furanose form in a monosaccharide contributed to a more rigid structure than did a pyranose ring when below 30C. At higher temperatures the pyranose ring provided more rigidity than did the furanose ring. Hydroxyl groups in the equatorial position generally contributed more to rigidity of structure than did OH groups in axial positions. Disaccharides contributed differences from the inherent monosaccharides. A (beta) glycosidic linkage provided more structural rigidity of solution than did a linkage. Among the alditols, mannitol and sorbitol contributed very similar characteristics to solutions. Xylitol, in solution provided less rigidity, density and sound velocity than did mannitol-sorbitol in proportion to the lower molecular weight or xylitol. From the data for velocity of sound through single sugar solutions values for
NASA Astrophysics Data System (ADS)
Du, Ai; Zhou, Bin; Shen, Yang; Yu, Qiujie; Shen, Jun
2014-03-01
Aerogels are more and more regarded as a new state of matter nowadays because of its diverse chemical compositions and unique properties which could fill the gap between condensed matter and gas-state matter. Among the properties, the ultralow sound velocity in the aerogels (lower than that in the air) is of great interests. J. Fricke's group studied many kinds of aerogels with different compositions and found that the sound velocity was mainly influenced by the density. Thus they obtained the lowest sound velocity result (~ 100 m/s) in a low-density silica aerogel medium (~ 0.05 g.cm-3) . Here we studied the acoustical properties of the aerogels with the similar high density (about 1.3 g.cm-3) but different skeleton structure (nano-, micro- or nano-/micro- structured) by adjusting the phase separation mode. The sound velocities of all the aerogels are below 300 m.s-1, among which micro-/nano- structured aerogel exhibits lowest longitudinal wave velocity (below 80 m.s-1) . Further structural studies indicated that the hierarchical arrangement of microstructure is the key parameter determining the sound velocity besides the density. This work was supported by the National Natural Science Foundation of China (51102184, 51172163), National High-tech R&D Program of China (863 Program, 2013AA031801) and National Science and Technology Support Program (2013BAJ01B01).
Sound velocities of hot dense iron: Birch's law revisited.
Lin, Jung-Fu; Sturhahn, Wolfgang; Zhao, Jiyong; Shen, Guoyin; Mao, Ho-Kwang; Hemley, Russell J
2005-06-24
Sound velocities of hexagonal close-packed iron (hcp-Fe) were measured at pressures up to 73 gigapascals and at temperatures up to 1700 kelvin with nuclear inelastic x-ray scattering in a laser-heated diamond anvil cell. The compressional-wave velocities (VP) and shear-wave velocities (VS) of hcp-Fe decreased significantly with increasing temperature under moderately high pressures. VP and VS under high pressures and temperatures thus cannot be fitted to a linear relation, Birch's law, which has been used to extrapolate measured sound velocities to densities of iron in Earth's interior. This result means that there are more light elements in Earth's core than have been inferred from linear extrapolation at room temperature. PMID:15976298
Velocity and attenuation of sound in arterial tissues.
Rooney, J A; Gammell, P M; Hestenes, J D; Chin, H P; Blankenhorn, D H
1982-02-01
The velocity and attenuation of sound has been determined for freshly excised human and canine arterial tissues using a time delay spectrometer (TDS) technique. Frequency was swept from 0 to 10 MHz with data being taken in the range from 2 to 10 MHz. The velocity was determined using a comparison of the time delay for the received signal between a water path and a sample tissue of measured thickness. The velocity of sound was measured for various pathologies and related to biochemical assays of tissue. It was found to increase with increasing ultrasound attenuation of the tissue. The velocity was shown to increase with increased collagen, C, expressed as a percentage of wet weight of the tissue, [V = 17.8* C + 1561 m/s at 37 degrees C, r = 0.77] but was strongly dependent on tissue cholesterol or low levels of calcium. For highly calcified lesions, the velocity of sound was found to be approximately 2000 m/s at 37 degrees C. PMID:7069061
Sound Velocities of Fe-C and Fe-Si alloying liquids at high pressures
NASA Astrophysics Data System (ADS)
Jing, Z.; Han, J.; Yu, T.; Wang, Y.
2014-12-01
Geophysical and geochemical observations suggest light elements such as S, Si, C, O, H, etc., are likely present in the Earth's outer core and the molten cores of other terrestrial planets and moons including Mercury, Mars, Earth's Moon, and Ganymede. In order to constrain the abundances of light elements in planetary cores, it is crucial to determine the density and sound velocity of Fe-light element alloying liquids under core conditions. In this study, sound velocities of Fe-rich liquids were determined by combining the ultrasonic measurements with synchrotron X-ray radiography and diffraction techniques under high-pressure and temperature conditions from 1 to 6 GPa and 1573 to 1973 K. An Fe-C composition (Fe-5wt%C) and four Fe-Si compositions (Fe-10wt%Si, Fe-17wt%Si, Fe-25wt%Si, and FeSi) were studied. Compared to our previous results on the velocity of Fe and Fe-S liquids at high pressures (Jing et al., 2014, Earth Planet. Sci. Lett. 396, 78-87), the presence of both C and Si increases the velocity of liquid Fe, in contrast to the effect of S. The measured velocities of Fe-C and Fe-Si liquids increase with compression and decrease slightly with increasing temperature. Combined with 1-atm density data in the literature, the high-pressure velocity data provide tight constraints on the equations of state and thermodynamic properties such as the adiabatic temperature gradient for Fe-C and Fe-Si liquids. We will discuss these results with implications to planetary cores.
THE ADIABATIC DEMAGNETIZATION REFRIGERATOR FOR THE MICRO-X SOUNDING ROCKET TELESCOPE
Wikus, P.; Bagdasarova, Y.; Figueroa-Feliciano, E.; Leman, S. W.; Rutherford, J. M.; Trowbridge, S. N.; Adams, J. S.; Bandler, S. R.; Eckart, M. E.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Doriese, W. B.; McCammon, D.
2010-04-09
The Micro-X Imaging X-ray Spectrometer is a sounding rocket payload slated for launch in 2011. An array of Transition Edge Sensors, which is operated at a bath temperature of 50 mK, will be used to obtain a high resolution spectrum of the Puppis-A supernova remnant. An Adiabatic Demagnetization Refrigerator (ADR) with a 75 gram Ferric Ammonium Alum (FAA) salt pill in the bore of a 4 T superconducting magnet provides a stable heat sink for the detector array only a few seconds after burnout of the rocket motors. This requires a cold stage design with very short thermal time constants. A suspension made from Kevlar strings holds the 255 gram cold stage in place. It is capable of withstanding loads in excess of 200 g. Stable operation of the TES array in proximity to the ADR magnet is ensured by a three-stage magnetic shielding system which consists of a superconducting can, a high-permeability shield and a bucking coil. The development and testing of the Micro-X payload is well underway.
Unified dark fluid with constant adiabatic sound speed and cosmic constraints
NASA Astrophysics Data System (ADS)
Xu, Lixin; Wang, Yuting; Noh, Hyerim
2012-02-01
As is known, more than 90% of the energy content in the Universe is made of unknown dark component. Usually this dark fluid is separated into two parts: dark matter and dark energy. However, it may be a mixture of these two energy components, or just one exotic unknown fluid. This property is dubbed as dark degeneracy. With this motivation, in this paper, a unified dark fluid having constant adiabatic sound speed cs2=α, which is in the range [0,1], is studied. At first, via the energy conservation equation, its energy density, ρd/ρd0=(1-Bs)+Bsa-3(1+α) where Bs is related to integration constant from energy conservation equation as another model parameter, is presented. Then by using the Markov Chain Monte Carlo method with currently available cosmic observational data sets which include type Ia supernova Union 2, baryon acoustic oscillation, and WMAP 7-year data of cosmic background radiation, we show that small values of α are favored in this unified dark fluid model. Furthermore, we show that smaller values of α<10-5 are required to match matter (baryon) power spectrum from SDSS DR7.
The Adiabatic Demagnetization Refrigerator for the Micro-X Sounding Rocket Telescope
NASA Astrophysics Data System (ADS)
Wikus, P.; Adams, J. S.; Bagdasarova, Y.; Bandler, S. R.; Doriese, W. B.; Eckart, M. E.; Figueroa-Feliciano, E.; Kelley, R. L.; Kilbourne, C. A.; Leman, S. W.; McCammon, D.; Porter, F. S.; Rutherford, J. M.; Trowbridge, S. N.
2010-04-01
The Micro-X Imaging X-ray Spectrometer is a sounding rocket payload slated for launch in 2011. An array of Transition Edge Sensors, which is operated at a bath temperature of 50 mK, will be used to obtain a high resolution spectrum of the Puppis-A supernova remnant. An Adiabatic Demagnetization Refrigerator (ADR) with a 75 gram Ferric Ammonium Alum (FAA) salt pill in the bore of a 4 T superconducting magnet provides a stable heat sink for the detector array only a few seconds after burnout of the rocket motors. This requires a cold stage design with very short thermal time constants. A suspension made from Kevlar strings holds the 255 gram cold stage in place. It is capable of withstanding loads in excess of 200 g. Stable operation of the TES array in proximity to the ADR magnet is ensured by a three-stage magnetic shielding system which consists of a superconducting can, a high-permeability shield and a bucking coil. The development and testing of the Micro-X payload is well underway.
Flow in Smooth Straight Pipes at Velocities Above and Below Sound Velocity
NASA Technical Reports Server (NTRS)
Frossel, W
1938-01-01
To investigate the laws of flow of compressible fluids in pipes, tests were carried out with air flowing at velocities below and above that of sound in straight smooth pipes. Air was chosen as the flow medium. In order that the effect of compressibility may be brought out most effectively, the velocity should lie between 100 and 500 m/s (200 and 1,000 mph); that is, be of the order of magnitude of the velocity of sound in air. The behavior of the compression shock in a smooth cylindrical pipe was also investigated. The compression shock can occur at any position in the pipe, depending on the throttling downstream, and travels upstream with increasing throttling up to the pipe entrance, so that only subsonic velocities occur in the pipe.
Universality relationships in condensed matter - Bulk modulus and sound velocity
NASA Technical Reports Server (NTRS)
Schlosser, Herbert; Ferrante, John
1988-01-01
New forms for the bulk modulus and sound velocity of solids under compression, based on the universal equation of state of Vinet, Ferrante, Smith, and Rose (1987) are presented. These expressions are compared with a number of bulk modulus formulas previously utilized in high-pressure studies. It is demonstrated that this form yields a superior fit to experimental data to very high compressions, for a very wide range of solids. These solids cover the entire range of values of the pressure derivative of the bulk modulus which has been observed in high-pressure measurements.
Sound velocity and structure measurement of silicate glasses under pressure
NASA Astrophysics Data System (ADS)
Sakamaki, T.; Kono, Y.; Wang, Y.; Park, C.; Yu, T.; Jing, Z.; Shen, G.
2012-12-01
The degree of polymerization in silicate melt/glass is one of the most important parameters to understand the magma behavior. For silicate melts at ambient pressure, the degree of polymerization is highly related to composition, which is quantitatively described by a ratio of non-bridging oxygen (NBO) to tetrahedrally cation (T). In particular, the NBO/T is widely used to obtain viscosity information of various silicate melts and discuss the magma mobility in the Earth's interior. Several viscometry studies reported that polymerized melts showed much higher values of viscosity than those of depolymerized ones. Interestingly, it should be noted that the pressure dependence of the high viscosity of polymerized melts was shown to be negative. This gives important questions of the compression effect on the degree of polymerization and its effects on properties of silicate melts. In this study, we have measured the sound velocity of polymerized glass (jadeite and albite glass: NBO/T=0) and depolymerized glass (diopside glass: NBO/T=2) at pressures up to 10 GPa by using ultrasonic technique and synchrotron radiation with a Paris-Edinburgh press. We have also obtained the X-ray structure factor, S(Q), of these glasses by using energy-dispersive X-ray diffraction method in order to understand structural changes in the intermediate-range order with pressure. All experiments were conducted using a Paris-Edinburgh press, which is installed at the HPCAT 16-BM-B beamline, Advanced Photon Source (APS). High pressure sound velocity measurements were carried out using the ultrasonic pulse-echo-overlap method. Radiography images taken by CCD camera allowed us to calculate the sample length under high pressure. Pressure was determined by the equation of state of gold, which was located below the sample. The scattered X-rays were detected using a Ge solid state detector (Ge-SSD) with a 4096 multi-channel analyzer. Ultrasonic signals were generated and received by a LiNbO3 transducer
Sensing light and sound velocities with phoxonic crystals
NASA Astrophysics Data System (ADS)
Amoudache, Samira; Moiseyenko, Rayisa; Pennec, Yan; Djafari Rouhani, Bahram; Khater, Antoine; Lucklum, Ralf; Tigrine, Rachid
2014-04-01
We study theoretically the potentiality of dual phononic-photonic (the so-called phoxonic) crystals for liquid sensing applications. We investigate the existence of well-defined features (peaks or dips) in the transmission spectra of acoustic and optical waves and estimate their sensitivity to the sound and light velocities of the liquid environment. Two different sensors are investigated. In the first one, we study the in-plane transmission through a two-dimensional (2D) crystal made of cylindrical holes in a Si substrate where one row of holes is filled with a liquid. In the second one, the out of plane propagation is investigated when considering the transmission of the incident wave perpendicular to a periodic array of holes in a slab. Such ultra compact structure is shown to be a label-free, affinity-based acoustic and optical nanosensor, useful for biosensing applications in which the amount of analyte can be often limited.
Velocity of sound and equations of state for methanol and ethanol in a diamond-anvil cell.
Brown, J M; Slutsky, L J; Nelson, K A; Cheng, L T
1988-07-01
The adaptability of laser-induced phonon spectroscopy to the determination of acoustic velocity and the equation of state in the diamond-anvil high-pressure cell is demonstrated. The technique provides a robust method for measurements at high pressure in both solids and liquids so that important problems in high-pressure elasticity and the earth sciences are now tractable. The velocity of sound and the density of methanol at 25 degrees C have been measured up to a pressure of 6.8 gigapascals. These results imply a higher density (by approximately 5 percent) for liquid methanol above 2.5 gigapascals than that given in existing compilations. The adiabatic bulk modulus increases by a factor of 50 at a maximum compression of 1.8. The thermodynamic Grüneisen parameters of methanol and ethanol both increase with increasing pressure, in contrast to the behavior of most solids. PMID:17815540
Sound velocities and elastic properties of Fe-bearing wadsleyite and ringwoodite
NASA Astrophysics Data System (ADS)
Sinogeikin, S. V.; Katsura, T.; Bass, J. D.
1998-09-01
The sound velocities and single-crystal elastic moduli of β phase (wadsleyite) and γ phase (ringwoodite) of (Mg,Fe)2SiO4 with Fe/(Fe+Mg) ratios of ˜0.075 and ˜0.09, respectively, have been determined at ambient conditions by Brillouin spectroscopy. Both compressional and shear wave aggregate velocities decrease with increasing Fe content in both phases, but the magnitude of this decrease is different for the two phases. The adiabatic bulk modulus, Ks, of Fe;-bearing β-Mg2SiO4 (Ks = 170±2 GPa) is indistinguishable from that of the Mg end-member within experimental uncertainty, whereas Ks of γ-(Mg,Fe)2SiO4 increases rapidly with increasing iron content. The shear moduli of both phases decrease with increasing Fe content. Our measurements indicate that the velocity and impedance contrasts between olivine and β-(Mg,Fe)2SiO4 are independent of Fe content for Mg-rich compositions, but the contrast for the β → γ-(Mg,Fe)2SiO4 transition increases significantly with increasing Fe content. The new data support a previous estimate of 40±10% for the olivine content of the upper mantle and suggest that less than 50% (Mg,Fe)2SiO4 is sufficient to account for the observed impedance contrasts at depths of both 410 km and 520 km. Unless the effect of Fe on elastic properties is accounted for, it is difficult to account for both the 410 and 520 km discontinuities with a single olivine content.
Sound velocity determination of PbTe under pressure
NASA Astrophysics Data System (ADS)
Jacobsen, Matthew; Liu, Wei; Li, Baosheng
2013-06-01
Recent investigations of PbTe have revealed interesting high pressure transitions resulting in improved thermoelectric performance. High pressure sound velocities of PbTe have been measured to 14 GPa using an ultrasonic interferometric method. Elastic moduli and their pressure derivatives for phases in this range have been obtained using a finite strain approach. From this, an estimate of the acoustic phonon contribution to the thermal conductivity is made. By combining this with previous determinations of the thermal conductivity due to electrons, a significantly lower value than the previously determined total thermal conductivity is found. This is interpreted as evidence for coupling between the low-lying transverse optic (TO) and longitudinal acoustic (LA) modes allowing transfer of thermal energy between them. The application of pressure causes energy transference between the optical modes and electron population, which is likely the cause of the increased thermoelectric efficiency in the intermediate Pbnm state. This research is supported by the DoE/NNSA under contract number DE-FG5209NA29458 to BL. WL is also supported by the NSF under contract number EAR-1045630.
Note: Sound velocity of a soft sphere model near the fluid-solid phase transition.
Khrapak, Sergey A
2016-03-28
The quasilocalized charge approximation is applied to estimate the sound velocity of simple soft sphere fluid with the repulsive inverse-power-law interaction. The obtained results are discussed in the context of the sound velocity of the hard-sphere system and of liquid metals at the melting temperature. PMID:27036483
Sound velocity of tantalum under shock compression in the 18-142 GPa range
NASA Astrophysics Data System (ADS)
Xi, Feng; Jin, Ke; Cai, Lingcang; Geng, Huayun; Tan, Ye; Li, Jun
2015-05-01
Dynamic compression experiments of tantalum (Ta) within a shock pressure range from 18-142 GPa were conducted driven by explosive, a two-stage light gas gun, and a powder gun, respectively. The time-resolved Ta/LiF (lithium fluoride) interface velocity profiles were recorded with a displacement interferometer system for any reflector. Sound velocities of Ta were obtained from the peak state time duration measurements with the step-sample technique and the direct-reverse impact technique. The uncertainty of measured sound velocities were analyzed carefully, which suggests that the symmetrical impact method with step-samples is more accurate for sound velocity measurement, and the most important parameter in this type experiment is the accurate sample/window particle velocity profile, especially the accurate peak state time duration. From these carefully analyzed sound velocity data, no evidence of a phase transition was found up to the shock melting pressure of Ta.
Sound velocity of tantalum under shock compression in the 18–142 GPa range
Xi, Feng Jin, Ke; Cai, Lingcang Geng, Huayun; Tan, Ye; Li, Jun
2015-05-14
Dynamic compression experiments of tantalum (Ta) within a shock pressure range from 18–142 GPa were conducted driven by explosive, a two-stage light gas gun, and a powder gun, respectively. The time-resolved Ta/LiF (lithium fluoride) interface velocity profiles were recorded with a displacement interferometer system for any reflector. Sound velocities of Ta were obtained from the peak state time duration measurements with the step-sample technique and the direct-reverse impact technique. The uncertainty of measured sound velocities were analyzed carefully, which suggests that the symmetrical impact method with step-samples is more accurate for sound velocity measurement, and the most important parameter in this type experiment is the accurate sample/window particle velocity profile, especially the accurate peak state time duration. From these carefully analyzed sound velocity data, no evidence of a phase transition was found up to the shock melting pressure of Ta.
Li, Baosheng; Liebermann, Robert C.
2007-01-01
The adiabatic bulk (KS) and shear (G) moduli of mantle materials at high pressure and temperature can be obtained directly by measuring compressional and shear wave velocities in the laboratory with experimental techniques based on physical acoustics. We present the application of the current state-of-the-art experimental techniques by using ultrasonic interferometry in conjunction with synchrotron x radiation to study the elasticity of olivine and pyroxenes and their high-pressure phases. By using these updated thermoelasticity data for these phases, velocity and density profiles for a pyrolite model are constructed and compared with radial seismic models. We conclude that pyrolite provides an adequate explanation of the major seismic discontinuities at 410- and 660-km depths, the gradient in the transition zone, as well as the velocities in the lower mantle, if the uncertainties in the modeling and the variations in different seismic models are considered. The characteristics of the seismic scaling factors in response to thermal anomalies suggest that anticorrelations between bulk sound and shear wave velocities, as well as the large positive density anomalies observed in the lower mantle, cannot be explained fully without invoking chemical variations. PMID:17485673
Li,B.; Liebermann, R.
2007-01-01
The adiabatic bulk (K S) and shear (G) moduli of mantle materials at high pressure and temperature can be obtained directly by measuring compressional and shear wave velocities in the laboratory with experimental techniques based on physical acoustics. We present the application of the current state-of-the-art experimental techniques by using ultrasonic interferometry in conjunction with synchrotron x radiation to study the elasticity of olivine and pyroxenes and their high-pressure phases. By using these updated thermoelasticity data for these phases, velocity and density profiles for a pyrolite model are constructed and compared with radial seismic models. We conclude that pyrolite provides an adequate explanation of the major seismic discontinuities at 410- and 660-km depths, the gradient in the transition zone, as well as the velocities in the lower mantle, if the uncertainties in the modeling and the variations in different seismic models are considered. The characteristics of the seismic scaling factors in response to thermal anomalies suggest that anticorrelations between bulk sound and shear wave velocities, as well as the large positive density anomalies observed in the lower mantle, cannot be explained fully without invoking chemical variations.
Li, Baosheng; Liebermann, Robert C
2007-05-29
The adiabatic bulk (K(S)) and shear (G) moduli of mantle materials at high pressure and temperature can be obtained directly by measuring compressional and shear wave velocities in the laboratory with experimental techniques based on physical acoustics. We present the application of the current state-of-the-art experimental techniques by using ultrasonic interferometry in conjunction with synchrotron x radiation to study the elasticity of olivine and pyroxenes and their high-pressure phases. By using these updated thermoelasticity data for these phases, velocity and density profiles for a pyrolite model are constructed and compared with radial seismic models. We conclude that pyrolite provides an adequate explanation of the major seismic discontinuities at 410- and 660-km depths, the gradient in the transition zone, as well as the velocities in the lower mantle, if the uncertainties in the modeling and the variations in different seismic models are considered. The characteristics of the seismic scaling factors in response to thermal anomalies suggest that anticorrelations between bulk sound and shear wave velocities, as well as the large positive density anomalies observed in the lower mantle, cannot be explained fully without invoking chemical variations. PMID:17485673
NASA Astrophysics Data System (ADS)
Ohtani, E.; Kamada, S.; Sakai, T.; Terasaki, H.; Shibazaki, Y.; Sakamaki, T.; Takahashi, S.; Sakairi, T.; Fukui, H.; Baron, A. Q.
2012-12-01
The sound velocity is one of the most important physical properties which can be assessed by seismology. In spite of its importance, the technical difficulty provides limitation of the measurements under the core conditions. Here we show the results of measurements of the sound velocity of hcp-iron, Fe3S, and FeH by the inelastic X-ray scattering (IXS) method using DAC at high pressure and temperature. Inelastic X-ray scattering spectra were taken at BL35XU, Spring-8. We made the measurements of hcp-iron at pressures up to 180 GPa at room temperature, which is the highest pressure for the IXS measurement. Sound velocity measurements at high pressure and temperature were made up to 91 GPa at 700 K, and to 62 GPa and 1000 K using the external heating diamond anvil cell. The present results revealed that there is almost no temperature effect on the sound velocity of hcp-Fe at least up to 1000 K. We also measured the sound velocity and density of Fe3S up to 85 GPa at room temperature, and clarified the effect of sulfur and hydrogen on the sound velocity of iron at high pressure. Phase relations of the Fe-S (Kamada et al., 2010; 2012) and Fe-S-O systems (Terasaki et al., 2011) were studied up to the core pressures based on the laser heated diamond anvil cell combined with the in situ synchrotron X-ray diffraction at SPring-8. Fe3S dissolves first at the solidus before melting of FeO and metallic iron alloy at the liquidus of the systems up to 180 GPa. The maximum solubility of sulfur in hcp-iron approaches to about 7.5 at % at 86 GPa and 8 at % at 123 GPa, and it does not increase so much at higher pressures. The temperature at ICB based on the extrapolation of the liquidus and solidus temperatures of the outer core composition in the Fe-S-O is about 4360-5630 K assuming that the outer core composition is Fe75O5S20 in the atomic ratio. The temperature at the core-mantle boundary will be 3340-4300 K by the adiabatic decompression from the temperature at the inner core
Determination of sound velocities of "overcompressed" detonation in HMX-based explosive
NASA Astrophysics Data System (ADS)
Zhernokletov, Mikhail V.; Kovalev, Alexey E.; Bel'sky, Vladimir M.; Bogdanov, Evgeny N.
2015-09-01
The authors present results of determination of sound velocities in explosion products (EP) of HMX-based explosive overcompressed up to the pressures of 50-85 GPa by overtaking unloading method. The radiowave and optical methods are used to record the time when a front of overcompressed detonation wave in investigated sample of high explosive (HE) is overtaken by expansion wave, which propagates from the back surface of impactor with sound velocity. The data on sound velocities, which were independently obtained by two different methods, were in agreement. The methods with use of radiointerferometer and indicator liquid are rather effective for determination of sound velocities in overcompresed EP and for investigation of parameters at the Jouget point of various HEs, which are required for calibration of their equations of state (EOS).
Temperature Dependence of Sound Velocity in High-Strength Fiber-Reinforced Plastics
NASA Astrophysics Data System (ADS)
Nomura, Ryuji; Yoneyama, Keiichi; Ogasawara, Futoshi; Ueno, Masashi; Okuda, Yuichi; Yamanaka, Atsuhiko
2003-08-01
Longitudinal sound velocity in unidirectional hybrid composites or high-strength fiber-reinforced plastics (FRPs) was measured along the fiber axis over a wide temperature range (from 77 K to 420 K). We investigated two kinds of high-strength crystalline polymer fibers, polyethylene (Dyneema) and polybenzobisoxazole (Zylon), which are known to have negative thermal expansion coefficients and high thermal conductivities along the fiber axis. Both FRPs had very high sound velocities of about 9000 m/s at low temperatures and their temperature dependences were very strong. Sound velocity monotonically decreased with increasing temperature. The temperature dependence of sound velocity was much stronger in Dyneema-FRP than in Zylon-FRP.
NASA Astrophysics Data System (ADS)
Peng, Y.; Lohmann, U.; Leaitch, R. W.
2003-12-01
Eleven profiles through liquid water cloud obtained during RACE (Radiation, Aerosol and Cloud Experiment) and NARE (North Atlantic Regional Experiment) are used to study the sensitivity of cloud droplet nucleation to the vertical gust velocity. Selected cloud microphysical data, size-distributed aerosol properties and particle chemistry are applied in an adiabatic parcel model to predict the activated cloud droplet number concentrations (N) using the frequency distribution of the measured in-cloud vertical velocities and again using a vertical velocity characteristic of observations. The simulated adiabatic value of N obtained using the standard deviation of the vertical velocity distribution agrees with the observed maximum N (the cloud droplet number in an adiabetic core) to within 5%. If the parameterization derived by Lin et al. [1997] is applied to obtain the cloud-average N from the maximum N, the average N agrees with the observed cloud-average N to within 20%. The simulated N obtained using the full probability density function of the vertical gust velocities is one approach that has been used to represent the cloud average N. This is based on the assumption that the average N is controlled by all variations in the updraft and not by the mixing process [Leaitch et al. 1996]. The value of N obtained in this manner is found to be higher than the observed average N by a factor of two. We believe that this result is because low vertical velocities do not contribute effectively to the cloud droplet nucleation. If we neglect the lowest 45% of all vertical velocities, then the difference between the simulated average N and the observed mean N is reduced to within 13%. These results suggest that it is appropriate to use a characteristic vertical velocity to predict the cloud droplet number concentration in climate models as done by Lohmann et al. [1999], where the subgrid variation of vertical velocity is diagnosed from the turbulent kinetic energy. The frequency
Measurement of the sound velocity in fluids using the echo signals from scattering particles.
Lenz, Michael; Bock, Martin; Kühnicke, Elfgard; Pal, Josef; Cramer, Andreas
2012-01-01
With conventional methods the sound velocity c in fluids can be determined using the back wall echo. This paper proposes a novel technique, in which the signals reflected by scattering particles suspended in a fluid are analysed instead. The basic idea is that the particles generate the strongest echo signal when being located in the sound field maximum. Therefore the position of the echo signal maximum is a measure for the propagation time to the sound field maximum. Provided that calibration data or sound field simulations for the ultrasonic transducer are available, this propagation time suffices to determine both sound velocity and the location of the sound field maximum. The feasibility of the new approach is demonstrated by different kinds of experiments: (i) Measurements of the sound velocity c in four fluids covering the wide range between 1116 and 2740m/s. The results show good agreement with values published elsewhere. (ii) Using the dependence of the sound velocity on temperature, it is possible to vary c over the comparatively small range between 1431 and 1555m/s with increments of less than 10m/s. The measured statistical variation of 1.4m/s corresponds to a relative uncertainty not worse than 0.1%. (iii) The focus position, i.e. the distance of the maximum of the sound field from the transducer, was varied by time-shifted superposition of the receive signals belonging to the different elements of an annular array. The results indicate that the novel method is even capable of measuring profiles of the sound velocity along the ultrasonic beam non-invasively. PMID:21824636
Velocity controlled sound field reproduction by non-uniformly spaced loudspeakers
NASA Astrophysics Data System (ADS)
Shin, Mincheol; Nelson, Philip A.; Fazi, Filippo M.; Seo, Jeongil
2016-05-01
One approach to the reproduction of a sound field is to ensure the reproduction of the acoustic pressure on the surface bounding the volume within which reproduction is sought. However, this approach suffers from technical limitations when the loudspeakers used for the reproduction of the surface acoustic pressures are unevenly spaced. It is shown in this paper that sound field reproduction with a spatially non-uniform loudspeaker arrangement can be considerably improved by changing the physical quantity to be controlled on the bounding surface from pressure to particle velocity. One of the main advantages of the velocity control method is the simplicity with which the inverse problem can be regularized, irrespective of the direction of arrival of the sound to be reproduced. In addition, the velocity controlled sound field shows better reproduction of the time averaged intensity flow in the reproduction region which in turn appears to be closely linked with better human perception of sound localization. Furthermore, the proposed method results in smoother "panning functions" that describe the variation of the source outputs as a function of the angle of incidence of the sound to be reproduced. The performance of the velocity matching method has been evaluated by comparison to the conventional pressure matching method and through simulations with several non-uniform loudspeaker layouts. The simulated results were also verified with experiments and subjective tests.
NASA Astrophysics Data System (ADS)
Sanemasa, M.; Saiki, K.; Kaneko, K.; Ohba, T.; Kusakabe, M.; Tanyileke, G.; Hell, J.
2012-12-01
1. Introduction Limnic eruptions at Lakes Monoun and Nyos in Cameroon, which are sudden degassing of magmatic CO2 dissolved in the lake water, occurred in 1984 and 1986, respectively. The disasters killed about 1800 people around the lakes. Because of ongoing CO2 accumulation in the bottom water of the lakes, tragedy of limnic eruptions will possibly occur again. To prevent from further disasters, artificial degassing of CO2 from the lake waters has been undergoing. Additionally, CO2 monitoring of the lake waters is needed. Nevertheless, CO2 measurement is done only once or twice a year because current methods of CO2 measurement, which require chemical analysis of water samples, are not suitable for frequent measurement. In engineering field, on the other hand, a method to measure salt concentration using sound velocity has been proposed (Kleis and Sanchez, 1990). This method allows us to evaluate solute concentration fast. We applied the method to dissolved CO2 and examined the correlation between sound velocity and CO2 concentration in laboratory experiment. Furthermore, using the obtained correlation, we tried to estimate the CO2 concentration of waters in the Cameroonian lakes. 2. Laboratory experiment We examined the correlation between sound velocity and CO2 concentration. A profiler (Minos X, made by AML oceanography) and pure water were packed in cylindrical stainless vessel and high-pressure CO2 gas was injected to produce carbonated water. The profiler recorded temperature, pressure and sound velocity. Change of sound velocity was defined as difference of sound velocity between carbonated water and pure water under the same temperature and pressure conditions. CO2 concentration was calculated by Henry's law. The result indicated that the change of sound velocity [m s-1] is proportional to CO2 concentration [mmol kg-1], and the coefficient is 0.021 [m kg s-1 mmol-1]. 3. Field application Depth profiles of sound velocity, pressure, and temperature of Lakes
Fluid approach to evaluate sound velocity in Yukawa systems and complex plasmas.
Khrapak, Sergey A; Thomas, Hubertus M
2015-03-01
The conventional fluid description of multicomponent plasma, supplemented by an appropriate equation of state for the macroparticle component, is used to evaluate the longitudinal sound velocity of Yukawa fluids. The obtained results are in very good agreement with those obtained earlier employing the quasilocalized charge approximation and molecular dynamics simulations in a rather broad parameter regime. Thus, a simple yet accurate tool to estimate the sound velocity across coupling regimes is proposed, which can be particularly helpful in estimating the dust-acoustic velocity in strongly coupled dusty (complex) plasmas. It is shown that, within the present approach, the sound velocity is completely determined by particle-particle correlations and the neutralizing medium (plasma), apart from providing screening of the Coulomb interaction, has no other effect on the sound propagation. The ratio of the actual sound velocity to its "ideal gas" (weak coupling) scale only weakly depends on the coupling strength in the fluid regime but exhibits a pronounced decrease with the increase of the screening strength. The limitations of the present approach in applications to real complex plasmas are briefly discussed. PMID:25871227
Cutoff frequency of sound velocities for a multi-slab Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Rodríguez, O. A.; Solís, M. A.
2015-03-01
An inhomogeneous multi-slab 3D Bose gas is produced by applying to the gas a Kronig-Penney potential in one direction, while the bosons are free to move in the other two directions. The variable density produces a dispersive effect over the sound waves, making the phase and group sound velocities frequency dependent. Below the critical temperature the dispersion relation between wavenumber and frequency ω (k) is determined by a constant factor called the curvature of the density, within the Klein-Gordon equation which describes the sound wave propagation in the condensate. Since the curvature of the density profiles between and inside the barriers are completely different, the sound velocities are distinct too. More importantly, in the region occupied by the slabs waves propagate only if their frequencies are greater than a cutoff frequency, otherwise evanescent waves arise. We show the density profile, the phase and group sound velocities and we give the curvature dependent cutoff frequency as obtained from the group velocity equation for the region occupied by the barriers. For high frequencies both phase and group velocities approach to that of a homogeneous gas at the same temperature. We acknowledge partial support from PAPIIT IN111613.
Fukuda, M; Terazima, M; Kimura, Y
2008-03-21
Sound velocity is determined by the transient grating method in a range from 10(6) to 10(10) Hz in three room temperature ionic liquids, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, 1-butyl-3-methylimidazolium hexafluorophosphate, and N,N,N-trimethyl-N-propylammonium bis(trifluoromethanesulfonyl)imide. In all room temperature ionic liquids studied, the sound velocity increased with increasing frequency. The cause of this change is posited to be structural relaxation in the room temperature ionic liquids. Frequency dependence of the sound velocity is not reproduced by a simple Debye relaxation model. The sound velocity dispersion relation in 1-butyl-3-methylimidazolium hexafluorophosphate matches a Cole-Davidson function with parameters determined by a dielectric relaxation [C. Daguenet et al., J. Phys. Chem. B 110, 12682 (2006)], indicating that structural and reorientational relaxations are strongly coupled. Conversely, the sound velocity dispersions of the other two ionic liquids measured do not match those measured for dielectric relaxation, implying that structural relaxation is much faster than the reorientational relaxation. This difference is discussed in relation to the motilities of anions and cations. PMID:18361592
Second sound shock waves and critical velocities in liquid helium 2. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Turner, T. N.
1979-01-01
Large amplitude second-sound shock waves were generated and the experimental results compared to the theory of nonlinear second-sound. The structure and thickness of second-sound shock fronts are calculated and compared to experimental data. Theoretically it is shown that at T = 1.88 K, where the nonlinear wave steepening vanishes, the thickness of a very weak shock must diverge. In a region near this temperature, a finite-amplitude shock pulse evolves into an unusual double-shock configuration consisting of a front steepened, temperature raising shock followed by a temperature lowering shock. Double-shocks are experimentally verified. It is experimentally shown that very large second-sound shock waves initiate a breakdown in the superfluidity of helium 2, which is dramatically displayed as a limit to the maximum attainable shock strength. The value of the maximum shock-induced relative velocity represents a significant lower bound to the intrinsic critical velocity of helium 2.
Sound velocities of Fe3Al2Si3O12 almandine up to 19 GPa and 1700 K
NASA Astrophysics Data System (ADS)
Arimoto, Takeshi; Gréaux, Steeve; Irifune, Tetsuo; Zhou, Chunyin; Higo, Yuji
2015-09-01
Elastic wave velocities of synthetic Fe3Al2Si3O12 almandine have been determined at simultaneous high pressure and temperature up to 19 GPa and 1700 K by the ultrasonic technique in conjunction with in situ synchrotron X-ray diffraction in a multi-anvil apparatus. Velocities of almandine are found substantially lower than those of other major end-member garnets such as pyrope, grossular, and MgSiO3 majorite, while their pressure and temperature derivatives are comparable to those of the latter garnets. The observed density, and compressional (VP) and shear (VS) velocities were combined and fitted to functions of the Eulerian strain EoS, yielding a adiabatic bulk modulus KS0 = 174.2 (12) GPa and a shear modulus G0 = 94.9 (7) GPa, and their pressure and temperature derivatives ∂KS/∂P = 4.61 (14), ∂G/∂P = 1.06 (6), ∂KS/∂T = -2.67 (7) × 10-2 GPa K-1, and ∂G/∂T = -1.31 (8) × 10-2 GPa K-1. The pressure derivative of the bulk modulus of almandine is similar to those of other garnet end-members, which is in contrast to the substantially higher value (∂KS/∂P = 6.2 (5)) reported for pure almandine in an earlier study based on experiments up to 3 GPa. The present new results combined with those of pyrope, grossular, and MgSiO3 majorite are successfully used to reproduce the sound velocities of majoritic garnet in the pyrolite composition.
Sound velocity of high-strength polymer with negative thermal expansion coefficient
NASA Astrophysics Data System (ADS)
Nomura, R.; Ueno, M.; Okuda, Y.; Burmistrov, S.; Yamanaka, A.
2003-05-01
Sound velocities of fiber reinforced plastics (FRPs) were measured along the fiber axis at temperatures between 360 and 77 K. We used two kinds of the high-strength crystalline polymer fibers, polyethylene (Dyneema) and polybenzobisoxazole (Zylon), which have negative thermal expansion coefficients. They also have high thermal conductivities and high resistances for flash over voltage, and are expected as new materials for coil bobbins or spacers at cryogenic temperatures. They have very large sound velocities of about 9000 (m/s) at 77 K, which are 4.5 times larger than that of the ordinary polyethylene fiber.
Simultaneous measurement of sound velocity and wall thickness of a tube.
He, P
2001-10-01
A method for simultaneously measuring the sound propagation velocity and the thickness of each wall on the opposite sides of a tube is presented. The method uses a pair of ultrasound transducers to produce two reflected pulses from the outer and inner surfaces of the tube wall on the each side, and two transmitted pulses, one with and one without the tube sample between the two transducers. Using the time-domain analysis, sound velocity and wall thickness of the tube are determined from the time delays between the three pairs of ultrasound pulses, whereas using the frequency-domain analysis, phase velocity, group velocity, and wall thickness of the tube are determined from the phase differences between the three pairs of ultrasound pulses. Results of measurements on five tube samples are reported. PMID:11775655
Measurement of sound velocities of laser-shocked iron at pressures up to 800 GPa
NASA Astrophysics Data System (ADS)
Sakaiya, T.; Takahashi, H.; Kondo, T.; Shigemori, K.; Kadono, T.; Hironaka, Y.; Osaki, N.; Irifune, T.
2011-12-01
When we consider the structure of the Earth's interior, the sound velocity is one of the important physical properties of the interior materials because it can be directly compared with the seismological data which can yield the physical properties of the Earth's interior. Although it needs to measure the sound velocity of the interior material under high pressure and temperature, the sound velocity measurement of the materials on the condition over 200 GPa and 4000 K, such as the Earth's core condition, is technically difficult in static compression technique (e.g. diamond anvil cell: DAC) [1-3]. Therefore, in such higher pressure and temperature, dynamic compression technique, such as gas gun, is used. Although some works about the sound velocity of pure iron have been done by gas gun [4-6], it is not enough to discuss about the Earth's core which consists mainly of iron. We performed laser-shock experiments of iron at GEKKO-XII Laser System HIPER irradiation facility in Institute of Laser Engineering, Osaka University (ILE) [7]. The laser-shock compression can generate pressures over 1TPa, which are much higher pressures than previous works by gas gun. The sound velocities of iron were measured by side-on radiography [6]. The laser-irradiated target (Fe) is backlit with an x ray emitted from a high-Z foil (Ti) that is located along the side of the target and that is irradiated by a separate laser. The intensity distribution of the x ray transmitted through the target is imaged onto an x-ray streak camera. When the motion of the front surface and rear surface of the target is obtained from the radiograph, we can obtain the velocity of the shock and rarefaction wave. The rarefaction wave propagates the target with the sound velocity. The pressure generated by the laser-shock compression is obtained from the shock velocity and particle velocity of the target. The particle velocity is obtained from the time revolution of the front surface in the radiograph. In this
Simultaneous measurement of density and sound velocity of liquid Fe-C at high pressure
NASA Astrophysics Data System (ADS)
Shimoyama, Y.; Terasaki, H. G.; Urakawa, S.; Kuwabara, S.; Takubo, Y.; Katayama, Y.
2014-12-01
Seismological and experimental studies show that the Earth's outer core is approximately 10% less dense than molten iron at the core pressure and temperature conditions, implying that some light elements exist in the core. The effect of light elements on density and bulk modulus of liquid iron is necessary for estimating of these core compositions. Sound velocity of liquid iron alloys is also important for identifying light elements in the core by comparison with observed seismic data. In this study, we have measured density and sound velocity of liquid Fe-C at SPring-8 beamline BL22XU using a DIA-type cubic anvil press (SMAP-I). Density was measured using X-ray absorption method (Katayama et al., 1993). We newly installed sound velocity measurement system using pulse-echo overlapping method (Higo et al., 2009) in this beamline. P-wave signals with a frequency of 35-37 MHz were generated and received by LiNbO3 transducer. Buffer rod and backing plated were adopted single-crystal sapphire. The sample length at high pressure and high temperature were measured from absorption contrast between sample and sapphire. We measured velocity and density of liquid Fe-C between 1.1-2.8 GPa and 1480-1740 K. Obtained density and velocity of Fe-C was found to increase with pressure. In contrast, the effect of temperature on density and velocity was negative. The relationship between these two properties will be discussed.
Measuring sound absorption properties of porous materials using a calibrated volume velocity source
NASA Astrophysics Data System (ADS)
Arenas, Jorge P.; Darmendrail, Luis
2013-10-01
Measurement of acoustic properties of sound-absorbing materials has been the source of much investigation that has produced practical measuring methods. In particular, the measurement of the normal incidence sound absorption coefficient is commonly done using a well-known configuration of a tube carrying a plane wave. The sound-absorbing coefficient is calculated from the surface impedance measured on a sample of material. Therefore, a direct measurement of the impedance requires knowing the ratio between the sound pressure and the volume velocity. However, the measurement of volume velocity is not straightforward in practice and many methods have been proposed including complex transducers, laser vibrometry, accelerometers and calibrated volume velocity sources. In this paper, a device to directly measure the acoustic impedance of a sample of sound-absorbing material is presented. The device uses an internal microphone in a small cavity sealed by a loudspeaker and a second microphone mounted in front of this source. The calibration process of the device and the limitations of the method are also discussed and measurement examples are presented. The accuracy of the device was assessed by direct comparison with the standardized method. The proposed measurement method was tested successfully with various types of commercial acoustic porous materials.
NASA Astrophysics Data System (ADS)
Andreeva, Tatiana A.; Durgin, William W.
2011-12-01
An experimental study of the propagation of high-frequency acoustic waves through grid-generated turbulence by means of an ultrasound technique is discussed. Experimental data were obtained for ultrasonic wave propagation downstream of heated and non-heated grids in a wind tunnel. A semi-analytical acoustic propagation model that allows the determination of the spatial correlation functions of the flow field is developed based on the classical flowmeter equation and the statistics of the travel time of acoustic waves traveling through the kinematic and thermal turbulence. The basic flowmeter equation is reconsidered in order to take into account sound speed fluctuations and turbulent velocity fluctuations. It allows deriving an integral equation that relates the correlation functions of travel time, sound speed fluctuations and turbulent velocity fluctuations. Experimentally measured travel time statistics of data with and without grid heating are approximated by an exponential function and used to analytically solve the integral equation. The reconstructed correlation functions of the turbulent velocity and sound speed fluctuations are presented. The power spectral density of the turbulent velocity and sound speed fluctuations are calculated.
Correction of sound velocity depending on the temperature for unconsolidated marine sediment
NASA Astrophysics Data System (ADS)
Kim, Dae-Choul
2016-04-01
laboratory sound velocity measurements with systematic temperature change on unconsolidated marine sediment have been performed to establish the precise correction curves between temperature and the sound velocity. Piston and box core samples recovered from the East Sea and the South Sea of Korea were used for the measurement. The core samples were cooled (at temperature of nearly 0℃) and the temperature was gradually increased (from 0℃ to 30℃) to measure sound velocity depending on the changes in temperature. The sediment texture and physical properties (porosity, water content, and bulk density) were measured separately at the same depth. The rate of velocity increase for muddy, silty, and sandy sediment are about 2.63 m/s/℃, 2.74 m/s/℃, and 2.96 m/s/℃, respectively. This is similar to the velocity change rate, 2.97 m/s/℃ presented by Del Grosso (1952). The samples used in this research, however, have relatively higher porosity than those of Del Grosso (1952). Thus, the possibility of discrepancy is differences in water content which affect the sound velocity and measurement system. We used recently developed digital velocity measurement system using PXI based on LabVIEW. We suggest to employ this correction for the accurate in situ geoacoustic property from laboratory data particularly for the deep cold water sample such as the East Sea sediment that has very low bottom water temperature about 0℃. Keywords : in situ geoacoustic property, temperature correction, East Sea Acknowledgements: This research was supported by the Agency for Defense Development (UD14003DD) and by "Marine geological and geophysical mapping of the Korean seas" of the Korea Institute of Geoscience and Mineral Resources (KIGAM).
The effects of pressure and temperature on sound velocity and density of Ni-S liquid
NASA Astrophysics Data System (ADS)
Terasaki, H. G.; Nishida, K.; Urakawa, S.; Uesugi, K.; Kuwabara, S.; Takubo, Y.; Shimoyama, Y.; Takeuchi, A.; Suzuki, Y.; Kono, Y.; Higo, Y.; Kondo, T.
2013-12-01
Sound velocity and density of the core material are indispensable properties to estimate a composition in the terrestrial core comparing with the observed seismic data. Here, we report these properties of Ni-S, which corresponds to the end-member of possible core composition Fe-Ni-S, at high pressure and temperature. These properties were measured based on simultaneous measurement of sound velocity and density combined with X-ray tomography technique. The experiments were carried out at X-ray computed micro-tomography (CT) beamlines (BL20XU, BL20B2), SPring-8 synchrotron radiation facility. Monochromatized X-ray of 51 keV passed through the sample cell and detected as a radiography image using CCD camera. X-ray radiography images from 0 to 180o were measured for CT measurement by rotating the press. An 80-ton uni-axial press was used to generate high pressure with using opposed-type cupped anvils (Urakawa et al. 2010). Density was determined by using X-ray absorption method obtained from the X-ray radiograph image. The sample thickness for the X-ray path can be directly obtained from the CT data. The sample density was also determined from the volume of the sample at high pressure and temperature. P-wave sound velocity was measured using pulse-echo overlapping ultrasonic method using LiNbO3 transducer attached backside of the anvil. We have successfully measured the sound velocity and density of Ni-S up to 1.5 GPa. Comparing with the previous results of liquid Fe-S, the effect of Ni on the sound velocity is minor but that on the density can not be negligible.
NASA Astrophysics Data System (ADS)
Capstick, J. W.
2013-01-01
1. The nature of sound; 2. Elasticity and vibrations; 3. Transverse waves; 4. Longitudinal waves; 5. Velocity of longitudinal waves; 6. Reflection and refraction. Doppler's principle; 7. Interference. Beats. Combination tones; 8. Resonance and forced vibrations; 9. Quality of musical notes; 10. Organ pipes; 11. Rods. Plates. Bells; 12. Acoustical measurements; 13. The phonograph, microphone and telephone; 14. Consonance; 15. Definition of intervals. Scales. Temperament; 16. Musical instruments; 17. Application of acoustical principles to military purposes; Questions; Answers to questions; Index.
Using second-sound shock waves to probe the intrinsic critical velocity of liquid helium II
NASA Technical Reports Server (NTRS)
Turner, T. N.
1983-01-01
A critical velocity truly intrinsic to liquid helium II is experimentally sought in the bulk fluid far from the apparatus walls. Termed the 'fundamental critical velocity,' it necessarily is caused by mutual interactions which operate between the two fluid components and which are activated at large relative velocities. It is argued that flow induced by second-sound shock waves provides the ideal means by which to activate and isolate the fundamental critical velocity from other extraneous fluid-wall interactions. Experimentally it is found that large-amplitude second-sound shock waves initiate a breakdown in the superfluidity of helium II, which is dramatically manifested as a limit to the maximum attainable shock strength. This breakdown is shown to be caused by a fundamental critical velocity. Secondary effects include boiling for ambient pressures near the saturated vapor pressure or the formation of helium I boundary layers at higher ambient pressures. When compared to the intrinsic critical velocity discovered in highly restricted geometries, the shock-induced critical velocity displays a similar temperature dependence and is the same order of magnitude.
NASA Astrophysics Data System (ADS)
Schmid, C.; van der Lee, S.; Giardini, D.
2005-12-01
We present new 3-D models for shear wave and compressional wave velocity anomalies for the mantle beneath the Mediterranean plate boundary region down to a depth of ~1500 km. These new models are based on a combined set of P and S body-wave arrival time data, which was measured by interstation cross-correlation. Stations used were from the MIDSEA deployment and permanent networks in the region. We invert these data jointly for bulk sound and shear wave velocity heterogeneity. The resulting models of P and S velocity heterogeneity are similar to each other. P wave velocity heterogeneity appears to be dominated by variations in shear modulus. We do not find evidence for large scale anti-correlation between bulk sound and shear wave velocity heterogeneity. We further constrain the mantle's S-velocity with regional S and surface waves and Moho detections. The Mediterranean region is substantially slower than the global average at shallow mantle depths and faster than average at transition zone depths. Our models show high velocities related to present and recent subduction northwards beneath the Hellenic trench, northwestwards beneath the Calabrian Arc, and a much shorter slab dipping southwestwards beneath the Apennines. Our models show somewhat surprising evidence of past subduction in the transition zone beneath the western Mediterranean and in the lower mantle beneath northeastern Africa. The only significantly slower region at transition zone depths is found beneath the Ionian Sea.
Zhang, Xiulu; Liu, Zhongli; Jin, Ke; Xi, Feng; Yu, Yuying; Tan, Ye; Dai, Chengda; Cai, Lingcang
2015-02-07
The high-pressure solid phase stability of molybdenum (Mo) has been the center of a long-standing controversy on its high-pressure melting. In this work, experimental and theoretical researches have been conducted to check its solid phase stability under compression. First, we performed sound velocity measurements from 38 to 160 GPa using the two-stage light gas gun and explosive loading in backward- and forward-impact geometries, along with the high-precision velocity interferometry. From the sound velocities, we found no solid-solid phase transition in Mo before shock melting, which does not support the previous solid-solid phase transition conclusion inferred from the sharp drops of the longitudinal sound velocity [Hixson et al., Phys. Rev. Lett. 62, 637 (1989)]. Then, we searched its structures globally using the multi-algorithm collaborative crystal structure prediction technique combined with the density functional theory. By comparing the enthalpies of body centered cubic structure with those of the metastable structures, we found that bcc is the most stable structure in the range of 0–300 GPa. The present theoretical results together with previous ones greatly support our experimental conclusions.
NASA Astrophysics Data System (ADS)
Zhang, Xiulu; Liu, Zhongli; Jin, Ke; Xi, Feng; Yu, Yuying; Tan, Ye; Dai, Chengda; Cai, Lingcang
2015-02-01
The high-pressure solid phase stability of molybdenum (Mo) has been the center of a long-standing controversy on its high-pressure melting. In this work, experimental and theoretical researches have been conducted to check its solid phase stability under compression. First, we performed sound velocity measurements from 38 to 160 GPa using the two-stage light gas gun and explosive loading in backward- and forward-impact geometries, along with the high-precision velocity interferometry. From the sound velocities, we found no solid-solid phase transition in Mo before shock melting, which does not support the previous solid-solid phase transition conclusion inferred from the sharp drops of the longitudinal sound velocity [Hixson et al., Phys. Rev. Lett. 62, 637 (1989)]. Then, we searched its structures globally using the multi-algorithm collaborative crystal structure prediction technique combined with the density functional theory. By comparing the enthalpies of body centered cubic structure with those of the metastable structures, we found that bcc is the most stable structure in the range of 0-300 GPa. The present theoretical results together with previous ones greatly support our experimental conclusions.
Horizontal velocities of MSTIDs over Taiwan observed by continuous HF Doppler sounding
NASA Astrophysics Data System (ADS)
Fišer, Jiří; Chum, Jaroslav
2016-04-01
Medium scale traveling ionospheric disturbances (MSTIDs) are signatures of gravity waves (GWs) which propagatein the termosphere. Since GWs play an important role in the coupling between the lower atmospheric layers and the thermosphere it is important to study their properties and source mechanisms. In this contribution we present an experimental study focused on horizontal velocities of MSTIDs over Taiwan in the nearly two year long period starting in April 2014. We observe MSTIDs by multipath continuous HF Doppler sounding system. The movement of ionospheric plasma induced via collisions by gravity waves is detected as Doppler shift of the sounding radio signal. We investigate seasonal and diurnal variations of MSTIDs horizontal propagation parameters and compare them with horizontal wind model (HWM) and also compare them with results obtained in other locations in middle a low latitudes where similar HF Doppler sounding systems are installed.
Sound Velocities and Validity of Birch's Law for Ultra-High Pressure Metals and Ionic Solids
NASA Astrophysics Data System (ADS)
Ware, L.; Boness, D. A.
2014-12-01
Recent detection of super-Earths has expanded interest in ultra-high pressure, temperature minerals and elements to help constrain the composition and physical properties of the interiors of these large planets. To understand Earth's interior, Birch's Law and velocity-density systematics has long been important. Recent published DAC experimental measurements of sound velocities in iron are inconsistent with each other with regard to the validity of Birch's Law. We examine the range of validity of Birch's Law for several metallic elements, including iron, and ionic solids shocked into the ultra-high pressure, temperature fluid state and make comparisons to the recent DAC data.
Separation of non-stationary sound fields with single layer pressure-velocity measurements.
Bi, Chuan-Xing; Geng, Lin; Zhang, Xiao-Zheng
2016-02-01
This paper examines the feasibility of extracting the non-stationary sound field generated by a target source in the presence of disturbing source from single layer pressure-velocity measurements. Unlike the method described in a previous paper [Bi, Geng, and Zhang, J. Acoust. Soc. Am. 135(6), 3474-3482 (2014)], the proposed method allows measurements of pressure and particle velocity signals on a single plane instead of pressure signals on two planes, and the time-dependent pressure generated by the target source is extracted by a simple superposition of the measured pressure and the convolution between the measured particle velocity and the corresponding impulse response function. Because the particle velocity here is measured directly, the error caused by the finite difference approximation can be avoided, which makes it possible to perform the separation better than the previous method. In this paper, a Microflown pressure-velocity probe is used to perform the experimental measurements, and the calibration procedure of the probe in the time domain is given. The experimental results demonstrate that the proposed method is effective in extracting the desired non-stationary sound field generated by the target source from the mixed one in both time and space domains, and it obtains more accurate results than the previous method. PMID:26936560
Development for sound velocity and density measurements of liquid metal at high pressures
NASA Astrophysics Data System (ADS)
Terasaki, H.; Nishida, K.; Urakawa, S.; Uesugi, K.; Takubo, Y.; Kuwabara, S.; Nakatsuka, A.; Hoshino, M.; Kono, Y.; Higo, Y.; Kondo, T.
2012-12-01
Sound velocity and density of liquid Fe-alloys under high pressure is quite important physical property to estimate the amount of light elements in the terrestrial core from the seismic data. Here, we have developed the system for simultaneous measurement of sound velocity and density combined with X-ray tomography technique at high pressure and temperature. High pressure experiments were performed using 80-ton uni-axial press (Urakawa et al. 2010) installed at X-ray computed micro-tomography (CT) beamline (BL20B2), SPring-8 synchrotron radiation facility. High pressure was generated using opposed-type cupped anvils. We measured the sound velocity and density of solid FeSi at room temperature and those of solid and liquid Ni-S at high temperature. Experimental pressure was obtained from the volume of h-BN. CT measurement was carried out by rotating the press from 0 to 180o with 0.2-0.3o steps. Monochromatized X-ray of 51 keV was used. Density was determined by using X-ray absorption method based on the X-ray radiograph image. The sample thickness for the X-ray path can be directly obtained from the CT data. This is a big advantage for CT measurement. Sound velocity was measured using pulse-echo overlapping ultrasonic method. P-wave signals were generated and detected by LiNbO3 transducer attached backside of the anvil. We have successfully observed both P-wave and S-wave signals up to 1.5 GPa and 1673 K. We detected change of signal intensity and shape corresponding to melting of Ni-S sample.
Liquid structure and temperature invariance of sound velocity in supercooled Bi melt
Emuna, M.; Mayo, M.; Makov, G.; Greenberg, Y.; Caspi, E. N.; Yahel, E.; Beuneu, B.
2014-03-07
Structural rearrangement of liquid Bi in the vicinity of the melting point has been proposed due to the unique temperature invariant sound velocity observed above the melting temperature, the low symmetry of Bi in the solid phase and the necessity of overheating to achieve supercooling. The existence of this structural rearrangement is examined by measurements on supercooled Bi. The sound velocity of liquid Bi was measured into the supercooled region to high accuracy and it was found to be invariant over a temperature range of ∼60°, from 35° above the melting point to ∼25° into the supercooled region. The structural origin of this phenomenon was explored by neutron diffraction structural measurements in the supercooled temperature range. These measurements indicate a continuous modification of the short range order in the melt. The structure of the liquid is analyzed within a quasi-crystalline model and is found to evolve continuously, similar to other known liquid pnictide systems. The results are discussed in the context of two competing hypotheses proposed to explain properties of liquid Bi near the melting: (i) liquid bismuth undergoes a structural rearrangement slightly above melting and (ii) liquid Bi exhibits a broad maximum in the sound velocity located incidentally at the melting temperature.
Sound velocity and elastic properties of Fe-Ni and Fe-Ni-C liquids at high pressure
NASA Astrophysics Data System (ADS)
Kuwabara, Soma; Terasaki, Hidenori; Nishida, Keisuke; Shimoyama, Yuta; Takubo, Yusaku; Higo, Yuji; Shibazaki, Yuki; Urakawa, Satoru; Uesugi, Kentaro; Takeuchi, Akihisa; Kondo, Tadashi
2016-03-01
The sound velocity ( V P) of liquid Fe-10 wt% Ni and Fe-10 wt% Ni-4 wt% C up to 6.6 GPa was studied using the ultrasonic pulse-echo method combined with synchrotron X-ray techniques. The obtained V P of liquid Fe-Ni is insensitive to temperature, whereas that of liquid Fe-Ni-C tends to decrease with increasing temperature. The V P values of both liquid Fe-Ni and Fe-Ni-C increase with pressure. Alloying with 10 wt% of Ni slightly reduces the V P of liquid Fe, whereas alloying with C is likely to increase the V P. However, a difference in V P between liquid Fe-Ni and Fe-Ni-C becomes to be smaller at higher temperature. By fitting the measured V P data with the Murnaghan equation of state, the adiabatic bulk modulus ( K S0) and its pressure derivative ( K S ' ) were obtained to be K S0 = 103 GPa and K S ' = 5.7 for liquid Fe-Ni and K S0 = 110 GPa and K S ' = 7.6 for liquid Fe-Ni-C. The calculated density of liquid Fe-Ni-C using the obtained elastic parameters was consistent with the density values measured directly using the X-ray computed tomography technique. In the relation between the density ( ρ) and sound velocity ( V P) at 5 GPa (the lunar core condition), it was found that the effect of alloying Fe with Ni was that ρ increased mildly and V P decreased, whereas the effect of C dissolution was to decrease ρ but increase V P. In contrast, alloying with S significantly reduces both ρ and V P. Therefore, the effects of light elements (C and S) and Ni on the ρ and V P of liquid Fe are quite different under the lunar core conditions, providing a clue to constrain the light element in the lunar core by comparing with lunar seismic data.
NASA Astrophysics Data System (ADS)
Zhang, Yanxin; Guo, Changsheng; Wang, Jingqiang; Hou, Zhengyu; Chen, Wenjing
2016-07-01
The sound velocity of seafloor sediments from shallow seas can provide important information for harbor design, and ocean and seacoast engineering projects. In this study, in situ measurements were used to obtain accurate sediment sound velocities at 45 stations offshore of Qingdao. The relationships between the sound velocity and granular properties of the seafloor sediments were analyzed. Sound velocity showed an increase with the sand content, sand-clay ratio, and sorting coefficient; and a nonlinear decreasing trend with increasing mean grain size and clay content. We plotted a sound velocity distribution map, which shows that the sound velocity was closely related to the geological environment. Previous empirical equations suggested by Hamilton, Anderson, and Liu were used to calculate the velocity with grain size. A comparison between the measured and calculated velocities indicates that the empirical equations have territorial limitations, and extensive data are essential to establish global empirical equations. Future work includes the calibration of the laboratory acoustic measurements with an in situ technique.
Ultrafast Optical Measurements of Thermal Conductivity and Sound Velocity of Amorphous SiC
NASA Astrophysics Data System (ADS)
Hondongwa, Donald; Olasov, Lauren; Daly, Brian; King, Sean; Bielefeld, Jeff
2011-03-01
We present ultrafast optical measurements of longitudinal sound velocity and thermal transport in hydrogenated amorphous carbon (a-SiC:H) films. The films were grown on Si wafers by PECVD using combinations of methylsilanes and H2 and He diluent gases. The films were well characterized and found to have densities (1.0 -- 2.5 g cm-3) and dielectric constants (2.8 -- 7.2) that spanned a wide range of values. Prior to their measurement, the a-SiC:H films were coated with 40-70 nm of polycrystalline Al. The pump-probe measurements were performed at room temperature using a modelocked Ti:sapphire laser. Transient reflectivity changes that are associated with very high frequency sound waves (picosecond ultrasonics) and the cooling rate of the SiC sample (Time Domain Thermorerflectance (TDTR)) were measured. We extract values for the thermal conductivity and sound velocity of the SiC films, and analyze the results in terms of rigidity percolation effects within the SiC layers. This work was supported by NSF award DMR-0906753.
Sound velocity measurement of nuclear-ordered U2D2 solid 3He along the melting curve
NASA Astrophysics Data System (ADS)
Nomura, R.; Suzuki, M.; Yamaguchi, M.; Sasaki, Y.; Mizusaki, T.
2000-05-01
The sound velocity of a single-domain 3He crystal was measured in the nuclear-ordered low-field phase and the paramagnetic phase along the melting curve, using 10.98 MHz longitudinal sound. The temperature dependence of the sound velocity along the melting curve was explained by a nuclear spin contribution and the molar volume change along the melting curve. By comparing the measured velocity with thermodynamic quantities, we extracted the Grüneizen constant for the exchange energy. The anisotropy of the velocity in the ordered phase was investigated for three samples and was found to be smaller than 2×10 -5 in Δ v/ v. The attenuation coefficient of the sound was much smaller than 0.2 cm-1.
ERIC Educational Resources Information Center
Neeson, John F.; Austin, Stephen
1975-01-01
Describes a method for the measurement of the velocity of sound in various liquids based on the Raman-Nath theory of light-sound interaction. Utilizes an analog computer program to calculate the intensity of light scattered into various diffraction orders. (CP)
Carbon-depleted outer core revealed by sound velocity measurements of liquid iron-carbon alloy.
Nakajima, Yoichi; Imada, Saori; Hirose, Kei; Komabayashi, Tetsuya; Ozawa, Haruka; Tateno, Shigehiko; Tsutsui, Satoshi; Kuwayama, Yasuhiro; Baron, Alfred Q R
2015-01-01
The relative abundance of light elements in the Earth's core has long been controversial. Recently, the presence of carbon in the core has been emphasized, because the density and sound velocities of the inner core may be consistent with solid Fe7C3. Here we report the longitudinal wave velocity of liquid Fe84C16 up to 70 GPa based on inelastic X-ray scattering measurements. We find the velocity to be substantially slower than that of solid iron and Fe3C and to be faster than that of liquid iron. The thermodynamic equation of state for liquid Fe84C16 is also obtained from the velocity data combined with previous density measurements at 1 bar. The longitudinal velocity of the outer core, about 4% faster than that of liquid iron, is consistent with the presence of 4-5 at.% carbon. However, that amount of carbon is too small to account for the outer core density deficit, suggesting that carbon cannot be a predominant light element in the core. PMID:26596912
Carbon-depleted outer core revealed by sound velocity measurements of liquid iron–carbon alloy
Nakajima, Yoichi; Imada, Saori; Hirose, Kei; Komabayashi, Tetsuya; Ozawa, Haruka; Tateno, Shigehiko; Tsutsui, Satoshi; Kuwayama, Yasuhiro; Baron, Alfred Q. R.
2015-01-01
The relative abundance of light elements in the Earth's core has long been controversial. Recently, the presence of carbon in the core has been emphasized, because the density and sound velocities of the inner core may be consistent with solid Fe7C3. Here we report the longitudinal wave velocity of liquid Fe84C16 up to 70 GPa based on inelastic X-ray scattering measurements. We find the velocity to be substantially slower than that of solid iron and Fe3C and to be faster than that of liquid iron. The thermodynamic equation of state for liquid Fe84C16 is also obtained from the velocity data combined with previous density measurements at 1 bar. The longitudinal velocity of the outer core, about 4% faster than that of liquid iron, is consistent with the presence of 4–5 at.% carbon. However, that amount of carbon is too small to account for the outer core density deficit, suggesting that carbon cannot be a predominant light element in the core. PMID:26596912
Structure, sound velocity, and thermal conductivity of the perovskite NdGaO3
NASA Astrophysics Data System (ADS)
Krivchikov, A. I.; Gorodilov, B. Ya.; Kolobov, I. G.; Érenburg, A. I.; Savitskiĭ, D. I.; Ubizskiĭ, S. B.; Syvorotka, I. M.; Vasilechko, L. O.
2000-05-01
X-ray (300 K) and ultrasonic (77-270 K) studies and measurements of the thermal conductivity (30-300 K) are carried out on single-crystal samples of NdGaO3 in different crystallographic directions. The values of the lattice parameters of NdGaO3 are refined. The sound velocities in the principal crystallographic directions are measured, and the elastic constants and Debye temperature are calculated. The observed anisotropy of the thermal conductivity is described in the framework of a gaskinetic model and is linked to the anisotropy of the interaction parameters of the acoustical and optical phonons.
Triblock copolymer P104 detailed behavior through a density, sound velocity and DLS study
NASA Astrophysics Data System (ADS)
Bravo-Anaya, L. M.; Fierro-Castro, C.; Rharbi, Y.; Martínez, J. F. A. Soltero
2014-05-01
Pluronic triblock copolymers usually present complex phase behavior depending on the number of PEO and PPO blocks contained in the polymer. They have a great dependence to temperature and concentration, both considered as key factors in the pluronic phase behavior. The evaluation of physicochemical properties such as densimetry and sound velocity, as well as the determination of the size distribution profile of particles of P-104/water in solution allow obtaining a detailed temperature-concentration behavior of the system. In this work we present a study of P104/water behavior through density, ultrasound velocity and dynamic slight scattering (DLS) measurements in a wide range of temperatures. The critical micellar temperature (CMT) and the sphere-to-rod micelle transition temperature (GMT) were determinate as a function of concentration.
Singh, K J; Matsuda, Y; Hattori, K; Nakano, H; Nagai, S
2003-01-01
Laser ultrasonic technique has been employed to carry out the sound velocities and attenuation measurements as a function of temperature in alumina, two kinds of silicon nitride and partially stabilized zirconia (PSZ) samples. Accuracy of the laser technique used has been checked in terms of the diffraction effect and reproducibility of the results. Results of attenuation at room temperature have been compared with quartz transducer technique. In PSZ, velocity behavior has become non-linear and also, a peak in attenuation has been observed around 500 degrees C. In one of the silicon nitride sample, which uses glassy sintering agent, attenuation has shown a sharp peak around 950 degrees C. Interestingly, when the experiment was repeated from 800 to 1000 degrees C, this anomalous attenuation peak has disappeared, leaving a background increasing towards higher temperatures. PMID:12464408
Measuring the Speed of Sound through Gases Using Nitrocellulose
ERIC Educational Resources Information Center
Molek, Karen Sinclair; Reyes, Karl A.; Burnette, Brandon A.; Stepherson, Jacob R.
2015-01-01
Measuring the heat capacity ratios, ?, of gases either through adiabatic expansion or sound velocity is a well established physical chemistry experiment. The most accurate experiments depend on an exact determination of sound origin, which necessitates the use of lasers or a wave generator, where time zero is based on an electrical trigger. Other…
Trapping effect on the sound velocity of a multilayer Fermi gas
NASA Astrophysics Data System (ADS)
Salas, Patricia; Solís, M. A.
2015-03-01
We present the trapping effect on the behavior of the isothermal compressibility and sound velocity for an interactionless Fermi gas immersed in a periodic interconnected multilayer structure created by an external Dirac comb potential which can vary both in spacing and in the intensity that controls the impenetrability of the layer edge (the wall). At T = 0 , for a given layer width and respect to the free ideal Fermi gas values, the isothermal compressibility as a function of the impenetrability starts in one and then monotonically increases to reach a larger constant value which is width dependent. The sound velocity as a function of impenetrability starts in one and for a range of impenetrabilities shows a bump which suggests that the presence of the structure increases the speed. For a finite temperature, given a separation between the walls and several values of their impenetrabilities, both properties start their evolution in temperature from the ideal Fermi gas value, unfold at temperatures near and under TF, and then recover the behavior of a classical gas at higher temperatures. We acknowledge partial support from PAPIIT IN111613 and CONACyT 221030.
Li, Baosheng; Liebermann, Robert C.
2014-07-29
This paper reviews the progress of the technology of ultrasonic interferometry from the early 1950s to the present day. During this period of more than 60 years, sound wave velocity measurements have been increased from at pressures less than 1 GPa and temperatures less than 800 K to conditions above 25 GPa and temperatures of 1800 K. This is complimentary to other direct methods to measure sound velocities (such as Brillouin and impulsive stimulated scattering) as well as indirect methods (e.g., resonance ultrasound spectroscopy, static or shock compression, inelastic X-ray scattering). Newly-developed pressure calibration methods and data analysis procedures using a finite strain approach are described and applied to data for the major mantle minerals. The implications for the composition of the Earth’s mantle are discussed. The state-of-the-art ultrasonic experiments performed in conjunction with synchrotron X-radiation can provide simultaneous measurements of the elastic bulk and shear moduli and their pressure and temperature derivatives with direct determination of pressure. The current status and outlook/challenges for future experiments are summarized.
Revisit of the relationship between the elastic properties and sound velocities at high pressures
Wang, Chenju; Yan, Xiaozhen; Xiang, Shikai Chen, Haiyan; Gu, Jianbing; Yu, Yin; Kuang, Xiaoyu
2014-09-14
The second-order elastic constants and stress-strain coefficients are defined, respectively, as the second derivatives of the total energy and the first derivative of the stress with respect to strain. Since the Lagrangian and infinitesimal strain are commonly used in the two definitions above, the second-order elastic constants and stress-strain coefficients are separated into two categories, respectively. In general, any of the four physical quantities is employed to characterize the elastic properties of materials without differentiation. Nevertheless, differences may exist among them at non-zero pressures, especially high pressures. Having explored the confusing issue systemically in the present work, we find that the four quantities are indeed different from each other at high pressures and these differences depend on the initial stress applied on materials. Moreover, the various relations between the four quantities depicting elastic properties of materials and high-pressure sound velocities are also derived from the elastic wave equations. As examples, we calculated the high-pressure sound velocities of cubic tantalum and hexagonal rhenium using these nexus. The excellent agreement of our results with available experimental data suggests the general applicability of the relations.
Sound velocity of iron up to 152 GPa by picosecond acoustics in diamond anvil cell
NASA Astrophysics Data System (ADS)
Decremps, F.; Antonangeli, D.; Gauthier, M.; Ayrinhac, S.; Morand, M.; Marchand, G. Le; Bergame, F.; Philippe, J.
2014-03-01
High-pressure method combining diamond anvil cell with picosecond ultrasonics technique is demonstrated to be a very suitable tool to measure the acoustic properties of iron up to 152 GPa. Such innovative approach allows to measure directly the longitudinal sound velocity under pressure of hundreds of GPa in laboratory, overcoming most of the drawbacks of traditional techniques. The very high accuracy, comparable to piezoacoustics technique, allows to observe the kink in elastic properties at the body-centered cubic-hexagonal close packed transition and to show with a good confidence that the Birch's law still stands up to 1.5 Mbar and ambient temperature. The linear extrapolation of the measured sound velocities versus densities of hcp iron is out of the preliminary reference Earth model, arguing for alloying effects or anharmonic high-temperature effects. A comparison between our measurements and shock wave experiments allowed us to quantify temperature corrections at constant pressure in ~-0.35 and ~-0.30 m s-1/K at 100 and 150 GPa, respectively. More in general, the here-presented technique allows detailed elastic and viscoelastic studies under extreme thermodynamic conditions on a wide variety of systems as liquids, crystalline, or polycrystalline solids, metallic or not, with very broad applications in Earth and planetary science.
Seismic velocity structure of the Puget Sound Region from three dimensional nonlinear tomography
NASA Astrophysics Data System (ADS)
Symons, Neill Philip
In this dissertation I describe a non-linear seismic tomography experiment in the Greater Puget Sound Region (GPSR). The GPSR contains portions of three distinct geologic provinces: (1) the Coast Range Province---composed of the Olympic Mountains and the Siletzia terrane lying along the Washington Coast (the western edge of the GPSR). (2) The Puget Lowland---an approximately linear depression that stretches from Oregon's Willamette Valley to the Strait of Georgia in Canada. The Puget Lowland lies in the middle of the GPSR. (3) The Cascade Range---lying along the eastern edge of the GPSR and characterized by extensive episodic volcanism since the later Mesozoic. The result of this study is a three-dimensional model of the P-wave velocity within the GPSR. Interpretation of this model provides information about the subsurface geology in the region. The method used to perform the tomography has been developed as part of this research. The method uses a finite-difference algorithm to calculate seismic travel-times to every point in the region using the full 3-d velocity model. The method is capable of using three different types of data: (1) earthquakes with unknown hypocenters. The earthquake hypocenters are found as part of the model during solution of the tomography problem. (2) Explosions or other seismic events with known locations. (3) External data constraining the seismic velocity at known locations within the model. There is a good correlation between the velocity model derived in this experiment and several known geologic structures in the GPSR, including: the core of the Olympic Mountains; high seismic velocity where the basalt that makes up the Siletzia terrane outcrops; and low-velocity regions at basins under the cities of Seattle, Tacoma, Everett, and Chehalis. The data provides sufficient resolution to delineate the geometry of the contacts between these units within a large portion of the GPSR.
NASA Astrophysics Data System (ADS)
Antonangeli, Daniele; Ohtani, Eiji
2015-12-01
Determining the sound velocity of iron under extreme thermodynamic conditions is essential for a proper interpretation of seismic observations of the Earth's core but is experimentally challenging. Here, we review techniques and methodologies used to measure sound velocities in metals at megabar pressures, with specific focus on the compressional sound velocity of hexagonal close-packed iron. A critical comparison of literature results, coherently analyzed using consistent metrology (pressure scale, equation of state), allows us to propose reference relations for the pressure and density dependence of the compressional velocity of hexagonal close-packed iron at ambient temperature. This provides a key base line upon which to add complexity, including high-temperature effects, pre-melting effects, effects of nickel and/or light element incorporation, necessary for an accurate comparison with seismic models, and ultimately to constrain Earth's inner core composition.
Sound velocities of iron carbides (Fe3C and Fe7C3) under core conditions
NASA Astrophysics Data System (ADS)
Chen, B.; Li, Z.; Zhang, D.; Liu, J.; Bi, W.; Zhao, J.; Alp, E. E.; Hu, M. Y.; Li, J.
2014-12-01
For a carbon-rich core, iron carbides might be the major phase crystallizing to form the Earth's solid inner core. On basis of high-pressure experiments and theoretical calculations, Fe3C, Fe7C3 and more recently Fe2C have been considered as the most stable carbide phase under the inner core conditions. The identity of the stable carbide phase in a carbon-containing inner core is still a topic under active debate. It is crucial to determine the elastic and acoustic properties of the relevant carbide phases to core conditions, in order to test the carbon-rich core composition model. In this study, we have performed nuclear resonant inelastic X-ray scattering (NRIXS) measurements of both Fe7C3 and Fe3C up to core pressures at 300 K and determined their shear-wave (VS) and compressional-wave (VP) velocities for comparison with seismic observations of the inner core. The high-pressure magnetic properties of both phases have also been investigated by X-ray Emission Spectroscopy (XES) and Synchrotron Mössbauer Spectroscopy (SMS). Our results show that the magnetic transitions from ferromagnetic to paramagnetic and then to nonmagnetic in Fe7C3 and Fe3C significantly affects their VS and VP at high pressures. Extrapolating the sound velocities of the nonmagnetic phases to the inner core conditions, we found that sound velocities, particularly VS, of the iron carbides are markedly low comparing with iron and other iron-rich alloys, making them compelling candidates to explain the seismic observations of the inner core. Our hypothesis of a carbon-rich core may also be consistent with geochemical and petrological evidence on deep carbon inventory in Earth's interior.
Spin stability of sounding rocket secondary payloads following high velocity ejections
NASA Astrophysics Data System (ADS)
Nelson, Weston M.
The Auroral Spatial Structures Probe (ASSP) mission is a sounding rocket mission studying solar energy input to space weather. ASSP requires the high velocity ejection (up to 50 m/s) of 6 secondary payloads, spin stabilized perpendicular to the ejection velocity. The proposed scientific instrumentation depends on a high degree of spin stability, requiring a maximum coning angle of less than 5°. It also requires that the spin axis be aligned within 25° of the local magnetic field lines. The maximum velocities of current ejection methods are typically less than 10m/s, and often produce coning angles in excess of 20°. Because of this they do not meet the ASSP mission requirements. To meet these requirements a new ejection method is being developed by NASA Wallops Flight Facility. Success of the technique in meeting coning angle and B-field alignment requirements is evaluated herein by modeling secondary payload dynamic behavior using a 6-DOF dynamic simulation employing state space integration written in MATLAB. Simulation results showed that secondary payload mass balancing is the most important factor in meeting stability requirements. Secondary mass payload properties will be measured using an inverted torsion pendulum. If moment of inertia measurement errors can be reduced to 0.5%, it is possible to achieve mean coning and B-field alignment angles of 2.16° and 2.71°, respectively.
Sound Velocities of Iron-Nickel and Iron-Nickel-Silicon Alloys at High Pressure
NASA Astrophysics Data System (ADS)
Miller, R. A.; Jackson, J. M.; Sturhahn, W.; Zhao, J.; Murphy, C. A.
2014-12-01
Seismological and cosmochemical studies suggest Earth's core is primarily composed of iron with ~5 to 10 wt% nickel and some light elements [e.g. 1]. To date, the concentration of nickel and the amount and identity of light elements remain poorly constrained due in part to the difficulty of conducting experimental measurements at core conditions. The vibrational properties of a variety iron alloys paired with seismic observations can help better constrain the composition of the core. We directly measured the partial phonon density of states of bcc- and hcp-structured Fe0.9Ni0.1 and Fe0.85Ni0.1Si0.05 at high pressures. The samples were compressed using a panoramic diamond anvil cell. A subset of the experiments were conducted using neon as a pressure transmitting medium. Measurements of high statistical quality were performed with nuclear resonant inelastic x-ray scattering (NRIXS) at sector 3-ID-B of the Advanced Photon Source [2, 3, 4]. The unit cell volume of each sample was determined at each compression point with in-situ x-ray diffraction at sector 3-ID-B before and after each NRIXS measurement. The Debye, compressional, and shear sound velocities were determined from the low energy region of the partial phonon density of states paired with the volume measurements. We will present partial phonon density of states and sound velocities for Fe0.9Ni0.1 and Fe0.85Ni0.1Si0.05 at high-pressure and compare with those of pure iron. References: [1] McDonough, W.F. (2004): Compositional Model for the Earth's Core. Elsevier Ltd., Oxford. [2] Murphy, C.A., J.M. Jackson, W. Sturhahn, and B. Chen (2011): Melting and thermal pressure of hcp-Fe from the phonon density of states, Phys. Earth Planet. Int., doi:10.1016/j.pepi.2011.07.001. [3] Murphy, C.A., J.M. Jackson, W. Sturhahn, and B. Chen (2011): Grüneisen parameter of hcp-Fe to 171 GPa, Geophys. Res. Lett., doi:10.1029/2011GL049531. [4] Murphy, C.A., J.M. Jackson, and W. Sturhahn (2013): Experimental constraints on the
NASA Astrophysics Data System (ADS)
Hudson, R. F.
1983-09-01
An algorithm is developed which enables the computation of horizontal range and/or depth from a submerged sound source, using ray acoustics and the Lloyd's mirror interference effect. The solution is based on Snell's law and involves integrating multipath sound rays to find the difference in length between the direct and surface reflected sound paths from the source to the receiver. This difference in path length is directly related to the observed Lloyd's mirror interference pattern. No assumptions as to the mathematical characteristics of the sound velocity profile (SVP) are made nor are far field approximations used. The solution is as accurate as the SVP data input to the problem. A general computer flow chart and basic language program are provided to allow local commands the capability of premission planning based on specific operating area environmental information.
Very low sound velocities in iron-rich (Mg,Fe)O: Implications for the core-mantle boundary region
NASA Astrophysics Data System (ADS)
Wicks, J. K.; Jackson, J. M.; Sturhahn, W.
2010-12-01
Seismic observations near the base of the core-mantle boundary have revealed 5-20 km thick patches in which the seismic wave velocities are reduced by up to 30%. These ultra-low velocity zones (ULVZs) have previously been attributed to partial melting, a metal-bearing layer (e.g. Knittle and Jeanloz, 1991), or to an iron-enriched post-perovskite phase (Mao et al., 2006). These scenarios all require concomitant iron enrichment to maintain the appropriate densities of these structures. Recent experiments have shown that (Mg,Fe)O is the preferred phase for equilibrium iron partitioning under deep Earth conditions (e.g. Sakai et al., 2010). We propose that in iron-rich assemblages, such as those suggested at the base of the mantle (e.g. Labrosse et al., 2007), the characteristic low sound speeds can be attributed to iron-rich (Mg,Fe)O (Wicks et al., 2010). We present the sound velocities of (Mg.16Fe.84)O measured to 121 GPa at ambient temperature, using nuclear resonant inelastic x-ray scattering. The effect of the electronic environment of the iron sites on the sound velocities were tracked in situ using synchrotron Mössbauer spectroscopy. We found the sound velocities of (Mg.16Fe.84)O to be much lower than those in other presumed mantle phases at similar conditions, most notably at very high pressures. Conservative estimates of the effect of temperature and dilution on aggregate sound velocities show that only a small amount of iron-rich (Mg,Fe)O can greatly reduce the average sound velocity of an assemblage. References: Knittle, E., and Jeanloz, R., Science, 33, L02310 (1991). Labrosse, S. et al., Nature, 450, 866--869 (2007). Mao, W. L. et al., Science, 312, 564--565 (2006). Sakai, T. et al., Phys. Chem. Min., 37, 487--96 (2010). Wicks, J. K., et al., Geophys. Res. Lett., 37, L15304 (2010).
NASA Astrophysics Data System (ADS)
Nishida, Keisuke; Suzuki, Akio; Terasaki, Hidenori; Shibazaki, Yuki; Higo, Yuji; Kuwabara, Souma; Shimoyama, Yuta; Sakurai, Moe; Ushioda, Masashi; Takahashi, Eiichi; Kikegawa, Takumi; Wakabayashi, Daisuke; Funamori, Nobumasa
2016-08-01
Recent advances in techniques for high-pressure and high-temperature experiments enable us to measure the velocity of sound in liquid Fe alloys. However, reported velocities in liquid Fe-S differ among research groups (e.g., by >10% at 5 GPa), even when similar methods are used (i.e., the ultrasonic pulse-echo overlap method combined with a large volume press). To identify the causes of the discrepancies, we reanalyzed previous data and conducted additional sound velocity measurements for liquid Fe-S at 2-7 GPa, and evaluated the potential error sources. We found that the discrepancy cannot be explained by errors in the sound velocity measurements themselves, but by inaccuracies in determining the temperature, pressure, and chemical composition in each experiment. Of particular note are the significant errors introduced when determining pressures from the unit-cell volume of MgO, which is a temperature-sensitive pressure standard, using inaccurate temperatures. To solve the problem, we additionally used h-BN as a pressure standard, which is less sensitive to temperature. The pressure dependence of the sound velocity became smaller than that of the original data because of the revised pressure values. Our best estimate for the seismic velocity of the Moon's liquid outer core is 4.0 ± 0.1 km/s, given a chemical composition Fe83S17.
NASA Astrophysics Data System (ADS)
Lucas, Marcel; Winey, J. M.; Gupta, Y. M.
2015-12-01
Previous reports of rapid phase transformation above 18 GPa [Erskine and Nellis, Nature 349, 317 (1991)] and large elastic waves below 18 GPa [Lucas et al., J. Appl. Phys. 114, 093515 (2013)] for shock-compressed ZYB-grade highly oriented pyrolytic graphite (HOPG), but not for less oriented ZYH-grade HOPG, indicated a link between the orientational order dependence of the HOPG response above and below the phase transformation stress. To gain insight into this link and into the mechanical response of HOPG shocked to peak stresses approaching the phase transformation onset, the compressibility of ZYB- and ZYH-grade HOPG in the shocked state was examined using front surface impact experiments. Particle velocity histories and sound velocities were measured for peak stresses reaching 18 GPa. Although the locus of the measured peak stress-particle velocity states is indistinguishable for the two grades of HOPG, the measured sound velocities in the peak state reveal significant differences between the two grades. Specifically (1) the measured sound velocities are somewhat higher for ZYH-grade HOPG compared with ZYB-grade HOPG; (2) the measured sound velocities for ZYH-grade HOPG increase smoothly with compression, whereas those for ZYB-grade HOPG exhibit a significant reduction in the compression dependence from 12 GPa to 17 GPa and an abrupt increase from 17 GPa to 18 GPa; and (3) the longitudinal moduli, determined from the measured sound velocities, are smaller than the calculated bulk moduli for ZYB-grade HOPG shocked to peak stresses above 15 GPa, indicating the onset of an elastic instability. The present findings demonstrate that the softening of the longitudinal modulus (or elastic instability) presented here is linked to the large elastic waves and the rapid phase transformation reported previously—all observed only for shocked ZYB-grade HOPG. The elastic instability in shocked ZYB-grade HOPG is likely a precursor to the rapid phase transformation observed
NASA Astrophysics Data System (ADS)
Sugimoto, Tsuneyoshi; Nakagawa, Yutaka; Shirakawa, Takashi; Sano, Motoaki; Ohaba, Motoyoshi; Shibusawa, Sakae
2013-07-01
We propose a method for the monitoring and imaging of the water distribution in the rooting zone of plants using sound vibration. In this study, the water distribution measurement in the horizontal and vertical directions in the soil layer was examined to confirm whether a temporal change in the volume water content of the soil could be estimated from a temporal changes in propagation velocity. A scanning laser Doppler vibrometer (SLDV) is used for measurement of the vibration velocity of the soil surface, because the highly precise vibration velocity measurement of several many points can be carried out automatically. Sand with a uniform particle size distribution is used for the soil, as it has high plasticity; that is, the sand can return to a dry state easily even if it is soaked with water. A giant magnetostriction vibrator or a flat speaker is used as a sound source. Also, a soil moisture sensor, which measures the water content of the soil using the electric permittivity, is installed in the sand. From the experimental results of the vibration measurement and soil moisture sensors, we can confirm that the temporal changes of the water distribution in sand using the negative pressure irrigation system in both the horizontal and vertical directions can be estimated using the propagation velocity of sound. Therefore, in the future, we plan to develop an insertion-type sound source and receiver using the acceleration sensors, and we intend to examine whether our method can be applied even in commercial soil with growing plants.
NASA Astrophysics Data System (ADS)
Jing, Z.; Wang, Y.; Yu, T.; Sakamaki, T.; Kono, Y.; Park, C.
2012-03-01
We determine the density and sound velocity of Fe-S liquids at high P-T conditions up to 8 GPa and 2173 K. The results can be compared with geophysical observations to constrain the composition and structure of the cores of Moon and Mercury.
Sound velocities of hydrous ringwoodite to 16 GPa and 673 K
Mao, Zhu; Lin, Jung-Fu; Jacobsen, Steven D.; Duffy, Thomas S.; Chang, Yun-Yuan; Smyth, Joseph R.; Frost, Daniel J.; Hauri, Erik H.; Prakapenka, Vitali B.
2012-05-10
To understand the effect of hydration on the sound velocities of major mantle minerals and to constrain the mantle's H{sub 2}O budget, we have measured the single-crystal elastic moduli of hydrous ringwoodite, (Mg{sub 1.633}Fe{sub 0.231}{sup 2+}Fe{sub 0.026}{sup 3+})Si{sub 1.00}H{sub 0.179}O{sub 4} with 1.1 wt.% H{sub 2}O using Brillouin scattering combined with X-ray diffraction in an externally-heated diamond anvil cell up to 16 GPa and 673 K. Up to 12 GPa at 300 K, the presence of 1.1 wt.% H{sub 2}O lowers the elastic moduli of ringwoodite by 5-9%, but does not affect the pressure derivatives of the elastic moduli compared to anhydrous ringwoodite. The reduction caused by hydration is significantly enhanced when temperatures are elevated at high pressures. At 12 GPa, increasing temperature by {Delta}T = 100 K leads to a 1.3-2.4% reduction in the elastic moduli (C{sub 11}, C{sub 12}, and C{sub 14}). Comparing our results with seismic observations, we have evaluated the potential H{sub 2}O content in the lower part of the transition zone. Our results indicate that the observed seismic velocity anomalies and related depth depression of the 660-km discontinuity could be attributed to thermal variations together with the presence of {approx} 0.1 wt.% H{sub 2}O.
NASA Astrophysics Data System (ADS)
Sakamaki, Tatsuya; Kono, Yoshio; Wang, Yanbin; Park, Changyong; Yu, Tony; Jing, Zhicheng; Shen, Guoyin
2014-04-01
X-ray diffraction and ultrasonic velocity measurements of three silicate glasses (in jadeite, albite, and diopside compositions) show a sharp contrast in pressure-induced changes in structure and elasticity. With increasing pressure to around 6 GPa, polymerized glasses (jadeite and albite) display large shift in the first sharp diffraction peak (FSDP) in the structure factor, S(Q), to higher-Q values, indicating rapid shrinkage in the intermediate-range ordered (IRO) structure. Above 6 GPa, the shift of FSDP decelerates, suggesting that shrinkage in the IRO structure has been largely completed and the structure evolution is now dominated by the diminution of the interstitial volume in a more densely packed arrangement. Associated with this structural change, sound velocities increase with pressure above 6 GPa. In contrast, the depolymerized diopside glass exhibits smaller changes in the pressure dependence for both sound velocities and FSDP positions. Compared to the polymerized glasses, the velocities are faster and the positions of FSDP appear at higher-Q under the same experimental conditions. The results suggest that the depolymerized diopside glass has an initially denser IRO structure compared to that of the polymerized glasses, and there are no sufficient interstitial voids to shrink. The different behaviors between polymerized and depolymerized glasses are apparently related to the initial linkage of tetrahedra and the pressure-induced structural reactions. These results suggest that under compression up to 10 GPa, the degree of polymerization is a major factor affecting the IRO network structure and the sound velocity of silicate glasses.
ERIC Educational Resources Information Center
Branca, Mario; Soletta, Isabella
2007-01-01
The velocity of sound in a gas depends on its temperature, molar mass, and [lambda] = C[subscript p]/C[subscript v], ratio (heat capacity at a constant pressure to heat capacity at constant volume). The [lambda] values for air, oxygen, nitrogen, argon, and carbon dioxide were determined by measuring the velocity of the sound through the gases at…
Amoudache, Samira; Pennec, Yan Djafari Rouhani, Bahram; Khater, Antoine; Lucklum, Ralf; Tigrine, Rachid
2014-04-07
We theoretically investigate the potentiality of dual phononic-photonic (the so-called phoxonic) crystals for liquid sensing applications. We study the transmission through a two-dimensional (2D) crystal made of infinite cylindrical holes in a silicon substrate, where one row of holes oriented perpendicular to the propagation direction is filled with a liquid. The infiltrated holes may have a different radius than the regular holes. We show, in the defect structure, the existence of well-defined features (peaks or dips) in the transmission spectra of acoustic and optical waves and estimate their sensitivity to the sound and light velocity of the analyte. Some of the geometrical requirements behave in opposite directions when searching for an efficient sensing of either sound or light velocities. Hence, a compromise in the choice of the parameters may become necessary in making the phoxonic sensor.
NASA Astrophysics Data System (ADS)
Amoudache, Samira; Pennec, Yan; Djafari Rouhani, Bahram; Khater, Antoine; Lucklum, Ralf; Tigrine, Rachid
2014-04-01
We theoretically investigate the potentiality of dual phononic-photonic (the so-called phoxonic) crystals for liquid sensing applications. We study the transmission through a two-dimensional (2D) crystal made of infinite cylindrical holes in a silicon substrate, where one row of holes oriented perpendicular to the propagation direction is filled with a liquid. The infiltrated holes may have a different radius than the regular holes. We show, in the defect structure, the existence of well-defined features (peaks or dips) in the transmission spectra of acoustic and optical waves and estimate their sensitivity to the sound and light velocity of the analyte. Some of the geometrical requirements behave in opposite directions when searching for an efficient sensing of either sound or light velocities. Hence, a compromise in the choice of the parameters may become necessary in making the phoxonic sensor.
Sound velocity of Fe-S liquids at high pressure: Implications for the Moon's molten outer core
NASA Astrophysics Data System (ADS)
Jing, Zhicheng; Wang, Yanbin; Kono, Yoshio; Yu, Tony; Sakamaki, Tatsuya; Park, Changyong; Rivers, Mark L.; Sutton, Stephen R.; Shen, Guoyin
2014-06-01
Sound velocities of Fe and Fe-S liquids were determined by combining the ultrasonic measurements and synchrotron X-ray techniques under high pressure-temperature conditions from 1 to 8 GPa and 1573 K to 1973 K. Four different liquid compositions were studied including Fe, Fe-10 wt% S, Fe-20 wt% S, and Fe-27 wt% S. Our data show that the velocity of Fe-rich liquids increases upon compression and decreases with increasing sulfur content, whereas temperature has negligible effect on the velocity of Fe-S liquids. The sound velocity data were combined with ambient-pressure densities to fit the Murnaghan equation of state (EOS). Compared to the lunar seismic model, our velocity data constrain the sulfur content at 4±3 wt%, indicating a significantly denser (6.5±0.5 g/cm) and hotter (1870-70+100 K) outer core than previously estimated. A new lunar structure model incorporating available geophysical observations points to a smaller core radius. Our model suggests a top-down solidification scenario for the evolution of the lunar core. Such “iron snow” process may have been an important mechanism for the growth of the inner core.
Sound velocity of Fe-S liquids at high pressure: Implications for the Moon's molten outer core
Jing, Zhicheng; Wang, Yanbin; Kono, Yoshio; Yu, Tony; Sakamaki, Tatsuya; Park, Changyong; Rivers, Mark L.; Sutton, Stephen R.; Shen, Guoyin
2014-07-21
Sound velocities of Fe and Fe–S liquids were determined by combining the ultrasonic measurements and synchrotron X-ray techniques under high pressure–temperature conditions from 1 to 8 GPa and 1573 K to 1973 K. Four different liquid compositions were studied including Fe, Fe–10 wt% S, Fe–20 wt% S, and Fe–27 wt% S. Our data show that the velocity of Fe-rich liquids increases upon compression and decreases with increasing sulfur content, whereas temperature has negligible effect on the velocity of Fe–S liquids. The sound velocity data were combined with ambient-pressure densities to fit the Murnaghan equation of state (EOS). Compared to the lunar seismic model, our velocity data constrain the sulfur content at 4±3 wt%, indicating a significantly denser (6.5±0.5 g/cm^{3}) and hotter (1870-70+100 K) outer core than previously estimated. A new lunar structure model incorporating available geophysical observations points to a smaller core radius. Our model suggests a top–down solidification scenario for the evolution of the lunar core. Such “iron snow” process may have been an important mechanism for the growth of the inner core.
NASA Astrophysics Data System (ADS)
Dzwonkowski, B.; Pettigrew, N. R.; Knapp, S.
2014-12-01
The circulation structure across Broad Sound, a weakly stratified system was characterized using velocity data from two moorings in late summer/fall of 2013 and velocity and density data from a ship survey conducted over a tidal cycle during the same period. The tidal signal demonstrated a strong lateral gradient in the along-sound flow structure and complex patterns were observed in the intratidal velocity data. Local wind forcing in large part, drove fluctuations at the subtidal time scales. Despite having a triangular bathymetric cross section, the wind-driven circulation was vertically sheared as a result of the relatively deep nature of the sound, reducing the importance of bottom friction and hence bottom bathymetry. In contrast to the slopes, the thalweg had a three-layer response to wind forcing with near-bottom fluctuations being positively correlated with wind. This response is speculated to result from alterations in the density gradient that could arise from downwelling (upwelling) of freshwater (denser) water at the head of the bay. Furthermore, Coriolis force was an important factor in structuring the mean circulation having strong lateral shear with inflow (outflow) over the thalweg and eastern slope (western slope). The qualitative similarities (i.e., lateral and vertical shear structure) to analytical models indicate density-driven circulation is a significant component of the mean circulation.
Sakamaki, Tatsuya; Ohtani, Eiji; Fukui, Hiroshi; Kamada, Seiji; Takahashi, Suguru; Sakairi, Takanori; Takahata, Akihiro; Sakai, Takeshi; Tsutsui, Satoshi; Ishikawa, Daisuke; Shiraishi, Rei; Seto, Yusuke; Tsuchiya, Taku; Baron, Alfred Q R
2016-02-01
Hexagonal close-packed iron (hcp-Fe) is a main component of Earth's inner core. The difference in density between hcp-Fe and the inner core in the Preliminary Reference Earth Model (PREM) shows a density deficit, which implies an existence of light elements in the core. Sound velocities then provide an important constraint on the amount and kind of light elements in the core. Although seismological observations provide density-sound velocity data of Earth's core, there are few measurements in controlled laboratory conditions for comparison. We report the compressional sound velocity (V P) of hcp-Fe up to 163 GPa and 3000 K using inelastic x-ray scattering from a laser-heated sample in a diamond anvil cell. We propose a new high-temperature Birch's law for hcp-Fe, which gives us the V P of pure hcp-Fe up to core conditions. We find that Earth's inner core has a 4 to 5% smaller density and a 4 to 10% smaller V P than hcp-Fe. Our results demonstrate that components other than Fe in Earth's core are required to explain Earth's core density and velocity deficits compared to hcp-Fe. Assuming that the temperature effects on iron alloys are the same as those on hcp-Fe, we narrow down light elements in the inner core in terms of the velocity deficit. Hydrogen is a good candidate; thus, Earth's core may be a hidden hydrogen reservoir. Silicon and sulfur are also possible candidates and could show good agreement with PREM if we consider the presence of some melt in the inner core, anelasticity, and/or a premelting effect. PMID:26933678
NASA Astrophysics Data System (ADS)
Gao, Lili
Understanding the composition of Earth's inner core is crucial for revealing the mechanisms of core formation and the evolution of Earth. The presence of light elements in the Earth's inner core has been indicated in recent studies, based on the mismatch between the observed density of the inner core and the density of pure iron at relevant conditions. The nature and abundance of light element(s) are under debate, yet they are fundamental in understanding the formation and evolution of the Earth's core. Carbon has been considered a possible major light element candidate, besides hydrogen, oxygen, silicon and sulphur. In particular, Fe3C has been proposed to be the major component in the Earth's inner core in a previous thermodynamics study. However, the possibility of Fe3C being a major inner core component has been under debate in recent studies, largely due to our limited knowledge of the properties of Fe3C at extreme pressure and temperature (P-T) conditions. In this thesis work, I investigated the possibility of carbon as a principal light element in the inner core in the form of Fe3C. Considering the lack of direct accessibility to the inner core, the only way to test a carbon-rich inner core model is to compare the properties of iron-carbon compounds, including the density and sound velocities, with the observed values of inner core, e.g., the values in preliminary reference Earth model (PREM) determined using normal mode data and seismic travel time data. In this work, I studied the density, elasticity, sound velocity and magnetism of Fe3C using a series of experimental methods, including X-ray diffraction (XRD), nuclear resonant inelastic X-ray scattering (NRIXS), synchrotron Mossbauer spectroscopy (SMS) and conventional Mossbauer spectroscopy (CMS). The starting materials of (57Fe-enriched) Fe3C samples were synthesized using large-volume presses. The composition and purity of the samples were confirmed using high-resolution XRD and CMS methods. A magnetic
NASA Astrophysics Data System (ADS)
Terasaki, H. G.; Kuwabara, S.; Shimoyama, Y.; Takubo, Y.; Urakawa, S.; Nishida, K.; Takeuchi, A.; Suzuki, Y.; Uesugi, K.; Watanuki, T.; Katayama, Y.; Kondo, T.; Higo, Y.
2014-12-01
The cores of Mercury, Mars and Moon are reported to be partially/totally molten (e.g., Margot et al. 2007, Yoder et al. 2003, Williams et al. 2001). In order to constrain the core compositions of those bodies from observed and future-planned seismic data, sound velocity and density of the core material, i.e., liquid Fe-alloy, are necessary. In this study, we have performed simultaneous measurements on these physical properties of liquid Fe-Ni-Si alloys, which is one of the major candidates for the core constituent. The effects of pressure and Si content on these properties were studied. High pressure experiments were performed using 80-ton uniaxial press designed for CT measurement or 180-ton cubic type multi-anvil press installed at BL20XU and BL22XU beamlines of SPring-8 synchrotron facility, respectively. Used samples were Fe-Ni-Si with Si content of 10-30 at%. The sample pellet was sandwiched by the single crystal sapphire buffer rod for sound velocity measurement. P-wave sound velocity was measured using pulse-echo overlapping ultrasonic method. LiNbO3 transducer was attached to the backside of the anvil to generate and receive elastic wave signals. Density was determined based on 3D volume data obtained from CT measurement or X-ray absorption profile. The P-wave velocity (VP) and density of liquid Fe-Ni-Si were successfully measured up to 2.5 GPa and 1773 K. Obtained VP of the Fe-Ni-Si is found to increase rapidly with pressure below 1 GPa and increase gradually above 1 GPa. It is also found that VP increases slightly with Si content on the density-VP plot. These trends provide a constraint on the core composition of the planets and moon by comparing with observed data.
Zieliński, Tomasz G
2015-04-01
This paper proposes and discusses an approach for the design and quality inspection of the morphology dedicated for sound absorbing foams, using a relatively simple technique for a random generation of periodic microstructures representative for open-cell foams with spherical pores. The design is controlled by a few parameters, namely, the total open porosity and the average pore size, as well as the standard deviation of pore size. These design parameters are set up exactly and independently, however, the setting of the standard deviation of pore sizes requires some number of pores in the representative volume element (RVE); this number is a procedure parameter. Another pore structure parameter which may be indirectly affected is the average size of windows linking the pores, however, it is in fact weakly controlled by the maximal pore-penetration factor, and moreover, it depends on the porosity and pore size. The proposed methodology for testing microstructure-designs of sound absorbing porous media applies the multi-scale modeling where some important transport parameters-responsible for sound propagation in a porous medium-are calculated from microstructure using the generated RVE, in order to estimate the sound velocity and absorption of such a designed material. PMID:25920832
First-order torques and solid-body spinning velocities in intense sound fields
NASA Technical Reports Server (NTRS)
Wang, T. G.; Kanber, H.; Rudnick, I.
1977-01-01
The letter reports an observation of first-order nonzero time-averaged torques and solid-body spinning velocities in intense acoustic fields. The experimental apparatus consisted of a vertical cylindrical rod supported on an air bearing and passing through a box with two loudspeakers centered on adjoining vertical sides. The rim velocity of the cylinder and the torque on the cylinder are measured as functions of air-particle velocity and the phase difference between the x and y components of the particle velocity. It is found that both rim velocity and torque are linear functions of particle velocity. Difficulties in constructing a proper theoretical description of the observed effects are discussed.
NASA Astrophysics Data System (ADS)
Spichak, V. V.; Goidina, A. G.
2016-05-01
The neural network estimates of seismic P- and S-wave velocities from electrical resistivity of the rocks and, vice versa, resistivity estimates from seismic velocities are presented. It is shown that, depending on the ratio between the volumes of the known data and the data to be reconstructed, the accuracy of the estimates of the P- and S-wave velocities ranges within 1-4 and 4-6%, respectively. The logarithmic resistivity is estimated from seismic P- and S-velocities as accurately as up to 15-17%. In all cases, the biggest errors are obtained when the estimates are based on correlated data.
Effective-range signatures in quasi-1D matter waves: sound velocity and solitons
NASA Astrophysics Data System (ADS)
Sgarlata, F.; Mazzarella, G.; Salasnich, L.
2015-06-01
We investigate ultracold and dilute bosonic atoms under strong transverse harmonic confinement using a 1D modified Gross-Pitaevskii equation (1D MGPE), which accounts for the energy dependence of the two-body scattering amplitude within an effective-range expansion. We study sound waves and solitons of the quasi-1D system, comparing the 1D MGPE results with the 1D GPE ones. We find that when the finite-size nature of the interaction is taken into account, the speed of sound and the density profiles of both dark and bright solitons show relevant quantitative changes with respect to predictions given by the standard 1D GPE.
Nansai, Keisuke; Kagawa, Shigemi; Suh, Sangwon; Inaba, Rokuta; Moriguchi, Yuichi
2007-02-15
Today's material welfare has been achieved at the expense of consumption of finite resources and generation of environmental burdens. Over the past few decades the volume of global consumption has grown dramatically, while at the same time technological advances have enabled products with greater efficiencies. These two directions of change, consumption growth and technological advance, are the foci of the present paper. Using quantitative measures for these two factors, we define a new indicator, "eco-velocity of consumption", analogous to velocity in physics. The indicator not only identifies the environmental soundness of consumption growth and technological advance but also indicates whether and to what extent our society is shifting toward sustainable consumption. This study demonstrates the practicability of the indicator through a case study in which we calculate the eco-velocities of Japanese household consumption in 2 years: 1995 and 2000. The rate of technological advance during the periods concerned is quantified in terms of the embodied carbon dioxide emission per yen of product. The results show that the current growth rate of Japanese household consumption is greater than the rate of technological advance to mitigate carbon dioxide emissions. The eco-velocities at the level of individual commodity groups are also examined, and the sources of changes in eco-velocity for each commodity are identified using structural decomposition analysis. PMID:17593758
NASA Astrophysics Data System (ADS)
Iwase, Ryoichi
2016-07-01
An in situ method of estimating the seismic wave velocity at the seafloor surface by observing the particle motion of a wave transmitted into the sediment is presented; this method uses a sound source whose location is known. Conversely, a sound source localization method using the obtained seismic velocities and involving particle motion observation is also presented. Although this method is applicable only when the sound source exists within the critical incidence angle range, it is expected to contribute to the tracing of vocalizing baleen whales, which are unknown around Japanese waters.
NASA Astrophysics Data System (ADS)
Lin, Jung-Fu; Fei, Yingwei; Sturhahn, Wolfgang; Zhao, Jiyong; Mao, Ho-kwang; Hemley, Russell J.
2004-09-01
Magnetic, elastic, thermodynamic, and vibrational properties of the most iron-rich sulfide, Fe3S, known to date have been studied with synchrotron Mössbauer spectroscopy (SMS) and nuclear resonant inelastic X-ray scattering (NRIXS) up to 57 GPa at room temperature. The magnetic hyperfine fields derived from the time spectra of the synchrotron Mössbauer spectroscopy show that the low-pressure magnetic phase displays two magnetic hyperfine field sites and that a magnetic collapse occurs at 21 GPa. The magnetic to non-magnetic transition significantly affects the elastic, thermodynamic, and vibrational properties of Fe3S. The magnetic collapse of Fe3S may also affect the phase relations in the iron-sulfur system, changing the solubility of sulfur in iron under higher pressures. Determination of the physical properties of the non-magnetic Fe3S phase is important for the interpretation of the amount and properties of sulfur present in the planetary cores. Sound velocities of Fe3S obtained from the measured partial phonon density of states (PDOS) for 57Fe incorporated in the alloy show that Fe3S has higher compressional and shear wave velocity than those of hcp-Fe and hcp-Fe0.92Ni0.08 alloy under high pressures, making sulfur a potential light element in the Earth's core based on geophysical arguments. The VP and VS of the non-magnetic Fe3S follow a Birch's law trend whereas the slopes decrease in the magnetic phase, indicating that the decrease of the magnetic moment significantly affects the sound velocities. If the Martian core is in the solid state containing 14.2 wt.% sulfur, it is likely that the non-magnetic Fe3S phase is a dominant component and that our measured sound velocities of Fe3S can be used to construct the corresponding velocity profile of the Martian core. It is also conceivable that Fe3P and Fe3C undergo similar magnetic phase transitions under high pressures.
NASA Astrophysics Data System (ADS)
Hirth, Michael; Kuhn, Jochen; Müller, Andreas
2015-02-01
Recent articles about smartphone experiments have described their applications as experimental tools in different physical contexts.1-4 They have established that smartphones facilitate experimental setups, thanks to the small size and diverse functions of mobile devices, in comparison to setups with computer-based measurements. In the experiment described in this article, the experimental setup is reduced to a minimum. The objective of the experiment is to determine the speed of sound with a high degree of accuracy using everyday tools. An article published recently proposes a time-of-flight method where sound or acoustic pulses are reflected at the ends of an open tube.5 In contrast, the following experiment idea is based on the harmonic resonant frequencies of such a tube, simultaneously triggered by a noise signal.
Jing, Z.; Wang, Y.; Yu, T.; Sakamaki, T.; Kono, Y.; Park, C.
2012-04-30
Liquid Fe-light element alloys are likely present in the Earth's outer core and the cores (or outer cores) of other terrestrial planets such as Moon, Mercury, and Mars, suggested by geophysical and geochemical observations. In order to determine the abundances of light elements and their effects on the structure, dynamics, and evolution of planetary cores, it is crucial to determine the equation of state for Fe-light element alloying liquids under core conditions. However, density data on liquid Fe-light element alloys at core pressures are very limited and no sound velocity or bulk modulus data are available for these liquids at high pressures. This makes it difficult to extrapolate the equation of state to core pressures. As a result, density data on solid Fe alloys are often used in the literature to compare with seismological observations by making rough corrections for the volume of melting. In this study, we determine the density and sound velocity for Fe-S liquids with different sulfur contents at high pressure and temperature conditions up to 8 GPa and 2173 K using synchrotron X-ray techniques.
NASA Astrophysics Data System (ADS)
Li, Baosheng; Liebermann, Robert C.
2014-08-01
This paper reviews the progress of the technology of ultrasonic interferometry from the early 1950s to the present day. During this period of more than 60 years, sound wave velocity measurements have been increased from at pressures less than 1 GPa and temperatures less than 800 K to conditions above 25 GPa and temperatures of 1800 K. This is complimentary to other direct methods to measure sound velocities (such as Brillouin and impulsive stimulated scattering) as well as indirect methods (e.g., resonance ultrasound spectroscopy, static or shock compression, inelastic X-ray scattering). Newly-developed pressure calibration methods and data analysis procedures using a finite strain approach are described and applied to data for the major mantle minerals. The implications for the composition of the Earth’s mantle are discussed. The state-of-the-art ultrasonic experiments performed in conjunction with synchrotron X-radiation can provide simultaneous measurements of the elastic bulk and shear moduli and their pressure and temperature derivatives with direct determination of pressure. The current status and outlook/challenges for future experiments are summarized.
NASA Astrophysics Data System (ADS)
Badro, J.; Fiquet, G.; Guyot, F.
2006-12-01
We measured compressional sound velocities in light-element alloys of iron (FeO, FeSi, FeS, and FeS2) at high pressure by inelastic x-ray scattering. This data set provides a mineralogical constraint on the composition of Earth's core, and completes the previous set formed by the pressure-density systematics for these compounds. Based on the combination of these data sets and their comparison with radial seismic models, we propose an average composition model of Earth's core. We show that sulphur cannot be the only light alloying element in the core, because it cannot satisfy both the compressibility, sound velocity and while retaining a reasonable abundance based on cosmochemical models. On the other hand, the incorporation of small amounts of silicon or oxygen is compatible with geophysical observations and geochemical abundances. From our data, the inner core contains 2.3 wt% silicon or 1.6 wt% oxygen. Using recent O and Si partitioning data, we build a new composite model of the core and discuss the effects of Nickel.
NASA Astrophysics Data System (ADS)
Dzwonkowski, Brian; Pettigrew, Neal R.; Knapp, Stacy R.
2015-06-01
The velocity and hydrographic structure across Broad Sound, a north-south orientated subsystem of Casco Bay, ME that lacks continuous coastal boundaries, were characterized using velocity observations from two moorings in late summer/fall of 2013 and velocity and density observations from a repeat-transect ship survey conducted over a tidal cycle during the same period. At tidal time scales, the system is dominated by a barotropic semidiurnal standing wave with a west to east decrease in tidal amplitude and relatively minimal phase change across the majority of the transect. The stratification (vertical differences of 0.5-1.0 kg m-3) was generally laterally uniform and stronger during the flood phase which is hypothesized to result from stronger offshore stratification. The mean circulation had strong lateral shear with inflow over the deepest point in the bathymetric cross section and eastern slope and outflow over the western slope. There was also vertical shearing of the horizontal velocities with stronger northward (or northward trending) velocities at depth. The depth-averaged subtidal fluctuations were relatively small (˜2-3 cm s-1) and uncorrelated between mooring sites suggesting the vertically uniform current response associated with remote wind forcing is of limited importance. On the other hand, the depth-dependent velocity fluctuations at the subtidal time scale were, in large part (˜36-72%), driven by wind forcing. The net flux ratio, a means of quantifying the relative importance of the vertical and lateral shear in the flow field, was typically ˜0.44 indicating the structure of the local wind response favored vertically sheared flow.
NASA Astrophysics Data System (ADS)
Cheng, Kai-Xuan; Wu, Rong-Rong; Liu, Xiao-Zhou; Liu, Jie-Hui; Gong, Xiu-Fen; Wu, Jun-Ru
2015-04-01
In view of the discrete characteristics of biological tissue, doublet mechanics has demonstrated its advantages in the mathematic description of tissue in terms of high frequency (> 10 MHz) ultrasound. In this paper, we take human breast biopsies as an example to study the influence of the internodal distance, a microscope parameter in biological tissue in doublet mechanics, on the sound velocity and attenuation by numerical simulation. The internodal distance causes the sound velocity and attenuation in biological tissue to change with the increase of frequency. The magnitude of such a change in pathological tissue is distinctly different from that in normal tissue, which can be used to differentiate pathological tissue from normal tissue and can depict the diseased tissue structure by obtaining the sound and attenuation distribution in the sample at high ultrasound frequency. A comparison of sensitivity between the doublet model and conventional continuum model is made, indicating that this is a new method of characterizing ultrasound tissue and diagnosing diseases. Project supported by the National Basic Research Program of China (Grant Nos. 2012CB921504 and 2011CB707902), the National Natural Science Foundation of China (Grant No. 11274166), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 1113020403 and 1101020402), the State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLA201401), the China Postdoctoral Science Foundation (Grant No. 2013M531313), the Priority Academic Program Development of Jiangsu Provincial Higher Education Institutions and Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry, and the Project of Interdisciplinary Center of Nanjing University, China (Grant No. NJUDC2012004).
Sound velocities of MORB and absence of a basaltic layer in the mantle transition region
NASA Astrophysics Data System (ADS)
Kono, Yoshio; Irifune, Tetsuo; Ohfuji, Hiroaki; Higo, Yuji; Funakoshi, Ken-ichi
2012-12-01
Compressional (Vp) and shear (Vs) wave velocities of mid-ocean-ridge basalt (MORB) was investigated at in situ high pressure and high temperature conditions of the mantle transition region by using a combination of ultrasonic and in situ x-ray measurements. Both Vp and Vs of MORB are lower than the previously predicted velocities of the major mantle mineral phases. We found that the Vp and Vs of MORB along a typical geotherm are lower by about 2 and 5%, respectively than those of seismological models, and do not match any global and regional seismological models in the deeper parts of the mantle transition region. Thus, the existence of a basaltic layer in this region is unlikely, suggesting that the oceanic crust materials are transported into the lower mantle.
NASA Astrophysics Data System (ADS)
Burov, V. A.; Zotov, D. I.; Rumyantseva, O. D.
2015-03-01
The paper is devoted to implementing in a specific tomographic device a two-step algorithm designed to reconstruct the spatial distributions of the sound velocity and absorption coefficient, primarily in soft biological tissues. To generate the input data of the first and second steps, a correlation algorithm is used based on determination of the time shift in the signal propagation time in the presence of an object. The results of reconstruction are presented, which are based on data measured for objects-phantoms using a developed experimental ultrasound tomograph model. We discuss problems that arise during reconstruction with a low resolution at the first step of the algorithm, and we demonstrate the high spatial resolving power achieved at the second step.
NASA Astrophysics Data System (ADS)
Burov, V. A.; Zotov, D. I.; Rumyantseva, O. D.
2014-07-01
A two-step algorithm is used to reconstruct the spatial distributions of the acoustic characteristics of soft biological tissues-the sound velocity and absorption coefficient. Knowing these distributions is urgent for early detection of benign and malignant neoplasms in biological tissues, primarily in the breast. At the first stage, large-scale distributions are estimated; at the second step, they are refined with a high resolution. Results of reconstruction on the base of model initial data are presented. The principal necessity of preliminary reconstruction of large-scale distributions followed by their being taken into account at the second step is illustrated. The use of CUDA technology for processing makes it possible to obtain final images of 1024 × 1024 samples in only a few minutes.
NASA Astrophysics Data System (ADS)
Kudo, Yuki; Hirose, Kei; Murakami, Motohiko; Asahara, Yuki; Ozawa, Haruka; Ohishi, Yasuo; Hirao, Naohisa
2012-10-01
We report the measurements of aggregate shear velocity (VS) of CaSiO3 perovskite (CaPv) at high pressure (P) between 32 and 133 GPa and room temperature (T) on the basis of Brillouin spectroscopy. The sample had a tetragonal perovskite structure throughout the experiments. The measured P-VS data show the shear modulus and its pressure derivative at ambient condition to be G0=115.8 GPa and G'=1.20, respectively. The zero-pressure shear velocity is determined to be VS0=5.23 km/s, in good agreement with the previous estimate inferred from the ultrasonic measurements on Ca(Si,Ti)O3 perovskite at 1 bar. Our experimental results are broadly consistent with the earlier calculations on tetragonal CaPv but exhibit lower velocity at equivalent pressure. Such tetragonal CaPv is present in cold subducting slabs and possibly in wide areas of the lowermost mantle. While primitive mantle includes certain amount of CaPv, a depleted peridotite (former harzburgite) layer in subducted oceanic lithosphere is deficient in CaPv and enriched in ferropericlase in the lower mantle. Such harzburgite exhibits 0.9% faster VS and 0.7% slower bulk sound velocity (VΦ) at the lowermost mantle P-T conditions if CaPv is present in the tetragonal form in the surrounding mantle. The observed fast VS and slow VΦ anomalies in the D" layer underneath the circum-Pacific region might be attributed in large part in the presence of subducted harzburgitic materials.
Sound Velocities at the Spin Crossover in (Mg0.75Fe0.25)O Ferropericlase
NASA Astrophysics Data System (ADS)
Sturhahn, W.; Lin, J.; Jackson, J. M.; Zhao, J.
2006-12-01
Iron-bearing minerals of the lower mantle like ferropericlase and silicate perovskite have recently been studied to evaluate the presence of pressure-dependent crossovers between the high-spin and the low-spin state of iron. Such a crossover was clearly observed in ferropericlase using x-ray emission spectroscopy [1,2], conventional Mössbauer spectroscopy [3], and synchrotron Mössbauer spectroscopy [4]. In the case of silicate perovskite, the electronic state of the iron has been studied with x-ray emission spectroscopy [5,6] and synchrotron Mössbauer spectroscopy [7] but the situation remains unclear. Also the influence of the spin crossover on sound velocities of the iron-bearing minerals of the lower mantle has not been studied experimentally. We applied nuclear resonant inelastic x-ray scattering to determine the vibrational density of states of Fe in (Mg0.75Fe0.25)O ferropericlase up to 110 GPa and ambient temperature. We observed a significant effect of the spin crossover in ferropericlase on its elasticity and sound velocities that can derived from the vibrational density of states. We will also briefly address the potential effects of high temperatures on the spin crossover in the framework of a recently suggested thermal population model [8]. This work is supported by the U.S. DOE-BES, Office of Science, under Contract No. W-31-109-Eng-38 and by NSF through COMPRESS. [1] Badro J. et al. (2003) Science 300, 789 [2] Lin J.-F. et al. (2005) Nature 436, 377 [3] Speziale S. et al. (2005) PNAS 102, 17918 [4] Lin J.-F. et al. (2006) Phys.Rev. B 73, 113107 [5] Li J. et al. (2004) PNAS 101, 14027 [6] Badro J. et al. (2004) Science 305, 383 [7] Jackson J.M. et al. (2005) American Mineral. 90, 199 [8] Sturhahn W. et al. (2005) Geophys.Res.Lett. 31, L12307
Sound velocities of aluminum-bearing stishovite in the mantle transition zone
NASA Astrophysics Data System (ADS)
Gréaux, Steeve; Kono, Yoshio; Wang, Yanbin; Yamada, Akihiro; Zhou, Chunyin; Jing, Zhicheng; Inoue, Toru; Higo, Yuji; Irifune, Tetsuo; Sakamoto, Naoya; Yurimoto, Hisayoshi
2016-05-01
The elasticity of Al-bearing stishovite with 1.0, 3.3, and 4.5 wt % Al2O3 was investigated in the multianvil apparatus at high pressures and temperatures up to 21 GPa and 1700 K, by ultrasonic interferometry in conjunction with in situ X-ray techniques. The moduli KS and G are found to decrease with increasing Al2O3 content, while their pressure and temperature derivatives do not change in a significant manner for 1.0 and 3.3 wt % Al2O3. The temperature derivatives for 4.5 wt % Al2O3, however, are larger, which may result from a change in the Al substitution mechanism at high Al2O3 content. It is shown that acoustic velocities of any mid-ocean ridge basalt are lower by -0.4% than those calculated from pure stishovite data. Velocity perturbations up to -3.4% (VP) and -4.2% (VS) in subducted slabs are explained by the combination of the thermal equilibration (ΔT ~ 600 K) of the slab and Al enrichment in stishovite.
Song, Wei; Liu, Yonggang; Wang, Zhigang; Gong, Chaoying; Guo, Jie; Zhou, Wenge; Xie, Hongsen
2011-08-01
Based on large volume press and conventional pulse-echo ultrasonic technique, we have overcome the difficulty in determining the length of liquid specimen under high pressure, and the sound velocity in liquid Na has been measured up to 2 GPa. The P-V data deduced by our sound velocity results through equation of state is in an excellent agreement with previous data directly determined by piezometer method. This new experimental technique is convenient and ready for use, being expected to advance investigation on thermodynamic properties of liquid metals and other melts under high pressure. PMID:21895286
Magnetic transition and sound velocities of Fe3C at high pressure
NASA Astrophysics Data System (ADS)
Gao, L.; Chen, B.; Wang, J.; Lerche, M.; Zhao, J.; Sturhahn, W.; Ding, Y.; Ding, X.; Scott, H. P.; Bass, J.; Li, J.
2007-12-01
Carbon is a candidate light element in the Earth's core. Fe3C (cementite) has the lowest carbon content among all known Fe-C compounds. Under ambient conditions, Fe3C is ferromagnetic. A pressure-induced magnetic transition from a magnetic phase to non-magnetic phase has been found in previous studies; however, there is a controversy concerning the transition pressure. In this study, we carried out synchrotron Mossbauer spectroscopy (SMS) and nuclear resonant inelastic x-ray scattering (NRIXS) studies on Fe3C up to 52 GPa at room temperature at Sector 3 of the Advanced Photon Source (APS), Argonne National Laboratory. The starting material was synthesized from 57Fe-enriched iron powder and graphite powder. X-ray diffraction measurements revealed that the run product contains a non-negligible amount of iron. Our 1 bar SMS spectrum is well fitted by assuming one iron site with a magnetic hyperfine field of 20 T, consistent with that of Fe3C. Above 9.3 GPa our Mossbauer spectra revealed the disappearance of the 20 T site, indicating that Fe3C has lost its magnetism around 9.3 GPa or below. This is consistent with the magnetic transition at pressure of around 10 GPa reported in a Fe K-edge x- ray circular dichroism study (Duman et al., 2005), and is consistent with x-ray emission spectroscopy data (Lin et al., 2004), showing a significantly reduced magnetic moment at 12 GPa. A magnetic to paramagnetic phase transition is also observed at 483 K under room pressure (Wood et al., 2004). The observed magnetic transition under high pressure and high temperature indicates that the ferromagnetic phase is not stable under the Earth's core condition, and that the non-magnetic phase of Fe3C is more applicable to the Earth's core. We have also derived the Debye velocity of the sample from parabolic fitting to the low-energy range of the nuclear resonance inelastic x-ray scattering spectra at ambient condition. Combined with equation of state of Fe3C (Scott et al., 2001, Li et al
Sound velocities of Fe and Fe-Si alloy in the Earth’s core
Mao, Zhu; Lin, Jung-Fu; Liu, Jin; Alatas, Ahmet; Gao, Lili; Zhao, Jiyong; Mao, Ho-Kwang
2012-01-01
Compressional wave velocity-density (VP - ρ) relations of candidate Fe alloys at relevant pressure-temperature conditions of the Earth’s core are critically needed to evaluate the composition, seismic signatures, and geodynamics of the planet’s remotest region. Specifically, comparison between seismic VP - ρ profiles of the core and candidate Fe alloys provides first-order information on the amount and type of potential light elements—including H, C, O, Si, and/or S—needed to compensate the density deficit of the core. To address this issue, here we have surveyed and analyzed the literature results in conjunction with newly measured VP - ρ results of hexagonal closest-packed (hcp) Fe and hcp-Fe0.85Si0.15 alloy using in situ high-energy resolution inelastic X-ray scattering and X-ray diffraction. The nature of the Fe-Si alloy where Si is readily soluble in Fe represents an ideal solid-solution case to better understand the light-element alloying effects. Our results show that high temperature significantly decreases the VP of hcp-Fe at high pressures, and the Fe-Si alloy exhibits similar high-pressure VP - ρ behavior to hcp-Fe via a constant density offset. These VP - ρ data at a given temperature can be better described by an empirical power-law function with a concave behavior at higher densities than with a linear approximation. Our new datasets, together with literature results, allow us to build new VP - ρ models of Fe alloys in order to determine the chemical composition of the core. Our models show that the VP - ρ profile of Fe with 8 wt % Si at 6,000 K matches well with the Preliminary Reference Earth Model of the inner core. PMID:22689958
Non-adiabatic perturbations in multi-component perfect fluids
Koshelev, N.A.
2011-04-01
The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models.
Greenberg, Yaron; Yahel, Eyal; Caspi, El'ad N; Beuneu, Brigitte; Dariel, Moshe P; Makov, Guy
2010-09-01
The sound velocity of some liquid elements of groups IV, V, and VI, as reported in the literature, displays anomalous features that set them apart from other liquid metals. In an effort to determine a possible common origin of these anomalies, extensive neutron diffraction measurements of liquid Bi and Sb were carried out over a wide temperature range. The structure factors of liquid Sb and Bi were determined as a function of temperature. The structure of the two molten metals was carefully analyzed with respect to peak locations, widths, and coordination numbers in their respective radial distribution function. The width of the peaks in the radial distribution functions was not found to increase and even decreased within a certain temperature range. This anomalous temperature dependence of the peak widths correlates with the anomalous temperature dependence of the sound velocity. This correlation may be accounted for by increased rigidity of the liquid structure with temperature. A phenomenological correlation between the peak width and the sound velocity is suggested for metallic melts and is found to agree with available data for normal and anomalous elemental liquids in groups IV-VI. PMID:20831323
Sakamaki, Tatsuya; Ohtani, Eiji; Fukui, Hiroshi; Kamada, Seiji; Takahashi, Suguru; Sakairi, Takanori; Takahata, Akihiro; Sakai, Takeshi; Tsutsui, Satoshi; Ishikawa, Daisuke; Shiraishi, Rei; Seto, Yusuke; Tsuchiya, Taku; Baron, Alfred Q. R.
2016-01-01
Hexagonal close-packed iron (hcp-Fe) is a main component of Earth’s inner core. The difference in density between hcp-Fe and the inner core in the Preliminary Reference Earth Model (PREM) shows a density deficit, which implies an existence of light elements in the core. Sound velocities then provide an important constraint on the amount and kind of light elements in the core. Although seismological observations provide density–sound velocity data of Earth’s core, there are few measurements in controlled laboratory conditions for comparison. We report the compressional sound velocity (VP) of hcp-Fe up to 163 GPa and 3000 K using inelastic x-ray scattering from a laser-heated sample in a diamond anvil cell. We propose a new high-temperature Birch’s law for hcp-Fe, which gives us the VP of pure hcp-Fe up to core conditions. We find that Earth’s inner core has a 4 to 5% smaller density and a 4 to 10% smaller VP than hcp-Fe. Our results demonstrate that components other than Fe in Earth’s core are required to explain Earth’s core density and velocity deficits compared to hcp-Fe. Assuming that the temperature effects on iron alloys are the same as those on hcp-Fe, we narrow down light elements in the inner core in terms of the velocity deficit. Hydrogen is a good candidate; thus, Earth’s core may be a hidden hydrogen reservoir. Silicon and sulfur are also possible candidates and could show good agreement with PREM if we consider the presence of some melt in the inner core, anelasticity, and/or a premelting effect. PMID:26933678
Studies in Chaotic adiabatic dynamics
Jarzynski, C.
1994-01-01
Chaotic adiabatic dynamics refers to the study of systems exhibiting chaotic evolution under slowly time-dependent equations of motion. In this dissertation the author restricts his attention to Hamiltonian chaotic adiabatic systems. The results presented are organized around a central theme, namely, that the energies of such systems evolve diffusively. He begins with a general analysis, in which he motivates and derives a Fokker-Planck equation governing this process of energy diffusion. He applies this equation to study the {open_quotes}goodness{close_quotes} of an adiabatic invariant associated with chaotic motion. This formalism is then applied to two specific examples. The first is that of a gas of noninteracting point particles inside a hard container that deforms slowly with time. Both the two- and three-dimensional cases are considered. The results are discussed in the context of the Wall Formula for one-body dissipation in nuclear physics, and it is shown that such a gas approaches, asymptotically with time, an exponential velocity distribution. The second example involves the Fermi mechanism for the acceleration of cosmic rays. Explicit evolution equations are obtained for the distribution of cosmic ray energies within this model, and the steady-state energy distribution that arises when this equation is modified to account for the injection and removal of cosmic rays is discussed. Finally, the author re-examines the multiple-time-scale approach as applied to the study of phase space evolution under a chaotic adiabatic Hamiltonian. This leads to a more rigorous derivation of the above-mentioned Fokker-Planck equation, and also to a new term which has relevance to the problem of chaotic adiabatic reaction forces (the forces acting on slow, heavy degrees of freedom due to their coupling to light, fast chaotic degrees).
On black hole spectroscopy via adiabatic invariance
NASA Astrophysics Data System (ADS)
Jiang, Qing-Quan; Han, Yan
2012-12-01
In this Letter, we obtain the black hole spectroscopy by combining the black hole property of adiabaticity and the oscillating velocity of the black hole horizon. This velocity is obtained in the tunneling framework. In particular, we declare, if requiring canonical invariance, the adiabatic invariant quantity should be of the covariant form Iadia = ∮pi dqi. Using it, the horizon area of a Schwarzschild black hole is quantized independently of the choice of coordinates, with an equally spaced spectroscopy always given by ΔA = 8 π lp2 in the Schwarzschild and Painlevé coordinates.
NASA Astrophysics Data System (ADS)
Sasaki, Satoshi; Nakayama, Atsuyoshi; Sasaki, Yutaka; Mizusaki, Takao
2008-06-01
We have measured the temperature and magnetic-field dependences of the sound velocity for one longitudinal and two transverse waves in the low field phase (LFP) and the high field phase (HFP) of nuclear spin ordered bcc solid 3He crystals with a single magnetic domain along the melting curve. From sound velocity measurements for various crystal orientations as a function of the sound propagation direction, we determined the elastic stiffness constants, c ij ( T, B). In the LFP with tetragonal symmetry for the nuclear spin structure, we extracted six nuclear spin elastic stiffness constants Δ c {/ij ℓ }( T,0.06 T) from the temperature dependence of the sound velocity at 0.06 T and Δ c {/ij ℓ }(0.5 mK, B) from the magnetic-field dependence of sound velocity at 0.5 mK. In the HFP with cubic symmetry for the nuclear spin structure, we extracted three Δ c {/ij h }( T,0.50 T) at 0.50 T and Δ c {/ij h }(0.5 mK, B) at 0.5 mK. At the first-order magnetic phase transition from the LFP to the HFP at the lower critical field B c1, large jumps in sound velocities were observed for various crystal directions and we extracted three Δ c_{ij}^{total}|_{B_{c1}} . Using the thermodynamic relation between Δ c ij and the change in the internal energy for the exchange interaction in this system, Δ U ex( T, B), Δ c ij are related to the generalized second-order Grüneisen constants Γ{/ij X }≡ ∂ 2ln X/ ∂ ɛ i ∂ ɛ j as Δ c ij ( T, B)=Γ{/ij X }Δ U ex( T, B), where X represents some physical quantity which depends on the molar volume and ɛ j is the j-th component of a strain tensor. In the LFP, the Δ c {/ij ℓ }( T,0.06 T) were proportional to T 4, and Δ c {/ij ℓ }(0.5 mK, B) were proportional to B 2. We extracted Γ_{ij}^{s^{ell}} for the spin wave velocity in the LFP, s ℓ , from Δ c {/ij ℓ }( T,0.06 T) and Γ^{1/χ^{ell}}_{ij} for the inverse susceptibility, 1/ χ ℓ from Δ c {/ij ℓ }(0.5 mK, B). In the HFP, Δ c {/ij h }( T,0.50 T) were proportional
NASA Technical Reports Server (NTRS)
Schlosser, Herbert
1990-01-01
This paper is concerned with verification of the applicability of the Vinet et al. (1987) universal equation of state to the liquid phase of the rare-gas elements under pressure. As previously observed in solids and liquids metals, to a good approximation, in the absence of phase transitions, plots of the logarithms of the reduced pressure function, of the reduced sound velocity, and of the reduced bulk modulus, are all linear functions of 1 - X over the entire experimental pressure range. The results obtained on the rare-gas liquids are comparable in accuracy to those obtained in previous work on solids and liquid metals.
NASA Technical Reports Server (NTRS)
Schlosser, Herbert; Ferrante, John
1989-01-01
The previous work of Schlosser and Ferrante (1988) on universality in solids is extended to the study of liquid metals. As in the case of solids, to a good approximation, in the absence of phase transitions, plots of the logarithm of the reduced-pressure function H, of the reduced-isothermal-bulk-modulus function b, and of the reduced-sound-velocity function v are all linear in 1-X. Finally, it is demonstrated that ln(Cp/C/v) is also linear in 1-X, where X = (V/V/0/)exp 1/3), and V(0) is the volume at zero pressure.
Adiabat-shaping in indirect drive inertial confinement fusion
NASA Astrophysics Data System (ADS)
Baker, K. L.; Robey, H. F.; Milovich, J. L.; Jones, O. S.; Smalyuk, V. A.; Casey, D. T.; MacPhee, A. G.; Pak, A.; Celliers, P. M.; Clark, D. S.; Landen, O. L.; Peterson, J. L.; Berzak-Hopkins, L. F.; Weber, C. R.; Haan, S. W.; Döppner, T. D.; Dixit, S.; Giraldez, E.; Hamza, A. V.; Jancaitis, K. S.; Kroll, J. J.; Lafortune, K. N.; MacGowan, B. J.; Moody, J. D.; Nikroo, A.; Widmayer, C. C.
2015-05-01
Adiabat-shaping techniques were investigated in indirect drive inertial confinement fusion experiments on the National Ignition Facility as a means to improve implosion stability, while still maintaining a low adiabat in the fuel. Adiabat-shaping was accomplished in these indirect drive experiments by altering the ratio of the picket and trough energies in the laser pulse shape, thus driving a decaying first shock in the ablator. This decaying first shock is designed to place the ablation front on a high adiabat while keeping the fuel on a low adiabat. These experiments were conducted using the keyhole experimental platform for both three and four shock laser pulses. This platform enabled direct measurement of the shock velocities driven in the glow-discharge polymer capsule and in the liquid deuterium, the surrogate fuel for a DT ignition target. The measured shock velocities and radiation drive histories are compared to previous three and four shock laser pulses. This comparison indicates that in the case of adiabat shaping the ablation front initially drives a high shock velocity, and therefore, a high shock pressure and adiabat. The shock then decays as it travels through the ablator to pressures similar to the original low-adiabat pulses when it reaches the fuel. This approach takes advantage of initial high ablation velocity, which favors stability, and high-compression, which favors high stagnation pressures.
Adiabat-shaping in indirect drive inertial confinement fusion
Baker, K. L.; Robey, H. F.; Milovich, J. L.; Jones, O. S.; Smalyuk, V. A.; Casey, D. T.; MacPhee, A. G.; Pak, A.; Celliers, P. M.; Clark, D. S.; Landen, O. L.; Peterson, J. L.; Berzak-Hopkins, L. F.; Weber, C. R.; Haan, S. W.; Döppner, T. D.; Dixit, S.; Hamza, A. V.; Jancaitis, K. S.; Kroll, J. J.; and others
2015-05-15
Adiabat-shaping techniques were investigated in indirect drive inertial confinement fusion experiments on the National Ignition Facility as a means to improve implosion stability, while still maintaining a low adiabat in the fuel. Adiabat-shaping was accomplished in these indirect drive experiments by altering the ratio of the picket and trough energies in the laser pulse shape, thus driving a decaying first shock in the ablator. This decaying first shock is designed to place the ablation front on a high adiabat while keeping the fuel on a low adiabat. These experiments were conducted using the keyhole experimental platform for both three and four shock laser pulses. This platform enabled direct measurement of the shock velocities driven in the glow-discharge polymer capsule and in the liquid deuterium, the surrogate fuel for a DT ignition target. The measured shock velocities and radiation drive histories are compared to previous three and four shock laser pulses. This comparison indicates that in the case of adiabat shaping the ablation front initially drives a high shock velocity, and therefore, a high shock pressure and adiabat. The shock then decays as it travels through the ablator to pressures similar to the original low-adiabat pulses when it reaches the fuel. This approach takes advantage of initial high ablation velocity, which favors stability, and high-compression, which favors high stagnation pressures.
Kinetic Theory Derivation of the Adiabatic Law for Ideal Gases.
ERIC Educational Resources Information Center
Sobel, Michael I.
1980-01-01
Discusses how the adiabatic law for ideal gases can be derived from the assumption of a Maxwell-Boltzmann (or any other) distribution of velocities--in contrast to the usual derivations from thermodynamics alone, and the higher-order effect that leads to one-body viscosity. An elementary derivation of the adiabatic law is given. (Author/DS)
Wireless adiabatic power transfer
Rangelov, A.A.; Suchowski, H.; Silberberg, Y.; Vitanov, N.V.
2011-03-15
Research Highlights: > Efficient and robust mid-range wireless energy transfer between two coils. > The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. > Wireless energy transfer is insensitive to any resonant constraints. > Wireless energy transfer is insensitive to noise in the neighborhood of the coils. - Abstract: We propose a technique for efficient mid-range wireless power transfer between two coils, by adapting the process of adiabatic passage for a coherently driven two-state quantum system to the realm of wireless energy transfer. The proposed technique is shown to be robust to noise, resonant constraints, and other interferences that exist in the neighborhood of the coils.
NASA Astrophysics Data System (ADS)
Kung, J.; Chien, Y. V.; Wu, W.; Dong, J.; Chang, Y.; Tsai, C.; Yang, M.; Wang, K.
2012-12-01
Previous studies showed that the voids and their geometry in the sedimentary rocks have great influence on the compressibility of rock, which reflects on its elastic velocities. Some models were developed to discuss the relations among velocity, porosity and void geometry. Therefore, the information of porosity, and void geometry and its distribution in rock is essential for understanding how the elastic properties of porous rocks affected by their poregeometry. In this study, we revisited a well-studied porous rock, Darley Dale sandstone, which has been studied by different groups with different purposes. Most of them are the deformation experiments. Different from previous studies, we measured the sound velocity of Darley dale sandstone under hydrostatic conditions. Also, we employed different techniques to investigate the pore geometry and porosity of Darley Dale sandstone to gain the insight of velocity changing behavior under the crustal conditions. Here, we measured a fully-dense copper block for a comparison. We performed X-ray CT scanning (XCT) to image the pore space of sandstone to construct the 3-D image of pore geometry, distribution and the pore size. The CT image data are allowed us to estimate the porosity of sandstone, too. One the other hand, the porosity of sample was measured using imbibitions method at ambient conditions and helium porosimeter at high pressure (up to 150 MPa). A set of specimens were cored from Darley Dale sandstone block. P and S wave velocities of specimens were measured at ambient conditions. We also performed high pressure velocity measurements on a selected rock specimen and a copper block up to 150 MPa under dry condition. Porosity of a set of rock specimens measured by imbibitions method was spanned from 6% to 15%, largely distributed within a range of 8%-11%. Compared the porosity obtained from three different techniques, imbibitions method, helium porosimeter and XCT, values from those measurements are in good agreement
Adiabatically driven Brownian pumps.
Rozenbaum, Viktor M; Makhnovskii, Yurii A; Shapochkina, Irina V; Sheu, Sheh-Yi; Yang, Dah-Yen; Lin, Sheng Hsien
2013-07-01
We investigate a Brownian pump which, being powered by a flashing ratchet mechanism, produces net particle transport through a membrane. The extension of the Parrondo's approach developed for reversible Brownian motors [Parrondo, Phys. Rev. E 57, 7297 (1998)] to adiabatically driven pumps is given. We demonstrate that the pumping mechanism becomes especially efficient when the time variation of the potential occurs adiabatically fast or adiabatically slow, in perfect analogy with adiabatically driven Brownian motors which exhibit high efficiency [Rozenbaum et al., Phys. Rev. E 85, 041116 (2012)]. At the same time, the efficiency of the pumping mechanism is shown to be less than that of Brownian motors due to fluctuations of the number of particles in the membrane. PMID:23944411
NASA Astrophysics Data System (ADS)
Hyung, Eugenia; Huang, Shichun; Petaev, Michail I.; Jacobsen, Stein B.
2016-04-01
The upper mantle is widely accepted to be pyrolitic, but the bulk composition of the lower mantle remains highly disputed. Recent modeling of the lower mantle shear wave velocity profile has suggested that the lower mantle is enriched in bridgmanite, therefore implying a higher Si/Mg than that of the upper mantle. We improve upon such modeling by taking into account Ca-perovskite and considering the distribution of Fe between bridgmanite and ferropericlase, more appropriate for Al-bearing systems. Using available experimental data, we derive a means to constrain Fe-Mg partitioning for bridgmanite and ferropericlase, constrain suitable values for the lower mantle, and apply these to lower mantle shear wave velocity calculations. Calculations that consider the effects of minor chemical components such as Ca and Al suggest that the lower mantle shear wave velocities can resolve PREM for a pyrolitic composition to within 1%. We also model chemical fractionations of the 147Sm-143Nd and 176Lu-176Hf systems induced by a crystallizing magma ocean that would produce a putative Si-enriched lower mantle. The comparison of the calculated 143Nd/144Nd and 176Hf/177Hf signatures with those of the terrestrial array shows that a Si-enriched lower mantle, if ever formed, no longer exists. Both mineralogical calculations and geochemical magma ocean modeling support the idea that the Earth's lower mantle is likely pyrolitic and that the mantle as a whole need not be chemically stratified.
Aggregate sound velocities and acoustic Grüneisen parameter of iron up to 300 GPa and 1,200 K
Dubrovinsky, L. S.; Dubrovinskaia, N. A.; Le Bihan, T.
2001-01-01
Successful interpretation of available geophysical data requires experimental and theoretical information on the elasticity of solids under physical conditions of Earth's interior. Because iron is considered as major component in Earth's core, elastic properties of iron at high pressures and temperatures are very important for modeling its composition and dynamics. We use in situ x-ray diffraction data on ɛ-iron at static pressures up to 300 GPa and temperatures to 1,200 K to determine the Debye–Waller temperature factors and calculate aggregate sound velocities and Grüneisen parameter of ɛ-iron by using an approach that is based on Rietveld refinement at high pressures and temperatures. PMID:11504937
Parallelizable adiabatic gate teleportation
NASA Astrophysics Data System (ADS)
Nakago, Kosuke; Hajdušek, Michal; Nakayama, Shojun; Murao, Mio
2015-12-01
To investigate how a temporally ordered gate sequence can be parallelized in adiabatic implementations of quantum computation, we modify adiabatic gate teleportation, a model of quantum computation proposed by Bacon and Flammia [Phys. Rev. Lett. 103, 120504 (2009), 10.1103/PhysRevLett.103.120504], to a form deterministically simulating parallelized gate teleportation, which is achievable only by postselection. We introduce a twisted Heisenberg-type interaction Hamiltonian, a Heisenberg-type spin interaction where the coordinates of the second qubit are twisted according to a unitary gate. We develop parallelizable adiabatic gate teleportation (PAGT) where a sequence of unitary gates is performed in a single step of the adiabatic process. In PAGT, numeric calculations suggest the necessary time for the adiabatic evolution implementing a sequence of L unitary gates increases at most as O (L5) . However, we show that it has the interesting property that it can map the temporal order of gates to the spatial order of interactions specified by the final Hamiltonian. Using this property, we present a controlled-PAGT scheme to manipulate the order of gates by a control qubit. In the controlled-PAGT scheme, two differently ordered sequential unitary gates F G and G F are coherently performed depending on the state of a control qubit by simultaneously applying the twisted Heisenberg-type interaction Hamiltonians implementing unitary gates F and G . We investigate why the twisted Heisenberg-type interaction Hamiltonian allows PAGT. We show that the twisted Heisenberg-type interaction Hamiltonian has an ability to perform a transposed unitary gate by just modifying the space ordering of the final Hamiltonian implementing a unitary gate in adiabatic gate teleportation. The dynamics generated by the time-reversed Hamiltonian represented by the transposed unitary gate enables deterministic simulation of a postselected event of parallelized gate teleportation in adiabatic
NASA Astrophysics Data System (ADS)
Tinoco, R. O.; Goldstein, E. B.; Coco, G.
2015-02-01
We use a machine learning approach to seek an accurate, physically sound predictor, to estimate the mean velocity for open-channel flow when submerged arrays of rigid cylinders (model vegetation) are present. A genetic programming routine is used to find a robust relationship between relevant properties of the model vegetation and flow parameters. We use published data from laboratory experiments covering a broad range of conditions to obtain an equation that matches the performance of other predictors from recent literature in terms of accuracy, while showing a less complex structure. We also investigate how different criteria for data selection, as well as the size of the data set used to train the algorithm, influences the accuracy of the resulting predictors. Our results show that a proper use of Machine-Learning techniques does not only provide empirical correlations, but can yield physically sound models as representative of the physical processes involved. We provide a clear, thorough example of the application of GP, its advantages and shortcomings, to encourage the use of data-driven techniques as part of the data analysis process, and to address common misconceptions of machine learning as simple correlation techniques or physically senseless statistical analysis.
Gao, L.; Chen, B.; Wang, J.; Alp, E.E.; Zhao, J.; Lerche, M.; Sturhahn, W.; Scott, H.P.; Huang, F.; Ding, Y.; Sinogeikin, S.V.; Lundstrom, C.C.; Bass, J.D.; Li, J.; X-Ray Science Division; Univ. of Illinois; Carnegie Inst. of Washington; Indiana Univ.
2008-09-11
We have carried out nuclear resonant scattering measurements on {sup 57}Fe-enriched Fe{sub 3}C between 1 bar and 50 GPa at 300 K. Synchrotron Moessbauer spectra reveal a pressure-induced magnetic transition in Fe{sub 3}C between 4.3 and 6.5 GPa. On the basis of our nuclear resonant inelastic X-ray scattering spectra and existing equation-of-state data, we have derived the compressional wave velocity V{sub p} and shear wave velocity V{sub s} for the high-pressure nonmagnetic phase, which can be expressed as functions of density ({rho}): V{sub p} (km/s) = -3.99 + 1.29{rho}(g/cm{sup 3}) and V{sub s} (km/s) = 1.45 + 0.24{rho}(g/cm{sup 3}). The addition of carbon to iron-nickel alloy brings density, V{sub p} and V{sub s} closer to seismic observations, supporting carbon as a principal light element in the Earth's inner core.
NASA Technical Reports Server (NTRS)
Papadopoulos, K.
1992-01-01
A qualitative analysis is conducted to reconcile the experimental data from critical ionization velocity (CIV) studies with CIV theories. The experimental data are reviewed demonstrating that: (1) the wave frequency is variable and low; (2) the wave polarization is almost isotropic; (3) electron energization is not easily reconciled with the observed wave spectrum; and (4) ambient electron density plays a role in determining CIV triggering conditions. Analytical treatment is given to the dispersion relation of the lower hybrid wave (LWH) instability driven by the streaming of an ion beam generated by the interaction of the neutral cloud with the ambient atmosphere. By incorporating the LWH instabilities of strong turbulence and finite-size effects into theoretical CIV relationships, the observations can be interpreted. The issues raised by the experimental data are understood within the context of a hypothesis of backward propagating nonlinearly collapsing wavepackets.
NASA Astrophysics Data System (ADS)
Lin, J.; Fei, Y.; Sturhahn, W.; Zhao, J.; Mao, H.; Hemley, R.
2004-05-01
Iron-nickel is the most abundant constituent of the Earth's core. The amount of Ni in the core is about 5.5 wt%. Geophysical and cosmochemical studies suggest that the Earth's outer core also contains approximately 10% of light element(s) and a certain amount of light element(s) may be present in the inner core. Si and S are believed to be alloying light elements in the iron-rich planetary cores such as the Earth and Mars. Therefore, understanding the alloying effects of Ni, Si, and S on the phase diagram and physical properties of Fe under core conditions is crucial for geophysical and geochemical models of planetary interiors. The addition of Ni and Si does not appreciably change the compressibility of hcp-Fe under high pressures. Studies of the phase relations of Fe and Fe-Ni alloys indicate that Fe with up to 10 wt% Ni is likely to be in the hcp structure under inner core conditions. On the other hand, adding Si into Fe strongly stabilizes the bcc structure to much higher pressures and temperatures (Lin et al., 2002). We have also studied the sound velocities and magnetic properties of Fe0.92Ni0.08, Fe0.85Si0.15, and Fe3S alloys with nuclear resonant inelastic x-ray scattering and nuclear forward scattering up to 106 GPa, 70 GPa, and 57 GPa, respectively. The sound velocities of the alloys are obtained from the measured partial phonon density of states for 57Fe incorporated in the alloys. Addition of Ni slightly decreases the VP and VS of Fe under high pressures (Lin et al., 2003). Si or S alloyed with Fe increases the VP and VS under high pressures, which provides a better match to seismological data of the Earth's core. We note that the increase in the VP and VS of Fe0.85Si0.15 and Fe3S is mainly contributed from the density decrease of adding Si and S in iron. Time spectra of the nuclear forward scattering reveal that the most iron rich sulfide, Fe3S, undergoes a magnetic to non-magnetic transition at approximately 18 GPa from a low-pressure magnetically
Adiabatic cooling of antiprotons.
Gabrielse, G; Kolthammer, W S; McConnell, R; Richerme, P; Kalra, R; Novitski, E; Grzonka, D; Oelert, W; Sefzick, T; Zielinski, M; Fitzakerley, D; George, M C; Hessels, E A; Storry, C H; Weel, M; Müllers, A; Walz, J
2011-02-18
Adiabatic cooling is shown to be a simple and effective method to cool many charged particles in a trap to very low temperatures. Up to 3×10(6) p are cooled to 3.5 K-10(3) times more cold p and a 3 times lower p temperature than previously reported. A second cooling method cools p plasmas via the synchrotron radiation of embedded e(-) (with many fewer e(-) than p in preparation for adiabatic cooling. No p are lost during either process-a significant advantage for rare particles. PMID:21405511
Adiabatic Cooling of Antiprotons
Gabrielse, G.; Kolthammer, W. S.; McConnell, R.; Richerme, P.; Kalra, R.; Novitski, E.; Oelert, W.; Grzonka, D.; Sefzick, T.; Zielinski, M.; Fitzakerley, D.; George, M. C.; Hessels, E. A.; Storry, C. H.; Weel, M.; Muellers, A.; Walz, J.
2011-02-18
Adiabatic cooling is shown to be a simple and effective method to cool many charged particles in a trap to very low temperatures. Up to 3x10{sup 6} p are cooled to 3.5 K--10{sup 3} times more cold p and a 3 times lower p temperature than previously reported. A second cooling method cools p plasmas via the synchrotron radiation of embedded e{sup -} (with many fewer e{sup -} than p) in preparation for adiabatic cooling. No p are lost during either process--a significant advantage for rare particles.
NASA Astrophysics Data System (ADS)
Nishida, Keisuke; Kono, Yoshio; Terasaki, Hidenori; Takahashi, Suguru; Ishii, Miho; Shimoyama, Yuta; Higo, Yuji; Funakoshi, Ken-ichi; Irifune, Tetsuo; Ohtani, Eiji
2013-01-01
The P-wave velocity (VP) of liquid Fe57S43 was measured up to 5.4 GPa using an ultrasonic method combined with the synchrotron X-ray technique. The VP of liquid Fe57S43 showed little change with temperature, but increased almost linearly from 3105±11 m/s to 3845±9 m/s with increasing pressure from 2.4 to 5.4 GPa. This can be approximated by VP [m/s]=2664+205.4×P, where P is the pressure in GPa. The VP of liquid Fe57S43 at 2.4-5.4 GPa was significantly lower than that of pure liquid Fe. However, the pressure dependence of VP of the liquid Fe57S43 was markedly higher than that of pure liquid Fe. The marked difference in the pressure dependences of VP between pure liquid Fe and liquid Fe57S43 may cause VP crossover at around 7 GPa. As a result, the VP of liquid Fe57S43 would become higher than that of pure liquid Fe at pressures higher than 7 GPa. Thus, S decreases VP at low pressures such as those of the lunar outer core, but would increase it at the high pressures of the Earth's outer core. Assuming the lunar core consists of a liquid Fe-FeS outer core and a solid Fe inner core, the expected VP in the lunar outer core ranges from 3756 to 4230 m/s.
Adiabatically implementing quantum gates
Sun, Jie; Lu, Songfeng Liu, Fang
2014-06-14
We show that, through the approach of quantum adiabatic evolution, all of the usual quantum gates can be implemented efficiently, yielding running time of order O(1). This may be considered as a useful alternative to the standard quantum computing approach, which involves quantum gates transforming quantum states during the computing process.
Entanglement and adiabatic quantum computation
NASA Astrophysics Data System (ADS)
Ahrensmeier, D.
2006-06-01
Adiabatic quantum computation provides an alternative approach to quantum computation using a time-dependent Hamiltonian. The time evolution of entanglement during the adiabatic quantum search algorithm is studied, and its relevance as a resource is discussed.
Adiabatic topological quantum computing
NASA Astrophysics Data System (ADS)
Cesare, Chris; Landahl, Andrew J.; Bacon, Dave; Flammia, Steven T.; Neels, Alice
2015-07-01
Topological quantum computing promises error-resistant quantum computation without active error correction. However, there is a worry that during the process of executing quantum gates by braiding anyons around each other, extra anyonic excitations will be created that will disorder the encoded quantum information. Here, we explore this question in detail by studying adiabatic code deformations on Hamiltonians based on topological codes, notably Kitaev's surface codes and the more recently discovered color codes. We develop protocols that enable universal quantum computing by adiabatic evolution in a way that keeps the energy gap of the system constant with respect to the computation size and introduces only simple local Hamiltonian interactions. This allows one to perform holonomic quantum computing with these topological quantum computing systems. The tools we develop allow one to go beyond numerical simulations and understand these processes analytically.
Sound Velocities and Density of (Mg0.65, Fe0.35)O ferropericlase up to 1.4 Mbar
NASA Astrophysics Data System (ADS)
Chen, B.; Jackson, J. M.; Sturhahn, W.; Zhang, D.; Zhao, J.; Murphy, C. A.; Wicks, J. K.
2010-12-01
The Earth’s lower mantle accounts for more than half of the mass and volume of the planet. Iron is the most abundant transition-metal in the lower mantle, and it is hosted mainly by silicate perovskite, post-perovskite and ferropericlase. The spin-pairing transitions of iron from high-spin (HS) to low-spin (LS) state in ferropericlase have been recognized to affect the density and sound velocities of this second most abundant lower mantle phase (e.g. Speziale et al., 2005; Lin et al., 2005; Lin et al., 2006; Crowhurst et al., 2008; Marquardt et al., 2009; Zhuravlev et al., 2009). High-pressure and high-temperature physical properties of ferropericlase (Mg,Fe)O with various iron content are of significant importance for interpreting the seismological structure of the lower mantle in terms of compositional variations and for geodynamic modeling (e.g. Bower et al., 2009). We have determined the elastic and vibrational properties of (Mg0.65Fe0.35)O up to 1.4 Mbar at 300 K using nuclear resonant inelastic x-ray scattering (NRIXS) and in situ X-ray diffraction (XRD) measurements in diamond anvil cell at Sector 3 of Advanced Photon Source, Argonne National Laboratory. (Mg0.65Fe0.35)O contains the amount of iron within the estimated range expected for a “pyrolite” lower mantle (e.g. Westrenen et al., 2005; Sinmyo et al., 2008). From the low-energy region of the partial phonon density of states (PDoS), in situ XRD measurements, and our separate equation-of-state study with smaller pressure steps, we derived its shear and compressional velocities up to 1.4 Mbar. From integration of the PDoS, we also obtained Fe-weighted vibrational parameters as a function of pressure for this ferropericlase. Our new data provide fundamental new knowledge about the effects of spin transition and iron content on the density and sound velocities of ferropericlase in a previously uncharted pressure-composition sector. We will synthesize these effects by combining our results with those of
NASA Astrophysics Data System (ADS)
Bingham, Robert G.; Siegert, Martin J.; Young, Duncan A.; Blankenship, Donald D.
2007-09-01
Ice flow through central Antarctica has the potential to transmit accumulation changes from deep-interior East Antarctica rapidly to the shelf, but it is poorly constrained owing to a dearth of ice-velocity observations. We use parameters derived from airborne radio echo sounding (RES) data to examine the onset, areal extent, and englacial conditions of an organized flow network (tributaries feeding an ice stream) draining from the South Pole to the Filchner-Ronne Ice Shelf. We classified RES flight tracks covering the region according to whether englacial stratigraphy was disrupted (i.e., internal layers diverged significantly from the surface and bed echoes) or undisrupted (i.e., internal layers closely parallel surface and basal topography), and we calculated subglacial roughness along basal reflectors. Where satellite-measured surface ice-flow speeds are available (covering 39% of the study region), regions of fast and tributary flow correspond with RES flight tracks that exhibit more disrupted internal layers and smoother subglacial topography than their counterparts in regions of slow flow. This suggests that disrupted internal layering and smooth subglacial topography identified from RES profiles can be treated as indicators of past or present enhanced-flow tributaries where neither satellite nor ground-based ice-flow measurements are available. We therefore use these RES-derived parameters to assess the balance-flux-modeled steady state flow regime between the South Pole and Filchner-Ronne Ice Shelf. The RES analysis confirms that an organized flow network drains a wide region around the South Pole into the Filchner-Ronne Ice Shelf. However, the spatial extent of this network, as delineated by the RES data, diverges from that predicted by currently available balance-flux models.
Bazzani, A.; Turchetti, G.; Benedetti, C.; Rambaldi, S.; Servizi, G.
2005-06-08
In a high intensity circular accelerator the synchrotron dynamics introduces a slow modulation in the betatronic tune due to the space-charge tune depression. When the transverse motion is non-linear due to the presence of multipolar effects, resonance islands move in the phase space and change their amplitude. This effect introduces the trapping and detrapping phenomenon and a slow diffusion in the phase space. We apply the neo-adiabatic theory to describe this diffusion mechanism that can contribute to halo formation.
Spatial adiabatic passage: a review of recent progress
NASA Astrophysics Data System (ADS)
Menchon-Enrich, R.; Benseny, A.; Ahufinger, V.; Greentree, A. D.; Busch, Th; Mompart, J.
2016-07-01
Adiabatic techniques are known to allow for engineering quantum states with high fidelity. This requirement is currently of large interest, as applications in quantum information require the preparation and manipulation of quantum states with minimal errors. Here we review recent progress on developing techniques for the preparation of spatial states through adiabatic passage, particularly focusing on three state systems. These techniques can be applied to matter waves in external potentials, such as cold atoms or electrons, and to classical waves in waveguides, such as light or sound.
Spatial adiabatic passage: a review of recent progress.
Menchon-Enrich, R; Benseny, A; Ahufinger, V; Greentree, A D; Busch, Th; Mompart, J
2016-07-01
Adiabatic techniques are known to allow for engineering quantum states with high fidelity. This requirement is currently of large interest, as applications in quantum information require the preparation and manipulation of quantum states with minimal errors. Here we review recent progress on developing techniques for the preparation of spatial states through adiabatic passage, particularly focusing on three state systems. These techniques can be applied to matter waves in external potentials, such as cold atoms or electrons, and to classical waves in waveguides, such as light or sound. PMID:27245462
NASA Astrophysics Data System (ADS)
Bakaeva, Z.; Igamberdiev, K.; Khabibulaev, P.; Stepanek, P.; Cernoch, P.
This work reports the results of a study of the microstructural and dynamical properties of self-assembled triblock copolymers. It was performed using adiabatic calorimetry, ultrasonic spectroscopy and dynamic light scattering. In the vicinity of supramolecular transitions, first aggregates occur; with further increasing temperature a spontaneous forming of compact structures was observed in the system. These results are supported by data of the shear viscosity and free internal volume parameters calculated in the framework of the Frenkel-Andrade approach.
NASA Astrophysics Data System (ADS)
Landahl, Andrew
2012-10-01
Quantum computers promise to exploit counterintuitive quantum physics principles like superposition, entanglement, and uncertainty to solve problems using fundamentally fewer steps than any conventional computer ever could. The mere possibility of such a device has sharpened our understanding of quantum coherent information, just as lasers did for our understanding of coherent light. The chief obstacle to developing quantum computer technology is decoherence--one of the fastest phenomena in all of physics. In principle, decoherence can be overcome by using clever entangled redundancies in a process called fault-tolerant quantum error correction. However, the quality and scale of technology required to realize this solution appears distant. An exciting alternative is a proposal called ``adiabatic'' quantum computing (AQC), in which adiabatic quantum physics keeps the computer in its lowest-energy configuration throughout its operation, rendering it immune to many decoherence sources. The Adiabatic Quantum Architectures In Ultracold Systems (AQUARIUS) Grand Challenge Project at Sandia seeks to demonstrate this robustness in the laboratory and point a path forward for future hardware development. We are building devices in AQUARIUS that realize the AQC architecture on up to three quantum bits (``qubits'') in two platforms: Cs atoms laser-cooled to below 5 microkelvin and Si quantum dots cryo-cooled to below 100 millikelvin. We are also expanding theoretical frontiers by developing methods for scalable universal AQC in these platforms. We have successfully demonstrated operational qubits in both platforms and have even run modest one-qubit calculations using our Cs device. In the course of reaching our primary proof-of-principle demonstrations, we have developed multiple spinoff technologies including nanofabricated diffractive optical elements that define optical-tweezer trap arrays and atomic-scale Si lithography commensurate with placing individual donor atoms with
Geometry of the Adiabatic Theorem
ERIC Educational Resources Information Center
Lobo, Augusto Cesar; Ribeiro, Rafael Antunes; Ribeiro, Clyffe de Assis; Dieguez, Pedro Ruas
2012-01-01
We present a simple and pedagogical derivation of the quantum adiabatic theorem for two-level systems (a single qubit) based on geometrical structures of quantum mechanics developed by Anandan and Aharonov, among others. We have chosen to use only the minimum geometric structure needed for the understanding of the adiabatic theorem for this case.…
Adiabatic compressibility of myosin subfragment-1 and heavy meromyosin with or without nucleotide.
Tamura, Y; Suzuki, N; Mihashi, K
1993-01-01
The partial specific adiabatic compressibilities of myosin subfragment-1 (S1) and heavy meromyosin (HMM) of skeletal muscle in solution were determined by measuring the density and the sound velocity of the solution. The partial specific volumes of S1 and HMM were 0.713 and 0.711 cm3/g, respectively. The partial specific adiabatic compressibilities of S1 and HMM were 4.2 x 10(-12) and 2.9 x 10(-12) cm2/dyn, respectively. These values are in the same range as the most of globular proteins so far studied. The result indicates that the flexibility of S1 region almost equals to that of HMM. After binding to ADP.orthovanadate, S1 and HMM became softer than their complexes with ADP. The bulk moduli of S1 and HMM were of the order of (4-6) x 10(10) dyn/cm2, which are very comparable with the bulk modulus of muscle fiber. PMID:8298019
... sounds by listening to the abdomen with a stethoscope ( auscultation ). Most bowel sounds are normal. However, there ... sounds can sometimes be heard even without a stethoscope. Hyperactive bowel sounds mean there is an increase ...
NASA Astrophysics Data System (ADS)
Savoini, P.; Lembege, B.
2006-12-01
Test particle simulations are performed in order to analyze in details the dynamics of transmitted electrons through a supercritical strictly perpendicular collisionless shock. Recent analysis has evidenced three different behavior for the electron population: (i) adiabatic, (ii) over-adiabatic characterized by an increase of the gyrating velocity higher than that expected from the conservation of the magnetic moment and (iii) under- adiabatic characterized by a decrease of this velocity and not predicted by any existing theory. Analysis of individual time particle trajectories is performed and completed by statistics based on different upstream distributions (spherical shell and Maxwellian). The use of a Maxwellian distribution function allows us to speak in term of an electronic temperature and we observe in agreement with experimental datas that as the temperature increases (enlarged Maxwellian distribution function) the number of non-adiabatic transmitted electrons drastically decreases. In addition, our study evidenced that both non-adiabatic populations are coming from the core of the electron distribution. All combined nonstationary and nonuniformity effects have a filtering impact on the relative percentages of adiabatic and over-adiabatic populations, in contrast with under- adiabatic population which is relatively poorly affected.
Effect of the Heat Pipe Adiabatic Region.
Brahim, Taoufik; Jemni, Abdelmajid
2014-04-01
The main motivation of conducting this work is to present a rigorous analysis and investigation of the potential effect of the heat pipe adiabatic region on the flow and heat transfer performance of a heat pipe under varying evaporator and condenser conditions. A two-dimensional steady-state model for a cylindrical heat pipe coupling, for both regions, is presented, where the flow of the fluid in the porous structure is described by Darcy-Brinkman-Forchheimer model which accounts for the boundary and inertial effects. The model is solved numerically by using the finite volumes method, and a fortran code was developed to solve the system of equations obtained. The results show that a phase change can occur in the adiabatic region due to temperature gradient created in the porous structure as the heat input increases and the heat pipe boundary conditions change. A recirculation zone may be created at the condenser end section. The effect of the heat transfer rate on the vapor radial velocities and the performance of the heat pipe are discussed. PMID:24895467
Inertial effects in adiabatically driven flashing ratchets
NASA Astrophysics Data System (ADS)
Rozenbaum, Viktor M.; Makhnovskii, Yurii A.; Shapochkina, Irina V.; Sheu, Sheh-Yi; Yang, Dah-Yen; Lin, Sheng Hsien
2014-05-01
We study analytically the effect of a small inertial correction on the properties of adiabatically driven flashing ratchets. Parrondo's lemma [J. M. R. Parrondo, Phys. Rev. E 57, 7297 (1998), 10.1103/PhysRevE.57.7297] is generalized to include the inertial term so as to establish the symmetry conditions allowing directed motion (other than in the overdamped massless case) and to obtain a high-temperature expansion of the motion velocity for arbitrary potential profiles. The inertial correction is thus shown to enhance the ratchet effect at all temperatures for sawtooth potentials and at high temperatures for simple potentials described by the first two harmonics. With the special choice of potentials represented by at least the first three harmonics, the correction gives rise to the motion reversal in the high-temperature region. In the low-temperature region, inertia weakens the ratchet effect, with the exception of the on-off model, where diffusion is important. The directed motion adiabatically driven by potential sign fluctuations, though forbidden in the overdamped limit, becomes possible due to purely inertial effects in neither symmetric nor antisymmetric potentials, i.e., not for commonly used sawtooth and two-sinusoid profiles.
Equations for Adiabatic but Rotational Steady Gas Flows without Friction
NASA Technical Reports Server (NTRS)
Schaefer, Manfred
1947-01-01
This paper makes the following assumptions: 1) The flowing gases are assumed to have uniform energy distribution. ("Isoenergetic gas flows," that is valid with the same constants for the the energy equation entire flow.) This is correct, for example, for gas flows issuing from a region of constant pressure, density, temperature, end velocity. This property is not destroyed by compression shocks because of the universal validity of the energy law. 2) The gas behaves adiabatically, not during the compression shock itself but both before and after the shock. However, the adiabatic equation (p/rho(sup kappa) = C) is not valid for the entire gas flow with the same constant C but rather with an appropriate individual constant for each portion of the gas. For steady flows, this means that the constant C of the adiabatic equation is a function of the stream function. Consequently, a gas that has been flowing "isentropically",that is, with the same constant C of the adiabatic equation throughout (for example, in origination from a region of constant density, temperature, and velocity) no longer remains isentropic after a compression shock if the compression shock is not extremely simple (wedge shaped in a two-dimensional flow or cone shaped in a rotationally symmetrical flow). The solution of nonisentropic flows is therefore an urgent necessity.
The lung sounds are best heard with a stethoscope. This is called auscultation. Normal lung sounds occur ... the bottom of the rib cage. Using a stethoscope, the doctor may hear normal breathing sounds, decreased ...
Adiabatic evolution of plasma equilibrium
Grad, H.; Hu, P. N.; Stevens, D. C.
1975-01-01
A new theory of plasma equilibrium is introduced in which adiabatic constraints are specified. This leads to a mathematically nonstandard structure, as compared to the usual equilibrium theory, in which prescription of pressure and current profiles leads to an elliptic partial differential equation. Topologically complex configurations require further generalization of the concept of adiabaticity to allow irreversible mixing of plasma and magnetic flux among islands. Matching conditions across a boundary layer at the separatrix are obtained from appropriate conservation laws. Applications are made to configurations with planned islands (as in Doublet) and accidental islands (as in Tokamaks). Two-dimensional, axially symmetric, helically symmetric, and closed line equilibria are included. PMID:16578729
NASA Astrophysics Data System (ADS)
Zhou, Chunyin; Gréaux, Steeve; Nishiyama, Norimasa; Irifune, Tetsuo; Higo, Yuji
2014-03-01
Elastic wave velocities of MgSiO3 akimotoite polycrystalline samples have been measured at pressures up to 25.7 GPa and temperatures to 1500 K by a combination of in situ X-ray diffraction and ultrasonic interferometry techniques in a large volume Kawai-type multianvil apparatus (KMA). The elastic moduli of akimotoite and their pressure and temperature dependences are determined by a 2D linear fitting analysis of the present data, yielding: KS = 219.4(7) GPa, ∂KS/∂P = 4.62(3), ∂KS/∂T = -0.0228(4) GPa/K, G0 = 132.1(7) GPa, ∂G/∂P = 1.63(4), ∂G/∂T = -0.0225(4) GPa/K. The bulk and shear moduli at ambient conditions are generally consistent with the result of a previous Brillouin study. However, significant nonlinear behaviors of the elastic moduli were observed at higher temperatures, indicating that the velocities derived from the linear fitting analysis are overestimated for the actual mantle conditions. Using the present new experimental data, we compared the elastic velocities of various high-pressure forms of MgSiO3 under the mantle conditions. The results demonstrate a large velocity difference between akimotoite and perovskite, which may be relevant to the complex seismic structures near the bottom of the mantle transition zone.
Sliding seal materials for adiabatic engines
NASA Technical Reports Server (NTRS)
Lankford, J.
1985-01-01
The sliding friction coefficients and wear rates of promising carbide, oxide, and nitride materials were measured under temperature, environmental, velocity, loading conditions that are representative of the adiabatic engine environment. In order to provide guidance needed to improve materials for this application, the program stressed fundamental understanding of the mechanisms involved in friction and wear. Microhardness tests were performed on the candidate materials at elevated temperatures, and in atmospheres relevant to the piston seal application, and optical and electron microscopy were used to elucidate the micromechanisms of wear following wear testing. X-ray spectroscopy was used to evaluate interface/environment interactions which seemed to be important in the friction and wear process. Electrical effects in the friction and wear processes were explored in order to evaluate the potential usefulness of such effects in modifying the friction and wear rates in service. However, this factor was found to be of negligible significance in controlling friction and wear.
Calibration of sound velocimeter in pure water
NASA Astrophysics Data System (ADS)
Li, Zhiwei; Zhang, Baofeng; Li, Tao; Zhu, Junchao; Xie, Ziming
2016-01-01
Accurate measurement of sound speed is important to calibrate a sound velocity profiler which provides real-time sound velocity to the sonar equipment in oceanographic survey. The sound velocity profiler calculates the sound speed by measuring the time-of-flight of a 1 MHz single acoustic pulse to travel over about 300 mm path. A standard sound velocimeter instrument was invited to calibrate the sound velocity profiler in pure water at temperatures of 278,283, 288, 293, 298, 303 and 308K in a thermostatic vessel at one atmosphere. The sound velocity profiler was deployed in the thermostatic vessel alongside the standard sound velocimeter instrument and two platinum resistance thermometers (PRT) which were calibrated to 0.002k by comparison with a standard PRT. Time of flight circuit board was used to measure the time-of-flight to 22 picosecond precision. The sound speed which was measured by the sound velocity profiler was compared to the standard sound speed calculated by UNESCO to give the laboratory calibration coefficients and was demonstrated agreement with CTD-derived sound speed using Del Grosso's seawater equation after removing a bias.
The adiabatic motion of charged dust grains in rotating magnetospheres
NASA Astrophysics Data System (ADS)
Northrop, T. G.; Hill, J. R.
1983-01-01
Adiabatic equations of motion are derived for the micrometer-sized dust grains detected in the Jovian and Saturn magnetospheres by the Pioneer 10 and 11 spacecraft. The adiabatic theory of charged particle motion is extended to the case of variable grain charge. Attention is focused on the innermost and outermost limits to the grain orbit evolution, with all orbits tending to become circular with time. The parameters such as the center equation of motion, the drift velocity, and the parallel equation of motion are obtained for grains in a rotating magnetosphere. Consideration is given to the effects of periodic grain charge-discharge, which are affected by the ambient plasma properties and the grain plasma velocity. The charge-discharge process at the gyrofrequency is determined to eliminate the invariance of the magnetic moment and cause the grain to exhibit radial movement. The magnetic moment increases or decreases as a function of the gyrophase of the charge variation.
Transition from hydrodynamic to viscoelastic propagation of sound in molten RbBr.
Demmel, F; Szubrin, D; Pilgrim, W C; De Francesco, A; Formisano, F
2015-07-01
Inelastic neutron scattering was applied to measure the acoustic-type excitations in the molten alkali halide rubidium bromide. For molten RbBr neutron scattering is mainly sensitive to the number density fluctuation spectrum and is not influenced by charge fluctuations. Utilizing a dedicated Brillouin scattering spectrometer, we focused on the small-wave-vector range. From inelastic excitations in the spectra a dispersion relation was obtained, which shows a large positive dispersion effect. This frequency enhancement is related to a viscoelastic response of the liquid at high frequencies. Towards small wave vectors we identify the transition to hydrodynamic behavior. This observation is supported by a transition of the sound velocity from a viscoelastic enhanced value to the adiabatic speed of sound for the acoustic-type excitations. Furthermore, the spectrum transforms into a line shape compatible with a prediction from hydrodynamics. PMID:26274162
Transition from hydrodynamic to viscoelastic propagation of sound in molten RbBr
NASA Astrophysics Data System (ADS)
Demmel, F.; Szubrin, D.; Pilgrim, W. C.; De Francesco, A.; Formisano, F.
2015-07-01
Inelastic neutron scattering was applied to measure the acoustic-type excitations in the molten alkali halide rubidium bromide. For molten RbBr neutron scattering is mainly sensitive to the number density fluctuation spectrum and is not influenced by charge fluctuations. Utilizing a dedicated Brillouin scattering spectrometer, we focused on the small-wave-vector range. From inelastic excitations in the spectra a dispersion relation was obtained, which shows a large positive dispersion effect. This frequency enhancement is related to a viscoelastic response of the liquid at high frequencies. Towards small wave vectors we identify the transition to hydrodynamic behavior. This observation is supported by a transition of the sound velocity from a viscoelastic enhanced value to the adiabatic speed of sound for the acoustic-type excitations. Furthermore, the spectrum transforms into a line shape compatible with a prediction from hydrodynamics.
Pressure Oscillations in Adiabatic Compression
ERIC Educational Resources Information Center
Stout, Roland
2011-01-01
After finding Moloney and McGarvey's modified adiabatic compression apparatus, I decided to insert this experiment into my physical chemistry laboratory at the last minute, replacing a problematic experiment. With insufficient time to build the apparatus, we placed a bottle between two thick textbooks and compressed it with a third textbook forced…
Adiabatic dynamics of magnetic vortices
NASA Astrophysics Data System (ADS)
Papanicolaou, N.
1994-03-01
We formulate a reasonably detailed adiabatic conjecture concerning the dynamics of skew deflection of magnetic vortices in a field gradient, which is expected to be valid at sufficiently large values of the winding number. The conjecture is consistent with the golden rule used to describe the dynamics of realistic magnetic bubbles and is verified here numerically within the 2-D isotropic Heisenberg model.
Transitionless driving on adiabatic search algorithm
Oh, Sangchul; Kais, Sabre
2014-12-14
We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.
Transitionless driving on adiabatic search algorithm
NASA Astrophysics Data System (ADS)
Oh, Sangchul; Kais, Sabre
2014-12-01
We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.
Transitionless driving on adiabatic search algorithm.
Oh, Sangchul; Kais, Sabre
2014-12-14
We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics. PMID:25494733
Sound velocities of bcc-Fe and Fe0.85Si0.15 alloy at high pressure and temperature
NASA Astrophysics Data System (ADS)
Liu, Jin; Lin, Jung-Fu; Alatas, Ahmet; Bi, Wenli
2014-08-01
Studying the velocity-density profiles of iron and iron-silicon alloy at high pressures and temperatures is critical for understanding the Earth’s core as well as the interiors of other planetary bodies. Here we have investigated the compressional wave velocity (VP) and density (ρ) profiles of polycrystalline bcc-Fe and Fe0.85Si0.15 alloy (8 wt.% Si) using in situ high-energy resolution inelastic X-ray scattering (HERIX) and synchrotron X-ray diffraction spectroscopies in an externally-heated diamond anvil cell (EHDAC) up to 15 GPa and 700 K. Based on the measured velocity-density (VP-ρ) and velocity-pressure (VP-P) relations of bcc-Fe at simultaneous high pressure and temperature (P-T) conditions, our results show a strong VP reduction at elevated temperatures at a constant density. Comparison of the VP-ρ profiles between the bcc-Fe and bcc-Fe0.85Si0.15 alloy indicates that the alloying effect of additional 8 wt.% Si on the VP-ρ relationship of bcc-Fe is predominant via a constant density decrease of approximately 0.6 g/cm3 (7%). Compared with the literature velocity results for bcc and hcp Fe-Si alloys, the bcc-Fe and Fe-Si alloys exhibit higher VP than their hcp phase counterparts at the given bcc-hcp transition pressures. Our results here strongly support the notion that high temperature has a strong effect on the VP of Fe and that the VP-ρ profile of Fe can be affected by structural and magnetic transitions. Analyses on literature elastic constants of the bcc Fe-Si alloys, as a function of P-T and Si content, show that the bcc phase displays extremely high VP anisotropy of 16-30% and VS splitting anisotropy of 40-90% at high temperatures, while the addition of Si further enhances the anisotropy. Due to the extremely high elastic anisotropy of the bcc Fe-Si alloy, a certain portion of the bcc Fe-Si alloy with the lattice-preferred orientation may produce VP and VS anisotropies to potentially account for the observed seismic anisotropy in the inner core.
ERIC Educational Resources Information Center
Hinton, Leanne, Ed.; And Others
Sound symbolism is the study of the relationship between the sound of an utterance and its meaning. In this interdisciplinary collection of new studies, 24 leading scholars discuss the role of sound symbolism in a theory of language. Contributions and authors include the following: "Sound-Symbolic Processes" (Leanne Hinton, Johanna Nichols, John…
NASA Astrophysics Data System (ADS)
Mashino, Izumi; Murakami, Motohiko; Ohtani, Eiji
2016-02-01
Recent studies show that δ-AlOOH is stable up to the base of the mantle. This phase is, therefore, a possible carrier and host of water in the deep mantle. To uncover the physical properties of δ-AlOOH under deep mantle pressure conditions, we have conducted high-pressure acoustic wave velocity measurements of δ-AlOOH by using Brillouin spectroscopy combined with high-pressure Raman spectroscopic measurements in a diamond anvil cell up to pressures of 134 GPa. There is a precipitous increase by ~14% in the acoustic velocities of δ-AlOOH from 6 to 15 GPa, which suggests that pressure-induced O-H bond symmetrization occurs in this pressure range. The best fit values for the high-pressure form of δ-AlOOH of K0 = 190 (2) (GPa), G0 = 160.0 (9) (GPa), (∂K/∂P)0 = K0' = 3.7 (1), and (∂G/∂P)0 = G0' = 1.32 (1) indicate that δ-AlOOH has a 20-30% higher VS value compared to those of the major constituent minerals in the mantle transition zone, such as wadsleyite, ringwoodite, and majorite. On the other hand, the VS of δ-AlOOH is ~7% lower than that of Mg-bridgmanite under lowermost mantle pressure conditions because of the significantly lower value of the pressure derivative of the shear modulus. By comparing our results with seismic observations, we can infer that δ-AlOOH could be one of the potential causes of a positive VS anomaly observed at ~600 km depth beneath the Korean peninsula and a negative VS jump near 2800 km depth near the northern margin of the large low-shear-velocity province beneath the Pacific.
Ko, Jae-Hyeon; Kim, Tae Hyun; Kojima, Seiji; Bokov, Alexei A; Ye, Zuo-Guang
2010-12-01
A Brillouin spectroscopic investigation was carried out on PMN-55%PT single crystals, which are known to have no chemically ordered regions and undergo a well-defined structural phase transition at T(C) ∼ 521 K. The longitudinal and transverse sound velocities probed on a right-angle scattering geometry exhibited a remarkable softening and increasing hypersonic damping on approaching T(C) from T(B) ∼ 610 K that was characterized by the deviation of the dielectric permittivity from the high-temperature Curie-Weiss behavior. The acoustic anomalies of the longitudinal acoustic mode at the backward scattering were more substantial than those observed at the right-angle scattering, which could be understood in the framework of normal acoustic dispersion considering the difference in the acoustic frequency. The softening of the transverse sound velocity was more significant than that of the longitudinal one upon cooling toward T(C), suggesting that this acoustic anomaly may be related to the local rhombohedral transformation, occurring in polar nano-regions (PNRs). The observed acoustic behaviors combined with the central peak dynamics clearly indicated the existence of dynamic polar nano-regions in PMN-55%PT where there are no chemically ordered regions, and seem to suggest that the order parameter fluctuations due to two kinds of coupling contribute to the acoustic anomalies in the temperature range of T(C) ∼ T(B): electrostrictive coupling between the acoustic waves and the dynamic PNRs, and linear coupling between the acoustic waves and the precursor polar clusters, i.e., the ordering unit responsible for the order-disorder-type slowing down behavior probed by the central peak. PMID:21406758
Robust adiabatic sum frequency conversion.
Suchowski, Haim; Prabhudesai, Vaibhav; Oron, Dan; Arie, Ady; Silberberg, Yaron
2009-07-20
We discuss theoretically and demonstrate experimentally the robustness of the adiabatic sum frequency conversion method. This technique, borrowed from an analogous scheme of robust population transfer in atomic physics and nuclear magnetic resonance, enables the achievement of nearly full frequency conversion in a sum frequency generation process for a bandwidth up to two orders of magnitude wider than in conventional conversion schemes. We show that this scheme is robust to variations in the parameters of both the nonlinear crystal and of the incoming light. These include the crystal temperature, the frequency of the incoming field, the pump intensity, the crystal length and the angle of incidence. Also, we show that this extremely broad bandwidth can be tuned to higher or lower central wavelengths by changing either the pump frequency or the crystal temperature. The detailed study of the properties of this converter is done using the Landau-Zener theory dealing with the adiabatic transitions in two level systems. PMID:19654679
Adiabaticity in open quantum systems
NASA Astrophysics Data System (ADS)
Venuti, Lorenzo Campos; Albash, Tameem; Lidar, Daniel A.; Zanardi, Paolo
2016-03-01
We provide a rigorous generalization of the quantum adiabatic theorem for open systems described by a Markovian master equation with time-dependent Liouvillian L (t ) . We focus on the finite system case relevant for adiabatic quantum computing and quantum annealing. Adiabaticity is defined in terms of closeness to the instantaneous steady state. While the general result is conceptually similar to the closed-system case, there are important differences. Namely, a system initialized in the zero-eigenvalue eigenspace of L (t ) will remain in this eigenspace with a deviation that is inversely proportional to the total evolution time T . In the case of a finite number of level crossings, the scaling becomes T-η with an exponent η that we relate to the rate of the gap closing. For master equations that describe relaxation to thermal equilibrium, we show that the evolution time T should be long compared to the corresponding minimum inverse gap squared of L (t ) . Our results are illustrated with several examples.
... during sleep. They also occur normally for a short time after the use of certain medicines and after abdominal surgery. Decreased or absent bowel sounds often indicate constipation. Increased ( hyperactive ) bowel sounds ...
NASA Astrophysics Data System (ADS)
Li, Dafa
2016-05-01
The adiabatic theorem was proposed about 90 years ago and has played an important role in quantum physics. The quantitative adiabatic condition constructed from eigenstates and eigenvalues of a Hamiltonian is a traditional tool to estimate adiabaticity and has proven to be the necessary and sufficient condition for adiabaticity. However, recently the condition has become a controversial subject. In this paper, we list some expressions to estimate the validity of the adiabatic approximation. We show that the quantitative adiabatic condition is invalid for the adiabatic approximation via the Euclidean distance between the adiabatic state and the evolution state. Furthermore, we deduce general necessary and sufficient conditions for the validity of the adiabatic approximation by different definitions.
NASA Astrophysics Data System (ADS)
Gwanmesia, Gabriel D.; Wang, Liping; Heady, Adaire; Liebermann, Robert C.
2014-03-01
The elastic wave velocities of a dense polycrystalline specimen (99.7% of theoretical density) of synthetic grossular garnet (Ca3Al2Si3O12) were measured to pressures of ∼10 GPa and temperatures of 1000 K by transfer-function ultrasonic interferometry in conjunction with energy-dispersive synchrotron X-radiation in a deformation DIA-type cubic-anvil apparatus. The calculated elastic bulk (Ks) and shear (G) moduli data were fitted to functions of Eulerian strain to 3rd order, yielding the zero-pressure values [Ks = 171.2 (8) GPa; G = 107.4 (2) GPa] and their pressure derivatives [(∂Ks/∂P)T = 4.47 (2); (∂G/∂P)T = 1.29 (5)]. The temperature dependences of the elastic moduli obtained from linear regression of entire P-T-Ks and P-T-G data are: (∂Ks/∂T)P = -1.38 (3) × 10-2 GPa/K and (∂G/∂T)P = -1.28 (2) × 10-2 GPa/K. These results together with those from previous studies for garnets with varying compositions suggest that most of the thermo-elastic properties of garnet are insensitive to grossular content, with the exception of the shear modulus, which significantly depends on the calcium content.
Conditions for super-adiabatic droplet growth after entrainment mixing
NASA Astrophysics Data System (ADS)
Yang, Fan; Shaw, Raymond; Xue, Huiwen
2016-07-01
Cloud droplet response to entrainment and mixing between a cloud and its environment is considered, accounting for subsequent droplet growth during adiabatic ascent following a mixing event. The vertical profile for liquid water mixing ratio after a mixing event is derived analytically, allowing the reduction to be predicted from the mixing fraction and from the temperature and humidity for both the cloud and environment. It is derived for the limit of homogeneous mixing. The expression leads to a critical height above the mixing level: at the critical height the cloud droplet radius is the same for both mixed and unmixed parcels, and the critical height is independent of the updraft velocity and mixing fraction. Cloud droplets in a mixed parcel are larger than in an unmixed parcel above the critical height, which we refer to as the "super-adiabatic" growth region. Analytical results are confirmed with a bin microphysics cloud model. Using the model, we explore the effects of updraft velocity, aerosol source in the environmental air, and polydisperse cloud droplets. Results show that the mixed parcel is more likely to reach the super-adiabatic growth region when the environmental air is humid and clean. It is also confirmed that the analytical predictions are matched by the volume-mean cloud droplet radius for polydisperse size distributions. The findings have implications for the origin of large cloud droplets that may contribute to onset of collision-coalescence in warm clouds.
NASA Astrophysics Data System (ADS)
Savoini, Ph.; Lembège, B.; Krasnoselskikh, V.; Balikhin, M.
Test particles simulations have been performed in order to analyze quantitatively the non adiabatic heating of electrons crossing the shock front of a planar quasi-perpendicular shock. Profiles of E and B fields are issued from selfconsistent 2D full particle simulations. Results evidence the non adiabatic dynamic of a certain percentage of transmitted electrons and allow to validate the theoritical prediction of Balikhin et al. (1998). Present numerical study is extended to the quantitative statistical approach. Test particles simulations have been performed with drifted electrons crossing homogeneous shock profiles. Both cubes and spherical shell electron velocity distributions have been investigated. Relative nonadiabatic and adiabatic electron heating efficiency is discussed versus initial velocities, pitch angle and shock profile encounter by the electrons. Numerical estimates of the Lyapounov coefficient (velocity volume expansion at crossing) are deduced from simulations and will be compared with theoretical expectations.
Vasil, Geoffrey M.; Lecoanet, Daniel; Brown, Benjamin P.; Zweibel, Ellen G.; Wood, Toby S.
2013-08-20
The speed of sound greatly exceeds typical flow velocities in many stellar and planetary interiors. To follow the slow evolution of subsonic motions, various sound-proof models attempt to remove fast acoustic waves while retaining stratified convection and buoyancy dynamics. In astrophysics, anelastic models typically receive the most attention in the class of sound-filtered stratified models. Generally, anelastic models remain valid in nearly adiabatically stratified regions like stellar convection zones, but may break down in strongly sub-adiabatic, stably stratified layers common in stellar radiative zones. However, studying stellar rotation, circulation, and dynamos requires understanding the complex coupling between convection and radiative zones, and this requires robust equations valid in both regimes. Here we extend the analysis of equation sets begun in Brown et al., which studied anelastic models, to two types of pseudo-incompressible models. This class of models has received attention in atmospheric applications, and more recently in studies of white-dwarf supernova progenitors. We demonstrate that one model conserves energy but the other does not. We use Lagrangian variational methods to extend the energy conserving model to a general equation of state, and dub the resulting equation set the generalized pseudo-incompressible (GPI) model. We show that the GPI equations suitably capture low-frequency phenomena in both convection and radiative zones in stars and other stratified systems, and we provide recommendations for converting low-Mach number codes to this equation set.
Adiabatic nonlinear waves with trapped particles. II. Wave dispersion
Dodin, I. Y.; Fisch, N. J.
2012-01-15
A general nonlinear dispersion relation is derived in a nondifferential form for an adiabatic sinusoidal Langmuir wave in collisionless plasma, allowing for an arbitrary distribution of trapped electrons. The linear dielectric function is generalized, and the nonlinear kinetic frequency shift {omega}{sub NL} is found analytically as a function of the wave amplitude a. Smooth distributions yield {omega}{sub NL}{proportional_to}{radical}(a), as usual. However, beam-like distributions of trapped electrons result in different power laws, or even a logarithmic nonlinearity, which are derived as asymptotic limits of the same dispersion relation. Such beams are formed whenever the phase velocity changes, because the trapped distribution is in autoresonance and thus evolves differently from the passing distribution. Hence, even adiabatic {omega}{sub NL}(a) is generally nonlocal.
Adiabatic Wankel type rotary engine
NASA Technical Reports Server (NTRS)
Kamo, R.; Badgley, P.; Doup, D.
1988-01-01
This SBIR Phase program accomplished the objective of advancing the technology of the Wankel type rotary engine for aircraft applications through the use of adiabatic engine technology. Based on the results of this program, technology is in place to provide a rotor and side and intermediate housings with thermal barrier coatings. A detailed cycle analysis of the NASA 1007R Direct Injection Stratified Charge (DISC) rotary engine was performed which concluded that applying thermal barrier coatings to the rotor should be successful and that it was unlikely that the rotor housing could be successfully run with thermal barrier coatings as the thermal stresses were extensive.
NASA Technical Reports Server (NTRS)
Stern, D. P.
1978-01-01
An investigation is made of the adiabatic particle motion occurring in an almost drift-free magnetic field. The dependence of the mean drift velocity on the equatorial pitch angle and the variation of the local drift velocity along the trajectories is studied. The fields considered are two-dimensional and resemble the geomagnetic tail. Derivations are presented for instantaneous and average drift velocities, bounce times, longitudinal invariants, and approximations to the adiabatic Hamiltonian. As expected, the mean drift velocity is significantly smaller than the instantaneous drift velocities found at typical points on the trajectory. The slow drift indicates that particles advance in the dawn-dusk direction rather slowly in the plasma sheet of the magnetospheric tail.
NASA Astrophysics Data System (ADS)
Fuchs, H. V.; Möser, M.
Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.
Degenerate adiabatic perturbation theory: Foundations and applications
NASA Astrophysics Data System (ADS)
Rigolin, Gustavo; Ortiz, Gerardo
2014-08-01
We present details and expand on the framework leading to the recently introduced degenerate adiabatic perturbation theory [Phys. Rev. Lett. 104, 170406 (2010), 10.1103/PhysRevLett.104.170406], and on the formulation of the degenerate adiabatic theorem, along with its necessary and sufficient conditions [given in Phys. Rev. A 85, 062111 (2012), 10.1103/PhysRevA.85.062111]. We start with the adiabatic approximation for degenerate Hamiltonians that paves the way to a clear and rigorous statement of the associated degenerate adiabatic theorem, where the non-Abelian geometric phase (Wilczek-Zee phase) plays a central role to its quantitative formulation. We then describe the degenerate adiabatic perturbation theory, whose zeroth-order term is the degenerate adiabatic approximation, in its full generality. The parameter in the perturbative power-series expansion of the time-dependent wave function is directly associated to the inverse of the time it takes to drive the system from its initial to its final state. With the aid of the degenerate adiabatic perturbation theory we obtain rigorous necessary and sufficient conditions for the validity of the adiabatic theorem of quantum mechanics. Finally, to illustrate the power and wide scope of the methodology, we apply the framework to a degenerate Hamiltonian, whose closed-form time-dependent wave function is derived exactly, and also to other nonexactly solvable Hamiltonians whose solutions are numerically computed.
Shortcut to adiabatic gate teleportation
NASA Astrophysics Data System (ADS)
Santos, Alan C.; Silva, Raphael D.; Sarandy, Marcelo S.
2016-01-01
We introduce a shortcut to the adiabatic gate teleportation model of quantum computation. More specifically, we determine fast local counterdiabatic Hamiltonians able to implement teleportation as a universal computational primitive. In this scenario, we provide the counterdiabatic driving for arbitrary n -qubit gates, which allows to achieve universality through a variety of gate sets. Remarkably, our approach maps the superadiabatic Hamiltonian HSA for an arbitrary n -qubit gate teleportation into the implementation of a rotated superadiabatic dynamics of an n -qubit state teleportation. This result is rather general, with the speed of the evolution only dictated by the quantum speed limit. In particular, we analyze the energetic cost for different Hamiltonian interpolations in the context of the energy-time complementarity.
Quantum gates with controlled adiabatic evolutions
NASA Astrophysics Data System (ADS)
Hen, Itay
2015-02-01
We introduce a class of quantum adiabatic evolutions that we claim may be interpreted as the equivalents of the unitary gates of the quantum gate model. We argue that these gates form a universal set and may therefore be used as building blocks in the construction of arbitrary "adiabatic circuits," analogously to the manner in which gates are used in the circuit model. One implication of the above construction is that arbitrary classical boolean circuits as well as gate model circuits may be directly translated to adiabatic algorithms with no additional resources or complexities. We show that while these adiabatic algorithms fail to exhibit certain aspects of the inherent fault tolerance of traditional quantum adiabatic algorithms, they may have certain other experimental advantages acting as quantum gates.
On a Nonlinear Model in Adiabatic Evolutions
NASA Astrophysics Data System (ADS)
Sun, Jie; Lu, Song-Feng
2016-08-01
In this paper, we study a kind of nonlinear model of adiabatic evolution in quantum search problem. As will be seen here, for this problem, there always exists a possibility that this nonlinear model can successfully solve the problem, while the linear model can not. Also in the same setting, when the overlap between the initial state and the final stare is sufficiently large, a simple linear adiabatic evolution can achieve O(1) time efficiency, but infinite time complexity for the nonlinear model of adiabatic evolution is needed. This tells us, it is not always a wise choice to use nonlinear interpolations in adiabatic algorithms. Sometimes, simple linear adiabatic evolutions may be sufficient for using. Supported by the National Natural Science Foundation of China under Grant Nos. 61402188 and 61173050. The first author also gratefully acknowledges the support from the China Postdoctoral Science Foundation under Grant No. 2014M552041
NASA Technical Reports Server (NTRS)
Cook, R. K.
1969-01-01
The propagation of sound waves at infrasonic frequencies (oscillation periods 1.0 - 1000 seconds) in the atmosphere is being studied by a network of seven stations separated geographically by distances of the order of thousands of kilometers. The stations measure the following characteristics of infrasonic waves: (1) the amplitude and waveform of the incident sound pressure, (2) the direction of propagation of the wave, (3) the horizontal phase velocity, and (4) the distribution of sound wave energy at various frequencies of oscillation. Some infrasonic sources which were identified and studied include the aurora borealis, tornadoes, volcanos, gravity waves on the oceans, earthquakes, and atmospheric instability waves caused by winds at the tropopause. Waves of unknown origin seem to radiate from several geographical locations, including one in the Argentine.
Adiabatic Compression of Oxygen: Real Fluid Temperatures
NASA Technical Reports Server (NTRS)
Barragan, Michelle; Wilson, D. Bruce; Stoltzfus, Joel M.
2000-01-01
The adiabatic compression of oxygen has been identified as an ignition source for systems operating in enriched oxygen atmospheres. Current practice is to evaluate the temperature rise on compression by treating oxygen as an ideal gas with constant heat capacity. This paper establishes the appropriate thermodynamic analysis for the common occurrence of adiabatic compression of oxygen and in the process defines a satisfactory equation of state (EOS) for oxygen. It uses that EOS to model adiabatic compression as isentropic compression and calculates final temperatures for this system using current approaches for comparison.
Heating and cooling in adiabatic mixing process
NASA Astrophysics Data System (ADS)
Zhou, Jing; Cai, Zi; Zou, Xu-Bo; Guo, Guang-Can
2010-12-01
We study the effect of interaction on the temperature change in the process of adiabatic mixing of two components of Fermi gases using the real-space Bogoliubov-de Gennes method. We find that in the process of adiabatic mixing, the competition between the adiabatic expansion and the attractive interaction makes it possible to cool or heat the system depending on the strength of the interaction and the initial temperature of the system. The changes of the temperature in a bulk system and in a trapped system are investigated.
... Rales can be further described as moist, dry, fine, and coarse. Rhonchi. Sounds that resemble snoring. They ... notice them. The following tests may be done: Analysis of a sputum sample ( sputum culture , sputum Gram ...
Multisurface Adiabatic Reactive Molecular Dynamics.
Nagy, Tibor; Yosa Reyes, Juvenal; Meuwly, Markus
2014-04-01
Adiabatic reactive molecular dynamics (ARMD) simulation method is a surface-crossing algorithm for modeling chemical reactions in classical molecular dynamics simulations using empirical force fields. As the ARMD Hamiltonian is time dependent during crossing, it allows only approximate energy conservation. In the current work, the range of applicability of conventional ARMD is explored, and a new multisurface ARMD (MS-ARMD) method is presented, implemented in CHARMM and applied to the vibrationally induced photodissociation of sulfuric acid (H2SO4) in the gas phase. For this, an accurate global potential energy surface (PES) involving 12 H2SO4 and 4 H2O + SO3 force fields fitted to MP2/6-311G++(2d,2p) reference energies is employed. The MS-ARMD simulations conserve total energy and feature both intramolecular H-transfer reactions and water elimination. An analytical treatment of the dynamics in the crossing region finds that conventional ARMD can approximately conserve total energy for limiting cases. In one of them, the reduced mass of the system is large, which often occurs for simulations of solvated biomolecular systems. On the other hand, MS-ARMD is a general approach for modeling chemical reactions including gas-phase, homogeneous, heterogeneous, and enzymatic catalytic reactions while conserving total energy in atomistic simulations. PMID:26580356
Conditions for super-adiabatic droplet growth after entrainment mixing
Yang, Fan; Shaw, Raymond; Xue, Huiwen
2016-07-29
Cloud droplet response to entrainment and mixing between a cloud and its environment is considered, accounting for subsequent droplet growth during adiabatic ascent following a mixing event. The vertical profile for liquid water mixing ratio after a mixing event is derived analytically, allowing the reduction to be predicted from the mixing fraction and from the temperature and humidity for both the cloud and environment. It is derived for the limit of homogeneous mixing. The expression leads to a critical height above the mixing level: at the critical height the cloud droplet radius is the same for both mixed and unmixedmore » parcels, and the critical height is independent of the updraft velocity and mixing fraction. Cloud droplets in a mixed parcel are larger than in an unmixed parcel above the critical height, which we refer to as the “super-adiabatic” growth region. Analytical results are confirmed with a bin microphysics cloud model. Using the model, we explore the effects of updraft velocity, aerosol source in the environmental air, and polydisperse cloud droplets. Results show that the mixed parcel is more likely to reach the super-adiabatic growth region when the environmental air is humid and clean. It is also confirmed that the analytical predictions are matched by the volume-mean cloud droplet radius for polydisperse size distributions. The findings have implications for the origin of large cloud droplets that may contribute to onset of collision–coalescence in warm clouds.« less
AB INITIO SIMULATIONS FOR MATERIAL PROPERTIES ALONG THE JUPITER ADIABAT
French, Martin; Becker, Andreas; Lorenzen, Winfried; Nettelmann, Nadine; Bethkenhagen, Mandy; Redmer, Ronald; Wicht, Johannes
2012-09-15
We determine basic thermodynamic and transport properties of hydrogen-helium-water mixtures for the extreme conditions along Jupiter's adiabat via ab initio simulations, which are compiled in an accurate and consistent data set. In particular, we calculate the electrical and thermal conductivity, the shear and longitudinal viscosity, and diffusion coefficients of the nuclei. We present results for associated quantities like the magnetic and thermal diffusivity and the kinematic shear viscosity along an adiabat that is taken from a state-of-the-art interior structure model. Furthermore, the heat capacities, the thermal expansion coefficient, the isothermal compressibility, the Grueneisen parameter, and the speed of sound are calculated. We find that the onset of dissociation and ionization of hydrogen at about 0.9 Jupiter radii marks a region where the material properties change drastically. In the deep interior, where the electrons are degenerate, many of the material properties remain relatively constant. Our ab initio data will serve as a robust foundation for applications that require accurate knowledge of the material properties in Jupiter's interior, e.g., models for the dynamo generation.
Adiabatic limits on Riemannian Heisenberg manifolds
Yakovlev, A A
2008-02-28
An asymptotic formula is obtained for the distribution function of the spectrum of the Laplace operator, in the adiabatic limit for the foliation defined by the orbits of an invariant flow on a compact Riemannian Heisenberg manifold. Bibliography: 21 titles.
Experimental demonstration of composite adiabatic passage
NASA Astrophysics Data System (ADS)
Schraft, Daniel; Halfmann, Thomas; Genov, Genko T.; Vitanov, Nikolay V.
2013-12-01
We report an experimental demonstration of composite adiabatic passage (CAP) for robust and efficient manipulation of two-level systems. The technique represents a altered version of rapid adiabatic passage (RAP), driven by composite sequences of radiation pulses with appropriately chosen phases. We implement CAP with radio-frequency pulses to invert (i.e., to rephase) optically prepared spin coherences in a Pr3+:Y2SiO5 crystal. We perform systematic investigations of the efficiency of CAP and compare the results with conventional π pulses and RAP. The data clearly demonstrate the superior features of CAP with regard to robustness and efficiency, even under conditions of weakly fulfilled adiabaticity. The experimental demonstration of composite sequences to support adiabatic passage is of significant relevance whenever a high efficiency or robustness of coherent excitation processes need to be maintained, e.g., as required in quantum information technology.
An Adiabatic Architecture for Linear Signal Processing
NASA Astrophysics Data System (ADS)
Vollmer, M.; Götze, J.
2005-05-01
Using adiabatic CMOS logic instead of the more traditional static CMOS logic can lower the power consumption of a hardware design. However, the characteristic differences between adiabatic and static logic, such as a four-phase clock, have a far reaching influence on the design itself. These influences are investigated in this paper by adapting a systolic array of CORDIC devices to be implemented adiabatically. We present a means to describe adiabatic logic in VHDL and use it to define the systolic array with precise timing and bit-true calculations. The large pipeline bubbles that occur in a naive version of this array are identified and removed to a large degree. As an example, we demonstrate a parameterization of the CORDIC array that carries out adaptive RLS filtering.
General conditions for quantum adiabatic evolution
Comparat, Daniel
2009-07-15
Adiabaticity occurs when, during its evolution, a physical system remains in the instantaneous eigenstate of the Hamiltonian. Unfortunately, existing results, such as the quantum adiabatic theorem based on a slow down evolution [H({epsilon}t),{epsilon}{yields}0], are insufficient to describe an evolution driven by the Hamiltonian H(t) itself. Here we derive general criteria and exact bounds, for the state and its phase, ensuring an adiabatic evolution for any Hamiltonian H(t). As a corollary, we demonstrate that the commonly used condition of a slow Hamiltonian variation rate, compared to the spectral gap, is indeed sufficient to ensure adiabaticity but only when the Hamiltonian is real and nonoscillating (for instance, containing exponential or polynomial but no sinusoidal functions)
Adiabatic invariance of oscillons/I -balls
NASA Astrophysics Data System (ADS)
Kawasaki, Masahiro; Takahashi, Fuminobu; Takeda, Naoyuki
2015-11-01
Real scalar fields are known to fragment into spatially localized and long-lived solitons called oscillons or I -balls. We prove the adiabatic invariance of the oscillons/I -balls for a potential that allows periodic motion even in the presence of non-negligible spatial gradient energy. We show that such a potential is uniquely determined to be the quadratic one with a logarithmic correction, for which the oscillons/I -balls are absolutely stable. For slightly different forms of the scalar potential dominated by the quadratic one, the oscillons/I -balls are only quasistable, because the adiabatic charge is only approximately conserved. We check the conservation of the adiabatic charge of the I -balls in numerical simulation by slowly varying the coefficient of logarithmic corrections. This unambiguously shows that the longevity of oscillons/I -balls is due to the adiabatic invariance.
Sensitivity to Auditory Velocity Contrast.
Locke, Shannon M; Leung, Johahn; Carlile, Simon
2016-01-01
A natural auditory scene often contains sound moving at varying velocities. Using a velocity contrast paradigm, we compared sensitivity to velocity changes between continuous and discontinuous trajectories. Subjects compared the velocities of two stimulus intervals that moved along a single trajectory, with and without a 1 second inter stimulus interval (ISI). We found thresholds were threefold larger for velocity increases in the instantaneous velocity change condition, as compared to instantaneous velocity decreases or thresholds for the delayed velocity transition condition. This result cannot be explained by the current static "snapshot" model of auditory motion perception and suggest a continuous process where the percept of velocity is influenced by previous history of stimulation. PMID:27291488
Sensitivity to Auditory Velocity Contrast
Locke, Shannon M.; Leung, Johahn; Carlile, Simon
2016-01-01
A natural auditory scene often contains sound moving at varying velocities. Using a velocity contrast paradigm, we compared sensitivity to velocity changes between continuous and discontinuous trajectories. Subjects compared the velocities of two stimulus intervals that moved along a single trajectory, with and without a 1 second inter stimulus interval (ISI). We found thresholds were threefold larger for velocity increases in the instantaneous velocity change condition, as compared to instantaneous velocity decreases or thresholds for the delayed velocity transition condition. This result cannot be explained by the current static “snapshot” model of auditory motion perception and suggest a continuous process where the percept of velocity is influenced by previous history of stimulation. PMID:27291488
NASA Technical Reports Server (NTRS)
1978-01-01
Lubrication technology originally developed for a series of NASA satellites has produced a commercial product for protecting the sound fidelity of phonograph records. Called Sound Guard, the preservative is a spray-on fluid that deposits a microscopically thin protective coating which reduces friction and prevents the hard diamond stylus from wearing away the softer vinyl material of the disc. It is marketed by the Consumer Products Division of Ball Corporation, Muncie, Indiana. The lubricant technology on which Sound Guard is based originated with NASA's Orbiting Solar Observatory (OSO), an Earth-orbiting satellite designed and built by Ball Brothers Research Corporation, Boulder, Colorado, also a division of Ball Corporation. Ball Brothers engineers found a problem early in the OSO program: known lubricants were unsuitable for use on satellite moving parts that would be exposed to the vacuum of space for several months. So the company conducted research on the properties of materials needed for long life in space and developed new lubricants. They worked successfully on seven OSO flights and attracted considerable attention among other aerospace contractors. Ball Brothers now supplies its "Vac Kote" lubricants and coatings to both aerospace and non-aerospace industries and the company has produced several hundred variations of the original technology. Ball Corporation expanded its product line to include consumer products, of which Sound Guard is one of the most recent. In addition to protecting record grooves, Sound Guard's anti-static quality also retards particle accumulation on the stylus. During comparison study by a leading U.S. electronic laboratory, a record not treated by Sound Guard had to be cleaned after 50 plays and the stylus had collected a considerable number of small vinyl particles. The Sound Guard-treated disc was still clean after 100 plays, as was its stylus.
Symmetry of the Adiabatic Condition in the Piston Problem
ERIC Educational Resources Information Center
Anacleto, Joaquim; Ferreira, J. M.
2011-01-01
This study addresses a controversial issue in the adiabatic piston problem, namely that of the piston being adiabatic when it is fixed but no longer so when it can move freely. It is shown that this apparent contradiction arises from the usual definition of adiabatic condition. The issue is addressed here by requiring the adiabatic condition to be…
Determination of the spin torque non-adiabaticity in perpendicularly magnetized nanowires.
Heinen, J; Hinzke, D; Boulle, O; Malinowski, G; Swagten, H J M; Koopmans, B; Ulysse, C; Faini, G; Ocker, B; Wrona, J; Kläui, M
2012-01-18
Novel nanofabrication methods and the discovery of an efficient manipulation of local magnetization based on spin polarized currents has generated a tremendous interest in the field of spintronics. The search for materials allowing for fast domain wall dynamics requires fundamental research into the effects involved (Oersted fields, adiabatic and non-adiabatic spin torque, Joule heating) and possibilities for a quantitative comparison. Theoretical descriptions reveal a material and geometry dependence of the non-adiabaticity factor β, which governs the domain wall velocity. Here, we present two independent approaches for determining β: (i) measuring the dependence of the dwell times for which a domain wall stays in a metastable pinning state on the injected current and (ii) the current-field equivalence approach. The comparison of the deduced β values highlights the problems of using one-dimensional models to describe two-dimensional dynamics and allows us to ascertain the reliability, robustness and limits of the approaches used. PMID:22172802
NASA Technical Reports Server (NTRS)
Xu, Y. J.; Khandelwal, G. S.; Wilson, John W.
1989-01-01
A simple formula for the transition probability for electron exchange between unlike ions and atoms is established within the adiabatic approximation by employing the Linear Combination of Atomic Orbitals (LCAO) method. The formula also involves an adiabatic parameter, introduced by Massey, and thus the difficulties arising from the internal energy defect and the adiabatic approximation are avoided. Specific reactions Li(+++) + H to Li(++) + H(+) and Be(4+) + H to Be(3+) + H(+) are considered as examples. The calculated capture cross section results of the present work are compared with the experimental data and with the calculation of other authors over the velocity range of 10(7) cm/sec to 10(8) cm/sec.
Active localization of virtual sounds
NASA Astrophysics Data System (ADS)
Loomis, Jack M.; Hebert, C.; Cicinelli, J. G.
1991-06-01
We describe a virtual sound display built around a 12 MHz 80286 microcomputer and special purpose analog hardware. The display implements most of the primary cues for sound localization in the ear-level plane. Static information about direction is conveyed by interaural time differences and, for frequencies above 1800 Hz, by head sound shadow (interaural intensity differences) and pinna sound shadow. Static information about distance is conveyed by variation in sound pressure (first power law) for all frequencies, by additional attenuation in the higher frequencies (simulating atmospheric absorption), and by the proportion of direct to reverberant sound. When the user actively locomotes, the changing angular position of the source occasioned by head rotations provides further information about direction and the changing angular velocity produced by head translations (motion parallax) provides further information about distance. Judging both from informal observations by users and from objective data obtained in an experiment on homing to virtual and real sounds, we conclude that simple displays such as this are effective in creating the perception of external sounds to which subjects can home with accuracy and ease.
Active localization of virtual sounds
NASA Technical Reports Server (NTRS)
Loomis, Jack M.; Hebert, C.; Cicinelli, J. G.
1991-01-01
We describe a virtual sound display built around a 12 MHz 80286 microcomputer and special purpose analog hardware. The display implements most of the primary cues for sound localization in the ear-level plane. Static information about direction is conveyed by interaural time differences and, for frequencies above 1800 Hz, by head sound shadow (interaural intensity differences) and pinna sound shadow. Static information about distance is conveyed by variation in sound pressure (first power law) for all frequencies, by additional attenuation in the higher frequencies (simulating atmospheric absorption), and by the proportion of direct to reverberant sound. When the user actively locomotes, the changing angular position of the source occasioned by head rotations provides further information about direction and the changing angular velocity produced by head translations (motion parallax) provides further information about distance. Judging both from informal observations by users and from objective data obtained in an experiment on homing to virtual and real sounds, we conclude that simple displays such as this are effective in creating the perception of external sounds to which subjects can home with accuracy and ease.
NASA Astrophysics Data System (ADS)
Blake, E.
1998-01-01
Of the many geophysical remote-sensing techniques available today, a few are suitable for the water ice-rich, layered material expected at the north martian ice cap. Radio echo sounding has been used for several decades to determine ice thickness and internal structure. Selection of operating frequency is a tradeoff between signal attenuation (which typically increases with frequency and ice temperature) and resolution (which is proportional to wavelength). Antenna configuration and size will be additional considerations for a mission to Mars. Several configurations for ice-penetrating radar systems are discussed: these include orbiter-borne sounders, sounding antennas trailed by balloons and penetrators, and lander-borne systems. Lander-borne systems could include short-wave systems capable of resolving fine structure and layering in the upper meters beneath the lander. Spread-spectrum and deconvolution techniques can be used to increase the depth capability of a radar system. If soundings over several locations are available (e.g., with balloons, rovers, or panning short-wave systems), then it will be easier to resolve internal layering, variations in basal reflection coefficient (from which material properties may be inferred), and the geometry of nonhorizontal features. Sonic sounding has a long history in oil and gas exploration. It is, however, unlikely that large explosive charges, or even swept-frequency techniques such as Vibroseis, would be suitable for a Polar lander -- these systems are capable of penetrating several kilometers of material at frequencies of 10-200 Hz, but the energy required to generate the sound waves is large and potentially destructive. The use of audio-frequency and ultrasonic sound generated by piezoelectric crystals is discussed as a possible method to explore layering and fine features in the upper meters of the ice cap. Appropriate choice of transducer(s) will permit operation over a range of fixed or modulated frequencies
Graph isomorphism and adiabatic quantum computing
NASA Astrophysics Data System (ADS)
Gaitan, Frank; Clark, Lane
2014-02-01
In the graph isomorphism (GI) problem two N-vertex graphs G and G' are given and the task is to determine whether there exists a permutation of the vertices of G that preserves adjacency and transforms G →G'. If yes, then G and G' are said to be isomorphic; otherwise they are nonisomorphic. The GI problem is an important problem in computer science and is thought to be of comparable difficulty to integer factorization. In this paper we present a quantum algorithm that solves arbitrary instances of GI and which also provides an approach to determining all automorphisms of a given graph. We show how the GI problem can be converted to a combinatorial optimization problem that can be solved using adiabatic quantum evolution. We numerically simulate the algorithm's quantum dynamics and show that it correctly (i) distinguishes nonisomorphic graphs; (ii) recognizes isomorphic graphs and determines the permutation(s) that connect them; and (iii) finds the automorphism group of a given graph G. We then discuss the GI quantum algorithm's experimental implementation, and close by showing how it can be leveraged to give a quantum algorithm that solves arbitrary instances of the NP-complete subgraph isomorphism problem. The computational complexity of an adiabatic quantum algorithm is largely determined by the minimum energy gap Δ (N) separating the ground and first-excited states in the limit of large problem size N ≫1. Calculating Δ (N) in this limit is a fundamental open problem in adiabatic quantum computing, and so it is not possible to determine the computational complexity of adiabatic quantum algorithms in general, nor consequently, of the specific adiabatic quantum algorithms presented here. Adiabatic quantum computing has been shown to be equivalent to the circuit model of quantum computing, and so development of adiabatic quantum algorithms continues to be of great interest.
ERIC Educational Resources Information Center
Starkman, Neal
2007-01-01
Poor classroom acoustics are impairing students' hearing and their ability to learn. However, technology has come up with a solution: tools that focus voices in a way that minimizes intrusive ambient noise and gets to the intended receiver--not merely amplifying the sound, but also clarifying and directing it. One provider of classroom audio…
Accurate adiabatic correction in the hydrogen molecule
Pachucki, Krzysztof; Komasa, Jacek
2014-12-14
A new formalism for the accurate treatment of adiabatic effects in the hydrogen molecule is presented, in which the electronic wave function is expanded in the James-Coolidge basis functions. Systematic increase in the size of the basis set permits estimation of the accuracy. Numerical results for the adiabatic correction to the Born-Oppenheimer interaction energy reveal a relative precision of 10{sup −12} at an arbitrary internuclear distance. Such calculations have been performed for 88 internuclear distances in the range of 0 < R ⩽ 12 bohrs to construct the adiabatic correction potential and to solve the nuclear Schrödinger equation. Finally, the adiabatic correction to the dissociation energies of all rovibrational levels in H{sub 2}, HD, HT, D{sub 2}, DT, and T{sub 2} has been determined. For the ground state of H{sub 2} the estimated precision is 3 × 10{sup −7} cm{sup −1}, which is almost three orders of magnitude higher than that of the best previous result. The achieved accuracy removes the adiabatic contribution from the overall error budget of the present day theoretical predictions for the rovibrational levels.
Accurate adiabatic correction in the hydrogen molecule
NASA Astrophysics Data System (ADS)
Pachucki, Krzysztof; Komasa, Jacek
2014-12-01
A new formalism for the accurate treatment of adiabatic effects in the hydrogen molecule is presented, in which the electronic wave function is expanded in the James-Coolidge basis functions. Systematic increase in the size of the basis set permits estimation of the accuracy. Numerical results for the adiabatic correction to the Born-Oppenheimer interaction energy reveal a relative precision of 10-12 at an arbitrary internuclear distance. Such calculations have been performed for 88 internuclear distances in the range of 0 < R ⩽ 12 bohrs to construct the adiabatic correction potential and to solve the nuclear Schrödinger equation. Finally, the adiabatic correction to the dissociation energies of all rovibrational levels in H2, HD, HT, D2, DT, and T2 has been determined. For the ground state of H2 the estimated precision is 3 × 10-7 cm-1, which is almost three orders of magnitude higher than that of the best previous result. The achieved accuracy removes the adiabatic contribution from the overall error budget of the present day theoretical predictions for the rovibrational levels.
Symmetry-Protected Quantum Adiabatic Transistors
NASA Astrophysics Data System (ADS)
Williamson, Dominic J.; Bartlett, Stephen D.
2014-03-01
An essential development in the history of computing was the invention of the transistor as it allowed logic circuits to be implemented in a robust and modular way. The physical characteristics of semiconductor materials were the key to building these devices. We aim to present an analogous development for quantum computing by showing that quantum adiabatic transistors (as defined by Flammia et al.) are built upon the essential qualities of symmetry-protected (SP) quantum ordered phases in one dimension. Flammia et al. and Renes et al. have demonstrated schemes for universal adiabatic quantum computation using quantum adiabatic transistors described by interacting spin chain models with specifically chosen Hamiltonian terms. We show that these models can be understood as specific examples of the generic situation in which all SP phases lead to quantum computation on encoded edge degrees of freedom by adiabatically traversing a symmetric phase transition into a trivial symmetric phase. This point of view is advantageous as it allows us to readily see that the computational properties of a quantum adiabatic transistor arise from a phase of matter rather than due to carefully tuned interactions.
Sliding Seal Materials for Adiabatic Engines, Phase 2
NASA Technical Reports Server (NTRS)
Lankford, J.; Wei, W.
1986-01-01
An essential task in the development of the heavy-duty adiabatic diesel engine is identification and improvements of reliable, low-friction piston seal materials. In the present study, the sliding friction coefficients and wear rates of promising carbide, oxide, and nitride materials were measured under temperature, environmental, velocity, and loading conditions that are representative of the adiabatic engine environment. In addition, silicon nitride and partially stabilized zirconia disks were ion implanted with TiNi, Ni, Co, and Cr, and subsequently run against carbide pins, with the objective of producing reduced friction via solid lubrication at elevated temperature. In order to provide guidance needed to improve materials for this application, the program stressed fundamental understanding of the mechanisms involved in friction and wear. Electron microscopy was used to elucidate the micromechanisms of wear following wear testing, and Auger electron spectroscopy was used to evaluate interface/environment interactions which seemed to be important in the friction and wear process. Unmodified ceramic sliding couples were characterized at all temperatures by friction coefficients of 0.24 and above. The coefficient at 800 C in an oxidizing environment was reduced to below 0.1, for certain material combinations, by the ion implanation of TiNi or Co. This beneficial effect was found to derive from lubricious Ti, Ni, and Co oxides.
Nonadiabatic exchange dynamics during adiabatic frequency sweeps
NASA Astrophysics Data System (ADS)
Barbara, Thomas M.
2016-04-01
A Bloch equation analysis that includes relaxation and exchange effects during an adiabatic frequency swept pulse is presented. For a large class of sweeps, relaxation can be incorporated using simple first order perturbation theory. For anisochronous exchange, new expressions are derived for exchange augmented rotating frame relaxation. For isochronous exchange between sites with distinct relaxation rate constants outside the extreme narrowing limit, simple criteria for adiabatic exchange are derived and demonstrate that frequency sweeps commonly in use may not be adiabatic with regard to exchange unless the exchange rates are much larger than the relaxation rates. Otherwise, accurate assessment of the sensitivity to exchange dynamics will require numerical integration of the rate equations. Examples of this situation are given for experimentally relevant parameters believed to hold for in-vivo tissue. These results are of significance in the study of exchange induced contrast in magnetic resonance imaging.
Adiabatic approximation for the density matrix
NASA Astrophysics Data System (ADS)
Band, Yehuda B.
1992-05-01
An adiabatic approximation for the Liouville density-matrix equation which includes decay terms is developed. The adiabatic approximation employs the eigenvectors of the non-normal Liouville operator. The approximation is valid when there exists a complete set of eigenvectors of the non-normal Liouville operator (i.e., the eigenvectors span the density-matrix space), the time rate of change of the Liouville operator is small, and an auxiliary matrix is nonsingular. Numerical examples are presented involving efficient population transfer in a molecule by stimulated Raman scattering, with the intermediate level of the molecule decaying on a time scale that is fast compared with the pulse durations of the pump and Stokes fields. The adiabatic density-matrix approximation can be simply used to determine the density matrix for atomic or molecular systems interacting with cw electromagnetic fields when spontaneous emission or other decay mechanisms prevail.
Extensive Adiabatic Invariants for Nonlinear Chains
NASA Astrophysics Data System (ADS)
Giorgilli, Antonio; Paleari, Simone; Penati, Tiziano
2012-09-01
We look for extensive adiabatic invariants in nonlinear chains in the thermodynamic limit. Considering the quadratic part of the Klein-Gordon Hamiltonian, by a linear change of variables we transform it into a sum of two parts in involution. At variance with the usual method of introducing normal modes, our constructive procedure allows us to exploit the complete resonance, while keeping the extensive nature of the system. Next we construct a nonlinear approximation of an extensive adiabatic invariant for a perturbation of the discrete nonlinear Schrödinger model. The fluctuations of this quantity are controlled via Gibbs measure estimates independent of the system size, for a large set of initial data at low specific energy. Finally, by numerical calculations we show that our adiabatic invariant is well conserved for times much longer than predicted by our first order theory, with fluctuation much smaller than expected according to standard statistical estimates.
Anderson localization makes adiabatic quantum optimization fail
Altshuler, Boris; Krovi, Hari; Roland, Jérémie
2010-01-01
Understanding NP-complete problems is a central topic in computer science (NP stands for nondeterministic polynomial time). This is why adiabatic quantum optimization has attracted so much attention, as it provided a new approach to tackle NP-complete problems using a quantum computer. The efficiency of this approach is limited by small spectral gaps between the ground and excited states of the quantum computer’s Hamiltonian. We show that the statistics of the gaps can be analyzed in a novel way, borrowed from the study of quantum disordered systems in statistical mechanics. It turns out that due to a phenomenon similar to Anderson localization, exponentially small gaps appear close to the end of the adiabatic algorithm for large random instances of NP-complete problems. This implies that unfortunately, adiabatic quantum optimization fails: The system gets trapped in one of the numerous local minima. PMID:20616043
PREFACE: Aerodynamic sound Aerodynamic sound
NASA Astrophysics Data System (ADS)
Akishita, Sadao
2010-02-01
The modern theory of aerodynamic sound originates from Lighthill's two papers in 1952 and 1954, as is well known. I have heard that Lighthill was motivated in writing the papers by the jet-noise emitted by the newly commercialized jet-engined airplanes at that time. The technology of aerodynamic sound is destined for environmental problems. Therefore the theory should always be applied to newly emerged public nuisances. This issue of Fluid Dynamics Research (FDR) reflects problems of environmental sound in present Japanese technology. The Japanese community studying aerodynamic sound has held an annual symposium since 29 years ago when the late Professor S Kotake and Professor S Kaji of Teikyo University organized the symposium. Most of the Japanese authors in this issue are members of the annual symposium. I should note the contribution of the two professors cited above in establishing the Japanese community of aerodynamic sound research. It is my pleasure to present the publication in this issue of ten papers discussed at the annual symposium. I would like to express many thanks to the Editorial Board of FDR for giving us the chance to contribute these papers. We have a review paper by T Suzuki on the study of jet noise, which continues to be important nowadays, and is expected to reform the theoretical model of generating mechanisms. Professor M S Howe and R S McGowan contribute an analytical paper, a valuable study in today's fluid dynamics research. They apply hydrodynamics to solve the compressible flow generated in the vocal cords of the human body. Experimental study continues to be the main methodology in aerodynamic sound, and it is expected to explore new horizons. H Fujita's study on the Aeolian tone provides a new viewpoint on major, longstanding sound problems. The paper by M Nishimura and T Goto on textile fabrics describes new technology for the effective reduction of bluff-body noise. The paper by T Sueki et al also reports new technology for the
Spontaneous emission in stimulated Raman adiabatic passage
Ivanov, P. A.; Vitanov, N. V.; Bergmann, K.
2005-11-15
This work explores the effect of spontaneous emission on the population transfer efficiency in stimulated Raman adiabatic passage (STIRAP). The approach uses adiabatic elimination of weakly coupled density matrix elements in the Liouville equation, from which a very accurate analytic approximation is derived. The loss of population transfer efficiency is found to decrease exponentially with the factor {omega}{sub 0}{sup 2}/{gamma}, where {gamma} is the spontaneous emission rate and {omega}{sub 0} is the peak Rabi frequency. The transfer efficiency increases with the pulse delay and reaches a steady value. For large pulse delay and large spontaneous emission rate STIRAP degenerates into optical pumping.
Adiabatic Hyperspherical Analysis of Realistic Nuclear Potentials
NASA Astrophysics Data System (ADS)
Daily, K. M.; Kievsky, Alejandro; Greene, Chris H.
2015-12-01
Using the hyperspherical adiabatic method with the realistic nuclear potentials Argonne V14, Argonne V18, and Argonne V18 with the Urbana IX three-body potential, we calculate the adiabatic potentials and the triton bound state energies. We find that a discrete variable representation with the slow variable discretization method along the hyperradial degree of freedom results in energies consistent with the literature. However, using a Laguerre basis results in missing energy, even when extrapolated to an infinite number of basis functions and channels. We do not include the isospin T = 3/2 contribution in our analysis.
Complexity of the Quantum Adiabatic Algorithm
NASA Technical Reports Server (NTRS)
Hen, Itay
2013-01-01
The Quantum Adiabatic Algorithm (QAA) has been proposed as a mechanism for efficiently solving optimization problems on a quantum computer. Since adiabatic computation is analog in nature and does not require the design and use of quantum gates, it can be thought of as a simpler and perhaps more profound method for performing quantum computations that might also be easier to implement experimentally. While these features have generated substantial research in QAA, to date there is still a lack of solid evidence that the algorithm can outperform classical optimization algorithms.
Adiabatic approximation for nucleus-nucleus scattering
Johnson, R.C.
2005-10-14
Adiabatic approximations to few-body models of nuclear scattering are described with emphasis on reactions with deuterons and halo nuclei (frozen halo approximation) as projectiles. The different ways the approximation should be implemented in a consistent theory of elastic scattering, stripping and break-up are explained and the conditions for the theory's validity are briefly discussed. A formalism which links few-body models and the underlying many-body system is outlined and the connection between the adiabatic and CDCC methods is reviewed.
Multiphoton Raman Atom Optics with Frequency-Swept Adiabatic Passage
NASA Astrophysics Data System (ADS)
Kotru, Krish; Butts, David; Kinast, Joseph; Stoner, Richard
2016-05-01
Light-pulse atom interferometry is a promising candidate for future inertial navigators, gravitational wave detectors, and measurements of fundamental physical constants. The sensitivity of this technique, however, is often limited by the small momentum separations created between interfering atom wave packets (typically ~ 2 ℏk) . We address this issue using light-pulse atom optics derived from stimulated Raman transitions and frequency-swept adiabatic rapid passage (ARP). In experiments, these Raman ARP atom optics have generated up to 30 ℏk photon recoil momenta in an acceleration-sensitive atom interferometer, thereby enhancing the phase shift per unit acceleration by a factor of 15. Since this approach forgoes evaporative cooling and velocity selection, it could enable large-area atom interferometry at higher data rates, while also lowering the atom shot-noise-limited measurement uncertainty.
Adiabatic perturbation theory of electronic stopping in insulators
NASA Astrophysics Data System (ADS)
Horsfield, Andrew P.; Lim, Anthony; Foulkes, W. M. C.; Correa, Alfredo A.
2016-06-01
A model able to explain the complicated structure of electronic stopping at low velocities in insulating materials is presented. It is shown to be in good agreement with results obtained from time-dependent density-functional theory for the stopping of a channeling Si atom in a Si crystal. If we define the repeat frequency f =v /λ , where λ is the periodic repeat length of the crystal along the direction the channeling atom is traveling, and v is the velocity of the channeling atom, we find that electrons experience a perturbing force that varies in time at integer multiples l of f . This enables electronic excitations at low atom velocity, but their contributions diminish rapidly with increasing values of l . The expressions for stopping power are derived using adiabatic perturbation theory for many-electron systems, and they are then specialized to the case of independent electrons. A simple model for the nonadiabatic matrix elements is described, along with the procedure for determining its parameters.
NASA Astrophysics Data System (ADS)
Asimow, P. D.; Nguyen, J.; Akin, M. C.; Fatýanov, O. V.
2015-12-01
Detailed elasticity data on liquid Fe and candidate molten core alloys should offer new constraints on the under-constrained problem of Earth's core composition. Density, sound speed, and the gradient in sound speed with pressure are each potentially distinct experimental constraints and are each well-known for Earth. The gradient in sound speed, though, has not been used because sound speed depends on both T and P, such that data must be collected or reconstructed along the correct, nearly adiabatic, thermal profile. Reconstruction requires the Grüneisen γ, which is composition-dependent, and data over a large P-T space to allow extrapolation. Both static and dynamic compression methods could be used, but the conditions (140 - 330 GPa and 4000 - 6000 K) are very challenging for static methods and standard shock compression only samples the outer core P-T profile at a single P. Instead we are applying quasi-isentropic dynamic ramp compression, using pre-heating of the target and impedance of the leading edge of a graded-density impactor (GDI) to select a probable outer core isentrope. The target material is melted and raised to a point on the outer core isentrope by the initial shock, then quasi-isentropically ramped to a maximum P by increasing shock impedance of trailing GDI layers. Particle velocity is monitored by photonic doppler velocimetry (PDV) at two step thicknesses at the interface of Fe or Fe-alloy target and MgO windows. The difference in arrival time of each particle velocity at the two steps directly gives the Lagrangian sound speed vs. particle velocity, which is integrated to obtain Pand density. At the writing of this abstract, we have completed one shot of this type. We successfully heated a two-step Fe target in a Mo capsule with MgO windows to 1350 °C, maintaining sufficient alignment and reflectivity to collect PDV signal returns. We characterized the velocity correction factor for PDV observation through MgO windows, and have confirmed
Adiabatic Compression in a Fire Syringe.
ERIC Educational Resources Information Center
Hayn, Carl H.; Baird, Scott C.
1985-01-01
Suggests using better materials in fire syringes to obtain more effective results during demonstrations which show the elevation in temperature upon a very rapid (adiabatic) compression of air. Also describes an experiment (using ignition temperatures) which introduces students to the use of thermocouples for high temperature measurements. (DH)
Apparatus to Measure Adiabatic and Isothermal Processes.
ERIC Educational Resources Information Center
Lamb, D. W.; White, G. M.
1996-01-01
Describes a simple manual apparatus designed to serve as an effective demonstration of the differences between isothermal and adiabatic processes for the general or elementary physics student. Enables students to verify Boyle's law for slow processes and identify the departure from this law for rapid processes and can also be used to give a clear…
Communication: Adiabatic and non-adiabatic electron-nuclear motion: Quantum and classical dynamics
NASA Astrophysics Data System (ADS)
Albert, Julian; Kaiser, Dustin; Engel, Volker
2016-05-01
Using a model for coupled electronic-nuclear motion we investigate the range from negligible to strong non-adiabatic coupling. In the adiabatic case, the quantum dynamics proceeds in a single electronic state, whereas for strong coupling a complete transition between two adiabatic electronic states takes place. It is shown that in all coupling regimes the short-time wave-packet dynamics can be described using ensembles of classical trajectories in the phase space spanned by electronic and nuclear degrees of freedom. We thus provide an example which documents that the quantum concept of non-adiabatic transitions is not necessarily needed if electronic and nuclear motion is treated on the same footing.
The dynamic instability of adiabatic blast waves
NASA Technical Reports Server (NTRS)
Ryu, Dongsu; Vishniac, Ethan T.
1991-01-01
Adiabatic blastwaves, which have a total energy injected from the center E varies as t(sup q) and propagate through a preshock medium with a density rho(sub E) varies as r(sup -omega) are described by a family of similarity solutions. Previous work has shown that adiabatic blastwaves with increasing or constant postshock entropy behind the shock front are susceptible to an oscillatory instability, caused by the difference between the nature of the forces on the two sides of the dense shell behind the shock front. This instability sets in if the dense postshock layer is sufficiently thin. The stability of adiabatic blastwaves with a decreasing postshock entropy is considered. Such blastwaves, if they are decelerating, always have a region behind the shock front which is subject to convection. Some accelerating blastwaves also have such region, depending on the values of q, omega, and gamma where gamma is the adiabatic index. However, since the shock interface stabilizes dynamically induced perturbations, blastwaves become convectively unstable only if the convective zone is localized around the origin or a contact discontinuity far from the shock front. On the other hand, the contact discontinuity of accelerating blastwaves is subject to a strong Rayleigh-Taylor instability. The frequency spectra of the nonradial, normal modes of adiabatic blastwaves have been calculated. The results have been applied to the shocks propagating through supernovae envelopes. It is shown that the metal/He and He/H interfaces are strongly unstable against the Rayleigh-Taylor instability. This instability will induce mixing in supernovae envelopes. In addition the implications of this work for the evolution of planetary nebulae is discussed.
Adiabatic circuits: converter for static CMOS signals
NASA Astrophysics Data System (ADS)
Fischer, J.; Amirante, E.; Bargagli-Stoffi, A.; Schmitt-Landsiedel, D.
2003-05-01
Ultra low power applications can take great advantages from adiabatic circuitry. In this technique a multiphase system is used which consists ideally of trapezoidal voltage signals. The input signals to be processed will often come from a function block realized in static CMOS. The static rectangular signals must be converted for the oscillating multiphase system of the adiabatic circuitry. This work shows how to convert the input signals to the proposed pulse form which is synchronized to the appropriate supply voltage. By means of adder structures designed for a 0.13µm technology in a 4-phase system there will be demonstrated, which additional circuits are necessary for the conversion. It must be taken into account whether the data arrive in parallel or serial form. Parallel data are all in one phase and therefore it is advantageous to use an adder structure with a proper input stage, e.g. a Carry Lookahead Adder (CLA). With a serial input stage it is possible to read and to process four signals during one cycle due to the adiabatic 4-phase system. Therefore input signals with a frequency four times higher than the adiabatic clock frequency can be used. This reduces the disadvantage of the slow clock period typical for adiabatic circuits. By means of an 8 bit Ripple Carry Adder (8 bit RCA) the serial reading will be introduced. If the word width is larger than 4 bits the word can be divided in 4 bit words which are processed in parallel. This is the most efficient way to minimize the number of input lines and pads. At the same time a high throughput is achieved.
The dynamic instability of adiabatic blast waves
NASA Astrophysics Data System (ADS)
Ryu, Dongsu; Vishniac, Ethan T.
1991-02-01
Adiabatic blastwaves, which have a total energy injected from the center E varies as tq and propagate through a preshock medium with a density rhoE varies as r-omega are described by a family of similarity solutions. Previous work has shown that adiabatic blastwaves with increasing or constant postshock entropy behind the shock front are susceptible to an oscillatory instability, caused by the difference between the nature of the forces on the two sides of the dense shell behind the shock front. This instability sets in if the dense postshock layer is sufficiently thin. The stability of adiabatic blastwaves with a decreasing postshock entropy is considered. Such blastwaves, if they are decelerating, always have a region behind the shock front which is subject to convection. Some accelerating blastwaves also have such region, depending on the values of q, omega, and gamma where gamma is the adiabatic index. However, since the shock interface stabilizes dynamically induced perturbations, blastwaves become convectively unstable only if the convective zone is localized around the origin or a contact discontinuity far from the shock front. On the other hand, the contact discontinuity of accelerating blastwaves is subject to a strong Rayleigh-Taylor instability. The frequency spectra of the nonradial, normal modes of adiabatic blastwaves have been calculated. The results have been applied to the shocks propagating through supernovae envelopes. It is shown that the metal/He and He/H interfaces are strongly unstable against the Rayleigh-Taylor instability. This instability will induce mixing in supernovae envelopes. In addition the implications of this work for the evolution of planetary nebulae is discussed.
The dynamic instability of adiabatic blastwaves
NASA Astrophysics Data System (ADS)
Ryu, Dongsu; Vishniac, Ethan T.
1990-05-01
Adiabatic blastwaves, which have a total energy injected from the center E varies as t(sup q) and propagate through a preshock medium with a density rho(sub E) varies as r(sup -omega) are described by a family of similarity solutions. Previous work has shown that adiabatic blastwaves with increasing or constant postshock entropy behind the shock front are susceptible to an oscillatory instability, caused by the difference between the nature of the forces on the two sides of the dense shell behind the shock front. This instability sets in if the dense postshock layer is sufficiently thin. The stability of adiabatic blastwaves with a decreasing postshock entropy is considered. Such blastwaves, if they are decelerating, always have a region behind the shock front which is subject to convection. Some accelerating blastwaves also have such region, depending on the values of q, omega, and gamma where gamma is the adiabatic index. However, since the shock interface stabilizes dynamically induced perturbations, blastwaves become convectively unstable only if the convective zone is localized around the origin or a contact discontinuity far from the shock front. On the other hand, the contact discontinuity of accelerating blastwaves is subject to a strong Rayleigh-Taylor instability. The frequency spectra of the nonradial, normal modes of adiabatic blastwaves have been calculated. The results have been applied to the shocks propagating through supernovae envelopes. It is shown that the metal/He and He/H interfaces are strongly unstable against the Rayleigh-Taylor instability. This instability will induce mixing in supernovae envelopes. In addition the implications of this work for the evolution of planetary nebulae is discussed.
Adiabatic burst evaporation from bicontinuous nanoporous membranes
Ichilmann, Sachar; Rücker, Kerstin; Haase, Markus; Enke, Dirk
2015-01-01
Evaporation of volatile liquids from nanoporous media with bicontinuous morphology and pore diameters of a few 10 nm is an ubiquitous process. For example, such drying processes occur during syntheses of nanoporous materials by sol–gel chemistry or by spinodal decomposition in the presence of solvents as well as during solution impregnation of nanoporous hosts with functional guests. It is commonly assumed that drying is endothermic and driven by non-equilibrium partial pressures of the evaporating species in the gas phase. We show that nearly half of the liquid evaporates in an adiabatic mode involving burst-like liquid-to-gas conversions. During single adiabatic burst evaporation events liquid volumes of up to 107 μm3 are converted to gas. The adiabatic liquid-to-gas conversions occur if air invasion fronts get unstable because of the built-up of high capillary pressures. Adiabatic evaporation bursts propagate avalanche-like through the nanopore systems until the air invasion fronts have reached new stable configurations. Adiabatic cavitation bursts thus compete with Haines jumps involving air invasion front relaxation by local liquid flow without enhanced mass transport out of the nanoporous medium and prevail if the mean pore diameter is in the range of a few 10 nm. The results reported here may help optimize membrane preparation via solvent-based approaches, solution-loading of nanopore systems with guest materials as well as routine use of nanoporous membranes with bicontinuous morphology and may contribute to better understanding of adsorption/desorption processes in nanoporous media. PMID:25926406
Adiabatic evolution of an irreversible two level system
Kvitsinsky, A.; Putterman, S. )
1991-05-01
The adiabatic dynamics of a two level atom with spontaneous decay is studied. The existence of a complex adiabatic phase shift is established: The real part being the usual Berry's phase. A closed-form expression for this phase and the adiabatic transition amplitudes is obtained. Incorporation of a finite preparation time for the initial state yields a new asymptotic form for the adiabatic transition amplitudes which is significantly different from the standard Landau--Zener--Dykhne formula.
Adiabatic femtosecond pulse compression and control by using quadratic cascading nonlinearity
NASA Astrophysics Data System (ADS)
Zeng, Xianglong; Ashihara, Satoshi; Shimura, Tsutomu; Kuroda, Kazuo
2008-01-01
We experimentally demonstrate that adiabatic compression of femtosecond pulse can be achieved by employing the management of quadratic cascading nonlinearity in quasi-phase-matching gratings. Cascading nonlinearity is not a simple analogy with third-order optical nonlinearity in term of the engineering properties of the magnitude and focusing (or defocusing) nonlinearity. Femtosecond pulse compression is investigated based on type-I (e: o + o) collinear QPM geometry of aperiodically poled MgO-doped LiNbO 3 (MgO: LN). Group-velocity-matching condition is chosen to generate quadratic femtosecond soliton consisting of fundamental (FF) and second harmonic (SH) pulses. Adiabatic-like compression process is observed in the length of 50 mm linearly chirped QPM. Cascading nonlinearity is local managed, instead of dispersion management used in fiber adiabatic soliton compression. Quadratic soliton including FF and SH pulses are obtained from the compression of 95 fs FF pulse in the initial experiments. Dependence on the phase mismatch and group velocity mismatch, cascading nonlinearity has a flexible property and presents a new challenge for exploring femtosecond pulse shaping and control. The demonstrated pulse compression and control based on cascading nonlinearity is useful for generation of shorter pulses with clean temporal profiles, efficient femtosecond second harmonic generation and group-velocity control.
Quench propagation velocity for highly stabilized conductors
Mints, R.G. |; Ogitsu, T. |; Devred, A.
1995-05-01
Quench propagation velocity in conductors having a large amount of stabilizer outside the multifilamentary area is considered. It is shown that the current redistribution process between the multifilamentary area and the stabilizer can strongly effect the quench propagation. A criterion is derived determining the conditions under which the current redistribution process becomes significant, and a model of effective stabilizer area is suggested to describe its influence on the quench propagation velocity. As an illustration, the model is applied to calculate the adiabatic quench propagation velocity for a conductor geometry with a multifilamentary area embedded inside the stabilizer.
Anomalous Cherenkov spin-orbit sound
Smirnov, Sergey
2011-02-15
The Cherenkov effect is a well-known phenomenon in the electrodynamics of fast charged particles passing through transparent media. If the particle is faster than the light in a given medium, the medium emits a forward light cone. This beautiful phenomenon has an acoustic counterpart where the role of photons is played by phonons and the role of the speed of light is played by the sound velocity. In this case the medium emits a forward sound cone. Here, we show that in a system with spin-orbit interactions in addition to this normal Cherenkov sound there appears an anomalous Cherenkov sound with forward and backward sound propagation. Furthermore, we demonstrate that the transition from the normal to anomalous Cherenkov sound happens in a singular way at the Cherenkov cone angle. The detection of this acoustic singularity therefore represents an alternative experimental tool for the measurement of the spin-orbit coupling strength.
Non-adiabatic spin-transfer torque independent of the spin relaxation rate
NASA Astrophysics Data System (ADS)
Kim, Kyoung-Whan; Lee, Kyung-Jin; Lee, Hyun-Woo; Stiles, Mark
Non-adiabatic spin-transfer torques play an important role in magnetization dynamics. For example, they determine current-induced magnetic domain wall velocity. A well-known mechanism for non-adiabatic spin-transfer torques arises from spin relaxation and is directly proportional to the spin relaxation rate. Here we report mechanism that is independent of the spin relaxation rate. This mechanism is related to the recently reported intrinsic damping-like spin-orbit torque, which is proportional to an electric field but is independent of the conductivity, and hence the scattering rate. Likewise, the mechanism we report is independent of the scattering rate. It originates from the effective spin-orbit coupling that arises in systems with magnetic textures as we previously reported for related processes. In this work, we demonstrate the existence of such a spin-transfer torque, which is a contribution to the non-adiabatic spin-transfer torque and is independent of scattering rates. We also demonstrate that the magnitude of this torque can be much larger than other mechanisms for non-adiabatic spin-transfer torques, and may be the dominant contribution in some systems.
Adiabatic Far Field Sub-Diffraction Imaging
Cang, Hu; Salandrino, Alessandro; Wang, Yuan; Zhang, Xiang
2015-01-01
The limited resolution of a conventional optical imaging system stems from the fact that the fine feature information of an object is carried by evanescent waves, which exponentially decay in space thus cannot reach the imaging plane. We introduce here a new concept of adiabatic lens, which utilizes a geometrically conformal surface to mediate the interference of slowly decompressed electromagnetic waves at far field to form images. The decompression is satisfying an adiabatic condition, and by bridging the gap between far field and near field, it allows far field optical systems to project an image of the near field features directly. Using these designs, we demonstrated the magnification can be up to 20 times and it is possible to achieve sub-50nm imaging resolution in visible. Our approach provides a means to extend the domain of geometrical optics to a deep sub-wavelength scale. PMID:26258769
Shortcuts to adiabaticity from linear response theory.
Acconcia, Thiago V; Bonança, Marcus V S; Deffner, Sebastian
2015-10-01
A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. With the help of phenomenological response functions, a simple expression for the excess work is found-quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. Finally, we propose a degenerate family of protocols, which facilitates shortcuts to adiabaticity for specific and very short driving times. PMID:26565209
Arbitrary qudit gates by adiabatic passage
NASA Astrophysics Data System (ADS)
Rousseaux, B.; Guérin, S.; Vitanov, N. V.
2013-03-01
We derive an adiabatic technique that implements the most general SU(d) transformation in a quantum system of d degenerate states, featuring a qudit. This technique is based on the factorization of the SU(d) transformation into d generalized quantum Householder reflections, each of which is implemented by a two-shot stimulated Raman adiabatic passage with appropriate static phases. The energy of the lasers needed to synthesize a single Householder reflection is shown to be remarkably constant as a function of d. This technique is directly applicable to a linear trapped ion system with d+1 ions. We implement the quantum Fourier transform numerically in a qudit with d=4 (defined as a quartit) as an example.
Trapped Ion Quantum Computation by Adiabatic Passage
Feng Xuni; Wu Chunfeng; Lai, C. H.; Oh, C. H.
2008-11-07
We propose a new universal quantum computation scheme for trapped ions in thermal motion via the technique of adiabatic passage, which incorporates the advantages of both the adiabatic passage and the model of trapped ions in thermal motion. Our scheme is immune from the decoherence due to spontaneous emission from excited states as the system in our scheme evolves along a dark state. In our scheme the vibrational degrees of freedom are not required to be cooled to their ground states because they are only virtually excited. It is shown that the fidelity of the resultant gate operation is still high even when the magnitude of the effective Rabi frequency moderately deviates from the desired value.
Adiabatic Quantum Optimization for Associative Memory Recall
NASA Astrophysics Data System (ADS)
Seddiqi, Hadayat; Humble, Travis
2014-12-01
Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.
Quantum adiabatic evolution with energy degeneracy levels
NASA Astrophysics Data System (ADS)
Zhang, Qi
2016-01-01
A classical-kind phase-space formalism is developed to address the tiny intrinsic dynamical deviation from what is predicted by Wilczek-Zee theorem during quantum adiabatic evolution on degeneracy levels. In this formalism, the Hilbert space and the aggregate of degenerate eigenstates become the classical-kind phase space and a high-dimensional subspace in the phase space, respectively. Compared with the previous analogous study by a different method, the current result is qualitatively different in that the first-order deviation derived here is always perpendicular to the degeneracy subspace. A tripod-scheme Hamiltonian with two degenerate dark states is employed to illustrate the adiabatic deviation with degeneracy levels.
Shortcuts to adiabaticity from linear response theory
NASA Astrophysics Data System (ADS)
Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian
2015-10-01
A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. With the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. Finally, we propose a degenerate family of protocols, which facilitates shortcuts to adiabaticity for specific and very short driving times.
Adiabatic quantum optimization for associative memory recall
Seddiqi, Hadayat; Humble, Travis S.
2014-12-22
Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are storedmore » in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.« less
Adiabatic quantum optimization for associative memory recall
Seddiqi, Hadayat; Humble, Travis S.
2014-12-22
Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.
Shortcuts to adiabaticity from linear response theory
Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian
2015-10-23
A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. Moreover, with the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. We finally propose a degenerate family of protocols, which facilitates shortcuts to adiabaticity for specific and very short driving times.
Shortcuts to adiabaticity from linear response theory
Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian
2015-10-23
A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. Moreover, with the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. We finally propose a degenerate family of protocols, which facilitates shortcuts tomore » adiabaticity for specific and very short driving times.« less
Adiabatic Quantization of Andreev Quantum Billiard Levels
NASA Astrophysics Data System (ADS)
Silvestrov, P. G.; Goorden, M. C.; Beenakker, C. W.
2003-03-01
We identify the time T between Andreev reflections as a classical adiabatic invariant in a ballistic chaotic cavity (Lyapunov exponent λ), coupled to a superconductor by an N-mode constriction. Quantization of the adiabatically invariant torus in phase space gives a discrete set of periods Tn, which in turn generate a ladder of excited states ɛnm=(m+1/2)πℏ/Tn. The largest quantized period is the Ehrenfest time T0=λ-1ln(N. Projection of the invariant torus onto the coordinate plane shows that the wave functions inside the cavity are squeezed to a transverse dimension W/(N), much below the width W of the constriction.
Adiabatic state preparation study of methylene
Veis, Libor Pittner, Jiří
2014-06-07
Quantum computers attract much attention as they promise to outperform their classical counterparts in solving certain type of problems. One of them with practical applications in quantum chemistry is simulation of complex quantum systems. An essential ingredient of efficient quantum simulation algorithms are initial guesses of the exact wave functions with high enough fidelity. As was proposed in Aspuru-Guzik et al. [Science 309, 1704 (2005)], the exact ground states can in principle be prepared by the adiabatic state preparation method. Here, we apply this approach to preparation of the lowest lying multireference singlet electronic state of methylene and numerically investigate preparation of this state at different molecular geometries. We then propose modifications that lead to speeding up the preparation process. Finally, we decompose the minimal adiabatic state preparation employing the direct mapping in terms of two-qubit interactions.
Adiabatic Quantum Simulation of Quantum Chemistry
Babbush, Ryan; Love, Peter J.; Aspuru-Guzik, Alán
2014-01-01
We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions. PMID:25308187
Pulse sequences in photoassociation via adiabatic passage
NASA Astrophysics Data System (ADS)
Li, Xuan; Dupre, William; Parker, Gregory A.
2012-07-01
We perform a detailed study of pulse sequences in a photoassociation via adiabatic passage (PAP) process to transfer population from an ensemble of ultracold atomic clouds to a vibrationally cold molecular state. We show that an appreciable final population of ultracold NaCs molecules can be achieved with optimized pulses in either the ‘counter-intuitive’ (tP > tS) or ‘intuitive’ (tP < tS) PAP pulse sequences, with tP and tS denoting the temporal centers of the pump and Stokes pulses, respectively. By investigating the dependence of the reactive yield on pulse sequences, in a wide range of tP-tS, we show that there is not a fundamental preference to either pulse sequence in a PAP process. We explain this no-sequence-preference phenomenon by analyzing a multi-bound model so that an analogy can be drawn to the conventional stimulated Raman adiabatic passage.
Adiabatic charging of nickel-hydrogen batteries
NASA Technical Reports Server (NTRS)
Lurie, Chuck; Foroozan, S.; Brewer, Jeff; Jackson, Lorna
1995-01-01
Battery management during prelaunch activities has always required special attention and careful planning. The transition from nickel-cadium to nickel-hydrogen batteries, with their high self discharge rate and lower charge efficiency, as well as longer prelaunch scenarios, has made this aspect of spacecraft battery management even more challenging. The AXAF-I Program requires high battery state of charge at launch. The use of active cooling, to ensure efficient charging, was considered and proved to be difficult and expensive. Alternative approaches were evaluated. Optimized charging, in the absence of cooling, appeared promising and was investigated. Initial testing was conducted to demonstrate the feasibility of the 'Adiabatic Charging' approach. Feasibility was demonstrated and additional testing performed to provide a quantitative, parametric data base. The assumption that the battery is in an adiabatic environment during prelaunch charging is a conservative approximation because the battery will transfer some heat to its surroundings by convective air cooling. The amount is small compared to the heat dissipated during battery overcharge. Because the battery has a large thermal mass, substantial overcharge can occur before the cells get too hot to charge efficiently. The testing presented here simulates a true adiabatic environment. Accordingly the data base may be slightly conservative. The adiabatic charge methodology used in this investigation begins with stabilizing the cell at a given starting temperature. The cell is then fully insulated on all sides. Battery temperature is carefully monitored and the charge terminated when the cell temperature reaches 85 F. Charging has been evaluated with starting temperatures from 55 to 75 F.
Advanced Adiabatic Demagnetization Refrigerators for Continuous Cooling
NASA Technical Reports Server (NTRS)
Chu, Paul C. W.
2004-01-01
The research at Houston was focused on optimizing the design of superconducting magnets for advanced adiabatic demagnetization refrigerators (ADRs), assessing the feasibility of using high temperature superconducting (HTS) magnets in ADRs in the future, and developing techniques to deposit HTS thin and thick films on high strength, low thermal conductivity substrates for HTS magnet leads. Several approaches have been tested for the suggested superconducting magnets.
Computer Code For Turbocompounded Adiabatic Diesel Engine
NASA Technical Reports Server (NTRS)
Assanis, D. N.; Heywood, J. B.
1988-01-01
Computer simulation developed to study advantages of increased exhaust enthalpy in adiabatic turbocompounded diesel engine. Subsytems of conceptual engine include compressor, reciprocator, turbocharger turbine, compounded turbine, ducting, and heat exchangers. Focus of simulation of total system is to define transfers of mass and energy, including release and transfer of heat and transfer of work in each subsystem, and relationship among subsystems. Written in FORTRAN IV.
Miner, Nadine E.; Caudell, Thomas P.
2004-06-08
A sound synthesis method for modeling and synthesizing dynamic, parameterized sounds. The sound synthesis method yields perceptually convincing sounds and provides flexibility through model parameterization. By manipulating model parameters, a variety of related, but perceptually different sounds can be generated. The result is subtle changes in sounds, in addition to synthesis of a variety of sounds, all from a small set of models. The sound models can change dynamically according to changes in the simulation environment. The method is applicable to both stochastic (impulse-based) and non-stochastic (pitched) sounds.
Siphon flows in isolated magnetic flux tubes. II - Adiabatic flows
NASA Technical Reports Server (NTRS)
Montesinos, Benjamin; Thomas, John H.
1989-01-01
This paper extends the study of steady siphon flows in isolated magnetic flux tubes surrounded by field-free gas to the case of adiabatic flows. The basic equations governing steady adiabatic siphon flows in a thin, isolated magnetic flux tube are summarized, and qualitative features of adiabatic flows in elevated, arched flux tubes are discussed. The equations are then cast in nondimensional form and the results of numerical computations of adiabatic siphon flows in arched flux tubes are presented along with comparisons between isothermal and adiabatic flows. The effects of making the interior of the flux tube hotter or colder than the surrounding atmosphere at the upstream footpoint of the arch is considered. In this case, is it found that the adiabatic flows are qualitatively similar to the isothermal flows, with adiabatic cooling producing quantitative differences. Critical flows can produce a bulge point in the rising part of the arch and a concentration of magnetic flux above the bulge point.
Random matrix model of adiabatic quantum computing
Mitchell, David R.; Adami, Christoph; Lue, Waynn; Williams, Colin P.
2005-05-15
We present an analysis of the quantum adiabatic algorithm for solving hard instances of 3-SAT (an NP-complete problem) in terms of random matrix theory (RMT). We determine the global regularity of the spectral fluctuations of the instantaneous Hamiltonians encountered during the interpolation between the starting Hamiltonians and the ones whose ground states encode the solutions to the computational problems of interest. At each interpolation point, we quantify the degree of regularity of the average spectral distribution via its Brody parameter, a measure that distinguishes regular (i.e., Poissonian) from chaotic (i.e., Wigner-type) distributions of normalized nearest-neighbor spacings. We find that for hard problem instances - i.e., those having a critical ratio of clauses to variables - the spectral fluctuations typically become irregular across a contiguous region of the interpolation parameter, while the spectrum is regular for easy instances. Within the hard region, RMT may be applied to obtain a mathematical model of the probability of avoided level crossings and concomitant failure rate of the adiabatic algorithm due to nonadiabatic Landau-Zener-type transitions. Our model predicts that if the interpolation is performed at a uniform rate, the average failure rate of the quantum adiabatic algorithm, when averaged over hard problem instances, scales exponentially with increasing problem size.
Adiabatic heating in impulsive solar flares
NASA Technical Reports Server (NTRS)
Maetzler, C.; Bai, T.; Crannell, C. J.; Frost, K. J.
1978-01-01
A study is made of adiabatic heating in two impulsive solar flares on the basis of dynamic X-ray spectra in the 28-254 keV range, H-alpha, microwave, and meter-wave radio observations. It is found that the X-ray spectra of the events are like those of thermal bremsstrahlung from single-temperature plasmas in the 10-60 keV range if photospheric albedo is taken into account. The temperature-emission correlation indicates adiabatic compression followed by adiabatic expansion and that the electron distribution remains isotropic. H-alpha data suggest compressive energy transfer. The projected areas and volumes of the flares are estimated assuming that X-ray and microwave emissions are produced in a single thermal plasma. Electron densities of about 10 to the 9th/cu cm are found for homogeneous, spherically symmetric sources. It is noted that the strong self-absorption of hot-plasma gyrosynchrotron radiation reveals low magnetic field strengths.
Aspects of adiabatic population transfer and control
NASA Astrophysics Data System (ADS)
Demirplak, Mustafa
This thesis explores two different questions. The first question we answer is how to restore a given population transfer scenario given that it works efficiently in the adiabatic limit but fails because of lack of intensity and/or short duration. We derive a very simple algorithm to do this and apply it to both toy and realistic models. Two results emerge from this study. While the mathematical existence of the programme is certain it might not always be physically desirable. The restoration of adiabaticity is phase sensitive. The second question that is answered in this thesis is not how to invent new control paradigms, but rather what would happen to them in the presence of stochastic perturbers. We first use a phenomenological model to study the effect of stochastic dephasing on population transfer by stimulated Raman adiabatic passage. The results of this Monte Carlo calculation are qualitatively explained with a perturbation theoretical result in the dressed state basis. The reliability of our phenomenological model is questioned through a more rigorous hybrid quantal-classical simulation of controlled population transfer in HCl in Ar.
Non-adiabatic effect on quantum pumping
NASA Astrophysics Data System (ADS)
Uchiyama, Chikako
2014-03-01
We study quantum pumping for an anharmonic junction model which interacts with two kinds of bosonic environments. We provide an expression for the quantum pumping under a piecewise modulation of environmental temperatures with including non-adiabatic effect under Markovian approximation. The obtained formula is an extension of the one expressed with the geometrical phase(Phys. Rev. Lett. 104,170601 (2010)). This extension shows that the quantum pumping depends on the initial condition of the anharmonic junction just before the modulation, as well as the characteristic environmental parameters such as interaction strength and cut-off frequencies of spectral density other than the conditions of modulation. We clarify that the pumping current including non-adiabatic effect can be larger than that under the adiabatic condition. This means that we can find the optimal condition of the current by adjusting these parameters. (The article has been submitted as http://arxiv.org/submit/848201 and will be appeared soon.) This work is supported by a Grant-in-Aid for Scientific Research (B) (KAKENHI 25287098).
An adiabatic approximation for grain alignment theory
NASA Astrophysics Data System (ADS)
Roberge, W. G.
1997-10-01
The alignment of interstellar dust grains is described by the joint distribution function for certain `internal' and `external' variables, where the former describe the orientation of the axes of a grain with respect to its angular momentum, J, and the latter describe the orientation of J relative to the interstellar magnetic field. I show how the large disparity between the dynamical time-scales of the internal and external variables - which is typically 2-3 orders of magnitude - can be exploited to simplify calculations of the required distribution greatly. The method is based on an `adiabatic approximation' which closely resembles the Born-Oppenheimer approximation in quantum mechanics. The adiabatic approximation prescribes an analytic distribution function for the `fast' dynamical variables and a simplified Fokker-Planck equation for the `slow' variables which can be solved straightforwardly using various techniques. These solutions are accurate to O(epsilon), where epsilon is the ratio of the fast and slow dynamical time-scales. As a simple illustration of the method, I derive an analytic solution for the joint distribution established when Barnett relaxation acts in concert with gas damping. The statistics of the analytic solution agree with the results of laborious numerical calculations which do not exploit the adiabatic approximation.
An Adiabatic Approximation for Grain Alignment Theory
NASA Astrophysics Data System (ADS)
Roberge, W. G.
1997-12-01
The alignment of interstellar dust grains is described by the joint distribution function for certain ``internal'' and ``external'' variables, where the former describe the orientation of a grain's axes with respect to its angular momentum, J, and the latter describe the orientation of J relative to the interstellar magnetic field. I show how the large disparity between the dynamical timescales of the internal and external variables--- which is typically 2--3 orders of magnitude--- can be exploited to greatly simplify calculations of the required distribution. The method is based on an ``adiabatic approximation'' which closely resembles the Born-Oppenheimer approximation in quantum mechanics. The adiabatic approximation prescribes an analytic distribution function for the ``fast'' dynamical variables and a simplified Fokker-Planck equation for the ``slow'' variables which can be solved straightforwardly using various techniques. These solutions are accurate to cal {O}(epsilon ), where epsilon is the ratio of the fast and slow dynamical timescales. As a simple illustration of the method, I derive an analytic solution for the joint distribution established when Barnett relaxation acts in concert with gas damping. The statistics of the analytic solution agree with the results of laborious numerical calculations which do not exploit the adiabatic approximation.
Adiabatic theory in regions of strong field gradients. [in magnetosphere
NASA Technical Reports Server (NTRS)
Whipple, E. C.; Northrop, T. G.; Birmingham, T. J.
1986-01-01
The theory for the generalized first invariant for adiabatic motion of charged particles in regions where there are large gradients in magnetic or electric fields is developed. The general condition for an invariant to exist in such regions is that the potential well in which the particle oscillates change its shape slowly as the particle drifts. It is shown how the Kruskal (1962) procedure can be applied to obtain expressions for the invariant and for drift velocities that are asymptotic in a smallness parameter epsilon. The procedure is illustrated by obtaining the invariant and drift velocities for particles traversing a perpendicular shock, and the generalized invariant is compared with the magnetic moment, and the drift orbits with the actual orbits, for a particular case. In contrast to the magnetic moment, the generalized first invariant is better for large gyroradii (large kinetic energies) than for small gyroradii. Expressions for the invariant when an electrostatic potential jump is imposed across the perpendicular shock, and when the particle traverses a rotational shear layer with a small normal component of the magnetic field are given.
Origin of the Low Velocity Zone
NASA Astrophysics Data System (ADS)
Stixrude, L. P.; Lithgow-Bertelloni, C. R.
2014-12-01
The origin of the low velocity zone is still not well understood, although the mechanisms responsible have important implications for the thermal evolution of the Earth and the origin of plate tectonics. The null hypothesis (a geotherm consisting of an adiabat and a conductive thermal boundary layer, and free of melt, water, and attenuation) accounts for many properties of the low velocity zone, including the depth at which the minimum velocity occurs and its variation with age, but the value of the minimum velocity is greater than that seen by seismology (the velocity deficit). Attenuation, as found in global seismic attenuation tomography, can explain much of the velocity deficit, but still leaves two features of the boundaries of the low velocity zone unexplained: an apparently abrupt upper boundary to the low velocity (G discontinuity, sometimes also associated with the "lithosphere-asthenosphere boundary"), and a high gradient zone beneath in which velocity increases with depth very rapidly. Here we show that by adding to the null hypothesis attenuation as recently measured experimentally, the entire velocity deficit is explained. Moreover, the upper boundary of the low velocity zone is remarkably abrupt, although possibly less sharp than receiver function analyses indicate. The high gradient zone is explained by variations in the entropy with depth, i.e. cooling with increasing depth at depths beneath the low velocity zone, a property of the geotherm that is expected on the basis of mantle convection simulations.
On the sound field of a point-shaped sound source in uniform translatory motion
NASA Technical Reports Server (NTRS)
Honl, H
1954-01-01
A rigorous analysis presented of the excitation of sound by point sources moving in uniform translatory motion at subsonic or supersonic velocities through a two- or three-dimensional medium at rest. The construction of surfaces of constant phase is based upon Huyghens' principle in such a manner that the propagation in the medium at rest of the elementary waves emanating from the sound source is independent of the momentary state of motion of the sound source. Hence, characteristic traits of the sound propagation may be understood even on the basis of simple geometric constructions.
Measuring Ultrasonic Shear-Wave Velocity
NASA Technical Reports Server (NTRS)
Nummelin, J.
1983-01-01
New technique improves accuracy of measurements of ultrasonic shearwave velocity. Technique eliminates need to measure incident sound angle. Technique contains groove in which steel sphere is placed. Sphere act as reference point for measuring path lengths and propagation times. Velocity measurements are within 1 percent of published data.
NASA Astrophysics Data System (ADS)
Ye, Hezhou; Yin, Yanhua; Wang, Jianfeng
2015-08-01
While commercially available computational fluid dynamic packages are employed nowadays to analyze the spraying behavior of the cold spray (CS) system and optimize the nozzle geometry design, using these packages is often prohibitive because of complex computational resource requirements and expensive copyright licenses. This paper proposes a quick and economical method for predicting the performance of the CS system, while asking for minimal computational resource. A one-dimensional adiabatic friction model with the consideration of friction was developed to calculate the critical pressure of nozzles under different expansion ratios and the gas/particle velocity at different spraying conditions. The accuracy of the critical pressure calculation was evidenced by polymeric nozzle destructive tests. The particle velocities achieved from the nozzles with different expansion ratios were measured and compared with the velocity values calculated by the model. The suggested adiabatic friction model is validated by the well-matched values between the calculated results and the experimental data.
Understanding the Performance of Low-Adiabat Cryogenic Implosions on OMEGA
NASA Astrophysics Data System (ADS)
Goncharov, V. N.; Sangster, T. C.; Epstein, R.; Hu, S. X.; Igumenshchev, I. V.; Forrest, C. J.; Froula, D. H.; Marshall, F. J.; Michel, D. T.; Radha, P. B.; Seka, W.; Stoeckl, C.; Frenje, J. A.; Gatu Johnson, M.
2014-10-01
While the moderate-adiabat (α > 3.5) cryogenic implosions on OMEGA are well understood using multidimensional hydrocode simulations, the performance of lower-adiabat implosions is degraded relative to code predictions. The potential degradation mechanisms (not fully accounted for in simulations) include target-nonuniformity sources (excessive laser imprint, target debris, beam-overlap nonuniformity) and inaccuracies in laser-coupling modeling, especially during the pulse rise. To address the target-stability issues, target designs with thicker ice layers and smaller implosion velocities are considered. These targets have smaller in-flight aspect ratios, making them less susceptible to hydrodynamic instability growth. To address inaccuracies in laser coupling, a design with a slower main pulse rise is considered. This talk will summarize progress made on these issues. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Nebogatov, V. A.; Pastukhov, V. P.
2013-06-15
A closed set of reduced equations describing low-frequency nonlinear flute magnetohydrodynamic (MHD) convection and the resulting nondiffusive processes of particle and energy transport in a weakly collisional cylindrical plasma with an anisotropic pressure is derived. The Chew-Goldberger-Low anisotropic magnetohydrodynamics is used as the basic dynamic model, because this model is applicable to describing flute convection in a cylindrical plasma column even in the low-frequency limit. The reduced set of equations was derived using the method of adiabatic separation of fast and slow motions. It is shown that the structure of the adiabatic transformation and the corresponding velocity field are identical to those obtained earlier in the isotropic MHD model. However, the derived heat transfer equations differ drastically from the isotropic pressure model. In particular, they indicate a tendency toward maintaining different radial profiles of the longitudinal and transverse pressures.
Non-adiabatic dynamics close to conical intersections and the surface hopping perspective.
Malhado, João Pedro; Bearpark, Michael J; Hynes, James T
2014-01-01
Conical intersections play a major role in the current understanding of electronic de-excitation in polyatomic molecules, and thus in the description of photochemistry and photophysics of molecular systems. This article reviews aspects of the basic theory underlying the description of non-adiabatic transitions at conical intersections, with particular emphasis on the important case when the dynamics of the nuclei are treated classically. Within this classical nuclear motion framework, the main aspects of the surface hopping methodology in the conical intersection context are presented. The emerging picture from this treatment is that of electronic transitions around conical intersections dominated by the interplay of the nuclear velocity and the derivative non-adiabatic coupling vector field. PMID:25485263
Non-adiabatic dynamics close to conical intersections and the surface hopping perspective
Malhado, João Pedro; Bearpark, Michael J.; Hynes, James T.
2014-01-01
Conical intersections play a major role in the current understanding of electronic de-excitation in polyatomic molecules, and thus in the description of photochemistry and photophysics of molecular systems. This article reviews aspects of the basic theory underlying the description of non-adiabatic transitions at conical intersections, with particular emphasis on the important case when the dynamics of the nuclei are treated classically. Within this classical nuclear motion framework, the main aspects of the surface hopping methodology in the conical intersection context are presented. The emerging picture from this treatment is that of electronic transitions around conical intersections dominated by the interplay of the nuclear velocity and the derivative non-adiabatic coupling vector field. PMID:25485263
NASA Astrophysics Data System (ADS)
Singh, V. P.; Sharma, M. K.
1996-01-01
Presents a method for computing the eigenfrequencies of small adiabatic oscillations of stellar models distorted by differential rotation and tidal forces. The method is based on the approach adopted by Mohan and Singh (1982) in conjunction with the averaging concept introduced by Kippenhahn and Thomas (1970). The angular velocity of rotation is assumed to be the function of the square of the distance of fluid element from the axis of rotation. Tidal distortions are assumed to be caused by a nearby point mass. Such studies have practical importance in astrophysics in determining the periods of small adiabatic oscillations of differentially rotating stars in binary systems. Comparison of results with observational data is also presented.
Geroux, Chris M.; Deupree, Robert G.
2011-04-10
We are developing a three-dimensional radiation hydrodynamics code to simulate the interaction of convection and pulsation in classical variable stars. One key goal is the ability to carry these simulations to full amplitude in order to compare them with observed light and velocity curves. Previous two-dimensional calculations were prevented from doing this because of drift in the radial coordinate system, due to the algorithm defining radial movement of the coordinate system during the pulsation cycle. We remove this difficulty by defining our coordinate system flow algorithm to require that the mass in a spherical shell remains constant throughout the pulsation cycle. We perform adiabatic test calculations to show that large amplitude solutions repeat over more than 150 pulsation periods. We also verify that the computational method conserves the peak kinetic energy per period, as must be true for adiabatic pulsation models.
Shennan; Halligan
1996-12-01
We were interested in the historical perspective that Arabidze et al. [1] brought to the subject of Korotkoff's auscultatory method of measuring blood pressure. The original description by the Reverend Stephen Hales performing the very first blood pressure measurement (which was actually published in 1733) does not make reference to a column of water as the authors suggest [2]. Hales wrote: 'Then untying the Ligature on the Artery, the Blood rose in the Tube eight Feet three Inches.'. He goes on to state that, 'When it was at its full Height, it would rise and fall at and after each Pulse two, three, or four Inches, and sometimes it would fall twelve or fourteen Inches, and have there for a time the same vibrations up and down at and after each Pulse, as it had, when it was at its full Height; to which it would rise again, after forty or fifty Pulses'. We believe this fall of '12 or 14 in' to have been the first description of blood pressure variability, which has wrongly been attributed to respirations by subsequent authors [3]. The mare's pulse rate was described to be about 50 beats per minute; therefore an unanaesthetized horse would not be likely to have a respiration rate of once per minute. One further important point of error concerning the Korotkoff sounds is their reproducibility. We have demonstrated recently that phase IV is reproduced or identified poorly, both in adults and even during pregnancy, when it has been recommended to be used in favour of phase V. We have also demonstrated that phase I (systolic blood pressure) is perceived to be significantly clearer than phase V [4]. PMID:10226281
Bond selective chemistry beyond the adiabatic approximation
Butler, L.J.
1993-12-01
One of the most important challenges in chemistry is to develop predictive ability for the branching between energetically allowed chemical reaction pathways. Such predictive capability, coupled with a fundamental understanding of the important molecular interactions, is essential to the development and utilization of new fuels and the design of efficient combustion processes. Existing transition state and exact quantum theories successfully predict the branching between available product channels for systems in which each reaction coordinate can be adequately described by different paths along a single adiabatic potential energy surface. In particular, unimolecular dissociation following thermal, infrared multiphoton, or overtone excitation in the ground state yields a branching between energetically allowed product channels which can be successfully predicted by the application of statistical theories, i.e. the weakest bond breaks. (The predictions are particularly good for competing reactions in which when there is no saddle point along the reaction coordinates, as in simple bond fission reactions.) The predicted lack of bond selectivity results from the assumption of rapid internal vibrational energy redistribution and the implicit use of a single adiabatic Born-Oppenheimer potential energy surface for the reaction. However, the adiabatic approximation is not valid for the reaction of a wide variety of energetic materials and organic fuels; coupling between the electronic states of the reacting species play a a key role in determining the selectivity of the chemical reactions induced. The work described below investigated the central role played by coupling between electronic states in polyatomic molecules in determining the selective branching between energetically allowed fragmentation pathways in two key systems.
Phase avalanches in near-adiabatic evolutions
Vertesi, T.; Englman, R.
2006-02-15
In the course of slow, nearly adiabatic motion of a system, relative changes in the slowness can cause abrupt and high magnitude phase changes, ''phase avalanches,'' superimposed on the ordinary geometric phases. The generality of this effect is examined for arbitrary Hamiltonians and multicomponent (>2) wave packets and is found to be connected (through the Blaschke term in the theory of analytic signals) to amplitude zeros in the lower half of the complex time plane. Motion on a nonmaximal circle on the Poincare-sphere suppresses the effect. A spectroscopic transition experiment can independently verify the phase-avalanche magnitudes.
Adiabatic chaos in the spin orbit problem
NASA Astrophysics Data System (ADS)
Benettin, Giancarlo; Guzzo, Massimiliano; Marini, Valerio
2008-05-01
We provide evidences that the angular momentum of a symmetric rigid body in a spin orbit resonance can perform large scale chaotic motions on time scales which increase polynomially with the inverse of the oblateness of the body. This kind of irregular precession appears as soon as the orbit of the center of mass is non-circular and the angular momentum of the body is far from the principal directions with minimum (maximum) moment of inertia. We also provide a quantitative explanation of these facts by using the theory of adiabatic invariants, and we provide numerical applications to the cases of the 1:1 and 1:2 spin orbit resonances.
Experimental breaking of an adiabatic invariant
NASA Astrophysics Data System (ADS)
Notte, J.; Fajans, J.; Chu, R.; Wurtele, J. S.
1993-06-01
When a cylindrical pure electron plasma is displaced from the center of the trap, it performs a bulk circular orbital motion known as the l=1 diocotron mode. The slow application of a perturbing potential to a patch on the trap wall distorts the orbit into a noncircular closed path. Experiments and a simple theoretical model indicate that the area by the loop is an adiabatic invariant. Detailed studies are made of the breaking of the invariant when perturbations are rapidly applied. When the perturbation is applied with discontinuous time derivatives, the invariant breaking greatly exceeds the predictions of the standard theory for smooth perturbations.
[Bond selective chemistry beyond the adiabatic approximation
Butler, L.J.
1993-02-28
The adiabatic Born-Oppenheimer potential energy surface approximation is not valid for reaction of a wide variety of energetic materials and organic fuels; coupling between electronic states of reacting species plays a key role in determining the selectivity of the chemical reactions induced. This research program initially studies this coupling in (1) selective C-Br bond fission in 1,3- bromoiodopropane, (2) C-S:S-H bond fission branching in CH[sub 3]SH, and (3) competition between bond fission channels and H[sub 2] elimination in CH[sub 3]NH[sub 2].
Adiabatic passage in the presence of noise
NASA Astrophysics Data System (ADS)
Noel, T.; Dietrich, M. R.; Kurz, N.; Shu, G.; Wright, J.; Blinov, B. B.
2012-02-01
We report on an experimental investigation of rapid adiabatic passage (RAP) in a trapped barium ion system. RAP is implemented on the transition from the 6S1/2 ground state to the metastable 5D5/2 level by applying a laser at 1.76 μm. We focus on the interplay of laser frequency noise and laser power in shaping the effectiveness of RAP, which is commonly assumed to be a robust tool for high-efficiency population transfer. However, we note that reaching high state transfer fidelity requires a combination of small laser linewidth and large Rabi frequency.
Adiabatic demagnetization refrigerator for space use
NASA Technical Reports Server (NTRS)
Serlemitsos, A. T.; Warner, B. A.; Castles, S.; Breon, S. R.; San Sebastian, M.; Hait, T.
1990-01-01
An Adiabatic Demagnetization Refrigerator (ADR) for space use is under development at NASA's Goddard Space Flight Center (GSFC). The breadboard ADR operated at 100 mK for 400 minutes. Some significant changes to that ADR, designed to eliminate shortcomings revealed during tests, are reported. To increase thermal contact, the ferric ammonium sulfate crystals were grown directly on gold-plated copper wires which serve as the thermal bus. The thermal link to the X-ray sensors was also markedly improved. To speed up the testing required to determine the best design parameters for the gas gap heat switch, the new heat switch has a modular design and is easy to disassemble.
An adiabatic demagnetization refrigerator for infrared bolometers
NASA Technical Reports Server (NTRS)
Britt, R. D.; Richards, P. L.
1981-01-01
Adiabatic demagnetization refrigerators have been built and installed in small portable liquid helium cryostats to test the feasibility of this method of cooling infrared bolometric detectors to temperatures below 0.3 K. Performance has been achieved which suggests that bolometer temperatures of 0.2 K can be maintained for periods of approximately 60 hours. Applications to sensitive infrared detection from ground-based telescopes and space satellites are discussed. Design data are given which permit the evaluation of refrigerator performance for a variety of design parameters.
Generalized Ramsey numbers through adiabatic quantum optimization
NASA Astrophysics Data System (ADS)
Ranjbar, Mani; Macready, William G.; Clark, Lane; Gaitan, Frank
2016-06-01
Ramsey theory is an active research area in combinatorics whose central theme is the emergence of order in large disordered structures, with Ramsey numbers marking the threshold at which this order first appears. For generalized Ramsey numbers r(G, H), the emergent order is characterized by graphs G and H. In this paper we: (i) present a quantum algorithm for computing generalized Ramsey numbers by reformulating the computation as a combinatorial optimization problem which is solved using adiabatic quantum optimization; and (ii) determine the Ramsey numbers r({{T}}m,{{T}}n) for trees of order m,n = 6,7,8 , most of which were previously unknown.
Decoherence in a scalable adiabatic quantum computer
Ashhab, S.; Johansson, J. R.; Nori, Franco
2006-11-15
We consider the effects of decoherence on Landau-Zener crossings encountered in a large-scale adiabatic-quantum-computing setup. We analyze the dependence of the success probability--i.e., the probability for the system to end up in its new ground state--on the noise amplitude and correlation time. We determine the optimal sweep rate that is required to maximize the success probability. We then discuss the scaling of decoherence effects with increasing system size. We find that those effects can be important for large systems, even if they are small for each of the small building blocks.
Local entanglement generation in the adiabatic regime
Cliche, M.; Veitia, Andrzej
2010-09-15
We study entanglement generation in a pair of qubits interacting with an initially correlated system. Using time-independent perturbation theory and the adiabatic theorem, we show conditions under which the qubits become entangled as the joint system evolves into the ground state of the interacting theory. We then apply these results to the case of qubits interacting with a scalar quantum field. We study three different variations of this setup; a quantum field subject to Dirichlet boundary conditions, a quantum field interacting with a classical potential, and a quantum field that starts in a thermal state.
Geometry of an adiabatic passage at a level crossing
Cholascinski, Mateusz
2005-06-15
We discuss adiabatic quantum phenomena at a level crossing. Given a path in the parameter space which passes through a degeneracy point, we find a criterion which determines whether the adiabaticity condition can be satisfied. For paths that can be traversed adiabatically we also derive a differential equation which specifies the time dependence of the system parameters, for which transitions between distinct energy levels can be neglected. We also generalize the well-known geometric connections to the case of adiabatic paths containing arbitrarily many level-crossing points and degenerate levels.
Geometrical representation of sum frequency generation and adiabatic frequency conversion
NASA Astrophysics Data System (ADS)
Suchowski, Haim; Oron, Dan; Arie, Ady; Silberberg, Yaron
2008-12-01
We present a geometrical representation of the process of sum frequency generation in the undepleted pump approximation, in analogy with the known optical Bloch equations. We use this analogy to propose a technique for achieving both high efficiency and large bandwidth in sum frequency conversion using the adiabatic inversion scheme. The process is analogous with rapid adiabatic passage in NMR, and adiabatic constraints are derived in this context. This adiabatic frequency conversion scheme is realized experimentally using an aperiodically poled potassium titanyl phosphate (KTP) device, where we achieved high efficiency signal-to-idler conversion over a bandwidth of 140nm .
On the Role of Prior Probability in Adiabatic Quantum Algorithms
NASA Astrophysics Data System (ADS)
Sun, Jie; Lu, Songfeng; Yang, Liping
2016-03-01
In this paper, we study the role of prior probability on the efficiency of quantum local adiabatic search algorithm. The following aspects for prior probability are found here: firstly, only the probabilities of marked states affect the running time of the adiabatic evolution; secondly, the prior probability can be used for improving the efficiency of the adiabatic algorithm; thirdly, like the usual quantum adiabatic evolution, the running time for the case of multiple solution states where the number of marked elements are smaller enough than the size of the set assigned that contains them can be significantly bigger than that of the case where the assigned set only contains all the marked states.
ERIC Educational Resources Information Center
Deal, Walter F., III
2007-01-01
Sound provides and offers amazing insights into the world. Sound waves may be defined as mechanical energy that moves through air or other medium as a longitudinal wave and consists of pressure fluctuations. Humans and animals alike use sound as a means of communication and a tool for survival. Mammals, such as bats, use ultrasonic sound waves to…
ERIC Educational Resources Information Center
Merwade, Venkatesh; Eichinger, David; Harriger, Bradley; Doherty, Erin; Habben, Ryan
2014-01-01
While the science of sound can be taught by explaining the concept of sound waves and vibrations, the authors of this article focused their efforts on creating a more engaging way to teach the science of sound--through engineering design. In this article they share the experience of teaching sound to third graders through an engineering challenge…
Sounds Exaggerate Visual Shape
ERIC Educational Resources Information Center
Sweeny, Timothy D.; Guzman-Martinez, Emmanuel; Ortega, Laura; Grabowecky, Marcia; Suzuki, Satoru
2012-01-01
While perceiving speech, people see mouth shapes that are systematically associated with sounds. In particular, a vertically stretched mouth produces a /woo/ sound, whereas a horizontally stretched mouth produces a /wee/ sound. We demonstrate that hearing these speech sounds alters how we see aspect ratio, a basic visual feature that contributes…
The sound field of a rotating monopole in a plug flow
NASA Astrophysics Data System (ADS)
Belyaev, I. V.
2016-07-01
A theoretical study is performed on the sound field generated by a rotating point monopole in a jet flow, the mixing layer of which is simulated by a velocity discontinuity. Its sound in the far field is compared to the sound field generated by a rotating monopole in a uniform flow in the absence of a velocity discontinuity, which makes it possible to estimate the size of the sound refraction effect.
NASA Astrophysics Data System (ADS)
Kim, Tae Hyun; Kojima, Seiji; Ko, Jae-Hyeon
2016-06-01
The acoustic properties of [011]-oriented Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals were studied by using Brillouin spectroscopy over a wide temperature range under unpoled and poled conditions. Poling the crystal along the [011] direction induced significant changes in the sound velocity and the acoustic attenuation coefficient of both the longitudinal and the transverse acoustic modes at several characteristic temperatures. These acoustic anomalies could be attributed to changes in the polar character from macroscopic ferroelectric domains to mesoscopic polar regions along with quasi-static polar nanoregions and then to dynamic polar nanoregions upon heating the poled crystal.
Quantum Adiabatic Algorithms and Large Spin Tunnelling
NASA Technical Reports Server (NTRS)
Boulatov, A.; Smelyanskiy, V. N.
2003-01-01
We provide a theoretical study of the quantum adiabatic evolution algorithm with different evolution paths proposed in this paper. The algorithm is applied to a random binary optimization problem (a version of the 3-Satisfiability problem) where the n-bit cost function is symmetric with respect to the permutation of individual bits. The evolution paths are produced, using the generic control Hamiltonians H (r) that preserve the bit symmetry of the underlying optimization problem. In the case where the ground state of H(0) coincides with the totally-symmetric state of an n-qubit system the algorithm dynamics is completely described in terms of the motion of a spin-n/2. We show that different control Hamiltonians can be parameterized by a set of independent parameters that are expansion coefficients of H (r) in a certain universal set of operators. Only one of these operators can be responsible for avoiding the tunnelling in the spin-n/2 system during the quantum adiabatic algorithm. We show that it is possible to select a coefficient for this operator that guarantees a polynomial complexity of the algorithm for all problem instances. We show that a successful evolution path of the algorithm always corresponds to the trajectory of a classical spin-n/2 and provide a complete characterization of such paths.
Nonadiabatic Transitions in Adiabatic Rapid Passage
NASA Astrophysics Data System (ADS)
Lu, T.; Miao, X.; Metcalf, H.
2006-05-01
Optical forces much larger than the ordinary radiative force can be achieved on a two-level atom by multiple repetitions of adiabatic rapid passage sweeps with counterpropagating light beams. Chirped light pulses drive the atom-laser system up a ladder of dressed state energy sheets on sequential trajectories, thereby decreasing the atomic kinetic energy. Nonadiabatic transitions between the energy sheets must be avoided for this process to be effective. We have calculated the nonadiabatic transition probability for various chirped light pulses numerically. These results were compared to the first Demkov-Kunike model and the well-known Landau-Zener model. In addition, an analytical form of the nonadiabatic transition probability has been found for linearly chirped pulses and an approximate form for generic symmetric finite-time pulses has been found for the entire parameter space using the technique of unitary integration. From this, the asymptotic transition probability in the adiabatic limit was derived. T. Lu, X. Miao, and H. Metcalf, Phys., Rev. A 71 061405(R) (2005). Yu. Demkov and M. Kunike, Vestn. Leningr. Univ. Fis. Khim., 16, 39 (1969); K.-A. Suominen and B. Garraway, Phys. Rev. A45, 374 (1992)
Adiabatic cooling of solar wind electrons
NASA Technical Reports Server (NTRS)
Sandbaek, Ornulf; Leer, Egil
1992-01-01
In thermally driven winds emanating from regions in the solar corona with base electron densities of n0 not less than 10 exp 8/cu cm, a substantial fraction of the heat conductive flux from the base is transfered into flow energy by the pressure gradient force. The adiabatic cooling of the electrons causes the electron temperature profile to fall off more rapidly than in heat conduction dominated flows. Alfven waves of solar origin, accelerating the basically thermally driven solar wind, lead to an increased mass flux and enhanced adiabatic cooling. The reduction in electron temperature may be significant also in the subsonic region of the flow and lead to a moderate increase of solar wind mass flux with increasing Alfven wave amplitude. In the solar wind model presented here the Alfven wave energy flux per unit mass is larger than that in models where the temperature in the subsonic flow is not reduced by the wave, and consequently the asymptotic flow speed is higher.
Adiabatic Mass Loss Model in Binary Stars
NASA Astrophysics Data System (ADS)
Ge, H. W.
2012-07-01
Rapid mass transfer process in the interacting binary systems is very complicated. It relates to two basic problems in the binary star evolution, i.e., the dynamically unstable Roche-lobe overflow and the common envelope evolution. Both of the problems are very important and difficult to be modeled. In this PhD thesis, we focus on the rapid mass loss process of the donor in interacting binary systems. The application to the criterion of dynamically unstable mass transfer and the common envelope evolution are also included. Our results based on the adiabatic mass loss model could be used to improve the binary evolution theory, the binary population synthetic method, and other related aspects. We build up the adiabatic mass loss model. In this model, two approximations are included. The first one is that the energy generation and heat flow through the stellar interior can be neglected, hence the restructuring is adiabatic. The second one is that he stellar interior remains in hydrostatic equilibrium. We model this response by constructing model sequences, beginning with a donor star filling its Roche lobe at an arbitrary point in its evolution, holding its specific entropy and composition profiles fixed. These approximations are validated by the comparison with the time-dependent binary mass transfer calculations and the polytropic model for low mass zero-age main-sequence stars. In the dynamical time scale mass transfer, the adiabatic response of the donor star drives it to expand beyond its Roche lobe, leading to runaway mass transfer and the formation of a common envelope with its companion star. For donor stars with surface convection zones of any significant depth, this runaway condition is encountered early in mass transfer, if at all; but for main sequence stars with radiative envelopes, it may be encountered after a prolonged phase of thermal time scale mass transfer, so-called delayed dynamical instability. We identify the critical binary mass ratio for the
Adiabatic particle motion in a nearly drift-free magnetic field: Application to the geomagnetic tail
NASA Technical Reports Server (NTRS)
Stern, D. P.
1977-01-01
The guiding center motion of particles in a nearly drift free magnetic field is analyzed in order to investigate the dependence of mean drift velocity on equatorial pitch angle, the variation of local drift velocity along the trajectory, and other properties. The mean drift for adiabatic particles is expressed by means of elliptic integrals. Approximations to the twice-averaged Hamiltonian W near z = O are derived, permitting simple representation of drift paths if an electric potential also exists. In addition, the use of W or of expressions for the longitudinal invariant allows the derivation of the twice averaged Liouville equation and of the corresponding Vlasov equation. Bounce times are calculated (using the drift-free approximation), as are instantaneous guiding center drift velocities, which are then used to provide a numerical check on the formulas for the mean drift.
NASA Astrophysics Data System (ADS)
Gaspari, M.; Churazov, E.; Nagai, D.; Lau, E. T.; Zhuravleva, I.
2014-09-01
Exploring the power spectrum of fluctuations and velocities in the intracluster medium (ICM) can help us to probe the gas physics of galaxy clusters. Using high-resolution 3D plasma simulations, we study the statistics of the velocity field and its intimate relation with the ICM thermodynamic perturbations. The normalization of the ICM spectrum (related to density, entropy, or pressure fluctuations) is linearly tied to the level of large-scale motions, which excite both gravity and sound waves due to stratification. For a low 3D Mach number M ~ 0.25, gravity waves mainly drive entropy perturbations, which are traced by preferentially tangential turbulence. For M> 0.5, sound waves start to significantly contribute and pass the leading role to compressive pressure fluctuations, which are associated with isotropic (or slightly radial) turbulence. Density and temperature fluctuations are then characterized by the dominant process: isobaric (low M), adiabatic (high M), or isothermal (strong conduction). Most clusters reside in the intermediate regime, showing a mixture of gravity and sound waves, hence drifting toward isotropic velocities. Remarkably, regardless of the regime, the variance of density perturbations is comparable to the 1D Mach number, M1D ~ δρ/ρ. This linear relation allows us to easily convert between gas motions and ICM perturbations (δρ/ρ< 1), which can be exploited by the available Chandra, XMM data and by the forthcoming Astro-H mission. At intermediate and small scales (10-100 kpc), the turbulent velocities develop a tight Kolmogorov cascade. The thermodynamic perturbations (which can be generally described by log-normal distributions) act as effective tracers of the velocity field, in broad agreement with the Kolmogorov-Obukhov-Corrsin advection theory. The cluster radial gradients and compressive features induce a flattening in the cascade of the perturbations. Thermal conduction, on the other hand, acts to damp the thermodynamic
Adiabatic nonlinear waves with trapped particles. III. Wave dynamics
Dodin, I. Y.; Fisch, N. J.
2012-01-15
The evolution of adiabatic waves with autoresonant trapped particles is described within the Lagrangian model developed in Paper I, under the assumption that the action distribution of these particles is conserved, and, in particular, that their number within each wavelength is a fixed independent parameter of the problem. One-dimensional nonlinear Langmuir waves with deeply trapped electrons are addressed as a paradigmatic example. For a stationary wave, tunneling into overcritical plasma is explained from the standpoint of the action conservation theorem. For a nonstationary wave, qualitatively different regimes are realized depending on the initial parameter S, which is the ratio of the energy flux carried by trapped particles to that carried by passing particles. At S < 1/2, a wave is stable and exhibits group velocity splitting. At S > 1/2, the trapped-particle modulational instability (TPMI) develops, in contrast with the existing theories of the TPMI yet in agreement with the general sideband instability theory. Remarkably, these effects are not captured by the nonlinear Schroedinger equation, which is traditionally considered as a universal model of wave self-action but misses the trapped-particle oscillation-center inertia.
Transition from adiabatic inspiral to plunge into a spinning black hole
Kesden, Michael
2011-05-15
A test particle of mass {mu} on a bound geodesic of a Kerr black hole of mass M>>{mu} will slowly inspiral as gravitational radiation extracts energy and angular momentum from its orbit. This inspiral can be considered adiabatic when the orbital period is much shorter than the time scale on which energy is radiated, and quasicircular when the radial velocity is much less than the azimuthal velocity. Although the inspiral always remains adiabatic provided {mu}<
Quantum adiabatic algorithm for factorization and its experimental implementation.
Peng, Xinhua; Liao, Zeyang; Xu, Nanyang; Qin, Gan; Zhou, Xianyi; Suter, Dieter; Du, Jiangfeng
2008-11-28
We propose an adiabatic quantum algorithm capable of factorizing numbers, using fewer qubits than Shor's algorithm. We implement the algorithm in a NMR quantum information processor and experimentally factorize the number 21. In the range that our classical computer could simulate, the quantum adiabatic algorithm works well, providing evidence that the running time of this algorithm scales polynomially with the problem size. PMID:19113467
The Adiabatic Invariance of the Action Variable in Classical Dynamics
ERIC Educational Resources Information Center
Wells, Clive G.; Siklos, Stephen T. C.
2007-01-01
We consider one-dimensional classical time-dependent Hamiltonian systems with quasi-periodic orbits. It is well known that such systems possess an adiabatic invariant which coincides with the action variable of the Hamiltonian formalism. We present a new proof of the adiabatic invariance of this quantity and illustrate our arguments by means of…
Beneficial Role of the Industrial Wastes to Combat Adiabatic Temperature Rise in Massive Concrete
NASA Astrophysics Data System (ADS)
Ashraf, M.; Goyal, A.; Anwar, A. M.; Hattori, K.; Ogata, H.; Guo, S.
An evaluation was made on the mutual beneficial role of fly ash and ground granulated blast furnace slag in combating adiabatic temperature rise. The experimental program was designed in two stages; the main experiment consisted of two massive concrete specimens with dimensions (50x50x50) cm. In first stage of experiment, an adiabatic rise in temperature of specimens was measured. In second stage, the mechanical properties of massive concrete specimens were measured at the ages of 8, 14, 28, 56 and 91 days. At the age of 91 days, surface core and central cores were extracted from the surface and the central part of massive concrete specimens to determine compressive strength and dynamic modulus of elasticity. In the massive concrete specimen without any additive, the peak temperature noted was 64.5°C at 7th h after casting. While in mineral substituted concrete the maximum adiabatic temperature was 49.6°C at 19th h after casting. Lower rate of temperature rise in mineral substituted concrete has resulted in higher value of ultrasonic pulse velocity and ultimate compressive strength of concrete.
Acoustic solitary waves in dusty and/or multi-ion plasmas with cold, adiabatic, and hot constituents
Verheest, Frank; Hellberg, Manfred A.; Kourakis, Ioannis
2008-11-15
Large nonlinear acoustic waves are discussed in a four-component plasma, made up of two superhot isothermal species, and two species with lower thermal velocities, being, respectively, adiabatic and cold. First a model is considered in which the isothermal species are electrons and ions, while the cooler species are positive and/or negative dust. Using a Sagdeev pseudopotential formalism, large dust-acoustic structures have been studied in a systematic way, to delimit the compositional parameter space in which they can be found, without restrictions on the charges and masses of the dust species and their charge signs. Solitary waves can only occur for nonlinear structure velocities smaller than the adiabatic dust thermal velocity, leading to a novel dust-acoustic-like mode based on the interplay between the two dust species. If the cold and adiabatic dust are oppositely charged, only solitary waves exist, having the polarity of the cold dust, their parameter range being limited by infinite compression of the cold dust. However, when the charges of the cold and adiabatic species have the same sign, solitary structures are limited for increasing Mach numbers successively by infinite cold dust compression, by encountering the adiabatic dust sonic point, and by the occurrence of double layers. The latter have, for smaller Mach numbers, the same polarity as the charged dust, but switch at the high Mach number end to the opposite polarity. Typical Sagdeev pseudopotentials and solitary wave profiles have been presented. Finally, the analysis has nowhere used the assumption that the dust would be much more massive than the ions and hence, one or both dust species can easily be replaced by positive and/or negative ions and the conclusions will apply to that plasma model equally well. This would cover a number of different scenarios, such as, for example, very hot electrons and ions, together with a mix of adiabatic ions and dust (of either polarity) or a very hot electron
Adiabatic theory for anisotropic cold molecule collisions
Pawlak, Mariusz; Shagam, Yuval; Narevicius, Edvardas; Moiseyev, Nimrod
2015-08-21
We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment {sup 4}He(1s2s {sup 3}S) + HD(1s{sup 2}) → {sup 4}He(1s{sup 2}) + HD{sup +}(1s) + e{sup −} [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings.
Quantum Adiabatic Optimization and Combinatorial Landscapes
NASA Technical Reports Server (NTRS)
Smelyanskiy, V. N.; Knysh, S.; Morris, R. D.
2003-01-01
In this paper we analyze the performance of the Quantum Adiabatic Evolution (QAE) algorithm on a variant of Satisfiability problem for an ensemble of random graphs parametrized by the ratio of clauses to variables, gamma = M / N. We introduce a set of macroscopic parameters (landscapes) and put forward an ansatz of universality for random bit flips. We then formulate the problem of finding the smallest eigenvalue and the excitation gap as a statistical mechanics problem. We use the so-called annealing approximation with a refinement that a finite set of macroscopic variables (verses only energy) is used, and are able to show the existence of a dynamic threshold gamma = gammad, beyond which QAE should take an exponentially long time to find a solution. We compare the results for extended and simplified sets of landscapes and provide numerical evidence in support of our universality ansatz.
An adiabatic demagnetization refrigerator for SIRTF
NASA Technical Reports Server (NTRS)
Timbie, P. T.; Bernstein, G. M.; Richards, P. L.
1989-01-01
An adiabatic demagnetization refrigerator (ADR) has been proposed to cool bolometric infrared detectors on the multiband imaging photometer of the Space Infrared Telescope Facility (SIRTF). One such refrigerator has been built which uses a ferric ammonium alum salt pill suspended by nylon threads in a 3-T solenoid. The resonant modes of this suspension are above 100 Hz. The heat leak to the salt pill is less than 0.5 microW. The system has a hold time at 0.1K of more than 12 h. The cold stage temperature is regulated with a feedback loop that controls the magnetic field. A second, similar refrigerator is being built at a SIRTF prototype to fly on a ballon-borne telescope. It will use a ferromagnetic shield. The possibility of using a high-Tc solenoid-actuated heat switch is also discussed.
Design of a spaceworthy adiabatic demagnetization refrigerator
NASA Technical Reports Server (NTRS)
Serlemitsos, A. T.; Kunes, E.; Sansebastian, M.
1992-01-01
A spaceworthy adiabatic demagnetization refrigerator (ADR) under development at NASA-Goddard is presented. A baseline model heat switch was tested extensively with an on/off ratio of about 10,000 and a parasitic heat leak of 10 micro-W. Data obtained from the breadboard models were used to design an ADR with improved structural integrity. The core of the ADR is the salt pill which consists of the paramagnetic salt crystal and the thermal bus. When a magnetic field is applied to the salt it forces the alignment of the magnetic moments, thereby decreasing the entropy of the salt. Preliminary tests results showed a net crystal mass of 680 g instead of the expected 740 g, which indicate that there are gaps in the salt pill. A partial fix was accomplished by sealing helium gas in the salt pill at a pressure of 2 bar, which improved the thermal contact during salt magnetization, at about 2 K.
Differential topology of adiabatically controlled quantum processes
NASA Astrophysics Data System (ADS)
Jonckheere, Edmond A.; Rezakhani, Ali T.; Ahmad, Farooq
2013-03-01
It is shown that in a controlled adiabatic homotopy between two Hamiltonians, H 0 and H 1, the gap or "anti-crossing" phenomenon can be viewed as the development of cusps and swallow tails in the region of the complex plane where two critical value curves of the quadratic map associated with the numerical range of H 0 + i H 1 come close. The "near crossing" in the energy level plots happens to be a generic situation, in the sense that a crossing is a manifestation of the quadratic numerical range map being unstable in the sense of differential topology. The stable singularities that can develop are identified and it is shown that they could occur near the gap, making those singularities of paramount importance. Various applications, including the quantum random walk, are provided to illustrate this theory.
Reversible logic gate using adiabatic superconducting devices
Takeuchi, N.; Yamanashi, Y.; Yoshikawa, N.
2014-01-01
Reversible computing has been studied since Rolf Landauer advanced the argument that has come to be known as Landauer's principle. This principle states that there is no minimum energy dissipation for logic operations in reversible computing, because it is not accompanied by reductions in information entropy. However, until now, no practical reversible logic gates have been demonstrated. One of the problems is that reversible logic gates must be built by using extremely energy-efficient logic devices. Another difficulty is that reversible logic gates must be both logically and physically reversible. Here we propose the first practical reversible logic gate using adiabatic superconducting devices and experimentally demonstrate the logical and physical reversibility of the gate. Additionally, we estimate the energy dissipation of the gate, and discuss the minimum energy dissipation required for reversible logic operations. It is expected that the results of this study will enable reversible computing to move from the theoretical stage into practical usage. PMID:25220698
Entropy in Adiabatic Regions of Convection Simulations
NASA Astrophysics Data System (ADS)
Tanner, Joel D.; Basu, Sarbani; Demarque, Pierre
2016-05-01
One of the largest sources of uncertainty in stellar models is caused by the treatment of convection in stellar envelopes. One-dimensional stellar models often make use of the mixing length or equivalent approximations to describe convection, all of which depend on various free parameters. There have been attempts to rectify this by using 3D radiative-hydrodynamic simulations of stellar convection, and in trying to extract an equivalent mixing length from the simulations. In this Letter, we show that the entropy of the deeper, adiabatic layers in these simulations can be expressed as a simple function of {log}g and {log}{T}{{eff}}, which holds potential for calibrating stellar models in a simple and more general manner.
Symmetry-protected adiabatic quantum transistors
NASA Astrophysics Data System (ADS)
Williamson, Dominic J.; Bartlett, Stephen D.
2015-05-01
Adiabatic quantum transistors (AQT) allow quantum logic gates to be performed by applying a large field to a quantum many-body system prepared in its ground state, without the need for local control. The basic operation of such a device can be viewed as driving a spin chain from a symmetry-protected (SP) phase to a trivial phase. This perspective offers an avenue to generalize the AQT and to design several improvements. The performance of quantum logic gates is shown to depend only on universal symmetry properties of a SP phase rather than any fine tuning of the Hamiltonian, and it is possible to implement a universal set of logic gates in this way by combining several different types of SP matter. Such SP AQTs are argued to be robust to a range of relevant noise processes.
Number Partitioning via Quantum Adiabatic Computation
NASA Technical Reports Server (NTRS)
Smelyanskiy, Vadim N.; Toussaint, Udo; Clancy, Daniel (Technical Monitor)
2002-01-01
We study both analytically and numerically the complexity of the adiabatic quantum evolution algorithm applied to random instances of combinatorial optimization problems. We use as an example the NP-complete set partition problem and obtain an asymptotic expression for the minimal gap separating the ground and exited states of a system during the execution of the algorithm. We show that for computationally hard problem instances the size of the minimal gap scales exponentially with the problem size. This result is in qualitative agreement with the direct numerical simulation of the algorithm for small instances of the set partition problem. We describe the statistical properties of the optimization problem that are responsible for the exponential behavior of the algorithm.
Geometric Adiabatic Transport in Quantum Hall States
NASA Astrophysics Data System (ADS)
Klevtsov, S.; Wiegmann, P.
2015-08-01
We argue that in addition to the Hall conductance and the nondissipative component of the viscous tensor, there exists a third independent transport coefficient, which is precisely quantized. It takes constant values along quantum Hall plateaus. We show that the new coefficient is the Chern number of a vector bundle over moduli space of surfaces of genus 2 or higher and therefore cannot change continuously along the plateau. As such, it does not transpire on a sphere or a torus. In the linear response theory, this coefficient determines intensive forces exerted on electronic fluid by adiabatic deformations of geometry and represents the effect of the gravitational anomaly. We also present the method of computing the transport coefficients for quantum Hall states.
Geometric Adiabatic Transport in Quantum Hall States.
Klevtsov, S; Wiegmann, P
2015-08-21
We argue that in addition to the Hall conductance and the nondissipative component of the viscous tensor, there exists a third independent transport coefficient, which is precisely quantized. It takes constant values along quantum Hall plateaus. We show that the new coefficient is the Chern number of a vector bundle over moduli space of surfaces of genus 2 or higher and therefore cannot change continuously along the plateau. As such, it does not transpire on a sphere or a torus. In the linear response theory, this coefficient determines intensive forces exerted on electronic fluid by adiabatic deformations of geometry and represents the effect of the gravitational anomaly. We also present the method of computing the transport coefficients for quantum Hall states. PMID:26340197
Adiabatic connection at negative coupling strengths
Seidl, Michael; Gori-Giorgi, Paola
2010-01-15
The adiabatic connection of density functional theory (DFT) for electronic systems is generalized here to negative values of the coupling strength alpha (with attractive electrons). In the extreme limit alpha->-infinity a simple physical solution is presented and its implications for DFT (as well as its limitations) are discussed. For two-electron systems (a case in which the present solution can be calculated exactly), we find that an interpolation between the limit alpha->-infinity and the opposite limit of infinitely strong repulsion (alpha->+infinity) yields a rather accurate estimate of the second-order correlation energy E{sub c}{sup GL2}[rho] for several different densities rho, without using virtual orbitals. The same procedure is also applied to the Be isoelectronic series, analyzing the effects of near degeneracy.
Adiabatic theory for anisotropic cold molecule collisions.
Pawlak, Mariusz; Shagam, Yuval; Narevicius, Edvardas; Moiseyev, Nimrod
2015-08-21
We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment (4)He(1s2s (3)S) + HD(1s(2)) → (4)He(1s(2)) + HD(+)(1s) + e(-) [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings. PMID:26298122
Adiabatically-tapered fiber mode multiplexers.
Yerolatsitis, S; Gris-Sánchez, I; Birks, T A
2014-01-13
Simple all-fiber three-mode multiplexers were made by adiabatically merging three dissimilar single-mode cores into one multimode core. This was achieved by collapsing air holes in a photonic crystal fiber and (in a separate device) by fusing and tapering separate telecom fibers in a fluorine-doped silica capillary. In each case the LP01 mode and both LP11 modes were individually excited from three separate input cores, with losses below 0.3 and 0.7 dB respectively and mode purities exceeding 10 dB. Scaling to more modes is challenging, but would be assisted by using single-mode fibers with a smaller ratio of cladding to core diameter. PMID:24515021
The HAWC and SAFIRE Adiabatic Demagnetization Refrigerators
NASA Technical Reports Server (NTRS)
Tuttle, Jim; Shirron, Peter; DiPirro, Michael; Jackson, Michael; Behr, Jason; Kunes, Evan; Hait, Tom; Krebs, Carolyn (Technical Monitor)
2001-01-01
The High-Resolution Airborne Wide-band Camera (HAWC) and Submillimeter and Far Infrared Experiment (SAFIRE) are far-infrared experiments which will fly on the Stratospheric Observatory for Infrared Astronomy (SOFIA) aircraft. HAWC's detectors will operate at 0.2 Kelvin, while those of SAFIRE will be at 0.1 Kelvin. Each instrument will include an adiabatic demagnetization refrigerator (ADR) to cool its detector stage from the liquid helium bath temperature (HAWC's at 4.2 Kelvin and SAFIRE's pumped to about 1.3 Kelvin) to its operating temperature. Except for the magnets used to achieve the cooling and a slight difference in the heat switch design, the two ADRs are nearly identical. We describe the ADR design and present the results of performance testing.
Large-Area Atom Interferometry with Frequency-Swept Raman Adiabatic Passage.
Kotru, Krish; Butts, David L; Kinast, Joseph M; Stoner, Richard E
2015-09-01
We demonstrate light-pulse atom interferometry with large-momentum-transfer atom optics based on stimulated Raman transitions and frequency-swept adiabatic rapid passage. Our atom optics have produced momentum splittings of up to 30 photon recoil momenta in an acceleration-sensitive interferometer for laser cooled atoms. We experimentally verify the enhancement of phase shift per unit acceleration and characterize interferometer contrast loss. By forgoing evaporative cooling and velocity selection, this method lowers the atom shot-noise-limited measurement uncertainty and enables large-area atom interferometry at higher data rates. PMID:26382675
A wedged-peak-pulse design with medium fuel adiabat for indirect-drive fusion
Fan, Zhengfeng; Ren, Guoli; Liu, Bin; Wu, Junfeng; He, X. T.; Liu, Jie; Wang, L. F.; Ye, Wenhua
2014-10-15
In the present letter, we propose the design of a wedged-peak pulse at the late stage of indirect drive. Our simulations of one- and two-dimensional radiation hydrodynamics show that the wedged-peak-pulse design can raise the drive pressure and capsule implosion velocity without significantly raising the fuel adiabat. It can thus balance the energy requirement and hydrodynamic instability control at both ablator/fuel interface and hot-spot/fuel interface. This investigation has implication in the fusion ignition at current mega-joule laser facilities.
The coronal-sounding experiment
NASA Technical Reports Server (NTRS)
Bird, M. K.; Asmar, S. W.; Brenkle, J. P.; Edenhofer, P.; Paetzold, M.; Volland, H.
1992-01-01
The main science objective of the Ulysses Solar Corona Experiment is to derive the plasma parameters of the solar atmosphere using established coronal-sounding techniques. Applying appropriate model assumptions, the 3D electron density distribution will be determined from dual-frequency ranging and Doppler measurements recorded at the NASA Deep Space Network during the solar conjunctions. Multi-station observations will be used to derive the plasma bulk velocity at solar distances where the solar wind is expected to undergo its greatest acceleration. As a secondary objective profiting from the favorable geometry during Jupiter encounter, radio-sounding measurements will yield a unique cross-scan of the electron density in the Io Plasma Torus.
An integrated programming and development environment for adiabatic quantum optimization
NASA Astrophysics Data System (ADS)
Humble, T. S.; McCaskey, A. J.; Bennink, R. S.; Billings, J. J.; DʼAzevedo, E. F.; Sullivan, B. D.; Klymko, C. F.; Seddiqi, H.
2014-01-01
Adiabatic quantum computing is a promising route to the computational power afforded by quantum information processing. The recent availability of adiabatic hardware has raised challenging questions about how to evaluate adiabatic quantum optimization (AQO) programs. Processor behavior depends on multiple steps to synthesize an adiabatic quantum program, which are each highly tunable. We present an integrated programming and development environment for AQO called Jade Adiabatic Development Environment (JADE) that provides control over all the steps taken during program synthesis. JADE captures the workflow needed to rigorously specify the AQO algorithm while allowing a variety of problem types, programming techniques, and processor configurations. We have also integrated JADE with a quantum simulation engine that enables program profiling using numerical calculation. The computational engine supports plug-ins for simulation methodologies tailored to various metrics and computing resources. We present the design, integration, and deployment of JADE and discuss its potential use for benchmarking AQO programs by the quantum computer science community.
An Integrated Development Environment for Adiabatic Quantum Programming
Humble, Travis S; McCaskey, Alex; Bennink, Ryan S; Billings, Jay Jay; D'Azevedo, Eduardo; Sullivan, Blair D; Klymko, Christine F; Seddiqi, Hadayat
2014-01-01
Adiabatic quantum computing is a promising route to the computational power afforded by quantum information processing. The recent availability of adiabatic hardware raises the question of how well quantum programs perform. Benchmarking behavior is challenging since the multiple steps to synthesize an adiabatic quantum program are highly tunable. We present an adiabatic quantum programming environment called JADE that provides control over all the steps taken during program development. JADE captures the workflow needed to rigorously benchmark performance while also allowing a variety of problem types, programming techniques, and processor configurations. We have also integrated JADE with a quantum simulation engine that enables program profiling using numerical calculation. The computational engine supports plug-ins for simulation methodologies tailored to various metrics and computing resources. We present the design, integration, and deployment of JADE and discuss its use for benchmarking adiabatic quantum programs.
Non-adiabatic molecular dynamics with complex quantum trajectories. II. The adiabatic representation
NASA Astrophysics Data System (ADS)
Zamstein, Noa; Tannor, David J.
2012-12-01
We present a complex quantum trajectory method for treating non-adiabatic dynamics. Each trajectory evolves classically on a single electronic surface but with complex position and momentum. The equations of motion are derived directly from the time-dependent Schrödinger equation, and the population exchange arises naturally from amplitude-transfer terms. In this paper the equations of motion are derived in the adiabatic representation to complement our work in the diabatic representation [N. Zamstein and D. J. Tannor, J. Chem. Phys. 137, 22A517 (2012)], 10.1063/1.4739845. We apply our method to two benchmark models introduced by John Tully [J. Chem. Phys. 93, 1061 (1990)], 10.1063/1.459170, and get very good agreement with converged quantum-mechanical calculations. Specifically, we show that decoherence (spatial separation of wavepackets on different surfaces) is already contained in the equations of motion and does not require ad hoc augmentation.
Non-adiabatic molecular dynamics with complex quantum trajectories. II. The adiabatic representation
Zamstein, Noa; Tannor, David J.
2012-12-14
We present a complex quantum trajectory method for treating non-adiabatic dynamics. Each trajectory evolves classically on a single electronic surface but with complex position and momentum. The equations of motion are derived directly from the time-dependent Schroedinger equation, and the population exchange arises naturally from amplitude-transfer terms. In this paper the equations of motion are derived in the adiabatic representation to complement our work in the diabatic representation [N. Zamstein and D. J. Tannor, J. Chem. Phys. 137, 22A517 (2012)]. We apply our method to two benchmark models introduced by John Tully [J. Chem. Phys. 93, 1061 (1990)], and get very good agreement with converged quantum-mechanical calculations. Specifically, we show that decoherence (spatial separation of wavepackets on different surfaces) is already contained in the equations of motion and does not require ad hoc augmentation.
Seiler, Ch.; Hogan, S. D.; Schmutz, H.; Agner, J. A.; Merkt, F.
2011-02-18
A supersonic beam of Rydberg hydrogen atoms has been adiabatically deflected by 90 deg., decelerated to zero velocity in less than 25 {mu}s, and loaded into an electric trap. The deflection has allowed the suppression of collisions with atoms in the trailing part of the gas pulse. The processes leading to trap losses, i.e., fluorescence to the ground state, and transitions and ionization induced by blackbody radiation have been monitored over several milliseconds and quantitatively analyzed.
Acoustic radar sounding of the lower atmosphere
NASA Technical Reports Server (NTRS)
Mcallister, L. G.
1972-01-01
Acoustic radar sounding techniques were used to measure the wind velocity and direction in the first 300 m of the atmosphere. Angle-of-arrival and Doppler techniques were developed to obtain two independent measurements of the wind field. These techniques and preliminary experimental results are described briefly.
The speed of sound in periodic ducts
NASA Astrophysics Data System (ADS)
Russo, Serena; Fabre, David; Giannetti, Flavio; Luchini, Paolo
2016-01-01
The flow through corrugated pipes is known to lead to strong whistling tones which may be harmful in many industrial appliances. The mechanism is known to originate from a coupling between vortex shedding at the edges of the cavities forming the wall of the tube and the acoustical modes of the pipe. The latter depend upon the effective velocity of sound ceff within the corrugated pipe. The purpose of this paper is to compute accurately this effective velocity of sound through an asymptotic calculation valid in the long-wave limit. Results are given for a number of geometries used in previous works, and compared with a simple model in which the effective speed of sound is function of the geometry of the pipe. The latter is found to work best for short cavities but significant disagreement is found for longer cavities. The case of 2D channels with a corrugated wall is also considered.
Marakulin, A. O. Sazhina, O. S.; Sazhin, M. V.
2012-07-15
The possibility of the influence of adiabatic scalar perturbations on the angular velocity spectrum of extragalactic sources is considered. The multipole expansion coefficients of the angular velocity field in terms of vector spherical harmonics are calculated. We show that there is no contribution from adiabatic perturbations to the angular spectrum for a spatially flat Universe at the dusty stage, while there is a contribution only to the electric multiple coefficients at the stage of {Lambda}-term domination. The cases of long-wavelength and short-wavelength perturbations are considered separately. The relationship between the multipole angular velocity spectrum and the primordial scalar perturbation spectrum is discussed.
NASA Astrophysics Data System (ADS)
Marakulin, A. O.; Sazhina, O. S.; Sazhin, M. V.
2012-07-01
The possibility of the influence of adiabatic scalar perturbations on the angular velocity spectrum of extragalactic sources is considered. The multipole expansion coefficients of the angular velocity field in terms of vector spherical harmonics are calculated. We show that there is no contribution from adiabatic perturbations to the angular spectrum for a spatially flat Universe at the dusty stage, while there is a contribution only to the electric multiple coefficients at the stage of Λ-term domination. The cases of long-wavelength and short-wavelength perturbations are considered separately. The relationship between the multipole angular velocity spectrum and the primordial scalar perturbation spectrum is discussed.
Sound wave transmission (image)
When sounds waves reach the ear, they are translated into nerve impulses. These impulses then travel to the brain where they are interpreted by the brain as sound. The hearing mechanisms within the inner ear, can ...
Category 5: Sound Generation in Viscous Problems
NASA Technical Reports Server (NTRS)
Lee, Soogab; Henderson, Brenda
2004-01-01
Two problems are considered. Problem 1: Aeolian tones, sound generation by flow over cylinders, are relevant to airframe and power plant noise (heat exchanger, power transmission lines and chimneys). The purpose of this problem is to test the ability of a CFD/CAA code to accurately predict sound generation by viscous flows and sound propagation through interactions between acoustic wave & solid wall and between acoustic waves & shear layers. Problem 2: Sound generation by flow over a cavity.Air flows over the cavity shown below with a mean approach flow velocity of 50 m/s. The boundary layer that develops over the flat plate is turbulent with a thickness of 14 mm at the entrance to the cavity. Calculate the power spectra at the center of each cavit wall and the center of the cavity floor. Experimental data will be available for comparison.
NASA Technical Reports Server (NTRS)
Scoggins, J. R.
1984-01-01
The VAS soundings derived by NOAA personnel and NASA personnel and rawinsonde soundings are compared: (1) directly by plotting on Skew t-log p diagrams; (2) by pairing rawinsonde soundings with the closest satellite soundings and calculating the mean and standard deviations of differences between the two data sets; and (3) by constructing synoptic and subsynoptic scale analyses with rawinsonde and satellite data. Differences for various parameters are discussed.
ERIC Educational Resources Information Center
Carle, Irmgard Lehrer; Martin, Isaiah
1975-01-01
Authors served up a variety of techniques for investigating sound sources and sound patterns. Have you considered creating a composition from breathing sounds? Or constructing a conversation in percussion? These ideas are included along with step-by-step directions for making nine percussion instruments. (Editor)
ERIC Educational Resources Information Center
Yen, Isabella Y.
This phonology workbook on the sounds of Mandarin Chinese accompanies a 3-volume set of textbooks for the language. The workbook provides illustrations of the articulation of the sounds and offers exercises and drills for practicing each sound. For related documents in this series, see FL 002 773, FL 002 774, FL 002 776, and FL 002 777. (VM)
Spatial resolution limits for the localization of noise sources using direct sound mapping
NASA Astrophysics Data System (ADS)
Fernandez Comesaña, D.; Holland, K. R.; Fernandez-Grande, E.
2016-08-01
One of the main challenges arising from noise and vibration problems is how to identify the areas of a device, machine or structure that produce significant acoustic excitation, i.e. the localization of main noise sources. The direct visualization of sound, in particular sound intensity, has extensively been used for many years to locate sound sources. However, it is not yet well defined when two sources should be regarded as resolved by means of direct sound mapping. This paper derives the limits of the direct representation of sound pressure, particle velocity and sound intensity by exploring the relationship between spatial resolution, noise level and geometry. The proposed expressions are validated via simulations and experiments. It is shown that particle velocity mapping yields better results for identifying closely spaced sound sources than sound pressure or sound intensity, especially in the acoustic near-field.
Salasnich, Luca
2010-12-15
We investigate the low-temperature thermodynamics of the unitary Fermi gas by introducing a model based on the zero-temperature spectra of both bosonic collective modes and fermonic single-particle excitations. We calculate the Helmholtz free energy and from it we obtain the entropy, the internal energy, and the chemical potential as a function of the temperature. By using these quantities and the Landau's expression for the superfluid density we determine analytically the superfluid fraction, the critical temperature, the first sound velocity, and the second sound velocity. We compare our analytical results with other theoretical predictions and experimental data of ultracold atoms and dilute neutron matter.
Non-adiabatic perturbations in Ricci dark energy model
Karwan, Khamphee; Thitapura, Thiti E-mail: nanodsci2523@hotmail.com
2012-01-01
We show that the non-adiabatic perturbations between Ricci dark energy and matter can grow both on superhorizon and subhorizon scales, and these non-adiabatic perturbations on subhorizon scales can lead to instability in this dark energy model. The rapidly growing non-adiabatic modes on subhorizon scales always occur when the equation of state parameter of dark energy starts to drop towards -1 near the end of matter era, except that the parameter α of Ricci dark energy equals to 1/2. In the case where α = 1/2, the rapidly growing non-adiabatic modes disappear when the perturbations in dark energy and matter are adiabatic initially. However, an adiabaticity between dark energy and matter perturbations at early time implies a non-adiabaticity between matter and radiation, this can influence the ordinary Sachs-Wolfe (OSW) effect. Since the amount of Ricci dark energy is not small during matter domination, the integrated Sachs-Wolfe (ISW) effect is greatly modified by density perturbations of dark energy, leading to a wrong shape of CMB power spectrum. The instability in Ricci dark energy is difficult to be alleviated if the effects of coupling between baryon and photon on dark energy perturbations are included.
Sound signature of propeller tip vortex cavitation
NASA Astrophysics Data System (ADS)
Pennings, Pepijn; Westerweel, Jerry; van Terwisga, Tom
2015-12-01
The design of an efficient propeller is limited by the harmful effects of cavitation. The insufficient understanding of the role of vortex cavitation in noise and vibration reduces the maximum efficiency by a necessary safety margin. The aim in the present study is to directly relate propeller cavitation sound to tip vortex cavity dynamics. This is achieved by a dedicated experiment in a cavitation tunnel on a specially designed two-bladed propeller using a high-speed video camera and a hydrophone. The sound signature of a tip vortex cavity is not evidently present in the sound spectrum above the tunnel background. The addition of a simulated wake inflow results in a high amplitude broadband sound. With a decrease in the free-stream pressure the centre frequency of this sound decreases as a result of a larger vortex cavity diameter. In the near future each blade passage in the high-speed video will be analyzed in detail. The frequency content of the cavity dynamics can then be directly related to the measured sound. An analytic model for vortex cavity dynamics resulting in a cavity eigenfrequency using a vortex velocity model can finally be evaluated as a design instrument for estimation of broadband sound from propeller cavitation.
Dynamics of Charged Particles in an Adiabatic Thermal Beam Equilibrium
NASA Astrophysics Data System (ADS)
Chen, Chiping; Wei, Haofei
2010-11-01
Charged-particle motion is studied in the self-electric and self-magnetic fields of a well-matched, intense charged-particle beam and an applied periodic solenoidal magnetic focusing field. The beam is assumed to be in a state of adiabatic thermal equilibrium. The phase space is analyzed and compared with that of the well-known Kapchinskij-Vladimirskij (KV)-type beam equilibrium. It is found that the widths of nonlinear resonances in the adiabatic thermal beam equilibrium are narrower than those in the KV-type beam equilibrium. Numerical evidence is presented, indicating almost complete elimination of chaotic particle motion in the adiabatic thermal beam equilibrium.
Complete population inversion of Bose particles by an adiabatic cycle
NASA Astrophysics Data System (ADS)
Tanaka, Atushi; Cheon, Taksu
2016-04-01
We show that an adiabatic cycle excites Bose particles confined in a one-dimensional box. During the adiabatic cycle, a wall described by a δ-shaped potential is applied and its strength and position are slowly varied. When the system is initially prepared in the ground state, namely, in the zero-temperature equilibrium state, the adiabatic cycle brings all Bosons into the first excited one-particle state, leaving the system in a nonequilibrium state. The absorbed energy during the cycle is proportional to the number of Bosons.
Dephasing effects on stimulated Raman adiabatic passage in tripod configurations
Lazarou, C.; Vitanov, N. V.
2010-09-15
We present an analytic description of the effects of dephasing processes on stimulated Raman adiabatic passage in a tripod quantum system. To this end, we develop an effective two-level model. Our analysis makes use of the adiabatic approximation in the weak dephasing regime. An effective master equation for a two-level system formed by two dark states is derived, where analytic solutions are obtained by utilizing the Demkov-Kunike model. From these, it is found that the fidelity for the final coherent superposition state decreases exponentially for increasing dephasing rates. Depending on the pulse ordering and for adiabatic evolution, the pulse delay can have an inverse effect.
Moll, Jochen
2016-09-01
This work is based on the experimental observation that the phase and group velocity of the fundamental antisymmetric wave mode in a composite structure with linearly varying thickness changes as it propagates along the nonuniform waveguide (Moll et al., 2015). This adiabatic wave motion leads to systematic damage localization errors of conventional algorithms because a constant wave velocity is assumed in the reconstruction process. This paper presents a generalized beamforming approach for composite structures with nonuniform cross section that eliminates this systematic error. Damage localization results will be presented and discussed in comparison to existing techniques. PMID:27317966
Lemaitre, Guillaume; Heller, Laurie M.; Navolio, Nicole; Zúñiga-Peñaranda, Nicolas
2015-01-01
We report a series of experiments about a little-studied type of compatibility effect between a stimulus and a response: the priming of manual gestures via sounds associated with these gestures. The goal was to investigate the plasticity of the gesture-sound associations mediating this type of priming. Five experiments used a primed choice-reaction task. Participants were cued by a stimulus to perform response gestures that produced response sounds; those sounds were also used as primes before the response cues. We compared arbitrary associations between gestures and sounds (key lifts and pure tones) created during the experiment (i.e. no pre-existing knowledge) with ecological associations corresponding to the structure of the world (tapping gestures and sounds, scraping gestures and sounds) learned through the entire life of the participant (thus existing prior to the experiment). Two results were found. First, the priming effect exists for ecological as well as arbitrary associations between gestures and sounds. Second, the priming effect is greatly reduced for ecologically existing associations and is eliminated for arbitrary associations when the response gesture stops producing the associated sounds. These results provide evidence that auditory-motor priming is mainly created by rapid learning of the association between sounds and the gestures that produce them. Auditory-motor priming is therefore mediated by short-term associations between gestures and sounds that can be readily reconfigured regardless of prior knowledge. PMID:26544884
Design of the PIXIE Adiabatic Demagnetization Refrigerators
NASA Technical Reports Server (NTRS)
Shirron, Peter J.; Kimball, Mark Oliver; Fixsen, Dale J.; Kogut, Alan J.; Li, Xiaoyi; DiPirro, Michael
2012-01-01
The Primordial Inflation Explorer (PIXIE) is a proposed mission to densely map the polarization of the cosmic microwave background. It will operate in a scanning mode from a sun-synchronous orbit, using low temperature detectors (at 0.1 K) and located inside a teslescope that is cooled to approximately 2.73 K - to match the background temperature. A mechanical cryocooler operating at 4.5 K establishes a low base temperature from which two adiabatic demagnetization refrigerator (ADR) assemblies will cool the telescope and detectors. To achieve continuous scanning capability, the ADRs must operate continuously. Complicating the design are two factors: 1) the need to systematically vary the temperature of various telescope components in order to separate the small polarization signal variations from those that may arise from temperature drifts and changing gradients within the telescope, and 2) the orbital and monthly variations in lunar irradiance into the telescope barrels. These factors require the telescope ADR to reject quasi-continuous heat loads of 2-3 millwatts, while maintaining a peak heat reject rate of less than 12 milliwatts. The detector heat load at 0.1 K is comparatively small at 1-2 microwatts. This paper will describe the 3-stage and 2-stage continuous ADRs that will be used to meet the cooling power and temperature stability requirements of the PIXIE detectors and telescope.
Design of the PIXIE adiabatic demagnetization refrigerators
NASA Astrophysics Data System (ADS)
Shirron, Peter J.; Kimball, Mark O.; Fixsen, Dale J.; Kogut, Alan J.; Li, Xiaoyi; DiPirro, Michael J.
2012-04-01
The Primordial Inflation Explorer (PIXIE) is a proposed mission to densely map the polarization of the cosmic microwave background. It will operate in a scanning mode from a sun-synchronous orbit, using low temperature detectors (at 0.1 K) and located inside a telescope that is cooled to approximately 2.73 K - to match the background temperature. A mechanical cryocooler operating at 4.5 K establishes a low base temperature from which two adiabatic demagnetization refrigerator (ADR) assemblies will cool the telescope and detectors. To achieve continuous scanning capability, the ADRs must operate continuously. Complicating the design are two factors: (1) the need to systematically vary the temperature of various telescope components in order to separate the small polarization signal variations from those that may arise from temperature drifts and changing gradients within the telescope, and (2) the orbital and monthly variations in lunar irradiance into the telescope barrels. These factors require the telescope ADR to reject quasi-continuous heat loads of 2-3 mW, while maintaining a peak heat reject rate of less than 12 mW. The detector heat load at 0.1 K is comparatively small at 1-2 μW. This paper will describe the 3-stage and 2-stage continuous ADRs that will be used to meet the cooling power and temperature stability requirements of the PIXIE detectors and telescope.
Graph isomorphism and adiabatic quantum computing
NASA Astrophysics Data System (ADS)
Gaitan, Frank; Clark, Lane
2014-03-01
In the Graph Isomorphism (GI) problem two N-vertex graphs G and G' are given and the task is to determine whether there exists a permutation of the vertices of G that preserves adjacency and maps G --> G'. If yes (no), then G and G' are said to be isomorphic (non-isomorphic). The GI problem is an important problem in computer science and is thought to be of comparable difficulty to integer factorization. We present a quantum algorithm that solves arbitrary instances of GI, and which provides a novel approach to determining all automorphisms of a graph. The algorithm converts a GI instance to a combinatorial optimization problem that can be solved using adiabatic quantum evolution. Numerical simulation of the algorithm's quantum dynamics shows that it correctly distinguishes non-isomorphic graphs; recognizes isomorphic graphs; and finds the automorphism group of a graph. We also discuss the algorithm's experimental implementation and show how it can be leveraged to solve arbitrary instances of the NP-Complete Sub-Graph Isomorphism problem.
Adiabatic Quantum Computation with Neutral Atoms
NASA Astrophysics Data System (ADS)
Biedermann, Grant
2013-03-01
We are implementing a new platform for adiabatic quantum computation (AQC)[2] based on trapped neutral atoms whose coupling is mediated by the dipole-dipole interactions of Rydberg states. Ground state cesium atoms are dressed by laser fields in a manner conditional on the Rydberg blockade mechanism,[3,4] thereby providing the requisite entangling interactions. As a benchmark we study a Quadratic Unconstrained Binary Optimization (QUBO) problem whose solution is found in the ground state spin configuration of an Ising-like model. In collaboration with Lambert Parazzoli, Sandia National Laboratories; Aaron Hankin, Center for Quantum Information and Control (CQuIC), University of New Mexico; James Chin-Wen Chou, Yuan-Yu Jau, Peter Schwindt, Cort Johnson, and George Burns, Sandia National Laboratories; Tyler Keating, Krittika Goyal, and Ivan Deutsch, Center for Quantum Information and Control (CQuIC), University of New Mexico; and Andrew Landahl, Sandia National Laboratories. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories
Adiabatic Quantum Algorithm for Search Engine Ranking
NASA Astrophysics Data System (ADS)
Garnerone, Silvano; Zanardi, Paolo; Lidar, Daniel A.
2012-06-01
We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this algorithm can prepare the quantum PageRank state in a time which, on average, scales polylogarithmically in the number of web pages. We argue that the main topological feature of the underlying web graph allowing for such a scaling is the out-degree distribution. The top-ranked log(n) entries of the quantum PageRank state can then be estimated with a polynomial quantum speed-up. Moreover, the quantum PageRank state can be used in “q-sampling” protocols for testing properties of distributions, which require exponentially fewer measurements than all classical schemes designed for the same task. This can be used to decide whether to run a classical update of the PageRank.
Electrophonic sounds in meteors
NASA Astrophysics Data System (ADS)
Wu, Guangjie
2003-06-01
Recordings about the sounds of meteors existed in ancient Chinese literature before Christ. During recent two hundreds years, especially, recent twenty years, reports and investigations about Electrophonic meteors and Electrophonic sounds have been developed largely. Electrophonic sounds are defined as sounds produced by direct conversion of electromagnetic radiation into audible sounds. It is thought that Electrophonic sounds may be induced in events of bolide, very bright auroral display, nearby strong lightning, earthquake and nuclear explosion. However, on account of its unusually rare chance and its particular physical course, no matter in observations or in theoretical study, there are many difficult and unresolved problems. The historical and present situations about Electrophonic sounds are summarized in this paper.
Acoustic velocity meter systems
Laenen, Antonius
1985-01-01
Acoustic velocity meter (AVM) systems operate on the principles that the point-to-point upstream traveltime of an acoustic pulse is longer than the downstream traveltime and that this difference in traveltime can be accurately measured by electronic devices. An AVM system is capable of recording water velocity (and discharge) under a wide range of conditions, but some constraints apply: 1. Accuracy is reduced and performance is degraded if the acoustic path is not a continuous straight line. The path can be bent by reflection if it is too close to a stream boundary or by refraction if it passes through density gradients resulting from variations in either water temperature or salinity. For paths of less than 100 m, a temperature gradient of 0.1' per meter causes signal bending less than 0.6 meter at midchannel, and satisfactory velocity results can be obtained. Reflection from stream boundaries can cause signal cancellation if boundaries are too close to signal path. 2. Signal strength is attenuated by particles or bubbles that absorb, spread, or scatter sound. The concentration of particles or bubbles that can be tolerated is a function of the path length and frequency of the acoustic signal. 3. Changes in streamline orientation can affect system accuracy if the variability is random. 4. Errors relating to signal resolution are much larger for a single threshold detection scheme than for multiple threshold schemes. This report provides methods for computing the effect of various conditions on the accuracy of a record obtained from an AVM. The equipment must be adapted to the site. Field reconnaissance and preinstallation analysis to detect possible problems are critical for proper installation and operation of an AVM system.
From sound to shape: auditory perception of drawing movements.
Thoret, Etienne; Aramaki, Mitsuko; Kronland-Martinet, Richard; Velay, Jean-Luc; Ystad, Sølvi
2014-06-01
This study investigates the human ability to perceive biological movements through friction sounds produced by drawings and, furthermore, the ability to recover drawn shapes from the friction sounds generated. In a first experiment, friction sounds, real-time synthesized and modulated by the velocity profile of the drawing gesture, revealed that subjects associated a biological movement to those sounds whose timbre variations were generated by velocity profiles following the 1/3 power law. This finding demonstrates that sounds can adequately inform about human movements if their acoustic characteristics are in accordance with the kinematic rule governing actual movements. Further investigations of our ability to recognize drawn shapes were carried out in 2 association tasks in which both recorded and synthesized sounds had to be associated to both distinct and similar visual shapes. Results revealed that, for both synthesized and recorded sounds, subjects made correct associations for distinct shapes, although some confusion was observed for similar shapes. The comparisons made between recorded and synthesized sounds lead to conclude that the timbre variations induced by the velocity profile enabled the shape recognition. The results are discussed in the context of the ecological and ideomotor frameworks. PMID:24446717
Adiabaticity and spectral splits in collective neutrino transformations
Raffelt, Georg G.; Smirnov, Alexei Yu.
2007-12-15
Neutrinos streaming off a supernova core transform collectively by neutrino-neutrino interactions, leading to 'spectral splits' where an energy E{sub split} divides the transformed spectrum sharply into parts of almost pure but different flavors. We present a detailed description of the spectral-split phenomenon which is conceptually and quantitatively understood in an adiabatic treatment of neutrino-neutrino effects. Central to this theory is a self-consistency condition in the form of two sum rules (integrals over the neutrino spectra that must equal certain conserved quantities). We provide explicit analytic and numerical solutions for various neutrino spectra. We introduce the concept of the adiabatic reference frame and elaborate on the relative adiabatic evolution. Violating adiabaticity leads to the spectral split being 'washed out'. The sharpness of the split appears to be represented by a surprisingly universal function.
Acceleration of adiabatic quantum dynamics in electromagnetic fields
Masuda, Shumpei; Nakamura, Katsuhiro
2011-10-15
We show a method to accelerate quantum adiabatic dynamics of wave functions under electromagnetic field (EMF) by developing the preceding theory [Masuda and Nakamura, Proc. R. Soc. London Ser. A 466, 1135 (2010)]. Treating the orbital dynamics of a charged particle in EMF, we derive the driving field which accelerates quantum adiabatic dynamics in order to obtain the final adiabatic states in any desired short time. The scheme is consolidated by describing a way to overcome possible singularities in both the additional phase and driving potential due to nodes proper to wave functions under EMF. As explicit examples, we exhibit the fast forward of adiabatic squeezing and transport of excited Landau states with nonzero angular momentum, obtaining the result consistent with the transitionless quantum driving applied to the orbital dynamics in EMF.
Adiabatic and isocurvature perturbation projections in multi-field inflation
NASA Astrophysics Data System (ADS)
Gordon, Chris; Saffin, Paul M.
2013-08-01
Current data are in good agreement with the predictions of single field inflation. However, the hemispherical asymmetry, seen in the cosmic microwave background data, may hint at a potential problem. Generalizing to multi-field models may provide one possible explanation. A useful way of modeling perturbations in multi-field inflation is to investigate the projection of the perturbation along and perpendicular to the background fields' trajectory. These correspond to the adiabatic and isocurvature perturbations. However, it is important to note that in general there are no corresponding adiabatic and isocurvature fields. The purpose of this article is to highlight the distinction between a field redefinition and a perturbation projection. We provide a detailed derivation of the evolution of the isocurvature perturbation to show that no assumption of an adiabatic or isocurvature field is needed. We also show how this evolution equation is consistent with the field covariant evolution equations for the adiabatic perturbation in the flat field space limit.
Startup of the RFP in a quasi-adiabatic mode
Caramana, E.J.
1980-01-01
The equations describing the purely adiabatic formation of the reversed-field pinch are solved. This method of formation in principle remedies the problem of flux consumption during the startup phase of this device.
Ultrafast stimulated Raman parallel adiabatic passage by shaped pulses
Dridi, G.; Guerin, S.; Hakobyan, V.; Jauslin, H. R.; Eleuch, H.
2009-10-15
We present a general and versatile technique of population transfer based on parallel adiabatic passage by femtosecond shaped pulses. Their amplitude and phase are specifically designed to optimize the adiabatic passage corresponding to parallel eigenvalues at all times. We show that this technique allows the robust adiabatic population transfer in a Raman system with the total pulse area as low as 3{pi}, corresponding to a fluence of one order of magnitude below the conventional stimulated Raman adiabatic passage process. This process of short duration, typically picosecond and subpicosecond, is easily implementable with the modern pulse shaper technology and opens the possibility of ultrafast robust population transfer with interesting applications in quantum information processing.
Quantum Monte Carlo simulations of tunneling in quantum adiabatic optimization
NASA Astrophysics Data System (ADS)
Brady, Lucas T.; van Dam, Wim
2016-03-01
We explore to what extent path-integral quantum Monte Carlo methods can efficiently simulate quantum adiabatic optimization algorithms during a quantum tunneling process. Specifically we look at symmetric cost functions defined over n bits with a single potential barrier that a successful quantum adiabatic optimization algorithm will have to tunnel through. The height and width of this barrier depend on n , and by tuning these dependencies, we can make the optimization algorithm succeed or fail in polynomial time. In this article we compare the strength of quantum adiabatic tunneling with that of path-integral quantum Monte Carlo methods. We find numerical evidence that quantum Monte Carlo algorithms will succeed in the same regimes where quantum adiabatic optimization succeeds.
NASA Astrophysics Data System (ADS)
Fujii, Ayaka; Wakatsuki, Naoto; Mizutani, Koichi
2016-01-01
A method of suppressing sound radiation to the far field of a near-field acoustic communication system using an evanescent sound field is proposed. The amplitude of the evanescent sound field generated from an infinite vibrating plate attenuates exponentially with increasing a distance from the surface of the vibrating plate. However, a discontinuity of the sound field exists at the edge of the finite vibrating plate in practice, which broadens the wavenumber spectrum. A sound wave radiates over the evanescent sound field because of broadening of the wavenumber spectrum. Therefore, we calculated the optimum distribution of the particle velocity on the vibrating plate to reduce the broadening of the wavenumber spectrum. We focused on a window function that is utilized in the field of signal analysis for reducing the broadening of the frequency spectrum. The optimization calculation is necessary for the design of window function suitable for suppressing sound radiation and securing a spatial area for data communication. In addition, a wide frequency bandwidth is required to increase the data transmission speed. Therefore, we investigated a suitable method for calculating the sound pressure level at the far field to confirm the variation of the distribution of sound pressure level determined on the basis of the window shape and frequency. The distribution of the sound pressure level at a finite distance was in good agreement with that obtained at an infinite far field under the condition generating the evanescent sound field. Consequently, the window function was optimized by the method used to calculate the distribution of the sound pressure level at an infinite far field using the wavenumber spectrum on the vibrating plate. According to the result of comparing the distributions of the sound pressure level in the cases with and without the window function, it was confirmed that the area whose sound pressure level was reduced from the maximum level to -50 dB was
Nonadiabatic transitions in finite-time adiabatic rapid passage
NASA Astrophysics Data System (ADS)
Lu, T.; Miao, X.; Metcalf, H.
2007-06-01
To apply the adiabatic rapid passage process repetitively [T. Lu, X. Miao, and H. Metcalf, Phys. Rev. A 71, 061405(R) (2005)], the nonadiabatic transition probability of a two-level atom subject to chirped light pulses over a finite period of time needs to be calculated. Using a unitary first-order perturbation method in the rotating adiabatic frame, an approximate formula has been derived for such transition probabilities in the entire parameter space of the pulses.
Realization of adiabatic Aharonov-Bohm scattering with neutrons
NASA Astrophysics Data System (ADS)
Sjöqvist, Erik; Almquist, Martin; Mattsson, Ken; Gürkan, Zeynep Nilhan; Hessmo, Björn
2015-11-01
The adiabatic Aharonov-Bohm (AB) effect is a manifestation of the Berry phase acquired when some slow variables take a planar spin around a loop. While the effect has been observed in molecular spectroscopy, direct measurement of the topological phase shift in a scattering experiment has been elusive in the past. Here, we demonstrate an adiabatic AB effect by explicit simulation of the dynamics of unpolarized very slow neutrons that scatter on a long straight current-carrying wire.
Shortcuts to adiabaticity for non-Hermitian systems
Ibanez, S.; Martinez-Garaot, S.; Torrontegui, E.; Muga, J. G.; Chen Xi
2011-08-15
Adiabatic processes driven by non-Hermitian, time-dependent Hamiltonians may be sped up by generalizing inverse engineering techniques based on counter-diabatic (transitionless driving) algorithms or on dynamical invariants. We work out the basic theory and examples described by two-level Hamiltonians: the acceleration of rapid adiabatic passage with a decaying excited level and of the dynamics of a classical particle on an expanding harmonic oscillator.
NASA Technical Reports Server (NTRS)
Liepmann, H. W.; Torczynski, J. R.
1983-01-01
Second sound techniques were used to study superfluid helium. Second sound shock waves produced relative velocities in the bulk fluid. Maximum counterflow velocities produced in this way are found to follow the Langer-Fischer prediction for the fundamental critical velocity in its functional dependence on temperature and pressure. Comparison of successive shock and rotating experiments provides strong evidence that breakdown results in vorticity production in the flow behind the shock. Schlieren pictures have verified the planar nature of second sound shocks even after multiple reflections. The nonlinear theory of second sound was repeatedly verified in its prediction of double shocks and other nonlinear phenomena.
Refractive acoustic devices for airborne sound.
Cervera, F; Sanchis, L; Sánchez-Pérez, J V; Martínez-Sala, R; Rubio, C; Meseguer, F; López, C; Caballero, D; Sánchez-Dehesa, J
2002-01-14
We show that a sonic crystal made of periodic distributions of rigid cylinders in air acts as a new material which allows the construction of refractive acoustic devices for airborne sound. It is demonstrated that, in the long-wave regime, the crystal has low impedance and the sound is transmitted at subsonic velocities. Here, the fabrication and characterization of a convergent lens are presented. Also, an example of a Fabry-Perot interferometer based on this crystal is analyzed. It is concluded that refractive devices based on sonic crystals behave in a manner similar to that of optical systems. PMID:11801014
Acoustic Measurement of Potato Cannon Velocity
ERIC Educational Resources Information Center
Courtney, Michael; Courtney, Amy
2007-01-01
Potato cannon velocity can be measured with a digitized microphone signal. A microphone is attached to the potato cannon muzzle, and a potato is fired at an aluminum target about 10 m away. Flight time can be determined from the acoustic waveform by subtracting the time in the barrel and time for sound to return from the target. The potato…
Rabaglia, Cristina D; Maglio, Sam J; Krehm, Madelaine; Seok, Jin H; Trope, Yaacov
2016-07-01
Human languages may be more than completely arbitrary symbolic systems. A growing literature supports sound symbolism, or the existence of consistent, intuitive relationships between speech sounds and specific concepts. Prior work establishes that these sound-to-meaning mappings can shape language-related judgments and decisions, but do their effects generalize beyond merely the linguistic and truly color how we navigate our environment? We examine this possibility, relating a predominant sound symbolic distinction (vowel frontness) to a novel associate (spatial proximity) in five studies. We show that changing one vowel in a label can influence estimations of distance, impacting judgment, perception, and action. The results (1) provide the first experimental support for a relationship between vowels and spatial distance and (2) demonstrate that sound-to-meaning mappings have outcomes that extend beyond just language and can - through a single sound - influence how we perceive and behave toward objects in the world. PMID:27062226
Wall-wake velocity profile for compressible non-adiabatic flows
NASA Technical Reports Server (NTRS)
Sun, C. C.; Childs, M. E.
1975-01-01
A form of the wall-wake profile, which is applicable to flows with heat transfer, and for which a variation in y = O at y = delta, was suggested. The modified profile, which takes into account the effect of turbulent Prandtl number, was found to provide a good representation of experimental data for a wide range numbers and heat transfer. The Cf values which are determined by a least squares fit of the profile to the data agree well with values which were measured by the floating element technique. In addition, the values of delta determined by the fit correspond more closely to the outer edge of the viscous flow region than those obtained with earlier versions of the wall-wake profile.
Smalyuk, V. A.; Robey, H. F.; Döppner, T.; Jones, O. S.; Milovich, J. L.; Bachmann, B.; Baker, K. L.; Berzak Hopkins, L. F.; Bond, E.; Callahan, D. A.; Casey, D. T.; Celliers, P. M.; Cerjan, C.; Clark, D. S.; Dixit, S. N.; Edwards, M. J.; Haan, S. W.; Hamza, A. V.; Hurricane, O. A.; Jancaitis, K. S.; and others
2015-08-15
Radiation-driven, layered deuterium-tritium plastic capsule implosions were carried out using a new, 3-shock “adiabat-shaped” drive on the National Ignition Facility. The purpose of adiabat shaping is to use a stronger first shock, reducing hydrodynamic instability growth in the ablator. The shock can decay before reaching the deuterium-tritium fuel leaving it on a low adiabat and allowing higher fuel compression. The fuel areal density was improved by ∼25% with this new drive compared to similar “high-foot” implosions, while neutron yield was improved by more than 4 times, compared to “low-foot” implosions driven at the same compression and implosion velocity.
Early sound symbolism for vowel sounds
Spector, Ferrinne; Maurer, Daphne
2013-01-01
Children and adults consistently match some words (e.g., kiki) to jagged shapes and other words (e.g., bouba) to rounded shapes, providing evidence for non-arbitrary sound–shape mapping. In this study, we investigated the influence of vowels on sound–shape matching in toddlers, using four contrasting pairs of nonsense words differing in vowel sound (/i/ as in feet vs. /o/ as in boat) and four rounded–jagged shape pairs. Crucially, we used reduplicated syllables (e.g., kiki vs. koko) rather than confounding vowel sound with consonant context and syllable variability (e.g., kiki vs. bouba). Toddlers consistently matched words with /o/ to rounded shapes and words with /i/ to jagged shapes (p < 0.01). The results suggest that there may be naturally biased correspondences between vowel sound and shape. PMID:24349684
Taioli, Simone; Garberoglio, Giovanni; Simonucci, Stefano; Beccara, Silvio a; Aversa, Lucrezia; Nardi, Marco; Verucchi, Roberto; Iannotta, Salvatore; Dapor, Maurizio; and others
2013-01-28
In this work, we investigate the processes leading to the room-temperature growth of silicon carbide thin films by supersonic molecular beam epitaxy technique. We present experimental data showing that the collision of fullerene on a silicon surface induces strong chemical-physical perturbations and, for sufficient velocity, disruption of molecular bonds, and cage breaking with formation of nanostructures with different stoichiometric character. We show that in these out-of-equilibrium conditions, it is necessary to go beyond the standard implementations of density functional theory, as ab initio methods based on the Born-Oppenheimer approximation fail to capture the excited-state dynamics. In particular, we analyse the Si-C{sub 60} collision within the non-adiabatic nuclear dynamics framework, where stochastic hops occur between adiabatic surfaces calculated with time-dependent density functional theory. This theoretical description of the C{sub 60} impact on the Si surface is in good agreement with our experimental findings.
The Sound and the Fury: Adding Sound to Your PC.
ERIC Educational Resources Information Center
Crawford, Walt
1996-01-01
Addresses the concept of adding sound to existing personal computers. Describes hardware and software options and explores uses of computers equipped with sound. Sidebars summarize the development of stereo sound in multimedia products and describe the two major forms of computer sound: Musical Instrument Digital Interface and digital sound waves.…
Performance of Indirectly-Driven Capsule Implosions on NIF Using Adiabat-Shaping
NASA Astrophysics Data System (ADS)
Robey, Harry
2015-11-01
Indirectly-driven capsule implosions are being conducted on the National Ignition Facility (NIF). Early experiments conducted during the National Ignition Campaign (NIC) were driven by a laser pulse with a relatively low-power initial foot (``low-foot''), which was designed to keep the deuterium-tritium (DT) fuel on a low adiabat to achieve a high fuel areal density (ρR). These implosions were successful in achieving high ρR, but fell significantly short of the predicted neutron yield. A leading candidate to explain this degraded performance was ablation front instability growth, which can lead to the mixing of ablator material with the DT fuel layer and in extreme cases into the central DT hot spot. A subsequent campaign employing a modified laser pulse with increased power in the foot (``high-foot'') was designed to reduce the adverse effects of ablation front instability growth. These implosions have been very successful, increasing neutron yields by more than an order of magnitude, but at the expense of reduced fuel compression. To bridge these two regimes, a series of implosions have been designed to simultaneously achieve both high stability and high ρR. These implosions employ adiabat-shaping, where the driving laser pulse is high in the initial picket similar to the high-foot to retain the favorable stability properties at the ablation front. The remainder of the foot is similar to that of the low-foot, driving a lower velocity shock into the DT fuel to keep the adiabat low and compression high. This talk will present results and analysis of these implosions and will discuss implications for improved implosion performance. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
ERIC Educational Resources Information Center
Smits, Roel; Sereno, Joan; Jongman, Allard
2006-01-01
The authors conducted 4 experiments to test the decision-bound, prototype, and distribution theories for the categorization of sounds. They used as stimuli sounds varying in either resonance frequency or duration. They created different experimental conditions by varying the variance and overlap of 2 stimulus distributions used in a training phase…
ERIC Educational Resources Information Center
Brown, Tom; Boehringer, Kim
2007-01-01
Students in a fourth-grade class participated in a series of dynamic sound learning centers followed by a dramatic capstone event--an exploration of the amazing Trashcan Whoosh Waves. It's a notoriously difficult subject to teach, but this hands-on, exploratory approach ignited student interest in sound, promoted language acquisition, and built…
ERIC Educational Resources Information Center
California State Dept. of Education, Sacramento.
California has conducted on-site sound surveys of 36 different schools to determine the degree of noise, and thus disturbance, within the learning environment. This report provides the methodology and results of the survey, including descriptive charts and graphs illustrating typical desirable and undesirable sound levels. Results are presented…
ERIC Educational Resources Information Center
Burns, Gary
Based on the argument that (contrary to critical opinion) the musicians in the various bands associated with Bosstown Sound were indeed talented, cohesive individuals and that the bands' lack of renown was partially a result of ill-treatment by record companies and the press, this paper traces the development of the Bosstown Sound from its…
Exploring Noise: Sound Pollution.
ERIC Educational Resources Information Center
Rillo, Thomas J.
1979-01-01
Part one of a three-part series about noise pollution and its effects on humans. This section presents the background information for teachers who are preparing a unit on sound. The next issues will offer learning activities for measuring the effects of sound and some references. (SA)
Adiabatic condition and the quantum hitting time of Markov chains
Krovi, Hari; Ozols, Maris; Roland, Jeremie
2010-08-15
We present an adiabatic quantum algorithm for the abstract problem of searching marked vertices in a graph, or spatial search. Given a random walk (or Markov chain) P on a graph with a set of unknown marked vertices, one can define a related absorbing walk P{sup '} where outgoing transitions from marked vertices are replaced by self-loops. We build a Hamiltonian H(s) from the interpolated Markov chain P(s)=(1-s)P+sP{sup '} and use it in an adiabatic quantum algorithm to drive an initial superposition over all vertices to a superposition over marked vertices. The adiabatic condition implies that, for any reversible Markov chain and any set of marked vertices, the running time of the adiabatic algorithm is given by the square root of the classical hitting time. This algorithm therefore demonstrates a novel connection between the adiabatic condition and the classical notion of hitting time of a random walk. It also significantly extends the scope of previous quantum algorithms for this problem, which could only obtain a full quadratic speedup for state-transitive reversible Markov chains with a unique marked vertex.
Metallic glass velocity sensor
Butler, J.L.; Butler, S.C.; Massa, D.P.; Cavanagh, G.H.
1996-04-01
A metallic glass accelerometer has been developed for use as an underwater sound velocity sensor. The device uses the metallic glass material Metglas 2605SC which has been processed to achieve a virgin coupling coefficient of 0.96. The mechanical to electrical conversion is based on the detection of the change in the inductance of the device as a result of bending motion. The detection method uses a carrier frequency signal which is amplitude modulated by the received signal. This scheme was originally described by Wun-Fogle, Savage and Clark [{open_quote}{open_quote}Sensitive wide frequency range magnetostrictive strain gauge,{close_quote}{close_quote} Sensors and Actuators, 1{underscore}2{underscore}, 323{endash}331 (1987)]. The bender is in the form of a three layered laminate with a closed magnetic path window frame structure. The theory of operation along with measured and calculated results are presented for a prototype element with approximate dimensions 1.5{times}1.0{times}0.1 inches. Calculated and measured results agree for a reduced effective coupling coefficient of 0.72 and operation with a carrier field intensity of 0.87 Oe and carrier frequency of 20 kHz. {copyright} {ital 1996 American Institute of Physics.}
Sound-Imitation Word Recognition for Environmental Sounds
NASA Astrophysics Data System (ADS)
Ishihara, Kazushi; Komatani, Kazunori; Ogata, Tetsuya; Okuno, Hiroshi G.
Environmental sounds are very helpful in understanding environmental situations and in telling the approach of danger, and sound-imitation words (sound-related onomatopoeia) are important expressions to inform such sounds in human communication, especially in Japanese language. In this paper, we design a method to recognize sound-imitation words (SIWs) for environmental sounds. Critical issues in recognizing SIW are how to divide an environmental sound into recognition units and how to resolve representation ambiguity of the sounds. To solve these problems, we designed three-stage procedure that transforms environmental sounds into sound-imitation words, and phoneme group expressions that can represent ambiguous sounds. The three-stage procedure is as follows: (1) a whole waveform is divided into some chunks, (2) the chunks are transformed into sound-imitation syllables by phoneme recognition, (3) a sound-imitation word is constructed from sound-imitation syllables according to the requirements of the Japanese language. Ambiguity problem is that an environmental sound is often recognized differently by different listeners even under the same situation. Phoneme group expressions are new phonemes for environmental sounds, and they can express multiple sound-imitation words by one word. We designed two sets of phoneme groups: ``a set of basic phoneme group'' and ``a set of articulation-based phoneme group'' to absorb the ambiguity. Based on subjective experiments, the set of basic phoneme groups proved more appropriate to represent environmental sounds than the articulation-based one or a set of normal Japaneses phonemes.
NASA Astrophysics Data System (ADS)
O'Donnell, Michael J.; Bisnovatyi, Ilia
2000-11-01
Computing practice today depends on visual output to drive almost all user interaction. Other senses, such as audition, may be totally neglected, or used tangentially, or used in highly restricted specialized ways. We have excellent audio rendering through D-A conversion, but we lack rich general facilities for modeling and manipulating sound comparable in quality and flexibility to graphics. We need coordinated research in several disciplines to improve the use of sound as an interactive information channel. Incremental and separate improvements in synthesis, analysis, speech processing, audiology, acoustics, music, etc. will not alone produce the radical progress that we seek in sonic practice. We also need to create a new central topic of study in digital audio research. The new topic will assimilate the contributions of different disciplines on a common foundation. The key central concept that we lack is sound as a general-purpose information channel. We must investigate the structure of this information channel, which is driven by the cooperative development of auditory perception and physical sound production. Particular audible encodings, such as speech and music, illuminate sonic information by example, but they are no more sufficient for a characterization than typography is sufficient for characterization of visual information. To develop this new conceptual topic of sonic information structure, we need to integrate insights from a number of different disciplines that deal with sound. In particular, we need to coordinate central and foundational studies of the representational models of sound with specific applications that illuminate the good and bad qualities of these models. Each natural or artificial process that generates informative sound, and each perceptual mechanism that derives information from sound, will teach us something about the right structure to attribute to the sound itself. The new Sound topic will combine the work of computer
Characterization of adiabatic shear bands in AM60B magnesium alloy under ballistic impact
Zou, D.L.; Zhen, L. Xu, C.Y.; Shao, W.Z.
2011-05-15
Adiabatic shear bands in Mg alloy under ballistic impact at a velocity of 0.5 km.s{sup -1} were characterized by means of optical microscope, scanning electron microscope, transmission electron microscope and indenter technique. The results show that adiabatic shear bands were formed around the impacted crater, and the deformed and transformed bands were distinguished by etching colors in metallographic observation. TEM observation shows that the deformed bands were composed of the elongated grains and high density dislocations, while the transformed bands composed of the ultrafine and equiaxed grains were confirmed. In initial stage, the severe localized plastic deformation led to the formation of elongated grains in the deformed bands. With localized strain increasing, the severe localized deformation assisted with the plastic temperature rising led to the severe deformation grains evolved into the ultrafine and equiaxed grains, while the deformed bands were developed into transformed bands. The formation of the ultrafine and equiaxed grains in the transformed bands should be attributed to the twinning-induced rotational dynamic recrystallization mechanism. High microhardness in the bands was obtained because of the strain hardening, grain refining and content concentration. - Research Highlights: {yields} Deformed and transformed bands are found in Mg alloy under ballistic impact. {yields} The microstructures in the deformed and transformed bands are characterized. {yields} The evolution process of the microstructure in the bands is discussed.
A shape optimisation method of a body located in adiabatic flows
NASA Astrophysics Data System (ADS)
Okumura, Hiroshi; Hikino, Yoichi; Kawahara, Mutsuto
2013-07-01
The purpose of this study is to derive an optimal shape of a body located in adiabatic flow. In this study, we use the equation of motion, the equation of continuity and the pressure-density relation derived from the Poisson's law as the governing equation. The formulation is based on an optimal control theory in which a performance function of fluid force is taken into consideration. The performance function should be minimised satisfying the governing equations. This problem can be solved without constraints by using the adjoint equation with adjoint variables corresponding to the state equation. The performance function is defined by the drag and lift forces acting on the body. The weighted gradient method is applied as a minimisation technique, the Galerkin finite element method is used as a spatial discretisation and the implicit scheme is used as a temporal discretisation to solve the state equations. The mixed interpolation, the bubble function for velocity and the linear function for density, is employed as the interpolation. The optimal shape is obtained for a body in adiabatic flows.
Integrated polarization rotator/converter by stimulated Raman adiabatic passage.
Xiong, Xiao; Zou, Chang-Ling; Ren, Xi-Feng; Guo, Guang-Can
2013-07-15
We proposed a polarization rotator inspired by stimulated Raman adiabatic passage model from quantum optics, which is composed of a signal waveguide and an ancillary waveguide. The two orthogonal modes in signal waveguide and the oblique mode in ancillary waveguide form a Λ-type three-level system. By controlling the width of signal waveguide and the gap between two waveguides, adiabatic conversion between two orthogonal modes can be realized in the signal waveguide. With such adiabatic passage, polarization conversion is completed within 150 μm length, with the efficiencies over 99% for both conversions between horizontal polarization and vertical polarization. In addition, such a polarization rotator is quite robust against fabrication error, allowing a wide range of tolerances for the rotator geometric parameters. Our work is not only significative to photonic simulations of coherent quantum phenomena with engineered photonic waveguides, but also enlightens the practical applications of these phenomena in optical device designs. PMID:23938558
Adiabatic compressibility of myoglobin. Effect of axial ligand and denaturation.
Leung, W P; Cho, K C; Lo, Y M; Choy, C L
1986-03-01
An ultrasonic technique has been employed to study the adiabatic compressibility of three metmyoglobin derivatives (aquomet-, fluoromet- and azidometmyoglobin) at neutral pH, and aquometmyoglobin as a function of pH in the frequency range of 1-10 MHz at 20 degrees C. No difference was observed in the adiabatic compressibility of the various derivatives. This indicates that the binding of different axial ligands to myoglobin does not affect significantly the conformational fluctuations of the protein. The finding is consistent with the results of the hydrogen exchange rate experiment, indicating that both types of measurements are useful for the study of protein dynamics. Upon acid-induced denaturation, the adiabatic compressibility of myoglobin drops from 5.3 X 10(-12) cm2/dyn to 0.5 X 10(-12) cm2/dyn. Plausible reasons for such a decrease are discussed. PMID:3947645
Effect of dephasing on stimulated Raman adiabatic passage
Ivanov, P.A.; Vitanov, N.V.; Bergmann, K.
2004-12-01
This work explores the effect of phase relaxation on the population transfer efficiency in stimulated Raman adiabatic passage (STIRAP). The study is based on the Liouville equation, which is solved analytically in the adiabatic limit. The transfer efficiency of STIRAP is found to decrease exponentially with the dephasing rate; this effect is stronger for shorter pulse delays and weaker for larger delays, since the transition time is found to be inversely proportional to the pulse delay. Moreover, it is found that the transfer efficiency of STIRAP in the presence of dephasing does not depend on the peak Rabi frequencies at all, as long as they are sufficiently large to enforce adiabatic evolution; hence increasing the field intensity cannot reduce the dephasing losses. It is shown also that for any dephasing rate, the final populations of the initial state and the intermediate state are equal. For strong dephasing all three populations tend to (1/3)
Interaction-induced adiabatic cooling for antiferromagnetism in optical lattices
Dare, A.-M.; Raymond, L.; Albinet, G.; Tremblay, A.-M. S.
2007-08-01
In the experimental context of cold-fermion optical lattices, we discuss the possibilities to approach the pseudogap or ordered phases by manipulating the scattering length or the strength of the laser-induced lattice potential. Using the two-particle self-consistent approach, as well as quantum Monte Carlo simulations, we provide isentropic curves for the two- and three-dimensional Hubbard models at half-filling. These quantitative results are important for practical attempts to reach the ordered antiferromagnetic phase in experiments on optical lattices of two-component fermions. We find that adiabatically turning on the interaction in two dimensions to cool the system is not very effective. In three dimensions, adiabatic cooling to the antiferromagnetic phase can be achieved in such a manner, although the cooling efficiency is not as high as initially suggested by dynamical mean-field theory. Adiabatic cooling by turning off the repulsion beginning at strong coupling is possible in certain cases.
Adiabatic Quantum Programming: Minor Embedding With Hard Faults
Klymko, Christine F; Sullivan, Blair D; Humble, Travis S
2013-01-01
Adiabatic quantum programming defines the time-dependent mapping of a quantum algorithm into the hardware or logical fabric. An essential programming step is the embedding of problem-specific information into the logical fabric to define the quantum computational transformation. We present algorithms for embedding arbitrary instances of the adiabatic quantum optimization algorithm into a square lattice of specialized unit cells. Our methods are shown to be extensible in fabric growth, linear in time, and quadratic in logical footprint. In addition, we provide methods for accommodating hard faults in the logical fabric without invoking approximations to the original problem. These hard fault-tolerant embedding algorithms are expected to prove useful for benchmarking the adiabatic quantum optimization algorithm on existing quantum logical hardware. We illustrate this versatility through numerical studies of embeddabilty versus hard fault rates in square lattices of complete bipartite unit cells.
Shortcuts to adiabaticity in a time-dependent box
Campo, A. del; Boshier, M. G.
2012-01-01
A method is proposed to drive an ultrafast non-adiabatic dynamics of an ultracold gas trapped in a time-dependent box potential. The resulting state is free from spurious excitations associated with the breakdown of adiabaticity, and preserves the quantum correlations of the initial state up to a scaling factor. The process relies on the existence of an adiabatic invariant and the inversion of the dynamical self-similar scaling law dictated by it. Its physical implementation generally requires the use of an auxiliary expulsive potential. The method is extended to a broad family of interacting many-body systems. As illustrative examples we consider the ultrafast expansion of a Tonks-Girardeau gas and of Bose-Einstein condensates in different dimensions, where the method exhibits an excellent robustness against different regimes of interactions and the features of an experimentally realizable box potential. PMID:22970340
Pressure sensitivity of adiabatic shear banding in metals
NASA Astrophysics Data System (ADS)
Hanina, E.; Rittel, D.; Rosenberg, Z.
2007-01-01
Adiabatic shear banding (ASB) is a dynamic failure mode characterized by large plastic strains in a narrow localized band. ASB occurs at high strain rates (ɛ˙⩾103s-1), under adiabatic conditions leading to a significant temperature rise inside the band [H. Tresca, Annales du Conservatoire des Arts et Métiers 4, (1879); Y. L. Bai and B. Dodd, Adiabatic Shear Localization-Occurrence, Theories, and Applications (Pergamon, Oxford, 1992); M. A. Meyers, Dynamic Behavior of Materials (Wiley, New York, 1994).; and J. J. Lewandowski and L. M. Greer, Nat. Mater. 5, 15 (2006)]. Large hydrostatic pressures are experienced in many dynamic applications involving ASB formation (e.g., ballistic penetration, impact, and machining). The relationship between hydrostatic pressure and ASB development remains an open question, although its importance has been often noted. This letter reports original experimental results indicating a linear relationship between the (normalized) dynamic deformation energy and the (normalized) hydrostatic pressure.
Adiabatic quantum programming: minor embedding with hard faults
NASA Astrophysics Data System (ADS)
Klymko, Christine; Sullivan, Blair D.; Humble, Travis S.
2013-11-01
Adiabatic quantum programming defines the time-dependent mapping of a quantum algorithm into an underlying hardware or logical fabric. An essential step is embedding problem-specific information into the quantum logical fabric. We present algorithms for embedding arbitrary instances of the adiabatic quantum optimization algorithm into a square lattice of specialized unit cells. These methods extend with fabric growth while scaling linearly in time and quadratically in footprint. We also provide methods for handling hard faults in the logical fabric without invoking approximations to the original problem and illustrate their versatility through numerical studies of embeddability versus fault rates in square lattices of complete bipartite unit cells. The studies show that these algorithms are more resilient to faulty fabrics than naive embedding approaches, a feature which should prove useful in benchmarking the adiabatic quantum optimization algorithm on existing faulty hardware.
Heart murmurs and other sounds
Chest sounds - murmurs; Heart sounds - abnormal; Murmur - innocent; Innocent murmur; Systolic heart murmur; Diastolic heart murmur ... classified ("graded") depending on how loud the murmur sounds with a stethoscope. The grading is on a ...
Non Adiabatic Evolution of Elliptical Galaxies by Dynamical Friction
NASA Astrophysics Data System (ADS)
Arena, S. E.; Bertin, G.; Liseikina, T.; Pegoraro, F.
2007-05-01
Many astrophysical problems, ranging from structure formation in cosmology to dynamics of elliptical galaxies, refer to slow processes of evolution of essentially collisionless self-gravitating systems. In order to determine the relevant quasi-equilibrium configuration at time t from given initial conditions, it is often argued that such slow evolution may be approximated in terms of adiabatic evolution, for the calculation of which efficient semi--analytical techniques are available. Here we focus on the slow process of evolution, induced by dynamical friction of a host stellar system on a minority component of "satellites", to determine to what extent an adiabatic description might be applied. The study is realized by means of N--body simulations of the evolution of the total system (the stellar system plus the minority component), in a controlled numerical environment. In particular, we compare the evolution from initial to final configurations of the system subject to dynamical friction with that of the same system evolved adiabatically (in the absence of dynamical friction). We consider two classes of galaxy models characterized by significantly different density and pressure anisotropy profiles. We demonstrate that, for the examined process, the evolution driven by dynamical friction is significantly different from the adiabatic case, not only quantitatively, but also qualitatively. The two classes of galaxy models considered in this investigation exhibit generally similar trends in evolution, with one exception: concentrated models reach a final total density profile, in the internal region, shallower than the initial one, while galaxy models with a broad core show the opposite behaviour. The evolution of elliptical galaxies induced by dynamical friction is a slow process but it is not adiabatic. The results of our investigation should be taken as a warning against the indiscriminate use of adiabatic growth prescriptions in studies of the structure of
NASA Astrophysics Data System (ADS)
Benjamin, Jeffrey L.
A distinguishing feature of the discipline of archaeology is its reliance upon sensory dependant investigation. As perceived by all of the senses, the felt environment is a unique area of archaeological knowledge. It is generally accepted that the emergence of industrial processes in the recent past has been accompanied by unprecedented sonic extremes. The work of environmental historians has provided ample evidence that the introduction of much of this unwanted sound, or "noise" was an area of contestation. More recent research in the history of sound has called for more nuanced distinctions than the noisy/quiet dichotomy. Acoustic archaeology tends to focus upon a reconstruction of sound producing instruments and spaces with a primary goal of ascertaining intentionality. Most archaeoacoustic research is focused on learning more about the sonic world of people within prehistoric timeframes while some research has been done on historic sites. In this thesis, by way of a meditation on industrial sound and the physical remains of the Quincy Mining Company blacksmith shop (Hancock, MI) in particular, I argue for an acceptance and inclusion of sound as artifact in and of itself. I am introducing the concept of an individual sound-form, or sonifact , as a reproducible, repeatable, representable physical entity, created by tangible, perhaps even visible, host-artifacts. A sonifact is a sound that endures through time, with negligible variability. Through the piecing together of historical and archaeological evidence, in this thesis I present a plausible sonifactual assemblage at the blacksmith shop in April 1916 as it may have been experienced by an individual traversing the vicinity on foot: an 'historic soundwalk.' The sensory apprehension of abandoned industrial sites is multi-faceted. In this thesis I hope to make the case for an acceptance of sound as a primary heritage value when thinking about the industrial past, and also for an increased awareness and acceptance
NOVAE EJECTA AS DISCRETE ADIABATICALLY EXPANDING GLOBULES
Williams, Robert
2013-09-15
Available data for novae show that the X-ray and visible spectral regions correlate with each other as they evolve. Large differences in ionization exist simultaneously in the two wavelength regimes, and a straightforward model is proposed that explains the characteristics observed in both spectral regimes. Its key features are (1) ejected blobs of very high density gas from the white dwarf (WD) that expand to create within each clump a wide range of emitting density, ionization, and velocity, and (2) a more homogeneous circumbinary envelope of gas that is produced by secondary star mass loss. The relative mass loss rates from the two stars determine whether the He/N or the Fe II visible spectrum predominates during decline, when hard X-rays are detected, and when the WD can be detected as a super soft X-ray source.
A study of sound generation in subsonic rotors, volume 1
NASA Technical Reports Server (NTRS)
Chalupnik, J. D.; Clark, L. T.
1975-01-01
A model for the prediction of wake related sound generation by a single airfoil is presented. It is assumed that the net force fluctuation on an airfoil may be expressed in terms of the net momentum fluctuation in the near wake of the airfoil. The forcing function for sound generation depends on the spectra of the two point velocity correlations in the turbulent region near the airfoil trailing edge. The spectra of the two point velocity correlations were measured for the longitudinal and transverse components of turbulence in the wake of a 91.4 cm chord airfoil. A scaling procedure was developed using the turbulent boundary layer thickness. The model was then used to predict the radiated sound from a 5.1 cm chord airfoil. Agreement between the predicted and measured sound radiation spectra was good. The single airfoil results were extended to a rotor geometry, and various aerodynamic parameters were studied.
Boundary Layer Dynamics and Sub-Adiabaticity in Convecting Planetary Mantles
NASA Astrophysics Data System (ADS)
Moore, W. B.
2007-05-01
A broad range of phenomena are influenced by the behavior of thermal boundary layers in planetary mantles including plume temperatures, lithospheric stresses, resistance to plate motions, and the temperature structure of the mantle as a whole. The textbook picture of the temperature profile in a convecting layer consists of two boundary layers separated by a well-mixed, adiabatic interior. The sum of the temperature drops across the upper and lower boundary layers is equal to super-adiabatic temperature drop across the entire layer. This picture does not accurately describe, however, the horizontally averaged temperature structure derived from numerical solutions of the equations of infinite Prandtl number, Boussinesq convection. The sum of the average temperature drops across the boundary layers in such models is always greater than the super-adiabatic drop across the whole layer, with the result that some portions of the interior are sub-adiabatic. The excess average temperature drop across each boundary layer is due to the arrival of material from the other boundary layer which has not equilibrated with the well-mixed interior. It is this material which transfers heat conductively across the boundary and thus controls the heat transport of the layer. Internal heating breaks the symmetry of the boundary layers (as does temperature dependence of viscosity), and it is the interaction between the two boundary layers that sets the equilibrium temperature drops. The scaling of the temperature drop across each boundary layer is controlled by two competing factors which depend on the Rayleigh number in different ways: the scale of boundary layer instabilities and the velocity of plumes (hot and cold). Furthermore, these scalings change as the system becomes time-dependent at moderate Rayleigh number. At very high Rayleigh number, beyond that of most planetary mantles, the plumes do equilibrate with the interior and the textbook picture applies. A scaling theory for the
Adiabatic invariants, diffusion and acceleration in rigid body dynamics
NASA Astrophysics Data System (ADS)
Borisov, Alexey V.; Mamaev, Ivan S.
2016-03-01
The onset of adiabatic chaos in rigid body dynamics is considered. A comparison of the analytically calculated diffusion coefficient describing probabilistic effects in the zone of chaos with a numerical experiment is made. An analysis of the splitting of asymptotic surfaces is performed and uncertainty curves are constructed in the Poincaré-Zhukovsky problem. The application of Hamiltonian methods to nonholonomic systems is discussed. New problem statements are given which are related to the destruction of an adiabatic invariant and to the acceleration of the system (Fermi's acceleration).
Adiabatic Rosen-Zener interferometry with ultracold atoms
Fu Libin; Ye Defa; Lee Chaohong; Zhang Weiping; Liu Jie
2009-07-15
We propose a time-domain 'interferometer' based on double-well ultracold atoms through a so-called adiabatic Rosen-Zener process, that is, the barrier between two wells is ramped down slowly, held for a while, and then ramped back. After the adiabatic Rosen-Zener process, we count the particle population in each well. We find that the final occupation probability shows nice interference fringes. The fringe pattern is sensitive to the initial state as well as the intrinsic parameters of the system such as interatomic interaction or energy bias between two wells. The underlying mechanism is revealed and possible applications are discussed.
Quantum dynamics by the constrained adiabatic trajectory method
Leclerc, A.; Jolicard, G.; Guerin, S.; Killingbeck, J. P.
2011-03-15
We develop the constrained adiabatic trajectory method (CATM), which allows one to solve the time-dependent Schroedinger equation constraining the dynamics to a single Floquet eigenstate, as if it were adiabatic. This constrained Floquet state (CFS) is determined from the Hamiltonian modified by an artificial time-dependent absorbing potential whose forms are derived according to the initial conditions. The main advantage of this technique for practical implementation is that the CFS is easy to determine even for large systems since its corresponding eigenvalue is well isolated from the others through its imaginary part. The properties and limitations of the CATM are explored through simple examples.
Speeding up Adiabatic Quantum State Transfer by Using Dressed States
NASA Astrophysics Data System (ADS)
Baksic, Alexandre; Ribeiro, Hugo; Clerk, Aashish A.
2016-06-01
We develop new pulse schemes to significantly speed up adiabatic state transfer protocols. Our general strategy involves adding corrections to an initial control Hamiltonian that harness nonadiabatic transitions. These corrections define a set of dressed states that the system follows exactly during the state transfer. We apply this approach to stimulated Raman adiabatic passage protocols and show that a suitable choice of dressed states allows one to design fast protocols that do not require additional couplings, while simultaneously minimizing the occupancy of the "intermediate" level.
Gravitational Chern-Simons and the adiabatic limit
McLellan, Brendan
2010-12-15
We compute the gravitational Chern-Simons term explicitly for an adiabatic family of metrics using standard methods in general relativity. We use the fact that our base three-manifold is a quasiregular K-contact manifold heavily in this computation. Our key observation is that this geometric assumption corresponds exactly to a Kaluza-Klein Ansatz for the metric tensor on our three-manifold, which allows us to translate our problem into the language of general relativity. Similar computations have been performed by Guralnik et al.[Ann. Phys. 308, 222 (2008)], although not in the adiabatic context.
Adiabatic fluctuations from cosmic strings in a contracting universe
Brandenberger, Robert H.; Takahashi, Tomo; Yamaguchi, Masahide E-mail: tomot@cc.saga-u.ac.jp
2009-07-01
We show that adiabatic, super-Hubble, and almost scale invariant density fluctuations are produced by cosmic strings in a contracting universe. An essential point is that isocurvature perturbations produced by topological defects such as cosmic strings on super-Hubble scales lead to a source term which seeds the growth of curvature fluctuations on these scales. Once the symmetry has been restored at high temperatures, the isocurvature seeds disappear, and the fluctuations evolve as adiabatic ones in the expanding phase. Thus, cosmic strings may be resurrected as a mechanism for generating the primordial density fluctuations observed today.
Quantum Adiabatic Pumping by Modulating Tunnel Phase in Quantum Dots
NASA Astrophysics Data System (ADS)
Taguchi, Masahiko; Nakajima, Satoshi; Kubo, Toshihiro; Tokura, Yasuhiro
2016-08-01
In a mesoscopic system, under zero bias voltage, a finite charge is transferred by quantum adiabatic pumping by adiabatically and periodically changing two or more control parameters. We obtained expressions for the pumped charge for a ring of three quantum dots (QDs) by choosing the magnetic flux penetrating the ring as one of the control parameters. We found that the pumped charge shows a steplike behavior with respect to the variance of the flux. The value of the step heights is not universal but depends on the trajectory of the control parameters. We discuss the physical origin of this behavior on the basis of the Fano resonant condition of the ring.
Classical nuclear motion coupled to electronic non-adiabatic transitions
NASA Astrophysics Data System (ADS)
Agostini, Federica; Abedi, Ali; Gross, E. K. U.
2014-12-01
Based on the exact factorization of the electron-nuclear wave function, we have recently proposed a mixed quantum-classical scheme [A. Abedi, F. Agostini, and E. K. U. Gross, Europhys. Lett. 106, 33001 (2014)] to deal with non-adiabatic processes. Here we present a comprehensive description of the formalism, including the full derivation of the equations of motion. Numerical results are presented for a model system for non-adiabatic charge transfer in order to test the performance of the method and to validate the underlying approximations.
Classical nuclear motion coupled to electronic non-adiabatic transitions
Agostini, Federica; Abedi, Ali; Gross, E. K. U.
2014-12-07
Based on the exact factorization of the electron-nuclear wave function, we have recently proposed a mixed quantum-classical scheme [A. Abedi, F. Agostini, and E. K. U. Gross, Europhys. Lett. 106, 33001 (2014)] to deal with non-adiabatic processes. Here we present a comprehensive description of the formalism, including the full derivation of the equations of motion. Numerical results are presented for a model system for non-adiabatic charge transfer in order to test the performance of the method and to validate the underlying approximations.
Non-adiabatic and adiabatic transitions at level crossing with decay: two- and three-level systems
NASA Astrophysics Data System (ADS)
Kenmoe, M. B.; Mkam Tchouobiap, S. E.; Kenfack Sadem, C.; Tchapda, A. B.; Fai, L. C.
2015-03-01
We investigate the Landau-Zener (LZ) like dynamics of decaying two- and three-level systems with decay rates {{Γ }1} and {{Γ }2} for levels with minimum and maximum spin projection. Non-adiabatic and adiabatic transition probabilities are calculated from diabatic and adiabatic bases for two- and three-level systems. We extend the familiar two-level model of atoms with decay from the excited state out of the system into the hierarchy of three-level models which can be solved analytically or computationally in a non-perturbative manner. Exact analytical solutions are obtained within the framework of an extended form of the proposed procedure which enables to take into account all possible initial moments rather than large negative time {{t}0}=-∞ as in standard LZ problems. We elucidate the applications of our results from a unified theoretical basis that numerically analyzes the dynamics of a system as probed by experiments.
Danos, Rebecca J.; Fiege, Jason D.; Shalchi, Andreas E-mail: fiege@physics.umanitoba.ca
2013-07-20
We present numerical solutions to both the standard and modified two-dimensional Fokker-Planck equations with adiabatic focusing and isotropic pitch-angle scattering. With the numerical solution of the particle distribution function, we then discuss the related numerical issues, calculate the parallel diffusion coefficient using several different methods, and compare our numerical solutions for the parallel diffusion coefficient to the analytical forms derived earlier. We find the numerical solution to the diffusion coefficient for both the standard and modified Fokker-Planck equations agrees with that of Shalchi for the mean squared displacement method of computing the diffusion coefficient. However, we also show the numerical solution agrees with that of Litvinenko and Shalchi and Danos when calculating the diffusion coefficient via the velocity correlation function.
Critical stability of almost adiabatic convection in a rapidly rotating thick spherical shell
Starchenko, S. V.; Kotelnikova, M. S.
2013-02-15
In this work, the convection equations in the almost adiabatic approximation is studied for which the choice of physical parameters is primarily based on possible applications to the hydrodynamics of the deep interiors of the Earth and planets and moons of the terrestrial group. The initial system of partial differential equations (PDEs) was simplified to a single second-order ordinary differential equation for the pressure or vertical velocity component to investigate the linear stability of convection. The critical frequencies, modified Rayleigh numbers, and distributions of convection are obtained at various possible Prandtl numbers and in different thick fluid shells. An analytical WKB-type solution was obtained for the case when the inner radius of the shell is much smaller than the outer radius and convective sources are concentrated along the inner boundary.
The exact forces on classical nuclei in non-adiabatic charge transfer.
Agostini, Federica; Abedi, Ali; Suzuki, Yasumitsu; Min, Seung Kyu; Maitra, Neepa T; Gross, E K U
2015-02-28
The decomposition of electronic and nuclear motion presented in Abedi et al. [Phys. Rev. Lett. 105, 123002 (2010)] yields a time-dependent potential that drives the nuclear motion and fully accounts for the coupling to the electronic subsystem. Here, we show that propagation of an ensemble of independent classical nuclear trajectories on this exact potential yields dynamics that are essentially indistinguishable from the exact quantum dynamics for a model non-adiabatic charge transfer problem. We point out the importance of step and bump features in the exact potential that are critical in obtaining the correct splitting of the quasiclassical nuclear wave packet in space after it passes through an avoided crossing between two Born-Oppenheimer surfaces and analyze their structure. Finally, an analysis of the exact potentials in the context of trajectory surface hopping is presented, including preliminary investigations of velocity-adjustment and the force-induced decoherence effect. PMID:25725727
The exact forces on classical nuclei in non-adiabatic charge transfer
Agostini, Federica; Abedi, Ali; Suzuki, Yasumitsu; Min, Seung Kyu; Gross, E. K. U.; Maitra, Neepa T.
2015-02-28
The decomposition of electronic and nuclear motion presented in Abedi et al. [Phys. Rev. Lett. 105, 123002 (2010)] yields a time-dependent potential that drives the nuclear motion and fully accounts for the coupling to the electronic subsystem. Here, we show that propagation of an ensemble of independent classical nuclear trajectories on this exact potential yields dynamics that are essentially indistinguishable from the exact quantum dynamics for a model non-adiabatic charge transfer problem. We point out the importance of step and bump features in the exact potential that are critical in obtaining the correct splitting of the quasiclassical nuclear wave packet in space after it passes through an avoided crossing between two Born-Oppenheimer surfaces and analyze their structure. Finally, an analysis of the exact potentials in the context of trajectory surface hopping is presented, including preliminary investigations of velocity-adjustment and the force-induced decoherence effect.
The exact forces on classical nuclei in non-adiabatic charge transfer
NASA Astrophysics Data System (ADS)
Agostini, Federica; Abedi, Ali; Suzuki, Yasumitsu; Min, Seung Kyu; Maitra, Neepa T.; Gross, E. K. U.
2015-02-01
The decomposition of electronic and nuclear motion presented in Abedi et al. [Phys. Rev. Lett. 105, 123002 (2010)] yields a time-dependent potential that drives the nuclear motion and fully accounts for the coupling to the electronic subsystem. Here, we show that propagation of an ensemble of independent classical nuclear trajectories on this exact potential yields dynamics that are essentially indistinguishable from the exact quantum dynamics for a model non-adiabatic charge transfer problem. We point out the importance of step and bump features in the exact potential that are critical in obtaining the correct splitting of the quasiclassical nuclear wave packet in space after it passes through an avoided crossing between two Born-Oppenheimer surfaces and analyze their structure. Finally, an analysis of the exact potentials in the context of trajectory surface hopping is presented, including preliminary investigations of velocity-adjustment and the force-induced decoherence effect.
In-Flight Measurements of Capsule Adiabats in Laser Driven Spherical Implosions
Kritcher, A L; Doppner, T; Fortman, C; Ma, T; Landen, O L; Wallace, R; Glenzer, S H
2011-03-07
We present the first x-ray Thomson scattering measurements of temperature and density from spherically imploding matter. The shape of the Compton downscattered spectrum provides a first-principles measurement of the electron velocity distribution function, dependent on T{sub e} and the Fermi temperature T{sub F} {approx} n{sub e}{sup 2/3}. In flight compressions of Be and CH targets reach 6-13 times solid density, with T{sub e}/T{sub F} {approx} 0.4-0.7, resulting in minimum adiabats of {approx}1.6-2. These measurements are consistent with low-entropy implosions and predictions by simulations using radiation-hydrodynamic modeling.
The effect of adiabatic focusing upon charged particle propagation in random magnetic fields
NASA Technical Reports Server (NTRS)
Earl, J. A.
1975-01-01
Charged particles propagating along the diverging lines of force of a spatially inhomogeneous guiding field were considered as they are scattered by random fields. Their longitudinal transport is described in terms of the eigenfunctions of a Sturm-Liouville operator incorporating the effect of adiabatic focussing along with that of scattering. The relaxation times and characteristic velocities are graphed and tabulated. The particle density is evaluated as a function of space and time for two different regimes. In the first regime (relatively weak focussing), a diffusive mode of propagation is dominant but coherent modes are also dominant. In the second regime (strong focussing), diffusion does not occur and the propagation is purely coherent. This supercoherent mode corresponds exactly to the so-called scatter-free propagation of kilovolt solar flare electrons. On a larger scale, focussed transport provides an interpretation of many observed characteristics of extragalactic radio sources.
Stationary waves in tubes and the speed of sound
NASA Astrophysics Data System (ADS)
Kasper, Lutz; Vogt, Patrik; Strohmeyer, Christine
2015-01-01
The opportunity to plot oscillograms and frequency spectra with smartphones creates many options for experiments in acoustics, including several that have been described in this column.1-3 The activities presented in this paper are intended to complement these applications, and include an approach to determine sound velocity in air by using standard drain pipes4 and an outline of an investigation of the temperature dependency of the speed of sound.
NASA Astrophysics Data System (ADS)
Lal, A. K.; Pathania, Ankush; Bhalla, Alka; Mohan, C.
2009-12-01
Mohan et al (1992 Astrophys. Space. Sci. 193 69) (1998 Indian J. Pure Appl. Math. 29 199) investigated the problem of equilibrium structures and periods of small adiabatic oscillations of differentially rotating stellar models using a law of differential rotation of the type ω2 = b0 + b1s2 + b2s4 (here ω is a nondimensional measure of the angular velocity of rotation of a fluid element at a distance s from the axis of rotation and b's are suitably chosen constant parameters). This law of differential rotation assumes cylindrical symmetry for the rotating fluid elements. In the present paper, we have extended their study and used a more general law of differential rotation of the type ω2 = b0 + b1s2 + b2s4 + b3z2 + b4z4 + b5z2s2 in which the angular velocity of rotation of a fluid element is assumed to depend both on its distance s from the axis of rotation and on its distance z from the plane through the center of the star perpendicular to the axis of rotation. The main objective of this study has been to investigate whether the dependence of angular velocity of rotation on the parameter z in addition to the parameter s substantially alters the behavior of the eigenfrequencies of small adiabatic barotropic modes of oscillations of differentially rotating stars or not.
NASA Astrophysics Data System (ADS)
Kimura, Jun-Ichi; Kawabata, Hiroshi
2014-06-01
numerical mass balance calculation model for the adiabatic melting of a dry to hydrous peridotite has been programmed in order to simulate the trace element compositions of basalts from mid-ocean ridges, back-arc basins, ocean islands, and large igneous provinces. The Excel spreadsheet-based calculator, Hydrous Adiabatic Mantle Melting Simulator version 1 (HAMMS1) uses (1) a thermodynamic model of fractional adiabatic melting of mantle peridotite, with (2) the parameterized experimental melting relationships of primitive to depleted mantle sources in terms of pressure, temperature, water content, and degree of partial melting. The trace element composition of the model basalt is calculated from the accumulated incremental melts within the adiabatic melting regime, with consideration for source depletion. The mineralogic mode in the primitive to depleted source mantle in adiabat is calculated using parameterized experimental results. Partition coefficients of the trace elements of mantle minerals are parameterized to melt temperature mostly from a lattice strain model and are tested using the latest compilations of experimental results. The parameters that control the composition of trace elements in the model are as follows: (1) mantle potential temperature, (2) water content in the source mantle, (3) depth of termination of adiabatic melting, and (4) source mantle depletion. HAMMS1 enables us to obtain the above controlling parameters using Monte Carlo fitting calculations and by comparing the calculated basalt compositions to primary basalt compositions. Additionally, HAMMS1 compares melting parameters with a major element model, which uses petrogenetic grids formulated from experimental results, thus providing better constraints on the source conditions.
Exploring Noise: Sound Pollution.
ERIC Educational Resources Information Center
Rillo, Thomas J.
1979-01-01
The second part of a three-part series, this article describes sound measurement, effects, and indoor learning activities. Thirty elementary school activities are described with appropriate grade levels specified. (Author/CS)
Sandstrom, B; Vetter, C
2001-01-01
ABSTRACT A longtime advocate for female empowerment and equality, Boden Sandstrom has worked for political change in many arenas. In the 1960s, she began a career as a librarian, but soon made activism her full-time job, working for feminist, leftist and socialist causes. In the 1970s, she found a way to turn her lifelong passion for music into a career as a sound engineer. Once established in that profession, she began donating her services to political events, marches, demonstrations, and rallies. After thirteen years of running her own company, called Woman Sound,Inc. (later City Sound Productions,Inc.), she turned to the study of ethnomusicology. She is now Program Manager and Lecturer for the Ethnomusicology Program at the University of Maryland, where she is also working on her doctorate in that subject. She continues to freelance as a sound engineer and serve as a technical producer for major events. PMID:24802836
Sound Visualization and Holography
ERIC Educational Resources Information Center
Kock, Winston E.
1975-01-01
Describes liquid surface holograms including their application to medicine. Discusses interference and diffraction phenomena using sound wave scanning techniques. Compares focussing by zone plate to holographic image development. (GH)
Strong coupling problem with time-varying sound speed
NASA Astrophysics Data System (ADS)
Joyce, Austin; Khoury, Justin
2011-10-01
For a single scalar field with unit sound speed minimally coupled to Einstein gravity, there are exactly three distinct cosmological solutions which produce a scale invariant spectrum of curvature perturbations in a dynamical attractor background, assuming vacuum initial conditions: slow-roll inflation; a slowly contracting adiabatic ekpyrotic phase, described by a rapidly-varying equation of state; and an adiabatic ekpyrotic phase on a slowly expanding background. Of these three, only inflation remains weakly coupled over a wide range of modes, while the other scenarios can produce at most 12 e-folds of scale invariant and Gaussian modes. In this paper, we investigate how allowing the speed of sound of fluctuations to evolve in time affects this classification. While in the presence of a variable sound speed there are many more scenarios which are scale invariant at the level of the two-point function, they generically suffer from strong coupling problems similar to those in the canonical case. There is, however, an exceptional case with superluminal sound speed, which suppresses non-Gaussianities and somewhat alleviates strong coupling issues. We focus on a particular realization of this limit and show these scenarios are constrained and only able to produce at most 28 e-folds of scale invariant and Gaussian perturbations. A similar bound should hold more generally—the condition results from the combined requirements of matching the observed amplitude of curvature perturbations, demanding that the Hubble parameter remain sub-Planckian and keeping non-Gaussianities under control. We therefore conclude that inflation remains the unique cosmological scenario, assuming a single degree of freedom on an attractor background, capable of producing arbitrarily many scale invariant modes while remaining weakly coupled. Alternative mechanisms must inevitably be unstable or rely on multiple degrees of freedom.
Dudschig, Carolin; Mackenzie, Ian Grant; Strozyk, Jessica; Kaup, Barbara; Leuthold, Hartmut
2016-10-01
Both the imagery literature and grounded models of language comprehension emphasize the tight coupling of high-level cognitive processes, such as forming a mental image of something or language understanding, and low-level sensorimotor processes in the brain. In an electrophysiological study, imagery and language processes were directly compared and the sensory associations of processing linguistically implied sounds or imagined sounds were investigated. Participants read sentences describing auditory events (e.g., "The dog barks"), heard a physical (environmental) sound, or had to imagine such a sound. We examined the influence of the 3 sound conditions (linguistic, physical, imagery) on subsequent physical sound processing. Event-related potential (ERP) difference waveforms indicated that in all 3 conditions, prime compatibility influenced physical sound processing. The earliest compatibility effect was observed in the physical condition, starting in the 80-110 ms time interval with a negative maximum over occipital electrode sites. In contrast, the linguistic and the imagery condition elicited compatibility effects starting in the 180-220 ms time window with a maximum over central electrode sites. In line with the ERPs, the analysis of the oscillatory activity showed that compatibility influenced early theta and alpha band power changes in the physical, but not in the linguistic and imagery, condition. These dissociations were further confirmed by dipole localization results showing a clear separation between the source of the compatibility effect in the physical sound condition (superior temporal area) and the source of the compatibility effect triggered by the linguistically implied sounds or the imagined sounds (inferior temporal area). Implications for grounded models of language understanding are discussed. PMID:27473463
Seiler, Ch; Hogan, S D; Schmutz, H; Agner, J A; Merkt, F
2011-02-18
A supersonic beam of Rydberg hydrogen atoms has been adiabatically deflected by 90°, decelerated to zero velocity in less than 25 μs, and loaded into an electric trap. The deflection has allowed the suppression of collisions with atoms in the trailing part of the gas pulse. The processes leading to trap losses, i.e., fluorescence to the ground state, and transitions and ionization induced by blackbody radiation have been monitored over several milliseconds and quantitatively analyzed. PMID:21405512
Domain wall motion driven by adiabatic spin transfer torque through excitation of nonlinear dynamics
NASA Astrophysics Data System (ADS)
Wang, D.; Dong, Yulan; Yan, Zhou; Wang, Xi-guang; He, Jun; Guo, Guang-hua
2016-05-01
Domain wall dynamics under the joint action of a linearly polarized microwave magnetic field and spin transfer torque was analysed in terms of the domain wall collective coordinates. It was found that a microwave-assisted steady domain wall motion driven by adiabatic spin transfer torque can be adequately described by three domain wall collective coordinates. Analytical expression for the domain wall velocity showed that there are two contributions to the steady domain wall motion. One is derived from the nonlinear oscillation of domain wall width excited by the microwave field, and the other is from the heterodyne process between the width oscillation and the microwave field. The former always propels a domain wall to move in the positive direction, which is defined as the direction of the applied current. The latter contribution to the domain wall velocity can be positive or negative, depending on the polarization of the microwave field. The final domain wall velocity is determined by the competition between those two contributions, which indicates that by simply changing the polarization of the microwave field, the direction of the domain wall motion can be reversed. Our analysis demonstrated that the characteristics of domain wall motion can be tuned by selective excitation of nonlinear domain wall dynamics.
Ecological sounds affect breath duration more than artificial sounds.
Murgia, Mauro; Santoro, Ilaria; Tamburini, Giorgia; Prpic, Valter; Sors, Fabrizio; Galmonte, Alessandra; Agostini, Tiziano
2016-01-01
Previous research has demonstrated that auditory rhythms affect both movement and physiological functions. We hypothesized that the ecological sounds of human breathing can affect breathing more than artificial sounds of breathing, varying in tones for inspiration and expiration. To address this question, we monitored the breath duration of participants exposed to three conditions: (a) ecological sounds of breathing, (b) artificial sounds of breathing having equal temporal features as the ecological sounds, (c) no sounds (control). We found that participants' breath duration variability was reduced in the ecological sound condition, more than in the artificial sound condition. We suggest that ecological sounds captured the timing of breathing better than artificial sounds, guiding as a consequence participants' breathing. We interpreted our results according to the Theory of Event Coding, providing further support to its validity, and suggesting its possible extension in the domain of physiological functions which are both consciously and unconsciously controlled. PMID:25637249
Adiabatic quantum computing with phase modulated laser pulses
Goswami, Debabrata
2005-01-01
Implementation of quantum logical gates for multilevel systems is demonstrated through decoherence control under the quantum adiabatic method using simple phase modulated laser pulses. We make use of selective population inversion and Hamiltonian evolution with time to achieve such goals robustly instead of the standard unitary transformation language. PMID:17195865
Does temperature increase or decrease in adiabatic decompression of magma?
NASA Astrophysics Data System (ADS)
Kilinc, A. I.; Ghiorso, M. S.; Khan, T.
2011-12-01
We have modeled adiabatic decompression of an andesitic and a basaltic magma as an isentropic process using the Melts algorithm. Our modeling shows that during adiabatic decompression temperature of andesitic magma increases but temperature of basaltic magma decreases. In an isentropic process entropy is constant so change of temperature with pressure can be written as dT/dP=T (dV/dT)/Cp where T (dV/dT)/Cp is generally positive. If delta P is negative so is delta T. In general, in the absence of phase change, we expect the temperature to decrease with adiabatic decompression. The effect of crystallization is to turn a more entropic phase (liquid) into a less entropic phase (solid), which must be compensated by raising the temperature. If during adiabatic decompression there is small amount or no crystallization, T (dV/dT)/Cp effect which lowers the temperature overwhelms the small amount of crystallization, which raises the temperature, and overall system temperature decreases.
A Kinetic Study of the Adiabatic Polymerization of Acrylamide.
ERIC Educational Resources Information Center
Thomson, R. A. M.
1986-01-01
Discusses theory, procedures, and results for an experiment which demonstrates the application of basic physics to chemical problems. The experiment involves the adiabatic process, in which polymerization carried out in a vacuum flask is compared to the theoretical prediction of the model with the temperature-time curve obtained in practice. (JN)
The flat Grothendieck-Riemann-Roch theorem without adiabatic techniques
NASA Astrophysics Data System (ADS)
Ho, Man-Ho
2016-09-01
In this paper we give a simplified proof of the flat Grothendieck-Riemann-Roch theorem. The proof makes use of the local family index theorem and basic computations of the Chern-Simons form. In particular, it does not involve any adiabatic limit computation of the reduced eta-invariant.
Fast Quasi-Adiabatic Gas Cooling: An Experiment Revisited
ERIC Educational Resources Information Center
Oss, S.; Gratton, L. M.; Calza, G.; Lopez-Arias, T.
2012-01-01
The well-known experiment of the rapid expansion and cooling of the air contained in a bottle is performed with a rapidly responsive, yet very cheap thermometer. The adiabatic, low temperature limit is approached quite closely and measured with our apparatus. A straightforward theoretical model for this process is also presented and discussed.…
Failure of geometric electromagnetism in the adiabatic vector Kepler problem
Anglin, J.R.; Schmiedmayer, J.
2004-02-01
The magnetic moment of a particle orbiting a straight current-carrying wire may precess rapidly enough in the wire's magnetic field to justify an adiabatic approximation, eliminating the rapid time dependence of the magnetic moment and leaving only the particle position as a slow degree of freedom. To zeroth order in the adiabatic expansion, the orbits of the particle in the plane perpendicular to the wire are Keplerian ellipses. Higher-order postadiabatic corrections make the orbits precess, but recent analysis of this 'vector Kepler problem' has shown that the effective Hamiltonian incorporating a postadiabatic scalar potential ('geometric electromagnetism') fails to predict the precession correctly, while a heuristic alternative succeeds. In this paper we resolve the apparent failure of the postadiabatic approximation, by pointing out that the correct second-order analysis produces a third Hamiltonian, in which geometric electromagnetism is supplemented by a tensor potential. The heuristic Hamiltonian of Schmiedmayer and Scrinzi is then shown to be a canonical transformation of the correct adiabatic Hamiltonian, to second order. The transformation has the important advantage of removing a 1/r{sup 3} singularity which is an artifact of the adiabatic approximation.
When an Adiabatic Irreversible Expansion or Compression Becomes Reversible
ERIC Educational Resources Information Center
Anacleto, Joaquim; Ferreira, J. M.; Soares, A. A.
2009-01-01
This paper aims to contribute to a better understanding of the concepts of a "reversible process" and "entropy". For this purpose, an adiabatic irreversible expansion or compression is analysed, by considering that an ideal gas is expanded (compressed), from an initial pressure P[subscript i] to a final pressure P[subscript f], by being placed in…
Digitized adiabatic quantum computing with a superconducting circuit.
Barends, R; Shabani, A; Lamata, L; Kelly, J; Mezzacapo, A; Las Heras, U; Babbush, R; Fowler, A G; Campbell, B; Chen, Yu; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J Y; Neeley, M; Neill, C; O'Malley, P J J; Quintana, C; Roushan, P; Sank, D; Vainsencher, A; Wenner, J; White, T C; Solano, E; Neven, H; Martinis, John M
2016-06-01
Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable. PMID:27279216
Digitized adiabatic quantum computing with a superconducting circuit
NASA Astrophysics Data System (ADS)
Barends, R.; Shabani, A.; Lamata, L.; Kelly, J.; Mezzacapo, A.; Heras, U. Las; Babbush, R.; Fowler, A. G.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Lucero, E.; Megrant, A.; Mutus, J. Y.; Neeley, M.; Neill, C.; O’Malley, P. J. J.; Quintana, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Solano, E.; Neven, H.; Martinis, John M.
2016-06-01
Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.
Nonadiabatic quantum Liouville and master equations in the adiabatic basis
Jang, Seogjoo
2012-12-14
A compact form of nonadiabatic molecular Hamiltonian in the basis of adiabatic electronic states and nuclear position states is presented. The Hamiltonian, which includes both the first and the second derivative couplings, is Hermitian and thus leads to a standard expression for the quantum Liouville equation for the density operator. With the application of a projection operator technique, a quantum master equation for the diagonal components of the density operator is derived. Under the assumption that nuclear states are much more short ranged compared to electronic states and assuming no singularity, a semi-adiabatic approximation is invoked, which results in expressions for the nonadiabatic molecular Hamiltonian and the quantum Liouville equation that are much more amenable to advanced quantum dynamics calculation. The semi-adiabatic approximation is also applied to a resonance energy transfer system consisting of a donor and an acceptor interacting via Coulomb terms, and explicit detailed expressions for exciton-bath Hamiltonian including all the non-adiabatic terms are derived.
The density temperature and the dry and wet virtual adiabats
NASA Technical Reports Server (NTRS)
Bartlo, J.; Betts, Alan K.
1991-01-01
A density temperature is introduced to represent virtual temperature and potential temperature on thermodynamic diagrams. This study reviews how the dry and wet virtual adiabats can be used to represent stability and air parcel density for unsaturated and cloudy air, and present formula and tabulations.
Adiabatic single scan two-dimensional NMR spectrocopy.
Pelupessy, Philippe
2003-10-01
New excitation schemes, based on the use adiabatic pulses, for single scan two-dimensional NMR experiments (Frydman et al., Proc. Nat. Acad. Sci. 2002, 99, 15 858-15 862) are introduced. The advantages are discussed. Applications in homo- and heteronuclear experiments are presented. PMID:14519020
SIMULATION OF CONTINUOUS-CONTACT SEPARATION PROCESSES: MULTICOMPONENT, ADIABATIC ABSORPTION
A new algorithm has been developed for the steady-state simulation of multicomponent, adiabatic absorption in packed columns. The system of differential model equations that describe the physical absorption process is reduced to algebraic equations by using a finite difference me...
Non-adiabatic response of relativistic radiation belt electrons to GEM magnetic storms
NASA Astrophysics Data System (ADS)
McAdams, K. L.; Reeves, G. D.
The importance of fully adiabatic effects in the relativistic radiation belt electron response to magnetic storms is poorly characterized due to many difficulties in calculating adiabatic flux response. Using the adiabatic flux model of Kim and Chan [1997a] and Los Alamos National Laboratory geosynchronous satellite data, we examine the relative timing of the adiabatic and non-adiabatic flux responses. In the three storms identified by the GEM community for in depth study, the non-adiabatic energization occurs hours earlier than the adiabatic re-energization. The adiabatic energization can account for only 10-20% of the flux increases in the first recovery stages, and only 1% of the flux increase if there is continuing activity.
NASA Astrophysics Data System (ADS)
Matignon, Christophe; Desbiens, Nicolas; Sorin, Remy; Dubois, Vincent
2011-06-01
DSD is probably the most popular engineering tool used to model the dynamics of detonation. In this model the normal shock velocity (Dn) depends only on the local curvature (k) of the front. One way to reproduce this behavior is to construct a model for the explosive which obeys the 1D quasi-steady weakly curved detonation theory1. In its simplest form, such a model is composed of a reactive equation of state (ideal mixture of a burnt unburnt phases) coupled with a single step burning law. To complete the description of the reactive EOS different authors2,3 proposed various closure hypotheses (isobaric isothermal, isobaric adiabatic, isodensity isothermal,...). Given this form of the EOS, the rate law is then calibrated to match the experimental detonation velocity-curvature curve. In this paper we theoretically examine the influence of the EOS closure hypotheses on the (Dn,k) curve. As the 1D curved theory of detonation is extremely sensitive to the calculation of the sonic surface downstream the reaction zone, we show that the effect of a particular closure law for the mixture can have a dramatic effect whenever it alters the sound speed calculation at the end of the reaction zone.
NASA Astrophysics Data System (ADS)
Inogamov, N. A.; Sunyaev, R. A.
2015-12-01
In the early Universe up to hydrogen recombination in the Universe, the radiation pressure was much greater than the pressure of baryons and electrons. Moreover, the energy density of cosmic microwave background (CMB) photons was greater than or close to the energy density contained in the rest mass of baryonic matter, i.e., the primordial plasma was a radiated-dominated one and the adiabatic index was close to 4/3. The small density perturbations from which the observed galaxies have grown grew as long as the characteristic perturbation scales exceeded the horizon of the Universe сt at that time. On smaller scales, the density perturbations were standing sound waves. Radiative viscosity and heat conduction must have led to the damping of sound waves on very small scales. After the discovery of the cosmic microwave background, J. Silk calculated the scales of this damping, which is now called Silk damping, knowing the CMBtemperature and assuming the density of baryons and electrons. Observations with the South Pole Telescope, the Atacama Cosmology Telescope, and the Planck satellite have revealed the predicted damping of acoustic peaks in the CMB power spectrum and confirmed one important prediction of the theory. In 1970, R.A. Sunyaev and Ya.B. Zeldovich showed that such energy release in the early Universe should lead to characteristic deviations of the CMB spectrum from the Planck one. The development of the technology of cryogenic detectors of submillimeter and millimeter wavelength radiation has made it possible to measure the CMB spectral distortions at 10-8 of its total intensity (PIXIE). This has sharply increased the interest of theoretical cosmologists in the problem of energy release when smallscale sound waves are damped. We have derived a relativistic formula for the energy of a standing sound wave in a photon-baryon-electron plasma from simple hydrodynamic and thermodynamic relations. This formula is applicable for an arbitrary relation between the
Sound Modes of a Bose-Fermi Mixture Superfluid at Finite Temperatures
NASA Astrophysics Data System (ADS)
Ono, Yosuke; Sakamoto, Ryohei; Mori, Hiroyuki; Arahata, Emiko
2016-06-01
We study the sound modes of a Bose-Fermi mixture superfluid at finite temperatures in the collisional hydrodynamic regime. We extend Landau's hydrodynamic theory to deal with a Bose-Fermi mixture superfluid and show the existence of three sound modes. We calculate the hydrodynamic sound velocities numerically using the Nozières and Schmitt-Rink theory at unitarity. The three-sound-modes hybrid in Bose-Fermi mixture superfluids contrasts with the two sound modes exhibited by 3He and 4He superfluids.
Sound modes in holographic superfluids
Herzog, Christopher P.; Yarom, Amos
2009-11-15
Superfluids support many different types of sound waves. We investigate the relation between the sound waves in a relativistic and a nonrelativistic superfluid by using hydrodynamics to calculate the various sound speeds. Then, using a particular holographic scalar gravity realization of a strongly interacting superfluid, we compute first, second, and fourth sound speeds as a function of the temperature. The relativistic low temperature results for second sound differ from Landau's well known prediction for the nonrelativistic, incompressible case.
Non-adiabatic resonant conversion of solar neutrinos in three generations
NASA Astrophysics Data System (ADS)
Kim, C. W.; Nussinov, S.; Sze, W. K.
1987-02-01
The survival probability of solar electron neutrinos after non-adiabatic passage through the resonance-oscillation region in the Sun is discussed for the case of three generations. A method to calculate three-generation Landau-Zener transition probabilities between adiabatic states is described. We also discuss how the Landua-Zener probability is modified in the extreme non-adiabatic case.
NASA Astrophysics Data System (ADS)
2001-06-01
Acoustic Oscillations in Solar-Twin "Alpha Cen A" Observed from La Silla by Swiss Team Summary Sound waves running through a star can help astronomers reveal its inner properties. This particular branch of modern astrophysics is known as "asteroseismology" . In the case of our Sun, the brightest star in the sky, such waves have been observed since some time, and have greatly improved our knowledge about what is going on inside. However, because they are much fainter, it has turned out to be very difficult to detect similar waves in other stars. Nevertheless, tiny oscillations in a solar-twin star have now been unambiguously detected by Swiss astronomers François Bouchy and Fabien Carrier from the Geneva Observatory, using the CORALIE spectrometer on the Swiss 1.2-m Leonard Euler telescope at the ESO La Silla Observatory. This telescope is mostly used for discovering exoplanets (see ESO PR 07/01 ). The star Alpha Centauri A is the nearest star visible to the naked eye, at a distance of a little more than 4 light-years. The new measurements show that it pulsates with a 7-minute cycle, very similar to what is observed in the Sun . Asteroseismology for Sun-like stars is likely to become an important probe of stellar theory in the near future. The state-of-the-art HARPS spectrograph , to be mounted on the ESO 3.6-m telescope at La Silla, will be able to search for oscillations in stars that are 100 times fainter than those for which such demanding observations are possible with CORALIE. PR Photo 23a/01 : Oscillations in a solar-like star (schematic picture). PR Photo 23b/01 : Acoustic spectrum of Alpha Centauri A , as observed with CORALIE. Asteroseismology: listening to the stars ESO PR Photo 23a/01 ESO PR Photo 23a/01 [Preview - JPEG: 357 x 400 pix - 96k] [Normal - JPEG: 713 x 800 pix - 256k] [HiRes - JPEG: 2673 x 3000 pix - 2.1Mb Caption : PR Photo 23a/01 is a graphical representation of resonating acoustic waves in the interior of a solar-like star. Red and blue
NASA Astrophysics Data System (ADS)
Lockhead, Gregory R.
1991-08-01
Context is important when people judge sounds, or attributes of sounds, or other stimuli. It is shown how judgments depend on what sounds recently occurred (sequence effects), on how those sounds differ from one another (range effects), on the distribution of those differences (set effects), on what subjects are told about the situation (task effects), and on what subjects are told about their performance (feedback effects). Each of these factors determines the overall mean and variability of response times and response choices, which are the standard measures, when people judge attribute amounts. Trial-by-trial analysis of the data show these factors also determine performance on individual trials. Moreover, these momentary data cannot be predicted from the overall data. The opposite is not true; the averaged data can be predicted from the momentary details. These results are consistent with a model having two simple assumptions: successive sounds (not just their attributes) assimilate toward one another in memory, and judgments are based on comparisons of these remembered events. It is suggested that relations between attributes, rather than the magnitudes of the attributes themselves, are the basis for judgment.
Meteor fireball sounds identified
NASA Technical Reports Server (NTRS)
Keay, Colin
1992-01-01
Sounds heard simultaneously with the flight of large meteor fireballs are electrical in origin. Confirmation that Extra/Very Low Frequency (ELF/VLF) electromagnetic radiation is produced by the fireball was obtained by Japanese researchers. Although the generation mechanism is not fully understood, studies of the Meteorite Observation and Recovery Project (MORP) and other fireball data indicate that interaction with the atmosphere is definitely responsible and the cut-off magnitude of -9 found for sustained electrophonic sounds is supported by theory. Brief bursts of ELF/VLF radiation may accompany flares or explosions of smaller fireballs, producing transient sounds near favorably placed observers. Laboratory studies show that mundane physical objects can respond to electrical excitation and produce audible sounds. Reports of electrophonic sounds should no longer be discarded. A catalog of over 300 reports relating to electrophonic phenomena associated with meteor fireballs, aurorae, and lightning was assembled. Many other reports have been cataloged in Russian. These may assist the full solution of the similar long-standing and contentious mystery of audible auroral displays.
Supersonic velocities in noncommutative acoustic black holes
NASA Astrophysics Data System (ADS)
Anacleto, M. A.; Brito, F. A.; Passos, E.
2012-01-01
In this paper we derive Schwarzschild and Kerr-like noncommutative acoustic black hole metrics in the (3+1)-dimensional noncommutative Abelian Higgs model. We have found that the changing ΔTH in the Hawking temperature TH due to spacetime noncommutativity accounts for supersonic velocities vg, whose deviation with respect to the sound speed cs is given in the form (vg-cs)/cs=ΔTH/8TH.
NASA Astrophysics Data System (ADS)
Wang, Xuebing; Chen, Ting; Zou, Yongtao; Liebermann, Robert C.; Li, Baosheng
2015-05-01
Compressional (VP) and shear (VS) wave velocities of a synthetic KLB-1 peridotite were measured for the first time up to 10 GPa using ultrasonic interferometry. Analysis of the P and S wave velocities yielded K0 = 123(1) GPa, K0' = 5.1(2), G0 = 75(1) GPa, and G0'= 1.3(1) for the bulk and shear moduli and their pressure derivatives. Comparison with Voigt-Reuss-Hill (VRH) calculations based on literature elasticity data for its constituent minerals indicates that the experimentally measured P and S wave velocities, densities, bulk sound velocities, and VP/VS ratios fall close to the lower limit of VRH averages associated with the uncertainties of the mineral elasticity data. A comparison with previous modeling of mantle compositions implies that the velocities for an aggregate with the pyrolitic composition of KLB-1 are in close agreement with seismic data at the depths of the Earth's upper mantle.
Pore Velocity Estimation Uncertainties
NASA Astrophysics Data System (ADS)
Devary, J. L.; Doctor, P. G.
1982-08-01
Geostatistical data analysis techniques were used to stochastically model the spatial variability of groundwater pore velocity in a potential waste repository site. Kriging algorithms were applied to Hanford Reservation data to estimate hydraulic conductivities, hydraulic head gradients, and pore velocities. A first-order Taylor series expansion for pore velocity was used to statistically combine hydraulic conductivity, hydraulic head gradient, and effective porosity surfaces and uncertainties to characterize the pore velocity uncertainty. Use of these techniques permits the estimation of pore velocity uncertainties when pore velocity measurements do not exist. Large pore velocity estimation uncertainties were found to be located in the region where the hydraulic head gradient relative uncertainty was maximal.
Monaural Sound Localization Revisited
NASA Technical Reports Server (NTRS)
Wightman, Frederic L.; Kistler, Doris J.
1997-01-01
Research reported during the past few decades has revealed the importance for human sound localization of the so-called 'monaural spectral cues.' These cues are the result of the direction-dependent filtering of incoming sound waves accomplished by the pinnae. One point of view about how these cues are extracted places great emphasis on the spectrum of the received sound at each ear individually. This leads to the suggestion that an effective way of studying the influence of these cues is to measure the ability of listeners to localize sounds when one of their ears is plugged. Numerous studies have appeared using this monaural localization paradigm. Three experiments are described here which are intended to clarify the results of the previous monaural localization studies and provide new data on how monaural spectral cues might be processed. Virtual sound sources are used in the experiments in order to manipulate and control the stimuli independently at the two ears. Two of the experiments deal with the consequences of the incomplete monauralization that may have contaminated previous work. The results suggest that even very low sound levels in the occluded ear provide access to interaural localization cues. The presence of these cues complicates the interpretation of the results of nominally monaural localization studies. The third experiment concerns the role of prior knowledge of the source spectrum, which is required if monaural cues are to be useful. The results of this last experiment demonstrate that extraction of monaural spectral cues can be severely disrupted by trial-to-trial fluctuations in the source spectrum. The general conclusion of the experiments is that, while monaural spectral cues are important, the monaural localization paradigm may not be the most appropriate way to study their role.
NASA Technical Reports Server (NTRS)
2000-01-01
Automated Analysis Corporation's COMET is a suite of acoustic analysis software for advanced noise prediction. It analyzes the origin, radiation, and scattering of noise, and supplies information on how to achieve noise reduction and improve sound characteristics. COMET's Structural Acoustic Foam Engineering (SAFE) module extends the sound field analysis capability of foam and other materials. SAFE shows how noise travels while airborne, how it travels within a structure, and how these media interact to affect other aspects of the transmission of noise. The COMET software reduces design time and expense while optimizing a final product's acoustical performance. COMET was developed through SBIR funding and Langley Research Center for Automated Analysis Corporation.
NASA Technical Reports Server (NTRS)
Chen, W. T.
1972-01-01
Technology developed for signal and data processing was applied to diagnostic techniques in the area of phonocardiography (pcg), the graphic recording of the sounds of the heart generated by the functioning of the aortic and ventricular valves. The relatively broad bandwidth of the PCG signal (20 to 2000 Hz) was reduced to less than 100 Hz by the use of a heart sound envelope. The process involves full-wave rectification of the PCG signal, envelope detection of the rectified wave, and low pass filtering of the resultant envelope.
Sounding rockets in Antarctica
NASA Technical Reports Server (NTRS)
Alford, G. C.; Cooper, G. W.; Peterson, N. E.
1982-01-01
Sounding rockets are versatile tools for scientists studying the atmospheric region which is located above balloon altitudes but below orbital satellite altitudes. Three NASA Nike-Tomahawk sounding rockets were launched from Siple Station in Antarctica in an upper atmosphere physics experiment in the austral summer of 1980-81. The 110 kg payloads were carried to 200 km apogee altitudes in a coordinated project with Arcas rocket payloads and instrumented balloons. This Siple Station Expedition demonstrated the feasibility of launching large, near 1,000 kg, rocket systems from research stations in Antarctica. The remoteness of research stations in Antarctica and the severe environment are major considerations in planning rocket launching expeditions.
Spectral Characteristics of Wake Vortex Sound During Roll-Up
NASA Technical Reports Server (NTRS)
Booth, Earl R., Jr. (Technical Monitor); Zhang, Yan; Wang, Frank Y.; Hardin, Jay C.
2003-01-01
This report presents an analysis of the sound spectra generated by a trailing aircraft vortex during its rolling-up process. The study demonstrates that a rolling-up vortex could produce low frequency (less than 100 Hz) sound with very high intensity (60 dB above threshold of human hearing) at a distance of 200 ft from the vortex core. The spectrum then drops o rapidly thereafter. A rigorous analytical approach has been adopted in this report to derive the spectrum of vortex sound. First, the sound pressure was solved from an alternative treatment of the Lighthill s acoustic analogy approach [1]. After the application of Green s function for free space, a tensor analysis was applied to permit the removal of the source term singularity of the wave equation in the far field. Consequently, the sound pressure is expressed in terms of the retarded time that indicates the time history and spacial distribution of the sound source. The Fourier transformation is then applied to the sound pressure to compute its spectrum. As a result, the Fourier transformation greatly simplifies the expression of the vortex sound pressure involving the retarded time, so that the numerical computation is applicable with ease for axisymmetric line vortices during the rolling-up process. The vortex model assumes that the vortex circulation is proportional to the time and the core radius is a constant. In addition, the velocity profile is assumed to be self-similar along the aircraft flight path, so that a benchmark vortex velocity profile can be devised to obtain a closed form solution, which is then used to validate the numerical calculations for other more realistic vortex profiles for which no closed form solutions are available. The study suggests that acoustic sensors operating at low frequency band could be profitably deployed for detecting the vortex sound during the rolling-up process.
Necessary and sufficient condition for quantum adiabatic evolution by unitary control fields
NASA Astrophysics Data System (ADS)
Wang, Zhen-Yu; Plenio, Martin B.
2016-05-01
We decompose the quantum adiabatic evolution as the products of gauge invariant unitary operators and obtain the exact nonadiabatic correction in the adiabatic approximation. A necessary and sufficient condition that leads to adiabatic evolution with geometric phases is provided, and we determine that in the adiabatic evolution, while the eigenstates are slowly varying, the eigenenergies and degeneracy of the Hamiltonian can change rapidly. We exemplify this result by the example of the adiabatic evolution driven by parametrized pulse sequences. For driving fields that are rotating slowly with the same average energy and evolution path, fast modulation fields can have smaller nonadiabatic errors than obtained under the traditional approach with a constant amplitude.
Calculations of upper-mantle velocity from published Soviet earthquake data
Rodriquez, Robert G.
1965-01-01
The lack of information on mantle velocities and crustal structure of the U.S.S.R. has led to a preliminary examination of published Soviet earthquake bulletins in the hope of deriving useful velocity and structure information from the data they contain. Mantle velocities deduced from earthquake data on several Russian earthquakes are in excellent agreement with results of Soviet deep seismic sounding.
Sound from apollo rockets in space.
Cotten, D; Donn, W L
1971-02-12
Low-frequency sound has been recorded on at least two occasions in Bermuda with the passage of Apollo rocket vehicles 188 kilometers aloft. The signals, which are reminiscent of N-waves from sonic booms, are (i) horizontally coherent; (ii) have extremely high (supersonic) trace velocities across the tripartite arrays; (iii) have nearly identical appearance and frequencies; (iv) have essentially identical arrival times after rocket launch; and (v) are the only coherent signals recorded over many hours. These observations seem to establish that the recorded sound comes from the rockets at high elevation. Despite this high elevation, the values of surface pressure appear to be explainable on the basis of a combination of a kinetic theory approach to shock formation in rarefied atmospheres with established gas-dynamics shock theory. PMID:17734781
Optimizing sound features for cortical neurons.
deCharms, R C; Blake, D T; Merzenich, M M
1998-05-29
The brain's cerebral cortex decomposes visual images into information about oriented edges, direction and velocity information, and color. How does the cortex decompose perceived sounds? A reverse correlation technique demonstrates that neurons in the primary auditory cortex of the awake primate have complex patterns of sound-feature selectivity that indicate sensitivity to stimulus edges in frequency or in time, stimulus transitions in frequency or intensity, and feature conjunctions. This allows the creation of classes of stimuli matched to the processing characteristics of auditory cortical neurons. Stimuli designed for a particular neuron's preferred feature pattern can drive that neuron with higher sustained firing rates than have typically been recorded with simple stimuli. These data suggest that the cortex decomposes an auditory scene into component parts using a feature-processing system reminiscent of that used for the cortical decomposition of visual images. PMID:9603734
Experimental implementation of adiabatic passage between different topological orders.
Peng, Xinhua; Luo, Zhihuang; Zheng, Wenqiang; Kou, Supeng; Suter, Dieter; Du, Jiangfeng
2014-08-22
Topological orders are exotic phases of matter existing in strongly correlated quantum systems, which are beyond the usual symmetry description and cannot be distinguished by local order parameters. Here we report an experimental quantum simulation of the Wen-plaquette spin model with different topological orders in a nuclear magnetic resonance system, and observe the adiabatic transition between two Z(2) topological orders through a spin-polarized phase by measuring the nonlocal closed-string (Wilson loop) operator. Moreover, we also measure the entanglement properties of the topological orders. This work confirms the adiabatic method for preparing topologically ordered states and provides an experimental tool for further studies of complex quantum systems. PMID:25192080
Adiabatic and diabatic process of sum frequency conversion.
Liqing, Ren; Yongfang, Li; Baihong, Li; Lei, Wang; Zhaohua, Wang
2010-09-13
Based on the dressed state formalism, we obtain the adiabatic criterion of the sum frequency conversion. We show that this constraint restricts the energy conversion between the two dressed fields, which are superpositions of the signal field and the sum frequency field. We also show that the evolution of the populations of the dressed fields, which in turn describes the conversion of light photons from the seed frequency to the sum frequency during propagation through the nonlinear crystal. Take the quasiphased matched (QPM) scheme as an example, we calculate the expected bandwidth of the frequency conversion process, and its dependence on the length of the crystal. We demonstrate that the evolutionary patterns of the sum frequency field's energy are similar to the Fresnel diffraction of a light field. We finally show that the expected bandwidth can be also deduced from the evolution of the adiabaticity of the dressed fileds. PMID:20940935
On the off-stoichiometric peaking of adiabatic flame temperature
Law, C.K.; Lu, T.F.; Makino, A.
2006-06-15
The characteristic rich shifting of the maximum adiabatic flame temperature from the stoichiometric value for mixtures of hydrocarbon and air is demonstrated to be caused by product dissociation and hence reduced amount of heat release. Since the extent of dissociation is greater on the lean side as a result of the stoichiometry of dissociated products, the peaking occurs on the rich side. The specific heat per unit mass of the mixture is shown to increase monotonically with increasing fuel concentration, and as such tends to shift the peak toward the lean side. It is further shown that this is the cause for the lean shifting of the adiabatic flame temperature of oxidizer-enriched mixtures of N{sub m}H{sub n} and F{sub 2} and of NH{sub 3} and O{sub 2}, with various amounts of inert dilution, even though their maximum heat release still peaks on the rich side. (author)
Microscopic expression for heat in the adiabatic basis.
Polkovnikov, Anatoli
2008-11-28
We derive a microscopic expression for the instantaneous diagonal elements of the density matrix rho(nn)(t) in the adiabatic basis for an arbitrary time-dependent process in a closed Hamiltonian system. If the initial density matrix is stationary (diagonal) then this expression contains only squares of absolute values of matrix elements of the evolution operator, which can be interpreted as transition probabilities. We then derive the microscopic expression for the heat defined as the energy generated due to transitions between instantaneous energy levels. If the initial density matrix is passive [diagonal with rho(nn)(0) monotonically decreasing with energy] then the heat is non-negative in agreement with basic expectations of thermodynamics. Our findings also can be used for systematic expansion of various observables around the adiabatic limit. PMID:19113464
Non-adiabatic dynamics of molecules in optical cavities
NASA Astrophysics Data System (ADS)
Kowalewski, Markus; Bennett, Kochise; Mukamel, Shaul
2016-02-01
Strong coupling of molecules to the vacuum field of micro cavities can modify the potential energy surfaces thereby opening new photophysical and photochemical reaction pathways. While the influence of laser fields is usually described in terms of classical field, coupling to the vacuum state of a cavity has to be described in terms of dressed photon-matter states (polaritons) which require quantized fields. We present a derivation of the non-adiabatic couplings for single molecules in the strong coupling regime suitable for the calculation of the dressed state dynamics. The formalism allows to use quantities readily accessible from quantum chemistry codes like the adiabatic potential energy surfaces and dipole moments to carry out wave packet simulations in the dressed basis. The implications for photochemistry are demonstrated for a set of model systems representing typical situations found in molecules.
Fastest Effectively Adiabatic Transitions for a Collection of Harmonic Oscillators.
Boldt, Frank; Salamon, Peter; Hoffmann, Karl Heinz
2016-05-19
We discuss fastest effectively adiabatic transitions (FEATs) for a collection of noninteracting harmonic oscillators with shared controllable real frequencies. The construction of such transitions is presented for given initial and final equilibrium states, and the dependence of the minimum time control on the interval of achievable frequencies is discussed. While the FEAT times and associated FEAT processes are important in their own right as optimal controls, the FEAT time is an added feature which provides a measure of the quality of a shortcut to adiabaticity (STA). The FEAT time is evaluated for a previously reported experiment, wherein a cloud of Rb atoms is cooled following a STA recipe that took about twice as long as the FEAT speed limit, a time efficiency of 50%. PMID:26811863
Ultrafast adiabatic manipulation of slow light in a photonic crystal
Kampfrath, T.; Kuipers, L.; Beggs, D. M.; White, T. P.; Krauss, T. F.; Melloni, A.
2010-04-15
We demonstrate by experiment and theory that a light pulse propagating through a Si-based photonic-crystal waveguide is adiabatically blueshifted when the refractive index of the Si is reduced on a femtosecond time scale. Thanks to the use of slow-light modes, we are able to shift a 1.3-ps pulse at telecom frequencies by 0.3 THz with an efficiency as high as 80% in a waveguide as short as 19{mu}m. An analytic theory reproduces the experimental data excellently, which shows that adiabatic dynamics are possible even on the femtosecond time scale as long as the external stimulus conserves the spatial symmetry of the system.
Adiabatic tapered optical fiber fabrication in two step etching
NASA Astrophysics Data System (ADS)
Chenari, Z.; Latifi, H.; Ghamari, S.; Hashemi, R. S.; Doroodmand, F.
2016-01-01
A two-step etching method using HF acid and Buffered HF is proposed to fabricate adiabatic biconical optical fiber tapers. Due to the fact that the etching rate in second step is almost 3 times slower than the previous droplet etching method, terminating the fabrication process is controllable enough to achieve a desirable fiber diameter. By monitoring transmitted spectrum, final diameter and adiabaticity of tapers are deduced. Tapers with losses about 0.3 dB in air and 4.2 dB in water are produced. The biconical fiber taper fabricated using this method is used to excite whispering gallery modes (WGMs) on a microsphere surface in an aquatic environment. So that they are suitable to be used in applications like WGM biosensors.
Fluctuations of work in nearly adiabatically driven open quantum systems.
Suomela, S; Salmilehto, J; Savenko, I G; Ala-Nissila, T; Möttönen, M
2015-02-01
We extend the quantum jump method to nearly adiabatically driven open quantum systems in a way that allows for an accurate account of the external driving in the system-environment interaction. Using this framework, we construct the corresponding trajectory-dependent work performed on the system and derive the integral fluctuation theorem and the Jarzynski equality for nearly adiabatic driving. We show that such identities hold as long as the stochastic dynamics and work variable are consistently defined. We numerically study the emerging work statistics for a two-level quantum system and find that the conventional diabatic approximation is unable to capture some prominent features arising from driving, such as the continuity of the probability density of work. Our results reveal the necessity of using accurate expressions for the drive-dressed heat exchange in future experiments probing jump time distributions. PMID:25768477
Adiabatic Berry phase in an atom-molecule conversion system
Fu Libin; Liu Jie
2010-11-15
We investigate the Berry phase of adiabatic quantum evolution in the atom-molecule conversion system that is governed by a nonlinear Schroedinger equation. We find that the Berry phase consists of two parts: the usual Berry connection term and a novel term from the nonlinearity brought forth by the atom-molecule coupling. The total geometric phase can be still viewed as the flux of the magnetic field of a monopole through the surface enclosed by a closed path in parameter space. The charge of the monopole, however, is found to be one third of the elementary charge of the usual quantized monopole. We also derive the classical Hannay angle of a geometric nature associated with the adiabatic evolution. It exactly equals minus Berry phase, indicating a novel connection between Berry phase and Hannay angle in contrast to the usual derivative form.
Adiabatic creation of atomic squeezing in dark states versus decoherences
Gong, Z. R.; Sun, C. P.; Wang Xiaoguang
2010-07-15
We study the multipartite correlations of the multiatom dark states, which are characterized by the atomic squeezing beyond the pairwise entanglement. It is shown that, in the photon storage process with atomic ensemble via the electromagnetically induced transparency (EIT) mechanism, the atomic squeezing and the pairwise entanglement can be created by adiabatically manipulating the Rabi frequency of the classical light field on the atomic ensemble. We also consider the sudden death for the atomic squeezing and the pairwise entanglement under various decoherence channels. An optimal time for generating the greatest atomic squeezing and pairwise entanglement is obtained by studying in detail the competition between the adiabatic creation of quantum correlation in the atomic ensemble and the decoherence that we describe with three typical decoherence channels.
Steam bottoming cycle for an adiabatic diesel engine
NASA Technical Reports Server (NTRS)
Poulin, E.; Demier, R.; Krepchin, I.; Walker, D.
1984-01-01
Steam bottoming cycles using adiabatic diesel engine exhaust heat which projected substantial performance and economic benefits for long haul trucks were studied. Steam cycle and system component variables, system cost, size and performance were analyzed. An 811 K/6.90 MPa state of the art reciprocating expander steam system with a monotube boiler and radiator core condenser was selected for preliminary design. The costs of the diesel with bottoming system (TC/B) and a NASA specified turbocompound adiabatic diesel with aftercooling with the same total output were compared, the annual fuel savings less the added maintenance cost was determined to cover the increase initial cost of the TC/B system in a payback period of 2.3 years. Steam bottoming system freeze protection strategies were developed, technological advances required for improved system reliability are considered and the cost and performance of advanced systes are evaluated.
Engineering adiabaticity at an avoided crossing with optimal control
NASA Astrophysics Data System (ADS)
Chasseur, T.; Theis, L. S.; Sanders, Y. R.; Egger, D. J.; Wilhelm, F. K.
2015-04-01
We investigate ways to optimize adiabaticity and diabaticity in the Landau-Zener model with nonuniform sweeps. We show how diabaticity can be engineered with a pulse consisting of a linear sweep augmented by an oscillating term. We show that the oscillation leads to jumps in populations whose value can be accurately modeled using a model of multiple, photon-assisted Landau-Zener transitions, which generalizes work by Wubs et al. [New J. Phys. 7, 218 (2005)], 10.1088/1367-2630/7/1/218. We extend the study on diabaticity using methods derived from optimal control. We also show how to preserve adiabaticity with optimal pulses at limited time, finding a nonuniform quantum speed limit.
Adiabatic Tip-Plasmon Focusing for Nano-Raman Spectroscopy
Berweger, Samuel; Atkin, Joanna M.; Olmon, Robert L.; Raschke, Markus Bernd
2010-12-16
True nanoscale optical spectroscopy requires the efficient delivery of light for a spatially nanoconfined excitation. We utilize adiabatic plasmon focusing to concentrate an optical field into the apex of a scanning probe tip of {approx}10 nm in radius. The conical tips with the ability for two-stage optical mode matching of the surface plasmon polariton (SPP) grating-coupling and the adiabatic propagating SPP conversion into a localized SPP at the tip apex represent a special optical antenna concept for far-field transduction into nanoscale excitation. The resulting high nanofocusing efficiency and the spatial separation of the plasmonic grating coupling element on the tip shaft from the near-field apex probe region allows for true background-free nanospectroscopy. As an application, we demonstrate tip-enhanced Raman spectroscopy (TERS) of surface molecules with enhanced contrast and its extension into the near-IR with 800 nm excitation.
Adiabatic far-field sub-diffraction imaging
NASA Astrophysics Data System (ADS)
Cang, Hu; Salandrino, Alessandro; Wang, Yuan; Zhang, Xiang
2015-08-01
The limited resolution of a conventional optical imaging system stems from the fact that the fine feature information of an object is carried by evanescent waves, which exponentially decays in space and thus cannot reach the imaging plane. We introduce here an adiabatic lens, which utilizes a geometrically conformal surface to mediate the interference of slowly decompressed electromagnetic waves at far field to form images. The decompression is satisfying an adiabatic condition, and by bridging the gap between far field and near field, it allows far-field optical systems to project an image of the near-field features directly. Using these designs, we demonstrated the magnification can be up to 20 times and it is possible to achieve sub-50 nm imaging resolution in visible. Our approach provides a means to extend the domain of geometrical optics to a deep sub-wavelength scale.
Residual circulation in western Long Island Sound
NASA Astrophysics Data System (ADS)
Fribance, Diane Bennett; O'Donnell, James; Houk, Adam
2013-09-01
Current, salinity and temperature measurements from repeated ship transects, complemented by observations from long duration current profilers, are used to characterize the variability and structure of subtidal flow in western Long Island Sound, a region prone to seasonal hypoxia. Subtidal flow plays a leading role in the transport of oxygen and organic matter and must, therefore, be simulated as accurately as possible. We show that during periods of light wind in March and July, the subtidal along-sound flow is vertically and horizontally sheared with lower salinity water in the top 7 m moving eastward toward the ocean at approximately 10 cm s-1 with a counterflow of similar magnitude elsewhere. Velocity contours were found to slope downward to the south, and maximum eastward velocities were found near the surface on the southern half of the section. We find that there is a net transport in the direction of the East River (westward.) The velocity distribution is broadly consistent with theoretical predictions for the steady, frictional, baroclinic pressure gradient driven flow modified by Coriolis acceleration, despite its neglect of advective effects which were found to be important in the present observational analysis. Our estimates of the pressure gradient, the Coriolis acceleration and stress divergence have similar magnitudes. Observation-based estimates of terms in the momentum balance suggest that advection is more important to along-estuary momentum than across-estuary momentum. Along-estuary advection is overestimated in recent hydrodynamic simulations when compared to observed values at sampling locations.
Shekarriz, Alireza; Sheen, David M.
2000-01-01
According to the present invention, a method and apparatus rely upon tomographic measurement of the speed of sound and fluid velocity in a pipe. The invention provides a more accurate profile of velocity within flow fields where the speed of sound varies within the cross-section of the pipe. This profile is obtained by reconstruction of the velocity profile from the local speed of sound measurement simultaneously with the flow velocity. The method of the present invention is real-time tomographic ultrasonic Doppler velocimetry utilizing a to plurality of ultrasonic transmission and reflection measurements along two orthogonal sets of parallel acoustic lines-of-sight. The fluid velocity profile and the acoustic velocity profile are determined by iteration between determining a fluid velocity profile and measuring local acoustic velocity until convergence is reached.
Adiabatic trapping in coupled kinetic Alfven-acoustic waves
Shah, H. A.; Ali, Z.; Masood, W.
2013-03-15
In the present work, we have discussed the effects of adiabatic trapping of electrons on obliquely propagating Alfven waves in a low {beta} plasma. Using the two potential theory and employing the Sagdeev potential approach, we have investigated the existence of arbitrary amplitude coupled kinetic Alfven-acoustic solitary waves in both the sub and super Alfvenic cases. The results obtained have been analyzed and presented graphically and can be applied to regions of space where the low {beta} assumption holds true.
Adiabaticity and gravity theory independent conservation laws for cosmological perturbations
NASA Astrophysics Data System (ADS)
Romano, Antonio Enea; Mooij, Sander; Sasaki, Misao
2016-04-01
We carefully study the implications of adiabaticity for the behavior of cosmological perturbations. There are essentially three similar but different definitions of non-adiabaticity: one is appropriate for a thermodynamic fluid δPnad, another is for a general matter field δPc,nad, and the last one is valid only on superhorizon scales. The first two definitions coincide if cs2 = cw2 where cs is the propagation speed of the perturbation, while cw2 = P ˙ / ρ ˙ . Assuming the adiabaticity in the general sense, δPc,nad = 0, we derive a relation between the lapse function in the comoving slicing Ac and δPnad valid for arbitrary matter field in any theory of gravity, by using only momentum conservation. The relation implies that as long as cs ≠cw, the uniform density, comoving and the proper-time slicings coincide approximately for any gravity theory and for any matter field if δPnad = 0 approximately. In the case of general relativity this gives the equivalence between the comoving curvature perturbation Rc and the uniform density curvature perturbation ζ on superhorizon scales, and their conservation. This is realized on superhorizon scales in standard slow-roll inflation. We then consider an example in which cw =cs, where δPnad = δPc,nad = 0 exactly, but the equivalence between Rc and ζ no longer holds. Namely we consider the so-called ultra slow-roll inflation. In this case both Rc and ζ are not conserved. In particular, as for ζ, we find that it is crucial to take into account the next-to-leading order term in ζ's spatial gradient expansion to show its non-conservation, even on superhorizon scales. This is an example of the fact that adiabaticity (in the thermodynamic sense) is not always enough to ensure the conservation of Rc or ζ.
Geometric Phase for Adiabatic Evolutions of General Quantum States
Wu, Biao; Liu, Jie; Niu, Qian; Singh, David J
2005-01-01
The concept of a geometric phase (Berry's phase) is generalized to the case of noneigenstates, which is applicable to both linear and nonlinear quantum systems. This is particularly important to nonlinear quantum systems, where, due to the lack of the superposition principle, the adiabatic evolution of a general state cannot be described in terms of eigenstates. For linear quantum systems, our new geometric phase reduces to a statistical average of Berry's phases. Our results are demonstrated with a nonlinear two-level model.