DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarvis, J.B.; Terry, J.C.; Schubert, S.A.
The report gives results of the measurement of the adipic acid degradation rate in a bench-scale flue gas desulfurization (FGD) system, designed to simulate many of the important aspects of full-scale FGD systems. Results show that the adipic acid degradation rate depends on the sulfite oxidation rate, the adipic acid concentration, the presence of manganese in solution, and temperature. The degradation rate is also affected by pH, but only when manganese is present. Adipic acid degradation products identified in the liquid phase include valeric, butyric, propionic, succinic, and glutaric acids. When manganese was present, the predominant degradation products were succinicmore » and glutaric acids. Analysis of solids from the bench scale tests shows large concentrations of coprecipitated adipic acid in low oxidation sulfite solids. By contrast, low quantities of coprecipitated adipic acid were found in high oxidation gypsum solids.« less
Sun, Jing; Raza, Muslim; Sun, Xinxiao; Yuan, Qipeng
2018-06-06
Adipic acid (AA) is an important dicarboxylic acid used for the manufacture of nylon and polyurethane plastics. In this study, a novel adipic acid biosynthetic pathway was designed by extending the cis,cis-muconic acid (MA) biosynthesis through biohydrogenation. Enoate reductase from Clostridium acetobutylicum (CaER), an oxygen-sensitive reductase, was demonstrated to have in vivo enzyme activity of converting cis,cis-muconic acid to adipic acid under microaerobic condition. Engineered Escherichia coli strains were constructed to express the whole pathway and accumulated 5.8 ± 0.9 mg/L adipic acid from simple carbon sources. Considering the different oxygen demands between cis,cis-muconic acid biosynthesis and its degradation, a co-culture system was constructed. To improve production, T7 promoter instead of lac promoter was used for higher level expression of the key enzyme CaER and the titer of adipic acid increased to 18.3 ± 0.6 mg/L. To decrease the oxygen supply to downstream strains expressing CaER, Vitreoscilla hemoglobin (VHb) was introduced to upstream strains for its ability on oxygen obtaining. This attempt further improved the production of this novel pathway and 27.6 ± 1.3 mg/L adipic acid was accumulated under microaerobic condition. Copyright © 2018. Published by Elsevier B.V.
Lim, Chae Woo; Baek, Woonhee; Lee, Sung Chul
2017-04-01
Ubiquitin-mediated protein modification occurs at multiple steps of abscisic acid (ABA) signaling. Here, we sought proteins responsible for degradation of the pepper ( Capsicum annuum ) type 2C protein phosphatase CaADIP1 via the 26S proteasome system. We showed that the RING-type E3 ligase CaAIRF1 ( Capsicum annuum ADIP1 Interacting RING Finger Protein 1) interacts with and ubiquitinates CaADIP1. CaADIP1 degradation was slower in crude proteins from CaAIRF1 -silenced peppers than in those from control plants. CaAIRF1 -silenced pepper plants displayed reduced ABA sensitivity and decreased drought tolerance characterized by delayed stomatal closure and suppressed induction of ABA- and drought-responsive marker genes. In contrast, CaAIRF1 -overexpressing Arabidopsis ( Arabidopsis thaliana ) plants exhibited ABA-hypersensitive and drought-tolerant phenotypes. Moreover, in these plants, CaADIP1-induced ABA hyposensitivity was strongly suppressed by CaAIRF1 overexpression. Our findings highlight a potential new route for fine-tune regulation of ABA signaling in pepper via CaAIRF1 and CaADIP1. © 2017 American Society of Plant Biologists. All Rights Reserved.
NASA Astrophysics Data System (ADS)
Nadhirah, A. A.; Sam, S. T.; Noriman, N. Z.; Ragunathan, S.; Ismail, H.
2015-07-01
This study investigate about the tensile and morphological properties of degradable polymer produced from linear low density polyethylene/rambutan peel flour (LLDPE/RPF) blends and adipic acid (AA) was used as a compatibilizer by varying the rambutan peel flour (RPF) amount from 0-25wt%. The samples were subjected to tensile and morphological tests. AA compatibilized showed higher strength compared to uncompatibilized blends. The Young's modulus for LLDPE/RPF blends increased with increasing flour content. However, the addition of adipic acid had reduced the Young's Modulus.
1983-12-01
maleic acid , adipic acid , azelaic acid and suberic acid . To ensure complete esterification during the exhaustive degradation reactions, an...spectroscopic techniques. Major components were shown to be sebacic acid and neopentyl glycol. The most significant difference between the two polyester...and acid equivalent weights of the prepolymers, their hydrolysis products and hydrolysed cured sealants were determined to assess extent of degradation
Degradation rates of glycerol polyesters at acidic and basic conditions
USDA-ARS?s Scientific Manuscript database
Polyesters prepared from glycerol with mixtures of adipic and citric acids were evaluated in the laboratory to estimate degradation rates over a range of pH conditions. These renewable polymers provide a market for glycerol that is generated during biodiesel production. The polyesters were prepared...
Hooper, K A; Macon, N D; Kohn, J
1998-09-05
Previous studies demonstrated that poly(DTE carbonate) and poly (DTE adipate), two tyrosine-derived polymers, have suitable properties for use in biomedical applications. This study reports the evaluation of the in vivo tissue response to these polymers in comparison to poly(L-lactic acid) (PLLA). Typically, the biocompatibility of a material is determined through histological evaluations as a function of implantation time in a suitable animal model. However, due to changes that can occur in the tissue response at different stages of the degradation process, a fixed set of time points is not ideal for comparative evaluations of materials having different rates of degradation. Therefore the tissue response elicited by poly(DTE carbonate), poly(DTE adipate), and PLLA was evaluated as a function of molecular weight. This allowed the tissue response to be compared at corresponding stages of degradation. Poly(DTE adipate) consistently elicited the mildest tissue response, as judged by the width and lack of cellularity of the fibrous capsule formed around the implant. The tissue response to poly(DTE carbonate) was mild throughout the 570 day study. However, the response to PLLA fluctuated as a function of the degree of degradation, exhibiting an increase in the intensity of inflammation as the implant began to lose mass. At the completion of the study, tissue ingrowth into the degrading and disintegrating poly(DTE adipate) implant was evident while no comparative ingrowth of tissue was seen for PLLA. The similarity of the in vivo and in vitro degradation rates of each polymer confirmed the absence of enzymatic involvement in the degradation process. A comparison of molecular weight retention, water uptake, and mass loss in vivo with two commonly used in vitro systems [phosphate-buffered saline (PBS) and simulated body fluid (SBF)] demonstrated that for the two tyrosine-derived polymers the in vivo results were equally well simulated in vitro with PBS and SBF. However, for PLLA the in vivo results were better simulated in vitro using PBS.
[Biosynthesis of adipic acid].
Han, Li; Chen, Wujiu; Yuan, Fei; Zhang, Yuanyuan; Wang, Qinhong; Ma, Yanhe
2013-10-01
Adipic acid is a six-carbon dicarboxylic acid, mainly for the production of polymers such as nylon, chemical fiber and engineering plastics. Its annual demand is close to 3 million tons worldwide. Currently, the industrial production of adipic acid is based on the oxidation of aromatics from non-renewable petroleum resources by chemo-catalytic processes. It is heavily polluted and unsustainable, and the possible alternative method for adipic acid production should be developed. In the past years, with the development of synthetic biology and metabolic engineering, green and clean biotechnological methods for adipic acid production attracted more attention. In this study, the research advances of adipic acid and its precursor production are reviewed, followed by addressing the perspective of the possible new pathways for adipic acid production.
21 CFR 582.1009 - Adipic acid.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Adipic acid. 582.1009 Section 582.1009 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1009 Adipic acid. (a) Product. Adipic acid. (b) [Reserved] (c) Limitations, restrictions, or...
21 CFR 582.1009 - Adipic acid.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Adipic acid. 582.1009 Section 582.1009 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1009 Adipic acid. (a) Product. Adipic acid. (b) [Reserved] (c) Limitations, restrictions, or...
Degradation Studies of a Trimethylolpropane Triheptanoate Lubricant Basestock
1977-12-01
primary dibasic acids : azelaic , adipic, glutaric, and sebacic. From this and subsequent investigations, a dibasic acid ester evolved which has been...Rotating Cylinder Deposition Rig-Parts List 13 2 Analysis for Parent Alcohols in (1-76-5 25 3 Analysis for Parent Acids in 0-76-5 27 4 Gas...formulations: (1) dibasic acid esters formed via esterification of dibasic fatty acids and monohydric alcohols, and (2) neopentyl polyol esters of monobasic
21 CFR 178.3690 - Pentaerythritol adipate-stearate.
Code of Federal Regulations, 2011 CFR
2011-04-01
... adipic acid and stearic acid and its associated fatty acids (chiefly palmitic), with adipic acid comprising 14 percent and stearic acid and its associated acids (chiefly palmitic) comprising 71 percent of...: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html. (2) Acid value...
21 CFR 178.3690 - Pentaerythritol adipate-stearate.
Code of Federal Regulations, 2010 CFR
2010-04-01
... adipic acid and stearic acid and its associated fatty acids (chiefly palmitic), with adipic acid comprising 14 percent and stearic acid and its associated acids (chiefly palmitic) comprising 71 percent of...: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html. (2) Acid value...
Li, Xiukai; Wu, Di; Lu, Ting; Yi, Guangshun; Su, Haibin; Zhang, Yugen
2014-04-14
The production of bulk chemicals and fuels from renewable bio-based feedstocks is of significant importance for the sustainability of human society. Adipic acid, as one of the most-demanded drop-in chemicals from a bioresource, is used primarily for the large-volume production of nylon-6,6 polyamide. It is highly desirable to develop sustainable and environmentally friendly processes for the production of adipic acid from renewable feedstocks. However, currently there is no suitable bio-adipic acid synthesis process. Demonstrated herein is the highly efficient synthetic protocol for the conversion of mucic acid into adipic acid through the oxorhenium-complex-catalyzed deoxydehydration (DODH) reaction and subsequent Pt/C-catalyzed transfer hydrogenation. Quantitative yields (99 %) were achieved for the conversion of mucic acid into muconic acid and adipic acid either in separate sequences or in a one-step process. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Volatility Characteristics of MIL-L-7808 Turbine Lubricants
1975-06-01
test measurements. Total acid numbers and gas chromatograms were obtained for selected residual evaporation samples which provided information on the...ethylhexyl) adipate, purity 99% E-109 Di()2-ethylhexyl azelate , purity 84% E-120 2,2-Dimethyltrimethylene nonanoate, purity - 89% E-129...gave slightly lower evaporation values along with a noticeable decrease in lubricant degradation as shown by the total acid members obtained on the
Kleeberg, Ilona; Hetz, Claudia; Kroppenstedt, Reiner Michael; Müller, Rolf-Joachim; Deckwer, Wolf-Dieter
1998-01-01
Random aliphatic-aromatic copolyesters synthesized from 1,4-butanediol, adipic acid, and terephthalic acid (BTA) have excellent thermal and mechanical properties and are biodegradable by mixed cultures (e.g., in compost). Over 20 BTA-degrading strains were isolated by using compost as a microbial source. Among these microorganisms, thermophilic actinomycetes obviously play an outstanding role and appear to dominate the initial degradation step. Two actinomycete strains exhibited about 20-fold higher BTA degradation rates than usually observed in a common compost test. These isolates were identified as Thermomonospora fusca strains. They appeared to be particularly suitable for establishment of rapid degradation tests and were used in comparative studies on the biodegradation of various polyesters. PMID:9572944
Code of Federal Regulations, 2012 CFR
2012-07-01
...., polymers with adipic acid and triethanolamine, di-Me sulfate-quaternized. 721.10395 Section 721.10395... Fatty acids, C14-18 and C16-18 unsatd., polymers with adipic acid and triethanolamine, di-Me sulfate... sulfate-quaternized (PMN P-10-458; CAS No. 1211825-32-9) is subject to reporting under this section for...
Code of Federal Regulations, 2013 CFR
2013-07-01
...., polymers with adipic acid and triethanolamine, di-Me sulfate-quaternized. 721.10395 Section 721.10395... Fatty acids, C14-18 and C16-18 unsatd., polymers with adipic acid and triethanolamine, di-Me sulfate... sulfate-quaternized (PMN P-10-458; CAS No. 1211825-32-9) is subject to reporting under this section for...
Code of Federal Regulations, 2014 CFR
2014-07-01
...., polymers with adipic acid and triethanolamine, di-Me sulfate-quaternized. 721.10395 Section 721.10395... Fatty acids, C14-18 and C16-18 unsatd., polymers with adipic acid and triethanolamine, di-Me sulfate... sulfate-quaternized (PMN P-10-458; CAS No. 1211825-32-9) is subject to reporting under this section for...
NASA Astrophysics Data System (ADS)
Kariem, Mukaddus; Kumar, Manesh; Yawer, Mohd; Sheikh, Haq Nawaz
2017-12-01
Two new coordination polymers (CPs) with the formula [Nd(hip)(adip) 0.5(H2O)2]n.nH2O (1) and [Dy(aip)(adip)0.5(H2O)2]n.nH2O (2) were synthesized by self-assembly of lanthanide salts with rigid [5-hydroxyisophthalic acid (H2hip)], [5-aminoisophthalic acid (H2aip)] and flexible [adipic acid (H2adip)] linkers under solvothermal conditions. The CPs 1 &2 crystallize in monoclinic C2/c space group. Both the CPs have 1D linear ladder shaped extension with the linkages having the backbone of hip2-, aip2- and adip2- ligands. The 1D linear ladder chains generate three dimensional (3D) supramolecular frameworks via significant π-π and hydrogen bonding interactions. The CP 2 (Dy) emit strong ligand sensitized characteristic f-f luminescence emission. The CP 2 also exhibit weak ferromagnetic interactions at low temperatures.
Veiga, Tânia; Gombert, Andreas K; Landes, Nils; Verhoeven, Maarten D; Kiel, Jan A K W; Krikken, Arjen M; Nijland, Jeroen G; Touw, Hesselien; Luttik, Marijke A H; van der Toorn, John C; Driessen, Arnold J M; Bovenberg, Roel A L; van den Berg, Marco A; van der Klei, Ida J; Pronk, Jack T; Daran, Jean-Marc
2012-07-01
Industrial production of semi-synthetic cephalosporins by Penicillium chrysogenum requires supplementation of the growth media with the side-chain precursor adipic acid. In glucose-limited chemostat cultures of P. chrysogenum, up to 88% of the consumed adipic acid was not recovered in cephalosporin-related products, but used as an additional carbon and energy source for growth. This low efficiency of side-chain precursor incorporation provides an economic incentive for studying and engineering the metabolism of adipic acid in P. chrysogenum. Chemostat-based transcriptome analysis in the presence and absence of adipic acid confirmed that adipic acid metabolism in this fungus occurs via β-oxidation. A set of 52 adipate-responsive genes included six putative genes for acyl-CoA oxidases and dehydrogenases, enzymes responsible for the first step of β-oxidation. Subcellular localization of the differentially expressed acyl-CoA oxidases and dehydrogenases revealed that the oxidases were exclusively targeted to peroxisomes, while the dehydrogenases were found either in peroxisomes or in mitochondria. Deletion of the genes encoding the peroxisomal acyl-CoA oxidase Pc20g01800 and the mitochondrial acyl-CoA dehydrogenase Pc20g07920 resulted in a 1.6- and 3.7-fold increase in the production of the semi-synthetic cephalosporin intermediate adipoyl-6-APA, respectively. The deletion strains also showed reduced adipate consumption compared to the reference strain, indicating that engineering of the first step of β-oxidation successfully redirected a larger fraction of adipic acid towards cephalosporin biosynthesis. Copyright © 2012 Elsevier Inc. All rights reserved.
Microbial degradation of aliphatic and aliphatic-aromatic co-polyesters.
Shah, Aamer Ali; Kato, Satoshi; Shintani, Noboru; Kamini, Numbi Ramudu; Nakajima-Kambe, Toshiaki
2014-04-01
Biodegradable plastics (BPs) have attracted much attention since more than a decade because they can easily be degraded by microorganisms in the environment. The development of aliphatic-aromatic co-polyesters has combined excellent mechanical properties with biodegradability and an ideal replacement for the conventional nondegradable thermoplastics. The microorganisms degrading these polyesters are widely distributed in various environments. Although various aliphatic, aromatic, and aliphatic-aromatic co-polyester-degrading microorganisms and their enzymes have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. In this review, we have reported some new microorganisms and their enzymes which could degrade various aliphatic, aromatic, as well as aliphatic-aromatic co-polyesters like poly(butylene succinate) (PBS), poly(butylene succinate)-co-(butylene adipate) (PBSA), poly(ε-caprolactone) (PCL), poly(ethylene succinate) (PES), poly(L-lactic acid) (PLA), poly(3-hydroxybutyrate) and poly(3-hydoxybutyrate-co-3-hydroxyvalterate) (PHB/PHBV), poly(ethylene terephthalate) (PET), poly(butylene terephthalate) (PBT), poly(butylene adipate-co-terephthalate (PBAT), poly(butylene succinate-co-terephthalate) (PBST), and poly(butylene succinate/terephthalate/isophthalate)-co-(lactate) (PBSTIL). The mechanism of degradation of aliphatic as well as aliphatic-aromatic co-polyesters has also been discussed. The degradation ability of microorganisms against various polyesters might be useful for the treatment and recycling of biodegradable wastes or bioremediation of the polyester-contaminated environments.
cis,cis-Muconic acid: separation and catalysis to bio-adipic acid for nylon-6,6 polymerization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vardon, Derek R.; Rorrer, Nicholas A.; Salvachúa, Davinia
cis,cis-Muconic acid is a polyunsaturated dicarboxylic acid that can be produced renewably via the biological conversion of sugars and lignin-derived aromatic compounds. Subsequently, muconic acid can be catalytically converted to adipic acid -- the most commercially significant dicarboxylic acid manufactured from petroleum. Nylon-6,6 is the major industrial application for adipic acid, consuming 85% of market demand; however, high purity adipic acid (99.8%) is required for polymer synthesis. As such, process technologies are needed to effectively separate and catalytically transform biologically derived muconic acid to adipic acid in high purity over stable catalytic materials. To that end, this study: (1) demonstratesmore » bioreactor production of muconate at 34.5 g L-1 in an engineered strain of Pseudomonas putida KT2440, (2) examines the staged recovery of muconic acid from culture media, (3) screens platinum group metals (e.g., Pd, Pt, Rh, Ru) for activity and leaching stability on activated carbon (AC) and silica supports, (4) evaluates the time-on-stream performance of Rh/AC in a trickle bed reactor, and (5) demonstrates the polymerization of bio-adipic acid to nylon-6,6. Separation experiments confirmed AC effectively removed broth color compounds, but subsequent pH/temperature shift crystallization resulted in significant levels of Na, P, K, S and N in the crystallized product. Ethanol dissolution of muconic acid precipitated bulk salts, achieving a purity of 99.8%. Batch catalysis screening reactions determined that Rh and Pd were both highly active compared to Pt and Ru, but Pd leached significantly (1-9%) from both AC and silica supports. Testing of Rh/AC in a continuous trickle bed reactor for 100 h confirmed stable performance after 24 h, although organic adsorption resulted in reduced steady-state activity. Lastly, polymerization of bio-adipic acid with hexamethyldiamine produced nylon-6,6 with comparable properties to its petrochemical counterpart, thereby demonstrating a path towards bio-based nylon production via muconic acid.« less
Teeraphatpornchai, T; Nakajima-Kambe, T; Shigeno-Akutsu, Y; Nakayama, M; Nomura, N; Nakahara, T; Uchiyama, H
2003-01-01
Microorganisms isolated from soil samples were screened for their ability to degrade various biodegradable polyester-based plastics. The most active strain, designated as strain TB-13, was selected as the best strain for degrading these plastics. From its phenotypic and genetic characteristics, strain TB-13 was closely related to Paenibacillus amyloyticus. It could degrade poly(lactic acid), poly(butylene succinate), poly(butylene succinate-co-adipate), poly(caprolactone) and poly(ethylene succinate) but not poly(hydroxybutylate-co-valerate). However, it could not utilize these plastics as sole carbon sources. Both protease and esterase activities, which may be involved in the degradation of plastic, were constitutively detected in the culture broth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilkey, Matthew J.; Balakumar, Rachana; Vlachos, Dionisios G.
We recently reported biomass-derived tetrahydrofuran-2,5-dicarboxylic acid (THFDCA) as a potential renewable feedstock for adipic acid (AA) production by combining HI and molecular H 2 in organic acid solvents.
Gilkey, Matthew J.; Balakumar, Rachana; Vlachos, Dionisios G.; ...
2018-01-01
We recently reported biomass-derived tetrahydrofuran-2,5-dicarboxylic acid (THFDCA) as a potential renewable feedstock for adipic acid (AA) production by combining HI and molecular H 2 in organic acid solvents.
Effect of ammonia on the volatility of organic diacids.
Paciga, Andrea L; Riipinen, Ilona; Pandis, Spyros N
2014-12-02
The effect of ammonia on the partitioning of two dicarboxylic acids, oxalic (C2) and adipic (C6) is determined. Measurements by a tandem differential mobility analysis system and a thermodenuder (TD-TDMA) system are used to estimate the saturation vapor pressure and enthalpy of vaporization of ammonium oxalate and adipate. Ammonia dramatically lowered the vapor pressure of oxalic acid, by several orders of magnitude, with an estimated vapor pressure of 1.7 ± 0.8 × 10(–6) Pa at 298 K. The vapor pressure of ammonium adipate was 2.5 ± 0.8 × 10(–5) Pa at 298 K, similar to that of adipic acid. These results suggest that the dominance of oxalate in diacid concentrations measured in ambient aerosol could be attributed to the salt formation with ammonia.
40 CFR 98.53 - Calculating GHG emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Adipic Acid Production § 98.53 Calculating GHG emissions. (a) You must determine annual N2O emissions from adipic acid production according to paragraphs (a)(1) or... must conduct the test on the vent stream from the nitric acid oxidation step of the process, referred...
40 CFR 98.53 - Calculating GHG emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Adipic Acid Production § 98.53 Calculating GHG emissions. (a) You must determine annual N2O emissions from adipic acid production according to paragraphs (a)(1) or... must conduct the test on the vent stream from the nitric acid oxidation step of the process, referred...
40 CFR 98.53 - Calculating GHG emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Adipic Acid Production § 98.53 Calculating GHG emissions. (a) You must determine annual N2O emissions from adipic acid production according to paragraphs (a)(1) or... must conduct the test on the vent stream from the nitric acid oxidation step of the process, referred...
78 FR 55993 - Revisions to Reporting and Recordkeeping Requirements, and Proposed Confidentiality...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-11
... facilities. Adipic Acid Production 325199 Adipic acid manufacturing facilities. Aluminum Production 331312 Primary aluminum production facilities Ammonia Manufacturing 325311 Anhydrous and aqueous ammonia production facilities. Cement Production 327310 Portland Cement manufacturing plants. Ferroalloy Production...
Oxidative degradation of organic acids conjugated with sulfite oxidation in flue gas desulfurization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Y.I.
Organic acid degradation conjugated with sulfite oxidation has been studied under flue gas desulfurization (EGD) conditions. The oxidative degradation constant, k/sub 12/, is defined as the ratio of organic acid degradation rate and sulfite oxidation rate after being normalized by the concentrations of organic acid and dissolved S(IV). K/sub 12/, not significantly affected by pH or dissolved oxygen, is around 10/sup -3/ in the absence of manganese or iron. However, k/sub 12/ is increased by certain transition metals such as Co, Ni, and Fe and is decreased by Mn and halides. Lower dissolved S(IV) magnified these effects. No k/sub 12/more » greater than 4 x 10/sup -3/ or smaller than 0.1 x 10/sup -3/ has been observed. A free radical mechanism was proposed to describe the kinetics: (1) sulfate free radical is the major radical responsible to the degradation of organic acid; (2) ferrous generates sulfate radical by reacting with monoxypersulfate to enhance k/sub 12/; (3) manganous consumes sulfate radical to decrease k/sub 12/; (4) dissolved S(IV) competes with ferrous for monoxypersulfate and with manganous for sulfate radical to demonstrate the effects of dissolved S(IV) on k/sub 12/. Hydroxy and sulfonated carboxylic acids degrade approximately three times slower than saturated dicarboxylic acids; while maleic acid, an unsaturated dicarboxylic acid, degraded an order of magnitude faster. A wide spectrum of degradation products of adipic acid were found, including carbon dioxide - the major product, glutaric semialdehyde - the major retained product with low manganese, glutaric acid and valeric acids - the major retained product with high manganese, lower molecular weight mono- and dicarboxylic acids, other carbonyl compounds, and hydrocarbons.« less
Uchida, H; Nakajima-Kambe, T; Shigeno-Akutsu, Y; Nomura, N; Tokiwa, Y; Nakahara, T
2000-08-01
Various microorganisms were screened for their ability to degrade poly(tetramethylene succinate)-co-(tetramethylene adipate) (PBSA). Strain BS-3, which was newly isolated from a soil sample, was selected as the best strain. From taxonomical studies, the strain was tentatively ascribed to belong to the genus Acidovorax, most probably to the species A. delafieldii. Strain BS-3 could degrade both solid and emulsified PBSA, and also emulsified poly(tetramethylene succinate). During the degradation, a lipase activity was observed in the culture broth. This lipase activity was induced more strongly by PBSA than by tributyrin or triolein which are typical substrates of lipase. These observations strongly suggest that this lipase was involved in the PBSA biodegradation in strain BS-3.
40 CFR 98.56 - Data reporting requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... year that missing data procedures were followed to measure adipic acid production (months). (j) If you... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Data reporting requirements. 98.56... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Adipic Acid Production § 98.56 Data reporting requirements. In...
40 CFR 98.56 - Data reporting requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... year that missing data procedures were followed to measure adipic acid production (months). (j) If you... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Data reporting requirements. 98.56... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Adipic Acid Production § 98.56 Data reporting requirements. In...
40 CFR 98.56 - Data reporting requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... year that missing data procedures were followed to measure adipic acid production (months). (j) If you... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Data reporting requirements. 98.56... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Adipic Acid Production § 98.56 Data reporting requirements. In...
40 CFR 98.56 - Data reporting requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... year that missing data procedures were followed to measure adipic acid production (months). (j) If you... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Data reporting requirements. 98.56... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Adipic Acid Production § 98.56 Data reporting requirements. In...
NASA Astrophysics Data System (ADS)
Kariem, Mukaddus; Yawer, Mohd; Kumar, Manesh; Nawaz Sheikh, Haq; Sood, Puneet; Kolekar, Sanjay S.
2017-11-01
Five novel coordination polymers (CPs) with the formula [Ln (hip) (adip)0.5(H2O)2]n. nH2O [Ln = Pr (1), Nd (2), Tb (3), Dy (4) and Ho (5)] were synthesized by self-organization of lanthanide salts with rigid [5-hydroxyisophthalic acid (H2hip)] and flexible [adipic acid (H2adip)] linkers under solvothermal condition. X-ray diffraction revealed data that all five CPs 1-5 are isostructural and crystallizes in monoclinic C2/c space group. Coordination polymers 1-5 exhibit 1D linear ladder shaped extension with the linkage of lanthanide carboxylate chains having the backbone of H2hip and H2adip ligands. The 1D linear ladder chains get transformed into three dimensional (3D) supramolecular network via non-covalent interactions (π-π and H - bonding). The porosity study showed that 20.34 mL of N2 gets adsorbed per 1.0 g of sample at 1 atm pressure. The CP 3 (Tb) and 4 (Dy) emit strong ligand sensitized characteristic f-f luminescence emission. The CPs 3 and 4 exhibit weak ferromagnetic interactions at lower temperatures.
Ju, Yongming; Yang, Shaogui; Ding, Youchao; Sun, Cheng; Zhang, Aiqian; Wang, Lianhong
2008-11-06
Microwave-assisted photocatalytic (MPC) degradation of malachite green (MG) in aqueous TiO2 suspensions was investigated. A 20 mg/L sample of MG was rapidly and completely decomposed in 3 min with the corresponding TOC removal efficiency of about 85%. To gain insight into the degradation mechanism, both GC-MS and LC-ESI-MS/MS techniques were employed to identify the major intermediates of MG degradation, including N-demethylation intermediates [(p-dimethylaminophenyl)(p-methylaminophenyl)phenylmethylium (DM-PM), (p-methylaminophenyl)(p-methylaminophenyl)phenylmethylium (MM-PM), (p-methylaminophenyl)(p-aminophenyl)phenylmethylium (M-PM)]; a decomposition compound of the conjugated structure (4-dimethylaminobenzophenone (DLBP)); products resulting from the adduct reaction of hydroxyl radical; products of benzene removal; and other open-ring intermediates such as phenol, terephthalic acid, adipic acid, benzoic acid, etc. The possible degradation mechanism of MG included five processes: the N-demethylation process, adduct products of the hydroxyl radical, the breakdown of chromophores such as destruction of the conjugated structure intermediate, removal of benzene, and an open-ring reaction. To the best of our knowledge, it is the first time the whole MG photodegradation processes have been reported.
An injectable oxidated hyaluronic acid/adipic acid dihydrazide hydrogel as a vitreous substitute.
Su, Wen-Yu; Chen, Ko-Hua; Chen, Yu-Chun; Lee, Yen-Hsien; Tseng, Ching-Li; Lin, Feng-Huei
2011-01-01
Vitrectomy is a common procedure for treating ocular-related diseases. The surgery involves removing the vitreous humor from the center of the eye, and vitreous substitutes are needed to replace the vitreous humor after vitrectomy. In the present study, we developed a colorless, transparent and injectable hydrogel with appropriate refractive index as a vitreous substitute. The hydrogel is formed by oxidated hyaluronic acid (oxi-HA) cross-linked with adipic acid dihydrazide (ADH). Hyaluronic acid (HA) was oxidized by sodium periodate to create aldehyde functional groups, which could be cross-linked by ADH. The refractive index of this hydrogel ranged between 1.3420 and 1.3442, which is quite similar to human vitreous humor (1.3345). The degradation tests demonstrated that the hydrogel could maintain the gel matrix over 35 days, depending on the ADH concentration. In addition, the cytotoxicity was evaluated on retina pigmented epithelium (RPE) cells cultivated following the ISO standard (tests for in vitro cytotoxicity), and the hydrogel was found to be non-toxic. In a preliminary animal study, the oxi-HA/ADH hydrogel was injected into the vitreous cavity of rabbit eyes. The evaluations of slit-lamp observation, intraocular pressure, cornea thickness and histological examination showed no significant abnormal biological reactions for 3 weeks. This study suggests that the injectable oxi-HA/ADH hydrogel should be a potential vitreous substitute. Koninklijke Brill NV, Leiden, 2011
Yottha Srithep; Alireza Javadi; Srikanth Pilla; Lih-Sheng Turng; Shaoqin Gong; Craig Clemons; Jun Peng
2011-01-01
Poly(ethylene terephthalate) (PET) resin is one of the most widely used thermoplastics, especially in packaging. Because thermal and hydrolytic degradations, recycled PET (RPET) exhibits poor mechanical properties and lacks moldability. The effects of adding elastomeric modifiers, chain extenders (CE), and poly(butylenes adipate-co-terephthalate), PBAT, as a toughener...
Romero, C; Abdallh, M E; Powers, W; Angel, R; Applegate, T J
2012-05-01
Effects of dietary adipic acid (0 vs. 1%) and corn dried distillers grains with solubles (DDGS; 0 vs. 20%) were evaluated on hen performance and egg characteristics from 26 to 34 wk of age. Four isocaloric and isonitrogenous diets were randomly assigned to blocks of 6 consecutive cages (36 cages per diet; 2 hens per cage). On wk 2 and 7 of the experiment, excreta were collected by cage block, mixed, and equally split into 2 containers. Sodium bisulfate (SBS) was spread (8.8 kg/100 m(2)) on the top surface of half of the containers. All containers were stored uncovered for 14 d at room temperature. Excreta pH, DM, and N content were measured on d 0, 7, and 14 of storage. Feed intake (112 g/d per hen), egg production (96.1%), and egg specific gravity (1.079 g/g) were not affected by diet. On excreta collection day, a synergy (P = 0.014) between dietary adipic acid and DDGS was detected, as the lowest excreta pH was obtained with the diet including both adipic acid and DDGS. On d 7 of storage, excreta pH was still reduced by dietary adipic acid (P = 0.046) and DDGS (P < 0.001), but a week later, only dietary DDGS decreased excreta pH (8.91 vs. 9.21; P < 0.001). Whereas dietary adipic acid had no influence on excreta N loss, excreta from hens fed 20% DDGS lost 19.7% more N (P = 0.039) during storage than hens not eating DDGS. Surface amendment of excreta with SBS increased excreta DM content, with the effect being even more marked on d 14 of storage (increase of 6.7 percentage units; P < 0.001), consistently decreased excreta pH during storage (P < 0.001) and reduced N loss by 26.1% for the 14 d of storage period.
Sashiwa, Hitoshi; Fukuda, Ryuji; Okura, Tetsuo; Sato, Shunsuke; Nakayama, Atsuyoshi
2018-01-01
The microbial degradation behavior of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and its compound with several polyesters such as poly(butylene adipate-co-telephtharate) (PBAT), poly(butylene succinate) (PBS), and polylactic acid (PLA) in seawater was tested by a biological oxygen demand (BOD) method. PHBHHx showed excellent biodegradation in seawater in this study. In addition, the biodegradation rate of several blends was much influenced by the weight ratio of PHBHHx in their blends and decreased in accordance with the decrement of PHBHHX ratio. The surface morphology of the sheet was important factor for controlling the biodegradation rate of PHBHHx-containing blends in seawater. PMID:29342118
Preparation of Nanocellulose Reinforced Chitosan Films, Cross-Linked by Adipic Acid
Falamarzpour, Pouria; Behzad, Tayebeh; Zamani, Akram
2017-01-01
Adipic acid, an abundant and nontoxic compound, was used to dissolve and cross-link chitosan. After the preparation of chitosan films through casting technique, the in situ amidation reaction was performed at 80–100 °C as verified by Fourier transform infrared (FT-IR). The reaction was accompanied by the release of water which was employed to investigate the reaction kinetics. Accordingly, the reaction rate followed the first-order model and Arrhenius equation, and the activation energy was calculated to be 18 kJ/mol. Furthermore, the mechanical properties of the chitosan films were comprehensively studied. First, optimal curing conditions (84 °C, 93 min) were introduced through a central composite design. In order to evaluate the effects of adipic acid, the mechanical properties of physically cross-linked (uncured), chemically cross-linked (cured), and uncross-linked (prepared by acetic acid) films were compared. The use of adipic acid improved the tensile strength of uncured and chemically cross-linked films more than 60% and 113%, respectively. Finally, the effect of cellulose nanofibrils (CNFs) on the mechanical performance of cured films, in the presence of glycerol as a plasticizer, was investigated. The plasticized chitosan films reinforced by 5 wt % CNFs showed superior properties as a promising material for the development of chitosan-based biomaterials. PMID:28208822
Preparation of Nanocellulose Reinforced Chitosan Films, Cross-Linked by Adipic Acid.
Falamarzpour, Pouria; Behzad, Tayebeh; Zamani, Akram
2017-02-13
Adipic acid, an abundant and nontoxic compound, was used to dissolve and cross-link chitosan. After the preparation of chitosan films through casting technique, the in situ amidation reaction was performed at 80-100 °C as verified by Fourier transform infrared (FT-IR). The reaction was accompanied by the release of water which was employed to investigate the reaction kinetics. Accordingly, the reaction rate followed the first-order model and Arrhenius equation, and the activation energy was calculated to be 18 kJ/mol. Furthermore, the mechanical properties of the chitosan films were comprehensively studied. First, optimal curing conditions (84 °C, 93 min) were introduced through a central composite design. In order to evaluate the effects of adipic acid, the mechanical properties of physically cross-linked (uncured), chemically cross-linked (cured), and uncross-linked (prepared by acetic acid) films were compared. The use of adipic acid improved the tensile strength of uncured and chemically cross-linked films more than 60% and 113%, respectively. Finally, the effect of cellulose nanofibrils (CNFs) on the mechanical performance of cured films, in the presence of glycerol as a plasticizer, was investigated. The plasticized chitosan films reinforced by 5 wt % CNFs showed superior properties as a promising material for the development of chitosan-based biomaterials.
Lim, Chae Woo; Lee, Sung Chul
2016-07-01
Abscisic acid (ABA) is a key phytohormone that regulates plant growth and developmental processes, including seed germination and stomatal closing. Here, we report the identification and functional characterization of a novel type 2C protein phosphatase, CaADIP1 (Capsicum annuum ABA and Drought-Induced Protein phosphatase 1). The expression of CaADIP1 was induced in pepper leaves by ABA, drought and NaCl treatments. Arabidopsis plants overexpressing CaADIP1 (CaADIP1-OX) exhibited an ABA-hyposensitive and drought-susceptible phenotype. We used a yeast two-hybrid screening assay to identify CaRLP1 (Capsicum annuum RCAR-Like Protein 1), which interacts with CaADIP1 in the cytoplasm and nucleus. In contrast to CaADIP1-OX plants, CaRLP1-OX plants displayed an ABA-hypersensitive and drought-tolerant phenotype, which was characterized by low levels of transpirational water loss and increased expression of stress-responsive genes relative to those of wild-type plants. In CaADIP1-OX/CaRLP1-OX double transgenic plants, ectopic expression of the CaRLP1 gene led to strong suppression of CaADIP1-induced ABA hyposensitivity during the germinative and post-germinative stages, indicating that CaADIP1 and CaRLP1 act in the same signalling pathway and CaADIP1 functions downstream of CaRLP1. Our results indicate that CaADIP1 and its interacting partner CaRLP1 antagonistically regulate the ABA-dependent defense signalling response to drought stress. © 2016 John Wiley & Sons Ltd.
Soto-Castro, Delia; Cruz-Morales, Jorge A; Ramírez Apan, María Teresa; Guadarrama, Patricia
2010-11-09
This study describes the synthesis of two new families of dendrimers based on the esterification of N-alkylated 3-amine-1-propanol with two different cores, adipic acid (1st and 2nd generations) and ethylenediamine (generation 1.5), both with carboxylic acid end groups, offering a wide variety of further modifications at the periphery. According to the cytotoxic evaluation of the dendrimers and their possible degradation products within cell lines, these materials could be considered as innocuous. In preliminary studies, the synthesized dendrimers proved to be potential enhancers of solubility of highly hydrophobic drugs, like methotrexate, widely used in chemotherapy.
Effect of milling on DSC thermogram of excipient adipic acid.
Ng, Wai Kiong; Kwek, Jin Wang; Yuen, Aaron; Tan, Chin Lee; Tan, Reginald
2010-03-01
The purpose of this research was to investigate why and how mechanical milling results in an unexpected shift in differential scanning calorimetry (DSC) measured fusion enthalpy (Delta(fus)H) and melting point (T(m)) of adipic acid, a pharmaceutical excipient. Hyper differential scanning calorimetry (hyper-DSC) was used to characterize adipic acid before and after ball-milling. An experimental study was conducted to evaluate previous postulations such as electrostatic charging using the Faraday cage method, crystallinity loss using powder X-ray diffraction (PXRD), thermal annealing using DSC, impurities removal using thermal gravimetric analysis (TGA) and Karl Fischer titration. DSC thermograms showed that after milling, the values of Delta(fus)H and T(m) were increased by approximately 9% and 5 K, respectively. Previous suggestions of increased electrostatic attraction, change in particle size distribution, and thermal annealing during measurements did not explain the differences. Instead, theoretical analysis and experimental findings suggested that the residual solvent (water) plays a key role. Water entrapped as inclusions inside adipic acid during solution crystallization was partially evaporated by localized heating at the cleaved surfaces during milling. The correlation between the removal of water and melting properties measured was shown via drying and crystallization experiments. These findings show that milling can reduce residual solvent content and causes a shift in DSC results.
Duan, J; Huo, X; Du, W J; Liang, J D; Wang, D Q; Yang, S C
2016-01-01
An anaerobic kraft lignin (KL)-degrading bacterial strain was isolated from sludge of a pulp and paper mill. It was characterized as Acetoanaerobium sp. WJDL-Y2 by 16S rRNA gene sequencing. The maximum KL degradation capability of strain Y2 was determined to be 24·9% on a COD basis under an optimal condition with temperature of 31·5°C, initial pH of 6·8 and KL to nitrogen (as NH4 Cl) ratio of 6·5 by mass. Growth kinetic studies showed that the KL tolerance of strain Y2 was relatively high (Ki = 8120·45 mg l(-1) ). Analysing KL degradation products by GC-MS revealed the formation of low-molecular-weight aromatic compounds (LMWACs), including benzene-propanoic acid, syringic acid and ferulic acid. This indicates that strain Y2 can oxidize lignin structure's p-hydroxyphenyl (H) units, guaiacyl (G) units and syringyl (S). In addition, the inoculated sample also contained low-molecular acid compounds, such as hexanoic acid, adipic acid and 2-hydroxybutyric acid, further validating strain Y2's ability to degrade KL. Kraft lignin containing effluents discharged from pulp and paper industries causes serious environmental pollution in developing countries. Due to the immense environmental adaptability and biochemical versatility, bacterial ligninolytic potential deserve to be studied for application in effluent treatment of pulp and paper industry. In this study, an anaerobic lignin-degrading bacterium, Acetoanaerobium sp. WJDL-Y2 (accession no. KF176997),was isolated from the sludge of a pulp and paper mill. Strain Y2 can play an important role in treating pulp and paper wastewater, as well as breaking down materials for biofuel and chemical production. © 2015 The Society for Applied Microbiology.
78 FR 33748 - Diisopropyl Adipate; Exemption From the Requirement of a Tolerance
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-05
... control. That document referenced a summary of the petition prepared by Technology Sciences Group Inc... the adipic acid treated groups were observed at the same levels as in the control groups... products intended for mosquito control. Wellmark International submitted a petition prepared by Technology...
Amended final report of the safety assessment of dibutyl adipate as used in cosmetics.
Andersen, Alan
2006-01-01
Dibutyl Adipate, the diester of butyl alcohol and adipic acid, functions as a plasticizer, skin-conditioning agent, and solvent in cosmetic formulations. It is reportedly used at a concentration of 5% in nail polish and 8% in suntan gels, creams, and liquids. Dibutyl Adipate is soluble in organic solvents, but practically insoluble in water. Dibutyl Adipate does not absorb radiation in the ultraviolet (UV) region of the spectrum. Dibutyl Adipate is not toxic in acute oral or dermal animal toxicity tests. In a subchronic dermal toxicity study, 1.0 ml/kg day-1 caused a significant reduction in body weight gain in rabbits, but 0.5 ml/kg/day1 was without effect. In a study with dogs, no adverse effects were observed when an emulsion containing 6.25% Dibutyl Adipate was applied to the entire body twice a week for 3 months. Dibutyl Adipate was tested for dermal irritation using rabbits and mice and a none to minimal irritation was observed. Dibutyl Adipate at a concentration of 25% was not a sensitizer in a guinea pig maximization study. Undiluted Dibutyl Adipate was minimally irritating to the eyes of rabbits and 0.1% was nonirritating. A significant increase in fetal gross abnormalities was observed in rats given intraperitoneal injections of Dibutyl Adipate at 1.75 ml/kg on 3 separate days during gestation, but no effect was seen in animals given 1.05 ml/kg. Dibutyl Adipate was not genotoxic in either bacterial or mammalian test systems. Clinical patch tests confirmed the absence of skin irritation found in animal tests. Clinical phototoxicity tests were negative. Dibutyl Adipate at 0.1% was not an ocular irritant in two male volunteers. In a clinical test of comedogenicity, Dibutyl Adipate produced no effect. The Cosmetic Ingredient Review (CIR) Expert Panel recognized that use of Dibutyl Adipate in suntan cosmetic products will result in repeated, frequent exposure in a leave-on product. The available data demonstrate no skin sensitization or cumulative skin irritation, no comedogenicity, and no genotoxicity. Combined with the data demonstrating little acute toxicity, no skin or ocular irritation, and no reproductive or developmental toxicity, these data form an adequate basis for reaching a conclusion that Dibutyl Adipate is safe as a cosmetic ingredient in the practices of use and concentrations as reflected in this safety assessment.
Larson, Reed T; Samant, Andrew; Chen, Jianbin; Lee, Woojin; Bohn, Martin A; Ohlmann, Dominik M; Zuend, Stephan J; Toste, F Dean
2017-10-11
The development of a system for the operationally simple, scalable conversion of polyhydroxylated biomass into industrially relevant feedstock chemicals is described. This system includes a bimetallic Pd/Re catalyst in combination with hydrogen gas as a terminal reductant and enables the high-yielding reduction of sugar acids. This procedure has been applied to the synthesis of adipate esters, precursors for the production of Nylon-6,6, in excellent yield from biomass-derived sources.
Siafaka, Panoraia I; Barmbalexis, Panagiotis; Bikiaris, Dimitrios N
2016-06-10
In the present work, a series of novel formulations consisting of poly(lactic acid)/poly(butylene adipate) (PLA/PBAd) electrospun blends was examined as controlled release matrices for Leflunomide's active metabolite, Teriflunomide (TFL). The mixtures were prepared using different ratios of PLA and PBAd in order to produce nanofibrous matrices with different characteristics. Miscibility studies of the blended polymeric fibers were performed through differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). Hydrolytic degradation in the prepared fibers was evaluated at 37°C using a phosphate buffered saline solution. Different concentrations of (TFL) (5, 10, 15wt.%) were incorporated into nanofibers for examining the drug release behavior in simulated body fluids (SBF), at 37°C. The drug-loaded nanofibrous formulations were further characterized by Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy, DSC and XRD. Gel permeation chromatography (GPC) analysis was used to evaluate the mechanism of TFL release. Artificial neural networks (ANN) and multi-linear-regression (MLR) models were used to evaluate the effect of % content of PBAd (X1) and TFL (X2) on an initial burst effect and a dissolution behavior. It was found that PLA/PBAd nanofibers have different diameters depending on the ratio of used polyesters and added drug. TFL was incorporated in an amorphous form inside the polymeric nanofibers. In vitro release studies reveal that a drug release behavior is correlated with the size of the nanofibers, drug loading and matrix degradation after a specific time. ANN dissolution modeling showed increased correlation efficacy compared to MLR. Copyright © 2016 Elsevier B.V. All rights reserved.
Driffield, M; Bradley, E L; Harmer, N; Castle, L; Klump, S; Mottier, P
2010-10-01
Polyadipate plasticizers can be present in the polyvinylchloride (PVC) gaskets used to seal the lids of glass jars. As the gaskets can come into direct contact with the foodstuffs inside the jar, the potential exists for polyadipate migration into the food. The procedure and performance characteristics of a test method for the analysis of polyadipates in food simulants (3% aqueous acetic acid and 10% aqueous ethanol) and the volatile test media used in substitute fat tests (isooctane and 95% aqueous ethanol) are described. The PVC gaskets were exposed to the food simulants or their substitutes under standard test conditions. Studies were initially carried out using direct measurement of the polyadipate oligomers by liquid chromatography with time-of-flight mass spectrometric detection (LC-TOF-MS) but this was not practical due to the number of peaks detected. Instead, the migrating polyadipates were hydrolysed to adipic acid and measured by liquid chromatography with tandem mass spectrometric detection (LC-MS/MS). The amount of polyadipate that this measurement of adipic acid represents was then calculated. Method performance was assessed by analysis of gaskets from two types of jar lids by single-laboratory validation. Linearity, sensitivity, repeatability, intermediate reproducibility and recovery were determined to be suitable for checking compliance with the 30 mg/kg specific migration limits for polyesters of 1,2-propane diol and/or 1,3- and/or 1,4-butanediol and/or polypropylene-glycol with adipic acid, which may be end-capped with acetic acid or fatty acids C(12)-C(18) or n-octanol and/or n-decanol. The method was found to be much quicker than previous methods involving extraction, clean-up, hydrolysis, esterification, derivatisation and GC measurement, consequently saving time and money.
NASA Astrophysics Data System (ADS)
Antonijević-Nikolić, Mirjana; Antić-Stanković, Jelena; Tanasković, Sladjana B.; Korabik, Maria J.; Gojgić-Cvijović, Gordana; Vučković, Gordana
2013-12-01
New cationic Cu(II) complexes with N, N‧, N″, N″‧-tetrakis(2-pyridylmethyl)-1,4,8,11-tetraazacyclotetradecane (tpmc) and aliphatic dicarboxylic acids: pentanedioic (glutaric acid = glutH2), hexanedioic acid (adipic acid = adipH2) and decanedioic acid (sebacic acid = sebH2) of general formula [Cu4(L)(tpmc)2](ClO4)6·xH2O, L = glut, x = 2; L = adip, x = 7; L = seb, x = 6 were isolated. Their composition and charges are proposed based on elemental analyses and molar conductivity measurements. By the comparison of their UV-Vis, reflectance, FTIR and EPR spectral data, CV and SQUID magnetic measurements, with those for the complex with butanedioic acid (succinic acid = succH2) of known molecular structure and analysis of LC/MS spectra, geometry with two [Cu2tpmc]4+ units bridged by dicarboxylate dianion engaging all oxygens is proposed. Within units, Cu(II) ions are also bridged with N portion of cyclam ring. All four complexes were screened to in vitro antimicrobial and cytotoxic activity along with free primary and secondary ligands, Cu(II) salt and solvent controls. Detected antibacterial and cytotoxic activity for the complexes was enhanced in most cases than the corresponding controls.
Rat urinary metabolites of [9,10-methylene-14C] sterculic acid.
Eisele, T A; Yoss, J K; Nixon, J E; PAwlowski, N E; Libbey, L M; Sinnhuber, R O
1977-07-20
1. The metabolism of [9,10-methylene-14C] sterculic acid was studied in corn oil and Stercula foetida oil fed rats. The majority of the radioactivity was excreted into the urine as short chain dicarboxylic acids. The main urinary metabolites were cis-3,4-methylene adipic acid, cis-3,4-methylene suberic acid, trans-3,4-methylene adipic acid, cis-3,4-methylene pimelic acid, and cis-3,4-methylene azelic acid. 2. Formation of these urinary metabolites requires alpha-, beta-, and omega-oxidation plus reduction of the cyclopropene ring to a cyclopropane ring. Sterculic acid must be transported through both mitochondrial and microsomal systems. 3. Other non-radioactive urinary compounds were also identified. A proposed pathway for the metabolism of sterculic acid and possible detrimental effects caused by these metabolites is discussed.
Swinton Darious, Robert; Thomas Muthiah, Packianathan; Perdih, Franc
2016-06-01
The asymmetric unit of the title co-crystal, C12H9N5O·0.5C6H10O4, consists of one mol-ecule of N (6)-benzoyl-adenine (BA) and one half-mol-ecule of adipic acid (AA), the other half being generated by inversion symmetry. The dihedral angle between the adenine and phenyl ring planes is 26.71 (7)°. The N (6)-benzoyl-adenine mol-ecule crystallizes in the N(7)-H tautomeric form with three non-protonated N atoms. This tautomeric form is stabilized by intra-molecular N-H⋯O hydrogen bonding between the carbonyl (C=O) group and the N(7)-H hydrogen atom on the Hoogsteen face of the purine ring, forming an S(7) ring motif. The two carboxyl groups of adipic acid inter-act with the Watson-Crick face of the BA mol-ecules through O-H⋯N and N-H⋯O hydrogen bonds, generating an R 2 (2)(8) ring motif. The latter units are linked by N-H⋯N hydrogen bonds, forming layers parallel to (10-5). A weak C-H⋯O hydrogen bond is also present, linking adipic acid mol-ecules in neighbouring layers, enclosing R (2) 2(10) ring motifs and forming a three-dimensional structure. C=O⋯π and C-H⋯π inter-actions are also present in the structure.
Characterization of naphthalene degradation by Streptomyces sp. QWE-5 isolated from active sludge.
Xu, Peng; Ma, Wencheng; Han, Hongjun; Hou, Baolin; Jia, Shengyong
2014-01-01
A bacterial strain, QWE-5, which utilized naphthalene as its sole carbon and energy source, was isolated and identified as Streptomyces sp. It was a Gram-positive, spore-forming bacterium with a flagellum, with whole, smooth, convex and wet colonies. The optimal temperature and pH for QWE-5 were 35 °C and 7.0, respectively. The QWE-5 strain was capable of completely degrading naphthalene at a concentration as high as 100 mg/L. At initial naphthalene concentrations of 10, 20, 50, 80 and 100 mg/L, complete degradation was achieved within 32, 56, 96, 120 and 144 h, respectively. Kinetics of naphthalene degradation was described using the Andrews equation. The kinetic parameters were as follows: qmax (maximum specific degradation rate) = 1.56 h⁻¹, Ks (half-rate constant) = 60.34 mg/L, and KI (substrate-inhibition constant) = 81.76 mg/L. Metabolic intermediates were identified by gas chromatography and mass spectrometry, allowing a new degradation pathway for naphthalene to be proposed. In this pathway, monooxygenation of naphthalene yielded naphthalen-1-ol. Further degradation by Streptomyces sp. QWE-5 produced acetophenone, followed by adipic acid, which was produced as a combination of decarboxylation and hydroxylation processes.
NASA Astrophysics Data System (ADS)
Broekhuizen, K.; Kumar, P. Pradeep; Abbatt, J. P. D.
2004-01-01
The ability of partially soluble organic species to act as cloud condensation nuclei (CCN) has been studied. A Köhler model incorporating solute solubility and droplet surface tension describes the behavior of solid adipic and succinic acid particles, whereas solid azelaic acid activates much more efficiently that predicted. In addition, it was shown that trace levels of either sulfate or surface active species have a dramatic effect on the activation of adipic acid, a moderately soluble organic, as predicted by the full Köhler model. For internally mixed particles in the atmosphere, these effects will greatly enhance the role of organic aerosols as CCN.
Che, Chi-Ming; Yip, Wing-Ping; Yu, Wing-Yiu
2006-09-18
A protocol that adopts aqueous hydrogen peroxide as a terminal oxidant and [(Me3tacn)(CF3CO2)2Ru(III)(OH2)]CF3CO2 (1; Me3tacn = 1,4,7-trimethyl-1,4,7-triazacyclononane) as a catalyst for oxidation of alkenes, alkynes, and alcohols to organic acids in over 80% yield is presented. For the oxidation of cyclohexene to adipic acid, the loading of 1 can be lowered to 0.1 mol %. On the one-mole scale, the oxidation of cyclohexene, cyclooctene, and 1-octanol with 1 mol % of 1 produced adipic acid (124 g, 85% yield), suberic acid (158 g, 91% yield), and 1-octanoic acid (129 g, 90% yield), respectively. The oxidative C=C bond-cleavage reaction proceeded through the formation of cis- and trans-diol intermediates, which were further oxidized to carboxylic acids via C-C bond cleavage.
21 CFR 177.2420 - Polyester resins, cross-linked.
Code of Federal Regulations, 2011 CFR
2011-04-01
... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only... this section: (1) Acids: Adipic. Fatty acids, and dimers thereof, from natural sources. Fumaric...
21 CFR 177.2420 - Polyester resins, cross-linked.
Code of Federal Regulations, 2010 CFR
2010-04-01
... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only... this section: (1) Acids: Adipic. Fatty acids, and dimers thereof, from natural sources. Fumaric...
NASA Astrophysics Data System (ADS)
Dirri, F.; Palomba, E.; Longobardo, A.; Zampetti, E.
2016-02-01
We present here a novel experimental set-up that is able to measure the enthalpy of sublimation of a given compound by means of piezoelectric crystal microbalances (PCMs). The PCM sensors have already been used for space measurements, such as for the detection of organic and non-organic volatile species and refractory materials in planetary environments. In Earth atmospherics applications, PCMs can be also used to obtain some physical-chemical processes concerning the volatile organic compounds (VOCs) present in atmospheric environments. The experimental set-up has been developed and tested on dicarboxylic acids. In this work, a temperature-controlled effusion cell was used to sublimate VOC, creating a molecular flux that was collimated onto a cold PCM. The VOC recondensed onto the PCM quartz crystal, allowing the determination of the deposition rate. From the measurements of deposition rates, it has been possible to infer the enthalpy of sublimation of adipic acid, i.e. ΔHsub : 141.6 ± 0.8 kJ mol-1, succinic acid, i.e. 113.3 ± 1.3 kJ mol-1, oxalic acid, i.e. 62.5 ± 3.1 kJ mol-1, and azelaic acid, i.e. 124.2 ± 1.2 kJ mol-1. The results obtained show an accuracy of 1 % for succinic, adipic, and azelaic acid and within 5 % for oxalic acid and are in very good agreement with previous works (within 6 % for adipic, succinic, and oxalic acid and within 11 % or larger for azelaic acid).
Formulation of itraconazole nanococrystals and evaluation of their bioavailability in dogs.
De Smet, Lieselotte; Saerens, Lien; De Beer, Thomas; Carleer, Robert; Adriaensens, Peter; Van Bocxlaer, Jan; Vervaet, Chris; Remon, Jean Paul
2014-05-01
The aim of the study is to increase the bioavailability of itraconazole (ITRA) using nanosized cocrystals prepared via wet milling of ITRA in combination with dicarboxylic acids. Wet milling was used in order to create a nanosuspension of ITRA in combination with dicarboxylic acids. After spray-drying and bead layering, solid state was characterized by MDSC, XRD, Raman and FT-IR. The release profiles and bioavailability of the nanococrystalline suspension, the spray-dried and bead layered formulation were evaluated. A monodisperse nanosuspension (549±51nm) of ITRA was developed using adipic acid and Tween®80. Solid state characterization indicated the formation of nanococrystals by hydrogen bounds between the triazole group of ITRA and the carboxyl group of adipic acid. A bioavailability study was performed in dogs. The faster drug release from the nanocrystal-based formulation was reflected in the in vivo results since Tmax of the formulations was obtained 3h after administration, while Tmax of the reference formulation was observed only 6h after administration. This fast release of ITRA was obtained by a dual concept: manufacturing of nanosized cocrystals of ITRA and adipic acid via wet milling. Formation of stable nanosized cocrystals via this approach seems a good alternative for amorphous systems to increase the solubility and obtain a fast drug release of BCS class II drugs. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thangavelu, Sonia G.; Cahill, Christopher L.
Four uranyl coordination polymers [UO2(C6H8O4)(H2O)2](C18H12N6)2 (1), [UO2(C8H4O4)(H2O)2](C18H12N6)2 (2), Na[(UO2)(C12H6O4)2](C18H13N6)·H2O (3), and Na[(UO2)(C16H8O4)(C6H3NO2)](C18H12N6)·H2O (4) containing aliphatic (adipic acid) or aromatic linkers (1,4-benzene dicarboxylic acid (BDC), 1,4-napthalene dicarboxylic acid (NDC), anthracene 9,10-dicarboxylic acid (ADC)) were synthesized and characterized using single crystal X-ray diffraction, powder X-ray diffraction, and luminescence spectroscopy. The π-stacking distances or the number of π–π interactions present between trispyridyltriazine (TPTZ) guests or the host framework in 1–4 may be affected by the size of the O-donor linker (adipic acid < BDC < NDC < ADC). Luminescence studies show that substitution between adipic acid and BDC influences the emission of 1more » and 2, in which the emission of 1 shows a red shift relative to that of 2. Uranyl emission was not observed in 3 and 4, and may be attributed to the position of the NDC and ADC triplet state relative to the emissive uranyl species.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thangavelu, Sonia G.; Cahill, Christopher L.
2016-01-06
Four uranyl coordination polymers [UO2(C6H8O4)(H2O)2](C18H12N6)2 (1), [UO2(C8H4O4)(H2O)2](C18H12N6)2 (2), Na[(UO2)(C12H6O4)2](C18H13N6)·H2O (3), and Na[(UO2)(C16H8O4)(C6H3NO2)](C18H12N6)·H2O (4) containing aliphatic (adipic acid) or aromatic linkers (1,4-benzene dicarboxylic acid (BDC), 1,4-napthalene dicarboxylic acid (NDC), anthracene 9,10-dicarboxylic acid (ADC)) were synthesized and characterized using single crystal X-ray diffraction, powder X-ray diffraction, and luminescence spectroscopy. The π-stacking distances or the number of π–π interactions present between trispyridyltriazine (TPTZ) guests or the host framework in 1–4 may be affected by the size of the O-donor linker (adipic acid < BDC < NDC < ADC). Luminescence studies show that substitution between adipic acid and BDC influences the emission of 1more » and 2, in which the emission of 1 shows a red shift relative to that of 2. Uranyl emission was not observed in 3 and 4, and may be attributed to the position of the NDC and ADC triplet state relative to the emissive uranyl species.« less
Yang, Xi; Xu, Huan; Odelius, Karin; Hakkarainen, Minna
2016-01-01
Plasticized polylactide (PLA) with increased crystallization ability and prolonged life-span in practical applications due to the minimal plasticizer migration was prepared. Branched plasticized PLA was successfully obtained by coupling poly(butylene succinate-co-adipate) (PBSA) to crotonic acid (CA) functionalized PLA. The plasticization behavior of PBSA coupled PLA (PLA-CA-PBSA) and its counterpart PBSA blended PLA (PLA/PBSA) were fully elucidated. For both PLA-CA-PBSA and PLA/PBSA, a decrease of Tg to around room temperature and an increase in the elongation at break of PLA from 14% to 165% and 460%, respectively, were determined. The crystallinity was increased from 2.1% to 8.4% for PLA/PBSA and even more, to 10.6%, for PLA-CA-PBSA. Due to the inherent poor miscibility between the PBSA and PLA, phase separation occurred in the blend, while PLA-CA-PBSA showed no phase separation which, together with the higher crystallinity, led to better oxygen barrier properties compared to neat PLA and PLA/PBSA. A higher resistance to migration during hydrolytic degradation for the PLA-CA-PBSA compared to the PLA/PBSA indicated that the plasticization effect of PBSA in the coupled material would be retained for a longer time period. PMID:28773437
NASA Astrophysics Data System (ADS)
Núñez-Santiago, María C.; Maristany-Cáceres, Amira J.; Suárez, Francisco J. García; Bello-Pérez, Arturo
2008-07-01
Rheological behavior at 60 °C, granule size distribution and Differential Scanning Calorimetry (DSC) tests were employed to study the effect of diverse reaction conditions: adipic acid concentration, pH and temperature during cross-linking of banana (Musa paradisiaca) starch. These properties were determined in native banana starch pastes for the purpose of comparison. Rheological behavior from pastes of cross-linked starch at 60 °C did not show hysteresis, probably due the cross-linkage of starch that avoided disruption of granules, elsewhere, native starch showed hysteresis in a thixotropic loop. All pastes exhibited non-Newtonian shear thinning behavior. In all cases, size distribution showed a decrease in the median diameter in cross-linked starches. This condition produces a decrease in swelling capacity of cross-linked starch. The median diameter decreased with an increase of acid adipic concentration; however, an increase of pH and Temperature produced an increase in this variable. Finally, an increase in gelatinization temperature and entalphy (ΔH) were observed as an effect of cross-linkage. An increase in acid adipic concentration produced an increase in Tonset and a decrease in ΔH. pH and temperature. The cross-linked of banana starch produced granules more resistant during the pasting procedure.
Engineering a Polyketide Synthase for In Vitro Production of Adipic Acid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagen, Andrew; Poust, Sean; Rond, Tristan de
2015-10-26
Polyketides have enormous structural diversity, yet polyketide synthases (PKSs) have thus far been engineered to produce only drug candidates or derivatives thereof. Thousands of other molecules, including commodity and specialty chemicals, could be synthesized using PKSs if composing hybrid PKSs from well-characterized parts derived from natural PKSs was more efficient. Here, using modern mass spectrometry techniques as an essential part of the design–build–test cycle, we engineered a chimeric PKS to enable production one of the most widely used commodity chemicals, adipic acid. To accomplish this, we introduced heterologous reductive domains from various PKS clusters into the borrelidin PKS’ first extensionmore » module, which we previously showed produces a 3-hydroxy-adipoyl intermediate when coincubated with the loading module and a succinyl-CoA starter unit. Acyl-ACP intermediate analysis revealed an unexpected bottleneck at the dehydration step, which was overcome by introduction of a carboxyacyl-processing dehydratase domain. Appending a thioesterase to the hybrid PKS enabled the production of free adipic acid. Using acyl-intermediate based techniques to “debug” PKSs as described here, it should one day be possible to engineer chimeric PKSs to produce a variety of existing commodity and specialty chemicals, as well as thousands of chemicals that are difficult to produce from petroleum feedstocks using traditional synthetic chemistry.« less
Babo, Pedro S; Reis, Rui L; Gomes, Manuela E
2016-11-01
Hyaluronic acid is the main polysaccharide present in the connective tissue. Besides its structural function as backbone of the extracellular matrix, hyaluronic acid plays staple roles in several biological processes including the modulation of inflammation and wound healing processes. The application of hyaluronic acid in regenerative medicine, either as cells and/or drug/growth factors delivery vehicles, relies on its ability to be cross-linked using a plethora of reactions, producing stable hydrogels. In this work, we propose a novel method for the production of hyaluronic acid microparticles that presents several advantages over others that have been used. Basically, droplets of hyaluronic acid solution produced with a nozzle are collected in an isopropanol dehydration bath, and stabilized after crosslinking with adipic acid dihydrazide, using a cabodiimide-based chemistry. The size and morphology of the hyaluronic acid microparticles produced by this method varied with the molecular weight and concentration of the hyaluronic acid solution, the nozzle chamber pressure, the distance between the nozzle and the crosslinking solution, and the number of crosslinking steps. The degree of crosslinking of the hyaluronic acid microparticles produced was tunable and allowed to control the rate of the degradation promoted by hyaluronidase. Moreover, the particles were loaded with platelet lysate, a hemoderivative rich in cytokines with interest for regenerative medicine applications. The hyaluronic acid microparticles showed potential to bind selectively to positively charged molecules, as the factors present in the platelet lysate. It is envisioned that these can be further released in a sustained manner by ion exchange or by the degradation of the hyaluronic acid microparticles matrix promoted by extracellular matrix remodeling. © The Author(s) 2016.
Corrosion-Resistant Alkyd Coatings
1992-02-18
molecule. Examples of such acid compounds include the aliphatic saturated dibasic acids such as succinic acid , adipic acid , azelaic acid , sebacic...of a benzoic acid . 15. SUBJECT TERMS corrosion control, single topcoat, one coat 16. SECURITY CLASSIFICATION OF: unclassified a. REPORT...consisting essentially of critical amounts of at least one zinc phos- phate, zinc molybdate and at least one zinc salt of a benzoic acid . 15
NASA Astrophysics Data System (ADS)
Ferreira, F. V.; Mariano, M.; Rabelo, S. C.; Gouveia, R. F.; Lona, L. M. F.
2018-04-01
This work presents the isolation and functionalization of cellulose nanocrystals (CNCs) extracted from sugarcane bagasse (SCB). CNCs were obtained by acid hydrolysis of bleached bagasse pulp and functionalized with adipic acid. The results showed that unmodified CNCs exhibit both a high crystallinity index and a significant aspect ratio. Surface modification with adipic acid decreases the nanocrystal dimensions due to removal of the amorphous region between the crystalline domains and also changes the electrostatic repulsion and hydrophilic affinity of CNCs. Unmodified CNCs offer potential applications as reinforcing phase in hydrophilic polymeric matrices, while modified CNCs interact better with hydrophobic matrices. The use of CNCs as reinforcement in polymer nanocomposites expands the application of this renewable material and increases its added value, providing nonenergy-based markets for the main biomass of the sugarcane industry.
9 CFR 319.700 - Margarine or oleomargarine. 1
Code of Federal Regulations, 2013 CFR
2013-01-01
... esterified with any or all of the following acids: acetic, acetyltartaric, citric, lactic, tartaric, and... sufficient for purpose: adipic acid; citric and lactic acids and their potassium and sodium salts; phosphoric...) Vitamin D in such quantity that the finished margarine or oleomargarine contains not less than 1,500 IU of...
9 CFR 319.700 - Margarine or oleomargarine. 1
Code of Federal Regulations, 2012 CFR
2012-01-01
... esterified with any or all of the following acids: acetic, acetyltartaric, citric, lactic, tartaric, and... sufficient for purpose: adipic acid; citric and lactic acids and their potassium and sodium salts; phosphoric...) Vitamin D in such quantity that the finished margarine or oleomargarine contains not less than 1,500 IU of...
9 CFR 319.700 - Margarine or oleomargarine. 1
Code of Federal Regulations, 2014 CFR
2014-01-01
... esterified with any or all of the following acids: acetic, acetyltartaric, citric, lactic, tartaric, and... sufficient for purpose: adipic acid; citric and lactic acids and their potassium and sodium salts; phosphoric...) Vitamin D in such quantity that the finished margarine or oleomargarine contains not less than 1,500 IU of...
21 CFR 184.1009 - Adipic acid.
Code of Federal Regulations, 2014 CFR
2014-04-01
...-butanedicarboxylic acid or hexane-dioic acid. It is prepared by nitric acid oxidation of cyclohexanol or....3(n)(1) of this chapter; 0.005 percent for nonalcoholic beverages as defined in § 170.3(n)(3) of this chapter; 5.0 percent for condiments and relishes as defined in § 170.3(n)(8) of this chapter; 0.45...
40 CFR Table A-3 to Subpart A of... - Source Category List for § 98.2(a)(1)
Code of Federal Regulations, 2014 CFR
2014-07-01
... that report CO2 mass emissions year round through 40 CFR part 75 (subpart D). Adipic acid production...). Lime manufacturing (subpart S). Nitric acid production (subpart V). Petrochemical production (subpart X). Petroleum refineries (subpart Y). Phosphoric acid production (subpart Z). Silicon carbide production...
Lee, Ming-Chieh; Liu, En-Jung; Yang, Cheng-Han; Hsiao, Li-Jung; Wu, Tzong-Ming; Li, Si-Yu
2018-04-01
Whole-cell degradation of polyesters not only avoids the tedious process of enzyme separation, but also allows the degraded product to be reused as a carbon source. In this study, Escherichia coli BL21(DE3) harboring phaZ Cma , a gene encoding poly(3-hydroxybutyrate) (PHB) depolymerase from Caldimonas manganoxidans, is constructed. The extra-cellular fraction of E. coli/pPHAZ exhibits a fast PHB degradation rate where it only took 35 h to completely degrade PHB films, while C. manganoxidans takes 81 h to do the same. The co-expression of ORF Cma (a putative periplasmic substrate binding protein that is within the same operon of phaZ Cma ) further improves the PHB degradation. While 28 h is needed for E. coli/pPHAZ to cause an 80% weight loss in PHB films, E. coli/pORFPHAZ needs only 21 h. Furthermore, it is able to degrade at-least four different polyesters, PHB, poly(lactic acid) (PLA), polycaprolactone (PCL), and poly(butylene succinate-co-adipate) (PBSA). Testing of the time course of 3-hydroxybutyrate concentration and the turbidity of the degradation solutions over time shows that PhaZ Cma has both exo- and endo-enzymatic activity. The whole-cell E. coli/pORFPHAZ can be used for recycling various polyesters while ORF Cma can potentially be a universal element for enhancing the secretion of recombinant protein. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Edlund, U; Albertsson, A C; Singh, S K; Fogelberg, I; Lundgren, B O
2000-05-01
Biodegradable blends of poly(trimethylene carbonate) (PTMC) and poly(adipic anhydride) (PAA) have been proven to be strong candidates for controlled drug delivery polymers in vitro. We now report on the stability, sterilizability and in vivo local tissue response of these matrices. Blend matrices were sterilized by beta-radiation or ethylene oxide gas treatment, stored at different times and temperatures, and analyzed for changes in physicochemical properties. Moisture uptake at different relative humidities and storage times was determined. Sterilization procedures induced hydrolysis of the matrices. Ethylene oxide gas sterilization had a significantly more marked effect upon the matrix properties than radiation treatment. The onset of degradation was reflected in a decrease of crystallinity and molecular weight along with a change of blend composition. A similar onset of matrix degradation was observed upon storage in air. The physicochemical properties of the blends were well preserved upon storage under argon atmosphere. Biocompatibility of PTMC/PAA implants was assessed in the anterior chamber of rabbits eyes for 1 month. At selected post-operative time points, aqueous humor was analyzed for white blood cells and the corneal thickness was measured. The results suggest good biocompatability of PTMC-rich matrices, whereas fast eroding PAA-rich matrices caused inflammatory responses, due to a burst release of degradation products.
21 CFR 184.1009 - Adipic acid.
Code of Federal Regulations, 2011 CFR
2011-04-01
... also known as 1,4-butanedicarboxylic acid or hexane-dioic acid. It is prepared by nitric acid oxidation... as defined in § 170.3(n)(1) of this chapter; 0.005 percent for nonalcoholic beverages as defined in § 170.3(n)(3) of this chapter; 5.0 percent for condiments and relishes as defined in § 170.3(n)(8) of...
21 CFR 184.1009 - Adipic acid.
Code of Federal Regulations, 2012 CFR
2012-04-01
... also known as 1,4-butanedicarboxylic acid or hexane-dioic acid. It is prepared by nitric acid oxidation... as defined in § 170.3(n)(1) of this chapter; 0.005 percent for nonalcoholic beverages as defined in § 170.3(n)(3) of this chapter; 5.0 percent for condiments and relishes as defined in § 170.3(n)(8) of...
21 CFR 184.1009 - Adipic acid.
Code of Federal Regulations, 2010 CFR
2010-04-01
... also known as 1,4-butanedicarboxylic acid or hexane-dioic acid. It is prepared by nitric acid oxidation... as defined in § 170.3(n)(1) of this chapter; 0.005 percent for nonalcoholic beverages as defined in § 170.3(n)(3) of this chapter; 5.0 percent for condiments and relishes as defined in § 170.3(n)(8) of...
21 CFR 184.1009 - Adipic acid.
Code of Federal Regulations, 2013 CFR
2013-04-01
... also known as 1,4-butanedicarboxylic acid or hexane-dioic acid. It is prepared by nitric acid oxidation... as defined in § 170.3(n)(1) of this chapter; 0.005 percent for nonalcoholic beverages as defined in § 170.3(n)(3) of this chapter; 5.0 percent for condiments and relishes as defined in § 170.3(n)(8) of...
Weber, Christian; Brückner, Christine; Weinreb, Sheila; Lehr, Claudia; Essl, Christine; Boles, Eckhard
2012-12-01
Adipic acid is a high-value compound used primarily as a precursor for the synthesis of nylon, coatings, and plastics. Today it is produced mainly in chemical processes from petrochemicals like benzene. Because of the strong environmental impact of the production processes and the dependence on fossil resources, biotechnological production processes would provide an interesting alternative. Here we describe the first engineered Saccharomyces cerevisiae strain expressing a heterologous biosynthetic pathway converting the intermediate 3-dehydroshikimate of the aromatic amino acid biosynthesis pathway via protocatechuic acid and catechol into cis,cis-muconic acid, which can be chemically dehydrogenated to adipic acid. The pathway consists of three heterologous microbial enzymes, 3-dehydroshikimate dehydratase, protocatechuic acid decarboxylase composed of three different subunits, and catechol 1,2-dioxygenase. For each heterologous reaction step, we analyzed several potential candidates for their expression and activity in yeast to compose a functional cis,cis-muconic acid synthesis pathway. Carbon flow into the heterologous pathway was optimized by increasing the flux through selected steps of the common aromatic amino acid biosynthesis pathway and by blocking the conversion of 3-dehydroshikimate into shikimate. The recombinant yeast cells finally produced about 1.56 mg/liter cis,cis-muconic acid.
NASA Astrophysics Data System (ADS)
Tran, Ngoc K.; Steinberg, Spencer M.; Johnson, Brian J.
Concentrations of benzene, toluene, ethylbenzene, o-xylene, and m- and p-xylene were measured at an urban sampling site in Las Vegas, NV by sorbent sampling followed by thermal desorption and determination by GC-PID. Simultaneously, measurements of oxalic, malonic, succinic, and adipic acids were made at the same site by collection on quartz filters, extraction, esterification, and determination by GC-FID. For the period from April 7, 1997 to June 11, 1997, 201 sets of hydrocarbon measurements and 99 sets of acid measurements were made. Additional measurements of dicarboxylic acids were made on samples that represented potential direct sources, e.g. green plants and road dust. Correlations between the hydrocarbon and CO concentrations (measured by the Clark County Health District at a nearby site) were highly significant and a strong negative correlation of hydrocarbon concentration with ozone concentration (also from the county site) was observed under quiescent atmospheric conditions. In general, dicarboxylic acid concentrations were well correlated with one another (with the exception of adipic acid) but not well correlated with hydrocarbon, CO, and ozone concentrations. Multiple sources and complex formation processes are indicated for the dicarboxylic acids.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-03
... of pesticide use in residential settings. If EPA is able to determine that a finite tolerance is not... environment. 2. The polymer does contain as an integral part of its composition the atomic elements carbon... impurities, any element other than those listed in 40 CFR 723.250(d)(2)(ii). 4. The polymer is neither...
Westman, Gunnar; Eriksson, Leif A.; Mapelli, Valeria
2018-01-01
The biobased production of adipic acid, a precursor in the production of nylon, is of great interest in order to replace the current petrochemical production route. Glucose-rich lignocellulosic raw materials have high potential to replace the petrochemical raw material. A number of metabolic pathways have been proposed for the microbial conversion of glucose to adipic acid, but achieved yields and titers remain to be improved before industrial applications are feasible. One proposed pathway starts with lysine, an essential metabolite industrially produced from glucose by microorganisms. However, the drawback of this pathway is that several reactions are involved where there is no known efficient enzyme. By changing the order of the enzymatic reactions, we were able to identify an alternative pathway with one unknown enzyme less compared to the original pathway. One of the reactions lacking known enzymes is the reduction of the unsaturated α,β bond of 6-amino-trans-2-hexenoic acid and trans-2-hexenedioic acid. To identify the necessary enzymes, we selected N-ethylmaleimide reductase from Escherichia coli and Old Yellow Enzyme 1 from Saccharomyces pastorianus. Despite successful in silico docking studies, where both target substrates could fit in the enzyme pockets, and hydrogen bonds with catalytic residues of both enzymes were predicted, no in vitro activity was observed. We hypothesize that the lack of activity is due to a difference in electron withdrawing potential between the naturally reduced aldehyde and the carboxylate groups of our target substrates. Suggestions for protein engineering to induce the reactions are discussed, as well as the advantages and disadvantages of the two metabolic pathways from lysine. We have highlighted bottlenecks associated with the lysine pathways, and proposed ways of addressing them. PMID:29474495
Sun, Huanli; Cheng, Ru; Deng, Chao; Meng, Fenghua; Dias, Aylvin A; Hendriks, Marc; Feijen, Jan; Zhong, Zhiyuan
2015-02-09
A novel and versatile family of enzymatically and reductively degradable α-amino acid-based poly(ester amide)s (SS-PEAs) were developed from solution polycondensation of disulfide-containing di-p-toluenesulfonic acid salts of bis-l-phenylalanine diesters (SS-Phe-2TsOH) with di-p-nitrophenyl adipate (NA) in N,N-dimethylformamide (DMF). SS-PEAs with Mn ranging from 16.6 to 23.6 kg/mol were obtained, depending on NA/SS-Phe-2TsOH molar ratios. The chemical structures of SS-PEAs were confirmed by (1)H NMR and FTIR spectra. Thermal analyses showed that the obtained SS-PEAs were amorphous with a glass transition temperature (Tg) in the range of 35.2-39.5 °C. The in vitro degradation studies of SS-PEA films revealed that SS-PEAs underwent surface erosion in the presence of 0.1 mg/mL α-chymotrypsin and bulk degradation under a reductive environment containing 10 mM dithiothreitol (DTT). The preliminary cell culture studies displayed that SS-PEA films could well support adhesion and proliferation of L929 fibroblast cells, indicating that SS-PEAs have excellent cell compatibility. The nanoparticles prepared from SS-PEA with PVA as a surfactant had an average size of 167 nm in phosphate buffer (PB, 10 mM, pH 7.4). SS-PEA nanoparticles while stable under physiological environment undergo rapid disintegration under an enzymatic or reductive condition. The in vitro drug release studies showed that DOX release was accelerated in the presence of 0.1 mg/mL α-chymotrypsin or 10 mM DTT. Confocal microscopy observation displayed that SS-PEA nanoparticles effectively transported DOX into both drug-sensitive and -resistant MCF-7 cells. MTT assays revealed that DOX-loaded SS-PEA nanoparticles had a high antitumor activity approaching that of free DOX in drug-sensitive MCF-7 cells, while more than 10 times higher than free DOX in drug-resistant MCF-7/ADR cells. These enzymatically and reductively degradable α-amino acid-based poly(ester amide)s have provided an appealing platform for biomedical technology in particular controlled drug delivery applications.
Copolymerization modification of poly (butylene itaconate)
NASA Astrophysics Data System (ADS)
Gao, Chuanhui; Wang, Jing; Han, Shijian; Hu, Zunfu; Liu, Yuetao
2017-08-01
A series of copolyesters-poly (butylene itaconate) (PBI) was synthesized by melt polycondensation from itaconic acid (IA) and 1,4-butanediol (BDO). On this basis, dimethyl terephthalate (DMT), adipic acid (AP) and sebacic acid (SA), respectively, was selected as the third comonomer component to modify PBI to poly (butylene itaconate-co-butylene terephthalate) (PBIT), poly (butylene itaconate-co-butylene adipate) (PBIA) and (butylene itaconate-co-butylene sebacate) (PBIS), of which structure and physical properties were characterized by FT-IR, 1H-NMR, GPC, DSC and TG. The results showed that PBI was amorphous material, and the molecular weight and the initial thermal decomposition temperature of PBI were 1108, 244°C, respectively. Compared to PBI, the molecular weight and the thermal stability of copolyesters (PBIA, PBIT and PBIS) could be increased by this treatment. Particularly, the molecular weight of PBIS was increased to 12,321, 12 times more than PBI, the initial thermal decomposition temperature was improved to 336°C, and PBIS had good crystallization performance.
Thomas, J M; Raja, R; Sankar, G; Bell, R G
2001-03-01
Framework-substituted, molecular-sieve, aluminophosphate, microporous solids are the centerpieces of a new approach to the aerobic oxyfunctionalization of saturated hydrocarbons. The sieves, and the few percent of the Al(III) sites within them that are replaced by catalytically active, transition-metal ions in high oxidation states (Co(III), Mn(III), Fe(III)), are designed so as to allow free access of oxygen in to and out of the interior of these high-area solids. Certain metal-substituted, molecular sieves permit only end-on approach of linear alkanes to the active centers, thereby favoring enhanced reactivity of the terminal methyl groups. By optimizing cage dimension, with respect to that of the hydrocarbon reactant, as well as adjusting the average separation of active centers within a cage, and by choosing the sieve with the appropriate pore aperture, highly selective conversions such as n-hexane to hexanoic acid or adipic acid, and cyclohexane to cyclohexanol, cyclohexanone, or adipic acid, may be effected at low temperature, heterogeneously in air.
1987-06-01
polyethylene. The plexiglass is a polymethyl methacrylate and the acrylic is a polymethacrylate . The polyamide(nylon) is made with adipic acid and hexamethylene...are made with acrylic acid . It was not sur- prizing to see both exhibiting similar absorption characteristics atleast 30 times higher than
Poly(glycerol adipate) - indomethacin drug conjugates - synthesis and in vitro characterization.
Wersig, T; Hacker, M C; Kressler, J; Mäder, K
2017-10-05
The linear biodegradable polyester poly(glycerol adipate) (PGA) was synthesized via enzymatic polycondensation using lipase B from Candida antarctica (CAL-B). Every monomer unit of PGA possesses a pendant hydroxyl group which is responsible for the hydrophilic character and moisture swelling. These OH groups were esterified to different degrees with the anti-inflammatory drug indomethacin in order to create a prodrug with a pH-sensitive linker for modified drug release. The structure of the conjugates was determined via ATR FT-IR spectroscopy, NMR spectroscopy, GPC and UV/VIS spectroscopy. The physical properties of polymers with different drug load were investigated using DSC, contact angle measurements and oscillatory rheology. Drug release was monitored over one month in vitro. A very slow, but continuous release was observed in PBS. Slightly acidic conditions and lipase activity are accelerating the indomethacin release. Therefore, poly(glycerol adipate) - indomethacin conjugates are promising prodrugs for the local sustained release of indomethacin. Copyright © 2017 Elsevier B.V. All rights reserved.
Presidential Green Chemistry Challenge: 1998 Academic Award (Draths and Frost)
Presidential Green Chemistry Challenge 1998 award winners, Dr. Karen M. Draths and Professor John W. Frost, used benign, genetically engineered microbes and sugars (instead of benzene) to synthesize adipic acid and catechol.
Shah, Ziaullah; Krumholz, Lee; Aktas, Deniz Fulya; Hasan, Fariha; Khattak, Mutiullah; Shah, Aamer Ali
2013-11-01
A polyurethane (PU) degrading bacterial strain MZA-75 was isolated from soil through enrichment technique. The bacterium was identified through 16S rRNA gene sequencing, the phylogenetic analysis indicated the strain MZA-75 belonged to genus Bacillus having maximum similarity with Bacillus subtilis strain JBE0016. The degradation of PU films by strain MZA-75 in mineral salt medium (MSM) was analyzed by scanning electron microscopy (SEM), fourier transform infra-red spectroscopy (FT-IR) and gel permeation chromatography (GPC). SEM revealed the appearance of widespread cracks on the surface. FTIR spectrum showed decrease in ester functional group. Increase in polydispersity index was observed in GPC, which indicates chain scission as a result of microbial treatment. CO2 evolution and cell growth increased when PU was used as carbon source in MSM in Sturm test. Increase in both cell associated and extracellular esterases was observed in the presence of PU indicated by p-Nitrophenyl acetate (pNPA) hydrolysis assay. Analysis of cell free supernatant by gas chromatography-mass spectrometry (GC-MS) revealed that 1,4-butanediol and adipic acid monomers were produced. Bacillus subtilis strain MZA-75 can degrade the soft segment of polyester polyurethane, unfortunately no information about the fate of hard segment could be obtained. Growth of strain MZA-75 in the presence of these metabolites indicated mineralization of ester hydrolysis products into CO2 and H2O.
NASA Astrophysics Data System (ADS)
Smith, Jonell N.; V. White, Gregory; White, Michael I.; Bernstein, Robert; Hochrein, James M.
2012-09-01
Aged materials, such as polymers, can exhibit modifications to their chemical structure and physical properties, which may render the material ineffective for its intended purpose. Isotopic labeling was used to characterize low-molecular weight volatile thermal-oxidative degradation products of nylon 6.6 in an effort to better understand and predict changes in the aged polymer. Headspace gas from aged (up to 243 d at 138 °C) nylon 6.6 monomers (adipic acid and 1,6-hexanediamine) and polymer were preconcentrated, separated, and detected using cryofocusing gas chromatography mass spectrometry (cryo-GC/MS). Observations regarding the relative concentrations observed in each chromatographic peak with respect to aging time were used in conjunction with mass spectra for samples aged under ambient air to determine the presence and identity of 18 degradation products. A comparison of the National Institute of Standards and Technology (NIST) library, unlabeled, and isotopically labeled mass spectra (C-13 or N-15) and expected fragmentation pathways of each degradation product were used to identify the location of isotopically labeled atoms within the product's chemical structure, which can later be used to determine the exact origin of the species. In addition, observations for unlabeled nylon 6.6 aged in an O-18 enriched atmosphere were used to determine if the source of oxygen in the applicable degradation products was from the gaseous environment or the polymer. Approximations for relative isotopic ratios of unlabeled to labeled products are reported, where appropriate.
21 CFR 74.3102 - FD&C Blue No. 2.
Code of Federal Regulations, 2012 CFR
2012-04-01
... copolymer of adipic acid and hexamethylene diamine) surgical sutures for use in general surgery subject to... Food, Drug, and Cosmetic Act with respect to the medical device in which the color additive FD&C Blue...
21 CFR 74.3102 - FD&C Blue No. 2.
Code of Federal Regulations, 2011 CFR
2011-04-01
... copolymer of adipic acid and hexamethylene diamine) surgical sutures for use in general surgery subject to... Food, Drug, and Cosmetic Act with respect to the medical device in which the color additive FD&C Blue...
21 CFR 74.3102 - FD&C Blue No. 2.
Code of Federal Regulations, 2014 CFR
2014-04-01
... copolymer of adipic acid and hexamethylene diamine) surgical sutures for use in general surgery subject to... Food, Drug, and Cosmetic Act with respect to the medical device in which the color additive FD&C Blue...
21 CFR 74.3102 - FD&C Blue No. 2.
Code of Federal Regulations, 2013 CFR
2013-04-01
... copolymer of adipic acid and hexamethylene diamine) surgical sutures for use in general surgery subject to... Food, Drug, and Cosmetic Act with respect to the medical device in which the color additive FD&C Blue...
1990-09-01
propellants in a number of Defense systems (1-3). These include: polyneopentyl glycol azelate (NPGA) in HAWK; hydroxy-terminated polybutadiene (HTPB) in VIPER...PATRIOT, MET ROCKET, GSRS, PERSHING, and HELLFIRE; polybutadiene acrylic acid (PBAA) in PERSHING and SPARTAN; and polyethylene glycol (PEG...mixtures of this with polybutadiene acrylic acid ; polyethylene glycol + polyethylene glycol adipate; etc.). Furthermore, yet to be explored in any detail
Phyllosphere yeasts rapidly break down biodegradable plastics
2011-01-01
The use of biodegradable plastics can reduce the accumulation of environmentally persistent plastic wastes. The rate of degradation of biodegradable plastics depends on environmental conditions and is highly variable. Techniques for achieving more consistent degradation are needed. However, only a few microorganisms involved in the degradation process have been isolated so far from the environment. Here, we show that Pseudozyma spp. yeasts, which are common in the phyllosphere and are easily isolated from plant surfaces, displayed strong degradation activity on films made from poly-butylene succinate or poly-butylene succinate-co-adipate. Strains of P. antarctica isolated from leaves and husks of paddy rice displayed strong degradation activity on these films at 30°C. The type strain, P. antarctica JCM 10317, and Pseudozyma spp. strains from phyllosphere secreted a biodegradable plastic-degrading enzyme with a molecular mass of about 22 kDa. Reliable source of biodegradable plastic-degrading microorganisms are now in our hands. PMID:22126328
Phyllosphere yeasts rapidly break down biodegradable plastics.
Kitamoto, Hiroko K; Shinozaki, Yukiko; Cao, Xiao-Hong; Morita, Tomotake; Konishi, Masaaki; Tago, Kanako; Kajiwara, Hideyuki; Koitabashi, Motoo; Yoshida, Shigenobu; Watanabe, Takashi; Sameshima-Yamashita, Yuka; Nakajima-Kambe, Toshiaki; Tsushima, Seiya
2011-11-29
The use of biodegradable plastics can reduce the accumulation of environmentally persistent plastic wastes. The rate of degradation of biodegradable plastics depends on environmental conditions and is highly variable. Techniques for achieving more consistent degradation are needed. However, only a few microorganisms involved in the degradation process have been isolated so far from the environment. Here, we show that Pseudozyma spp. yeasts, which are common in the phyllosphere and are easily isolated from plant surfaces, displayed strong degradation activity on films made from poly-butylene succinate or poly-butylene succinate-co-adipate. Strains of P. antarctica isolated from leaves and husks of paddy rice displayed strong degradation activity on these films at 30°C. The type strain, P. antarctica JCM 10317, and Pseudozyma spp. strains from phyllosphere secreted a biodegradable plastic-degrading enzyme with a molecular mass of about 22 kDa. Reliable source of biodegradable plastic-degrading microorganisms are now in our hands.
Akapo, Samuel O.; Syed, Sajid; Mamangun, Anicia; Skinner, Wayne
2009-01-01
Laminated aluminum foils are increasingly being used to protect drug products packaged in semipermeable containers (e.g., low-density polyethylene (LDPE)) from degradation and/or evaporation. The direct contact of such materials with primary packaging containers may potentially lead to adulteration of the drug product by extractable or leachable compounds present in the closure system. In this paper, we described a simple and reliable HPLC method for analysis of an aqueous extract of laminated aluminum foil overwrap used for packaging LDPE vials filled with aqueous pharmaceutical formulations. By means of combined HPLC-UV, GC/MS, LC/MS/MS, and NMR spectroscopy, the two major compounds detected in the aqueous extracts of the representative commercial overwraps were identified as cyclic oligomers with molecular weights of 452 and 472 and are possibly formed from poly-condensation of the adhesive components, namely, isophthalic acid, adipic acid, and diethylene glycol. Lower molecular weight compounds that might be associated with the “building blocks” of these compounds were not detected in the aqueous extracts. PMID:20140083
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-26
.......... 325199 Adipic acid manufacturing facilities. Aluminum Production 331312 Primary Aluminum production.... Cement Production 327310 Portland Cement manufacturing plants. Ferroalloy Production........ 331112 Ferroalloys manufacturing facilities. Glass Production 327211 Flat glass manufacturing facilities. 327213...
40 CFR 52.222 - Negative declarations.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Mojave Desert Air Quality Management District. (i) Natural Gas and Gasoline Processing Equipment and...) Sacramento Metropolitan Air Quality Management District. (i) Plastic Parts Coating: Business Machines and...) Sacramento Metropolitan Air Quality Management District. (i) Nitric and Adipic Acid Manufacturing Plants...
By-products of electrochemical synthesis of suberic acid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirobokova, O.I.; Adamov, A.A.; Freidlin, G.N.
By-products of the electrochemical synthesis of dimethyl suberate from glutaric anhydride were studied. This is isolated by thermal dehydration of a mixture of lower dicarboxylic acids that are wastes from the production of adipic acid. To isolate the by-products, they used the methods of vacuum rectification and preparative gas-liquid chromatography, and for their identification, PMR, IR spectroscopy, gas-liquid chromatography, and other known physicochemical methods of investigation.
Burgot, J L
1978-04-01
Maleic, fumaric, tartaric, glutaric and adipic acids are titrated directly with sodium hydroxide by means of an automatic thermometric titrimeter. The titration curves have two break-points, corresponding to the successive neutralization of the two acid groups. Previous standardization permits measurement of the heats of neutralization, from which the enthalpies of dissociation can be deduced. From 0.3 to 1 mmole of acid can be titrated with a relative standard deviation of about 3%.
Mize, Todd H; Simonsick, William J; Amster, I Jonathan
2003-01-01
Two homopolyesters, poly(neopentyl glycol-alt-isophthalic acid) and poly(hexanediol-alt-azelaic acid), and two copolyesters, poly(dipropoxylated bisphenol-A-alt-(isophthalic acid-co-adipic acid)) and poly(neopentyl glycol-alt-(adipic acid-co-isophthalic acid)) were analyzed by internal source matrix assisted laser desorption/ionization Fourier transform mass spectrometry (MALDI-FTMS). The high resolution and high mass accuracy provided by FTMS greatly facilitate the characterization of the polyester and copolyester samples. Isobaric resolution allows the ion abundances of overlapping isotopic envelopes to be assessed. Repeat units were confirmed and end functionality assigned. Single shot mass spectra of the entire polymeric distribution demonstrate that the dynamic range of this internal MALDI source instrument and the analyzer cell exceeds performance of those previously reported for higher field instruments. Corrections of space charge mass shift effects are demonstrated for the analytes using an external calibrant and (subsequent to confirmation of structure) via internal calibration which removes ambiguity due to space charge differences in calibrant and analyte spectra. Capillary gel permeation chromatography was used to prepare low polydispersity samples from a high polydispersity polyester, improving the measurement of molecular weight distribution two-fold while retaining the benefits of high resolution mass spectrometry for elucidation of oligomer identity.
Technical Report for the Period 1 January 1963 to 30 June 1963
1963-08-23
mixed mononitrates with periodic acid to remove glycerol 1 -nitrate; glycerol 2-nitrate di-4-nitrobenzoate, m.p. 1520C, has been prepared. Nitration of...Based on Phenazine Preparation of polymers from dibasic acids (e.g. adipic and terephthalic) and dihydrophenazine by various methods was attempted but...L.J. Hydrogen Bonding in WAC and Pace, R.J. Carboxylic Acids - 142/031 I. Oxalic Acids Spectrochim. Acta, 1963, 19, 435 Bellamy, L.J., - ditto - Luke
40 CFR 52.222 - Negative declarations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... of Coils, Surface Coating Fabrics, Surface Coating Operations at Automotive and Light Duty Truck..., Glass Manufacturing Plants, and Iron and Steel Manufacturing Plants were submitted on March 4, 1996, and... Adipic Acid Manufacturing Plants, Cement Manufacturing Plants, Asphalt Batch Plants, Iron and Steel...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-11
... of pesticide use in residential settings. If EPA is able to determine that a finite tolerance is not... part of its composition the atomic elements carbon, hydrogen, and oxygen. 3. The polymer does not contain as an integral part of its composition, except as impurities, any element other than those listed...
NASA Astrophysics Data System (ADS)
Hua, Lei; Liu, Jian-hua; Li, Song-mei; Yu, Mei; Wang, Lei; Cui, Yong-xin
2015-03-01
The effects of insoluble eutectic Si particles on the growth of anodic oxide films on ZL114A aluminum alloy substrates were investigated by optical microscopy (OM) and scanning electron microscopy (SEM). The anodic oxidation was performed at 25°C and a constant voltage of 15 V in a solution containing 50 g/L sulfuric acid and 10 g/L adipic acid. The thickness of the formed anodic oxidation film was approximately 7.13 μm. The interpore distance and the diameters of the major pores in the porous layer of the film were within the approximate ranges of 10-20 nm and 5-10 nm, respectively. Insoluble eutectic Si particles strongly influenced the morphology of the anodic oxidation films. The anodic oxidation films exhibited minimal defects and a uniform thickness on the ZL114A substrates; in contrast, when the front of the oxide oxidation films encountered eutectic Si particles, defects such as pits and non-uniform thickness were observed, and pits were observed in the films.
40 CFR 98.53 - Calculating GHG emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Calculating GHG emissions. 98.53 Section 98.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Adipic Acid Production § 98.53 Calculating GHG emissions. (a...
Valorization: Development of a Methane-to-Adipic Acid Bioprocess (consultant) Areas of Expertise Molecular engineering Enzyme and protein engineering Techno-economic analysis Education Ph.D., Molecular Biology Principal Research Supervisor, NREL, Aug. 2007-May 2011 Research Director, Molecular Logix, Inc., The
40 CFR 98.53 - Calculating GHG emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Calculating GHG emissions. 98.53 Section 98.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Adipic Acid Production § 98.53 Calculating GHG emissions. (a...
40 CFR 98.51 - Reporting threshold.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Reporting threshold. 98.51 Section 98.51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Adipic Acid Production § 98.51 Reporting threshold. You must report GHG...
40 CFR 98.51 - Reporting threshold.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Reporting threshold. 98.51 Section 98.51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Adipic Acid Production § 98.51 Reporting threshold. You must report GHG...
Isolation and characterization of Arctic microorganisms decomposing bioplastics.
Urbanek, Aneta K; Rymowicz, Waldemar; Strzelecki, Mateusz C; Kociuba, Waldemar; Franczak, Łukasz; Mirończuk, Aleksandra M
2017-12-01
The increasing amount of plastic waste causes significant environmental pollution. In this study, screening of Arctic microorganisms which are able to degrade bioplastics was performed. In total, 313 microorganisms were isolated from 52 soil samples from the Arctic region (Spitsbergen). Among the isolated microorganisms, 121 (38.66%) showed biodegradation activity. The ability of clear zone formation on emulsified poly(butylene succinate-co-adipate) (PBSA) was observed for 116 microorganisms (95.87%), on poly(butylene succinate) (PBS) for 73 microorganisms (60.33%), and on poly(ɛ-caprolactone) (PCL) for 102 microorganisms (84.3%). Moreover, the growth of microorganisms on poly(lactic acid) (PLA) agar plates was observed for 56 microorganisms (46.28%). Based on the 16S rRNA sequence, 10 bacterial strains which showed the highest ability for biodegradation were identified as species belonging to Pseudomonas sp. and Rhodococcus sp. The isolated fungal strains were tested for polycaprolactone films and commercial corn and potato starch bags degradation under laboratory conditions. Strains 16G (based on the analysis of a partial 18S rRNA sequence, identified as Clonostachys rosea) and 16H (identified as Trichoderma sp.) showed the highest capability for biodegradation. A particularly high capability for biodegradation was observed for the strain Clonostachys rosea, which showed 100% degradation of starch films and 52.91% degradation of PCL films in a 30-day shake flask experiment. The main advantage of the microorganisms isolated from Arctic environment is the ability to grow at low temperature and efficient biodegradation under this condition. The data suggest that C. rosea can be used in natural and laboratory conditions for degradations of bioplastics.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Definitions. 98.58 Section 98.58 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Adipic Acid Production § 98.58 Definitions. All terms used in this subpart have the...
40 CFR 98.50 - Definition of source category.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Definition of source category. 98.50 Section 98.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Adipic Acid Production § 98.50 Definition of source category...
40 CFR 98.50 - Definition of source category.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Definition of source category. 98.50 Section 98.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Adipic Acid Production § 98.50 Definition of source category...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Definitions. 98.58 Section 98.58 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Adipic Acid Production § 98.58 Definitions. All terms used in this subpart have the...
Zhang, Min; Wu, Kun; Li, Guoying
2011-11-01
The effect of crosslinking agent on pepsin-soluble bovine collagen solution was examined using N-hydroxysuccinimide activated adipic acid (NHS-AA) as a crosslinker. Electrophoretic patterns indicated that crosslinks formed when NHS-AA was added. A higher polarity level deduced from the changes in the fluorescence emission spectrum of pyrene in the crosslinked collagen solution indicated that the formation of well-ordered aggregates was suppressed. The random aggregation of collagens was also observed by atomic force microscopy (AFM). Furthermore, the association of collagens into fibrils was influenced by crosslinking. Self-assembly was suppressed at 37°C; however, as temperature was increased to 39°C, a small amount of NHS-AA leaded to an improvement in the ability of self-aggregation. Although more random structure was brought about by crosslinking, self-aggregation might still be promoted as temperature was increased, accompanying by the thermal stability improvement of fibrils. Copyright © 2011 Elsevier B.V. All rights reserved.
40 CFR 98.56 - Data reporting requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... abatement technology is operating). (i) Number of times in the reporting year that missing data procedures... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Data reporting requirements. 98.56... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Adipic Acid Production § 98.56 Data reporting requirements. In...
40 CFR 98.52 - GHGs to report.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false GHGs to report. 98.52 Section 98.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Adipic Acid Production § 98.52 GHGs to report. (a) You must report N2O process...
21 CFR 177.1500 - Nylon resins.
Code of Federal Regulations, 2013 CFR
2013-04-01
... condensation of adipic acid, 1,3-benzenedimethanamine, and alpha-(3-aminopropyl)-omega-(3-amino-propoxy)poly- oxyethylene under such conditions that the alpha-(3-amino-propyl)-omega-(3-aminopropoxy) polyoxyethylene... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Nylon resins. 177.1500 Section 177.1500 Food and...
21 CFR 177.1500 - Nylon resins.
Code of Federal Regulations, 2011 CFR
2011-04-01
... condensation of adipic acid, 1,3-benzenedimethanamine, and alpha-(3-aminopropyl)-omega-(3-amino-propoxy)poly- oxyethylene under such conditions that the alpha-(3-amino-propyl)-omega-(3-aminopropoxy) polyoxyethylene... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Nylon resins. 177.1500 Section 177.1500 Food and...
21 CFR 177.1500 - Nylon resins.
Code of Federal Regulations, 2012 CFR
2012-04-01
... condensation of adipic acid, 1,3-benzenedimethanamine, and alpha-(3-aminopropyl)-omega-(3-amino-propoxy)poly- oxyethylene under such conditions that the alpha-(3-amino-propyl)-omega-(3-aminopropoxy) polyoxyethylene... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Nylon resins. 177.1500 Section 177.1500 Food and...
21 CFR 177.1500 - Nylon resins.
Code of Federal Regulations, 2010 CFR
2010-04-01
... condensation of adipic acid, 1,3-benzenedimethanamine, and alpha-(3-aminopropyl)-omega-(3-amino-propoxy)poly- oxyethylene under such conditions that the alpha-(3-amino-propyl)-omega-(3-aminopropoxy) polyoxyethylene... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Nylon resins. 177.1500 Section 177.1500 Food and...
40 CFR 98.57 - Records that must be retained.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Records that must be retained. 98.57 Section 98.57 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Adipic Acid Production § 98.57 Records that must be retained...
40 CFR 98.52 - GHGs to report.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 21 2011-07-01 2011-07-01 false GHGs to report. 98.52 Section 98.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Adipic Acid Production § 98.52 GHGs to report. (a) You must report N2O process...
40 CFR 98.51 - Reporting threshold.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Reporting threshold. 98.51 Section 98.51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Adipic Acid Production § 98.51 Reporting threshold. You must report GHG emissions under this subpart if your facilit...
40 CFR 98.51 - Reporting threshold.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Reporting threshold. 98.51 Section 98.51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Adipic Acid Production § 98.51 Reporting threshold. You must report GHG emissions under this subpart if your facilit...
40 CFR 98.51 - Reporting threshold.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Reporting threshold. 98.51 Section 98.51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Adipic Acid Production § 98.51 Reporting threshold. You must report GHG emissions under this subpart if your facilit...
Investigation on solubility of hydroxy dibasic acids in alkanolamine solutions
NASA Astrophysics Data System (ADS)
Du, M.
2017-12-01
Solubilities of three hydroxy dibasic (adipic, suberic, and sebacic) acids in alkanolamine solutions were measured within the 30-90℃ temperature range. It is found that solubility of these acids sharply grows with temperature and concentration of alkanolamine solvent. In addition, the study substantiates the adjustment of pH to optimize the CO2 absorption and desorption processes. The precipitation of added acids from alkanolamine solvents by cooling is found to be quite problematic, which makes the recovery of residual acids from lean alkanolamine solvents non-feasible and requires the application of alternative methods.
NASA Astrophysics Data System (ADS)
McAlister, Jason A.; Kettler, Richard M.
2008-01-01
Linear saturated dicarboxylic acids are present in carbonaceous chondrite samples at concentrations that suggest aqueous alteration under conditions of metastable equilibrium. In this study, previously published values of dicarboxylic acid concentrations measured in Murchison, Yamato-791198, and Tagish Lake carbonaceous chondrites are converted to aqueous activities during aqueous alteration assuming water:rock ratios that range from 1:10 to 10:1. Logarithmic plots of the aqueous activities of any two dicarboxylic acids are proximal to lines whose slope is fixed by the stoichiometry of reactions describing the oxidation-reduction equilibrium between the two species. The precise position of any line is controlled by the equilibrium constant of the reaction relating the species and the hydrogen fugacity for the reaction of interest. Reactions among succinic (C4), glutaric (C5), and adipic (C6) acids obtained from CM2 chondrites show evidence of metastable equilibrium and yield logf values that agree to within 0.3 log units at 298.15 K and 0.6 log units at 473.15 K. At a water:rock ratio of 1:1, metastable equilibrium among succinic, glutaric, and adipic acids results in calculated logf values during aqueous alteration that range from -6.2 at 298.15 K to -3.3 at 373.15 K. These values are consistent with those obtained in previous work on carbonaceous chondrites and with metastable equilibrium at temperatures ranging from 300 to 355 K in contact with cronstedtite + magnetite.
Effect of vehicles on diclofenac permeation across excised rat skin.
Takahashi, K; Suzuki, T; Sakano, H; Mizuno, N
1995-04-01
The in vitro percutaneous permeation of diclofenac from various vehicles was examined using rat abdominal skin as a model membrane. The oleaginous vehicles used in this study consisted of three components: i.e. fatty acid, fatty acid ester and nonpolar oil. The solubilities of sodium diclofenac in formulated vehicles were above 0.2 M. The effect of each oleaginous component in the vehicle on the permeation of diclofenac across the skin was in the following order: oleic acid > isostearic acid, diisopropyl adipate = diethyl sebacate > Panasate 875 and squalane > liquid paraffin. To clarify the reason for the differences in permeation among the fatty acid esters, the release of diclofenac through either porous or lipoidal membranes from these vehicles in vitro and the solubility of sodium diclofenac in the vehicles were studied. However, no relationship was observed between the release rate or solubility and skin permeability. The skin permeation of diclofenac increased following pretreatment with diisopropyl adipate or diethyl sebacate, but not with middle chain triglyceride (Panasate 875). These results suggested that the main reason may be the enhancement effect of fatty acid esters. Emulsions and creams containing 3% sodium diclofenac were prepared using the above oleaginous vehicles. A large flux and short lag time were observed in these preparations compared with an aqueous suspension of sodium diclofenac. The incorporation of urea significantly enhanced the permeation of diclofenac from these preparations. These results suggest that the emulsion and cream prepared in this study are useful for development for practical purposes.
Application of 2D Correlation Spectroscopy with MCR in the Preparation of Glycerol Polyesters
USDA-ARS?s Scientific Manuscript database
The condensation of glycerol and adipic acid was studied by midrange FTIR to identify spectral changes associated with the polymerization reaction. This biobased polymer is being evaluated for use as a controlled release matrix where the extent of reaction is a key performance parameter. A spectrosc...
21 CFR 177.2600 - Rubber articles intended for repeated use.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Rubber articles intended for repeated use. 177... sanction or approval. (3) Substances that by regulation in parts 170 through 189 of this chapter may be... omega-laurolactam and adipic acid with poly(tetramethylene ether glycol). The polyamide and polyether...
21 CFR 177.2600 - Rubber articles intended for repeated use.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Rubber articles intended for repeated use. 177...) Substances used in accordance with the provisions of a prior sanction or approval. (3) Substances that by...-1 prepared by reacting a copolymer of omega-laurolactam and adipic acid with poly(tetramethylene...
USDA-ARS?s Scientific Manuscript database
Totally biodegradable, double-layered antimicrobial composite Sheets were introduced for food packaging. The substrate layers of the sheets were prepared from poly (lactic acid) (PLA) and sugar beet pulp (SBP) or poly (butylene adipate-co-terephthalate (PBAT) and SBP by a twin-screw extruder. The ac...
Renewable unsaturated polyesters from muconic acid
Rorrer, Nicholas A.; Dorgan, John R.; Vardon, Derek R.; ...
2016-09-27
cis,cis-Muconic acid is an unsaturated dicarboxylic acid that can be produced in high yields via biological conversion of sugars and lignin-derived aromatic compounds. Muconic acid is often targeted as an intermediate to direct replacement monomers such as adipic or terephthalic acid. However, the alkene groups in muconic acid provide incentive for its direct use in polymers, for example, in the synthesis of unsaturated polyester resins. Here, biologically derived muconic acid is incorporated into polyesters via condensation polymerization using the homologous series of poly(ethylene succinate), poly(propylene succinate), poly(butylene succinate), and poly(hexylene succinate). Additionally, dimethyl cis,cis-muconate is synthesized and subsequently incorporated intomore » poly(butylene succinate). NMR measurements demonstrate that alkene bonds are present in the polymer backbones. In all cases, the glass transition temperatures are increased whereas the melting and degradation temperatures are decreased. In the case of poly(butylene succinate), utilization of neat muconic acid yields substoichiometric incorporation consistent with a tapered copolymer structure, whereas the muconate diester exhibits stoichiometric incorporation and a random copolymer structure based on thermal and mechanical properties. Prototypical fiberglass panels were produced by infusing a mixture of low molecular weight poly(butylene succinate-co-muconate) and styrene into a woven glass mat and thermally initiating polymerization resulting in thermoset composites with shear moduli in excess of 30 GPa, a value typical of commercial composites. The increased glass transition temperatures with increasing mucconic incorporation leads to improved composites properties. We find that the molecular tunability of poly(butylene succinate-co-muconate) as a tapered or random copolymer enables the tunability of composite properties. Altogether, this study demonstrates the utility of muconic acid as a monomer suitable for direct use in commercial composites.« less
Renewable unsaturated polyesters from muconic acid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rorrer, Nicholas A.; Dorgan, John R.; Vardon, Derek R.
cis,cis-Muconic acid is an unsaturated dicarboxylic acid that can be produced in high yields via biological conversion of sugars and lignin-derived aromatic compounds. Muconic acid is often targeted as an intermediate to direct replacement monomers such as adipic or terephthalic acid. However, the alkene groups in muconic acid provide incentive for its direct use in polymers, for example, in the synthesis of unsaturated polyester resins. Here, biologically derived muconic acid is incorporated into polyesters via condensation polymerization using the homologous series of poly(ethylene succinate), poly(propylene succinate), poly(butylene succinate), and poly(hexylene succinate). Additionally, dimethyl cis,cis-muconate is synthesized and subsequently incorporated intomore » poly(butylene succinate). NMR measurements demonstrate that alkene bonds are present in the polymer backbones. In all cases, the glass transition temperatures are increased whereas the melting and degradation temperatures are decreased. In the case of poly(butylene succinate), utilization of neat muconic acid yields substoichiometric incorporation consistent with a tapered copolymer structure, whereas the muconate diester exhibits stoichiometric incorporation and a random copolymer structure based on thermal and mechanical properties. Prototypical fiberglass panels were produced by infusing a mixture of low molecular weight poly(butylene succinate-co-muconate) and styrene into a woven glass mat and thermally initiating polymerization resulting in thermoset composites with shear moduli in excess of 30 GPa, a value typical of commercial composites. The increased glass transition temperatures with increasing mucconic incorporation leads to improved composites properties. We find that the molecular tunability of poly(butylene succinate-co-muconate) as a tapered or random copolymer enables the tunability of composite properties. Altogether, this study demonstrates the utility of muconic acid as a monomer suitable for direct use in commercial composites.« less
NASA Astrophysics Data System (ADS)
Dirri, F.; Palomba, E.; Longobardo, A.; Zampetti, E.
2015-07-01
We present here a novel experimental setup able to measure the enthalpy of sublimation of a given compound by means of Piezoelectric Crystal Microbalances (PCM). This experiment was performed in the TG-Lab facility in IAPS-INAF, dedicated to the development of TGA sensors for space measurements, such as detection of organic and non-organic volatile species and refractory materials in planetary environments. In order to study physical-chemical processes concerning the Volatile Organic Compounds (VOC) present in atmospheric environments, the setup has been tested on Dicarboxylic acids. Acids with low molecular weight are among the components of organic fraction of particulate matter in the atmosphere, coming from different sources (biogenic and anthropogenic). Considering their relative abundance, it is useful to consider Dicarboxylic acid as "markers" to define the biogenic or anthropogenic origin of the aerosol, thus obtaining some information of the emission sources. In this work, a temperature controlled effusion cell was used to sublimate VOC, creating a molecular flux that was collimated onto a cold PCM. The VOC re-condensed onto the PCM quartz crystal allowing the determination of the deposition rate. From the measurements of deposition rates, it was possible to infer the enthalpy of sublimation of Adipic acid, i.e. Δ Hsub: 141.6 ± 0.8 kJ mol-1, Succinic acid, i.e. 113.3 ± 1.3 kJ mol-1, Oxalic acid, i.e. 62.5 ± 3.1 kJ mol-1 and Azelaic acid, i.e. 124.2 ± 1.2 kJ mol-1 (weight average values). The results obtained are in very good agreement with literature within 10 % for the Adipic, Succinic and Oxalic acid.
Liu, Chun Li; Huang, Qiu Ying; Meng, Xiang Ru
2016-12-01
The synthesis of coordination polymers or metal-organic frameworks (MOFs) has attracted considerable interest owing to the interesting structures and potential applications of these compounds. It is still a challenge to predict the exact structures and compositions of the final products. A new one-dimensional coordination polymer, catena-poly[[[bis{1-[(1H-benzimidazol-2-yl)methyl]-1H-tetrazole-κN 3 }zinc(II)]-μ-hexane-1,6-dicarboxylato-κ 4 O 1 ,O 1' :O 6 ,O 6' ] monohydrate], {[Zn(C 6 H 8 O 4 )(C 9 H 8 N 6 ) 2 ]·H 2 O} n , has been synthesized by the reaction of Zn(Ac) 2 (Ac is acetate) with 1-[(1H-benzimidazol-2-yl)methyl]-1H-tetrazole (bimt) and adipic acid (H 2 adi) at room temperature. In the polymer, each Zn II ion exhibits an irregular octahedral ZnN 2 O 4 coordination geometry and is coordinated by two N atoms from two symmetry-related bimt ligands and four O atoms from two symmetry-related dianionic adipate ligands. Zn II ions are connected by adipate ligands into a one-dimensional chain which runs parallel to the c axis. The bimt ligands coordinate to the Zn II ions in a monodentate mode on both sides of the main chain. In the crystal, the one-dimensional chains are further connected through N-H...O hydrogen bonds, leading to a three-dimensional supramolecular architecture. In addition, the title polymer exhibits fluorescence, with emissions at 334 and 350 nm in the solid state at room temperature.
40 CFR 721.8079 - Isophorone diisocyanate neopentyl glycol adipate polyurethane prepolymer.
Code of Federal Regulations, 2010 CFR
2010-07-01
... glycol adipate polyurethane prepolymer. 721.8079 Section 721.8079 Protection of Environment ENVIRONMENTAL... adipate polyurethane prepolymer. (a) Chemical substance and significant new uses subject to reporting. (1... polyurethane prepolymer (PMN P-94-1743) is subject to reporting under this section for the significant new uses...
Tomlinson, Lindsay; Tirmenstein, Mark A; Janovitz, Evan B; Aranibar, Nelly; Ott, Karl-Heinz; Kozlosky, John C; Patrone, Laura M; Achanzar, William E; Augustine, Karen A; Brannen, Kimberly C; Carlson, Kenneth E; Charlap, Jeffrey H; Dubrow, Katherine M; Kang, Liya; Rosini, Laura T; Panzica-Kelly, Julieta M; Flint, Oliver P; Moulin, Frederic J; Megill, John R; Zhang, Haiying; Bennett, Michael J; Horvath, Joseph J
2012-10-01
Ibipinabant (IBI), a potent cannabinoid-1 receptor (CB1R) antagonist, previously in development for the treatment of obesity, causes skeletal and cardiac myopathy in beagle dogs. This toxicity was characterized by increases in muscle-derived enzyme activity in serum and microscopic striated muscle degeneration and accumulation of lipid droplets in myofibers. Additional changes in serum chemistry included decreases in glucose and increases in non-esterified fatty acids and cholesterol, and metabolic acidosis, consistent with disturbances in lipid and carbohydrate metabolism. No evidence of CB1R expression was detected in dog striated muscle as assessed by polymerase chain reaction, immunohistochemistry, Western blot analysis, and competitive radioligand binding. Investigative studies utilized metabonomic technology and demonstrated changes in several intermediates and metabolites of fatty acid metabolism including plasma acylcarnitines and urinary ethylmalonate, methylsuccinate, adipate, suberate, hexanoylglycine, sarcosine, dimethylglycine, isovalerylglycine, and 2-hydroxyglutarate. These results indicated that the toxic effect of IBI on striated muscle in beagle dogs is consistent with an inhibition of the mitochondrial flavin-containing enzymes including dimethyl glycine, sarcosine, isovaleryl-CoA, 2-hydroxyglutarate, and multiple acyl-CoA (short, medium, long, and very long chain) dehydrogenases. All of these enzymes converge at the level of electron transfer flavoprotein (ETF) and ETF oxidoreductase. Urinary ethylmalonate was shown to be a biomarker of IBI-induced striated muscle toxicity in dogs and could provide the ability to monitor potential IBI-induced toxic myopathy in humans. We propose that IBI-induced toxic myopathy in beagle dogs is not caused by direct antagonism of CB1R and could represent a model of ethylmalonic-adipic aciduria in humans.
21 CFR 177.2600 - Rubber articles intended for repeated use.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Rubber articles intended for repeated use. 177... sanction or approval. (3) Substances that by regulation in parts 170 through 189 of this chapter may be... copolymers (CAS Reg. No. 77402-38-1 prepared by reacting a copolymer of omega-laurolactam and adipic acid...
21 CFR 177.2600 - Rubber articles intended for repeated use.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Rubber articles intended for repeated use. 177.2600... packaging. (2) Substances used in accordance with the provisions of a prior sanction or approval. (3... copolymers (CAS Reg. No. 77402-38-1 prepared by reacting a copolymer of omega-laurolactam and adipic acid...
21 CFR 177.2600 - Rubber articles intended for repeated use.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Rubber articles intended for repeated use. 177... sanction or approval. (3) Substances that by regulation in parts 170 through 189 of this chapter may be... copolymers (CAS Reg. No. 77402-38-1 prepared by reacting a copolymer of omega-laurolactam and adipic acid...
USDA-ARS?s Scientific Manuscript database
A novel nanocomposite of silver/titanium dioxide/chitosan adipate (Ag/TiO2/CS) was developed through photochemical reduction using a chitosan adipate template. Chitosan served as a reducing agent for the metal ions, and anchored metal ions by forming Ag–N coordination bonds and electrostatic attract...
Volume effects in the decay of free radicals in organic crystals. [cobalt 60 gamma radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markaryan, R.E.; Kovarskii, A.L.; Tshetinin, V.G.
The decay kinetics of the free radicals produced by {gamma}-irradiation of single crystals of organic dicarboxylic acids is studied at hydrostatic pressures up to 200 MPa. Correlation is established between the reaction's activation parameters (V{sup *} and E{sup *}) and the crystals macrocharacteristics - the compressibility and thermal expansion coefficients. A common equation is proposed to describe the variation of the radical decay rate constant with temperature and pressure in malonic, succinic, adipic, glutaric, suberic, and sebacic acids.
1980-10-29
adsorbed oxygen on powders. 23. Jaeger, C.D.; Bard, A.J. J. Ph s. Chem. 1979, 83, 3746. 24. Izumi, I; Dunn, W. W.; Wilbourn , K. 0.; Fan, F-R. F.; Bard, A... Joseph Singer, Code 302-1 Electrochimica Corporation NASA-Lewis Attention: Technical Library 21000 BrookDark Road 2485 Charleston Poad Cleveland, Ohio
Woo, A H; Lindsay, R C
1980-07-01
A rapid quantiative method was developed for routine analysis of the major, even carbon-numbered free fatty acids in butter and cream. Free fatty acids were isolated directly from intact samples by a modified silicic acid-potassium hydroxide arrestant column and were separated by gas chromatography with a 1.8 m x 2 mm inner diameter glass column packed with 10% neopentyl glycol adipate on 80/100 Chromosorb W. Purified, formic acid-saturated carrier gas was required for minimal peak tailing and extended column life. The accuracy and reproducibility of the mmethod was established through quantitative recovery studies of free fatty acid mixtures, free fatty acids added to butter, and replicate analysis of butter and cream samples.
Koitabashi, Motoo; Noguchi, Masako T; Sameshima-Yamashita, Yuka; Hiradate, Syuntaro; Suzuki, Ken; Yoshida, Shigenobu; Watanabe, Takashi; Shinozaki, Yukiko; Tsushima, Seiya; Kitamoto, Hiroko K
2012-08-02
To improve the biodegradation of biodegradable plastic (BP) mulch films, 1227 fungal strains were isolated from plant surface (phylloplane) and evaluated for BP-degrading ability. Among them, B47-9 a strain isolated from the leaf surface of barley showed the strongest ability to degrade poly-(butylene succinate-co-butylene adipate) (PBSA) and poly-(butylene succinate) (PBS) films. The strain grew on the surface of soil-mounted BP films, produced breaks along the direction of hyphal growth indicated that it secreted a BP-degrading enzyme, and has directly contributing to accelerating the degradation of film. Treatment with the culture filtrate decomposed 91.2 wt%, 23.7 wt%, and 14.6 wt% of PBSA, PBS, and commercially available BP polymer blended mulch film, respectively, on unsterlized soil within 6 days. The PCR-DGGE analysis of the transition of soil microbial community during film degradation revealed that the process was accompanied with drastic changes in the population of soil fungi and Acantamoeba spp., as well as the growth of inoculated strain B47-9. It has a potential for application in the development of an effective method for accelerating degradation of used plastics under actual field conditions.
Biodegradation of Cyclohexylamine by Brevibacterium oxydans IH-35A
Iwaki, Hiroaki; Shimizu, Masatake; Tokuyama, Tai; Hasegawa, Yoshie
1999-01-01
A bacterial strain capable of growing on cyclohexylamine (CHAM) was isolated by using enrichment and isolation techniques. The strain isolated, strain IH-35A, was classified as a member of the genus Brevibacterium. The results of growth and enzyme studies are consistent with degradation of CHAM via cyclohexanone (CHnone), 6-hexanolactone, 6-hydroxyhexanoate, and adipate. Cell extracts obtained from this strain grown on CHAM contained CHAM oxidase, and the model for CHAM oxidation by this enzyme was similar to the model for deamino oxidation of amine by amine oxidase. PMID:10224025
Bio-based production of monomers and polymers by metabolically engineered microorganisms.
Chung, Hannah; Yang, Jung Eun; Ha, Ji Yeon; Chae, Tong Un; Shin, Jae Ho; Gustavsson, Martin; Lee, Sang Yup
2015-12-01
Recent metabolic engineering strategies for bio-based production of monomers and polymers are reviewed. In the case of monomers, we describe strategies for producing polyamide precursors, namely diamines (putrescine, cadaverine, 1,6-diaminohexane), dicarboxylic acids (succinic, glutaric, adipic, and sebacic acids), and ω-amino acids (γ-aminobutyric, 5-aminovaleric, and 6-aminocaproic acids). Also, strategies for producing diols (monoethylene glycol, 1,3-propanediol, and 1,4-butanediol) and hydroxy acids (3-hydroxypropionic and 4-hydroxybutyric acids) used for polyesters are reviewed. Furthermore, we review strategies for producing aromatic monomers, including styrene, p-hydroxystyrene, p-hydroxybenzoic acid, and phenol, and propose pathways to aromatic polyurethane precursors. Finally, in vivo production of polyhydroxyalkanoates and recombinant structural proteins having interesting applications are showcased. Copyright © 2015 Elsevier Ltd. All rights reserved.
Suksiriworapong, Jiraphong; Taresco, Vincenzo; Ivanov, Delyan P; Styliari, Ioanna D; Sakchaisri, Krisada; Junyaprasert, Varaporn Buraphacheep; Garnett, Martin C
2018-07-01
Polymer-drug conjugates have been actively developed as potential anticancer drug delivery systems. In this study, we report the first polymer-anticancer drug conjugate with poly(glycerol adipate) (PGA) through the successful conjugation of methotrexate (MTX). MTX-PGA conjugates were controllably and simply fabricated by carbodiimide-mediated coupling reaction with various high molar ratios of MTX. The MTX-PGA conjugate self-assembled into nanoparticles with size dependent on the amount of conjugated MTX and the pH of medium. Change in particle size was attributed to steric hindrance and bulkiness inside the nanoparticle core and dissociation of free functional groups of the drug. The MTX-PGA nanoparticles were physically stable in media with pH range of 5-9 and ionic strength of up to 0.15 M NaCl and further chemically stable against hydrolysis in pH 7.4 medium over 30 days but enzymatically degradable to release unchanged free drug. Although 30%MTX-PGA nanoparticles exhibited only slightly less potency than free MTX in 791T cells in contrast to previously reported human serum albumin-MTX conjugates which had >300 times lower potency than free MTX. However, the MTX nanoparticles showed 7 times higher toxicity to Saos-2 cells than MTX. Together with the enzymic degradation experiments, these results suggest that with a suitable biodegradable polymer a linker moiety is not a necessary component. These easily synthesised PGA drug conjugates lacking a linker moiety could therefore be an effective new pathway for development of polymer drug conjugates. Copyright © 2018 Elsevier B.V. All rights reserved.
Kulshrestha, Ankur S; Gao, Wei; Fu, Hongyong; Gross, Richard A
2007-06-01
Lipase-catalyzed terpolymerizations were performed with the monomers trimethylolpropane (B3), 1,8-octanediol (B2), and adipic acid (A2). Polymerizations were performed in bulk, at 70 degrees C, for 42 h, using immobilized lipase B from Candida antartica (Novozyme-435) as a catalyst. To determine the substitution pattern of trimethylolpropane (TMP) in copolymers, model compounds with variable degrees of acetylation were synthesized. Inverse-gated 13C NMR spectra were recorded to first determine the chemical shift positions for mono-, di-, and trisubstituted TMP units and, subsequently, to determine substitution of TMP units along chains. Variation of TMP in the monomer feed gave copolymers with degrees of branching (DB) from 20% to 67%. In one example, a hyperbranched copolyester with 53 mol % TMP adipate units was formed in 80% yield, with Mw 14 100 (relative to polystyrene standards), Mw/Mn 5.3, and DB 36%. Thermal and crystalline properties of the copolyesters were studied by thermogravimetric analysis and differential scanning calorimetry.
2012-01-01
To improve the biodegradation of biodegradable plastic (BP) mulch films, 1227 fungal strains were isolated from plant surface (phylloplane) and evaluated for BP-degrading ability. Among them, B47-9 a strain isolated from the leaf surface of barley showed the strongest ability to degrade poly-(butylene succinate-co-butylene adipate) (PBSA) and poly-(butylene succinate) (PBS) films. The strain grew on the surface of soil-mounted BP films, produced breaks along the direction of hyphal growth indicated that it secreted a BP-degrading enzyme, and has directly contributing to accelerating the degradation of film. Treatment with the culture filtrate decomposed 91.2 wt%, 23.7 wt%, and 14.6 wt% of PBSA, PBS, and commercially available BP polymer blended mulch film, respectively, on unsterlized soil within 6 days. The PCR-DGGE analysis of the transition of soil microbial community during film degradation revealed that the process was accompanied with drastic changes in the population of soil fungi and Acantamoeba spp., as well as the growth of inoculated strain B47-9. It has a potential for application in the development of an effective method for accelerating degradation of used plastics under actual field conditions. PMID:22856640
Effect of pH on desorption of CO2 from alkanolamine - rich solvents
NASA Astrophysics Data System (ADS)
Du, Min
2017-08-01
Adipic acid was used as a pH regulator, which was added to 0.4 mol/L MEA, DEA and MDEA solvents during CO2 desorption process. It is found that when pH value of the solvents swing between 8-10, CO2 desorption rate enhanced, and energy consumption has declined obviously. This research may have reference significance on optimization of alkanolamine CO2 capture process.
Anaerobic Fermentation for Production of Carboxylic Acids as Bulk Chemicals from Renewable Biomass.
Wang, Jufang; Lin, Meng; Xu, Mengmeng; Yang, Shang-Tian
Biomass represents an abundant carbon-neutral renewable resource which can be converted to bulk chemicals to replace petrochemicals. Carboxylic acids have wide applications in the chemical, food, and pharmaceutical industries. This chapter provides an overview of recent advances and challenges in the industrial production of various types of carboxylic acids, including short-chain fatty acids (acetic, propionic, butyric), hydroxy acids (lactic, 3-hydroxypropionic), dicarboxylic acids (succinic, malic, fumaric, itaconic, adipic, muconic, glucaric), and others (acrylic, citric, gluconic, pyruvic) by anaerobic fermentation. For economic production of these carboxylic acids as bulk chemicals, the fermentation process must have a sufficiently high product titer, productivity and yield, and low impurity acid byproducts to compete with their petrochemical counterparts. System metabolic engineering offers the tools needed to develop novel strains that can meet these process requirements for converting biomass feedstock to the desirable product.
Yamamoto-Tamura, Kimiko; Hiradate, Syuntaro; Watanabe, Takashi; Koitabashi, Motoo; Sameshima-Yamashita, Yuka; Yarimizu, Tohru; Kitamoto, Hiroko
2015-01-01
The relationship between degradation speed of soil-buried biodegradable polyester film in a farmland and the characteristics of the predominant polyester-degrading soil microorganisms and enzymes were investigated to determine the BP-degrading ability of cultivated soils through characterization of the basal microbial activities and their transition in soils during BP film degradation. Degradation of poly(butylene succinate-co-adipate) (PBSA) film was evaluated in soil samples from different cultivated fields in Japan for 4 weeks. Both the degradation speed of the PBSA film and the esterase activity were found to be correlated with the ratio of colonies that produced clear zone on fungal minimum medium-agarose plate with emulsified PBSA to the total number colonies counted. Time-dependent change in viable counts of the PBSA-degrading fungi and esterase activities were monitored in soils where buried films showed the most and the least degree of degradation. During the degradation of PBSA film, the viable counts of the PBSA-degrading fungi and the esterase activities in soils, which adhered to the PBSA film, increased with time. The soil, where the film was degraded the fastest, recorded large PBSA-degrading fungal population and showed high esterase activity compared with the other soil samples throughout the incubation period. Meanwhile, esterase activity and viable counts of PBSA-degrading fungi were found to be stable in soils without PBSA film. These results suggest that the higher the distribution ratio of native PBSA-degrading fungi in the soil, the faster the film degradation is. This could be due to the rapid accumulation of secreted esterases in these soils.
Thirunavukarasu, K; Purushothaman, S; Gowthaman, M K; Nakajima-Kambe, T; Rose, C; Kamini, N R
2015-09-01
Fish meal has been used as an additional nitrogen source and fish oil as inducer for the growth and production of lipase from Cryptococcus sp. MTCC 5455. A response surface design illustrated that the optimum factors influencing lipase production were fish meal, 1.5 %, w/v, Na2HPO4, 0.2 %, w/v, yeast extract, 0.25 %, w/v and sardine oil, 2.0 %, w/v with an activity of 71.23 U/mL at 96 h and 25 °C, which was 48.39 % higher than the conventional one-factor-at-a-time method. The crude concentrated enzyme hydrolyzed polyurethane (PUR) efficiently and hydrolysis was 94 % at 30 °C and 96 h. The products, diethylene glycol and adipic acid were quantified by HPLC and scanning electron microscopic studies of the degraded polymer showed significant increase in size of the holes from 24 to 72 h of incubation. Hydrolysis of PUR within 96 h makes the lipase novel for disposal of PUR and provides an innovative solution to the problems created by plastic wastes.
Neumann, Susanne; Pope, Arthur; Geras-Raaka, Elizabeth; Raaka, Bruce M; Bahn, Rebecca S; Gershengorn, Marvin C
2012-08-01
Fibroblasts (FIBs) within the retro-orbital space of patients with Graves' disease (GOFs) express thyrotropin receptors (TSHRs) and are thought to be an orbital target of TSHR-stimulating autoantibodies in Graves' ophthalmopathy (GO). Recently, we developed a low molecular weight, drug-like TSHR antagonist (NCGC00229600) that inhibited TSHR activation in a model cell system overexpressing TSHRs and in normal human thyrocytes expressing endogenous TSHRs. Herein, we test the hypothesis that NCGC00229600 will inhibit activation of TSHRs endogenously expressed in GOFs. Three strains of GOFs, previously obtained from patients with GO, were studied as undifferentiated FIBs and after differentiation into adipocytes (ADIPs), and another seven strains were studied only as FIBs. ADIP differentiation was monitored by morphology and measurement of adiponectin mRNA. FIBs and ADIPs were treated with the TSH- or TSHR-stimulating antibody M22 in the absence or presence of NCGC00229600 and TSHR activation was monitored by cAMP production. FIBs contained few if any lipid vesicles and undetectable levels of adiponectin mRNA, whereas ADIPs exhibited abundant lipid vesicles and levels of adiponectin mRNA more than 250,000 times greater than FIBs; TSHR mRNA levels were 10-fold higher in ADIPs than FIBs. FIBs exhibited higher absolute levels of basal and forskolin-stimulated cAMP production than ADIPs. Consistent with previous findings, TSH stimulated cAMP production in the majority of ADIP strains and less consistently in FIBs. Most importantly, NCGC00229600 reduced both TSH- and M22-stimulated cAMP production in GOFs. These data confirm previous findings that TSHR activation may cause increased cAMP production in GOFs and show that NCGC00229600 can inhibit TSHR activation in GOFs. These findings suggest that drug-like TSHR antagonists may have a role in treatment of GO.
Socas-Rodríguez, Bárbara; González-Sálamo, Javier; Herrera-Herrera, Antonio V; Santana-Mayor, Álvaro; Hernández-Borges, Javier
2018-03-09
In this work, a new method has been developed for the determination of 14 phthalic acid esters (i.e., benzylbutyl phthalate (BBP), bis-2-n-butoxyethyl phthalate (DBEP), dibutyl phthalate (DBP), dicyclohexyl phthalate (DCHP), bis-2-ethoxyethyl phthalate (DEEP), diethyl phthalate (DEP), diisodecyl phthalate (DIDP), diisononyl phthalate (DINP), bis-isopentyl phthalate (DIPP), bis (2-methoxyethyl) phthalate (DMEP), dimethyl phthalate (DMP), di-n-octyl phthalate (DNOP), bis-n-pentyl phthalate (DNPP), dipropyl phthalate (DPP)) and one adipate (bis (2-ethylhexyl) adipate (DEHA)) in different baby foods. Separation was carried out by gas chromatography triple quadrupole tandem mass spectrometry while the previous extraction of the samples was carried out using the QuEChERS method. The methodology was validated for four baby food samples (two fruit compotes of different compositions and two meat and fish purees with vegetables) using dibutyl phthalate-3,4,5,6-d 4 (DBP-d 4 ) as internal standard. Determination coefficients (R 2 ) of matrix-matched calibration curves were above 0.9922 in all cases while relative recovery values ranged between 70 and 120%, with relative standard deviation values below 19%. The limits of quantification of the method ranged between 0.03 and 1.11 μg/kg. Finally, the analysis of commercially available samples was carried out finding the presence of BBP, DEHA, DEP, DIDP, and DPP in some of the studied samples.
Integrated Risk Information System (IRIS)
Di ( 2 - ethylhexyl ) adipate ; CASRN 103 - 23 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Non
Chen, Yun; Nielsen, Jens
2013-12-01
Bio-based production of chemical building blocks from renewable resources is an attractive alternative to petroleum-based platform chemicals. Metabolic pathway and strain engineering is the key element in constructing robust microbial chemical factories within the constraints of cost effective production. Here we discuss how the development of computational algorithms, novel modules and methods, omics-based techniques combined with modeling refinement are enabling reduction in development time and thus advance the field of industrial biotechnology. We further discuss how recent technological developments contribute to the development of novel cell factories for the production of the building block chemicals: adipic acid, succinic acid and 3-hydroxypropionic acid. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kucinska-Lipka, J; Gubanska, I; Strankowski, M; Cieśliński, H; Filipowicz, N; Janik, H
2017-06-01
In this paper we described synthesis and characteristic of obtained hydrophilic polyurethanes (PURs) modified with ascorbic acid (commonly known as vitamin C). Such materials may find an application in the biomedical field, for example in the regenerative medicine of soft tissues, according to ascorbic acid wide influence on tissue regeneration Flora (2009), Szymańska-Pasternak et al. (2011), Taikarimi and Ibrahim (2011), Myrvik and Volk (1954), Li et al. (2001), Cursino et al. (2005) . Hydrophilic PURs were obtained with the use of amorphous α,ω-dihydroxy(ethylene-butylene adipate) (dHEBA) polyol, 1,4-butanediol (BDO) chain extender and aliphatic 4,4'-methylenebis(cyclohexyl isocyanate) (HMDI). HMDI was chosen as a nontoxic diisocyanate, suitable for biomedical PUR synthesis. Modification with l-ascorbic acid (AA) was performed to improve obtained PUR materials biocompatibility. Chemical structure of obtained PURs was provided and confirmed by Fourier transform infrared spectroscopy (FTIR) and Proton nuclear magnetic resonance spectroscopy ( 1 HNMR). Differential scanning calorimetry (DSC) was used to indicate the influence of ascorbic acid modification on such parameters as glass transition temperature, melting temperature and melting enthalpies of obtained materials. To determine how these materials may potentially behave, after implementation in tissue, degradation behavior of obtained PURs in various chemical environments, which were represented by canola oil, saline solution, distilled water and phosphate buffered saline (PBS) was estimated. The influence of AA on hydrophilic-hydrophobic character of obtained PURs was established by contact angle study. This experiment revealed that ascorbic acid significantly improves hydrophilicity of obtained PUR materials and the same cause that they are more suitable candidates for biomedical applications. Good hemocompatibility characteristic of studied PUR materials was confirmed by the hemocompatibility test with human blood. Microbiological tests were carried out to indicate the microbiological sensitivity of obtained PURs. Results of performed studies showed that obtained AA-modified PUR materials may find an application in soft tissue regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, DaPeng; Zhang, DaQuan; Lee, KangYong; Gao, LiXin
2015-11-01
Dicarboxylic acid compounds, i.e. succinic acid (SUA), adipic acid (ADA) and sebacic acid (SEA), are used as electrolyte additives in the alkaline ethylene glycol solution for AA5052 aluminium-air batteries. It shows that the addition of dicarboxylic acids lowers the hydrogen gas evolution rate of commercial AA5052 aluminium alloy anode. AA5052 aluminium alloy has wide potential window for electrochemical activity and better discharge performance in alkaline ethylene glycol solution containing dicarboxylic acid additives. ADA has the best inhibition effect for the self-corrosion of AA5052 anode among the three dicarboxylic acid additives. Fourier transform infrared spectroscopy (FT-IR) reveals that dicarboxylic acids and aluminium ions can form coordination complexes. Quantum chemical calculations shows that ADA has a smaller energy gap (ΔE, the energy difference between the lowest unoccupied orbital and the highest occupied orbital), indicating that ADA has the strongest interaction with aluminium ions.
NASA Astrophysics Data System (ADS)
Prapaipong, Panjai; Shock, Everett L.; Koretsky, Carla M.
1999-10-01
By combining results from regression and correlation methods, standard state thermodynamic properties for aqueous complexes between metal cations and divalent organic acid ligands (oxalate, malonate, succinate, glutarate, and adipate) are evaluated and applied to geochemical processes. Regression of experimental standard-state equilibrium constants with the revised Helgeson-Kirkham-Flowers (HKF) equation of state yields standard partial molal entropies (S¯°) of aqueous metal-organic complexes, which allow determination of thermodynamic properties of the complexes at elevated temperatures. In cases where S¯° is not available from either regression or calorimetric measurement, the values of S¯° can be estimated from a linear correlation between standard partial molal entropies of association (ΔS¯°r) and standard partial molal entropies of aqueous cations (S¯°M). The correlation is independent of cation charge, which makes it possible to predict S¯° for complexes between divalent organic acids and numerous metal cations. Similarly, correlations between standard Gibbs free energies of association of metal-organic complexes (ΔḠ°r) and Gibbs free energies of formation (ΔḠ°f) for divalent metal cations allow estimates of standard-state equilibrium constants where experimental data are not available. These correlations are found to be a function of ligand structure and cation charge. Predicted equilibrium constants for dicarboxylate complexes of numerous cations were included with those for inorganic and other organic complexes to study the effects of dicarboxylate complexes on the speciation of metals and organic acids in oil-field brines. Relatively low concentrations of oxalic and malonic acids affect the speciation of cations more than similar concentrations of succinic, glutaric, and adipic acids. However, the extent to which metal-dicarboxylate complexes contribute to the speciation of dissolved metals depends on the type of dicarboxylic acid ligand; relative concentration of inorganic, mono-, and dicarboxylate ligands; and the type of metal cation. As an example, in the same solution, dicarboxylic acids have a greater influence on the speciation of Fe+2 and Mg+2 than on the speciation of Zn+2 and Mn+2.
40 CFR 141.61 - Maximum contaminant levels for organic contaminants.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) adipate X X 117-81-7 Di (2-ethylhexyl) phthalate X 96-12-8 Dibromochloropropane (DBCP) X X 95-50-1 o...-ethylhexyl) adipate 0.4 (22) 117-81-7 Di(2-ethylhexyl) phthalate 0.006 (23) 88-85-7 Dinoseb 0.007 (24) 85-00...
40 CFR 141.61 - Maximum contaminant levels for organic contaminants.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) adipate X X 117-81-7 Di (2-ethylhexyl) phthalate X 96-12-8 Dibromochloropropane (DBCP) X X 95-50-1 o...-ethylhexyl) adipate 0.4 (22) 117-81-7 Di(2-ethylhexyl) phthalate 0.006 (23) 88-85-7 Dinoseb 0.007 (24) 85-00...
40 CFR 141.61 - Maximum contaminant levels for organic contaminants.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) adipate X X 117-81-7 Di (2-ethylhexyl) phthalate X 96-12-8 Dibromochloropropane (DBCP) X X 95-50-1 o...-ethylhexyl) adipate 0.4 (22) 117-81-7 Di(2-ethylhexyl) phthalate 0.006 (23) 88-85-7 Dinoseb 0.007 (24) 85-00...
USDA-ARS?s Scientific Manuscript database
Utilizing the abundant byproducts generated from processing of agricultural materials has sustainable and cost–saving potential benefits. In this work, Sunflower Head Residues (SHR) in 3 different compositions were introduced into biodegradable Poly(butylene adipate-co-terephthalate) (PBAT) matrices...
NASA Astrophysics Data System (ADS)
Yamazaki, Hana; Kamitabira, Saya; Maeda, Tomoki; Hotta, Atsushi
Considering an environmentally friendly material, poly(butylene succinate-co-butylene adipate)(PBSA) is one of the attractive biodegradable plastics that can be eventually degraded into H2O and CO2 by neighboring water molecules and microorganisms after the disposal. In order to expand the application of PBSA, the precise control of the biodegradability of PBSA is necessary. In this study, the dried-gel process was introduced to control the biodegradability of PBSA. The dried PBSA gels were prepared by using three different solvents (toluene, cyclohexanone, and o-dichlorobenzene). The scanning electron microscopy (SEM) micrographs revealed that the PBSA prepared by toluene had smaller spherocrystals than the other PBSA dried-gels prepared by cyclohexanone or o-dichlorobenzene. The biodegradability testing by immersing the three types of PBSA in NaOH aq. showed that the percentage of the weight loss of the PBSA produced by toluene was the highest. The results indicated that the microstructures of PBSA could be controlled by changing solvents during the gel preparations, and that the biodegradability of PBSA could therefore be efficiently modified by changing solvents. This work was supported by a Grant-in-Aid for Scientific Research (A) (No. 15H02298 to A.H.) and a Grant-in-Aid for Research Activity Start-up (No.15H06586 to T.M.) from JSPS: KAKENHI\\x9D.
Terauchi, Yuki; Kim, Yoon-Kyung; Tanaka, Takumi; Nanatani, Kei; Takahashi, Toru; Abe, Keietsu
2017-07-01
Aspergillus oryzae hydrophobin RolA adheres to the biodegradable polyester polybutylene succinate-co-adipate (PBSA) and promotes PBSA degradation by interacting with A. oryzae polyesterase CutL1 and recruiting it to the PBSA surface. In our previous studies, we found that positively charged amino acid residues (H32, K34) of RolA and negatively charged residues (E31, D142, D171) of CutL1 are important for the cooperative ionic interaction between RolA and CutL1, but some other charged residues in the triple mutant CutL1-E31S/D142S/D171S are also involved. In the present study, on the basis of the 3D-structure of CutL1, we hypothesized that D30 is also involved in the CutL1-RolA interaction. We substituted D30 with serine and performed kinetic analysis of the interaction between wild-type RolA and the single mutant CutL1-D30S or quadruple mutant CutL1-D30S/E31S/D142S/D171S by using quartz crystal microbalance. Our results indicate that D30 is a novel residue involved in the ionic interaction between RolA and CutL1.
NASA Astrophysics Data System (ADS)
Siddiqi, Zafar A.; Sharma, Prashant K.; Shahid, M.; Kumar, Sarvendra; Anjuli; Siddique, Armeen
The present ternary complexes [Cu(ada)(phen)(H2O)]·2H2O (1), [Co2(ada)2(phen)2(H2O)2] (2) and [{Cu(ada)3(bipy)}n·3nH2O] (3) (H2ada = adipic acid, phen = 1,10-phenanthroline and bipy = 2,2'-bipyridine) obtained under varying experimental conditions were characterized by spectral, electrochemical and thermal studies. The bonding modes and the spatial arrangements of the carboxylate dianion around the metal ions have been investigated employing FTIR, EPR and X-ray crystallographic studies. Present data revealed a six coordinate distorted octahedral geometry for 2 with a = 8.068, b = 9.788, c = 11.788 Å, α = 70.464, β = 75.109, γ = 72.063° and a five coordinate square pyramidal geometry for 3 with a = 9.509, b = 9.912, c = 12.656 Å, α = 70.486, β = 73.604, γ = 75.162°. The superoxide dismutase (SOD) mimic activities of the complexes are in the order 1 > 3 > 2.
Yun, Huan; Liu, Xin; Cui, Jie; Yang, Jing; Liu, Ying
2017-08-08
A method for screening of acidity regulators in dairy based on ion chromatography-high resolution mass spectrometry technology (IC-HRMS) was set up. The dairy samples were extracted by KOH (pH 7-8) and Oasis MAX SPE column, and separated by a Dionex IonPac AS11-HC column (250 mm×4 mm). All the acidity regulators were detected by Orbitrap full scan mode. Taking six organic acids as an example, the calibration curves showed good linearities in the range of 0.05-5.00 mg/L, and the correlation coefficients ( r ) were higher than 0.99. By detecting the spiked samples, the recoveries were in the range of 74.3%-115.5% with the relative standard deviations (RSDs) between 0.64% and 4.81%. Malic acid, citric acid, lactic acid, succinic acid and adipic acid could be detected by IC-HRMS in the commercial dairy samples. The results indicate that the method is simple, rapid and suitable for the qualitative screening of acidity regulators in dairy products.
Control of triacylglycerol biosynthesis in plants. Technical progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-01-31
Seeds of most species of the Umbelliferae (Apiaciae), Araliaceae, and Garryaceae families are characterized by their high content of the unusual C{sub 18} monounsaturated fatty acid petroselinic acid (18:l{Delta}{sup 6cis}). Prior to a recent report of this lab, little was known of the biosynthetic origin of the cis{Delta}{sup 6} double bond of petroselinic acid. Such knowledge may be of both biochemical and biotechnological significance. Because petroselinic acid is potentially the product of a novel desaturase, information regarding its synthesis may contribute to an understanding of fatty acid desaturation mechanisms in plants. Through chemical cleavage at its double bond, petroselinic acidmore » can be used as a precursor of lauric acid (12:0), a component of detergents and surfactants, and adipic acid (6:0 dicarboxylic), the monomeric component of nylon 6,6. Therefore, the development of an agronomic source of an oil rich in petroselinic acid is of biotechnological interest. As such, studies of petroselinic acid biosynthesis may provide basic information required for any attempt to genetically engineer the production and accumulation of this fatty acid in an existing oilseed.« less
Control of triacylglycerol biosynthesis in plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-01-31
Seeds of most species of the Umbelliferae (Apiaciae), Araliaceae, and Garryaceae families are characterized by their high content of the unusual C[sub 18] monounsaturated fatty acid petroselinic acid (18:l[Delta][sup 6cis]). Prior to a recent report of this lab, little was known of the biosynthetic origin of the cis[Delta][sup 6] double bond of petroselinic acid. Such knowledge may be of both biochemical and biotechnological significance. Because petroselinic acid is potentially the product of a novel desaturase, information regarding its synthesis may contribute to an understanding of fatty acid desaturation mechanisms in plants. Through chemical cleavage at its double bond, petroselinic acidmore » can be used as a precursor of lauric acid (12:0), a component of detergents and surfactants, and adipic acid (6:0 dicarboxylic), the monomeric component of nylon 6,6. Therefore, the development of an agronomic source of an oil rich in petroselinic acid is of biotechnological interest. As such, studies of petroselinic acid biosynthesis may provide basic information required for any attempt to genetically engineer the production and accumulation of this fatty acid in an existing oilseed.« less
Study of aliphatic-aromatic copolyester degradation in sandy soil and its ecotoxicological impact.
Rychter, Piotr; Kawalec, Michał; Sobota, Michał; Kurcok, Piotr; Kowalczuk, Marek
2010-04-12
Degradation of poly[(1,4-butylene terephthalate)-co-(1,4-butylene adipate)] (Ecoflex, BTA) monofilaments (rods) in standardized sandy soil was investigated. Changes in the microstructure and chemical composition distribution of the degraded BTA samples were evaluated and changes in the pH and salinity of postdegradation soil, as well as the soil phytotoxicity impact of the degradation products, are reported. A macroscopic and microscopic evaluation of the surface of BTA rod samples after specified periods of incubation in standardized soil indicated erosion of the surface of BTA rods starting from the fourth month of their incubation, with almost total disintegration of the incubated BTA material observed after 22 months. However, the weight loss after this period of time was about 50% and only a minor change in the M(w) of the investigated BTA samples was observed, along with a slight increase in the dispersity (from an initial 2.75 up to 4.00 after 22 months of sample incubation). The multidetector SEC and ESI-MS analysis indicated retention of aromatic chain fragments in the low molar mass fraction of the incubated sample. Phytotoxicity studies revealed no visible damage, such as necrosis and chlorosis, or other inhibitory effects, in the following plants: radish, cres, and monocotyledonous oat, indicating that the degradation products of the investigated BTA copolyester are harmless to the tested plants.
77 FR 20721 - 2-Ethyl-1-hexanol; Exemption From the Requirement of a Tolerance
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-06
... or to raw agricultural commodities after harvest and direct application to animals. That notice... doses up to 1,080 mg/ kg/day when fed on diets containing diethylhexyl adipate (DEHA). In mammals, DEHA... were observed in rats at doses up to 1,080 mg/kg/day when fed on diets containing diethylhexyl adipate...
USDA-ARS?s Scientific Manuscript database
The effect of fiber retting on crystallization and mechanical performance was investigated. A poly(hydroxybutyrate-co-valerate) (PHBV) and poly(butylene adipate-co-terephthalate) (PBAT) blend in a 80/20 ratio was modified using 5% by weight kenaf (Hibiscus cannabinus L.) fiber. Fibers were retted us...
Liao, James C.; Cho, Kwang Myung; Yan, Yajun; Huo, Yixin
2016-03-15
Provided herein are metabolically modified microorganisms characterized by having an increased keto-acid flux when compared with the wild-type organism and comprising at least one polynucleotide encoding an enzyme that when expressed results in the production of a greater quantity of a chemical product when compared with the wild-type organism. The recombinant microorganisms are useful for producing a large number of chemical compositions from various nitrogen containing biomass compositions and other carbon sources. More specifically, provided herein are methods of producing alcohols, acetaldehyde, acetate, isobutyraldehyde, isobutyric acid, n-butyraldehyde, n-butyric acid, 2-methyl-1-butyraldehyde, 2-methyl-1-butyric acid, 3-methyl-1-butyraldehyde, 3-methyl-1-butyric acid, ammonia, ammonium, amino acids, 2,3-butanediol, 1,4-butanediol, 2-methyl-1,4-butanediol, 2-methyl-1,4-butanediamine, isobutene, itaconate, acetoin, acetone, isobutene, 1,5-diaminopentane, L-lactic acid, D-lactic acid, shikimic acid, mevalonate, polyhydroxybutyrate (PHB), isoprenoids, fatty acids, homoalanine, 4-aminobutyric acid (GABA), succinic acid, malic acid, citric acid, adipic acid, p-hydroxy-cinnamic acid, tetrahydrofuran, 3-methyl-tetrahydrofuran, gamma-butyrolactone, pyrrolidinone, n-methylpyrrolidone, aspartic acid, lysine, cadeverine, 2-ketoadipic acid, and/or S-adenosyl-methionine (SAM) from a suitable nitrogen rich biomass.
Nanaki, Stavroula G; Pantopoulos, Kostas; Bikiaris, Dimitrios N
2011-01-01
Poly(propylene adipate)-block-poly(ɛ-caprolactone) copolymers were synthesized using a combination of polycondensation and ring-opening polymerization of ɛ-caprolactone in the presence of poly(propylene adipate). Gel permeation chromatography was used for molecular weight determination, whereas hydrogen-1 nuclear magnetic resonance and carbon-13 nuclear magnetic resonance spectroscopy were employed for copolymer characterization and composition evaluation. The copolymers were found to be block while their composition was similar to the feeding ratio. They formed semicrystalline structures, while only poly(ɛ-caprolactone) formed crystals, as shown by wide angle X-ray diffraction. Differential scanning calorimetry data suggest that the melting point and heat of fusion of copolymers decreased by increasing the poly(propylene adipate) amount. The synthesized polymers exhibited low cytotoxicity and were used to encapsulate desferrioxamine, an iron-chelating drug. The desferrioxamine nanoparticles were self-assembled into core shell structures, had mean particle size <250 nm, and the drug remained in crystalline form. Further studies revealed that the dissolution rate was mainly related to the melting temperature, as well as to the degree of crystallinity of copolymers. PMID:22162656
Nanaki, Stavroula G; Pantopoulos, Kostas; Bikiaris, Dimitrios N
2011-01-01
Poly(propylene adipate)-block-poly(ɛ-caprolactone) copolymers were synthesized using a combination of polycondensation and ring-opening polymerization of ɛ-caprolactone in the presence of poly(propylene adipate). Gel permeation chromatography was used for molecular weight determination, whereas hydrogen-1 nuclear magnetic resonance and carbon-13 nuclear magnetic resonance spectroscopy were employed for copolymer characterization and composition evaluation. The copolymers were found to be block while their composition was similar to the feeding ratio. They formed semicrystalline structures, while only poly(ɛ-caprolactone) formed crystals, as shown by wide angle X-ray diffraction. Differential scanning calorimetry data suggest that the melting point and heat of fusion of copolymers decreased by increasing the poly(propylene adipate) amount. The synthesized polymers exhibited low cytotoxicity and were used to encapsulate desferrioxamine, an iron-chelating drug. The desferrioxamine nanoparticles were self-assembled into core shell structures, had mean particle size <250 nm, and the drug remained in crystalline form. Further studies revealed that the dissolution rate was mainly related to the melting temperature, as well as to the degree of crystallinity of copolymers.
Protein oxidation and proteolysis during storage and in vitro digestion of pork and beef patties.
Rysman, Tine; Van Hecke, Thomas; Van Poucke, Christof; De Smet, Stefaan; Van Royen, Geert
2016-10-15
The effect of protein oxidation on proteolysis during meat digestion was investigated following storage and subsequent in vitro digestion of beef and pork patties. Protein oxidation was evaluated as thiol oxidation, total carbonylation, and specific carbonylation (α-amino adipic and γ-glutamic semialdehyde). Furthermore, 4-hydroxyphenylalanine, a hydroxylation product of phenylalanine, was identified and quantified as a new protein oxidation marker. After 7days of chilled illuminated storage (4°C), significant oxidative modifications were quantified and the oxidative degradation was continued during in vitro digestion. The observed effects were more abundant in beef patties. Protein oxidation before digestion resulted in impaired proteolysis during digestion. Copyright © 2016 Elsevier Ltd. All rights reserved.
Polymer blends of polylactic acid (PLA) and polybutylene succinate-adipate
NASA Astrophysics Data System (ADS)
Ma, Wenguang
A series of blends consisting of polylactic acid (PLA) and aliphatic succinate polyester (BionolleRTM #3000) had been prepared and investigated. The results of mechanical property investigations showed that using 20 wt% Bionolle#3000 can significantly increase the toughness of PLA. BionolleRTM #3000 also reduces the physical aging rate of PLA so blends remain tough longer. Conversely, the stiffness of BionolleRTM #3000 can be significantly increased by blending in PLA. DMA and DSC results show that PLA/BionolleRTM 3000 blends are not thermodynamically miscible, but are compatible blends. Studies have also been performed to determine the amount and rate of aerobic biodegradation of PLA/aliphatic succinate polyester blends in biologically active composting, enzymatic, and soil environments. The changes in molecular weight, molecular structure and thermal properties in the composting environment were also studied by GPC, NMR and DSC analyses. The research results showed BionolleRTM #3000 had a high degradation rate, while PLA had a low degradation rate. PLA/BionolleRTM #3000 blends had moderate degradation rates that increased with BionolleRTM #3000 content. The melt flow behavior of PLA/BionolleRTM #3000 blends has been studied by capillary rheometry. The relationship of the blends' viscosity with their composition, shear stress, shear rate, and temperature has been investigated. Power law index and activation energy of PLA, BionolleRTM #3000 and their blends have been calculated. The experimental and theoretical data can let us understand the processability of PLA/BionolleRTM #3000 blends. A scanning electron microscope (SEM) was used to investigate the morphological structure of the PLA/BionolleRTM #3000 blends. Micrographs of the samples made from different methods (blown film, extrudate and compression molding sheet) were taken; their differences in morphology were compared. For comparison, the micrographs of blend PLA/BionolleRTM #6000 was also studied. The results show that BionolleRTM #3000 has a very strong ability to form the continuous phase in the blends and in films made from the blends. A partial continuous net structure with very thin wall thickness (0.1˜0.2 mum) can form in blends with 20 part of BionolleRTM #3000. The reason why PLA/BionolleRTM #6000 blends do not have good mechanical properties is that the size of the phase domain is too big (five times that of PLA/BionolleRTM #3000 blends).
NASA Astrophysics Data System (ADS)
Yamazaki, Hana; Maeda, Tomoki; Hotta, Atsushi
Currently there is a growing interest in biodegradable plastics that can be readily degraded into H2O and CO2. Among them, poly(butylene succinate-co-butylene adipate)(PBSA) is one of the mechanically attractive materials that can be biodegraded by surrounding water molecules and microorganisms after the disposal of the plastics. In order to expand the use of PBSA, the proper and effective control of the biodegradability of PBSA should be realized. In this work, the dried-gel process of the PBSA was carefully studied considering the temperature of the process. Three different types of dried PBSA gels were prepared at three different gel-process temperatures. From the biodegradability testing by immersing the PBSA samples in NaOH aq., it was found that the percentage of the weight loss of the PBSA was increased, indicating that the biodegradability was enhanced as the gel preparation temperature became lower. In fact, smaller spherocrystals were observed in PBSA dried at cooler temperature, studied by the scanning electron microscopy (SEM). It was therefore concluded that the microstructures of PBSA could be well controlled by changing the gel preparation temperatures for the precise control of the biodegradability of PBSA. This work was supported by a Grant-in-Aid for Scientific Research (A) (No. 15H02298 to A.H.) and a Grant-in-Aid for Research Activity Start-up (No.15H06586 to T.M.) from JSPS: KAKENHI\\x9D.
[Safety and structural analysis of polymers produced in manufacturing process of alpha-lipoic acid].
Shimoda, Hiroshi; Tanaka, Junji; Seki, Azusa; Honda, Haruya; Akaogi, Seiichiro; Komatsubara, Hirobumi; Suzuki, Nobuo; Kameyama, Mayumi; Tamura, Satoru; Murakami, Nobutoshi
2007-10-01
Alpha-Lipoic acid has recently been permitted for use in foodstuffs and is contained in tablets and capsules. Although alpha-lipoic acid is synthesized from adipic acid, the safety of polymers produced during the purification and drying processes has been an issue of concern. Hence, we examined the safety profiles of thermally denatured polymer (LAP-A) and ethanol-denatured polymer (LAP-B) produced in the manufacturing process of alpha-lipoic acid. Furthermore, we conducted structural analysis of these polymers by 1H-NMR and FAB-MS spectroscopy. In a consecutive ingestion test, male and female mice ingested diet containing 0.1 and 0.2% LAP-A and -B for 4 weeks. Blood uric acid, potassium and lactate dehydrogenase (LDH) tended to increase without dose-dependency. Relative liver weights were also increased. However, male dogs that were orally administered LAP-B (500 mg/kg) once did not show any abnormalities in blood parameters or general condition. These findings indicate that alpha-lipoic acid polymers are not acutely toxic; however, chronic ingestion of these polymers may affect liver and kidney functions.
Jia, Ming; Hu, Xiaoyu; Liu, Jin; Liu, Yexiang; Ai, Liang
2017-05-21
The operating voltage of an aluminum electrolytic capacitor is determined by the breakdown voltage (U b ) of the Al 2 O 3 anode. U b is related to the molecular adsorption at the Al 2 O 3 /electrolyte interface. Therefore, we have employed sum-frequency vibrational spectroscopy (SFVS) to study the adsorption states of a simple electrolyte, ethylene glycol (EG) solution with ammonium adipate, on an α-Al 2 O 3 surface. In an acidic electrolyte (pH < 6), the Al 2 O 3 surface is positively charged. The observed SFVS spectra show that long chain molecules poly ethylene glycol and ethylene glycol adipate adopt a "lying" orientation at the interface. In an alkaline electrolyte (pH > 8), the Al 2 O 3 surface is negatively charged and the short chain EG molecules adopt a "tilting" orientation. The U b results exhibit a much higher value at pH < 6 compared with that at pH > 8. Since the "lying" long chain molecules cover and protect the Al 2 O 3 surface, U b increases with a decrease of pH. These findings provide new insights to study the breakdown mechanisms and to develop new electrolytes for high operating voltage capacitors.
Brne, P; Lim, Y-P; Podgornik, A; Barut, M; Pihlar, B; Strancar, A
2009-03-27
Convective interaction media (CIM; BIA Separations) monoliths are attractive stationary phases for use in affinity chromatography because they enable fast affinity binding, which is a consequence of convectively enhanced mass transport. This work focuses on the development of novel CIM hydrazide (HZ) monoliths for the oriented immobilization of antibodies. Adipic acid dihydrazide (AADH) was covalently bound to CIM epoxy monoliths to gain hydrazide groups on the monolith surface. Two different antibodies were afterwards immobilized to hydrazide functionalized monolithic columns and prepared columns were tested for their selectivity. One column was further tested for the dynamic binding capacity.
Liquid-phase oxidation of cyclohexanone over cerium oxide catalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, H.C.; Weng, H.S.
Catalytic oxidation of cyclohexanone in the liquid phase with glacial acetic acid as the solvent over cerium oxide was studied between 5 and 15 atm and 98 and 118 {degrees} C in a batch reactor. The products were adipic acid, glutaric acid, succinic acid, caprolactone, carbon oxides, etc. The reaction undergoes a short induction period prior to a rapid reaction regime. In both regimes, the reaction is independent of oxygen pressure when the system pressure is above 10 atm. The induction period is inversely proportional to both of the catalyst weight and cyclohexanone concentration.During the rapid reaction regime, the reactionmore » rate was found to be proportional to the 0.5 power of the catalyst weight and to the 1.5 power of the cyclohexanone concentration. Reaction mechanisms and rate expressions are proposed. The carbon oxides produced in this study were much lower than those previously reported. The cerium oxide catalyst is stable during the reaction.« less
Investigation on Sugar-Protein Connectivity in Salmonella O-Antigen Glycoconjugate Vaccines.
De Benedetto, Gianluigi; Salvini, Laura; Gotta, Stefano; Cescutti, Paola; Micoli, Francesca
2018-05-16
Invasive nontyphoidal Salmonella disease, for which licensed vaccines are not available, is a leading cause of bloodstream infections in Africa. The O-antigen portion of lipopolysaccharide is a good target for protective immunity. Covalent conjugation of the O-antigen to a carrier protein increases its immunogenicity and O-antigen based glycoconjugate vaccines are currently under investigation at the preclinical stage. We developed a conjugation chemistry for linking O-antigen to CRM 197 carrier protein, through sequential insertion of adipic acid dihydrazide (ADH) and adipic acid bis( N-hydroxysuccinimide) ester (SIDEA) as linkers, without impacting O-antigen chain epitopes. Here the resulting sugar-protein connectivity has been investigated in detail. The core portion of the lipopolysaccharide was used as a model molecule to prepare CRM 197 conjugates, making structural investigations easier. The first step of reductive amination with ADH involves the terminal 3-deoxy-d- manno-oct-2-ulosonic acid (KDO) residue of the core region. The second reaction step resulted not to be selective, as SIDEA reacted with both ADH and pyrophosphorylethanolamine (PPEtN) of the core region, independently from the pH at which the reaction was performed. Peptide mapping analysis of the deglycosylated core-CRM 197 conjugates confirmed that lysine residues of CRM 197 were linked to SIDEA not only through KDO-ADH but also through PPEtN. This analysis also confirmed that the conjugation chemistry is random on the protein, involving a large number of lysine residues, particularly the surface exposed ones. The method for core-CRM 197 characterization was successfully extended to O-antigen-CRM 197 conjugate, confirming the results obtained with the core. This study not only allowed full characterization of OAg-CRM 197 conjugates, but can be applied to optimize synthesis and characterization of other OAg-based glycoconjugate vaccines. Analytical methods to investigate saccharide-protein connectivity are also of fundamental importance to study the relationship between glycoconjugate structure and immune response induced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Z.; Cocke, D.L.
Dicarboxylic acids are important in environmental chemistry because they are intermediates in oxidative processes involved in natural remediation and waste management processes such as oxidative detoxification and advanced oxidation. Capillary electrophoresis (CE), a promising technique for separating and analyzing these intermediates, has been used to examine a series of dibasic acids of different structures and conformations. This series includes malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, maleic acid, fumaric acid, phthalic acid, and trans, trans-muconic acid. The CE parameters as well as structural variations (molecular structure and molecular isomers, buffer composition, pH, applied voltage, injection mode, current,more » temperature, and detection wavelength) that affect the separations and analytical results have been examined in this study. Those factors that affect the separation have been delineated. Among these parameters, the pH has been found to be the most important, which affects the double-layer of the capillary wall, the electro-osmotic flow and analyte mobility. The optimum pH for separating these dibasic acids, as well as the other parameters are discussed in detail and related to the development of methods for analyzing oxidation intermediates in oxidative waste management procedures.« less
NASA Astrophysics Data System (ADS)
Tong, Yindong; Eichhorst, Terry; Olson, Michael R.; Rutter, Andrew P.; Shafer, Martin M.; Wang, Xuejun; Schauer, James J.
2014-03-01
In this study, we examined the heterogeneous reduction of Hg(II) on the coal fly ash samples and synthetic aerosols under different light conditions in a controlled laboratory reactor. Three types of coal fly ashes were studied: a high carbon fly ash from a stoker boiler, a low carbon/low sulfate fly ash from a pulverized coal combustor burning low sulfur coal, and a high sulfate fly ash from a pulverized coal combustor burning high sulfur coal. The rate of Hg(II) reduction on the three diverse fly ash samples was found to be relatively fast with an average half-life of 1.6 h under clear sky atmospheric conditions (under the irradiance of 1000 W/m2). The reduction rate in the low sulfate/low carbon fly ash was approximately 1.5 times faster than with the other coal fly ash samples. Synthetic aerosols made of carbon black and levoglucosan produced Hg(II) reduction rates similar to coal fly ashes. However, aerosols composed of adipic acid resulted in reduction rates that were 3-5 times faster. The sensitivity of adipic acid reduction to light source wavelength was found to be greater than for the coal fly ash and other synthetic aerosols. Aerosols made from the water extracts of coal fly ash samples produced reduction rates equal to or slightly higher than with the native fly ash suggesting that the soluble components of fly ash play a significant role in the reduction mechanism. The measured reduction rates are likely important in the chemical processing of mercury in power plant plumes and potentially in the atmosphere and should be considered for incorporation in atmospheric transport models that are used to understand the fate of atmospheric mercury.
González-Sálamo, Javier; Socas-Rodríguez, Bárbara; Hernández-Borges, Javier; Rodríguez-Delgado, Miguel Ángel
2017-12-29
In this work, the first application of core-shell poly(dopamine) magnetic nanoparticles as sorbent for the extraction of a group of eleven phthalic acid esters of interest (i.e. diethyl phthalate (DEP), dipropyl phthalate (DPP), dibutyl phthalate (DBP), bis-isopentyl phthalate (DIPP), bis-n-pentyl phthalate (DNPP), benzylbutyl phthalate (BBP), dicyclohexyl phthalate (DCHP), di-(2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate (DNOP), diisononyl phthalate (DINP) and diisodecyl phthalate (DIDP)) and one adipate (bis (2-ethylhexyl) adipate, DEHA) from different water samples (Milli-Q, mineral, tap, pond and waste water) is proposed. Analysis were carried out by gas chromatography triple quadrupole tandem mass spectrometry. Parameters that affect the extraction performance were optimized following a step by step approach, being the optimum conditions the extraction of water at pH 6, with 60mg of sorbent and the elution with 6mL of dichloromethane. The methodology was validated for the five selected water samples using DBP-d 4 as internal standard. Determination coefficients of matrix-matched calibration curves were above 0.9904 in all cases while relative recovery values ranged between 71 and 120%, with relative standard deviation values below 19%. The limits of quantification of the method ranged between 9 and 20ng/L. Matrix effects were found for most analytes and water samples. Real water samples were also analyzed, finding DEP and DBP at concentrations below 4.20 and 1.23μg/L, respectively, in mineral, tap and waste water. DCHP, DEHP and BBP were also found in some of the samples at concentrations below the LOQs of the method. Copyright © 2017 Elsevier B.V. All rights reserved.
Dessì, Angelica; Murgia, Antonio; Agostino, Rocco; Pattumelli, Maria Grazia; Schirru, Andrea; Scano, Paola; Fanos, Vassilios; Caboni, Pierluigi
2016-01-01
In this study, a gas-chromatography mass spectrometry (GC-MS) metabolomics study was applied to examine urine metabolite profiles of different classes of neonates under different nutrition regimens. The study population included 35 neonates, exclusively either breastfed or formula milk fed, in a seven-day timeframe. Urine samples were collected from intrauterine growth restriction (IUGR), large for gestational age (LGA), and appropriate gestational age (AGA) neonates. At birth, IUGR and LGA neonates showed similarities in their urine metabolite profiles that differed from AGA. When neonates started milk feeding, their metabolite excretion profile was strongly characterized by the different diet regimens. After three days of formula milk nutrition, urine had higher levels of glucose, galactose, glycine and myo-inositol, while up-regulated aconitic acid, aminomalonic acid and adipic acid were found in breast milk fed neonates. At seven days, neonates fed with formula milk shared higher levels of pseudouridine with IUGR and LGA at birth. Breastfed neonates shared up-regulated pyroglutamic acid, citric acid, and homoserine, with AGA at birth. The role of most important metabolites is herein discussed. PMID:26907266
Study on Dicarboxylic Acids in Aerosol Samples with Capillary Electrophoresis
Adler, Heidi; Sirén, Heli
2014-01-01
The research was performed to study the simultaneous detection of a homologous series of α, ω-dicarboxylic acids (C2–C10), oxalic, malonic, succinic, glutaric, adipic, pimelic, suberic, azelaic, and sebacic acids, with capillary electrophoresis using indirect UV detection. Good separation efficiency in 2,6-pyridinedicarboxylic acid as background electrolyte modified with myristyl trimethyl ammonium bromide was obtained. The dicarboxylic acids were ionised and separated within five minutes. For the study, authentic samples were collected onto dry cellulose membrane filters of a cascade impactor (12 stages) from outdoor spring aerosols in an urban area. Hot water and ultrasonication extraction methods were used to isolate the acids from membrane filters. Due to the low concentrations of acids in the aerosols, the extracts were concentrated with solid-phase extraction (SPE) before determination. The enrichment of the carboxylic acids was between 86 and 134% with sample pretreatment followed by 100-time increase by preparation of the sample to 50 μL. Inaccuracy was optimised for all the sample processing steps. The aerosols contained dicarboxylic acids C2–C10. Then, mostly they contained C2, C5, and C10. Only one sample contained succinic acid. In the study, the concentrations of the acids in aerosols were lower than 10 ng/m3. PMID:24729915
Mallegni, Norma; Phuong, Thanh Vu; Coltelli, Maria-Beatrice
2018-01-01
Poly(lactic acid) (PLA) was melt mixed in a laboratory extruder with poly(butylene adipate-co-terephthalate) (PBAT) and poly(butylene succinate) (PBS) in the presence of polypropylene glycol di glycidyl ether (EJ400) that acted as both plasticizer and compatibilizer. The process was then scaled up in a semi-industrial extruder preparing pellets having different content of a nucleating agent (LAK). All of the formulations could be processed by blowing extrusion and the obtained films showed mechanical properties dependent on the LAK content. In particular the tearing strength showed a maximum like trend in the investigated composition range. The films prepared with both kinds of blends showed a tensile strength in the range 12–24 MPa, an elongation at break in the range 150–260% and a significant crystallinity. PMID:29342099
Charlot, Aurélia; Heyraud, Alain; Guenot, Pierre; Rinaudo, Marguerite; Auzély-Velty, Rachel
2006-03-01
A new synthetic route to beta-cyclodextrin-linked hyaluronic acid (HA-CD) was developed. This was based on the preparation of a HA derivative selectively modified with adipic dihydrazide (HA-ADH) and a beta-cyclodextrin derivative possessing an aldehyde function on the primary face, followed by their coupling by a reductive amination-type reaction. The CD-polysaccharide was fully characterized in terms of chemical integrity and purity by high-resolution NMR spectroscopy. The complexation ability of the grafted CD was further demonstrated by isothermal titration calorimetry using sodium adamantane acetate (ADAc) and Ibuprofen as model guest molecules. The thermodynamic parameters for the complexation of these negatively charged guest molecules by the beta-CD grafted on negatively charged HA were shown to be largely influenced by the ionic strength of the aqueous medium.
NASA Astrophysics Data System (ADS)
Kawamura, K.; Yokoyama, K.; Fujii, Y.; Watanabe, O.
A Greenland ice core (450 years) has been studied for low molecular weight dicarboxylic acids (C2-C10) using a capillary gas chromatography and mass spectrometer. Their molecular distribution generally showed a predominance of succinic acid (C4) followed by oxalic (C2), malonic (C3), glutaric (C5), adipic (C6), and azelaic (C9) acids. Azelaic acid, that is a specific photochemical reaction product of biogenic unsaturated fatty acids, gave a characteristic historical trend in the ice core; i.e., the concentrations are relatively low during late 16th to 19th century (Little Ice Age) but become very high in late 19th to 20th century (warmer periods) with a large peak in 1940s AD. Lower concentrations of azelaic acid may have been caused by a depressed emission of unsaturated fatty acids from seawater microlayers due to enhanced sea ice coverage during Little Ice Age. Inversely, increased concentrations of azelaic acid in late 19th to 20th century are likely interpreted by an enhanced sea-to-air emission of the precursor unsaturated fatty acids due to a retreat of sea ice and/or by the enhanced production due to a potentially increased oxidizing capability of the atmosphere.
Pereira, Dora I.A.; Bruggraber, Sylvaine F.A.; Faria, Nuno; Poots, Lynsey K.; Tagmount, Mani A.; Aslam, Mohamad F.; Frazer, David M.; Vulpe, Chris D.; Anderson, Gregory J.; Powell, Jonathan J.
2014-01-01
Iron deficiency is the most common nutritional disorder worldwide with substantial impact on health and economy. Current treatments predominantly rely on soluble iron which adversely affects the gastrointestinal tract. We have developed organic acid-modified Fe(III) oxo-hydroxide nanomaterials, here termed nano Fe(III), as alternative safe iron delivery agents. Nano Fe(III) absorption in humans correlated with serum iron increase (P < 0.0001) and direct in vitro cellular uptake (P = 0.001), but not with gastric solubility. The most promising preparation (iron hydroxide adipate tartrate: IHAT) showed ~80% relative bioavailability to Fe(II) sulfate in humans and, in a rodent model, IHAT was equivalent to Fe(II) sulfate at repleting haemoglobin. Furthermore, IHAT did not accumulate in the intestinal mucosa and, unlike Fe(II) sulfate, promoted a beneficial microbiota. In cellular models, IHAT was 14-fold less toxic than Fe(II) sulfate/ascorbate. Nano Fe(III) manifests minimal acute intestinal toxicity in cellular and murine models and shows efficacy at treating iron deficiency anaemia. From the Clinical Editor This paper reports the development of novel nano-Fe(III) formulations, with the goal of achieving a magnitude less intestinal toxicity and excellent bioavailability in the treatment of iron deficiency anemia. Out of the tested preparations, iron hydroxide adipate tartrate met the above criteria, and may become an important tool in addressing this common condition. PMID:24983890
Barbin, Douglas Fernandes; Valous, Nektarios A; Dias, Adriana Passos; Camisa, Jaqueline; Hirooka, Elisa Yoko; Yamashita, Fabio
2015-11-01
There is an increasing interest in the use of polysaccharides and proteins for the production of biodegradable films. Visible and near-infrared (VIS-NIR) spectroscopy is a reliable analytical tool for objective analyses of biological sample attributes. The objective is to investigate the potential of VIS-NIR spectroscopy as a process analytical technology for compositional characterization of biodegradable materials and correlation to their mechanical properties. Biofilms were produced by single-screw extrusion with different combinations of polybutylene adipate-co-terephthalate, whole oat flour, glycerol, magnesium stearate, and citric acid. Spectral data were recorded in the range of 400-2498nm at 2nm intervals. Partial least square regression was used to investigate the correlation between spectral information and mechanical properties. Results show that spectral information is influenced by the major constituent components, as they are clustered according to polybutylene adipate-co-terephthalate content. Results for regression models using the spectral information as predictor of tensile properties achieved satisfactory results, with coefficients of prediction (R(2)C) of 0.83, 0.88 and 0.92 (calibration models) for elongation, tensile strength, and Young's modulus, respectively. Results corroborate the correlation of NIR spectra with tensile properties, showing that NIR spectroscopy has potential as a rapid analytical technology for non-destructive assessment of the mechanical properties of the films. Copyright © 2015 Elsevier B.V. All rights reserved.
Acetylated adipate of retrograded starch as RS 3/4 type resistant starch.
Kapelko-Żeberska, M; Zięba, T; Spychaj, R; Gryszkin, A
2015-12-01
This study was aimed at producing acetylated adipate of retrograded starch (ADA-R) with various degrees of substitution with functional groups and at determining the effect of esterification degree on resistance and pasting characteristics of the produced preparations. Paste was prepared from native potato starch, and afterwards frozen and defrosted. After drying and disintegration, the paste was acetylated and crosslinked using various doses of reagents. An increase in the total degree of esterification of the produced ADA-R-preparation caused an increase in its resistance to the action of amyloglucosidase. Viscosity of the paste produced from ADA-R-preparation in a wide range of acetylation degrees was increasing along with increasing crosslinking of starch. The study demonstrated that acetylated adipate of retrograded starch may be classified as a preparation of RS 3/4 type resistant starch (retrograded starch/chemically-modified starch) with good texture-forming properties. The conducted modification offers the possibility of modeling the level of resistance of the produced preparation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Threat of plastic ageing in marine environment. Adsorption/desorption of micropollutants.
Kedzierski, Mikaël; D'Almeida, Mélanie; Magueresse, Anthony; Le Grand, Adélaïde; Duval, Hélène; César, Guy; Sire, Olivier; Bruzaud, Stéphane; Le Tilly, Véronique
2018-02-01
Ageing of various plastics in marine environment was monitored after immersion of two synthetic (polyvinylchloride, PVC, and polyethylene terephthalate, PET) and one biodegradable (poly(butylene adipate co-terephtalate), PBAT) plastics for 502days in the bay of Lorient (Brittany, France). Data analysis indicates that aged PVC rapidly releases estrogenic compounds in seawater with a later adsorption of heavy metals; PET undergoes a low weakening of the surface whereas no estrogenic activity is detected; PBAT ages faster in marine environment than PVC. Aged PBAT exhibits heterogeneous surface with some cavities likely containing clay minerals from the chlorite group. Besides, this degraded material occasionally shows a high estrogenic activity. Overall, this study reports, for the first time, that some aged plastics, without being cytotoxic, can release estrogenic compounds in marine environment. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Müller, L.; Winterhalter, R.; Moortgat, G. K.; Hoffmann, T.; Pöschl, U.
2010-05-01
Filter samples of fine and coarse particulate matter were collected over a period of one year and analyzed for water-soluble organic compounds, including the pinene oxidation products pinic acid, pinonic acid, 3-methyl-1,2,3-butanetricarboxylic acid (3-MBTCA) and a variety of dicarboxylic acids (C5-C16) and nitrophenols. Seasonal variations and other characteristic features are discussed with regard to aerosol sources and sinks and data from other studies and regions. The ratios of adipic acid (C6) and phthalic acid (Ph) to azelaic acid (C9) indicate that the investigated aerosols samples were mainly influenced by biogenic sources. An Arrhenius-type correlation was found between the 3-MBTCA concentration and inverse temperature. Model calculations suggest that the temperature dependence is largely due to enhanced emissions and OH radical concentrations at elevated temperatures, whereas the influence of gas-particle partitioning appears to play a minor role. Enhanced ratios of pinic acid to 3-MBTCA indicate strong chemical aging of the investigated aerosols in summer and spring. Acknowledgment: The authors would like to thank M. Claeys for providing synthetic 3-methyl-1,2,3-butanetricarboxylic acid standards for LC-MS analysis and J. Fröhlich for providing filter samples and related information.
NASA Astrophysics Data System (ADS)
Broekhuizen, K. E.; Thornberry, T.; Abbatt, J. P.
2003-12-01
The ability of organic aerosols to act as cloud condensation nuclei (CCN) will be discussed. A variety of laboratory experiments will be presented which address several key questions concerning organic particle activation. Does the particle phase impact activation? How does surface tension play a role and can a trace amount of a surface active species impact activation? Does a trace amount of a highly soluble species impact the activation of organic particles of moderate to low solubility? Can the activation properties of organic aerosols be enhanced through oxidative processing? To systematically address these issues, the CCN activity of various diacids such as oxalic, malonic, succinic, adipic and azelaic acid have been studied, as well as the addition of trace amounts of nonanoic acid and ammonium sulfate to examine the roles of surface active and soluble species, respectively. The first examination of the role of oxidative processing on CCN activity has involved investigating the effect of ozone oxidation on the activity of oleic acid particles.
Baek, Woonhee; Lim, Chae Woo; Lee, Sung Chul
2017-10-01
Plant adaptive responses to abiotic stress are coordinated by restriction of plant growth and development. The plant hormone abscisic acid (ABA) is the key regulator of the response to abiotic stress, and its sensitivity determines abiotic stress tolerance levels. We previously showed that the E3 ubiquitin ligase CaAIRF1 functions as a positive regulator of ABA and drought stress via modulation of transcription and stability of the type 2C protein phosphatase CaADIP1. Here, we report the identification and functional analysis of a novel-type 2C phosphatase, CaAIPP1 (Capsicum annuum CaAIRF1 Interacting Protein Phosphatase 1). CaAIPP1 interacted with and was ubiquitinated by CaAIRF1. CaAIPP1 gene expression in pepper leaves was induced by ABA and drought. CaAIPP1 degradation was faster in crude protein extracts from ABA-treated pepper plants than in those from control plants. CaAIPP1-overexpressing plants displayed an ABA-hyposensitive phenotype during seed germination and seedling growth. Moreover, these plants exhibited a drought-sensitive phenotype characterized by high levels of transpirational water loss via decreased stomatal closure and reduced leaf temperatures. Our data indicate that CaAIPP1 is a negative regulator of the drought stress response via ABA-mediated signalling. Our findings provide a valuable insight into the plant defence mechanism that operates during drought stress. © 2017 John Wiley & Sons Ltd.
A novel aryl acylamidase from Nocardia farcinica hydrolyses polyamide.
Heumann, Sonja; Eberl, Anita; Fischer-Colbrie, Gudrun; Pobeheim, Herbert; Kaufmann, Franz; Ribitsch, Doris; Cavaco-Paulo, Artur; Guebitz, Georg M
2009-03-01
An alkali stable polyamidase was isolated from a new strain of Nocardia farcinica. The enzyme consists of four subunits with a total molecular weight of 190 kDa. The polyamidase cleaved amide and ester bonds of water insoluble model substrates like adipic acid bishexylamide and bis(benzoyloxyethyl)terephthalate and hydrolyzed different soluble amides to the corresponding acid. Treatment of polyamide 6 with this amidase led to an increased hydrophilicity based on rising height and tensiometry measurements and evidence of surface hydrolysis of polyamide 6 is shown. In addition to amidase activity, the enzyme showed activity on p-nitrophenylbutyrate. On hexanoamide the amidase exhibited a K(m) value of 5.5 mM compared to 0.07 mM for p-nitroacetanilide. The polyamidase belongs to the amidase signature family and is closely related to aryl acylamidases from different strains/species of Nocardia and to the 6-aminohexanoate-cyclic dimer hydrolase (EI) from Arthrobacter sp. KI72.
Impact property enhancement of poly (lactic acid) with different flexible copolymers
NASA Astrophysics Data System (ADS)
Likittanaprasong, N.; Seadan, M.; Suttiruengwong, S.
2015-07-01
The objective of this work was to improve the impact property of Poly (lactic acid) (PLA) by blending with different copolymers. Six flexible copolymers, namely, acrylonitrile butadiene styrene (ABS) powder, Biomax, polybutyrate adipate co-terephthalate (PBAT), polyether block amide (PEBAX), ethylene-vinyl acetate (EVA) and ethylene acrylic elastomer (EAE), with loading less than 20wt% were used and compared. The rheological, mechanical and morphological properties of samples were investigated by melt flow index, tensile testing, impact testing and scanning electron microscope (SEM), respectively. It was found that PLA added 20wt% EAE showed the highest impact strength (59.5 kJ/m2), which was 22 times higher than neat PLA. The elongation at break was also increased by 12 folds compared to neat PLA. The SEM images showed good interface and distribution for PLA containing 20wt% EAE, 15 phr Biomax and 20 wt% PEBAX.
Balkwell, W.R. Jr.; Adams, G.D. Jr.
1960-05-10
An improvement was made in the determination of amounts of ionizing radiation, particularly low-energy beta particles of less than 1000 rad total dose by means of fluid-phase dosimeter employing a stabilized-- sensitized ferrous-ferric colorimetric system in a sulphuric acid medium. The improvement in the dosimeter consists of adding to the ferrous-ferric system in concentrations of 10/sub -2/ to 10/sup -4/M an organic compound having one or more carboxylic or equivalent groups, such compounds being capable of chelating or complexing the iron ions in the solution. Suitable sensitizing and stabilizing agents are benzoic, phthalic, salicylic, malonic, lactic, maleic, oxalic, citric, succinic, phenolic tartaric, acetic, and adipic acid, as well as other compounds which are added to the solution alone or in certain combinations. As in conventional fluid-phase dosimeters, the absorbed dosage is correlated with a corresponding change in optical density at particular wavelengths of the solution.
Reed, Danielle R.; Li, Xia; McDaniel, Amanda H.; Lu, Ke; Li, Shanru; Tordoff, Michael G.; Price, R. Arlen; Bachmanov, Alexander A.
2006-01-01
Mice have proved to be a powerful model organism for understanding obesity in humans. Single gene mutants and genetically modified mice have been used to identify obesity genes, and the discovery of loci for polygenic forms of obesity in the mouse is an important next step. To pursue this goal, the inbred mouse strains 129P3/J (129) and C57BL/6ByJ (B6), which differ in body weight, body length, and adiposity, were used in an F2 cross to identify loci affecting these phenotypes. Linkages were determined in a two-phase process. In the first phase, 169 randomly selected F2 mice were genotyped for 134 markers that covered all autosomes and the X Chromosome (Chr). Significant linkages were found for body weight and body length on Chr 2. In addition, we detected several suggestive linkages on Chr 2 (adiposity), 9 (body weight, body length, and adiposity), and 16 (adiposity), as well as two suggestive sex-dependent linkages for body length on Chrs 4 and 9. In the second phase, 288 additional F2 mice were genotyped for markers near these regions of linkage. In the combined set of 457 F2 mice, six significant linkages were found: Chr 2 (Bwq5, body weight and Bdln3, body length), Chr 4 (Bdln6, body length, males only), Chr 9 (Bwq6, body weight and Adip5, adiposity), and Chr 16 (Adip9, adiposity), as well as several suggestive linkages (Adip2, adiposity on Chr 2; Bdln4 and Bdln5, body length on Chr 9). In addition, there was a suggestive linkage to body length in males on Chr 9 (Bdln4). For adiposity, there was evidence for epistatic interactions between loci on Chr 9 (Adip5) and 16 (Adip9). These results reinforce the concept that obesity is a complex trait. Genetic loci and their interactions, in conjunction with sex, age, and diet, determine body size and adiposity in mice. PMID:12856282
Jadhav, Nilesh L; Sastry, Sai Krishna C; Pinjari, Dipak V
2018-04-01
The present study deals with synthesis of cardanol-cased novolac (CBN) resin by the condensation reaction between cardanol and formaldehyde using acoustic cavitation. It is a step-growth polymerization which occurs in the presence of an acid catalyst such as adipic acid, citric acid, oxalic acid, sulphuric acid and hydrochloric acid. CBN was also synthesised by a conventional method for the sake of comparison of techniques. The effect of molar ratio, effect of catalyst, effect of different catalyst and effect of power on the conversion to CBN has been studied. The synthesised CBN was characterized using the Fourier Transform Infra Red Spectroscopy (FTIR), Gel Permeation Chromatography (GPC), Nuclear Magnetic Resonance (NMR) Spectroscopy and Thermogravimetric Analysis (TGA). The reaction was monitored by the Acid value, free formaldehyde content and viscosity of the synthesised product. The reaction time required for the conventionally synthesised CBN was 5 h (300 min) with 120 °C as an operating temperature while sonochemically the time reduced to 30 min at room temperature. The amount of time and energy saved can be quantified. Ultrasound facilitated synthesis was found to be an energy efficient and time-saving method for the synthesis of novolac resin. Copyright © 2017 Elsevier B.V. All rights reserved.
Li, Bin; Konecke, Stephanie; Wegiel, Lindsay A; Taylor, Lynne S; Edgar, Kevin J
2013-10-15
Amorphous solid dispersions (ASD) of curcumin (Cur) in cellulose derivative matrices, hydroxypropylmethylcellulose acetate succinate (HPMCAS), carboxymethylcellulose acetate butyrate (CMCAB), and cellulose acetate adipate propionate (CAAdP) were prepared in order to investigate the structure-property relationship and identify polymer properties necessary to effectively increase Cur aqueous solution concentration. XRD results indicated that all investigated solid dispersions were amorphous, even at a 9:1 Cur:polymer ratio. Both stability against crystallization and Cur solution concentration from these ASDs were significantly higher than those from physical mixtures and crystalline Cur. Remarkably, curcumin was also stabilized against chemical degradation in solution. Chemical stabilization was polymer-dependent, with stabilization in CAAdP>CMCAB>HPMCAS>PVP, while matrices enhanced solution concentration as PVP>HPMCAS>CMCAB≈CAAdP. HPMCAS/Cur dispersions have useful combinations of pH-triggered release profile, chemical stabilization, and strong enhancement of Cur solution concentration. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zheng, Guikai; Lu, Ming; Rui, Xiaoping
2017-03-01
Waterborne polyurethanes (WPU) modified with polyether functional polydimethylsiloxane (PDMS) were synthesized by pre-polymerization method using isophorone diisocyanate (IPDI) and 1,4-butanediol (BDO) as hard segments and polybutylene adipate glycol (PBA) and polyether functional PDMS as soft segments. The effect of polyether functional PDMS on phase separation, thermal properties, surface properties including surface composition, morphology and wettability were investigated by FTIR, contact angle measurements, ARXPS, SEM-EDS, AFM, TG and DSC. The results showed that the compatibility between urethane hard segment and PDMS modified with polyether was good, and there was no distinct phase separation in both bulk and surface of WPU films. The degradation temperature and low temperature flexibility increased with increasing amounts of polyether functional PDMS. The enrichment of polyether functional PDMS with low surface energy on the surface imparted excellent hydrophobicity to WPU films.
Pereira, Dora I A; Bruggraber, Sylvaine F A; Faria, Nuno; Poots, Lynsey K; Tagmount, Mani A; Aslam, Mohamad F; Frazer, David M; Vulpe, Chris D; Anderson, Gregory J; Powell, Jonathan J
2014-11-01
Iron deficiency is the most common nutritional disorder worldwide with substantial impact on health and economy. Current treatments predominantly rely on soluble iron which adversely affects the gastrointestinal tract. We have developed organic acid-modified Fe(III) oxo-hydroxide nanomaterials, here termed nano Fe(III), as alternative safe iron delivery agents. Nano Fe(III) absorption in humans correlated with serum iron increase (P < 0.0001) and direct in vitro cellular uptake (P = 0.001), but not with gastric solubility. The most promising preparation (iron hydroxide adipate tartrate: IHAT) showed ~80% relative bioavailability to Fe(II) sulfate in humans and, in a rodent model, IHAT was equivalent to Fe(II) sulfate at repleting haemoglobin. Furthermore, IHAT did not accumulate in the intestinal mucosa and, unlike Fe(II) sulfate, promoted a beneficial microbiota. In cellular models, IHAT was 14-fold less toxic than Fe(II) sulfate/ascorbate. Nano Fe(III) manifests minimal acute intestinal toxicity in cellular and murine models and shows efficacy at treating iron deficiency anaemia. This paper reports the development of novel nano-Fe(III) formulations, with the goal of achieving a magnitude less intestinal toxicity and excellent bioavailability in the treatment of iron deficiency anemia. Out of the tested preparations, iron hydroxide adipate tartrate met the above criteria, and may become an important tool in addressing this common condition. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.
Cao, Yachao; Elmahdy, Akram; Zhu, Hanjiang; Hui, Xiaoying; Maibach, Howard
2018-05-01
Six chemical warfare agent simulants (trimethyl phosphate, dimethyl adipate, 2-chloroethyl methyl sulfide, diethyl adipate, chloroethyl phenyl sulfide and diethyl sebacate) were studied in in vitro human skin to explore relationship between dermal penetration/absorption and the mechanisms of simulant partitioning between stratum corneum (SC) and water as well as between dermal decontamination gel (DDGel) and water. Both binding affinity to and decontamination of simulants using DDGel were studied. Partition coefficients of six simulants between SC and water (Log P SC/w ) and between DDGel and water (Log P DDGel/w ) were determined. Results showed that DDGel has a similar or higher binding affinity to each simulant compared to SC. The relationship between Log P octanol/water and Log P SC/w as well as between Log P octanol/water and Log P DDGel/w demonstrated that partition coefficient of simulants correlated to their lipophilicity or hydrophilicity. Decontamination efficiency results with DDGel for these simulants were consistent with binding affinity results. Amounts of percentage dose of chemicals in DDGel of trimethyl phosphate, dimethyl adipate, 2-chloroethyl methyl sulfide, diethyl adipate, chloroethyl phenyl sulfide and diethyl sebacate were determined to be 61.15, 85.67, 75.91, 53.53, 89.89 and 76.58, with corresponding amounts absorbed in skin of 0.96, 0.65, 1.68, 0.72, 0.57 and 1.38, respectively. In vitro skin decontamination experiments coupled with a dermal absorption study demonstrated that DDGel can efficiently remove chemicals from skin surface, back-extract from the SC, and significantly reduced chemical penetration into skin or systemic absorption for all six simulants tested. Therefore, DDGel offers a great potential as a NextGen skin Decon platform technology for both military and civilian use. Copyright © 2018 John Wiley & Sons, Ltd.
Naccarato, Attilio; Gionfriddo, Emanuela; Elliani, Rosangela; Sindona, Giovanni; Tagarelli, Antonio
2014-10-30
The analysis of characteristic urinary acidic markers such as glutaric, 3-hydroxyglutaric, 2-hydroxyglutaric, adipic, suberic, sebacic, ethylmalonic, 3-hydroxyisovaleric and isobutyric acid constitutes the recommended follow-up testing procedure for glutaric acidemia type 1 (GA-1) and type 2 (GA-2). The goal of the work herein presented is the development of a fast and simple method for the quantification of these biomarkers in human urine. The proposed analytical approach is based on the use of solid phase microextraction (SPME) combined with gas chromatography-triple quadrupole mass spectrometry (GC-QqQ-MS) afterward a rapid derivatization of acidic moieties by propyl chloroformate, propanol and pyridine. Trueness and precision of the proposed protocol, tested at 5, 30 and 80mgl -1 , provided satisfactory values: recoveries were in the range between 72% and 116% and the relative standard deviations (RSD%) were between 0.9% and 18% (except for isobutyric acid at 5mgl -1 ). The LOD values achieved by the proposed method ranged between 1.0 and 473μgl -1 . Copyright © 2014 Elsevier B.V. All rights reserved.
Olivato, J B; Grossmann, M V E; Bilck, A P; Yamashita, F
2012-09-01
The influence of citric acid (CA), malic acid (MA) and tartaric acid (TA) in starch/poly (butylene adipate co-terephthalate) blown films was evaluated by examining the barrier, structural and mechanical properties of the films. These properties were analysed in different relative humidities. Greater concentrations of TA and CA (1.5 wt%) produced films with improved tensile strength (6.8±0.3 and 6.7±0.3 MPa, respectively), reduced water vapour permeability and a more homogeneous structure. The compatibilising effect of MA was less efficient, as shown in the scanning electron microscopy (SEM) images. Changes in the relative humidity (RH) affected the elongation of the films, which reached values of 5.7±0.5 at 33% RH and increased to 312.4±89.5% at 53% RH. The FT-IR spectra showed no additional reactions caused by the incorporation of the additives, and the observed results are attributed to the esterification reactions and/or hydrolysis of the starch, producing films with interesting properties. This process represents an alternative to the use of non-biodegradable materials. Copyright © 2012 Elsevier Ltd. All rights reserved.
Livi, Sébastien; Lins, Luanda Chaves; Peter, Jakub; Kredatusova, Jana; Pruvost, Sébastien
2017-01-01
In this work, phosphonium ionic liquids (ILs) based on tetra-alkylphosphonium cations combined with carboxylate, phosphate and phosphinate anions, were used for organic modification of layered double hydroxide (LDH). Two different amounts (2 and 5 wt %) of the organically modified LDHs were mixed with poly(butylene adipate-co-terephthalate) (PBAT) matrix by melt extrusion. All prepared PBAT/IL-modified-LDH composites exhibited increased mechanical properties (20–50% Young’s modulus increase), decreased water vapor permeability (30–50% permeability coefficient reduction), and slight decreased crystallinity (10–30%) compared to the neat PBAT. PMID:28956811
Stable-isotope-based labeling of styrene-degrading microorganisms in biofilters.
Alexandrino, M; Knief, C; Lipski, A
2001-10-01
Deuterated styrene ([(2)H(8)]styrene) was used as a tracer in combination with phospholipid fatty acid (PLFA) analysis for characterization of styrene-degrading microbial populations of biofilters used for treatment of waste gases. Deuterated fatty acids were detected and quantified by gas chromatography-mass spectrometry. The method was evaluated with pure cultures of styrene-degrading bacteria and defined mixed cultures of styrene degraders and non-styrene-degrading organisms. Incubation of styrene degraders for 3 days with [(2)H(8)]styrene led to fatty acids consisting of up to 90% deuterated molecules. Mixed-culture experiments showed that specific labeling of styrene-degrading strains and only weak labeling of fatty acids of non-styrene-degrading organisms occurred after incubation with [(2)H(8)]styrene for up to 7 days. Analysis of actively degrading filter material from an experimental biofilter and a full-scale biofilter by this method showed that there were differences in the patterns of labeled fatty acids. For the experimental biofilter the fatty acids with largest amounts of labeled molecules were palmitic acid (16:0), 9,10-methylenehexadecanoic acid (17:0 cyclo9-10), and vaccenic acid (18:1 cis11). These lipid markers indicated that styrene was degraded by organisms with a Pseudomonas-like fatty acid profile. In contrast, the most intensively labeled fatty acids of the full-scale biofilter sample were palmitic acid and cis-11-hexadecenoic acid (16:1 cis11), indicating that an unknown styrene-degrading taxon was present. Iso-, anteiso-, and 10-methyl-branched fatty acids showed no or weak labeling. Therefore, we found no indication that styrene was degraded by organisms with methyl-branched fatty fatty acids, such as Xanthomonas, Bacillus, Streptomyces, or Gordonia spp.
Characterizing Corrosion Effects of Weak Organic Acids Using a Modified Bono Test
NASA Astrophysics Data System (ADS)
Zhou, Yuqin; Turbini, Laura J.; Ramjattan, Deepchand; Christian, Bev; Pritzker, Mark
2013-12-01
To meet environmental requirements and achieve benefits of cost-effective manufacturing, no-clean fluxes (NCFs) or low-solids fluxes have become popular in present electronic manufacturing processes. Weak organic acids (WOAs) as the activation ingredients in NCFs play an important role, especially in the current lead-free and halogen-free soldering technology era. However, no standard or uniform method exists to characterize the corrosion effects of WOAs on actual metallic circuits of printed wiring boards (PWBs). Hence, the development of an effective quantitative test method for evaluating the corrosion effects of WOAs on the PWB's metallic circuits is imperative. In this paper, the modified Bono test, which was developed to quantitatively examine the corrosion properties of flux residues, is used to characterize the corrosion effects of five WOAs (i.e., abietic acid, succinic acid, glutaric acid, adipic acid, and malic acid) on PWB metallic circuits. Experiments were performed under three temperature/humidity conditions (85°C/85% RH, 60°C/93% RH, and 40°C/93% RH) using two WOA solution concentrations. The different corrosion effects among the various WOAs were best reflected in the testing results at 40°C and 60°C. Optical microscopy was used to observe the morphology of the corroded copper tracks, and scanning electron microscopy (SEM) energy-dispersive x-ray (EDX) characterization was performed to determine the dendrite composition.
Manna, Soumen K.; Patterson, Andrew D.; Yang, Qian; Krausz, Kristopher W.; Li, Henghong; Idle, Jeffrey R.; Fornace, Albert J.; Gonzalez, Frank J.
2010-01-01
Alcohol-induced liver disease (ALD) is a leading cause of non-accident-related deaths in the United States. Although liver damage caused by ALD is reversible when discovered at the earlier stages, current risk assessment tools are relatively non-specific. Identification of an early specific signature of ALD would aid in therapeutic intervention and recovery. In this study the metabolic changes associated with alcohol-induced liver disease were examined using alcohol-fed male Ppara-null mouse as a model of ALD. Principal components analysis of the mass spectrometry-based urinary metabolic profile showed that alcohol-treated wild-type and Ppara-null mice could be distinguished from control animals without information on history of alcohol consumption. The urinary excretion of ethyl-sulfate, ethyl-β-D-glucuronide, 4-hydroxyphenylacetic acid, and 4-hydroxyphenylacetic acid sulfate was elevated and that of the 2-hydroxyphenylacetic acid, adipic acid, and pimelic acid was depleted during alcohol treatment in both wild-type and the Ppara-null mice albeit to different extents. However, indole-3-lactic acid was exclusively elevated by alcohol exposure in Ppara-null mice. The elevation of indole-3-lactic acid is mechanistically related to the molecular events associated with development of ALD in alcohol-treated Ppara-null mice. This study demonstrated the ability of metabolomics approach to identify early, noninvasive biomarkers of ALD pathogenesis in Ppara-null mouse model. PMID:20540569
Are Organic Aerosols Good Cloud Condensation Nuclei?
NASA Astrophysics Data System (ADS)
Abbatt, J. P.; Broekhuizen, K.; Kumar, P. P.
2002-12-01
The ability of a set of organic-containing aerosols to act as cloud condensation nuclei has been measured in the laboratory using a thermal-gradient diffusion chamber operated at a fixed supersaturation. We observe that particles composed of soluble organics, such as malonic acid and adipic acid, activate at dry particle diameters in agreement with Kohler theory predications assuming the solutes are fully soluble and the droplet has the surface tension of water. Surprisingly, we also observe that sparingly soluble azelaic acid and cis-pinonic acid particles also activate, perhaps because they are being formed in a supersaturated, amorphous state or that their activation is aided by surface uptake of water. Mixed organic/ammonium sulfate particles have also been studied, and a range of behavior is observed. Soluble species such as malonic acid enhance activation through the vapour-pressure lowering effect whereas a thick coating of stearic acid on ammonium sulfate makes the particles totally inactive. Lastly, we have observed that pure oleic acid particles, which show no indication of activation when pure, can be activated after exposure to gas-phase ozone. The atmospheric implications of our results will be discussed. An interesting issue is the degree to which we can quantitatively model our results by assuming the surface tension of the growing droplet is that of water, i.e. without the need to invoke the surface-tension-lowering effect due to surface-active organics.
NASA Astrophysics Data System (ADS)
Müller-Tautges, C.; Eichler, A.; Schwikowski, M.; Pezzatti, G. B.; Conedera, M.; Hoffmann, T.
2016-01-01
Historic records of α-dicarbonyls (glyoxal, methylglyoxal), carboxylic acids (C6-C12 dicarboxylic acids, pinic acid, p-hydroxybenzoic acid, phthalic acid, 4-methylphthalic acid), and ions (oxalate, formate, calcium) were determined with annual resolution in an ice core from Grenzgletscher in the southern Swiss Alps, covering the time period from 1942 to 1993. Chemical analysis of the organic compounds was conducted using ultra-high-performance liquid chromatography (UHPLC) coupled to electrospray ionization high-resolution mass spectrometry (ESI-HRMS) for dicarbonyls and long-chain carboxylic acids and ion chromatography for short-chain carboxylates. Long-term records of the carboxylic acids and dicarbonyls, as well as their source apportionment, are reported for western Europe. This is the first study comprising long-term trends of dicarbonyls and long-chain dicarboxylic acids (C6-C12) in Alpine precipitation. Source assignment of the organic species present in the ice core was performed using principal component analysis. Our results suggest biomass burning, anthropogenic emissions, and transport of mineral dust to be the main parameters influencing the concentration of organic compounds. Ice core records of several highly correlated compounds (e.g., p-hydroxybenzoic acid, pinic acid, pimelic, and suberic acids) can be related to the forest fire history in southern Switzerland. P-hydroxybenzoic acid was found to be the best organic fire tracer in the study area, revealing the highest correlation with the burned area from fires. Historical records of methylglyoxal, phthalic acid, and dicarboxylic acids adipic acid, sebacic acid, and dodecanedioic acid are comparable with that of anthropogenic emissions of volatile organic compounds (VOCs). The small organic acids, oxalic acid and formic acid, are both highly correlated with calcium, suggesting their records to be affected by changing mineral dust transport to the drilling site.
Estimation and projection of nitrous oxide (N2O) emissions from anthropogenic sources in Taiwan.
Tsai, Wen-Tien; Chyan, Jih-Ming
2006-03-01
Taiwan is a densely populated and developed country with more than 97% of energy consumption supplied by imported fuels. Greenhouse gas emissions are thus becoming significant environmental issues in the country. Using the Intergovernmental Panel on Climate Change (IPCC) recommended methodologies, anthropogenic emissions of nitrous oxide (N2O) in Taiwan during 2000-2003 were estimated to be around 41 thousand metric tons annually. About 87% of N2O emissions come from agriculture, 7% from the energy sector, 3% from industrial processes sector, 3% from waste sector. On the basis of N2O emissions in 2000, projections for the year 2010 show that emissions were estimated to decline by about 6% mainly due to agricultural changes in response to the entry of WTO in 2002. In contrast to projections for the year 2020, N2O emissions were projected to grow by about 17%. This is based on the reasonable scenario that a new adipic acid/nitric acid plant will be probably started after 2010.
NASA Astrophysics Data System (ADS)
Zhao, Hongkun; He, Hongming; Wang, Xiuguang; Liu, Zhongyi; Ding, Bo; Yang, Hanwen
2018-03-01
Four unique infinite 2D Mn(II) aggregates, [Mn3(μ3-ade)2(OAc)4X]n (X = DMF for 1, DMA for 2 and C2H5O- for 3), [Mn3(μ3-ade)2(ap)2DMF]n (4) (Hade = adenine; DMF = N,N-dimethylformamide; DMA = N,N-dimethylacetamide, OAc- = acetate ion, H2ap = adipic acid) with trinuclear Mn(II) as secondary building units (SBUs), have been successfully synthesized by the assembly of Hade nucleobase and manganese acetate under solvothermal conditions. The resultant complexes can be applied to explore the influence of solvent or co-ligands on the self-assembly and properties of metal complexes based on adenine. The Hade represent tridentate μ3-N3, N7, N9 bridging coordination modes. The acetate anions exhibit μ2-η1:η1 bidentate, μ2-η1:η2 tridentate mode, and μ2-η0:η2 bidentate mode. The adipate anions in complex 4 adopt two coordination modes: one is μ4-η2:η1:η1:η1 pentadentate mode, the other one is μ3-η1:η2:η2:η1 hexadentate mode. Their magnetic behaviors exhibit interesting variations, in which the local net magnetization at low temperature increases from 1 to 3. The MnII3 SBUs in 1-3 are symmetric with an inversion center, whereas that in 4 has three crystallographically independent MnII atoms. Thus, the magnetic behaviors of 4 are different from complex 1-3.
Zhang, Ying; Smuts, Jonathan P; Dodbiba, Edra; Rangarajan, Rekha; Lang, John C; Armstrong, Daniel W
2012-09-12
Rosemary, whose major caffeoyl-derived and diterpenoid ingredients are rosmarinic acid, carnosol, and carnosic acid, is an important source of natural antioxidants and is being recognized increasingly as a useful preservative, protectant, and even as a potential medicinal agent. Understanding the stability of these components and their mode of interaction in mixtures is important if they are to be utilized to greatest effect. A study of the degradation of rosmarinic acid, carnosol, carnosic acid, and a mixture of the three was conducted in ethanolic solutions at different temperatures and light exposure. As expected, degradation increased with temperature. Some unique degradation products were formed with exposure to light. Several degradation products were reported for the first time. The degradation products were identified by HPLC/MS/MS, UV, and NMR. The degradation of rosemary extract in fish oil also was investigated, and much slower rates of degradation were observed for carnosic acid. In the mixture of the three antioxidants, carnosic acid serves to maintain levels of carnosol, though it does so at least in part at the cost of its own degradation.
NASA Astrophysics Data System (ADS)
Li, Yao-Jia; Luo, Yang-Hui; Wang, Jing-Wen; Chen, Chen; Sun, Bai-Wang
2018-02-01
Three salts: 3-amino-1,2,4-triazolinium (1+) hydrogen oxalate (1), 3-amino-1,2, 4-triazolinium (1+) hydrogen malonate (2), 3-amino-1,2,4-triazolinium (1+) hydrogen succinate (3) and one co-crystal: 3-amino-1,2,4-triazole-adipic acid (4) have been prepared and characterized by differential scanning calorimetry (DSC), thermogravimetric analyses (TGA), IR, Raman, and single-crystal X-ray diffraction. Wherein, supramolecular motif in salts 1, 3 and co-crystal 4 were dominant by triazole-acid and amino-acid heterosynthon, while salt 2 dominant by amino-triazole homosynthon in addition to triazole-acid heterosynthon, which attribute to the intermolecular hydrogen interactions within hydrogen malonate anion. These results have a close relationship with the ΔpKa between 3-ATZ and alkyl acids, we found that the ΔpKa is grate than 6.9, the formation of salt will be expected, while the formation of co-crystal usually with the ΔpKa less than 6.75. It is interesting that salts 2 and 3 show the phenomenon of proton transfer after melt, which lead to the stepwise sublimation of the two components. The differences between salts and co-crystal were also revealed by the solid-state vibrational spectroscopy (IR and Raman), Hirshfeld surface analysis and UV spectra.
Shen, Jinyou; Zhang, Jianfa; Zuo, Yi; Wang, Lianjun; Sun, Xiuyun; Li, Jiansheng; Han, Weiqing; He, Rui
2009-04-30
A picric acid-degrading bacterium, strain NJUST16, was isolated from a soil contaminated by picric acid and identified as a member of Rhodococcus sp. based on 16S rRNA sequence. The degradation assays suggested that the strain NJUST16 could utilize picric acid as the sole source of carbon, nitrogen and energy. The isolate grew optimally at 30 degrees C and initial pH 7.0-7.5 in the mineral salts medium supplemented with picric acid. It was basically consistent with degradation of picric acid by the isolate. Addition of nitrogen sources such as yeast extract and peptone accelerated the degradation of picric acid. However, the stimulation was concentration dependent. The degradation was accompanied by release of stoichiometric amount of nitrite and acidification. The degradation of picric acid at relatively high concentrations (>3.93 mM) demonstrated that the degradation was both pH and nitrite dependent. Neutral and slightly basic pH was crucial to achieve high concentrations of picric acid degradation by the NJUST16 strain.
Dutta, Anirban; Vasudevan, Venugopal; Nain, Lata; Singh, Neera
2016-01-01
An enrichment culture was used to study atrazine degradation in mineral salt medium (MSM) (T1), MSM+soil extract (1:1, v/v) (T2) and soil extract (T3). Results suggested that enrichment culture required soil extract to degrade atrazine, as after second sequential transfer only partial atrazine degradation was observed in T1 treatment while atrazine was completely degraded in T2 and T3 treatments even after fourth transfer. Culture independent polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) technique confirmed selective enrichment of genus Bacillus along with Pseudomonas and Burkholderia. Degradation of atrazine/metabolites in the industrial wastewater was studied at different initial concentrations of the contaminants [wastewater-water (v/v) ratio: T1, 1:9; T2, 2:8; T3, 3:7; T4, 5:5 and T5, undiluted effluent]. The initial concentrations of atrazine, cyanuric acid and biuret ranged between 5.32 and 53.92 µg mL(-1), 265.6 and 1805.2 µg mL(-1) and 1.85 and 16.12 µg mL(-1), respectively. The enrichment culture was able to completely degrade atrazine, cyanuric acid and biuret up to T4 treatment, while no appreciable degradation of contaminants was observed in the undiluted effluent (T5). Inability of enrichment culture to degrade atrazine/metabolites might be due to high concentrations of cyanuric acid. Therefore, a separate study on cyanuric acid degradation suggested: (i) no appreciable cyanuric acid degradation with accumulation of an unidentified metabolite in the medium where cyanuric acid was supplemented as the sole source of carbon and nitrogen; (ii) partial cyanuric acid degradation with accumulation of unidentified metabolite in the medium containing additional nitrogen source; and (iii) complete cyanuric acid degradation in the medium supplemented with an additional carbon source. This unidentified metabolite observed during cyanuric acid degradation and also detected in the enrichment culture inoculated wastewater samples, however, was degraded up to T4 treatments and was persistent in the T5 treatment. Probably, accumulation of this metabolite inhibited atrazine/cyanuric acid degradation by the enrichment culture in undiluted wastewater.
NASA Astrophysics Data System (ADS)
Nandy, Purnendu; Nayak, Amrita; Biswas, Sharmita Nandy; Pedireddi, V. R.
2016-03-01
Solid state structures of 2,4-diamino-6-(4-methylphenyl)-1,3,5-triazine, 1, in the form of methanol and dimethylsulfoxide (DMSO) solvates, as well as supramolecular assemblies of 1 with various aliphatic dicarboxylic acids, oxalic (a), malonic (b), succinic (c), glutaric (d) and adipic (e) have been reported. Analysis of the assemblies has been carried out by single crystal X-ray diffraction and thermal methods. Triazine 1 yields anhydrous molecular adducts with acids a-d, upon co-crystallization either from CH3OH and DMSO solvents. However acid e gives anhydrous adduct from DMSO solvent, while it gives a methanol adduct from CH3OH. Structure determination reveals that molecular adducts 1a, 1d and 1e are in a 2:1 ratio of 1 and the corresponding acid. However the ratio is 1:1, in 1b, perhaps due to the involvement of one of the acid groups in the intramolecular hydrogen bonding and in adduct 1c the ratio observed is 3:2. Structural features in all these assemblies have been rationalised in terms of various recognition patterns formed between the acceptor and donor groups. A noteworthy feature is that -COOH groups in acid a establish interaction with 1 through amino groups, while such interactions are observed to be through hetero -N atoms in case of the acids b-e.
Kinetics of monomer biodegradation in soil.
Siotto, Michela; Sezenna, Elena; Saponaro, Sabrina; Innocenti, Francesco Degli; Tosin, Maurizio; Bonomo, Luca; Mezzanotte, Valeria
2012-01-01
In modern intensive agriculture, plastics are used in several applications (i.e. mulch films, drip irrigation tubes, string, clips, pots, etc.). Interest towards applying biodegradable plastics to replace the conventional plastics is promising. Ten monomers, which can be applied in the synthesis of potentially biodegradable polyesters, were tested according to ASTM 5988-96 (standard respirometric test to evaluate aerobic biodegradation in soil by measuring the carbon dioxide evolution): adipic acid, azelaic acid, 1,4-butanediol, 1,2-ethanediol, 1,6-hexanediol, lactic acid, glucose, sebacic acid, succinic acid and terephthalic acid. Eight replicates were carried out for each monomer for 27-45 days. The numerical code AQUASIM was applied to process the CO₂ experimental data in order to estimate values for the parameters describing the different mechanisms occurring to the monomers in soil: i) the first order solubilization kinetic constant, K(sol) (d⁻¹); ii) the first order biodegradation kinetic constant, K(b) (d⁻¹); iii) the lag time in biodegradation, t(lag) (d); and iv) the carbon fraction biodegraded but not transformed into CO₂, Y (-). The following range of values were obtained: [0.006 d⁻¹, 6.9 d⁻¹] for K(sol), [0.1 d⁻¹, 1.2 d⁻¹] for K(b), and [0.32-0.58] for Y; t(lag) was observed for azelaic acid, 1,2-ethanediol, and terephthalic acid, with estimated values between 3.0 e 4.9 d. Copyright © 2011 Elsevier Ltd. All rights reserved.
Hui, Qianru; Wang, Mian; Wang, Pei; Ma, Ya; Gu, Zhenxin; Yang, Runqiang
2018-01-01
Phytic acid as a phosphorus storage vault provides phosphorus for plant development. It is an anti-nutritional factor for humans and some animals. However, its degradation products lower inositol phosphates have positive effects on human health. In this study, the effect of gibberellic acid (GA) on phytic acid degradation under calcium lactate (Ca) existence was investigated. The results showed that Ca + GA treatment promoted the growth status, hormone metabolism and phytic acid degradation in germinating soybean. At the same time, the availability of phosphorus, the activity of phytic acid degradation-associated enzyme and phosphoinositide-specific phospholipase C (PI-PLC) increased. However, the relative genes expression of phytic acid degradation-associated enzymes did not vary in accordance with their enzymes activity. The results revealed that GA could mediate the transport and function of calcium and a series of physiological and biochemical changes to regulate phytic acid degradation of soybean sprouts. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Catalytic Conversion of Renewable Resources into Bulk and Fine Chemicals.
de Vries, Johannes G
2016-12-01
Several strategies can be chosen to convert renewable resources into chemicals. In this account, I exemplify the route that starts with so-called platform chemicals; these are relatively simple chemicals that can be produced in high yield, directly from renewable resources, either via fermentation or via chemical routes. They can be converted into the existing bulk chemicals in a very efficient manner using multistep catalytic conversions. Two examples are given of the conversion of sugars into nylon intermediates. 5-Hydroxymethylfurfural (HMF) can be prepared in good yield from fructose. Two hydrogenation steps convert HMF into 1,6-hexanediol. Oppenauer oxidation converts this product into caprolactone, which in the past, has been converted into caprolactam in a large-scale industrial process by reaction with ammonia. An even more interesting platform chemical is levulinic acid (LA), which can be obtained directly from lignocellulose in good yield by treatment with dilute sulfuric acid at 200°C. Hydrogenation converts LA into gamma-valerolactone, which is ring-opened and esterified in a gas-phase process to a mixture of isomeric methyl pentenoates in excellent selectivity. In a remarkable selective palladium-catalysed isomerising methoxycarbonylation, this mixture is converted in to dimethyl adipate, which is finally hydrolysed to adipic acid. Overall selectivities of both processes are extremely high. The conversion of lignin into chemicals is a much more complicated task in view of the complex nature of lignin. It was discovered that breakage of the most prevalent β-O-4 bond in lignin occurs not only via the well-documented C3 pathway, but also via a C2 pathway, leading to the formation of highly reactive phenylacetaldehydes. These compounds went largely unnoticed as they immediately recondense on lignin. We have now found that it is possible to prevent this by converting these aldehydes in a tandem reaction, as they are formed. For this purpose, we have used three different methods: acetalisation, hydrogenation, and decarbonylation. These reactions were first established in the tandem reactions of model compounds, but subsequently, we were able to show that this works equally well on organosolv lignin and even on lignocellulose. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Water soluble dicarboxylic acids and related compounds in Antarctic aerosols
NASA Astrophysics Data System (ADS)
Kawamura, Kimitaka; SeméRé, Richard; Imai, Yoshie; Fujii, Yoshiyuki; Hayashi, Masahiko
1996-08-01
Antarctic aerosols collected at Syowa Station were studied for water soluble organic compounds by employing a water extraction and dibutyl ester derivatization and using a capillary gas chromatography (GC) and GC/mass spectrometry (GC/MS). Total carbon and nitrogen were also determined. A homologous series of α,ω-dicarboxylic acids (C2-C11), ω-oxocarboxylic acids (C2-C9), and α-dicarbonyls (C2-C3) were detected, as well as pyruvic acid and aromatic (phthalic) diacid. Succinic (C4) or oxalic (C2) acid was found to be the dominant diacid species, followed by azelaic (C9), adipic (C6), or malonic (C3) acid. Concentration range of the total diacids was 5.9-88 ng m-3, with an average of 29 ng m-3. Highest concentrations were observed in the summer sample with a predominance of succinic acid (61.5 ng m-3), which comprised approximately 70% of the total diacids and accounted for 3.5% of total aerosol carbon (1020 ng m-3). The succinic acid (C4) is likely produced by photooxidation of 4-oxocarboxylic acids, which are present in the atmosphere as intermediates of the photooxidation of unsaturated fatty acids. These results indicate that the Antarctic organic aerosols originate from marine-derived lipids and are transformed largely by photochemical oxidations. ω-Oxocarboxylic acids (C2-C9, 0.36-3.0 ng m-3) also showed the highest concentration in the summer sample, again suggesting a secondary production in the atmosphere of the Antarctic and in the Southern Ocean.
NASA Astrophysics Data System (ADS)
Jia, Wenbao; He, Yanquan; Ling, Yongsheng; Hei, Daqian; Shan, Qing; Zhang, Yan; Li, Jiatong
2015-04-01
The radiation-induced degradation of cyclohexanebutyric acid under gamma ray irradiation was investigated. Degradation experiments were performed with 100 mL sealed Pyrex glass vessels loaded with 80 mL of cyclohexanebutyric acid solutions at various initial concentrations of 10, 20, and 40 mg L-1. The absorbed doses were controlled at 0, 0.65, 1.95, 3.25, 6.5, 9.75, and 13 kGy. The results showed that gamma ray irradiation could effectively degrade cyclohexanebutyric acid in aqueous solutions. The removal rate of cyclohexanebutyric acid increased significantly with the increase of absorbed dose and the decrease of its initial concentration. At the same time, the removal of chemical oxygen demand (COD) was as effective as that of cyclohexanebutyric acid. The kinetic studies showed that the degradation of cyclohexanebutyric acid followed pseudo first-order reaction. Above all, the proposed mechanism obtained when NaNO2, NaNO3 and tert-butanol were added showed that the •OH radical played a major role in the gamma degradation process of cyclohexanebutyric acid, while •H and eaq- played a minor role in the gamma degradation process. The degradation products were identified by Fourier transform infrared spectroscopy (FTIR) and gas chromatography/mass spectrometry (GC/MS) during cyclohexanebutyric acid degradation.
Cui, Yuan; Li, Yanhui; Duan, Qian; Kakuchi, Toyoji
2013-01-01
Hyaluronic acid is a naturally ionic polysaccharide with cancer cell selectivity. It is an ideal candidate material for delivery of anticancer agents. In this study, hyaluronic acid (HA) micro-hydrogel loaded with anticancer drugs was prepared by the biotin-avidin system approach. Firstly, carboxyl groups on HA were changed into amino groups with adipic acid dihydrazide (ADH) to graft with biotin by 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride named as HA-biotin. When HA-biotin solution mixed with doxorubicin hydrochloride (DOX·HCl) was blended with neutravidin, the micro-hydrogels would be formed with DOX loading. If excess biotin was added into the microgel, it would be disjointed, and DOX will be released quickly. The results of the synthesis procedure were characterized by (1)H-NMR and FTIR; ADH and biotin have been demonstrated to graft on the HA molecule. A field emission scanning electron microscope was used to observe morphologies of HA micro-hydrogels. Furthermore, the in vitro DOX release results revealed that the release behaviors can be adjusted by adding biotin. Therefore, the HA micro-hydrogel can deliver anticancer drugs efficiently, and the rate of release can be controlled by biotin-specific bonding with the neutravidin. Consequently, the micro-hydrogel will perform the promising property of switching in the specific site in cancer therapy.
Fatty Acid Structure and Degradation Analysis in Fingerprint Residues
NASA Astrophysics Data System (ADS)
Pleik, Stefanie; Spengler, Bernhard; Schäfer, Thomas; Urbach, Dieter; Luhn, Steven; Kirsch, Dieter
2016-09-01
GC-MS investigations were carried out to elucidate the aging behavior of unsaturated fatty acids in fingerprint residues and to identify their degradation products in aged samples. For this purpose, a new sample preparation technique for fingerprint residues was developed that allows producing N-methyl- N-trimethylsilyl-trifluoroacetamide (MSTFA) derivatives of the analyzed unsaturated fatty acids and their degradation products. MSTFA derivatization catalyzed by iodotrimethylsilane enables the reliable identification of aldehydes and oxoacids as characteristic MSTFA derivatives in GCMS. The obtained results elucidate the degradation pathway of unsaturated fatty acids. Our study of aged fingerprint residues reveals that decanal is the main degradation product of the observed unsaturated fatty acids. Furthermore, oxoacids with different chain lengths are detected as specific degradation products of the unsaturated fatty acids. The detection of the degradation products and their chain length is a simple and effective method to determine the double bond position in unsaturated compounds. We can show that the hexadecenoic and octadecenoic acids found in fingerprint residues are not the pervasive fatty acids Δ9-hexadecenoic (palmitoleic acid) and Δ9-octadecenoic (oleic acid) acid but Δ6-hexadecenoic acid (sapienic acid) and Δ8-octadecenoic acid. The present study focuses on the structure identification of human sebum-specific unsaturated fatty acids in fingerprint residues based on the identification of their degradation products. These results are discussed for further investigations and method developments for age determination of fingerprints, which is still a tremendous challenge because of several factors affecting the aging behavior of individual compounds in fingerprints.
Fatty Acid Structure and Degradation Analysis in Fingerprint Residues.
Pleik, Stefanie; Spengler, Bernhard; Schäfer, Thomas; Urbach, Dieter; Luhn, Steven; Kirsch, Dieter
2016-09-01
GC-MS investigations were carried out to elucidate the aging behavior of unsaturated fatty acids in fingerprint residues and to identify their degradation products in aged samples. For this purpose, a new sample preparation technique for fingerprint residues was developed that allows producing N-methyl-N-trimethylsilyl-trifluoroacetamide (MSTFA) derivatives of the analyzed unsaturated fatty acids and their degradation products. MSTFA derivatization catalyzed by iodotrimethylsilane enables the reliable identification of aldehydes and oxoacids as characteristic MSTFA derivatives in GCMS. The obtained results elucidate the degradation pathway of unsaturated fatty acids. Our study of aged fingerprint residues reveals that decanal is the main degradation product of the observed unsaturated fatty acids. Furthermore, oxoacids with different chain lengths are detected as specific degradation products of the unsaturated fatty acids. The detection of the degradation products and their chain length is a simple and effective method to determine the double bond position in unsaturated compounds. We can show that the hexadecenoic and octadecenoic acids found in fingerprint residues are not the pervasive fatty acids Δ9-hexadecenoic (palmitoleic acid) and Δ9-octadecenoic (oleic acid) acid but Δ6-hexadecenoic acid (sapienic acid) and Δ8-octadecenoic acid. The present study focuses on the structure identification of human sebum-specific unsaturated fatty acids in fingerprint residues based on the identification of their degradation products. These results are discussed for further investigations and method developments for age determination of fingerprints, which is still a tremendous challenge because of several factors affecting the aging behavior of individual compounds in fingerprints. Graphical Abstract ᅟ.
Jaeschke, Débora Pez; Marczak, Ligia Damasceno Ferreira; Mercali, Giovana Domeneghini
2016-05-15
The effect of electric field on ascorbic acid and carotenoid degradation in acerola pulp during ohmic heating was evaluated. Ascorbic acid kinetic degradation was evaluated at 80, 85, 90 and 95°C during 60 min of thermal treatment by ohmic and conventional heating. Carotenoid degradation was evaluated at 90 and 95°C after 50 min of treatment. The different temperatures evaluated showed the same effect on degradation rates. To investigate the influence of oxygen concentration on the degradation process, ohmic heating was also carried out under rich and poor oxygen modified atmospheres at 90°C. Ascorbic acid and carotenoid degradation was higher under a rich oxygen atmosphere, indicating that oxygen is the limiting reagent of the degradation reaction. Ascorbic acid and carotenoid degradation was similar for both heating technologies, demonstrating that the presence of the oscillating electric field did not influence the mechanisms and rates of reactions associated with the degradation process. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pillarisetti, Shameer; Maya, S; Sathianarayanan, S; Jayakumar, R
2017-11-01
Tunable pH and redox responsive polymer was prepared using γ-polyglutamic acid (γ-PGA) with linker 3-mercaptopropionic acid (3-MPA) (γ-PGA_SH) via oxidation to obtain redox responsive disulfide (γ-PGA_SS) backbone and adipic acid dihydrazide (ADH) (γ-PGA_SS_ADH) with hydrazide functional group for pH responsiveness. Further curcumin (Cur) was conjugated through hydrazone bond of the γ-PGA_SS_ADH via Schiff base reaction to obtain (γ-PGA_SS_ADH_Cur). The prepared systems were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Qq-TOF-MS/MS) and Solid state nuclear magnetic resonance (SS NMR) techniques. γ-PGA_SS_ADH_Cur formed self-assembled core shell nanoparticles (NPs) in existence of stabilized aqueous medium. γ-PGA_SS_ADH_Cur NPs maintained its stability in physiological condition. NPs tunable Cur release and cytotoxicity were observed for γ-PGA_SS_ADH_Cur NPs in both acidic and redox conditions mimicking the cancer microenvironment. γ-PGA_SS_ADH_Cur NPs uptake study showed via endocytosis mechanism resulted in the lysosomal entrapment of these NPs within the cell. γ-PGA_SS_ADH_Cur NPs exhibited a dual stimuli responsive drug delivery and can be used as a smart and potential drug delivery system in cancer microenvironment. Copyright © 2017 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2012 CFR
2012-04-01
.... Butylphthalyl butyl glycolate. Dibutyl sebacate. Di-(2-ethylhexyl) phthalate (for foods of high water content only). Diethyl phthalate. Diisobutyl adipate. Diisooctyl phthalate (for foods of high water content...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meadows, J.; Smith, R.C.
Uric acid has been proposed to be an important antioxidant and free radical scavenger in humans. Of the purine and pyrimidine compounds examined in this study, uric acid showed the greatest susceptibility to ozone-induced degradation. The parent compounds, purine and pyrimidine, were more resistant to ozonation than were the nucleobases. When the degradation of OH-substituted purines was examined, it was found that the more OH groups on the purine ring, the more readily the purine was degraded. Urea and allantoin were identified as degradation products of uric acid. The relative rates of nucleobase degradation in the presence and absence ofmore » uric acid were compared. Uric acid protected thymine, guanine, and uracil from degradation by ozone. In this system uric acid was found to protect the nucleobases as effectively as reduced glutathione.« less
Sonolytic degradation of butyric acid in aqueous solutions.
Dükkancı, Meral; Gündüz, Gönül
2013-11-15
The sonolytic degradation of butyric acid was investigated in an ultrasonic reactor emitting waves at 850 kHz. The effects of the ultrasonic power, the initial concentration of butyric acid, and the addition of H2O2 were studied on the degradation of butyric acid. In the sonication of butyric acid, degradation degrees as high as 31.5% could be achieved at a power of 31 W, at an initial concentration of 2.8 mM butyric acid with the addition of 0.34 M H2O2 for a sonication time of 5 h. The degradation of butyric acid increased with irradiation time, indicating first order kinetics. Copyright © 2013 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2014 CFR
2014-04-01
... sebacate. Di-(2-ethylhexyl) phthalate (for foods of high water content only). Diethyl phthalate. Diisobutyl adipate. Diisooctyl phthalate (for foods of high water content only). Diphenyl-2-ethylhexyl phosphate...
NASA Astrophysics Data System (ADS)
Zhang, Y. Y.; Müller, L.; Winterhalter, R.; Moortgat, G. K.; Hoffmann, T.; Pöschl, U.
2010-08-01
Filter samples of fine and coarse air particulate matter (PM) collected over a period of one year in central Europe (Mainz, Germany) were analyzed for water-soluble organic compounds (WSOCs), including the α- and β-pinene oxidation products pinic acid, pinonic acid and 3-methyl-1,2,3-butanetricarboxylic acid (3-MBTCA), as well as a variety of dicarboxylic acids and nitrophenols. Seasonal variations and other characteristic features in fine, coarse, and total PM (TSP) are discussed with regard to aerosol sources and sinks in comparison to data from other studies and regions. The ratios of adipic acid and phthalic acid to azelaic acid indicate that the investigated aerosol samples were mainly influenced by biogenic sources. A strong Arrhenius-type correlation was found between the 3-MBTCA concentration and inverse temperature (R2 = 0.79, n = 52, Ea = 126 ± 10 kJ mol-1, temperature range 275-300 K). Model calculations suggest that the temperature dependence observed for 3-MBTCA can be explained by enhanced photochemical production due to an increase of hydroxyl radical (OH) concentration with increasing temperature, whereas the influence of gas-particle partitioning appears to play a minor role. The results indicate that the OH-initiated oxidation of pinonic acid is the rate-limiting step in the formation of 3-MBTCA, and that 3-MBTCA may be a suitable tracer for the chemical aging of biogenic secondary organic aerosol (SOA) by OH radicals. An Arrhenius-type temperature dependence was also observed for the concentration of pinic acid (R2 = 0.60, n = 56, Ea = 84 ± 9 kJ mol-1); it can be tentatively explained by the temperature dependence of biogenic pinene emission as the rate-limiting step of pinic acid formation.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Müller, L.; Winterhalter, R.; Moortgat, G. K.; Hoffmann, T.; Pöschl, U.
2010-05-01
Filter samples of fine and coarse air particulate matter (PM) collected over a period of one year in central Europe (Mainz, Germany) were analyzed for water-soluble organic compounds (WSOCs), including the α- and β-pinene oxidation products pinic acid, pinonic acid and 3-methyl-1,2,3-butanetricarboxylic acid (3-MBTCA), as well as a variety of dicarboxylic acids and nitrophenols. Seasonal variations and other characteristic features in fine, coarse, and total PM (TSP) are discussed with regard to aerosol sources and sinks in comparison to data from other studies and regions. The ratios of adipic acid and phthalic acid to azelaic acid indicate that the investigated samples were mainly influenced by biogenic sources. A strong Arrhenius-type correlation was found between the 3-MBTCA concentration and inverse temperature (R2=0.79, n=52, Ea=126±10 kJ mol-1, temperature range 275-300 K). Model calculations suggest that the temperature dependence observed for 3-MBTCA can be explained by enhanced photochemical production due to an increase of hydroxyl radical (OH) concentration with increasing temperature, whereas the influence of gas-particle partitioning appears to play a minor role. The results indicate that the OH-initiated oxidation of pinonic acid is the rate-limiting step in the formation of 3-MBTCA, and that 3-MBTCA may be a suitable tracer for the chemical aging of biogenic secondary organic aerosol (SOA) by OH radicals. An Arrhenius-type temperature dependence was also observed for the concentration of pinic acid (R2=0.60, n=56, Ea=84±9 kJ mol-1); it can be tentatively explained by the temperature dependence of biogenic pinene emission as the rate-limiting step of pinic acid formation.
Degradable polyphosphazene/poly(alpha-hydroxyester) blends: degradation studies.
Ambrosio, Archel M A; Allcock, Harry R; Katti, Dhirendra S; Laurencin, Cato T
2002-04-01
Biomaterials based on the polymers of lactic acid and glycolic acid and their copolymers are used or studied extensively as implantable devices for drug delivery, tissue engineering and other biomedical applications. Although these polymers have shown good biocompatibility, concerns have been raised regarding their acidic degradation products, which have important implications for long-term implantable systems. Therefore, we have designed a novel biodegradable polyphosphazene/poly(alpha-hydroxyester) blend whose degradation products are less acidic than those of the poly(alpha-hydroxyester) alone. In this study, the degradation characteristics of a blend of poly(lactide-co-glycolide) (50:50 PLAGA) and poly[(50% ethyl glycinato)(50% p-methylphenoxy) phosphazene] (PPHOS-EG50) were qualitatively and quantitatively determined with comparisons made to the parent polymers. Circular matrices (14mm diameter) of the PLAGA, PPHOS-EG50 and PLAGA-PPHOS-EG50 blend were degraded in non-buffered solutions (pH 7.4). The degraded polymers were characterized for percentage mass loss and molecular weight and the degradation medium was characterized for acid released in non-buffered solutions. The amounts of neutralizing base necessary to bring about neutral pH were measured for each polymer or polymer blend during degradation. The poly(phosphazene)/poly(lactide-co-glycolide) blend required significantly less neutralizing base in order to bring about neutral solution pH during the degradation period studied. The results indicated that the blend degraded at a rate intermediate to that of the parent polymers and that the degradation products of the polyphosphazene neutralized the acidic degradation products of PLAGA. Thus, results from these in vitro degradation studies suggest that the PLAGA-PPHOS-EG50 blend may provide a viable improvement to biomaterials based on acid-releasing organic polymers.
Yoo, Kil Sun; Lee, Eun Jin; Patil, Bhimanagouda S
2011-10-01
Onion pungency has been routinely measured by determining pyruvic acid concentration in onion juice by reacting with 2,4-dinitrophenylhydrazine (DNPH) since 1961. However, the absorbency of the color adduct of the reaction rapidly decreased in onion samples as compared to that of the pyruvic acid standards, resulting in underestimations of the pyruvic acid concentrations. By measuring the absorbency at 1 min, we have demonstrated that accuracy could be substantially improved. As a continuation, the causes of degradation of the color adduct after the reaction and pyruvic acid itself before the reaction were examined in this study. Alliinase action in juice (fresh or cooked) and bulb colors did not influence the degradation. Some organic acids indigenously found in onion, such as ascorbic acid, proline, and glutamic acid, did not reduce the absorbency. However, fructose within the onion juice or supplemented caused the degradation of the color adduct, whereas sucrose and glucose had a lesser effect. Degradation rates increased proportionally as fructose concentrations increased up to 70 mg/mL. Cysteine was found to degrade the pyruvic acid itself before the pyruvic acid could react with DNPH. Approximately 90% of the pyruvic acid was degraded after 60 min in samples of 7 mM pyruvic acid supplemented with 10 mg/mL cysteine. Spectral comparisons of onion juice containing fructose naturally and pyruvic acid solution with supplemented fructose indicated identical patterns and confirmed that the color-adduct degradation was caused by fructose. Our study elucidated that fructose, a major sugar in onion juice, caused the degradation of color adduct in the onion pungency test and resulted in underestimation of the pyruvic acid concentration. © 2011 Institute of Food Technologists®
Kocic, Gordana; Bjelakovic, Ljiljana; Bjelakovic, Bojko; Jevtoci-Stoimenov, Tatjana; Sokolovic, Dusan; Cvetkovic, Tatjana; Kocic, Hristina; Stojanovic, Svetlana; Langerholc, Tomaz; Jonovic, Marina
2014-07-01
Sufficient intake of folic acid is necessary for normal embryogenesis, fetal, and neonatal development. Folic acid facilitates nucleic acid internalization, and protects cellular DNA from nuclease degradation. Human milk contains enzymes, antimicrobial proteins, and antibodies, along with macrophages, that protect against infections and allergies. However, little to no information is available on the effects of folic acid supplementation on degradation of nucleic acids in human milk. In the present study, we aimed to determine the RNase activity (free and inhibitor-bound) in colostrum and mature milk, following folic acid supplementation. The study design included a total of 59 women, 27 of whom received 400 μg of folic acid daily periconceptionally and after. Folic acid supplementation increased the free RNase and polyadenylase activity following lactation. However, the increased RNase activity was not due to de novo enzyme synthesis, as the inhibitor-bound (latent) RNase activity was significantly lower and disappeared after one month. Folic acid reduced RNase activity by using double-stranded RNA as substrate. Data suggests that folic acid supplementation may improve viral RNAs degradation and mRNA degradation, but not dsRNA degradation, preserving in this way the antiviral defense.
NASA Astrophysics Data System (ADS)
Kundu, S.; Kawamura, K.; Lee, M.
2009-12-01
: A homologous series of C2-C12 α, ω-dicarboxylic acids, ω-oxocarboxylic acids (C2-C9), pyruvic acid and α-dicarbonyls (C2-C3) were detected in atmospheric aerosols collected between April 2003 and April 2004 from remote marine Gosan site (33°29‧ N, 126°16‧ E) located in Jeju Island, South Korea. They were determined using a GC-FID and GC/MS. Total diacid concentration ranged from 130 to 1911 ng m-3 (av. 642 ng m-3), whereas total oxoacid concentration ranged from 7 to 155 ng m-3 (av. 43 ng m-3), and pyruvic acid and α-dicarbonyls ranged from 0.5 to 15 ng m-3 (av. 5 ng m-3) and 2-108 ng m-3 (av. 17.3 ng m-3), respectively. Oxalic (C2) acid was the most abundant in all seasons followed by malonic (C3) or succinic (C4) acid, and phthalic (Ph) acid. The concentration of diacids decreased with an increase in carbon number except for azelaic (C9) acid, which was more abundant than suberic (C8) acid. Glyoxylic acid was predominant ω-oxoacid contributing to 92% of total ω-oxoacid. Total diacids, oxoacids and dicarbonyls showed maximum concentrations in spring and occasionally in winter, while minimum concentrations were observed in summer. Air mass trajectory analysis suggests that either spring or winter maxima can be explained by strong continental outflow associated with cold front passages, while summer minima are associated with warm southerly flows, which transport clean marine air from low latitudes to Jeju Island. The comparison between total diacid concentration level of this study and other study results of urban and remote sites of East Asia reveals that Gosan site is more heavily influenced by the continental outflow from China. The seasonal variation of malonic/succinic (C3/C4), malic/succinic (hC4/C4), fumaric/maleic (F/M), oxalic/pyruvic (C2/Py) and oxalic/Glyoxal (C2/Gly) ratios showed maxima in summer due to an enhanced photo-production and degradation of diacids and related compounds. Throughout all seasons C3/C4 ratio at Gosan site, located between Chinese cities and Chichi-jima Island in Japan was observed higher than those in Chinese cities and lower than that of the Chichi-jima Island, pointing to the formation of diacid during long range transport. The lowest values of adipic/azelaic (C6/C9) and phthalic/azelaic (Ph/C9) were observed as a result of the overwhelming biogenic emission of the precursors (e.g., unsaturated fatty acids) of azelaic acid in summer.In this study, we will also discuss the sources and transport pathways of diacids and related compounds resolved using a hybrid receptor model, potential source contribution function (PSCF) and model results will be compared with available in-situ observations in East Asia.
Cellulose nanocrystal and poly[di(ethylene glycol) adipate] blend for tunable lens
NASA Astrophysics Data System (ADS)
Ko, Hyun-U.; Kim, Hyun Chan; Li, Yaguang; Kim, Sang Youn; Kim, Jaehwan
2016-04-01
In these days, consumer electronics and medical device for optical diagnosis are minimalized and mobilized. The focusing part is one of crucial parts of optical diagnosis systems to reduce the size and weight. Thus, demand for tunable lens that change the focus itself is increased. To meet the demand, many tunable lens has been studied by utilizing smart materials that responded under mechanical, magnetic, optical, thermal, chemical, electrical or electrochemical stimuli. This paper reports a cellulose nanocrystal (CNC) and poly[di(ethylene glycol) adipate] (PDEGA) blend that is able to respond under electromechanical stimulus. The preparation of CNC/PDEGA and its characterization are illustrated and its actuation behavior is tested . Because the material has high dielectric constant and high reflection index, it is good candidate material for tunable lens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This document contains emission factors and process information for more than 200 air pollution source categories. This Supplement to AP-42 addresses pollutant-generating activity from Bituminous And Subbituminous Coal Combustion, Anthracite Coal Combustion, Fuel Oil Combustion, Natural Gas Combustion, Liquefied Petroleum Gas Combustion, Wood Waste Combustion In Boilers, Lignite Combustion, Bagasse Combustion In Sugar Mills, Residential Fireplaces, Residential Wood Stoves, Waste Oil Combustion, Stationary Gas Turbines For Electricity Generation, Heavy-duty Natural Gas-fired Pipeline Compressor Engines And Turbines, Gasoline and Diesel Industrial Engines, Large Stationary Diesel And All Stationary Dual-fuel Engines, Adipic Acid, Cotton Ginning, Alfafalfa Dehydrating, Malt Beverages, Ceramic Products Manufacturing,more » Electroplating, Wildfires And Prescribed Burning, Emissions From Soils-Greenhouse Gases, Termites-Greenhouse Gases, and Lightning Emissions-Greenhouse Gases.« less
Gill, Arran M; Hinde, Christopher S; Leary, Rowan K; Potter, Matthew E; Jouve, Andrea; Wells, Peter P; Midgley, Paul A; Thomas, John M; Raja, Robert
2016-03-08
Highly active and selective aerobic oxidation of KA-oil to cyclohexanone (precursor for adipic acid and ɛ-caprolactam) has been achieved in high yields using continuous-flow chemistry by utilizing uncapped noble-metal (Au, Pt & Pd) nanoparticle catalysts. These are prepared using a one-step in situ methodology, within three-dimensional porous molecular architectures, to afford robust heterogeneous catalysts. Detailed spectroscopic characterization of the nature of the active sites at the molecular level, coupled with aberration-corrected scanning transmission electron microscopy, reveals that the synthetic methodology and associated activation procedures play a vital role in regulating the morphology, shape and size of the metal nanoparticles. These active centers have a profound influence on the activation of molecular oxygen for selective catalytic oxidations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jadhav, Umesh; Kadu, Sudhir; Thokal, Nilesh; Padul, Manohar; Dawkar, Vishal; Chougale, Ashok; Salve, Abhay; Patil, Manoj
2011-08-01
The focus of the present study is to know the potential of bacterial isolate for tannic acid degradation at low temperature. Also, we tried to evaluate the suitability of phytotoxicity testing protocol for the determination of tannic acid toxicity. Screening for tannic acid degrading bacterial strains was carried out by using microbial isolation techniques. The 16S rDNA amplicon of the isolate was used to identify the isolate. The effect of different concentrations of tannic acid and its degradation products on germination of Vigna unguiculata was evaluated. The study was carried out to determine total sugar and starch content of the used seeds and even to check the presence of α-amylase activity during seed germination. The isolated bacterium was identified as Klebsiella sp NACASA1 and it showed degradation of tannic acid in 40 (±0.85***) h at 15°C and pH 7.0. A gradual decrease in root/shoot length was observed with increasing concentration of tannic acid. There was 95.11 (±0.24**)% inhibition in α-amylase activity at 20,000 ppm tannic acid, as compared to control. No such effects were observed on germination, root-shoot length, and α-amylase activity with tannic acid degradation products. The results obtained confirmed that tannic acid may act as a toxic agent in plant cells. The simple biodegradation process presented in this study was found to be effective in reducing toxicity of tannic acid. Also, it reveals the potential of soil bacterium to degrade tannic acid at low temperature.
A Generalized Model for Transport of Contaminants in Soil by Electric Fields
Paz-Garcia, Juan M.; Baek, Kitae; Alshawabkeh, Iyad D.; Alshawabkeh, Akram N.
2012-01-01
A generalized model applicable to soils contaminated with multiple species under enhanced boundary conditions during treatment by electric fields is presented. The partial differential equations describing species transport are developed by applying the law of mass conservation to their fluxes. Transport, due to migration, advection and diffusion, of each aqueous component and complex species are combined to produce one partial differential equation hat describes transport of the total analytical concentrations of component species which are the primary dependent variables. This transport couples with geochemical reactions such as aqueous equilibrium, sorption, precipitation and dissolution. The enhanced model is used to simulate electrokinetic cleanup of lead and copper contaminants at an Army Firing Range. Acid enhancement is achieved by the use of adipic acid to neutralize the basic front produced for the cathode electrochemical reaction. The model is able to simulate enhanced application of the process by modifying the boundary conditions. The model showed that kinetics of geochemical reactions, such as metals dissolution/leaching and redox reactions might be significant for realistic prediction of enhanced electrokinetic extraction of metals in real world applications. PMID:22242884
Improved Durability and Sensitivity of Bitterness-Sensing Membrane for Medicines
Wu, Xiao; Onitake, Hideya; Huang, Zhiqin; Shiino, Takeshi; Tahara, Yusuke; Yatabe, Rui; Ikezaki, Hidekazu; Toko, Kiyoshi
2017-01-01
This paper reports the improvement of a bitterness sensor based on a lipid polymer membrane consisting of phosphoric acid di-n-decyl ester (PADE) as a lipid and bis(1-butylpentyl) adipate (BBPA) and tributyl o-acetylcitrate (TBAC) as plasticizers. Although the commercialized bitterness sensor (BT0) has high sensitivity and selectivity to the bitterness of medicines, the sensor response gradually decreases to almost zero after two years at room temperature and humidity in a laboratory. To reveal the reason for the deterioration of the response, we investigated sensor membranes by measuring the membrane potential, contact angle, and adsorption amount, as well as by performing gas chromatography-mass spectrometry (GC-MS), liquid chromatography-tandem mass spectrometry (LC-MS/MS). We found that the change in the surface charge density caused by the hydrolysis of TBAC led to the deterioration of the response. The acidic environment generated by PADE promoted TBAC hydrolysis. Finally, we succeeded in fabricating a new membrane for sensing the bitterness of medicines with higher durability and sensitivity by adjusting the proportions of the lipid and plasticizers. PMID:29113047
Degradation of a model pollutant ferulic acid by the endophytic fungus Phomopsis liquidambari.
Xie, Xing-Guang; Dai, Chuan-Chao
2015-03-01
Biodegradation of ferulic acid, by an endophytic fungus called Phomopsis liquidambari was investigated in this study. This strain can use ferulic acid as the sole carbon for growth. Both in mineral salt medium and in soil, more than 97% of added ferulic acid was degraded within 48 h. The metabolites were identified and quantified using GC-MS and HPLC-MS. Ferulic acid was first decarboxylated to 4-vinyl guaiacol and then oxidized to vanillin and vanillic acid, followed by demethylation to protocatechuic acid, which was further degraded through the β-ketoadipate pathway. During degradation, ferulic acid decarboxylase, laccase and protocatechuate 3,4-dioxygenase activities and their gene transcription levels were significantly affected by the variation of substrate and product concentrations. Moreover, ferulic acid degradation was determined to some extent by P. liquidambari laccase. This study is the first report of an endophytic fungus that has a great potential for practical application in ferulic acid-contaminated environments. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hayashi, Shohei; Sano, Tomoki; Suyama, Kousuke; Itoh, Kazuhito
2016-01-01
Herbicides 2,4-dichlorophenoxyacetic acid (2,4-D)- and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)-degrading Bradyrhizobium strains possess tfdAα and/or cadABC as degrading genes. It has been reported that root-nodulating bacteria belonging to Bradyrhizobium elkanii also have tfdAα and cadA like genes but lack the ability to degrade these herbicides and that the cadA genes in 2,4-D-degrading and non-degrading Bradyrhizobium are phylogenetically different. In this study, we identified cadRABCK in the genome of a type strain of soybean root-nodulating B. elkanii USDA94 and demonstrated that the strain could degrade the herbicides when cadABCK was forcibly expressed. cadABCK-cloned Escherichia coli also showed the degrading ability. Because co-spiked phenoxyacetic acid (PAA) could induce the degradation of 2,4-D in B. elkanii USDA94, the lack of degrading ability in this strain was supposed to be due to the low inducing potential of the herbicides for the degrading gene cluster. On the other hand, tfdAα from B. elkanii USDA94 showed little potential to degrade the herbicides, but it did for 4-chlorophenoxyacetic acid and PAA. The 2,4-D-degrading ability of the cad cluster and the inducing ability of PAA were confirmed by preparing cadA deletion mutant. This is the first study to demonstrate that the cad cluster in the typical root-nodulating bacterium indeed have the potential to degrade the herbicides, suggesting that degrading genes for anthropogenic compounds could be found in ordinary non-degrading bacteria. Copyright © 2016 Elsevier GmbH. All rights reserved.
Wu, Zhi-Guo; Wang, Fang; Ning, Li-Qun; Stedtfeld, Robert D; Yang, Zong-Zheng; Cao, Jing-Guo; Sheng, Hong-Jie; Jiang, Xin
2017-06-01
Several bacteria have been isolated to degrade 4-chloronitrobenzene. Degradation of 4-chloronitrobenzene by Cupriavidus sp. D4 produces 5-chloro-2-picolinic acid as a dead-end by-product, a potential pollutant. To date, no bacterium that degrades 5-chloro-2-picolinic acid has been reported. Strain f1, isolated from a soil polluted by 4-chloronitrobenzene, was able to co-metabolize 5-chloro-2-picolinic acid in the presence of ethanol or other appropriate carbon sources. The strain was identified as Achromobacter sp. based on its physiological, biochemical characteristics, and 16S rRNA gene sequence analysis. The organism completely degraded 50, 100 and 200 mg L -1 of 5-chloro-2-picolinic acid within 48, 60, and 72 h, respectively. During the degradation of 5-chloro-2-picolinic acid, Cl - was released. The initial metabolic product of 5-chloro-2-picolinic acid was identified as 6-hydroxy-5-chloro-2-picolinic acid by LC-MS and NMR. Using a mixed culture of Achromobacter sp. f1 and Cupriavidus sp. D4 for degradation of 4-chloronitrobenzen, 5-chloro-2-picolinic acid did not accumulate. Results infer that Achromobacter sp. f1 can be used for complete biodegradation of 4-chloronitrobenzene in remedial applications.
Itoh, Kazuhito; Kinoshita, Masahiro; Morishita, Shigeyuki; Chida, Masateru; Suyama, Kousuke
2013-04-01
Sixty-nine fungal strains were isolated countrywide from 10 Vietnamese soils, in areas both with and without a history of exposure to Agent Orange, and their degrading activities on the phenoxy acid herbicides 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), as well as related compounds, were examined. Among taxonomically various fungi, 45, 12 and 4% of the isolates degraded phenoxyacetic acid (PA), 2,4-D and 2,4,5-T, respectively. While the PA-degrading fungi were distributed to all sites and among many genera, the 2,4-D-degraders were found only in order Eurotiales in class Eurotiomycetes. All of the 2,4,5-T-degrading fungal strains were phylogenetically close to Eupenicillium spp. and were isolated from southern Vietnam. As a degradation intermediate, the corresponding phenol compounds were detected in some strains. The degradation substrate spectrum for 26 compounds of Eupenicillium spp. strains including 2,4,5-T-degraders and -non-degraders seemed to be related to phylogenetic similarity and soil sampling location of the isolates. These results suggest that the heavily contaminated environments enhanced the adaptation of the phylogenetic group of Eupenicillium spp. toward to obtain the ability to degrade 2,4,5-T. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yun, Hyejeong; Lim, Sangyong; Jo, Cheorun; Chung, Jinwoo; Kim, Soohyun; Kwon, Joong-Ho; Kim, Dongho
2008-06-01
The effects of organic acids, amino acids, and ethanol on the radio-degradation of patulin by gamma irradiation in an aqueous model system were investigated. The patulin, dissolved in distilled water at a concentration of 50 ppm, was practically degraded by the gamma irradiation at the dose of 1.0 kGy, while 33% of the patulin remained in apple juice. In the aqueous model system, the radio-degradation of patulin was partially inhibited by the addition of organic acids, amino acids, and ethanol. The proportions of remaining patulin after irradiation with the dose of 1.0 kGy in the 1% solution of malic acid, citric acid, lactic acid, acetic acid, ascorbic acid, and ethanol were 31.4%, 2.3%, 31.2%, 6.1%, 50.8%, and 12.5%, respectively. During 30 days of storage, the remaining patulin was reduced gradually in the solution of ascorbic acid and malic acid compared to being stable in other samples. The amino acids, serine, threonine, and histidine, inhibited the radio-degradation of patulin. In conclusion, it was suggested that 1 kGy of gamma irradiation (recommended radiation doses for radicidation and/or quarantine in fruits) is effective for the reduction of patulin, but the nutritional elements should be considered because the radio-degradation effects are environment dependent.
Zhu, Peng; Miao, Xiao-lei; Chen, Yong
2016-01-01
The degradation kinetics of chlorogenic acid (5-CQA), cryptochlorogenic acid (4-CQA), and neochlorogenic acid (3-CQA) in aqueous solution at 37 degrees C and different pH values (7.05, 7.96, 9.25) were investigated in the present work. The results indicated that 3-, 4- and 5-CQA tended to remain stable in acidic pH circumstance, and unstable in neutral and alkaline pH circumstance. With the increase of the alkalinity, the degradation of 3-, 4- and 5-CQA was increased leading to a less amount of total CQA and was satisfactorily described by the Weibull equation. Meanwhile, caffeic acid was not detected after the degradation of CQA. Moreover, the degradation of 3-CQA and 5-CQA tended to be converted to 4-CQA, and the degradation of 4-CQA tended to be converted to 3-CQA rather than 5-CQA. The comparison of the degradation kinetics parameters of 3-, 4- and 5-CQA at neutral and alkaline pH values showed that the orders of the rate constant (k) values were 4-CQA > 3-CQA > 5-CQA, while the orders of the degradation half life (t½) values were 4-CQA < 3-CQA < 5-CQA, indicating the orders of the stabilities of 3-, 4- and 5-CQA at 37 degrees C and neutral and alkaline pH values were 4-CQA < 3-CQA < 5-CQA.
Main chain acid-degradable polymers for the delivery of bioactive materials
Frechet, Jean M. J. [Oakland, CA; Standley, Stephany M [Evanston, IL; Jain, Rachna [Milpitas, CA; Lee, Cameron C [Cambridge, MA
2012-03-20
Novel main chain acid degradable polymer backbones and drug delivery systems comprised of materials capable of delivering bioactive materials to cells for use as vaccines or other therapeutic agents are described. The polymers are synthesized using monomers that contain acid-degradable linkages cleavable under mild acidic conditions. The main chain of the resulting polymers readily degrade into many small molecules at low pH, but remain relatively stable and intact at physiological pH. The new materials have the common characteristic of being able to degrade by acid hydrolysis under conditions commonly found within the endosomal or lysosomal compartments of cells thereby releasing their payload within the cell. The materials can also be used for the delivery of therapeutics to the acidic regions of tumors and other sites of inflammation.
NASA Astrophysics Data System (ADS)
Campos, Sandro X.; Vieira, Eny M.; Cordeiro, Paulo J. M.; Rodrigues-Fo, Edson; Murgu, Michael
2003-12-01
In this study, gamma radiation from cobalt-60 was used to degrade the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) dimethylamine salt in water in the presence of humic acid. The 2,4-D dimethylamine salt 1.13×10 -4 mol dm -3 solution was irradiated with different doses. HPLC was used as an analytical technique to determine the degradation rate of herbicide studied. The results showed that the herbicide was completely degraded at an absorbed dose of 3 kGy. Degradation decreased when humic acid was added to all the doses. ESI/MS and MS/MS were used to identify the radiolytic degradation products. A fragmentation path for production of 4.6-dichlororesorcinol, is suggested. The radiolytic yields ( G) were calculated.
Sanphui, Palash; Tothadi, Srinu; Ganguly, Somnath; Desiraju, Gautam R
2013-12-02
Sildenafil is a drug used to treat erectile dysfunction and pulmonary arterial hypertension. Because of poor aqueous solubility of the drug, the citrate salt, with improved solubility and pharmacokinetics, has been marketed. However, the citrate salt requires an hour to reach its peak plasma concentration. Thus, to improve solubility and bioavailability characteristics, cocrystals and salts of the drug have been prepared by treating aliphatic dicarboxylic acids with sildenafil; the N-methylated piperazine of the drug molecule interacts with the carboxyl group of the acid to form a heterosynthon. Salts are formed with oxalic and fumaric acid; salt monoanions are formed with succinic and glutaric acid. Sildenafil forms cocrystals with longer chain dicarboxylic acids such as adipic, pimelic, suberic, and sebacic acids. Auxiliary stabilization via C-H···O interactions is also present in these cocrystals and salts. Solubility experiments of sildenafil cocrystal/salts were carried out in 0.1N HCl aqueous medium and compared with the solubility of the citrate salt. The glutarate salt and pimelic acid cocrystal dissolve faster than the citrate salt in a two hour dissolution experiment. The glutarate salt exhibits improved solubility (3.2-fold) compared to the citrate salt in water. Solubilities of the binary salts follow an inverse correlation with their melting points, while the solubilities of the cocrystals follow solubilities of the coformer. Pharmacokinetic studies on rats showed that the glutarate salt exhibits doubled plasma AUC values in a single dose within an hour compared to the citrate salt. The high solubility of glutaric acid, in part originating from the strained conformation of the molecule and its high permeability, may be the reason for higher plasma levels of the drug.
Úbeda, Sara; Aznar, Margarita; Vera, Paula; Nerín, Cristina; Henríquez, Luis; Taborda, Laura; Restrepo, Claudia
2017-10-01
Most multilayer high barrier materials used in food packaging have a polyurethane adhesive layer in their structures. In order to assess the safety of these materials, it is important to determine the compounds intentionally added to the adhesives (IAS) as well as those non-intentionally added substances (NIAS). During the manufacture of polyurethane adhesives, some by-products can be formed, such as cyclic polyester oligomers coming from the reaction between dicarboxylic acids and glycols. Since these compounds are not listed in the Regulation 10/2011/EU, they should not be found in migration above 0.01 mg/kg of simulant. In this study two flexible multilayer packaging materials were used and migration was evaluated in simulant A (ethanol 10% v/v), simulant B (acetic acid 3% w/v) and simulant ethanol 95% v/v during 10 days at 60ºC. Identification and quantification of non-volatile compounds was carried out by UPLC-MS-QTOF. Most of migrants were oligomers such as cyclic polyesters and caprolactam oligomers. Overall migration and specific migration of adipic acid-diethylene glycol and phthalic acid-diethylene glycol were monitored over time and analysed by UPLC-MS-TQ. In most cases, ethanol 95% v/v was the simulant with the highest concentration values. Overall migration kinetics followed a similar pattern than specific migration kinetics.
Hong, Chang-Young; Park, Se-Yeong; Kim, Seon-Hong; Lee, Su-Yeon; Choi, Won-Sil; Choi, In-Gyu
2016-10-01
This study was carried out to better understand the characteristic modification mechanisms of monolignols by enzyme system of Abortiporus biennis and to induce the degradation of monolignols. Degradation and polymerization of monolignols were simultaneously induced by A. biennis. Whole cells of A. biennis degraded coniferyl alcohol to vanillin and coniferyl aldehyde, and degraded sinapyl alcohol to 2,6-dimethoxybenzene- 1,4-diol, with the production of dimers. The molecular weight of monolignols treated with A. biennis increased drastically. The activities of lignin degrading enzymes were monitored for 24 h to determine whether there was any correlation between monolignol biomodification and ligninolytic enzymes. We concluded that complex enzyme systems were involved in the degradation and polymerization of monolignols. To degrade monolignols, ascorbic acid was added to the culture medium as a reducing agent. In the presence of ascorbic acid, the molecular weight was less increased in the case of coniferyl alcohol, while that of sinapyl alcohol was similar to that of the control. Furthermore, the addition of ascorbic acid led to the production of various degraded compounds: syringaldehyde and acid compounds. Accordingly, these results demonstrated that ascorbic acid prevented the rapid polymerization of monolignols, thus stabilizing radicals generated by enzymes of A. biennis. Thereafter, A. biennis catalyzed the oxidation of stable monolignols. As a result, ascorbic acid facilitated predominantly monolignols degradation by A. biennis through the stabilization of radicals. These findings showed outstanding ability of A. biennis to modify the lignin compounds rapidly and usefully.
pH-independent immediate release polymethacrylate formulations--an observational study.
Claeys, Bart; Vandeputte, Reinout; De Geest, Bruno G; Remon, Jean Paul; Vervaet, Chris
2016-01-01
Using Eudragit® E PO (EudrE) as a polymethacrylate carrier, the aim of the study was to develop a pH-independent dosage form containing ibuprofen (IBP) as an active compound via chemical modification of the polymer (i.e. quaternization of amine function) or via the addition of dicarboxylic acids (succinic, glutaric and adipic acid) to create a pH micro-environment during dissolution. Biconvex tablets (diameter: 10 mm; height: 5 mm) were produced via hot melt extrusion and injection molding. In vitro dissolution experiments revealed that a minimum of 25% of quaternization was sufficient to partially (up to pH 5) eliminate the pH-dependent effect of the EudrE/IBP formulation. The addition of dicarboxylic acids did not alter IBP release in a pH 1 and 3 medium as the dimethyl amino groups of EudrE are already fully protonated, while in a pH 5 solvent IBP release was significantly improved (cf. from 0% to 92% release after 1 h dissolution experiments upon the addition of 20 wt.% succinic acid). Hence, both approaches resulted in a pH-independent (up to pH 5) immediate release formulation. However, the presence of a positively charged polymer induced stability issues (recrystallization of API) and the formulations containing dicarboxylic acids were classified as mechanically unstable. Hence, further research is needed to obtain a pH-independent immediate release formulation while using EudrE as a polmethacrylate carrier.
Židková, Monika; Linhart, Igor; Balíková, Marie; Himl, Michal; Dvořáčková, Veronika; Lhotková, Eva; Páleníček, Tomáš
2018-06-01
1. Methylone (3,4-methylenedioxy-N-methylcathinone, MDMC), which appeared on the illicit drug market in 2004, is a frequently abused synthetic cathinone derivative. Known metabolic pathways of MDMC include N-demethylation to normethylone (3,4-methylenedioxycathinone, MDC), aliphatic chain hydroxylation and oxidative demethylenation followed by monomethylation and conjugation with glucuronic acid and/or sulphate. 2. Three new phase II metabolites, amidic conjugates of MDC with succinic, glutaric and adipic acid, were identified in the urine of rats dosed subcutaneously with MDMC.HCl (20 mg/kg body weight) by LC-ESI-HRMS using synthetic reference standards to support identification. 3. The main portion of administered MDMC was excreted unchanged. Normethylone, was a major urinary metabolite, of which a minor part was conjugated with dicarboxylic acids. 4. Previously identified ring-opened metabolites 4-hydroxy-3-methoxymethcathinone (4-OH-3-MeO-MC), 3-hydroxy-4-methoxymeth-cathinone (3-OH-4-MeO-MC) and 3,4-dihydroxymethcathinone (3,4-di-OH-MC) mostly in conjugated form with glucuronic and/or sulphuric acids were also detected. 5. Also, ring-opened metabolites derived from MDC, namely, 4-hydroxy-3-methoxycathinone (4-OH-3-MeO-C), 3-hydroxy-4-methoxycathinone (3-OH-4-MeO-C) and 3,4-dihydroxycathinone (3,4-di-OH-C) were identified for the first time in vivo.
[Degradation of urea and ethyl carbamate in Chinese Rice wine by recombinant acid urease].
Zhou, Jianli; Kang, Zhen; Liu, Qingtao; Du, Guocheng; Chen, Jian
2016-01-01
Ethyl carbamate (EC) as a potential carcinogen commonly exists in traditional fermented foods. It is important eliminate urea that is the precursors of EC in many fermented foods, including Chinese Rice wine. On the basis of achieving high-level overexpression of food-grade ethanol-resistant acid urease, we studied the hydrolysis of urea and EC with the recombinant acid urease. Recombinant acid urease showed degraded urea in both the simulated system with ethanol and Chinese Rice wine (60 mg/L of urea was completely degraded within 25 h), indicating that the recombinant enzyme is suitable for the elimination of urea in Chinese Rice wine. Although recombinant acid urease also has degradation catalytic activity on EC, no obvious degradation of EC was observed. Further investigation results showed that the Km value for urea and EC of the recombinant acid urease was 0.7147 mmol/L and 41.32 mmol/L, respectively. The results provided theoretical foundation for realizing simultaneous degradation of urea and EC.
Furuhata, Katsunori; Goto, Keiichi; Kato, Yuko; Saitou, Keiko; Sugiyama, Jun-ichi; Hara, Motonobu; Yoshida, Shin-ichi; Fukuyama, Masafumi
2007-01-01
Strain K-20, a Gram-negative, non-motile, non-spore-forming and strictly aerobic rod, which produces a pale pink pigment, was isolated from biofilm in a cooling tower in Tokyo, Japan. The taxonomic feature of the strain was studied using phenotypic tests and phylogenetic analysis. Phylogenetic analysis of 16S rRNA gene sequences showed that the strain was related to Roseomonas gilardii subsp. rosea, Roseomonas gilardii subsp. gilardii, Roseomonas cervicalis and Roseomonas mucosa at 94.3-94.6 sequence similarities. Growth occurred at 25-40 C and pH 5.0-10.0, optimal at 35 C and pH 7.0. Growth did not occur in the presence of >or=2% NaCl. The API 20NE identification system gave a positive result for urease, L-arabinose, potassium gluconate, adipic acid, malic acid and trisodium citrate (API code number 0201465). The predominant fatty acids of strain K-20 were C18:1Delta11 (50.8%) and C16:1 (17.2%). Cells contained ubiquinone 10 (Q-10) as the major quinone and the G+C content was 72.0 mol%. Based on phenotypic, chemotaxonomic and phylogenetic data, it was assumed that strain K-20 (=JCM 14634) is a novel species of the genus Roseomonas.
NASA Astrophysics Data System (ADS)
Narukawa, M.; Kawamura, K.; Okada, K.; Zaizen, Y.; Makino, Y.
2003-07-01
Aircraft observation of aerosols was conducted in February 2000, for spatial and vertical distributions of dicarboxylic acids in the free troposphere over the western to central North Pacific. Oxalic, malonic, adipic and azelaic acids were detected in the aerosol samples as the major species. Concentrations of these diacids decreased exponentially with an increase in altitude. They were higher in the western North Pacific (130°E) and decrease eastward. Local flights conducted over Naha (Okinawa), Iwo-jima and Saipan showed that diacid concentrations decreased from the lower to upper troposphere. In the atmosphere over Saipan, where the air is not strongly affected from polluted East Asia, diacid concentrations were almost below the detection limit. Vertical profiles of diacids over Naha and Iwo-jima would be typical over the western North Pacific during winter, suggesting that diacids were significantly injected to the free troposphere from East Asia. Backward air mass trajectories also suggested that the diacids in the free troposphere over the North Pacific are strongly affected by the outflow from East Asia. Diacids, which were produced by both primary emission and secondary photochemical processes in polluted air of East Asia, could alter the physico-chemical properties of aerosols in the free troposphere over the western North Pacific.
NASA Astrophysics Data System (ADS)
Verdingovas, Vadimas; Jellesen, Morten Stendahl; Ambat, Rajan
2015-04-01
This paper presents the results of humidity testing of weak organic acids (WOAs), namely adipic, succinic, glutaric, dl-malic, and palmitic acids, which are commonly used as activators in no-clean solder fluxes. The study was performed under humidity conditions varying from 60% relative humidity (RH) to ˜99%RH at 25°C. The following parameters were used for characterization of WOAs: mass gain due to water adsorption and deliquescence of the WOA (by quartz crystal microbalance), resistivity of the water layer formed on the printed circuit board (by impedance spectroscopy), and leakage current measured using the surface insulation resistance pattern in the potential range from 0 V to 10 V. The combined results indicate the importance of the WOA chemical structure for the water adsorption and therefore conductive water layer formation on the printed circuit board assembly (PCBA). A substantial increase of leakage currents and probability of electrochemical migration was observed at humidity levels above the RH corresponding to the deliquescence point of WOAs present as contaminants on the printed circuit boards. The results suggest that use of solder fluxes with WOAs having higher deliquescence point could improve the reliability of electronics operating under circumstances in which exposure to high humidity is likely to occur.
Synthesis and Hydrolytic Degradation of Substituted Poly(DL-Lactic Acid)s
Tsuji, Hideto; Eto, Takehiko; Sakamoto, Yuzuru
2011-01-01
Non-substituted racemic poly(DL-lactic acid) (PLA) and substituted racemic poly(DL-lactic acid)s or poly(DL-2-hydroxyalkanoic acid)s with different side-chain lengths, i.e., poly(DL-2-hydroxybutanoic acid) (PBA), poly(DL-2-hydroxyhexanoic acid) (PHA), and poly(DL-2-hydroxydecanoic acid) (PDA) were synthesized by acid-catalyzed polycondensation of DL-lactic acid (LA), DL-2-hydroxybutanoic acid (BA), DL-2-hydroxyhexanoic acid (HA), and DL-2-hydroxydecanoic acid (DA), respectively. The hydrolytic degradation behavior was investigated in phosphate-buffered solution at 80 and 37 °C by gravimetry and gel permeation chromatography. It was found that the reactivity of monomers during polycondensation as monitored by the degree of polymerization (DP) decreased in the following order: LA > DA > BA > HA. The hydrolytic degradation rate traced by DP and weight loss at 80 °C decreased in the following order: PLA > PDA > PHA > PBA and that monitored by DP at 37 °C decreased in the following order: PLA > PDA > PBA > PHA. LA and PLA had the highest reactivity during polymerization and hydrolytic degradation rate, respectively, and were followed by DA and PDA. BA, HA, PBA, and PHA had the lowest reactivity during polymerization and hydrolytic degradation rate. The findings of the present study strongly suggest that inter-chain interactions play a major role in the reactivity of non-substituted and substituted LA monomers and degradation rate of the non-substituted and substituted PLA, along with steric hindrance of the side chains as can be expected. PMID:28824149
Xie, Xing-Guang; Huang, Chun-Yan; Fu, Wan-Qiu; Dai, Chuan-Chao
2016-03-01
The biodegradation potential of sinapic acid, one of the most representative methoxy phenolic pollutants presented in industrial wastewater, was first studied using an endophytic fungus called Phomopsis liquidambari. This strain can effectively degrade sinapic acid in flasks and in soil and the possible biodegradation pathway was first systematically proposed on the basis of the metabolite production patterns and the identification of the metabolites by GC-MS and HPLC-MS. Sinapic acid was first transformed to 2,6-dimethoxy-4-vinylphenol that was further degraded via 4-hydroxy-3,5-dimethoxybenzaldehyde, syringic acid, gallic acid, and citric acid which involved in the continuous catalysis by phenolic acid decarboxylase, laccase, and gallic acid dioxygenase. Moreover, their activities and gene expression levels exhibited a 'cascade induction' response with the changes in metabolic product concentrations and the generation of fungal laccase significantly improved the degradation process. This study is the first report of an endophytic fungus that has great potential to degrade xenobiotic sinapic acid, and also provide a basis for practical application of endophytic fungus in the bioremediation of sinapic acid-contaminated industrial wastewater and soils. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthiesen, John E.; Suástegui, Miguel; Wu, Yutong
We present muconic acid, an unsaturated diacid that can be produced from cellulosic sugars and lignin monomers by fermentation, emerges as a promising intermediate for the sustainable manufacture of commodity polyamides and polyesters including Nylon-6,6 and polyethylene terephthalate (PET). Current conversion schemes consist in the biological production of cis,cis-muconic acid using metabolically engineered yeasts and bacteria, and the subsequent diversification to adipic acid, terephthalic acid, and their derivatives using chemical catalysts. In some instances, conventional precious metal catalysts can be advantageously replaced by base metal electrocatalysts. Here, we show the economic relevance of utilizing a hybrid biological–electrochemical conversion scheme tomore » convert glucose to trans-3-hexenedioic acid (t3HDA), a monomer used for the synthesis of bioadvantaged Nylon-6,6. Potential roadblocks to biological and electrochemical integration in a single reactor, including electrocatalyst deactivation due to biogenic impurities and low faradaic efficiency inherent to side reactions in complex media, have been studied and addressed. In this study, t3HDA was produced with 94% yield and 100% faradaic efficiency. With consideration of the high t3HDA yield and faradaic efficiency, a technoeconomic analysis was developed on the basis of the current yield and titer achieved for muconic acid, the figures of merit defined for industrial electrochemical processes, and the separation of the desired product from the medium. On the basis of this analysis, t3HDA could be produced for approximately $2.00 kg –1. The low cost for t3HDA is a primary factor of the electrochemical route being able to cascade biological catalysis and electrocatalysis in one pot without separation of the muconic acid intermediate from the fermentation broth.« less
Matthiesen, John E.; Suástegui, Miguel; Wu, Yutong; ...
2016-10-05
We present muconic acid, an unsaturated diacid that can be produced from cellulosic sugars and lignin monomers by fermentation, emerges as a promising intermediate for the sustainable manufacture of commodity polyamides and polyesters including Nylon-6,6 and polyethylene terephthalate (PET). Current conversion schemes consist in the biological production of cis,cis-muconic acid using metabolically engineered yeasts and bacteria, and the subsequent diversification to adipic acid, terephthalic acid, and their derivatives using chemical catalysts. In some instances, conventional precious metal catalysts can be advantageously replaced by base metal electrocatalysts. Here, we show the economic relevance of utilizing a hybrid biological–electrochemical conversion scheme tomore » convert glucose to trans-3-hexenedioic acid (t3HDA), a monomer used for the synthesis of bioadvantaged Nylon-6,6. Potential roadblocks to biological and electrochemical integration in a single reactor, including electrocatalyst deactivation due to biogenic impurities and low faradaic efficiency inherent to side reactions in complex media, have been studied and addressed. In this study, t3HDA was produced with 94% yield and 100% faradaic efficiency. With consideration of the high t3HDA yield and faradaic efficiency, a technoeconomic analysis was developed on the basis of the current yield and titer achieved for muconic acid, the figures of merit defined for industrial electrochemical processes, and the separation of the desired product from the medium. On the basis of this analysis, t3HDA could be produced for approximately $2.00 kg –1. The low cost for t3HDA is a primary factor of the electrochemical route being able to cascade biological catalysis and electrocatalysis in one pot without separation of the muconic acid intermediate from the fermentation broth.« less
Enzymatic oxalic acid regulation correlated with wood degradation in four brown-rot fungi
Anne Christine Steenkjær Hastrup; Frederick Green III; Patricia K. Lebow; Bo Jensen
2012-01-01
Oxalic acid is a key component in the initiation of brown-rot decay and it has been suggested that it plays multiple roles during the degradation process. Oxalic acid is accumulated to varying degrees among brown-rot fungi; however, details on active regulation are scarce. The accumulation of oxalic acid was measured in this study from wood degraded by the four brown-...
Degradation of malathion by salt-marsh microorganisms.
Bourquin, A W
1977-01-01
Numerous bacteria from a salt-marsh environment are capable of degrading malathion, an organophosphate insecticide, when supplied with additional nutrients as energy and carbon sources. Seven isolates exhibited ability (48 to 90%) to degrade malathion as a sole carbon source. Gas and thin-layer chromatography and infrared spectroscopy confirmed malathion to be degraded via malathion-monocarboxylic acid to the dicarboxylic acid and then to various phosphothionates. These techniques also identified desmethyl-malathion, phosphorthionates, and four-carbon dicarboxylic acids as degradation products formed as a result of phosphatase activity. PMID:192147
Neuberger, Sabine; Jooß, Kevin; Flottmann, Dirk; Scriba, Gerhard; Neusüß, Christian
2017-02-05
In order to ensure the stability of pharmaceutical products appropriate manufacturing and storage conditions are required. In general, the degradation of active pharmaceutical ingredients (APIs) and subsequent formation of degradation products affect the pharmaceutical quality. Thus, a fast and effective detection and characterization of these substances is mandatory. Here, the applicability of Raman spectroscopy and CZE for the characterization of the degradation of effervescent tablets containing acetylsalicylic acid (ASA) and ascorbic acid (AA) was evaluated. Therefore, a degradation study was performed analyzing tablets from two different manufacturers at varying conditions (relative humidity (RH) 33%, 52% and 75% at 30°C). Raman spectroscopy combined with principal component analysis could be successfully applied for the fast and easy discrimination of non-degraded and degraded effervescent tablets after a storage period of approximately 24h (RH 52%). Nevertheless, a clear identification or quantification of APIs and degradation products within the analyzed tablets was not possible, i.a. due to missing reference materials. CZE-UV enabled the quantification of the APIs (ASA, AA) and related degradation products (salicylic acid (SA); semi-quantitative also mono- and diacetylated AA) within the complex tablet mixtures. The higher the RH, the faster the degradation of ASA and AA as well as the formation of the degradation products. Mono- and diacetylated AA are major primary degradation products of AA for the applied effervescent tablets. A significant degradation of the APIs was detected earlier by CZE (6-12h, RH 52%) than by Raman spectroscopy. Summarized, Raman spectroscopy is well-suited as quick test to detect degradation of these tablets and CZE can be utilized for further detailed characterization and quantification of specific APIs and related degradation products. Copyright © 2016 Elsevier B.V. All rights reserved.
Murakami, Akira; Nagao, Kohjiro; Juni, Naoto; Hara, Yuji; Umeda, Masato
2017-01-01
The Δ9-fatty acid desaturase introduces a double bond at the Δ9 position of the acyl moiety of acyl-CoA and regulates the cellular levels of unsaturated fatty acids. However, it is unclear how Δ9-desaturase expression is regulated in response to changes in the levels of fatty acid desaturation. In this study, we found that the degradation of DESAT1, the sole Δ9-desaturase in the Drosophila cell line S2, was significantly enhanced when the amounts of unsaturated acyl chains of membrane phospholipids were increased by supplementation with unsaturated fatty acids, such as oleic and linoleic acids. In contrast, inhibition of DESAT1 activity remarkably suppressed its degradation. Of note, removal of the DESAT1 N-terminal domain abolished the responsiveness of DESAT1 degradation to the level of fatty acid unsaturation. Further truncation and amino acid replacement analyses revealed that two sequential prolines, the second and third residues of DESAT1, were responsible for the unsaturated fatty acid–dependent degradation. Although degradation of mouse stearoyl-CoA desaturase 1 (SCD1) was unaffected by changes in fatty acid unsaturation, introduction of the N-terminal sequential proline residues into SCD1 conferred responsiveness to unsaturated fatty acid–dependent degradation. Furthermore, we also found that the Ca2+-dependent cysteine protease calpain is involved in the sequential proline–dependent degradation of DESAT1. In light of these findings, we designated the sequential prolines at the second and third positions of DESAT1 as a “di-proline motif,” which plays a crucial role in the regulation of Δ9-desaturase expression in response to changes in the level of cellular unsaturated fatty acids. PMID:28972163
Sui, Wei-Wei; Ding, Hai-Bing; Yang, Gui-Peng; Lu, Xiao-Lan; Li, Wen-Juan; Sun, Li-Qun
2013-11-01
Series of laboratory incubation experiments were conducted to simulate degradation of organic matter in sediment-seawater interface in hypoxia enviroments along China coastal area. Under four different redox conditions (oxygen saturation: 100%, 50%, 25% and 0%), degradations of seveal biomarkers originated from Skeletonema costatum, a typical red tide alage along China coastal area were tracked. By analyzing concentrations of four fatty acid biomarkers [14:0, 16:0, 16:1(7) and 20:5] obtained at various sampling time, results showed that their concentrations decreased significantly after 2-3 weeks' incubation. Then, their concentrations changed very slowly or very little. However, degradation of the four fatty acids varied dramatically in different incubation systems. Fatty acids 14:0, 16:1(7) and 20:5 were degraded completely in all incubation systems after two-month incubation, but 25% to 35% of 16:0 was reserved in the systems. Based on multi-G model, degradations of the four fatty acids were quantively described. The results indicated that all four fatty acids had fast-degraded and slow-degraded fractions. Their degradation rate constants (k(av)) ranged from 0.079 to 0.84 d(-1). The fastest degradation of 14:0 and 16:1 (7) occurred under 25% oxygen concentrations. For these two compounds, in the fastest degradation system, their k(av), values were 2.3 folds and 1.7 folds higher than those in the slowest degradation system [50% oxygen saturation for 14:0 and 100% oxygen saturation for 16:1(7)] respectively. The 16:0 was degraded fastest under the anoxic condition and slowest under the 50% oxygen saturation. The ratio of the two k(av)s was 2.1. The k(av)s of 20:5 had a positive relationship with oxygen saturations. Results of this study suggested that besides oxgen saturations, structure and features of organic compounds, roles of microbe in the envrioments and etc. might affect degradations of fatty acids in S. costatum in hypoxia sediment-seawater interface along China coastal area.
[Microbial degradation of 3-phenoxybenzoic acid--A review].
Deng, Weiqin; Liu, Shuliang; Yao, Kai
2015-09-04
3-phenoxybenzoic acid (3-PBA) with estrogen toxicity is one of the intermediate products of most pyrethroid pesticides. 3-PBA is difficult to degrade in the natural environment, and threatens food safety and human health. Microbial degradation of pyrethroids and their intermediate product (3-PBA) has become a hot topic in recent years. Here, we reviewed microbial species, degrading enzymes and degradation genes, degradation pathways of 3-PBA degrading and the application of 3-PBA degradation strains. This article provides references for the study of 3-PBA degradation by microorganisms.
Peng, Xue; Misawa, Norihiko; Harayama, Shigeaki
2003-01-01
Thirty-four thermophilic Bacillus sp. strains were isolated from decayed wood bark and a hot spring water sample based on their ability to degrade vanillic acid under thermophilic conditions. It was found that these bacteria were able to degrade a wide range of aromatic acids such as cinnamic, 4-coumaric, 3-phenylpropionic, 3-(p-hydroxyphenyl)propionic, ferulic, benzoic, and 4-hydroxybenzoic acids. The metabolic pathways for the degradation of these aromatic acids at 60°C were examined by using one of the isolates, strain B1. Benzoic and 4-hydroxybenzoic acids were detected as breakdown products from cinnamic and 4-coumaric acids, respectively. The β-oxidative mechanism was proposed to be responsible for these conversions. The degradation of benzoic and 4-hydroxybenzoic acids was determined to proceed through catechol and gentisic acid, respectively, for their ring fission. It is likely that a non-β-oxidative mechanism is the case in the ferulic acid catabolism, which involved 4-hydroxy-3-methoxyphenyl-β-hydroxypropionic acid, vanillin, and vanillic acid as the intermediates. Other strains examined, which are V0, D1, E1, G2, ZI3, and H4, were found to have the same pathways as those of strain B1, except that strains V0, D1, and H4 had the ability to transform 3-hydroxybenzoic acid to gentisic acid, which strain B1 could not do. PMID:12620824
Doll, Tusnelda E; Frimmel, Fritz H
2004-02-01
The light-induced degradation of clofibric acid, carbamazepine, iomeprol and iopromide under simulated solar irradiation has been investigated in aqueous solutions suspended with different TiO2 materials (P25 and Hombikat UV100). Kinetic studies showed that P25 had a better photocatalytic activity for clofibric acid and carbamazepine than Hombikat UV100. For photocatalytic degradation of iomeprol Hombikat UV100 was more suitable than P25. The results can be explained by the higher adsorption capacity of Hombikat UV100 for iomeprol. The study also focuses on the identification and quantification of possible degradation products. The degradation process was monitored by determination of sum parameters and inorganic ions. In case of clofibric acid various aromatic and aliphatic degradation products have been identified and quantified. A possible multi-step degradation scheme for clofibric acid is proposed. This study proves the high potential of the photocatalytic oxidation process to transform and mineralize environmentally relevant pharmaceuticals and contrast media in water.
Grimm, Marcus O W; Mett, Janine; Stahlmann, Christoph P; Haupenthal, Viola J; Blümel, Tamara; Stötzel, Hannah; Grimm, Heike S; Hartmann, Tobias
2016-12-01
Omega-3 polyunsaturated fatty acids (PUFAs) have been proposed to be highly beneficial in Alzheimer's disease (AD). AD pathology is closely linked to an overproduction and accumulation of amyloid-β (Aβ) peptides as extracellular senile plaques in the brain. Total Aβ levels are not only dependent on its production by proteolytic processing of the amyloid precursor protein (APP), but also on Aβ-clearance mechanisms, including Aβ-degrading enzymes. Here we show that the omega-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) increase Aβ-degradation by affecting insulin-degrading enzyme (IDE), the major Aβ-degrading enzyme secreted into the extracellular space of neuronal and microglial cells. The identification of the molecular mechanisms revealed that EPA directly increases IDE enzyme activity and elevates gene expression of IDE. DHA also directly stimulates IDE enzyme activity and affects IDE sorting by increasing exosome release of IDE, resulting in enhanced Aβ-degradation in the extracellular milieu. Apart from the known positive effect of DHA in reducing Aβ production, EPA and DHA might ameliorate AD pathology by increasing Aβ turnover.
Richardson, Douglas D; Caruso, Joseph A
2007-06-01
Separation and detection of seven V-type (venomous) and G-type (German) organophosphorus nerve agent degradation products by gas chromatography with inductively coupled plasma mass spectrometry (GC-ICPMS) is described. The nonvolatile alkyl phosphonic acid degradation products of interest included ethyl methylphosphonic acid (EMPA, VX acid), isopropyl methylphosphonic acid (IMPA, GB acid), ethyl hydrogen dimethylamidophosphate sodium salt (EDPA, GA acid), isobutyl hydrogen methylphosphonate (IBMPA, RVX acid), as well as pinacolyl methylphosphonic acid (PMPA), methylphosphonic acid (MPA), and cyclohexyl methylphosphonic acid (CMPA, GF acid). N-(tert-Butyldimethylsilyl)-N-methyltrifluroacetamide with 1% TBDMSCl was utilized to form the volatile TBDMS derivatives of the nerve agent degradation products for separation by GC. Exact mass confirmation of the formation of six of the TBDMS derivatives was obtained by GC-time of flight mass spectrometry (TOF-MS). The method developed here allowed for the separation and detection of all seven TBDMS derivatives as well as phosphate in less than ten minutes. Detection limits for the developed method were less than 5 pg with retention times and peak area precisions of less than 0.01 and 6%, respectively. This method was successfully applied to river water and soil matrices. To date this is the first work describing the analysis of chemical warfare agent (CWA) degradation products by GC-ICPMS.
Degradation of a Sodium Acrylate Oligomer by an Arthrobacter sp
Hayashi, Takaya; Mukouyama, Masaharu; Sakano, Kouichi; Tani, Yoshiki
1993-01-01
Arthrobacter sp. strain NO-18 was first isolated from soil as a bacterium which could degrade the sodium acrylate oligomer and utilize it as the sole source of carbon. When 0.2% (wt/wt) oligomer was added to the culture medium, the acrylate oligomer was found to be degraded by 70 to 80% in 2 weeks, using gel permeation chromatography. To determine the maximum molecular weight for biodegradation, the degradation test was done with the hexamer, heptamer, and octamer, which were separated from the oligomer mixture by fractional gel permeation chromatography. The hexamer and heptamer were consumed to the extents of 58 and 36%, respectively, in 2 weeks, but the octamer was not degraded. Oligomers with three different terminal groups were synthesized to examine the effect of the different terminal groups on biodegradation, but few differences were found. Arthrobacter sp. NO-18 assimilated acrylic acid, propionic acid, glutaric acid, 2-methylglutaric acid, and 1,3,5-pentanetricarboxylic acid. Degradation of the acrylic unit structure by this strain is discussed. PMID:8517751
Chen, Q; Song, J M; Pan, F; Xia, F L; Yuan, J Y
2009-10-01
Kinetic studies on the photocatalytic degradation of aliphatic carboxylic acids were carried out in a slurry photoreactor with in-situ monitoring, employing artificial UV light as the source of energy and nano-TiO2 powder as the catalyst. The influences on the photocatalytic degradation such as the initial concentration of reactant (C0), catalyst dosage (CTiO2), UV intensity (Ia) and pH value have been investigated. Good agreement has been obtained between the value calculated by Langmuir-Freundlich-Hinshelwood (L-F-H) model and experimental data, with coefficient of multiple determination (R2) varying from 0.880 to 0.999. The L-F-H model has been proven to be feasible in describing the kinetic characteristic of the photocatalytic degradation of aliphatic carboxylic acids. Moreover, the apparent reaction rate constant (k) of the photocatalytic degradation of dicarboxylic acids is higher than that of monocarboxylic acids with the same carbon atoms. This shows that the photocatalytic degradation rate is favoured by different chemical structure.
Sun, Huanli; Meng, Fenghua; Dias, Aylvin A; Hendriks, Marc; Feijen, Jan; Zhong, Zhiyuan
2011-06-13
Currently, biomedical engineering is rapidly expanding, especially in the areas of drug delivery, gene transfer, tissue engineering, and regenerative medicine. A prerequisite for further development is the design and synthesis of novel multifunctional biomaterials that are biocompatible and biologically active, are biodegradable with a controlled degradation rate, and have tunable mechanical properties. In the past decades, different types of α-amino acid-containing degradable polymers have been actively developed with the aim to obtain biomimicking functional biomaterials. The use of α-amino acids as building units for degradable polymers may offer several advantages: (i) imparting chemical functionality, such as hydroxyl, amine, carboxyl, and thiol groups, which not only results in improved hydrophilicity and possible interactions with proteins and genes, but also facilitates further modification with bioactive molecules (e.g., drugs or biological cues); (ii) possibly improving materials biological properties, including cell-materials interactions (e.g., cell adhesion, migration) and degradability; (iii) enhancing thermal and mechanical properties; and (iv) providing metabolizable building units/blocks. In this paper, recent developments in the field of α-amino acid-containing degradable polymers are reviewed. First, synthetic approaches to prepare α-amino acid-containing degradable polymers will be discussed. Subsequently, the biomedical applications of these polymers in areas such as drug delivery, gene delivery and tissue engineering will be reviewed. Finally, the future perspectives of α-amino acid-containing degradable polymers will be evaluated.
NASA Astrophysics Data System (ADS)
Bikkina, Srinivas; Kawamura, Kimitaka; Miyazaki, Yuzo
2015-05-01
The present study aims to assess the molecular distributions of water-soluble dicarboxylic acids (diacids: C2-C12), oxocarboxylic acids (C2-C9), and α-dicarbonyls (glyoxal and methylglyoxal) in aerosols collected over the western North Pacific (WNP) during a summer cruise (August to September 2008). The measured water-soluble organics show pronounced latitudinal distributions with higher concentrations in the region of 30°N-45°N (average 63 ng m-3) than 10°N-30°N (18 ng m-3). Mass fraction of oxalic acid (C2) in total aliphatic diacids (ΣC2-C12) showed higher values (72 ± 10%) in lower latitude (10°N-30°N) than that (56 ± 16%) in higher latitude (30°N-45°N), suggesting a photochemical production of C2 due to an increased insolation over the tropical WNP. A similar trend was found in other diagnostic ratios such as oxalic to succinic (C2/C4) and oxalic to glyoxylic acid (C2/ωC2), which further corroborate an enhanced photochemical aging over the WNP. In addition, relative abundances of oxalic acid in total diacids showed a marked increase as a function of ambient temperature, supporting their photochemical production. Constantly low concentration ratios of adipic and phthalic acids relative to azelaic acid suggest a small contribution of anthropogenic sources and an importance of oceanic sources during the study period. Significant production of C2 through oxidation of biogenic volatile organic compounds emitted from the sea surface is also noteworthy, as inferred from the strong linear correlations among water-soluble organic carbon, methanesulphonic acid, and oxalic acid. Sea-to-air emission of unsaturated fatty acids also contributes to formation of diacids over the WNP.
Mostafa, Nadia M; Abdel-Fattah, Laila; Weshahy, Soheir A; Hassan, Nagiba Y; Boltia, Shereen A
2015-01-01
Five simple, accurate, precise, and economical spectrophotometric methods have been developed for the determination of cefixime trihydrate (CFX) in the presence of its acid and alkali degradation products without prior separation. In the first method, second derivative (2D) and first derivative (1D) spectrophotometry was applied to the absorption spectra of CFX and its acid (2D) or alkali (1D) degradation products by measuring the amplitude at 289 and 308 nm, respectively. The second method was a first derivative (1DD) ratio spectrophotometric method where the peak amplitudes were measured at 311 nm in presence of the acid degradation product, and 273 and 306 nm in presence of its alkali degradation product. The third method was ratio subtraction spectrophotometry where the drug is determined at 286 nm in laboratory-prepared mixtures of CFX and its acid or alkali degradation product. The fourth method was based on dual wavelength analysis; two wavelengths were selected at which the absorbances of one component were the same, so wavelengths 209 and 252 nm were used to determine CFX in presence of its acid degradation product and 310 and 321 nm in presence of its alkali degradation product. The fifth method was bivariate spectrophotometric calibration based on four linear regression equations obtained at the wavelengths 231 and 290 nm, and 231 and 285 nm for the binary mixture of CFX with either its acid or alkali degradation product, respectively. The developed methods were successfully applied to the analysis of CFX in laboratory-prepared mixtures and pharmaceutical formulations with good recoveries, and their validation was carried out following the International Conference on Harmonization guidelines. The results obtained were statistically compared with each other and showed no significant difference with respect to accuracy and precision.
Hot melt extrusion versus spray drying: hot melt extrusion degrades albendazole.
Hengsawas Surasarang, Soraya; Keen, Justin M; Huang, Siyuan; Zhang, Feng; McGinity, James W; Williams, Robert O
2017-05-01
The purpose of this study was to enhance the dissolution properties of albendazole (ABZ) by the use of amorphous solid dispersions. Phase diagrams of ABZ-polymer binary mixtures generated from Flory-Huggins theory were used to assess miscibility and processability. Forced degradation studies showed that ABZ degraded upon exposure to hydrogen peroxide and 1 N NaOH at 80 °C for 5 min, and the degradants were albendazole sulfoxide (ABZSX), and ABZ impurity A, respectively. ABZ was chemically stable following exposure to 1 N HCl at 80 °C for one hour. Thermal degradation profiles show that ABZ, with and without Kollidon ® VA 64, degraded at 180 °C and 140 °C, respectively, which indicated that ABZ could likely be processed by thermal processing. Following hot melt extrusion, ABZ degraded up to 97.4%, while the amorphous ABZ solid dispersion was successfully prepared by spray drying. Spray-dried ABZ formulations using various types of acids (methanesulfonic acid, sulfuric acid and hydrochloric acid) and polymers (Kollidon ® VA 64, Soluplus ® and Eudragit ® E PO) were studied. The spray-dried ABZ with methanesulfonic acid and Kollidon ® VA 64 substantially improved non-sink dissolution in acidic media as compared to bulk ABZ (8-fold), physical mixture of ABZ:Kollidon ® VA 64 (5.6-fold) and ABZ mesylate salt (1.6-fold). No degradation was observed in the spray-dried product for up to six months and less than 5% after one-year storage. In conclusion, amorphous ABZ solid dispersions in combination with an acid and polymer can be prepared by spray drying to enhance dissolution and shelf-stability, whereas those made by melt extrusion are degraded.
Assessment of the anaerobic degradation of six active pharmaceutical ingredients.
Musson, Stephen E; Campo, Pablo; Tolaymat, Thabet; Suidan, Makram; Townsend, Timothy G
2010-04-01
Research examined the anaerobic degradation of 17 alpha-ethynylestradiol, acetaminophen, acetylsalicylic acid, ibuprofen, metoprolol tartrate, and progesterone by methanogenic bacteria. Using direct sample analysis and respirometric testing, anaerobic degradation was examined with (a) each compound as the sole organic carbon source and (b) each compound at a lower concentration (250 microg/L) and cellulose serving as the primary organic carbon source. The change in pharmaceutical concentration was determined following 7, 28, 56, and 112 days of anaerobic incubation at 37 degrees C. Only acetylsalicylic acid demonstrated significant degradation; the remaining compounds showed a mixture of degradation and abiotic removal mechanisms. Experimental results were compared with BIOWIN, an anaerobic degradation prediction model of the US Environmental Protection Agency. The BIOWIN model predicted anaerobic biodegradability of the compounds in the order: acetylsalicylic acid > metoprolol tartrate > ibuprofen > acetaminophen > 17 alpha-ethinylestradiol >progesterone. This corresponded well with the experimental findings which found degradability in the order: acetylsalicylic acid > metoprolol tartrate > acetaminophen > ibuprofen. (c) 2010 Elsevier B.V. All rights reserved.
Screening of nerve agent degradation products by MALDI-TOFMS.
Shu, You-Ren; Su, An-Kai; Liu, Ju-Tsung; Lin, Cheng-Huang
2006-07-01
A novel method for the rapid screening of degradation products derived from nerve agents by matrix-assisted laser desorption ionization time-of-flight mass spectrometry is described. Five standard products were selected as model compounds, including isopropyl methylphosphonic acid (IMPA), pinacolyl methylphosphonic acid (PMPA), ethyl methylphosphonic acid (EMPA), isobutyl methylphosphonic acid (i-BuMPA), and cyclohexyl methylphosphonic acid (CHMPA), which are degradation products of Sarin (GB), Soman (GD), VX, Russian VX (RVX), and GF, respectively. For comparison, CHCA (alpha-cyano-4-hydroxycinnamic acid) and DCCA (7-(diethylamino)coumarin-3-carboxylic acid) were used as the MALDI-matrix when the third harmonic generation (355 nm) of a Nd:YAG laser and a hydrogen Raman laser (multifrequency laser) were used, respectively. The method permitted the five nerve agent degradation products to be screened rapidly and successfully, suggesting that it has the potential for use as a routine monitoring tool.
3D printing of new biobased unsaturated polyesters by microstereo-thermallithography.
Gonçalves, Filipa A M M; Costa, Cátia S M F; Fabela, Inês G P; Farinha, Dina; Faneca, Henrique; Simões, Pedro N; Serra, Arménio C; Bártolo, Paulo J; Coelho, Jorge F J
2014-09-01
New micro three-dimensional (3D) scaffolds using biobased unsaturated polyesters (UPs) were prepared by microstereo-thermal-lithography (μSTLG). This advanced processing technique offers indubitable advantages over traditional printing methods. The accuracy and roughness of the 3D structures were evaluated by scanning electron microscopy and infinite focus microscopy, revealing a suitable roughness for cell attachment. UPs were synthesized by bulk polycondensation between biobased aliphatic diacids (succinic, adipic and sebacic acid) and two different glycols (propylene glycol and diethylene glycol) using fumaric acid as the source of double bonds. The chemical structures of the new oligomers were confirmed by proton nuclear magnetic resonance spectra, attenuated total reflectance Fourier transform infrared spectroscopy and matrix assisted laser desorption/ionization-time of flight mass spectrometry. The thermal and mechanical properties of the UPs were evaluated to determine the influence of the diacid/glycol ratio and the type of diacid in the polyester's properties. In addition an extensive thermal characterization of the polyesters is reported. The data presented in this work opens the possibility for the use of biobased polyesters in additive manufacturing technologies as a route to prepare biodegradable tailor made scaffolds that have potential applications in a tissue engineering area.
Polymer Analysis by Liquid Chromatography/Electrospray Ionization Time-of-Flight Mass Spectrometry.
Nielen, M W; Buijtenhuijs, F A
1999-05-01
Hyphenation of liquid chromatography (LC) techniques with electrospray ionization (ESI) orthogonal acceleration time-of-flight (oa-TOF) mass spectrometry (MS) provides both MS-based structural information and LC-based quantitative data in polymer analysis. In one experimental setup, three different LC modes are interfaced with MS: size-exclusion chromatography (SEC/MS), gradient polymer elution chromatography (GPEC/MS), and liquid chromatography at the critical point of adsorption (LCCC/MS). In SEC/MS, both absolute mass calibration of the SEC column based on the polymer itself and determination of monomers and end groups from the mass spectra are achieved. GPEC/MS shows detailed chemical heterogeneity of the polymer and the chemical composition distribution within oligomer groups. In LCCC/MS, the retention behavior is primarily governed by chemical heterogeneities, such as different end group functionalities, and quantitative end group calculations can be easily made. The potential of these methods and the benefit of time-of-flight analyzers in polymer analysis are discussed using SEC/MS of a polydisperse poly(methyl methacrylate) sample, GPEC/MS of dipropoxylated bisphenol A/adipic acid polyester resin, LCCC/MS of alkylated poly(ethylene glycol), and LCCC/MS of terephthalic acid/neopentyl glycol polyester resin.
Structural studies of crystalline forms of triamterene with carboxylic acid, GRAS and API molecules
Rehman, Abida
2018-01-01
Pharmaceutical salt solvates (dimethyl sulfoxide, DMSO) of the drug triamterene with the coformers acetic, succinic, adipic, pimelic, azelaic and nicotinic acid and ibuprofen are prepared by liquid-assisted grinding and solvent-evaporative crystallization. The modified ΔpK a rule as proposed by Cruz-Cabeza [(2012 ▸). CrystEngComm, 14, 6362–6365] is in close agreement with the results of this study. All adducts were characterized by X-ray diffraction and thermal analytical techniques, including single-crystal X-ray diffraction, powder X-ray diffraction, differential scanning calorimetry and thermal gravimetric analysis. Hydrogen-bonded motifs combined to form a variety of extended tapes and sheets. Analysis of the crystal structures showed that all adducts existed as salt solvates and contained the aminopyridinium–carboxylate heterodimer, except for the solvate containing triamterene, ibuprofen and DMSO, as a result of the presence of a strong and stable hemitriamterenium duplex. A search of the Cambridge Structural Database (CSD 5.36, Version 1.18) to determine the frequency of occurrence of the putative supramolecular synthons found in this study showed good agreement with previous work. PMID:29755747
Testing of some assumptions about biodegradability in soil as measured by carbon dioxide evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Din Sharabi, N.; Bartha, R.
1993-04-01
The Toxic Substance Control Act calls for a premanufacturing review of novel chemical substances including their biodegradability. Carbon dioxide evolution, using non-labeled carbon or [sup 14]C, is a common method of testing. This study examines assumptions of carbon dioxide evolution testing. Test substances used included: glucose, adipic acid, benzoic acid, and n-hexadecane. Chemical composition other than carbon content appears to influence minimally the percentages conversion to CO[sub 2]. However, that although CO[sub 2] evolution seemed proportional to the carbon content and concentration of the test substance, at least one-half of the evolved net CO[sub 2] did not come directly frommore » the test substance. Conversion to CO[sub 2] in the soil appeared to depend on carbon content only. In experiments of 1 month or longer, the net CO[sub 2] evolution in response to substrate may be above 100% of the added substrate carbon. Whether this applies to all substrate additions remains to be studied. The authors conclude that net CO[sub 2] and [sup 14]CO[sub 2] evolution measurements are useful as a first-tier tests for assessing biodegradability in soil. 11 refs., 6 figs.« less
Protoenzymes: the case of hyperbranched polyesters
NASA Astrophysics Data System (ADS)
Mamajanov, Irena; Cody, George D.
2017-11-01
Enzymes are biopolymeric complexes that catalyse biochemical reactions and shape metabolic pathways. Enzymes usually work with small molecule cofactors that actively participate in reaction mechanisms and complex, usually globular, polymeric structures capable of specific substrate binding, encapsulation and orientation. Moreover, the globular structures of enzymes possess cavities with modulated microenvironments, facilitating the progression of reaction(s). The globular structure is ensured by long folded protein or RNA strands. Synthesis of such elaborate complexes has proven difficult under prebiotically plausible conditions. We explore here that catalysis may have been performed by alternative polymeric structures, namely hyperbranched polymers. Hyperbranched polymers are relatively complex structures that can be synthesized under prebiotically plausible conditions; their globular structure is ensured by virtue of their architecture rather than folding. In this study, we probe the ability of tertiary amine-bearing hyperbranched polyesters to form hydrophobic pockets as a reaction-promoting medium for the Kemp elimination reaction. Our results show that polyesters formed upon reaction between glycerol, triethanolamine and organic acid containing hydrophobic groups, i.e. adipic and methylsuccinic acid, are capable of increasing the rate of Kemp elimination by a factor of up to 3 over monomeric triethanolamine. This article is part of the themed issue 'Reconceptualizing the origins of life'.
Degradation of caffeic acid in subcritical water and online HPLC-DPPH assay of degradation products.
Khuwijitjaru, Pramote; Suaylam, Boonyanuch; Adachi, Shuji
2014-02-26
Caffeic acid was subjected to degradation under subcritical water conditions within 160-240 °C and at a constant pressure of 5 MPa in a continuous tubular reactor. Caffeic acid degraded quickly at these temperatures; the main products identified by liquid chromatography-diode array detection/mass spectrometry were hydroxytyrosol, protocatechuic aldehyde, and 4-vinylcatechol. The reaction rates for the degradation of caffeic acid and the formation of products were evaluated. Online high-performance liquid chromatography/2,2-diphenyl-1-picryhydrazyl assay was used to determine the antioxidant activity of each product in the solution. It was found that the overall antioxidant activity of the treated solution did not change during the degradation process. This study showed a potential of formation of antioxidants from natural phenolic compounds under these subcritical water conditions, and this may lead to a discovering of novel antioxidants compounds during the extraction by this technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Stimulated by public demand and state and federal legislation, industry has begun to develop bio- and photo- degradable plastics. so far, however, none of these degradable plastics meets all of the criteria for success - adequate physical and mechanical properties for the desired use, cost-effectiveness, and 100% degradability. Polylactic acid (PLA) plastic is one degradable plastic that shows promise. It has the desired properties and is 100% degradable. However, PLA plastic made by conventional techniques is not cost effective. Made from lactic acid, which is typically made form petroleum using a very costly synthesis process. Lactic acid can also bemore » made from carbohydrates (starches), found in food processing wastes such as potato wastes, cheese whey, and sorghum. Conversion of starch to simple sugars, and fermentation of these sugars can produce lactic acid.« less
NASA Astrophysics Data System (ADS)
Levine, L. H.; Kagie, H. R.; Garland, J. L.
The degradation of an anionic surfactant (Igepon TC-42) was investigated as part of an integrated study of direct recycling of human hygiene water through hydroponic plant growth systems. Several chemical approaches were developed to characterize the degradation of Igepon and to measure the accumulation of intermediates such as fatty acids and methyl taurine. Igepon was rapidly degraded as indicated by the reduction of methylene blue active substances (MBAS) and component fatty acids. The Igepon degradation rate continued to increase over a period of several weeks following repeated daily exposure to 18 μg/l Igepon. The accumulation of free fatty acids and methyl taurine was also observed during decomposition of Igepon. The concentration of methyl taurine was below detection limit (0.2 nmol/ml) during the slow phase of Igepon degradation, and increased to 1-2 nmol/ml during the phase of rapid degradation. These findings support a degradation pathway involving initial hydrolysis of amide to release fatty acids and methyl taurine, and subsequent degradation of these intermediates.
Rapid Biodegradation of the Herbicide 2,4-Dichlorophenoxyacetic Acid by Cupriavidus gilardii T-1.
Wu, Xiangwei; Wang, Wenbo; Liu, Junwei; Pan, Dandan; Tu, Xiaohui; Lv, Pei; Wang, Yi; Cao, Haiqun; Wang, Yawen; Hua, Rimao
2017-05-10
Phytotoxicity and environmental pollution of residual herbicides have caused much public concern during the past several decades. An indigenous bacterial strain capable of degrading 2,4-dichlorophenoxyacetic acid (2,4-D), designated T-1, was isolated from soybean field soil and identified as Cupriavidus gilardii. Strain T-1 degraded 2,4-D 3.39 times more rapidly than the model strain Cupriavidus necator JMP134. T-1 could also efficiently degrade 2-methyl-4-chlorophenoxyacetic acid (MCPA), MCPA isooctyl ester, and 2-(2,4-dichlorophenoxy)propionic acid (2,4-DP). Suitable conditions for 2,4-D degradation were pH 7.0-9.0, 37-42 °C, and 4.0 mL of inoculums. Degradation of 2,4-D was concentration-dependent. 2,4-D was degraded to 2,4-dichlorophenol (2,4-DCP) by cleavage of the ether bond and then to 3,5-dichlorocatechol (3,5-DCC) via hydroxylation, followed by ortho-cleavage to cis-2-dichlorodiene lactone (CDL). The metabolites 2,4-DCP or 3,5-DCC at 10 mg L -1 were completely degraded within 16 h. Fast degradation of 2,4-D and its analogues highlights the potential for use of C. gilardii T-1 in bioremediation of phenoxyalkanoic acid herbicides.
Huang, Tengfang; Jander, Georg
2017-10-01
Whereas proline accumulates through de novo biosynthesis in plants subjected to osmotic stress, leucine, isoleucine, and valine accumulation in drought-stressed Arabidopsis thaliana is caused by abscisic acid-regulated protein degradation. In response to several kinds of abiotic stress, plants greatly increase their accumulation of free amino acids. Although stress-induced proline increases have been studied the most extensively, the fold-increase of other amino acids, in particular branched-chain amino acids (BCAAs; leucine, isoleucine, and valine), is often higher than that of proline. In Arabidopsis thaliana (Arabidopsis), BCAAs accumulate in response to drought, salt, mannitol, polyethylene glycol, herbicide treatment, and nitrogen starvation. Plants that are deficient in abscisic acid signaling accumulate lower amounts of BCAAs, but not proline and most other amino acids. Previous bioinformatic studies had suggested that amino acid synthesis, rather than protein degradation, is responsible for the observed BCAA increase in osmotically stressed Arabidopsis. However, whereas treatment with the protease inhibitor MG132 decreased drought-induced BCAA accumulation, inhibition of BCAA biosynthesis with the acetolactate synthase inhibitors chlorsulfuron and imazapyr did not. Additionally, overexpression of BRANCHED-CHAIN AMINO ACID TRANSFERASE2 (BCAT2), which is upregulated in response to osmotic stress and functions in BCAA degradation, decreased drought-induced BCAA accumulation. Together, these results demonstrate that BCAA accumulation in osmotically stressed Arabidopsis is primarily the result of protein degradation. After relief of the osmotic stress, BCAA homeostasis is restored over time by amino acid degradation involving BCAT2. Thus, drought-induced BCAA accumulation is different from that of proline, which is accumulated due to de novo synthesis in an abscisic acid-independent manner and remains elevated for a more prolonged period of time after removal of the osmotic stress.
Seo, Jong-Su; Keum, Young-Soo; Hu, Yuting; Lee, Sung-Eun; Li, Qing X
2007-02-01
Burkholderia sp. C3 was isolated from a polycyclic aromatic hydrocarbon (PAH)-contaminated site in Hilo, Hawaii, USA, and studied for its degradation of phenanthrene as a sole carbon source. The initial 3,4-C dioxygenation was faster than 1,2-C dioxygenation in the first 3-day culture. However, 1-hydroxy-2-naphthoic acid derived from 3,4-C dioxygenation degraded much slower than 2-hydroxy-1-naphthoic acid derived from 1,2-C dioxygenation. Slow degradation of 1-hydroxy-2-naphthoic acid relative to 2-hydroxy-1-naphthoic acid may trigger 1,2-C dioxygenation faster after 3 days of culture. High concentrations of 5,6- and 7,8-benzocoumarins indicated that meta-cleavage was the major degradation mechanism of phenanthrene-1,2- and -3,4-diols. Separate cultures with 2-hydroxy-1-naphthoic acid and 1-hydroxy-2-naphthoic acid showed that the degradation rate of the former to naphthalene-1,2-diol was much faster than that of the latter. The two upper metabolic pathways of phenanthrene are converged into naphthalene-1,2-diol that is further metabolized to 2-carboxycinnamic acid and 2-hydroxybenzalpyruvic acid by ortho- and meta-cleavages, respectively. Transformation of naphthalene-1,2-diol to 2-carboxycinnamic acid by this strain represents the first observation of ortho-cleavage of two rings-PAH-diols by a Gram-negative species.
Du, Zhe; Chen, Yinguang; Li, Xu
2017-10-15
Microbial degradation of estrogenic compounds can be affected by the nitrogen source and background carbon in the environment. However, the underlying mechanisms are not well understood. The objective of this study was to elucidate the molecular mechanisms of estrone (E1) biodegradation at the protein level under various background nitrogen (nitrate or ammonium) and carbon conditions (no background carbon, acetic acid, or humic acid as background carbon) by a newly isolated bacterial strain. The E1 degrading bacterial strain, Hydrogenophaga atypica ZD1, was isolated from river sediments and its proteome was characterized under various experimental conditions using quantitative proteomics. Results show that the E1 degradation rate was faster when ammonium was used as the nitrogen source than with nitrate. The degradation rate was also faster when either acetic acid or humic acid was present in the background. Proteomics analyses suggested that the E1 biodegradation products enter the tyrosine metabolism pathway. Compared to nitrate, ammonium likely promoted E1 degradation by increasing the activities of the branched-chain-amino-acid aminotransferase (IlvE) and enzymes involved in the glutamine synthetase-glutamine oxoglutarate aminotransferase (GS-GOGAT) pathway. The increased E1 degradation rate with acetic acid or humic acid in the background can also be attributed to the up-regulation of IlvE. Results from this study can help predict and explain E1 biodegradation kinetics under various environmental conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Degradation of hydroxycinnamic acid mixtures in aqueous sucrose solutions by the Fenton process.
Nguyen, Danny M T; Zhang, Zhanying; Doherty, William O S
2015-02-11
The degradation efficiencies and behaviors of caffeic acid (CaA), p-coumaric acid (pCoA), and ferulic acid (FeA) in aqueous sucrose solutions containing the mixture of these hydroxycinnamic acids (HCAs) were studied by the Fenton oxidation process. Central composite design and multiresponse surface methodology were used to evaluate and optimize the interactive effects of process parameters. Four quadratic polynomial models were developed for the degradation of each individual acid in the mixture and the total HCAs degraded. Sucrose was the most influential parameter that significantly affected the total amount of HCA degraded. Under the conditions studied there was a <0.01% loss of sucrose in all reactions. The optimal values of the process parameters for a 200 mg/L HCA mixture in water (pH 4.73, 25.15 °C) and sucrose solution (13 mass %, pH 5.39, 35.98 °C) were 77% and 57%, respectively. Regression analysis showed goodness of fit between the experimental results and the predicted values. The degradation behavior of CaA differed from those of pCoA and FeA, where further CaA degradation is observed at increasing sucrose and decreasing solution pH. The differences (established using UV/vis and ATR-FTIR spectroscopy) were because, unlike the other acids, CaA formed a complex with Fe(III) or with Fe(III) hydrogen-bonded to sucrose and coprecipitated with lepidocrocite, an iron oxyhydroxide.
Forced Degradation Studies of Aloe Emodin and Emodin by HPTLC.
Narayanan, Sindhu; Jadhav, Aruna P; Kadam, V J
2015-01-01
Anthraquinones are natural phenolic compounds, which are reported to act as anti-aging, anti-inflammatory, antioxidant, anti-cancer, laxative and antitumor agents. They are abudant in plants like candle bush, aloes, cascara bark and rhubarb. The present work was to observe the effect of different forced degradation conditions by high-performance thin layer chromatography on potential markers i.e. aloe emodin and emodin. Both aloe emodin and emodin were subjected to various forced degradation studies such as oxidation, acid and alkaline hydrolysis, photolysis, hydrolytic and thermal degradation. Aloe emodin, was more susceptible to acid hydrolysis and degradation was found to a lesser extent under thermal degradation whereas significant degradation was observed under acid hydrolysis, lesser extent was observed under alkali hydrolysis for emodin. Forced degradation studies on aloe emodin and emodin gives information about its storage and intrinsic stability conditions considering the advanced pharmaceutical aspects of formulation.
El-Gindy, A
2000-03-01
Two methods are presented for the determination of benoxinate HCI and its acid and alkali-induced degradation products using first derivative (1D) spectrophotometry with zero-crossing measurements and liquid chromatography. Benoxinate HCl was determined by measurement of its first derivative amplitude in mcllvaine's-citric acid phosphate buffer pH 7.0 at 268.4 and 272.4 nm in the presence of its alkali- and acid-induced degradation products, respectively. The acid- and alkali-induced, degradation products were determined by measurement of their first derivative amplitude in the same solvent at 307.5 nm. The LC method depends upon using a mu bondapak CN column with a mobile phase consisting of acetonitrile-water triethylamine (60:40:0.01, v/v) and adjusted to apparent pH 7. Quantitation was achieved with UV detection at 310 nm based on peak area. The proposed methods were utilized to investigate the kinetics of the acidic and alkaline degradation processes at different temperatures. The pH-rate profile of degradation of benoxinate HCl in Britton-Robinson buffer solutions was studied.
Kumar, Anup; Singh, Neera
2016-03-01
An atrazine-degrading enrichment culture was used to study degradation of atrazine metabolites viz. hydroxyatrazine, deethylatrazine, and deisopropylatrazine in mineral salts medium. Results suggested that the enrichment culture was able to degrade only hydroxyatrazine, and it was used as the sole source of carbon and nitrogen. Hydroxyatrazine degradation slowed down when sucrose and/or ammonium hydrogen phosphate were supplemented as the additional sources of carbon and nitrogen, respectively. The enrichment culture could degrade high concentrations of atrazine (up to 110 μg/mL) in mineral salts medium, and neutral pH was optimum for atrazine degradation. Further, except in an acidic soil, enrichment culture was able to degrade atrazine in three soil types having different physico-chemical properties. Raising the pH of acidic soil to neutral or alkaline enabled the enrichment culture to degrade atrazine suggesting that acidic pH inhibited atrazine-degrading ability. The study suggested that the enrichment culture can be successfully utilized to achieve complete degradation of atrazine and its persistent metabolite hydroxyatrazine in the contaminated soil and water.
Chen, W; Supanwong, K; Ohmiya, K; Shimizu, S; Kawakami, H
1985-01-01
Veratrylglycerol-beta-guaiacyl ether (0.2 g/liter), a lignin model compound, was found to be degraded by mixed rumen bacteria in a yeast extract medium under strictly anaerobic conditions to the extent of 19% within 24 h. Guaiacoxyacetic acid, 2-(o-methoxyphenoxy)ethanol, vanillic acid, and vanillin were detected as degradation products of veratrylglycerol-beta-guaiacyl ether by thin-layer chromatography, gas chromatography, and gas chromatography-mass spectrometry. Guaiacoxyacetic acid (0.25 g/liter), when added into the medium as a substrate, was entirely degraded within 36 h, resulting in the formation of phenoxyacetic acid, guaiacol, and phenol. These results suggest that the beta-arylether bond, an important intermonomer linkage in lignin, can be cleaved completely by these rumen anaerobes. PMID:3841472
NASA Astrophysics Data System (ADS)
Kristiawan, S. A.; Sunarmasto; Tyas, G. P.
2016-02-01
Concrete is susceptible to a variety of chemical attacks. In the sulfuric acid environment, concrete is subjected to a combination of sulfuric and acid attack. This research is aimed to investigate the degradation of self-compacting concrete (SCC) due to sulfuric acid attack based on measurement of compressive strength loss and diameter change. Since the proportion of SCC contains higher cement than that of normal concrete, the vulnerability of this concrete to sulfuric acid attack could be reduced by partial replacement of cement with fly ash at high volume level. The effect of high volume fly ash at 50-70% cement replacement levels on the extent of degradation owing to sulfuric acid will be assessed in this study. It can be shown that an increase in the utilization of fly ash to partially replace cement tends to reduce the degradation as confirmed by less compressive strength loss and diameter change. The effect of fly ash to reduce the degradation of SCC is more pronounced at a later age.
Levine, L H; Kagie, H R; Garland, J L
2003-01-01
The degradation of an anionic surfactant (Igepon TC-42) was investigated as part of an integrated study of direct recycling of human hygiene water through hydroponic plant growth systems. Several chemical approaches were developed to characterize the degradation of Igepon and to measure the accumulation of intermediates such as fatty acids and methyl taurine. Igepon was rapidly degraded as indicated by the reduction of methylene blue active substances (MBAS) and component fatty acids. The Igepon degradation rate continued to increase over a period of several weeks following repeated daily exposure to 18 micrograms/l Igepon. The accumulation of free fatty acids and methyl taurine was also observed during decomposition of Igepon. The concentration of methyl taurine was below detection limit (0.2 nmol/ml) during the slow phase of Igepon degradation, and increased to 1-2 nmol/ml during the phase of rapid degradation. These findings support a degradation pathway involving initial hydrolysis of amide to release fatty acids and methyl taurine, and subsequent degradation of these intermediates. Published by Elsevier Science Ltd on behalf of COSPAR.
NASA Technical Reports Server (NTRS)
Levine, L. H.; Kagie, H. R.; Garland, J. L.
2003-01-01
The degradation of an anionic surfactant (Igepon TC-42) was investigated as part of an integrated study of direct recycling of human hygiene water through hydroponic plant growth systems. Several chemical approaches were developed to characterize the degradation of Igepon and to measure the accumulation of intermediates such as fatty acids and methyl taurine. Igepon was rapidly degraded as indicated by the reduction of methylene blue active substances (MBAS) and component fatty acids. The Igepon degradation rate continued to increase over a period of several weeks following repeated daily exposure to 18 micrograms/l Igepon. The accumulation of free fatty acids and methyl taurine was also observed during decomposition of Igepon. The concentration of methyl taurine was below detection limit (0.2 nmol/ml) during the slow phase of Igepon degradation, and increased to 1-2 nmol/ml during the phase of rapid degradation. These findings support a degradation pathway involving initial hydrolysis of amide to release fatty acids and methyl taurine, and subsequent degradation of these intermediates. Published by Elsevier Science Ltd on behalf of COSPAR.
Viscous lubricant composition comprising mixed esters and a silicone oil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayres, P.J.
1981-03-03
A viscous composition capable of substantially retaining its viscosity within a temperature range of from 5*-30* C. Comprising as its components diisopropyl adipate, a mixture of cetyl and stearyl octanoates, glyceryl tribehenate, silicone oil and a surfactant is described.
Remini, Hocine; Mertz, Christian; Belbahi, Amine; Achir, Nawel; Dornier, Manuel; Madani, Khodir
2015-04-15
The stability of ascorbic acid and colour intensity in pasteurised blood orange juice (Citrus sinensis [L.] Osbeck) during one month of storage was investigated at 4-37 °C. The effects of ascorbic acid fortification (at 100, 200 mg L(-1)) and deaeration, temperature/time storage on the kinetic behaviour were determined. Ascorbic acid was monitored by HPLC-DAD and colour intensity by spectrophotometric measurements. Degradation kinetics were best fitted by first-order reaction models for both ascorbic acid and colour intensity. Three models (Arrhenius, Eyring and Ball) were used to assess the temperature-dependent degradation. Following the Arrhenius model, activation energies were ranged from 51 to 135 kJ mol(-1) for ascorbic acid and from 49 to 99 kJ mol(-1) for colour intensity. The effect of storage temperature and deaeration are the most influent factors on kinetics degradation, while the fortification revealed no significant effect on ascorbic acid content and colour intensity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Microbial Degradation of Chlorogenic Acid by a Sphingomonas sp. Strain.
Ma, Yuping; Wang, Xiaoyu; Nie, Xueling; Zhang, Zhan; Yang, Zongcan; Nie, Cong; Tang, Hongzhi
2016-08-01
In order to elucidate the metabolism of chlorogenic acid by environmental microbes, a strain of Sphingomonas sp. isolated from tobacco leaves was cultured under various conditions, and chlorogenic acid degradation and its metabolites were investigated. The strain converting chlorogenic acid was newly isolated and identified as a Sphingomonas sp. strain by 16S rRNA sequencing. The optimal conditions for growth and chlorogenic acid degradation were 37 °C and pH 7.0 with supplementation of 1.5 g/l (NH4)2SO4 as the nitrogen source and 2 g/l chlorogenic acid as the sole carbon source. The maximum chlorogenic acid tolerating capability for the strain was 5 g/l. The main metabolites were identified as caffeic acid, shikimic acid, and 3,4-dihydroxybenzoic acid based on gas chromatography-mass spectrometry analysis. The analysis reveals the biotransformation mechanism of chlorogenic acid in microbial cells isolated from the environment.
Citral degradation in micellar structures formed with polyoxyethylene-type surfactants.
Park, Sung Joon; Hong, Chi Rac; Choi, Seung Jun
2015-03-01
In a micellar solution, the chemical degradation of poorly water-soluble food flavours can be influenced by the properties of the surfactants forming the micelles in aqueous solutions. To evaluate how hydrophilic head size and hydrophobic tail length influence the chemical degradation rate of food flavour, micelles were prepared with Brij surfactants (Brij 35, 58, 78 and 700), each of which had very similar molecular structures (polyoxyethylene fatty acid ether). The chemical degradation of citral in Brij micelles was found to be highest in an acidic environment. There was no significant difference in the chemical degradation rate of citral in Brij micelles in non-acidic conditions, regardless of the hydrophilic head size or hydrophobic tail length. Brij surfactants with larger hydrophilic heads effectively retarded the chemical degradation of citral in an acidic environment. Our findings suggest that the length of the hydrophobic tail rarely influenced the micelle's ability to chemically stabilize citral. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chokradjaroen, Chayanaphat; Rujiravanit, Ratana; Theeramunkong, Sewan; Saito, Nagahiro
2018-01-01
Chitosan is a polysaccharide that has been extensively studied in the field of biomedicine, especially its water-soluble degraded products called chitooligosaccharides (COS). In this study, COS were produced by the degradation of chitosan hydrogel dispersed in a dilute solution (i.e., 1.55 mM) of various kinds of carboxylic acids using a non-thermal plasma technology called solution plasma (SP). The degradation rates of chitosan were influenced by the type of carboxylic acids, depending on the interaction between chitosan and each carboxylic acid. After SP treatment, the water-soluble degraded products containing COS could be easily separated from the water-insoluble residue of chitosan hydrogel by centrifugation. The production yields of the COS were mostly higher than 55%. Furthermore, the obtained COS products were evaluated for their inhibitory effect as well as their selectivity against human lung cancer cells (H460) and human lung normal cells (MRC-5).
Sonocatalytic degradation of humic acid by N-doped TiO2 nano-particle in aqueous solution.
Kamani, Hossein; Nasseri, Simin; Khoobi, Mehdi; Nabizadeh Nodehi, Ramin; Mahvi, Amir Hossein
2016-01-01
Un-doped and N-doped TiO2 nano-particles with different nitrogen contents were successfully synthesized by a simple sol-gel method, and were characterized by X-ray diffraction, field emission scanning electron microscopy, Energy dispersive X-ray analysis and UV-visible diffuse reflectance spectra techniques. Then enhancement of sonocatalytic degradation of humic acid by un-doped and N-doped TiO2 nano-particles in aqueous environment was investigated. The effects of various parameters such as initial concentration of humic acid, N-doping, and the degradation kinetics were investigated. The results of characterization techniques affirmed that the synthesis of un-doped and N-doped TiO2 nano-particles was successful. Degradation of humic acid by using different nano-particles obeyed the first-order kinetic. Among various nano-particles, N-doped TiO2 with molar doping ratio of 6 % and band gap of 2.92 eV, exhibited the highest sonocatalytic degradation with an apparent-first-order rate constant of 1.56 × 10(-2) min(-1). The high degradation rate was associated with the lower band gap energy and well-formed anatase phase. The addition of nano-catalysts could enhance the degradation efficiency of humic acid as well as N-doped TiO2 with a molar ratio of 6 %N/Ti was found the best nano-catalyst among the investigated catalysts. The sonocatalytic degradation with nitrogen doped semiconductors could be a suitable oxidation process for removal of refractory pollutants such as humic acid from aqueous solution.
[Effect of Gram-negative bacteria on fatty acids].
Vuillemin, N; Dupeyron, C; Leluan, G; Bory, J
1981-01-01
The gram-negative bacteria investigated exert various effects on fatty acids. P. aeruginosa and A. calcoaceticus catabolize any of the fatty acids tested. S. marcescens is effective upon all fatty acids excepting butyric acid. The long chain fatty acids only are degraded by E. coli, meanwhile the other fatty acids present a bacteriostatic or bactericidal activity on it. The authors propose a simple and original method for testing the capability of degradation of fatty acids by some bacterial species.
Wong, Vincent W; Lin, Andrew; Russell, Hamish
2017-07-01
In this study, we assessed changes in prevalence of gestational diabetes mellitus (GDM) in a region with diverse cultural backgrounds in Australia under the new World Health Organization (WHO) diagnostic criteria, with reference to the woman's ethnicity, age and pre-pregnant body mass index (BMI). We recorded results of all 75-gram oral glucose tolerance tests (OGTTs) performed on pregnant women between February and December 2015 together with their demographic details, and determined the prevalence of GDM based on the old Australian Diabetes in Pregnancy Society (ADIPS) and the new WHO criteria respectively. Over that period, 2140 OGTTs were performed in 1725 pregnant women. The prevalence of GDM was 14.8% (255/1725 women) under old ADIPS criteria, but went up to 29.6% (510/1725) when using WHO criteria. An increase in prevalence was observed in all ethnic groups. Women from East/South-East Asia had the lowest increment (from 19.2 to 22.3%) while those from South Asia had the highest (from 22.0 to 44.4%). Prevalence of GDM was 45.9% amongst women with BMI>30kg/m 2 . For women from South Asia with BMI>30kg/m 2 , 70.0% would have GDM. Birth outcomes were similar between women who would have GDM under WHO but not the old ADIPS criteria (untreated), and those who were treated for GDM under old criteria. In parts of Australia, adoption of WHO diagnostic criteria could result in doubling of the prevalence of GDM, depending on the women's demographic characteristics. Women from South Asia or those with obesity should be targeted for pre-pregnant lifestyle intervention. Copyright © 2017 Elsevier B.V. All rights reserved.
Plasticizers and BPA Residues in Tunisian and Italian Culinary Herbs and Spices.
Di Bella, Giuseppa; Ben Mansour, Hedi; Ben Tekaya, Asma; Beltifa, Asma; Potortì, Angela Giorgia; Saiya, Emanuele; Bartolomeo, Giovanni; Dugo, Giacomo; Lo Turco, Vincenzo
2018-06-01
In the present study, 18 plasticizers and residues in 10 different Tunisian and Italian culinary herbs and spices (black pepper, mint, caraway, coriander, oregano, rosemary, thyme, fennel, verbena, and laurel) were determined by GC/MS. Di-methylphthalate, di-(2-methylpropyl)adipate, di-n-butyladipate, di-propylphthalate, benzylbenzoate, di-phenylphthalate, and bisphenol A were lower than their LOQ in all 118 samples. Among the Tunisian samples, di-(2-ethylhexyl)phthalate was found in all types of samples and di-butylphthalate in 50% of types; all other phthalates were rarely dectected. Among the adipates, only di-methyladipate was found in 90% of types; di-ethyladipate was seldom found and di-(2-ethylhexyl)adipate only in samples of caraway. Di-(2-ethylhexyl)terephthalate was found in all types of samples; di-(2-ethylhexyl)sebacate was detected rarely but with high values. Among the Sicilian samples, di-ethylphthalate and di-(2-methylpropyl)phthalate were detected only in samples of mint; di-methyladipate, di-butylphthalate, and benzylbutylphthalate were identified in oregano and laurel; di-(2-ethylhexyl)terephthalate and di-(2-ethylhexyl)sebacate only in oregano. In any case, the results suggested that intake of these contaminants through spices and herbs is not a dangerous risk to the consumers. Probably, as already observed for the other food, these contaminants could result from pollution of the environment (air, water, and/or soil) and/or farming methods. Plasticizers and BPA in Tunisian and Italian spices were determined by GC/MS. Tunisian spices seem to contain more residues than Italian samples. Intake of these contaminants by spices is not a dangerous risk to the consumers. These pollutants could result from environmental pollution or agricultural practices. © 2018 Institute of Food Technologists®.
Anthracycline antibiotics derivate mitoxantrone-Destructive sorption and photocatalytic degradation.
Štenglová-Netíková, Irena R; Petruželka, Luboš; Šťastný, Martin; Štengl, Václav
2018-01-01
Nanostructured titanium(IV) oxide was used for the destructive adsorption and photocatalytic degradation of mitoxantrone (MTX), a cytostatic drug from the group of anthracycline antibiotics. During adsorption on a titania dioxide surface, four degradation products of MTX, mitoxantrone dicarboxylic acid, 1,4-dihydroxy-5-((2-((2-hydroxyethyl)amino)ethyl)amino)-8-((2-(methylamino)ethyl)amino)anthracene-9,10-dione, 1,4-dihydroxy-5,8-diiminoanthracene-9,10(5H,8H)-dione and 1,4-dihydroxy-5-imino-8-(methyleneamino)anthracene-9,10(5H,8H)-dione, were identified. In the case of photocatalytic degradation, only one degradation product after 15 min at m/z 472 was identified. This degradation product corresponded to mitoxantrone dicarboxylic acid, and complete mineralization was attained in one hour. Destructive adsorbent manganese(IV) oxide, MnO2, was used only for the destructive adsorption of MTX. Destructive adsorption occurred only for one degradation product, mitoxantrone dicarboxylic acid, against anatase TiO2.
Macromolecules for Inhibition of Corrosion and Wear
1992-12-14
phthalocyanine TCAUPC tetrakis-(N-carboxy-12-aminoundecanoic acid ) phthalocyanine TCACPC tetrakis-(N-carboxy-6- aminocaproic acid ) phthalocyanine Table 2... acid ); (TCACPC] - tetrakis(N- carboxy-6- aminocaproic acid ). •* Containing p-hydroxy pyridine groups in the voids. 9 NAWCADWAR-92112-60 protection...fluids .......... ................................ 10 8 PFPE degradation in the presence of FeF 3 Lewis Acid ..... 11 9 The degradation mechanism for PFPE
Fe2+ enhancing sulfamethazine degradation in aqueous solution by gamma irradiation
NASA Astrophysics Data System (ADS)
Liu, Yuankun; Hu, Jun; Wang, Jianlong
2014-03-01
The radiation-induced degradation of sulfamethazine (SMT) was carried out by gamma irradiation. SMT with initial concentration of 20 mg/L was irradiated in the presence of 0, 0.1, 0.2, 0.4 and 0.6 mM extra Fe2+. The results showed that ferrous ion (Fe2+) could enhance the degradation of SMT by gamma irradiation in aqueous solution. SMT could be almost completely removed at 1 kGy without extra Fe2+, however, TOC removal efficiency was less than 10%. Several intermediate products, such as 4,6-dimethylpyrimidin-2-amine, 4-aminobenzenesulfonic acid, 4-nitrophenol 4-nitrobenzenesulfonic acid, 2-amino-6-methylpyrimidine-4-carboxylic acid, and 4-amino-N-carbamimidoyl-benzenesulfonamide and formic acid, acetic acid, and sulfate were identified. Possible pathway of SMT degradation in aqueous solution was tentatively proposed.
Lampe, Kyle J.; Namba, Rachael M.; Silverman, Tyler R.; Bjugstad, Kimberly B.
2009-01-01
Biomaterials prepared from polyesters of lactic acid and glycolic acid, or a mixture of the two, degrade in the presence of water into the naturally occurring metabolites, lactic acid and glycolic acid. While the lactic acid degradation product that is released from biomaterials is well-tolerated by the body, lactic acid can influence the metabolic function of cells; it can serve as an energy substrate for cells, and has been shown to have antioxidant properties. Neural precursor cells, a cell population of considerable interest as a source of cells for neural tissue regeneration strategies, generate a high amount of reactive oxygen species, and when associated with a degradable biomaterial, may be impacted by released lactic acid. In this work, the effect of lactic acid on a neural cell population containing proliferative neural precursor cells was examined in monolayer culture. Lactic acid was found to scavenge exogenously added free radicals produced in the presence of either hydrogen peroxide or a photoinitiator (I2959) commonly utilized in the preparation of photopolymerizable biomaterials. In addition to its effect on exogenously added free radicals, lactic acid reduced intracellular redox state, increased the proliferation of the cell population, and modified the cell composition. The findings of this study provide insight into the role that lactic acid plays naturally on developing neural cells and are also of interest to biomaterials scientists that are focused on the development of degradable lactic-acid based polymers for cell culture devices. The effect of lactic acid on other cell populations may differ and should be characterized to best understand how cells function in degradable cell culture devices. PMID:19408314
Wang, Jinxing; Liang, Jidong; Gao, Sha
2018-05-10
Many bacterial strains have been demonstrated to biodegrade lignin for contaminant removal or resource regeneration. The goal of this study was to investigate the biodegradation amount and associated pathways of three lignin monomers, vanillic, p-coumaric, and syringic acid by strain Sphingobacterium sp. HY-H. Vanillic, p-coumaric, and syringic acid degradation with strain HY-H was estimated as 88.71, 76.67, and 72.78%, respectively, after 96 h. Correspondingly, the same three monomers were associated with a COD removal efficiency of 87.30, 55.17, and 67.23%, and a TOC removal efficiency of 82.14, 61.03, and 43.86%. The results of GC-MS, HPLC, FTIR, and enzyme activities show that guaiacol and o-dihydroxybenzene are key intermediate metabolites of the vanillic acid and syringic acid degradation. p-Hydroxybenzoic acid is an important intermediate metabolite for p-coumaric and syringic acid degradation. LiP and MnP play an important role in the degradation of lignin monomers and their intermediate metabolites. One possible pathway is that strain HY-H degrades lignin monomers into guaiacol (through decarboxylic and demethoxy reaction) or p-hydroxybenzoic acid (through side-chain oxidation); then guaiacol demethylates to o-dihydroxybenzene. The p-hydroxybenzoic acid and o-dihydroxybenzene are futher through ring cleavage reaction to form small molecule acids (butyric, valproic, oxalic acid, and propionic acid) and alcohols (ethanol and ethanediol), then these acids and alcohols are finally decomposed into CO 2 and H 2 O through the tricarboxylic acid cycle. If properly optimized and controlled, the strain HY-H may play a role in breaking down lignin-related compounds for biofuel and chemical production.
Zhu, Jun; Gianni, Maurizio; Kopf, Eliezer; Honoré, Nicole; Chelbi-Alix, Mounira; Koken, Marcel; Quignon, Frédérique; Rochette-Egly, Cécile; de Thé, Hugues
1999-01-01
Analyzing the pathways by which retinoic acid (RA) induces promyelocytic leukemia/retinoic acid receptor α (PML/RARα) catabolism in acute promyelocytic leukemia (APL), we found that, in addition to caspase-mediated PML/RARα cleavage, RA triggers degradation of both PML/RARα and RARα. Similarly, in non-APL cells, RA directly targeted RARα and RARα fusions to the proteasome degradation pathway. Activation of either RARα or RXRα by specific agonists induced degradation of both proteins. Conversely, a mutation in RARα that abolishes heterodimer formation and DNA binding, blocked both RARα and RXRα degradation. Mutations in the RARα DNA-binding domain or AF-2 transcriptional activation region also impaired RARα catabolism. Hence, our results link transcriptional activation to receptor catabolism and suggest that transcriptional up-regulation of nuclear receptors by their ligands may be a feedback mechanism allowing sustained target-gene activation. PMID:10611294
Fungal Colonization and Biodeterioration of Plasticized Polyvinyl Chloride
Webb, Jeremy S.; Nixon, Marianne; Eastwood, Ian M.; Greenhalgh, Malcolm; Robson, Geoffrey D.; Handley, Pauline S.
2000-01-01
Significant substratum damage can occur when plasticized PVC (pPVC) is colonized by microorganisms. We investigated microbial colonization of pPVC in an in situ, longitudinal study. Pieces of pPVC containing the plasticizers dioctyl phthalate and dioctyl adipate (DOA) were exposed to the atmosphere for up to 2 years. Fungal and bacterial populations were quantified, and colonizing fungi were identified by rRNA gene sequencing and morphological characteristics. Aureobasidium pullulans was the principal colonizing fungus, establishing itself on the pPVC between 25 and 40 weeks of exposure. A group of yeasts and yeast-like fungi, including Rhodotorula aurantiaca and Kluyveromyces spp., established themselves on the pPVC much later (after 80 weeks of exposure). Numerically, these organisms dominated A. pullulans after 95 weeks, with a mean viable count ± standard error of 1,000 ± 200 yeast CFU cm−2, compared to 390 ± 50 A. pullulans CFU cm−2. No bacterial colonization was observed. We also used in vitro tests to characterize the deteriogenic properties of fungi isolated from the pPVC. All strains of A. pullulans tested could grow with the intact pPVC formulation as the sole source of carbon, degrade the plasticizer DOA, produce extracellular esterase, and cause weight loss of the substratum during growth in vitro. In contrast, several yeast isolates could not grow on pPVC or degrade DOA. These results suggest that microbial succession may occur during the colonization of pPVC and that A. pullulans is critical to the establishment of a microbial community on pPVC. PMID:10919769
Gelatin-Modified Polyurethanes for Soft Tissue Scaffold
Kucińska-Lipka, Justyna; Janik, Helena
2013-01-01
Recently, in the field of biomaterials for soft tissue scaffolds, the interest of their modification with natural polymersis growing. Synthetic polymers are often tough, and many of them do not possess fine biocompatibility. On the other hand, natural polymers are biocompatible but weak when used alone. The combination of natural and synthetic polymers gives the suitable properties for tissue engineering requirements. In our study, we modified gelatin synthetic polyurethanes prepared from polyester poly(ethylene-butylene adipate) (PEBA), aliphatic 1,6-hexamethylene diisocyanate (HDI), and two different chain extenders 1,4-butanediol (BDO) or 1-ethoxy-2-(2-hydroxyethoxy)ethanol (EHEE). From a chemical point of view, we replaced expensive components for building PU, such as 2,6-diisocyanato methyl caproate (LDI) and 1,4-diisocyanatobutane (BDI), with cost-effective HDI. The gelatin was added in situ (in the first step of synthesis) to polyurethane to increase biocompatibility and biodegradability of the obtained material. It appeared that the obtained gelatin-modified PU foams, in which chain extender was BDO, had enhanced interactions with media and their hydrolytic degradation profile was also improved for tissue engineering application. Furthermore, the gelatin introduction had positive impact on gelatin-modified PU foams by increasing their hemocompatibility. PMID:24363617
Tang, Yuqing; Shi, Xueting; Liu, Yongze; Zhang, Liqiu
2018-01-01
As a potential endocrine disruptor, clofibric acid (CA) was investigated in this study for its degradation kinetics and pathways in UV/chlorine process. The results showed that CA in both UV photolysis and UV/chlorine processes could be degraded via pseudo-first-order kinetics, while it almost could not be degraded in the dark chlorination process. The observed rate constant (kobs) in UV photolysis was 0.0078 min−1, and increased to 0.0107 min−1 combining with 0.1 mM chlorine. The kobs increased to 0.0447 min−1 with further increasing the chlorine dosage from 0.1 to 1.0 mM, and reached a plateau at higher dosage (greater than 1.0 mM). The higher kobs was obtained at acid solution rather than basic solution. Moreover, the calculated contributions of radical species to kobs indicated that the HO• contributed significantly to CA degradation in acidic conditions, while the reactive chlorine species and UV direct photolysis dominated in neutral and basic solution. The degradation of CA was slightly inhibited in the presence of HCO3− (1 ∼ 50 mM), barely affected by the presence of Cl− (1 ∼ 200 mM) and greatly suppressed by humic acid (0 ∼ 5 mg l−1). Thirteen main degradation intermediates and three degradation pathways of CA were identified during UV/chlorine process. PMID:29515853
Tang, Yuqing; Shi, Xueting; Liu, Yongze; Feng, Li; Zhang, Liqiu
2018-02-01
As a potential endocrine disruptor, clofibric acid (CA) was investigated in this study for its degradation kinetics and pathways in UV/chlorine process. The results showed that CA in both UV photolysis and UV/chlorine processes could be degraded via pseudo-first-order kinetics, while it almost could not be degraded in the dark chlorination process. The observed rate constant ( k obs ) in UV photolysis was 0.0078 min -1, and increased to 0.0107 min -1 combining with 0.1 mM chlorine. The k obs increased to 0.0447 min -1 with further increasing the chlorine dosage from 0.1 to 1.0 mM, and reached a plateau at higher dosage (greater than 1.0 mM). The higher k obs was obtained at acid solution rather than basic solution. Moreover, the calculated contributions of radical species to k obs indicated that the HO• contributed significantly to CA degradation in acidic conditions, while the reactive chlorine species and UV direct photolysis dominated in neutral and basic solution. The degradation of CA was slightly inhibited in the presence of [Formula: see text] (1 ∼ 50 mM), barely affected by the presence of Cl - (1 ∼ 200 mM) and greatly suppressed by humic acid (0 ∼ 5 mg l -1 ). Thirteen main degradation intermediates and three degradation pathways of CA were identified during UV/chlorine process.
Wu, Dan; Li, Xukai; Tang, Yiming; Lu, Ping; Chen, Weirui; Xu, Xiaoting; Li, Laisheng
2017-08-01
Zinc oxide (ZnO) nanorods were prepared by a directly pyrolysis method and employed as catalyst for perfluorooctanoic acid (PFOA) degradation. Comparative experiments were conducted to discuss the catalytic activity and flexibility of ZnO. After ZnO addition, the best PFOA degradation efficiency (70.5%) was achieved by ZnO/UV/O 3 system, only 9.5% by sole ozonation and 18.2% by UV 254 light irradiation. PFOA degradation was sensitive with pH value and temperature. The better PFOA removal efficiency was achieved at acidic condition. A novel relationship was found among PFOA degradation efficiency with hydroxyl radicals and photo-generated holes. Hydroxyl radicals generated on the surfaces of ZnO nanorods played dominant roles in PFOA degradation. PFOA degradation was found to follow the photo-Kolbe reaction mechanism. C 2 -C 7 shorter-chain perfluorocarboxylic acids and fluoride ion were detected as main intermediates during PFOA degradation process. Based on the results, a proposal degradation pathway was raised. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bovo, Barbara; Nadai, Chiara; Vendramini, Chiara; Fernandes Lemos Junior, Wilson Josè; Carlot, Milena; Skelin, Andrea; Giacomini, Alessio; Corich, Viviana
2016-11-07
Among the viticultural techniques developed to obtain wine with reduced alcohol content, the use of unripe grapes with low sugar and high malic acid concentration, harvested at cluster thinning, was recently explored. So far, no studies have evaluated the fermentation performances of Saccharomyces in unripe grape musts, in terms of fermentation ability and reducing malic acid contents, to improve the quality of this low-alcohol beverage. In this work, we evaluated 24 S. cerevisiae strains isolated from Italian and Croatian vineyards with different fermentation aptitudes. Moreover, four S. paradoxus were considered, as previous works demonstrated that strains belonging to this species were able to degrade high malic acid amounts in standard musts. The industrial strain S. cerevisiae 71B was added as reference. Sugar and malic acid contents were modified in synthetic musts in order to understand the effect of their concentrations on alcoholic fermentation and malic acid degradation. S. cerevisiae fermentation performances improved when glucose concentration decreased and malic acid level increased. The conditions that simulate unripe grape must, i.e. low glucose and high malic acid content were found to enhance S. cerevisiae ability to degrade malic acid. On the contrary, S. paradoxus strains were able to degrade high amounts of malic acid only in conditions that resemble ripe grape must, i.e. high glucose and low malic acid concentration. In fermentation trials when low glucose concentrations were used, at high malic acid levels S. cerevisiae strains produced higher glycerol than at low malic acid condition. Malic acid degradation ability, tested on the best performing S. cerevisiae strains, was enhanced in fermentation trials when unripe grape must was used. Copyright © 2016 Elsevier B.V. All rights reserved.
ZHANG, Xiang; GU, Xiaogang; LU, Shuguang; MIAO, Zhouwei; XU, Minhui; FU, Xiaori; DANISH, Muhammad; Brusseau, Mark L.; QIU, Zhaofu; SUI, Qian
2017-01-01
Trichloroethene (TCE) degradation by Fe(III)-activated calcium peroxide (CP) in the presence of citric acid (CA) in aqueous solution was investigated. The results demonstrated that the presence of CA enhanced TCE degradation significantly by increasing the concentration of soluble Fe(III) and promoting H2O2 generation. The generation of HO• and O2−• in both the CP/Fe(III) and CP/Fe(III)/CA systems was confirmed with chemical probes. The results of radical scavenging tests showed that TCE degradation was due predominantly o direct oxidation by HO•, while O2−• strengthened the generation of HO• by promoting Fe(III) transformation in the CP/Fe(III)/CA system. Acidic pH conditions were favorable for TCE degradation, and the TCE degradation rate decreased with increasing pH. The presence of Cl−, HCO3−, and humic acid (HA) inhibited TCE degradation to different extents for the CP/Fe(III)/CA system. Analysis of Cl− production suggested that TCE degradation in the CP/Fe(III)/CA system occurred through a dechlorination process. In summary, this study provided detailed information for the application of CA-enhanced Fe(III)-activated calcium peroxide for treating TCE contaminated groundwater. PMID:28959499
Biodegradation of resin acid sodium salts
Richard W. Hemingway; H. Greaves
1973-01-01
The sodium salts of resin acids were readily degraded by microflora from two types of river water and from an activated sewage sludge. A lag phase with little or no resin acid salt degradation but rapid bacterial development occurred which was greatly extended by a decrease in incubation temperature. After this initial lag phase, the resin acid salts were rapidly...
Mok, Elise; Eléouet-Da Violante, Catherine; Daubrosse, Christel; Gottrand, Frédéric; Rigal, Odile; Fontan, Jean-Eudes; Cuisset, Jean-Marie; Guilhot, Joëlle; Hankard, Régis
2006-04-01
Glutamine has been shown to acutely decrease whole-body protein degradation in Duchenne muscular dystrophy (DMD). To improve nutritional support in DMD, we tested whether oral supplementation with glutamine for 10 d decreased whole-body protein degradation significantly more than did an isonitrogenous amino acid control mixture. Twenty-six boys with DMD were included in this randomized, double-blind parallel study; they received an oral supplement of either glutamine (0.5 g . kg(-1) . d(-1)) or an isonitrogenous, nonspecific amino acid mixture (0.8 g . kg(-1) . d(-1)) for 10 d. The subjects in each group were not clinically different at entry. Leucine and glutamine metabolisms were estimated in the postabsorptive state by using a primed continuous intravenous infusion of [1-(13)C]leucine and [2-(15)N]glutamine before and 10 d after supplementation. A significant effect of time was observed on estimates of whole-body protein degradation. A significant (P < 0.05) decrease in the rate of leucine appearance (an index of whole-body protein degradation) was observed after both glutamine and isonitrogenous amino acid supplementation [x +/-SEM: 136 +/- 9 to 124 +/- 6 micromol . kg fat-free mass (FFM)(-1) . h(-1) for glutamine and 136 +/- 6 to 131 +/- 8 micromol . kg FFM(-1) . h(-1) for amino acids]. A significant (P < 0.05) decrease in endogenous glutamine due to protein breakdown was also observed (91 +/- 6 to 83 +/- 4 micromol . kg FFM(-1) . h(-1) for glutamine and 91 +/- 4 to 88 +/- 5 micromol . kg FFM(-1) . h(-1) for amino acids). The decrease in the estimates of whole-body protein degradation did not differ significantly between the 2 supplemental groups. Oral glutamine or amino acid supplementation over 10 d equally inhibits whole-body protein degradation in DMD.
NASA Astrophysics Data System (ADS)
Csay, Tamás; Rácz, Gergely; Salik, Ádám; Takács, Erzsébet; Wojnárovits, László
2014-09-01
The degradation of clofibric acid induced by hydroxyl radical, hydrated electron and O2-•/HO2• reactive species was studied in aqueous solutions. Clofibric acid was decomposed more effectively by hydroxyl radical than by hydrated electron or O2-•/HO2•. Various hydroxylated, dechlorinated and fragmentation products have been identified and quantified. A new LC-MS method was developed based on 18O isotope labeling to follow the formation of hydroxylated derivatives of clofibric acid. Possible degradation pathways have been proposed. The overall degradation was monitored by determination of sum parameters like COD, TOC and AOX. It was found that the organic chlorine degrades very effectively prior to complete mineralization. After the treatment no toxic effect was found according to Vibrio fischeri tests. However, at early stages some of the reaction products were more harmful than clofibric acid.
Le, Thi Nhi-Cong; Mikolasch, Annett; Awe, Susanne; Sheikhany, Halah; Klenk, Hans-Peter; Schauer, Frieder
2010-06-01
A soil bacterium isolated from oil-polluted sand samples collected in the Saudi Arabian Desert has been determined as Nocardia cyriacigeorgica, which has a high capacity of degrading and utilizing a broad range of hydrocarbons. The metabolic pathways of three classes of hydrocarbons were elucidated by identifying metabolites in cell-free extracts analyzed by GC/MS and HPLC/UV-Vis in comparison with standard compounds. During tetradecane oxidation, tetradecanol; tetradecanoic acid; dodecanoic acid; decanoic acid could be found as metabolites, indicating a monoterminal degradation pathway of n -alkanes. The oxidation of pristane resulted in the presence of pristanoic acid; 2-methylglutaric acid; 4,8-dimethylnonanoic acid; and 2,6-dimethylheptanoic acid, which give rise to a possible mono- and di-terminal oxidation. In case of sec -octylbenzene, eight metabolites were detected including 5-phenylhexanoic acid; 3-phenylbutyric acid; 2-phenylpropionic acid; beta -methylcinnamic acid; acetophenone; beta -hydroxy acetophenone; 2,3-dihydroxy benzoic acid and succinic acid. From these intermediates a new degradation pathway for sec -octylbenzene was investigated. Our results indicate that N. cyriacigeorgica has the ability to degrade aliphatic and branched chain alkanes as well as alkylbenzene effectively and, therefore, N. cyriacigeorgica is probably a suitable bacterium for biodegradation of oil or petroleum products in contaminated soils. ((c) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).
Zhu, Yuanting; Li, Jianlong; Yao, Kai; Zhao, Nan; Zhou, Kang; Hu, Xinjie; Zou, Likou; Han, Xinfeng; Liu, Aiping; Liu, Shuliang
2016-11-01
A novel filamentous fungus M-4 strain was isolated from soy sauce koji and identified as Aspergillus oryzae (Collection number: CGMCC 11645) on the basis of morphological characteristics and internal transcribed spacer sequence. M-4 could degrade 80.62 % of 3-phenoxybenzoic acid (3-PBA; 100 mg L -1 ) within 5 days. 3-PBA degradation occurred in accordance with first-order kinetics. The degradation metabolites of 3-PBA were identified through high-performance liquid chromatography-mass spectrometry (HPLC-MS). Relevant enzymatic activities and substrate utilization were also investigated, which indicated that M-4 could effectively degrade the intermediates of 3-PBA. Base on analysis of these metabolites, a novel biochemical pathway for the degradation of 3-PBA was proposed. There exists a mutual transformation between 3-phenoxy-benzyl alcohol and 3-PBA, which was firstly reported about the degradation of 3-PBA and may be attributed to self-protection transformation of M-4; subsequently, 3-PBA was gradually transformed into phenol, 3-hydroxy-5-phenoxy benzoic acid, protocatechuic acid and gallic acid. The safety of M-4 was evaluated via an acute toxicity test in vivo. The biodegradation ability of M-4 without toxic effects reveals that this fungus may be likely to be used for eliminating 3-PBA from contaminated environment or fermented foods.
Rysman, Tine; Utrera, Mariana; Morcuende, David; Van Royen, Geert; Van Weyenberg, Stephanie; De Smet, Stefaan; Estévez, Mario
2016-11-15
The effect of apple phenolics on the oxidative damage caused to myofibrillar proteins by an in vitro metal-catalyzed oxidation system was investigated. Three pure phenolic compounds (chlorogenic acid, (-)-epicatechin and phloridzin) and an apple peel extract were added to myofibrillar proteins in three concentrations (50, 100 and 200μM), and a blank treatment was included as a control. All suspensions were subjected to Fe(3+)/H2O2 oxidation at 37°C during 10days, and protein oxidation was evaluated as carbonylation (α-amino adipic and γ-glutamic semialdehydes) and Schiff base cross-links. Significant inhibition by apple phenolics was found as compared to the control treatment, with (-)-epicatechin being the most efficient antioxidant and phloridzin showing the weakest antioxidant effect. The higher concentrations of apple extract showed effective antioxidant activity against protein oxidation in myofibrillar proteins, emphasizing the potential of apple by-products as natural inhibitors of protein oxidation in meat products. Copyright © 2016 Elsevier Ltd. All rights reserved.
The impact of aerosol composition on the particle to gas partitioning of reactive mercury.
Rutter, Andrew P; Schauer, James J
2007-06-01
A laboratory system was developed to study the gas-particle partitioning of reactive mercury (RM) as a function of aerosol composition in synthetic atmospheric particulate matter. The collection of RM was achieved by filter- and sorbent-based methods. Analyses of the RM collected on the filters and sorbents were performed using thermal extraction combined with cold vapor atomic fluorescence spectroscopy (CVAFS), allowing direct measurement of the RM load on the substrates. Laboratory measurements of the gas-particle partitioning coefficients of RM to atmospheric aerosol particles revealed a strong dependence on aerosol composition, with partitioning coefficients that varied by orders of magnitude depending on the composition of the particles. Particles of sodium nitrate and the chlorides of potassium and sodium had high partitioning coefficients, shifting the RM partitioning toward the particle phase, while ammonium sulfate, levoglucosan, and adipic acid caused the RM to partition toward the gas phase and, therefore, had partitioning coefficients that were lower by orders of magnitude.
Engineering Biodegradable Flame Retardant Wood-Plastic Composites
NASA Astrophysics Data System (ADS)
Zhang, Linxi
Wood-plastic composites (WPCs), which are produced by blending wood and polymer materials, have attracted increasing attentions in market and industry due to the low cost and excellent performance. In this research, we have successfully engineered WPC by melt blending Polylactic Acid (PLA) and Poly(butylene adipate-co-terphthalate) (PBAT) with recycled wood flour. The thermal property and flammability of the composite are significantly improved by introducing flame retardant agent resorcinol bis(biphenyl phosphate) (RDP). The mechanical and morphological properties are also investigated via multiple techniques. The results show that wood material has increased toughness and impact resistance of the PLA/PBAT polymer matrix. SEM images have confirmed that PLA and PBAT are immiscible, but the incompatibility is reduced by the addition of wood. RDP is initially dispersed in the blends evenly. It migrates to the surface of the sample after flame application, and serves as a barrier between the fire and underlying polymers and wood mixture. It is well proved in the research that RDP is an efficient flame retardant agent in the WPC system.
Gas-liquid hybrid discharge-induced degradation of diuron in aqueous solution.
Feng, Jingwei; Zheng, Zheng; Luan, Jingfei; Li, Kunquan; Wang, Lianhong; Feng, Jianfang
2009-05-30
Degradation of diuron in aqueous solution by gas-liquid hybrid discharge was investigated for the first time. The effect of output power intensity, pH value, Fe(2+) concentration, Cu(2+) concentration, initial conductivity and air flow rate on the degradation efficiency of diuron was examined. The results showed that the degradation efficiency of diuron increased with increasing output power intensity and increased with decreasing pH values. In the presence of Fe(2+), the degradation efficiency of diuron increased with increasing Fe(2+) concentration. The degradation efficiency of diuron was decreased during the first 4 min and increased during the last 10 min with adding of Cu(2+). Decreasing the initial conductivity and increasing the air flow rate were favorable for the degradation of diuron. Degradation of diuron by gas-liquid hybrid discharge fitted first-order kinetics. The pH value of the solution decreased during the reaction process. Total organic carbon removal rate increased in the presence of Fe(2+) or Cu(2+). The generated Cl(-1), NH(4)(+), NO(3)(-), oxalic acid, acetic acid and formic acid during the degradation process were also detected. Based on the detected Cl(-1) and other intermediates, a possible degradation pathway of diuron was proposed.
Tchaikovskaya, O; Sokolova, I; Mayer, G V; Karetnikova, E; Lipatnikova, E; Kuzmina, S; Volostnov, D
2011-01-01
The degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) in water by the combination process of UV-irradiation, humic acids and activated sludge treatment has been studied. The photoreaction rate of all irradiated samples was lowest for the sample irradiated at 308 nm (the XeCl excilamp) in the absence and in the presence of humic acids, and highest for the sample irradiated at 222 nm (the KrCl excilamp). Photolysis of 2,4-D has been shown to enhance the subsequent microbial degradation. Copyright © 2010 John Wiley & Sons, Ltd.
Sood, Nitu; Patle, Sonali; Lal, Banwari
2010-03-01
Primitive wax refining techniques had resulted in almost 50,000 tonnes of acidic oily sludge (pH 1-3) being accumulated inside the Digboi refinery premises in Assam state, northeast India. A novel yeast species Candida digboiensis TERI ASN6 was obtained that could degrade the acidic petroleum hydrocarbons at pH 3 under laboratory conditions. The aim of this study was to evaluate the degradation potential of this strain under laboratory and field conditions. The ability of TERI ASN6 to degrade the hydrocarbons found in the acidic oily sludge was established by gravimetry and gas chromatography-mass spectroscopy. Following this, a feasibility study was done, on site, to study various treatments for the remediation of the acidic sludge. Among the treatments, the application of C. digboiensis TERI ASN6 with nutrients showed the highest degradation of the acidic oily sludge. This treatment was then selected for the full-scale bioremediation study conducted on site, inside the refinery premises. The novel yeast strain TERI ASN6 could degrade 40 mg of eicosane in 50 ml of minimal salts medium in 10 days and 72% of heneicosane in 192 h at pH 3. The degradation of alkanes yielded monocarboxylic acid intermediates while the polycyclic aromatic hydrocarbon pyrene found in the acidic oily sludge yielded the oxygenated intermediate pyrenol. In the feasibility study, the application of TERI ASN6 with nutrients showed a reduction of solvent extractable total petroleum hydrocarbon (TPH) from 160 to 28.81 g kg(-1) soil as compared to a TPH reduction from 183.85 to 151.10 g kg(-1) soil in the untreated control in 135 days. The full-scale bioremediation study in a 3,280-m(2) area in the refinery showed a reduction of TPH from 184.06 to 7.96 g kg(-1) soil in 175 days. Degradation of petroleum hydrocarbons by microbes is a well-known phenomenon, but most microbes are unable to withstand the low pH conditions found in Digboi refinery. The strain C. digboiensis could efficiently degrade the acidic oily sludge on site because of its robust nature, probably acquired by prolonged exposure to the contaminants. This study establishes the potential of novel yeast strain to bioremediate hydrocarbons at low pH under field conditions. Acidic oily sludge is a potential environmental hazard. The components of the oily sludge are toxic and carcinogenic, and the acidity of the sludge further increases this problem. These results establish that the novel yeast strain C. digboiensis was able to degrade hydrocarbons at low pH and can therefore be used for bioremediating soils that have been contaminated by acidic hydrocarbon wastes generated by other methods as well.
Mono- and diesters from o-phthalic acid in leachates from different European landfills.
Jonsson, Susanne; Ejlertsson, Jörgen; Ledin, Anna; Mersiowsky, Ivo; Svensson, Bo H
2003-02-01
Leachates from 17 different landfills in Europe were analysed with respect to phthalates, i.e. phthalic acid diesters (PAEs) and their degradation products phthalic acid monoesters (PMEs) and ortho-phthalic acid (PA). Diesters are ubiquitous and the human possible exposure and potential to human health and environment has put them in focus. The aim of this study was to elucidate whether monoesters and phthalic acid could be traced in landfill leachates and in what concentrations they may be found. The results showed that phthalates were present in the majority of the leachates investigated. The monoesters appeared from 1 to 20 microg/L and phthalic acid 2-880 microg/L (one divergent value of 19 mg phthalic acid/L). Their parental diesters were observed from 1 to 460 microg/L. These observed occurrences of degradation products, of all diesters studied, support that they are degraded under the landfill conditions covered by this study. Thus, we have presented strong evidences to conclude that microorganisms in landfills degrade diesters released from formulations in a variety of products, including polyvinyl chloride (PVC) species.
Selective degradation of ibuprofen and clofibric acid in two model river biofilm systems.
Winkler, M; Lawrence, J R; Neu, T R
2001-09-01
A field survey indicated that the Elbe and Saale Rivers were contaminated with both clofibric acid and ibuprofen. In Elbe River water we could detect the metabolite hydroxy-ibuprofen. Analyses of the city of Saskatoon sewage effluent discharged to the South Saskatchewan river detected clofibric acid but neither ibuprofen nor any metabolite. Laboratory studies indicated that the pharmaceutical ibuprofen was readily degraded in a river biofilm reactor. Two metabolites were detected and identified as hydroxy- and carboxy-ibuprofen. Both metabolites were observed to degrade in the biofilm reactors. However, in human metabolism the metabolite carboxy-ibuprofen appears and degrades second whereas the opposite occurs in biofilm systems. In biofilms the pharmacologically inactive stereoisomere of ibuprofen is degraded predominantly. In contrast, clofibric acid was not biologically degraded during the experimental period of 21 days. Similar results were obtained using biofilms developed using waters from either the South Saskatchewan or Elbe River. In a sterile reactor no losses of ibuprofen were observed. These results suggested that abiotic losses and adsorption played only a minimal role in the fate of the pharmaceuticals in the river biofilm reactors.
Kinetics of Maleic Acid and Aluminum Chloride Catalyzed Dehydration and Degradation of Glucose
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ximing; Hewetson, Barron B.; Mosier, Nathan S.
We report the positive effect of maleic acid, a dicarboxylic acid, on the selectivity of hexose dehydration to 5-hydroxymethyfurfural (HMF) and subsequent hydrolysis to levulinic and formic acids. We also describe the kinetic analysis of a Lewis acid (AlCl3) alone and in combination with HCl or maleic acid to catalyze the isomerization of glucose to fructose, dehydration of fructose to HMF, hydration of HMF to levulinic and formic acids, and degradation of these compounds to humins. The results show that AlCl3 significantly enhances the rate of glucose conversion to HMF and levulinic acid in the presence of both maleic acidmore » and HCl. In addition, the degradation of HMF to humins, rather than levulinic and formic acids, is reduced by 50% in the presence of maleic acid and AlCl3 compared to HCl combined with AlCl3. The results suggest different reaction mechanisms for the dehydration of glucose and rehydration of HMF between maleic acid and HCl.« less
Zhao, Jiayuan; Chi, Yuanlong; Xu, Yingchao; Jia, Dongying; Yao, Kai
2016-01-01
The degradation efficiency of organic contaminants and their associated metabolites by co-culture of microbes is mainly limited by toxic intermediates from co-metabolic degradation. In this study, we investigated the degradation of β-cypermethrin (β-CY) and 3-phenoxybenzoic acid (3-PBA) by co-culture of Bacillus licheniformis B-1 and Aspergillus oryzae M-4, as well as the influences of β-CY and 3-PBA metabolites on their degradation and the growth of strains B-1 and M-4. Our results indicated that 100 mg/L β-CY was degraded by 78.85%, and 3-PBA concentration was 0.05 mg/L after 72 h. Compared with using only strain B-1, the half-life (t1/2) of β-CY by using the two strains together was shortened from 84.53 h to 38.54 h, and the yield coefficient of 3-PBA was decreased from 0.846 to 0.001. At 100 mg/L of 3-PBA and gallic acid, β-CY and 3-PBA degradation were only 17.68% and 40.45%, respectively. As the toxic intermediate derived from co-metabolic degradation of β-CY by strain B-1, 3-PBA was efficiently degraded by strain M-4, and gallic acid, as the toxic intermediate from co-metabolic degradation of 3-PBA by strain M-4, was efficiently degraded by strain B-1. These results provided a promising approach for efficient biodegradation of β-CY and 3-PBA.
Measuring Enthalpy of Sublimation of Volatiles by Means of Piezoelectric Crystal Microbalances
NASA Astrophysics Data System (ADS)
Dirri, Fabrizio; Palomba, Ernesto; Longobardo, Andrea; Zampetti, Emiliano
2017-12-01
Piezoelectric Crystal Microbalances (PCM's) are widely used to study the chemical processes involving volatile compounds in any environment, such as condensation process. Since PCM's are miniaturized sensor, they are very suitable for planetary in situ missions, where can be used to detect and to measure the mass amount of astrobiologically significant compounds, such as water and organics. This work focuses on the realization and testing of a new experimental setup, able to characterize volatiles which can be found in a planetary environment. In particular the enthalpy of sublimation of some dicarboxylic acids has been measured. The importance of dicarboxylic acids in planetology and astrobiology is due to the fact that they have been detected in carbonaceous chondritic material (e.g. Murchinson), among the most pristine material present in our Solar System. In this work, a sample of acid was heated in an effusion cell up to its sublimation. For a set of temperatures (from 30 °C to 75 °C), the deposition rate on the PCM surface has been measured. From these measurements, it has been possible to infer the enthalpy of sublimation of Adipic acid, i.e. ΔH = 141.6 ± 0.8 kJ/mol and Succinic acid, i.e. ΔH = 113.3 ± 1.3 kJ/mol. This technique has so demonstrated to be a good choice to recognise a single compound or a mixture (with an analysis upstream) even if some improvements concerning the thermal stabilization of the system will be implemented in order to enhance the results' accuracy. The experiment has been performed in support of the VISTA (Volatile In Situ Thermogravimetry Analyzer) project, which is included in the scientific payload of the ESA MarcoPolo-R mission study.
Chen, Yu-Nong; Hsu, Shih-Lan; Liao, Ming-Yuan; Liu, Yi-Ting; Lai, Chien-Hung; Chen, Ji-Feng; Nguyen, Mai-Huong Thi; Su, Yung-Hsiang; Chen, Shang-Ting; Wu, Li-Chen
2016-12-24
In this study, we developed curcumin-encapsulated hyaluronic acid-polylactide nanoparticles (CEHPNPs) to be used for liver fibrosis amelioration. CD44, the hyaluronic acid (HA) receptor, is upregulated on the surface of cancer cells and on activated hepatic stellate cells (aHSCs) rather than normal cells. CEHPNPs could bind to CD44 and be internalized effectively through endocytosis to release curcumin, a poor water-soluble liver protective agent. Thus, CEHPNPs were potentially not only improving drug efficiency, but also targeting aHSCs. HA and polylactide (PLA) were crosslinked by adipic acid dihydrazide (ADH). The synthesis of HA-PLA was monitored by Fourier-transform infrared (FTIR) and Nuclear Magnetic Resonance (NMR). The average particle size was approximately 60-70 nm as determined by dynamic light scattering (DLS) and scanning electron microscope (SEM). Zeta potential was around -30 mV, which suggested a good stability of the particles. This drug delivery system induced significant aHSC cell death without affecting quiescent HSCs, hepatic epithelial, and parenchymal cells. This system reduced drug dosage without sacrificing therapeutic efficacy. The cytotoxicity IC 50 (inhibitory concentration at 50%) value of CEHPNPs was approximately 1/30 to that of the free drug treated group in vitro. Additionally, the therapeutic effects of CEHPNPs were as effective as the group treated with the same curcumin dose intensity in vivo. CEHPNPs significantly reduced serum aspartate transaminase/alanine transaminase (ALT/AST) significantly, and attenuated tissue collagen production and cell proliferation as revealed by liver biopsy. Conclusively, the advantages of superior biosafety and satisfactory therapeutic effect mean that CEHPNPs hold great potential for treating hepatic fibrosis.
Anticorrosive organic/inorganic hybrid coatings
NASA Astrophysics Data System (ADS)
Gao, Tongzhai
Organic/inorganic hybrid coating system was developed for anticorrosion applications using polyurea, polyurethane or epoxide as the organic phase and polysiloxane, formed by sol-gel process, as the inorganic phase. Polyurea/polysiloxane hybrid coatings were formulated and moisture cured using HDI isocyanurate, alkoxysilane-functionalized HDI isocyanurate, and tetraethyl orthosilicate (TEOS) oligomers. Two urethanes were prepared using the same components as abovementioned in addition to the oligoesters derived from either cyclohexane diacids (CHDA) and 2-butyl-2-ethyl-1,3-propanediol (BEPD) or adipic acid (AA), isophthalic acid (IPA), 1,6-hexanediol (HD), and trimethylol propane (TMP). Accelerated weathering and outdoor exposure were performed to study the weatherability of the polyurethane/polysiloxane hybrid coating system. FTIR and solid-state 13C NMR revealed that the degradation of the hybrid coatings occurred at the urethane and ester functionalities of the organic phase. DMA and DSC analyses showed the glass transition temperature increased and broadened after weathering. SEM was employed to observe the change of morphology of the hybrid coatings and correlated with the gloss variation after weathering. Rutile TiO2 was formulated into polyurethane/polysiloxane hybrid coatings in order to investigate the effect of pigmentation on the coating properties and the sol-gel precursor. Chemical interaction between the TiO2 and the sol-gel precursor was investigated using solid-state 29Si NMR and XPS. The morphology, mechanical, viscoelastic, thermal properties of the pigmented coatings were evaluated as a function of pigmentation volume concentration (PVC). Using AFM and SEM, the pigment were observed to be well dispersed in the polymer matrix. The thermal stability, the tensile modulus and strength of the coatings were enhanced with increasing PVC, whereas the pull-off adhesion and flexibility were reduced with increasing PVC. Finally, the pigmented coatings were evaluated by electrochemical impedance spectroscopy (EIS) and the results showed that 10 wt% pigmentation improved the corrosion resistance of the entire coating system. The effect of pigmentation on epoxide/polysiloxane hybrid coatings was also investigated. The epoxide was successfully modified using 3-(triethoxysilyl) propyl isocyanate (TEOSPI) as indicated by FTIR and NMR. Good dispersion of the pigment particles was achieved as revealed by the SEM images. The tensile modulus, tensile strength, pencil hardness and thermal stability of the hybrid coatings were improved while the flexibility and pull-off adhesion were deteriorated when increasing PVC.
Pseudomonas putida F1 uses energy taxis to sense hydroxycinnamic acids
Hughes, Jonathan G.; Zhang, Xiangsheng; Parales, Juanito V.; Ditty, Jayna L.; Parales, Rebecca E.
2017-01-01
Soil bacteria such as pseudomonads are widely studied due to their diverse metabolic capabilities, particularly the ability to degrade both naturally occurring and xenobiotic aromatic compounds. Chemotaxis, the directed movement of cells in response to chemical gradients, is common in motile soil bacteria and the wide range of chemicals detected often mirrors the metabolic diversity observed. Pseudomonas putida F1 is a soil isolate capable of chemotaxis toward, and degradation of, numerous aromatic compounds. We showed that P. putida F1 is capable of degrading members of a class of naturally occurring aromatic compounds known as hydroxycinnamic acids, which are components of lignin and are ubiquitous in the soil environment. We also demonstrated the ability of P. putida F1 to sense three hydroxycinnamic acids: p-coumaric, caffeic and ferulic acids. The chemotaxis response to hydroxycinnamic acids was induced during growth in the presence of hydroxycinnamic acids and was negatively regulated by HcaR, the repressor of the hydroxycinnamic acid catabolic genes. Chemotaxis to the three hydroxycinnamic acids was dependent on catabolism, as a mutant lacking the gene encoding feruloyl-CoA synthetase (Fcs), which catalyzes the first step in hydroxycinnamic acid degradation, was unable to respond chemotactically toward p-coumaric, caffeic, or ferulic acids. We tested whether an energy taxis mutant could detect hydroxycinnamic acids and determined that hydroxycinnamic acid sensing is mediated by the energy taxis receptor Aer2. PMID:28954643
Xiaochao, Gu; Jin, Tian; Xiaoyun, Li; Bin, Zhou; Xujing, Zheng; Jin, Xu
2018-01-01
The three-dimensional electro-Fenton method was used in the folic acid wastewater pretreatment process. In this study, we researched the degradation of folic acid and the effects of different parameters such as the air sparging rate, current density, pH and reaction time on chemical oxygen demand (COD) removal in folic acid wastewater. A four-level and four-factor orthogonal test was designed and optimal reaction conditions to pretreat folic acid wastewater by three-dimensional electrode were determined: air sparge rate 0.75 l min−1, current density 10.26 mA cm−2, pH 5 and reaction time 90 min. Under these conditions, the removal of COD reached 94.87%. LC-MS results showed that the electro-Fenton method led to an initial folic acid decomposition into p-aminobenzoyl-glutamic acid (PGA) and xanthopterin (XA); then part of the XA was oxidized to pterine-6-carboxylic acid (PCA) and the remaining part of XA was converted to pterin and carbon dioxide. The kinetics analysis of the folic acid degradation process during pretreatment was carried out by using simulated folic acid wastewater, and it could be proved that the degradation of folic acid by using the three-dimensional electro-Fenton method was a second-order reaction process. This study provided a reference for industrial folic acid treatment. PMID:29410807
Hypochlorous and peracetic acid induced oxidation of dairy proteins.
Kerkaert, Barbara; Mestdagh, Frédéric; Cucu, Tatiana; Aedo, Philip Roger; Ling, Shen Yan; De Meulenaer, Bruno
2011-02-09
Hypochlorous and peracetic acids, both known disinfectants in the food industry, were compared for their oxidative capacity toward dairy proteins. Whey proteins and caseins were oxidized under well controlled conditions at pH 8 as a function of the sanitizing concentration. Different markers for protein oxidation were monitored. The results established that the protein carbonyl content was a rather unspecific marker for protein oxidation, which did not allow one to differentiate the oxidant used especially at the lower concentrations. Cysteine, tryptophan, and methionine were proven to be the most vulnerable amino acids for degradation upon hypochlorous and peracetic acid treatment, while tyrosine was only prone to degradation in the presence of hypochlorous acid. Hypochlorous acid induced oxidation gave rise to protein aggregation, while during peracetic acid induced oxidation, no high molecular weight aggregates were observed. Protein aggregation upon hypochlorous acid oxidation could primarily be linked to tryptophan and tyrosine degradation.
[Progress on biodegradation of polylactic acid--a review].
Li, Fan; Wang, Sha; Liu, Weifeng; Chen, Guanjun
2008-02-01
Polylactic acid is a high molecular-weight polyester made from renewable resources such as corn or starch. It is a promising biodegradable plastic due to its mechanical properties, biocompatibility and biodegradability. To achieve natural recycling of polylactic acid, relative microorganisms and the underlying mechanisms in the biodegradation has become an important issue in biodegradable materials. Up to date, most isolated microbes capable of degrading polylactic acid belong to actinomycetes. Proteases secreted by these microorganisms are responsible for the degradation. However, subtle differences exist between these polylactic acid degrading enzymes and typical proteases with respect to substrate binding and catalysis. Amino acids relative to catalysis are postulated to be highly plastic allowing their catalytic hydrolysis of polylactic acid. In this paper we reviewed current studies on biodegradation of polylactic acid concerning its microbial, enzymatic reactions and the possible mechanisms. We also discussed the probability of biologically recycling PLA by applying highly efficient strains and enzymes.
Over the past several years, ethanesulfonic acid (ESA) and oxanilic acid (OA) degradation products of acetanilide/acetamide herbicides have been found in U.S. ground waters and surface waters. The substitution of the sulfonic acid or the carbonic acid for the chlorine atom great...
[Studies on the degradation of paracetamol in sono-electrochemical oxidation].
Dai, Qi-Zhou; Ma, Wen-Jiao; Shen, Hong; Chen, Jun; Chen, Jian-Meng
2012-07-01
A novel lead dioxide electrodes co-doped with rare earth and polytetrafluoroethylene (PTFE) were prepared by the electrode position method and applied as anodes in sono-electrochemical oxidation for pharmaceutical wastewater degradation. The results showed that the APAP removal and the mineralization efficiency reached an obvious increase, which meant that the catalytic efficiency showed a significant improvement in the use of rare-earth doped electrode. The effects of process factors showed that the condition of the electrode had the best degradation efficiency with doped with Ce2O3 under electrolyte concentration of 14.2 g x L(-1), 49.58 W x cm(-2), 50 Hz, pH = 3, 71.43 mA x cm(-2). The APAP of 500 mg x L(-1) removal rate reached 92.20% and its COD and TOC values declined to 79.95% and 58.04%, the current efficiency reached 45.83% after degradation process for 2.0 h. The intermediates were monitored by the methods of GC-MS, HPLC, and IC. The main intermediates of APAP were p-benzoquinone, benzoic acid, acetic acid, maleic acid, oxalic acid, formic acid etc, and the final products were carbon dioxide and water. The goal of completely degradation of pollutant was achieved and a possible degradation way was proposed.
Allardyce, Benjamin J; Rajkhowa, Rangam; Dilley, Rodney J; Redmond, Sharon L; Atlas, Marcus D; Wang, Xungai
2017-11-01
Regenerated silk fibroin membranes tend to be brittle when dry. The use of plasticisers such as glycerol improve membrane ductility, but, when combined with aqueous processing, can lead to a higher degradation rate than solvent-annealed membranes. This study investigated the use of formic acid as the solvent with glycerol to make deformable yet degradation-resistant silk membranes. Here we show that membranes cast using formic acid had low light scattering, with a diffuse transmittance of less than 5% over the visible wavelengths, significantly lower than the 20% transmittance of aqueous derived silk/glycerol membranes. They had 64% β-sheet content and lost just 30% of the initial silk weight over 6h when tested with an accelerated enzymatic degradation assay, in comparison the aqueous membranes completely degraded within this timeframe. The addition of glycerol also improved the maximum elongation of formic acid derived membranes from under 3% to over 100%. They also showed good cytocompatibility and supported the adhesion and migration of human tympanic membrane keratinocytes. Formic acid based, silk/glycerol membranes may be of great use in medical applications such as repair of tympanic membrane perforation or ocular applications where transparency and resistance to enzymatic degradation are important. Copyright © 2017 Elsevier B.V. All rights reserved.
Corti Monzón, Georgina; Nisenbaum, Melina; Herrera Seitz, M Karina; Murialdo, Silvia E
2018-04-24
The study of the aromatic compounds' degrading ability by halophilic bacteria became an interesting research topic, because of the increasing use of halophiles in bioremediation of saline habitats and effluents. In this work, we focused on the study of aromatic compounds' degradation potential of Halomonas sp. KHS3, a moderately halophilic bacterium isolated from hydrocarbon-contaminated seawater of the Mar del Plata harbour. We demonstrated that H. sp. KHS3 is able to grow using different monoaromatic (salicylic acid, benzoic acid, 4-hydroxybenzoic acid, phthalate) and polyaromatic (naphthalene, fluorene, and phenanthrene) substrates. The ability to degrade benzoic acid and 4-hydroxybenzoic acid was analytically corroborated, and Monod kinetic parameters and yield coefficients for degradation were estimated. Strategies that may enhance substrate bioavailability such as surfactant production and chemotactic responses toward aromatic compounds were confirmed. Genomic sequence analysis of this strain allowed us to identify several genes putatively related to the metabolism of aromatic compounds, being the catechol and protocatechuate branches of β-ketoadipate pathway completely represented. These features suggest that the broad-spectrum xenobiotic degrader H. sp. KHS3 could be employed as a useful biotechnological tool for the cleanup of aromatic compounds-polluted saline habitats or effluents.
Asokan, Kathiravan; Naidu, Harshavardhan; Madam, Ratalababu; Shaikh, Khaja Mohiuddin; Reddy, Manjunath; Kumar, Hemantha; Shirude, Pravin S; Rajendran, Muruganantham; Sarabu, Ramakanth; Wu, Dauh-Rurng; Bajpai, Lakshmikant; Zhang, Yingru
2017-12-29
During a preparative separation of the cis enantiomeric pair of benzyl-2,3-dihydroxypiperidine-1-carboxylate using supercritical-fluid chromatography (SFC) with methanol modifier, significant degradation of the products in the collected fractions was observed when a Waters SFC-350 ® (Milford, MA, USA) was used, but same was not observed when a Waters SFC-80q ® (Milford, MA, USA) was used. Through a systematic investigation, we discovered that the compound degraded over time under an acidic condition created by the formation of methyl carbonic acid from methanol and CO 2. The extent of the product degradation was dependent on the time and the concentration of CO 2 remained in the product fraction, which was governed by the efficiency of CO 2 -methanol separation during the fraction collection. Hence, we demonstrated that the different designs of CO 2 -solvent separator (high pressurized cyclone in Waters SFC-350 ® and low-pressurized vortexing separator in Waters SFC-80q ®® ) had a significant impact on the degradation of an acid-sensitive compound. The acidity caused by CO 2 in methanol was supported by diminished degradation after a nitrogen purging or after neutralizing the collected fractions with a base. Three different solutions to overcome the degradation problem of the acid sensitive compounds using SFC-350 ® with the high pressurized separator were investigated and demonstrated. The degraded products were isolated as four enantiomers and their relative stereochemistry were established based on 2D NMR data along with the plausible mechanism of degradation. Copyright © 2017 Elsevier B.V. All rights reserved.
Adsorption and degradation of phenoxyalkanoic acid herbicides in soils: A review.
Paszko, Tadeusz; Muszyński, Paweł; Materska, Małgorzata; Bojanowska, Monika; Kostecka, Małgorzata; Jackowska, Izabella
2016-02-01
The primary aim of the present review on phenoxyalkanoic acid herbicides-2-(2,4-dichlorophenoxy) acetic acid (2,4-D), 2-(4-chloro-2-methylphenoxy) acetic acid (MCPA), (2R)-2-(2,4-dichlorophenoxy) propanoic acid (dichlorprop-P), (2R)-2-(4-chloro-2-methylphenoxy) propanoic acid (mecoprop-P), 4-(2,4-dichlorophenoxy) butanoic acid (2,4-DB), and 4-(4-chloro-2-methylphenoxy) butanoic acid (MCPB)-was to compare the extent of their adsorption in soils and degradation rates to assess their potential for groundwater contamination. The authors found that adsorption decreased in the sequence of 2,4-DB > 2,4-D > MCPA > dichlorprop-P > mecoprop-P. Herbicides are predominantly adsorbed as anions-on organic matter and through a water-bridging mechanism with adsorbed Fe cations-and their neutral forms are adsorbed mainly on organic matter. Adsorption of anions of 2,4-D, MCPA, dichlorprop-P, and mecoprop-P is inversely correlated with their lipophilicity values, and modeling of adsorption of the compounds based on this relationship is possible. The predominant dissipation mechanism of herbicides in soils is bacterial degradation. The contribution of other mechanisms, such as degradation by fungi, photodegradation, or volatilization from soils, is much smaller. The rate of bacterial degradation decreased in the following order: 2,4-D > MCPA > mecoprop-P > dichlorprop-P. It was found that 2,4-D and MCPA have the lowest potential for leaching into groundwater and that mecoprop-P and dichlorprop-P have slightly higher potential. Because of limited data on adsorption and degradation of 2,4-DB and MCPB, estimation of their leaching potential was not possible. © 2015 SETAC.
Xiao, Jingfa; Hao, Lirui; Crowley, David E.; Zhang, Zhewen; Yu, Jun; Huang, Ning; Huo, Mingxin; Wu, Jiayan
2015-01-01
Cupriavidus sp. are generally heavy metal tolerant bacteria with the ability to degrade a variety of aromatic hydrocarbon compounds, although the degradation pathways and substrate versatilities remain largely unknown. Here we studied the bacterium Cupriavidus gilardii strain CR3, which was isolated from a natural asphalt deposit, and which was shown to utilize naphthenic acids as a sole carbon source. Genome sequencing of C. gilardii CR3 was carried out to elucidate possible mechanisms for the naphthenic acid biodegradation. The genome of C. gilardii CR3 was composed of two circular chromosomes chr1 and chr2 of respectively 3,539,530 bp and 2,039,213 bp in size. The genome for strain CR3 encoded 4,502 putative protein-coding genes, 59 tRNA genes, and many other non-coding genes. Many genes were associated with xenobiotic biodegradation and metal resistance functions. Pathway prediction for degradation of cyclohexanecarboxylic acid, a representative naphthenic acid, suggested that naphthenic acid undergoes initial ring-cleavage, after which the ring fission products can be degraded via several plausible degradation pathways including a mechanism similar to that used for fatty acid oxidation. The final metabolic products of these pathways are unstable or volatile compounds that were not toxic to CR3. Strain CR3 was also shown to have tolerance to at least 10 heavy metals, which was mainly achieved by self-detoxification through ion efflux, metal-complexation and metal-reduction, and a powerful DNA self-repair mechanism. Our genomic analysis suggests that CR3 is well adapted to survive the harsh environment in natural asphalts containing naphthenic acids and high concentrations of heavy metals. PMID:26301592
Meng, Jingjing; Wang, Gehui; Li, Jianjun; Cheng, Chunlei; Ren, Yanqin; Huang, Yao; Cheng, Yuting; Cao, Junji; Zhang, Ting
2014-09-15
PM10 aerosols from the summit of Mt. Hua (2060 m a.s.l) in central China during the winter and summer of 2009 were analyzed for dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls. Molecular composition of dicarboxylic acids (C2-C11) in the free tropospheric aerosols reveals that oxalic acid (C2, 399 ± 261 ng m(-3) in winter and 522 ± 261 ng m(-3) in summer) is the most abundant species in both seasons, followed by malonic (C3) and succinic (C4) acids, being consistent with that on ground levels. Most of the diacids are more abundant in summer than in winter, but adipic (C6) and phthalic (Ph) acids are twice lower in summer, suggesting more significant impact of anthropogenic pollution on the wintertime alpine atmosphere. Moreover, glyoxal (Gly) and methylglyoxal (mGly) are also lower in summer (12 ± 6.1 ng m(-3)) than in winter (22 ± 13 ng m(-3)). As both dicarbonyls are a major precursor of C2, their seasonal variation patterns, which are opposite to those of the diacids, indicate that the mountain troposphere is more oxidative in summer. C2 showed strong linear correlations with levoglucosan in winter and oxidation products of isoprene and monoterpene in summer. PCA analysis further suggested that the wintertime C2 and related SOA in the Mt. Hua troposphere mostly originate from photochemical oxidations of anthropogenic pollutants emitted from biofuel and coal combustion in lowland regions. On contrast, the summertime C2 and related SOA mostly originate from further oxidation of the mountainous isoprene and monoterpene oxidation products. The AIM model calculation results showed that oxalic acid concentration well correlated with particle acidity (R(2)=0.60) but not correlated with particle liquid water content, indicating that particle acidity favors the organic acid formation because aqueous-phase C2 production is the primary mechanism of C2 formation in ambient aerosols and is driven by acid-catalyzed oxidation. Copyright © 2014 Elsevier B.V. All rights reserved.
Leaching kinetics of bottom ash waste as a source of calcium ions.
Koech, Lawrence; Everson, Ray; Neomagus, Hein; Rutto, Hilary
2015-02-01
Bottom ash is a waste material from coal-fired power plants, and it is known to contain elements that are potentially toxic at high concentration levels when disposed in landfills. This study investigates the use of bottom ash as a partial substitute sorbent for wet flue gas desulfurization (FGD) processes by focusing on its leaching kinetics in adipic acid. This was studied basing on the shrinking core model that was applied to the experimental data obtained by the authors presented at the International Conference on Industrial, Manufacturing, Automation and Mechanical Engineering, Johannesburg, South Africa, November 27-28, 2013) on dissolution of bottom ash. The leaching rate constant was obtained from different reaction variables, namely, temperature, pH, acid concentration, and solid-to-liquid ratio, that could affect the leaching process. The solid sample of bottom ash was characterized at different leaching periods using X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that solid-to-liquid ratio had a significant effect on the leaching rate constant when compared with other variables. The leaching kinetics showed that diffusion through the product layer was the rate-controlling step during leaching, and the activation energy for the process was found to be 18.92 kJ/mol.
USDA-ARS?s Scientific Manuscript database
The temperature-dependent alteration of flagellar motility gene expression is critical for the foodborne pathogen Listeria monocytogenes to respond to a changing environment. In this study, a genetic determinant, L. monocytogenes f2365_0220 (lmof2365_0220), encoding a putative protein that is struct...
Federal and State Water Quality Standards/Guidelines for Selected Parameters.
1979-02-01
isopropyl methylphosphonate) Dioctyl adipate Dioctyl azelate Diphenyl sulfoxide 1,4-Dithiane DNT (Dinitrotoluene) DNT (All isomers) Endr in Fluoride...dye (1-Methylaminoanthraquinone) Silver Sodium Sodium styphnate Strontium nitrate Strontium oxalate Strontium peroxide Sulfate Tetrachlorobenzene...Cyclohexanol Cyclohexanone Cyclopentanone Diethyl amine Diphenyl sulfoxide 1,4-Dithiane DNT (Dinitrotoluene) Fluoride Hardness, total
Boucheloukh, H; Remache, W; Parrino, F; Sehili, T; Mechakra, H
2017-05-17
The photocatalytic degradation of isoproturon, a persistent toxic herbicide, was investigated in the presence of natural iron oxide and oxalic acid and under UV irradiation. The influence of the relevant parameters such as the pH and the iron oxide and oxalic acid concentrations has been studied. The presence of natural iron oxide and oxalic acid in the system effectively allow the degradation of isoproturon, whereas the presence of t-butyl alcohol adversely affects the phototransformation of the target pollutant, thus indicating that an OH radical initiated the degradation mechanism. The degradation mechanism of isoproturon was investigated by means of GC-MS analysis. Oxidation of both the terminal N-(CH 3 ) 2 and isopropyl groups is the initial process leading to N-monodemethylated (NHCH 3 ), N-formyl (N(CH 3 )CHO), and CHCH 3 OH as the main intermediates. The substitution of the isopropyl group by an OH group is also observed as a side process.
Boltia, Shereen A; Abdelkawy, Mohammed; Mohammed, Taghreed A; Mostafa, Nahla N
2018-09-05
Five simple, rapid, accurate, and precise spectrophotometric methods are developed for the determination of Silodosin (SLD) in the presence of its acid induced and oxidative induced degradation products. Method A is based on dual wavelength (DW) method; two wavelengths are selected at which the absorbance of the oxidative induced degradation product is the same, so wavelengths 352 and 377 nm are used to determine SLD in the presence of its oxidative induced degradation product. Method B depends on induced dual wavelength theory (IDW), which is based on selecting two wavelengths on the zero-order spectrum of SLD where the difference in absorbance between them for the spectrum of acid induced degradation products is not equal to zero so through multiplying by the equality factor, the absorption difference is made to be zero for the acid induced degradation product while it is still significant for SLD. Method C is first derivative ( 1 D) spectrophotometry of SLD and its degradation products. Peak amplitudes are measured at 317 and 357 nm. Method D is ratio difference spectrophotometry (RD) where the drug is determined by the difference in amplitude between two selected wavelengths, at 350 and 277 nm for the ratio spectrum of SLD and its acid induced degradation products while for the ratio spectrum of SLD and its oxidative induced degradation products the difference in amplitude is measured at 345 and 292 nm. Method E depends on measuring peak amplitudes of the first derivative of the ratio ( 1 DD) where peak amplitudes are measured at 330 nm in the presence of the acid induced degradation product and measured by peak to peak technique at 326 and 369 nm in the presence of the oxidative induced degradation product. The proposed methods are validated according to ICH recommendations. The calibration curves for all the proposed methods are linear over a concentration range of 5-70 μg/mL. The selectivity of the proposed methods was tested using different laboratory prepared mixtures of SLD with either its acid induced or oxidative induced degradation products showing specificity of SLD with accepted recovery values. The proposed methods have been successfully applied to the analysis of SLD in pharmaceutical dosage forms without interference from additives. Copyright © 2018 Elsevier B.V. All rights reserved.
Vasconcelos, Maydla Dos Santos; Passos, Wilson Espíndola; Lescanos, Caroline Honaiser; Pires de Oliveira, Ivan; Trindade, Magno Aparecido Gonçalves; Caires, Anderson Rodrigues Lima; Muzzi, Rozanna Marques
2018-01-01
The techniques used to monitor the quality of the biodiesel are intensely discussed in the literature, partly because of the different oil sources and their intrinsic physicochemical characteristics. This study aimed to monitor the thermal degradation of the fatty acid methyl esters of Sesamum indicum L. and Raphanus sativus L. biodiesels (SILB and RSLB, resp.). The results showed that both biodiesels present a high content of unsaturated fatty acids, ∼84% (SILB) and ∼90% (RSLB). The SILB had a high content of polyunsaturated linoleic fatty acid (18 : 2), about 49%, and the oleic monounsaturated (18 : 1), ∼34%. On the other hand, RSLB presented a considerable content of linolenic fatty acid (18 : 3), ∼11%. The biodiesel samples were thermal degraded at 110°C for 48 hours, and acid value, UV absorption, and fluorescence spectroscopy analysis were carried out. The results revealed that both absorption and fluorescence presented a correlation with acid value as a function of degradation time by monitoring absorptions at 232 and 270 nm as well as the emission at 424 nm. Although the obtained correlation is not completely linear, a direct correlation was observed in both cases, revealing that both properties can be potentially used for monitoring the biodiesel degradation.
Degradation Behaviour of Gamma Irradiated Poly(Acrylic Acid)-graft-Chitosan Superabsorbent Hydrogel
NASA Astrophysics Data System (ADS)
Ria Barleany, Dhena; Ilhami, Alpin; Yusuf Yudanto, Dea; Erizal
2018-03-01
A series of superabsorbent hydrogels were prepared from chitosan and partially neutralized acrylic acid at room temperature by gamma irradiation technique. The effect of irradiation and chitosan addition to the degradation behaviour of polymer were investigated. The gel content, swelling capacity, Equillibrium Degree of Swelling (EDS), Fourier Transform Infra Red (FTIR), and Scanning Electron Microscopy (SEM) study were also performed. Natural degradation in soil and thermal degradation by using of TGA analysis were observed. The variation of chitosan compositions were 0.5, 1, 1.5, and 2 g and the total irradiation doses were 5, 10, 15, and 20 kGy. The highest water capacity of 583.3 g water/g dry hydrogel was resulted from 5 kGy total irradiation dose and 0,5 g addition of chitosan. From the thermal degradation evaluation by using of TGA analysis showed that irradiation dose did not give a significant influence to the degradation rate. The rate of thermal degradation was ranged between 2.42 to 2.55 mg/min. In the natural test of degradation behaviour by using of soil medium, the hydrogel product with chitosan addition was found to have better degradability compared with the poly(acrylic acid) polymer without chitosan.
Vitamin C degradation products and pathways in the human lens.
Nemet, Ina; Monnier, Vincent M
2011-10-28
Vitamin C and its degradation products participate in chemical modifications of proteins in vivo through non-enzymatic glycation (Maillard reaction) and formation of different products called advanced glycation end products. Vitamin C levels are particularly high in selected tissues, such as lens, brain and adrenal gland, and its degradation products can inflict substantial protein damage via formation of advanced glycation end products. However, the pathways of in vivo vitamin C degradation are poorly understood. Here we have determined the levels of vitamin C oxidation and degradation products dehydroascorbic acid, 2,3-diketogulonic acid, 3-deoxythreosone, xylosone, and threosone in the human lens using o-phenylenediamine to trap both free and protein-bound adducts. In the protein-free fraction and water-soluble proteins (WSP), all five listed degradation products were identified. Dehydroascorbic acid, 2,3-diketogulonic acid, and 3-deoxythreosone were the major products in the protein-free fraction, whereas in the WSP, 3-deoxythreosone was the most abundant measured dicarbonyl. In addition, 3-deoxythreosone in WSP showed positive linear correlation with age (p < 0.05). In water-insoluble proteins, only 3-deoxythreosone and threosone were detected, whereby the level of 3-deoxythreosone was ∼20 times higher than the level of threosone. The identification of 3-deoxythreosone as the major degradation product bound to human lens proteins provides in vivo evidence for the non-oxidative pathway of dehydroascorbate degradation into erythrulose as a major pathway for vitamin C degradation in vivo.
Photo-degradation of clofibric acid by ultraviolet light irradiation at 185 nm.
Li, Wenzhen; Lu, Shuguang; Chen, Nuo; Gu, Xiaogang; Qiu, Zhaofu; Fan, Ji; Lin, Kuangfei
2009-01-01
As a metabolite of lipid regulators, clofibric acid (CA) was investigated in this study for its ultraviolet (UV) degradation at monochromatic wavelength of 185 nm using Milli-Q water and sewage treatment plant (STP) effluent. The effects of CA initial concentration, solution pH, humic acid (HA), nitrate and bicarbonate anions on CA degradation performances were evaluated. All CA degradation patterns well fitted the pseudo-first-order kinetic model. The results showed that OH generated from water photolysis by UV185 irradiation was involved, resulting in indirect CA photolysis but contributed less to the whole CA removal when compared to the main direct photolysis process. Acid condition favored slightly to CA degradation and other constituents in solution, such as HA (5.0-100.0 mg L(-1)), nitrate and bicarbonate anions (1.0x10(-3) mol L(-1) and 0.1 mol L(-1)), had negative effects on CA degradation. When using real STP effluent CA degradation could reach 97.4% (without filtration) and 99.3% (with filtration) after 1 hr irradiation, showing its potential mean in pharmaceuticals removal in UV disinfection unit. Mineralization tests showed that rapid chloride ion release happened, resulting in no chlorinated intermediates accumulation, and those non-chlorinated intermediate products could further be nearly completely degraded to CO2 and H2O after 6 hrs.
Jia, Daqing; Sun, Sheng-Peng; Wu, Zhangxiong; Wang, Na; Jin, Yaoyao; Dong, Weiyang; Chen, Xiao Dong; Ke, Qiang
2018-03-15
Trichloroethylene (TCE) degradation in sand columns has been investigated to evaluate the potential of chelates-enhanced Fenton-like reaction with magnetite as iron source for in situ treatment of TCE-contaminated groundwater. The results showed that successful degradation of TCE in sand columns was obtained by nitrilotriacetic acid (NTA)-assisted Fenton-like reaction of magnetite. Addition of ethylenediaminedisuccinic acid (EDDS) resulted in an inhibitory effect on TCE degradation in sand columns. Similar to EDDS, addition of ethylenediaminetetraacetic acid (EDTA) also led to an inhibition of TCE degradation in sand column with small content of magnetite (0.5 w.t.%), but enhanced TCE degradation in sand column with high content of magnetite (7.0 w.t.%). Additionally, the presence of NTA, EDDS and EDTA greatly decreased H 2 O 2 uptake in sand columns due to the competition between chelates and H 2 O 2 for surface sites on magnetite (and sand). Furthermore, the presented results show that magnetite in sand columns remained stable in a long period operation of 230 days without significant loss of performance in terms of TCE degradation and H 2 O 2 uptake. Moreover, it was found that TCE was degraded mainly to formic acid and chloride ion, and the formation of chlorinated organic intermediates was minimal by this process. Copyright © 2017 Elsevier B.V. All rights reserved.
Studenroth, Sabine; Huber, Stefan G; Kotte, Karsten; Schöler, Heinz F
2013-02-05
Oxalic acid is the smallest dicarboxylic acid and plays an important role in soil processes (e.g., mineral weathering and metal detoxification in plants). We have first proven its abiotic formation in soils and investigated natural abiotic degradation processes based on the oxidation of soil organic matter, enhanced by Fe(3+) and H(2)O(2) as hydroxyl radical suppliers. Experiments with the model compound catechol and further hydroxylated benzenes were performed to examine a common degradation pathway and to presume a general formation mechanism of oxalic acid. Two soil samples were tested for the release of oxalic acid and the potential effects of various soil parameters on oxalic acid formation. Additionally, the soil samples were treated with different soil sterilization methods to prove the oxalic acid formation under abiotic soil conditions. Different series of model experiments were conducted to determine a range of factors including Fe(3+), H(2)O(2), reaction time, pH, and chloride concentration on oxalic acid formation. Under certain conditions, catechol is degraded up to 65.6% to oxalic acid referring to carbon. In serial experiments with two soil samples, oxalic acid was produced, and the obtained results are suggestive of an abiotic degradation process. In conclusion, Fenton-like conditions with low Fe(3+) concentrations and an excess of H(2)O(2) as well as acidic conditions were required for an optimal oxalic acid formation. The presence of chloride reduced oxalic acid formation.
NASA Astrophysics Data System (ADS)
Hansen, A. M. K.; Kristensen, K.; Nguyen, Q. T.; Zare, A.; Cozzi, F.; Nøjgaard, J. K.; Skov, H.; Brandt, J.; Christensen, J. H.; Ström, J.; Tunved, P.; Krejci, R.; Glasius, M.
2014-08-01
Sources, composition and occurrence of secondary organic aerosols in the Arctic were investigated at Zeppelin Mountain, Svalbard, and Station Nord, northeastern Greenland, during the full annual cycle of 2008 and 2010, respectively. Speciation of organic acids, organosulfates and nitrooxy organosulfates - from both anthropogenic and biogenic precursors were in focus. A total of 11 organic acids (terpenylic acid, benzoic acid, phthalic acid, pinic acid, suberic acid, azelaic acid, adipic acid, pimelic acid, pinonic acid, diaterpenylic acid acetate and 3-methyl-1,2,3-butanetricarboxylic acid), 12 organosulfates and 1 nitrooxy organosulfate were identified in aerosol samples from the two sites using a high-performance liquid chromatograph (HPLC) coupled to a quadrupole Time-of-Flight mass spectrometer. At Station Nord, compound concentrations followed a distinct annual pattern, where high mean concentrations of organosulfates (47 ± 14 ng m-3) and organic acids (11.5 ± 4 ng m-3) were observed in January, February and March, contrary to considerably lower mean concentrations of organosulfates (2 ± 3 ng m-3) and organic acids (2.2 ± 1 ng m-3) observed during the rest of the year. At Zeppelin Mountain, organosulfate and organic acid concentrations remained relatively constant during most of the year at a mean concentration of 15 ± 4 ng m-3 and 3.9 ± 1 ng m-3, respectively. However during four weeks of spring, remarkably higher concentrations of total organosulfates (23-36 ng m-3) and total organic acids (7-10 ng m-3) were observed. Elevated organosulfate and organic acid concentrations coincided with the Arctic haze period at both stations, where northern Eurasia was identified as the main source region. Air mass transport from northern Eurasia to Zeppelin Mountain was associated with a 100% increase in the number of detected organosulfate species compared with periods of air mass transport from the Arctic Ocean, Scandinavia and Greenland. The results from this study suggested that the presence of organic acids and organosulfates at Station Nord was mainly due to long-range transport, whereas indications of local sources were found for some compounds at Zeppelin Mountain. Furthermore, organosulfates contributed significantly to organic matter throughout the year at Zeppelin Mountain (annual mean of 13 ± 8%) and during Arctic haze at Station Nord (7 ± 2%), suggesting organosulfates to be important compounds in Arctic aerosols.
Blanco, Carlos A; Nimubona, Dieudonné; Caballero, Isabel
2014-08-01
Iso-α-acids and their chemically modified variants are responsible for the bitterness of beer and play a disproportionately large role in the final quality of beer. The current study was undertaken to predict the degradation of commercial lager beers related to changes in the concentration of trans-iso-α-acids during storage by using high-pressure liquid chromatography. In the analysed beers the concentration of isohumulone (average concentration 28 mg L(-1)) was greater than that of isocohumulone (20 mg L(-1)) and isoadhumulone (10 mg L(-1)). The kinetic parameters, activation energy and rate constant, of the trans-iso-α-acids were calculated. In the case of dark beers, the activation energy for the degradation of trans-isocohumulones was found to be higher than for trans-isohumulones and trans-isoadhumulones, whereas in pale and alcohol-free beers activation energies for the degradation of the three trans isomers were similar. The loss of iso-α-acids can be calculated using the activation energy of the degradation of trans-iso-α-acids and the temperature profile of the accelerated ageing. The results obtained in the investigation can be used in the beer industry to predict the alteration of the bitterness of beer during storage. © 2013 Society of Chemical Industry.
Singh, Raj Kamal; Philip, Ligy; Ramanujam, Sarathi
2017-10-01
A multiple pin-plane corona discharge reactor was used to generate plasma for the degradation of 2,4 dichlorophenoxyacetic acid (2,4-D) from the aqueous solution. The 2,4-D of concentration 1 mg/L was completely removed within 6 min of plasma treatment. Almost complete mineralization was achieved after the treatment time of 14 min for a 2,4-D concentration of 10 mg/L. Effects of different water constituents such as carbonates, nitrate, sulphate, chloride ions, natural organic matter (humic acids) and pH on 2,4-D degradation was studied. A significant antagonistic effect of carbonate and humic acid was observed, whereas, the effects of other ions were insignificant. A higher first order rate constant of 1.73 min -1 was observed, which was significantly decreased in the presence of carbonate ions and humic acids. Also, a higher degradation of 2,4-D was observed in acidic pH conditions. Different 2,4-D intermediates were detected and the degradation pathway of 2,4-D in plasma treatment process was suggested. The toxicity of 10 mg/L 2,4-D was completely eradicated after 10 min of plasma treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chen, Liyan; Vadlani, Praveen V; Madl, Ronald L
2014-01-15
Phytic acid of soy meal (SM) could influence protein and important mineral digestion of monogastric animals. Aspergillus oryzae (ATCC 9362) solid-state fermentation was applied to degrade phytic acid in SM. Two-stage temperature fermentation protocol was investigated to increase the degradation rate. The first stage was to maximize phytase production and the second stage was to realize the maximum enzymatic degradation. In the first stage, a combination of 41% moisture, a temperature of 37 °C and inoculum size of 1.7 mL in 5 g substrate (dry matter basis) favored maximum phytase production, yielding phytase activity of 58.7 U, optimized via central composite design. By the end of second-stage fermentation, 57% phytic acid was degraded from SM fermented at 50 °C, compared with 39% of that fermented at 37 °C. The nutritional profile of fermented SM was also studied. Oligosaccharides were totally removed after fermentation and 67% of total non-reducing polysaccharides were decreased. Protein content increased by 9.5%. Two-stage temperature protocol achieved better phytic acid degradation during A. oryzae solid state fermentation. The fermented SM has lower antinutritional factors (phytic acid, oligosaccharides and non-reducing polysaccharides) and higher nutritional value for animal feed. © 2013 Society of Chemical Industry.
Wang, Na; Jia, Daqing; Jin, Yaoyao; Sun, Sheng-Peng; Ke, Qiang
2017-07-01
The present study investigated the degradation of trichloroethylene (TCE) in sand suspensions by Fenton-like reaction with magnetite (Fe 3 O 4 ) in the presence of various chelators at circumneutral pH. The results showed that ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA) greatly improved the rate of TCE degradation, while [S,S]-ethylenediaminedisuccinic acid (s,s-EDDS), malonate, citrate, and phytic acid (IP6) have minimal effects on TCE degradation. Quenching tests suggested that TCE was mainly degraded by hydroxyl radical (HO · ) attack, with about 90% inhibition on TCE degradation by the addition of HO · scavenger 2-propanol. The presence of 0.1-0.5% Fe 3 O 4 /sand (w/w) contributed to 40% increase in TCE degradation rates. In particular, the use of chelators can avoid high concentrations of H 2 O 2 required for the Fenton-like reaction with Fe 3 O 4 , and moreover improve the stoichiometric efficiencies of TCE degradation to H 2 O 2 consumption. The suitable concentrations of chelators (EDTA and NTA) and H 2 O 2 were suggested to be 0.5 and 20 mM, respectively. Under the given conditions, degradation rate constants of TCE were obtained at 0.360 h -1 with EDTA and 0.526 h -1 with NTA, respectively. Enhanced degradation of TCE and decreased usage of H 2 O 2 in this investigation suggested that Fenton-like reaction of Fe 3 O 4 together with NTA (or EDTA) may be a promising process for remediation of TCE-contaminated groundwater.
Bensalah, Nasr; Dbira, Sondos; Bedoui, Ahmed
2016-07-01
In this work, the contribution of mediated oxidation mechanisms in the electrolytic degradation of cyanuric acid using boron-doped diamond (BDD) anodes was investigated in different electrolytes. A complete mineralization of cyanuric acid was obtained in NaCl; however lower degrees of mineralization of 70% and 40% were obtained in Na2SO4 and NaClO4, respectively. This can be explained by the nature of the oxidants electrogenerated in each electrolyte. It is clear that the contribution of active chlorine (Cl2, HClO, ClO(-)) electrogenerated from oxidation of chlorides on BDD is much more important in the electrolytic degradation of cyanuric acid than the persulfate and hydroxyl radicals produced by electro-oxidation of sulfate and water on BDD anodes. This could be explained by the high affinity of active chlorine towards nitrogen compounds. No organic intermediates were detected during the electrolytic degradation of cyanuric acid in any the electrolytes, which can be explained by their immediate depletion by hydroxyl radicals produced on the BDD surface. Nitrates and ammonium were the final products of electrolytic degradation of cyanuric acid on BDD anodes in all electrolytes. In addition, small amounts of chloramines were formed in the chloride medium. Low current density (≤10mA/cm(2)) and neutral medium (pH in the range 6-9) should be used for high efficiency electrolytic degradation and negligible formation of hazardous chlorate and perchlorate. Copyright © 2016. Published by Elsevier B.V.
Tan, X; Meltzer, N; Lindenbaum, S
1993-09-01
The degradations of 13-cis-retinoic acid and all-trans-retinoic acid in an organic solvent were determined with an HPLC assay. The degradation curves at 70, 50 and 37 degrees C all showed autocatalytic characteristics for both isomers. For this kind of complex reaction, the usual method cannot be used to estimate the shelf-lives and half-lives at room temperature. In this work a new method was developed to directly calculate the shelf-lives and half-lives. From this equation the activation energy was found to change as the multiple step reaction progressed.
Mohan, Karishma
2017-01-01
ABSTRACT Pseudomonas putida CSV86 degrades lignin-derived metabolic intermediates, viz., veratryl alcohol, ferulic acid, vanillin, and vanillic acid, as the sole sources of carbon and energy. Strain CSV86 also degraded lignin sulfonate. Cell respiration, enzyme activity, biotransformation, and high-pressure liquid chromatography (HPLC) analyses suggest that veratryl alcohol and ferulic acid are metabolized to vanillic acid by two distinct carbon source-dependent inducible pathways. Vanillic acid was further metabolized to protocatechuic acid and entered the central carbon pathway via the β-ketoadipate route after ortho ring cleavage. Genes encoding putative enzymes involved in the degradation were found to be present at fer, ver, and van loci. The transcriptional analysis suggests a carbon source-dependent cotranscription of these loci, substantiating the metabolic studies. Biochemical and quantitative real-time (qRT)-PCR studies revealed the presence of two distinct O-demethylases, viz., VerAB and VanAB, involved in the oxidative demethylation of veratric acid and vanillic acid, respectively. This report describes the various steps involved in metabolizing lignin-derived aromatic compounds at the biochemical level and identifies the genes involved in degrading veratric acid and the arrangement of phenylpropanoid metabolic genes as three distinct inducible transcription units/operons. This study provides insight into the bacterial degradation of lignin-derived aromatics and the potential of P. putida CSV86 as a suitable candidate for producing valuable products. IMPORTANCE Pseudomonas putida CSV86 metabolizes lignin and its metabolic intermediates as a carbon source. Strain CSV86 displays a unique property of preferential utilization of aromatics, including for phenylpropanoids over glucose. This report unravels veratryl alcohol metabolism and genes encoding veratric acid O-demethylase, hitherto unknown in pseudomonads, thereby providing new insight into the metabolic pathway and gene pool for lignin degradation in bacteria. The biochemical and genetic characterization of phenylpropanoid metabolism makes it a prospective system for its application in producing valuable products, such as vanillin and vanillic acid, from lignocellulose. This study supports the immense potential of P. putida CSV86 as a suitable candidate for bioremediation and biorefinery. PMID:28188206
NASA Astrophysics Data System (ADS)
Jenkins, Samantha L.; Almond, Matthew J.; Atkinson, Samantha D. M.; Hollins, Peter; Knowles, John P.
2005-12-01
Reaction of single crystals of benzoic and trans-cinnamic acids with 200 Torr pressure of ammonia gas in a sealed glass bulb at 20 °C generates the corresponding ammonium salts; there is no sign of any 1:2 adduct as has been reported previously for related systems. Isotopic substitution using ND 3 has been used to aid identification of the products. Adipic acid likewise reacts with NH 3 gas to form a product in which ammonium salts are formed at both carboxylic acid groups. Reaction of 0.5 Torr pressure of NO 2 gas with single crystals of 9-methylanthracene and 9-anthracenemethanol in a flow system generates nitrated products where the nitro group appears to be attached at the 10-position, i.e. the position trans to the methyl or methoxy substituent on the central ring. Isotopic substitution using 15NO 2 has been used to confirm the identity of the bands arising from the coordinated NO 2 group. The products formed when single crystals of hydantoin are reacted with NO 2 gas under similar conditions depend on the temperature of the reaction. At 20 °C, a nitrated product is formed, but at 65 °C this gives way to a product containing no nitro groups. The findings show the general applicability of infrared microspectroscopy to a study of gas-solid reactions of organic single crystals.
Evaluation of degradation of antibiotic tetracycline in pig manure by electron beam irradiation.
Cho, Jae-Young
2010-04-01
This study was carried out to evaluate the degradation efficiency and intermediate products of the tetracycline from artificially contaminated pig manure using of electron beam irradiation as a function of the absorbed dose. The degradation efficiency of tetracycline was 42.77% at 1 kGy, 64.20% at 3 kGy, 77.83% at 5 kGy, and 90.50% at 10 kGy. The initial concentration of tetracycline (300 mg kg(-1)) in pig manure decreased significantly to 24.2 +/- 5.3 mg kg(-1) after electron beam irradiation at 10 kGy. The radiolytic degradation products of tetracycline were 1,4-benzenedicarboxylic acid, hexadecanoic acid, 9-octadecenamide, 11-octadecenamide, and octadecanoic acid.
Baude, Jessica; Vial, Ludovic; Villard, Camille; Campillo, Tony; Lavire, Céline; Nesme, Xavier
2016-01-01
ABSTRACT The rhizosphere-inhabiting species Agrobacterium fabrum (genomospecies G8 of the Agrobacterium tumefaciens species complex) is known to degrade hydroxycinnamic acids (HCAs), especially ferulic acid and p-coumaric acid, via the novel A. fabrum HCA degradation pathway. Gene expression profiles of A. fabrum strain C58 were investigated in the presence of HCAs, using a C58 whole-genome oligoarray. Both ferulic acid and p-coumaric acid caused variations in the expression of more than 10% of the C58 genes. Genes of the A. fabrum HCA degradation pathway, together with the genes involved in iron acquisition, were among the most highly induced in the presence of HCAs. Two operons coding for the biosynthesis of a particular siderophore, as well as genes of the A. fabrum HCA degradation pathway, have been described as being specific to the species. We demonstrate here their coordinated expression, emphasizing the interdependence between the iron concentration in the growth medium and the rate at which ferulic acid is degraded by cells. The coordinated expression of these functions may be advantageous in HCA-rich but iron-starved environments in which microorganisms have to compete for both iron and carbon sources, such as in plant roots. The present results confirm that there is cooperation between the A. fabrum-specific genes, defining a particular ecological niche. IMPORTANCE We previously identified seven genomic regions in Agrobacterium fabrum that were specifically present in all of the members of this species only. Here we demonstrated that two of these regions, encoding the hydroxycinnamic acid degradation pathway and the iron acquisition pathway, were regulated in a coordinated manner. The coexpression of these functions may be advantageous in hydroxycinnamic acid-rich but iron-starved environments in which microorganisms have to compete for both iron and carbon sources, such as in plant roots. These data support the view that bacterial genomic species emerged from a bacterial population by acquiring specific functions that allowed them to outcompete their closest relatives. In conclusion, bacterial species could be defined not only as genomic species but also as ecological species. PMID:27060117
NASA Astrophysics Data System (ADS)
Tominaga, Yoko; Kadota, Kazunori; Shimosaka, Atsuko; Yoshida, Mikio; Oshima, Kotaro; Shirakawa, Yoshiyuki
2018-05-01
The preparation of the titanium dioxide hollow particles encapsulating L-ascorbic acid via sol-gel process using inkjet nozzle has been performed, and the sustained release and the effect protecting against degradation of L-ascorbic acid in the particles were investigated. The morphology of titanium dioxide particles was evaluated by scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS). The sustained release and the effect protecting against degradation of L-ascorbic acid were estimated by dialysis bag method in phosphate buffer saline (PBS) (pH = 7.4) as release media. The prepared titanium dioxide particles exhibited spherical porous structures. The particle size distribution of the titanium dioxide particles was uniform. The hollow titanium dioxide particles encapsulating L-ascorbic acid showed the sustained release. It was also found that the degradation of L-ascorbic acid could be inhibited by encapsulating L-ascorbic acid in the titanium dioxide hollow particles.
Yuan, An; Gong, Lihong; Luo, Lin; Dang, Jue; Gong, Xiaohong; Zhao, Mengjie; Li, Yan; Li, Yunxia; Peng, Cheng
2017-11-01
Forsythiae Fructus is an important Chinese medicine which shows a significant effect against inflammation. This study aimed to investigate the preventive anti-inflammation mechanism of Forsythiae Fructus by serum metabolomics strategy and compare the difference of the metabolism pathways between Forsythia extract and Forsythia oil in rat. Four groups (control group, model group, Forsythia extract group and Forsythia oil group) were orally administered 10mL/kg 0.5% Tween 80 solution, 10mL/kg 0.5% Tween 80 solution, 5g/kg Forsythia extract and 0.48mL/kg Forsythia oil respectively. 30min after drug administration, rat acute inflammation was induced by subcutaneous injection of carrageenan in the right paw in model group, Forsythia extract group and Forsythia oil group. After being administered Forsythia extract and Forsythia oil, the percentage of rat paw edema was significantly decreased (P<0.05) compared with model group. Metabolomics based on UPLC-Q-TOF-MS/MS was used to analyze the collected serum sample. Multivariate analysis was established for metabolomics analysis. According to Principal component analysis (PCA) and partial least squares-discriminate analysis (PLS-DA) results, four groups were clearly separated. And thirteen alterative biomarkers were identified in the serum, namely PC (19:0/0:0), LysoPC (20:0), LysoPC (20:1), LysoPC (17:0), Sphingosine, Linoleic acid, 3R-hydroxy-butanoic acid (3-HB), 2-hydroxyhexadecanoic acid, Lactic acid, L-Threonine, L-Leucine, Maleic acid, Adipic acid. The change of biomarkers suggested that Forsythia extract affected Linoleic acid metabolism, Valine, leucine and isoleucine biosynthesis, Sphingolipid metabolism and Glycerophospholipid metabolism. Forsythia oil affected Sphingolipid metabolism and Glycerophospholipid metabolism. It indicated that Forsythia extract and Forsythia oil both showed significant preventive anti-inflammatory effect through acting on different metabolism pathways. Moreover, efficacy mechanism of Forsythiae Fructus could recover metabolites disturb in the body through affecting particular drug targets associated with the inflammatory pathway. Copyright © 2017. Published by Elsevier Masson SAS.
NASA Astrophysics Data System (ADS)
Pavuluri, Chandra Mouli; Kawamura, Kimitaka; Swaminathan, T.; Tachibana, Eri
2011-09-01
The tropical Indian aerosols (PM10) collected on day- and nighttime bases in winter and summer, 2007 from Chennai (13.04°N; 80.17°E) were studied for stable carbon isotopic compositions (δ13C) of total carbon (TC), individual dicarboxylic acids (C2-C9) and glyoxylic acid (ωC2). δ13C values of TC ranged from -23.9‰ to -25.9‰ (-25.0 ± 0.6‰; n = 49). Oxalic (C2) (-17.1 ± 2.5‰), malonic (C3) (-20.8 ± 1.8‰), succinic (C4) (-22.5 ± 1.5‰) and adipic (C6) (-20.6 ± 4.1‰) acids and ωC2 acid (-22.4 ± 5.5‰) were found to be more enriched with 13C compared to TC. In contrast, suberic (C8) (-29.4 ± 1.8‰), phthalic (Ph) (-30.1 ± 3.5‰) and azelaic (C9) (-28.4 ± 5.8‰) acids showed smaller δ13C values than TC. Based on comparisons of δ13C values of TC in Chennai aerosols to those (-24.7 ± 2.2‰) found in unburned cow-dung samples collected from Chennai and isotopic signatures of the particles emitted from point sources, we found that biofuel/biomass burning are the major sources of carbonaceous aerosols in South and Southeast Asia. The decrease in δ13C values of C9 diacid by about 5‰ from winter to summer suggests that tropical plant emissions also significantly contribute to organic aerosol in this region. Significant increase in δ13C values from C4 to C2 diacids in Chennai aerosols could be attributed for their photochemical processing in the tropical atmosphere during long-range transport from source regions.
Degradation of microbial polyesters.
Tokiwa, Yutaka; Calabia, Buenaventurada P
2004-08-01
Microbial polyhydroxyalkanoates (PHAs), one of the largest groups of thermoplastic polyesters are receiving much attention as biodegradable substitutes for non-degradable plastics. Poly(D-3-hydroxybutyrate) (PHB) is the most ubiquitous and most intensively studied PHA. Microorganisms degrading these polyesters are widely distributed in various environments. Although various PHB-degrading microorganisms and PHB depolymerases have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. Distributions of PHB-degrading microorganisms, factors affecting the biodegradability of PHB, and microbial and enzymatic degradation of PHB are discussed in this review. We also propose an application of a new isolated, thermophilic PHB-degrading microorganism, Streptomyces strain MG, for producing pure monomers of PHA and useful chemicals, including D-3-hydroxycarboxylic acids such as D-3-hydroxybutyric acid, by enzymatic degradation of PHB.
Narita, Yusaku; Inouye, Kuniyo
2013-01-30
5-Caffeoylquinic acid (5-CQA) is generally referred to as chlorogenic acid and exhibits various biological activities such as antioxidant activity and porcine pancreas α-amylase inhibitory activities. 5-CQA may be useful as an antioxidant for food and to prevent diabetes and obesity. The degradation of 5-CQA and caffeic acid (CA) in an aqueous solution at 37 °C and pH 5.0-9.0 was studied. The degradation of 5-CQA and CA, demonstrating time and pH dependence (i.e., the rate constant, k, was higher at higher pH), was satisfactorily described by the Weibull equation. The stability of 5-CQA at pH 7.4 and 9.0 was improved by adding (-)-epigallocatechin gallate (EGCG) and ascorbic acid (AA). Moreover, the degradation of 5-CQA in the presence of EGCG or AA could be described by the Weibull equation. The k value in the presence of EGCG or AA was dependent on their concentration.
NASA Astrophysics Data System (ADS)
Jin, Peng; Wei, Donghui; Wen, Yiqiang; Luo, Mengfei; Wang, Xiangyu; Tang, Mingsheng
2011-04-01
Tungsten peroxo complexes have been widely used in olefin epoxidation, alcohol oxidation, Baeyer-Villiger oxidation and other oxidation reactions, however, there is still not a unanimous viewpoint for the active structure of mononuclear tungsten peroxo complex by now. In this paper, the catalysis of mononuclear tungsten peroxo complexes 0- 5 with or without acidic ligands for the green oxidation of cyclohexene to adipic acid in the absence of organic solvent and phase-transfer catalyst has been researched in experiment. Then we have suggested two possible kinds of active structures of mononuclear tungsten peroxo complexes including peroxo ring ( nA, n = 0-1) and hydroperoxo ( nB, n = 0-1) structures, which have been investigated using density functional theory (DFT). Moreover, the calculations on self-cycle mechanisms involving the two types of active structures of tungsten peroxo complexes with and without oxalic acid ligand have also been carried out at the B3LYP/[LANL2DZ/6-31G(d, p)] level. The highest energy barrier are 26.17 kcal/mol ( 0A, peroxo ring structure without oxalic acid ligand), 23.91 kcal/mol ( 1A, peroxo ring structure with oxalic acid ligand), 18.19 kcal/mol ( 0B, hydroperoxo structure without oxalic acid ligand) and 13.10 kcal/mol ( 1B, hydroperoxo structure with oxalic acid ligand) in the four potential energy profiles, respectively. The results indicate that both the energy barriers of active structure self-cycle processes with oxalic acid ligands are lower than those without oxalic acid ligands, so the active structures with oxalic acid ligands should be easier to recycle, which is in good agreement with our experimental results. However, due to the higher energy of product than that of the reactant, the energy profile of the self-cycle process of 1B shows that the recycle of 1B could not occur at all in theory. Moreover, the crystal data of peroxo ring structure with oxalic acid ligand could be found in some experimental references. Thus, the viewpoint that the peroxo ring active structure should be the real active structure has been proved in this paper.
Degradation of Phenolic Compounds and Ring Cleavage of Catechol by Phanerochaete chrysosporium
Leatham, Gary F.; Crawford, R. L.; Kirk, T. Kent
1983-01-01
POL-88, a mutant of the white-rot fungus Phanerochaete chrysosporium, was selected for diminished phenol-oxidizing enzyme activity. A wide variety of phenolic compounds were degraded by ligninolytic cultures of this mutant. With several o-diphenolic substrates, degradation intermediates were produced that had UV spectra consistent with muconic acids. Extensive spectrophotometric and polarographic assays failed to detect classical ring-cleaving dioxygenases in cell homogenates or in extracts from ligninolytic cultures. Even so, a sensitive carrier-trapping assay showed that intact cultures degraded [U-14C]catechol to [14C]muconic acid, establishing the presence of a system capable of 1,2-intradiol fission. Significant accumulation of [14C]muconic acid into carrier occurred only when evolution of 14CO2 from [14C]catechol was inhibited by treating cultures with excess nutrient nitrogen (e.g., l-glutamic acid) or with cycloheximide. l-Glutamic acid is known from past work to repress the ligninolytic system in P. chrysosporium and to mimic the effect of cycloheximide. The results here indicate, therefore, that the enzyme system responsible for degrading ring-cleavage products to CO2 turns over faster than does the system responsible for ring cleavage. PMID:16346340
Mechanism of Calcium Lactate Facilitating Phytic Acid Degradation in Soybean during Germination.
Hui, Qianru; Yang, Runqiang; Shen, Chang; Zhou, Yulin; Gu, Zhenxin
2016-07-13
Calcium lactate facilitates the growth and phytic acid degradation of soybean sprouts, but the mechanism is unclear. In this study, calcium lactate (Ca) and calcium lactate with lanthanum chloride (Ca+La) were used to treat soybean sprouts to reveal the relevant mechanism. Results showed that the phytic acid content decreased and the availability of phosphorus increased under Ca treatment. This must be due to the enhancement of enzyme activity related to phytic acid degradation. In addition, the energy metabolism was accelerated by Ca treatment. The energy status and energy metabolism-associated enzyme activity also increased. However, the transmembrane transport of calcium was inhibited by La(3+) and concentrated in intercellular space or between the cell wall and cell membrane; thus, Ca+La treatment showed reverse results compared with those of Ca treatment. Interestingly, gene expression did not vary in accordance with their enzyme activity. These results demonstrated that calcium lactate increased the rate of phytic acid degradation by enhancing growth, phosphorus metabolism, and energy metabolism.
Tang, Kai; Escola Casas, Monica; Ooi, Gordon T H; Kaarsholm, Kamilla M S; Bester, Kai; Andersen, Henrik R
2017-05-01
The degradation of organic micropollutants in wastewater treatment is suspected to depend on co-degradation i.e. be dependent on concentrations of substrate. This complicates predicting and modelling their fate. The effect of humic acid, as a model for complex organic substrate, was investigated in relation to the biodegradation of pharmaceuticals by suspended biofilm carriers adapted to polishing effluent water from a tertiary sewage treatment plant. Twelve out of 22 investigated pharmaceuticals were significantly biodegradable. The biodegradation rate constants of ten of those compounds were increasing with increased humic acid concentrations. At the highest humic acid concentration (30mgC/L), the biodegradation rate constants were four times higher than the biodegradation rate constants without added humic acid. This shows that the presence of complex substrate stimulates degradation via a co-metabolism-like mechanism and competitive inhibition does not occur. Increases of rate constant per mgC/L are tentatively calculated. Copyright © 2017 Elsevier GmbH. All rights reserved.
Gosetti, Fabio; Chiuminatto, Ugo; Mazzucco, Eleonora; Mastroianni, Rita; Marengo, Emilio
2015-01-15
The study investigates the sunlight photodegradation process of carminic acid, a natural red colourant used in beverages. For this purpose, both carminic acid aqueous standard solutions and sixteen different commercial beverages, ten containing carminic acid and six containing E120 dye, were subjected to photoirradiation. The results show different patterns of degradation, not only between the standard solutions and the beverages, but also from beverage to beverage. Due to the different beverage recipes, unpredictable reactions take place between the dye and the other ingredients. To identify the dye degradation products in a very complex scenario, a methodology was used, based on the combined use of principal component analysis with discriminant analysis and ultra-high-performance liquid chromatography coupled with tandem high resolution mass spectrometry. The methodology is unaffected by beverage composition and allows the degradation products of carminic acid dye to be identified for each beverage. Copyright © 2014 Elsevier Ltd. All rights reserved.
Aerobic biodegradation of 2,2'-dithiodibenzoic acid produced from dibenzothiophene metabolites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, R.F.; Cheng, S.M.; Fedorak, P.M.
Dibenzothiophene is a sulfur heterocycle found in crude oils and coal. The biodegradation of dibenzothiophene through the Kodama pathway by Pseudomonas sp. strain BT1d leads to the formation of three disulfides: 2-oxo-2-(2-thiophenyl)ethanoic acid disulfide, 2-oxo-2-(2-thiophenyl)ethanoic acid-2-benzoic acid disulfide, and 2,2'-dithiodibenzoic acid. When provided as the carbon and sulfur source in liquid medium, 2,2'-dithiodibenzoic acid was degraded by soil enrichment cultures. Two bacterial isolates, designated strains RM1 and RM6, degraded 2,2'-dithiodibenzoic acid when combined in the medium. Isolate RM6 was found to have an absolute requirement for vitamin B{sub 12}, and it degraded 2,2'-dithiodibenzoic acid in pure culture when the mediummore » was supplemented with this vitamin. Isolate RM6 also degraded 2,2'-dithiodibenzoic acid in medium containing sterilized supernatants from cultures of isolate RM1 grown on glucose or benzoate. Isolate RM6 was identified as a member of the genus Variovorax using the Biolog system and 16S rRNA gene analysis. Although the mechanism of disulfide metabolism could not be determined, benzoic acid was detected as a transient metabolite of 2,2'-dithiodibenzoic acid biodegradation by Variovorax sp. strain RM6. In pure culture, this isolate mineralized 2,2'-dithiodibenzoic acid, releasing 59% of the carbon as carbon dioxide and 88% of the sulfur as sulfate.« less
Eradication of acute promyelocytic leukemia-initiating cells through PML-RARA degradation.
Nasr, Rihab; Guillemin, Marie-Claude; Ferhi, Omar; Soilihi, Hassan; Peres, Laurent; Berthier, Caroline; Rousselot, Philippe; Robledo-Sarmiento, Macarena; Lallemand-Breitenbach, Valérie; Gourmel, Bernard; Vitoux, Dominique; Pandolfi, Pier Paolo; Rochette-Egly, Cécile; Zhu, Jun; de Thé, Hugues
2008-12-01
Retinoic acid and arsenic trioxide target the protein stability and transcriptional repression activity of the fusion oncoprotein PML-RARA, resulting in regression of acute promyelocytic leukemia (APL). Phenotypically, retinoic acid induces differentiation of APL cells. Here we show that retinoic acid also triggers growth arrest of leukemia-initiating cells (LICs) ex vivo and their clearance in PML-RARA mouse APL in vivo. Retinoic acid treatment of mouse APLs expressing the fusion protein PLZF-RARA triggers full differentiation, but not LIC loss or disease remission, establishing that differentiation and LIC loss can be uncoupled. Although retinoic acid and arsenic synergize to clear LICs through cooperative PML-RARA degradation, this combination does not enhance differentiation. A cyclic AMP (cAMP)-dependent phosphorylation site in PML-RARA is crucial for retinoic acid-induced PML-RARA degradation and LIC clearance. Moreover, activation of cAMP signaling enhances LIC loss by retinoic acid, identifying cAMP as another potential APL therapy. Thus, whereas transcriptional activation of PML-RARA is likely to control differentiation, its catabolism triggers LIC eradication and long-term remission of mouse APL. Therapy-triggered degradation of oncoproteins could be a general strategy to eradicate cancer stem cells.
Bu, Gui-jun; Yu, Jing; Di, Hui-hui; Luo, Shi-jia; Zhou, Da-zhai; Xiao, Qiang
2015-02-01
The composition and structure of humic acids formed during composting play an important influence on the quality and mature of compost. In order to explore the composition and evolution mechanism, municipal solid wastes were collected to compost and humic and fulvic acids were obtained from these composted municipal solid wastes. Furthermore, fourier transform infrared spectra and two-dimensional correlation analysis were applied to study the composition and transformation of humic and fulvic acids during composting. The results from fourier transform infrared spectra showed that, the composition of humic acids was complex, and several absorbance peaks were observed at 2917-2924, 2844-2852, 2549, 1662, 1622, 1566, 1454, 1398, 1351, 990-1063, 839 and 711 cm(-1). Compared to humic acids, the composition of fulvci acids was simple, and only three peaks were detected at 1725, 1637 and 990 cm(-1). The appearance of these peaks showed that both humic and fulvic acids comprised the benzene originated from lignin and the polysaccharide. In addition, humic acids comprised a large number of aliphatic and protein which were hardly detected in fulvic acids. Aliphatic, polysaccharide, protein and lignin all were degraded during composting, however, the order of degradation was different between humic and fulvci acids. The result from two-dimensional correlation analysis showed that, organic compounds in humic acids were degraded in the following sequence: aliphatic> protein> polysaccharide and lignin, while that in fulvic acids was as following: protein> polysaccharide and aliphatic. A large number of carboxyl, alcohols and ethers were formed during the degradation process, and the carboxyl was transformed into carbonates. It can be concluded that, fourier transform infrared spectra coupled with two-dimensional correlation analysis not only can analyze the function group composition of humic substances, but also can characterize effectively the degradation sequence of these groups and identified the formation mechanism and dynamics of humic substances during composting.
Bornik, Maria-Anna; Kroh, Lothar W
2013-04-10
Thermal treatment of an aqueous solution of D-galacturonic acid at pH 3, 5, and 8 led to rapid browning of the solution and to the formation of carbocyclic compounds such as reductic acid (2,3-dihydroxy-2-cyclopenten-1-one), DHCP (4,5-dihydroxy-2-cyclopenten-1-one), and furan-2-carbaldehyde, as degradation products in weak acidic solution. Studies on their formation revealed 2-ketoglutaraldehyde as their common key intermediate. Norfuraneol (4-hydroxy-5-methyl-3-(2H)-furanone) is a typical alkaline degradation product and formed after isomerization. Further model studies revealed reductic acid as an important and more browning active compound than furan-2-carbaldehyde, which led to a red color of the model solution. This red-brown color is also characteristic of thermally treated uronic acid solutions.
Molecular and isotopic analyses of Tagish Lake alkyl dicarboxylic acids
NASA Astrophysics Data System (ADS)
Pizzarello, Sandra; Huang, Yongsong
2002-05-01
The Tagish Lake meteorite soluble organic suite has a general composition that differs from those of both CI- and CM chondrites. These differences suggest that distinct processes may have been involved in the formation of different groups of organics in meteorites. Tagish Lake alkyl dicarboxylic acids have a varied, abundant distribution and are, with carboxylated pyridines, the only compounds to have an occurrence comparable to that of the Murchison meteorite. This study has undertaken their molecular and isotopic characterization, with the aim to understand their origin and to gain insights into the evolutionary history of the meteorite parent body. Tagish Lake alkyl dicarboxylic acids are present as a homologous series of saturated and unsaturated species with three through ten-carbon atom chain length. Linear saturated acids are predominant and show decreasing amounts with increasing chain length. A total of forty-four of these compounds were detected with the most abundant, succinic acid, present at ~40 nmoles/g. met. Overall the molecular distribution of Tagish Lake dicarboxylic acids shows a remarkable compound to compound correspondence with those observed in the Murchison and Murray meteorites. In both Tagish Lake and Murchison, the imides of the more abundant dicarboxylic acids were also observed. The hydrogen and carbon isotopic compositions of individual Tagish Lake dicarboxylic acids were determined and compared to those of the corresponding acids in the Murchison meteorite. All delta D and delta 13C values for Tagish Lake acids are positive and show a substantial isotopic enrichment. Delta D values vary from, approximately, + 1120 deg for succinic acid to + 1530 deg for methyl glutaric acid. Delta 13C values ranged from + 12.6 deg for methyl glutaric acid to + 22.9 deg for glutaric acid, with adipic acid having a significantly lower value (+ 5.5 deg). Murchison dicarboxylic acid showed similar isotopic values: their delta 13C values were generally higher by an average 17% and delta D values were lower for succinic and glutaric acids, possibly due to contamination. The molecular and isotopic data collected for these compounds restrict their possible origin to processes, either interstellar or of very cold nebular regions, that produced significant isotopic enrichments. Saturated or partially unsaturated nitriles and dinitriles appear to be good precursor candidates as their hydrolysis, upon water exposure, would produce dicarboxylic acids and other carboxylated species found in Tagish Lake. This evolutionary course could possibly include pre-accretionary processes.
Feng, Ling; Oturan, Nihal; van Hullebusch, Eric D; Esposito, Giovanni; Oturan, Mehmet A
2014-01-01
The electrochemical degradation of the nonsteroidal anti-inflammatory drug ketoprofen in tap water has been studied using electro-Fenton (EF) and anodic oxidation (AO) processes with platinium (Pt) and boron-doped diamond (BDD) anodes and carbon felt cathode. Fast degradation of the parent drug molecule and its degradation intermediates leading to complete mineralization was achieved by BDD/carbon felt, Pt/carbon felt, and AO with BDD anode. The obtained results showed that oxidative degradation rate of ketoprofen and mineralization of its aqueous solution increased by increasing applied current. Degradation kinetics fitted well to a pseudo-first-order reaction. Absolute rate constant of the oxidation of ketoprofen by electrochemically generated hydroxyl radicals was determined to be (2.8 ± 0.1) × 10(9) M(-1) s(-1) by using competition kinetic method. Several reaction intermediates such as 3-hydroxybenzoic acid, pyrogallol, catechol, benzophenone, benzoic acid, and hydroquinone were identified by high-performance liquid chromatography (HPLC) analyses. The formation, identification, and evolution of short-chain aliphatic carboxylic acids like formic, acetic, oxalic, glycolic, and glyoxylic acids were monitored with ion exclusion chromatography. Based on the identified aromatic/cyclic intermediates and carboxylic acids as end products before mineralization, a plausible mineralization pathway was proposed. The evolution of the toxicity during treatments was also monitored using Microtox method, showing a faster detoxification with higher applied current values.
Yao, Ri-Sheng; Sun, Min; Wang, Chun-Ling; Deng, Sheng-Song
2006-09-01
In this paper, the degradation of phenolic compounds using hydrogen peroxide as oxidizer and the enzyme extract from Serratia marcescens AB 90027 as catalyst was reported. With such an enzyme/H2O2 combination treatment, a high chemical oxygen demand (COD) removal efficiency was achieved, e.g., degradation of hydroquinone exceeded 96%. From UV-visible and IR spectra, the degradation mechanisms were judged as a process of phenyl ring cleavage. HPLC analysis shows that in the degradation p-benzoquinone, maleic acid and oxalic acid were formed as intermediates and that they were ultimately converted to CO2 and H2O. With the enzyme/H2O2 treatment, vanillin, hydroquinone, catechol, o-aminophenol, p-aminophenol, phloroglucinol and p-hydroxybenzaldehyde were readily degraded, whereas the degradation of phenol, salicylic acid, resorcinol, p-cholorophenol and p-nitrophenol were limited. Their degradability was closely related to the properties and positions of their side chain groups. Electron-donating groups, such as -OH, -NH2 and -OCH3 enhanced the degradation, whereas electron-withdrawing groups, such as -NO2, -Cl and -COOH, had a negative effect on the degradation of these compounds in the presence of enzyme/H2O2. Compounds with -OH at ortho and para positions were more readily degraded than those with -OH at meta positions.
Wang, Kui; Chen, Jianfang; Jin, Haiyan; Li, Hongliang; Zhang, Weiyan
2018-05-12
Organic matter degradation is a key component of the processes of carbon preservation and burial in seafloor sediments. The aim of this study was to explore organic matter degradation state within the open-shelf Changjiang Estuary of the East China Sea, using an amino acids-based degradation index (DI) in conjunction with information about organic matter source (marine versus terrestrial), bottom water oxygenation state, and sediment grain size. The relative molar percentages of 17 individual amino acids (characterized using principal component analysis) in surface sediments indicate that organic matter is degraded to varying extents across the estuary seabed. Sediments with DI >0 (relatively labile) were found mostly within a coastal hypoxic area. Sediments of DI less than -1 (relatively refractory) were found near the Changjiang River mouth and the northern and southern parts of the central shelf. We consider DI to be a more reliable indicator of degradation than simple ratios of AAs. DI was inversely correlated with the proportion of terrestrial organic material (F t ) in the sediments, indicating that relatively fresh/labile organic matter was generally associated with marine sources. DI was significantly correlated with F t and bottom water apparent oxygen utilization (AOU bot ) together. The parameter DI and the (labile) amino acid tyrosine were highest in hypoxic areas, suggesting the presence of relatively fresh organic matter, probably due to a combination of marine-source inputs and better preservation of organic matter in the silt and clay sediments of these areas (as compared to sandy sediments). Less degraded organic matter with high amino acids was also favorable to benthic animals. Overall, sedimentary estuarine organic matter was least degraded in areas characterized by marine sources of organic matter, low-oxygen conditions, and fine-grained sediments. Copyright © 2018 Elsevier B.V. All rights reserved.
Kitagawa, Wataru; Takami, Sachiko; Miyauchi, Keisuke; Masai, Eiji; Kamagata, Yoichi; Tiedje, James M.; Fukuda, Masao
2002-01-01
The tfd genes of Ralstonia eutropha JMP134 are the only well-characterized set of genes responsible for 2,4-dichlorophenoxyacetic acid (2,4-D) degradation among 2,4-D-degrading bacteria. A new family of 2,4-D degradation genes, cadRABKC, was cloned and characterized from Bradyrhizobium sp. strain HW13, a strain that was isolated from a buried Hawaiian soil that has never experienced anthropogenic chemicals. The cadR gene was inferred to encode an AraC/XylS type of transcriptional regulator from its deduced amino acid sequence. The cadABC genes were predicted to encode 2,4-D oxygenase subunits from their deduced amino acid sequences that showed 46, 44, and 37% identities with the TftA and TftB subunits of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) oxygenase of Burkholderia cepacia AC1100 and with a putative ferredoxin, ThcC, of Rhodococcus erythropolis NI86/21, respectively. They are thoroughly different from the 2,4-D dioxygenase gene, tfdA, of R. eutropha JMP134. The cadK gene was presumed to encode a 2,4-D transport protein from its deduced amino acid sequence that showed 60% identity with the 2,4-D transporter, TfdK, of strain JMP134. Sinorhizobium meliloti Rm1021 cells containing cadRABKC transformed several phenoxyacetic acids, including 2,4-D and 2,4,5-T, to corresponding phenol derivatives. Frameshift mutations indicated that each of the cadRABC genes was essential for 2,4-D conversion in strain Rm1021 but that cadK was not. Five 2,4-D degraders, including Bradyrhizobium and Sphingomonas strains, were found to have cadA gene homologs, suggesting that these 2,4-D degraders share 2,4-D degradation genes similar to those of strain HW13 cadABC. PMID:11751829
Zhang, Ping; Lapara, Timothy M; Goslan, Emma H; Xie, Yuefeng; Parsons, Simon A; Hozalski, Raymond M
2009-05-01
Biodegradation is a potentially important loss process for haloacetic acids (HAAs), a class of chlorination byproducts, in water treatment and distribution systems, but little is known about the organisms involved (i.e., identity, substrate range, biodegradation kinetics). In this research, 10 biomass samples (i.e., tap water, distribution system biofilms, and prechlorinated granular activated carbon filters) from nine drinking water systems were used to inoculate a total of thirty enrichment cultures fed monochloroacetic acid (MCAA), dichloroacetic acid (DCAA), or trichloroacetic (TCAA) as sole carbon and energy source. HAA degraders were successfully enriched from the biofilm samples (GAC and distribution system) but rarely from tap water. Half of the MCAA and DCAA enrichment cultures were positive, whereas only one TCAA culture was positive (two were inconclusive). Eight unique HAA-degrading isolates were obtained including several Afipia spp. and a Methylobacterium sp.; all isolates were members of the phylum Proteobacteria. MCAA, monobromoacetic acid (MBAA), and monoiodoacetic acid (MIAA) were rapidly degraded by all isolates, and DCAA and tribromoacetic (TBAA) were also relatively labile. TCAA and dibromoacetic acid (DBAA)were degraded by only three isolates and degradation lagged behind the other HAAs. Detailed DCAA biodegradation kinetics were obtained for two selected isolates and two enrichment cultures. The maximum biomass-normalized degradation rates (Vm) were 0.27 and 0.97 microg DCAA/ microg protein/h for Methylobacterium fujisawaense strain PAWDI and Afipia felis strain EMD2, respectively, which were comparable to the values obtained for the enrichment cultures from which those organisms were isolated (0.39 and 1.37 microg DCAN/microg protein/h, respectively). The half-saturation constant (Km) values ranged from 4.38 to 77.91 microg DCAA/L and the cell yields ranged from 14.4 to 36.1 mg protein/g DCAA.
Acid-degradable polyurethane particles for protein-based vaccines
Bachelder, Eric M.; Beaudette, Tristan T.; Broaders, Kyle E.; Paramonov, Sergey E.; Dashe, Jesse; Fréchet, Jean M. J.
2009-01-01
Acid-degradable particles containing a model protein antigen, ovalbumin, were prepared from a polyurethane with acetal moieties embedded throughout the polymer, and characterized by dynamic light scattering and transmission electron microscopy. The small molecule degradation by-product of the particles was synthesized and tested in vitro for toxicity indicating an LC50 of 12,500 μg/ml. A new liquid chromatography-mass spectrometry technique was developed to monitor the in vitro degradation of these particles. The degradation by-product inside RAW macrophages was at its highest level after 24 hours of culture and was efficiently exocytosed until it was no longer detectable after four days. When tested in vitro, these particles induced a substantial increase in the presentation of the immunodominant ovalbumin-derived peptide SIINFEKL in both macrophages and dendritic cells. In addition, vaccination with these particles generated a cytotoxic T-lymphocyte response that was superior to both free ovalbumin and particles made from an analogous but slower-degrading acid-labile polyurethane polymer. Overall, we present a fully degradable polymer system with non-toxic by-products, which may find use in various biomedical applications including protein-based vaccines. PMID:18710254
NASA Astrophysics Data System (ADS)
Xu, Jingjing; Wu, Miaomiao; Yang, Jingwen; Wang, Zhengmei; Chen, Mindong; Teng, Fei
2017-09-01
In this work, we prepared a new wide band gap semiconductor, p-block metal oxyhydroxide InOOH, which exhibits efficient activity for perfluorooctanoic acid (PFOA) degradation under mild conditions and UV light irradiation. The apparent rate constant for PFOA degradation by InOOH is 27.6 times higher than that for P25 titania. Results show that ionized PFOA (C7F15COO-) can be adsorbed much more efficiently on the surface of InOOH than P25. Then, the adsorbed C7F15COO- can be decomposed directly by photo-generated holes to form C7F15COOrad radicals. This process is the key step for the photocalytic degradation of PFOA. Major degradation intermediates, fluoride ions and perfluorinated carboxylic acids (PFCAs) with shorter chain lengths were detected during PFOA degradation. A possible pathway for photocatalytic degradation of PFOA is proposed based on the experimental results. Therefore, this studies indicates a potential new material and method for the efficient treatment of PFCA pollutants under mild conditions.
[Mitigative effect of micribial degradation on autotoxicity of Panax ginseng].
Li, Yong; Long, Qi-Liang; Ding, Wan-Long; Zhao, Dong-Yue
2014-08-01
Continuously cropping obstacle restricts ginseng production and rational use of land resource severely, and autotoxicity is one of the most important factors. In our previous work, ginseng autotoxin degrading bacteria were isolated, in the present re- search, plate culturing method and traditional physiological and biochemical method were used to analyze biological indices and protective enzyme activities, in order to elucidate the mitigative effect of autotoxin degrading bacteria on autotoxicity of P. ginseng. Results indicated that, except for palmitic acid, autotoxicity of benzonic acid, diisobutyl phthalate, diisobutyl succinate, and 2,2-bis (4- hydroxyphenyl) propane on the growth of ginseng seeds was significantly alleviated after autotoxins degrading bacteria was inoculated, and which have no evident difference with control. Except for benzoic acid, enzyme activity of SOD, POD and CAT in other autotoxin degrading treatments decreased significantly. The present research showed that, microbial degradation could alleviate the autotoxicity of autotoxins on ginseng seeds effectively, and which will be helpful for the resolution of ginseng continuously cropping obstacle problem.
Yang, Zhiman; Shi, Xiaoshuang; Dai, Meng; Wang, Lin; Xu, Xiaohui; Guo, Rongbo
2018-06-01
This research aims to identifying the potential effect of using a hydrogen-producing reactor's effluent as an enrichment amendment for enhancing the degradation rates of 2,4-dichlorophenoxyacetic acid (2,4-D) during the bioremediation of contaminated paddy soils. The results showed that addition of the effluents to 2,4-D- degrading enrichment culture enhanced (up to 1.3-fold) the degradation rate constant of 2,4-D. The enhancement effect most probably resulted from the co-metabolic degradation of 2,4-D facilitated by volatile fatty acids (e.g., acetate, propionate, and butyrate) in the effluents which served as the beneficial substrates. Results from DNA sequencing analysis showed that the effluent additions shifted the bacterial community composition in the enrichment culture. Dechloromonas and Clostridium were two dominant bacterial genera involved in 2,4-D degradation. The findings will make a substantial contribution to remediation of soils contaminated with 2,4-D. Copyright © 2018 Elsevier Ltd. All rights reserved.
Combined cell suspensions of the 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)-metabolizing organism Pseudomonas cepacia AC1100, and the 2,4-dichlorophenoxyacetic acid (2,4-D)-metabolizing organism Alcaligenes eutrophus JMP134 were shown to effectively degrade either of these compo...
John, Johnson V; Thomas, Reju George; Lee, Hye Ri; Chen, Hongyu; Jeong, Yong Yeon; Kim, Il
2016-08-01
Nanoscale drug carriers fabricated by phospholipid end-capped polyurethane bearing acetal backbones that degrade in acidic conditions are fabricated. These micelles effectively allow drugs to enter the blood circulation, and then disintegrate in acidic endosomes and lysosomes for intelligent delivery of payloads. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Konieczna, Maria; Olzog, Martin; Naether, Daniela J; Chrzanowski, Łukasz; Heipieper, Hermann J
2018-06-13
The marine hydrocarbonoclastic bacterium Alcanivorax borkumensis is well known for its ability to successfully degrade various mixtures of n -alkanes occurring in marine oil spills. For effective growth on these compounds, the bacteria possess the unique capability not only to incorporate but also to modify fatty intermediates derived from the alkane degradation pathway. High efficiency of both these processes provides better competitiveness for a single bacteria species among hydrocarbon degraders. To examine the efficiency of A. borkumensis to cope with different sources of fatty acid intermediates, we studied the growth rates and membrane fatty acid patterns of this bacterium cultivated on diesel, biodiesel and rapeseed oil as carbon and energy source. Obtained results revealed significant differences in both parameters depending on growth substrate. Highest growth rates were observed with biodiesel, while growth rates on rapeseed oil and diesel were lower than on the standard reference compound (hexadecane). The most remarkable observation is that cells grown on rapeseed oil, biodiesel, and diesel showed significant amounts of the two polyunsaturated fatty acids linoleic acid and linolenic acid in their membrane. By direct incorporation of these external fatty acids, the bacteria save energy allowing them to degrade those pollutants in a more efficient way. Such fast adaptation may increase resilience of A. borkumensis and allow them to strive and maintain populations in more complex hydrocarbon degrading microbial communities.
The use of supercritical carbon dioxide as a reaction medium for polyester synthesis is hindered by the low solubility of diols in CO2. However, it has been previously demonstrated that fluorinated compounds can exhibit greater miscibility with carbon dioxide than t...
NASA Astrophysics Data System (ADS)
Quynh, Tran Minh; Mai, Hoang Hoa; Lan, Pham Ngoc
2013-02-01
Poly(L-lactic acid)s (PLLAx) were synthesized from L-lactic acid by polycondensation. Different stereocomplexes were also obtained with equimolar mixtures of synthesized PLLAx and a commercial PDLA. The stereocomplexes were crosslinked with triallyl isocyanurate (TAIC) by gamma irradiation. Crosslinking density increased with radiation doses, the heavier the crosslinking network, the lower its swelling degree. The crosslinking structures were introduced in the stereocomplexes inhibiting the mobility for crystallization of PLLA molecules. Thermal and mechanical properties of PLA stereocomplexes were remarkably enhanced by radiation induced crosslinking. PLA stereocomplex does not seem to be degraded by PLLA degrading microorganisms existing in compost at room temperature, but the synthesized PLLA was significantly degraded.
Metabolism of DL-(+/-)-phenylalanine by Aspergillus niger.
Kishore, G; Sugumaran, M; Vaidyanathan, C S
1976-10-01
A fungus capable of degrading DL-phenylalanine was isolated from the soil and identified as Aspergillus niger. It was found to metabolize DL-phenylalanine by a new pathway involving 4-hydroxymandelic acid. D-Amino acid oxidase and L-phenylalanine: 2-oxoglutaric acid aminotransferase initiated the degradation of D- and L-phenylalanine, respectively. Both phenylpyruvate oxidase and phenylpyruvate decarboxylase activities could be demonstrated in the cell-free system. Phenylacetate hydroxylase, which required reduced nicotinamide adenine dinucleotide phosphate, converted phenylacetic acid to 2- and 4-hydroxyphenylacetic acid. Although 4-hydroxyphenylacetate was converted to 4-hydroxymandelate, 2-hydroxyphenylacetate was not utilized until the onset of sporulation. During sporulation, it was converted rapidly into homogentisate and oxidized to ring-cleaved products. 4-Hydroxymandelate was degraded to protocatechuate via 4-hydroxybenzoylformate, 4-hydroxybenzaldehyde, and 4-hydroxybenzoate.
Metabolism of DL-(+/-)-phenylalanine by Aspergillus niger.
Kishore, G; Sugumaran, M; Vaidyanathan, C S
1976-01-01
A fungus capable of degrading DL-phenylalanine was isolated from the soil and identified as Aspergillus niger. It was found to metabolize DL-phenylalanine by a new pathway involving 4-hydroxymandelic acid. D-Amino acid oxidase and L-phenylalanine: 2-oxoglutaric acid aminotransferase initiated the degradation of D- and L-phenylalanine, respectively. Both phenylpyruvate oxidase and phenylpyruvate decarboxylase activities could be demonstrated in the cell-free system. Phenylacetate hydroxylase, which required reduced nicotinamide adenine dinucleotide phosphate, converted phenylacetic acid to 2- and 4-hydroxyphenylacetic acid. Although 4-hydroxyphenylacetate was converted to 4-hydroxymandelate, 2-hydroxyphenylacetate was not utilized until the onset of sporulation. During sporulation, it was converted rapidly into homogentisate and oxidized to ring-cleaved products. 4-Hydroxymandelate was degraded to protocatechuate via 4-hydroxybenzoylformate, 4-hydroxybenzaldehyde, and 4-hydroxybenzoate. PMID:10273
Lendvai, László; Apostolov, Anton; Karger-Kocsis, József
2017-10-01
A two-step melt blending procedure was used to produce binary systems composed of thermoplastic starch (TPS) and poly(butylene adipate-co-terephthalate) (PBAT). To improve the properties of the blends, two different layered silicates, viz. bentonite (BT) and organically modified montmorillonite (oMMT) were incorporated. First, TPS and its layered silicate nanocomposites were prepared via extrusion compounding during which starch was plasticized with glycerol and water. In the second step, PBAT was added to TPS/layered silicate to produce blends in a batch-type mixer. Mechanical and thermal properties were determined. The blends showed acceptable ductility over 50wt.% PBAT content, although at the cost of strength and stiffness. By contrast to oMMT the BT became intercalated in TPS and TPS/PBAT blends. The reinforcing effect of BT and oMMT was most prominent for the glassy states of both TPS and TPS/PBAT blends. Thermal, and thermooxidative properties were not significantly affected by the presence of layered silicates. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dou, Qiang; Cai, Jun
2016-01-01
Polylactide (PLA)/poly(butylene adipate-co-terephthalate) (PBAT)/bark flour of plane tree (PF) eco-composites were prepared via melt blending. The morphologies, mechanical properties, crystal structures and melting and crystallization behaviors of the eco-composites were investigated by means of scanning electron microscopy (SEM), mechanical tests, polarized light microscopy (PLM), wide angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC), respectively. It is shown that the interfacial adhesion between PLA matrix and PF is weak and the mechanical properties of PLA/PF eco-composites are poor. The titanate treatment improves the adhesion between the matrix and the filler and enhances the stiffness of the eco-composites. The toughness is improved by PBAT and ductile fractured surfaces can be found. The spherulitic size of PLA is decreased by the addition of PF. The α crystalline form of PLA remains in the composites. Compared with PF, T-PF (PF treated by a titanate coupling agent) and PBAT have negative effects on the crystallization of PLA. PMID:28773515
Kaushik, Dhiraj; Kaur, Jasmeen; Paul Kaur, Vaneet; Saini, Balraj; Bansal, Yogita; Bansal, Gulshan
2016-02-20
In the present study, Azilsartan (AZL) was subjected to ICH recommended forced degradation conditions of hydrolysis, oxidation, dry heat and photolysis. The drug degraded to four degradation products (I-IV) under acidic, alkaline and water hydrolysis and photolysis. All the four degradation products were resolved in a single run on a C-18 column (250mm×4.6mm; 5μ) with isocratic elution using mobile phase composed of ammonium formate (20mM, pH 3.0), methanol and acetonitrile (40:5:40% v/v), at a flow rate of 0.8mlmin(-1) at ambient temperature. The products were characterized through +ESI-MS(n) spectra of AZL and LC-MS-TOF studies as 2-ethoxy-3H-benzo-imidazole-4-carboxylic acid (I), 2-hydroxy-3-[2'-(5-oxo-4,5-dihydro-[1,2,4]oxadiazol-4-ylmethyl]-3H-benzoimidazole-4-carboxylic acid (II, deethylated AZL), 3-[2'-(1H-diazirin-3-yl)-biphenyl]-4-ylmethyl]-2-ethoxy-3H-benzoimidazole-4-carboxylic acid (III), and 3-[4'-(2-ethoxy-benzo-imidazol-1-ylmethyl)-biphenyl-2-yl]-4H-[1,2,4]oxadiazol-5-one (IV, decarboxylated AZL). Product I was found to be a known process related impurity whereas the products II-IV were identified as new degradation impurities. The most probable mechanisms for formation of these degradation products were proposed. Copyright © 2015 Elsevier B.V. All rights reserved.
Vogna, Davide; Marotta, Raffaele; Napolitano, Alessandra; D'Ischia, Marco
2002-08-23
The advanced oxidation chemistry of the antipyretic drug paracetamol (1) with the UV/H(2)O(2) system was investigated by an integrated methodology based on (15)N-labeling and GC-MS, HPLC, and 2D (1)H, (13)C, and (15)N NMR analysis. Main degradation pathways derived from three hydroxylation steps, leading to 1,4-hydroquinone/1,4-benzoquinone, 4-acetylaminocatechol and, to a much lesser extent, 4-acetylaminoresorcine. Oxidation of the primary aromatic intermediates, viz. 4-acetylaminocatechol, 1,4-hydroquinone, 1,4-benzoquinone, and 1,2,4-benzenetriol, resulted in a series of nitrogenous and non-nitrogenous degradation products. The former included N-acetylglyoxylamide, acetylaminomalonic acid, acetylaminohydroxymalonic acid, acetylaminomaleic acid, diastereoisomeric 2-acetylamino-3-hydroxybutanedioic acids, 2-acetylaminobutenedioic acid, 3-acetylamino-4-hydroxy-2-pentenedioic acid, and 2,4-dihydroxy-3-acetylamino-2-pentenedioic acid, as well as two muconic and hydroxymuconic acid derivatives. (15)N NMR spectra revealed the accumulation since the early stages of substantial amounts of acetamide and oxalic acid monoamide. These results provide the first insight into the advanced oxidation chemistry of a 4-aminophenol derivative by the UV/H(2)O(2) system, and highlight the investigative potential of integrated GC-MS/NMR methodologies based on (15)N-labeling to track degradation pathways of nitrogenous species.
[Degradation of lignocellulose in the corn straw by Bacillus amyloliquefaciens MN-8].
Li, Hong-ya; Li, Shu-na; Wang, Shu-xiang; Wang, Quan; Xue, Yin-yin; Zhu, Bao-cheng
2015-05-01
Microbial degradation of lignocellulose is one of the key problems that need to be solved urgently in the process of utilizing biomass resource. Bacillus amyloliquefaciens MN-8 is our previously isolated bacterium capable of degrading lignin. To determine the capability of strain MN-8 to degrade lignocellulose of corn straw, B. amyloliquefaciens MN-8 was inoculated and fermented with solid-state corn straw powder-MSM culture medium. The changes in the enzyme activity and degradation products of lignocellulose were monitored in the process of fermentation using the FTIR and GC/MS. The results showed that B. amyloliquefaciens MN-8 could produce lignin peroxidase, manganese peroxidase, cellulase and hemicellulase enzymes. The activities of all these enzymes reached the peak after being incubated for 10-16 days, and the highest enzyme activities were 55.0, 16.7, 45.4 and 60.5 U · g(-1), respectively. After 24 d of incubation, the degradation percentages of lignin, cellulose and hemicellulose were up to 42.9%, 40.6% and 27.1%, respectively. The spectroscopic data by FTIR indicated that the intensities of characteristic absorption peaks of lignin, cellulose and hemicellulose of the corn straw were decreased, indicating that the lignocellulose was degraded partly after being fermented by B. amyloliquefaciens MN-8. GC/MS analysis also demonstrated that strain MN-8 could degrade lignocellulose efficiently. It could depolymerize lignin into some monomeric compounds with retention of phenylpropane structure unit, such as amphetamine, benzene acetone and benzene propanoic acids, by the rupture of β-O-4 bond connected between lignin monomer, and it further oxidized some monomer compounds into Cα carbonyl compounds, such as 2-amino-1-benzeneacetone and 4-hydroxy-3,5-dimethoxy-acetophenone. The GC/MS analysis of the degradation products of cellulose and hemicellulose showed that there were not only monosaccharide compounds, such as glucose, mannose and galactose, but also some glycolysis products including formic acid, acetic acid, propionic acid, 1,1-ethanediol and 3-hydroxy butyric acid. Our results demonstrated that B. amyloliquefaciens MN-8 is capable of degrading lignocelluse of the corn straw effectively and the degradation capacity depends on the lignocellulase activity.
Ahmad, I; Ali Sheraz, M; Ahmed, S; Shad, Z; Vaid, F H M
2012-06-01
This study involves the evaluation of the effect of certain stabilizers, that is, citric acid (CT), tartaric acid (TA) and boric acid (BA) on the degradation of ascorbic acid (AH(2) ) in oil-in-water cream formulations exposed to the UV light and stored in the dark. The apparent first-order rate constants (0.34-0.95 × 10(-3) min(-1) in light, 0.38-1.24 × 10(-2) day(-1) in dark) for the degradation reactions in the presence of the stabilizers have been determined. These rate constants have been used to derive the second-order rate constants (0.26-1.45 × 10(-2) M(-1) min(-1) in light, 3.75-8.50 × 10(-3) M(-1) day(-1) in dark) for the interaction of AH(2) and the individual stabilizers. These stabilizers are effective in causing the inhibition of the rate of degradation of AH(2) both in the light and in the dark. The inhibitory effect of the stabilizers is in the order of CT > TA > BA. The rate of degradation of AH(2) in the presence of these stabilizers in the light is about 120 times higher than that in the dark. This could be explained on the basis of the deactivation of AH(2) -excited triplet state by CT and TA and by the inhibition of AH(2) degradation through complex formation with BA. AH(2) leads to the formation of dehydroascorbic acid (A) by chemical and photooxidation in cream formulations. © 2012 The Authors. ICS © 2012 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Production and transformation of dissolved neutral sugars and amino acids by bacteria in seawater
NASA Astrophysics Data System (ADS)
Jørgensen, L.; Lechtenfeld, O. J.; Benner, R.; Middelboe, M.; Stedmon, C. A.
2014-10-01
Dissolved organic matter (DOM) in the ocean consists of a heterogeneous mixture of molecules, most of which are of unknown origin. Neutral sugars and amino acids are among the few recognizable biomolecules in DOM, and the molecular composition of these biomolecules is shaped primarily by biological production and degradation processes. This study provides insight into the bioavailability of biomolecules as well as the chemical composition of DOM produced by bacteria. The molecular compositions of combined neutral sugars and amino acids were investigated in DOM produced by bacteria and in DOM remaining after 32 days of bacterial degradation. Results from bioassay incubations with natural seawater (sampled from water masses originating from the surface waters of the Arctic Ocean and the North Atlantic Ocean) and artificial seawater indicate that the molecular compositions following bacterial degradation are not strongly influenced by the initial substrate or bacterial community. The molecular composition of neutral sugars released by bacteria was characterized by a high glucose content (47 mol %) and heterogeneous contributions from other neutral sugars (3-14 mol %). DOM remaining after bacterial degradation was characterized by a high galactose content (33 mol %), followed by glucose (22 mol %) and the remaining neutral sugars (7-11 mol %). The ratio of D-amino acids to L-amino acids increased during the experiments as a response to bacterial degradation, and after 32 days, the D/L ratios of aspartic acid, glutamic acid, serine and alanine reached around 0.79, 0.32, 0.30 and 0.51 in all treatments, respectively. The striking similarity in neutral sugar and amino acid compositions between natural (representing marine semi-labile and refractory DOM) and artificial (representing bacterially produced DOM) seawater samples, suggests that microbes transform bioavailable neutral sugars and amino acids into a common, more persistent form.
Lee, M; Kim, M K; Singleton, I; Goodfellow, M; Lee, S-T
2006-02-01
The aim of the present study was to isolate and characterize a bacterium, strain EN3, capable of using diesel oil as a major carbon and energy source, and to analyse the enhancement of diesel oil degradation by this organism using synthetic mycolic acid (2-hexyl-3-hydroxyldecanoic acid). An actinomycete with the ability to degrade diesel oil was isolated from oil contaminated soil and characterized. The strain had phenotypic properties consistent with its classification in the genus Rhodococcus showing a 16S rRNA gene similarity of 99.7% with Rhodococcus baikonurensis DSM 44587(T). The ability of the characterized strain to degrade diesel oil at various concentrations (1000, 5000, 10 000 and 20 000 mg l(-1)) was determined. The effect of synthetic mycolic acid on the biodegradation of diesel oil was investigated at the 20 000 mg l(-1) concentration; the surfactant was added to the flask cultures at three different concentrations (10, 50 and 100 mg l(-1)) and degradation followed over 7 days. Enhanced degradation was found at all three concentrations of the surfactant. In addition, the enhancement of diesel oil degradation by other surfactants was observed. The synthetic mycolic acid has potential for the remediation of petroleum-contaminated sites from both an economic and applied perspective as it can stimulate biodegradation at low concentrations. This study showed that the synthesized mycolic acid can be used for potential applications in the bioremediation industries, for example, in oil spill clean-up, diesel fuel remediation and biostimulation.
Rhodococcus erythropolis MTHt3 biotransforms ergopeptines to lysergic acid.
Thamhesl, Michaela; Apfelthaler, Elisabeth; Schwartz-Zimmermann, Heidi Elisabeth; Kunz-Vekiru, Elisavet; Krska, Rudolf; Kneifel, Wolfgang; Schatzmayr, Gerd; Moll, Wulf-Dieter
2015-03-28
Ergopeptines are a predominant class of ergot alkaloids produced by tall fescue grass endophyte Neotyphodium coenophialum or cereal pathogen Claviceps purpurea. The vasoconstrictive activity of ergopeptines makes them toxic for mammals, and they can be a problem in animal husbandry. We isolated an ergopeptine degrading bacterial strain, MTHt3, and classified it, based on its 16S rDNA sequence, as a strain of Rhodococcus erythropolis (Nocardiaceae, Actinobacteria). For strain isolation, mixed microbial cultures were obtained from artificially ergot alkaloid-enriched soil, and provided with the ergopeptine ergotamine in mineral medium for enrichment. Individual colonies derived from such mixed cultures were screened for ergotamine degradation by high performance liquid chromatography and fluorescence detection. R. erythropolis MTHt3 converted ergotamine to ergine (lysergic acid amide) and further to lysergic acid, which accumulated as an end product. No other tested R. erythropolis strain degraded ergotamine. R. erythropolis MTHt3 degraded all ergopeptines found in an ergot extract, namely ergotamine, ergovaline, ergocristine, ergocryptine, ergocornine, and ergosine, but the simpler lysergic acid derivatives agroclavine, chanoclavine, and ergometrine were not degraded. Temperature and pH dependence of ergotamine and ergine bioconversion activity was different for the two reactions. Degradation of ergopeptines to ergine is a previously unknown microbial reaction. The reaction end product, lysergic acid, has no or much lower vasoconstrictive activity than ergopeptines. If the genes encoding enzymes for ergopeptine catabolism can be cloned and expressed in recombinant hosts, application of ergopeptine and ergine degrading enzymes for reduction of toxicity of ergot alkaloid-contaminated animal feed may be feasible.
Cathepsin B-sensitive polymers for compartment-specific degradation and nucleic acid release
Chu, David S.H.; Johnson, Russell N.; Pun, Suzie H.
2011-01-01
Degradable cationic polymers are desirable for in vivo nucleic acid delivery because they offer significantly decreased toxicity over non-degradable counterparts. Peptide linkers provide chemical stability and high specificity for particular endopeptidases but have not been extensively studied for nucleic acid delivery applications. In this work, enzymatically degradable peptide-HPMA copolymers were synthesized by RAFT polymerization of HPMA with methacrylated peptide macromonomers, resulting in polymers with low polydispersity and near quantitative incorporation of peptides. Three peptide-HPMA copolymers were evaluated: (i) pHCathK10, containing peptides composed of the linker phe-lys-phe-leu (FKFL), a substrate of the endosomal/lysosomal endopeptidase cathepsin B, connected to oligo-(l)-lysine for nucleic acid binding, (ii) pHCath(d)K10, containing the FKFL linker with oligo-(d)-lysine, and (iii) pH(d)Cath(d)K10, containing all (d) amino acids. Cathepsin B degraded copolymers pHCathK10 and pHCath(d)K10 within one hour while no degradation of pH(d)Cath(d)K10 was observed. Polyplexes formed with pHCathK10 copolymers show DNA release by 4 hrs of treatment with cathepsin B; comparatively, polyplexes formed with pHCath(d)K10 and pH(d)Cath(d)K10 show no DNA release within 8 hrs. Transfection efficiency in HeLa and NIH/3T3 cells were comparable between the copolymers but pHCathK10 was less toxic. This work demonstrates the successful application of peptide linkers for degradable cationic polymers and DNA release. PMID:22036879
Ma, Zhiwei; Shen, Xuemei; Wang, Wei; Peng, Huasong; Xu, Ping; Zhang, Xuehong
2012-01-01
Sphingomonas wittichii DP58 (CCTCC M 2012027), the first reported phenazine-1-carboxylic acid (PCA)-degrading strain, was isolated from pimiento rhizosphere soils. Here we present a 5.6-Mb assembly of its genome. This sequence would contribute to the elucidation of the molecular mechanism of PCA degradation to improve the antifungal's effectiveness or remove superfluous PCA. PMID:22689229
Wedemeyer, Gary
1967-01-01
The final product of dichlorodiphenyltrichloroethane (DDT) degradation by vertebrates is commonly considered to be dichlorodiphenylacetic acid, DDA. Recently, certain organisms have been found to degrade further DDA to dichlorobenzophenone (DBP), but the possibility that such degradation was due to microbial action could not be excluded. Significantly, dichlorobenzhydrol (DBH), dichlorophenylmethane (DPM), and dichlorodiphenylethylene (DDE) have been tentatively identified in rats fed DDA. Since DDA as well as DDT is degraded by the ubiquitous microorganism Aerobacter aerogenes, it seemed reasonable that the intestinal microflora might be involved in DBP formation, DPM and DBH being intermediates in its pathway from DDA. Since DDA is a (3,y-unsaturated acid, ketone formation via an alkene and an alcohol would be expected.
[Study on the degradation and transformation of nonylphenol in water containing algae].
Peng, Zhang-E; Feng, Jin-Mei; He, Shu-Ying; Wu, Feng
2012-10-01
The photodegradation of nonylphenol induced by two common freshwater algae was investigated. The mechanism of nonylphenol photodegradation induced by algae was analyzed. The synergistic induction of nonylphenol degradation by algae and substances in water such as humic acid and ferric ions was also investigated. Results showed that the algae could induce the photodegradation of nonylphenol. The degradation of nonylphenol in water in the presence of algae, humic acid and ferric ions was obvious and the efficiency of degradation could reach 58% after 4 h illumination. Based on the results, it was speculated that the algae, humic acid and ferric ions system could produce more active oxygen after illumination, which could promote the photodegradation of the organic contaminants in water.
Tang, W-J; Zhang, L-S; Fang, Y; Zhou, Y; Ye, B-C
2016-07-01
To isolate a novel strain that could degrade many kinds PAEs efficiently and investigate the DBP-degrading pathway in this strain. Based on its 16S rRNA gene sequence, the strain was identified as Rhizobium sp. This strain, named LMB-1, can also utilize phthalates, such as DEHP, DMP, DBP and DEP. During the degradation of DBP, six possible metabolites, diethyl phthalate, mono-ethyl phthalate, di-methyl phthalate, mono-methyl phthalate, phthalic acid and tartaric acid, were identified by gas chromatography-mass spectrometry (GC-MS) analysis, and the degradation pathway of DBP was also identified in this study. In summary, strain LMB-1, identified as Rhizobium sp., was found to be capable of efficiently degrading PAEs, and it was determined that the strain degraded DMP completely within 45 h. DEP, DMP, MEP, MMP, PA and tartaric acid were detected during the course of DBP degradation by LMB-1. We propose that this strain could completely degrade DBP or other PAEs. Our results offer a novel and potential candidate, Rhizobium sp. LMB-1, for use in the bioremediation of cultivated soil contaminated by PAEs. This is the first report concerning the complete degradation of phthalate esters by Rhizobium sp. © 2016 The Society for Applied Microbiology.
Goszcz, Katarzyna; Deakin, Sherine J.; Duthie, Garry G.; Stewart, Derek
2017-01-01
Despite limited bioavailability and rapid degradation, dietary anthocyanins are antioxidants with cardiovascular benefits. This study tested the hypothesis that the antioxidant protection conferred by the anthocyanin, delphinidin, is mediated by modulation of endogenous antioxidant defences, driven by its degradation product, gallic acid. Delphinidin was found to degrade rapidly (t1/2 ~ 30 min), generating gallic acid as a major degradation product. Both delphinidin and gallic acid generated oxygen-centred radicals at high (100 μM) concentrations in vitro. In a cultured human umbilical vein endothelial cell model of oxidative stress, the antioxidant protective effects of both delphinidin and gallic acid displayed a hormesic profile; 100 μM concentrations of both were cytotoxic, but relatively low concentrations (100 nM–1 μM) protected the cells and were associated with increased intracellular glutathione. We conclude that delphinidin is intrinsically unstable and unlikely to confer any direct antioxidant activity in vivo yet it offered antioxidant protection to cells at low concentrations. This paradox might be explained by the ability of the degradation product, gallic acid, to confer benefit. The findings are important in understanding the mode of protection conferred by anthocyanins and reinforce the necessity to conduct in vitro experiments at biologically relevant concentrations. PMID:29081896
Ziegmann, Markus; Frimmel, Fritz H
2010-01-01
The combination of powdered activated carbon (PAC) and TiO(2) has been tested for synergistic/antagonistic effects in the photocatalytic degradation of carbamazepine, clofibric acid and iomeprol. Synergistic effects are thought to be caused by rapid adsorption on the PAC surface followed by diffusion to the TiO(2) surface and photocatalytic degradation. The Freundlich constant K(F) was used for comparing the sorption properties of the three substances and it was found that K(F) for clofibric acid was 3 times lower than for carbamazepine and iomeprol, regardless of the kind of PAC used. A PAC with a distinct tendency to form conglomerates was selected so that a high percentage of the PAC surface was in direct proximity to the TiO(2) surface. The photocatalytic degradation of the pharmaceutically active compounds studied followed pseudo-first order kinetics. Synergistic effects only occurred for clofibric acid (factor 1.5) and an inverse relationship between adsorption affinity and synergistic effects was found. High affinity of the target substances to the PAC surface seemed to be counterproductive for the photocatalytic degradation.
Cyclodextrin-enhanced degradation of toluene and p-toluic acid by Pseudomonas putida.
Schwartz, A; Bar, R
1995-01-01
Degradation of an immiscible aromatic solvent, toluene, and a water-soluble aromatic compound, p-toluic acid, by a Pseudomonas putida strain in the presence of beta-cyclodextrin (beta-CD) was investigated. The ability of CDs to interact with hydrophobic organics and form inclusion compounds was exploited in this study to remove or alleviate the toxicities of substrates and consequently to enable or enhance degradation. Liquid toluene was found to be highly toxic to P. putida. However, this phase toxicity was removed when crystalline beta-CD-complexed toluene was provided as the substrate. The latter was fully degraded at a concentration of up to 10 g/liter. Degradation of toluene vapors was enhanced in the presence of beta-CD as a result of reduced molecular toxicity and facilitated absorption of the gaseous substrate. Similarly, beta-CD alleviated the inhibitory effect of p-toluic acid on P. putida. This protective effect of CD was remarkably more prominent when the microbial culture was shock loaded with an otherwise toxic dose of p-toluic acid (1.8 g/liter). PMID:7618884
Tanaka, Takumi; Nakayama, Mayumi; Takahashi, Toru; Nanatani, Kei; Yamagata, Youhei; Abe, Keietsu
2017-03-01
Hydrophobins are amphipathic secretory proteins with eight conserved cysteine residues and are ubiquitous among filamentous fungi. In the fungus Aspergillus oryzae, the hydrophobin RolA and the polyesterase CutL1 are co-expressed when the sole available carbon source is the biodegradable polyester polybutylene succinate-co-adipate (PBSA). RolA promotes the degradation of PBSA by attaching to the particle surface, changing its structure and interacting with CutL1 to concentrate CutL1 on the PBSA surface. We previously reported that positively charged residues in RolA and negatively charged residues in CutL1 are cooperatively involved in the ionic interaction between RolA and CutL1. We also reported that hydrophobin RodA of the model fungus Aspergillus nidulans, which was obtained via an A. oryzae expression system, interacted via ionic interactions with CutL1. In the present study, phylogenetic and alignment analyses revealed that the N-terminal regions of several RolA orthologs contained positively charged residues and that the corresponding negatively charged residues on the surface of CutL1 that were essential for the RolA-CutL1 interaction were highly conserved in several CutL1 orthologs. A PBSA microparticle degradation assay, a pull-down assay using a dispersion of Teflon particles, and a kinetic analysis using a quartz crystal microbalance revealed that recombinant A. nidulans RodA interacted via ionic interactions with two recombinant A. nidulans cutinases. Together, these results imply that ionic interactions between hydrophobins and cutinases may be common among aspergilli and other filamentous fungi.
Shi, Yan
2014-02-01
Degradation of fermentable monosaccharides is one of the primary concerns for acid prehydrolysis of lignocellulosic biomass. Recently, in our research on degradation of pure monosaccharides in aqueous SO₂ solution by gas chromatography (GC) analysis, we found that detected yield was not actual yield of each monosaccharide due to the existence of sugar-bisulfite adducts, and a new method was developed by ourselves which led to accurate detection of recovery yield of each monosaccharide in aqueous SO₂ solution by GC analysis. By the use of this method, degradation of each monosaccharide in aqueous SO₂ was investigated and results showed that sugar-bisulfite adducts have different inhibiting effect on degradation of each monosaccharide in aqueous SO₂ because of their different stability. In addition, NMR testing also demonstrated possible existence of reaction between conjugated based HSO₃(-) and aldehyde group of sugars in acid system.
From labdanes to drimanes. Degradation of the side chain of dihydrozamoranic acid.
Rodilla, Jesús M L; Díez, D; Urones, J G; Rocha, Pedro M
2004-04-30
A new route for the degradation of the saturated side chain of dihydrozamoranic acid has been devised, giving an advanced intermediate, compound 14, useful for the synthesis of insect antifeedants such as warburganal and polygodial.
Varying Conditions for Hexanoic Acid Degradation with BioTiger™
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foreman, Koji; Milliken, Charles; Brigmon, Robin
BioTiger™ (BT) is a consortium of 12 bacteria designed for petroleum waste biodegradation. BT is currently being studied and could be considered for bioremediation of the Athabasca oil sands refineries in Canada and elsewhere. The run-off ponds from the petroleum extraction processes, called tailings ponds, are a mixture of polycyclic aromatic hydrocarbons, naphthenic acids, hydrocarbons, toxic chemicals like heavy metals, water, and sand. Due to environmental regulations the oil industry would like to separate and degrade the hazardous chemical species from the tailings ponds while recycling the water. It has been shown that BT at 30 C° is able tomore » completely degrade 10 mM hexanoic acid (HA) co-metabolically with 0.2% yeast extract (w/v) in 48 hours when starting at 0.4 OD 600nm. After establishing this stable degradation capability, variations were tested to explore the wider parameters of BT activity in temperature, pH, intermediate degradation, co-metabolic dependence, and transfer stability. Due to the vast differences in temperature at various points in the refineries, a wide range of temperatures were assessed. The results indicate that BT retains the ability to degrade HA, a model surrogate for tailings pond contaminants, at temperatures ranging from 15°C to 35°C. Hexanamide (HAM) was shown to be an intermediate generated during the degradation of HA in an earlier work and HAM is completely degraded after 48 hours, indicating that HAM is not the final product of HA degradation. Various replacements for yeast extract were attempted. Glucose, a carbon source; casein amino acids, a protein source; additional ammonia, mimicking known media; and additional phosphate with Wolffe’s vitamins and minerals all showed no significant degradation of HA compared to control. Decreasing the yeast extract concentration (0.05%) demonstrated limited but significant degradation. Finally, serial inoculations of BT were performed to determine the stability of degradation over several generations. Overall, BT has shown to be moderately flexible for HA co-metabolic biodegradation.« less
Winery biomass waste degradation by sequential sonication and mixed fungal enzyme treatments.
Karpe, Avinash V; Dhamale, Vijay V; Morrison, Paul D; Beale, David J; Harding, Ian H; Palombo, Enzo A
2017-05-01
To increase the efficiency of winery-derived biomass biodegradation, grape pomace was ultrasonicated for 20min in the presence of 0.25M, 0.5Mand1.0MKOH and 1.0MNaOH. This was followed by treatment with a 1:1 (v/v) mix of crude enzyme preparation derived from Phanerochaete chrysosporium and Trametes versicolor for 18h and a further 18h treatment with a 60:14:4:2 percent ratio combination of enzymes derived from Aspergillus niger: Penicillium chrysogenum: Trichoderma harzianum: P. citrinum, repsectively. Process efficiency was evaluated by its comparison to biological only mixed fungal degradation over 16days. Ultrasonication treatment with 0.5MKOH followed by mixed enzyme treatment yielded the highest lignin degradation of about 13%. Cellulase, β-glucosidase, xylanase, laccase and lignin peroxidase activities of 77.9, 476, 5,390.5, 66.7 and 29,230.7U/mL, respectively, were observed during biomass degradation. Gas chromatography-mass spectrometry (GC-MS) analysis of the degraded material identified commercially important compounds such as gallic acid, lithocholic acid, glycolic acid and lactic acid which were generated in considerable quantities. Thus, the combination of sonication pre-treatment and enzymatic degradation has the potential to considerably improve the breakdown of agricultural biomass and produce commercially useful compounds in markedly less time (<40h) with respect to biological only degradation (16days). Copyright © 2016 Elsevier Inc. All rights reserved.
Jiang, Ying; Zhang, Yue; Banks, Charles; Heaven, Sonia; Longhurst, Philip
2017-11-15
The requirement of trace elements (TE) in anaerobic digestion process is widely documented. However, little is understood regarding the specific requirement of elements and their critical concentrations under different operating conditions such as substrate characterisation and temperature. In this study, a flask batch trial using fractional factorial design is conducted to investigate volatile fatty acids (VFA) anaerobic degradation rate under the influence of the individual and combined effect of six TEs (Co, Ni, Mo, Se, Fe and W). The experiment inoculated with food waste digestate, spiked with sodium acetate and sodium propionate both to 10 g/l. This is followed by the addition of a selection of the six elements in accordance with a 2 6-2 fractional factorial principle. The experiment is conducted in duplicate and the degradation of VFA is regularly monitored. Factorial effect analysis on the experimental results reveals that within these experimental conditions, Se has a key role in promoting the degradation rates of both acetic and propionic acids; Mo and Co are found to have a modest effect on increasing propionic acid degradation rate. It is also revealed that Ni shows some inhibitory effects on VFA degradation, possibly due to its toxicity. Additionally, regression coefficients for the main and second order effects are calculated to establish regression models for VFA degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Correia de Velosa, Adriana; Pupo Nogueira, Raquel F
2013-05-30
Reactive species generated by Fe(0) oxidation promoted by O2 (catalyzed or not by ligands) are able to degrade contaminant compounds like the herbicide 2,4-dichlorophenoxyacetic acid. The degradation of 2,4-D was influenced by the concentrations of zero valent iron (ZVI) and different ligands, as well as by pH. In the absence of ligands, the highest 2,4-D degradation rate was obtained at pH 3, while the highest percentage degradation (50%) was achieved at pH 5 after 120 min of reaction. Among the ligands studied (DTPA, EDTA, glycine, oxalate, and citrate), only ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) significantly enhanced oxidation of 2,4-D. This increase in oxidation was observed at all pH values tested (including neutral to alkaline conditions), indicating the feasibility of the technique for treatment of contaminated water. In the presence of EDTA, the oxidation rate was greater at pH 3 than at pH 5 or 7. Increasing the EDTA concentration increased the rate and percentage of 2,4-D degradation, however increasing the Fe(0) concentration resulted in the opposite behavior. It was found that degradation of EDTA and 2,4-D occurred simultaneously, and that the new methodology avoided any 2,4-D removal by adsorption/coprecipitation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Analysis of free and bound chlorophenoxy acids in cereals.
Lokke, H
1975-06-01
Extraction of the chlorophenoxy acids 2,4-D and dichlorprop in cereals has been examined by analyzing barley from spraying experiments. A procedure has been set up by combination of acid hydrolysis and enzymatic degradation followed by extraction and clean up on either silica gel or basic aluminum oxide. The final determination is based on reaction with diazomethane and subsequently GLC with ECD. This procedure was compared with two different extraction procedures previously described in the literature. The one comparative procedure uses a mixture of 50% diethyl ether/hexane in presence of sulphuric acid and resulted in residues up to ten times lower than found after the combined acid hydrolysis/enzymatic degradation procedure. In the second comparison a direct extraction was made with a mixture of 65% (v/v) acetonitrile in water. No differences were found between this and the combined acid hydrolysis/enzymatic degradation procedure.
Wegener, Steffen; Bornik, Maria-Anna; Kroh, Lothar W
2015-07-22
Thermal treatment of aqueous solutions of D-galacturonic acid and L-alanine at pH 3, 5, and 8 led to rapid and more intensive nonenzymatic browning reactions compared to similar solutions of other uronic acids and to Maillard reactions of reducing sugars. The hemiacetal ring structures of uronic acids had a high impact on browning behavior and reaction pathways. Besides reductic acid (1,2-dihydroxy-2-cyclopenten-1-one), 4,5-dihydroxy-2-cyclopenten-1-one (DHCP), furan-2-carboxaldehyde, and norfuraneol (4-hydroxy-5-methyl-3-(2H)-furanone) could be detected as typical products of nonenzymatic uronic acid browning reactions. 2-(2-Formyl-1H-pyrrole-1-yl)propanoic acid (FPA) and 1-(1-carboxyethyl)-3-hydroxypyridin-1-ium (HPA) were identified as specific reaction products of uronic acids with amine participation like l-alanine. In contrast, the structurally related D-galacturonic acid methyl ester showed less browning activity and degradation under equal reaction conditions. Pectin-specific degradation products such as 5-formyl-2-furanoic acid and 2-furanoic acid were found but could not be verified for d-galacturonic acid monomers alone.
Wang, Tie Cheng; Qu, Guangzhou; Li, Jie; Liang, Dongli
2014-01-15
A novel approach, named multi-channel pulsed corona discharge in soil, was developed for remediating organic pollutants contaminated soil, with p-nitrophenol (PNP) as the model pollutant. The feasibility of PNP degradation in soil was explored by evaluating effects of pulse discharge voltage, air flow rate and soil moisture on PNP degradation. Based on roles of chemically active species and evolution of degradation intermediates, PNP degradation processes were discussed. Experimental results showed that about 89.4% of PNP was smoothly degraded within 60min of discharge treatment at pulse discharge voltage 27kV, soil moisture 5% and air flow rate 0.8Lmin(-1), and the degradation process fitted the first-order kinetic model. Increasing pulse discharge voltage was found to be favorable for PNP degradation, but not for energy yield. There existed appropriate air flow rate and soil moisture for obtaining gratifying PNP degradation efficacy. Roles of radical scavenger and measurement of active species suggested that ozone, H2O2, and OH radicals played very important roles in PNP degradation. CN bond in PNP molecule was cleaved, and the main intermediate products such as hydroquinone, benzoquinone, catechol, phenol, acetic acid, formic acid, oxalic acid, NO2(-) and NO3(-) were identified. Possible pathway of PNP degradation in soil in such a system was proposed. Copyright © 2013 Elsevier B.V. All rights reserved.
[Degradation of Acid Orange 7 with Persulfate Activated by Silver Loaded Granular Activated Carbon].
Wang, Zhong-ming; Huang, Tian-yin; Chen, Jia-bin; Li, Wen-wei; Zhang, Li-ming
2015-11-01
Granular activated carbon with silver loaded as activator (Ag/GAC) was prepared using impregnation method. N2 adsorption, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) were adopted to characterize the Ag/GAC, showing that silver was successfully loaded on granular activated carbon. The oxidation degradation of acid orange 7 (AO7) by the Ag/GAC activated by persulfate (PS) was investigated at ambient temperature. The influences of factors such as Ag loading, PS or Ag/GAC dosages and initial pH on the degradation of AO7 were evaluated. The results demonstrated that the degradation rate of AO7 could reach more than 95.0% after 180 min when the Ag loading content, PS/AO7 molar ratio, the Ag/GAC dosage were 12.7 mg x g(-1), 120: 1, 1.0 g x L(-1), respectively. The initial pH had significant effect on the AO7 degradation, with pH 5.0 as the optimal pH for the degradation of AO7. The possible degradation pathway was proposed for the AO7 degradation by using UV-visible spectroscopy and gas chromatography-mass spectrometry (GG/MS). The azo bond and naphthalene ring in the AO7 were destroyed during the degradation, with phthalic acid and acetophenone as the main degradation products.
Zhang, Xiaolei; Wu, Yan; Pan, Zongyou; Sun, Heng; Wang, Junjuan; Yu, Dongsheng; Zhu, Shouan; Dai, Jun; Chen, Yishan; Tian, Naifeng; Heng, Boon Chin; Coen, Noelle D; Xu, Huazi; Ouyang, Hongwei
2016-09-15
Poly (lactic-co-glycolic acid) (PLGA) and poly-l-lactate acid (PLLA) are biodegradable polymers widely utilized as scaffold materials for cartilage tissue engineering. Their acid degradation products have been widely recognized as being detrimental to cell function. However, the biological effects of lactate, rather than lactic acid, on chondrocytes have never been investigated. This is the major focus of this study. The amounts of lactate and the pH value (acid) of the PLGA and PLLA degradation medium were measured. The effects of PLGA and PLLA degradation medium, as well as different lactate concentrations and timing of exposure on chondrocytes proliferation and cartilage-specific matrix synthesis were investigated by various techniques including global gene expression profiling and gene knockdown experiments. It was shown that PLGA and PLLA degradation medium differentially regulated chondrocyte proliferation and matrix synthesis. Acidic pH caused by lactate inhibited chondrocyte proliferation and matrix synthesis. The effect of lactate on chondrocyte matrix synthesis was both time and dose dependent. A lactate concentration of 100mM and exposure duration of 8h significantly enhanced matrix synthesis. Lactate could also inhibit expression of cartilage matrix degradation genes in osteoarthritic chondrocytes, such as the major aggrecanase ADAMTS5, whilst promoting matrix synthesis simultaneously. Pulsed addition of lactate was shown to be more efficient in promoting COL2A1 expression. Global gene expression data and gene knock down experiments demonstrated that lactate promote matrix synthesis through up-regulation of HIF1A. These observed differential biological effects of lactate on chondrocytes would have implications for the future design of polymeric cartilage scaffolds. Lactic acid is a widely used substrate for polymers synthesis, PLGA and PLLA in particular. Although physical and biological modifications have been made on these polymers to make them be better cartilage scaffolds, little concern has been given on the biological effect of lactic acid, the main degradation product of these polymers, on chondrocytes. Our finding illustrates the differential biological function of lactate and acid on chondrocytes matrix synthesis. These results can facilitate future design of lactate polymers-based cartilage scaffolds. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Rajan, Sujata Sundara; Turovskiy, Yevgeniy; Singh, Yashveer; Chikindas, Michael L.; Sinko, Patrick J.
2014-01-01
Women with bacterial vaginosis (BV) display reduced vaginal acidity, which make them susceptible to associated infections such as HIV. In the current study, poly(ethylene glycol) (PEG) nanocarrier-based degradable hydrogels were developed for the controlled release of lactic acid in the vagina of BV-infected women. PEG-lactic acid (PEG-LA) nanocarriers were prepared by covalently attaching lactic acid to 8-arm PEG-SH via cleavable thioester bonds. PEG-LA nanocarriers with 4 copies of lactic acid per molecule provided controlled release of lactic acid with a maximum release of 23% and 47% bound lactic acid in phosphate buffered saline (PBS, pH 7.4) and acetate buffer (AB, pH 4.3), respectively. The PEG nanocarrier-based hydrogels were formed by cross-linking the PEG-LA nanocarriers with 4-arm PEG-NHS via degradable thioester bonds. The nanocarrier-based hydrogels formed within 20 min under ambient conditions and exhibited an elastic modulus that was 100-fold higher than the viscous modulus. The nanocarrier-based degradable hydrogels provided controlled release of lactic acid for several hours; however, a maximum release of only 10%–14% bound lactic acid was observed possibly due to steric hindrance of the polymer chains in the cross-linked hydrogel. In contrast, hydrogels with passively entrapped lactic acid showed burst release with complete release within 30 min. Lactic acid showed antimicrobial activity against the primary BV pathogen Gardnerella vaginalis with a minimum inhibitory concentration (MIC) of 3.6 mg/ml. In addition, the hydrogels with passively entrapped lactic acid showed retained antimicrobial activity with complete inhibition G. vaginalis growth within 48 h. The results of the current study collectively demonstrate the potential of PEG nanocarrier-based hydrogels for vaginal administration of lactic acid for preventing and treating BV. PMID:25223229
Raseetha, Siva; Leong, Sze Ying; Burritt, David John; Oey, Indrawati
2013-06-01
The purpose of this research was to understand the degradation of ascorbic acid and glutathione content in broccoli florets (Brassica oleracea L. italica cv. Bellstar) during prolonged storage and subsequent mechanical processing. The initial content of total ascorbic acid and glutathione in broccoli florets averaged at 5.18 ± 0.23 and 0.70 ± 0.03 μmol/g fresh weight, respectively. Results showed that the content of ascorbic acid and glutathione in broccoli degraded during storage at 23°C, for at least 4.5-fold after 6 days of storage. On each day of storage, broccoli florets were mechanically processed, but the content of total ascorbic acid and glutathione was not significantly affected. When the mechanically processed broccoli florets were further incubated for up to 6h, the amount of ascorbic acid was greatly reduced as compared to glutathione. To obtain an in-depth understanding on the degradation of ascorbic acid and glutathione, the activity of enzymes involved in plant antioxidative system via ascorbate-glutathione cycle, as a response towards oxidative stress that took place during storage was determined in this study. The content of total ascorbic acid and glutathione in broccoli florets before and after mechanical processing were found to decrease concurrently with the activity of ascorbic acid peroxidase and glutathione reductase over the experimental storage duration. Meanwhile, the effect of oxidative stress on the content of ascorbic acid and glutathione was apparent during the 6h of incubation after mechanical processing. This phenomenon was demonstrated by the level of oxidative stress biomarkers examined, in which the formation of lipid peroxides, protein carbonyls and DNA oxidised products was positively associated with the degradation of total ascorbic acid and glutathione. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meadows, J.R.
The ozone-induced degradation rates of various purine bases, hydroxylated purine compounds, pyrimidine bases, and uric acid were compared. Of the compounds examined, uric acid was the one most readily degraded while the parent compounds, purine and pyrimidine, were the ones most resistant to ozonation. When the breakdown of hydroxylated purines was studied, it was determined that the more OH substituents on the purine, the more readily it was degraded. Because of the preferential attack by ozone on uric acid in solutions containing a nucleic acid base plus uric acid, the presence of the uric acid had a sparing effect onmore » the base. This effect was readily apparent for guanine, thymine, and uracil which were the bases more labile to ozone. Two of the ozonation products of uric acid were identified as allantoin and urea. Ozonation of bovine and swine erythrocyte suspensions resulted in oxidation of oxyhemoglobin to methemoglobin, formation of thiobarbituric acid-reactive materials-a measure of lipid oxidation- and lysis of the red cells. Each of these changes was inhibited by the presence of uric acid in the solution during ozonation.« less
Nakasaki, Kiyohiko; Hirai, Hidehira
2017-07-01
The effects of inoculating the mesophilic yeast Pichia kudriavzevii RB1, which is able to degrade organic acids, on organic matter degradation in composting were elucidated. When model food waste with high carbohydrate content (C/N=22.3) was used, fluctuation in the inoculated yeast cell density was observed, as well as fluctuation in the composting temperature until day 5 when the temperature rose to 60°C, which is lethal for the yeast. After the decrease in yeast, acetic acid accumulated to levels as high as 20mg/g-ds in the composting material and vigorous organic matter degradation was inhibited. However, by maintaining the temperature at 40°C for 2days during the heating phase in the early stage of composting, both the organic acids originally contained in the raw material and acetic acid produced during the heating phase were degraded by the yeast. The concentration of acetic acid was kept at a relatively low level (10.1mg/g-ds at the highest), thereby promoting the degradation of organic matter by other microorganisms and accelerating the composting process. These results indicate that temperature control enhances the effects of microbial inoculation into composts. Copyright © 2017 Elsevier Ltd. All rights reserved.
Degradation of lignocelluloses in rice straw by BMC-9, a composite microbial system.
Zhao, Hongyan; Yu, Hairu; Yuan, Xufeng; Piao, Renzhe; Li, Hulin; Wang, Xiaofen; Cui, Zongjun
2014-05-01
To evaluate the potential utility of pretreatment of raw biomass with a complex microbial system, we investigated the degradation of rice straw by BMC-9, a lignocellulose decomposition strain obtained from a biogas slurry compost environment. The degradation characteristics and corresponding changes in the bacterial community were assessed. The results showed that rapid degradation occurred from day 0 to day 9, with a peak total biomass bacterium concentration of 3.3 × 10(8) copies/ml on day 1. The pH of the fermentation broth declined initially and then increased, and the mass of rice straw decreased steadily. The highest concentrations of volatile fatty acid contents (0.291 mg/l lactic acid, 0.31 mg/l formic acid, 1.93 mg/l acetic acid, and 0.73 mg/l propionic acid) as well as the highest xylanse activity (1.79 U/ml) and carboxymethyl cellulase activity (0.37 U/ml) occurred on day 9. The greatest diversity among the microbial community also occurred on day 9, with the presence of bacteria belonging to Clostridium sp., Bacillus sp., and Geobacillus sp. Together, our results indicate that BMC-9 has a strong ability to rapidly degrade the lignocelluloses of rice straw under relatively inexpensive conditions, and the optimum fermentation time is 9 days.
ElShafei, Gamal M S; Yehia, F Z; Dimitry, O I H; Badawi, A M; Eshaq, Gh
2015-11-01
Oxides of iron, α-Fe2O3 (I), and copper, CuO (II) prepared by usual precipitation method without surfactant were used at room temperature in the process of nitrobenzene (10mgL(-1)) degradation at different pH values with ultrasonic at 20kHz. The degradation was complete in 20 and 30min for (I) and (II), respectively in the pH range 2-7 using1.0gL(-1) of solids and 10mM of H2O2. A remarkable decrease in degradation efficiency was recorded on increasing the pH to values higher than the neutral range. This loss in efficiency was cancelled to a great extent through modifying the used oxides with amino acids. Arginine showed higher improving effect to (II) (1:1 weight ration) than glycine or glutamic acid. Modification of both oxides with increasing amounts of arginine increased the degradation efficiency of (I) in a more regular way than in case of (II). However, the extent of improvement due to amino acid modification was higher in case of (II) because of its originally low degradation efficiency in strongly alkaline media. Copyright © 2014 Elsevier Ltd. All rights reserved.
Johnson, Christopher W.; Salvachua, Davinia; Khanna, Payal; ...
2016-04-22
The conversion of biomass-derived sugars and aromatic molecules to cis,cis-muconic acid (referred to hereafter as muconic acid or muconate) has been of recent interest owing to its facile conversion to adipic acid, an important commodity chemical. Metabolic routes to produce muconate from both sugars and many lignin-derived aromatic compounds require the use of a decarboxylase to convert protocatechuate (PCA, 3,4-dihydroxybenzoate) to catechol (1,2-dihydroxybenzene), two central aromatic intermediates in this pathway. Several studies have identified the PCA decarboxylase as a metabolic bottleneck, causing an accumulation of PCA that subsequently reduces muconate production. A recent study showed that activity of the PCAmore » decarboxylase is enhanced by co-expression of two genetically associated proteins, one of which likely produces a flavin-derived cofactor utilized by the decarboxylase. Using entirely genome-integrated gene expression, we have engineered Pseudomonas putida KT2440-derived strains to produce muconate from either aromatic molecules or sugars and demonstrate in both cases that co-expression of these decarboxylase associated proteins reduces PCA accumulation and enhances muconate production relative to strains expressing the PCA decarboxylase alone. In bioreactor experiments, co-expression increased the specific productivity (mg/g cells/h) of muconate from the aromatic lignin monomer p-coumarate by 50% and resulted in a titer of >15 g/L. In strains engineered to produce muconate from glucose, co-expression more than tripled the titer, yield, productivity, and specific productivity, with the best strain producing 4.92+/-0.48 g/L muconate. Furthermore, this study demonstrates that overcoming the PCA decarboxylase bottleneck can increase muconate yields from biomass-derived sugars and aromatic molecules in industrially relevant strains and cultivation conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Taolin; Chen, Shi; Li, Li
2014-12-24
A novel Li-rich cathode Li[Li1/6Fe1/6Ni1/6Mn1/2]O-2 (0.4Li(2)MnO(3-)0.6LiFe(1/3)Ni(1/3)Mn(1/3)O(2)) was synthesized by a solgel method, which uses citric acid (SC), tartaric acid (ST), or adipic acid (SA) as a chelating agent. The structural, morphological, and electrochemical properties of the prepared samples were characterized by various methods. X-ray diffraction showed that single-phase materials are formed mainly with typical alpha-NaFeO2 layered structure (R3 m), and the SC sample has the lowest Li/Ni cation disorder. The morphological study indicated homogeneous primary particles in good distribution size (100 nm) with small aggregates. The Fe, Ni, and Mn valences were determined by X-ray absorption near-edge structure analysis. Inmore » coin cell tests, the initial reversible discharge capacity of an SA electrode was 289.7 mAh g(-1) at the 0.1C rate in the 1.54.8 V voltage range, while an SC electrode showed a better cycling stability with relatively high capacity retention. At the 2C rate, the SC electrode can deliver a discharge capacity of 150 mAh g(-1) after 50 cycles. Differential capacity vs voltage curves were employed to further investigate the electrochemical reactions and the structural change process during cycling. This low-cost, Fe-based compound prepared by the solgel method has the potential to be used as the high capacity cathode material for Liion batteries.« less
Salas, P M; Sujatha, C H; Ratheesh Kumar, C S; Cheriyan, Eldhose
2018-02-01
Surface sediments from three zones (fresh water, estuarine, and riverine/industrial zones) of the Cochin estuary, Southwest coast of India, were seasonally analyzed to understand the nature and degradation status of organic matter. Amino acid-based indices such as total hydrolyzable amino acids (THAAs), percentage contributions of amino acid carbon to total organic carbon (THAA-C%) and those of amino acid nitrogen to total nitrogen (THAA-N%), and degradation index (DI) were calculated. Elevated levels of amino acids in the sediments of the estuary were attributed to river runoff, autochthonous production, allochthonous inputs, and industrial and domestic effluent discharges. Higher levels of THAA-C%, THAA-N%, THAA, and positive DI found in most of the stations suggest the fresh deposition of organic matter. Multivariate statistical analyses revealed that the dispersal pattern of amino acids depends on the sediment texture, organic matter, redox state, and microbial processes in the study region. Copyright © 2017 Elsevier Ltd. All rights reserved.
Swain, Debasish; Patel, Prinesh N; Palaniappan, Ilayaraja; Sahu, Gayatri; Samanthula, Gananadhamu
2015-08-15
Azilsartan medoxomil potassium (AZM) is a new antihypertensive drug introduced in the year 2011. The presence of degradation products not only affects the quality, but also the safety aspects of the drug. Thus, it is essential to develop an efficient analytical method which could be useful to selectively separate and identify the degradation products of azilsartan medoxomil potassium. AZM was subjected to forced degradation under hydrolytic (acid, base and neutral), oxidative, photolytic and thermal stress conditions. Separation of the drug and degradation products was achieved by a liquid chromatography (LC) method using an Acquity UPLC(®) C18 CSH column with mobile phase consisting of 0.02% trifluoroacetic acid and acetonitrile using a gradient method. Identification and characterization of the degradation products was carried out using LC/electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-QTOFMS). A total of five degradation products (DP 1 to DP 5) were formed under various stress conditions and their structures were proposed with the help of tandem mass spectrometry (MS/MS) experiments and accurate mass data. A common degradation product (DP 4) was observed under all the degradation conditions. DP 1, DP 2 and DP 5 were observed under acid hydrolytic conditions whereas DP 3 was observed under alkaline conditions. AZM was found to degrade under hydrolytic, oxidative and photolytic stress conditions. The structures of all the degradation products were proposed. The degradation pathway for the formation of degradation products was also hypothesized. A selective method was developed to quantify the drug in the presence of degradation products which is useful to monitor the quality of AZM. Copyright © 2015 John Wiley & Sons, Ltd.
Water and UV degradable lactic acid polymers
Bonsignore, Patrick V.; Coleman, Robert D.
1996-01-01
A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene glycol, propylene glycol, P-dioxanone, 1,5 dioxepan-2-one, 1,4-oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2 by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.
Chu, Cui-Wei; Liu, Bin; Li, Na; Yao, Shi-Gang; Cheng, Dan; Zhao, Jia-Dong; Qiu, Ji-Guo; Yan, Xin; He, Jian
2017-01-01
ABSTRACT Thiobencarb is a thiocarbamate herbicide used in rice paddies worldwide. Microbial degradation plays a crucial role in the dissipation of thiobencarb in the environment. However, the physiological and genetic mechanisms underlying thiobencarb degradation remain unknown. In this study, a novel thiobencarb degradation pathway was proposed in Acidovorax sp. strain T1. Thiobencarb was oxidized and cleaved at the C—S bond, generating diethylcarbamothioic S-acid and 4-chlorobenzaldehyde (4CDA). 4CDA was then oxidized to 4-chlorobenzoic acid (4CBA) and hydrolytically dechlorinated to 4-hydroxybenzoic acid (4HBA). The identification of catabolic genes suggested further hydroxylation to protocatechuic acid (PCA) and finally degradation through the protocatechuate 4,5-dioxygenase pathway. A novel two-component monooxygenase system identified in the strain, TmoAB, was responsible for the initial catabolic reaction. TmoA shared 28 to 32% identity with the oxygenase components of pyrimidine monooxygenase from Agrobacterium fabrum, alkanesulfonate monooxygenase from Pseudomonas savastanoi, and dibenzothiophene monooxygenase from Rhodococcus sp. TmoB shared 25 to 37% identity with reported flavin reductases and oxidized NADH but not NADPH. TmoAB is a flavin mononucleotide (FMN)-dependent monooxygenase and catalyzed the C—S bond cleavage of thiobencarb. Introduction of tmoAB into cells of the thiobencarb degradation-deficient mutant T1m restored its ability to degrade and utilize thiobencarb. A dehydrogenase gene, tmoC, was located 7,129 bp downstream of tmoAB, and its transcription was clearly induced by thiobencarb. The purified TmoC catalyzed the dehydrogenation of 4CDA to 4CBA using NAD+ as a cofactor. A gene cluster responsible for the complete 4CBA metabolic pathway was also cloned, and its involvement in thiobencarb degradation was preliminarily verified by transcriptional analysis. IMPORTANCE Microbial degradation is the main factor in thiobencarb dissipation in soil. In previous studies, thiobencarb was degraded initially via N-deethylation, sulfoxidation, hydroxylation, and dechlorination. However, enzymes and genes involved in the microbial degradation of thiobencarb have not been studied. This study revealed a new thiobencarb degradation pathway in Acidovorax sp. strain T1 and identified a novel two-component FMN-dependent monooxygenase system, TmoAB. Under TmoAB-mediated catalysis, thiobencarb was cleaved at the C—S bond, producing diethylcarbamothioic S-acid and 4CDA. Furthermore, the downstream degradation pathway of thiobencarb was proposed. Our study provides the physiological, biochemical, and genetic foundation of thiobencarb degradation in this microorganism. PMID:28939603
Chu, Cui-Wei; Liu, Bin; Li, Na; Yao, Shi-Gang; Cheng, Dan; Zhao, Jia-Dong; Qiu, Ji-Guo; Yan, Xin; He, Qin; He, Jian
2017-12-01
Thiobencarb is a thiocarbamate herbicide used in rice paddies worldwide. Microbial degradation plays a crucial role in the dissipation of thiobencarb in the environment. However, the physiological and genetic mechanisms underlying thiobencarb degradation remain unknown. In this study, a novel thiobencarb degradation pathway was proposed in Acidovorax sp. strain T1. Thiobencarb was oxidized and cleaved at the C-S bond, generating diethylcarbamothioic S -acid and 4-chlorobenzaldehyde (4CDA). 4CDA was then oxidized to 4-chlorobenzoic acid (4CBA) and hydrolytically dechlorinated to 4-hydroxybenzoic acid (4HBA). The identification of catabolic genes suggested further hydroxylation to protocatechuic acid (PCA) and finally degradation through the protocatechuate 4,5-dioxygenase pathway. A novel two-component monooxygenase system identified in the strain, TmoAB, was responsible for the initial catabolic reaction. TmoA shared 28 to 32% identity with the oxygenase components of pyrimidine monooxygenase from Agrobacterium fabrum , alkanesulfonate monooxygenase from Pseudomonas savastanoi , and dibenzothiophene monooxygenase from Rhodococcus sp. TmoB shared 25 to 37% identity with reported flavin reductases and oxidized NADH but not NADPH. TmoAB is a flavin mononucleotide (FMN)-dependent monooxygenase and catalyzed the C-S bond cleavage of thiobencarb. Introduction of tmoAB into cells of the thiobencarb degradation-deficient mutant T1m restored its ability to degrade and utilize thiobencarb. A dehydrogenase gene, tmoC , was located 7,129 bp downstream of tmoAB , and its transcription was clearly induced by thiobencarb. The purified TmoC catalyzed the dehydrogenation of 4CDA to 4CBA using NAD + as a cofactor. A gene cluster responsible for the complete 4CBA metabolic pathway was also cloned, and its involvement in thiobencarb degradation was preliminarily verified by transcriptional analysis. IMPORTANCE Microbial degradation is the main factor in thiobencarb dissipation in soil. In previous studies, thiobencarb was degraded initially via N -deethylation, sulfoxidation, hydroxylation, and dechlorination. However, enzymes and genes involved in the microbial degradation of thiobencarb have not been studied. This study revealed a new thiobencarb degradation pathway in Acidovorax sp. strain T1 and identified a novel two-component FMN-dependent monooxygenase system, TmoAB. Under TmoAB-mediated catalysis, thiobencarb was cleaved at the C-S bond, producing diethylcarbamothioic S -acid and 4CDA. Furthermore, the downstream degradation pathway of thiobencarb was proposed. Our study provides the physiological, biochemical, and genetic foundation of thiobencarb degradation in this microorganism. Copyright © 2017 American Society for Microbiology.
Comparative Genomics of Syntrophic Branched-Chain Fatty Acid Degrading Bacteria
Narihiro, Takashi; Nobu, Masaru K.; Tamaki, Hideyuki; Kamagata, Yoichi; Sekiguchi, Yuji; Liu, Wen-Tso
2016-01-01
The syntrophic degradation of branched-chain fatty acids (BCFAs) such as 2-methylbutyrate and isobutyrate is an essential step in the production of methane from proteins/amino acids in anaerobic ecosystems. While a few syntrophic BCFA-degrading bacteria have been isolated, their metabolic pathways in BCFA and short-chain fatty acid (SCFA) degradation as well as energy conservation systems remain unclear. In an attempt to identify these pathways, we herein performed comparative genomics of three syntrophic bacteria: 2-methylbutyrate-degrading “Syntrophomonas wolfei subsp. methylbutyratica” strain JCM 14075T (=4J5T), isobutyrate-degrading Syntrophothermus lipocalidus strain TGB-C1T, and non-BCFA-metabolizing S. wolfei subsp. wolfei strain GöttingenT. We demonstrated that 4J5 and TGB-C1 both encode multiple genes/gene clusters involved in β-oxidation, as observed in the Göttingen genome, which has multiple copies of genes associated with butyrate degradation. The 4J5 genome possesses phylogenetically distinct β-oxidation genes, which may be involved in 2-methylbutyrate degradation. In addition, these Syntrophomonadaceae strains harbor various hydrogen/formate generation systems (i.e., electron-bifurcating hydrogenase, formate dehydrogenase, and membrane-bound hydrogenase) and energy-conserving electron transport systems, including electron transfer flavoprotein (ETF)-linked acyl-CoA dehydrogenase, ETF-linked iron-sulfur binding reductase, ETF dehydrogenase (FixABCX), and flavin oxidoreductase-heterodisulfide reductase (Flox-Hdr). Unexpectedly, the TGB-C1 genome encodes a nitrogenase complex, which may function as an alternative H2 generation mechanism. These results suggest that the BCFA-degrading syntrophic strains 4J5 and TGB-C1 possess specific β-oxidation-related enzymes for BCFA oxidation as well as appropriate energy conservation systems to perform thermodynamically unfavorable syntrophic metabolism. PMID:27431485
NASA Astrophysics Data System (ADS)
Kawahata, H.; Gupta, L. P.; Ishizuka, T.
2002-12-01
Amino acids (AA) and hexosamines (HA) are major constituents for all living organisms, constituting important fractions of labile organic carbon and nitrogen. They usually decompose rapidly than bulk OM and must be expected to be closely linked to biogeochemical processes. In spite of such importance, our understanding of degradation processes of labile components is still limited. Therefore vertical fluxes and preservation of AA and HA from water column to surface sediments are investigated at the western equatorial Pacific. The settling particles were composed of fairly fresh AA, which could be derived from siliceous diatom with less amount of calcareous plankton. In contrast, AA were degraded in sediments and porewaters. Each AA showed highly variable preservation ratio from settling to sedimentary particles. Compared with glycine, the calculated preservation ratio was the lowest (0%) for cysteine, followed by phenylalanine (6%), tyrosine (17%), methionine (47%), leucine (60%), isoleucine (65%), proline (67%), valine (91%), serine (99%), arginine (107%), threonine (112%), alanine (115%), glutamic acid (114%), aspartic acid (150%), lysine (166%) and histidine (186%). Beta-alanine and gamma-aminobutyric acid were the least labile AA. Probably they are so difficult to degrade for bacteria to get biochemical energy that the degradation proceeds fairly slowly. In contrast, after burial, even most labile, aromatic and sulfur-containing AA, degrade at a rate similar to the other protein AA. In spite of complicated reactions, most of the AA showed first-order reaction kinetics during the degradation in the sediments. The decomposition rate constant k (kyr-1) in this study was 2-3 orders lower than those in coastal marine environments. Better preservation of HA over AA in the sediments was probably due to the general incorporation of HA into structural biopolymer matrices, such as bacterial cell-walls and chitinous material. Abundant glycine in the AA in the sediments is due to contribution from diatom cell-walls, bacterial peptidoglycan, and the degradation by bacterial activity. Dissolved combined AA (DCAA) showed enrichment in glutamic acid, glycine and threonine, and depletion in aspartic acid and alanine. Bacterial biomass and/or activity influences DCAA in porewaters more than AA in the sediments. Phenylalanine was abundant in the dissolved free AA (DFAA). Both aromatic and acidic AA are generally concentrated in diatom cell protoplasm, which is more rapidly degraded than cell-walls. Good correlation between aspartic acid and carbonate contents in the sediments and poor correlation in the settling particles indicates that aspartic acid is significantly controlled by the reaction or adsorption with carbonates during early diagenesis. Abundant occurrence of clay minerals in sediments would be responsible for the enhanced accumulation of basic AA and arginine. During diagenesis, bulk Corganic/N ratios are mainly controlled by more contribution of ammonium, which is incorporated into the lattice of clay minerals, not by the compositional change in AA. Microbial degradation continued to reduce AA and OM in the sediments, which has implications for appreciable under-estimates of paleoproductivity.
2014-01-01
Background Trichloroethene and tetrachloroethene are the most common pollutants in groundwater and two of the priority pollutants listed by the U.S. Environmental Protection Agency. In previous studies on TCE and PCE photolysis and photochemical degradation, concentration ranges exceeding environmental levels by far with millimolar concentrations of TCE and PCE have been used, and it is not clear if the obtained results can be used to explain the degradation of these contaminants at more realistic environmental concentration levels. Methods Experiments with micromolar concentrations of TCE and PCE in aqueous solution using direct photolysis and UV/H2O2 have been conducted and product formation as well as transformation efficiency have been investigated. SPME/GC/MS, HPLC/UV and ion chromatography with conductivity detection have been used to determine intermediates of degradation. Results The results showed that chloride was a major end product in both TCE and PCE photodegradation. Several intermediates such as formic acid, dichloroacetic acid, dichloroacetaldehyede, chloroform, formaldehyde and glyoxylic acid were formed during both, UV and UV/H2O2 treatment of TCE. However chloroacetaldehyde and chloroacetic acid were only detected during direct UV photolysis of TCE and oxalic acid was only formed during the UV/H2O2 process. For PCE photodegradation, formic acid, di- and trichloroacetic acids were detected in both UV and UV/H2O2 systems, but formaldehyde and glyoxylic acid were only detected during direct UV photolysis. Conclusions For water treatment UV/H2O2 seems to be favorable over direct UV photolysis because of its higher degradation efficiency and lower risk for the formation of harmful intermediates. PMID:24401763
Dobaradaran, Sina; Lutze, Holger; Mahvi, Amir Hossein; Schmidt, Torsten C
2014-01-08
Trichloroethene and tetrachloroethene are the most common pollutants in groundwater and two of the priority pollutants listed by the U.S. Environmental Protection Agency. In previous studies on TCE and PCE photolysis and photochemical degradation, concentration ranges exceeding environmental levels by far with millimolar concentrations of TCE and PCE have been used, and it is not clear if the obtained results can be used to explain the degradation of these contaminants at more realistic environmental concentration levels. Experiments with micromolar concentrations of TCE and PCE in aqueous solution using direct photolysis and UV/H2O2 have been conducted and product formation as well as transformation efficiency have been investigated. SPME/GC/MS, HPLC/UV and ion chromatography with conductivity detection have been used to determine intermediates of degradation. The results showed that chloride was a major end product in both TCE and PCE photodegradation. Several intermediates such as formic acid, dichloroacetic acid, dichloroacetaldehyede, chloroform, formaldehyde and glyoxylic acid were formed during both, UV and UV/H2O2 treatment of TCE. However chloroacetaldehyde and chloroacetic acid were only detected during direct UV photolysis of TCE and oxalic acid was only formed during the UV/H2O2 process. For PCE photodegradation, formic acid, di- and trichloroacetic acids were detected in both UV and UV/H2O2 systems, but formaldehyde and glyoxylic acid were only detected during direct UV photolysis. For water treatment UV/H2O2 seems to be favorable over direct UV photolysis because of its higher degradation efficiency and lower risk for the formation of harmful intermediates.
The sources, fate, and toxicity of chemical warfare agent degradation products.
Munro, N B; Talmage, S S; Griffin, G D; Waters, L C; Watson, A P; King, J F; Hauschild, V
1999-01-01
We include in this review an assessment of the formation, environmental fate, and mammalian and ecotoxicity of CW agent degradation products relevant to environmental and occupational health. These parent CW agents include several vesicants: sulfur mustards [undistilled sulfur mustard (H), sulfur mustard (HD), and an HD/agent T mixture (HT)]; nitrogen mustards [ethylbis(2-chloroethyl)amine (HN1), methylbis(2-chloroethyl)amine (HN2), tris(2-chloroethyl)amine (HN3)], and Lewisite; four nerve agents (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX), tabun (GA), sarin (GB), and soman (GD)); and the blood agent cyanogen chloride. The degradation processes considered here include hydrolysis, microbial degradation, oxidation, and photolysis. We also briefly address decontamination but not combustion processes. Because CW agents are generally not considered very persistent, certain degradation products of significant persistence, even those that are not particularly toxic, may indicate previous CW agent presence or that degradation has occurred. Of those products for which there are data on both environmental fate and toxicity, only a few are both environmentally persistent and highly toxic. Major degradation products estimated to be of significant persistence (weeks to years) include thiodiglycol for HD; Lewisite oxide for Lewisite; and ethyl methyl phosphonic acid, methyl phosphonic acid, and possibly S-(2-diisopropylaminoethyl) methylphosphonothioic acid (EA 2192) for VX. Methyl phosphonic acid is also the ultimate hydrolysis product of both GB and GD. The GB product, isopropyl methylphosphonic acid, and a closely related contaminant of GB, diisopropyl methylphosphonate, are also persistent. Of all of these compounds, only Lewisite oxide and EA 2192 possess high mammalian toxicity. Unlike other CW agents, sulfur mustard agents (e.g., HD) are somewhat persistent; therefore, sites or conditions involving potential HD contamination should include an evaluation of both the agent and thiodiglycol. Images Figure 1 Figure 3 Figure 5 PMID:10585900
Yin, Penghua; Hu, Zhihao; Song, Xin; Liu, Jianguo; Lin, Na
2016-01-01
Perfluorooctanoic acid (PFOA) is an emerging contaminant of concern due to its toxicity for human health and ecosystems. However, successful degradation of PFOA in aqueous solutions with a cost-effective method remains a challenge, especially for groundwater. In this study, the degradation of PFOA using activated persulfate under mild conditions was investigated. The impact of different factors on persulfate activity, including pH, temperature (25 °C–50 °C), persulfate dosage and reaction time, was evaluated under different experimental conditions. Contrary to the traditional alkaline-activated persulfate oxidation, it was found that PFOA can be effectively degraded using activated persulfate under acidic conditions, with the degradation kinetics following the pseudo-first-order decay model. Higher temperature, higher persulfate dosage and increased reaction time generally result in higher PFOA degradation efficiency. Experimental results show that a PFOA degradation efficiency of 89.9% can be achieved by activated persulfate at pH of 2.0, with the reaction temperature of 50 °C, molar ratio of PFOA to persulfate as 1:100, and a reaction time of 100 h. The corresponding defluorination ratio under these conditions was 23.9%, indicating that not all PFOA decomposed via fluorine removal. The electron paramagnetic resonance spectrometer analysis results indicate that both SO4−• and •OH contribute to the decomposition of PFOA. It is proposed that PFOA degradation occurs via a decarboxylation reaction triggered by SO4−•, followed by a HF elimination process aided by •OH, which produces one-CF2-unit-shortened perfluoroalkyl carboxylic acids (PFCAs, Cn−1F2n−1COOH). The decarboxylation and HF elimination processes would repeat and eventually lead to the complete mineralization all PFCAs. PMID:27322298
Choe, Jong Kwon; Richards, David H; Wilson, Corey J; Mitch, William A
2015-11-17
Proteins are important targets of chemical disinfectants. To improve the understanding of disinfectant-protein reactions, this study characterized the disinfectant:protein molar ratios at which 50% degradation of oxidizable amino acids (i.e., Met, Tyr, Trp, His, Lys) and structure were observed during HOCl, HOBr, and O3 treatment of three well-characterized model proteins and bacteriophage MS2. A critical question is the extent to which the targeting of amino acids is driven by their disinfectant rate constants rather than their geometrical arrangement. Across the model proteins and bacteriophage MS2 (coat protein), differing widely in structure, methionine was preferentially targeted, forming predominantly methionine sulfoxide. This targeting concurs with its high disinfectant rate constants and supports its hypothesized role as a sacrificial antioxidant. Despite higher HOCl and HOBr rate constants with histidine and lysine than for tyrosine, tyrosine generally was degraded in preference to histidine, and to a lesser extent, lysine. These results concur with the prevalence of geometrical motifs featuring histidines or lysines near tyrosines, facilitating histidine and lysine regeneration upon Cl[+1] transfer from their chloramines to tyrosines. Lysine nitrile formation occurred at or above oxidant doses where 3,5-dihalotyrosine products began to degrade. For O3, which lacks a similar oxidant transfer pathway, histidine, tyrosine, and lysine degradation followed their relative O3 rate constants. Except for its low reactivity with lysine, the O3 doses required to degrade amino acids were as low as or lower than for HOCl or HOBr, indicating its oxidative efficiency. Loss of structure did not correlate with loss of particular amino acids, suggesting the need to characterize the oxidation of specific geometric motifs to understand structural degradation.
Elkady, Ehab Farouk; Fouad, Marwa Ahmed
2015-11-01
Two new hydrolytic products of letrozole were identified and proved to be true degradation products obtained by alkaline and acidic degradation of the drug. The acid and amide forms of the nitrile groups of letrozole were prepared and identified by IR and mass spectroscopic techniques. Subsequently, a simple, precise and selective stability-indicating RPLC method was developed and validated for the determination of letrozole in the presence of its degradation products. Letrozole was subjected to alkali and acid hydrolysis, oxidation, thermal degradation and photo-degradation. The degradation products were well isolated from letrozole. The chromatographic method was achieved using gradient elution of the drug and its degradation products on a reversed phase Zorbax Eclipse C18 column (100mm x 4.6mm, 3.5 μm) using a mobile phase consisting of 0.01M KH₂PO₄and methanol at a flow rate of 1 mL min⁻¹. Quantitation was achieved with UV detection at 230 nm. Linearity, accuracy and precision were found to be acceptable over the concentration range of 0.01-80 μgmL⁻¹. The proposed method was successfully applied to the determination of letrozole in bulk, plasma and in its pharmaceutical preparation.
Degradation of pentachlorophenol in soil by pulsed corona discharge plasma.
Wang, Tie Cheng; Lu, Na; Li, Jie; Wu, Yan
2010-08-15
The remediation of pentachlorophenol (PCP) contaminated soil using pulsed corona discharge plasma was reported in this study. The effect of practical run parameters such as peak pulse voltage, pulse frequency, gas atmospheres (air, O(2), Ar and N(2)), air flow rate and pollution time on PCP degradation was investigated, and the intermediate products were also studied. The results indicated that PCP degradation efficiency increased with an increase in peak pulse voltage or pulse frequency, due to the enhancement of energy input. There existed a maximal PCP degradation efficiency with the change of air flow rate. PCP degradation efficiencies under oxygen and air atmospheres were achieved 92% and 77% after 45 min of discharge treatment at 14.0 kV, respectively, which were only 19% and 8% under argon and nitrogen atmospheres, respectively. O(3) played an important role in PCP degradation. However, other processes also contributed to PCP degradation, such as N, N(2)(+), N(+) and OH. The pollution time evidenced slight influence on PCP degradation. The main intermediate products produced during the treatment process were identified as tetrachlorocatechol, tetrachlorohydroquinone, acetic acid, formic acid and oxalic acid by HPLC/MS and ion chromatography. This study is expected to provide reference for the application of pulsed corona discharge in soil remediation. Copyright 2010 Elsevier B.V. All rights reserved.
Wang, Tiecheng; Ren, Jingyu; Qu, Guangzhou; Liang, Dongli; Hu, Shibin
2016-12-15
Glyphosate was one of the most widely used herbicides in the world. Remediation of glyphosate-contaminated soil was conducted using atmospheric pressure dielectric barrier discharge (DBD) plasma. The feasibility of glyphosate degradation in soil was explored, and the soil leachate toxicity after remediation was assessed via a seed germination test. The experimental results showed that approximately 93.9% of glyphosate was degraded within 45min of DBD plasma treatment with an energy yield of 0.47gkWh -1 , and the degradation process fitted the first-order kinetic model. Increasing the discharge voltage and decreasing the organic matter content of the soil were both found to facilitate glyphosate degradation. There existed appropriate soil moisture to realize high glyphosate degradation efficiency. Glyphosate mineralization was confirmed by changes of total organic carbon (TOC), chemical oxygen demand (COD), PO 4 3- and NO 3 - . The degradation intermediates including glycine, aminomethylphosphonic acid, acetic acid, formic acid, PO 4 3- and NO 3 - , CO 2 and CO were observed. A possible pathway for glyphosate degradation in the soil using this system was proposed. Based on the soil leachate toxicity test using wheat seed germination, the soil did not exhibit any hazardous effects following high-efficiency glyphosate degradation. Copyright © 2016 Elsevier B.V. All rights reserved.
Flynn, Timothy Corcoran; Thompson, David H; Hyun, Seok-Hee
2013-10-01
In this study, the authors sought to determine the molecular weight distribution of three hyaluronic acids-Belotero Balance, Restylane, and Juvéderm Ultra-and their rates of degradation following exposure to hyaluronidase. Lot consistency of Belotero Balance also was analyzed. Three lots of Belotero Balance were analyzed using liquid chromatography techniques. The product was found to have high-molecular-weight and low-molecular-weight species. One lot of Belotero Balance was compared to one lot each of Juvéderm Ultra and Restylane. Molecular weights of the species were analyzed. The hyaluronic acids were exposed to ovine testicular hyaluronidase at six time points-baseline and 0.5, 1, 2, 6, and 24 hours-to determine degradation rates. Belotero Balance lots were remarkably consistent. Belotero Balance had the largest high-molecular-weight species, followed by Juvéderm Ultra and Restylane (p < 0.001). Low-molecular-weight differences among all three hyaluronic acids were not statistically significant. Percentages of high-molecular-weight polymer differ among the three materials, with Belotero Balance having the highest fraction of high-molecular-weight polymer. Degradation of the high-molecular-weight species over time showed different molecular weights of the high-molecular-weight fraction. Rates of degradation of the hyaluronic acids following exposure to ovine testicular hyaluronidase were similar. All hyaluronic acids were fully degraded at 24 hours. Fractions of high-molecular-weight polymer differ across the hyaluronic acids tested. The low-molecular-weight differences are not statistically significant. The high-molecular-weight products have different molecular weights at the 0.5- and 2-hour time points when exposed to ovine testicular hyaluronidase and are not statistically different at 24 hours.
Quintana, José Benito; Rodil, Rosario; López-Mahía, Purificación; Muniategui-Lorenzo, Soledad; Prada-Rodríguez, Darío
2010-01-01
The degradation of seven acidic drugs and two metabolites during chlorination was investigated by liquid chromatography-mass spectrometry (LC-MS). A triple-quadrupole (QqQ) system was used to follow the time course of the pharmaceuticals and by-products, while a quadrupole time-of-flight (Q-TOF) system was also used for the identification of the by-products. Under strong chlorination conditions (10mg/L Cl(2), 24h), only four of the target compounds were significantly degraded: salicylic acid, naproxen, diclofenac and indomethacine. The degradation kinetics of these four compounds were investigated at different concentrations of chlorine, bromide and pH by means of a Box-Behnken experimental design. Depending on these factors, measured pseudo-first order half-lives were in the ranges: 23-573h for salicylic acid, 13-446min for naproxen, 5-328min for diclofenac and 0.4-13.4min for indomethacine. Also, it was observed that chlorine concentration was the overall most significant factor, followed by the bromide concentration (except for indomethacine), resulting in increased degradation kinetics as they are increased. The degradation path of salicylic acid, naproxen and diclofenac consisted of aromatic substitution of one or two hydrogens by chlorine and/or bromide. Moreover, for diclofenac, two other by-products corresponding to a decarboxylation/hydroxylation pathway from the monohalogenated products were also identified. On the other hand, indomethacine degradation did not lead to halogenation products but to oxidation ones. The investigation of these by-products in real samples by LC-MS/MS (QqQ) showed that the halogenated derivates of salicylic acid occurred in all the drinking water and wastewater samples analysed.
Uric acid in plants and microorganisms: Biological applications and genetics - A review.
Hafez, Rehab M; Abdel-Rahman, Tahany M; Naguib, Rasha M
2017-09-01
Uric acid increased accumulation and/or reduced excretion in human bodies is closely related to pathogenesis of gout and hyperuricemia. It is highly affected by the high intake of food rich in purine. Uric acid is present in both higher plants and microorganisms with species dependent concentration. Urate-degrading enzymes are found both in plants and microorganisms but the mechanisms by which plant degrade uric acid was found to be different among them. Higher plants produce various metabolites which could inhibit xanthine oxidase and xanthine oxidoreductase, so prohibit the oxidation of hypoxanthine to xanthine then to uric acid in the purine metabolism. However, microorganisms produce group of degrading enzymes uricase, allantoinase, allantoicase and urease, which catalyze the degradation of uric acid to the ammonia. In humans, researchers found that several mutations caused a pseudogenization (silencing) of the uricase gene in ancestral apes which exist as an insoluble crystalloid in peroxisomes. This is in contrast to microorganisms in which uricases are soluble and exist either in cytoplasm or peroxisomes. Moreover, many recombinant uricases with higher activity than the wild type uricases could be induced successfully in many microorganisms. The present review deals with the occurrence of uric acid in plants and other organisms specially microorganisms in addition to the mechanisms by which plant extracts, metabolites and enzymes could reduce uric acid in blood. The genetic and genes encoding for uric acid in plants and microorganisms are also presented.
Chávez-González, Mónica L; Guyot, Sylvain; Rodríguez-Herrera, Raul; Prado-Barragán, Arely; Aguilar, Cristóbal N
2018-06-01
Due to great interest on producing bioactive compounds for functional foods and biopharmaceuticals, it is important to explore the microbial degradation of potential sources of target biomolecules. Gallotannins are polyphenols present in nature, an example of them is tannic acid which is susceptible to enzymatic hydrolysis. This hydrolysis is performed by tannase or tannin acyl hydrolase, releasing in this way, biomolecules with high-added value. In the present study, chemical profiles obtained after fungal degradation of tannic acid under two bioprocesses (submerged fermentation (SmF) and solid state fermentation (SSF)) were determined. In both fermentation systems (SmF and SSF), Aspergillus niger GH1 strain and tannic acid as a sole carbon source and inducer were used (the presence of tannic acid promotes production of enzyme tannase). In case of SSF, polyurethane foam (PUF) was used like as support of fermentation; culture medium only was used in case of submerged fermentation. Fermentation processes were monitored during 72 h; samples were taken kinetically every 8 h; and all extracts obtained were partially purified to obtain polyphenolic fraction and then were analyzed by liquid chromatography-mass spectrometry (LC-MS). Molecules like gallic acid and n-galloyl glucose were identified as intermediates in degradation of tannic acid; during SSF was identified ellagic acid production. The results obtained in this study will contribute to biotechnological production of ellagic acid.
Uhlik, Ondrej; Musilova, Lucie; Ridl, Jakub; Hroudova, Miluse; Vlcek, Cestmir; Koubek, Jiri; Holeckova, Marcela; Mackova, Martina; Macek, Tomas
2013-10-01
The aim of the study was to investigate how selected natural compounds (naringin, caffeic acid, and limonene) induce shifts in both bacterial community structure and degradative activity in long-term polychlorinated biphenyl (PCB)-contaminated soil and how these changes correlate with changes in chlorobiphenyl degradation capacity. In order to address this issue, we have integrated analytical methods of determining PCB degradation with pyrosequencing of 16S rRNA gene tag-encoded amplicons and DNA-stable isotope probing (SIP). Our model system was set in laboratory microcosms with PCB-contaminated soil, which was enriched for 8 weeks with the suspensions of flavonoid naringin, terpene limonene, and phenolic caffeic acid. Our results show that application of selected plant secondary metabolites resulted in bacterial community structure far different from the control one (no natural compound amendment). The community in soil treated with caffeic acid is almost solely represented by Proteobacteria, Acidobacteria, and Verrucomicrobia (together over 99 %). Treatment with naringin resulted in an enrichment of Firmicutes to the exclusion of Acidobacteria and Verrucomicrobia. SIP was applied in order to identify populations actively participating in 4-chlorobiphenyl catabolism. We observed that naringin and limonene in soil foster mainly populations of Hydrogenophaga spp., caffeic acid Burkholderia spp. and Pseudoxanthomonas spp. None of these populations were detected among 4-chlorobiphenyl utilizers in non-amended soil. Similarly, the degradation of individual PCB congeners was influenced by the addition of different plant compounds. Residual content of PCBs was lowest after treating the soil with naringin. Addition of caffeic acid resulted in comparable decrease of total PCBs with non-amended soil; however, higher substituted congeners were more degraded after caffeic acid treatment compared to all other treatments. Finally, it appears that plant secondary metabolites have a strong effect on the bacterial community structure, activity, and associated degradative ability.
Alireza Javadi; Yottha Srithep; Craig C. Clemons; L-S. Turng; Shaoqin Gong
2012-01-01
Supercritical fluid (SCF) N2 was used as a physical foaming agent to fabricate microcellular injection-molded poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV)âpoly(butylene adipate-co-terephthalate) (PBAT)âhyperbranched-polymer (HBP)ânanoclay (NC) bionanocomposites. The effects of incorporating HBP and NC on the morphological, mechanical, and...
Alireza Javadi; Yottha Srithep; Jungjoo Lee; Srikanth Pilla; Craig Clemons; Shaoqin Gong; Lih-Sheng Turng
2010-01-01
Solid and microcellular components made of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/ poly (butylenes adipate-co-terephthalate) (PBAT) blend (weight ration of PHBV:PBAT = 30:70), recycled wood fiber (RWF), and nanoclay (NC) were prepared via a conventional and microcellular-injection molding process, respectively. Morphology, thermal properties, and...
Acid attack on hydrated cement — Effect of mineral acids on the degradation process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutberlet, T.; Hilbig, H.; Beddoe, R.E., E-mail: robin.beddoe@tum.de
During acid attack on concrete structural components, a degraded layer develops whose properties as a protective barrier are decisive for durability. {sup 29}Si NMR spectroscopy and {sup 27}Al NMR spectroscopy were used with XRD to investigate the degraded layer on hardened cement paste exposed to HCl and H{sub 2}SO{sub 4}. The layer comprises an amorphous silica gel with framework silicates, geminate and single silanol groups in which Si is substituted by Al. Amorphous Al(OH){sub 3} and Fe(OH){sub 3} are present. The gel forms by polycondensation and cross-linking of C-A-S-H chains at AlO{sub 4} bridging tetrahedra. In the transition zone betweenmore » the degraded layer and the undamaged material, portlandite dissolves and Ca is removed from the C-A-S-H phases maintaining their polymer structure at first. With HCl, monosulphate in the transition zone is converted into Friedel's salt and ettringite. With H{sub 2}SO{sub 4}, gypsum precipitates near the degradation front reducing the thickness of the transition zone and the rate of degradation.« less
Photocatalytic degradation of leather dye over ZnO catalyst supported on alumina and glass surfaces.
Sakthivel, S; Neppoiian, B; Palanichamy, M; Arabindoo, B; Murugesan, V
2001-01-01
The photocatalytic degradation of leather dye, Acid green 16, has been investigated over a ZnO catalyst supported on two different materials, namely alumina and glass beads (3-5 mm diameter). Sunlight was used as the energy source. The alumina-supported ZnO outperformed the glass-supported ZnO under identical operational conditions suggesting that the dye molecules are adsorbed on the alumina supports to make a high concentration environment around the loaded ZnO. The degradation efficiency was greater at pH = 4 compared to other acidic and neutral pH. Also, the degradation efficiency was a little bit higher in alkaline medium, which correlates with the adsorption behaviour of acid green 16 on the alumina supported ZnO. The influence of inorganic oxidants like H2O2, FeCl3 and Fenton reagent on the degradation efficiency were systematically studied. The decolourisation and extent of degradation of the dye were determined by UV-VIS spectroscopy and COD reflux methods, respectively. Complete mineralisation of the dye was conformed by High performance liquid chromatography (HPLC) analysis.
Shi, Yong-juan; Pei, Jia; Zhang, Jian; Niu, Jia-lin; Zhang, Hua; Guo, Sheng-rong; Li, Zhong-hua; Yuan, Guang-yin
2017-01-01
A strategy of suppressing the fast degradation behaviour of Mg-based biomaterials by the introduction of one of Mg degradation products Mg(OH)2 was proposed according to the following degradation mechanism, Mg + 2H2O ⇋ Mg(OH)2 + H2↑. Specifically, Mg(OH)2 submicron particles were mixed into poly (L-lactic acid) (PLLA) to synthesize a composite coating onto hydrofluoric acid-pretreated Mg-Nd-Zn-Zr alloy. The in vitro degradation investigations showed that the addition of Mg(OH)2 particles not only slowed down the corrosion of Mg matrix, but also retarded the formation of gas pockets underneath the polymer coating. Correspondingly, cytocompatibility results exhibited significant improvement of proliferation of endothelial cells, and further insights was gained into the mechanisms how the introduction of Mg(OH)2 particles into PLLA coating affected the magnesium alloy degradation and cytocompatibility. The present study provided a promising surface modification strategy to tailor the degradation behaviour of Mg-based biomaterials. PMID:28150751
Microbial degradation of usnic acid in the reindeer rumen
NASA Astrophysics Data System (ADS)
Sundset, Monica A.; Barboza, Perry S.; Green, Thomas K.; Folkow, Lars P.; Blix, Arnoldus Schytte; Mathiesen, Svein D.
2010-03-01
Reindeer ( Rangifer tarandus) eat and utilize lichens as an important source of energy and nutrients in winter. Lichens synthesize and accumulate a wide variety of phenolic secondary compounds, such as usnic acid, as a defense against herbivores and to protect against damage by UV-light in solar radiation. We have examined where and to what extent these phenolic compounds are degraded in the digestive tract of the reindeer, with particular focus on usnic acid. Three male reindeer were given ad libitum access to a control diet containing no usnic acid for three weeks and then fed lichens ad libitum (primarily Cladonia stellaris) containing 9.1 mg/g DM usnic acid for 4 weeks. Usnic acid intake in reindeer on the lichen diet was 91-117 mg/kg BM/day. In spite of this, no trace of usnic acid or conjugates of usnic acid was found either in fresh rumen fluid, urine, or feces. This suggests that usnic acid is rapidly degraded by rumen microbes, and that it consequently is not absorbed by the animal. This apparent ability to detoxify lichen phenolic compounds may gain increased importance with future enhanced UV-B radiation expected to cause increased protective usnic acid/phenol production in lichens.
Songlin, Wang; Ning, Zhou; Si, Wu; Qi, Zhang; Zhi, Yang
2015-03-01
Ultrasound degradation of humic acid has been investigated in the presence of persulfate anions at ultrasonic frequency of 40 kHz. The effects of persulfate anion concentration, ultrasonic power input, humic acid concentration, reaction time, solution pH and temperature on humic acid removal efficiency were studied. It is found that up to 90% humic acid removal efficiency was achieved after 2 h reaction. In this system, sulfate radicals (SO₄⁻·) were considered to be the mainly oxidant to mineralize humic acid while persulfate anion can hardly react with humic acid directly. A novel kinetic model based on sulfate radicals (SO₄⁻·) oxidation was established to describe the humic acid mineralization process mathematically and chemically in sono-activated persulfate system. According to the new model, ultrasound power, persulfate dosage, solution pH and reaction temperature have great influence on humic acid degradation. Different initial concentration of persulfate anions and humic acid, ultrasonic power, initial pH and reaction temperature have been discussed to valid the effectiveness of the model, and the simulated data showed new model had good agreement with the experiments data.
Mishra, Vartika; Jana, Asim K; Jana, Mithu Maiti; Gupta, Antriksh
2017-06-01
Sweet sorghum bagasse (SSB) from food processing and agricultural industry has attracted the attention for uses in production of biofuel, enzymes and other products. The alteration in lignocellulolytic enzymes by use of supplements in fungal pretreatment of SSB to achieve higher lignin degradation, selectivity value and enzymatic hydrolysis to fermentable sugar was studied. Fungal strain Coriolus versicolor was selected for pretreatment due to high ligninolytic and low cellulolytic enzyme production resulting in high lignin degradation and selectivity value. SSB was pretreated with supplements of veratryl alcohol, syringic acid, catechol, gallic acid, vanillin, guaiacol, CuSO 4 and MnSO 4 . The best results were obtained with CuSO 4 , gallic acid and syringic acid supplements. CuSO 4 increased the activities of laccase (4.9-fold) and polyphenol oxidase (1.9-fold); gallic acid increased laccase (3.5-fold) and manganese peroxidase (2.5-fold); and syringic acid increased laccase (5.6-fold), lignin peroxidase (13-fold) and arylalcohol oxidase (2.8-fold) resulting in enhanced lignin degradations and selectivity values than the control. Reduced cellulolytic enzyme activities resulted in high cellulose recovery. Enzymatic hydrolysis of pretreated SSB yielded higher sugar due to degradation of lignin and reduced the crystallinity of cellulose. The study showed that supplements could be used to improve the pretreatment process. The results were confirmed by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and thermogravimetric/differential thermogravimetric analysis of SSB.
Nhi-Cong, Le Thi; Mai, Cung Thi Ngoc; Minh, Nghiem Ngoc; Ha, Hoang Phuong; Lien, Do Thi; Tuan, Do Van; Quyen, Dong Van; Ike, Michihiko; Uyen, Do Thi To
2016-01-01
This article reports on the ability of yeast Trichosporon asahii B1 biofilm-associated cells, compared with that of planktonic cells, to transform sec-hexylbenzene and its metabolites. This B1 strain was isolated from a petroleum-polluted sediment collected in the QuangNinh coastal zones in Vietnam, and it can transform the branched aromatic hydrocarbons into a type of forming biofilm (pellicle) more efficiency than that the planktonic forms can. In the biofilm cultivation, seven metabolites, including acetophenone, benzoic acid, 2,3-dihydroxybenzoic acid, β-methylcinnamic acid, 2-phenylpropionic acid, 3-phenylbutyric acid, and 5-phenylhexanoic acid were extracted by ethyl acetate and analyzed by HPLC and GC-MS. In contrast, in the planktonic cultivation, only three of these intermediates were found. An individual metabolite was independently used as an initial substrate to prove its degradation by biofilm and planktonic types. The degradation of these products indicated that their inoculation with B1 biofilms was indeed higher than that observed in their inoculation with B1 planktonic cells. This is the first report on the degradation of sec-hexylbenzene and its metabolites by a biofilm-forming Trichosporon asahii strain. These results enhance our understanding of the degradation of branched-side-chain alkylbenzenes by T. asahii B1 biofilms and give a new insight into the potential role of biofilms formed by such species in the bioremediation of other recalcitrant aromatic compounds.
SURFACE DEGRADATION OF COMPOSITE RESINS BY ACIDIC MEDICINES AND pH-CYCLING
Valinoti, Ana Carolina; Neves, Beatriz Gonçalves; da Silva, Eduardo Moreira; Maia, Lucianne Cople
2008-01-01
This study evaluated the effects of acidic medicines (Dimetapp® and Claritin®), under pH-cycling conditions, on the surface degradation of four composite resins (microhybrid: TPH, Concept, Opallis and Nanofilled: Supreme). Thirty disc-shaped specimens (Ø = 5.0 mm / thickness = 2.0 mm) of each composite were randomly assigned to 3 groups (n = 10): a control and two experimental groups, according to the acidic medicines evaluated. The specimens were finished and polished with aluminum oxide discs, and the surface roughness was measured by using a profilometer. After the specimens were submitted to a pH-cycling regimen and immersion in acidic medicines for 12 days, the surface roughness was measured again. Two specimens for each material and group were analyzed by scanning electron microscopy (SEM) before and after pH-cycling. Data were analyzed by the Student's-t test, ANOVA, Duncan's multiple range test and paired t-test (α=0.05). Significant increase in roughness was found only for TPH in the control group and TPH and Supreme immersed in Claritin® (p<0.05). SEM analyses showed that the 4 composite resins underwent erosion and surface degradation after being subjected to the experimental conditions. In conclusion, although the roughness was slightly affected, the pH-cycling and acidic medicines caused surface degradation of the composite resins evaluated. Titratable acidity seemed to play a more crucial role on surface degradation of composite resins than pH. PMID:19089257
NASA Astrophysics Data System (ADS)
Podzorova, M. V.; Tertyshnaya, Yu. V.; Pantyukhov, P. V.; Shibryaeva, L. S.; Popov, A. A.; Nikolaeva, S.
2016-11-01
Influence of different environmental factors on the degradation of film samples based on polylactic acid and low density polyethylene with the addition of oxidized polyethylene was studied in this work. Different methods were used to find the relationship between degradation and ultraviolet, moisture, oxygen. It was found that the addition of oxidized polyethylene, used as a model of recycled polyethylene, promotes the degradation of blends.
Wang, Tie Cheng; Lu, Na; Li, Jie; Wu, Yan
2010-04-15
Chlorinated organics are frequently found as harmful soil contaminants and persisted for extended periods of time. A novel approach, named pulsed corona discharge plasma (PCDP), was employed for the degradation of pentachlorophenol (PCP) in soil. Experimental results showed that 87% of PCP could be smoothly removed in 60 min. Increasing pulse voltage, enhancing soil pH, lowering humic acid (HA) in soil and reducing granular size of the soil were found to be favorable for PCP degradation efficiency. Oxidation and physical processes simultaneously contributed to PCP removal in soil and ozone was the main factor in PCDP treatment. C-Cl bonds in PCP were cleaved during PCDP treatment by Fourier transform infrared spectroscopy (FTIR) analysis. The mineralization of PCP was confirmed by total organic carbon (TOC) and dechlorination analyses. The main intermediate products such as tetrachlorocatechol, tetrachlorohydroquinone, acetic acid, formic acid, and oxalic acid were identified by HPLC/MS and ion chromatography. A possible pathway of PCP degradation in soil in such a system was proposed.
Radical Cations and Acid Protection during Radiolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mincher, Bruce J.; Zarzana, Christopher A.; Mezyk, Stephen P.
2016-09-09
Ligand molecules for used nuclear fuel separation schemes are exposed to high radiation fields and high concentrations of acid. Thus, an understanding of the complex interactions between extraction ligands, diluent, and acid is critical to understanding the performance of a separation process. The diglycolamides are ligands with important structural similarities to CMPO; however, previous work has shown that their radiolytic degradation has important mechanistic differences from CMPO. The DGAs do not enjoy radioprotection by HNO3 and the kinetics of DGA radiolytic degradation are different. CMPO degrades with pseudo-zero-order kinetics in linear fashion with absorbed dose while the DGAs degrade inmore » pseudo-first-order, exponential fashion. This suggests that the DGAs degrade by simple reaction with some product of direct diluent radiolysis, while CMPO degradation is probably multi-step, with a slow step that is not dependent on the CMPO concentration, and mitigated by HNO 3. It is thus believed that radio-protection and the zero-order radiolytic degradation kinetics are related, and that these phenomena are a function of either the formation of strong acid complexes with CMPO and/or to the presence of the CMPO phenyl ring. Experiments to test both these hypotheses have been designed and partially conducted. This report summarizes findings related to these phenomena for FY16, in satisfaction of milestone M3FT-16IN030104053. It also reports continued kinetic measurements for the reactions of the dodecane radical cation with solvent extraction ligands.« less
Ren, Lei; Jia, Yang; Ruth, Nahurira; Qiao, Cheng; Wang, Junhuan; Zhao, Baisuo; Yan, Yanchun
2016-08-01
Bacterial strain YC-RL4, capable of utilizing phthalic acid esters (PAEs) as the sole carbon source for growth, was isolated from petroleum-contaminated soil. Strain YC-RL4 was identified as Mycobacterium sp. by 16S rRNA gene analysis and Biolog tests. Mycobacterium sp. YC-RL4 could rapidly degrade dibutyl phthalate (DBP), diethyl phthalate (DEP), dimethyl phthalate (DMP), dicyclohexyl phthalate (DCHP), and di-(2-ethylhexyl) phthalate (DEHP) under both individual and mixed conditions, and all the degradation rates were above 85.0 % within 5 days. The effects of environmental factors which might affect the degrading process were optimized as 30 °C and pH 8.0. The DEHP metabolites were detected by HPLC-MS and the degradation pathway was deduced tentatively. DEHP was transformed into phthalic acid (PA) via mono (2-ethylhexyl) phthalate (MEHP) and PA was further utilized for growth via benzoic acid (BA) degradation pathway. Cell surface hydrophobicity (CSH) assays illuminated that the strain YC-RL4 was of higher hydrophobicity while grown on DEHP and CSH increased with the higher DEHP concentration. The degradation rates of DEHP by strain YC-RL4 in different environmental samples was around 62.0 to 83.3 % and strain YC-RL4 survived well in the soil sample. These results suggested that the strain YC-RL4 could be used as a potential and efficient PAE degrader for the bioremediation of contaminated sites.
Lee, I. Russel; Yang, Liting; Sebetso, Gaseene; Allen, Rebecca; Doan, Thi H. N.; Blundell, Ross; Lui, Edmund Y. L.; Morrow, Carl A.; Fraser, James A.
2013-01-01
Degradation of purines to uric acid is generally conserved among organisms, however, the end product of uric acid degradation varies from species to species depending on the presence of active catabolic enzymes. In humans, most higher primates and birds, the urate oxidase gene is non-functional and hence uric acid is not further broken down. Uric acid in human blood plasma serves as an antioxidant and an immune enhancer; conversely, excessive amounts cause the common affliction gout. In contrast, uric acid is completely degraded to ammonia in most fungi. Currently, relatively little is known about uric acid catabolism in the fungal pathogen Cryptococcus neoformans even though this yeast is commonly isolated from uric acid-rich pigeon guano. In addition, uric acid utilization enhances the production of the cryptococcal virulence factors capsule and urease, and may potentially modulate the host immune response during infection. Based on these important observations, we employed both Agrobacterium-mediated insertional mutagenesis and bioinformatics to predict all the uric acid catabolic enzyme-encoding genes in the H99 genome. The candidate C. neoformans uric acid catabolic genes identified were named: URO1 (urate oxidase), URO2 (HIU hydrolase), URO3 (OHCU decarboxylase), DAL1 (allantoinase), DAL2,3,3 (allantoicase-ureidoglycolate hydrolase fusion protein), and URE1 (urease). All six ORFs were then deleted via homologous recombination; assaying of the deletion mutants' ability to assimilate uric acid and its pathway intermediates as the sole nitrogen source validated their enzymatic functions. While Uro1, Uro2, Uro3, Dal1 and Dal2,3,3 were demonstrated to be dispensable for virulence, the significance of using a modified animal model system of cryptococcosis for improved mimicking of human pathogenicity is discussed. PMID:23667704
Lee, I Russel; Yang, Liting; Sebetso, Gaseene; Allen, Rebecca; Doan, Thi H N; Blundell, Ross; Lui, Edmund Y L; Morrow, Carl A; Fraser, James A
2013-01-01
Degradation of purines to uric acid is generally conserved among organisms, however, the end product of uric acid degradation varies from species to species depending on the presence of active catabolic enzymes. In humans, most higher primates and birds, the urate oxidase gene is non-functional and hence uric acid is not further broken down. Uric acid in human blood plasma serves as an antioxidant and an immune enhancer; conversely, excessive amounts cause the common affliction gout. In contrast, uric acid is completely degraded to ammonia in most fungi. Currently, relatively little is known about uric acid catabolism in the fungal pathogen Cryptococcus neoformans even though this yeast is commonly isolated from uric acid-rich pigeon guano. In addition, uric acid utilization enhances the production of the cryptococcal virulence factors capsule and urease, and may potentially modulate the host immune response during infection. Based on these important observations, we employed both Agrobacterium-mediated insertional mutagenesis and bioinformatics to predict all the uric acid catabolic enzyme-encoding genes in the H99 genome. The candidate C. neoformans uric acid catabolic genes identified were named: URO1 (urate oxidase), URO2 (HIU hydrolase), URO3 (OHCU decarboxylase), DAL1 (allantoinase), DAL2,3,3 (allantoicase-ureidoglycolate hydrolase fusion protein), and URE1 (urease). All six ORFs were then deleted via homologous recombination; assaying of the deletion mutants' ability to assimilate uric acid and its pathway intermediates as the sole nitrogen source validated their enzymatic functions. While Uro1, Uro2, Uro3, Dal1 and Dal2,3,3 were demonstrated to be dispensable for virulence, the significance of using a modified animal model system of cryptococcosis for improved mimicking of human pathogenicity is discussed.
Lipid degradation promotes prostate cancer cell survival.
Itkonen, Harri M; Brown, Michael; Urbanucci, Alfonso; Tredwell, Gregory; Ho Lau, Chung; Barfeld, Stefan; Hart, Claire; Guldvik, Ingrid J; Takhar, Mandeep; Heemers, Hannelore V; Erho, Nicholas; Bloch, Katarzyna; Davicioni, Elai; Derua, Rita; Waelkens, Etienne; Mohler, James L; Clarke, Noel; Swinnen, Johan V; Keun, Hector C; Rekvig, Ole P; Mills, Ian G
2017-06-13
Prostate cancer is the most common male cancer and androgen receptor (AR) is the major driver of the disease. Here we show that Enoyl-CoA delta isomerase 2 (ECI2) is a novel AR-target that promotes prostate cancer cell survival. Increased ECI2 expression predicts mortality in prostate cancer patients (p = 0.0086). ECI2 encodes for an enzyme involved in lipid metabolism, and we use multiple metabolite profiling platforms and RNA-seq to show that inhibition of ECI2 expression leads to decreased glucose utilization, accumulation of fatty acids and down-regulation of cell cycle related genes. In normal cells, decrease in fatty acid degradation is compensated by increased consumption of glucose, and here we demonstrate that prostate cancer cells are not able to respond to decreased fatty acid degradation. Instead, prostate cancer cells activate incomplete autophagy, which is followed by activation of the cell death response. Finally, we identified a clinically approved compound, perhexiline, which inhibits fatty acid degradation, and replicates the major findings for ECI2 knockdown. This work shows that prostate cancer cells require lipid degradation for survival and identifies a small molecule inhibitor with therapeutic potential.
Aqueous photolysis of niclosamide
Graebing, P.W.; Chib, J.S.; Hubert, T.D.; Gingerich, W.H.
2004-01-01
The photodegradation of [14C]niclosamide was studied in sterile, pH 5, 7, and 9 buffered aqueous solutions under artificial sunlight at 25.0 A? 1.0 A?C. Photolysis in pH 5 buffer is 4.3 times faster than in pH 9 buffer and 1.5 times faster than in pH 7 buffer. In the dark controls, niclosamide degraded only in the pH 5 buffer. After 360 h of continuous irradiation in pH 9 buffer, the chromatographic pattern of the degradates was the same regardless of which ring contained the radiolabel. An HPLC method was developed that confirmed these degradates to be carbon dioxide and two- and four-carbon aliphatic acids formed by cleavage of both aromatic rings. Carbon dioxide was the major degradate, comprising 40% of the initial radioactivity in the 360 h samples from both labels. The other degradates formed were oxalic acid, maleic acid, glyoxylic acid, and glyoxal. In addition, in the chloronitroaniline-labeled irradiated test solution, 2-chloro-4-nitroaniline was observed and identified after 48 h of irradiation but was not detected thereafter. No other aromatic compounds were isolated or observed in either labeled test system.
NASA Astrophysics Data System (ADS)
Wu, Shui-Ping; Schwab, James; Liu, Bi-Lian; Li, Tsung-Chang; Yuan, Chung-Shin
2015-03-01
PM10 aerosols from the coastal area of Southeastern China were collected from April 2010 to March 2011 and were measured for C2-C10 dicarboxylic acids, phthalic acids (Ph) and five fatty acids (palmitic, stearic, oleic, linoleic and elaidic acids). For all sites and seasons, molecular distributions of diacids were always characterized by a predominance of oxalic acid (C2), with a relative abundance of 68-87%, followed by malonic acid (C3) and by either succinic acid (C4) or phthalic acid (Ph). This observed molecular composition was different from that in Chinese megacities where Ph was significantly higher than C3 and C4 diacids, which was likely due to the less intensive traffic emissions in the coastal area. Seasonal means of total diacids ranged between 394 and 547 ng m- 3 at the coastal urban sites and between 163 and 245 ng m- 3 at off-island sites. These levels were much lower than those reported in Chinese megacities (668-1568 ng m- 3) and slightly lower than those in Jeju Island, Korea (464-744 ng m- 3) but higher than those in marine and continental background locations. In all seasons, saturated fatty acids were significantly higher than unsaturated fatty acids due to their greater photochemical stabilities in the atmosphere. Most organic acids showed higher levels in spring and winter and lower levels in summer and fall, which was likely due to the influence of transport and meteorology. The diagnostic ratios of malonic acid to succinic acid (C3/C4), adipic acid to azelaic acid (C6/C9) and phthalic acid to azelaic acid (Ph/C9) were significantly higher in summer than in winter. These diagnostic ratios in the sampled ambient aerosols were completely different from those in primary emissions, suggesting the importance of photochemical production - especially in summer. The diurnal variations of diacids and fatty acid as well as the diagnostic ratios are associated with higher solar radiation and anthropogenic activities during the daytime. Principal component analysis results provide evidence that photochemical oxidation of unsaturated fatty acids and volatile organic compounds is the most important source of diacids. In this analysis, primary sources were found to be minor (traffic and food cooking) or non-existent (biomass burning and crustal dust). Components with high loadings of Ph and unsaturated fatty acids can be regarded as representative of primary traffic emissions.