Science.gov

Sample records for adipic acid particles

  1. 21 CFR 582.1009 - Adipic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Adipic acid. 582.1009 Section 582.1009 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1009 Adipic acid. (a) Product. Adipic acid. (b) (c) Limitations, restrictions, or explanation....

  2. 21 CFR 582.1009 - Adipic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Adipic acid. 582.1009 Section 582.1009 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1009 Adipic acid. (a) Product. Adipic acid. (b) (c) Limitations, restrictions, or explanation....

  3. 21 CFR 582.1009 - Adipic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Adipic acid. 582.1009 Section 582.1009 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1009 Adipic acid. (a) Product. Adipic acid. (b) (c) Limitations, restrictions, or explanation....

  4. 21 CFR 582.1009 - Adipic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Adipic acid. 582.1009 Section 582.1009 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1009 Adipic acid. (a) Product. Adipic acid. (b) (c) Limitations, restrictions, or explanation....

  5. 21 CFR 582.1009 - Adipic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Adipic acid. 582.1009 Section 582.1009 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1009 Adipic acid. (a) Product. Adipic acid. (b) (c) Limitations, restrictions, or explanation....

  6. 21 CFR 184.1009 - Adipic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Adipic acid. 184.1009 Section 184.1009 Food and... Substances Affirmed as GRAS § 184.1009 Adipic acid. (a) Adipic acid (C6H10O4, CAS Reg. No. 00124-04-9) is also known as 1,4-butanedicarboxylic acid or hexane-dioic acid. It is prepared by nitric acid...

  7. 21 CFR 184.1009 - Adipic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Adipic acid. 184.1009 Section 184.1009 Food and... Substances Affirmed as GRAS § 184.1009 Adipic acid. (a) Adipic acid (C6H10O4, CAS Reg. No. 00124-04-9) is also known as 1,4-butanedicarboxylic acid or hexane-dioic acid. It is prepared by nitric acid...

  8. 21 CFR 184.1009 - Adipic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Adipic acid. 184.1009 Section 184.1009 Food and... Substances Affirmed as GRAS § 184.1009 Adipic acid. (a) Adipic acid (C6H10O4, CAS Reg. No. 00124-04-9) is also known as 1,4-butanedicarboxylic acid or hexane-dioic acid. It is prepared by nitric acid...

  9. 21 CFR 184.1009 - Adipic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Adipic acid. 184.1009 Section 184.1009 Food and... Substances Affirmed as GRAS § 184.1009 Adipic acid. (a) Adipic acid (C6H10O4, CAS Reg. No. 00124-04-9) is also known as 1,4-butanedicarboxylic acid or hexane-dioic acid. It is prepared by nitric acid...

  10. 21 CFR 184.1009 - Adipic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Adipic acid. 184.1009 Section 184.1009 Food and....1009 Adipic acid. (a) Adipic acid (C6H10O4, CAS Reg. No. 00124-04-9) is also known as 1,4-butanedicarboxylic acid or hexane-dioic acid. It is prepared by nitric acid oxidation of cyclohexanol...

  11. Effect of milling on DSC thermogram of excipient adipic acid.

    PubMed

    Ng, Wai Kiong; Kwek, Jin Wang; Yuen, Aaron; Tan, Chin Lee; Tan, Reginald

    2010-03-01

    The purpose of this research was to investigate why and how mechanical milling results in an unexpected shift in differential scanning calorimetry (DSC) measured fusion enthalpy (Delta(fus)H) and melting point (T(m)) of adipic acid, a pharmaceutical excipient. Hyper differential scanning calorimetry (hyper-DSC) was used to characterize adipic acid before and after ball-milling. An experimental study was conducted to evaluate previous postulations such as electrostatic charging using the Faraday cage method, crystallinity loss using powder X-ray diffraction (PXRD), thermal annealing using DSC, impurities removal using thermal gravimetric analysis (TGA) and Karl Fischer titration. DSC thermograms showed that after milling, the values of Delta(fus)H and T(m) were increased by approximately 9% and 5 K, respectively. Previous suggestions of increased electrostatic attraction, change in particle size distribution, and thermal annealing during measurements did not explain the differences. Instead, theoretical analysis and experimental findings suggested that the residual solvent (water) plays a key role. Water entrapped as inclusions inside adipic acid during solution crystallization was partially evaporated by localized heating at the cleaved surfaces during milling. The correlation between the removal of water and melting properties measured was shown via drying and crystallization experiments. These findings show that milling can reduce residual solvent content and causes a shift in DSC results.

  12. Toward biotechnological production of adipic acid and precursors from biorenewables.

    PubMed

    Polen, Tino; Spelberg, Markus; Bott, Michael

    2013-08-20

    Adipic acid is the most important commercial aliphatic dicarboxylic acid in the chemical industry and is primarily used for the production of nylon-6,6 polyamide. The current adipic acid market volume is about 2.6 million tons/y and the average annual demand growth rate forecast to stay at 3-3.5% worldwide. Hitherto, the industrial production of adipic acid is carried out by petroleum-based chemo-catalytic processes from non-renewable fossil fuels. However, in the past years, efforts were made to find alternative routes for adipic acid production from renewable carbon sources by biotechnological processes. Here we review the approaches and the progress made toward bio-based production of adipic acid. PMID:22824738

  13. Phase diagram of a system of adipic, glutaric, and sebacic acids

    NASA Astrophysics Data System (ADS)

    Kolyado, A. V.; Alenova, S. M.; Garkushin, I. K.

    2016-06-01

    Adipic acid-glutaric acid, glutaric acid-sebacic acid, and adipic acid-sebacic acid binary systems are studied, along with an adipic acid-glutaric acid-sebacic acid ternary system. It is shown all of these systems are eutectic. Phase equilibria for the diagram elements of the binary systems and the ternary system are described. It is concluded that the above low-melting compounds can be recommended for use as working bodies in heat accumulators, and for preparing electrolytes used in the thin-layer anodic oxidation of aluminum alloys.

  14. A "Green" route to adipic acid: direct oxidation of cyclohexenes with 30 percent hydrogen peroxide

    PubMed

    Sato; Aoki; Noyori

    1998-09-11

    Currently, the industrial production of adipic acid uses nitric acid oxidation of cyclohexanol or a cyclohexanol/cyclohexanone mixture. The nitrous oxide emission from this process measurably contributes to global warming and ozone depletion. Therefore, the development of an adipic acid production process that is less damaging to the environment is an important subject in chemical research. Cyclohexene can now be oxidized directly to colorless crystalline adipic acid with aqueous 30 percent hydrogen peroxide under organic solvent- and halide-free conditions, which could provide an ideal solution to this serious problem.

  15. Relationship between adipic acid concentration and the core symptoms of autism spectrum disorders.

    PubMed

    Puig-Alcaraz, Carmen; Fuentes-Albero, Milagros; Cauli, Omar

    2016-08-30

    Dicarboxylic acids are an important source of information about metabolism and potential physiopathological alterations in children with autism spectrum disorders (ASDs). We measured the concentration between dicarboxylic adipic and suberic acids in children with an ASD and typically-developing (TD) children and analyzed any relationships between the severity of the core symptoms of ASDs and other clinical features (drugs, supplements, drugs, or diet). The core symptoms of autism were evaluated using the DSM-IV criteria, and adipic acid and suberic acid were measured in urine samples. Overall, no increase in the concentration of adipic acid in children with ASDs compared to TD children, however when considering vitamin B supplementation in ASD there were significantly increased level of urinary adipic acid in children with an ASD not taking vitamin B supplementation compared to supplemented children or to TD children. No significant difference were observed in suberic acid. Interestingly, the increase in adipic acid concentration was significantly and indirectly correlated with the severity of the deficit in socialization and communication skills in children with an ASD. Therefore, therapeutic treatments aimed at decreasing adipic acid concentration might not be beneficial for treating the core symptoms of ASDs.

  16. Study on the Effects of Adipic Acid on Properties of Dicyandiamide-Cured Electrically Conductive Adhesive and the Interaction Mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Ling; Wan, Chao; Fu, Yonggao; Chen, Hongtao; Liu, Xiaojian; Li, Mingyu

    2014-01-01

    A small quantity of adipic acid was found to improve the performance of dicyandiamide-cured electrically conductive adhesive (ECA) by enhancing its electrical conductivity and mechanical properties. The mechanism of action of the adipic acid and its effects on the ECA were examined. The results indicated that adipic acid replaced the electrically insulating lubricant on the surface of the silver flakes, which significantly improved the electrical conductivity. Specifically, one of the acidic functional groups in adipic acid reacted with the silver flakes, and an amidation reaction occurred between the other acidic functional group in adipic acid and the dicyandiamide, which participated in the curing reaction. Therefore, adipic acid may act as a coupling agent to improve the overall ECA performance.

  17. One-pot room-temperature conversion of cyclohexane to adipic acid by ozone and UV light.

    PubMed

    Hwang, Kuo Chu; Sagadevan, Arunachalam

    2014-12-19

    Nitric acid oxidation of cyclohexane accounts for ~95% of the worldwide adipic acid production and is also responsible for ~5 to 8% of the annual worldwide anthropogenic emission of the ozone-depleting greenhouse gas nitrous oxide (N2O). Here we report a N2O-free process for adipic acid synthesis. Treatment of neat cyclohexane, cyclohexanol, or cyclohexanone with ozone at room temperature and 1 atmosphere of pressure affords adipic acid as a solid precipitate. Addition of acidic water or exposure to ultraviolet (UV) light irradiation (or a combination of both) dramatically enhances the oxidative conversion of cyclohexane to adipic acid.

  18. Effect of adipic dihydrazide modification on the performance of collagen/hyaluronic acid scaffold.

    PubMed

    Zhang, Ling; Xiao, Yumei; Jiang, Bo; Fan, Hongsong; Zhang, Xingdong

    2010-02-01

    Collagen and hydrazide-functionalized hyaluronic acid derivatives were hybridized by gelating and genipin crosslinking to form composite hydrogel. The study contributed to the understanding of the effects of adipic dihydrazide modification on the physicochemical and biological properties of the collagen/hyaluronic acid scaffold. The investigation included morphology observation, mechanical measurement, swelling evaluation, and collagenase degradation. The results revealed that the stability of composites was increased through adipic dihydrazide modification and genipin crosslinking. The improved biocompatibility and retention of hyaluronic acid made the composite material more favorable to chondrocytes growing, suggesting the prepared scaffold might be high potential for chondrogenesis. PMID:19810117

  19. Highly efficient chemical process to convert mucic acid into adipic acid and DFT studies of the mechanism of the rhenium-catalyzed deoxydehydration.

    PubMed

    Li, Xiukai; Wu, Di; Lu, Ting; Yi, Guangshun; Su, Haibin; Zhang, Yugen

    2014-04-14

    The production of bulk chemicals and fuels from renewable bio-based feedstocks is of significant importance for the sustainability of human society. Adipic acid, as one of the most-demanded drop-in chemicals from a bioresource, is used primarily for the large-volume production of nylon-6,6 polyamide. It is highly desirable to develop sustainable and environmentally friendly processes for the production of adipic acid from renewable feedstocks. However, currently there is no suitable bio-adipic acid synthesis process. Demonstrated herein is the highly efficient synthetic protocol for the conversion of mucic acid into adipic acid through the oxorhenium-complex-catalyzed deoxydehydration (DODH) reaction and subsequent Pt/C-catalyzed transfer hydrogenation. Quantitative yields (99 %) were achieved for the conversion of mucic acid into muconic acid and adipic acid either in separate sequences or in a one-step process.

  20. cis,cis-Muconic acid: separation and catalysis to bio-adipic acid for nylon-6,6 polymerization

    SciTech Connect

    Vardon, Derek R.; Rorrer, Nicholas A.; Salvachúa, Davinia; Settle, Amy E.; Johnson, Christopher W.; Menart, Martin J.; Cleveland, Nicholas S.; Ciesielski, Peter N.; Steirer, K. Xerxes; Dorgan, John R.; Beckham, Gregg T.

    2016-01-01

    cis,cis-Muconic acid is a polyunsaturated dicarboxylic acid that can be produced renewably via the biological conversion of sugars and lignin-derived aromatic compounds. Subsequently, muconic acid can be catalytically converted to adipic acid -- the most commercially significant dicarboxylic acid manufactured from petroleum. Nylon-6,6 is the major industrial application for adipic acid, consuming 85% of market demand; however, high purity adipic acid (99.8%) is required for polymer synthesis. As such, process technologies are needed to effectively separate and catalytically transform biologically derived muconic acid to adipic acid in high purity over stable catalytic materials. To that end, this study: (1) demonstrates bioreactor production of muconate at 34.5 g L-1 in an engineered strain of Pseudomonas putida KT2440, (2) examines the staged recovery of muconic acid from culture media, (3) screens platinum group metals (e.g., Pd, Pt, Rh, Ru) for activity and leaching stability on activated carbon (AC) and silica supports, (4) evaluates the time-on-stream performance of Rh/AC in a trickle bed reactor, and (5) demonstrates the polymerization of bio-adipic acid to nylon-6,6. Separation experiments confirmed AC effectively removed broth color compounds, but subsequent pH/temperature shift crystallization resulted in significant levels of Na, P, K, S and N in the crystallized product. Ethanol dissolution of muconic acid precipitated bulk salts, achieving a purity of 99.8%. Batch catalysis screening reactions determined that Rh and Pd were both highly active compared to Pt and Ru, but Pd leached significantly (1-9%) from both AC and silica supports. Testing of Rh/AC in a continuous trickle bed reactor for 100 h confirmed stable performance after 24 h, although organic adsorption resulted in reduced steady-state activity. Lastly, polymerization of bio-adipic acid with hexamethyldiamine produced nylon-6,6 with comparable properties to its petrochemical counterpart

  1. An injectable oxidated hyaluronic acid/adipic acid dihydrazide hydrogel as a vitreous substitute.

    PubMed

    Su, Wen-Yu; Chen, Ko-Hua; Chen, Yu-Chun; Lee, Yen-Hsien; Tseng, Ching-Li; Lin, Feng-Huei

    2011-01-01

    Vitrectomy is a common procedure for treating ocular-related diseases. The surgery involves removing the vitreous humor from the center of the eye, and vitreous substitutes are needed to replace the vitreous humor after vitrectomy. In the present study, we developed a colorless, transparent and injectable hydrogel with appropriate refractive index as a vitreous substitute. The hydrogel is formed by oxidated hyaluronic acid (oxi-HA) cross-linked with adipic acid dihydrazide (ADH). Hyaluronic acid (HA) was oxidized by sodium periodate to create aldehyde functional groups, which could be cross-linked by ADH. The refractive index of this hydrogel ranged between 1.3420 and 1.3442, which is quite similar to human vitreous humor (1.3345). The degradation tests demonstrated that the hydrogel could maintain the gel matrix over 35 days, depending on the ADH concentration. In addition, the cytotoxicity was evaluated on retina pigmented epithelium (RPE) cells cultivated following the ISO standard (tests for in vitro cytotoxicity), and the hydrogel was found to be non-toxic. In a preliminary animal study, the oxi-HA/ADH hydrogel was injected into the vitreous cavity of rabbit eyes. The evaluations of slit-lamp observation, intraocular pressure, cornea thickness and histological examination showed no significant abnormal biological reactions for 3 weeks. This study suggests that the injectable oxi-HA/ADH hydrogel should be a potential vitreous substitute. PMID:20843434

  2. Injectable oxidized hyaluronic acid/adipic acid dihydrazide hydrogel for nucleus pulposus regeneration.

    PubMed

    Su, Wen-Yu; Chen, Yu-Chun; Lin, Feng-Huei

    2010-08-01

    Injectable hydrogel allows irregular surgical defects to be completely filled, lessens the risk of implant migration, and minimizes surgical defects due to the solution-gel state transformation. Here, we first propose a method for preparing oxidized hyaluronic acid/adipic acid dihydrazide (oxi-HA/ADH) injectable hydrogel by chemical cross-linking under physiological conditions. Fourier transform infrared spectrometry and trinitrobenzene sulfonate assay were used to confirm the oxidation of hyaluronic acid. Rheological properties were measured to evaluate the working ability of the hydrogel for further clinical application. The oxi-HA/ADH in situ forming hydrogel can transform from liquid form into a gel-like matrix within 3-8 min, depending on the operational temperature. Furthermore, hydrogel degradation and cell assessment is also a concern for clinical application. Injectable oxi-HA/ADH8 hydrogel can maintain its gel-like state for at least 5 weeks with a degradation percentage of 40%. Importantly, oxi-HA/ADH8 hydrogel can assist in nucleus pulposus cell synthesis of type II collagen and aggrecan mRNA gene expression according to the results of real-time PCR analysis, and shows good biocompatibility based on cell viability and cytotoxicity assays. Based on the results of the current study, oxi-HA/ADH hydrogel may possess several advantages for future application in nucleus pulposus regeneration. PMID:20193782

  3. Injectable oxidized hyaluronic acid/adipic acid dihydrazide hydrogel for nucleus pulposus regeneration.

    PubMed

    Su, Wen-Yu; Chen, Yu-Chun; Lin, Feng-Huei

    2010-08-01

    Injectable hydrogel allows irregular surgical defects to be completely filled, lessens the risk of implant migration, and minimizes surgical defects due to the solution-gel state transformation. Here, we first propose a method for preparing oxidized hyaluronic acid/adipic acid dihydrazide (oxi-HA/ADH) injectable hydrogel by chemical cross-linking under physiological conditions. Fourier transform infrared spectrometry and trinitrobenzene sulfonate assay were used to confirm the oxidation of hyaluronic acid. Rheological properties were measured to evaluate the working ability of the hydrogel for further clinical application. The oxi-HA/ADH in situ forming hydrogel can transform from liquid form into a gel-like matrix within 3-8 min, depending on the operational temperature. Furthermore, hydrogel degradation and cell assessment is also a concern for clinical application. Injectable oxi-HA/ADH8 hydrogel can maintain its gel-like state for at least 5 weeks with a degradation percentage of 40%. Importantly, oxi-HA/ADH8 hydrogel can assist in nucleus pulposus cell synthesis of type II collagen and aggrecan mRNA gene expression according to the results of real-time PCR analysis, and shows good biocompatibility based on cell viability and cytotoxicity assays. Based on the results of the current study, oxi-HA/ADH hydrogel may possess several advantages for future application in nucleus pulposus regeneration.

  4. Engineering a Polyketide Synthase for In Vitro Production of Adipic Acid.

    PubMed

    Hagen, Andrew; Poust, Sean; Rond, Tristan de; Fortman, Jeffrey L; Katz, Leonard; Petzold, Christopher J; Keasling, Jay D

    2016-01-15

    Polyketides have enormous structural diversity, yet polyketide synthases (PKSs) have thus far been engineered to produce only drug candidates or derivatives thereof. Thousands of other molecules, including commodity and specialty chemicals, could be synthesized using PKSs if composing hybrid PKSs from well-characterized parts derived from natural PKSs was more efficient. Here, using modern mass spectrometry techniques as an essential part of the design-build-test cycle, we engineered a chimeric PKS to enable production one of the most widely used commodity chemicals, adipic acid. To accomplish this, we introduced heterologous reductive domains from various PKS clusters into the borrelidin PKS' first extension module, which we previously showed produces a 3-hydroxy-adipoyl intermediate when coincubated with the loading module and a succinyl-CoA starter unit. Acyl-ACP intermediate analysis revealed an unexpected bottleneck at the dehydration step, which was overcome by introduction of a carboxyacyl-processing dehydratase domain. Appending a thioesterase to the hybrid PKS enabled the production of free adipic acid. Using acyl-intermediate based techniques to "debug" PKSs as described here, it should one day be possible to engineer chimeric PKSs to produce a variety of existing commodity and specialty chemicals, as well as thousands of chemicals that are difficult to produce from petroleum feedstocks using traditional synthetic chemistry.

  5. Engineering a Polyketide Synthase for In Vitro Production of Adipic Acid.

    PubMed

    Hagen, Andrew; Poust, Sean; Rond, Tristan de; Fortman, Jeffrey L; Katz, Leonard; Petzold, Christopher J; Keasling, Jay D

    2016-01-15

    Polyketides have enormous structural diversity, yet polyketide synthases (PKSs) have thus far been engineered to produce only drug candidates or derivatives thereof. Thousands of other molecules, including commodity and specialty chemicals, could be synthesized using PKSs if composing hybrid PKSs from well-characterized parts derived from natural PKSs was more efficient. Here, using modern mass spectrometry techniques as an essential part of the design-build-test cycle, we engineered a chimeric PKS to enable production one of the most widely used commodity chemicals, adipic acid. To accomplish this, we introduced heterologous reductive domains from various PKS clusters into the borrelidin PKS' first extension module, which we previously showed produces a 3-hydroxy-adipoyl intermediate when coincubated with the loading module and a succinyl-CoA starter unit. Acyl-ACP intermediate analysis revealed an unexpected bottleneck at the dehydration step, which was overcome by introduction of a carboxyacyl-processing dehydratase domain. Appending a thioesterase to the hybrid PKS enabled the production of free adipic acid. Using acyl-intermediate based techniques to "debug" PKSs as described here, it should one day be possible to engineer chimeric PKSs to produce a variety of existing commodity and specialty chemicals, as well as thousands of chemicals that are difficult to produce from petroleum feedstocks using traditional synthetic chemistry. PMID:26501439

  6. Determination of the cross-linking effect of adipic acid dihydrazide on glycoconjugate preparation.

    PubMed

    Bystrický, S; Machová, E; Malovíková, A; Kogan, G

    1999-11-01

    The cross-linking effect of adipic acid dihydrazide (ADH) on polysaccharide derivatization can be evaluated by applying combination of elemental analysis and colorimetric assay. Elemental analysis is used for estimation of total ADH bound to polysaccharide and a colorimetric trinitrobenzene sulfonic acid assay is used to determine the part of ADH not involved in cross-linking. The difference of values expressed as molar ratios (per repeating unit) provides information on the amount of ADH involved in cross-linking the polysaccharides. Carboxymethylated polysaccharides were derivatized with different amounts of ADH to test the procedure. Analytical results showed that excess of ADH in the reaction only slightly decreased the cross-linking. The number of carboxyl groups remained unmodified even at high excess of ADH and high concentration of carbodiimide (EDC) coupling reagent. PMID:11003553

  7. Development of a solid-phase extraction method for simultaneous extraction of adipic acid, succinic acid and 1,4-butanediol formed during hydrolysis of poly(butylene adipate) and poly(butylene succinate).

    PubMed

    Lindström, Annika; Albertsson, Ann-Christine; Hakkarainen, Minna

    2004-01-01

    A solid-phase extraction (SPE) method was developed for the simultaneous extraction of dicarboxylic acids and diols formed during hydrolysis of poly(butylene succinate), PBS, and poly(butylene adipate), PBA. Four commercial non-polar SPE columns, three silica based: C8, C18, C18 (EC), and one resin based: ENV+, were tested for the extraction of succinic acid, adipic acid and 1,4-butanediol, the expected final hydrolysis products of PBS and PBA. ENV+ resin was chosen as a solid-phase, because it displayed the best extraction efficiency for 1,4-butanediol and succinic acid. Linear range for the extracted analytes was 1-500 ng/microl for adipic acid and 2-500 ng/microl for 1,4-butanediol and succinic acid. Detection and quantification limits for the analytes were between 1-2 and 2-7 ng/microl, respectively, and relative standard deviations were between 3 and 7%. Good repeatability and low detection limits made the developed SPE method and subsequent gas chromatography-mass spectrometry (GC-MS) analysis a sensitive tool for identification and quantification of hydrolysis products at early stages of degradation.

  8. Immunogenicity of meningococcal B polysaccharide conjugated to tetanus toxoid or CRM197 via adipic acid dihydrazide.

    PubMed

    Bartoloni, A; Norelli, F; Ceccarini, C; Rappuoli, R; Costantino, P

    1995-04-01

    Vaccine development against Group B Neisseria meningitidis is complicated by the nature of the capsular polysaccharide, which is alpha 2-8-linked poly-sialic acid, identical in structure to the poly-sialic acid found in many mammalian tissues during development. To test the feasibility of a vaccine based on this polysaccharide, we synthesized several conjugates of meningococcal B polysaccharide linked to a carrier protein (tetanus toxoid or diphtheria CRM197), via an adipic acid dihydrazide (ADH) spacer. All conjugates induced a strong immune response. However, most of the antibodies were not directed against the Meningococcus B polysaccharide and could not be inhibited by the purified polysaccharide alone. Further investigations showed that the antibodies recognized an epitope composed by the junction between the spacer and the polysaccharide and protein, that is not present in the native polysaccharide and is generated during the coupling reaction. This epitope becomes immunodominant with respect to the poorly immunogenic polysaccharide. While the majority of the immune response is directed against the above epitope, the conjugates induced also an immune response against the Meningococcus B polysaccharide. The anti-Meningococcus B antibodies elicited are of the IgM and IgG class and are inhibitable by the polysaccharide. Moreover, they are bactericidal, thus suggesting that they would induce protection against disease. PMID:7543714

  9. 40 CFR 721.10395 - Fatty acids, C14-18 and C16-18 unsatd., polymers with adipic acid and triethanolamine, di-Me...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acids, C14-18 and C16-18 unsatd., polymers with adipic acid and triethanolamine, di-Me sulfate-quaternized. 721.10395 Section 721.10395 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL...

  10. 40 CFR 721.10395 - Fatty acids, C14-18 and C16-18 unsatd., polymers with adipic acid and triethanolamine, di-Me...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acids, C14-18 and C16-18 unsatd., polymers with adipic acid and triethanolamine, di-Me sulfate-quaternized. 721.10395 Section 721.10395 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL...

  11. 40 CFR 721.10395 - Fatty acids, C14-18 and C16-18 unsatd., polymers with adipic acid and triethanolamine, di-Me...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Fatty acids, C14-18 and C16-18 unsatd., polymers with adipic acid and triethanolamine, di-Me sulfate-quaternized. 721.10395 Section 721.10395 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL...

  12. Properties of alkali-solubilized collagen solution crosslinked by N-hydroxysuccinimide activated adipic acid

    NASA Astrophysics Data System (ADS)

    Chen, Yihui; Zhang, Min; Liu, Wentao; Li, Guoying

    2011-03-01

    The effect of N-hydroxysuccinimide activated adipic acid (NHS-AA) on the properties of alkali-solubilized collagen solutions was examined. The residual amino group content in crosslinked collagen, determined by trinitrobenzensulfonic acid (TNBS) assay, was decreased with increasing NHS-AA concentration. The results from differential scanning calorimeter (DSC) indicated that the maximum denaturation temperature ( T d) of crosslinked collagen solution was about 4.2°C higher than that of un-crosslinked collagen solution (36.6°C). Moreover, the values of storage modulus ( G'), loss modulus ( G″) and complex viscosity ( η*), obtained by means of dynamic frequency sweeps, were increased as NHS-AA concentration added up to 1.5 mM, and then decreased slightly when further increased NHS-AA concentration. Besides, for collagen solution crosslinked with 1.5 mM NHS-AA, dynamic denaturation temperature ( T dd) was about 1.1°C lower than T d (40.8°C), and the Arrhenius-type time-temperature superposition (TTS) principle was applied to yield the activation energy to be 474.4 kJmol-1.

  13. Novel microbial screen for detection of 1,4-butanediol, ethylene glycol, and adipic acid.

    PubMed

    Stieglitz, B; Weimer, P J

    1985-03-01

    A novel microbial-screening procedure was developed for separate detection of 1,4-butanediol, ethylene glycol, and adipic acid, three commercially important oxychemicals potentially derivable from bacterial omega-oxidation of n-butanol, ethanol, and hexanoic acid, respectively. The screening method involved postproduction addition of one of several specific Pseudomonas strains which produce a soluble fluorescent pigment during growth on the product of interest. A mutation and selection procedure was developed for isolation of specific strains with phenotypes for growth and pigment production on the desired product (e.g., 1,4-butanediol), but not on its bioconversion substrate (e.g., n-butanol), common by-products (e.g., n-butyrate), or product isomers. Pigment production was growth associated and required cultivation of the screening strains under limiting Fe3+ concentrations. The pigments resembled well-characterized, iron-chelating siderophores produced by other fluorescent pseudomonads. The sensitivity of the assay for product accumulation was enhanced by (i) conducting the screening in microtiter dishes to permit examination of individual isolates of putative producers and to control product diffusion, (ii) using a wavelength cutoff filter to reduce background source light, and (iii) using adapted screening strains which grew at lower (0.3 mM) concentrations of test compounds. The potential utility of the method for detecting a variety of oxidative catabolic products is discussed.

  14. Novel molecular anti-colorectalcancer conjugate:chlorambucil-adipic acid dihydrizide-glutamine.

    PubMed

    Tabasi, Maryam Akhavan; Amanlou, Massoud; Siadat, Seyed Davar; Nourmohammadi, Zahra; Omoomi, Farnoor Davachi; Ebrahimi, Seyed Esmaeil Sadat; Aghasadeghi, Mohammad Reza; Rahimi, Pooneh; Pourhosseini, Sahar; Mehravi, Bita; Ardestani, Mehdi Shafiee

    2013-11-01

    Cancer is one of the most fatal diseases in the world and it has been years that finding new drugs and chemotherapeutic techniques with lowest side effects become one of the most important challenging matters needs really hard efforts. Chlorambucil (CBL), an ancient direct-acting alkylating anticancer agent, is commonly used for initial treatment of some kinds of cancers but the use of CBL is often limited because of the unpleasant side effects due to its lack of specificity for targeting cancer cells. In this research we tried to increase the specificity of CBL by producing a novel conjugate by using glutamine amino acid (Glut). Based on previous studies, poly amines and nitrogen compounds noticeably are used by cancer cells increasingly; therefore we decided to increase the efficiency and specificity of CBL by designing and producing a novel anti cancer conjugate using glutamine amino acid as an uptake enhancer, CBL, and Adipic acid Dihydrazide (ADH) as a spacer and linker. The biological tests were carried out on HT29 colorectal cancer cell line to evaluate its anticancer properties. Biological tests like MTT assay, finding IC50, evaluating the induced mechanism of the death of our novel CBL-Glutamine conjugate on HT29 cells, testing abnormal toxicity of this conjugate on mice in comparison with CBL drug were careid out. We found that not only CBL-Glutamine conjugate preserved its anti cancer property with regard to CBL drug, but also it represent lower abnormal toxicity in mice. Apoptosis was detected as its mechanism of the death. Our present study provides a promising strategy for targeting cancer cells using amino acids nano-conjugate drugs. The future perspectives have also been highlighted in continuing similar and relative researches. PMID:23343080

  15. Chiral transformation in protonated and deprotonated adipic acids through multistep internal proton transfer.

    PubMed

    Min, Seung Kyu; Park, Mina; Singh, N Jiten; Lee, Han Myoung; Lee, Eun Cheol; Kim, Kwang S; Lagutschenkov, Anita; Niedner-Schatteburg, Gereon

    2010-09-10

    Protonated and deprotonated adipic acids (PAA: HOOC-(CH(2))(4)--COOH(2) (+) and DAA: HOOC-(CH(2))(4)-COO(-)) have a charged hydrogen bond under the influence of steric constraint due to the molecular skeleton of a circular ring. Despite the similarity between PAA and DAA, it is surprising that the lowest energy structure of PAA is predicted to have (H(2)O...H...OH(2))(+) Zundel-like symmetric hydrogen bonding, whereas that of DAA has H(3)O(+) Eigen-like asymmetric hydrogen bonding. The energy profiles show that direct proton transfer between mirror image structures is unfavorable. Instead, the chiral transformation is possible by subsequent backbone twistings through stepwise proton transfer along multistep intermediate structures, which are Zundel-like ions for PAA and Eigen-like ions for DAA. This type of chiral transformation by multistep intramolecular proton transfers is unprecedented. Several prominent OH...O short hydrogen-bond stretching peaks are predicted in the range of 1000-1700 cm(-1) in the Car-Parrinello molecular dynamics (CPMD) simulations, which show distinctive signatures different from ordinary hydrogen-bond peaks. The O-H-O stretching peaks in the range of 1800-2700 cm(-1) become insignificant above around 150 K and are almost washed out at about 300 K. PMID:20652911

  16. A study on reactive blending of (poly lactic acid) and poly (butylene succinate co adipate)

    NASA Astrophysics Data System (ADS)

    Bureepukdee, C.; Suttiruengwong, S.; Seadan, M.

    2015-07-01

    This research aims to study the blending of Polylactic acid (PLA) and Polybutylene succinate co adipate (PBSA) in order to understand the role of peroxide in free radical reaction on the compatibilization between these two biodegradable polyesters. Various ratios of PLA/PBSA blends with and without reactive agents were prepared in the twin screw extruder. Two types of peroxides, Di (tert-butylperoxyisopropyl) benzene (DTBP) and 2, 5-Dimethyl-2, 5-(t-butylperoxy) hexane (DTBH), were used with various concentrations to compare. From the torques measurement, DTBP was more reactive with PLA and PBSA than DTBH. PLA and PBSA 80:20, 60:40, 50:50, 40:60, and 20:80% by weight were melt-blended in a twin screw extruder. The reactive polymer blends were also prepared for the same ratios of the blends with addition of 0.08 and 0.1 phr of DTBP. The mechanical, thermal, rheological, and morphological properties were investigated. The impact strengths of the non-reactive blend increased with the increasing in PBSA content. The optimal impact strength was obtained at 40%wt of PBSA with 0.1 phr of DTBP. Adding 0.08 and 0.1 phr of DTBP led to the co continuous phase morphology of PLA/PBSA blends. The per cent crystallinity of PLA increased when blended with PBSA. PBSA might induce the crystallization of PLA.

  17. Green Chemistry in the Organic Teaching Laboratory: An Environmentally Benign Synthesis of Adipic Acid

    NASA Astrophysics Data System (ADS)

    Reed, Scott M.; Hutchison, James E.

    2000-12-01

    Environmentally benign ("green") chemical techniques are growing in importance in academic and industrial research laboratories. Such chemistry has been slow to appear in teaching laboratories, owing in part to a lack of published material on this subject. Recent developments in green synthesis provide opportunities to introduce this material in teaching laboratories. We present a synthesis of adipic acid that utilizes green reagents (hydrogen peroxide as the oxidant), solvents (water), and methods (phase-transfer catalysis, catalyst recycling). The synthesis works well and provides an excellent forum for emphasizing green chemical concepts while teaching laboratory skills. It demonstrates reuse of a product, synthesis using a nonhazardous solvent, elimination of deleterious by-products, and use of a recyclable catalyst. It can be carried out on either the macroscale or microscale and generates little waste if the catalyst solution is recycled. This experiment fits well in a sophomore organic sequence; it covers the topics of oxidation, phase-transfer catalysis, and the technique of recrystallization, reinforces lecture topics such as alkene synthesis and reactivity, and provides an opportunity to introduce polymer chemistry.

  18. Metabolism of phytanic acid and 3-methyl-adipic acid excretion in patients with adult Refsum disease.

    PubMed

    Wierzbicki, Anthony S; Mayne, Phillip D; Lloyd, Matthew D; Burston, David; Mei, Guam; Sidey, Margaret C; Feher, Michael D; Gibberd, F Brian

    2003-08-01

    Adult Refsum disease (ARD) is associated with defective alpha-oxidation of phytanic acid (PA). omega-Oxidation of PA to 3-methyl-adipic acid (3-MAA) occurs although its clinical significance is unclear. In a 40 day study of a new ARD patient, where the plasma half-life of PA was 22.4 days, omega-oxidation accounted for 30% initially and later all PA excretion. Plasma and adipose tissue PA and 3-MAA excretion were measured in a cross-sectional study of 11 patients. The capacity of the omega-oxidation pathway was 6.9 (2.8-19.4) mg [20.4 (8.3-57.4) micromol] PA/day. 3-MAA excretion correlated with plasma PA levels (r = 0.61; P = 0.03) but not adipose tissue PA content. omega-Oxidation during a 56 h fast was studied in five patients. 3-MAA excretion increased by 208 +/- 58% in parallel with the 158 (125-603)% rise in plasma PA. Plasma PA doubled every 29 h, while 3-MAA excretion followed second-order kinetics. Acute sequelae of ARD were noted in three patients (60%) after fasting. The omega-oxidation pathway can metabolise PA ingested by patients with ARD, but this activity is dependent on plasma PA concentration. omega-Oxidation forms a functional reserve capacity that enables patients with ARD undergoing acute stress to cope with limited increases in plasma PA levels.

  19. Structure and spectroscopic studies of homo-and heterometallic complexes of adipic acid dihydrazide.

    PubMed

    Jeragh, Bakir; El-Asmy, Ahmed A

    2014-05-01

    A single crystal of adipic acid dihydrazide, ADH, has been analyzed. Its reaction with Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+), Ag(+), Pd(2+) and/or Pt(2+) gave homometallic and heterometallic complexes which are characterized by partial elemental analysis, spectra (MS, ESR, (1)H NMR, electronic; IR), thermal analysis and magnetic measurements. Some complexes: Zn(0.73)Cu(ADH)Cl4·H2O; Zn(0.71)Hg(0.36)(ADH)Cl4·H2O; Zn(0.65)Cd(0.46)(ADH)Cl4·½H2O; Zn(0.75)Co(0.41)(ADH-2H)Cl2·3H2O; Cd0.85Co0.43(ADH)Cl4·½EtOH were isolated having nonstiochiometric metal ratios. The ligand behaves as a neutral (bidentate or tetradentate) and/or binegative tetradentate. A square-pyramid, square-planar and tetrahedral structures were proposed for the homo Co(II), Cu(II) and Ni(II) complexes, respectively. A similar and different stereochemistry around each metal ion (tetrahedral+tetrahedral; tetrahedral+square-planar; tetrahedral+tetrahedral and/or tetrahedral+octahedral) was suggested for the heterometallic complexes. Some complexes were found highly stable with stability point >240 °C; the most stable is [HgNi(ADH-2H)Cl2]. The presence of diamagnetic atom (Zn, Cd or Hg) reduces the magnetic moments and gave anomalous moments. The degradation steps and the hydrated complexes are confirmed through the TGA study. The order of covalency of [Zn(0.73)Cu(ADH)Cl4]·H2O, [CdCu(ADH)Cl4]·H2O and [HgCu(ADH-2H)Cl2] matches with the size of the second metal (Zn complex>Cd complex>Hg complex). Some heterometallic complexes were found nonstoichiometric through the analysis of their metal content and supported by TGA. PMID:24530707

  20. Structure and spectroscopic studies of homo-and heterometallic complexes of adipic acid dihydrazide

    NASA Astrophysics Data System (ADS)

    Jeragh, Bakir; El-Asmy, Ahmed A.

    A single crystal of adipic acid dihydrazide, ADH, has been analyzed. Its reaction with Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+, Ag+, Pd2+ and/or Pt2+ gave homometallic and heterometallic complexes which are characterized by partial elemental analysis, spectra (MS, ESR, 1H NMR, electronic; IR), thermal analysis and magnetic measurements. Some complexes: Zn0.73Cu(ADH)Cl4·H2O; Zn0.71Hg0.36(ADH)Cl4·H2O; Zn0.65Cd0.46(ADH)Cl4·½H2O; Zn0.75Co0.41(ADH-2H)Cl2·3H2O; Cd0.85Co0.43(ADH)Cl4·½EtOH were isolated having nonstiochiometric metal ratios. The ligand behaves as a neutral (bidentate or tetradentate) and/or binegative tetradentate. A square-pyramid, square-planar and tetrahedral structures were proposed for the homo Co(II), Cu(II) and Ni(II) complexes, respectively. A similar and different stereochemistry around each metal ion (tetrahedral + tetrahedral; tetrahedral + square-planar; tetrahedral + tetrahedral and/or tetrahedral + octahedral) was suggested for the heterometallic complexes. Some complexes were found highly stable with stability point >240 °C; the most stable is [HgNi(ADH-2H)Cl2]. The presence of diamagnetic atom (Zn, Cd or Hg) reduces the magnetic moments and gave anomalous moments. The degradation steps and the hydrated complexes are confirmed through the TGA study. The order of covalency of [Zn0.73Cu(ADH)Cl4]·H2O, [CdCu(ADH)Cl4]·H2O and [HgCu(ADH-2H)Cl2] matches with the size of the second metal (Zn complex > Cd complex > Hg complex). Some heterometallic complexes were found nonstoichiometric through the analysis of their metal content and supported by TGA.

  1. Dissociative Ionization Mechanism and Appearance Energies in Adipic Acid Revealed by Imaging Photoelectron Photoion Coincidence, Selective Deuteration, and Calculations.

    PubMed

    Heringa, Maarten F; Slowik, Jay G; Prévôt, André S H; Baltensperger, Urs; Hemberger, Patrick; Bodi, Andras

    2016-05-26

    Adipic acid, a model compound for oxygenated organic aerosol, has been studied at the VUV beamline of the Swiss Light Source. Internal energy selected cations were prepared by threshold photoionization using vacuum ultraviolet synchrotron radiation and imaging photoelectron photoion coincidence spectroscopy (iPEPICO). The threshold photoelectron spectrum yields a vertical ionization energy (IE) of 10.5 eV, significantly above the calculated adiabatic IE of 8.6 eV. The cationic minimum is accessible after vertical ionization by H-transfer from one of the γ-carbons to a carbonyl oxygen and is sufficiently energetic to decay by water loss at the ionization onset. The slope of the breakdown curves, quantum chemical calculations, and selective deuteration of the carboxylic hydrogens establish the dissociative photoionization mechanism. After ionization, one γ-methylene hydrogen and the two carboxylic hydrogens are randomized prior to H2O loss. On the basis of the deuteration degree in the H2O + CO-loss product at higher energies, a direct water-loss channel without complete randomization also exists. The breakdown diagram and center of gravity of the H2O + CO-loss peak were modeled to obtain 0 K appearance energies of 10.77, 10.32, and 11.53 eV for H2O + CO loss, CH2COOH loss, and H2O + CH2COOH loss from adipic acid. These agree well with the CBS-QB3 calculated values of 10.68, 10.45, and 11.57 eV, respectively, which shows that threshold photoionization can yield energetics data as long as the dissociation is statistical, even when the parent ion cannot be observed. The results can be used as a starting point for a deeper understanding of the ionization and low-energy fragmentation of organic aerosol components. PMID:27100102

  2. Adipic acid dihydrazide treated partially oxidized alginate beads for sustained oral delivery of flurbiprofen.

    PubMed

    Maiti, Sabyasachi; Singha, Kamalika; Ray, Somasree; Dey, Paramita; Sa, Biswanath

    2009-01-01

    In this study, periodate oxidation of sodium alginate was controlled such that the oxidized alginate could form isolatable beads with Ca(+2) ions. The beads of oxidized alginate having a degree of oxidation 1 mol%, entrapped 89% flurbiprofen and released almost all of its content within 1.5 h in pH 7.2 phosphate buffer solution. The beads were covalently crosslinked with adipic dihydrazide (ADH) in addition to ionic crosslinks and were characterized. Scanning electron microscopy revealed that the beads were spherical having smooth surfaces. The drug entrapment efficiency decreased (90-86%) with increasing concentration of ADH (2-6% w/v) in the gelation medium. However, the beads prolonged the drug release in alkaline dissolution medium up to 8 h depending upon the concentration of ADH. The beads prepared with 2% ADH swelled more rapidly and led to faster drug release in either pH 1.2 HCl solution or pH 7.2 phosphate buffer solution. The swelling tendencies were reduced and the drug release became slower with higher concentrations in either fluid. The drug diffusion from the beads followed super case II transport mechanism. FTIR spectroscopy indicated stable nature of flurbiprofen in the beads and therefore had potential as sustained oral delivery system for the drug. PMID:19235554

  3. Structure and properties of Al-MIL-53-ADP, a breathing MOF based on the aliphatic linker molecule adipic acid.

    PubMed

    Reinsch, Helge; Pillai, Renjith S; Siegel, Renée; Senker, Jürgen; Lieb, Alexandra; Maurin, Guillaume; Stock, Norbert

    2016-03-14

    The new aluminium based metal-organic framework [Al(OH)(O2C-C4H8-CO2)]·H2O denoted as Al-MIL-53-ADP-lp (lp stands for large pore) was synthesised under solvothermal conditions. This solid is an analogue of the archetypical aluminium terephthalate Al-MIL-53 based on the aliphatic single-chain linker molecule adipic acid (H2ADP, hexanedioic acid). In contrast to its aromatic counterparts, Al-MIL-53-ADP exhibits a structural breathing behaviour solely upon dehydration/rehydration. The crystal structure of the anhydrous compound denoted as Al-MIL-53-ADP-np (np stands for narrow pore) was determined by a combination of forcefield-based computations and Rietveld refinement of the powder X-ray diffraction data while the structure of the hydrated form Al-MIL-53-ADP-lp was derived computationally by a combination of force field based methods and Density Functional Theory calculations. Both structures were further supported by (1)H, (13)C and (27)Al high-resolution NMR MAS 1D data coupled again with simulations. Al-MIL-53-ADP was further characterised by means of vibrational spectroscopy, elemental analysis, thermogravimetry and water vapour sorption. PMID:26498663

  4. Growth and characterization of a single crystal of Urea Adipic acid (UAA) - A third order nonlinear optical material

    NASA Astrophysics Data System (ADS)

    Shanthi, A.; Krishnan, C.; Selvarajan, P.

    2014-03-01

    An organic single crystal of Urea Adipic acid (UAA) was successfully grown in methanol solvent by slow solvent evaporation technique at room temperature (30 °C). The structure of grown crystal was elucidated from the X-ray diffraction study and it belongs to monoclinic system with centrosymmetric space group P21/c. The optical transmission spectrum of UAA has been recorded and its theoretical calculations were carried out to determine the linear optical constants such as linear absorption coefficient, extinction coefficient, refractive index and reflectance etc. The third-order nonlinearities of UAA crystal have been investigated by Z-scan method. The values of nonlinear refractive index (n2), the absorption coefficient (β) and third-order nonlinear susceptibility (χ(3)) are found to be the order of 0.96 × 10-10 cm2/W, 1.248 × 10-4 cm/W and 6.44 × 10-8 esu respectively. Fourier Transform Infra Red and Raman spectroscopy studies reveal the intermolecular interactions present in the UAA sample. The dielectric and mechanical measurements of the title compound are also reported.

  5. Effect of dietary adipic acid and corn dried distillers grains with solubles on laying hen performance and nitrogen loss from stored excreta with or without sodium bisulfate.

    PubMed

    Romero, C; Abdallh, M E; Powers, W; Angel, R; Applegate, T J

    2012-05-01

    Effects of dietary adipic acid (0 vs. 1%) and corn dried distillers grains with solubles (DDGS; 0 vs. 20%) were evaluated on hen performance and egg characteristics from 26 to 34 wk of age. Four isocaloric and isonitrogenous diets were randomly assigned to blocks of 6 consecutive cages (36 cages per diet; 2 hens per cage). On wk 2 and 7 of the experiment, excreta were collected by cage block, mixed, and equally split into 2 containers. Sodium bisulfate (SBS) was spread (8.8 kg/100 m(2)) on the top surface of half of the containers. All containers were stored uncovered for 14 d at room temperature. Excreta pH, DM, and N content were measured on d 0, 7, and 14 of storage. Feed intake (112 g/d per hen), egg production (96.1%), and egg specific gravity (1.079 g/g) were not affected by diet. On excreta collection day, a synergy (P = 0.014) between dietary adipic acid and DDGS was detected, as the lowest excreta pH was obtained with the diet including both adipic acid and DDGS. On d 7 of storage, excreta pH was still reduced by dietary adipic acid (P = 0.046) and DDGS (P < 0.001), but a week later, only dietary DDGS decreased excreta pH (8.91 vs. 9.21; P < 0.001). Whereas dietary adipic acid had no influence on excreta N loss, excreta from hens fed 20% DDGS lost 19.7% more N (P = 0.039) during storage than hens not eating DDGS. Surface amendment of excreta with SBS increased excreta DM content, with the effect being even more marked on d 14 of storage (increase of 6.7 percentage units; P < 0.001), consistently decreased excreta pH during storage (P < 0.001) and reduced N loss by 26.1% for the 14 d of storage period. PMID:22499873

  6. Influence of particle wall adhesion on particle electrification in mixers.

    PubMed

    Zhu, Kewu; Tan, Reginald B H; Chen, Fengxi; Ong, Kunn Hadinoto; Heng, Paul W S

    2007-01-01

    In this work, particle electrification in the Turbula and horizontally oscillating mixers were investigated for adipic acid, microcrystalline cellulose (MCC), and glycine particles. MCC and glycine particles acquired positive electrostatic charges, while adipic acid particles attained negative charges in both mixers. Adipic acid (of sieved size larger than 500 microm), MCC, and glycine particles were monotonically charged to saturated values, and had negligible wall adhesion. On the contrary, the adipic acid particles, both unsieved and sieved but of smaller sieved size fraction, exhibited very different charging kinetics in the horizontally oscillating mixer. These adipic acid particles firstly acquired charges up to a maximum value, and then the charges slowly reduced to a lower saturated value with increasing mixing time. Furthermore, these particles were found to adhere to the inner wall of the mixer, and the adhesion increased with mixing time. Surface specific charge densities for adipic acid particles were estimated based on particle size distribution, and were found to increase with particle mean diameters under the conditions investigated. The results obtained from the current work suggested that electrostatic force enhanced particle-wall adhesion, and the adhered particles can have a significant impact on particle electrification. PMID:16930881

  7. Determination of polyadipates migrating from lid gaskets of glass jars. Hydrolysis to adipic acid and measurement by LC-MS/MS.

    PubMed

    Driffield, M; Bradley, E L; Harmer, N; Castle, L; Klump, S; Mottier, P

    2010-10-01

    Polyadipate plasticizers can be present in the polyvinylchloride (PVC) gaskets used to seal the lids of glass jars. As the gaskets can come into direct contact with the foodstuffs inside the jar, the potential exists for polyadipate migration into the food. The procedure and performance characteristics of a test method for the analysis of polyadipates in food simulants (3% aqueous acetic acid and 10% aqueous ethanol) and the volatile test media used in substitute fat tests (isooctane and 95% aqueous ethanol) are described. The PVC gaskets were exposed to the food simulants or their substitutes under standard test conditions. Studies were initially carried out using direct measurement of the polyadipate oligomers by liquid chromatography with time-of-flight mass spectrometric detection (LC-TOF-MS) but this was not practical due to the number of peaks detected. Instead, the migrating polyadipates were hydrolysed to adipic acid and measured by liquid chromatography with tandem mass spectrometric detection (LC-MS/MS). The amount of polyadipate that this measurement of adipic acid represents was then calculated. Method performance was assessed by analysis of gaskets from two types of jar lids by single-laboratory validation. Linearity, sensitivity, repeatability, intermediate reproducibility and recovery were determined to be suitable for checking compliance with the 30 mg/kg specific migration limits for polyesters of 1,2-propane diol and/or 1,3- and/or 1,4-butanediol and/or polypropylene-glycol with adipic acid, which may be end-capped with acetic acid or fatty acids C(12)-C(18) or n-octanol and/or n-decanol. The method was found to be much quicker than previous methods involving extraction, clean-up, hydrolysis, esterification, derivatisation and GC measurement, consequently saving time and money.

  8. Health Hazard Evaluation Report HETA 83-166-1594, Witco Chemical Corporation, Perth Amboy, New Jersey. [Ethylene oxide, glycols, and adipic acid

    SciTech Connect

    Cummings, C.E.; Roseman, J.

    1985-05-01

    Area and personel air samples were analyzed for ethylene oxide, glycols, and adipic-acid at the Witco Chemical Corporation, Perth Amboy, New Jersey from November to December, 1983 and May, 1984. The evaluation was requested by the union to investigate possible health effects due to polychlorinated biphenyls (PCBs), glycols, and ethylene oxide. The evaluation was assigned to the New Jersey State Department of Health. The authors conclude that health hazards due to ethylene oxide and airborne fatty acid exposures exist. Recommendations include improving ventilation and work practices and implementing an OSHA approved respirator program.

  9. Mesoporous core–shell Fenton nanocatalyst: a mild, operationally simple approach to the synthesis of adipic acid.

    PubMed

    Patra, Astam K; Dutta, Arghya; Bhaumik, Asim

    2013-09-01

    Mesoporous nanoparticles composed of γ-Al2O3 cores and α-Fe2O3 shells were synthesized in aqueous medium. The surface charge of γ-Al2O3 helps to form the core–shell nanocrystals. The core–shell structure and formation mechanism have been investigated by wide-angle XRD, energy-dispersive X-ray spectroscopy, and elemental mapping by ultrahigh-resolution (UHR) TEM and X-ray photoelectron spectroscopy. The N2 adsorption–desorption isotherm of this core–shell materials, which is of type IV, is characteristic of a mesoporous material having a BET surface area of 385 m2 g(−1) and an average pore size of about 3.2 nm. The SEM images revealed that the mesoporosity in this core–shell material is due to self-aggregation of tiny spherical nanocrystals with sizes of about 15–20 nm. Diffuse-reflectance UV/Vis spectra, elemental mapping by UHRTEM, and wide-angle XRD patterns indicate that the materials are composed of aluminum oxide cores and iron oxide shells. These Al2O3@Fe2O3 core–shell nanoparticles act as a heterogeneous Fenton nanocatalyst in the presence of hydrogen peroxide, and show high catalytic efficiency for the one-pot conversion of cyclohexanone to adipic acid in water. The heterogeneous nature of the catalyst was confirmed by a hot filtration test and analysis of the reaction mixture by atomic absorption spectroscopy. The kinetics of the reaction was monitored by gas chromatography and 1H NMR spectroscopy. The new core–shell catalyst remained in a separate solid phase, which could easily be removed from the reaction mixture by simple filtration and the catalyst reused efficiently.

  10. Mesoporous core–shell Fenton nanocatalyst: a mild, operationally simple approach to the synthesis of adipic acid.

    PubMed

    Patra, Astam K; Dutta, Arghya; Bhaumik, Asim

    2013-09-01

    Mesoporous nanoparticles composed of γ-Al2O3 cores and α-Fe2O3 shells were synthesized in aqueous medium. The surface charge of γ-Al2O3 helps to form the core–shell nanocrystals. The core–shell structure and formation mechanism have been investigated by wide-angle XRD, energy-dispersive X-ray spectroscopy, and elemental mapping by ultrahigh-resolution (UHR) TEM and X-ray photoelectron spectroscopy. The N2 adsorption–desorption isotherm of this core–shell materials, which is of type IV, is characteristic of a mesoporous material having a BET surface area of 385 m2 g(−1) and an average pore size of about 3.2 nm. The SEM images revealed that the mesoporosity in this core–shell material is due to self-aggregation of tiny spherical nanocrystals with sizes of about 15–20 nm. Diffuse-reflectance UV/Vis spectra, elemental mapping by UHRTEM, and wide-angle XRD patterns indicate that the materials are composed of aluminum oxide cores and iron oxide shells. These Al2O3@Fe2O3 core–shell nanoparticles act as a heterogeneous Fenton nanocatalyst in the presence of hydrogen peroxide, and show high catalytic efficiency for the one-pot conversion of cyclohexanone to adipic acid in water. The heterogeneous nature of the catalyst was confirmed by a hot filtration test and analysis of the reaction mixture by atomic absorption spectroscopy. The kinetics of the reaction was monitored by gas chromatography and 1H NMR spectroscopy. The new core–shell catalyst remained in a separate solid phase, which could easily be removed from the reaction mixture by simple filtration and the catalyst reused efficiently. PMID:24167824

  11. The mechanics of hyaluronic acid/adipic acid dihydrazide hydrogel: towards developing a vessel for delivery of preadipocytes to native tissues.

    PubMed

    Shoham, Naama; Sasson, Aviad Levi; Lin, Feng-Huei; Benayahu, Dafna; Haj-Ali, Rami; Gefen, Amit

    2013-12-01

    Promising treatment approaches in repairing tissue defects include implementation of regenerative medicine strategies, particularly delivery of preadipocytes to sites where adipose tissue damage needs to be repaired or where fat needs to be generated. In this study, we suggest that the injectable hyaluronic acid/adipic acid dihydrazide (HA/ADH) hydrogel may be an adipose-tissue-like material in terms of biological compatibility as well as mechanical behavior. First, we show that the hydrogel enables and supports growth, proliferation and differentiation of 3T3-L1 preadipocytes. Second, given that adipose tissue is a weight-bearing biological structure, we investigate the large deformation mechanical behavior of the hydrogel with and without embedded preadipocytes, by performing confined and unconfined compression tests and then calibrating a strain energy density (SED) function to the results. Four test groups were examined: (1) Hydrogel specimens right after the preparation without cells, (2) and (3) 3-days-cultured hydrogel specimens with and without cells, respectively, and (4) 6-days-cultured hydrogel specimens with cells. A one-term Ogden SED was found to adequately describe the hyperelastic behavior of the hydrogel specimens in all experimental groups. Importantly, we found that the mechanical properties of the hydrogel, when subjected to compression, are in good agreement with those of native adipose tissue, with the better fit occurring 3-6 days after preparation of the hydrogel. Third, computational finite element studies of the mechanical (stress-strain) behavior of the HA/ADH hydrogel when containing mature adipocytes indicated that the stiffnesses of the constructs were mildly affected by the presence of the adipocytes. Hence, we conclude that injectable HA/ADH hydrogel may serve as a vessel for protecting preadipocytes during, and at a short-term after delivery to native tissues, e.g. in research towards regenerative medicine in tissue reconstructions.

  12. The mechanics of hyaluronic acid/adipic acid dihydrazide hydrogel: towards developing a vessel for delivery of preadipocytes to native tissues.

    PubMed

    Shoham, Naama; Sasson, Aviad Levi; Lin, Feng-Huei; Benayahu, Dafna; Haj-Ali, Rami; Gefen, Amit

    2013-12-01

    Promising treatment approaches in repairing tissue defects include implementation of regenerative medicine strategies, particularly delivery of preadipocytes to sites where adipose tissue damage needs to be repaired or where fat needs to be generated. In this study, we suggest that the injectable hyaluronic acid/adipic acid dihydrazide (HA/ADH) hydrogel may be an adipose-tissue-like material in terms of biological compatibility as well as mechanical behavior. First, we show that the hydrogel enables and supports growth, proliferation and differentiation of 3T3-L1 preadipocytes. Second, given that adipose tissue is a weight-bearing biological structure, we investigate the large deformation mechanical behavior of the hydrogel with and without embedded preadipocytes, by performing confined and unconfined compression tests and then calibrating a strain energy density (SED) function to the results. Four test groups were examined: (1) Hydrogel specimens right after the preparation without cells, (2) and (3) 3-days-cultured hydrogel specimens with and without cells, respectively, and (4) 6-days-cultured hydrogel specimens with cells. A one-term Ogden SED was found to adequately describe the hyperelastic behavior of the hydrogel specimens in all experimental groups. Importantly, we found that the mechanical properties of the hydrogel, when subjected to compression, are in good agreement with those of native adipose tissue, with the better fit occurring 3-6 days after preparation of the hydrogel. Third, computational finite element studies of the mechanical (stress-strain) behavior of the HA/ADH hydrogel when containing mature adipocytes indicated that the stiffnesses of the constructs were mildly affected by the presence of the adipocytes. Hence, we conclude that injectable HA/ADH hydrogel may serve as a vessel for protecting preadipocytes during, and at a short-term after delivery to native tissues, e.g. in research towards regenerative medicine in tissue reconstructions

  13. Synthesis and immunological properties of Vi and di-O-acetyl pectin protein conjugates with adipic acid dihydrazide as the linker.

    PubMed Central

    Kossaczka, Z; Bystricky, S; Bryla, D A; Shiloach, J; Robbins, J B; Szu, S C

    1997-01-01

    The Vi capsular polysaccharide of Salmonella typhi, a licensed vaccine for typhoid fever in individuals > or = 5 years old, induces low and short-lived antibodies in children, and reinjection does not elicit booster responses at any age. Its immunogenicity was improved by binding Vi to proteins by using N-succinimidyl-3-(2-pyridyldithio)propionate (SPDP) as a linker. Similar findings were observed with the structurally related, di-O-acetyl derivative of pectin [poly-alpha(1-->4)-D-GalpA] designated OAcP. Protein conjugates of Vi and OAcP were synthesized by carbodiimide-mediated synthesis with adipic acid dihydrazide (ADH) as the linker. Hydrazide groups were introduced into proteins (bovine serum albumin or recombinant Pseudomonas aeruginosa exoprotein A) by treatment with ADH and 1-ethyl-3(3-dimethylaminopropyl carbodiimide (EDC). The resultant adipic acid hydrazide derivatives (AH-proteins), containing 2.3 to 3.4% AH, had antigenic and physicochemical properties similar to those of the native proteins. The AH-proteins were bound to Vi and OAcP by treatment with EDC. The immunogenicity of Vi or OAcP, alone or as protein conjugates, was evaluated in young outbred mice and guinea pigs by subcutaneous injection of 2.5 and 5.0 microg, respectively, of polysaccharide, and antibodies were measured by enzyme-linked immunosorbent assay. All conjugates were significantly more immunogenic than Vi or OAcP alone and induced booster responses with 5- to 25-fold increases of antibodies. Vi conjugates were significantly more immunogenic than their OAcP analogs. A carboxymethyl derivative of yeast beta-glucan enhanced the anti-Vi response elicited by an OAcP conjugate but had no effect on the immunogenicity of Vi or of OAcP alone. Vi and OAcP conjugates synthesized by this scheme will be evaluated clinically. PMID:9169736

  14. Novel electrospun nanofibrous matrices prepared from poly(lactic acid)/poly(butylene adipate) blends for controlled release formulations of an anti-rheumatoid agent.

    PubMed

    Siafaka, Panoraia I; Barmbalexis, Panagiotis; Bikiaris, Dimitrios N

    2016-06-10

    In the present work, a series of novel formulations consisting of poly(lactic acid)/poly(butylene adipate) (PLA/PBAd) electrospun blends was examined as controlled release matrices for Leflunomide's active metabolite, Teriflunomide (TFL). The mixtures were prepared using different ratios of PLA and PBAd in order to produce nanofibrous matrices with different characteristics. Miscibility studies of the blended polymeric fibers were performed through differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). Hydrolytic degradation in the prepared fibers was evaluated at 37°C using a phosphate buffered saline solution. Different concentrations of (TFL) (5, 10, 15wt.%) were incorporated into nanofibers for examining the drug release behavior in simulated body fluids (SBF), at 37°C. The drug-loaded nanofibrous formulations were further characterized by Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy, DSC and XRD. Gel permeation chromatography (GPC) analysis was used to evaluate the mechanism of TFL release. Artificial neural networks (ANN) and multi-linear-regression (MLR) models were used to evaluate the effect of % content of PBAd (X1) and TFL (X2) on an initial burst effect and a dissolution behavior. It was found that PLA/PBAd nanofibers have different diameters depending on the ratio of used polyesters and added drug. TFL was incorporated in an amorphous form inside the polymeric nanofibers. In vitro release studies reveal that a drug release behavior is correlated with the size of the nanofibers, drug loading and matrix degradation after a specific time. ANN dissolution modeling showed increased correlation efficacy compared to MLR. PMID:27039136

  15. Phase-separation-induced single-crystal morphology in poly(L-lactic acid) blended with poly(1,4-butylene adipate) at specific composition.

    PubMed

    Nurkhamidah, Siti; Woo, E M

    2011-11-17

    The single-crystal morphology of poly(L-lactic acid) (PLLA) in blending with poly(butylene adipate) (PBA) in PLLA/PBA blends was for the first time reported in melt crystallization. At crystallization temperature (T(c)) = 110 °C, by adding 30 wt % PBA into PLLA, the lamellae exhibit six-stalk dendrites with single-crystal packing. Phase separation and crystallization took place simultaneously at T(c) = 110 °C in PLLA/PBA (70/30) blend, leading to discrete PBA domains and continuous PLLA domains. For PLLA/PBA (70/30) blend, all PBA were rejected from the growth front of PLLA crystals, expelled, and crystallized at ambient temperature as ring-banded PBA spherulites inside the discrete domains only, resulting in a favorable environment for formation of PLLA single crystals in the continuous domain. Atomic force microscopy (AFM) observation on individual crystallites reveals that lozenge-shaped single crystals were packed with a clockwise spiral pattern, stacked in 1-3 layers, and these lozenge-shaped crystals are aligned six hexasected directions into hexastalk dendrites with occasional side branches that are also aligned at 60° to main branches. The monolamellar thickness of lozenge-shaped single crystals was measured to be about 13-34 nm, and the dimension is about 0.8-3 μm along the short axis and 1.6-5 μm along the long axis. Typically, three layers of single crystals are stacked one on another; the lozenge crystals on the bottom layer are about twice as large as those on the top layer, forming a pyramid shape in the depth direction. Formation mechanisms of single crystals in melt-crystallized PLLA/PBA blend from 700 nm film thickness are discussed in correlation with exact phase separation at 30 wt % PBA. PMID:21962158

  16. Supra­molecular architecture in a co-crystal of the N(7)—H tautomeric form of N 6-benzoyl­adenine with adipic acid (1/0.5)

    PubMed Central

    Swinton Darious, Robert; Thomas Muthiah, Packianathan; Perdih, Franc

    2016-01-01

    The asymmetric unit of the title co-crystal, C12H9N5O·0.5C6H10O4, consists of one mol­ecule of N 6-benzoyl­adenine (BA) and one half-mol­ecule of adipic acid (AA), the other half being generated by inversion symmetry. The dihedral angle between the adenine and phenyl ring planes is 26.71 (7)°. The N 6-benzoyl­adenine mol­ecule crystallizes in the N(7)—H tautomeric form with three non-protonated N atoms. This tautomeric form is stabilized by intra­molecular N—H⋯O hydrogen bonding between the carbonyl (C=O) group and the N(7)—H hydrogen atom on the Hoogsteen face of the purine ring, forming an S(7) ring motif. The two carboxyl groups of adipic acid inter­act with the Watson–Crick face of the BA mol­ecules through O—H⋯N and N—H⋯O hydrogen bonds, generating an R 2 2(8) ring motif. The latter units are linked by N—H⋯N hydrogen bonds, forming layers parallel to (10-5). A weak C—H⋯O hydrogen bond is also present, linking adipic acid mol­ecules in neighbouring layers, enclosing R 2 2(10) ring motifs and forming a three-dimensional structure. C=O⋯π and C—H⋯π inter­actions are also present in the structure. PMID:27308047

  17. Influence on the physicochemical properties of fish collagen gels using self-assembly and simultaneous cross-linking with the N-hydroxysuccinimide adipic acid derivative.

    PubMed

    Shen, Lirui; Tian, Zhenhua; Liu, Wentao; Li, Guoying

    2015-06-01

    Collagen gels from Southern catfish (Silurus meridionalis Chen) skins were prepared via the self-assembly of collagen molecules and simultaneous cross-linking with the N-hydroxysuccinimide adipic acid derivative (NHS-AA). The doses of NHS-AA were converted to [NHS-AA]/[NH2] ratios (0.025-1.6, calculated by the [active ester group] of NHS-AA and [ε-NH2] of lysine and hydroxylysine residues of collagen). When the ratio < 0.05, collagen gels were formed by collagen molecule self-assembly, resulting in the opalescent appearance of collagen gels and the characteristic D-periodicity of partial collagen fibrils, the collagen gel ([NHS-AA]/[NH2] = 0.05) displayed a small increase in denaturation temperature (Td, 42.8 °C), remaining weight (12.59%), specific water content (SWC 233.7) and elastic modulus (G' 128.4 Pa) compared with uncross-linked collagen gel (39.1 °C, 9.12%, 222.4 and 85.4 Pa, respectively). As the ratio > 0.05, disappearance of D-periodicity and a gradual change in appearance from opalescent to transparent suggested that the inhibition of NHS-AA in the self-assembly of collagen molecules was more obvious. As a result, the collagen gel ([NHS-AA]/[NH2] = 0.2) had the lowest Td (35.8 °C), remaining weight (7.96%), SWC (130.9) and G' (31.9 Pa). When the ratio was 1.6, the collagen molecule self-assembly was markedly suppressed and the formation of collagen gel was predominantly via the covalent cross-linking bonds which led to the transparent appearance, and the maximum values of Td (47.0 °C), remaining weight (45.92%) and G' (420.7 Pa) of collagen gel. These results indicated that collagen gels with different properties can be prepared using different NHS-AA doses.

  18. Mechanical Properties and Morphological Changes of Poly(lactic acid)/Polycarbonate/Poly(butylene adipate-co-terephthalate) Blend Through Reactive Processing—Effects of Fabrication Processes—

    NASA Astrophysics Data System (ADS)

    Kanzawa, Takeshi; Tokumitsu, Katsuhisa

    The mechanical properties of poly(lactic acid) (PLA)/polycarbonate (PC) blend were improved considerably by addition of both poly(butylene adipate-co-terephthalate) (PBAT) and dicumyl peroxide (DCP) as a radical coupling agent for PLA and PBAT. In this work, the authors aimed to grasp meltdown properties of PLA/PBAT with/without DCP by (1) clarifying the effect of addition of DCP on the melt viscoelatsic properties of PLA/PBAT, and make this ternary system more suitable by (2) optimizing additive contents and (3) investigating the effect of fabrication processes on mechanical properties and morphologies of the blends. The growth curves of G' and G'' for PLA/PBAT (70/30) (wt/wt) with/without DCP measured by a rheometer suggested that branching and cross-linking structures were formed by hetero-and/or homogeneous radical coupling reactions. The elongation at break of the ternary reactive blend with DCP 0.30 phr (PLA/PBAT/PC blend with DCP) increased up to 160%, which was much better than that with other DCP contents. Moreover, the value of standard deviation for the ternary reactive blend was smaller. Furthermore, PLA/PBAT/PC ternary polymer blends were prepared through a twin-screw extruder with an L/D ratio of 75, and their physical and meltdown properties were investigated. The domain size of the reactive blend with an L/D ratio of 75 was smaller than that of 45, however, the impact strength of the blend with an L/D ratio of 75 decreased with increasing rotation speed of the extruder. Moreover, the MFR of the blend increased with increasing rotation speed of the extruder as well. As the MFR of PC prepared under same condition of blending did not change, so this suggested that PLA/PBAT components of the ternary blends were degraded in higher shear rate. As a result, the impact strength of the ternary blends decreased as well.

  19. Di(2-ethylhexyl)adipate

    Integrated Risk Information System (IRIS)

    Di ( 2 - ethylhexyl ) adipate ; CASRN 103 - 23 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Non

  20. In Vitro Metabolites of Di-2-ethylhexyl Adipate (DEHA) as Biomarkers of Exposure in Human Biomonitoring Applications

    PubMed Central

    Silva, Manori J.; Samandar, Ella; Ye, Xiaoyun; Calafat, Antonia M.

    2015-01-01

    Di-2-ethylhexyl adipate (DEHA) is a common plasticizer used in food packaging. At high doses, DEHA can cause adverse health effects in rats. Although the potential for human exposure to DEHA is high, no DEHA specific biomarkers are identified for human biomonitoring. Using human liver microsomes, we investigated the in vitro phase I metabolism of DEHA and its hydrolytic metabolite mono-2-ethylhexyl adipate (MEHA) and, for comparison purposes, of the analogous di-2-ethylhexyl phthalate (DEHP) and its hydrolytic metabolite mono-2-ethylhexyl phthalate. We unequivocally identified MEHA, a DEHA specific biomarker, and adipic acid, a nonspecific biomarker, using authentic standards. On the basis of their mass spectrometric fragmentation patterns, we tentatively identified two other DEHA specific metabolites: mono-2-ethylhydroxyhexyl adipate (MEHHA) and mono-2-ethyloxohexyl adipate (MEOHA), analogous to the oxidative metabolites of DEHP. Interestingly, although adipic acid was the major in vitro metabolite of DEHA, the analogous phthalic acid was not the major in vitro metabolite of DEHP. Our preliminary data for 144 adults with no known exposure to DEHA suggests that adipic acid is also the main in vivo urinary metabolite, while MEHA, MEHHA, and MEOHA are only minor metabolites. Therefore, the use of these specific metabolites for assessing the exposure of DEHA may be limited to highly exposed populations. PMID:24016063

  1. Comparative immunogenicity of conjugates composed of the Staphylococcus aureus type 8 capsular polysaccharide bound to carrier proteins by adipic acid dihydrazide or N-succinimidyl-3-(2-pyridyldithio)propionate.

    PubMed Central

    Fattom, A; Shiloach, J; Bryla, D; Fitzgerald, D; Pastan, I; Karakawa, W W; Robbins, J B; Schneerson, R

    1992-01-01

    Staphylococcus aureus type 8 capsular polysaccharide (CP) was conjugated either to diphtheria toxoid or to Pseudomonas aeruginosa recombinant exoprotein A by using adipic acid dihydrazide (ADH) or N-succinimidyl-3-(2-pyridyldithio)propionate (SPDP) as the joining reagent. The polysaccharide/protein ratios of these two pairs of conjugates were similar. The two synthetic schemes bound the linker to the carboxyls of the type 8 CP by carbodiimide-mediated condensation. ADH was bound to the carboxyls of the protein, whereas SPDP reacted with the amino groups of the protein. Intermolecular linking of the carrier protein, caused by the carbodiimide during the conjugation reaction with the type 8 CP derivative, probably accounts for the larger size of the conjugates formed with ADH compared with those formed with SPDP. Both conjugates synthesized with ADH elicited higher levels of CP antibodies, especially after the first immunization, than did those prepared with SPDP. Similar levels of exoprotein A antibodies were elicited by both conjugates. Higher levels of diphtheria toxoid antibodies were elicited by the conjugate prepared with SPDP than by the one prepared with ADH. The basis for the differences in the immunogenicities of these two pairs of S. aureus type 8 CP conjugates is discussed. PMID:1730492

  2. Comparative immunogenicity of conjugates composed of the Staphylococcus aureus type 8 capsular polysaccharide bound to carrier proteins by adipic acid dihydrazide or N-succinimidyl-3-(2-pyridyldithio)propionate.

    PubMed

    Fattom, A; Shiloach, J; Bryla, D; Fitzgerald, D; Pastan, I; Karakawa, W W; Robbins, J B; Schneerson, R

    1992-02-01

    Staphylococcus aureus type 8 capsular polysaccharide (CP) was conjugated either to diphtheria toxoid or to Pseudomonas aeruginosa recombinant exoprotein A by using adipic acid dihydrazide (ADH) or N-succinimidyl-3-(2-pyridyldithio)propionate (SPDP) as the joining reagent. The polysaccharide/protein ratios of these two pairs of conjugates were similar. The two synthetic schemes bound the linker to the carboxyls of the type 8 CP by carbodiimide-mediated condensation. ADH was bound to the carboxyls of the protein, whereas SPDP reacted with the amino groups of the protein. Intermolecular linking of the carrier protein, caused by the carbodiimide during the conjugation reaction with the type 8 CP derivative, probably accounts for the larger size of the conjugates formed with ADH compared with those formed with SPDP. Both conjugates synthesized with ADH elicited higher levels of CP antibodies, especially after the first immunization, than did those prepared with SPDP. Similar levels of exoprotein A antibodies were elicited by both conjugates. Higher levels of diphtheria toxoid antibodies were elicited by the conjugate prepared with SPDP than by the one prepared with ADH. The basis for the differences in the immunogenicities of these two pairs of S. aureus type 8 CP conjugates is discussed. PMID:1730492

  3. Pepper protein phosphatase type 2C, CaADIP1 and its interacting partner CaRLP1 antagonistically regulate ABA signalling and drought response.

    PubMed

    Lim, Chae Woo; Lee, Sung Chul

    2016-07-01

    Abscisic acid (ABA) is a key phytohormone that regulates plant growth and developmental processes, including seed germination and stomatal closing. Here, we report the identification and functional characterization of a novel type 2C protein phosphatase, CaADIP1 (Capsicum annuum ABA and Drought-Induced Protein phosphatase 1). The expression of CaADIP1 was induced in pepper leaves by ABA, drought and NaCl treatments. Arabidopsis plants overexpressing CaADIP1 (CaADIP1-OX) exhibited an ABA-hyposensitive and drought-susceptible phenotype. We used a yeast two-hybrid screening assay to identify CaRLP1 (Capsicum annuum RCAR-Like Protein 1), which interacts with CaADIP1 in the cytoplasm and nucleus. In contrast to CaADIP1-OX plants, CaRLP1-OX plants displayed an ABA-hypersensitive and drought-tolerant phenotype, which was characterized by low levels of transpirational water loss and increased expression of stress-responsive genes relative to those of wild-type plants. In CaADIP1-OX/CaRLP1-OX double transgenic plants, ectopic expression of the CaRLP1 gene led to strong suppression of CaADIP1-induced ABA hyposensitivity during the germinative and post-germinative stages, indicating that CaADIP1 and CaRLP1 act in the same signalling pathway and CaADIP1 functions downstream of CaRLP1. Our results indicate that CaADIP1 and its interacting partner CaRLP1 antagonistically regulate the ABA-dependent defense signalling response to drought stress. PMID:26825039

  4. 78 FR 33748 - Diisopropyl Adipate; Exemption From the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-05

    ... manufacturer, or pesticide manufacturer. The following list of North American Industrial Classification System... In the Federal Register of August 22, 2012 (77 FR 50661) (FRL-9358- 9), EPA issued a notice pursuant... toxicity study, male rats were given 0, 0.1, 1 or 5% adipic acid and female rats were given 0 or 1%...

  5. Fatty Acids as Surfactants on Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Tervahattu, H.; Juhanoja, J.; Niemi, J.

    2003-12-01

    Fatty acids (n-alcanoic acids) are common compounds in numerous anthropogenic and natural emissions. According to Rogge et al. (1993), catalyst-equipped automobiles emitted more than 600 μg km-1 of fatty acids which was over 50% of all identified organics in fine aerosol emissions. Coal burning produces fatty acids ranging from about 1700 mg kg-1 for bituminous coal to over 10000 mg kg-1 for lignite (Oros and Simoneit, 2000). Similarly, biomass burning is an important source for aerosol fatty acids. They are the major identified compound group in deciduous tree smoke, their total emission factor being measured as 1589 mg kg-1 which was 56% of all identified organic compounds (Oros and Simoneit, 2001a). Large amounts of fatty acid are also emitted from burning of conifer trees and grass (Oros and Simoneit, 2001a; Simoneit, 2002). Fatty acids have been reported to be major constituents of marine aerosols in many investigations (Barger and Garrett, 1976; Gagosian et. al, 1981; Sicre et al., 1990; Stephanou, 1992). It has been suggested that as the marine aerosol particles form, they acquire a coating of organic surfactants (Blanchard, 1964; Gill et al., 1983; Middlebrook et al., 1998; Ellison et al., 1999). Amphiphilic molecules, including lipids, can be assembled as monomolecular layers at air/water interfaces as well as transported to a solid support. Recently, we could show by time-of-flight secondary ion mass spectrometry that fatty acids are important ingredients of the outermost surface layer of the sea-salt aerosol particles (Tervahattu et al., 2002). In their TOF-SIMS studies on the surface composition of atmospheric aerosols, Peterson and Tyler (2002) found fatty acids on the surface of Montana forest fire particles. In this work we have studied by TOF-SIMS the surface chemical composition of aerosol particles emitted from field fires in the Baltic and other East European countries and transported to Finland as well as aerosol particles transported from

  6. Data on synthesis of oligomeric and polymeric poly(butylene adipate-co-butylene terephthalate) model substrates for the investigation of enzymatic hydrolysis.

    PubMed

    Perz, Veronika; Bleymaier, Klaus; Sinkel, Carsten; Kueper, Ulf; Bonnekessel, Melanie; Ribitsch, Doris; Guebitz, Georg M

    2016-06-01

    The aliphatic-aromatic copolyester poly(butylene adipate-co-butylene terephthalate) (PBAT), also known as ecoflex, contains adipic acid, 1,4-butanediol and terephthalic acid and is proven to be compostable [1], [2], [3]). We describe here data for the synthesis and analysis of poly(butylene adipate-co-butylene terephthalate variants with different adipic acid:terephatalic acid ratios and 6 oligomeric PBAT model substrates. Data for the synthesis of the following oligomeric model substrates are described: mono(4-hydroxybutyl) terephthalate (BTa), bis(4-(hexanoyloxy)butyl) terephthalate (HaBTaBHa), bis(4-(decanoyloxy)butyl) terephthalate (DaBTaBDa), bis(4-(tetradecanoyloxy)butyl) terephthalate (TdaBTaBTda), bis(4-hydroxyhexyl) terephthalate (HTaH) and bis(4-(benzoyloxy)butyl) terephthalate (BaBTaBBa). Polymeric PBAT variants were synthesized with adipic acid:terephatalic acid ratios of 100:0, 90:10, 80:20, 70:30, 60:40 and 50:50. These polymeric and oligomeric substances were used as ecoflex model substrates in enzymatic hydrolysis experiments in the article "Substrate specificities of cutinases on aliphatic-aromatic polyesters and on their model substrates" [4]. PMID:26981550

  7. Data on synthesis of oligomeric and polymeric poly(butylene adipate-co-butylene terephthalate) model substrates for the investigation of enzymatic hydrolysis

    PubMed Central

    Perz, Veronika; Bleymaier, Klaus; Sinkel, Carsten; Kueper, Ulf; Bonnekessel, Melanie; Ribitsch, Doris; Guebitz, Georg M.

    2016-01-01

    The aliphatic-aromatic copolyester poly(butylene adipate-co-butylene terephthalate) (PBAT), also known as ecoflex, contains adipic acid, 1,4-butanediol and terephthalic acid and is proven to be compostable [1], [2], [3]). We describe here data for the synthesis and analysis of poly(butylene adipate-co-butylene terephthalate variants with different adipic acid:terephatalic acid ratios and 6 oligomeric PBAT model substrates. Data for the synthesis of the following oligomeric model substrates are described: mono(4-hydroxybutyl) terephthalate (BTa), bis(4-(hexanoyloxy)butyl) terephthalate (HaBTaBHa), bis(4-(decanoyloxy)butyl) terephthalate (DaBTaBDa), bis(4-(tetradecanoyloxy)butyl) terephthalate (TdaBTaBTda), bis(4-hydroxyhexyl) terephthalate (HTaH) and bis(4-(benzoyloxy)butyl) terephthalate (BaBTaBBa). Polymeric PBAT variants were synthesized with adipic acid:terephatalic acid ratios of 100:0, 90:10, 80:20, 70:30, 60:40 and 50:50. These polymeric and oligomeric substances were used as ecoflex model substrates in enzymatic hydrolysis experiments in the article “Substrate specificities of cutinases on aliphatic-aromatic polyesters and on their model substrates” [4]. PMID:26981550

  8. Ultrafine metal particles immobilized on styrene/acrylic acid copolymer particles

    SciTech Connect

    Tamai, Hisashi; Hamamoto, Shiro; Nishiyama, Fumitaka; Yasuda, Hajime

    1995-04-01

    Ultrafine metal particles immobilized on styrene/acrylic acid copolymer fine particles were produced by reducing the copolymer particles-metal ion complexes or refluxing an ethanol solution of metal ions in the presence of copolymer particles. The size of metal particles formed by reduction of the complex is smaller than that by reflux of the metal ion solution and depends on the amount of metal ions immobilized.

  9. A combined particle trap/HTDMA hygroscopicity study of mixed inorganic/organic aerosol particles

    NASA Astrophysics Data System (ADS)

    Zardini, A. A.; Sjogren, S.; Marcolli, C.; Krieger, U. K.; Gysel, M.; Weingartner, E.; Baltensperger, U.; Peter, T.

    2008-03-01

    Atmospheric aerosols are often mixtures of inorganic and organic material. Organics can represent a large fraction of the total aerosol mass and are comprised of water-soluble and insoluble compounds. Increasing attention was paid in the last decade to the capability of mixed inorganic/organic aerosol particles to take up water (hygroscopicity). We performed hygroscopicity measurements of internally mixed particles containing ammonium sulfate and carboxylic acids (citric, glutaric, adipic acid) in parallel with an electrodynamic balance (EDB) and a hygroscopicity tandem differential mobility analyzer (HTDMA). The organic compounds were chosen to represent three distinct physical states. During hygroscopicity cycles covering hydration and dehydration measured by the EDB and the HTDMA, pure citric acid remained always liquid, adipic acid remained always solid, while glutaric acid could be either. We show that the hygroscopicity of mixtures of the above compounds is well described by the Zdanovskii-Stokes-Robinson (ZSR) relationship as long as the two-component particle is completely liquid in the ammonium sulfate/citric acid and in the ammonium sulfate/glutaric acid cases. However, we observe significant discrepancies compared to what is expected from bulk thermodynamics when a solid component is present. We explain this in terms of a complex morphology resulting from the crystallization process leading to veins, pores, and grain boundaries which allow for water sorption in excess of bulk thermodynamic predictions caused by the inverse Kelvin effect on concave surfaces.

  10. Fatty acids on continental sulfate aerosol particles

    NASA Astrophysics Data System (ADS)

    Tervahattu, H.; Juhanoja, J.; Vaida, V.; Tuck, A. F.; Niemi, J. V.; Kupiainen, K.; Kulmala, M.; VehkamäKi, H.

    2005-03-01

    Surface analyses of atmospheric aerosols from different continental sources, such as forest fires and coal and straw burning, show that organic surfactants are found on such aerosols. The predominant organic species detected by time-of-flight secondary ion mass spectrometry on the sulfate aerosols are fatty acids of different carbon chain length up to the C32 acid. These observations are consistent with literature accounts of functional group analysis of bulk samples, but this is the first direct evidence of fatty acid films on the surface of sulfate aerosols. Surface analysis leads to the conclusion that fatty acid films on continental aerosols may be more common than has been previously suggested.

  11. Rapid monomerization of poly(butylene succinate)-co-(butylene adipate) by Leptothrix sp.

    PubMed

    Nakajima-Kambe, Toshiaki; Toyoshima, Kieko; Saito, Chika; Takaguchi, Hitoshi; Akutsu-Shigeno, Yukie; Sato, Megumi; Miyama, Kazuyuki; Nomura, Nobuhiko; Uchiyama, Hiroo

    2009-12-01

    For rapid monomerization of biodegradable plastics, various microorganisms were screened and TB-71 was selected as the best strain. TB-71 degraded solid poly(butylene succinate)-co-(butylene adipate) (PBSA), poly(ethylene succinate), and poly(epsilon-caprolactone) but not poly(butylene succinate), poly(2-hydroxybutylate-co-valerate) or poly(lactic acid). Esterase activity was observed in the culture broth during PBSA degradation, which was specifically induced by PBSA. Analysis of the degradation products revealed that PBSA was degraded to monomers. PMID:19914585

  12. Rapid monomerization of poly(butylene succinate)-co-(butylene adipate) by Leptothrix sp.

    PubMed

    Nakajima-Kambe, Toshiaki; Toyoshima, Kieko; Saito, Chika; Takaguchi, Hitoshi; Akutsu-Shigeno, Yukie; Sato, Megumi; Miyama, Kazuyuki; Nomura, Nobuhiko; Uchiyama, Hiroo

    2009-12-01

    For rapid monomerization of biodegradable plastics, various microorganisms were screened and TB-71 was selected as the best strain. TB-71 degraded solid poly(butylene succinate)-co-(butylene adipate) (PBSA), poly(ethylene succinate), and poly(epsilon-caprolactone) but not poly(butylene succinate), poly(2-hydroxybutylate-co-valerate) or poly(lactic acid). Esterase activity was observed in the culture broth during PBSA degradation, which was specifically induced by PBSA. Analysis of the degradation products revealed that PBSA was degraded to monomers.

  13. Nucleic acid separations using superficially porous silica particles

    PubMed Central

    Close, Elizabeth D.; Nwokeoji, Alison O.; Milton, Dafydd; Cook, Ken; Hindocha, Darsha M.; Hook, Elliot C.; Wood, Helen; Dickman, Mark J.

    2016-01-01

    Ion pair reverse-phase liquid chromatography has been widely employed for nucleic acid separations. A wide range of alternative stationary phases have been utilised in conjunction with ion pair reverse-phase chromatography, including totally porous particles, non-porous particles, macroporous particles and monolithic stationary phases. In this study we have utilised superficially porous silica particles in conjunction with ion pair reverse-phase liquid chromatography for the analysis of nucleic acids. We have investigated a range of different pore-sizes and phases for the analysis of a diverse range of nucleic acids including oligonucleotides, oligoribonucleotides, phosphorothioate oligonucleotides and high molecular weight dsDNA and RNA. The pore size of the superficially porous silica particles was shown to significantly affect the resolution of the nucleic acids. Optimum separations of small oligonucleotides such as those generated in RNase mapping experiments were obtained with 80 Å pore sizes and can readily be interfaced with mass spectrometry analysis. Improved resolution of larger oligonucleotides (>19 mers) was observed with pore sizes of 150 Å. The optimum resolution for larger dsDNA/RNA molecules was achieved using superficially porous silica particles with pore sizes of 400 Å. Furthermore, we have utilised 150 Å pore size solid-core particles to separate typical impurities of a fully phosphorothioated oligonucleotide, which are often generated in the synthesis of this important class of therapeutic oligonucleotide. PMID:26948761

  14. Plasma polymerized allylamine coated quartz particles for humic acid removal.

    PubMed

    Jarvis, Karyn L; Majewski, Peter

    2012-08-15

    Allylamine plasma polymerization has been used to modify the surface of quartz particles for humic acid removal via an inductively coupled rotating barrel plasma reactor. Plasma polymerized allylamine (ppAA) films were deposited at a power of 25 W, allylamine flow rate of 4.4 sccm and polymerization times of 5-60 min. The influence of polymerization time on surface chemistry was investigated via X-ray photoelectron spectroscopy (XPS), time of flight secondary ion mass spectrometry (ToF-SIMS) and electrokinetic analysis. Acid orange 7 adsorption/desorption quantified the number of surface amine groups. Humic acid removal via ppAA quartz particles was examined by varying pH, removal time, humic acid concentration, and particle mass. Increasing the polymerization time increased the concentration of amine groups on the ppAA quartz surface, thus also increasing the isoelectric point. ToF-SIMS demonstrated uniform distribution of amine groups across the particle surface. Greatest humic acid removal was observed at pH 5 due to electrostatic attraction. At higher pH values, for longer polymerization times, humic acid removal was also observed due to hydrogen bonding. Increasing the initial humic acid concentration increased the mass of humic acid removed, with longer polymerization times exhibiting the greatest increases. Plasma polymerization using a rotating plasma reactor has shown to be a successful method for modifying quartz particles for the removal of humic acid. Further development of the plasma polymerization process and investigation of additional contaminants will aid in the development of a low cost water treatment system.

  15. Sulfuric Acid and Soot Particle Formation in Aircraft Exhaust

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf F.; Verma, S.; Ferry, G. V.; Howard, S. D.; Vay, S.; Kinne, S. A.; Baumgardner, D.; Dermott, P.; Kreidenweis, S.; Goodman, J.; Gore, Waren J. Y. (Technical Monitor)

    1997-01-01

    A combination of CN counts, Ames wire impactor size analyses and optical particle counter data in aircraft exhaust results in a continuous particle size distribution between 0.01 micrometer and 1 micrometer particle radius sampled in the exhaust of a Boeing 757 research aircraft. The two orders of magnitude size range covered by the measurements correspond to 6-7 orders of magnitude particle concentration. CN counts and small particle wire impactor data determine a nucleation mode, composed of aircraft-emitted sulfuric acid aerosol, that contributes between 62% and 85% to the total aerosol surface area and between 31% and 34% to its volume. Soot aerosol comprises 0.5% of the surface area of the sulfuric acid aerosol. Emission indices are: EIH2SO4 = 0.05 g/kgFUEL and (0.2-0.5) g/kgFUEL (for 75 ppmm and 675 ppmm fuel-S, respectively), 2.5E4particles/kgFUEL (for 75 and 675 ppmm fuel-S). The sulfur (gas) to H2SO4 (particle) conversion efficiency is between 10% and 25%.

  16. Oleic acid coated magnetic nano-particles: Synthesis and characterizations

    SciTech Connect

    Panda, Biswajit Goyal, P. S.

    2015-06-24

    Magnetic nano particles of Fe{sub 3}O{sub 4} coated with oleic acid were synthesized using wet chemical route, which involved co-precipitation of Fe{sup 2+} and Fe{sup 3+} ions. The nano particles were characterized using XRD, TEM, FTIR, TGA and VSM. X-ray diffraction studies showed that nano particles consist of single phase Fe{sub 3}O{sub 4} having inverse spinel structure. The particle size obtained from width of Bragg peak is about 12.6 nm. TEM analysis showed that sizes of nano particles are in range of 6 to 17 nm with a dominant population at 12 - 14 nm. FTIR and TGA analysis showed that -COOH group of oleic acid is bound to the surface of Fe{sub 3}O{sub 4} particles and one has to heat the sample to 278° C to remove the attached molecule from the surface. Further it was seen that Fe{sub 3}O{sub 4} particles exhibit super paramagnetism with a magnetization of about 53 emu/ gm.

  17. 1- and 2-particle Microrheology of Hyaluronic Acid

    NASA Astrophysics Data System (ADS)

    Sagan, Austin; Kearns, Sarah; Ross, David; Das, Moumita; Thurston, George; Franklin, Scott

    2015-03-01

    Hyaluronic acid (also called HA or Hyaluronan) is a high molecular weight polysaccaride ubiquitous in the extracellular matrix of soft tissue such as cartilage, skin, the eye's vitreous gel and synovial fluid. It has been shown to play an important role in mechanotransduction, cell migration and proliferation, and in tissue morphodynamics. We present a confocal microrheology study of hyaluronic acid of varying concentrations. The mean squared displacement (MSD) of sub-micron colloidal tracer particles is tracked in two dimensions and shows a transition from diffusive motion at low concentrations to small-time trapping by the protein network as the concentration increases. Correlations between particle motion can be used to determine an effective mean-squared displacement which deviates from the single-particle MSD as the fluid becomes less homogeneous. The real and effective mean-squared displacements are used to probe the local and space-averaged frequency dependent rheological properties of the fluid as the concentration changes.

  18. Acid-degradable polyurethane particles for protein-based vaccines

    PubMed Central

    Bachelder, Eric M.; Beaudette, Tristan T.; Broaders, Kyle E.; Paramonov, Sergey E.; Dashe, Jesse; Fréchet, Jean M. J.

    2009-01-01

    Acid-degradable particles containing a model protein antigen, ovalbumin, were prepared from a polyurethane with acetal moieties embedded throughout the polymer, and characterized by dynamic light scattering and transmission electron microscopy. The small molecule degradation by-product of the particles was synthesized and tested in vitro for toxicity indicating an LC50 of 12,500 μg/ml. A new liquid chromatography-mass spectrometry technique was developed to monitor the in vitro degradation of these particles. The degradation by-product inside RAW macrophages was at its highest level after 24 hours of culture and was efficiently exocytosed until it was no longer detectable after four days. When tested in vitro, these particles induced a substantial increase in the presentation of the immunodominant ovalbumin-derived peptide SIINFEKL in both macrophages and dendritic cells. In addition, vaccination with these particles generated a cytotoxic T-lymphocyte response that was superior to both free ovalbumin and particles made from an analogous but slower-degrading acid-labile polyurethane polymer. Overall, we present a fully degradable polymer system with non-toxic by-products, which may find use in various biomedical applications including protein-based vaccines. PMID:18710254

  19. Energetic particle-induced enhancements of stratospheric nitric acid

    NASA Technical Reports Server (NTRS)

    Aikin, Arthur C.

    1994-01-01

    Inclusion of complete ion chemistry in the calculation of minor species production during energetic particle deposition events leads to significant enhancement in the calculated nitric acid concentration during precipitation. An ionization rate of 1.2 x 10(exp 3)/cu cm/s imposed for 1 day increases HNO3 from 3 x 10(exp 5) to 6 x 10(exp 7)/cu cm at 50 km. With an ionization rate of 600 cu cm/s, the maximum HNO3 is 3 x 10(exp 7)/cu cm. Calculations which neglect negative ions predict the nitric acid will fall during precipitation events. The decay time for converting HNO3 into odd nitrogen and hydrogen is more than 1 day for equinoctial periods at 70 deg latitude. Examination of nitric acid data should yield important information on the magnitude and frequency of charged particle events.

  20. Performance of biodegradable microcapsules of poly(butylene succinate), poly(butylene succinate-co-adipate) and poly(butylene terephthalate-co-adipate) as drug encapsulation systems.

    PubMed

    Brunner, Cornelia Theresa; Baran, Erkan Türker; Pinho, Elisabete Duarte; Reis, Rui Luís; Neves, Nuno Meleiro

    2011-06-01

    Poly(butylene succinate) (PBSu), poly(butylene succinate-co-adipate) (PBSA) and poly(butylene terephthalate-co-adipate) (PBTA) microcapsules were prepared by the double emulsion/solvent evaporation method. The effect of polymer and poly(vinyl alcohol) (PVA) concentration on the microcapsule morphologies, drug encapsulation efficiency (EE) and drug loading (DL) of bovine serum albumin (BSA) and all-trans retinoic acid (atRA) were all investigated. As a result, the sizes of PBSu, PBSA and PBTA microcapsules were increased significantly by varying polymer concentrations from 6 to 9%. atRA was encapsulated into the microcapsules with an high level of approximately 95% EE. The highest EE and DL of BSA were observed at 1% polymer concentration in values of 60 and 37%, respectively. 4% PVA was found as the optimum concentration and resulted in 75% EE and 14% DL of BSA. The BSA release from the capsules of PBSA was the longest, with 10% release in the first day and a steady release of 17% until the end of day 28. The release of atRA from PBSu microcapsules showed a zero-order profile for 2 weeks, keeping a steady release rate during 4 weeks with a 9% cumulative release. Similarly, the PBSA microcapsules showed a prolonged and a steady release of atRA during 6 weeks with 12% release. In the case of PBTA microcapsules, after a burst release of 10% in the first day, showed a parabolic release profile of atRA during 42 days, releasing 36% of atRA.

  1. Fabrication and characterization of cross-linkable hydrogel particles based on hyaluronic acid: potential application in vocal fold regeneration.

    PubMed

    Sahiner, Nurettin; Jha, Amit K; Nguyen, David; Jia, Xinqiao

    2008-01-01

    There is a critical need to engineer hyaluronic acid (HA)-based hydrogels with prolonged in vivo residence time, temporal release of therapeutics and matching viscoelasticity for use in vocal fold tissue engineering. We have previously demonstrated the synthesis and characterization of HA-based soft hydrogel particles (HGP) and particle cross-linked networks as injectable materials to treat vocal fold scarring. In this paper, we report a more versatile technique for preparing cross-linkable HA HGP with reduced sizes. HA HGP were synthesized via chemical cross-linking with divinyl sulfone using a sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/isooctane reverse micelle system in the presence of 1-heptanol. These HGP were rendered cross-linkable by introducing aldehyde groups via sodium periodate oxidation (oxHGP). The presence of aldehyde groups was confirmed by multi-photon confocal microscope upon fluorescence staining using cascade blue hydrazide. The aldehyde groups were used as reactive handles for covalent cross-linking with HA that has been previously modified with adipic acid dihydrazide (HADH). The resulting doubly cross-linked networks (DXN) are highly pliable and do not break until approx. 200-300% strain. The measured elastic modulus of the DXN is around 500 Pa, while the dynamic viscosity decreases linearly with frequency in log- log scale. The mechanical characteristics of DXN are similar to that of vocal fold lamina propria. In vitro cell-proliferation assays showed that the cross-linkable HA HGP did not adversely affect the proliferation of the cultured fibroblasts as assessed by MTT assay. A low-molecular-weight model drug, rhodamine 6G (R6G), was loaded into oxHGP, and its release was monitored using UV-Vis spectroscopy. R6G-loaded oxHGP maintained their ability to form DXN when mixed with the HAADH solution. Approximately 84% of entrapped R6G was liberated from oxHGP at a rate of 0.24%/min in the first 6 h. When encapsulated in the DXN, R6G was

  2. Fabrication and characterization of cross-linkable hydrogel particles based on hyaluronic acid: potential application in vocal fold regeneration.

    PubMed

    Sahiner, Nurettin; Jha, Amit K; Nguyen, David; Jia, Xinqiao

    2008-01-01

    There is a critical need to engineer hyaluronic acid (HA)-based hydrogels with prolonged in vivo residence time, temporal release of therapeutics and matching viscoelasticity for use in vocal fold tissue engineering. We have previously demonstrated the synthesis and characterization of HA-based soft hydrogel particles (HGP) and particle cross-linked networks as injectable materials to treat vocal fold scarring. In this paper, we report a more versatile technique for preparing cross-linkable HA HGP with reduced sizes. HA HGP were synthesized via chemical cross-linking with divinyl sulfone using a sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/isooctane reverse micelle system in the presence of 1-heptanol. These HGP were rendered cross-linkable by introducing aldehyde groups via sodium periodate oxidation (oxHGP). The presence of aldehyde groups was confirmed by multi-photon confocal microscope upon fluorescence staining using cascade blue hydrazide. The aldehyde groups were used as reactive handles for covalent cross-linking with HA that has been previously modified with adipic acid dihydrazide (HADH). The resulting doubly cross-linked networks (DXN) are highly pliable and do not break until approx. 200-300% strain. The measured elastic modulus of the DXN is around 500 Pa, while the dynamic viscosity decreases linearly with frequency in log- log scale. The mechanical characteristics of DXN are similar to that of vocal fold lamina propria. In vitro cell-proliferation assays showed that the cross-linkable HA HGP did not adversely affect the proliferation of the cultured fibroblasts as assessed by MTT assay. A low-molecular-weight model drug, rhodamine 6G (R6G), was loaded into oxHGP, and its release was monitored using UV-Vis spectroscopy. R6G-loaded oxHGP maintained their ability to form DXN when mixed with the HAADH solution. Approximately 84% of entrapped R6G was liberated from oxHGP at a rate of 0.24%/min in the first 6 h. When encapsulated in the DXN, R6G was

  3. Cloud condensation nucleus (CCN) behavior of organic aerosol particles generated by atomization of water and methanol solutions

    NASA Astrophysics Data System (ADS)

    Rissman, T. A.; Varutbangkul, V.; Surratt, J. D.; Topping, D. O.; McFiggans, G.; Flagan, R. C.; Seinfeld, J. H.

    2006-12-01

    Cloud condensation nucleus (CCN) experiments were carried out for malonic acid, succinic acid, oxalacetic acid, DL-malic acid, glutaric acid, DL-glutamic acid monohydrate, and adipic acid, using both water and methanol as atomization solvents, at three operating supersaturations (0.11% 0.21%, and 0.32%) in the Caltech three-column CCN instrument (CCNC3). Predictions of CCN behavior for five of these compounds were made using the Aerosol Diameter Dependent Equilibrium Model (ADDEM). The experiments presented here expose important considerations associated with the laboratory measurement of the CCN behavior of organic compounds. Choice of atomization solvent results in significant differences in CCN activation for some of the compounds studied, which could result from residual solvent, particle morphology differences, and chemical reactions between the particle and gas phases. Also, significant changes in aerosol size distribution occurred after classification in a differential mobility analyzer (DMA) for malonic acid and glutaric acid. Filter analysis of adipic acid atomized from methanol solution indicates that gas-particle phase reactions may have taken place after atomization and before the methanol was removed from the sample gas stream. Careful consideration of these experimental issues is necessary for successful design and interpretation of laboratory CCN measurements.

  4. Cloud condensation nucleus (CCN) behavior of organic aerosol particles generated by atomization of water and methanol solutions

    NASA Astrophysics Data System (ADS)

    Rissman, T. A.; Varutbangkul, V.; Surratt, J. D.; Topping, D. O.; McFiggans, G.; Flagan, R. C.; Seinfeld, J. H.

    2007-06-01

    Cloud condensation nucleus (CCN) experiments were carried out for malonic acid, succinic acid, oxalacetic acid, DL-malic acid, glutaric acid, DL-glutamic acid monohydrate, and adipic acid, using both water and methanol as atomization solvents, at three operating supersaturations (0.11%, 0.21%, and 0.32%) in the Caltech three-column CCN instrument (CCNC3). Predictions of CCN behavior for five of these compounds were made using the Aerosol Diameter Dependent Equilibrium Model (ADDEM). The experiments presented here expose important considerations associated with the laboratory measurement of the CCN behavior of organic compounds. Choice of atomization solvent results in significant differences in CCN activation for some of the compounds studied, which could result from residual solvent, particle morphology differences, and chemical reactions between the particle and gas phases. Also, significant changes in aerosol size distribution occurred after classification in a differential mobility analyzer (DMA) for malonic acid and glutaric acid, preventing confident interpretation of experimental data for these two compounds. Filter analysis of adipic acid atomized from methanol solution indicates that gas-particle phase reactions may have taken place after atomization and before methanol was removed from the sample gas stream. Careful consideration of these experimental issues is necessary for successful design and interpretation of laboratory CCN measurements.

  5. Amine bearing polymeric particles as acid neutralizers for engine oils

    SciTech Connect

    Theodore, A.N.; Chattha, M.S.

    1986-02-04

    This patent describes a lubricating oil composition consisting of a major proportion of a lubricating base oil and about 0.1 to 15 weight percent of an acid neutralizing additive which consists of polymer particles (a) bearing pendant amine groups, and (b) having a diameter of about 500 A and 10,000 A. The amine functional particles are formed by reacting polymer particles bearing pendant epoxide groups with a secondary amine in an amount so as to react essentially all of the epoxide groups on the epoxide bearing polymer particles with the secondary amine. The polymer particles bearing pendant epoxide groups are formed by the free radical addition polymerization of: (a) between about 50 and about 100 weight percent of an ethylenically unsaturated monomers bearing an epoxide group, and (b) 0 up to about 50 weight percent of other monoethylenically unsaturated monomers; in the presence of: (I) a non-polar organic liquid which is a solvent for the polymerizable monomers, but a non-solvent for the resultant polymer, and (II) polymeric dispersion stabilizer containing at least two segments, with one segment being solvated by the non-polar organic liquid and the second segment being of different polarity than the first segment and relatively insoluble in the non-polar organic liquid. The second segment of the stabilizer is chemically attached to the polymerized particle.

  6. ADIP ORNL contribution: 12th ADIP quarterly progress report for period October-December 1980. [Nb-1Zr

    SciTech Connect

    Puigh, R.; Duncan, D.; Ermi, A.M.; Gelles, D.; Zimmerchied, M.

    1980-01-01

    The following ADIP tasks are reported on: MFE-5 in-reactor fatigue crack growth in 316 SS in ORR, titanium alloy tensile properties after neutron irradiation in EBR-II, voids in neutron-irradiated Ti alloys, fabrication of ferritic alloys for RB-1 experiment in HFIR, microstructural examination of commercial ferritic alloys irradiated to very high fluence, microstructural examination of HT-9 archive material from the AD-2 test, and swelling of commercial alloys irradiated to a very high fluence. (DLC)

  7. Ozonolysis of Mixed Oleic-Acid/Stearic-Acid Particles: Reaction Kinetics and Chemical Morphology

    NASA Astrophysics Data System (ADS)

    Martin, S. T.; Katrib, Y.; Biskos, G.; Buseck, P. R.; Davidovits, P.; Jayne, J. T.; Mochida, M.; Wise, M. E.; Worsnop, D. R.

    2005-12-01

    Atmospheric particles directly and indirectly affect global climate and have a primary role in regional issues of air pollution, visibility, and human health. Atmospheric particles have a variety of shapes, dimensions, and chemical compositions, and these physicochemical properties evolve (i.e., "age") during transport of the particles through the atmosphere, in part because of the chemical reactions of particle-phase organic molecules with gas-phase atmospheric oxidants. As a global average, hydroxyl radical (OH) and ozone (O3) are responsible quantitatively for most oxidant aging of atmospheric particles. The reactions of the hydroxyl radical occur in the surface region of a particle because of the nearly diffusion-limited bimolecular rate constant of OH with a variety of organic molecules. Ozone, on the other hand, is a selective agent for the unsaturated bonds of organic molecules and may diffuse a considerable distance into particles prior to reaction. The reaction of oleic acid with ozone has recently emerged as a model system to better understand the atmospheric chemical oxidation processes affecting organic particles. The ozonolysis of mixed oleic-acid/stearic-acid (OL/SA) aerosol particles from 0/100 to 100/0 weight percent composition is studied. The magnitude of the divergence of the particle beam inside an aerosol mass spectrometer shows that, in the concentration range 100/0 to 60/40, the mixed OL/SA particles are liquid prior to reaction. Upon ozonolysis, particles with SA composition greater than 25% change shape, indicating that they have solidified. Transmission electron micrographs show that SA(s) forms needles. For SA compositions greater than 10%, the reaction kinetics exhibit an initial fast decay of OL for low O3 exposure with no further loss of OL at higher O3 exposures. For compositions from 50/50 to 10/90, the residual OL concentration remains at 28+/-2% of its initial value. The initial reactive uptake coefficient for O3, as determined by

  8. 40 CFR 721.8079 - Isophorone diisocyanate neopentyl glycol adipate polyurethane prepolymer.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... glycol adipate polyurethane prepolymer. 721.8079 Section 721.8079 Protection of Environment ENVIRONMENTAL... adipate polyurethane prepolymer. (a) Chemical substance and significant new uses subject to reporting. (1... polyurethane prepolymer (PMN P-94-1743) is subject to reporting under this section for the significant new...

  9. 40 CFR 721.8079 - Isophorone diisocyanate neopentyl glycol adipate polyurethane prepolymer.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... glycol adipate polyurethane prepolymer. 721.8079 Section 721.8079 Protection of Environment ENVIRONMENTAL... adipate polyurethane prepolymer. (a) Chemical substance and significant new uses subject to reporting. (1... polyurethane prepolymer (PMN P-94-1743) is subject to reporting under this section for the significant new...

  10. 40 CFR 721.8079 - Isophorone diisocyanate neopentyl glycol adipate polyurethane prepolymer.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... glycol adipate polyurethane prepolymer. 721.8079 Section 721.8079 Protection of Environment ENVIRONMENTAL... adipate polyurethane prepolymer. (a) Chemical substance and significant new uses subject to reporting. (1... polyurethane prepolymer (PMN P-94-1743) is subject to reporting under this section for the significant new...

  11. 40 CFR 721.8079 - Isophorone diisocyanate neopentyl glycol adipate polyurethane prepolymer.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... glycol adipate polyurethane prepolymer. 721.8079 Section 721.8079 Protection of Environment ENVIRONMENTAL... adipate polyurethane prepolymer. (a) Chemical substance and significant new uses subject to reporting. (1... polyurethane prepolymer (PMN P-94-1743) is subject to reporting under this section for the significant new...

  12. Water and acid soluble trace metals in atmospheric particles

    NASA Technical Reports Server (NTRS)

    Lindberg, S. E.; Harriss, R. C.

    1983-01-01

    Continental aerosols are collected above a deciduous forest in eastern Tennessee and subjected to selective extractions to determine the water-soluble and acid-leachable concentrations of Cd, Mn, Pb, and Zn. The combined contributions of these metals to the total aerosol mass is 0.5 percent, with approximately 70 percent of this attributable to Pb alone. A substantial fraction (approximately 50 percent or more) of the acid-leachable metals is soluble in distilled water. In general, this water-soluble fraction increases with decreasing particle size and with increasing frequency of atmospheric water vapor saturation during the sampling period. The pattern of relative solubilities (Zn being greater than Mn, which is approximately equal to Cd, which is greater than Pb) is found to be similar to the general order of the thermodynamic solubilities of the most probable salts of these elements in continental aerosols with mixed fossil fuel and soil sources.

  13. A combined particle trap/HTDMA hygroscopicity study of mixed inorganic/organic aerosol particles

    NASA Astrophysics Data System (ADS)

    Zardini, A. A.; Sjogren, S.; Marcolli, C.; Krieger, U. K.; Gysel, M.; Weingartner, E.; Baltensperger, U.; Peter, T.

    2008-09-01

    Atmospheric aerosols are often mixtures of inorganic and organic material. Organics can represent a large fraction of the total aerosol mass and are comprised of water-soluble and insoluble compounds. Increasing attention was paid in the last decade to the capability of mixed inorganic/organic aerosol particles to take up water (hygroscopicity). We performed hygroscopicity measurements of internally mixed particles containing ammonium sulfate and carboxylic acids (citric, glutaric, adipic acid) in parallel with an electrodynamic balance (EDB) and a hygroscopicity tandem differential mobility analyzer (HTDMA). The organic compounds were chosen to represent three distinct physical states. During hygroscopicity cycles covering hydration and dehydration measured by the EDB and the HTDMA, pure citric acid remained always liquid, adipic acid remained always solid, while glutaric acid could be either. We show that the hygroscopicity of mixtures of the above compounds is well described by the Zdanovskii-Stokes-Robinson (ZSR) relationship as long as the two-component particle is completely liquid in the ammonium sulfate/glutaric acid system; deviations up to 10% in mass growth factor (corresponding to deviations up to 3.5% in size growth factor) are observed for the ammonium sulfate/citric acid 1:1 mixture at 80% RH. We observe even more significant discrepancies compared to what is expected from bulk thermodynamics when a solid component is present. We explain this in terms of a complex morphology resulting from the crystallization process leading to veins, pores, and grain boundaries which allow for water sorption in excess of bulk thermodynamic predictions caused by the inverse Kelvin effect on concave surfaces.

  14. Determination of dicarboxylic acids in tropospherical particles and cloudwater

    NASA Astrophysics Data System (ADS)

    v. Pinxteren, D.; Brüggemann, E.; Herrmann, H.

    2003-04-01

    During two FEBUKO (field investigations of budgets and conversions of particle phase organics in troposheric cloud processes) field campaigns aerosol particle and cloudwater samples were taken in a forestal region in Germany (Thüringer Wald). Particle collection took place in fall 2001 and 2002 at two valley sites (luff and lee) of the mountain Schmücke. On top of this mountain cloudwater was sampled. The aim was to collect and physically and chemically characterize air masses before, while and after passing an orographic cloud in order to provide information about possible multiphase interactions and chemical processing of the aerosol. In this campaign capillary electrophoresis (CE) has been used to determine the dicarboxylic acids. CE has some important advantages for the analysis of ions in aerosol particles compared to the commonly used ion chromatography or gas chromatography. The absolute detection limits are very low (below 1 pmole) and it has a large range of signal-to-concentration linearity. Thus it suits to difficult matrices with strongly changing concentrations and compositions such as aerosol samples. The separation efficiency is usually much higher than in liquid chromatography and the required sample amount is low (down to <1 µL). For sampling of the particles a five-stage low-pressure cascade impactor was used. A humidity-controlled tube bundle served as the inlet device. Tedlar foil was used as an impaction substrate then used for ion analysis. For cloudwater sampling four cloudwater collectors from the California Institute of Technology (CASCC2) were used, which collect droplets with a 50% cut off diameter of 3,5 µm by inertial impaction on several rows of teflon strands. Upcoming results of the measurements are presented.

  15. Infrared spectrum of nitric acid dihydrate: Influence of particle shape.

    PubMed

    Wagner, Robert; Möhler, Ottmar; Saathoff, Harald; Stetzer, Olaf; Schurath, Ulrich

    2005-03-24

    In situ Fourier transform infrared (FTIR) extinction spectra of airborne alpha-NAD microparticles generated by two different methods were recorded in the large coolable aerosol chamber AIDA of Forschungszentrum Karlsruhe. The extinction spectrum of alpha-NAD crystals obtained by shock freezing of a HNO3/H2O gas mixture could be accurately reproduced using Mie theory with published refractive indices of alpha-NAD as input. In contrast, Mie theory proved to be inadequate to properly reproduce the infrared extinction spectrum of alpha-NAD crystals which were formed via homogeneous nucleation of supercooled HNO3/H2O solution droplets, evaporating slowly on a time scale of several hours at about 195 K. Much better agreement between measured and calculated extinction spectra was obtained by T-matrix calculations assuming oblate particles with aspect ratios greater than five. This indicates that strongly aspherical alpha-NAD crystals are obtained when supercooled nitric acid solution droplets freeze and grow slowly, a process which has been discussed as a potential pathway to the formation of crystalline polar stratospheric cloud (PSC) particles. PMID:16833561

  16. Synthesis of biocompatible poly(ɛ-caprolactone)- block-poly(propylene adipate) copolymers appropriate for drug nanoencapsulation in the form of core-shell nanoparticles

    PubMed Central

    Nanaki, Stavroula G; Pantopoulos, Kostas; Bikiaris, Dimitrios N

    2011-01-01

    Poly(propylene adipate)-block-poly(ɛ-caprolactone) copolymers were synthesized using a combination of polycondensation and ring-opening polymerization of ɛ-caprolactone in the presence of poly(propylene adipate). Gel permeation chromatography was used for molecular weight determination, whereas hydrogen-1 nuclear magnetic resonance and carbon-13 nuclear magnetic resonance spectroscopy were employed for copolymer characterization and composition evaluation. The copolymers were found to be block while their composition was similar to the feeding ratio. They formed semicrystalline structures, while only poly(ɛ-caprolactone) formed crystals, as shown by wide angle X-ray diffraction. Differential scanning calorimetry data suggest that the melting point and heat of fusion of copolymers decreased by increasing the poly(propylene adipate) amount. The synthesized polymers exhibited low cytotoxicity and were used to encapsulate desferrioxamine, an iron-chelating drug. The desferrioxamine nanoparticles were self-assembled into core shell structures, had mean particle size <250 nm, and the drug remained in crystalline form. Further studies revealed that the dissolution rate was mainly related to the melting temperature, as well as to the degree of crystallinity of copolymers. PMID:22162656

  17. Foamy Virus Protein—Nucleic Acid Interactions during Particle Morphogenesis

    PubMed Central

    Hamann, Martin V.; Lindemann, Dirk

    2016-01-01

    Compared with orthoretroviruses, our understanding of the molecular and cellular replication mechanism of foamy viruses (FVs), a subfamily of retroviruses, is less advanced. The FV replication cycle differs in several key aspects from orthoretroviruses, which leaves established retroviral models debatable for FVs. Here, we review the general aspect of the FV protein-nucleic acid interactions during virus morphogenesis. We provide a summary of the current knowledge of the FV genome structure and essential sequence motifs required for RNA encapsidation as well as Gag and Pol binding in combination with details about the Gag and Pol biosynthesis. This leads us to address open questions in FV RNA engagement, binding and packaging. Based on recent findings, we propose to shift the point of view from individual glycine-arginine-rich motifs having functions in RNA interactions towards envisioning the FV Gag C-terminus as a general RNA binding protein module. We encourage further investigating a potential new retroviral RNA packaging mechanism, which seems more complex in terms of the components that need to be gathered to form an infectious particle. Additional molecular insights into retroviral protein-nucleic acid interactions help us to develop safer, more specific and more efficient vectors in an era of booming genome engineering and gene therapy approaches. PMID:27589786

  18. Foamy Virus Protein-Nucleic Acid Interactions during Particle Morphogenesis.

    PubMed

    Hamann, Martin V; Lindemann, Dirk

    2016-01-01

    Compared with orthoretroviruses, our understanding of the molecular and cellular replication mechanism of foamy viruses (FVs), a subfamily of retroviruses, is less advanced. The FV replication cycle differs in several key aspects from orthoretroviruses, which leaves established retroviral models debatable for FVs. Here, we review the general aspect of the FV protein-nucleic acid interactions during virus morphogenesis. We provide a summary of the current knowledge of the FV genome structure and essential sequence motifs required for RNA encapsidation as well as Gag and Pol binding in combination with details about the Gag and Pol biosynthesis. This leads us to address open questions in FV RNA engagement, binding and packaging. Based on recent findings, we propose to shift the point of view from individual glycine-arginine-rich motifs having functions in RNA interactions towards envisioning the FV Gag C-terminus as a general RNA binding protein module. We encourage further investigating a potential new retroviral RNA packaging mechanism, which seems more complex in terms of the components that need to be gathered to form an infectious particle. Additional molecular insights into retroviral protein-nucleic acid interactions help us to develop safer, more specific and more efficient vectors in an era of booming genome engineering and gene therapy approaches. PMID:27589786

  19. In vitro release of clomipramine HCl and buprenorphine HCl from poly adipic anhydride (PAA) and poly trimethylene carbonate (PTMC) blends.

    PubMed

    Dinarvand, Rassoul; Alimorad, Mohammed Massoud; Amanlou, Massoud; Akbari, Hamid

    2005-10-01

    Controlled drug-delivery technology is concerned with the systematic release of a pharmaceutical agent to maintain a therapeutic level of the drug in the body for modulated and/or prolonged periods of time. This may be achieved by incorporating the therapeutic agent into a degradable polymer vehicle, which releases the agent continuously as the matrix erodes. In this study, poly trimethylene carbonate (PTMC), an aliphatic polycarbonate, and poly adipic anhydride (PAA), an aliphatic polyanhydride, were synthesized via melt condensation and ring-opening polymerization of trimethylene carbonate and adipic acid, respectively. The release of clomipramine HCl and buprenorphine HCl from discs prepared with the use of PTMC-PAA blends in phosphate buffer (pH 7.4) are also described. Clomipramine HCl and buprenorphine HCl were both used as hydrophilic drug models. Theoretical treatment of the data with the Peppas model revealed that release of clomipramine HCl (5%) in devices containing 70% PTMC or more followed a Fickian diffusion model. However, the releases of buprenorphine HCl (5%) in the same devices were anomalous. For devices containing 50% and more PAA, surface erosion may play a significant role in the release of both molecules.

  20. On the growth of nitric and sulfuric acid aerosol particles under stratospheric conditions

    NASA Technical Reports Server (NTRS)

    Hamill, Patrick; Turco, R. P.; Toon, O. B.

    1988-01-01

    A theory for the formation of frozen aerosol particles in the Antarctic stratosphere was developed and applied to the formation of polar stratospheric clouds. The theory suggests that the condensed ice particles are composed primarily of nitric acid and water, with small admixtures of sulfuric and hydrochloric acids in solid solution. The proposed particle formation mechanism is in agreement with the magnitude and seasonal behavior of the optical extinction observed in the winter polar stratosphere.

  1. Low molecular weight dicarboxylic acids, ketoacids, and dicarbonyls in the fine particles from a roadway tunnel: possible secondary production from the precursors.

    PubMed

    Wang, Haobo; Kawamura, Kimitaka; Ho, K F; Lee, S C

    2006-10-15

    Low molecular weight dicarboxylic acids (DCAs), ketoacids, and alpha-dicarbonyls have been determined for the PM2.5 samples in a Hong Kong roadway tunnel, using a water extraction followed by a butyl ester and/or dibutyl acetal derivatization technique. For the most wintertime sampling runs, outlet and inlet concentrations of the quantified compounds were found to be quite similar (ca. 10% differences), leading to the conclusion that direct emissions of the organic compounds are insignificant from vehicles in hot-stabilized operations although vehicular emissions can provide important precursors to them. In contrast, a significant concentration increase of most compounds was observed at the outlet station compared to the inlet station in the summertime runs, which might be explained by the secondary production of aerosols in the tunnel. The organic compounds studied comprised a small fraction (<1%) of aerosol organic carbon (OC). In winter, their abundances relative to that of OC in outlet samples were found to be significantly less than those in inlet samples. On the basis of the summer data, apparent secondary production factors of the compounds were calculated, which indicate that adipic and m-phthalic acids can be favorably formed in the tunnel. However, like other DCAs, direct emissions of adipic, m-phthalic, and p-phthalic acids from automobiles are suggested to be insignificant.

  2. Field and Laboratory Studies of Reactions between Atmospheric Water Soluble Organic Acids and Inorganic Particles

    SciTech Connect

    Wang, Bingbing; Kelly, Stephen T.; Sellon, Rachel E.; Shilling, John E.; Tivanski, Alexei V.; Moffet, Ryan C.; Gilles, Mary K.; Laskin, Alexander

    2013-06-25

    Atmospheric inorganic particles undergo complex heterogeneous reactions that change their physicochemical properties. Depletion of chloride in sea salt particles was reported in previous field studies and was attributed to the acid displacement of chlorides with inorganic acids, such as nitric and sulfuric acids [1-2]. Recently, we showed that NaCl can react with water soluble organic acids (WSOA) and release gaseous hydrochloric acid (HCl) resulting in formation of organic salts [3]. A similar mechanism is also applicable to mixed WSOA/nitrate particles where multi-phase reactions are driven by the volatility of nitric acid. Furthermore, secondary organic material, which is a complex mixture of carboxylic acids, exhibits the same reactivity towards chlorides and nitrates. Here, we present a systematic study of reactions between atmospheric relevant WSOA, SOM, and inorganic salts including NaCl, NaNO3, and Ca(NO3)2 using complementary micro-spectroscopy analysis.

  3. Encapsulation of ployunsaturated fatty acid esters with solid lipid particles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyunsaturated fatty acids (PUFA) such as a-linolenic acid (ALA) and docosahexaenoic acid (DHA) are known to improve cardiovascular and nervous system health. These compounds are increasingly used in food and animal feed formulations. However, the high degree of unsaturation in these structures can...

  4. Development of silver/titanium dioxide/chitosan adipate nanocomposite as an antibacterial coating for fruit storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel nanocomposite of silver/titanium dioxide/chitosan adipate (Ag/TiO2/CS) was developed through photochemical reduction using a chitosan adipate template. Chitosan served as a reducing agent for the metal ions, and anchored metal ions by forming Ag–N coordination bonds and electrostatic attract...

  5. [Synthesis of diisooctyl adipate catalyzed by lipase-displaying Pichia pastoris whole-cell biocatalysts].

    PubMed

    Zhang, Na; Jin, Zi; Lin, Ying; Zheng, Suiping; Han, Shuangyan

    2013-07-01

    An enzyme-displaying yeast as a whole-cell biocatalyst is an alternative to immobilized enzyme, due to its low-cost preparation and simple recycle course. Here, lipase-displaying Pichia pastoris whole-cell was used as a biocatalyst to synthesize diisooctyl adipate in the non-aqueous system. The maximum productivity of diisooctyl adipate was obtained as 85.0% in a 10 mL reaction system. The yield could be reached as high as 97.8% when the reaction system was scaled up to 200 mL. The purity obtained is 98.2% after vacuum distillation. Thus, the lipase-displaying P. pastoris whole-cell biocatalyst was promising in commercial application for diisooctyl adipate synthesis in non-aqueous phase. PMID:24195369

  6. [Synthesis of diisooctyl adipate catalyzed by lipase-displaying Pichia pastoris whole-cell biocatalysts].

    PubMed

    Zhang, Na; Jin, Zi; Lin, Ying; Zheng, Suiping; Han, Shuangyan

    2013-07-01

    An enzyme-displaying yeast as a whole-cell biocatalyst is an alternative to immobilized enzyme, due to its low-cost preparation and simple recycle course. Here, lipase-displaying Pichia pastoris whole-cell was used as a biocatalyst to synthesize diisooctyl adipate in the non-aqueous system. The maximum productivity of diisooctyl adipate was obtained as 85.0% in a 10 mL reaction system. The yield could be reached as high as 97.8% when the reaction system was scaled up to 200 mL. The purity obtained is 98.2% after vacuum distillation. Thus, the lipase-displaying P. pastoris whole-cell biocatalyst was promising in commercial application for diisooctyl adipate synthesis in non-aqueous phase.

  7. Particle size distribution of hydrocyanic acid in gari, a cassava-based product.

    PubMed

    Maduagwu, E N; Fafunso, M

    1980-12-01

    A reciprocal relationship was observed between the cyanide content of gari and particle size. Hydrocyanic acid (HCN) content was positively correlated (r = 0.62) with sugar content but the correlation with starch content was poor (r = 0.33). From both the nutritional and toxicological standpoints, it would appear that larger particles size in gari is beneficial.

  8. Nitric Acid Uptake on Subtropical Cirrus Cloud Particles

    NASA Technical Reports Server (NTRS)

    Popp, P. J.; Gao, R. S.; Marcy, T. P.; Fahey, D. W.; Hudson, P. K.; Thompson, T. L.; Kaercher, B.; Ridley, B. A.; Weinheimer, A. J.; Knapp, D. J.; Montzka, D. D.; Baumgardner, D.; Garrett, T. J.; Weinstock, E. M.; Smith, J. B.; Sayres, D. S.; Pittman, J. V.; Dhaniyala, S.; Bui, T. P.; Mahoney, M. J.

    2004-01-01

    The redistribution of HNO3 via uptake and sedimentation by cirrus cloud particles is considered an important term in the upper tropospheric budget of reactive nitrogen. Numerous cirrus cloud encounters by the NASA WB-57F high-altitude research aircraft during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) were accompanied by the observation of condensed-phase HNO3 with the NOAA chemical ionization mass spectrometer. The instrument measures HNO3 with two independent channels of detection connected to separate forward and downward facing inlets that allow a determination of the amount of HNO3 condensed on ice particles. Subtropical cirrus clouds, as indicated by the presence of ice particles, were observed coincident with condensed-phase HNO3 at temperatures of 197-224 K and pressures of 122-224 hPa. Maximum levels of condensed-phase HNO3 approached the gas-phase equivalent of 0.8 ppbv. Ice particle surface coverages as high as 1.4 # 10(exp 14) molecules/ square cm were observed. A dissociative Langmuir adsorption model, when using an empirically derived HNO3 adsorption enthalpy of -11.0 kcal/mol, effectively describes the observed molecular coverages to within a factor of 5. The percentage of total HNO3 in the condensed phase ranged from near zero to 100% in the observed cirrus clouds. With volume-weighted mean particle diameters up to 700 ?m and particle fall velocities up to 10 m/s, some observed clouds have significant potential to redistribute HNO3 in the upper troposphere.

  9. Nitric Acid Uptake on Subtropical Cirrus Cloud Particles

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The redistribution of HNO3 via uptake and sedimentation by cirrus cloud particles is considered an important term in the upper tropospheric budget of reactive nitrogen. Numerous cirrus cloud encounters by the NASA WB-57F high-altitude research aircraft during CRYSTAL-FACE were accompanied by the observation of condensed-phase HNO3 with the NOAA chemical ionization mass spectrometer. The instrument measures HNO3 with two independent channels of detection connected to separate forward- and downward-facing inlets that allow a determination of the amount of HNO3 condensed on ice particles. Subtropical cirrus clouds, as indicated by the presence of ice particles, were observed coincident with condensed-phase HNO3 at temperatures of 197 K - 224 K and pressures of 122 hPa - 224 hPa. Maximum levels of condensed-phase HNO3 approached the gas-phase equivalent of 0.8 ppbv. Ice particle surface coverages as high as 1.4- 10(exp 14) molecules/sq cm were observed. A dissociative Langmuir adsorption model, when using an empirically derived HNO3 adsorption enthalpy of -11.0 kcal/mol, effectively describes the observed molecular coverages to within a factor of 5. The percentage of total HNO3 in the condensed phase ranged from near zero to 100% in the observed cirrus clouds. With volume-weighted mean particle diameters up to 700 pm and particle fall velocities up to 10 m/s, some observed clouds have significant potential to redistribute HNO3 in the upper troposphere.

  10. A case study of urban particle acidity and its influence on secondary organic aerosol.

    PubMed

    Zhang, Qi; Jimenez, Jose L; Worsnop, Douglas R; Canagaratna, Manjula

    2007-05-01

    Size-resolved indicators of aerosol acidity, including H+ ion concentrations (H+Aer) and the ratio of stoichiometric neutralization are evaluated in submicrometer aerosols using highly time-resolved aerosol mass spectrometer (AMS) data from Pittsburgh. The pH and ionic strength within the aqueous particle phase are also estimated using the Aerosol Inorganics Model (AIM). Different mechanisms that contribute to the presence of acidic particles in Pittsburgh are discussed. The largest H+Aer loadings and lowest levels of stoichiometric neutralization were detected when PM1 loadings were high and dominated by SO4(2-). The average size distribution of H+Aer loading shows an accumulation mode at Dva approximately 600 nm and an enhanced smaller mode that centers at Dva approximately 200 nm and tails into smaller sizes. The acidity in the accumulation mode particles suggests that there is generally not enough gas-phase NH3 available on a regional scale to completely neutralize sulfate in Pittsburgh. The lack of stoichiometric neutralization in the 200 nm mode particles is likely caused by the relatively slow mixing of gas-phase NH3 into SO2-rich plumes containing younger particles. We examined the influence of particle acidity on secondary organic aerosol (SOA) formation by comparing the mass concentrations and size distributions of oxygenated organic aerosol (00A--surrogate for SOA in Pittsburgh) during periods when particles are, on average, acidic to those when particles are bulk neutralized. The average mass concentration of ODA during the acidic periods (3.1 +/- 1.7 microg m(-3)) is higher than that during the neutralized periods (2.5 +/- 1.3 microg m(-3)). Possible reasons for this enhancement include increased condensation of SOA species, acid-catalyzed SOA formation, and/or differences in air mass transport and history. However, even if the entire enhancement (approximately 0.6 microg m(-3)) can be attributed to acid catalysis, the upperbound increase of SOA mass

  11. Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air.

    PubMed

    Cohen, Beverly S; Heikkinen, Maire S A; Hazi, Yair; Gao, Hai; Peters, Paul; Lippmann, Morton

    2004-09-01

    This field evaluation study was conducted to assess new technology designed to measure number concentrations of strongly acidic ultrafine particles. Interest in these particles derives from their potential to cause adverse health effects. Current methods for counting and sizing airborne ultrafine particles cannot isolate those particles that are acidic. We hypothesized that the size-resolved number concentration of such particles to which people are exposed could be measured by newly developed iron nanofilm detectors on which sulfuric acid (H2SO4*) droplets produce distinctive ringed reaction sites visible by atomic force microscopy (AFM). We carried out field measurements using an array of samplers, with and without the iron nanofilm detectors, that allowed indirect comparison of particle number concentrations and size-resolved measures of acidity. The iron nanofilm detectors are silicon chips (5 mm x 5 mm x 0.6 mm) that are coated with iron by vapor deposition. The iron layer was 21.5 or 26 nm thick for the two batches used in these experiments. After exposure the detector surface was scanned topographically by AFM to view and enumerate the ringed acid reaction sites and deposited nonacidic particles. The number of reaction sites and particles per scan can be counted directly on the image displayed by AFM. Sizes can also be measured, but for this research we did not size particles collected in the field. The integrity of the surface of iron nanofilm detectors was monitored by laboratory analysis and by deploying blank detectors and detectors that had previously been exposed to H2SO4 calibration aerosols. The work established that the detectors could be used with confidence in temperate climates. Under extreme high humidity and high temperature, the surface film was liable to detach from the support, but remaining portions of the film still produced reliable data. Exposure to ambient gases in a filtered air canister during the field tests did not affect the film

  12. Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air.

    PubMed

    Cohen, Beverly S; Heikkinen, Maire S A; Hazi, Yair; Gao, Hai; Peters, Paul; Lippmann, Morton

    2004-09-01

    This field evaluation study was conducted to assess new technology designed to measure number concentrations of strongly acidic ultrafine particles. Interest in these particles derives from their potential to cause adverse health effects. Current methods for counting and sizing airborne ultrafine particles cannot isolate those particles that are acidic. We hypothesized that the size-resolved number concentration of such particles to which people are exposed could be measured by newly developed iron nanofilm detectors on which sulfuric acid (H2SO4*) droplets produce distinctive ringed reaction sites visible by atomic force microscopy (AFM). We carried out field measurements using an array of samplers, with and without the iron nanofilm detectors, that allowed indirect comparison of particle number concentrations and size-resolved measures of acidity. The iron nanofilm detectors are silicon chips (5 mm x 5 mm x 0.6 mm) that are coated with iron by vapor deposition. The iron layer was 21.5 or 26 nm thick for the two batches used in these experiments. After exposure the detector surface was scanned topographically by AFM to view and enumerate the ringed acid reaction sites and deposited nonacidic particles. The number of reaction sites and particles per scan can be counted directly on the image displayed by AFM. Sizes can also be measured, but for this research we did not size particles collected in the field. The integrity of the surface of iron nanofilm detectors was monitored by laboratory analysis and by deploying blank detectors and detectors that had previously been exposed to H2SO4 calibration aerosols. The work established that the detectors could be used with confidence in temperate climates. Under extreme high humidity and high temperature, the surface film was liable to detach from the support, but remaining portions of the film still produced reliable data. Exposure to ambient gases in a filtered air canister during the field tests did not affect the film

  13. Submicrometer-Sized Thermometer Particles Exploiting Selective Nucleic Acid Stability.

    PubMed

    Puddu, Michela; Mikutis, Gediminas; Stark, Wendelin J; Grass, Robert N

    2016-01-27

    Encapsulated nucleic acid selective damage quantification by real-time polymerase chain reaction is used as sensing mechanism to build a novel class of submicrometer size thermometer. Thanks to the high thermal and chemical stability, and the capability of storing the read accumulated thermal history, the sensor overcomes some of current limitations in small scale thermometry.

  14. Adipic acid–2,4-diamino-6-(4-meth­oxy­phen­yl)-1,3,5-triazine (1/2)

    PubMed Central

    Thanigaimani, Kaliyaperumal; Razak, Ibrahim Abdul; Arshad, Suhana; Jagatheesan, Rathinavel; Santhanaraj, Kulandaisamy Joseph

    2012-01-01

    The asymmetric unit of the title compound, 2C10H11N5O·C6H10O4, consists of a 2,4-diamino-6-(4-meth­oxy­phen­yl)-1,3,5-triazine mol­ecule and one-half mol­ecule of adipic acid which lies about an inversion center. The triazine ring makes a dihedral angle of 12.89 (4)° with the adjacent benzene ring. In the crystal, the components are linked by N—H⋯O and O—H⋯N hydrogen bonds, thus generating a centrosymmetric 2 + 1 unit of triazine and adipic acid mol­ecules with R 2 2(8) motifs. The triazine mol­ecules are connected to each other by N—H⋯N hydrogen bonds, forming an R 2 2(8) motif and a supra­molecular ribbon along the c axis. The 2 + 1 units and the supra­molecular ribbons are further inter­linked by weak N—H⋯O, C—H⋯O and C—H⋯π inter­actions, resulting in a three-dimensional network. PMID:23125724

  15. Water uptake of internally mixed ammonium sulfate and dicarboxylic acid particles probed by infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Miñambres, Lorena; Méndez, Estíbaliz; Sánchez, María N.; Castaño, Fernando; Basterretxea, Francisco J.

    2013-05-01

    Tropospheric aerosols are usually mixtures of inorganic and organic compounds in variable proportions, and the relative amount of organic fraction can influence the hygroscopic properties of the particles. Infrared spectra of submicrometer internally mixed dry particles of ammonium sulfate (AS) with various dicarboxylic acids (oxalic, malonic, maleic, glutaric and pimelic) have been measured in an aerosol flow tube at several solute mass ratios. The spectra show a notable broadening in the bandwidth of sulfate ion ν3 vibrational band near 1115 cm-1 with respect to pure AS. We attribute these perturbations, that are biggest at AS/organic acid mass ratio near unity, to intermolecular interactions between inorganic ions and organic acid molecules in the internally mixed solids. The water uptake behavior of internally mixed particles has been measured by recording the infrared integrated absorbance of liquid water as a function of relative humidity (RH). The amount of water present in the particles prior to deliquescence correlates partially with the water solubilities of the dicarboxylic acids, and also with the relative magnitudes of intermolecular interactions in the internally mixed dry solids. Phase change of ammonium sulfate in the internally mixed particles with RH has been spectrally monitored, and it is shown that water uptaken before full deliquescence produces structural changes in the particles that are revealed by their vibrational spectra.

  16. Water uptake properties of internally mixed sodium halide and succinic acid particles

    NASA Astrophysics Data System (ADS)

    Miñambres, Lorena; Méndez, Estíbaliz; Sánchez, María N.; Castaño, Fernando; Basterretxea, Francisco J.

    2011-10-01

    Sea salt aerosols include appreciable fractions of organic material, that can affect properties such as hygroscopicity, phase transition or chemical reactivity. Although sodium chloride is the major component of marine salt, bromide and iodide ions tend to accumulate onto particle surfaces and influence their behaviour. The hygroscopic properties of internally mixed submicrometric particles composed of succinic acid (SA) and NaX (where X = F, Cl, Br or I) have been studied by infrared absorption spectroscopy in an aerosol flow cell at ambient temperature for different relative succinic acid/NaX compositions. The results show that deliquescence relative humidities of SA/NaF and SA/NaCl are equal to those of the pure sodium halides. SA/NaBr particles, on the other hand, deliquesce at lower relative humidities than pure NaBr particles, the effect being more marked as the SA/NaBr mass ratio approaches unity. The SA/NaI system behaves as a non-deliquescent system, absorbing liquid water at all relative humidities, as in pure NaI. Succinic acid phase in the particles has been spectroscopically monitored at given values of both RH and SA/NaX solute mass ratio. The different hygroscopic properties as the halogen ion is changed can be rationalized in terms of simple thermodynamic arguments and can be attributed to the relative contributions of ion-molecule interactions in the solid particles. The observed behaviour is of interest for tropospheric sea salt aerosols mixed with organic acids.

  17. Model for a surface film of fatty acids on rain water and aerosol particles

    NASA Astrophysics Data System (ADS)

    Seidl, Winfried

    Organic compounds with polar groups can form films on the water surface which lower the surface tension and may hinder the transport of water vapor and trace gases through the interface. A model is presented which describes in detail surface films formed by fatty acids. The model has been applied to measured concentrations of fatty acids on rain water and atmospheric aerosol particles. In most cases only a diluted film has been calculated which does not affect their physical and chemical properties. The exception was a clean region in the western USA, where the fatty acid concentrations are sufficiently high to form a dense film on atmospheric aerosol particles. An algorithm for the identification of the sources of fatty acids was developed. It showed leaf abrasion or biomass burning as a major source of fatty acids in the western USA.

  18. New Particle Formation and Growth from Methanesulfonic Acid, Amines, Water, and Organics

    NASA Astrophysics Data System (ADS)

    Arquero, K. D.; Ezell, M. J.; Finlayson-Pitts, B. J.

    2014-12-01

    Particles in the atmosphere can influence visibility, negatively impact human health, and affect climate. The largest uncertainty in determining global radiative forcing is attributed to atmospheric aerosols. While new particle formation in many locations is correlated with sulfuric acid in air, neither the gas-phase binary nucleation of H2SO4-H2O nor the gas-phase ternary nucleation of H2SO4-NH3-H2O alone can fully explain observations. An additional potential particle source, based on previous studies in this laboratory, is methanesulfonic acid (MSA) with amines and water vapor. However, organics are ubiquitous in the atmosphere, with secondary organic aerosol (SOA) being a major component of particles. Organics could be involved in the initial stages of particle formation by enhancing or inhibiting nucleation from sulfuric acid or MSA, in addition to contributing to their growth to form SOA. Experiments to measure the effects of a series of organics of varying structure on particle formation and growth from MSA, amines, and water were performed in a custom-built small volume aerosol flow tube reactor. Analytical instruments and techniques include a scanning mobility particle sizer to measure particle size distributions, sampling onto a weak cation exchange resin with analysis by ion chromatography to measure amine concentrations, and filter collection and analysis by ultra-high performance liquid chromatography tandem mass spectrometry to measure MSA concentrations. Organics were measured by atmospheric pressure chemical ionization tandem mass spectrometry. The impact of these organics on the initial particle formation as well as growth will be reported. The outcome is an improved understanding of fundamental chemistry of nucleation and growth to ultimately be incorporated into climate models to better predict how particles affect the global climate budget.

  19. Characterization and surface properties of amino-acid-modified carbonate-containing hydroxyapatite particles.

    PubMed

    Jack, Kevin S; Vizcarra, Timothy G; Trau, Matt

    2007-11-20

    The surface properties (nature, strength, and stability of interaction of functional groups) and bulk morphologies of a series of amino-acid-functionalized carbonate-containing hydroxyapatite (CHA) particles were investigated. It was found that the amino acids were both occluded in and presented on the surface of the CHA particles. Furthermore, their presence enhanced particle colloidal stability by retardation of Ostwald ripening and in some cases increasing the magnitude of the zeta-potential. Measurements of adsorption isotherms and zeta-potential titrations have shown that the amino-acid-surface interactions are weak and reversible at pH 9 and consistent with a model in which the carboxyl terminus interacts with calcium ions in the CHA lattice. Complexities in adsorption behavior are discussed in terms of different adsorption mechanisms that may be prevalent at different pHs.

  20. Size Distribution Studies on Sulfuric Acid-Water Particles in a Photolytic Reactor

    NASA Astrophysics Data System (ADS)

    Abdullahi, H. U.; Kunz, J. C.; Hanson, D. R.; Thao, S.; Vences, J.

    2015-12-01

    The size distribution of particles composed of sulfuric acid and water were measured in a Photolytic cylindrical Flow Reactor (PhoFR, inner diameter 5 cm, length ~ 100 cm). In the reactor, nitrous acid, water and sulfur dioxide gases along with ultraviolet light produced sulfuric acid. The particles formed from these vapors were detected with a scanning mobility particle spectrometer equipped with a diethylene glycol condensation particle counter (Jiang et al. 2011). For a set of standard conditions, particles attained a log-normal distribution with a peak diameter of 6 nm, and a total number of about 3x105 cm-3. The distributions show that ~70 % of the particles are between 4 and 8 nm diameter (lnσ ~ 0.37). These standard conditions are: 296 K, 25% relative humidity, total flow = 3 sLpm, ~10 ppbv HONO, SO2 in excess. With variations of relative humidity, the total particle number varied strongly, with a power relationship of ~3.5, and the size distributions showed a slight increase in peak diameter with relative humidity, increasing about 1 nm from 8 to 33 % relative humidity. Variations of HONO at a constant light intensity (wavelength of ~ 360 nm) were performed and particle size and total number changed dramatically. Size distributions also changed drastically with variations of light intensity, accomplished by turning on/off some of the black light flourescent bulbs that illuminated the flow reactor. Comparisons of these size distributions to recently published nucleation experiments (e.g. Zollner et al., Glasoe et al.) as well as to simulations of PhoFR reveal important details about the levels of sulfuric acid present in PhoFR as well as possible base contaminants.

  1. Reduced Burst Release and Enhanced Oral Bioavailability in Shikimic Acid-Loaded Polylactic Acid Submicron Particles by Coaxial Electrospray.

    PubMed

    Wang, Miaomiao; Wang, Yuanwen; Omari-Siaw, Emmanuel; Wang, Shengli; Zhu, Yuan; Xu, Ximing

    2016-08-01

    In this study, using the coaxial electrospray method, we prepared submicron particles of the water-soluble drug shikimic acid (SA) with polylactic acid (PLA) as a polymer, to reduce the burst release and enhance the oral bioavailability. In vitro release study performed in HCl solution (pH 1.2) showed that the coaxial electrospray submicron particles could reduce burst release effect and presented a sustained release profile, compared with free SA and the particles prepared by electrospray method. The absorption of SA in the intestinal tract, studied using an in situ perfusion method in rats, also revealed jejunum as the main absorptive segment followed by duodenum and ileum. Moreover, the SA-loaded particles greatly enhanced the absorption of SA in the tested intestinal segments. The intestinal absorption rate was not enhanced with increasing drug concentration (5-15 μg/mL) which suggested that active transport or facilitated diffusion could play vital role in SA absorption. In addition, the SA-loaded PLA coaxial electrospray particle exhibited a prolonged plasma circulation with enhanced bioavailability after oral administration. In all, the coaxial electrospray technique could provide notable advantages for the oral delivery of SA, thereby enhancing its clinical application.

  2. Acidic reaction products of mono- and sesquiterpenes in atmospheric fine particles in a boreal forest

    NASA Astrophysics Data System (ADS)

    Vestenius, M.; Hellén, H.; Levula, J.; Kuronen, P.; Helminen, K. J.; Nieminen, T.; Kulmala, M.; Hakola, H.

    2014-01-01

    Biogenic acids were measured from PM2.5 aerosols at SMEAR II station (Station For Measuring Forest Ecosystem-Atmosphere Relations) in Finland from June 2010 until October 2011. The measured organic acids were pinic, pinonic, caric, limonic and caryophyllinic acids from oxidation of α-pinene, β-pinene, limonene, Δ3-carene and β-caryophyllene. Due to lack of authentic standards caric, limonic and caryophyllinic acids were synthesized at the Laboratory of Organic Chemistry, University of Helsinki. The highest terpenoic acid concentrations were measured during summer concomitant with the precursor mono- and sesquiterpenes. Of the acids β-caryophyllinic acid had highest concentrations in summer, but during other times of the year pinonic acid was the most abundant. The β-caryophyllinic acid contribution was higher than expected on the basis of emission calculations of precursor compounds and yields in oxidation experiments in smog chambers implicating that β-caryophyllene emissions or β-caryophyllinic acid yields are underestimated. Concentration ratios between terpenoic acids and their precursor were clearly lower in summer than in winter indicating stronger partitioning to the aerosol phase during cold winter season. The β-caryophyllinic and caric acids were correlated with the accumulation mode particle number concentrations.

  3. Optimal Viscosity and Particle Shape of Hyaluronic Acid Filler as a Scaffold for Human Fibroblasts.

    PubMed

    Kim, Deok-Yeol; Namgoong, Sik; Han, Seung-Kyu; Won, Chang-Hoon; Jeong, Seong-Ho; Dhong, Eun-Sang; Kim, Woo-Kyung

    2015-07-01

    The authors previously reported that cultured human fibroblasts suspended in a hyaluronic acid filler can produce human dermal matrices with extended in vivo stability in animal and clinical studies. The present study was undertaken to determine the optimal viscosity and particle shape of hyaluronic acid filler as a scaffold for cultured human dermal fibroblasts to enhance the maximal viability of injected cells. The fibroblasts were suspended in either 1 of 3 hyaluronic acid viscosities at 2 different particle shapes. The viscosities used in this study were low (600,000-800,000 centipoises), moderate (2,000,000-4,000,000 centipoises), and high (8,000,000-12,000,000 centipoises). The particle shape was evaluated by testing round and irregular shapes. The fibroblast mixed bioimplants were injected into the back of individual athymic nude mice. The levels of type I collagen were measured using fluorescent-activated cell sorting (FACS) and immunohistochemical staining at 16 weeks after the injections. Results of FACS demonstrated that the mean cell ratio with human collagens in the moderate viscosity group was greater than those of control, low, and high viscosity groups. An immunohistochemical study showed similar results. The moderate viscosity group demonstrated the highest positive staining of human collagens. However, there were no significant differences between groups of irregular and round shape particles. A hyaluronic acid bioimplant with moderate viscosity is superior to that with low or high viscosity in the viability for human fibroblasts. However, the particle shape does not influence the viability of the fibroblasts.

  4. Acidic reaction products of monoterpenes and sesquiterpenes in atmospheric fine particles in a boreal forest

    NASA Astrophysics Data System (ADS)

    Vestenius, M.; Hellén, H.; Levula, J.; Kuronen, P.; Helminen, K. J.; Nieminen, T.; Kulmala, M.; Hakola, H.

    2014-08-01

    Biogenic acids were measured in aerosols at the SMEAR II (Station for Measuring Forest Ecosystem-Atmosphere Relations II) station in Finland from June 2010 until October 2011. The analysed organic acids were pinic, pinonic, caric, limonic and caryophyllinic acids from oxidation of α-pinene, β-pinene, limonene, Δ3-carene and β-caryophyllene, respectively. Due to a lack of authentic standards, the caric, limonic and caryophyllinic acids were synthesised for this study. The mean, median, maximum and minimum concentrations (ng m-3) were as follows: limonic acid (1.26, 0.80, 16.5, below detection limit (< LOD)), pinic acid (5.53, 3.25, 31.4, 0.15), pinonic acid (9.87, 5.07, 80.1, < LOD), caric acid (5.52, 3.58, 49.8, < LOD), and caryophyllinic acid (7.87, 6.07, 86.1, < LOD). The highest terpenoic acid concentrations were measured during the summer. Of the acids, β-caryophyllinic acid showed the highest concentrations in summer, but during other times of the year pinonic acid was the most abundant. The β-caryophyllinic acid contribution was higher than expected, based on the emission calculations of the precursor compounds and yields from oxidation experiments in smog chambers, implying that the β-caryophyllene emissions or β-caryophyllinic acid yields were underestimated. The concentration ratios between terpenoic acids and their precursors were clearly lower in summer than in winter, indicating stronger partitioning to the aerosol phase during the cold winter season. The β-caryophyllinic and caric acids were weakly correlated with the accumulation-mode particle number concentrations.

  5. Ice Nucleation and Droplet Formation by Bare and Coated Black Carbon Particles

    SciTech Connect

    Friedman, Beth J.; Kulkarni, Gourihar R.; Beranek, Josef; Zelenyuk, Alla; Thornton, Joel A.; Cziczo, Daniel J.

    2011-10-13

    We have studied the ice formation at heterogeneous and homogeneous temperatures, as well as droplet activation and hygroscopicity of soot particles of variable size and composition. Coatings of adipic, malic, and oleic acid were applied to span a relevant range of solubility, and both uncoated and oleic acid coated soot particles were exposed to ozone to simulate atmospheric oxidation. The results are interpreted in terms of onset ice nucleation with a comparison to a well characterized mineral dust particle that acts as an efficient ice nucleus, as well as particle hygroscopicity. At 253K and 243K, we found no evidence of heterogeneous ice nucleation occurring above the level of detection for our experimental conditions. Above water saturation, droplet formation was observed. At 233K, we observe the occurrence of homogeneous ice nucleation for all particles studied. Coatings also did not significantly alter the ice nucleation behavior of soot particles, but aided in the uptake of water. Hygroscopicity studies confirmed that pure soot particles were hydrophobic, and coated soot particles activated as droplets at high water supersaturations. A small amount of heterogeneous ice nucleation either below the detection limit of our instrument or concurrent with droplet formation and/or homogeneous freezing cannot be precluded, but we are able to set limits for its frequency. We conclude from our studies that both uncoated and coated soot particles are unlikely to contribute to the global budget of heterogeneous ice nuclei at temperatures between 233K and 253K.

  6. Ice Nucleation and Droplet Formation by Bare and Coated Soot Particles

    SciTech Connect

    Friedman, Beth J.; Kulkarni, Gourihar R.; Beranek, Josef; Zelenyuk, Alla; Thornton, Joel A.; Cziczo, Daniel J.

    2011-09-13

    We have studied ice formation at temperatures relevant to homogeneous and heterogeneous ice nucleation, as well as droplet activation and hygroscopicity, of soot particles of variable size and composition. Coatings of adipic, malic, and oleic acid were applied to span an atmospherically relevant range of solubility, and both uncoated and oleic acid coated soot particles were exposed to ozone to simulate atmospheric oxidation. The results are interpreted in terms of onset ice nucleation, with a comparison to a mineral dust particle that acts as an efficient ice nucleus, and particle hygroscopicity. At 253K and 243K, we found no evidence of heterogeneous ice nucleation occurring above the level of detection for our experimental conditions. Above water saturation, only droplet formation was observed. At 233K, we observe the occurrence of homogeneous ice nucleation for all particles studied. Coatings also did not significantly alter the ice nucleation behavior of soot particles, but aided in the uptake of water. Hygroscopicity studies confirmed that pure soot particles were hydrophobic, and coated soot particles activated as droplets at high water supersaturations. A small amount of heterogeneous ice nucleation either below the detection limit of our instrument or concurrent with droplet formation and/or homogeneous freezing cannot be precluded, but we are able to set limits for its frequency. We conclude that both uncoated and coated soot particles representative of those generated in our studies are unlikely to significantly contribute to the global budget of heterogeneous ice nuclei at temperatures between 233K and 253K.

  7. Ice formation on nitric acid coated dust particles: Laboratory and modeling studies

    SciTech Connect

    Kulkarni, Gourihar R.; Zhang, Kai; Zhao, Chun; Nandasiri, Manjula I.; Shutthanandan, V.; Liu, Xiaohong; Fast, Jerome D.; Berg, Larry K.

    2015-08-16

    Changes in the ice nucleation characteristics of atmospherically relevant mineral dust particles due to nitric acid coating are not well understood. Further, the atmospheric implications of dust coating on ice-cloud properties under different assumptions of primary ice nucleation mechanisms are unknown. We investigated ice nucleation ability of Arizona test dust, illite, K-feldspar and quartz as a function of temperature (-25 to -30°C) and relative humidity with respect to water (75 to 110%). Particles were size selected at 250 nm and transported (bare or coated) to the ice nucleation chamber to determine the fraction of particles nucleating ice at various temperature and water saturation conditions. All dust nucleated ice at water-subsaturated conditions, but the coated particles showed a reduction in their ice nucleation ability compared to bare particles. However, at water-supersaturated conditions, we observed that bare and coated particles had nearly similar ice nucleation characteristics. X-ray diffraction patterns indicated that structural properties of bare dust particles modified after acid treatment. We found that lattice parameters were slightly different, but crystallite sizes of the coated particles were reduced compared to bare particles. Next, single-column model results show that simulated ice crystal number concentrations mostly depends upon fraction of particles that are coated, primary ice nucleation mechanisms, and the competition between ice nucleation mechanisms to nucleate ice. In general, we observed that coating modify the ice-cloud properties and the picture of ice and mixed-phase cloud evolution is complex when different primary ice nucleation mechanisms are competing for fixed water vapor mass.

  8. Reactivity of chlorine radical with submicron palmitic acid particles: kinetic measurements and product identification

    NASA Astrophysics Data System (ADS)

    Mendez, M.; Ciuraru, R.; Gosselin, S.; Batut, S.; Visez, N.; Petitprez, D.

    2013-12-01

    The heterogeneous reaction of Cl• radicals with submicron palmitic acid (PA) particles was studied in an aerosol flow tube in the presence or in the absence of O2. Fine particles were generated by homogeneous condensation of PA vapours and introduced into the reactor, where chlorine atoms were produced by photolysis of Cl2 using UV lamps surrounding the reactor. The effective reactive uptake coefficient (γ) has been determined from the rate loss of PA measured by gas chromatography-mass spectrometer (GC/MS) analysis of reacted particles as a function of the chlorine exposure. In the absence of O2, γ = 14 ± 5 indicates efficient secondary chemistry involving Cl2. GC/MS analysis has shown the formation of monochlorinated and polychlorinated compounds in the oxidized particles. Although the PA particles are solid, the complete mass can be consumed. In the presence of oxygen, the reaction is still dominated by secondary chemistry but the propagation chain length is smaller than in the absence of O2, which leads to an uptake coefficient γ = 3 ± 1. In the particulate phase, oxocarboxylic acids and dicarboxylic acids were identified by GC/MS. The formation of alcohols and monocarboxylic acids is also suspected. A reaction pathway for the main products and more functionalized species is proposed. All these results show that solid organic particles could be efficiently oxidized by gas-phase radicals not only on their surface but also in bulk by mechanisms which are still unclear. They help to understand the aging of primary tropospheric aerosol containing fatty acids.

  9. Reactivity of chlorine radical with submicron palmitic acid particles: kinetic measurements and products identification

    NASA Astrophysics Data System (ADS)

    Mendez, M.; Ciuraru, R.; Gosselin, S.; Batut, S.; Visez, N.; Petitprez, D.

    2013-06-01

    The heterogeneous reaction of Cl. radicals with sub-micron palmitic acid (PA) particles was studied in an aerosol flow tube in the presence or in the absence of O2. Fine particles were generated by homogeneous condensation of PA vapors and introduced in the reactor where chlorine atoms are produced by photolysis of Cl2 using UV lamps surrounding the reactor. The effective reactive uptake coefficient (γ) has been determined from the rate loss of PA measured by GC/MS analysis of reacted particles as a function of the chlorine exposure. In the absence of O2, γ = 14 ± 5 indicates efficient secondary chemistry involving Cl2. GC/MS analyses have shown the formation of monochlorinated and polychlorinated compounds in the oxidized particles. Although, the PA particles are solid, the complete mass can be consumed. In the presence of oxygen, the reaction is still dominated by secondary chemistry but the propagation chain length is smaller than in the absence of O2 which leads to an uptake coefficient γ = 3 ± 1. In the particulate phase, oxocarboxylic acids and dicarboxylic acids are identified by GC/MS. Formation of alcohols and monocarboxylic acids are also suspected. All these results show that solid organic particles could be efficiently oxidized by gas-phase radicals not only on their surface, but also in bulk by mechanisms which are still unclear. Furthermore the identified reaction products are explained by a chemical mechanism showing the pathway of the formation of more functionalized products. They help to understand the aging of primary tropospheric aerosol containing fatty acids.

  10. Preclinical Evaluation of Bioabsorbable Polyglycolic Acid Spacer for Particle Therapy

    SciTech Connect

    Akasaka, Hiroaki; Sasaki, Ryohei; Miyawaki, Daisuke; Mukumoto, Naritoshi; Sulaiman, Nor Shazrina Binti; Nagata, Masaaki; Yamada, Shigeru; Murakami, Masao; Demizu, Yusuke; Fukumoto, Takumi

    2014-12-01

    Purpose: To evaluate the efficacy and safety of a polyglycolic acid (PGA) spacer through physical and animal experiments. Methods and Materials: The spacer was produced with surgical suture material made of PGA, forming a 3-dimensional nonwoven fabric. For evaluation or physical experiments, 150-MeV proton or 320-MeV carbon-ion beams were used to generate 60-mm width of spread-out Bragg peak. For animal experiments, the abdomens of C57BL/6 mice, with or without the inserted PGA spacers, were irradiated with 20 Gy of carbon-ion beam (290 MeV) using the spread-out Bragg peak. Body weight changes over time were scored, and radiation damage to the intestine was investigated using hematoxylin and eosin stain. Blood samples were also evaluated 24 days after the irradiation. Long-term thickness retention and safety were evaluated using crab-eating macaques. Results: No chemical or structural changes after 100 Gy of proton or carbon-ion irradiation were observed in the PGA spacer. Water equivalency of the PGA spacer was equal to the water thickness under wet condition. During 24 days' observation after 20 Gy of carbon-ion irradiation, the body weights of mice with the PGA spacer were relatively unchanged, whereas significant weight loss was observed in those mice without the PGA spacer (P<.05). In mice with the PGA spacer, villus and crypt structure were preserved after irradiation. No inflammatory reactions or liver or renal dysfunctions due to placement of the PGA spacer were observed. In the abdomen of crab-eating macaques, thickness of the PGA spacer was maintained 8 weeks after placement. Conclusions: The absorbable PGA spacer had water-equivalent, bio-compatible, and thickness-retaining properties. Although further evaluation is warranted in a clinical setting, the PGA spacer may be effective to stop proton or carbon-ion beams and to separate normal tissues from the radiation field.

  11. Extractant-coated magnetic particles for cobalt and nickel recovery from acidic solution.

    SciTech Connect

    Kaminski, M. D.; Nunez, L.; Chemical Engineering

    1999-04-01

    Waste minimization and recycling practices can often constitute a significant fraction of industrial operating costs. Magnetically assisted chemical separation (MACS) is a simple, cost-effective process that utilizes micrometer-sized magnetic composite materials containing a sorbed layer of chelating or ion exchange material. This paper presents the use of MACS particles for recovering cobalt and nickel from acidic solution.

  12. Extractant-coated magnetic particles for cobalt and nickel recovery from acidic solution

    NASA Astrophysics Data System (ADS)

    Kaminski, M. D.; Nuñez, L.

    1999-04-01

    Waste minimization and recycling practices can often constitute a significant fraction of industrial operating costs. Magnetically assisted chemical separation (MACS) is a simple, cost-effective process that utilizes micrometer-sized magnetic composite materials containing a sorbed layer of chelating or ion exchange material. This paper presents the use of MACS particles for recovering cobalt and nickel from acidic solution.

  13. Crystallization and immersion freezing ability of oxalic and succinic acid in multicomponent aqueous organic aerosol particles

    NASA Astrophysics Data System (ADS)

    Wagner, Robert; Höhler, Kristina; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin

    2015-04-01

    This study reports on heterogeneous ice nucleation efficiency of immersed oxalic and succinic acid crystals in the temperature range from 245 to 215 K, as investigated with expansion cooling experiments using suspended particles. In contrast to previous laboratory work with emulsified solution droplets where the precipitation of solid inclusions required a preceding freezing/evaporation cycle, we show that immersed solids readily form by homogeneous crystallization within aqueous solution droplets of multicomponent organic mixtures, which have noneutonic compositions with an excess of oxalic or succinic acid. Whereas succinic acid crystals did not act as heterogeneous ice nuclei, immersion freezing by oxalic acid dihydrate crystals led to a reduction of the ice saturation ratio at freezing onset by 0.066-0.072 compared to homogeneous freezing, which is by a factor of 2 higher than previously reported laboratory data. These observations emphasize the importance of oxalic acid in heterogeneous ice nucleation.

  14. Solubility of methanol in low-temperature aqueous sulfuric acid and implications for atmospheric particle composition

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Essin, Andrew M.; Golden, David M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    Using traditional Knudsen cell techniques, we find well-behaved Henry's law uptake of methanol in aqueous 45 - 70 wt% H2SO4 solutions at temperatures between 197 and 231 K. Solubility of methanol increases with decreasing temperature and increasing acidity, with an effective Henry's law coefficient ranging from 10(exp 5) - 10(exp 8) M/atm. Equilibrium uptake of methanol into sulfuric acid aerosol particles in the upper troposphere and lower stratosphere will not appreciably alter gas-phase concentrations of methanol. The observed room temperature reaction between methanol and sulfuric acid is too slow to provide a sink for gaseous methanol at the temperatures of the upper troposphere and lower stratosphere. It is also too slow to produce sufficient quantities of soluble reaction products to explain the large amount of unidentified organic material seen in particles of the upper troposphere.

  15. Intertwining lamellar assembly in porous spherulites composed of two ring-banded poly(ethylene adipate) and poly(butylene adipate).

    PubMed

    Lugito, Graecia; Woo, Eamor M

    2015-02-01

    Poly(1,4-butylene adipate) (PBA) and poly(ethylene adipate) (PEA), each with the ability to form ring-banded morphologies at same Tc, were simultaneously crystallized from mixtures of various compositions. Investigations on morphology, phase and thermal behavior were conducted in order to reveal lamellar packing and spherulitic structures in this binary system. As PBA is faster-crystallizing and dominates the crystallization process, it is relatively easy to maintain its ordered ring-banded pattern in a PBA/PEA blend when there is a moderate amount of PBA in the composition (40 wt% or greater). On the other hand, PEA is much slower crystallizing and it has to be in extreme majority (PEA > 95 wt%) in the PBA/PEA mixtures in order to crystallize into ring-banded spherulites of PEA pattern. When PBA composition is between 10 and 40 wt% in the PBA/PEA blend, simultaneous crystallization of PBA and PEA leads to an interpenetrating morphology with an interwoven bird-nest pattern. Porous structures with crevices, owing to the interpenetrating PBA and PEA lamellae, resulted in simultaneous crystallization of these two biodegradable polyesters.

  16. [Levels of phthalates and adipates in processed foods and migration of di-isononyl adipate from polyvinyl chloride film into foods].

    PubMed

    Saito, Isao; Ueno, Eiji; Oshima, Harumi; Matsumoto, Hiroshi

    2002-06-01

    The levels of dibutyl phthalate (DBP), butylbenzyl phthalate (BBP), di-(2-ethylhexyl) phthalate (DEPHP), di-isononyl phthalate (DINP), di-(2-ethylhexyl) adipate (DEHA) and di-isononyl adipate (DINA) were determined in 50 processed foods (ham and sausage, fried dumpling and shao-mai, fish paste products, croquette and fried fish, bread, noodle, pickles, etc.). DBP, BBP, DEHP, DINP, DEHA, and DINA were contained at nd approximately 47.7, nd approximately 16.6, nd approximately 749, nd approximately 358, nd approximately 57.2 and nd approximately 20,200 ppb, respectively. High-level contamination of DINA was found in fish paste products, croquette and shao-mai, presumably because of migration from plasticized wrapping film using for food packaging. We studied the relationship between DINA migration from wrapped PVC film into fried croquette and its standing time after frying. When the croquette was wrapped immediately after frying, the migration from wrapping film into the croquette was highest (36,400 ng/g). On wrapping after standing for 5 min and 30 min, the migration level was reduced to 1/3.5 and 1/14 of the highest level, respectively.

  17. Effects of humic acid on physical and hydrodynamic properties of kaolin flocs by particle image velocimetry.

    PubMed

    Zhong, Runsheng; Zhang, Xihui; Xiao, Feng; Li, Xiaoyan; Cai, Zhonghua

    2011-07-01

    The physical and hydrodynamic properties of kaolin flocs including floc size, strength, regrowth, fractal structure and settling velocity were investigated by in situ particle image velocimetry technique at different humic acid concentration. Jar-test experimental results showed that the adsorbed humic acid had a significant influence on the coagulation process for alum and ferric chloride. Kaolin flocs formed with the ferric chloride were larger and stronger than those for alum at same humic acid concentration. Floc strength and regrowth were estimated by strength factor and recovery factor at different humic acid concentration. It was found that the increased humic acid concentration had a slight influence on the strength of kaolin flocs and resulted in much worse floc regrowth. In addition, the floc regrowth after breakage depended on the shear history and coagulants under investigation. The changes in fractal structure recorded continuously by in situ particle image velocimetry technique during the growth-breakage-regrowth processes provided a supporting information that the kaolin flocs exhibited a multilevel structure. It was proved that the increased humic acid concentration resulted in decrease in mass fractal dimension of kaolin flocs and consequently worse sedimentation performance through free-settling and microbalance techniques.

  18. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules.

    PubMed

    Schobesberger, Siegfried; Junninen, Heikki; Bianchi, Federico; Lönn, Gustaf; Ehn, Mikael; Lehtipalo, Katrianne; Dommen, Josef; Ehrhart, Sebastian; Ortega, Ismael K; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Hutterli, Manuel; Duplissy, Jonathan; Almeida, João; Amorim, Antonio; Breitenlechner, Martin; Downard, Andrew J; Dunne, Eimear M; Flagan, Richard C; Kajos, Maija; Keskinen, Helmi; Kirkby, Jasper; Kupc, Agnieszka; Kürten, Andreas; Kurtén, Theo; Laaksonen, Ari; Mathot, Serge; Onnela, Antti; Praplan, Arnaud P; Rondo, Linda; Santos, Filipe D; Schallhart, Simon; Schnitzhofer, Ralf; Sipilä, Mikko; Tomé, António; Tsagkogeorgas, Georgios; Vehkamäki, Hanna; Wimmer, Daniela; Baltensperger, Urs; Carslaw, Kenneth S; Curtius, Joachim; Hansel, Armin; Petäjä, Tuukka; Kulmala, Markku; Donahue, Neil M; Worsnop, Douglas R

    2013-10-22

    Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiälä boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molecules and then form growing clusters of one to three sulfuric acid molecules plus one to four oxidized organics. Most of these organic compounds retain 10 carbon atoms, and some of them are remarkably highly oxidized (oxygen-to-carbon ratios up to 1.2). The average degree of oxygenation of the organic compounds decreases while the clusters are growing. Our measurements therefore connect oxidized organics directly, and in detail, with the very first steps of new particle formation and their growth between 1 and 2 nm in a controlled environment. Thus, they confirm that oxidized organics are involved in both the formation and growth of particles under ambient conditions.

  19. An assessment of the dietary uptake of di-2-(ethylhexyl) adipate (DEHA) in a limited population study.

    PubMed

    Loftus, N J; Woollen, B H; Steel, G T; Wilks, M F; Castle, L

    1994-01-01

    The plasticizer di-2-(ethylhexyl) adipate (DEHA), which may be present in food-contact films, can migrate into certain foodstuffs. Results from plasticizer migration studies into food have enabled an indirect estimate of the maximum daily dietary intake of DEHA. A previous study of the metabolism and pharmacokinetics of DEHA in humans identified the urinary metabolite 2-ethylhexanoic acid (EHA) as a useful marker metabolite for assessing DEHA intake. The present study was designed to investigate urinary EHA concentrations following a controlled dose of DEHA presented with food, and to assess the average daily intake of DEHA in a limited population survey. The urinary elimination profile of EHA, following a dose of DEHA in food, showed that in order to extrapolate DEHA intake from EHA measurements, a 24-hr urine sample was required. In the survey the elimination of EHA was determined in 24-hr urine samples in 112 individuals from five different geographical locations in the UK. No restrictions were placed on age or gender. Estimates of daily intake of DEHA show a skewed distribution with a median value of 2.7 mg. This is similar to an estimated maximum daily intake of 8.2 mg/day, derived using an indirect method by the UK Ministry of Agriculture, Fisheries and Food.

  20. Adsorption of acids and bases from aqueous solutions onto silicon dioxide particles.

    PubMed

    Zengin, Huseyin; Erkan, Belgin

    2009-12-30

    The adsorption of acids and bases onto the surface of silicon dioxide (SiO(2)) particles was systematically studied as a function of several variables, including activation conditions, contact time, specific surface area, particle size, concentration and temperature. The physical properties of SiO(2) particles were investigated, where characterizations were carried out by FT-IR spectroscopy, and morphology was examined by scanning electron microscopy (SEM). The SEM of samples showed good dispersion and uniform SiO(2) particles with an average diameter of about 1-1.5 microm. The adsorption results revealed that SiO(2) surfaces possessed effective interactions with acids and bases, and greatest adsorption capacity was achieved with NaOH, where the best fit isotherm model was the Freundlich adsorption model. The adsorption properties of raw SiO(2) particles were further improved by ultrasonication. Langmuir monolayer adsorption capacity of NaOH adsorbate at 25 degrees C on sonicated SiO(2) (182.6 mg/g) was found to be greater than that of the unsonicated SiO(2) (154.3mg/g). The spontaneity of the adsorption process was established by decreases in DeltaG(ads)(0), which varied from -10.5 to -13.6 kJ mol(-1), in the temperature range 283-338K. PMID:19683387

  1. Acidic species and chloride depletion in coarse aerosol particles in the US east coast.

    PubMed

    Zhao, Yunliang; Gao, Yuan

    2008-12-15

    To investigate the interactions of water-soluble acidic species associated with coarse mode aerosol particles (1.8-10 microm) and chlorine depletion, ten sets of size-segregated aerosol samples were collected by a 10-stage Micro-Orifice Uniform Deposit Impactor (MOUDI) in Newark, New Jersey on the U.S. east coast. The samples were grouped into two categories according to the air-mass back trajectories and mass ratios of sodium to magnesium and calcium: Group I was primarily impacted by marine air mass and Group II was dominated by the continental air mass. In Group I, the concentrations of coarse mode nitrate and chloride depletion showed a strong correlation (R2=0.88). Without considering other cations, nitrate was found to account for all of the chloride depletion in coarse particles for most samples. The association of coarse mode nitrate with sea-salt particles is favored when the mass ratio of sodium to calcium is approximately equal to or greater than unity. Excess sulfate accounts for a maximum of 33% of chloride depletion in the coarse particles. Regarding chloride depletion in the different particle sizes, excess nitrate and sulfate account for 89% of the chloride depletion in the particle size range of 1.8-3.2 microm in the sample from July 13-14; all of the determined dicarboxylic acids and mono-carboxylic acids cannot compensate for the rest of the chloride depletion. In Group II, high percentages of chloride depletion were not observed. With nitrate being dominant in chlorine depletion observed at this location, N-containing species from pollution emissions may have profound impact on atmospheric composition through altering chlorine chemistry in this region. PMID:18973925

  2. Model studies of volatile diesel exhaust particle formation: organic vapours involved in nucleation and growth?

    NASA Astrophysics Data System (ADS)

    Pirjola, L.; Karl, M.; Rönkkö, T.; Arnold, F.

    2015-02-01

    High concentration of volatile nucleation mode particles (NUP) formed in the atmosphere during exhaust cools and dilutes have hazardous health effects and impair visibility in urban areas. Nucleation mechanisms in diesel exhaust are only poorly understood. We performed model studies using two sectional aerosol dynamics process models AEROFOR and MAFOR on the formation of particles in the exhaust of a diesel engine, equipped with an oxidative after-treatment system and running with low fuel sulphur content (FSC), under laboratory sampling conditions where the dilution system mimics real-world conditions. Different nucleation mechanisms were tested; based on the measured gaseous sulphuric acid (GSA) and non-volatile core and soot particle number concentrations of the raw exhaust, the model simulations showed that the best agreement between model predictions and measurements in terms of particle number size distribution was obtained by barrierless heteromolecular homogeneous nucleation between GSA and semi-volatile organic vapour (for example adipic acid) combined with the homogeneous nucleation of GSA alone. Major growth of the particles was predicted to occur by the same organic vapour at concentrations of (1-2) ×1012cm-3. The pre-existing core and soot mode concentrations had opposite trend on the NUP formation, and maximum NUP formation was predicted if a diesel particle filter (DPF) was used. On the other hand, NUP formation was ceased if the GSA concentration was less than 1010cm-3 which suggests, based on the measurements, the usage of biofuel to prevent volatile particles in diesel exhaust.

  3. On the factors governing the abundance of oxalic acid in tropospheric aerosol particles

    NASA Astrophysics Data System (ADS)

    van Pinxteren, D.; Neusuess, C.; Brüggemann, E.; Gnauk, T.; Müller, K.; Herrmann, H.

    2010-12-01

    Oxalic acid is frequently observed as one of the most abundant single organic compounds in tropospheric particles. Its sources are commonly believed to be of secondary nature. In state-of-the-art multiphase chemistry models, different pathways exist, which can lead to oxalic acid as final product. Anthropogenic hydrocarbon emissions can be photochemically degraded to glyoxal and methyglyoxal, which - after partitioning into deliquescent particles or cloud droplets - are further oxidized via glyoxylic acid to oxalic acid [Herrmann et al., 2005]. A biogenic oxidation pathway starts with isoprene or monoterpene emissions and leads to glycolaldehyde and methylglyoxal via methacrolein and methylvinylketone, followed by aqueous phase oxalic acid formation [Lim et al., 2005]. As suggested by Warneck, 2003, a marine pathway might exist, starting from marine ethene emissions and leading via glycolaldehyde to oxalic acid. The aim of this study was to elucidate from field measurements the importance of each of these pathways. To this aim, oxalic acid concentrations from 144 size-resolved particle samples (5-stage Berner impactor) from different continental and coastal European sampling sites were statistically analyzed using principal component analysis (PCA). Hourly back trajectories were calculated for each sampling interval using the HYSPLIT model [Draxler and Rolph, 2003] and combined in a novel way with global land cover data to yield “residence times” of the sampled air masses above urban, agricultural, forested, and oceanic areas. These residence times served as quantitative proxies for different emission regimes (anthropogenic, biogenic, marine) in the statistical analysis. Additionally, meteorological parameters such as sunflux along the trajectories or mixing layer depth at the sampling site were retrieved from the HYSPLIT output. PCA of the continental dataset retrieved two factors that were connected to the oxalic acid concentrations. A first one showed high

  4. Heterogeneous Reactivity of Nitric Acid with Nascent Sea Spray Aerosol: Large Differences Observed between and within Individual Particles.

    PubMed

    Ault, Andrew P; Guasco, Timothy L; Baltrusaitis, Jonas; Ryder, Olivia S; Trueblood, Jonathan V; Collins, Douglas B; Ruppel, Matthew J; Cuadra-Rodriguez, Luis A; Prather, Kimberly A; Grassian, Vicki H

    2014-08-01

    Current climate and atmospheric chemistry models assume that all sea spray particles react as if they are pure NaCl. However, recent studies of sea spray aerosol particles have shown that distinct particle types exist (including sea salt, organic carbon, and biological particles) as well as mixtures of these and, within each particle type, there is a range of single-particle chemical compositions. Because of these differences, individual particles should display a range of reactivities with trace atmospheric gases. Herein, to address this, we study the composition of individual sea spray aerosol particles after heterogeneous reaction with nitric acid. As expected, a replacement reaction of chloride with nitrate is observed; however, there is a large range of reactivities spanning from no reaction to complete reaction between and within individual sea spray aerosol particles. These data clearly support the need for laboratory studies of individual, environmentally relevant particles to improve our fundamental understanding as to the properties that determine reactivity.

  5. Particle acceleration for delivery deoxyribonucleic acid vaccine into skin in vivo

    NASA Astrophysics Data System (ADS)

    Xinglong, Yu; Xiwen, Zhang; Yuan, Wang; Junshi, Xie; Pengfei, Hao

    2001-08-01

    Skin represents an important immunogenic inductive site, 3%-4% epidermis cells are special antigen-presenting cells. Deoxyribonucleic acid (DNA) vaccine can elicit vigorous immune responses in epidermis cells. The means of delivering DNA vaccine into epidermis cells becomes an important step in DNA vaccine applications. This article presents a new type of gene gun based on the principle of two-stage injector acceleration. DNA coated particles are attached on an screen-type carrier located at the negative pressure inlet, the particles will be sucked into the accelerating channel by negative pressure and be accelerated at a great speed. FLUENT, a computation fluid dynamic application software is used to simulate the flow condition of the injector. Distribution of Mach number, total pressure on exit cross section, and negative pressure on negative pressure inlet are analyzed, by which the process of acceleration of particles is determined. We also measured these parameters in this study. The data show that the particle velocity can be up to 500 m/s and the particles distribute evenly over a circle of Φ 20 mm. The numerical simulation results coincide with experimental data well. Therefore, the results of numerical simulation can be served as guidance for an optimal design of the gene gun and for practical operations. When gene coated particles are distributed evenly, they can penetrate into or even through epidermis cells where the gene can be expressed and subsequently elicits host immune responses. This device may be evaluated in human objects in future.

  6. Free fatty acid particles in protein formulations, part 2: contribution of polysorbate raw material.

    PubMed

    Siska, Christine C; Pierini, Christopher J; Lau, Hollis R; Latypov, Ramil F; Fesinmeyer, R Matthew; Litowski, Jennifer R

    2015-02-01

    Polysorbate 20 (PS20) is a nonionic surfactant frequently used to stabilize protein biopharmaceuticals. During the development of mAb formulations containing PS20, small clouds of particles were observed in solutions stored in vials. The degree of particle formation was dependent on PS20 concentration. The particles were characterized by reversed-phase HPLC after dissolution and labeling with the fluorescent dye 1-pyrenyldiazomethane. The analysis showed that the particles consisted of free fatty acids (FFAs), with the distribution of types consistent with those found in the PS20 raw material. Protein solutions formulated with polysorbate 80, a chemically similar nonionic surfactant, showed a substantial delay in particle formation over time compared with PS20. Multiple lots of polysorbates were evaluated for FFA levels, each exhibiting differences based on polysorbate type and lot. Polysorbates purchased in more recent years show a greater distribution and quantity of FFA and also a greater propensity to form particles. This work shows that the quality control of polysorbate raw materials could play an important role in biopharmaceutical product quality.

  7. Stable carbon isotopic compositions of organic acids in total suspended particles and dusts from Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Ma, Shexia; Peng, Ping'an; Song, Jianzhong; Zhao, Jinping; He, Lulu; Sheng, Guoying; Fu, Jiamo

    2010-10-01

    Stable carbon isotopic compositions of individual organic acids were determined in total suspended particles and dusts from Guangzhou. The δ 13C values of high molecular weight n-alkanoic acids (C 20-C 28) varied from -34.1‰ to -32.4‰ and tended to be heavier in summer and lighter in winter. These δ 13C values indicate that high molecular weight n-alkanoic acids were derived mainly from emission by C 3 plants. Reduced biological synthesis of high molecular weight n-alkanoic acids in winter may be the reason for the light carbon isotopic composition. The δ 13C values of low molecular weight n-alkanoic acids (C 10-C 18) changed from -31.7‰ to -30.3‰ and exhibited a reverse seasonal trend, i.e., heavier in winter and lighter in summer. Slightly heavier δ 13C values of low molecular weight n-alkanoic acids than those of high molecular weight n-alkanoic acids suggested that they may be emitted from blended sources, e.g., anthropogenic sources and vegetation waxes. Lighter δ 13C values in summer may be attributed to relatively low anthropogenic sources and high botanic sources in summer. Dicarboxylic acids and aromatic acids have been proposed as secondary products from photochemical degradation. The average δ 13C values of dicarboxylic acids and aromatic acids were heavier, and ranged from -25.2‰ to -22.9‰ and from -30.0‰ to -27.6‰, respectively. Both dicarboxylic acids and aromatic acids displayed the same temporal variations in the δ 13C values, i.e., negative δ 13C in the summer samples and positive in the winter samples, which may be controlled by photochemical reactions; they are generally severe in winter in Guangzhou under the monsoon weather system. The heaviest δ 13C values were observed in dicarboxylic acids, indicating that dicarboxylic acids were formed by fast and more complete oxidation reactions. These results indicate that the stable carbon isotopic composition of organic acids may provide important information about sources and

  8. Spectroscopic Evidence of Keto-enol Tautomerism in Deliquesced Malonic Acid Particles

    SciTech Connect

    Ghorai, Suman; Laskin, Alexander; Tivanski, Alexei V.

    2011-04-11

    Scanning Transmission X-ray Microscopy combined with Near Edge X-ray Absorption Fine Structure Spectroscopy (STXM/NEXAFS), and optical microscopy coupled with Fourier Transform Infrared Spectroscopy (micro-FTIR) have been applied to observe hygroscopic growth and chemical changes in malonic acid particles deposited on substrates. Extent of the hygroscopic growth of particles has been quantified in terms of the corresponding water-to-solute ratios (WSR) based on STXM/NEXAFS and micro-FTIR data sets. WSR values derived separately from two applied methods displayed a remarkable agreement with previous data reported in the literature. Comparison of NEXAFS and FTIR spectra acquired at different relative humidity (RH) shows efficient keto-enol tautomerization of malonic acid, with the enol form dominated at higher RH. The keto-enol equilibrium constants were calculated using relevant peak intensities in the carbon and oxygen K-edge NEXAFS spectra as a function of RH.

  9. Comparison of the composition and gas/particle partitioning of organic acids in monoterpene and isoprene dominated environments

    NASA Astrophysics Data System (ADS)

    Thompson, S.; Yatavelli, L. R.; Stark, H.; Kimmel, J.; Krechmer, J.; Hu, W.; Palm, B. B.; Campuzano Jost, P.; Day, D. A.; Isaacman, G. A.; Goldstein, A. H.; Khan, M. H.; Holzinger, R.; Lopez-Hilfiker, F.; Mohr, C.; Thornton, J. A.; Jayne, J. T.; Worsnop, D. R.; Jimenez, J. L.

    2013-12-01

    Gas and particle-phase organic acids measurements from two different regions with different biogenic volatile organic compound emissions are used to understand gas/particle partitioning principles. A Chemical Ionization High Resolution Time-of-Flight Mass Spectrometer (HRToF-CIMS), with acetate (CH3COO-) as the reagent ion was used to selectively detect acids. Hundreds of gas and particle-phase organic acids were measured in both locations, a monoterpene and MBO-dominated environment (ponderosa pine forest in Colorado, BEACHON-RoMBAS 2011) and isoprene and terpene-dominated environment (mixed deciduous and pine forest in Alabama, SOAS 2013). Time series of gas/particle partitioning for ions consistent with tracers for isoprene oxidation such as methacrylic acid epoxide (MAE) and isoprene epoxydiol (IEPOX) and tracers for α-pinene oxidation such as pinic and pinonic acid will be presented. Gas/particle partitioning, represented as the fraction of each species in the particle-phase, Fp, was calculated for C1-C18 alkanoic acids and biogenic VOC oxidation tracers and compared to an absorptive partitioning model. These results are compared with those of two other instruments that can also quantify gas/particle partitioning with high time resolution: a Semivolatile Thermal Desorption Aerosol GC/MS (SV-TAG) and a Thermal Desorption Proton Transfer Time-of-Flight Mass Spectrometer (TD-PTRMS). Data from both environments were consistent with the values and trends predicted by the absorptive partitioning model for the tracer acids. However, for low carbon number alkanoic acids we report a higher fraction in the particle phase than predicted by the model. The Fp for the bulk-averaged acids and its relationship to the degree of oxidation and carbon number will also be presented. Temporal patterns and correlations with atmospheric conditions and composition will be explored for individual and bulk acids. We will discuss atmospheric implications of the gas/particle partitioning

  10. Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere.

    PubMed

    Almeida, João; Schobesberger, Siegfried; Kürten, Andreas; Ortega, Ismael K; Kupiainen-Määttä, Oona; Praplan, Arnaud P; Adamov, Alexey; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; David, André; Dommen, Josef; Donahue, Neil M; Downard, Andrew; Dunne, Eimear; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Guida, Roberto; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Henschel, Henning; Jokinen, Tuija; Junninen, Heikki; Kajos, Maija; Kangasluoma, Juha; Keskinen, Helmi; Kupc, Agnieszka; Kurtén, Theo; Kvashin, Alexander N; Laaksonen, Ari; Lehtipalo, Katrianne; Leiminger, Markus; Leppä, Johannes; Loukonen, Ville; Makhmutov, Vladimir; Mathot, Serge; McGrath, Matthew J; Nieminen, Tuomo; Olenius, Tinja; Onnela, Antti; Petäjä, Tuukka; Riccobono, Francesco; Riipinen, Ilona; Rissanen, Matti; Rondo, Linda; Ruuskanen, Taina; Santos, Filipe D; Sarnela, Nina; Schallhart, Simon; Schnitzhofer, Ralf; Seinfeld, John H; Simon, Mario; Sipilä, Mikko; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Vaattovaara, Petri; Viisanen, Yrjo; Virtanen, Annele; Vrtala, Aron; Wagner, Paul E; Weingartner, Ernest; Wex, Heike; Williamson, Christina; Wimmer, Daniela; Ye, Penglin; Yli-Juuti, Taina; Carslaw, Kenneth S; Kulmala, Markku; Curtius, Joachim; Baltensperger, Urs; Worsnop, Douglas R; Vehkamäki, Hanna; Kirkby, Jasper

    2013-10-17

    Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei. Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes. Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases. However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere. It is thought that amines may enhance nucleation, but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates more than 1,000-fold compared with ammonia, sufficient to account for the particle formation rates observed in the atmosphere. Molecular analysis of the clusters reveals that the faster nucleation is explained by a base-stabilization mechanism involving acid-amine pairs, which strongly decrease evaporation. The ion-induced contribution is generally small, reflecting the high stability of sulphuric acid-dimethylamine clusters and indicating that galactic cosmic rays exert only a small influence on their formation, except at low overall formation rates. Our experimental measurements are well reproduced by a dynamical model based on quantum chemical calculations of binding energies of molecular clusters, without any fitted parameters. These results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation. PMID:24097350

  11. Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere.

    PubMed

    Almeida, João; Schobesberger, Siegfried; Kürten, Andreas; Ortega, Ismael K; Kupiainen-Määttä, Oona; Praplan, Arnaud P; Adamov, Alexey; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; David, André; Dommen, Josef; Donahue, Neil M; Downard, Andrew; Dunne, Eimear; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Guida, Roberto; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Henschel, Henning; Jokinen, Tuija; Junninen, Heikki; Kajos, Maija; Kangasluoma, Juha; Keskinen, Helmi; Kupc, Agnieszka; Kurtén, Theo; Kvashin, Alexander N; Laaksonen, Ari; Lehtipalo, Katrianne; Leiminger, Markus; Leppä, Johannes; Loukonen, Ville; Makhmutov, Vladimir; Mathot, Serge; McGrath, Matthew J; Nieminen, Tuomo; Olenius, Tinja; Onnela, Antti; Petäjä, Tuukka; Riccobono, Francesco; Riipinen, Ilona; Rissanen, Matti; Rondo, Linda; Ruuskanen, Taina; Santos, Filipe D; Sarnela, Nina; Schallhart, Simon; Schnitzhofer, Ralf; Seinfeld, John H; Simon, Mario; Sipilä, Mikko; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Vaattovaara, Petri; Viisanen, Yrjo; Virtanen, Annele; Vrtala, Aron; Wagner, Paul E; Weingartner, Ernest; Wex, Heike; Williamson, Christina; Wimmer, Daniela; Ye, Penglin; Yli-Juuti, Taina; Carslaw, Kenneth S; Kulmala, Markku; Curtius, Joachim; Baltensperger, Urs; Worsnop, Douglas R; Vehkamäki, Hanna; Kirkby, Jasper

    2013-10-17

    Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei. Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes. Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases. However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere. It is thought that amines may enhance nucleation, but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates more than 1,000-fold compared with ammonia, sufficient to account for the particle formation rates observed in the atmosphere. Molecular analysis of the clusters reveals that the faster nucleation is explained by a base-stabilization mechanism involving acid-amine pairs, which strongly decrease evaporation. The ion-induced contribution is generally small, reflecting the high stability of sulphuric acid-dimethylamine clusters and indicating that galactic cosmic rays exert only a small influence on their formation, except at low overall formation rates. Our experimental measurements are well reproduced by a dynamical model based on quantum chemical calculations of binding energies of molecular clusters, without any fitted parameters. These results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation.

  12. Ozonolysis of oleic acid adsorbed to polar and nonpolar aerosol particles.

    PubMed

    Rosen, Elias P; Garland, Eva R; Baer, Tomas

    2008-10-16

    Single-particle kinetic studies of the reaction between oleic acid and O 3 have been conducted on two different types of core particles: polystyrene latex (PSL) and silica. Oleic acid was found to adsorb to both particle types in multilayer islands that resulted in an adsorbed layer of a total volume estimated to be less than one monolayer. The rate of the surface reaction between surface-adsorbed oleic acid and O 3 has been shown for the first time to be influenced by the composition of the aerosol substrate in a mixed organic/inorganic particle. A Langmuir-Hinshelwood mechanism was applied to the observed dependence of the pseudo-first-order rate constant with [O 3], and the resulting fit parameters for the ozone partition coefficient ( K O 3 ) and maximum first order rate constant ( k 1,max ) suggest that the reaction proceeded faster on the less polar PSL core at lower [O 3] due to the increased residence time of O 3 on the PSL surface, but the reaction was ultimately more efficient on the silica surface at high [O 3]. Values for the uptake coefficient, gamma oleic , for reaction of oleic acid on PSL spheres decrease from 2.5 x 10 (-5) to 1 x 10 (-5) with increasing [O 3] from 4 to 25 ppm and overlap at high [O 3] with the estimated values for gamma oleic on silica, which decrease from 1.6 x 10 (-5) to 1.3 x 10 (-5). The relationship between gamma oleic and the more common expression for gamma O 3 is discussed.

  13. Acid-Degradable Cationic Dextran Particles for the Delivery of siRNA Therapeutics

    PubMed Central

    Cohen, Jessica L.; Schubert, Stephanie; Wich, Peter R.; Cui, Lina; Cohen, Joel A.; Mynar, Justin L.; Fréchet, Jean M. J.

    2011-01-01

    We report a new acid-sensitive, biocompatible and biodegradable microparticulate delivery system, spermine modified acetalated-dextran (Spermine-Ac-DEX), which can be used to efficiently encapsulate siRNA. These particles demonstrated efficient gene knockdown in HeLa-luc cells with minimal toxicity. This knockdown was comparable to that obtained using Lipofectamine, a commercially available transfection reagent generally limited to in vitro use due to its high toxicity. PMID:21539393

  14. Comparison of sulfur measurements from a regional fine particle network with concurrent acid modes network results

    SciTech Connect

    Bennett, R.L.; Stockburger, L.; Barnes, H.M.

    1994-01-01

    The Fine Particle Network (FPN), a system of fine particle (less than 2.5 micrometers) samplers, was operated at 41 sites selected from the Enviromental Protection Agency Acid MODES program during the two year period in 1988-90. The 24-hour sample results included fine particle mass and the most predominant chemical element concentrations determined by wavelength dispersive x-ray fluorescence analysis. Statistical summaries of the fine mass and sulfur concentrations by site and season were prepared. The availability of simultaneous particulate sulfate measurements from independent collection and analytical procedures provided an opportunity to examine their agreement and provide a more reliable data base for evaluation of regional particulate models and estimation of contribution to urban aerosol concentration.

  15. Hygroscopic properties of ultrafine aerosol particles in the boreal forest: diurnal variation, solubility and the influence of sulfuric acid

    NASA Astrophysics Data System (ADS)

    Ehn, M.; Petäjä, T.; Aufmhoff, H.; Aalto, P.; Hämeri, K.; Arnold, F.; Laaksonen, A.; Kulmala, M.

    2006-10-01

    Freshly formed atmospheric aerosol particles are neither large enough to efficiently scatter incoming solar radiation nor able to act as cloud condensation nuclei. As the particles grow larger, their hygroscopicity determines the limiting size after which they are important in both of the aforementioned processes. The condensing species resulting in growth alter the hygroscopicity of the particles. We have measured hygroscopic growth of aerosol particles present in a boreal forest, along with the very hygroscopic atmospheric trace gas sulfuric acid. The focus was on days with new particle formation by nucleation. The measured hygroscopic growth factors (GF) correlated positively with gaseous phase sulfuric acid concentrations. This correlation had a strong size dependency; the smaller the particle, the more condensing sulfuric acid is bound to alter the GF due to initially smaller mass. In addition, water uptake of nucleation mode particles was monitored during new particle formation events and followed during their growth to Aitken mode sizes. As the modal diameter increased, the solubility of the particles decreased. This indicated that initially more hygroscopic particles transformed into less hygroscopic or even hydrophobic particles. A similar behavior was seen also during days with no particle formation, with GF decreasing during the evenings and increasing during early morning. This can be tentatively explained by day- and nighttime differences in the hygroscopicity of condensable vapors.

  16. Particle size tailoring of ursolic acid nanosuspensions for improved anticancer activity by controlled antisolvent precipitation.

    PubMed

    Wang, Yancai; Song, Ju; Chow, Shing Fung; Chow, Albert H L; Zheng, Ying

    2015-10-15

    The present study was aimed at tailoring the particle size of ursolic acid (UA) nanosuspension for improved anticancer activity. UA nanosuspensions were prepared by antisolvent precipitation using a four-stream multi-inlet vortex mixer (MIVM) under defined conditions of varying solvent composition, drug feeding concentration or stream flow rate. The resulting products were characterized for particle size and polydispersity. Two of the UA nanosuspensions with mean particle sizes of 100 and 300 nm were further assessed for their in-vitro activity against MCF-7 breast cancer cells using fluorescence microscopy with 4',6-diamidino-2-phenylindole (DAPI) staining, as well as flow cytometry with propidium (PI) staining and with double staining by fluorescein isothiocyanate. It was revealed that the solvent composition, drug feeding concentration and stream flow rate were critical parameters for particle size control of the UA nanosuspensions generated with the MIVM. Specifically, decreasing the UA feeding concentration or increasing the stream flow rate or ethanol content resulted in a reduction of particle size. Excellent reproducibility for nanosuspension production was demonstrated for the 100 and 300 nm UA preparations with a deviation of not more than 5% in particle size from the mean value of three independent batches. Fluorescence microscopy and flow cytometry revealed that these two different sized UA nanosuspensions, particularly the 300 nm sample, exhibited a higher anti-proliferation activity against the MCF-7 cells and afforded a larger population of these cells in both early and late apoptotic phases. In conclusion, MIVM is a robust and pragmatic tool for tailoring the particle size of the UA nanosuspension. Particle size appears to be a critical determinant of the anticancer activity of the UA nanoparticles.

  17. Particle size tailoring of ursolic acid nanosuspensions for improved anticancer activity by controlled antisolvent precipitation.

    PubMed

    Wang, Yancai; Song, Ju; Chow, Shing Fung; Chow, Albert H L; Zheng, Ying

    2015-10-15

    The present study was aimed at tailoring the particle size of ursolic acid (UA) nanosuspension for improved anticancer activity. UA nanosuspensions were prepared by antisolvent precipitation using a four-stream multi-inlet vortex mixer (MIVM) under defined conditions of varying solvent composition, drug feeding concentration or stream flow rate. The resulting products were characterized for particle size and polydispersity. Two of the UA nanosuspensions with mean particle sizes of 100 and 300 nm were further assessed for their in-vitro activity against MCF-7 breast cancer cells using fluorescence microscopy with 4',6-diamidino-2-phenylindole (DAPI) staining, as well as flow cytometry with propidium (PI) staining and with double staining by fluorescein isothiocyanate. It was revealed that the solvent composition, drug feeding concentration and stream flow rate were critical parameters for particle size control of the UA nanosuspensions generated with the MIVM. Specifically, decreasing the UA feeding concentration or increasing the stream flow rate or ethanol content resulted in a reduction of particle size. Excellent reproducibility for nanosuspension production was demonstrated for the 100 and 300 nm UA preparations with a deviation of not more than 5% in particle size from the mean value of three independent batches. Fluorescence microscopy and flow cytometry revealed that these two different sized UA nanosuspensions, particularly the 300 nm sample, exhibited a higher anti-proliferation activity against the MCF-7 cells and afforded a larger population of these cells in both early and late apoptotic phases. In conclusion, MIVM is a robust and pragmatic tool for tailoring the particle size of the UA nanosuspension. Particle size appears to be a critical determinant of the anticancer activity of the UA nanoparticles. PMID:26302857

  18. Aerosol products, mechanisms, and kinetics of heterogeneous reactions of ozone with oleic acid in pure and mixed particles.

    PubMed

    Ziemann, Paul J

    2005-01-01

    Reactions of O3 with pure and mixed oleic acid particles and bulk solutions were investigated using a thermal desorption particle beam mass spectrometer. The results provide information on the effect of particle matrix on reaction products, mechanisms, and kinetics. The major aerosol products are alpha-acyloxyalkyl hydroperoxides, secondary ozonides, alpha-alkoxyalkyl hydroperoxides, and oxocarboxylic acids formed primarily through reactions of Criegee intermediates with products or with particle matrix compounds. For example, it is estimated that for the reaction of pure oleic acid particles with O3 the aerosol products consist of approximately 68% organic peroxides, 28% 9-oxononanoic acid, and 4% azelaic acid. Although the reaction rate of pure oleic acid particles corresponds to an atmospheric lifetime of minutes, reactions in liquid/solid particle matrices can be orders of magnitude slower. The peroxide products are relatively stable when exposed to matrices typical of atmospheric particles, indicating that the lifetimes of these compounds in the atmosphere may be long enough to allow for long-range transport.

  19. Sialic Acid-Imprinted Fluorescent Core-Shell Particles for Selective Labeling of Cell Surface Glycans.

    PubMed

    Shinde, Sudhirkumar; El-Schich, Zahra; Malakpour, Atena; Wan, Wei; Dizeyi, Nishtman; Mohammadi, Reza; Rurack, Knut; Gjörloff Wingren, Anette; Sellergren, Börje

    2015-11-01

    The expression of cell surface glycans terminating with sialic acid (SA) residues has been found to correlate with various disease states there among cancer. We here report a novel strategy for specific fluorescence labeling of such motifs. This is based on sialic acid-imprinted core-shell nanoparticles equipped with nitrobenzoxadiazole (NBD) fluorescent reporter groups allowing environmentally sensitive fluorescence detection at convenient excitation and emission wavelengths. Imprinting was achieved exploiting a hybrid approach combining reversible boronate ester formation between p-vinylphenylboronic acid and SA, the introduction of cationic amine functionalities, and the use of an NBD-appended urea-monomer as a binary hydrogen-bond donor targeting the SA carboxylic acid and OH functionalities. The monomers were grafted from 200 nm RAFT-modified silica core particles using ethylene glycol dimethacrylate (EGDMA) as cross-linker resulting in a shell thickness of ca. 10 nm. The particles displayed strong affinity for SA in methanol/water mixtures (K = 6.6 × 10(5) M(-1) in 2% water, 5.9 × 10(3) M(-1) in 98% water, B(max) ≈ 10 μmol g(-1)), whereas binding of the competitor glucuronic acid (GA) and other monosaccharides was considerably weaker (K (GA) = 1.8 × 10(3) M(-1) in 98% water). In cell imaging experiments, the particles selectively stained different cell lines in correlation with the SA expression level. This was further verified by enzymatic cleavage of SA and by staining using a FITC labeled SA selective lectin. PMID:26414878

  20. Unravelling the properties of supported copper oxide: can the particle size induce acidic behaviour?

    PubMed

    Zaccheria, Federica; Scotti, Nicola; Marelli, Marcello; Psaro, Rinaldo; Ravasio, Nicoletta

    2013-02-01

    There is a renewed interest in designing solid acid catalysts particularly due to the significance of Lewis acid catalyzed processes such as Friedel-Crafts acylation and alkylation and cellulose hydrolysis for the development of sustainable chemistry. This paper reports a new focus point on the properties of supported CuO on silica, a material that up to now has been considered only as the precursor of an effective hydrogenation catalyst. Thus, it deals with a re-interpretation of some of our results with supported copper oxide aimed to unveil the root of acidic activity exhibited by this material, e.g. in alcoholysis reactions. Several techniques were used to highlight the very high dispersion of the oxide phase on the support allowing us to ascribe the acidic behavior to coordinative unsaturation of the very small CuO particles. In turn this unsaturation makes the CuO particles prone to coordinate surrounding molecules present in the reaction mixture and to exchange them according to their nucleophilicity. PMID:23207422

  1. Gas/particle partitioning behavior of perfluorocarboxylic acids with terrestrial aerosols.

    PubMed

    Arp, Hans Peter H; Goss, Kai-Uwe

    2009-11-15

    Experimentally determined gas/particle partitioning constants, K(ip), using inverse gas chromatography (IGC) are presented for perfluorocarboxylic acids (PFCAs), covering a diverse set of terrestrial aerosols over an ambient range of relative humidity (RH) and temperature. The results are compared to estimated K(ip) values using a recently developed model that has been validated for diverse neutral and ionizable organic compounds. The modeling results consistently underestimate the experimental results. This is likely due to additional partition mechanisms unique for surfactants not being accounted for in the model, namely aggregate formation and water surface adsorption. These processes likely also biased the IGC K(ip) measurements compared to ambient PFCA concentrations. Nevertheless, both the experimental and modeling results indicate that partitioning to terrestrial particles in ambient atmospheres is negligible, though sorption to condensed water can be substantial. This favors rain sequestration as a more important atmospheric removal mechanism than dry particle sequestration. PFCAs found on particle filters during ambient sampling are thus accountable to vapor-phase PFCAs or aqueous-phase PFCAs sorbing directly to the filters, or the trapping of perfluorocarboxylate-salt particles. Further work on understanding the partitioning and speciation of PFCAs in atmospheric water droplets is needed to further quantify and understand their atmospheric behavior. To aid in this, a general RH dependent K(ip) model for surfactants is presented.

  2. Particle oxidation model of synthetic FeS and sediment acid-volatile sulfide

    SciTech Connect

    Toro, D.M. di |; Mahony, J.D.; Gonzalez, A.M.

    1996-12-01

    A model is proposed for the kinetics of the oxidation of acid-volatile sulfide (AVS). It is based on a surface oxidation reaction that erodes the particle surface until the particle disappears. A monodisperse particle size distribution is assumed with a reaction rate that is proportional to the surface area remaining and a dimensional exponent that related the surface area to the particle volume. The model is fit to time course data from a number of experiments conducted using synthetic FeS at various pHs, oxygen concentrations, and ionic strengths. The reaction rate constants are modeled using a surface complexation model. It is based upon the formation of two activated surface complexes with molecular oxygen, one of which is charged. The complexation model provides a good fit to the variation of the reaction rate constant with respect to O{sub 2}, pH, temperature, and ionic strength. The dimensional exponent {nu} increases with pH from values characteristic of plates and needles to values reflecting more spherical particles, presumably due to coagulation. However the increase in {nu} with respect to O{sub 2} at high concentrations is unexplained.

  3. Diamine-sulfuric acid reactions are a potent source of new particle formation

    NASA Astrophysics Data System (ADS)

    Jen, Coty N.; Bachman, Ryan; Zhao, Jun; McMurry, Peter H.; Hanson, David R.

    2016-01-01

    Atmospheric nucleation from sulfuric acid depends on the concentrations and the stabilizing effect of other trace gases, such as ammonia and amines. Diamines are an understudied class of atmospherically relevant compounds, and we examine how they affect sulfuric acid nucleation in both flow reactor experiments and the atmosphere. The number of particles produced from sulfuric acid and diamines in the flow reactor was equal to or greater than the number formed from monoamines, implying that diamines are more effective nucleating agents. Upper limits of diamine abundance were also monitored during three field campaigns: Lamont, OK (2013); Lewes, DE (2012); and Atlanta, GA (2009). Mixing ratios were measured as high as tens of parts per trillion by volume (GA and OK). Laboratory results suggest that diamines at these levels are important for atmospheric nucleation. Diamines likely participate in atmospheric nucleation and should be considered in nucleation measurements and models.

  4. Interactions of meteoric smoke particles with sulphuric acid in the Earth's stratosphere

    NASA Astrophysics Data System (ADS)

    Saunders, R. W.; Dhomse, S.; Tian, W. S.; Chipperfield, M. P.; Plane, J. M. C.

    2012-01-01

    Nano-sized meteoric smoke particles (MSPs) with iron-magnesium silicate compositions, formed in the upper mesosphere as a result of meteoric ablation, may remove sulphuric acid from the gas-phase above 40 km and may also affect the composition and behaviour of supercooled H2SO4-H2O droplets in the global stratospheric aerosol (Junge) layer. This study describes a time-resolved spectroscopic analysis of the evolution of the ferric (Fe3+) ion originating from amorphous ferrous (Fe2+)-based silicate powders dissolved in varying Wt % sulphuric acid (30-75%) solutions over a temperature range of 223-295 K. Complete dissolution of the particles was observed under all conditions. The first-order rate coefficient for dissolution decreases at higher Wt % and lower temperature, which is consistent with the increased solution viscosity limiting diffusion of H2SO4 to the particle surfaces. Dissolution under stratospheric conditions should take less than a week, and is much faster than the dissolution of crystalline Fe2+ compounds. The chemistry climate model UMSLIMCAT (based on the UKMO Unified Model) was then used to study the transport of MSPs through the middle atmosphere. A series of model experiments were performed with different uptake coefficients. Setting the concentration of 1.5 nm radius MSPs at 80 km to 3000 cm-3 (based on rocket-borne charged particle measurements), the model matches the reported Wt % Fe values of 0.5-1.0 in Junge layer sulphate particles, and the MSP optical extinction between 40 and 75 km measured by a satellite-borne spectrometer, if the global meteoric input rate is about 20 t d-1. The model indicates that an uptake coefficient ≥0.01 is required to account for the observed two orders of magnitude depletion of H2SO4 vapour above 40 km.

  5. Interactions of meteoric smoke particles with sulphuric acid in the Earth's stratosphere

    NASA Astrophysics Data System (ADS)

    Saunders, R. W.; Dhomse, S.; Tian, W. S.; Chipperfield, M. P.; Plane, J. M. C.

    2012-05-01

    Nano-sized meteoric smoke particles (MSPs) with iron-magnesium silicate compositions, formed in the upper mesosphere as a result of meteoric ablation, may remove sulphuric acid from the gas-phase above 40 km and may also affect the composition and behaviour of supercooled H2SO4-H2O droplets in the global stratospheric aerosol (Junge) layer. This study describes a time-resolved spectroscopic analysis of the evolution of the ferric (Fe3+) ion originating from amorphous ferrous (Fe2+)-based silicate powders dissolved in varying Wt % sulphuric acid (30-75 %) solutions over a temperature range of 223-295 K. Complete dissolution of the particles was observed under all conditions. The first-order rate coefficient for dissolution decreases at higher Wt % and lower temperature, which is consistent with the increased solution viscosity limiting diffusion of H2SO4 to the particle surfaces. Dissolution under stratospheric conditions should take less than a week, and is much faster than the dissolution of crystalline Fe2+ compounds. The chemistry climate model UMSLIMCAT (based on the UKMO Unified Model) was then used to study the transport of MSPs through the middle atmosphere. A series of model experiments were performed with different uptake coefficients. Setting the concentration of 1.5 nm radius MSPs at 80 km to 3000 cm-3 (based on rocket-borne charged particle measurements), the model matches the reported Wt % Fe values of 0.5-1.0 in Junge layer sulphate particles, and the MSP optical extinction between 40 and 75 km measured by a satellite-borne spectrometer, if the global meteoric input rate is about 20 tonnes per day. The model indicates that an uptake coefficient ≥0.01 is required to account for the observed two orders of magnitude depletion of H2SO4 vapour above 40 km.

  6. Teicoplanin bonded sub-2 μm superficially porous particles for enantioseparation of native amino acids.

    PubMed

    Min, Yi; Sui, Zhigang; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2015-10-10

    Superficially porous particles (SPPs) demonstrate superior efficiency than totally porous particles in chiral separations. In order to obtain high efficiency and fast separation, sub-2 μm SPPs with high surface area are synthesized, and with teicoplanin bonded, such materials are successfully applied into the rapid enantioseparation of native amino acids. In brief, 1.27 ± 0.06 μm nonporous silica particles are prepared by a modified seeded growth method, followed by mesoporous shell fabrication via one-pot templated dissolution and redeposition strategy, and pore size expansion via acid-refluxing. The diameter of the formed SPPs is 1.49 ± 0.04 μm, with the shell thickness as 206 nm. Nitrogen physisorption experiments show that the Brunauer-Emmett-Teller (BET) specific surface area is 213.6 m(2)/g and pore size is 9 nm. After teicoplanin derivatization with bonding capacity as 83.3 μmol/g, the prepared chiral stationary phase is packed into a stainless steel tube with the geometry of 50 mm × 2.1 mm i.d.. In less than 6.4 min, six native amino acids (norleucine, alanine, valine, methionine, leucine, norvaline) are enantioseparated with resolution factors ranging from 1.9 to 5.0. Besides, the resolution for chiral separation is improved with ethanol-water instead of methanol-water as the mobile phase. Moreover, the low temperature gives higher resolution, but longer retention time and higher backpressure. Finally, the effect of flow rate on enantiomeric separation is studied and fast chiral separation within 1 min is obtained with flow rate of 0.4 mL/min. All these results show that the synthesized teicoplanin bonded sub-2 μm SPPs have great potential to achieve the enantioseparation of native amino acids with high resolution and rapid speed. PMID:26073115

  7. Multifunctional Nanobiocomposite of Poly[(butylene succinate)-co-adipate] and Clay.

    PubMed

    Al-Thabaiti, Shaeel A; Ray, Suprakas Sinha; Basahel, Sulaiman Nassir; Mokhtar, Mohamed

    2015-03-01

    The processing and characterization of multifunctional nanobiocomposite of biodegradable poly[(butylene succinate)-co-adipate] (PBSA) and organically modified synthetic fluorine mica (OSFM) are reported. The nanobiocomposite of PBSA with OSFM was prepared using melt- blending, and the structure and morphology of the nanocomposite were characterized using X-ray diffraction and transmission electron microscopy. The mechanical and material properties measurements showed the concurrent improvement in temperature dependence storage modulus, tensile properties, gas barrier, and thermal stability of neat PBSA after nanocomposite formation. Such improved inherent properties along with the environmentally-friendly feature are expected to widen the use of PBSA for short-term food-packaging applications. PMID:26413685

  8. Multifunctional Nanobiocomposite of Poly[(butylene succinate)-co-adipate] and Clay.

    PubMed

    Al-Thabaiti, Shaeel A; Ray, Suprakas Sinha; Basahel, Sulaiman Nassir; Mokhtar, Mohamed

    2015-03-01

    The processing and characterization of multifunctional nanobiocomposite of biodegradable poly[(butylene succinate)-co-adipate] (PBSA) and organically modified synthetic fluorine mica (OSFM) are reported. The nanobiocomposite of PBSA with OSFM was prepared using melt- blending, and the structure and morphology of the nanocomposite were characterized using X-ray diffraction and transmission electron microscopy. The mechanical and material properties measurements showed the concurrent improvement in temperature dependence storage modulus, tensile properties, gas barrier, and thermal stability of neat PBSA after nanocomposite formation. Such improved inherent properties along with the environmentally-friendly feature are expected to widen the use of PBSA for short-term food-packaging applications.

  9. Aerosol pH buffering in the southeastern US: Fine particles remain highly acidic despite large reductions in sulfate

    NASA Astrophysics Data System (ADS)

    Weber, R. J.; Guo, H.; Russell, A. G.; Nenes, A.

    2015-12-01

    pH is a critical aerosol property that impacts many atmospheric processes, including biogenic secondary organic aerosol formation, gas-particle phase partitioning, and mineral dust or redox metal mobilization. Particle pH has also been linked to adverse health effects. Using a comprehensive data set from the Southern Oxidant and Aerosol Study (SOAS) as the basis for thermodynamic modeling, we have shown that particles are currently highly acidic in the southeastern US, with pH between 0 and 2. Sulfate and ammonium are the main acid-base components that determine particle pH in this region, however they have different sources and their concentrations are changing. Over 15 years of network data show that sulfur dioxide emission reductions have resulted in a roughly 70 percent decrease in sulfate, whereas ammonia emissions, mainly link to agricultural activities, have been largely steady, as have gas phase ammonia concentrations. This has led to the view that particles are becoming more neutralized. However, sensitivity analysis, based on thermodynamic modeling, to changing sulfate concentrations indicates that particles have remained highly acidic over the past decade, despite the large reductions in sulfate. Furthermore, anticipated continued reductions of sulfate and relatively constant ammonia emissions into the future will not significantly change particle pH until sulfate drops to clean continental background levels. The result reshapes our expectation of future particle pH and implies that atmospheric processes and adverse health effects linked to particle acidity will remain unchanged for some time into the future.

  10. One-Pot Procedure for Recovery of Gallic Acid from Wastewater and Encapsulation within Protein Particles.

    PubMed

    Nourbakhsh, Himan; Madadlou, Ashkan; Emam-Djomeh, Zahra; Wang, Yi-Cheng; Gunasekaran, Sundaram; Mousavi, Mohammad E

    2016-02-24

    A whey protein isolate solution was heat-denatured and treated with the enzyme transglutaminase, which cross-linked ≈26% of the amino groups and increased the magnitude of the ζ-potential value. The protein solution was microemulsified, and then the resulting water-in-oil microemulsion was dispersed within a gallic acid-rich model wastewater. Gallic acid extraction by the outlined microemulsion liquid membrane (MLM) from the exterior aqueous phase (wastewater) and accumulation within the internal aqueous nanodroplets induced protein cold-set gelation and resulted in the formation of gallic acid-enveloping nanoparticles. Measurements with a strain-controlled rheometer indicated a progressive increase in the MLM viscosity during gallic acid recovery corresponding to particle formation. The mean hydrodynamic size of the nanoparticles made from the heat-denatured and preheated enzymatically cross-linked proteins was 137 and 122 nm, respectively. The enzymatic cross-linking of whey proteins led to a higher gallic acid recovery yield and increased the glass transition enthalpy and temperature. A similar impact on glass transition indices was observed by the gallic acid-induced nanoparticulation of proteins. Scanning electron microscopy showed the existence of numerous jammed/fused nanoparticles. It was suggested on the basis of the results of Fourier transform infrared spectroscopy that the in situ nanoparticulation of proteins shifted the C-N stretching and C-H bending peaks to higher wavenumbers. X-ray diffraction results proposed a decreased β-sheet content for proteins because of the acid-induced particulation. The nanoparticles made from the enzymatically cross-linked protein were more stable against the in vitro gastrointestinal digestion and retained almost 19% of the entrapped gallic acid after 300 min sequential gastric and intestinal digestions. PMID:26862880

  11. One-Pot Procedure for Recovery of Gallic Acid from Wastewater and Encapsulation within Protein Particles.

    PubMed

    Nourbakhsh, Himan; Madadlou, Ashkan; Emam-Djomeh, Zahra; Wang, Yi-Cheng; Gunasekaran, Sundaram; Mousavi, Mohammad E

    2016-02-24

    A whey protein isolate solution was heat-denatured and treated with the enzyme transglutaminase, which cross-linked ≈26% of the amino groups and increased the magnitude of the ζ-potential value. The protein solution was microemulsified, and then the resulting water-in-oil microemulsion was dispersed within a gallic acid-rich model wastewater. Gallic acid extraction by the outlined microemulsion liquid membrane (MLM) from the exterior aqueous phase (wastewater) and accumulation within the internal aqueous nanodroplets induced protein cold-set gelation and resulted in the formation of gallic acid-enveloping nanoparticles. Measurements with a strain-controlled rheometer indicated a progressive increase in the MLM viscosity during gallic acid recovery corresponding to particle formation. The mean hydrodynamic size of the nanoparticles made from the heat-denatured and preheated enzymatically cross-linked proteins was 137 and 122 nm, respectively. The enzymatic cross-linking of whey proteins led to a higher gallic acid recovery yield and increased the glass transition enthalpy and temperature. A similar impact on glass transition indices was observed by the gallic acid-induced nanoparticulation of proteins. Scanning electron microscopy showed the existence of numerous jammed/fused nanoparticles. It was suggested on the basis of the results of Fourier transform infrared spectroscopy that the in situ nanoparticulation of proteins shifted the C-N stretching and C-H bending peaks to higher wavenumbers. X-ray diffraction results proposed a decreased β-sheet content for proteins because of the acid-induced particulation. The nanoparticles made from the enzymatically cross-linked protein were more stable against the in vitro gastrointestinal digestion and retained almost 19% of the entrapped gallic acid after 300 min sequential gastric and intestinal digestions.

  12. 78 FR 20029 - Castor Oil, Polymer With Adipic Acid, Linoleic Acid, Oleic Acid and Ricinoleic Acid; Tolerance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... Findings In the Federal Register of February 15, 2013 (78 FR 11126) (FRL- 9378-4), EPA issued a document... composition the atomic elements carbon, hydrogen, and oxygen. 3. The polymer does not contain as an integral... molecular weight (MW) greater than or equal to 10,000 daltons. 7. The polymer does not contain...

  13. Sedimentation field-flow fractionation for characterization of citric acid-modified Hβ zeolite particles: Effect of particle dispersion and carrier composition.

    PubMed

    Dou, Haiyang; Bai, Guoyi; Ding, Liang; Li, Yueqiu; Lee, Seungho

    2015-11-27

    In this study, sedimentation field-flow fractionation (SdFFF) was, for the first time, applied for determination of size distribution of Hβ zeolite particles modified by citric acid (CA-Hβ). Effects of the particle dispersion and the carrier liquid composition (type of dispersing reagent (surfactant) and salt added in the carrier liquid, ionic strength, and pH) on SdFFF elution behavior of CA-Hβ zeolite particles were systematically investigated. Also the SdFFF separation efficiency of the particles was discussed in terms of the forces such as van der Waals, hydrophobic, and induced-dipole interactions. Results reveal that the type of salt and pH of the carrier liquid significantly affect the SdFFF separation efficiency of the zeolite particles. It was found that addition of a salt (NaN3) into the carrier liquid affects the characteristic of the SdFFF channel surface. It was found that the use of an acidic medium (pH 3.2) leads to a particle-channel interaction, while the use of a basic medium (pH 10.6) promotes an inter-particle hydrophobic interaction. Result from SdFFF was compared with those from scanning electron microscopy (SEM) and dynamic light scattering (DLS). It seems that, once the experimental conditions are optimized, SdFFF becomes a valuable tool for size characterization of the zeolite particles.

  14. Contribution of ants in modifying of soil acidity and particle size distribution

    NASA Astrophysics Data System (ADS)

    Morgun, Alexandra; Golichenkov, Maxim

    2015-04-01

    Being a natural body, formed by the influence of biota on the upper layers of the Earth's crust, the soil is the most striking example of biogenic-abiogenic interactions in the biosphere. Invertebrates (especially ants that build soil nests) are important agents that change soil properties in well developed terrestrial ecosystems. Impact of soil microorganisms on soil properties is particularly described in numerous literature and concerns mainly chemical properties and general indicators of soil biological activity. Influence of ants (as representatives of the soil mesofauna) mostly appears as mechanical movement of soil particles and aggregates, and chemical effects caused by concentration of organic matter within the ant's nest. The aim of this research was to evaluate the effect of ants on physical and chemical soil attributes such as particle size distribution and soil acidity. The samples were taken from aerial parts of Lasius niger nests, selected on different elements of the relief (summit position, slope, terrace and floodplain) in the Arkhangelsk region (north of the European part of Russia) and compared with the specimens of the upper horizons of the reference soils. Particle size distribution was determined by laser diffraction method using laser diffraction particle size analyzer «Analysette 22 comfort» (FRITSCH, Germany). The acidity (pH) was determined by potentiometry in water suspension. Particle size distribution of the samples from the nests is more variable as compared to the control samples. For example, the content of 5-10 μm fraction ranges from 9% to 12% in reference soils, while in the anthill samples the variation is from 8% to 15%. Similarly, for 50-250 μm fraction - it ranges from 15% to 18% in reference soils, whereas in anthills - from 6% to 29%. The results of particle size analysis showed that the reference sample on the terrace has silty loam texture and nests soil L. niger are medium loam. The reference soil on the slope is

  15. Particle concentration measurement of virus samples using electrospray differential mobility analysis and quantitative amino acid analysis.

    PubMed

    Cole, Kenneth D; Pease, Leonard F; Tsai, De-Hao; Singh, Tania; Lute, Scott; Brorson, Kurt A; Wang, Lili

    2009-07-24

    Virus reference materials are needed to develop and calibrate detection devices and instruments. We used electrospray differential mobility analysis (ES-DMA) and quantitative amino acid analysis (AAA) to determine the particle concentration of three small model viruses (bacteriophages MS2, PP7, and phiX174). The biological activity, purity, and aggregation of the virus samples were measured using plaque assays, denaturing gel electrophoresis, and size-exclusion chromatography. ES-DMA was developed to count the virus particles using gold nanoparticles as internal standards. ES-DMA additionally provides quantitative measurement of the size and extent of aggregation in the virus samples. Quantitative AAA was also used to determine the mass of the viral proteins in the pure virus samples. The samples were hydrolyzed and the masses of the well-recovered amino acids were used to calculate the equivalent concentration of viral particles in the samples. The concentration of the virus samples determined by ES-DMA was in good agreement with the concentration predicted by AAA for these purified samples. The advantages and limitations of ES-DMA and AAA to characterize virus reference materials are discussed.

  16. Photochemical reactions of divalent mercury with thioglycolic acid: formation of mercuric sulfide particles.

    PubMed

    Si, Lin; Ariya, Parisa A

    2015-01-01

    Mercury (Hg) is a key toxic global pollutant. Studies in aquatic environment have suggested that thiols could be important for mercury speciation. Thioglycolic acid has been detected in various natural water systems and used as a model compound to study the complicated interaction between mercury and polyfunctional dissolved organic matter (DOM). We herein presented the first evidence for mercury particle formation during kinetic and product studies on the photochemistry of divalent mercury (Hg(2+)) with thioglycolic acid at near environmental conditions. Mercuric sulfide (HgS) particles formed upon photolysis were identified by high-resolution transmission electron microscopy coupled with energy dispersive spectrometry and select area electron diffraction. Kinetic data were obtained using UV-visible spectrophotometry and cold vapour atomic fluorescent spectrometry. The apparent first-order reaction rate constant under our experimental conditions was calculated to be (2.3±0.4)×10(-5) s(-1) at T=296±2 K and pH 4.0. It was found that (89±3)% of the reactants undergo photoreduction to generate elemental mercury (Hg(0)). The effects of ionic strengths, pH and potassium ion were also investigated. The formation of HgS particles pointed to the possible involvement of heterogeneous processes. Our kinetic results indicated the importance of weak binding sites on DOM to Hg in photoreduction of Hg(2+) to Hg(0). The potential implications of our data on environmental mercury transformation were discussed.

  17. The effect of acid-base clustering and ions on the growth of atmospheric nano-particles

    NASA Astrophysics Data System (ADS)

    Lehtipalo, Katrianne; Rondo, Linda; Kontkanen, Jenni; Schobesberger, Siegfried; Jokinen, Tuija; Sarnela, Nina; Kürten, Andreas; Ehrhart, Sebastian; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Sipilä, Mikko; Yli-Juuti, Taina; Duplissy, Jonathan; Adamov, Alexey; Ahlm, Lars; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; Dommen, Josef; Downard, Andrew J.; Dunne, Eimear M.; Flagan, Richard C.; Guida, Roberto; Hakala, Jani; Hansel, Armin; Jud, Werner; Kangasluoma, Juha; Kerminen, Veli-Matti; Keskinen, Helmi; Kim, Jaeseok; Kirkby, Jasper; Kupc, Agnieszka; Kupiainen-Määttä, Oona; Laaksonen, Ari; Lawler, Michael J.; Leiminger, Markus; Mathot, Serge; Olenius, Tinja; Ortega, Ismael K.; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud; Rissanen, Matti P.; Ruuskanen, Taina; Santos, Filipe D.; Schallhart, Simon; Schnitzhofer, Ralf; Simon, Mario; Smith, James N.; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Tomé, António; Vaattovaara, Petri; Vehkamäki, Hanna; Vrtala, Aron E.; Wagner, Paul E.; Williamson, Christina; Wimmer, Daniela; Winkler, Paul M.; Virtanen, Annele; Donahue, Neil M.; Carslaw, Kenneth S.; Baltensperger, Urs; Riipinen, Ilona; Curtius, Joachim; Worsnop, Douglas R.; Kulmala, Markku

    2016-05-01

    The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted for in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. We bring these observations into a coherent framework and discuss their significance in the atmosphere.

  18. Particle growth by acid-catalyzed heterogeneous reactions of organic carbonyls on preexisting aerosols.

    PubMed

    Jang, Myoseon; Carroll, Brian; Chandramouli, Bharadwaj; Kamens, Richard M

    2003-09-01

    Aerosol growth by the heterogeneous reactions of different aliphatic and alpha,beta-unsaturated carbonyls in the presence/absence of acidified seed aerosols was studied in a 2 m long flow reactor (2.5 cm i.d.) and a 0.5-m3 Teflon film bag under darkness. For the flow reactor experiments, 2,4-hexadienal, 5-methyl-3-hexen-2-one, 2-cyclohexenone, 3-methyl-2-cyclopentenone, 3-methyl-2-cyclohexenone, and octanal were studied. The carbonyls were selected based on their reactivity for acid-catalyzed reactions, their proton affinity, and their similarity to the ring-opening products from the atmospheric oxidation of aromatics. To facilitate acid-catalyzed heterogeneous hemiacetal/acetal formation, glycerol was injected along with inorganic seed aerosols into the flow reactor system. Carbonyl heterogeneous reactions were accelerated in the presence of acid catalysts (H2SO4), leading to higher aerosol yields than in their absence. Aldehydes were more reactive than ketones for acid-catalyzed reactions. The conjugated functionality also resulted in higher organic aerosol yieldsthan saturated aliphatic carbonyls because conjugation with the olefinic bond increases the basicity of the carbonyl leading to increased stability of the protonated carbonyl. Aerosol population was measured from a series of sampling ports along the length of the flow reactor using a scanning mobility particle sizer. Fourier transform infrared spectrometry of either an impacted liquid aerosol layer or direct reaction of carbonyls as a thin liquid layer on a zinc selenide FTIR disk was employed to demonstrate the direct transformation of chemical functional groups via the acid-catalyzed reactions. These results strongly indicate that atmospheric multifunctional organic carbonyls, which are created by atmospheric photooxidation reactions, can contribute significantly to secondary organic aerosol formation through acid-catalyzed heterogeneous reactions. Exploratory studies in 25- and 190-m3 outdoor chambers

  19. Correlation of Sulfuric Acid Hydrate Abundance with Charged Particle Flux at the Surface of Europa

    NASA Astrophysics Data System (ADS)

    Dalton, James B.; Paranicas, C. P.; Cassidy, T. A.; Shirley, J. H.

    2010-10-01

    The trailing hemisphere of Jupiter's moon Europa is bombarded by charged particles trapped within Jupiter's magnetosphere. Sulfur ion implantation and impacting energetic electrons strongly affect the surface chemistry of Europa. Understanding these processes is important for disentangling the extrinsic and intrinsic components of Europa's surface chemistry. In the sulfur cycle model of Carlson et al. (Science 286, 97, 1999), hydrated sulfuric acid represents the dominant reaction product of radiolytic surface modification processes on Europa. In recent compositional investigations employing linear mixture modeling, Dalton et al. (LPSC XV, #2511, 2009) and Shirley et al. (Icarus, in press, 2010) document a well-defined gradient of hydrated sulfuric acid abundance for a study area spanning the leading side - trailing side boundary in Argadnel Regio. Sulfuric acid hydrate abundance in this region increases toward the trailing side apex. Here we compare the derived sulfuric acid hydrate abundances at 41 locations on Europa's surface with independent model results describing 1) the sulfur ion flux (Hendrix et al., 2010, in preparation), and 2) the energetic electron flux, at the same locations. We improve upon the prior calculation of electron energy into the surface of Paranicas et al. (2009, in Europa, U. Arizona, p529; Pappalardo, McKinnon, & Khurana eds.) by incorporating a realistic pitch angle dependence of the distribution. While the sulfur ion implantation and electron energy deposition model distributions differ in important details, both show trailing side gradients similar to that found for the sulfuric acid hydrate. Correlation coefficients exceed 0.9 in comparisons of each of these models with the sulfuric acid hydrate distribution. Our results support models in which the electron energy flux drives reactions that utilize implanted sulfur to produce sulfuric acid hydrate. This work was performed at the California Institute of Technology-Jet Propulsion

  20. Sample preparation for measurement of plasma mycophenolic acid concentrations using chromatographically functionalized magnetic micro-particles.

    PubMed

    König, Katrin; Vogeser, Michael

    2012-01-01

    Utilizing chromatographically modified magnetic micro-particles is an innovative principle of sample preparation for quantitative analysis of small molecules in complex biomedical samples by liquid chromatography tandem mass spectrometry. Since no vacuum or pressure has to be applied-in contrast to cartridge based solid phase extraction protocols-the principle's main characteristics are potentially straightforward automation and a high extraction performance (in terms of µg of extraction material per µL of sample). Following first descriptions of the approach, this article reports, the validation of a magnetic particle-based, analytical method for the quantification of the immunosuppressant mycophenolic acid in plasma. This sample preparation technology has shown a good performance for this clinically relevant analyte. As a result, we conclude that further work towards the implementation of this technology in a multi- analyte approach on robotic systems, aiming towards a fully automated process, is justified. PMID:23221116

  1. Ice Nucleation of Bare and Sulfuric Acid-coated Mineral Dust Particles and Implication for Cloud Properties

    SciTech Connect

    Kulkarni, Gourihar R.; Sanders, Cassandra N.; Zhang, Kai; Liu, Xiaohong; Zhao, Chun

    2014-08-27

    Ice nucleation properties of different dust species coated with soluble material are not well understood. We determined the ice nucleation ability of bare and sulfuric acid coated mineral dust particles as a function of temperature (-25 to -35 deg C) and relative humidity with respect to water (RHw). Five different mineral dust species: Arizona test dust (ATD), illite, montmorillonite, quartz and kaolinite were dry dispersed and size-selected at 150 nm and exposed to sulfuric acid vapors in the coating apparatus. The condensed sulfuric acid soluble mass fraction per particle was estimated from the cloud condensation nuclei activated fraction measurements. The fraction of dust particles nucleating ice at various temperatures and RHw was determined using a compact ice chamber. In water-subsaturated conditions, compared to bare dust particles, we found that only coated ATD particles showed suppression of ice nucleation ability while other four dust species did not showed the effect of coating on the fraction of particles nucleating ice. The results suggest that interactions between the dust surface and sulfuric acid vapor are important, such that interactions may or may not modify the surface via chemical reactions with sulfuric acid. At water-supersaturated conditions we did not observed the effect of coating, i.e. the bare and coated dust particles had similar ice nucleation behavior.

  2. Simplified mechanism for new particle formation from methanesulfonic acid, amines, and water via experiments and ab initio calculations

    PubMed Central

    Dawson, Matthew L.; Varner, Mychel E.; Perraud, Véronique; Ezell, Michael J.; Gerber, R. Benny; Finlayson-Pitts, Barbara J.

    2012-01-01

    Airborne particles affect human health and significantly influence visibility and climate. A major fraction of these particles result from the reactions of gaseous precursors to generate low-volatility products such as sulfuric acid and high-molecular weight organics that nucleate to form new particles. Ammonia and, more recently, amines, both of which are ubiquitous in the environment, have also been recognized as important contributors. However, accurately predicting new particle formation in both laboratory systems and in air has been problematic. During the oxidation of organosulfur compounds, gas-phase methanesulfonic acid is formed simultaneously with sulfuric acid, and both are found in particles in coastal regions as well as inland. We show here that: (i) Amines form particles on reaction with methanesulfonic acid, (ii) water vapor is required, and (iii) particle formation can be quantitatively reproduced by a semiempirical kinetics model supported by insights from quantum chemical calculations of likely intermediate clusters. Such an approach may be more broadly applicable in models of outdoor, indoor, and industrial settings where particles are formed, and where accurate modeling is essential for predicting their impact on health, visibility, and climate. PMID:23090988

  3. Why sulfuric acid forms particles so extremely well, and how organics might still compete

    NASA Astrophysics Data System (ADS)

    Kurten, T.; Ehn, M.; Kupiainen, O.; Olenius, T.; Rissanen, M.; Thornton, J. A.; Nielsen, L.; Jørgensen, S.; Ortega Colomer, I. K.; Kjaergaard, H. G.; Vehkamäki, H.

    2013-12-01

    It is a well-known result in aerosol science that the single most important molecule for the first steps of new-particle formation in our atmosphere is sulfuric acid, H2SO4. From a chemical perspective, this seems somewhat counterintuitive: the atmosphere contains thousands of different organic compounds, many of which can potentially form oxidation products with even lower volatility than H2SO4. The unique role of sulfuric acid is due to its formation kinetics. The conversion of sulfur dioxide, SO2 to H2SO4 requires only a single oxidant molecule (e.g. OH), as subsequent steps are extremely rapid. Still, the saturation vapor pressure of H2SO4 is over 108 times lower than that of SO2. In contrast, the oxidation reactions of organic molecules typically lower their saturation vapor pressure by only a factor of 10-1000 per oxidation step. Therefore, organic compounds are usually lost to pre-existing aerosol surfaces before they have undergone sufficiently many oxidation reactions to nucleate on their own. The presence of strong nitrogen-containing base molecules such as amines enhances the particle-forming advantages of sulfuric acid even further. Quantum chemical calculations indicate that the evaporation rate of sulfuric acid from key clusters containing two acid molecules may decrease by a factor of 108 in the presence of ppt-level concentrations of amines, implying a total decrease of up to 1016 in the effective vapor pressure going from SO2 to H2SO4. In some circumstances, this decrease causes the energy barrier for new-particle formation to disappear: the process is no longer nucleation, and some common applications of e.g. the nucleation theorem cease to apply. Cluster kinetic models combined with first-principles evaporation rates appear to describe this sulfuric acid - base clustering reasonably well, and result in cluster formation rates close to those measured at the CLOUD experiment in CERN. There may nevertheless exist exceptions to the general rule that

  4. The influence of pressure on the photoluminescence properties of a terbium-adipate framework

    SciTech Connect

    Spencer, Elinor C.; Zhao, Jing; Ross, Nancy L.; Andrews, Michael B.; Surbella, Robert G.; Cahill, Christopher L.

    2013-06-15

    The influence of pressure (over the 0–4.7 GPa range) on the photoluminescence emissions and crystal structure of the known 3D terbium-adipate metal-organic framework material Tb-GWMOF6 has been evaluated by high-pressure single-crystal X-ray diffraction and spectroscopic techniques. The results from this study show that this complex lanthanide framework structure undergoes three phase transitions within the 0–4 GPa pressure range that involve alterations in the number of symmetry independent Tb{sup 3+} ion sites within the crystal lattice. These pressure induced modifications to the structure of Tb-GWMOF6 lead to pronounced changes in the profiles of the {sup 5}D{sub 4}→{sup 7}F{sub 5} emission spectra of this complex. - Graphical abstract: The influence of pressure on the structure and photoluminescence emissions of a 3D terbium-adipate framework. - Highlights: • High-pressure luminescence spectra for a Tb framework were collected. • High-pressure single-crystal XRD experiments were conducted with the Tb Framework. • The framework undergoes two pressure-induced phase transitions. • The three phases of the material show different photoluminescence behaviour.

  5. Acetylated adipate of retrograded starch as RS 3/4 type resistant starch.

    PubMed

    Kapelko-Żeberska, M; Zięba, T; Spychaj, R; Gryszkin, A

    2015-12-01

    This study was aimed at producing acetylated adipate of retrograded starch (ADA-R) with various degrees of substitution with functional groups and at determining the effect of esterification degree on resistance and pasting characteristics of the produced preparations. Paste was prepared from native potato starch, and afterwards frozen and defrosted. After drying and disintegration, the paste was acetylated and crosslinked using various doses of reagents. An increase in the total degree of esterification of the produced ADA-R-preparation caused an increase in its resistance to the action of amyloglucosidase. Viscosity of the paste produced from ADA-R-preparation in a wide range of acetylation degrees was increasing along with increasing crosslinking of starch. The study demonstrated that acetylated adipate of retrograded starch may be classified as a preparation of RS 3/4 type resistant starch (retrograded starch/chemically-modified starch) with good texture-forming properties. The conducted modification offers the possibility of modeling the level of resistance of the produced preparation.

  6. Acetylated adipate of retrograded starch as RS 3/4 type resistant starch.

    PubMed

    Kapelko-Żeberska, M; Zięba, T; Spychaj, R; Gryszkin, A

    2015-12-01

    This study was aimed at producing acetylated adipate of retrograded starch (ADA-R) with various degrees of substitution with functional groups and at determining the effect of esterification degree on resistance and pasting characteristics of the produced preparations. Paste was prepared from native potato starch, and afterwards frozen and defrosted. After drying and disintegration, the paste was acetylated and crosslinked using various doses of reagents. An increase in the total degree of esterification of the produced ADA-R-preparation caused an increase in its resistance to the action of amyloglucosidase. Viscosity of the paste produced from ADA-R-preparation in a wide range of acetylation degrees was increasing along with increasing crosslinking of starch. The study demonstrated that acetylated adipate of retrograded starch may be classified as a preparation of RS 3/4 type resistant starch (retrograded starch/chemically-modified starch) with good texture-forming properties. The conducted modification offers the possibility of modeling the level of resistance of the produced preparation. PMID:26041205

  7. Regulation of the arachidonic acid mobilization in macrophages by combustion-derived particles

    PubMed Central

    2011-01-01

    Background Acute exposure to elevated levels of environmental particulate matter (PM) is associated with increasing morbidity and mortality rates. These adverse health effects, e.g. culminating in respiratory and cardiovascular diseases, have been demonstrated by a multitude of epidemiological studies. However, the underlying mechanisms relevant for toxicity are not completely understood. Especially the role of particle-induced reactive oxygen species (ROS), oxidative stress and inflammatory responses is of particular interest. In this in vitro study we examined the influence of particle-generated ROS on signalling pathways leading to activation of the arachidonic acid (AA) cascade. Incinerator fly ash particles (MAF02) were used as a model for real-life combustion-derived particulate matter. As macrophages, besides epithelial cells, are the major targets of particle actions in the lung murine RAW264.7 macrophages and primary human macrophages were investigated. Results The interaction of fly ash particles with macrophages induced both the generation of ROS and as part of the cellular inflammatory responses a dose- and time-dependent increase of free AA, prostaglandin E2/thromboxane B2 (PGE2/TXB2), and 8-isoprostane, a non-enzymatically formed oxidation product of AA. Additionally, increased phosphorylation of the mitogen-activated protein kinases (MAPK) JNK1/2, p38 and ERK1/2 was observed, the latter of which was shown to be involved in MAF02-generated AA mobilization and phosphorylation of the cytosolic phospolipase A2. Using specific inhibitors for the different phospolipase A2 isoforms the MAF02-induced AA liberation was shown to be dependent on the cytosolic phospholipase A2, but not on the secretory and calcium-independent phospholipase A2. The initiation of the AA pathway due to MAF02 particle exposure was demonstrated to depend on the formation of ROS since the presence of the antioxidant N-acetyl-cysteine (NAC) prevented the MAF02-mediated enhancement of

  8. Effect of Wheat Dietary Fiber Particle Size during Digestion In Vitro on Bile Acid, Faecal Bacteria and Short-Chain Fatty Acid Content.

    PubMed

    Dziedzic, Krzysztof; Szwengiel, Artur; Górecka, Danuta; Gujska, Elżbieta; Kaczkowska, Joanna; Drożdżyńska, Agnieszka; Walkowiak, Jarosław

    2016-06-01

    The influence of bile acid concentration on the growth of Bifidobacterium spp. and Lactobacillus spp. bacteria was demonstrated. Exposing these bacteria to the environment containing bile acid salts, and very poor in nutrients, leads to the disappearance of these microorganisms due to the toxic effect of bile acids. A multidimensional analysis of data in the form of principal component analysis indicated that lactic acid bacteria bind bile acids and show antagonistic effect on E. coli spp. bacteria. The growth in E. coli spp. population was accompanied by a decline in the population of Bifidobacterium spp. and Lactobacillus spp. with a simultaneous reduction in the concentration of bile acids. This is direct proof of acid binding ability of the tested lactic acid bacteria with respect to cholic acid, lithocholic acid and deoxycholic acid. This research demonstrated that the degree of fineness of wheat dietary fibre does not affect the sorption of bile acids and growth of some bacteria species; however, it has an impact on the profile of synthesized short-chained fatty acids. During the digestion of a very fine wheat fibre fraction (WF 90), an increase in the concentration of propionic and butyric acids, as compared with the wheat fiber fraction of larger particles - WF 500, was observed. Our study suggested that wheat fibre did not affect faecal bacteria growth, however, we observed binding of bile acids by Bifidobacterium spp. and Lactobacillus spp.

  9. Effect of Wheat Dietary Fiber Particle Size during Digestion In Vitro on Bile Acid, Faecal Bacteria and Short-Chain Fatty Acid Content.

    PubMed

    Dziedzic, Krzysztof; Szwengiel, Artur; Górecka, Danuta; Gujska, Elżbieta; Kaczkowska, Joanna; Drożdżyńska, Agnieszka; Walkowiak, Jarosław

    2016-06-01

    The influence of bile acid concentration on the growth of Bifidobacterium spp. and Lactobacillus spp. bacteria was demonstrated. Exposing these bacteria to the environment containing bile acid salts, and very poor in nutrients, leads to the disappearance of these microorganisms due to the toxic effect of bile acids. A multidimensional analysis of data in the form of principal component analysis indicated that lactic acid bacteria bind bile acids and show antagonistic effect on E. coli spp. bacteria. The growth in E. coli spp. population was accompanied by a decline in the population of Bifidobacterium spp. and Lactobacillus spp. with a simultaneous reduction in the concentration of bile acids. This is direct proof of acid binding ability of the tested lactic acid bacteria with respect to cholic acid, lithocholic acid and deoxycholic acid. This research demonstrated that the degree of fineness of wheat dietary fibre does not affect the sorption of bile acids and growth of some bacteria species; however, it has an impact on the profile of synthesized short-chained fatty acids. During the digestion of a very fine wheat fibre fraction (WF 90), an increase in the concentration of propionic and butyric acids, as compared with the wheat fiber fraction of larger particles - WF 500, was observed. Our study suggested that wheat fibre did not affect faecal bacteria growth, however, we observed binding of bile acids by Bifidobacterium spp. and Lactobacillus spp. PMID:26924312

  10. Seasonal and spatial changes of free and bound organic acids in total suspended particles in Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Ma, Shexia; Peng, Ping'an; Song, Jianzhong; Bi, Xinhui; Zhao, Jinping; He, Lulu; Sheng, Guoying; Fu, Jiamo

    2010-12-01

    The concentrations and compositions of free and bound organic acids in total suspended particles from typical urban, suburban and forest park sites of Guangzhou were determined in this study. The free form of organic acids (solvent extractable) in aerosols in Guangzhou varied with site and season. The suburban samples contained the highest contents of alkanoic, alkenoic and dicarboxylic acids. These findings were consistent with a higher supply of hydrocarbons and NOx in the suburban area. However, concentrations of aromatic acids were similar in the urban, suburban and forest park sites. Generally, winter season samples of the acids from anthropogenic sources contained more organic acids than summer season samples due to stronger removal by wet deposition in the summer. For the acids from botanic sources, the summer season samples were higher. In addition to the free acids, bound acids (solvent non-extractable) mainly formed by esterification of free acids were also found in the samples. In general, bound acids were higher than free acids. Esterification is mainly controlled by the pKa of organic acids and the atmospheric pH value. This explains why aromatic and dicarboxylic acids occur mainly as bound forms and why the samples from urban sites contained high levels of bound acids as the pH of rain water can reach 4.53. Concentrations of alkanoic and alkenoic acids in the aerosols of Guangzhou were much higher than those in the other areas studied.

  11. Kinetics of Acid-Catalyzed Dehydration of Cyclic Hemiacetals in Organic Aerosol Particles in Equilibrium with Nitric Acid Vapor.

    PubMed

    Ranney, April P; Ziemann, Paul J

    2016-04-28

    Previous studies have shown that 1,4-hydroxycarbonyls, which are often major products of the atmospheric oxidation of hydrocarbons, can undergo acid-catalyzed cyclization and dehydration in aerosol particles to form highly reactive unsaturated dihydrofurans. In this study the kinetics of dehydration of cyclic hemiacetals, the rate-limiting step in this process, was investigated in a series of environmental chamber experiments in which secondary organic aerosol (SOA) containing cyclic hemiacetals was formed from the reaction of n-pentadecane with OH radicals in dry air in the presence of HNO3. A particle beam mass spectrometer was used to monitor the formation and dehydration of cyclic hemiacetals in real time, and SOA and HNO3 were quantified in filter samples by gravimetric analysis and ion chromatography. Measured dehydration rate constants increased linearly with increasing concentration of HNO3 in the gas phase and in SOA, corresponding to catalytic rate constants of 0.27 h(-1) ppmv(-1) and 7.0 h(-1) M(-1), respectively. The measured Henry's law constant for partitioning of HNO3 into SOA was 3.7 × 10(4) M atm(-1), ∼25% of the value for dissolution into water, and the acid dissociation constant was estimated to be <8 × 10(-4), at least a factor of 10(4) less than that for HNO3 in water. The results indicate that HNO3 was only weakly dissociated in the SOA and that dehydration of cyclic hemiacetals was catalyzed by molecular HNO3 rather than by H(+). The Henry's law constant and kinetics relationships measured here can be used to improve mechanisms and models of SOA formation from the oxidation of hydrocarbons in dry air in the presence of NOx, which are conditions commonly used in laboratory studies. The fate of cyclic hemiacetals in the atmosphere, where the effects of higher relative humidity, organic/aqueous phase separation, and acid catalysis by molecular H2SO4 and/or H(+) are likely to be important, is discussed. PMID:27043733

  12. Kinetics of Acid-Catalyzed Dehydration of Cyclic Hemiacetals in Organic Aerosol Particles in Equilibrium with Nitric Acid Vapor.

    PubMed

    Ranney, April P; Ziemann, Paul J

    2016-04-28

    Previous studies have shown that 1,4-hydroxycarbonyls, which are often major products of the atmospheric oxidation of hydrocarbons, can undergo acid-catalyzed cyclization and dehydration in aerosol particles to form highly reactive unsaturated dihydrofurans. In this study the kinetics of dehydration of cyclic hemiacetals, the rate-limiting step in this process, was investigated in a series of environmental chamber experiments in which secondary organic aerosol (SOA) containing cyclic hemiacetals was formed from the reaction of n-pentadecane with OH radicals in dry air in the presence of HNO3. A particle beam mass spectrometer was used to monitor the formation and dehydration of cyclic hemiacetals in real time, and SOA and HNO3 were quantified in filter samples by gravimetric analysis and ion chromatography. Measured dehydration rate constants increased linearly with increasing concentration of HNO3 in the gas phase and in SOA, corresponding to catalytic rate constants of 0.27 h(-1) ppmv(-1) and 7.0 h(-1) M(-1), respectively. The measured Henry's law constant for partitioning of HNO3 into SOA was 3.7 × 10(4) M atm(-1), ∼25% of the value for dissolution into water, and the acid dissociation constant was estimated to be <8 × 10(-4), at least a factor of 10(4) less than that for HNO3 in water. The results indicate that HNO3 was only weakly dissociated in the SOA and that dehydration of cyclic hemiacetals was catalyzed by molecular HNO3 rather than by H(+). The Henry's law constant and kinetics relationships measured here can be used to improve mechanisms and models of SOA formation from the oxidation of hydrocarbons in dry air in the presence of NOx, which are conditions commonly used in laboratory studies. The fate of cyclic hemiacetals in the atmosphere, where the effects of higher relative humidity, organic/aqueous phase separation, and acid catalysis by molecular H2SO4 and/or H(+) are likely to be important, is discussed.

  13. Hygroscopic properties of internally mixed particles composed of NaCl and water-soluble organic acids.

    PubMed

    Ghorai, Suman; Wang, Bingbing; Tivanski, Alexei; Laskin, Alexander

    2014-02-18

    Atmospheric aging of naturally emitted marine aerosol often leads to formation of internally mixed particles composed of sea salts and water-soluble organic compounds of anthropogenic origin. Mixing of sea salt and organic components has profound effects on the evolving chemical composition and hygroscopic properties of the resulted particles, which are poorly understood. Here, we have studied chemical composition and hygroscopic properties of laboratory generated NaCl particles mixed with malonic acid (MA) and glutaric acid (GA) at different molar ratios using micro-FTIR spectroscopy, atomic force microscopy, and X-ray elemental microanalysis. Hygroscopic properties of internally mixed NaCl and organic acid particles were distinctly different from pure components and varied significantly with the type and amount of organic compound present. Experimental results were in a good agreement with the AIM modeling calculations of gas/liquid/solid partitioning in studied systems. X-ray elemental microanalysis of particles showed that Cl/Na ratio decreased with increasing organic acid component in the particles with MA yielding lower ratios relative to GA. We attribute the depletion of chloride to the formation of sodium malonate and sodium glutarate salts resulted by HCl evaporation from dehydrating particles. PMID:24437520

  14. Hygroscopic Properties of Internally Mixed Particles Composed of NaCl and Water-Soluble Organic Acids

    SciTech Connect

    Ghorai, Suman; Wang, Bingbing; Tivanski, Alexei V.; Laskin, Alexander

    2014-02-18

    Atmospheric aging of naturally emitted marine aerosol often leads to formation of internally mixed particles composed of sea salts and water soluble organic compounds of anthropogenic origin. Mixing of sea salt and organic components has profound effects on the evolving chemical composition and hygroscopic properties of the resulted particles, which are poorly understood. Here, we have studied chemical composition and hygroscopic properties of laboratory generated NaCl particles mixed with malonic acid (MA) and glutaric acid (GA) at different molar ratios using micro-FTIR spectroscopy and X-ray elemental microanalysis.Hygroscopic properties of inte rnally mixed NaCl and organic acid particles were distinctly different from pure components and varied significantly with the type and amount of organic compound present. Experimental results were in a good agreement with the AIM modeling calculations of gas/liquid/solid partitioning in studied systems. X-ray elemental microanalysis of particles showed that Cl/Na ratio decreased with increasing organic acid component in the particles with MA yielding lower ratios relative to GA. We attribute the depletion of chloride to the formation of Na-malonate and Na-glutarate salts resulted by HCl evaporation from dehydrating particles.

  15. A critical evaluation of proxy methods used to estimate the acidity of atmospheric particles

    NASA Astrophysics Data System (ADS)

    Hennigan, C. J.; Izumi, J.; Sullivan, A. P.; Weber, R. J.; Nenes, A.

    2015-03-01

    Given significant challenges with available measurements of aerosol acidity, proxy methods are frequently used to estimate the acidity of atmospheric particles. In this study, four of the most common aerosol acidity proxies are evaluated and compared: (1) the ion balance method, (2) the molar ratio method, (3) thermodynamic equilibrium models, and (4) the phase partitioning of ammonia. All methods are evaluated against predictions of thermodynamic models and against direct observations of aerosol-gas equilibrium partitioning acquired in Mexico City during the Megacity Initiative: Local and Global Research Objectives (MILAGRO) study. The ion balance and molar ratio methods assume that any deficit in inorganic cations relative to anions is due to the presence of H+ and that a higher H+ loading and lower cation / anion ratio both correspond to increasingly acidic particles (i.e., lower pH). Based on the MILAGRO measurements, no correlation is observed between H+ levels inferred with the ion balance and aerosol pH predicted by the thermodynamic models and NH3-NH4+ partitioning. Similarly, no relationship is observed between the cation / anion molar ratio and predicted aerosol pH. Using only measured aerosol chemical composition as inputs without any constraint for the gas phase, the E-AIM (Extended Aerosol Inorganics Model) and ISORROPIA-II thermodynamic equilibrium models tend to predict aerosol pH levels that are inconsistent with the observed NH3-NH4+ partitioning. The modeled pH values from both E-AIM and ISORROPIA-II run with gas + aerosol inputs agreed well with the aerosol pH predicted by the phase partitioning of ammonia. It appears that (1) thermodynamic models constrained by gas + aerosol measurements and (2) the phase partitioning of ammonia provide the best available predictions of aerosol pH. Furthermore, neither the ion balance nor the molar ratio can be used as surrogates for aerosol pH, and previously published studies with conclusions based

  16. Preliminary study on preparation of BCNO phosphor particles using citric acid as carbon source

    SciTech Connect

    Nuryadin, Bebeh W.; Pratiwi, Tripuspita; Faryuni, Irfana D.; Iskandar, Ferry Abdullah, Mikrajuddin; Khairurrijal; Ogi, Takashi; Okuyama, Kikuo

    2015-04-16

    A citric acid was used as a carbon source in the preparation of boron carbon oxy-nitride (BCNO) phosphor particles by a facile process. The preparation process was conducted at relatively low temperature 750 °C and at ambient pressure. The prepared BCNO phosphors showed a high photoluminescence (PL) performance at peak emission wavelength of 470 nm under excitation by a UV light 365 nm. The effects of carbon/boron and nitrogen/boron molar ratios on the PL properties were also investigated. The result showed that the emission spectra with a wavelength peak ranging from 444 nm to 496 nm can be obtained by varying carbon/boron ratios from 0.1 to 0.9. In addition, the observations showed that the BCNO phosphor material has two excitation peaks located at the 365 nm (UV) and 420 nm (blue). Based on these observations, we believe that the citric acid derived BCNO phosphor particles can be a promising inexpensive material for phosphor conversion-based white LED.

  17. Particle size distributions in Arctic polar stratospheric clouds, growth and freezing of sulfuric acid droplets, and implications for cloud formation

    NASA Technical Reports Server (NTRS)

    Dye, James E.; Baumgardner, D.; Gandrud, B. W.; Kawa, S. R.; Kelly, K. K.; Loewenstein, M.; Ferry, G. V.; Chan, K. R.; Gary, B. L.

    1992-01-01

    The paper uses particle size and volume measurements obtained with the forward scattering spectrometer probe model 300 during January and February 1989 in the Airborne Arctic Stratospheric Experiment to investigate processes important in the formation and growth of polar stratospheric cloud (PSC) particles. It is suggested on the basis of comparisons of the observations with expected sulfuric acid droplet deliquescence that in the Arctic a major fraction of the sulfuric acid droplets remain liquid until temperatures at least as low as 193 K. It is proposed that homogeneous freezing of the sulfuric acid droplets might occur near 190 K and might play a role in the formation of PSCs.

  18. Pickering Emulsion Gels Prepared by Hydrogen-Bonded Zein/Tannic Acid Complex Colloidal Particles.

    PubMed

    Zou, Yuan; Guo, Jian; Yin, Shou-Wei; Wang, Jin-Mei; Yang, Xiao-Quan

    2015-08-26

    Food-grade colloidal particles and complexes, which are formed via modulation of the noncovalent interactions between macromolecules and natural small molecules, can be developed as novel functional ingredients in a safe and sustainable way. For this study was prepared a novel zein/tannic acid (TA) complex colloidal particle (ZTP) based on the hydrogen-bonding interaction between zein and TA in aqueous ethanol solution by using a simple antisolvent approach. Pickering emulsion gels with high oil volume fraction (φ(oil) > 50%) were successfully fabricated via one-step homogenization. Circular dichroism (CD) and small-angle X-ray scattering (SAXS) measurements, which were used to characterize the structure of zein/TA complexes in ethanol solution, clearly showed that TA binding generated a conformational change of zein without altering their supramolecular structure at pH 5.0 and intermediate TA concentrations. Consequently, the resultant ZTP had tuned near neutral wettability (θ(ow) ∼ 86°) and enhanced interfacial reactivity, but without significantly decreased surface charge. These allowed the ZTP to stabilize the oil droplets and further triggered cross-linking to form a continuous network among and around the oil droplets and protein particles, leading to the formation of stable Pickering emulsion gels. Layer-by-layer (LbL) interfacial architecture on the oil-water surface of the droplets was observed, which implied a possibility to fabricate hierarchical interface microstructure via modulation of the noncovalent interaction between hydrophobic protein and natural polyphenol. PMID:26226053

  19. Pickering Emulsion Gels Prepared by Hydrogen-Bonded Zein/Tannic Acid Complex Colloidal Particles.

    PubMed

    Zou, Yuan; Guo, Jian; Yin, Shou-Wei; Wang, Jin-Mei; Yang, Xiao-Quan

    2015-08-26

    Food-grade colloidal particles and complexes, which are formed via modulation of the noncovalent interactions between macromolecules and natural small molecules, can be developed as novel functional ingredients in a safe and sustainable way. For this study was prepared a novel zein/tannic acid (TA) complex colloidal particle (ZTP) based on the hydrogen-bonding interaction between zein and TA in aqueous ethanol solution by using a simple antisolvent approach. Pickering emulsion gels with high oil volume fraction (φ(oil) > 50%) were successfully fabricated via one-step homogenization. Circular dichroism (CD) and small-angle X-ray scattering (SAXS) measurements, which were used to characterize the structure of zein/TA complexes in ethanol solution, clearly showed that TA binding generated a conformational change of zein without altering their supramolecular structure at pH 5.0 and intermediate TA concentrations. Consequently, the resultant ZTP had tuned near neutral wettability (θ(ow) ∼ 86°) and enhanced interfacial reactivity, but without significantly decreased surface charge. These allowed the ZTP to stabilize the oil droplets and further triggered cross-linking to form a continuous network among and around the oil droplets and protein particles, leading to the formation of stable Pickering emulsion gels. Layer-by-layer (LbL) interfacial architecture on the oil-water surface of the droplets was observed, which implied a possibility to fabricate hierarchical interface microstructure via modulation of the noncovalent interaction between hydrophobic protein and natural polyphenol.

  20. Understanding mild acid pretreatment of sugarcane bagasse through particle scale modeling.

    PubMed

    Greenwood, Ava A; Farrell, Troy W; O'Hara, Ian M

    2013-12-01

    Sugarcane bagasse is an abundant and sustainable resource, generated as a by-product of sugarcane milling. The cellulosic material within bagasse can be broken down into glucose molecules and fermented to produce ethanol, making it a promising feedstock for biofuel production. Mild acid pretreatment hydrolyses the hemicellulosic component of biomass, thus allowing enzymes greater access to the cellulosic substrate during saccharification. A particle-scale mathematical model describing the mild acid pretreatment of sugarcane bagasse has been developed, using a volume averaged framework. Discrete population-balance equations are used to characterise the polymer degradation kinetics, and diffusive effects account for mass transport within the cell wall of the bagasse. As the fibrous material hydrolyses over time, variations in the porosity of the cell wall and the downstream effects on the reaction kinetics are accounted for using conservation of volume arguments. Non-dimensionalization of the model equations reduces the number of parameters in the system to a set of four dimensionless ratios that compare the timescales of different reaction and diffusion events. Theoretical yield curves are compared to macroscopic experimental observations from the literature and inferences are made as to constraints on these "unknown" parameters. These results enable connections to be made between experimental data and the underlying thermodynamics of acid pretreatment. Consequently, the results suggest that data-fitting techniques used to obtain kinetic parameters should be carefully applied, with prudent consideration given to the chemical and physiological processes being modeled.

  1. Effect of particle size reduction, hydrothermal and fermentation treatments on phytic acid content and some physicochemical properties of wheat bran.

    PubMed

    Majzoobi, Mahsa; Pashangeh, Safoora; Farahnaky, Asgar; Eskandari, Mohammad Hadi; Jamalian, Jalal

    2014-10-01

    With the aim of reducing phytic acid content of wheat bran, particle size reduction (from 1,200 to 90 μm), hydrothermal (wet steeping in acetate buffer at pH 4.8 at 55 °C for 60 min) and fermentation (using bakery yeast for 8 h at 30 °C) and combination of these treatments with particle size reduction were applied and their effects on some properties of the bran were studied. Phytic acid content decreased from 50.1 to 21.6, 32.8 and 43.9 mg/g after particle size reduction, hydrothermal and fermentation, respectively. Particle size reduction along with these treatments further reduced phytic acid content up to 76.4 % and 57.3 %, respectively. Hydrothermal and fermentation decreased, while particle size reduction alone or in combination increased bran lightness. With reducing particle size, total, soluble and insoluble fiber content decreased from 69.7 to 32.1 %, 12.2 to 7.9 % and 57.4 to 24.3 %, respectively. The highest total (74.4 %) and soluble (21.4 %) and the lowest insoluble fiber (52.1 %) content were determined for the hydrothermaled bran. Particle size reduction decreased swelling power, water solubility and water holding capacity. Swelling power and water holding capacity of the hydrothermaled and fermented brans were lower, while water solubility was higher than the control. The amount of Fe(+2), Zn(+2) and Ca(+2) decreased with reducing particle size. Fermentation had no effect on Fe(+2)and Zn(+2) but slightly reduced Ca(+2). The hydrothermal treatment slightly decreased these elements. Amongst all, hydrothermal treatment along with particle size reduction resulted in the lowest phytic acid and highest fiber content. PMID:25328222

  2. Cellulose nanocrystal and poly[di(ethylene glycol) adipate] blend for tunable lens

    NASA Astrophysics Data System (ADS)

    Ko, Hyun-U.; Kim, Hyun Chan; Li, Yaguang; Kim, Sang Youn; Kim, Jaehwan

    2016-04-01

    In these days, consumer electronics and medical device for optical diagnosis are minimalized and mobilized. The focusing part is one of crucial parts of optical diagnosis systems to reduce the size and weight. Thus, demand for tunable lens that change the focus itself is increased. To meet the demand, many tunable lens has been studied by utilizing smart materials that responded under mechanical, magnetic, optical, thermal, chemical, electrical or electrochemical stimuli. This paper reports a cellulose nanocrystal (CNC) and poly[di(ethylene glycol) adipate] (PDEGA) blend that is able to respond under electromechanical stimulus. The preparation of CNC/PDEGA and its characterization are illustrated and its actuation behavior is tested . Because the material has high dielectric constant and high reflection index, it is good candidate material for tunable lens.

  3. Viscoelastic Properties of Poly[(butylene succinate)-co-adipate] Nanocomposites.

    PubMed

    Al-Thabaiti, Shaeel A; Ray, Suprakas Sinha; Basahell, Sulaiman Nassir; Mokhtar, Mohamed

    2015-03-01

    This article reports the viscoelastic properties of poly[(butylene succinate)-co-adipate] (PBSA) nanocomposites. The nanocomposites of PBSA with various loadings of organically modified clay were prepared by melt-mixing in a batch-mixer. The solid and melt-state viscoelastic properties of neat PBSA and various nanocomposites were studied in detail. The dynamic mechanical studies demonstrated an increase in the storage modulus of PBSA matrix with organoclay loading. Melt-state rheological properties were found to be modified with organoclay loading changing from liquid-like, to gel-like and then viscoelastic solid-like. Such changes in viscoelastic properties along with the improvements in thermomechanical properties are expected to open opportunities for the use of PBSA extending its applications from the classical field of packaging to new niches such as tissue-engineering. PMID:26413658

  4. Poly(butylene succinate-co-butylene adipate)/cellulose nanocrystal composites modified with phthalic anhydride.

    PubMed

    Zhang, Xuzhen; Zhang, Yong

    2015-12-10

    As a kind of biomass nanofiller for polymers, cellulose nanocrystal (CNC) has good mechanical properties and reinforcing capability. To improve the compatibility of poly(butylene succinate-co-butylene adipate) (PBSA)/CNC composites, phthalic anhydride was used as a compatilizer during melt mixing, leading to the significant improvement of the mechanical properties and thermal stability of the composites, which is related to the better dispersion of CNC in the composites. The addition of phthalic anhydride could accelerate the crystallization of PBSA component as evidenced by the curves of isothermal crystallization of the composites, but had little effect on the crystalline polymorphs of PBSA component. The addition of phthalic anhydride could strongly improve the hydrophobicity of the composites. The good mechanical properties, fast crystallization and improved hydrophobicity of PBSA/CNC composites with phthalic anhydride are favor to their practical commercial utilization.

  5. Facile preparation of biodegradable chitosan derivative having poly(butylene glycol adipate) side chains.

    PubMed

    Huang, Meifang; Fang, Yue'e

    2006-08-15

    Various modes are being explored for the construction of functional materials from nanoparticles. Despite these efforts, the assembly of nanoparticles remains challenging with respect to the requirement of multiple component organization on varying dimensions and length scales. The graft copolymers of chitosan with poly(butylene glycol adipate) (PBGA) were prepared due to the esterification reaction between PBGA and 6-O-succinate-N-phthaloyl-chitosan (PHCSSA) in the presence of toluene as a swelling agent. The graft copolymers are nanoparticles with the size of few hundred nanometers as observed from TEM. It is a potential method to combine chitosan with the hydrophobic synthetic polymers. The grafting reactions were conducted with various PBGA/PHCSSA feed ratios to obtain chitosan-g-PBGA copolymers with various PBGA contents. FT-IR, NMR, XRD, spectrofluorophotometer, and TEM were detected to characterize the copolymers.

  6. Development of poly(glycerol adipate) nanoparticles loaded with non-steroidal anti-inflammatory drugs.

    PubMed

    Wahab, Abdul; Favretto, Marco E; Onyeagor, Nnaemeka Danjuma; Khan, Gul Majid; Douroumis, Dennis; Casely-Hayford, Maxwell A; Kallinteri, Paraskevi

    2012-01-01

    The aim of this study was to assess acylated and non-acylated poly(glycerol adipate) polymers (PGA) as suitable nanoparticulate systems for encapsulation and release of ibuprofen, ibuprofen sodium salt (IBU-Na) and ketoprofen as model drugs. Drug encapsulated nanoparticles were prepared using the interfacial deposition method in the absence of surfactants. Physicochemical characterisation studies of the produced loaded nanoparticles showed that drug-polymer interactions depend on the characteristics of the actual active substance. IBU-Na showed strong interactions with the polymers and it was found to be molecularly dispersed within the polymer matrix while ibuprofen and ketoprofen retained their crystalline state. The drug release profiles showed stepwise patterns which involve an initial burst release effect, diffusion of the drug from the polymer matrix and eventually drug release possibly via a combined mechanism. PGA polymers can be effectively used as drug delivery carriers for various active substances.

  7. Polybutylene succinate adipate/starch blends: a morphological study for the design of controlled release films.

    PubMed

    Khalil, Fadi; Galland, Sophie; Cottaz, Amandine; Joly, Catherine; Degraeve, Pascal

    2014-08-01

    Films made of plasticized starch (PLS)/poly(butylene succinate co-butylene adipate) (PBSA) blends were prepared by thermomechanical processing varying the PBSA proportions in blends to obtain biphasic materials with distinct morphologies. These morphologies were characterized by selective extraction of each phase, microscopic observations, and selective water/oxygen permeation properties. These experiments allowed identifying the blend compositions corresponding to the beginning of partial continuity (cluster partial percolation) until total continuity of each phases. This property was related to the controlled release of model molecule (fluorescein) previously dispersed in the PLS and revealed that its release depended on the tortuosity of the PLS phase tailored by the polymer blends composition and by the limited swelling of the PLS when entrapped in the PBSA phase. Future applications will focus on food preservatives dispersed in PBSA-PLS blends to obtain active antimicrobial packaging put in direct contact with intermediate to high moisture foods.

  8. Competition between Displacement and Dissociation of a Strong Acid Compared to a Weak Acid Adsorbed on Silica Particle Surfaces: The Role of Adsorbed Water.

    PubMed

    Fang, Yuan; Tang, Mingjin; Grassian, Vicki H

    2016-06-16

    The adsorption of nitric (HNO3) and formic (HCOOH) acids on silica particle surfaces and the effect of adsorbed water have been investigated at 296 K using transmission FTIR spectroscopy. Under dry conditions, both nitric and formic acids adsorb reversibly on silica. Additionally, the FTIR spectra show that both of these molecules remain in the protonated form. At elevated relative humidities (RH), adsorbed water competes both for surface adsorption sites with these acids as well as promotes their dissociation to hydronium ions and the corresponding anions. Compared to HNO3, the extent of dissociation is much smaller for HCOOH, very likely because it is a weaker acid. This study provides valuable insights into the interaction of HNO3 and HCOOH with silica surface on the molecular level and further reveals the complex roles of surface-adsorbed water in atmospheric heterogeneous chemistry of mineral dust particles-many of these containing silica.

  9. Competition between Displacement and Dissociation of a Strong Acid Compared to a Weak Acid Adsorbed on Silica Particle Surfaces: The Role of Adsorbed Water.

    PubMed

    Fang, Yuan; Tang, Mingjin; Grassian, Vicki H

    2016-06-16

    The adsorption of nitric (HNO3) and formic (HCOOH) acids on silica particle surfaces and the effect of adsorbed water have been investigated at 296 K using transmission FTIR spectroscopy. Under dry conditions, both nitric and formic acids adsorb reversibly on silica. Additionally, the FTIR spectra show that both of these molecules remain in the protonated form. At elevated relative humidities (RH), adsorbed water competes both for surface adsorption sites with these acids as well as promotes their dissociation to hydronium ions and the corresponding anions. Compared to HNO3, the extent of dissociation is much smaller for HCOOH, very likely because it is a weaker acid. This study provides valuable insights into the interaction of HNO3 and HCOOH with silica surface on the molecular level and further reveals the complex roles of surface-adsorbed water in atmospheric heterogeneous chemistry of mineral dust particles-many of these containing silica. PMID:27220375

  10. On the composition of ammonia-sulfuric-acid ion clusters during aerosol particle formation

    NASA Astrophysics Data System (ADS)

    Schobesberger, S.; Franchin, A.; Bianchi, F.; Rondo, L.; Duplissy, J.; Kürten, A.; Ortega, I. K.; Metzger, A.; Schnitzhofer, R.; Almeida, J.; Amorim, A.; Dommen, J.; Dunne, E. M.; Ehn, M.; Gagné, S.; Ickes, L.; Junninen, H.; Hansel, A.; Kerminen, V.-M.; Kirkby, J.; Kupc, A.; Laaksonen, A.; Lehtipalo, K.; Mathot, S.; Onnela, A.; Petäjä, T.; Riccobono, F.; Santos, F. D.; Sipilä, M.; Tomé, A.; Tsagkogeorgas, G.; Viisanen, Y.; Wagner, P. E.; Wimmer, D.; Curtius, J.; Donahue, N. M.; Baltensperger, U.; Kulmala, M.; Worsnop, D. R.

    2015-01-01

    The formation of particles from precursor vapors is an important source of atmospheric aerosol. Research at the Cosmics Leaving OUtdoor Droplets (CLOUD) facility at CERN tries to elucidate which vapors are responsible for this new-particle formation, and how in detail it proceeds. Initial measurement campaigns at the CLOUD stainless-steel aerosol chamber focused on investigating particle formation from ammonia (NH3) and sulfuric acid (H2SO4). Experiments were conducted in the presence of water, ozone and sulfur dioxide. Contaminant trace gases were suppressed at the technological limit. For this study, we mapped out the compositions of small NH3-H2SO4 clusters over a wide range of atmospherically relevant environmental conditions. We covered [NH3] in the range from < 2 to 1400 pptv, [H2SO4] from 3.3 × 106 to 1.4 × 109 cm-3 (0.1 to 56 pptv), and a temperature range from -25 to +20 °C. Negatively and positively charged clusters were directly measured by an atmospheric pressure interface time-of-flight (APi-TOF) mass spectrometer, as they initially formed from gas-phase NH3 and H2SO4, and then grew to larger clusters containing more than 50 molecules of NH3 and H2SO4, corresponding to mobility-equivalent diameters greater than 2 nm. Water molecules evaporate from these clusters during sampling and are not observed. We found that the composition of the NH3-H2SO4 clusters is primarily determined by the ratio of gas-phase concentrations [NH3] / [H2SO4], as well as by temperature. Pure binary H2O-H2SO4 clusters (observed as clusters of only H2SO4) only form at [NH3] / [H2SO4] < 0.1 to 1. For larger values of [NH3] / [H2SO4], the composition of NH3-H2SO4 clusters was characterized by the number of NH3 molecules m added for each added H2SO4 molecule n (Δm/Δ n), where n is in the range 4-18 (negatively charged clusters) or 1-17 (positively charged clusters). For negatively charged clusters, Δ m/Δn saturated between 1 and 1.4 for [NH3] / [H2SO4] > 10. Positively

  11. On the composition of ammonia-sulfuric acid clusters during aerosol particle formation

    NASA Astrophysics Data System (ADS)

    Schobesberger, S.; Franchin, A.; Bianchi, F.; Rondo, L.; Duplissy, J.; Kürten, A.; Ortega, I. K.; Metzger, A.; Schnitzhofer, R.; Almeida, J.; Amorim, A.; Dommen, J.; Dunne, E. M.; Ehn, M.; Gagné, S.; Ickes, L.; Junninen, H.; Hansel, A.; Kerminen, V.-M.; Kirkby, J.; Kupc, A.; Laaksonen, A.; Lehtipalo, K.; Mathot, S.; Onnela, A.; Petäjä, T.; Riccobono, F.; Santos, F. D.; Sipilä, M.; Tomé, A.; Tsagkogeorgas, G.; Viisanen, Y.; Wagner, P. E.; Wimmer, D.; Curtius, J.; Donahue, N. M.; Baltensperger, U.; Kulmala, M.; Worsnop, D. R.

    2014-05-01

    The formation of particles from precursor vapors is an important source of atmospheric aerosol. Research at the Cosmics Leaving OUtdoor Droplets (CLOUD) facility at CERN tries to elucidate which vapors are responsible for this new particle formation, and how in detail it proceeds. Initial measurement campaigns at the CLOUD stainless-steel aerosol chamber focused on investigating particle formation from ammonia (NH3) and sulfuric acid (H2SO4). Experiments were conducted in the presence of water, ozone and sulfur dioxide. Contaminant trace gases were suppressed at the technological limit. For this study, we mapped out the compositions of small NH3-H2SO4 clusters over a wide range of atmospherically relevant environmental conditions. We covered [NH3] in the range from <2 to 1400 pptv, [H2SO4] from 3.3 × 106 to 1.4 × 109 cm-3, and a temperature range from -25 to +20 °C. Negatively and positively charged clusters were directly measured by an atmospheric pressure interface time-of-flight (APi-TOF) mass spectrometer, as they initially formed from gas-phase NH3 and H2SO4, and then grew to larger clusters containing more than 50 molecules of NH3 and H2SO4, corresponding to mobility-equivalent diameters greater than 2 nm. Water molecules evaporate from these clusters during sampling and are not observed. We found that the composition of the NH3-H2SO4 clusters is primarily determined by the ratio of gas-phase concentrations [NH3] / [H2SO4], as well as by temperature. Pure binary H2O-H2SO4 clusters (observed as clusters of only H2SO4) only form at [NH3] / [H2SO4]<0.1 to 1. For larger values of [NH3] / [H2SO4], the composition of NH3-H2SO4 clusters was characterized by the number of NH3 molecules m added for each added H2SO4 molecule n (Δm / Δn), where n is in the range 4-18 (negatively charged clusters) or 1-17 (positively charged clusters). For negatively charged clusters, Δm / Δn saturated between 1 and 1.4 for [NH3] / [H2SO4]>10. Positively charged clusters grew on

  12. A direct comparison of nanosilver particles and nanosilver plates for the oxidation of ascorbic acid

    NASA Astrophysics Data System (ADS)

    Sadeghi, Babak; Meskinfam, Masoumeh

    2012-11-01

    We study of spherical silver nanoparticles of different size and Ag nanoplates were grown at zinc tin oxide (ZTO) surface and characterized using SEM. The application of different electrodes in voltammetry for determination ascorbic acid indicated that oxidation of this biomolecule occurs at these electrodes in diffusion controlled process. Ag nanoplates modified zinc tin oxide electrodes exhibit at least two to three times higher current than spherical nanosilver particles. The observed behavior suggests that Ag nanoplates exhibit higher electrocatalytic activity than spherical silver nanoparticles. The reason for such behavior may be due to lattice plane as well as due to more available surface edges. As dimensions of nanoplates are increased surface area in the case of nanoplates also appears to play a significant role.

  13. Uptake of 13N-labeled N2O5 to citric acid aerosol particles

    NASA Astrophysics Data System (ADS)

    Grzinic, Goran; Bartels-Rausch, Thorsten; Birrer, Mario; Türler, Andreas; Ammann, Markus

    2013-04-01

    Dinitrogen pentoxide is a significant reactive intermediate in the night time chemistry of nitrogen oxides. Depending on atmospheric conditions it can act either as a NO3 radical reservoir or as a major NOx sink by heterogeneous hydrolysis on aerosol surfaces. As such, it can influence tropospheric ozone production and therefore the oxidative capacity of the atmosphere. Furthermore it's suspected of being a non negligible source of tropospheric Cl, even over continental areas [1,2]. We used the short-lived radioactive tracer 13N delivered by PSI's PROTRAC facility [3] in conjunction with an aerosol flow tube reactor in order to study N2O5 uptake kinetics on aerosol particles. 13NO is mixed with non labeled NO and O3 in a gas reactor where N2O5 is synthesized under dry conditions to prevent hydrolysis on the reactor walls. The resulting N2O5 flow is fed into an aerosol flow tube reactor together with a humidified aerosol flow. By using movable inlets we can vary the length of the aerosol flow tube and thus the reaction time. The gas feed from the reactor is then directed into a narrow parallel plate diffusion denuder system that allows for selective separation of the gaseous species present in the gas phase. Aerosol particles are trapped on a particle filter placed at the end of the denuder system. The activity of 13N labeled species trapped on the denuder plates and in the particle filter can be monitored via scintillation counters. Aerosol uptake measurements were performed with citric acid aerosols in a humidity range of 27-61.5% RH. The results obtained from our measurements have shown that the uptake coefficient increases with humidity from 1.65±0.3x10-3 (~27% RH) to 1.25±0.3x10-2 (45% RH) and 2.00±0.3x10-2 (61.5% RH). Comparison to literature data shows that this is similar to values reported for some polycarboxylic acids (like malonic acid), while being higher than some others [4]. The increase is likely related to the increasing amount of water associated

  14. Electrophoretic Mobility of Poly(acrylic acid)-Coated Alumina Particles

    SciTech Connect

    Bhosale, Prasad S.; Chun, Jaehun; Berg, John C.

    2011-06-01

    The effect of poly (acrylic acid) (PAA) adsorption on the electrokinetic behavior of alumina dispersions under high pH conditions was investigated as a function of polymer concentration and molecular weight as well as the presence, concentration and ion type of background electrolyte. Systems of this type are relevant to nuclear waste treatment, in which PAA is known to be an effective rheology modifier. The presence of all but the lowest molecular weight PAA studied (1800) led to decreases in dynamic electrophoretic mobility at low polymer concentrations, attributable to bridging flocculation, as verified by measurements of particle size distribution. Bridging effects increased with polymer molecular weight, and decreased with polymer concentration. Increases in background electrolyte concentration enhanced dynamic electrophoretic mobility as the polymer layers were compressed and bridging was reduced. Such enhancements were reduced as the cation was changed from Na+ to K+ to Cs+.

  15. Second virial coefficient of poly(bisphenol-A diglycidyl ether-co-adipic acid)

    NASA Astrophysics Data System (ADS)

    Wohlfarth, Ch.

    This document is part of Subvolume D2 'Polymer Solutions - Physical Properties and their Relations I (Thermodynamic Properties: PVT -Data and miscellaneous Properties of polymer Solutions) of Volume 6 `Polymers' of Landolt-Börnstein - Group VIII `Advanced Materials and Technologies'.

  16. DNA/polyethyleneimine/hyaluronic acid small complex particles and tumor suppression in mice.

    PubMed

    Ito, Tomoko; Yoshihara, Chieko; Hamada, Katsuyuki; Koyama, Yoshiyuki

    2010-04-01

    The highest barriers for non-viral vectors to an efficient in vivo gene transfection would be (1) non-specific interaction with biological molecules, and (2) large size of the DNA complex particles. Protective coating of the DNA/polyethyleneimine (PEI) complexes by hyaluronic acid (HA) effectively diminished the adverse interactions with biological molecules. Here we found HA also protected the DNA/PEI complexes against aggregation and inactivation through lyophilization-and-rehydration procedures. It allows us to prepare the concentrated very small DNA complex particles (<70 nm) suspension by preparing the complexes at highly diluted conditions, followed by lyophilized-and-rehydrated to a small volume. In vivo gene expression efficiency of the small complex was examined with mice subcutaneously inoculated with B16 melanoma cells. These formulations showed high reporter-gene expression level in tumor after intravenous injection into tumor-bearing mice. Small complex was then made of the plasmid encoding GM-CSF gene, and injected into the mice bearing subcutaneous solid B16 tumor. After intravenous injection, it induced apparent tumor growth suppression in 50% of the mice. Notably, significant therapeutic effect was detected in the mice that received intratumoral injection, and 75% of the mice were completely cured with disappearance of tumor. PMID:20047759

  17. Influence of the active mass particle suspension in electrolyte upon corrosion of negative electrode of a lead-acid battery

    NASA Astrophysics Data System (ADS)

    Kamenev, Yu.; Shtompel, G.; Ostapenko, E.; Leonov, V.

    2014-07-01

    The influence of the suspension of positive active mass particles in the electrolyte on the performance of the negative electrode in a lead-acid battery is studied. A significant increase in the rate of corrosion of the lead electrode is shown when slime particles get in contact with its surface, which may result in the rise of macro-defects on the lugs of the negative electrodes.

  18. Ice nucleation of bare and sulfuric acid-coated mineral dust particles and implication for cloud properties

    NASA Astrophysics Data System (ADS)

    Kulkarni, Gourihar; Sanders, Cassandra; Zhang, Kai; Liu, Xiaohong; Zhao, Chun

    2014-08-01

    Ice nucleation properties of atmospherically relevant dust minerals coated with soluble materials are not yet well understood. We determined ice nucleation ability of bare and sulfuric acid-coated mineral dust particles as a function of temperature (-25 to -35°C) and relative humidity with respect to water (RHw; 75 to 110%) for five different mineral dust types: (1) Arizona test dust, (2) illite, (3) montmorillonite, (4) K-feldspar, and (5) quartz. The particles were dry dispersed and size selected at 200 nm, and we determined the fraction of dust particles nucleating ice at various temperatures and RHw. Under water-subsaturated conditions, compared to bare dust particles, we found that coated particles showed a reduction in their ice nucleation ability. Under water-supersaturated conditions, however, we did not observe a significant coating effect (i.e., the bare and coated dust particles had nearly similar nucleating properties). X-ray diffraction patterns of the coated particles indicated that acid treatment altered the crystalline nature of the surface and caused structural disorder; thus, we concluded that the lack of such structured order reduced the ice nucleation efficiency of the coated particles in deposition ice nucleation mode. In addition, our single column model results show that coated particles significantly modify cloud properties such as ice crystal number concentration and ice water content compared to bare particles in water-subsaturated conditions. However, in water-supersaturated conditions, cloud properties differ only at warmer temperatures. These modeling results imply that future aged dust particle simulations should implement coating parameterizations to accurately predict cloud properties.

  19. Phase, morphology, and hygroscopicity of mixed oleic acid/sodium chloride/water aerosol particles before and after ozonolysis.

    PubMed

    Dennis-Smither, Benjamin J; Hanford, Kate L; Kwamena, Nana-Owusua A; Miles, Rachael E H; Reid, Jonathan P

    2012-06-21

    Aerosol optical tweezers are used to probe the phase, morphology, and hygroscopicity of single aerosol particles consisting of an inorganic component, sodium chloride, and a water insoluble organic component, oleic acid. Coagulation of oleic acid aerosol with an optically trapped aqueous sodium chloride droplet leads to formation of a phase-separated particle with two partially engulfed liquid phases. The dependence of the phase and morphology of the trapped particle with variation in relative humidity (RH) is investigated by cavity enhanced Raman spectroscopy over the RH range <5% to >95%. The efflorescence and deliquescence behavior of the inorganic component is shown to be unaffected by the presence of the organic phase. Whereas efflorescence occurs promptly (<1 s), the deliquescence process requires both dissolution of the inorganic component and the adoption of an equilibrium morphology for the resulting two phase particle, occurring on a time-scale of <20 s. Comparative measurements of the hygroscopicity of mixed aqueous sodium chloride/oleic acid droplets with undoped aqueous sodium chloride droplets show that the oleic acid does not impact on the equilibration partitioning of water between the inorganic component and the gas phase or the time response of evaporation/condensation. The oxidative aging of the particles through reaction with ozone is shown to increase the hygroscopicity of the organic component.

  20. Raman scattering investigations of the interaction of a COV with pure and acid doped ice particles

    NASA Astrophysics Data System (ADS)

    Facq, S.; Oancea, A.; Focsa, C.; Chazallon, B.

    2009-04-01

    Ice present in polar stratosphere is as well a common component of the troposphere, particularly in cirrus clouds widespread in tropopause and upper troposphere region. With water droplets, ice constitutes the condensed matter that can interact with atmospheric trace gases via many different trapping processes (co-deposition i.e; incorporation during growing ice conditions, adsorption, freezing etc). The incorporation of trace gases in ice surface/volume can both affect the atmospheric chemistry and the ice structure and reactivity. This can therefore modify the nature and composition of the incorporated species in ice, or in the gas phase. Recently, field measurements have demonstrated the presence of nitric acid in ice particles from cirrus clouds(1,2) (concentration between 0.63 wt% and 2.5 wt %). Moreover, laboratory experiments have shown that the uptake of atmospheric trace gases can be enhanced up to 1 or 2 orders of magnitude in these doped ice particles. Among trace gases capable to interact with atmospheric condensed matter figure volatile organic compounds such as aldehydes, ketones and alcohols (ex: ethanol and methanol). They play an important role in the upper troposphere (3,4) and snowpack chemistry (5) as they can be easily photolysed, producing free radicals and so influence the oxidizing capacity and the ozone-budget of the atmosphere (3,4). The temperature range at which these physico-chemical processes occur extents between ~ 190 K and 273K. Interaction between ice and trace gases are therefore largely dependent on the ice surface properties as well as on the phase formation dynamic (crystalline or not). This study aims to examine and characterize the incorporation of a COV (ex: ethanol), at the surface or in the volume of ice formed by different growth mechanisms (vapour deposition or droplets freezing). Vibrational spectra of water OH and ethanol CH-spectral regions are analysed using confocal micro-Raman spectroscopy at different temperatures

  1. GPCR-styrene maleic acid lipid particles (GPCR-SMALPs): their nature and potential.

    PubMed

    Wheatley, Mark; Charlton, Jack; Jamshad, Mohammed; Routledge, Sarah J; Bailey, Sian; La-Borde, Penelope J; Azam, Maria T; Logan, Richard T; Bill, Roslyn M; Dafforn, Tim R; Poyner, David R

    2016-04-15

    G-protein-coupled receptors (GPCRs) form the largest class of membrane proteins and are an important target for therapeutic drugs. These receptors are highly dynamic proteins sampling a range of conformational states in order to fulfil their complex signalling roles. In order to fully understand GPCR signalling mechanisms it is necessary to extract the receptor protein out of the plasma membrane. Historically this has universally required detergents which inadvertently strip away the annulus of lipid in close association with the receptor and disrupt lateral pressure exerted by the bilayer. Detergent-solubilized GPCRs are very unstable which presents a serious hurdle to characterization by biophysical methods. A range of strategies have been developed to ameliorate the detrimental effect of removing the receptor from the membrane including amphipols and reconstitution into nanodics stabilized by membrane scaffolding proteins (MSPs) but they all require exposure to detergent. Poly(styrene-co-maleic acid) (SMA) incorporates into membranes and spontaneously forms nanoscale poly(styrene-co-maleic acid) lipid particles (SMALPs), effectively acting like a 'molecular pastry cutter' to 'solubilize' GPCRs in the complete absence of detergent at any stage and with preservation of the native annular lipid throughout the process. GPCR-SMALPs have similar pharmacological properties to membrane-bound receptor, exhibit enhanced stability compared with detergent-solubilized receptors and being non-proteinaceous in nature, are fully compatible with downstream biophysical analysis of the encapsulated GPCR. PMID:27068979

  2. Aqueous Phase Photo-Oxidation of Succinic Acid: Changes in Hygroscopic Properties and Reaction Products

    NASA Astrophysics Data System (ADS)

    Hudson, P. K.; Ninokawa, A.; Hofstra, J.; de Lijser, P.

    2013-12-01

    Atmospheric aerosol particles have been identified as important factors in understanding climate change. The extent to which aerosols affect climate is determined, in part, by hygroscopic properties which can change as a result of atmospheric processing. Dicarboxylic acids, components of atmospheric aerosol, have a wide range of hygroscopic properties and can undergo oxidation and photolysis reactions in the atmosphere. In this study, the hygroscopic properties of succinic acid aerosol, a non-hygroscopic four carbon dicarboxylic acid, were measured with a humidified tandem differential mobility analyzer (HTDMA) and compared to reaction products resulting from the aqueous phase photo-oxidation reaction of hydrogen peroxide and succinic acid. Reaction products were determined and quantified using gas chromatography-flame ionization detection (GC-FID) and GC-mass spectrometry (GC-MS) as a function of hydrogen peroxide:succinic acid concentration ratio and photolysis time. Although reaction products include larger non-hygroscopic dicarboxylic acids (e.g. adipic acid) and smaller hygroscopic dicarboxylic acids (e.g. malonic and oxalic acids), comparison of hygroscopic growth curves to Zdanovskii-Stokes-Robinson (ZSR) predictions suggests that the hygroscopic properties of many of the product mixtures are largely independent of the hygroscopicity of the individual components. This study provides a framework for future investigations to fully understand and predict the role of chemical reactions in altering atmospheric conditions that affect climate.

  3. The effect of acid-base clustering and ions on the growth of atmospheric nano-particles.

    PubMed

    Lehtipalo, Katrianne; Rondo, Linda; Kontkanen, Jenni; Schobesberger, Siegfried; Jokinen, Tuija; Sarnela, Nina; Kürten, Andreas; Ehrhart, Sebastian; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Sipilä, Mikko; Yli-Juuti, Taina; Duplissy, Jonathan; Adamov, Alexey; Ahlm, Lars; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; Dommen, Josef; Downard, Andrew J; Dunne, Eimear M; Flagan, Richard C; Guida, Roberto; Hakala, Jani; Hansel, Armin; Jud, Werner; Kangasluoma, Juha; Kerminen, Veli-Matti; Keskinen, Helmi; Kim, Jaeseok; Kirkby, Jasper; Kupc, Agnieszka; Kupiainen-Määttä, Oona; Laaksonen, Ari; Lawler, Michael J; Leiminger, Markus; Mathot, Serge; Olenius, Tinja; Ortega, Ismael K; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud; Rissanen, Matti P; Ruuskanen, Taina; Santos, Filipe D; Schallhart, Simon; Schnitzhofer, Ralf; Simon, Mario; Smith, James N; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Tomé, António; Vaattovaara, Petri; Vehkamäki, Hanna; Vrtala, Aron E; Wagner, Paul E; Williamson, Christina; Wimmer, Daniela; Winkler, Paul M; Virtanen, Annele; Donahue, Neil M; Carslaw, Kenneth S; Baltensperger, Urs; Riipinen, Ilona; Curtius, Joachim; Worsnop, Douglas R; Kulmala, Markku

    2016-05-20

    The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted for in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. We bring these observations into a coherent framework and discuss their significance in the atmosphere.

  4. Particle-facilitated lead and arsenic transport in abandoned mine sites soil influenced by simulated acid rain.

    PubMed

    Shaoping, Hu; Xincai, Chen; Jiyan, Shi; Yingxu, Chen; Qi, Lin

    2008-05-01

    The role of acid rain in affecting Pb and As transport from mine tailings was investigated by pumping simulated acid rain at a infiltration rate of 10.2 cm/h through soil columns. Simulated acid rain with pH of 3.0, 4.5 and 5.6 were used as leaching solutions. Results showed that 86.9-95.9% of Pb and 90-91.8% of As eluted from the columns were adsorbed by particles in the leachates. Scanning electron microscopy (SEM) analysis showed that particles released from the columns were mainly composed of flocculated aggregates and plate or rod shaped discrete grains. Transmission electron microscopy (TEM) coupled with energy dispersive X-ray analysis (EDX) showed that these particles were predominantly silicate minerals. Results from our experiments demonstrated that when rapid infiltration conditions or a rainstorm exist, particle-facilitated transport of contaminants is likely to the dominant metal transport pathway influenced by acid rain.

  5. The effect of acid-base clustering and ions on the growth of atmospheric nano-particles.

    PubMed

    Lehtipalo, Katrianne; Rondo, Linda; Kontkanen, Jenni; Schobesberger, Siegfried; Jokinen, Tuija; Sarnela, Nina; Kürten, Andreas; Ehrhart, Sebastian; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Sipilä, Mikko; Yli-Juuti, Taina; Duplissy, Jonathan; Adamov, Alexey; Ahlm, Lars; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; Dommen, Josef; Downard, Andrew J; Dunne, Eimear M; Flagan, Richard C; Guida, Roberto; Hakala, Jani; Hansel, Armin; Jud, Werner; Kangasluoma, Juha; Kerminen, Veli-Matti; Keskinen, Helmi; Kim, Jaeseok; Kirkby, Jasper; Kupc, Agnieszka; Kupiainen-Määttä, Oona; Laaksonen, Ari; Lawler, Michael J; Leiminger, Markus; Mathot, Serge; Olenius, Tinja; Ortega, Ismael K; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud; Rissanen, Matti P; Ruuskanen, Taina; Santos, Filipe D; Schallhart, Simon; Schnitzhofer, Ralf; Simon, Mario; Smith, James N; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Tomé, António; Vaattovaara, Petri; Vehkamäki, Hanna; Vrtala, Aron E; Wagner, Paul E; Williamson, Christina; Wimmer, Daniela; Winkler, Paul M; Virtanen, Annele; Donahue, Neil M; Carslaw, Kenneth S; Baltensperger, Urs; Riipinen, Ilona; Curtius, Joachim; Worsnop, Douglas R; Kulmala, Markku

    2016-01-01

    The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted for in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. We bring these observations into a coherent framework and discuss their significance in the atmosphere. PMID:27197574

  6. Multifunctional PLGA particles containing poly(l-glutamic acid)-capped silver nanoparticles and ascorbic acid with simultaneous antioxidative and prolonged antimicrobial activity.

    PubMed

    Stevanović, Magdalena; Bračko, Ines; Milenković, Marina; Filipović, Nenad; Nunić, Jana; Filipič, Metka; Uskoković, Dragan P

    2014-01-01

    A water-soluble antioxidant (ascorbic acid, vitamin C) was encapsulated together with poly(l-glutamic acid)-capped silver nanoparticles (AgNpPGA) within a poly(lactide-co-glycolide) (PLGA) polymeric matrix and their synergistic effects were studied. The PLGA/AgNpPGA/ascorbic acid particles synthesized by a physicochemical method with solvent/non-solvent systems are spherical, have a mean diameter of 775 nm and a narrow size distribution with a polydispersity index of 0.158. The encapsulation efficiency of AgNpPGA/ascorbic acid within PLGA was determined to be >90%. The entire amount of encapsulated ascorbic acid was released in 68 days, and the entire amount of AgNpPGAs was released in 87 days of degradation. The influence of PLGA/AgNpPGA/ascorbic acid on cell viability, generation of reactive oxygen species (ROS) in HepG2 cells, as well as antimicrobial activity against seven different pathogens was investigated. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay indicated good biocompatibility of these PLGA/AgNpPGA/ascorbic acid particles. We measured the kinetics of ROS formation in HepG2 cells by a DCFH-DA assay, and found that PLGA/AgNpPGA/ascorbic acid caused a significant decrease in DCF fluorescence intensity, which was 2-fold lower than that in control cells after a 5h exposure. This indicates that the PLGA/AgNpPGA/ascorbic acid microspheres either act as scavengers of intracellular ROS and/or reduce their formation. Also, the results of antimicrobial activity of PLGA/AgNpPGA/ascorbic acid obtained by the broth microdilution method showed superior and extended activity of these particles. The samples were characterized using Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, zeta potential and particle size analysis. This paper presents a new approach to the treatment of infection that at the same time offers a very pronounced antioxidant effect.

  7. Multifunctional PLGA particles containing poly(l-glutamic acid)-capped silver nanoparticles and ascorbic acid with simultaneous antioxidative and prolonged antimicrobial activity.

    PubMed

    Stevanović, Magdalena; Bračko, Ines; Milenković, Marina; Filipović, Nenad; Nunić, Jana; Filipič, Metka; Uskoković, Dragan P

    2014-01-01

    A water-soluble antioxidant (ascorbic acid, vitamin C) was encapsulated together with poly(l-glutamic acid)-capped silver nanoparticles (AgNpPGA) within a poly(lactide-co-glycolide) (PLGA) polymeric matrix and their synergistic effects were studied. The PLGA/AgNpPGA/ascorbic acid particles synthesized by a physicochemical method with solvent/non-solvent systems are spherical, have a mean diameter of 775 nm and a narrow size distribution with a polydispersity index of 0.158. The encapsulation efficiency of AgNpPGA/ascorbic acid within PLGA was determined to be >90%. The entire amount of encapsulated ascorbic acid was released in 68 days, and the entire amount of AgNpPGAs was released in 87 days of degradation. The influence of PLGA/AgNpPGA/ascorbic acid on cell viability, generation of reactive oxygen species (ROS) in HepG2 cells, as well as antimicrobial activity against seven different pathogens was investigated. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay indicated good biocompatibility of these PLGA/AgNpPGA/ascorbic acid particles. We measured the kinetics of ROS formation in HepG2 cells by a DCFH-DA assay, and found that PLGA/AgNpPGA/ascorbic acid caused a significant decrease in DCF fluorescence intensity, which was 2-fold lower than that in control cells after a 5h exposure. This indicates that the PLGA/AgNpPGA/ascorbic acid microspheres either act as scavengers of intracellular ROS and/or reduce their formation. Also, the results of antimicrobial activity of PLGA/AgNpPGA/ascorbic acid obtained by the broth microdilution method showed superior and extended activity of these particles. The samples were characterized using Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, zeta potential and particle size analysis. This paper presents a new approach to the treatment of infection that at the same time offers a very pronounced antioxidant effect. PMID:23988864

  8. Particle size conditions water repellency in sand samples hydrophobized with stearic acid

    NASA Astrophysics Data System (ADS)

    González-Peñaloza, F. A.; Jordán, A.; Bellinfante, N.; Bárcenas-Moreno, G.; Mataix-Solera, J.; Granged, A. J. P.; Gil, J.; Zavala, L. M.

    2012-04-01

    The main objective of this research is to study the effects of particle size and soil moisture on water repellency (WR) from hydrophobized sand samples. Quartz sand samples were collected from the top 15 cm of sandy soils, homogenised and divided in different sieve fractions: 0.5 - 2 mm (coarse sand), 0.25 - 0.5 mm (medium sand), and 0.05 - 0.25 mm (fine sand). WR was artificially induced in sand samples using different concentrations of stearic acid (SA; 0.5, 1, 5, 10, 20 and 30 g kg-1). Sand samples were placed in Petri plates and moistened with distilled water until 10% water content in weight. After a period of 30 min, soil WR was determined using the water drop penetration time (WDPT) test. A set of sub-samples was placed in an oven (50 oC) during the experimental period, and the rest was left air-drying at standard laboratory conditions. Water repellent soil samples were used as control, and the same treatments were applied. WR was determined every 24 h. No changes in WR were observed after 6 days of treatment. As expected, air-dried fine sand samples showed WR increasing with SA concentration and decreasing with soil moisture. In contrast, oven-dried samples remained wettable at SA concentrations below 5 g kg-1. Fine sand oven-dried samples showed extreme WR after just one day of treatment, but air-dried samples did not show extreme repellency until three days after treatment. SA concentrations above 5 g kg-1 always induced extreme WR. Medium sand air-dried samples showed hydrophilic properties when moist and low SA concentration (£1 g kg-1), but strong to extreme WR was induced by higher SA concentrations. In the case of oven-dried samples, medium sand showed severe to extreme WR regardless of soil moisture. Coarse sand showed the longest WDPTs, independently of soil moisture content or SA concentration. This behaviour may be caused by super-hydrophobicity. Also, it is suggested that movements of sand particles during wetting, contribute to expose new

  9. Determination of free silica in dust particles: effect of particle size for the X-ray diffraction and phosphoric acid methods.

    PubMed

    Yabuta, Juji; Ohta, Hisayosi

    2003-07-01

    The X-ray diffraction method and the phosphoric acid method are widely used to determine the fraction of free silica (mainly quartz and other silica polymorphs) in respirable dust sampled in working environments in Japan. In this study, we clarified the size effect of quartz dust for the X-ray diffraction method and the phosphoric acid method using size controlled quartz samples. The quartz samples were classified into 6 fractions with different size ranges: 1 microm and smaller, 1 to 3 microm, 3 to 5 microm, 5 to 7 microm, 7 to 10 microm and 10 microm and larger. Both of the determination methods were affected by the particle size, and especially particles smaller than 3 microm fairly dissolved in hot phosphoric acid and reduced X-ray diffraction intensity remarkably. If the content of these fine particles in the standard quartz sample is lower than that of the test samples, the fraction of free silica may be underestimated by these methods. For this reason, the standard quartz sample should have a representative size distribution of the field samples. The dust samples containing quartz were collected at a foundry and dissolved by phosphoric acid to remove non-quartz materials. The size fractions of dissolved samples were 50% for 5-10 microm, 25% for 3-5 microm, 20% for 1-3 microm and 5% for 1 microm and smaller. As the size distribution is similar to the present standard sample widely used in Japan, we concluded that the standard sample is suitable for these determination methods. PMID:12916756

  10. Construction of nanoscale protein particle using temperature-sensitive elastin-like peptide and polyaspartic acid chain.

    PubMed

    Fujita, Yoshihiko; Mie, Masayasu; Kobatake, Eiry

    2009-07-01

    Temperature-responsive monodisperse spheres are useful for various in vivo and in vitro applications. Size, response temperature and biocompatibility are particularly important consideration with in vivo applications. In this work, we constructed fusion proteins of low antigenic elastin-like peptide (ELP) and a polyaspartic acid chain, and studied the particles that had a favorable size and temperature of formation of particle. From DLS analysis, we confirmed that some of them formed particles with less than 100nm in diameter around 37 degrees C, while the diameter of ELPs alone is larger than 1microm in diameter. The (PGVGV)(160)D(22), which is composed of a short aspartic acid chain and a long ELP region, had a tendency to form large particles. The temperature of formation and collapse of the protein particle were dependent on the length of the ELP and the polyaspartic acid chain, and the concentration of proteins. The direct observation with TEM indicated that the morphologies of the particles were spherical except when (PGVGV)(160)D(22) was used. The intensities of the environment-sensitive hydrophobic fluorescence increased at 37 degrees C more than 1.5 times as much as at 25 degrees C both in free form and modified at the ELP region. These results indicated that the polarity of the environment surround the fluorescence decreased or the movement of fluorescence was limited, and thus, implied that the ELP formed a more hydrophobic or rigid region and could hold hydrophobic drugs. These results suggest that a temperature-responsive protein particle with favorable size and temperature of formation can be constructed that is suitable for any in vitro or in vivo application.

  11. Shape evolution of SrCO{sub 3} particles in the presence of poly-(styrene-alt-maleic acid)

    SciTech Connect

    Yu Jiaguo . E-mail: jiaguoyu@yahoo.com; Guo Hua; Cheng Bei

    2006-03-15

    In this paper, strontium carbonate particles with different morphologies were prepared by a simple precipitation reaction of sodium carbonate with strontium nitrate in the absence and presence of poly-(styrene-alt-maleic acid) (PSMA). The as-prepared products were characterized with scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effects of the concentration of PSMA on the morphologies and phase structures of strontium carbonate particles were investigated and discussed. The results showed that SrCO{sub 3} particles with various shapes, such as bundles, dumbbells, irregular aggregates and spheres could be obtained by varying the concentration of PSMA. A schematic illustration was proposed to account for the shape evolution of the as-prepared SrCO{sub 3} particles.

  12. Comparison of hepatic peroxisome proliferative effect and its implication for hepatocarcinogenicity of phthalate esters, di(2-ethylhexyl) phthalate, and di(2-ethylhexyl) adipate with a hypolipidemic drug.

    PubMed Central

    Reddy, J K; Reddy, M K; Usman, M I; Lalwani, N D; Rao, M S

    1986-01-01

    Peroxisome proliferation is inducible in hepatocytes of rodent and nonrodent species by structurally dissimilar hypolipidemic drugs and certain phthalate ester plasticizers. The induction of peroxisome proliferation appears to be a tissue specific response limited largely to the hepatocyte. Peroxisome proliferation is associated with increases in the activity of the H2O2-generating peroxisomal fatty acid beta-oxidation system and in the amount of peroxisome proliferation-associated 80,000 MW polypeptide (PPA-80). Chronic administration of these non-DNA damaging and nonmutagenic peroxisome proliferators to rats and mice results in the development of hepatocellular carcinomas. Comparative morphometric and biochemical data from rats treated with varying dose levels of ciprofibrate, a hypolipidemic drug, and di(2-ethylhexyl) phthalate, and di(2-ethylhexyl) adipate, the widely used plasticizers, indicate that the hepatocarcinogenic potency of these agents is correlatable with their ability to induce peroxisome proliferation, peroxisomal beta-oxidation and PPA-80. Available evidence strongly favors the role of peroxisome proliferation-associated oxidative stress in the induction of liver tumors by peroxisome proliferators. Images FIGURE 3. FIGURE 4. FIGURE 5. FIGURE 7. FIGURE 10. A FIGURE 10. B PMID:3709457

  13. Caffeic acid phenethyl ester abrogates bone resorption in a murine calvarial model of polyethylene particle-induced osteolysis.

    PubMed

    Zawawi, M S F; Perilli, E; Stansborough, R L; Marino, V; Cantley, M D; Xu, J; Dharmapatni, A A S S K; Haynes, D R; Gibson, R J; Crotti, T N

    2015-06-01

    Particle-induced bone loss by osteoclasts is a common cause of aseptic loosening around implants. This study investigates whether caffeic acid phenethyl ester (CAPE), a potent and specific inhibitor of nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 1 and nuclear factor kappa B, at a low dose reduces bone resorption in a murine calvarial model of polyethylene (PE) particle-induced osteolysis. The effects of particles and CAPE treatment on gastrointestinal tract (GIT) histopathology were also evaluated. Mice were scanned using in vivo animal micro-computed tomography (μCT) as a baseline measurement. PE particles (2.82 × 10(9) particles/mL) were implanted over the calvariae on day 0. CAPE was administered subcutaneously (1 mg/kg/day) at days 0, 4, 7 and 10. Mice were killed at day 14 and serum was analysed for Type-1 carboxyterminal collagen crosslinks (CTX)-1 and osteoclast-associated receptor (OSCAR) levels. Ex vivo μCT scans were conducted to assess bone volume (BV) change and percentage area of calvarial surface resorbed. Calvarial and GIT tissue was processed for histopathology. By day 14, PE particles significantly induced calvarial bone loss compared with control animals as evidenced by resorption areas adjacent to the implanted PE in three-dimensional μCT images, an increase in percentage of resorbed area (p = 0.0022), reduction in BV (p = 0.0012) and increased Tartrate-resistant acid phosphatase positive cells. Serum CTX-1 (p = 0.0495) and OSCAR levels (p = 0.0006) significantly increased in the PE implant group. CAPE significantly inhibited PE particle-induced calvarial osteolysis, as evidenced by a significant reduction in surface bone resorption (p = 0.0012) and volumetric change (p = 0.0154) compared with PE only, but had no effect on systemic CTX-1. Neither particles nor CAPE had an effect on GIT histopathology. PMID:25804981

  14. Acid Hydrolysis and Molecular Density of Phytoglycogen and Liver Glycogen Helps Understand the Bonding in Glycogen α (Composite) Particles

    PubMed Central

    Powell, Prudence O.; Sullivan, Mitchell A.; Sheehy, Joshua J.; Schulz, Benjamin L.; Warren, Frederick J.; Gilbert, Robert G.

    2015-01-01

    Phytoglycogen (from certain mutant plants) and animal glycogen are highly branched glucose polymers with similarities in structural features and molecular size range. Both appear to form composite α particles from smaller β particles. The molecular size distribution of liver glycogen is bimodal, with distinct α and β components, while that of phytoglycogen is monomodal. This study aims to enhance our understanding of the nature of the link between liver-glycogen β particles resulting in the formation of large α particles. It examines the time evolution of the size distribution of these molecules during acid hydrolysis, and the size dependence of the molecular density of both glucans. The monomodal distribution of phytoglycogen decreases uniformly in time with hydrolysis, while with glycogen, the large particles degrade significantly more quickly. The size dependence of the molecular density shows qualitatively different shapes for these two types of molecules. The data, combined with a quantitative model for the evolution of the distribution during degradation, suggest that the bonding between β into α particles is different between phytoglycogen and liver glycogen, with the formation of a glycosidic linkage for phytoglycogen and a covalent or strong non-covalent linkage, most probably involving a protein, for glycogen as most likely. This finding is of importance for diabetes, where α-particle structure is impaired. PMID:25799321

  15. Acid hydrolysis and molecular density of phytoglycogen and liver glycogen helps understand the bonding in glycogen α (composite) particles.

    PubMed

    Powell, Prudence O; Sullivan, Mitchell A; Sheehy, Joshua J; Schulz, Benjamin L; Warren, Frederick J; Gilbert, Robert G

    2015-01-01

    Phytoglycogen (from certain mutant plants) and animal glycogen are highly branched glucose polymers with similarities in structural features and molecular size range. Both appear to form composite α particles from smaller β particles. The molecular size distribution of liver glycogen is bimodal, with distinct α and β components, while that of phytoglycogen is monomodal. This study aims to enhance our understanding of the nature of the link between liver-glycogen β particles resulting in the formation of large α particles. It examines the time evolution of the size distribution of these molecules during acid hydrolysis, and the size dependence of the molecular density of both glucans. The monomodal distribution of phytoglycogen decreases uniformly in time with hydrolysis, while with glycogen, the large particles degrade significantly more quickly. The size dependence of the molecular density shows qualitatively different shapes for these two types of molecules. The data, combined with a quantitative model for the evolution of the distribution during degradation, suggest that the bonding between β into α particles is different between phytoglycogen and liver glycogen, with the formation of a glycosidic linkage for phytoglycogen and a covalent or strong non-covalent linkage, most probably involving a protein, for glycogen as most likely. This finding is of importance for diabetes, where α-particle structure is impaired.

  16. Degradation rates of glycerol polyesters at acidic and basic conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyesters prepared from glycerol with mixtures of adipic and citric acids were evaluated in the laboratory to estimate degradation rates over a range of pH conditions. These renewable polymers provide a market for glycerol that is generated during biodiesel production. The polyesters were prepared...

  17. Preparation and characterization of nanocomposite of maleated poly(butylene adipate-co-terephthalate) with organoclay.

    PubMed

    Chen, Jung-Hung; Yang, Ming-Chien

    2015-01-01

    Nanocomposites of poly(butylene adipate-co-terephthalate) (PBAT) with montmorillonite (MMT) nanoparticles were prepared via melt blending. Natural MMT was modified by either octadecylamine (ODA) or dihexylamine (DHA). Neat PBAT was grafted with maleic anhydride via melt grafting process. Intercalation of the organoclay in the PBAT matrix was studied by X-ray diffraction (XRD). From the results of transmission electron microscope (TEM), the dispersion of ODA-modified MMT in the PBAT matrix was more homogeneous than that of neat MMT. The addition of organoclay can increase the cooling crystallization temperature of PBAT, as observed by differential scanning calorimetry (DSC). Furthermore, the results of thermogravimetric analyzer (TGA) showed that the addition of ODA-modified MMT can improve the thermal stability of PBAT nanocomposites. The tensile strength was little affected, while the Young's modulus was increased with the addition of nanoclays. The grafting of PBAT with MA resulted in improved interaction between polymer matrix and the silicate layer due to the formation of chemical/physical bonds, thus the dispersion of organoclays was enhanced. By grafting PBAT with MA, the enzymatic biodegradation of the nanocomposite was increased, while the photodegradation of PBAT was little affected. Furthermore, the transmission of water vapor was reduced by the addition of organically modified MMT. PMID:25491991

  18. Reproductive and Developmental Toxicity Screening Test of Ethyl Hydrogen Adipate in Rats

    PubMed Central

    Nam, Chunja; Hwang, Jae-Sik; Han, Kyoung-Goo; Jo, Eunhye; Yoo, Sun-kyoung; Eom, Ig-Chun; Kang, Jong-Koo

    2016-01-01

    This study aimed to evaluate the potential toxicity and safety of ethyl hydrogen adipate (EHA) by determining its effect on the reproductive function and development of Sprague-Dawley (SD) rats at dose levels of 0 (control), 200, 400, and 800 mg/kg/day. One male and five females of the 800 mg/kg/day died. Body weight loss was observed in the males of the 800 mg/kg/day and in females of the 400 and 800 mg/kg/day. In addition, mating indices decreased and pre-implantation loss rates increased in parental animals of the 400 and 800 mg/kg/day. The gestation index decreased in the male and female rats of the 800 mg/kg/day. Moreover, the body weight of the pups from the 800 mg/kg/day group decreased on post-parturition day 4. These results indicated that the no-observed-adverse-effect level of EHA for parental males and females was 400 mg/kg/day and 200 mg/kg/day, respectively, and that for pups was 400 mg/kg/day.

  19. Preparation and characterization of nanocomposite of maleated poly(butylene adipate-co-terephthalate) with organoclay.

    PubMed

    Chen, Jung-Hung; Yang, Ming-Chien

    2015-01-01

    Nanocomposites of poly(butylene adipate-co-terephthalate) (PBAT) with montmorillonite (MMT) nanoparticles were prepared via melt blending. Natural MMT was modified by either octadecylamine (ODA) or dihexylamine (DHA). Neat PBAT was grafted with maleic anhydride via melt grafting process. Intercalation of the organoclay in the PBAT matrix was studied by X-ray diffraction (XRD). From the results of transmission electron microscope (TEM), the dispersion of ODA-modified MMT in the PBAT matrix was more homogeneous than that of neat MMT. The addition of organoclay can increase the cooling crystallization temperature of PBAT, as observed by differential scanning calorimetry (DSC). Furthermore, the results of thermogravimetric analyzer (TGA) showed that the addition of ODA-modified MMT can improve the thermal stability of PBAT nanocomposites. The tensile strength was little affected, while the Young's modulus was increased with the addition of nanoclays. The grafting of PBAT with MA resulted in improved interaction between polymer matrix and the silicate layer due to the formation of chemical/physical bonds, thus the dispersion of organoclays was enhanced. By grafting PBAT with MA, the enzymatic biodegradation of the nanocomposite was increased, while the photodegradation of PBAT was little affected. Furthermore, the transmission of water vapor was reduced by the addition of organically modified MMT.

  20. Characterization of a poly(butylene adipate-co-terephthalate)- hydrolyzing lipase from Pelosinus fermentans.

    PubMed

    Biundo, Antonino; Hromic, Altijana; Pavkov-Keller, Tea; Gruber, Karl; Quartinello, Felice; Haernvall, Karolina; Perz, Veronika; Arrell, Miriam S; Zinn, Manfred; Ribitsch, Doris; Guebitz, Georg M

    2016-02-01

    Certain α/β hydrolases have the ability to hydrolyze synthetic polyesters. While their partial hydrolysis has a potential for surface functionalization, complete hydrolysis allows recycling of valuable building blocks. Although knowledge about biodegradation of these materials is important regarding their fate in the environment, it is currently limited to aerobic organisms. A lipase from the anaerobic groundwater organism Pelosinus fermentans DSM 17108(PfL1) was cloned and expressed in Escherichia coli BL21-Gold (DE3) and purified from the cell extract. Biochemical characterization with small substrates showed thermoalkalophilic properties (Topt=50 °C, pHopt=7.5) and higher activity towards para-nitrophenyl octanoate (12.7 U mg(-1)) compared to longer and shorter chain lengths (C14 0.7 U mg(-1) and C2 4.3 U mg(-1), respectively). Crystallization and determination of the 3-D structure displayed the presence of a lid structure and a zinc ion surrounded by an extra domain. These properties classify the enzyme into the I.5 lipase family. PfL1 is able to hydrolyze poly(1,4-butylene adipate-co-terephthalate) (PBAT) polymeric substrates. The hydrolysis of PBAT showed the release of small building blocks as detected by liquid chromatography mass spectrometry (LC-MS). Protein dynamics seem to be involved with lid opening for the hydrolysis of PBAT by PfL1.

  1. Melt crystallization and crystal transition of poly(butylene adipate) revealed by infrared spectroscopy.

    PubMed

    Yan, Chao; Zhang, Ying; Hu, Yun; Ozaki, Yukihiro; Shen, Deyan; Gan, Zhihua; Yan, Shouke; Takahashi, Isao

    2008-03-20

    The structure evolution of poly(butylene adipate) (PBA) during isothermal melt crystallization and phase transition processes is investigated by Fourier transform infrared spectroscopy (FTIR). Detailed IR spectra analysis and band assignment are performed to disclose the bands sensitive to the alpha-form crystalline order of PBA. It is revealed from the in situ IR study that the functionalities within PBA chains alter simultaneously during the melt crystallization process. From the analysis of the spectral changes, it is found that band shifts take place during the phase transition process of PBA from its metastable beta-form crystal to the stable alpha-form. Notable band shifts in the 1300-1100 cm(-1) region indicate that the twist of polymer chains in the alpha-form is located in the C-O-C and C-O linkages. Moreover, the results elucidated that the different segments of molecular chains tune up their conformations synchronously during the beta to alpha crystal transition process of PBA. It is suggested that the betaalpha phase transition process proceeds randomly throughout the solid at a constant rate.

  2. Development of microporous structure and its application to optical film for cellulose triacetate containing diisodecyl adipate.

    PubMed

    Shimada, Hikaru; Nobukawa, Shogo; Yamaguchi, Masayuki

    2015-04-20

    Phase separation in plasticized cellulose triacetate (CTA) films is investigated to produce a microporous film that can be used in optical devices. Hot-stretched CTA films containing diisodecyl adipate (DIDA) show negative orientation birefringence similar to the hot-stretched pure CTA. After extracting DIDA from the stretched films by immersion into an organic solvent, however, the films exhibit positive birefringence. Moreover, the magnitude of the birefringence increases with the wavelength, known as extraordinary dispersion, which is an essential property in the preparation of an ideal quarter-wave plate. Numerous ellipsoidal pores with micro-scale were detected in the film after the immersion, indicating that DIDA were segregated and formed ellipsoidal domains in the CTA matrix during annealing and stretching. These results indicate that extraordinary wavelength dispersion is given by the combinations of orientation birefringence from CTA and form birefringence from micropores. Furthermore, it was found that annealing time and stretching condition affect the phase separation as well as the shape and size of pores. PMID:25662683

  3. Particle Size (Sieving) and Enthalpy (Acid Calorimetry) Analysis of Single-Pull K East Basin Floor and Pit Sludges

    SciTech Connect

    PR Bredt; CH Delegard; AJ Schmidt; KL Silvers; BM Thornton; S Gano

    2000-12-22

    This report presents the results of particle size analyses and calorimetry testing performed on selected single-pull sludge samples collected from the Hanford K East Basin between December 1998 and June 1999. The samples were collected as isolated cores predominantly from areas that had not been previously sampled (e.g., North Loadout Pit, Dummy Elevator Pit, Tech View Pit), or from areas in which the sludge composition had been altered since the last sampling (e.g., Weasel Pit). Particle size analyses were performed by washing wet sludge samples through a series of four sieves with openings of 250, 500, 1410, and 4000 {micro}m. The loaded sieves were weighed before and after drying to obtain wet and dry particle size distributions. Knowledge of the particle size distribution is needed to design and predict the performance of the systems that will be used to retrieve, transport, and recover sludge. Also, sieving provides an opportunity to observe the components in the sludge. For example, during sieving of the sludge sample from the North Loadout Pit, significant quantities of organic ion exchange beads were observed. The uranium metal content and the particle size of the uranium metal in the K Basin sludge will largely determine the chemical reactivity of the sludge. In turn, the designs for the sludge handling and storage systems must be compatible with the reactivity of the sludge. Therefore, acid calorimetry was performed to estimate the uranium metal content of the sludge. For this testing, sludge samples were dissolved in nitric acid within a calibrated adiabatic calorimeter. The resulting dissolution enthalpy data were then used to discriminate between metallic uranium ({minus}3750 J/g in nitric acid) and uranium oxide ({minus}394 J/g in nitric acid). Results from this testing showed that the single-pull sludge samples contained little or no uranium metal.

  4. Influence of acid functionalization on the cardiopulmonary toxicity of carbon nanotubes and carbon black particles in mice

    SciTech Connect

    Tong Haiyan McGee, John K.; Saxena, Rajiv K.; Kodavanti, Urmila P.; Devlin, Robert B.; Gilmour, M. Ian

    2009-09-15

    Engineered carbon nanotubes are being developed for a wide range of industrial and medical applications. Because of their unique properties, nanotubes can impose potentially toxic effects, particularly if they have been modified to express functionally reactive chemical groups on their surface. The present study was designed to evaluate whether acid functionalization (AF) enhanced the cardiopulmonary toxicity of single-walled carbon nanotubes (SWCNT) as well as control carbon black particles. Mice were exposed by oropharyngeal aspiration to 10 or 40 {mu}g of saline-suspended single-walled carbon nanotubes (SWCNTs), acid-functionalized SWCNTs (AF-SWCNTs), ultrafine carbon black (UFCB), AF-UFCB, or 2 {mu}g LPS. 24 hours later, pulmonary inflammatory responses and cardiac effects were assessed by bronchoalveolar lavage and isolated cardiac perfusion respectively, and compared to saline or LPS-instilled animals. Additional mice were assessed for histological changes in lung and heart. Instillation of 40 {mu}g of AF-SWCNTs, UFCB and AF-UFCB increased percentage of pulmonary neutrophils. No significant effects were observed at the lower particle concentration. Sporadic clumps of particles from each treatment group were observed in the small airways and interstitial areas of the lungs according to particle dose. Patches of cellular infiltration and edema in both the small airways and in the interstitium were also observed in the high dose group. Isolated perfused hearts from mice exposed to 40 {mu}g of AF-SWCNTs had significantly lower cardiac functional recovery, greater infarct size, and higher coronary flow rate than other particle-exposed animals and controls, and also exhibited signs of focal cardiac myofiber degeneration. No particles were detected in heart tissue under light microscopy. This study indicates that while acid functionalization increases the pulmonary toxicity of both UFCB and SWCNTs, this treatment caused cardiac effects only with the AF

  5. Chemical evolution of multicomponent aerosol particles during evaporation

    NASA Astrophysics Data System (ADS)

    Zardini, Alessandro; Riipinen, Ilona; Pagels, Joakim; Eriksson, Axel; Worsnop, Douglas; Switieckli, Erik; Kulmala, Markku; Bilde, Merete

    2010-05-01

    , Environmental. Science and Technology, 37, 2003. 5. Koponen I.K., et al.: Thermodynamic properties of malonic, succinic, and glutaric acids: Evaporation rates and saturation vapor pressures. Environmental Science and Technology, 41, 2007. 4. Zardini A.A., et al.: White light Mie resonance spectroscopy used to measure very low vapor pressures of substances in aqueous solution aerosol particles. Optics Express, 14, 2006. 3. Zardini A.A. and Krieger, U.K.: Evaporation kinetics of a non-spherical, levitated aerosol particle using optical resonance spectroscopy for precision sizing. Optics Express, 17, 2009. 6. Riipinen, I., et al.: Adipic and Malonic Acid Aqueous Solutions: Surface Tensions and Saturation Vapor Pressures, J. Phys. Chem., 111, 2007.

  6. Use of submitochondrial particle (SMP) assays for assessing wetlands constructed for sequestering acid mine runoff

    SciTech Connect

    Bettermann, A.D.; Haahr, J.E.; Lazorchak, J.M.

    1995-12-31

    Use of constructed wetlands to sequester metals from acid mine drainage is part of a USEPA SITE demonstration at Burleigh Tunnel near Silverplume, Colorado. Samples are collected on a seasonal basis for toxicity evaluation of two different pilot treatment systems. Water samples were obtained from the outflow of two experimental wetland cells utilizing either upflow and downflow treatment, as well as upstream and downstream of the discharge of Burleigh Tunnel to Clear Creek. Submitochondrial Particle (SMP), Ceriodaphnia dubia and Pimephales promelas acute bioassays were used to evaluate the water quality. The SMP bioassay is based on the electron transfer complex derived from mitochondria. Toxic responses result from subcellular perturbations of various subsets of enzyme systems contained in the complex. In prior work, a 0.79 r{sup 2} was reported between the SMP bioassay and P. promelas for 11 inorganics on the EPA Priority Pollutant list. The SMP bioassay provided data consistent with the whole organism results. The two most toxic samples: the Burleigh outflow, and the Clear Creek Upstream sample, gave C. dubia LC50s of 1.01% and 8.41%, respectively. The Burleigh outflow P. promelas LC50 was 1.55%. SMP EC50s for the Burleigh outflow and the Clear Creek Upstream sample were 0.63% and 1.63%, respectively. As the SMP bioassay requires 1 hour to run and costs approximately 1/10th of whole organism assays, it was feasible to determine EC50 values for 7 samples vs. the two sample LC50s determined using whole organism assays. The SMP bioassays can provide sufficient sampling density, at low cost, allowing effective delineation of wetland performance over time.

  7. Chemical surface modification of calcium carbonate particles with stearic acid using different treating methods

    NASA Astrophysics Data System (ADS)

    Cao, Zhi; Daly, Michael; Clémence, Lopez; Geever, Luke M.; Major, Ian; Higginbotham, Clement L.; Devine, Declan M.

    2016-08-01

    Calcium carbonate (CaCO3) is often treated with stearic acid (SA) to decrease its polarity. However, the method of application of the SA treatments has a strong influence on CaCO3 thermoplastic composite's interfacial structure and distribution. Several of papers describe the promising effects of SA surface treatment, but few compare the treatment process and its effect on the properties of the final thermoplastic composite. In the current study, we assessed a new SA treatment method, namely, complex treatment for polymer composite fabrication with HDPE. Subsequently, a comparative study was performed between the "complex" process and the other existing methods. The composites were assessed using different experiments included scanning electron microscopy (SEM), void content, density, wettability, differential scanning calorimetry (DSC), and tensile tests. It was observed that the "complex" surface treatment yielded composites with a significantly lower voids content and higher density compared to other surface treatments. This indicates that after the "complex" treatment process, the CaCO3 particles and HDPE matrix are more tightly packed than other methods. DSC and wettability results suggest that the "wet" and "complex" treated CaCO3 composites had a significantly higher heat of fusion and moisture resistance compared to the "dry" treated CaCO3 composites. Furthermore, "wet" and "complex" treated CaCO3 composites have a significantly higher tensile strength than the composites containing untreated and "dry" treated CaCO3. This is mainly because the "wet" and "complex" treatment processes have increased adsorption density of stearate, which enhances the interfacial interaction between matrix and filler. These results confirm that the chemical adsorption of the surfactant ions at the solid-liquid interface is higher than at other interface. From this study, it was concluded that the utilization of the "complex" method minimised the negative effects of void

  8. Gas/particle partitioning of low-molecular-weight dicarboxylic acids at a suburban site in Saitama, Japan

    NASA Astrophysics Data System (ADS)

    Bao, Linfa; Matsumoto, Mariko; Kubota, Tsutomu; Sekiguchi, Kazuhiko; Wang, Qingyue; Sakamoto, Kazuhiko

    2012-02-01

    Low-molecular-weight dicarboxylic acids (diacids) exhibit semivolatile behavior in the atmosphere, but their partitioning between the gaseous and particulate phases is still unclear. An annular denuder-filter pack system with a cyclone PM 2.5 was employed to investigate the gaseous and particulate phase concentrations of diacids, with high collection efficiency of most target compounds. Saturated diacids, unsaturated diacids, ketocarboxylic acids, and dicarbonyls were determined in gaseous and particulate samples collected from a suburban site in Japan, during 2007 summer, 2008 late-winter and early-winter. The concentrations of gaseous and particulate diacids in early-winter were lower than those in summer, but higher than those in late-winter. Individual diacid in gaseous phase showed a relatively good correlation with ambient oxidants, but a low correlation with NO gas (a primary pollutant). Particulate fraction to the total amount ( FP) of individual acid was larger in winter than in summer, and also was larger at night than in the daytime. In the same sample, individual diacid and ketocarboxylic acid had higher particulate phase occurrence ( FP > 56% in summer), whereas unsaturated diacid had higher gaseous phase occurrence ( FP < 18% in summer). In summer, gas/particle partitioning of diacids varied diurnally; FP values of oxalic and glyoxylic acids increased from their lowest values in the morning to their highest values at night, exhibiting the similar diurnal variation of relative humidity in the atmosphere. The higher humidity at night may lead to the formation of droplets in which water-soluble gaseous phases can dissolve, thus promoting gas-to-particle conversion. These results suggest that gas/particle partitioning of diacids depends not only on the concentrations in the gaseous phase by photochemical oxidation, but also on the characteristics of the atmosphere (e.g., temperature, sunlight, and relative humidity) and the aerosols (e.g., acidity

  9. Dynamic encapsulation of hydrophilic nisin in hydrophobic poly (lactic acid) particles with controlled morphology by a single emulsion process.

    PubMed

    Ji, Shaowen; Lu, Jue; Liu, Zhiguo; Srivastava, Devesh; Song, Anna; Liu, Yan; Lee, Ilsoon

    2014-06-01

    Hydrophilic nisin-loaded hydrophobic poly (lactic acid) (PLA) particles with controlled size and shape were successfully produced utilizing a one-step single emulsification method. Preliminary shear stress and temperature tests showed that there was no significant loss in the nisin inhibition activity during this process. PLA/nisin composite particles were prepared into solid nanocomposite spheres (50-200 nm) or hollow microcomposite spheres (1-5 μm) under the operative conditions developed in our previous study, in which the hydrophilic nisin in the aqueous phase solution could be entrapped in the hydrophobic polymer in the emulsification process generating either single or multiple emulsions. The incorporation of nisin in PLA had little effect on key processing conditions, which allows the dynamic control of the morphology and property of resulting particles. Microscopic and surface analyses suggested that nisin was dispersed uniformly inside the polymer matrix and adsorbed on the particle surface. The encapsulation amount and efficiency were enhanced with the increase in nisin loading in the aqueous solution. Unique reversible control of particle size and shape by this process was successfully applied in the nisin encapsulation. Alternating temperature in the repeating emulsification steps improved the encapsulation efficiency while generated particles in desired size and shape.

  10. GC/MS method for the determination of adipate plasticizers in ham sausage and its application to kinetic and penetration studies.

    PubMed

    Wei, D Y; Wang, M L; Guo, Z Y; Wang, S; Li, H L; Zhang, H N; Gai, P P

    2009-06-01

    A GC/MS method was developed and successfully validated for the determination of adipate plasticizers in ham sausage migrated from polyvinylidene chloride (PVDC) packaging film. The sample pretreatment includes liquid extraction, solvent evaporation, and reconstitution before and after solid phase extraction (SPE). For the 5 adipate plasticizers studied, the SPE process with Oasis MAX cartridge showed an extraction efficiency from 85.7% to 106%, and the calibration curves are all linear in the range of 5 to 1000 ng/g with correlation coefficients greater than 0.998. The method proved to be accurate and precise; the average intraday recovery ranges from 85.4% to 114.6% with a %CV value from 2.5 to 11.3, and the average interday recovery from 83.6% to 118.5% with a %CV value from 2.8 to 15.6, respectively, for the adipate plasticizers. The method is sensitive and was effectively applied in the kinetic and penetration studies of the adipate plasticizers migrating from food-grade PVDC packaging film into ham sausage. The experimental data showed that approximately 6.8% of dibutyl adipate (DBA) in the packaging film migrated into the ham sausage in 4 mo and the migration reached the innermost portion of the sausage in 6 mo.

  11. Poly(lactic acid) and poly(lactic-co-glycolic acid) particles as versatile carrier platforms for vaccine delivery.

    PubMed

    Pavot, Vincent; Berthet, Morgane; Rességuier, Julien; Legaz, Sophie; Handké, Nadège; Gilbert, Sarah C; Paul, Stéphane; Verrier, Bernard

    2014-12-01

    The development of safe and effective vaccines for cancer and infectious diseases remains a major goal in public health. Over the last two decades, controlled release of vaccine antigens and immunostimulant molecules has been achieved using nanometer or micron-sized delivery vehicles synthesized using biodegradable polymers. In addition to achieving a depot effect, enhanced vaccine efficacy using such delivery vehicles has been attributed to efficient targeting of antigen presenting cells such as dendritic cells. Biodegradable and biocompatible poly(lactic acid) and poly(lactic-co-glycolic acid) polymers belong to one such family of polymers that have been a popular choice of material used in the design of these delivery vehicles. This review summarizes research findings from ourselves and others highlighting the promise of poly(lactic acid)- and poly(lactic-co-glycolic acid)-based vaccine carriers in enhancing immune responses.

  12. Computational Study on the Effect of Hydration on New Particle Formation in the Sulfuric Acid/Ammonia and Sulfuric Acid/Dimethylamine Systems.

    PubMed

    Henschel, Henning; Kurtén, Theo; Vehkamäki, Hanna

    2016-03-24

    The formation of new particles through condensation from the gas phase is an important source of atmospheric aerosols. The properties of the electrically neutral clusters formed in the very first steps of the condensation process are, however, not directly observable by experimental means. We present here electronic structure calculations on the hydrates of clusters of three molecules of sulfuric acid and three molecules of ammonia or dimethylamine. On the basis of the results of these new calculations together with previously published material we simulate the influence of hydration on the dynamic processes involved in particle formation. Most strongly affected by hydration and most important as a mediator for the effect on particle formation rates are the evaporation rates of clusters. The results give an estimate of the sensitivity of the atmospheric particle formation rate for humidity. The particle formation rate can change approximately two orders of magnitude in either direction due to hydration; the net effect, however, is highly dependent on the exact conditions. PMID:26918813

  13. Computational Study on the Effect of Hydration on New Particle Formation in the Sulfuric Acid/Ammonia and Sulfuric Acid/Dimethylamine Systems.

    PubMed

    Henschel, Henning; Kurtén, Theo; Vehkamäki, Hanna

    2016-03-24

    The formation of new particles through condensation from the gas phase is an important source of atmospheric aerosols. The properties of the electrically neutral clusters formed in the very first steps of the condensation process are, however, not directly observable by experimental means. We present here electronic structure calculations on the hydrates of clusters of three molecules of sulfuric acid and three molecules of ammonia or dimethylamine. On the basis of the results of these new calculations together with previously published material we simulate the influence of hydration on the dynamic processes involved in particle formation. Most strongly affected by hydration and most important as a mediator for the effect on particle formation rates are the evaporation rates of clusters. The results give an estimate of the sensitivity of the atmospheric particle formation rate for humidity. The particle formation rate can change approximately two orders of magnitude in either direction due to hydration; the net effect, however, is highly dependent on the exact conditions.

  14. Particle phase distribution of polycyclic aromatic hydrocarbons in stormwater--Using humic acid and iron nano-sized colloids as test particles.

    PubMed

    Nielsen, Katrine; Kalmykova, Yuliya; Strömvall, Ann-Margret; Baun, Anders; Eriksson, Eva

    2015-11-01

    The distribution of polycyclic aromatic hydrocarbons (PAHs) in different particulate fractions in stormwater: Total, Particulate, Filtrated, Colloidal and Dissolved fractions, were examined and compared to synthetic suspensions of humic acid colloids and iron nano-sized particles. The distribution of low-molecular weight PAHs (LMW PAHs), middle-molecular weight PAHs (MMW PAHs) and high-molecular weight PAHs (HMW PAHs) among the fractions was also evaluated. The results from the synthetic suspensions showed that the highest concentrations of the PAHs were found in the Filtrated fractions and, surprisingly, high loads were found in the Dissolved fractions. The PAHs identified in stormwater in the Particulate fractions and Dissolved fractions follow their hydrophobic properties. In most samples >50% of the HMW PAHs were found in the Particulate fractions, while the LMW and MMW PAHs were found to a higher extent in the Filtrated fractions. The highest concentrations of PAHs were present in the stormwater with the highest total suspended solids (TSS); the relative amount of the HMW PAHs was highest in the Particulate fractions (particles>0.7 μm). The highest concentration of PAHs in the Colloidal fraction was found in the sample with occurrence of small nano-sized particles (<10nm). The results show the importance of developing technologies that both can manage particulate matter and effectively remove PAHs present in the Colloidal and Dissolved fractions in stormwater.

  15. Humic Acid Effects on the Transport of Colloidal Particles in Unsaturated Porous Media: Humic Acid Dosage, pH, and Ionic Strength Dependence

    NASA Astrophysics Data System (ADS)

    Morales, V. L.; Gao, B.; Steenhuis, T. S.

    2008-12-01

    Soil colloids and biocolloids can facilitate contaminant transport within the soil profile through the complexation of pollutants previously thought to have limited mobility. Dissolved organic substances are qualitatively known to alter the behavior of colloids and surface chemistry of soil particles in aquatic environments when adsorbed to their surfaces. Specifically, it has been observed that even small amounts of adsorbed humic acids result in a pronounced increase in colloid mobility in saturated porous systems, presumably by a combination of electrostatic and steric stabilization. However, the degree to which adsorbed humic acids stabilize colloidal suspension is highly sensitive to the system's solution chemistry; mainly in terms of pH, ionic strength, and metal ions present. The objective of this study is to expound quantitatively on the role that combined stabilizing and destabilizing solution chemistry components have on humic acid-colloid transport in unsaturated media by isolating experimentally some underlying mechanisms that regulate colloid transport in realistic aquatic systems. We hypothesize that in chemically heterogeneous porous media, with ionic strength values above 0 and pH ranges from 4 to 9, the effect of humic acid on colloid suspensions cannot be simply characterized by increased stability and mobility. That a critical salt concentration must exists for a given humic acid concentration and pH, above which the network of humic acid collapses by forming coordination complexes with other suspended or adsorbed humic acids, thus increasing greatly the retention of colloids in the porous medium by sweep flocculation. In addition, capillary forces in unsaturated media may contribute further to overcome repulsive forces that prevent flocculation of humic acid-colloid complexes. The experimental work in this study will include: jar tests to determine critical solution concentration combinations for desired coagulation/flocculation rates, column

  16. Di-(2-ethylhexyl) adipate in selected total diet food composite samples.

    PubMed

    Cao, Xu-Liang; Zhao, Wendy; Churchill, Robin; Dabeka, Robert

    2013-11-01

    Polyvinyl chloride (PVC) food-wrapping films plasticized with di-(2-ethylhexyl) adipate (DEHA) are commonly used by grocery stores in Canada to rewrap meat, poultry, fish, cheese, and other foods. DEHA was assessed as part of the Government of Canada's Chemicals Management Plan. The main source of exposure for most age groups was expected to be food. Although the margin of exposure from food and beverages is considered to be adequately protective, the Government of Canada committed to performing targeted surveys of DEHA in foods and food packaging materials to better define Canadian exposure to DEHA through dietary intake. In order to determine whether more-comprehensive targeted surveys on DEHA in foods should be conducted, 26 food composite samples from the 2011 Canadian total diet study were selected and analyzed for DEHA using a method based on solvent and dispersive solid-phase extraction and gas chromatography-mass spectrometry. These 26 food composites include cheese, meat, poultry, fish, and fast foods, and PVC films were likely used in packaging the individual foods used to make the composites. DEHA was detected in most of the meat, poultry, and fish composite samples, with the highest concentration found in ground beef (11 μg/g), followed by beef steak (9.9 μg/g), freshwater fish (7.8 μg/g), poultry liver pâté (7.4 μg/g), fresh pork (6.9 μg/g), cold cuts and luncheon meats (2.8 μg/g), veal cutlets (2.1 μg/g), roast beef (1.3 μg/g), lamb (1.2 μg/g), and organ meats (0.20 μg/g). Targeted surveys should be conducted to investigate the presence of DEHA in various foods packaged with PVC films in more detail and provide updated occurrence data for accurate human exposure assessment.

  17. Determination of phthalates and adipate in bottled water by headspace solid-phase microextraction and gas chromatography/mass spectrometry.

    PubMed

    Cao, Xu-Liang

    2008-01-18

    The performance of three fibres for the headspace solid-phase microextraction (SPME) of di-2-ethylhexyl adipate (DEHA) and eight phthalates in water was investigated systematically under different extraction conditions. Good responses on the 65 microm polydimethylsiloxane/divinylbenzene (PDMS/DVB) SPME fibre were observed for DEHA and all phthalates. The polydimethylsiloxane (PDMS) SPME fibre had very poor responses for the lighter and slightly polar phthalates, dimethyl phthalate (DMP) and diethyl phthalate (DEP), while the divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) SPME fibre had very poor responses for the heavier and non-polar adipate and phthalates. The salt (NaCl) was found to increase the partitioning of DMP, DEP, diisobutyl phthalate (DiBP), di-n-butyl phthalate, and benzyl butyl phthalate (BBP) from water into the headspace, while partitioning of heavier adipate and phthalates from water into headspace was suppressed when the concentration of NaCl was above 10%. The automated headspace SPME methods were developed and validated under two different salting conditions (30% NaCl for DMP, DEP and BBP, and 10% for DEHA, DiBP, DBP, di-n-hexyl phthalate (DHP), di-2-ethylhexyl phthalate (DEHP), and di-n-octyl phthalate (DOP)). Linearity with R(2) values better than 0.9949 was observed for DEHA and eight phthalates over the range from 0.1 to 20 microg L(-1). Method detection limits ranged from 0.003 microg L(-1) for DOP to 0.085 microg L(-1) for BBP. Good repeatability was observed for DEHA and most phthalates with relative standard deviation (RSD) values less than 10%. The methods were used to analyse bottled water samples for DEHA and eight phthalates. DMP, DHP, BBP, DEHA and DOP were not detected in any samples. Concentrations of the other phthalates were low (around sub-ppb) except for DBP in the water from a polycarbonate bottle at 1.72 microg L(-1).

  18. 76 FR 7703 - 1,4-Benzenedicarboxylic Acid, Dimethyl Ester, Polymer With 1,4-Butanediol, Adipic Acid, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-11

    ...) 305-5805. II. Petition for Exemption In the Federal Register of October 22, 2010 (75 FR 65321) (FRL... Review (58 FR 51735, October 4, 1993). Because this final rule has been exempted from review under... Regulations That Significantly Affect Energy Supply, Distribution, or Use (66 FR 28355, May 22, 2001)...

  19. Anacardic Acids from Cashew Nuts Ameliorate Lung Damage Induced by Exposure to Diesel Exhaust Particles in Mice

    PubMed Central

    Carvalho, Ana Laura Nicoletti; Annoni, Raquel; Torres, Larissa Helena Lobo; Durão, Ana Carolina Cardoso Santos; Shimada, Ana Lucia Borges; Almeida, Francine Maria; Hebeda, Cristina Bichels; Lopes, Fernanda Degobbi Tenorio Quirino Santos; Dolhnikoff, Marisa; Martins, Milton Arruda; Silva, Luiz Fernando Ferraz; Farsky, Sandra Helena Poliselli; Saldiva, Paulo Hilário Nascimento; Ulrich, Cornelia M.; Owen, Robert W.; Marcourakis, Tania; Trevisan, Maria Teresa Salles; Mauad, Thais

    2013-01-01

    Anacardic acids from cashew nut shell liquid, a Brazilian natural substance, have antimicrobial and antioxidant activities and modulate immune responses and angiogenesis. As inflammatory lung diseases have been correlated to environmental pollutants exposure and no reports addressing the effects of dietary supplementation with anacardic acids on lung inflammation in vivo have been evidenced, we investigated the effects of supplementation with anacardic acids in a model of diesel exhaust particle- (DEP-) induced lung inflammation. BALB/c mice received an intranasal instillation of 50 μg of DEP for 20 days. Ten days prior to DEP instillation, animals were pretreated orally with 50, 150, or 250 mg/kg of anacardic acids or vehicle (100 μL of cashew nut oil) for 30 days. The biomarkers of inflammatory and antioxidant responses in the alveolar parenchyma, bronchoalveolar lavage fluid (BALF), and pulmonary vessels were investigated. All doses of anacardic acids ameliorated antioxidant enzyme activities and decreased vascular adhesion molecule in vessels. Animals that received 50 mg/kg of anacardic acids showed decreased levels of neutrophils and tumor necrosis factor in the lungs and BALF, respectively. In summary, we demonstrated that AAs supplementation has a potential protective role on oxidative and inflammatory mechanisms in the lungs. PMID:23533495

  20. Anacardic acids from cashew nuts ameliorate lung damage induced by exposure to diesel exhaust particles in mice.

    PubMed

    Carvalho, Ana Laura Nicoletti; Annoni, Raquel; Torres, Larissa Helena Lobo; Durão, Ana Carolina Cardoso Santos; Shimada, Ana Lucia Borges; Almeida, Francine Maria; Hebeda, Cristina Bichels; Lopes, Fernanda Degobbi Tenorio Quirino Santos; Dolhnikoff, Marisa; Martins, Milton Arruda; Silva, Luiz Fernando Ferraz; Farsky, Sandra Helena Poliselli; Saldiva, Paulo Hilário Nascimento; Ulrich, Cornelia M; Owen, Robert W; Marcourakis, Tania; Trevisan, Maria Teresa Salles; Mauad, Thais

    2013-01-01

    Anacardic acids from cashew nut shell liquid, a Brazilian natural substance, have antimicrobial and antioxidant activities and modulate immune responses and angiogenesis. As inflammatory lung diseases have been correlated to environmental pollutants exposure and no reports addressing the effects of dietary supplementation with anacardic acids on lung inflammation in vivo have been evidenced, we investigated the effects of supplementation with anacardic acids in a model of diesel exhaust particle- (DEP-) induced lung inflammation. BALB/c mice received an intranasal instillation of 50  μ g of DEP for 20 days. Ten days prior to DEP instillation, animals were pretreated orally with 50, 150, or 250 mg/kg of anacardic acids or vehicle (100  μ L of cashew nut oil) for 30 days. The biomarkers of inflammatory and antioxidant responses in the alveolar parenchyma, bronchoalveolar lavage fluid (BALF), and pulmonary vessels were investigated. All doses of anacardic acids ameliorated antioxidant enzyme activities and decreased vascular adhesion molecule in vessels. Animals that received 50 mg/kg of anacardic acids showed decreased levels of neutrophils and tumor necrosis factor in the lungs and BALF, respectively. In summary, we demonstrated that AAs supplementation has a potential protective role on oxidative and inflammatory mechanisms in the lungs.

  1. Reaction of oleic acid particles with NO3 radicals: Products, mechanism, and implications for radical-initiated organic aerosol oxidation.

    PubMed

    Docherty, Kenneth S; Ziemann, Paul J

    2006-03-16

    The heterogeneous reaction of liquid oleic acid aerosol particles with NO3 radicals in the presence of NO2, N2O5, and O2 was investigated in an environmental chamber using a combination of on-line and off-line mass spectrometric techniques. The results indicate that the major reaction products, which are all carboxylic acids, consist of hydroxy nitrates, carbonyl nitrates, dinitrates, hydroxydinitrates, and possibly more highly nitrated products. The key intermediate in the reaction is the nitrooxyalkylperoxy radical, which is formed by the addition of NO3 to the carbon-carbon double bond and subsequent addition of O2. The nitrooxyalkylperoxy radicals undergo self-reactions to form hydroxy nitrates and carbonyl nitrates, and may also react with NO2 to form nitrooxy peroxynitrates. The latter compounds are unstable and decompose to carbonyl nitrates and dinitrates. It is noteworthy that in this reaction nitrooxyalkoxy radicals appear not to be formed, as indicated by the absence of the expected products of decomposition or isomerization of these species. This is different from gas-phase alkene-NO3 reactions, in which a large fraction of the products are formed through these pathways. The results may indicate that, for liquid organic aerosol particles in low NOx environments, the major products of the radical-initiated oxidation (including by OH radicals) of unsaturated and saturated organic compounds will be substituted forms of the parent compound rather than smaller decomposition products. These compounds will remain in the particle and can potentially enhance particle hygroscopicity and the ability of particles to act as cloud condensation nuclei. PMID:16526637

  2. Gas-particle partitioning of organic acids during the Southern Oxidant and Aerosol Study (SOAS): measurements and modeling

    NASA Astrophysics Data System (ADS)

    Thompson, S.; Yatavelli, R.; Stark, H.; Kimmel, J.; Krechmer, J.; Day, D. A.; Isaacman, G. A.; Goldstein, A. H.; Khan, M. A. H.; Holzinger, R.; Lopez-Hilfiker, F.; Mohr, C.; Thornton, J. A.; Jayne, J. T.; Worsnop, D. R.; Jimenez, J. L.

    2014-12-01

    Gas-Particle partitioning measurements of organic acids were carried out during the Southern Oxidant and Aerosol Study (SOAS, June-July 2013) at the Centerville, AL Supersite in the Southeast US, a region with significant isoprene and terpene emissions. Organic acid measurements were made with a Chemical Ionization High Resolution Time-of-Flight Mass Spectrometer (HRToF-CIMS) with a Filter Inlet for Gases and AEROsols (FIGAERO) and acetate (CH3COO-) as the reagent ion. We investigate both individual species and bulk organic acids and partitioning to organic and water phases in the aerosol. Measured partitioning is compared to data from three other instruments that can also quantify gas-particle partitioning with high time resolution: another HRToF-CIMS using iodide (I-) as the reagent ion to ionize acids and other highly oxidized compounds, a Semivolatile Thermal Desorption Aerosol GC/MS (SV-TAG), and a Thermal Desorption Proton Transfer Time-of-Flight Mass Spectrometer (TD-PTRMS The partitioning measurements for three of the instruments are generally consistent, with results in the same range for most species and following similar temporal trends and diurnal cycles. The TD-PTRMS measures on average ½ the partitioning to the particle phase of the acetate CIMS. Both the measurements and the model of partitioning to the organic phase respond quickly to temperature, and the model agrees with the measured partitioning within the error of the measurement for multiple compounds, although many compounds do not match the modeled partitioning, especially at lower m/z. This discrepancy may be due to thermal decomposition of larger molecules into smaller ones when heated.

  3. In situ air-water and particle-water partitioning of perfluorocarboxylic acids, perfluorosulfonic acids and perfluorooctyl sulfonamide at a wastewater treatment plant.

    PubMed

    Vierke, Lena; Ahrens, Lutz; Shoeib, Mahiba; Palm, Wolf-Ulrich; Webster, Eva M; Ellis, David A; Ebinghaus, Ralf; Harner, Tom

    2013-08-01

    In situ measurements of air and water phases at a wastewater treatment plant (WWTP) were used to investigate the partitioning behavior of perfluorocarboxylic acids (PFCAs), perfluorosulfonic acids (PFSAs) and perfluorooctyl sulfonamide (HFOSA) and their conjugate bases (PFC(-)s, PFS(-)s, and FOSA(-), respectively). Particle-dissolved (Rd) and air-water (QAW) concentration ratios were determined at different tanks of a WWTP. Sum of concentrations of C4-12,14 PFC(A)s, C4,6,8,10 PFS(A)s and (H)FOSA were as high as 50 pg m(-3) (atmospheric gas phase), 2300 ng L(-1) (aqueous dissolved phase) and 2500 ng L(-1) (aqueous particle phase). Particle-dissolved concentration ratios of total species, log Rd, ranged from -2.9 to 1.3 for PFS(A)s, from -1.9 to 1.1 for PFC(A)s and was 0.71 for (H)FOSA. These field-based values agree well with equilibrium partitioning data reported in the literature, suggesting that any in situ generation from precursors, if they are present in this system, occurs at a slower rate than the rate of approach to equilibrium. Acid QAW were also estimated. Good agreement between the QAW and the air-water equilibrium partition coefficient for C8PFCA suggests that the air above the WWTP tanks is at or near equilibrium with the water. Uncertainties in these QAW values are attributed mainly to variability in pKa values reported in the literature. The WWTP provides a unique environment for investigating environmental fate processes of the PFCAs and PFSAs under 'real' conditions in order to better understand and predict their fate in the environment.

  4. Scavenging of pollutant acid substances by Asian mineral dust particles - article no. L07816

    SciTech Connect

    Matsumoto, J.; Takahashi, K.; Matsumi, Y.; Yabushita, A.; Shimizu, A.; Matsui, I.; Sugimoto, N.

    2006-04-13

    Uptakes of sulfate and nitrate onto Asian dust particles during transport from the Asian continent to the Pacific Ocean were analyzed by using a single-particle time-of-flight mass spectrometer. Observation was conducted at Tsukuba in Japan in the springtime of 2004. Sulfate-rich dust particles made their largest contribution during the 'dust event' in the middle of April 2004. As a result of detailed analysis including backward trajectory calculations, it was confirmed that sulfate components originating from coal combustion in the continent were internally mixed with dust particles. Even in the downstream of the outflow far from the continental coastline, significant contribution of Asian dust to sulfate was observed. Asian dust plays critical roles as the carrier of sulfate over the Pacific Ocean.

  5. Gold Nanoparticle Clusters in Quasinematic Layers of Liquid-Crystalline Dispersion Particles of Double-Stranded Nucleic Acids

    PubMed Central

    Yevdokimov, Yu.M.; Salyanov, V.I.; Katz, E.I.; Skuridin, S.G.

    2012-01-01

    The interaction between gold nanoparticles and particles of cholesteric liquid-crystalline dispersions formed by double-stranded DNA and poly(I)×poly(C) molecules is considered. It is shown that small-sized (~ 2 nm) gold nanoparticles induce two different structural processes. First, they facilitate the reorganization of the spatial cholesteric structure of the particles into a nematic one. This process is accompanied by a fast decrease in the amplitude of an abnormal band in the CD spectrum. Second, they induce cluster formation in a “free space” between neighboring nucleic acid molecules fixed in the structure of the quasinematic layers of liquid-crystalline particles. This process is accompanied by slow development of the surface plasmon resonance band in the visible region of the absorption spectrum. Various factors influencing these processes are outlined. Some assumptions concerning the possible mechanism(s) of fixation of gold nanoparticles between the neighboring double-stranded nucleic acid molecules in quasinematic layers are formulated. PMID:23346383

  6. Synthesis of multifunctional Ag@Au@phenol formaldehyde resin particles loaded with folic acids for photothermal therapy.

    PubMed

    Yang, Ping; Xu, Qi-Zhi; Jin, Sheng-Yu; Lu, Yang; Zhao, Yang; Yu, Shu-Hong

    2012-07-23

    Multifunctional Ag@Au@ phenol formaldehyde resin (PFR) particles loaded with folic acids (FA) have been designed for killing tumor cells through photothermy conversion under the irradiation of near-infrared (NIR) light. Possessing the virtue of good fluorescence, low toxicity, and good targeting, the nanocomposite consists of an Ag core, an Au layer, a PFR shell, and folic acids on the PFR shell. The Ag@PFR core-shell structure can be prepared with a simple hydrothermal method after preheating. We then filled the PFR shell with a layer of Au by heating and modified the shell with polyelectrolyte to change its surface charge state. To capture tumor cells actively, FA molecules were attached onto the surface of the Ag@Au@PFR particles in the presence of 1-ethyl-3-(3-dimethly aminopropyl) carbodiimide (EDAC) and N-hydroxysuccinimide (NHS). Owing to the excellent property of Au NPs and Ag NPs as photothermal conversion agents, the Ag@Au@ PFR@FA particles can be utilized to kill tumor cells when exposed to NIR light.

  7. Heterogeneous Chemistry of Individual Mineral Dust Particles with Nitric Acid. A Combined CCSEM/EDX, ESEM AND ICP-MS Study

    SciTech Connect

    Laskin, Alexander; Wietsma, Thomas W.; Krueger, Brenda J.; Grassian, Vicki H.

    2005-05-26

    The heterogeneous chemistry of individual dust particles from four authentic dust samples with gas-phase nitric acid was investigated in this study. Morphology and compositional changes of individual particles as they react with nitric acid were observed using conventional scanning electron microscopy with energy dispersive analysis of X-rays (SEM/EDX) and computer controlled SEM/EDX. Environmental Scanning Electron Microscopy (ESEM) was utilized to investigate the hygroscopic behavior of mineral dust particles reacted with nitric acid. Differences in the reactivity of mineral dust particles from these four different dust source regions with nitric acid were observed. Mineral dust from source regions containing high levels of calcium, namely China loess dust and Saudi coastal dust, were found to react to the greatest extent.

  8. Gallic Acid Production with Mouldy Polyurethane Particles Obtained from Solid State Culture of Aspergillus niger GH1.

    PubMed

    Mata-Gómez, Marco; Mussatto, Solange I; Rodríguez, Raul; Teixeira, Jose A; Martinez, Jose L; Hernandez, Ayerim; Aguilar, Cristóbal N

    2015-06-01

    Gallic acid production in a batch bioreactor was evaluated using as catalytic material the mouldy polyurethane solids (MPS) obtained from a solid-state fermentation (SSF) bioprocess carried out for tannase production by Aspergillus niger GH1 on polyurethane foam powder (PUF) with 5 % (v/w) of tannic acid as inducer. Fungal biomass, tannic acid consumption and tannase production were kinetically monitored. SSF was stopped when tannase activity reached its maximum level. Effects of washing with distilled water and drying on the tannase activity of MPS were determined. Better results were obtained with dried and washed MPS retaining 84 % of the tannase activity. Maximum tannase activity produced through SSF after 24 h of incubation was equivalent to 130 U/gS with a specific activity of 36 U/mg. The methylgallate was hydrolysed (45 %) in an easy, cheap and fast bioprocess (30 min). Kinetic parameters of tannase self-immobilized on polyurethane particles were calculated to be 5 mM and 04.1 × 10(-2) mM/min for K M and V max, respectively. Results demonstrated that the MPS, with tannase activity, can be successfully used for the production of the antioxidant gallic acid from methyl-gallate substrate. Direct use of PMS to produce gallic acid can be advantageous as no previous extraction of enzyme is required, thus reducing production costs.

  9. Products of the radical initiated oxidation of model solid and liquid organic acid particles in simulated "clean" and "polluted" environments.

    NASA Astrophysics Data System (ADS)

    Renbaum, L. H.; Smith, G. D.

    2009-05-01

    Using a flow tube reactor coupled to a chemical ionization mass spectrometer, the Cl-initiated oxidation of solid and supercooled liquid organic acid particles were investigated at 293 K. In creating aerosols of species which are able to be supercooled or solid at room temperature, it is possible to distinguish the effect of phase on particle reactivity and product formation. In a clean atmosphere, where there are negligible concentrations of NOx, the primary fate of peroxy radicals (formed from H-abstraction by Cl and OH radicals in the presence of O2) are their reactions to form ketone and alcohol products. These products are then able to undergo further oxidation to form multiply oxidized products. The formation of low-molecular weight volatile species may also be important in the oxidative aging of organic aerosols, however neither the mechanism of their formation nor their formation yields are well understood. We have shown that, for equivalent Cl exposures, more multiply-oxidized species as well as more low-molecular-weight species were created from the oxidation of solid particles than from liquid particles. The findings from these studies suggest that slower diffusion of the oxidation products in solid particles confines them to the surface where they continue to react with Cl radicals producing more-highly- functionalized products which may decompose more readily. By introducing nitric oxide to the flow tube reaction system, we show that in a polluted atmosphere, where NOx is present in significant concentrations, organic nitrate formation may become important on the surface of solid particles but not liquid particles as the RO2 are confined to the surface of solid particles (causing a enhanced localized concentration of RO2) where they may then react with ambient nitric oxide through the reaction RO2 + NO → RO2NO* → RONO2. These experiments of these model systems indicate that particle phase could be important in determining how organic aerosols

  10. Reversible transformation between α-oxo acids and α-amino acids on ZnS particles: a photochemical model for tuning the prebiotic redox homoeostasis

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Liu, Xiaoyang; Yang, Yanqiang; Su, Wenhui

    2013-01-01

    How prebiotic metabolic pathways could have formed is an essential question for the origins of life on early Earth. From the abiogenetic point of view, the emergence of primordial metabolism may be postulated as a continuum from Earth's geochemical processes to chemoautotrophic biochemical procedures on mineral surfaces. In the present study, we examined in detail the reversible amination of α-ketoglutarate on UV-irradiated ZnS particles under variable reaction conditions such as pH, temperature, hole scavenger species and concentrations, and different amino acids. It was observed that the reductive amination of α-ketoglutarate and the oxidative amination of glutamate were both effectively performed on ZnS surfaces in the presence and absence of a hole scavenger, respectively. Accordingly, a photocatalytic mechanism was proposed. The reversible photochemical reaction was more efficient under basic conditions but independent of temperature in the range of 30-60 °C. SO3 2- was more effective than S2- as the hole scavenger. Finally, we extended the glutamate dehydrogenase-like chemistry to a set of other α-amino acids and their corresponding α-oxo acids and found that hydrophobic amino acid side chains were more conducive to the reversible redox reactions. Since the experimental conditions are believed to have been prevalent in shallow water hydrothermal vent systems of early Earth, the results of this work not only suggest that the ZnS-assisted photochemical reaction can regulate the redox equilibrium between α-amino acids and α-oxo acids, but also provide a model of how prebiotic metabolic homoeostasis could have been developed and regulated. These findings can advance our understanding of the establishment of archaic non-enzymatic metabolic systems and the origins of autotrophy.

  11. Fluorescent boronic acid polymer grafted on silica particles for affinity separation of saccharides.

    PubMed

    Xu, Zhifeng; Uddin, Khan Mohammad Ahsan; Kamra, Tripta; Schnadt, Joachim; Ye, Lei

    2014-02-12

    Boronic acid affinity gels are important for effective separation of biological active cis-diols, and are finding applications both in biotech industry and in biomedical research areas. To increase the efficacy of boronate affinity separation, it is interesting to introduce repeating boronic acid units in flexible polymer chains attached on solid materials. In this work, we synthesize polymer brushes containing boronic acid repeating units on silica gels using surface-initiated atom transfer radical polymerization (ATRP). A fluorescent boronic acid monomer is first prepared from an azide-tagged fluorogenic boronic acid and an alkyne-containing acrylate by Cu(I)-catalyzed 1,3-dipolar cycloaddition reaction (the CuAAC click chemistry). The boronic acid monomer is then grafted to the surface of silica gel modified with an ATRP initiator. The obtained composite material contains boronic acid polymer brushes on surface and shows favorable saccharide binding capability under physiological pH conditions, and displays interesting fluorescence intensity change upon binding fructose and glucose. In addition to saccharide binding, the flexible polymer brushes on silica also enable fast separation of a model glycoprotein based on selective boronate affinity interaction. The synthetic approach and the composite functional material developed in this work should open new opportunities for high efficiency detection, separation, and analysis of not only simple saccharides, but also glycopeptides and large glycoproteins. PMID:24444898

  12. Fluorescent Boronic Acid Polymer Grafted on Silica Particles for Affinity Separation of Saccharides

    PubMed Central

    2014-01-01

    Boronic acid affinity gels are important for effective separation of biological active cis-diols, and are finding applications both in biotech industry and in biomedical research areas. To increase the efficacy of boronate affinity separation, it is interesting to introduce repeating boronic acid units in flexible polymer chains attached on solid materials. In this work, we synthesize polymer brushes containing boronic acid repeating units on silica gels using surface-initiated atom transfer radical polymerization (ATRP). A fluorescent boronic acid monomer is first prepared from an azide-tagged fluorogenic boronic acid and an alkyne-containing acrylate by Cu(I)-catalyzed 1,3-dipolar cycloaddition reaction (the CuAAC click chemistry). The boronic acid monomer is then grafted to the surface of silica gel modified with an ATRP initiator. The obtained composite material contains boronic acid polymer brushes on surface and shows favorable saccharide binding capability under physiological pH conditions, and displays interesting fluorescence intensity change upon binding fructose and glucose. In addition to saccharide binding, the flexible polymer brushes on silica also enable fast separation of a model glycoprotein based on selective boronate affinity interaction. The synthetic approach and the composite functional material developed in this work should open new opportunities for high efficiency detection, separation, and analysis of not only simple saccharides, but also glycopeptides and large glycoproteins. PMID:24444898

  13. Dual responsive dysprosium-doped hydroxyapatite particles and toxicity reduction after functionalization with folic and glucuronic acids.

    PubMed

    Sánchez Lafarga, Ana Karen; Pacheco Moisés, Fermín P; Gurinov, Andrey; Ortiz, Genaro Gabriel; Carbajal Arízaga, Gregorio Guadalupe

    2015-03-01

    The development of probes for biomedical applications demands materials with low toxicity levels besides fluorescence or magnetic properties to be detected by confocal microscopes or MRI resonators. Several drug delivery systems or other biomedical materials prepared with hydroxyapatite have been proposed, however, toxicity effects might arise when the size of particles is nanometric. In this study, hydroxyapatite functionalized with glucuronic or folic acids presented lower oxidative stress, measured from lipoperoxides and nitric oxide indicators in rats than pure hydroxyapatite. In separated experiments, hydroxyapatite was doped with dysprosium cations by coprecipitation producing a single crystal phase with fluorescent properties easily visualized by confocal microscopy when excited at 488nm. These particles also presented the ability to modify the proton relaxation time in T1 maps collected by magnetic resonance imaging. These modified hydroxyapatite nanoparticles could be candidates to design bimodal probes with low toxicity.

  14. Effect of 70-nm silica particles on the toxicity of acetaminophen, tetracycline, trazodone, and 5-aminosalicylic acid in mice.

    PubMed

    Li, X; Kondoh, M; Watari, A; Hasezaki, T; Isoda, K; Tsutsumi, Y; Yagi, K

    2011-04-01

    Exposure to nano-sized particles is increasing because they are used in a wide variety of industrial products, cosmetics, and pharmaceuticals. Some animal studies indicate that such nanomaterials may have some toxicity, but their synergistic actions on the adverse effects of drugs are not well understood. In this study, we investigated whether 70-nm silica particles (nSP70), which are widely used in cosmetics and drug delivery, affect the toxicity of a drug for inflammatory bowel disease (5-aminosalicylic acid), an antibiotic drug (tetracycline), an antidepressant drug (trazodone), and an antipyretic drug (acetaminophen) in mice. Co-administration of nSP70 with trazodone did not increase a biochemical marker of liver injury. In contrast, co-administration increased the hepatotoxicity of the other drugs. Co-administration of nSP70 and tetracycline was lethal. These findings indicate that evaluation of synergistic adverse effects is important for the application of nano-sized materials.

  15. Hydrothermal in situ preparation of TiO2 particles onto poly(lactic acid) electrospun nanofibres

    NASA Astrophysics Data System (ADS)

    Gupta, Kamal K.; Mishra, Pradeep K.; Srivastava, Pradeep; Gangwar, Mayank; Nath, Gopal; Maiti, Pralay

    2013-01-01

    The novel poly(lactic acid) (PLA)/TiO2 hybrid nanofibres are produced via electrospinning technique. Hydrolysed titanium precursor has been electrosprayed simultaneously on the continuous electrospun PLA nanofibres surface. The adhered amorphous titania has been transformed into TiO2 particle through hydrothermal treatment for different times. The phase structure has been worked out using XRD, FTIR, XPS and Raman spectroscopy. The predominant phase is anatase with a small extent of brookite phase after the hydrothermal treatment. The size and location of TiO2 particle have been determined using SEM micrographs. The orderness of the PLA crystallites has been checked using XRD patterns before and after hydrothermal treatment. UV absorption capability of the titania coated nanofibres has been enhanced to a significant level. The antimicrobial activity of the hybrids has been verified using two different microorganisms (gram negative Escherichia coli and gram positive Staphylococcus aureus bacteria) and 70% reduction of antimicrobial activity has been reported.

  16. Thermolysis characteristics of salts of o-phthalic acid with the formation of Fe, Co, Ni, Cu metal particles

    NASA Astrophysics Data System (ADS)

    Yudanova, L. I.; Logvinenko, V. A.; Yudanov, N. F.; Rudina, N. A.; Ishchenko, A. V.; Korol'kov, I. V.; Semyannikov, P. P.; Sheludyakova, L. A.; Alferova, N. I.

    2016-06-01

    Studies of the thermolysis of ortho-[Ni(H2O)2(C8H4O4)](H2O)2, [Cu(H2O)(C8H4O4)], and acid [M(H2O)6](C8H5O4)2 (M(II) = Fe(II), Co(II), and Ni(II)), [Cu(H2O)2(C8H5O4)2] phthalates reveal that the solid products of their decomposition are composites with nanoparticles embedded in carbon-polymer matrices. Metallic nanoparticles with oxide nanoparticle impurities are detected in iron/cobalt polymer composites, while nickel/copper composites are composed of only metallic particles. It is found that nickel nanoparticles with the diameters of 6-8 nm are covered with disordered graphene layers, while the copperbased composite matrix contains spherical conglomerates (50-200 nm) with numerous spherical Cu particles (5-10 nm).

  17. Understanding Particle Formation: Solubility of Free Fatty Acids as Polysorbate 20 Degradation Byproducts in Therapeutic Monoclonal Antibody Formulations.

    PubMed

    Doshi, Nidhi; Demeule, Barthélemy; Yadav, Sandeep

    2015-11-01

    The purpose of this work was to determine the aqueous solubilities at 2-8 °C of the major free fatty acids (FFAs) formed by polysorbate 20 (PS20) degradation and identify possible ways to predict, delay, or mitigate subsequent particle formation in monoclonal antibody (mAb) formulations. The FFA solubility limits at 2-8 °C were determined by titrating known amounts of FFA in monoclonal antibody formulations and identifying the FFA concentration leading to visible and subvisible particle formation. The solubility limits of lauric, myristic, and palmitic acids at 2-8 °C were 17 ± 1 μg/mL, 3 ± 1 μg/mL, and 1.5 ± 0.5 μg/mL in a formulation containing 0.04% (w/v) PS20 at pH 5.4 and >22 μg/mL, 3 ± 1 μg/mL, and 0.75 ± 0.25 μg/mL in a formulation containing 0.02% (w/v) PS20 at pH 6.0. For the first time, a 3D correlation between FFA solubility, PS20 concentration, and pH has been reported providing a rational approach for the formulator to balance these with regard to potential particle formation. The results suggest that the lower solubilities of the longer chain FFAs, generated from degradation of the stearate, palmitate, and myristate fraction of PS20, is the primary cause of seeding and subsequent FFA precipitation rather than the most abundant lauric acid. PMID:26419285

  18. Valproic acid and all trans retinoic acid differentially induce megakaryopoiesis and platelet-like particle formation from the megakaryoblastic cell line MEG-01.

    PubMed

    Schweinfurth, N; Hohmann, S; Deuschle, M; Lederbogen, F; Schloss, P

    2010-01-01

    Both, the activity of transcription factors as well as epigenetic alterations in defined DNA regions regulate cellular differentiation processes. Hence, neuronal differentiation from neural progenitor cells is promoted by the transcription factor all trans retinoic acid (ATRA) and the histone deacetylase inhibitor valproic acid (VPA). VPA has also been shown to be involved in differentiation of tumor cells and to greatly improve the reprogramming of human somatic cells to induced pluripotent stem cells. Here we have investigated the impact of ATRA and VPA on the differentiation of megakaryoctes and platelets from the megakaryocyte progenitor cell line MEG-01. Our results show that treatment with ATRA (10⁻¹¹ M) and VPA (2 × 10⁻³ M) induces megakaryopoiesis of MEG-01 cells as estimated by polyploidy, formation of characteristic proplatelets and elevated expression of the megakaryocytic markers CD41 and CD61. The resulting megakaryocytes stayed viable for more than 3 weeks and shed platelet-like particles positive for CD41, CD61 and CD42b into the supernatant. Platelet-like particles responded to thrombin receptor activating peptide (TRAP-6) with increased externalization of P-selectin. Thus, ATRA and VPA proved to be efficient agents for the gentle induction of megakaryopoiesis and thrombopoiesis of MEG-01 cells providing the possibility to study molecular events underlying megakaryopoiesis and human platelet production over longer time periods. PMID:20942599

  19. Measurement of the water cycle in mixed ammonium acid sulfate particles

    NASA Astrophysics Data System (ADS)

    Spann, J. F.; Richardson, C. B.

    A single ammonium-hydrogen-sulfate particle is levitated in an evacuated quadrupole trap at room temperature and the temperature of an attached tube containing bulk water is slowly cycled introducing then removing water vapor. With increasing pressure the particle dissolves in stages, then grows as a solution droplet by water absorption. With decreasing pressure the droplet supersaturates, crystallizes, then dehydrates completely to return to its initial state. Particle mass, and thus composition, is measured continuously with an electrostatic balance. Twenty-six cycles were studied as solute composition ranged from ammonium bisulfate through letovicite to ammonium sulfate in roughly equal steps. Composition was changed in situ by reaction with ammonia at low partial pressure. With solute composition characterized by x = [NH 4]/[SO 4], deliquescence was found to occur at water activity aw = 0.394-0.029 ( x- 1) for 1 ⩽ x < 1.5 and aw = 0.710-0.023( x-1.5) for 1.5 ⩽ x < 2. Particle growth occurs at deliquescence and subsequently is in excellent agreement with that predicted in a model proposed by Tang for dissolution of a two-component mixed solute. Water activities of the solution droplets are measured up to aw = 0.9. The results are compared with those predicted by the Zdanovskii-Stokes-Robinson method of interpolation from binary data and with those obtained using the mixing rule of Meissner and Kusik. Particle crystallization from supersaturated solution is analyzed thermodynamically using measured water activities, the Gibbs-Duhem equation, and classical nucleation theory. The specific free energy barrier to crystallization, ΔG/ n, is found to increase from near zero to 0.04 eV as composition ranges from x = 1 to 2, where n is the number of formula units in the critical nucleus. New phase diagrams are presented and used to discuss the dynamics of mixed sulfate particles in the atmosphere.

  20. Effects of chemical versus enzymatic processing of kenaf fibers on poly(hydroxybutyrate-co-valerate)/poly(butylene adipate-co-terephthalate) composite properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of fiber retting on crystallization and mechanical performance was investigated. A poly(hydroxybutyrate-co-valerate) (PHBV) and poly(butylene adipate-co-terephthalate) (PBAT) blend in a 80/20 ratio was modified using 5% by weight kenaf (Hibiscus cannabinus L.) fiber. Fibers were retted us...

  1. Acidic gases and nitrate and sulfate particles in the atmosphere in the city of Guadalajara, México.

    PubMed

    Saldarriaga-Noreña, Hugo; Waliszewski, Stefan; Murillo-Tovar, Mario; Hernández-Mena, Leonel; de la Garza-Rodríguez, Iliana; Colunga-Urbina, Edith; Cuevas-Ordaz, Rosalva

    2012-05-01

    Atmospheric concentrations of nitrous acid, nitric acid, nitrate and sulfate particles were obtained in this study from April to June 2008 in the center of the city of Guadalajara, while concentrations of ozone, sulfur dioxide, nitrogen dioxide and meteorological parameters (temperature and relative humidity), were acquired by the Secretaría del Medio Ambiente para el Desarrollo Sustentable del Estado de Jalisco (SEMADES). The results showed that nitric acid (2.7 μg m(-3)) was 2.7 times higher than nitrous acid (1.0 μg m(-3)). The sulfur dioxide (SO(2)) concentration indicated an opposite trend to sulfate (SO(4) (2-)), with the average concentration of SO(2) (6.9 μg m(-3)) higher in almost the entire period of study. The sulfur conversion ratio (Fs, 24.9%) and nitrogen conversion ratio (Fn, 6.2%), were revealed to be similar to that reported in other urban areas during warm seasons. It is also noted that ozone is not the main oxidizer of nitrogen dioxide and sulfur dioxide. This determination was made by taking into account the slightly positively correlation determined for Fn (r(2) = 0.084) and Fs (r(2) = 0.092) with ozone that perhaps suggests there are other oxidizing species such as the radical OH, which are playing an important role in the processes of atmospheric oxidation in this area. PMID:22358115

  2. Acidic gases and nitrate and sulfate particles in the atmosphere in the city of Guadalajara, México.

    PubMed

    Saldarriaga-Noreña, Hugo; Waliszewski, Stefan; Murillo-Tovar, Mario; Hernández-Mena, Leonel; de la Garza-Rodríguez, Iliana; Colunga-Urbina, Edith; Cuevas-Ordaz, Rosalva

    2012-05-01

    Atmospheric concentrations of nitrous acid, nitric acid, nitrate and sulfate particles were obtained in this study from April to June 2008 in the center of the city of Guadalajara, while concentrations of ozone, sulfur dioxide, nitrogen dioxide and meteorological parameters (temperature and relative humidity), were acquired by the Secretaría del Medio Ambiente para el Desarrollo Sustentable del Estado de Jalisco (SEMADES). The results showed that nitric acid (2.7 μg m(-3)) was 2.7 times higher than nitrous acid (1.0 μg m(-3)). The sulfur dioxide (SO(2)) concentration indicated an opposite trend to sulfate (SO(4) (2-)), with the average concentration of SO(2) (6.9 μg m(-3)) higher in almost the entire period of study. The sulfur conversion ratio (Fs, 24.9%) and nitrogen conversion ratio (Fn, 6.2%), were revealed to be similar to that reported in other urban areas during warm seasons. It is also noted that ozone is not the main oxidizer of nitrogen dioxide and sulfur dioxide. This determination was made by taking into account the slightly positively correlation determined for Fn (r(2) = 0.084) and Fs (r(2) = 0.092) with ozone that perhaps suggests there are other oxidizing species such as the radical OH, which are playing an important role in the processes of atmospheric oxidation in this area.

  3. A Selection for Assembly Reveals That a Single Amino Acid Mutant of the Bacteriophage MS2 Coat Protein Forms a Smaller Virus-like Particle.

    PubMed

    Asensio, Michael A; Morella, Norma M; Jakobson, Christopher M; Hartman, Emily C; Glasgow, Jeff E; Sankaran, Banumathi; Zwart, Peter H; Tullman-Ercek, Danielle

    2016-09-14

    Virus-like particles are used to encapsulate drugs, imaging agents, enzymes, and other biologically active molecules in order to enhance their function. However, the size of most virus-like particles is inflexible, precluding the design of appropriately sized containers for different applications. Here, we describe a chromatographic selection for virus-like particle assembly. Using this selection, we identified a single amino acid substitution to the coat protein of bacteriophage MS2 that mediates a uniform switch in particle geometry from T = 3 to T = 1 icosahedral symmetry. The resulting smaller particle retains the ability to be disassembled and reassembled in vitro and to be chemically modified to load cargo into its interior cavity. The pair of 27 and 17 nm MS2 particles will allow direct examination of the effect of size on function in established applications of virus-like particles, including drug delivery and imaging. PMID:27549001

  4. Residual Host Cell Protein Promotes Polysorbate 20 Degradation in a Sulfatase Drug Product Leading to Free Fatty Acid Particles.

    PubMed

    Dixit, Nitin; Salamat-Miller, Nazila; Salinas, Paul A; Taylor, Katherine D; Basu, Sujit K

    2016-05-01

    This study investigated the root cause behind an observed free fatty acid particle formation and resulting Polysorbate 20 (PS20) loss for a sulfatase drug product upon long-term storage at 5 ± 3°C. Reversed- phase chromatography with mass spectrometric analysis as well as charged aerosol detection was used to characterize the peaks associated with the intact and degraded PS20. Additionally, a proteomics study was undertaken to identify the residual host cell proteins in the sulfatase drug substance. PS20 stability studies were conducted in the presence of sulfatase, a sulfatase inhibitor, putative phospholipase B-like 2, and mock drug substance produced using a null cell line vector under experimental conditions optimized for PS20 degradation. This study provides the first published evidence where the residual host cell protein present in the drug substance was identified and experimentally shown to catalyze the breakdown of PS20 in a protein formulation over time, resulting in free fatty acid particles and PS20 loss. This study demonstrates the importance of early detection of potential impurities in the protein drug substance that may contribute to polysorbate degradation to make a judicious selection of the surfactant and its optimized concentration for the final drug product. PMID:27032893

  5. Observations of Sub-3 nm Particles and Sulfuric acid Concentrations during Aerosol Life Cycle Intensive Observation Period 2011 in Long Island, New York

    NASA Astrophysics Data System (ADS)

    Yu, H.; Kanawade, V. P.; You, Y.; Hallar, A. G.; Mccubbin, I. B.; Chirokova, G.; Sedlacek, A. J.; Springston, S. R.; Wang, J.; Kuang, C.; Lee, Y.; McGraw, R. L.; Mikkila, J.; Lee, S.

    2012-12-01

    Atmospheric new particle formation (NPF) is an important source of aerosol particles. But the NPF processes are not well understood, in part because of our limited understanding of the formation of atmospheric sub-3 nm size aerosols and the limited number of simultaneous observations of particle size distributions and the aerosol nucleation precursors. During Aerosol Life Cycle Intensive Observation Period (July-August 2011) in Long Island, New York, we deployed a particle size magnifier (Airmodus A09) running at different working fluid saturation ratios and a TSI CPC3776 to extract the information of sub-3 nm particles formation. A scanning mobility particle spectrometer (SMPS), a chemical ionization mass spectrometer (CIMS), and a number of atmospheric trace gas analyzers were used to simultaneously measure aerosol size distributions, sulfuric acid, and other possible aerosol precursors, respectively. Our observation results show that sub-3 nm particles existed during both NPF and non-NPF events, indicating the formation of sub-3nm particle didn't always lead to NPF characterized by typical banana shaped aerosol size distributions measured by SMPS. However, sub-3 nm particles were much higher during NPF events. Sub-3 nm particles were well-correlated with sulfuric acid showing the same diurnal variations and noontime peaks, especially for NPF days. These results are consistent with laboratory studies showing that formation of sub-3 nm particles is very sensitive to sulfuric acid (than amines and ammonia) [Yu et al. GRL 2012]. HYSPLIT back trajectory analysis indicates that air masses from Great Lakes, containing more SO2, VOCs and secondary organics, may contribute to growth of sub-3 nm particles and NPF.

  6. Toxicity of 50-nm polystyrene particles co-administered to mice with acetaminophen, 5-aminosalicylic acid or tetracycline.

    PubMed

    Isoda, K; Nozawa, T; Tezuka, M; Ishida, I

    2014-09-01

    We investigated whether nano-sized polystyrene particles affect drug-induced toxicity. The particles, which are widely used industrially, had diameters of 50 (NPP50), 200 (NPP200) or 1000 (NPP1000) nm. The toxic chemicals tested were acetaminophen (APAP), 5-aminosalicylic acid (5-ASA), tetracycline (TC), and sodium valproate (VPA). All treatments in the absence of the nanoparticles were non-lethal and did not result in severe toxicity. However, when mice were injected with APAP, 5-ASA or TC together with polystyrene particles, synergistic, enhanced toxicity was observed in mice injected with NPP50. These synergic effects were not observed in mice co-injected with NPP200 or NPP1000. On the other hand, co-administration of VPA and NPP50, NPP200 or NPP1000 did not elevate toxicity. The results show that NPP50 differs in hepatotoxicity depending on the drug co-administered. These findings suggest that further evaluation of the interactions between polystyrene nanoparticles and drugs is a critical prerequisite to the pharmaceutical application of nanotechnology.

  7. Tangential Flow Ultrafiltration Allows Purification and Concentration of Lauric Acid-/Albumin-Coated Particles for Improved Magnetic Treatment

    PubMed Central

    Zaloga, Jan; Stapf, Marcus; Nowak, Johannes; Pöttler, Marina; Friedrich, Ralf P.; Tietze, Rainer; Lyer, Stefan; Lee, Geoffrey; Odenbach, Stefan; Hilger, Ingrid; Alexiou, Christoph

    2015-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are frequently used for drug targeting, hyperthermia and other biomedical purposes. Recently, we have reported the synthesis of lauric acid-/albumin-coated iron oxide nanoparticles SEONLA-BSA, which were synthesized using excess albumin. For optimization of magnetic treatment applications, SPION suspensions need to be purified of excess surfactant and concentrated. Conventional methods for the purification and concentration of such ferrofluids often involve high shear stress and low purification rates for macromolecules, like albumin. In this work, removal of albumin by low shear stress tangential ultrafiltration and its influence on SEONLA-BSA particles was studied. Hydrodynamic size, surface properties and, consequently, colloidal stability of the nanoparticles remained unchanged by filtration or concentration up to four-fold (v/v). Thereby, the saturation magnetization of the suspension can be increased from 446.5 A/m up to 1667.9 A/m. In vitro analysis revealed that cellular uptake of SEONLA-BSA changed only marginally. The specific absorption rate (SAR) was not greatly affected by concentration. In contrast, the maximum temperature Tmax in magnetic hyperthermia is greatly enhanced from 44.4 °C up to 64.9 °C by the concentration of the particles up to 16.9 mg/mL total iron. Taken together, tangential ultrafiltration is feasible for purifying and concentrating complex hybrid coated SPION suspensions without negatively influencing specific particle characteristics. This enhances their potential for magnetic treatment. PMID:26287178

  8. Tangential Flow Ultrafiltration Allows Purification and Concentration of Lauric Acid-/Albumin-Coated Particles for Improved Magnetic Treatment.

    PubMed

    Zaloga, Jan; Stapf, Marcus; Nowak, Johannes; Pöttler, Marina; Friedrich, Ralf P; Tietze, Rainer; Lyer, Stefan; Lee, Geoffrey; Odenbach, Stefan; Hilger, Ingrid; Alexiou, Christoph

    2015-08-14

    Superparamagnetic iron oxide nanoparticles (SPIONs) are frequently used for drug targeting, hyperthermia and other biomedical purposes. Recently, we have reported the synthesis of lauric acid-/albumin-coated iron oxide nanoparticles SEON(LA-BSA), which were synthesized using excess albumin. For optimization of magnetic treatment applications, SPION suspensions need to be purified of excess surfactant and concentrated. Conventional methods for the purification and concentration of such ferrofluids often involve high shear stress and low purification rates for macromolecules, like albumin. In this work, removal of albumin by low shear stress tangential ultrafiltration and its influence on SEON(LA-BSA) particles was studied. Hydrodynamic size, surface properties and, consequently, colloidal stability of the nanoparticles remained unchanged by filtration or concentration up to four-fold (v/v). Thereby, the saturation magnetization of the suspension can be increased from 446.5 A/m up to 1667.9 A/m. In vitro analysis revealed that cellular uptake of SEON(LA-BSA) changed only marginally. The specific absorption rate (SAR) was not greatly affected by concentration. In contrast, the maximum temperature Tmax in magnetic hyperthermia is greatly enhanced from 44.4 °C up to 64.9 °C by the concentration of the particles up to 16.9 mg/mL total iron. Taken together, tangential ultrafiltration is feasible for purifying and concentrating complex hybrid coated SPION suspensions without negatively influencing specific particle characteristics. This enhances their potential for magnetic treatment.

  9. Tangential Flow Ultrafiltration Allows Purification and Concentration of Lauric Acid-/Albumin-Coated Particles for Improved Magnetic Treatment.

    PubMed

    Zaloga, Jan; Stapf, Marcus; Nowak, Johannes; Pöttler, Marina; Friedrich, Ralf P; Tietze, Rainer; Lyer, Stefan; Lee, Geoffrey; Odenbach, Stefan; Hilger, Ingrid; Alexiou, Christoph

    2015-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are frequently used for drug targeting, hyperthermia and other biomedical purposes. Recently, we have reported the synthesis of lauric acid-/albumin-coated iron oxide nanoparticles SEON(LA-BSA), which were synthesized using excess albumin. For optimization of magnetic treatment applications, SPION suspensions need to be purified of excess surfactant and concentrated. Conventional methods for the purification and concentration of such ferrofluids often involve high shear stress and low purification rates for macromolecules, like albumin. In this work, removal of albumin by low shear stress tangential ultrafiltration and its influence on SEON(LA-BSA) particles was studied. Hydrodynamic size, surface properties and, consequently, colloidal stability of the nanoparticles remained unchanged by filtration or concentration up to four-fold (v/v). Thereby, the saturation magnetization of the suspension can be increased from 446.5 A/m up to 1667.9 A/m. In vitro analysis revealed that cellular uptake of SEON(LA-BSA) changed only marginally. The specific absorption rate (SAR) was not greatly affected by concentration. In contrast, the maximum temperature Tmax in magnetic hyperthermia is greatly enhanced from 44.4 °C up to 64.9 °C by the concentration of the particles up to 16.9 mg/mL total iron. Taken together, tangential ultrafiltration is feasible for purifying and concentrating complex hybrid coated SPION suspensions without negatively influencing specific particle characteristics. This enhances their potential for magnetic treatment. PMID:26287178

  10. Reactivity of NaCl with Secondary Organic Acids: An Important Mechanism of the Chloride Depletion in Sea Salt Particles Mixed with Organic Materials

    NASA Astrophysics Data System (ADS)

    Wang, B.; Laskin, A.; Kelly, S.; Gilles, M. K.; Shilling, J. E.; Zelenyuk, A.; Wilson, J. M.; Tivanski, A.

    2012-12-01

    Sea salt particles, one of the major sources of atmospheric aerosols, undergo complex multi-phase reactions and have profound consequences on their physical and chemical properties, thus on climate. Depletion of chloride in sea salt particles was reported in previous field studies and was attributed to the acid displacement of sea salt chlorides with inorganic acids, such as nitric and sulfuric acids. Some studies have also showed that the chloride deficit cannot be fully compensated for this mechanism. We present an important pathway contributing to this chloride depletion: reactions of weak organic acids with sea salt particles. NaCl particles internally mixed with secondary organic materials generated from the reactions of limonene and alpha-pinene with ozone served as surrogates for sea salt particles mixed with organic materials. Chemical imaging analysis of these particles was conducted using complementary techniques including computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX), scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS), and micro-fourier transform infrared spectroscopy (micro-FTIR). Substantial chloride depletion and formation of organic salts were observed along with distinctive changes in particle morphology after hydration/dehydration processes. The results indicate that secondary organic acids can effectively react with NaCl particles resulting in displacement of chloride and release of gaseous HCl. This is consistent with a recent field study showing chloride depletion in sea salt particles mixed with organic materials which cannot be fully compensated by inorganic acid displacement. Although the formation of the organic salts is not thermodynamically favored in bulk aqueous solution, these reactions are driven by the high volatility and evaporation of gaseous HCl in particles, especially during hydration/dehydration processes. The

  11. Effect of cellulose structure and morphology on the properties of poly(butylene succinate-co-butylene adipate) biocomposites.

    PubMed

    Avolio, R; Graziano, V; Pereira, Y D F; Cocca, M; Gentile, G; Errico, M E; Ambrogi, V; Avella, M

    2015-11-20

    Composites based on poly(butylene succinate-co-butylene adipate) (PBSA) containing amorphized and crystalline cellulose reinforcements have been prepared and characterized. In order to improve the polymer/filler interfacial adhesion, an efficient compatibilizing agent has been synthesized by chemical modification of PBSA and characterized by FT-IR, FT-NIR and (1)H NMR spectroscopy. Uncompatibilized and compatibilized composites have been tested through morphological, mechanical, calorimetric and thermogravimetric analysis. Moreover, water vapor permeability and biodegradation kinetics of composites have been investigated. The addition to PBSA of cellulose fillers differing from each other by crystallinity degree and morphology, and the use of a compatibilizing agent have allowed modulating tensile and thermal properties, water vapor transmission rate and biodegradation kinetic of the composites.

  12. Films of starch and poly(butylene adipate co-terephthalate) added of soybean oil (SO) and Tween 80.

    PubMed

    Brandelero, Renata P Herrera; Grossmann, Maria Victória; Yamashita, Fabio

    2012-11-01

    Starch extruded in the presence of a plasticizer results in a material called thermoplastic starch (TPS). TPS mixed with poly(butylene adipate co-terephthalate) (PBAT), soybean oil (SO), and surfactant may result in films with improved mechanical properties due to greater hydrophobicity and compatibility among the polymers. This study characterized films produced from blends containing 65% TPS and 35% PBAT with SO added as compatibilizer. The Tween 80 was added to prevention of phase separation. The elongation and resistance were greater in the films with SO. The infrared spectra confirmed an increase in ester groups bonded to the PBAT and the presence of groups bonded to the starch ring, indicating TPS-SO and PBAT-SO interactions. The micrographs suggest that the films with SO were more homogenous. Thus, SO is considered to be a good compatibilizer for blends of TPS and PBAT.

  13. Lip Injection Techniques Using Small-Particle Hyaluronic Acid Dermal Filler.

    PubMed

    Chiu, Annie; Fabi, Sabrina; Dayan, Steven; Nogueira, Alessandra

    2016-09-01

    The shape and fullness of the lips have a significant role in facial aesthetics and outward appearance. The corrective needs of a patient can range from a subtle enhancement to a complete recontouring including correction of perioral rhytides. A comprehensive understanding of the lower face anatomical features and injection site techniques are foundational information for injectors. Likewise, the choice of filler material contributes to the success of the injection techniques used, and facilitates a safe, effective, and natural appearing outcome. The small-particle HA 20 mg/mL with lidocaine 0.3% (SP-HAL, Restylane® Silk; Galderma Laboratories, Fort Worth, Texas) is indicated for submucosal implantation for lip augmentation and dermal implantation for correction of perioral rhytides. Due to its rheological properties and smaller particle size, SP-HAL is a well-suited filler for the enhancement and correction of lip shape and volume, as well as for the correction of very fine perioral rhytides. This work is a combined overview of techniques found in the current literature and recommendations provided by contributing authors.

    J Drugs Dermatol. 2016;15(9):1076-1082. PMID:27602969

  14. SEROTONIN BINDING TO NERVE-ENDING PARTICLES OF THE RAT BRAIN AND ITS INHIBITION BY LYSERGIC ACID DIETHYLAMIDE.

    PubMed

    MARCHBANKS, R M; ROSENBLATT, F; O'BRIEN, R D

    1964-05-29

    The binding of serotonin to nerve-ending particles and other preparations from rat brain has been examined. By investigating the amount bound as a function of serotonin concentration from 10(-7)M to 1O(-2)M, it was possible to identify three major components having K(assoc) (association constant) values of 2 x 10(6), 5 x 10(4), and 5 x 10(2). The component having the highest binding constant was not present in liver and appeared to be confined to the cortex and midbrain regions. This component is inhibited by d-lysergic acid diethylamide at low concentrations. Solubilization of this binding component has been achieved.

  15. Amino acid composition of suspended particles, sediment-trap material, and benthic sediment in the Potomac Estuary

    USGS Publications Warehouse

    Sigleo, A.C.; Shultz, D.J.

    1993-01-01

    Sediment trap deployments in estuaries provide a method for estimating the amount of organic material transported to the sediments from the euphotic zone. The amino acid composition of suspended particles, benthic sediment, and sediment-trap material collected at 2.4 m, 5.8 m, and 7.9 m depths in the Potomac Estuary was determined in stratified summer waters, and in well-mixed oxygenated waters (DO) in late fall. The total vertical flow, or flux, of material into the top traps ranged from 3 g m-2 d-1 in August to 4.9 g m-2 d-1 in October. The carbon and nitrogen fluxes increased in the deepest traps relative to the surface traps during both sampling periods, along with that of the total material flux (up to 47.3 g m-2 d-1 in the deepest trap), although the actual weight percent of organic carbon and organic nitrogen decreased with depth. Amino acid concentrations ranged from 129 mg g-1 in surface water particulate material to 22 mg g-1 in particulate material in 9-m-deep waters and in the benthic sediment. Amino acid concentrations from 2.4-mg-depth sediment traps averaged 104??29 mg g-1 in stratified waters and 164??81 mg g-1 in well-mixed waters. The deep trap samples averaed, 77.3??4.8 mg g-1 amino acids in summer waters and 37??16 mg g-1 in oxygenated fall waters. Amino acids comprised 13% to 39% of the organic carbon and 12% to 89% of the orgnaic nitrogen in these samples. Analysis of the flux results suggest that resuspension combined with lateral advection from adjacent slopes can account for up to 27% of the material in the deep traps when the estuary was well-mixed and unstratified. When the estuary was stratified in late summer, the amino acid carbon produced by primary productivity in the euphotic zone decreased by 85% (86% for total organic carbon) at the pycnocline at 6 m depth, leaving up to 15% of the vertical organic flux available for benthic sediment deposition. ?? 1993 Estuarine Research Federation.

  16. Quantifying solubility enhancement due to particle size reduction and crystal habit modification: case study of acetyl salicylic acid.

    PubMed

    Hammond, Robert B; Pencheva, Klimentina; Roberts, Kevin J; Auffret, Tony

    2007-08-01

    The poor solubility of potential drug molecules is a significant problem in the design of pharmaceutical formulations. It is well known, however, that the solubility of crystalline materials is enhanced when the particle size is reduced to submicron levels and this factor can be expected to enhance drug product bioavailability. Direct estimation of solubility enhancement, as calculated via the Gibbs-Thompson relationship, demands reasonably accurate values for the particle/solution interfacial tension and, in particular, its anisotropy with respect to the crystal product's habit and morphology. In this article, an improved, more molecule-centered, approach is presented towards the calculation of solubility enhancement factors in which molecular modeling techniques are applied, and the effects associated with both crystal habit modification and solvent choice are examined. A case study for facetted, acetyl salicylic acid (aspirin) crystals in equilibrium with saturated aqueous ethanol solution reveals that their solubility will be enhanced in the range (7-58%) for a crystal size of 0.02 microm, with significantly higher enhancement for crystal morphologies in which the hydrophobic crystal faces are more predominant than the hydrophilic faces and for solvents in which the solubility is smaller.

  17. Characterization and Antimicrobial Property of Poly(Acrylic Acid) Nanogel Containing Silver Particle Prepared by Electron Beam

    PubMed Central

    Choi, Jong-Bae; Park, Jong-Seok; Khil, Myung-Seob; Gwon, Hui-Jeong; Lim, Youn-Mook; Jeong, Sung-In; Shin, Young-Min; Nho, Young-Chang

    2013-01-01

    In this study, we developed a one step process to synthesize nanogel containing silver nanoparticles involving electron beam irradiation. Water-soluble silver nitrate powder is dissolved in the distilled water and then poly(acrylic acid) (PAAc) and hexane are put into this silver nitrate solution. These samples are irradiated by an electron beam to make the PAAc nanogels containing silver nanoparticles (Ag/PAAc nanogels). The nanoparticles were characterized by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). In addition, the particle size and zeta-potential were confirmed by a particle size analyzer (PSA). The antibacterial properties of the nanogels were evaluated by paper diffusion test. The Ag/PAAc nanogels had an antibacterial effect against Escherichia coli and Staphylococcus aureus. The nanogels also demonstrated a good healing effect against diabetic ulcer. The size of the Ag/PAAc nanogels decreased with increasing irradiation doses, and the absolute value of the zeta potential increased with increasing irradiation doses. Also, the Ag/PAAc nanogels exhibited good antibacterial activity against both Gram-negative and Gram-positive bacteria. In in vivo wound healing, the Ag/PAAc nanogels have a good healing effect. PMID:23708101

  18. ANTS-anchored Zn-Al-CO3-LDH particles as fluorescent probe for sensing of folic acid

    NASA Astrophysics Data System (ADS)

    Liu, Pengfei; Liu, Dan; Liu, Yanhuan; Li, Lei

    2016-09-01

    A novel fluorescent nanosensor for detecting folic acid (FA) in aqueous media has been developed based on 8-aminonaphthalene-1,3,6-trisulfonate (ANTS) anchored to the surface of Zn-Al-CO3-layered double hydroxides (LDH) particles. The nanosensor showed high fluorescence intensity and good photostability due to a strong coordination interaction between surface Zn2+ ions of Zn-Al-CO3-LDH and N atoms of ANTS, which were verified by result of X-ray photoelectron spectroscopy (XPS). ANTS-anchored on the surface of Zn-Al-CO3-LDH restricted the intra-molecular rotation leading to ANTS-anchored J-type aggregation emission enhancement. ANTS-anchored Zn-Al-CO3-LDH particles exhibited highly sensitive and selective response to FA over other common metal ions and saccharides present in biological fluids. The proposed mechanism was that oxygen atoms of -SO3 groups in ANTS-anchored on the surface of Zn-Al-CO3-LDH were easily collided by FA molecules to form potential hydrogen bonds between ANTS-anchored and FA molecules, which could effectively quench the ANTS-anchored fluorescence. Under the simulated physiological conditions (pH of 7.4), the fluorescence quenching was fitted to Stern-Volmer equation with a linear response in the concentration range of 1 μM to 200 μM with a limit of detection of 0.1 μM. The results indicate that ANTS-anchored Zn-Al-CO3-LDH particles can afford a very sensitive system for the sensing FA in aqueous solution.

  19. A model for heterogeneous chemical processes on the surfaces of ice and nitric acid trihydrate particles

    NASA Technical Reports Server (NTRS)

    Tabazadeh, Azadeh; Turco, Richard P.

    1993-01-01

    The study presents a model that incorporates the physics and physical chemistry of ice surfaces relevant to polar stratospheric clouds. Surface concentrations of H2O, HCl, HOCl, ClONO2, and N2O5 on ice and nitric acid trihydrate (NAT) crystals are computed, and surface reaction rates and reaction probabilities (sticking coefficients) are determined. For gas pressures of about 10 exp -7 torr and temperatures in the range of 180-200 K, HCl completely coats ice and water-rich NAT surfaces, while HOCl, ClOHO2, and N2O5 may cover 0.01-1 percent of these surfaces. The energy parameters are used to calculate surface temperatures such as adsorption and desorption constants, surface coverages, reaction rate coefficients, surface diffusion coefficients, and reaction probabilities for various species and chemical interactions on ice and NAT surfaces. Implications for chemical processing on polar stratospheric clouds are discussed.

  20. Joint effect of organic acids and inorganic salts on cloud droplet activation

    NASA Astrophysics Data System (ADS)

    Frosch, M.; Prisle, N. L.; Bilde, M.; Varga, Z.; Kiss, G.

    2011-04-01

    We have investigated CCN properties of internally mixed particles composed of one organic acid (oxalic acid dihydrate, succinic acid, adipic acid, citric acid, cis-pinonic acid, or Nordic reference fulvic acid) and one inorganic salt (sodium chloride or ammonium sulphate). Surface tension and water activity of aqueous model solutions with concentrations relevant for CCN activation were measured using a tensiometer and osmometry, respectively. The measurements were used to calculate Köhler curves and critical supersaturations, which were compared to measured critical supersaturations of particles with the same chemical compositions, determined with a cloud condensation nucleus counter. Surfactant surface partitioning was not accounted for. For the aqueous solutions containing cis-pinonic acid and fulvic acid, a depression of surface tension was observed, but for the remaining solutions the effect on surface tension was negligible at concentrations relevant for cloud droplet activation. The surface tension depression of aqueous solutions containing both organic acid and inorganic salt was approximately the same as or smaller than that of aqueous solutions containing the same mass of the corresponding pure organic acids. Water activity was found to be highly dependent on the type and amount of inorganic salt. Sodium chloride was able to decrease water activity more than ammonium sulphate and both inorganic salts are predicted to have a smaller Raoult term than the studied organic acids. Increasing the mass ratio of the inorganic salt led to a decrease in water activity. Water activity measurements were compared to results from the E-AIM model and values estimated from both constant and variable van't Hoff factors. The correspondence between measurements and estimates was overall good, except for highly concentrated solutions. Critical supersaturations calculated with Köhler theory based on measured water activity and surface tension, but not accounting for surface

  1. SERS and DFT study of p-hydroxybenzoic acid adsorbed on colloidal silver particles.

    PubMed

    Chen, Y; Chen, S J; Li, S; Wei, J J

    2015-01-01

    In this study, normal Raman spectra of p—hydroxybenzoic acid (PHBA) powder and its surface—enhanced Raman scattering (SERS) spectra in silver colloidal solutions were measured under near infrared excitation conditions. In theoretical calculation, two models of PHBA adsorbed on the surfaces of silver nanoparticles were established. The Raman frequencies of these two models using density functional theory (DFT) method were calculated, and compared with the experimental results. It was found that the calculated Raman frequencies were in good agreement with experimental values, which indicates that there are two enhanced mechanism physical (electromagnetic, EM) enhancement and chemical (charge—transfer, CT) enhancement, in silver colloidal solutions regarding SERS effect. Furthermore, from high—quality SERS spectrum of PHBA obtained in silver colloids, we inferred that PHBA molecules in silver colloids adsorb onto the metal surfaces through carboxyl at a perpendicular orientation. The combination of SERS spectra and DFT calculation is thus useful for studies of the adsorption—orientation of a molecule on a metal colloid. PMID:26475382

  2. Effect of ions on sulfuric acid-water binary particle formation: 2. Experimental data and comparison with QC-normalized classical nucleation theory

    NASA Astrophysics Data System (ADS)

    Duplissy, J.; Merikanto, J.; Franchin, A.; Tsagkogeorgas, G.; Kangasluoma, J.; Wimmer, D.; Vuollekoski, H.; Schobesberger, S.; Lehtipalo, K.; Flagan, R. C.; Brus, D.; Donahue, N. M.; Vehkamäki, H.; Almeida, J.; Amorim, A.; Barmet, P.; Bianchi, F.; Breitenlechner, M.; Dunne, E. M.; Guida, R.; Henschel, H.; Junninen, H.; Kirkby, J.; Kürten, A.; Kupc, A.; Määttänen, A.; Makhmutov, V.; Mathot, S.; Nieminen, T.; Onnela, A.; Praplan, A. P.; Riccobono, F.; Rondo, L.; Steiner, G.; Tome, A.; Walther, H.; Baltensperger, U.; Carslaw, K. S.; Dommen, J.; Hansel, A.; Petäjä, T.; Sipilä, M.; Stratmann, F.; Vrtala, A.; Wagner, P. E.; Worsnop, D. R.; Curtius, J.; Kulmala, M.

    2016-02-01

    We report comprehensive, demonstrably contaminant-free measurements of binary particle formation rates by sulfuric acid and water for neutral and ion-induced pathways conducted in the European Organization for Nuclear Research Cosmics Leaving Outdoor Droplets chamber. The recently developed Atmospheric Pressure interface-time of flight-mass spectrometer was used to detect contaminants in charged clusters and to identify runs free of any contaminants. Four parameters were varied to cover ambient conditions: sulfuric acid concentration (105 to 109 mol cm-3), relative humidity (11% to 58%), temperature (207 K to 299 K), and total ion concentration (0 to 6800 ions cm-3). Formation rates were directly measured with novel instruments at sizes close to the critical cluster size (mobility size of 1.3 nm to 3.2 nm). We compare our results with predictions from Classical Nucleation Theory normalized by Quantum Chemical calculation (QC-normalized CNT), which is described in a companion paper. The formation rates predicted by the QC-normalized CNT were extended from critical cluster sizes to measured sizes using the UHMA2 sectional particle microphysics model. Our results show, for the first time, good agreement between predicted and measured particle formation rates for the binary (neutral and ion-induced) sulfuric acid-water system. Formation rates increase with RH, sulfuric acid, and ion concentrations and decrease with temperature at fixed RH and sulfuric acid concentration. Under atmospheric conditions, neutral particle formation dominates at low temperatures, while ion-induced particle formation dominates at higher temperatures. The good agreement between the theory and our comprehensive data set gives confidence in using the QC-normalized CNT as a powerful tool to study neutral and ion-induced binary particle formation in atmospheric modeling.

  3. Matrix-assisted laser desorption/ionization time-of-flight/time-of-flight tandem mass spectra of poly(butylene adipate).

    PubMed

    Rizzarelli, Paola; Puglisi, Concetto; Montaudo, Giorgio

    2006-01-01

    Matrix-assisted laser desorption/ionization time-of-flight/time-of-flight tandem mass spectrometry (MALDI-TOF/TOF-MS/MS) was employed to analyze four poly(butylene adipate) (PBAd) oligomers and to investigate their fragmentation pathways as a continuation of our work on the MALDI-TOF/TOF-MS/MS study of synthetic polymers. MALDI-TOF/TOF-MS/MS analysis was performed on oligomers terminated by carboxyl and hydroxyl groups, methyl adipate and hydroxyl groups, dihydroxyl groups, and dicarboxyl groups. The sodium adducts of these oligomers were selected as precursor ions. Different end groups do not influence the fragmentation of sodiated polyester oligomers and similar series of product ions were observed in all the MALDI-TOF/TOF-MS/MS spectra. According to the structures of the most abundant product ions identified in the present work, three fragmentation pathways have been proposed to occur most frequently in PBAd: beta-hydrogen-transfer rearrangement, leading to the selective cleavage of the --O--CH(2)-- bonds; --CH(2)--CH(2)-- (beta--beta) bond cleavage in the adipate moiety; and ester bond scission.

  4. Alterations of Amino Acid Level in Depressed Rat Brain

    PubMed Central

    Yang, Pei; Li, Xuechun; Tian, Jingchen; Jing, Fu; Qu, Changhai; Lin, Longfei; Zhang, Hui

    2014-01-01

    Amino-acid neurotransmitter system dysfunction plays a major role in the pathophysiology of depression. Several studies have demonstrated the potential of amino acids as a source of neuro-specific biomarkers could be used in future diagnosis of depression. Only partial amino acids such as glycine and asparagine were determined from certain parts of rats' brain included hippocampi and cerebral cortex in previous studies. However, according to systematic biology, amino acids in different area of brain are interacted and interrelated. Hence, the determination of 34 amino acids through entire rats' brain was conducted in this study in order to demonstrate more possibilities for biomarkers of depression by discovering other potential amino acids in more areas of rats' brain. As a result, 4 amino acids (L-aspartic acid, L-glutamine, taurine and γ-amino-n-butyric acid) among 34 were typically identified as potentially primary biomarkers of depression by data statistics. Meanwhile, an antidepressant called Fluoxetine was employed to verify other potential amino acids which were not identified by data statistics. Eventually, we found L-α-amino-adipic acid could also become a new potentially secondary biomarker of depression after drug validation. In conclusion, we suggested that L-aspartic acid, L-glutamine, taurine, γ-amino-n-butyric acid and L-α-amino-adipic acid might become potential biomarkers for future diagnosis of depression and development of antidepressant. PMID:25352755

  5. Production and characterization of novel starch and poly(butylene adipate-co-terephthalate)-based materials and their applications

    NASA Astrophysics Data System (ADS)

    Stagner, Jacqueline Ann

    This work focuses on the production and characterization of blends of maleated thermoplastic starch (MTPS) and poly(butylenes adipate-co-terephthalate) and their application for use as thermoformed objects, films, and foams. First, by the production and characterization of maleated thermoplastic starch (MTPS) synthesized by reactive extrusion in a twin-screw extruder, a better understanding of MTPS was gained. This reactive thermoplastic starch was prepared with glycerol as the plasticizer, maleic anhydride (MA), and free-radical initiator, 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane (Luperox 101). Dynamic light scattering (DLS), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), soxhlet extraction in acetone, and environmental scanning electron microscopy (ESEM) were performed to determine the effect of maleation, extrusion temperature, initiator concentration, and maleic anhydride concentration on the resulting MTPS. Next, maleated thermoplastic starch (MTPS) and thermoplastic starch (TPS) were reactively blended in a twin-screw extruder with a biodegradable polyester, poly(butylene adipate-co-terephthalate) (PBAT). The blends were extruded to produce thermoformable sheets. The mechanical properties of the sheets were characterized by tensile and puncture tests. Proof of grafting was determined by soxhlet extraction in dichloromethane and FTIR analysis. Observations of the thermal properties were made using DSC, while the surface of the sheets was imaged using ESEM. Blends of MTPS and PBAT were also extruded to produce films. Mechanical testing (tensile and puncture tests) and barrier performance testing (carbon dioxide, oxygen, and water vapor permeability) were performed on the films. Transmission electron microscopy (TEM) was used to image the blends and to view the dispersion of the various phases. Finally, blends of MTPS and PBAT were extruded with an endothermic chemical blowing agent to produce foams. The foams were

  6. Docosahexaenoic acid supplementation decreases remnant-like particle-cholesterol and increases omega-3 index in hypertriglyceridemic men1-3.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Plasma remnant-like particle-cholesterol (RLP-C) and RBC omega-3 index are novel risk factors for cardiovascular disease. Effects of docosahexaenoic acid (DHA) supplementation on these risk factors in hypertriglyceridemic men have not been studied. Objective: We determined effects of DHA...

  7. Perlecan domain I-conjugated, hyaluronic acid-based hydrogel particles for enhanced chondrogenic differentiation via BMP-2 release

    PubMed Central

    Jha, Amit K.; Yang, Weidong; Kirn-Safran, Catherine B.; Farach-Carson, Mary C.; Jia, Xinqiao

    2009-01-01

    We have developed a biomimetic growth factor delivery system that effectively stimulates the chondrogenic differentiation of the cultured mesenchymal stem cells via the controlled presentation of bone morphogenetic protein 2 (BMP-2). Hyaluronic acid (HA)-based, microscopic hydrogel particles (HGPs) with inherent nanopores and defined functional groups were synthesized by an inverse emulsion polymerization technique. Recombinantly produced, heparan sulfate (HS)-bearing perlecan domain I (PlnDI) was covalently immobilized to HA HGPs (HGP-P1) via a flexible poly(ethylene glycol) (PEG) linker through the lysine amines in the core protein of PlnDI employing reductive amination. Compared to HGP without PlnDI, HGP-P1 exhibited significantly (p<0.05) higher BMP-2 binding capacity and distinctly different BMP-2 release kinetics. Heparitinase treatment increased the amount of BMP-2 released from HGP-P1, confirming the HS-dependent BMP-2 binding. While BMP-2 was released from HGPs with a distinct burst release followed by a minimal cumulative release, its release from HGP-P1 exhibited a minimal burst release followed by linear release kinetics over 15 days. The bioactivity of the hydrogel particles was evaluated using micromass culture of multipotent mesenchymal stem cells (MSCs), and the chondrogenic differentiation was assessed by the production of glycosaminoglycan, aggrecan and collagen type II. Our results revealed that BMP-2 loaded HGP-P1 stimulates more robust cartilage specific ECM production as compared to BMP-2 loaded HGP, due to the ability of HGP-P1 to potentiate BMP-2 and modulate its release with a near zero-order release kinetics. The PlnDI conjugated, HA HGPs provide an improved BMP-2 delivery system for stimulating chondrogenic differentiation in vitro, with potential therapeutic application for cartilage repair and regeneration. PMID:19775743

  8. Analysis of caffeic acid derivatives in echinacea extracts by liquid chromatography particle beam mass spectrometry (LC-PB/MS) employing electron impact and glow discharge ionization sources.

    PubMed

    Castro, Joaudimir; Krishna, M V Balarama; Choiniere, John R; Marcus, R Kenneth

    2010-06-01

    A liquid chromatography-particle beam/mass spectrometry (LC-PB/MS) method with electron impact (EI) and glow discharge (GD) ionization sources is presented for the determination of caffeic acid derivatives in echinacea tinctures. In this work, two commercially available echinacea ethanolic extracts were used as the test samples for the separation, identification, and quantification of the caffeic acid derivatives (caffeic acid, chlorogenic acid, cichoric acid, and caftaric acid), which are suggested to have beneficial medicinal properties. Detailed evaluations of the two primary controlling parameters for EI (electron energy and source block temperature) and GD (discharge current and pressure) sources were performed to determine optimal instrument operation conditions. The mass spectra obtained from both ion sources provide clear and simple molecular fragmentation patterns for each of the target analytes. The absolute detection limits for the caffeic acid derivatives were determined to be at subnanogram levels for both the EI and GD sources. The separation of the caffeic acid derivatives in echinacea was accomplished by reversed-phase chromatography using a C(18) column and a gradient elution system of water containing 0.1% trifluoroacetic acid and methanol, with an analysis time of less than 40 min. A standard addition method was employed for the quantification of each of the caffeic acid derivatives in the tincture. PMID:20349350

  9. Inorganic salts interact with organic di-acids in sub-micron particles to form material with low hygroscopicity and volatility

    NASA Astrophysics Data System (ADS)

    Drozd, G.; Woo, J.; Häkkinen, S. A. K.; Nenes, A.; McNeill, V. F.

    2013-11-01

    Volatility and hygroscopicity are two key properties of organic aerosol components, and both are strongly related to chemical identity. Here we show that inorganic-organic component interactions typically not considered in atmospheric models may strongly affect aerosol volatility and hygroscopicity. In particular, bi-dentate binding of di-carboxylic acids (DCA) to soluble inorganic ions can lead to very strongly bound metal-organic complexes with largely undetermined hygroscopicity and volatility. These reactions profoundly impact particle hygroscopicity, transforming hygroscopic components into irreversibly non-hygroscopic material. While the hygroscopicities of pure salts, DCA, and DCA salts are known, the hygroscopicity of internal mixtures of hygroscopic salts and DCA, as they are typically found in the atmosphere, has not been fully characterized. We have studied the volatility of pure, dry organic salt particles and the hygroscopicity of internal mixtures of oxalic acid (OxA, the dominant DCA in the atmosphere) and a number of salts, both mono- and di-valent. The formation of very low volatility organic salts was confirmed, with minimal evaporation of oxalate salt particles below 75 °C. Dramatic increases in the CCN activation diameter for particles with divalent salts (e.g. CaCl2) and relatively small particle mass fractions of OxA indicate that standard volume additivity rules for hygroscopicity do not apply. Thus small organic compounds with high O:C are capable of forming low volatility and very low hygroscopicity particles. Given current knowledge of the formation mechanisms of OxA and M-Ox salts, surface enrichment of insoluble M-Ox salts is expected. The resulting formation of an insoluble coating of metal-oxalate salts can explain low particle hygroscopicities. The formation of particles with a hard coating could offer an alternative explanation for observations of glass-like particles with very low viscosity.

  10. Effects of acidity on the size of polyaniline-poly(sodium 4-styrenesulfonate) composite particles and the stability of corresponding colloids in water.

    PubMed

    Li, Ligui; Ferng, Linhui; Wei, Yen; Yang, Catherine; Ji, Hai-Feng

    2012-09-01

    The practical application of polyaniline-poly(sodium 4-styrenesulfonate) (PANI-PSS) composite particles has been held back by the low stability of their dispersed state in water. In this work, we present a general oxidation approach to prepare PANI-PSS composite nanoparticles that can form highly stable colloids in water or buffer over a wide range of pH from 1 to 11. We demonstrate that the size of the PANI-PSS composite particles can be controlled by the acidity of precursor solutions. It is hypothesized that the number of negatively charged sites on PSS, which can be affected by the acidity of the precursor solutions, plays an important role in determining the size of the PANI-PSS composite particles and the stability of corresponding colloids in water. PMID:22647343

  11. Effects of acidity on the size of polyaniline-poly(sodium 4-styrenesulfonate) composite particles and the stability of corresponding colloids in water.

    PubMed

    Li, Ligui; Ferng, Linhui; Wei, Yen; Yang, Catherine; Ji, Hai-Feng

    2012-09-01

    The practical application of polyaniline-poly(sodium 4-styrenesulfonate) (PANI-PSS) composite particles has been held back by the low stability of their dispersed state in water. In this work, we present a general oxidation approach to prepare PANI-PSS composite nanoparticles that can form highly stable colloids in water or buffer over a wide range of pH from 1 to 11. We demonstrate that the size of the PANI-PSS composite particles can be controlled by the acidity of precursor solutions. It is hypothesized that the number of negatively charged sites on PSS, which can be affected by the acidity of the precursor solutions, plays an important role in determining the size of the PANI-PSS composite particles and the stability of corresponding colloids in water.

  12. Advanced zirconia-coated carbonyl-iron particles for acidic magnetorheological finishing of chemical-vapor-deposited ZnS and other IR materials

    NASA Astrophysics Data System (ADS)

    Salzman, S.; Giannechini, L. J.; Romanofsky, H. J.; Golini, N.; Taylor, B.; Jacobs, S. D.; Lambropoulos, J. C.

    2015-10-01

    We present a modified version of zirconia-coated carbonyl-iron (CI) particles that were invented at the University of Rochester in 2008. The amount of zirconia on the coating is increased to further protect the iron particles from corrosion when introduced to an acidic environment. Five low-pH, magnetorheological (MR) fluids were made with five acids: acetic, hydrochloric, nitric, phosphoric, and hydrofluoric. All fluids were based on the modified zirconia-coated CI particles. Off-line viscosity and pH stability were measured for all acidic MR fluids to determine the ideal fluid composition for acidic MR finishing of chemical-vapor-deposited (CVD) zinc sulfide (ZnS) and other infrared (IR) optical materials, such as hot-isostatic-pressed (HIP) ZnS, CVD zinc selenide (ZnSe), and magnesium fluoride (MgF2). Results show significant reduction in surface artifacts (millimeter-size, pebble-like structures on the finished surface) for several standard-grade CVD ZnS substrates and good surface roughness for the non-CVD MgF2 substrate when MR finished with our advanced acidic MR fluid.

  13. An examination of binding motifs associated with inter-particle interactions between facetted nano-crystals of acetylsalicylic acid and ascorbic acid through the application of molecular grid-based search methods.

    PubMed

    Hammond, R B; Jeck, S; Ma, C Y; Pencheva, K; Roberts, K J; Auffret, T

    2009-12-01

    Grid-based intermolecular search methods using atom-atom force fields are used to assess the structural nature of potential crystal-crystal interfacial binding associated with the examination of representative pharmaceutical formulation components, viz acetylsalicylic acid (aspirin) and ascorbic acid (vitamin C). Molecular models of nano-sized molecular clusters for these two compounds, shaped in accordance with an attachment energy model of the respective particle morphologies, are constructed and used together with a grid-based search method to model the likely inter-particle interactions. The most-stable, mutual alignments of the respective nano-clusters based on their interaction energies are identified in the expectation that these are indicative of the most likely inter-particle binding configurations. The stable inter-particle binding configurations identified reveal that the number of interfacial hydrogen bonds formed between the binding particles is, potentially, an important factor in terms of the stability of inter-particle cohesion. All preferred inter-particle alignments are found to involve either the (1 0 0) or the (1 1 0) face of aspirin crystals interacting with a number of the growth forms of ascorbic acid. Four main types of interfacial hydrogen bonds are found to be associated with inter-particle binding and involve acceptor-donor interactions between hydroxyl, carbonyl, ester and lactone acceptor groups and hydroxyl donor groups. This hydrogen bonding network is found to be consistent with the surface chemistry of the interacting habit faces with, in general, the number of hydrogen bonds increasing for the more stable alignments. The likely usefulness of this approach for predicting solid-state formulation properties is reviewed.

  14. Molecular composition and size distribution of sugars, sugar-alcohols and carboxylic acids in airborne particles during a severe urban haze event caused by wheat straw burning

    NASA Astrophysics Data System (ADS)

    Wang, Gehui; Chen, Chunlei; Li, Jianjun; Zhou, Bianhong; Xie, Mingjie; Hu, Shuyuan; Kawamura, Kimitaka; Chen, Yan

    2011-05-01

    Molecular compositions and size distributions of water-soluble organic compounds (WSOC, i.e., sugars, sugar-alcohols and carboxylic acids) in particles from urban air of Nanjing, China during a severe haze event caused by field burning of wheat straw were characterized and compared with those in the summer and autumn non-haze periods. During the haze event levoglucosan (4030 ng m -3) was the most abundant compound among the measured WSOC, followed by succinic acid, malic acid, glycerol, arabitol and glucose, being different from those in the non-haze samples, in which sucrose or azelaic acid showed a second highest concentration, although levoglucosan was the highest. The measured WSOC in the haze event were 2-20 times more than those in the non-hazy days. Size distribution results showed that there was no significant change in the compound peaks in coarse mode (>2.1 μm) with respect to the haze and non-haze samples, but a large difference in the fine fraction (<2.1 μm) was found with a sharp increase during the hazy days mostly due to the increased emissions of wheat straw burning. Molecular compositions of organic compounds in the fresh smoke particles from wheat straw burning demonstrate that sharply increased concentrations of glycerol and succinic and malic acids in the fine particles during the haze event were mainly derived from the field burning of wheat straw, although the sources of glucose and related sugar-alcohols whose concentrations significantly increased in the fine haze samples are unclear. Compared to that in the fresh smoke particles of wheat straw burning an increase in relative abundance of succinic acid to levoglucosan during the haze event suggests a significant production of secondary organic aerosols during transport of the smoke plumes.

  15. Distribution patterns of phthalic acid esters in soil particle-size fractions determine biouptake in soil-cereal crop systems

    PubMed Central

    Tan, Wenbing; Zhang, Yuan; He, Xiaosong; Xi, Beidou; Gao, Rutai; Mao, Xuhui; Huang, Caihong; Zhang, Hui; Li, Dan; Liang, Qiong; Cui, Dongyu; Alshawabkeh, Akram N.

    2016-01-01

    The use of wastewater irrigation for food crops can lead to presence of bioavailable phthalic acid esters (PAEs) in soils, which increase the potential for human exposure and adverse carcinogenic and non-cancer health effects. This study presents the first investigation of the occurrence and distribution of PAEs in a maize-wheat double-cropping system in a wastewater-irrigated area in the North China Plain. PAE levels in maize and wheat were found to be mainly attributed to PAE stores in soil coarse (250–2000 μm) and fine sand (53–250 μm) fractions. Soil particle-size fractions with higher bioavailability (i.e., coarse and fine sands) showed greater influence on PAE congener bioconcentration factors compared to PAE molecular structures for both maize and wheat tissues. More PAEs were allocated to maize and wheat grains with increased soil PAE storages from wastewater irrigation. Additional findings showed that levels of both non-cancer and carcinogenic risk for PAE congeners in wheat were higher than those in maize, suggesting that wheat food security should be prioritized. In conclusion, increased soil PAE concentrations specifically in maize and wheat grains indicate that wastewater irrigation can pose a contamination threat to food resources. PMID:27555553

  16. Distribution patterns of phthalic acid esters in soil particle-size fractions determine biouptake in soil-cereal crop systems

    NASA Astrophysics Data System (ADS)

    Tan, Wenbing; Zhang, Yuan; He, Xiaosong; Xi, Beidou; Gao, Rutai; Mao, Xuhui; Huang, Caihong; Zhang, Hui; Li, Dan; Liang, Qiong; Cui, Dongyu; Alshawabkeh, Akram N.

    2016-08-01

    The use of wastewater irrigation for food crops can lead to presence of bioavailable phthalic acid esters (PAEs) in soils, which increase the potential for human exposure and adverse carcinogenic and non-cancer health effects. This study presents the first investigation of the occurrence and distribution of PAEs in a maize-wheat double-cropping system in a wastewater-irrigated area in the North China Plain. PAE levels in maize and wheat were found to be mainly attributed to PAE stores in soil coarse (250–2000 μm) and fine sand (53–250 μm) fractions. Soil particle-size fractions with higher bioavailability (i.e., coarse and fine sands) showed greater influence on PAE congener bioconcentration factors compared to PAE molecular structures for both maize and wheat tissues. More PAEs were allocated to maize and wheat grains with increased soil PAE storages from wastewater irrigation. Additional findings showed that levels of both non-cancer and carcinogenic risk for PAE congeners in wheat were higher than those in maize, suggesting that wheat food security should be prioritized. In conclusion, increased soil PAE concentrations specifically in maize and wheat grains indicate that wastewater irrigation can pose a contamination threat to food resources.

  17. Distribution patterns of phthalic acid esters in soil particle-size fractions determine biouptake in soil-cereal crop systems.

    PubMed

    Tan, Wenbing; Zhang, Yuan; He, Xiaosong; Xi, Beidou; Gao, Rutai; Mao, Xuhui; Huang, Caihong; Zhang, Hui; Li, Dan; Liang, Qiong; Cui, Dongyu; Alshawabkeh, Akram N

    2016-01-01

    The use of wastewater irrigation for food crops can lead to presence of bioavailable phthalic acid esters (PAEs) in soils, which increase the potential for human exposure and adverse carcinogenic and non-cancer health effects. This study presents the first investigation of the occurrence and distribution of PAEs in a maize-wheat double-cropping system in a wastewater-irrigated area in the North China Plain. PAE levels in maize and wheat were found to be mainly attributed to PAE stores in soil coarse (250-2000 μm) and fine sand (53-250 μm) fractions. Soil particle-size fractions with higher bioavailability (i.e., coarse and fine sands) showed greater influence on PAE congener bioconcentration factors compared to PAE molecular structures for both maize and wheat tissues. More PAEs were allocated to maize and wheat grains with increased soil PAE storages from wastewater irrigation. Additional findings showed that levels of both non-cancer and carcinogenic risk for PAE congeners in wheat were higher than those in maize, suggesting that wheat food security should be prioritized. In conclusion, increased soil PAE concentrations specifically in maize and wheat grains indicate that wastewater irrigation can pose a contamination threat to food resources.

  18. Distribution patterns of phthalic acid esters in soil particle-size fractions determine biouptake in soil-cereal crop systems.

    PubMed

    Tan, Wenbing; Zhang, Yuan; He, Xiaosong; Xi, Beidou; Gao, Rutai; Mao, Xuhui; Huang, Caihong; Zhang, Hui; Li, Dan; Liang, Qiong; Cui, Dongyu; Alshawabkeh, Akram N

    2016-01-01

    The use of wastewater irrigation for food crops can lead to presence of bioavailable phthalic acid esters (PAEs) in soils, which increase the potential for human exposure and adverse carcinogenic and non-cancer health effects. This study presents the first investigation of the occurrence and distribution of PAEs in a maize-wheat double-cropping system in a wastewater-irrigated area in the North China Plain. PAE levels in maize and wheat were found to be mainly attributed to PAE stores in soil coarse (250-2000 μm) and fine sand (53-250 μm) fractions. Soil particle-size fractions with higher bioavailability (i.e., coarse and fine sands) showed greater influence on PAE congener bioconcentration factors compared to PAE molecular structures for both maize and wheat tissues. More PAEs were allocated to maize and wheat grains with increased soil PAE storages from wastewater irrigation. Additional findings showed that levels of both non-cancer and carcinogenic risk for PAE congeners in wheat were higher than those in maize, suggesting that wheat food security should be prioritized. In conclusion, increased soil PAE concentrations specifically in maize and wheat grains indicate that wastewater irrigation can pose a contamination threat to food resources. PMID:27555553

  19. Modelling 2,4-dichlorophenol bioavailability and bioaccumulation by the freshwater fingernail clam Sphaerium corneum using artificial particles and humic acids.

    PubMed

    Verrengia Guerrero, N R; Taylor, M G; Simkiss, K

    2007-01-01

    The complex and variable composition of natural sediments makes it very difficult to predict the bioavailability and bioaccumulation of sediment-bound contaminants. Several approaches have been proposed to overcome this problem, including an experimental model using artificial particles with or without humic acids as a source of organic matter. For this work, we have applied this experimental model, and also a sample of a natural sediment, to investigate the uptake and bioaccumulation of 2,4-dichlorophenol (2,4-DCP) by Sphaerium corneum. Additionally, the particle-water partition coefficients (K(d)) were calculated. The results showed that the bioaccumulation of 2,4-DCP by clams did not depend solely on the levels of chemical dissolved, but also on the amount sorbed onto the particles and the characteristics and the strength of that binding. This study confirms the value of using artificial particles as a suitable experimental model for assessing the fate of sediment-bound contaminants. PMID:16690183

  20. Toughening of biodegradable polylactide/poly(butylene succinate-co-adipate) blends via in situ reactive compatibilization.

    PubMed

    Ojijo, Vincent; Ray, Suprakas Sinha; Sadiku, Rotimi

    2013-05-22

    Polylactide and poly(butylene succinate-co-adipate) (PLA/PBSA) were melt-blended in the presence of triphenyl phosphite (TPP). An increase in the torque during melt mixing was used to monitor the changes in viscosity as compatibilization of the blends occurred. Scanning electron micrographs showed not only a reduction in the dispersed-phase size with increased TPP content but also fibrillated links between the PLA and PBSA phases, signifying compatibilization. Moreover, optimization of parameters such as the mixing sequence and time, TPP content, and PBSA concentration revealed that blends containing 30 and 10 wt % PBSA and 2 wt % TPP, which were processed for 30 min, were optimal in terms of thermomechanical properties. The impact strength increased from 6 kJ/m(2) for PLA to 11 and 16 kJ/m(2) for blends containing 30 and 10 wt % PBSA, respectively, whereas the elongation-at-break increased from 6% for PLA to 20 and 37% for blends containing 30 and 10 wt % PBSA, respectively. Upon compatibilization, the failure mode shifted from the brittle fracture of PLA to ductile deformation, effected by the debonding between the two phases. With improved phase adhesion, compatibilized blends not only were toughened but also did not significantly lose tensile strength and thermal stability.

  1. Penetration and intracellular uptake of poly(glycerol-adipate) nanoparticles into three-dimensional brain tumour cell culture models.

    PubMed

    Meng, Weina; Garnett, Martin C; Walker, David A; Parker, Terence L

    2016-03-01

    Nanoparticle (NP) drug delivery systems may potentially enhance the efficacy of therapeutic agents. It is difficult to characterize many important properties of NPs in vivo and therefore attempts have been made to use realistic in vitro multicellular spheroids instead. In this paper, we have evaluated poly(glycerol-adipate) (PGA) NPs as a potential drug carrier for local brain cancer therapy. Various three-dimensional (3-D) cell culture models have been used to investigate the delivery properties of PGA NPs. Tumour cells in 3-D culture showed a much higher level of endocytic uptake of NPs than a mixed normal neonatal brain cell population. Differences in endocytic uptake of NPs in 2-D and 3-D models strongly suggest that it is very important to use in vitro 3-D cell culture models for evaluating this parameter. Tumour penetration of NPs is another important parameter which could be studied in 3-D cell models. The penetration of PGA NPs through 3-D cell culture varied between models, which will therefore require further study to develop useful and realistic in vitro models. Further use of 3-D cell culture models will be of benefit in the future development of new drug delivery systems, particularly for brain cancers which are more difficult to study in vivo.

  2. Penetration and intracellular uptake of poly(glycerol-adipate) nanoparticles into three-dimensional brain tumour cell culture models

    PubMed Central

    Meng, Weina; Walker, David A; Parker, Terence L

    2015-01-01

    Nanoparticle (NP) drug delivery systems may potentially enhance the efficacy of therapeutic agents. It is difficult to characterize many important properties of NPs in vivo and therefore attempts have been made to use realistic in vitro multicellular spheroids instead. In this paper, we have evaluated poly(glycerol-adipate) (PGA) NPs as a potential drug carrier for local brain cancer therapy. Various three-dimensional (3-D) cell culture models have been used to investigate the delivery properties of PGA NPs. Tumour cells in 3-D culture showed a much higher level of endocytic uptake of NPs than a mixed normal neonatal brain cell population. Differences in endocytic uptake of NPs in 2-D and 3-D models strongly suggest that it is very important to use in vitro 3-D cell culture models for evaluating this parameter. Tumour penetration of NPs is another important parameter which could be studied in 3-D cell models. The penetration of PGA NPs through 3-D cell culture varied between models, which will therefore require further study to develop useful and realistic in vitro models. Further use of 3-D cell culture models will be of benefit in the future development of new drug delivery systems, particularly for brain cancers which are more difficult to study in vivo. PMID:26568330

  3. Antiandrogenic effects in male rats perinatally exposed to a mixture of di(2-ethylhexyl) phthalate and di(2-ethylhexyl) adipate.

    PubMed

    Jarfelt, Kirsten; Dalgaard, Majken; Hass, Ulla; Borch, Julie; Jacobsen, Helene; Ladefoged, Ole

    2005-01-01

    Di(2-ethylhexyl) phthalate (DEHP) is a well-known testicular toxicant inducing adverse effects in androgen responsive tissues. Therefore, di(2-ethylhexyl) adipate (DEHA) is currently being evaluated as a potential substitute for DEHP. Similarities in structure and metabolism of DEHP and DEHA have led to the hypothesis that DEHA can modulate the effects of DEHP. Wistar rats were gavaged with either vehicle, DEHP (300 or 750mg/kg bw/day) or DEHP (750mg/kg bw/day) in combination with DEHA (400mg/kg bw/day) from gestation day (GD) 7 to postnatal day (PND) 17. Decreased anogenital distance (AGD) and retention of nipples in male offspring were found in all three exposed groups. Dosed males exhibited decreased weights of ventral prostate and m. levator ani/bulbocavernosus. Histopathological investigations revealed alterations in testis morphology in both juvenile and adult animals. The litter size was decreased and postnatal mortality was increased in the combination group only, which is likely a combined effect of DEHP and DEHA. However, no combination effect was seen with respect to antiandrogenic effects, as males receiving DEHP in combination with DEHA did not exhibit more pronounced effects in the reproductive system than males receiving DEHP alone. PMID:15749265

  4. Study on the phase transition behavior of poly(butylene adipate) in its blends with poly(vinyl phenol).

    PubMed

    Sun, Xiaoli; Pi, Fuwei; Zhang, Jianming; Takahashi, Isao; Wang, Feng; Yan, Shouke; Ozaki, Yukihiro

    2011-03-10

    The phase transition behavior of poly(butylene adipate) (PBA) crystals in its blends with poly(vinyl phenol) (PVPh) was investigated by infrared (IR) spectroscopy and X-ray diffraction (XRD). The IR and XRD studies indicate that the hydrogen bonding between the C═O group of PBA and the OH group of PVPh developed in the PBA/PVPh blends with the ratios of 80/20 and 50/50 does not influence the solution crystallization behavior of PBA. The phase transition behavior of PBA in the blends is, however, significantly altered by the blending. In the neat PBA, linear changes of the intensities of IR bands at 1077, 930, and 910 cm(-1) are observed in the temperature range of 25-47.5 °C followed by an abrupt change corresponding to the occurrence of β-to-α phase transition. In the blends, the accelerated intensity changes of the those IR bands occur before the β-to-α phase transition, which is contributed to the melting of imperfect β-PBA crystals at relatively lower temperature. In addition, the significantly depressed β-to-α phase transition temperature is also identified.

  5. Di-(2-ethylhexyl) adipate and 20 phthalates in composite food samples from the 2013 Canadian Total Diet Study.

    PubMed

    Cao, Xu-Liang; Zhao, Wendy; Dabeka, Robert

    2015-01-01

    A sensitive and selective GC-MS method was developed and used for simultaneous analysis of di-(2-ethylhexyl) adipate (DEHA) and 20 selected phthalates in the food samples from the 2013 Canadian Total Diet Study. At least one of the 21 target chemicals was detected in 141 of the 159 different food composite samples analysed. However, only seven of the 21 target chemicals were detected, with di-(2-ethylhexyl) phthalate (DEHP) and DEHA being detected most frequently, in 111 and 91 different food composite samples, respectively, followed by di-n-butyl phthalate (DBP) (n = 44), n-butyl benzyl phthalate (BBzP) (32), di-iso-butyl phthalate (DiBP) (27), di-ethyl phthalate (DEP) (3), and di-cyclohexyl phthalate (DCHP) (1). Levels of DEP (di-ethyl phthalate), DiBP, DBP, BBzP and DCHP were low, in general, with average concentrations of 9.63, 8.26, 23.2, 12.4 and 64.9 ng g(-1), respectively. Levels of DEHA and DEHP varied widely, ranging from 1.4 to 6010 ng g(-1) and from 14.4 to 714 ng g(-1), respectively. High levels of DEHA were found mainly in the composite samples where the individual food items used to prepare the composite were likely packaged in polyvinyl chloride (PVC) wrapping film, while the highest DEHP levels were found in the vegetable and fruit samples.

  6. Denuder/filter sampling of organic acids and organosulfates at urban and boreal forest sites: Gas/particle distribution and possible sampling artifacts

    NASA Astrophysics Data System (ADS)

    Kristensen, Kasper; Bilde, Merete; Aalto, Pasi P.; Petäjä, Tuukka; Glasius, Marianne

    2016-04-01

    Carboxylic acids and organosulfates comprise an important fraction of atmospheric secondary organic aerosols formed from both anthropogenic and biogenic precursors. The partitioning of these compounds between the gas and particle phase is still unclear and further research is warranted to better understand the abundance and effect of organic acids and organosulfates on the formation and properties of atmospheric aerosols. This work compares atmospheric aerosols collected at an urban and a boreal forest site using two side-by-side sampling systems; a high volume sampler (HVS) and a low volume (LVS) denuder/filter sampling system allowing for separate collection of gas- and particle-phase organics. All particle filters and denuder samples were collected at H.C. Andersen Boulevard (HCAB), Copenhagen, Denmark in the summer of 2010, and at the remote boreal forest site at Hyytiälä forestry field station in Finland in the summer of 2012. The chemical composition of gas- and particle-phase secondary organic aerosol was investigated by ultra-high performance liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC/ESI-Q-TOFMS), with a focus on carboxylic acids and organosulfates. Results show gas-phase concentrations higher than those observed in the particle phase by a factor of 5-6 in HCAB 2010 and 50-80 in Hyytiälä 2012. Although abundant in the particle phase, no organosulfates were detected in the gas phase at either site. Through a comparison of samples collected by the HVS and the LVS denuder/filter sampling system we evaluate the potential artifacts associated with sampling of atmospheric aerosols. Such comparison shows that particle phase concentrations of semi-volatile organic acids obtained from the filters collected by HVS are more than two times higher than concentrations obtained from filters collected using LVS denuder/filter system. In most cases, higher concentrations of organosulfates are observed in particles

  7. Sulfuric acid dissolution of 4A and Na-Y synthetic zeolites and effects on Na-Y surface and particle properties

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyu; Wang, Kunping; Plackowski, Chris A.; Nguyen, Anh V.

    2016-03-01

    Sodium rich synthetic zeolites 4A and Na-Y have different silicon-to-aluminium (Si/Al) ratios and are widely used as molecular sieves, catalysts and adsorbents. This study investigates the changes in 4A and Na-Y synthetic zeolites treated by H2SO4 at room temperature. Both zeolite types are examined before and after treatment by following the dissolution and re-crystallisation processes, and Na-Y by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and particle size analysis. Na-Y zeolite (high Si/Al ratio) has stronger acid-resistivity than 4A zeolite (low Si/Al ratio) and can be treated with H2SO4 up to 5 M without complete dissolution, whereas 4A zeolite is completely dissolved by 0.5 M acid. For both zeolites, the treatment generates dissolution (of both Si and Al) of first order fast kinetics, followed by re-crystallization. XRD studies of Na-Y zeolite indicate that acid treatment leads to structural changes where cations are removed and as dissolution progresses de-alumination takes place, thereby altering the main tetrahedral structure. XPS analysis shows the Si/Al atomic ratio for Na-Y zeolite increases from 2.94 at 0 M to 8.18 at 0.1 M, and a significant binding energy (BE) shift of Si and O occurs even at a high Si/Al ratio. The acid treatment increases the surface intermediate electronegativity of Na-Y zeolite, and the BE of each main structural element changes in the same way as the electronegativity ratio (element electronegativity to total surface electronegativity) as the acid concentration increases. Particle size analysis indicates that a recrystallization process occurs during acid treatment, as shown by a shift of the coarse particle distribution peak size to progressively smaller sizes with increasing acid concentration.

  8. Removal of Particles and Acid Gases (SO2 or HCl) with a Ceramic Filter by Addition of Dry Sorbents

    SciTech Connect

    Hemmer, G.; Kasper, G.; Wang, J.; Schaub, G.

    2002-09-20

    The present investigation intends to add to the fundamental process design know-how for dry flue gas cleaning, especially with respect to process flexibility, in cases where variations in the type of fuel and thus in concentration of contaminants in the flue gas require optimization of operating conditions. In particular, temperature effects of the physical and chemical processes occurring simultaneously in the gas-particle dispersion and in the filter cake/filter medium are investigated in order to improve the predictive capabilities for identifying optimum operating conditions. Sodium bicarbonate (NaHCO{sub 3}) and calcium hydroxide (Ca(OH){sub 2}) are known as efficient sorbents for neutralizing acid flue gas components such as HCl, HF, and SO{sub 2}. According to their physical properties (e.g. porosity, pore size) and chemical behavior (e.g. thermal decomposition, reactivity for gas-solid reactions), optimum conditions for their application vary widely. The results presented concentrate on the development of quantitative data for filtration stability and overall removal efficiency as affected by operating temperature. Experiments were performed in a small pilot unit with a ceramic filter disk of the type Dia-Schumalith 10-20 (Fig. 1, described in more detail in Hemmer 2002 and Hemmer et al. 1999), using model flue gases containing SO{sub 2} and HCl, flyash from wood bark combustion, and NaHCO{sub 3} as well as Ca(OH){sub 2} as sorbent material (particle size d{sub 50}/d{sub 84} : 35/192 {micro}m, and 3.5/16, respectively). The pilot unit consists of an entrained flow reactor (gas duct) representing the raw gas volume of a filter house and the filter disk with a filter cake, operating continuously, simulating filter cake build-up and cleaning of the filter medium by jet pulse. Temperatures varied from 200 to 600 C, sorbent stoichiometric ratios from zero to 2, inlet concentrations were on the order of 500 to 700 mg/m{sup 3}, water vapor contents ranged from

  9. Morphology and mechanical properties of poly(butylene adipate-co-terephthalate)/potato starch blends in the presence of synthesized reactive compatibilizer or modified poly(butylene adipate-co-terephthalate).

    PubMed

    Wei, Dafu; Wang, Hao; Xiao, Huining; Zheng, Anna; Yang, Yang

    2015-06-01

    The biodegradable poly(butylene adipate-co-terephthalate)(PBAT)/thermoplastic starch (TPS) composite has received considerable attention because of the environmental concerns raised by solid waste disposal. However, the application of PBAT/TPS blends was limited due to the poor mechanical properties originating from the incompatibility between PBAT and TPS. In this work, two approaches were developed to improve the mechanical properties of PBAT/TPS blends. One approach is to use compatibilizers, including the synthesized reactive compatibilizer - a styrene-maleic anhydride-glycidyl methacrylate (SMG) terpolymer, and the commercial compatibilizer (Joncryl-ADR-4368). The chemical structures of SMG were analyzed with (1)H NMR and FT-IR. The other approach is to use the modified PBAT (M-PBAT) to replace part of PBAT in the PBAT/TPS blends. M-PBATs with higher molecular weight were obtained via reactive extrusion of PBAT in the presence of a chain extender. The better dispersion of TPS in PBAT was observed in SEM images when using M-PBAT, leading to the higher tensile strength and elongation at break of PBAT/TPS blends. However, the elongation at break decreased in the presence of compatibilizer (SMG or 4368), though the tensile strength remained in a similar level or slightly higher. Overall, the tensile strength and the elongation at break of the resulting biodegradable PBAT/M-PBAT/TPS blends (TPS=40wt%) were above 27.0MPa and 500%, respectively, which is promising for various applications, including packaging and agricultural mulching films. PMID:25843859

  10. Morphology and mechanical properties of poly(butylene adipate-co-terephthalate)/potato starch blends in the presence of synthesized reactive compatibilizer or modified poly(butylene adipate-co-terephthalate).

    PubMed

    Wei, Dafu; Wang, Hao; Xiao, Huining; Zheng, Anna; Yang, Yang

    2015-06-01

    The biodegradable poly(butylene adipate-co-terephthalate)(PBAT)/thermoplastic starch (TPS) composite has received considerable attention because of the environmental concerns raised by solid waste disposal. However, the application of PBAT/TPS blends was limited due to the poor mechanical properties originating from the incompatibility between PBAT and TPS. In this work, two approaches were developed to improve the mechanical properties of PBAT/TPS blends. One approach is to use compatibilizers, including the synthesized reactive compatibilizer - a styrene-maleic anhydride-glycidyl methacrylate (SMG) terpolymer, and the commercial compatibilizer (Joncryl-ADR-4368). The chemical structures of SMG were analyzed with (1)H NMR and FT-IR. The other approach is to use the modified PBAT (M-PBAT) to replace part of PBAT in the PBAT/TPS blends. M-PBATs with higher molecular weight were obtained via reactive extrusion of PBAT in the presence of a chain extender. The better dispersion of TPS in PBAT was observed in SEM images when using M-PBAT, leading to the higher tensile strength and elongation at break of PBAT/TPS blends. However, the elongation at break decreased in the presence of compatibilizer (SMG or 4368), though the tensile strength remained in a similar level or slightly higher. Overall, the tensile strength and the elongation at break of the resulting biodegradable PBAT/M-PBAT/TPS blends (TPS=40wt%) were above 27.0MPa and 500%, respectively, which is promising for various applications, including packaging and agricultural mulching films.

  11. Effect of concentration and cumulative exposure of inhaled sulfuric acid on tracheobronchial particle clearance in healthy humans.

    PubMed

    Spektor, D M; Yen, B M; Lippmann, M

    1989-02-01

    We have previously shown that 1-hr exposures to 0.5 microns sulfuric acid (H2SO4) mist at 100 and 1000 micrograms/m3 produced transient alterations of bronchial mucociliary clearance of monodispersed 7.6 and 4.2 microns mass median aerodynamic diameter gamma-tagged ferric oxide (Fe2O3) in healthy nonsmoking humans in a dose-dependent manner. To determine the role, if any, of the length of exposure, 10 healthy volunteers were exposed to 100 micrograms/m3 H2SO4 for 1 hr and 2 hr on separate occasions, 1 week apart, with measurements of their mucociliary clearance of 5.2 microns Fe2O3 particles inhaled both before and after the inhalation of the H2SO4. Their rate of bronchial mucociliary clearance was markedly reduced for both Fe2O3 aerosols, with slower clearance of the aerosol inhaled after the H2SO4 exposure. For the tagged Fe2O3 aerosol inhaled after exposure for 2 hr at 100 micrograms/m3 H2SO4, the tracheobronchial clearance halftime, (T50), tripled from control, and the reduced rate of clearance was still evident 3 hr after the end of exposure. The 1-hr 100 micrograms/m3 H2SO4 exposure doubled T50 from control, and the reduced rate of clearance lasted for about 2 hr after the end of exposure. These results indicate that the effect of doubling the length of exposure was as great or greater than an order of magnitude increase in the concentration of H2SO4.

  12. Synthesis and Characterization of Surface Grafted Poly(N-isopropylacrylamide) and Poly(Carboxylic Acid)– Iron Particles via Atom Transfer Radical Polymerization for Biomedical Applications

    PubMed Central

    Sutrisno, Joko; Fuchs, Alan; Evrensel, Cahit

    2014-01-01

    This research relates to the preparation and characterization of surface grafted poly(N-isopropylacrylamide) and poly(carboxylic acid)–micron-size iron particles via atom transfer radical polymerization (ATRP). The surface grafted polymers–iron particles result in multifunctional materials which can be used in biomedical applications. The functionalities consist of cell targeting, imaging, drug delivery, and immunological response. The multifunctional materials are synthesized in two steps. First, surface grafting is used to place polymer molecules on the iron particles surface. The second step, is conjugation of the bio-molecules onto the polymer backbone. Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy were used to confirm the presence of polymers on the iron particles. The thickness of the grafted polymers and glass transition temperature of the surface grafted polymers were determined by transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The covalent bond between grafted polymers and iron particles caused higher glass transition temperature as compared with non-grafted polymers. The ability to target the bio-molecule and provide fluorescent imaging was simulated by conjugation of rat immunoglobulin and fluorescein isothiocyanate (FITC) labeled anti-rat. The fluorescence intensity was determined using flow cytometry and conjugated IgG-FITC anti-rat on iron particles which was imaged using a fluorescence microscopy. PMID:25382869

  13. Stable carbon isotopic compositions of total carbon, dicarboxylic acids and glyoxylic acid in the tropical Indian aerosols: Implications for sources and photochemical processing of organic aerosols

    NASA Astrophysics Data System (ADS)

    Pavuluri, Chandra Mouli; Kawamura, Kimitaka; Swaminathan, T.; Tachibana, Eri

    2011-09-01

    The tropical Indian aerosols (PM10) collected on day- and nighttime bases in winter and summer, 2007 from Chennai (13.04°N; 80.17°E) were studied for stable carbon isotopic compositions (δ13C) of total carbon (TC), individual dicarboxylic acids (C2-C9) and glyoxylic acid (ωC2). δ13C values of TC ranged from -23.9‰ to -25.9‰ (-25.0 ± 0.6‰; n = 49). Oxalic (C2) (-17.1 ± 2.5‰), malonic (C3) (-20.8 ± 1.8‰), succinic (C4) (-22.5 ± 1.5‰) and adipic (C6) (-20.6 ± 4.1‰) acids and ωC2 acid (-22.4 ± 5.5‰) were found to be more enriched with 13C compared to TC. In contrast, suberic (C8) (-29.4 ± 1.8‰), phthalic (Ph) (-30.1 ± 3.5‰) and azelaic (C9) (-28.4 ± 5.8‰) acids showed smaller δ13C values than TC. Based on comparisons of δ13C values of TC in Chennai aerosols to those (-24.7 ± 2.2‰) found in unburned cow-dung samples collected from Chennai and isotopic signatures of the particles emitted from point sources, we found that biofuel/biomass burning are the major sources of carbonaceous aerosols in South and Southeast Asia. The decrease in δ13C values of C9 diacid by about 5‰ from winter to summer suggests that tropical plant emissions also significantly contribute to organic aerosol in this region. Significant increase in δ13C values from C4 to C2 diacids in Chennai aerosols could be attributed for their photochemical processing in the tropical atmosphere during long-range transport from source regions.

  14. Joint effect of organic acids and inorganic salts on cloud droplet activation

    NASA Astrophysics Data System (ADS)

    Frosch, M.; Prisle, N. L.; Bilde, M.; Varga, Z.; Kiss, G.

    2010-07-01

    We have investigated CCN properties of internally mixed particles composed of one organic acid (oxalic acid, succinic acid, adipic acid, citric acid, cis-pinonic acid, or nordic reference fulvic acid) and one inorganic salt (sodium chloride or ammonium sulphate). Surface tension and water activity of aqueous model solutions with concentrations relevant for CCN activation were measured using a tensiometer and osmometry, respectively. The measurements were used to calculate Köhler curves, which were compared to measured critical supersaturations of particles with the same chemical compositions, determined with a cloud condensation nucleus counter. Surfactant surface partitioning was not accounted for. For the mixtures containing cis-pinonic acid or fulvic acid, a depression of surface tension was observed, but for the remaining mixtures the effect on surface tension was negligle at concentrations relevant for cloud droplet activation, and water activity was the more significant term in the Köhler equation. The surface tension depression of aqueous solutions containing both organic acid and inorganic salt was approximately the same as or smaller than that of aqueous solutions containing the same mass of the corresponding pure organic acids. Water activity was found to be highly dependent on the type and amount of inorganic salt. Sodium chloride was able to decrease water activity more than ammonium sulphate and both inorganic compounds had a higher effect on water activity than the studied organic acids, and increasing the mass ratio of the inorganic compound led to a decrease in water activity. Water activity measurements were compared to results from the E-AIM model and values estimated from both constant and variable van't Hoff factors to evaluate the performance of these approaches. The correspondence between measuments and estimates was overall good, except for highly concentrated solutions. Critical supersaturations calculated with Köhler theory based on

  15. Evaluation of a predictive mathematical model of di-(2-ethylhexyl) adipate plasticizer migration from PVC film into foods.

    PubMed

    Mercer, A; Castle, L; Comyn, J; Gilbert, J

    1990-01-01

    The diffusion coefficient of the plasticizer di-(2-ethylhexyl)adipate (DEHA) in Cheddar cheese (Df) was determined by measuring the extent to which DEHA penetrated cheese that was placed in intimate contact with artificially DEHA-contaminated cheese. Slices (20 microns) of cheese from the boundary layer, into which DEHA had migrated, were microtomed at -40 degrees C, and analyzed for DEHA by gas chromatography (GC). Mean values of Df determined by graph fitting experimental and calculated data were 1.5 x 10(-9) cm2 s-1 at 5 degrees C and 3.0 x 10(-8) cm2 s-1 at 25 degrees C. The partition coefficient (K) of DEHA between cheese and PVC film was derived from the partition coefficients of DEHA between acetonitrile (ACN) and cheese lipid, ACN and cheese solid, and ACN and PVC film. The mean values of K between cheese and PVC film were estimated to be 0.70 at 5 degrees C and 0.58 at 25 degrees C. The estimated values of Df and K were then used in a mathematical model (Till et al. 1982) to predict migration levels of DEHA into cheese. Good agreement with previously published experimental data was obtained. Extrapolation of the prediction of DEHA migration into fatty foods, such as salami and avocado, was also successful (ratio of experimental to predicted results within a factor of two). The values of Df and K for cheese are, however, inappropriate for modelling non-fatty foods such as meat, cakes, fruit and vegetables. Predicted values for these foods were typically 3-10-fold too high. More accurate predictions would probably be obtained if values of Df more relevant to these foods are used. The predictions were relatively insensitive to the value of K.

  16. Combusting vegetable oils in diesel engines: the impact of unsaturated fatty acids on particle emissions and mutagenic effects of the exhaust.

    PubMed

    Bünger, Jürgen; Bünger, Jörn F; Krahl, Jürgen; Munack, Axel; Schröder, Olaf; Brüning, Thomas; Hallier, Ernst; Westphal, Götz A

    2016-06-01

    High particle emissions and strong mutagenic effects were observed after combustion of vegetable oil in diesel engines. This study tested the hypothesis that these results are affected by the amount of unsaturated or polyunsaturated fatty acids of vegetable oils. Four different vegetable oils (coconut oil, CO; linseed oil, LO; palm tree oil, PO; and rapeseed oil, RO) and common diesel fuel (DF) were combusted in a heavy-duty diesel engine. The exhausts were investigated for particle emissions and mutagenic effects in direct comparison with emissions of DF. The engine was operated using the European Stationary Cycle. Particle masses were measured gravimetrically while mutagenicity was determined using the bacterial reverse mutation assay with tester strains TA98 and TA100. Combustion of LO caused the largest amount of total particulate matter (TPM). In comparison with DF, it particularly raised the soluble organic fraction (SOF). RO presented second highest TPM and SOF, followed by CO and PO, which were scarcely above DF. RO revealed the highest number of mutations of the vegetable oils closely followed by LO. PO was less mutagenic, but still induced stronger effects than DF. While TPM and SOF were strongly correlated with the content of polyunsaturated fatty acids in the vegetable oils, mutagenicity had a significant correlation with the amount of total unsaturated fatty acids. This study supports the hypothesis that numbers of double bounds in unsaturated fatty acids of vegetable oils combusted in diesel engines influence the amount of emitted particles and the mutagenicity of the exhaust. Further investigations have to elucidate the causal relationship.

  17. Combusting vegetable oils in diesel engines: the impact of unsaturated fatty acids on particle emissions and mutagenic effects of the exhaust.

    PubMed

    Bünger, Jürgen; Bünger, Jörn F; Krahl, Jürgen; Munack, Axel; Schröder, Olaf; Brüning, Thomas; Hallier, Ernst; Westphal, Götz A

    2016-06-01

    High particle emissions and strong mutagenic effects were observed after combustion of vegetable oil in diesel engines. This study tested the hypothesis that these results are affected by the amount of unsaturated or polyunsaturated fatty acids of vegetable oils. Four different vegetable oils (coconut oil, CO; linseed oil, LO; palm tree oil, PO; and rapeseed oil, RO) and common diesel fuel (DF) were combusted in a heavy-duty diesel engine. The exhausts were investigated for particle emissions and mutagenic effects in direct comparison with emissions of DF. The engine was operated using the European Stationary Cycle. Particle masses were measured gravimetrically while mutagenicity was determined using the bacterial reverse mutation assay with tester strains TA98 and TA100. Combustion of LO caused the largest amount of total particulate matter (TPM). In comparison with DF, it particularly raised the soluble organic fraction (SOF). RO presented second highest TPM and SOF, followed by CO and PO, which were scarcely above DF. RO revealed the highest number of mutations of the vegetable oils closely followed by LO. PO was less mutagenic, but still induced stronger effects than DF. While TPM and SOF were strongly correlated with the content of polyunsaturated fatty acids in the vegetable oils, mutagenicity had a significant correlation with the amount of total unsaturated fatty acids. This study supports the hypothesis that numbers of double bounds in unsaturated fatty acids of vegetable oils combusted in diesel engines influence the amount of emitted particles and the mutagenicity of the exhaust. Further investigations have to elucidate the causal relationship. PMID:26126632

  18. Magnetic particles

    NASA Technical Reports Server (NTRS)

    Chang, Manchium (Inventor); Colvin, Michael S. (Inventor); Rembaum, Alan (Inventor); Richards, Gil F. (Inventor)

    1987-01-01

    Metal oxide containing polymers and particularly styrene, acrylic or protein polymers containing fine, magnetic iron oxide particles are formed by combining a NO.sub.2 -substituted polymer with an acid such as hydrochloric acid in the presence of metal, particularly iron particles. The iron is oxidized to fine, black Fe.sub.3 O.sub.4 particles which deposit selectively on the polymer particles. Nitrated polymers are formed by reacting functionally substituted, nitrated organic compounds such as trinitrobenzene sulfonate or dinitrofluoro benzene with a functionally coreactive polymer such as an amine modified acrylic polymer or a protein. Other transition metals such as cobalt can also be incorporated into polymers using this method.

  19. Construction and immunological evaluation of truncated hepatitis B core particles carrying HBsAg amino acids 119–152 in the major immunodominant region (MIR)

    SciTech Connect

    Su, Qiudong; Yi, Yao; Guo, Minzhuo; Qiu, Feng; Jia, Zhiyuan; Lu, Xuexin; Meng, Qingling; Bi, Shengli

    2013-09-13

    Highlights: •The conformational HBV neutralization antigen domain was successfully displayed on the surface of truncated HBc particles. •Appropriate dialysis procedures to support the renaturing environment for the protein refolding. •Efficient purification procedures to obtain high purity and icosahedral particles of mosaic HBV antigen. •Strong immune responses not only including neutralization antibody response but also Th1 cell response were induced in mice. -- Abstract: Hepatitis B capsid protein expressed in Escherichia coli can reassemble into icosahedral particles, which could strongly enhance the immunogenicity of foreign epitopes, especially those inserted into its major immunodominant region. Herein, we inserted the entire ‘α’ antigenic determinant amino acids (aa) 119–152 of HBsAg into the truncated HBc (aa 1–144), between Asp{sup 78} and Pro{sup 79}. Prokaryotic expression showed that the mosaic HBc was mainly in the form of inclusion bodies. After denaturation with urea, it was dialyzed progressively for protein renaturation. We observed that before and after renaturation, mosaic HBc was antigenic as determined by HBsAg ELISA and a lot of viruslike particles were observed after renaturation. Thus, we further purified the mosaic viruslike particles by (NH{sub 4}){sub 2}SO{sub 4} precipitation, DEAE chromatography, and Sepharose 4FF chromatography. Negative staining electron microscopy demonstrated the morphology of the viruslike particles. Immunization of Balb/c mice with mosaic particles induced the production of anti-HBs antibody and Th1 cell immune response supported by ELISPOT and CD4/CD8 proportions assay. In conclusion, we constructed mosaic hepatitis core particles displaying the entire ‘α’ antigenic determinant on the surface and laid a foundation for researching therapeutic hepatits B vaccines.

  20. A recombinant hepatitis B core antigen polypeptide with the protamine-like domain deleted self-assembles into capsid particles but fails to bind nucleic acids.

    PubMed Central

    Gallina, A; Bonelli, F; Zentilin, L; Rindi, G; Muttini, M; Milanesi, G

    1989-01-01

    We have cloned in Escherichia coli both the complete core gene of hepatitis B virus and a truncated version of it, leading to the synthesis of high levels of a core-antigen-equivalent polypeptide (r-p22) and of an e-antigen-equivalent polypeptide (r-p16), respectively. We then compared the structural and antigenic properties of the two polypeptides, as well as their ability to bind viral nucleic acids. r-p16 was found to self-assemble into capsid-like particles that appeared similar, when observed under the electron microscope, to those formed by r-p22. In r-p16 particles, disulfide bonds linked the truncated polypeptides in dimers, assembled in the particle by noncovalent interactions. In r-p22 capsids, further disulfide bonds, conceivably involving the carboxy-terminal cysteines of r-p22 polypeptides, joined the dimers together, converting the structure into a covalently closed lattice. The protamine-like domain was at least partly exposed on the surface of r-p22 particles, since it was accessible to selective proteolysis. Finally, r-p22, but not r-p16, was shown to bind native and denatured DNA as well as RNA. Taken together, these results suggest that the protamine-like domain in core polypeptides is a nucleic acid-binding domain and is dispensable for the correct folding and assembly of amino-terminal and central regions. Images PMID:2677399

  1. Observation of new particle formation and measurement of sulfuric acid, ammonia, amines and highly oxidized organic molecules at a rural site in central Germany

    NASA Astrophysics Data System (ADS)

    Kürten, Andreas; Bergen, Anton; Heinritzi, Martin; Leiminger, Markus; Lorenz, Verena; Piel, Felix; Simon, Mario; Sitals, Robert; Wagner, Andrea C.; Curtius, Joachim

    2016-10-01

    The exact mechanisms for new particle formation (NPF) under different boundary layer conditions are not known yet. One important question is whether amines and sulfuric acid lead to efficient NPF in the atmosphere. Furthermore, it is not clear to what extent highly oxidized organic molecules (HOMs) are involved in NPF. We conducted field measurements at a rural site in central Germany in the proximity of three larger dairy farms to investigate whether there is a connection between NPF and the presence of amines and/or ammonia due to the local emissions from the farms. Comprehensive measurements using a nitrate chemical ionization-atmospheric pressure interface time-of-flight (CI-APi-TOF) mass spectrometer, a proton-transfer-reaction mass spectrometer (PTR-MS), particle counters and differential mobility analyzers (DMAs), as well as measurements of trace gases and meteorological parameters, were performed. We demonstrate here that the nitrate CI-APi-TOF is suitable for sensitive measurements of sulfuric acid, amines, a nitrosamine, ammonia, iodic acid and HOMs. NPF was found to correlate with sulfuric acid, while an anti-correlation with RH, amines and ammonia is observed. The anti-correlation between NPF and amines could be due to the efficient uptake of these compounds by nucleating clusters and small particles. Much higher HOM dimer (C19/C20 compounds) concentrations during the night than during the day indicate that these HOMs do not efficiently self-nucleate as no nighttime NPF is observed. Observed iodic acid probably originates from an iodine-containing reservoir substance, but the iodine signals are very likely too low to have a significant effect on NPF.

  2. Beneficial Effects of Omega-3 Fatty Acids on Low Density Lipoprotein Particle Size in Patients with Type 2 Diabetes Already under Statin Therapy.

    PubMed

    Lee, Myung Won; Park, Jeong Kyung; Hong, Jae Won; Kim, Kwang Joon; Shin, Dong Yeob; Ahn, Chul Woo; Song, Young Duk; Cho, Hong Keun; Park, Seok Won; Lee, Eun Jig

    2013-06-01

    Beyond statin therapy for reducing low density lipoprotein cholesterol (LDL-C), additional therapeutic strategies are required to achieve more optimal reduction in cardiovascular risk among diabetic patients with dyslipidemia. To evaluate the effects and the safety of combined treatment with omega-3 fatty acids and statin in dyslipidemic patients with type 2 diabetes, we conducted a randomized, open-label study in Korea. Patients with persistent hypertriglyceridemia (≥200 mg/dL) while taking statin for at least 6 weeks were eligible. Fifty-one patients were randomized to receive either omega-3 fatty acid 4, 2 g, or no drug for 8 weeks while continuing statin therapy. After 8 weeks of treatment, the mean percentage change of low density lipoprotein (LDL) particle size and triglyceride (TG) level was greater in patients who were prescribed 4 g of omega-3 fatty acid with statin than in patients receiving statin monotherapy (2.8%±3.1% vs. 2.3%±3.6%, P=0.024; -41.0%±24.1% vs. -24.2%±31.9%, P=0.049). Coadministration of omega-3 fatty acids with statin increased LDL particle size and decreased TG level in dyslipidemic patients with type 2 diabetes. The therapy was well tolerated without significant adverse effects.

  3. A controlled release of antibiotics from calcium phosphate-coated poly(lactic-co-glycolic acid) particles and their in vitro efficacy against Staphylococcus aureus biofilm.

    PubMed

    Bastari, Kelsen; Arshath, Mohamed; Ng, Zhi Hui Melissa; Chia, Jia Hua; Yow, Zhi Xian Daniel; Sana, Barindra; Tan, Meng Fong Cherine; Lim, Sierin; Loo, Say Chye Joachim

    2014-03-01

    Ceramic-polymer hybrid particles, intended for osteomyelitis treatment, were fabricated by preparing poly(lactic-co-glycolic acid) particles through an emulsion solvent evaporation technique, followed by calcium phosphate (CaP) coating via a surface adsorption-nucleation method. The presence of CaP coating on the surface of the particles was confirmed by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. Subsequently, two antibiotics for treating bone infection, nafcillin (hydrophilic) and levofloxacin (amphiphilic), were loaded into these hybrid particles and their in vitro drug release studies were investigated. The CaP coating was shown to reduce burst release, while providing sustained release of the antibiotics for up to 4 weeks. In vitro bacterial study against Staphylococcus aureus demonstrated the capability of these antibiotic-loaded hybrid particles to inhibit biofilm formation as well as deteriorate established biofilm, making this hybrid system a potential candidate for further investigation for osteomyelitis treatment.

  4. 2-methoxyethanol as a solvent for conductometric acid-base titrations.

    PubMed

    Schwartz, G A; Barker, B J

    1975-09-01

    Conductometric titrations of a series of organic acids in 2-methoxyethanol were performed with 1,3-diphenylguanidine (DPG) as titrant. For benzoic, p-chlorobenzoic and picric acids, phenylphenol and barbital, excellent recoveries were obtained from well-defined conductance vs. volume plots. Results for the dicarboxylic phthalic and adipic acids were also good. However, the titration curves for the difunctional salicylic and p-hydroxybenzoic acids were not clearly defined. The results are discussed and compared with cnductometric titrations of acids in other non-aqueous solvents. Several determinations of electrolyte conductance as a function of concentration revealed that, as expected, the selected substances are weak electrolytes in methoxyethanol.

  5. Fractionation of iron isotopes during leaching of natural particles by acidic and circumneutral leaches and development of an optimal leach for marine particulate iron isotopes

    NASA Astrophysics Data System (ADS)

    Revels, Brandi N.; Zhang, Ruifeng; Adkins, Jess F.; John, Seth G.

    2015-10-01

    Iron (Fe) is an essential nutrient for life on land and in the oceans. Iron stable isotope ratios (δ56Fe) can be used to study the biogeochemical cycling of Fe between particulate and dissolved phases in terrestrial and marine environments. We have investigated the dissolution of Fe from natural particles both to understand the mechanisms of Fe dissolution, and to choose a leach appropriate for extracting labile Fe phases of marine particles. With a goal of finding leaches which would be appropriate for studying dissolved-particle interactions in an oxic water column, three particle types were chosen including oxic seafloor sediments (MESS-3), terrestrial dust (Arizona Test Dust - A2 Fine), and ocean sediment trap material from the Cariaco basin. Four leaches were tested, including three acidic leaches similar to leaches previously applied to marine particles and sediments (25% acetic acid, 0.01 N HCl, and 0.5 N HCl) and a pH 8 oxalate-EDTA leach meant to mimic the dissolution of particles by organic complexation, as occurs in natural seawater. Each leach was applied for three different times (10 min, 2 h, 24 h) at three different temperatures (25 °C, 60 °C, 90 °C). MESS-3 was also leached under various redox conditions (0.02 M hydroxylamine hydrochloride or 0.02 M hydrogen peroxide). For all three sample types tested, we find a consistent relationship between the amount of Fe leached and leachate δ56Fe for all of the acidic leaches, and a different relationship between the amount of Fe leached and leachate δ56Fe for the oxalate-EDTA leach, suggesting that Fe was released through proton-promoted dissolution for all acidic leaches and by ligand-promoted dissolution for the oxalate-EDTA leach. Fe isotope fractionations of up to 2‰ were observed during acidic leaching of MESS-3 and Cariaco sediment trap material, but not for Arizona Test Dust, suggesting that sample composition influences fractionation, perhaps because Fe isotopes are greatly fractionated

  6. Study of Molecular Conformation and Activity-Related Properties of Lipase Immobilized onto Core-Shell Structured Polyacrylic Acid-Coated Magnetic Silica Nanocomposite Particles.

    PubMed

    Esmaeilnejad-Ahranjani, Parvaneh; Kazemeini, Mohammad; Singh, Gurvinder; Arpanaei, Ayyoob

    2016-04-01

    A facile approach for the preparation of core-shell structured poly(acrylic acid) (PAA)-coated Fe3O4 cluster@SiO2 nanocomposite particles as the support materials for the lipase immobilization is reported. Low- or high-molecular-weight (1800 and 100,000, respectively) PAA molecules were covalently attached onto the surface of amine-functionalized magnetic silica nanoacomposite particles. The successful preparation of particles were verified by scanning transmission electron microscopy (STEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), thermogravimetric analysis (TGA), zeta potential measurement, and Fourier-transform infrared (FTIR) techniques. Once lipase is covalently immobilized onto the particles with an average diameter of 210 ± 50 nm, resulting from high binding sites concentrations on the low- and high-molecular-weight PAA-coated particles, high lipase immobilization efficiencies (86.2% and 89.9%, respectively), and loading capacities (786 and 816 mg g(-1), respectively) are obtained. Results from circular dichroism (CD) analysis and catalytic activity tests reveal an increase in the β-sheet content of lipase molecules upon immobilization, along with an enhancement in their activities and stabilities. The lipases immobilized onto the low- and high-molecular-weight PAA-coated particles show maximum activities at 55 and 50 °C, respectively, which are ∼28% and ∼15% higher than that of the free lipase at its own optimum temperature (40 °C), respectively. The immobilized lipases exhibit excellent performance at broader temperature and pH ranges and high thermal and storage stabilities, as well as superior reusability. These prepared magnetic nanocomposite particles can be offered as suitable support materials for efficient immobilization of enzymes and improvement of the immobilized enzymes properties.

  7. Heterogeneous reactions of gaseous hydrogen peroxide on pristine and acidic gas-processed calcium carbonate particles: Effects of relative humidity and surface coverage of coating

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Chen, Zhongming; Shen, Xiaoli; Huang, Dao

    2013-03-01

    Atmospheric aging appears to alter physical and chemical properties of mineral dust aerosol and thus its role as reactive surface in the troposphere. Yet, previous studies in the atmosphere have mainly focused on the pristine surfaces of mineral dust aerosol, and the reactivity of aged mineral dust toward atmospheric trace gases is poorly recognized. This work presents the first laboratory investigation of heterogeneous reactions of gaseous hydrogen peroxide (H2O2), an important atmospheric oxidant, on the surfaces of HNO3 and SO2-processed calcium carbonate particles as surrogates of atmospheric mineral dust aged by acidic trace gases. It is found that the processing of the calcium carbonate particles with HNO3 and SO2 has a strong impact on their reactivity toward H2O2. On HNO3-processed particles, the presence of nitrate acts to either decrease or increase H2O2 uptake, greatly depending on RH and surface coverage of nitrate. On SO2-processed particles, the presence of surface sulfite appears to enhance the intrinsic reactivity of the mineral particles due to its affinity for H2O2, and the uptake of H2O2 increases significantly relative to the pristine particles, in particular at high RH. The mechanisms for heterogeneous reactions of H2O2 with these processed particles are discussed, as well as their potential implications on tropospheric chemistry. The results of our study suggest that the reactivity of mineral dust aerosol toward H2O2 and maybe other trace gases is markedly dependent on the chemical composition and coverage of the coatings as well as ambient RH, and thus will vary considerably in different polluted air masses.

  8. The particle image velocimetry method in the study of the dynamics of phase transitions induced by high pressures in triolein and oleic acid

    NASA Astrophysics Data System (ADS)

    Tefelski, D. B.; Kulisiewicz, L.; Wierschem, A.; Delgado, A.; Rostocki, A. J.; Siegoczyński, R. M.

    2011-03-01

    Particle image velocimetry (PIV) is an optical measurement method capable of providing visualisation of velocity field of particle flow in fluids. After analysis of data acquired in the form of an image sequence, it is possible to retrieve information about flow parameters as mean values of velocity, vorticity, shear and normal strain. This paper presents the results of high pressure experiments using this method applied to triolein and oleic acid samples in their phase transition region. A high pressure optical chamber, He-Ne laser and light-sheet optics together with a digital camera and image acquisition computer allow us to study the motion of particles in high pressure conditions. The set-up was similar to that presented in Özmutlu et al. [Momentum and energy transfer during phase change of water under high hydrostatic pressure, Innov. Food Sci. Emerg. Technol. 7(3) (2006), pp. 161-168] and Kulisiewicz et al. [Visualization of pressure-shift freezing and thawing of concentrated aqueous sucrose solutions, High Press. Res. 27(2) (2007), pp. 291-297]. The analysis of phase transition dynamics in triolein and oleic acid is an extension to the work presented in Tefelski et al. [The investigation of the dynamics of the phase transformation in triolein and oleic acid under pressure, J. Phys.: Conf. Ser. 121(142004) (2008), pp. 1-6]. Oleic acid is a monounsaturated fatty acid and has a bent rod shape. Triolein is a triglyceride and has a "chair"-like shape. It is the base particle of many vegetable oils, especially olive oil. Triolein consists of three chains of oleic acid bound by a glycerol part. Information obtained by the study of phase transitions dynamics is important for food science and food technology processes which involve high pressure treatment. The PIV method shows differences in the solidification process of both substances in time, the existence of inhomogeneities (layers of different densities in the observed flow) and allows us to calculate the

  9. Target-induced self-assembly of DNA nanomachine on magnetic particle for multi-amplified biosensing of nucleic acid, protein, and cancer cell.

    PubMed

    Bi, Sai; Cui, Yangyang; Dong, Ying; Zhang, Ningbo

    2014-03-15

    A biosensing system is established for the multi-amplified detection of DNA or specific substrates of aptamers under isothermal conditions, which combines nicked rolling circle amplification (N-RCA) and beacon assisted amplification (BAA) with sensitive colorimetric technique by using DNAzymes as reporter units. According to the configuration, the analysis of DNA is accomplished by recognizing the target to capture nucleic acid-functionalized magnetic particles, followed by the self-assembly of the other two nucleic acids into multicomponent DNA supramolecular structure on magnetic particles. After magnetic separation, the circularization with ligase and the fragmentation with polymerase activate N-RCA and BAA in the presence of polymerase, dNTPs, and the nicking endonuclease, successively producing horseradish peroxidase (HRP)-mimicking DNAzymes that act as colorimetric reporter to catalyze the oxidation of ABTS(2-) by H2O2 in the presence of hemin. Under the optimized conditions, we obtain a wide dynamic range for DNA analysis over 6 orders of magnitude from 1.0 × 10(-14) to 1.0 × 10(-9)M with a low limit of detection of 6.8 × 10(-15)M. In the absence of a target, neither self-assembly of nucleic acids nor amplification process can be initiated, indicating an excellent selectivity of the proposed strategy. Similarly, an analogous system is activated by cancer cells or lysozyme through cooperative self-assembly of nucleic acids on magnetic particles in the presence of respective substrates of aptamers to synthesize HRP-mimicking DNAzymes that give the readout signal for the recognition events, achieving LODs of 81 Ramos cells and 7.2 × 10(-15)M lysozyme, respectively.

  10. Simultaneous analysis of phthalates, adipate and polycyclic aromatic hydrocarbons in edible oils using isotope dilution-gas chromatography-mass spectrometry.

    PubMed

    Oh, Min-Seok; Lee, Seon-Hwa; Moon, Myeong Hee; Lee, Dong Soo; Park, Hyun-Mee

    2014-01-01

    A method for simultaneous determination of 12 priority phthalates, adipate and polycyclic aromatic hydrocarbons (PAHs) in edible oils by isotope dilution-gas chromatography-mass spectrometry (ID-GC-MS) was developed for fast, accurate and trace analysis. The extraction and clean-up procedures were optimised, and using stable isotope-labelled internal standards for each analyte, relative standard deviations (RSDs) of 0.92-10.6% and spiked sample recoveries of 80.6-97.8% were obtained. Limits of detection for PAHs were in the range of 0.15-0.77 µg/kg and those for phthalates were in the range of 4.6-10.0 µg/kg. The calibration curves exhibited good linearities with regression coefficients of R(2) ≥ 0.99. Twelve edible oils were examined to evaluate the efficiency of this method. Among the 12 analytes, dibutyl phthalates (DBP), diethylhexyl phthalates (DEHP), diethylhexyl adipate (DEHA), benzo[a]anthracene (B[a]A), chrysene (Chry) and benzo[b]fluoranthene (B[b]F) were detected in the range of 1.17-806 µg/kg.

  11. Specific migration of di-(2-ethylhexyl)adipate (DEHA) from plasticized PVC film: results from an enforcement campaign.

    PubMed

    Petersen, J H; Breindahl, T

    1998-07-01

    A control campaign on the correct labelling of plasticized PVC film according to current legislation on food contact materials has been performed. Analytical methods based on the isotope dilution technique were developed. For enforcement purposes, the films were exposed to the official food simulant, olive oil, followed by clean-up using size exclusion chromatography and final determination of di-(2-ethylhexyl) adipate (DEHA) by combined capillary gas chromatography and mass spectrometry (GC-MS). In the initial screening, the samples were exposed to the alternative food simulant, isooctane, and DEHA could be determined by GC-MS without further clean-up. A good consistency between results from the two different methods was obtained. During the campaign, 49 samples of PVC films, the majority intended for use in retail shops, were sampled from importers and wholesalers by the Municipal Food Control Units. Initially, all films were screened for the migration into isooctane (exposed 2 h at 40 degrees C) of DEHA and other potentially present low molecular weight plasticizers using full scanning mass spectrometry. Films showing a substantial migration of DEHA were further tested with olive oil according to the declared field of application (exposed for 10 days at 40 degrees C). In 47 of the 49 films the migrate contained a substantial amount of DEHA. In 46 films the migration exceeded the specific migration limit of 3 mg/dm2 after use of the relevant reduction factor given in legislation. However, because of the general uncertainty of the analytical method and because the variation in the thickness of the films was calculated to be 1 mg/dm2, the action limit in this campaign was 4 mg/cm2. A migration higher than this action limit was found in 42 films (89% of the samples) and these films were deemed to be illegal according to their present declared field of application as given by their labelling. In a few cases, some migration of the plasticizer di-n-butyl phthalate was

  12. Migration of di-(2-ethylhexylexyl)adipate plasticizer from food-grade polyvinyl chloride film into hard and soft cheeses.

    PubMed

    Goulas, A E; Anifantaki, K I; Kolioulis, D G; Kontominas, M G

    2000-08-01

    Food-grade polyvinyl chloride (PVC) film containing 28.3% di-(2-ethylhexylexyl)adipate (DEHA) plasticizer was used to wrap three different types of cheese (Kefalotyri, Edam, and Feta). Samples were split into two groups and stored at 5+/-0.5 degrees C. One group was analyzed for DEHA content at intervals between 1 and 240 h of contact (kinetic study), and a second group was cut into slices (1.2 mm thick) after 240 h of cheese/PVC contact and was analyzed for DEHA content (penetration study). The DEHA was determined by indirect gas chromatography. Statistically significant differences in migration of DEHA were observed between the cheese types. Migration of DEHA depended on contact time, fat, and moisture contents, and consistency of cheese samples. Equilibrium conditions were approached after approximately 100 h of contact for Edam and 150 h for Kefalotyri cheese. Equilibrium conditions were not reached for Feta cheese, even after 240 h of contact. After 240 h of contact under refrigeration, the migration of DEHA was approximately 345.4 mg/kg (18.9 mg/dm2) for Kefalotyri, 222.5 mg/kg (12.2 mg/dm2) for Edam, and 133.9 mg/kg (7.3 mg/dm2) for Feta. The loss of DEHA from the PVC film into the three cheese types was 37.8, 24.3, and 14.6%, respectively. These values, with the exception of Feta, were higher than the upper limit for global migration from plastic packaging materials into food and food stimulants set by the European Union (EU) (10 mg/dm2 or 60 mg/kg). After 240 h of cheese/film contact, DEHA was detected in the first three slices beneath the cheese surface (3.6 mm total depth) of Edam cheese and in the first two slices (2.4 mm total depth) of Kefalotryi and Feta cheeses. DEHA was not detected in subsequent layers. The effect of cheese rind on migration of DEHA was studied in Edam and Kefalotyri cheeses. The DEHA migration after 240 h into the first 1 mm beneath the surface of Kefalotyri cheese was 22.4 mg/kg, while DEHA was not detected in Edam cheese.

  13. Occurrence of Di-(2-ethylhexyl) adipate and phthalate plasticizers in samples of meat, fish, and cheese and their packaging films.

    PubMed

    Cao, Xu-Liang; Zhao, Wendy; Churchill, Robin; Hilts, Carla

    2014-04-01

    Di-(2-ethylhexyl) adipate (DEHA) and phthalates are commonly used as plasticizers to soften polyvinyl chloride products. Because both DEHA and certain phthalates have been identified as priority chemicals for assessment of human health risk under the Government of Canada's Chemicals Management Plan, a comprehensive targeted survey was conducted to investigate the occurrence of DEHA and eight phthalates (di-methyl phthalate, di-ethyl phthalate, di-n-butyl phthalate, di-iso-butyl phthalate, butyl benzyl phthalate, di-n-hexyl phthalate, d-(2-ethylhexyl) phthalate, and di-n-octyl phthalate) in a total of 118 samples of meat (beef, pork, and chicken), fish, and cheese packaged mostly in cling films. The eight phthalates were not detected in any of the food packaging, but DEHA was detected in most of the cling films, indicating that although DEHA-plasticized films (e.g., polyvinyl chloride film) are currently being used by most grocery stores, nonplasticized cling films such as polyethylene film, are also being used by some stores. DEHA was not detected in any of the 10 cheese samples packaged in nonplasticized rigid plastics but was detected in all 30 cheese samples packaged in DEHA-plasticized cling films at levels from 0.71 to 879 μg/g, with an average of 203 μg/g. Only DEHA was detected in the beef, pork, chicken, and fish samples packaged in DEHA-plasticized cling films but at considerably lower levels than those found in cheese, with averages of 6.3, 9.1, 2.5, and 5.9 μg/g, respectively. Among the eight phthalates, only di-(2-ethylhexyl) phthalate (DEHP) was detected in a few cheese samples at levels from 0.29 to 15 μg/g, with an average of 2.8 μg/g; these levels were very likely due to environmental contamination. Levels of DEHA found in most of the cheese samples from this study are above the European specific migration limit of 18 mg/kg for DEHA in food or food simulants, and levels of phthalates (i.e., DEHP) were low.

  14. A streptavidin paramagnetic-particle based competition assay for the evaluation of the optical selectivity of quadruplex nucleic acid fluorescent probes.

    PubMed

    Largy, Eric; Hamon, Florian; Teulade-Fichou, Marie-Paule

    2012-05-01

    Although quadruplex nucleic acids are thought to be involved in many biological processes, they are massively overwhelmed by duplex DNA in the cell. Small molecules, able to probe quadruplex nucleic acids with high optical selectivity, could possibly achieve the visualization of these processes. The aim of the method described herein is to evaluate quickly the optical selectivity of quadruplex nucleic acid probes, in isothermal conditions, using widely available materials, small quantities of oligonucleotides and virtually any kind and quantity of biological competitor. The assay relies on the use of streptavidin-coated paramagnetic particles and biotinylated quadruplex forming oligonucleotides, allowing a quick and easy separation of the quadruplex target from the competitor. In the present study, two quadruplex nucleic acids (the DNA and RNA human telomeric repeats) have been used as targets while a duplex DNA oligonucleotide, total DNA, total RNA, another quadruplex nucleic acid and a protein have been used as competitors. The optical selectivity of various probes, displaying different photophysical properties and binding selectivities, has been successfully examined, allowing the identification of a best candidate for further cell microscopy experiments. This assay allows a quick and reliable assessment of the labeling properties of a quadruplex binder in cellular environment conditions. It is an interesting alternative to gel electrophoresis experiments since it is performed in solution, has a well-resolved separation system and allows easy quantifications.

  15. The biosynthesis of gangliosides. The incorporation of galactose, N-acetylgalactosamine and N-acetylneuraminic acid into endogenous acceptors of subcellular particles from rat brain in vitro

    PubMed Central

    Arce, A.; Maccioni, H. J.; Caputto, R.

    1971-01-01

    Gangliosides bound to subcellular particles from rat brain were labelled by incubation of the particles (i) with CMP-N[3H]-acetylneuraminic acid and (ii) simultaneously, with CMP-N[3H]-acetylneuraminic acid and UDP-N-acetyl-[14C1]galactosamine or with CMP-N[3H]-acetylneuraminic acid and UDP-[U-14C]-galactose. Analysis of the labelled gangliosides showed that in (i), (a) the labelling was mostly in the neuraminidase-labile sialyl groups, (b) rigid relationships exist between the enzymes and the sialyl acceptors; the enzymes are not free to interact with all the specific substrates present in the preparation and (c) the precursor of the trisialoganglioside was the major disialoganglioside with a sialyl 2→8 sialyl group. In (ii), (a) precursor–product relationships between the main pools of each ganglioside apparently do not exist, (b) for the labelling of Tay–Sachs ganglioside the amount formed from hematoside was at least 2.5 times that from aminoglycolipid and (c) the major monosialoganglioside was the precursor for the major disialoganglioside with a sialyl 2→8 sialyl group. PMID:5119784

  16. Folic acid-functionalized magnetic ZnFe2O4 hollow microsphere core/mesoporous silica shell composite particles: synthesis and application in drug release.

    PubMed

    Yang, Dandan; Wei, Kaiwei; Liu, Qi; Yang, Yong; Guo, Xue; Rong, Hongren; Cheng, Mei-Ling; Wang, Guoxiu

    2013-07-01

    A drug delivery system was designed by deliberately combining the useful functions into one entity, which was composed of magnetic ZnFe2O4 hollow microsphere as the core, and mesoporous silica with folic acid molecules as the outer shell. Amine groups coated magnetic ZnFe2O4 hollow microsphere core/mesoporous silica shell (MZHM-MSS-NH2) composite particles were first synthesized by a one-pot direct co-condensation method. Subsequently a novel kind of folic acid-functionalized magnetic ZnFe2O4 hollow microsphere core/mesoporous silica shell (MZHM-MSS-NHFA) composite particles were synthesized by conjugating folic acid as targeted molecule to MZHM-MSS-NH2. Ibuprofen, a well-known antiphlogistic drug, was used as a model drug to assess the loading and releasing behavior of the composite microspheres. The results show that the MZHM-MSS-NHFA system has the higher capacity of drug storage and good sustained drug-release property.

  17. Gas-saturated solution process to obtain microcomposite particles of alpha lipoic acid/hydrogenated colza oil in supercritical carbon dioxide.

    PubMed

    Mishima, Kenji; Honjo, Masatoshi; Sharmin, Tanjina; Ito, Shota; Kawakami, Ryo; Kato, Takafumi; Misumi, Makoto; Suetsugu, Tadashi; Orii, Hideaki; Kawano, Hiroyuki; Irie, Keiichi; Sano, Kazunori; Mishima, Kenichi; Harada, Takunori; Ouchi, Mikio

    2016-09-01

    Alpha lipoic acid (ALA), an active substance in anti-aging products and dietary supplements, need to be masked with an edible polymer to obscure its unpleasant taste. However, the high viscosity of the ALA molecules prevents them from forming microcomposites with masking materials even in supercritical carbon dioxide (scCO2). Therefore, the purpose of this study was to investigate and develop a novel production method for microcomposite particles for ALA in hydrogenated colza oil (HCO). Microcomposite particles of ALA/HCO were prepared by using a novel gas-saturated solution (PGSS) process in which the solid-dispersion method is used along with stepwise temperature control (PGSS-STC). Its high viscosity prevents the formation of microcomposites in the conventional PGSS process even under strong agitation. Here, we disperse the solid particles of ALA and HCO in scCO2 at low temperatures and change the temperature stepwise in order to mix the melted ALA and HCO in scCO2. As a result, a homogeneous dispersion of the droplets of ALA in melted HCO saturated with CO2 is obtained at high temperatures. After the rapid expansion of the saturated solution through a nozzle, microcomposite particles of ALA/HCO several micrometers in diameter are obtained.

  18. Alpha-Lipoic Acid Reduces LDL-Particle Number and PCSK9 Concentrations in High-Fat Fed Obese Zucker Rats

    PubMed Central

    Carrier, Bradley; Wen, Shin; Zigouras, Sophia; Browne, Richard W.; Li, Zhuyun; Patel, Mulchand S.; Williamson, David L.; Rideout, Todd C.

    2014-01-01

    We characterized the hypolipidemic effects of alpha-lipoic acid (LA, R-form) and examined the associated molecular mechanisms in a high fat fed Zucker rat model. Rats (n = 8) were assigned to a high fat (HF) diet or the HF diet with 0.25% LA (HF-LA) for 30 days and pair fed to remove confounding effects associated with the anorectic properties of LA. Compared with the HF controls, the HF-LA group was protected against diet-induced obesity (102.5±3.1 vs. 121.5±3.6,% change BW) and hypercholesterolemia with a reduction in total-C (−21%), non-HDL-C (−25%), LDL-C (−16%), and total LDL particle number (−46%) and an increase in total HDL particles (∼22%). This cholesterol-lowering response was associated with a reduction in plasma PCSK9 concentration (−70%) and an increase in hepatic LDLr receptor protein abundance (2 fold of HF). Compared with the HF-fed animals, livers of LA-supplemented animals were protected against TG accumulation (−46%), likely through multiple mechanisms including: a suppressed lipogenic response (down-regulation of hepatic acetyl-CoA carboxylase and fatty acid synthase expression); enhanced hepatic fat oxidation (increased carnitine palmitoyltransferase Iα expression); and enhanced VLDL export (increased hepatic diacylglycerol acyltransferase and microsomal triglyceride transfer protein expression and elevated plasma VLDL particle number). Study results also support an enhanced fatty acid uptake (2.8 fold increase in total lipase activity) and oxidation (increased CPT1β protein abundance) in muscle tissue in LA-supplemented animals compared with the HF group. In summary, in the absence of a change in caloric intake, LA was effective in protecting against hypercholesterolemia and hepatic fat accumulation under conditions of strong genetic and dietary predisposition toward obesity and dyslipidemia. PMID:24595397

  19. Seasonal characteristics of oxalic acid and related SOA in the free troposphere of Mt. Hua, central China: implications for sources and formation mechanisms.

    PubMed

    Meng, Jingjing; Wang, Gehui; Li, Jianjun; Cheng, Chunlei; Ren, Yanqin; Huang, Yao; Cheng, Yuting; Cao, Junji; Zhang, Ting

    2014-09-15

    PM10 aerosols from the summit of Mt. Hua (2060 m a.s.l) in central China during the winter and summer of 2009 were analyzed for dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls. Molecular composition of dicarboxylic acids (C2-C11) in the free tropospheric aerosols reveals that oxalic acid (C2, 399 ± 261 ng m(-3) in winter and 522 ± 261 ng m(-3) in summer) is the most abundant species in both seasons, followed by malonic (C3) and succinic (C4) acids, being consistent with that on ground levels. Most of the diacids are more abundant in summer than in winter, but adipic (C6) and phthalic (Ph) acids are twice lower in summer, suggesting more significant impact of anthropogenic pollution on the wintertime alpine atmosphere. Moreover, glyoxal (Gly) and methylglyoxal (mGly) are also lower in summer (12 ± 6.1 ng m(-3)) than in winter (22 ± 13 ng m(-3)). As both dicarbonyls are a major precursor of C2, their seasonal variation patterns, which are opposite to those of the diacids, indicate that the mountain troposphere is more oxidative in summer. C2 showed strong linear correlations with levoglucosan in winter and oxidation products of isoprene and monoterpene in summer. PCA analysis further suggested that the wintertime C2 and related SOA in the Mt. Hua troposphere mostly originate from photochemical oxidations of anthropogenic pollutants emitted from biofuel and coal combustion in lowland regions. On contrast, the summertime C2 and related SOA mostly originate from further oxidation of the mountainous isoprene and monoterpene oxidation products. The AIM model calculation results showed that oxalic acid concentration well correlated with particle acidity (R(2)=0.60) but not correlated with particle liquid water content, indicating that particle acidity favors the organic acid formation because aqueous-phase C2 production is the primary mechanism of C2 formation in ambient aerosols and is driven by acid-catalyzed oxidation. PMID:24925591

  20. Oxidative stability of n-3 fatty acids encapsulated in filled hydrogel particles and of pork meat systems containing them.

    PubMed

    Salcedo-Sandoval, Lorena; Cofrades, Susana; Ruiz-Capillas, Claudia; Matalanis, Alison; McClements, D Julian; Decker, Eric A; Jiménez-Colmenero, Francisco

    2015-10-01

    The effect of storage time (2°C, 19 days) and heating (70°C, 30 min) on physical characteristics and oxidative stability of fish oil encapsulated in filled hydrogel particles was determined and compared with a conventional oil-in-water (O/W) emulsion with the same oil content (8.5%). Subsequently they were used to enrich meat systems with n-3 LCPUFAs, and their lipid oxidation was evaluated and compared with two other meat systems: one containing all animal fat and another with fish oil added directly. Filled hydrogel particles were more effective in lowering the oxidation rate than O/W emulsion, even when thermal treatment was applied. Oxidative stability over the storage time was best in the n-3 LCPUFA-enriched meat system containing filled hydrogel particles, in which TBARS levels were up to 62% lower than other systems containing fish oil. Hydrogel particles offer a promising means of controlling lipid oxidation in n-3 LCPUFA-enriched meat products.

  1. Oxidative stability of n-3 fatty acids encapsulated in filled hydrogel particles and of pork meat systems containing them.

    PubMed

    Salcedo-Sandoval, Lorena; Cofrades, Susana; Ruiz-Capillas, Claudia; Matalanis, Alison; McClements, D Julian; Decker, Eric A; Jiménez-Colmenero, Francisco

    2015-10-01

    The effect of storage time (2°C, 19 days) and heating (70°C, 30 min) on physical characteristics and oxidative stability of fish oil encapsulated in filled hydrogel particles was determined and compared with a conventional oil-in-water (O/W) emulsion with the same oil content (8.5%). Subsequently they were used to enrich meat systems with n-3 LCPUFAs, and their lipid oxidation was evaluated and compared with two other meat systems: one containing all animal fat and another with fish oil added directly. Filled hydrogel particles were more effective in lowering the oxidation rate than O/W emulsion, even when thermal treatment was applied. Oxidative stability over the storage time was best in the n-3 LCPUFA-enriched meat system containing filled hydrogel particles, in which TBARS levels were up to 62% lower than other systems containing fish oil. Hydrogel particles offer a promising means of controlling lipid oxidation in n-3 LCPUFA-enriched meat products. PMID:25872446

  2. Effect of particle size and heat treatment of soybean meal on standardized ileal digestibility of amino acids in growing pigs.

    PubMed

    Messerschmidt, U; Eklund, M; Rist, V T S; Rosenfelder, P; Spindler, H K; Htoo, J K; Mosenthin, R

    2012-12-01

    A study with growing barrows was conducted to evaluate of variations in particle size and degree of heat treatment during processing on standardized ileal digestibility (SID) of AA in soybean (Glycine max) meal (SBM). A commercial SBM batch was visually identified as being overtoasted due to its brownish color and was separated into small and large particles using a 1-mm sieve. In addition, 3 SBM were produced from 1 batch of soybean and exposed to different processing conditions (temperature and direct steam contact) referred to as mild (105°C; 34 min), medium (115°C; 45 min), and strong (139°C; 7 min). In total, 5 SBM-corn (Zea mays) starch-based diets were formulated to contain SBM as the sole protein source. This experiment was conducted according to a 6 × 6 Latin square design using 6 barrows (23 kg initial BW) fitted with a T-cannula at the distal ileum. With increasing particle size, SID of His and some dispensable AA increased (P < 0.05). Lower SID values in small compared to large SBM particles indicate more pronounced heat damage possibly due to increased surface area. The SID of CP and AA was lowest in the mild, intermediate in the strong, and highest in the medium toasted SBM (P < 0.001). These differences in SID are reflected in varying contents of trypsin inhibitors, Lys, reactive Lys, and NDF. In conclusion, both differences in particles size and variations in thermal processing conditions of SBM may affect SID of CP and AA.

  3. Single particle and pair dynamics in water-formic acid mixtures containing ionic and neutral solutes: nonideality in dynamical properties.

    PubMed

    Gupta, Rini; Chandra, Amalendu

    2008-05-14

    A series of molecular dynamics simulations of water-formic acid mixtures containing either an ionic solute or a neutral hydrophobic solute has been performed to study the extent of nonideality in the dynamics of these solutes for varying composition of the mixtures. The diffusion coefficients of the charged solutes, both cationic and anionic, are found to show nonideal behavior with variation of composition, and similar nonideality is also observed for the diffusion and orientational relaxation of solvent molecules in these mixtures. The diffusion coefficient of a neutral hydrophobic solute, however, decreases monotonically with increase in water concentration. We have also investigated some of the pair dynamical properties such as water-water and water-formic acid hydrogen bond relaxation and residence dynamics of water molecules in water and formic acid hydration shells. The lifetimes of water-water hydrogen bonds are found to be longer than those between formic acid carbonyl oxygen-water hydrogen bonds, whereas the lifetimes of formic acid hydroxyl hydrogen-water hydrogen bonds are longer than those of water-water hydrogen bonds. In general, the hydrogen bond lifetimes for both water-water and water-formic acid hydrogen bonds are found to decrease with increase in water concentration. Residence times of water molecules also show the same trend with increase in formic acid concentration. Interestingly, these pair dynamical properties show a monotonic dependence on composition without any maximum or minimum and behave almost ideally with respect to changes in the composition of the mixtures. The present calculations are performed with fixed-charge nonpolarizable models of the solvent and solute molecules without taking into account many-body polarization effects in an explicit manner. PMID:18532825

  4. Proton Conductivity of Nafion/Ex-Situ Sulfonic Acid-Modified Stöber Silica Nanocomposite Membranes As a Function of Temperature, Silica Particles Size and Surface Modification

    PubMed Central

    Muriithi, Beatrice; Loy, Douglas A.

    2016-01-01

    The introduction of sulfonic acid modified silica in Nafion nanocomposite membranes is a good method of improving the Nafion performance at high temperature and low relative humidity. Sulfonic acid-modified silica is bifunctional, with silica phase expected to offer an improvement in membranes hydration while sulfonic groups enhance proton conductivity. However, as discussed in this paper, this may not always be the case. Proton conductivity enhancement of Nafion nanocomposite membranes is very dependent on silica particle size, sometimes depending on experimental conditions, and by surface modification. In this study, Sulfonated Preconcentrated Nafion Stober Silica composites (SPNSS) were prepared by modification of Stober silica particles with mercaptopropyltriethoxysilane, dispersing the particles into a preconcentrated solution of Nafion, then casting the membranes. The mercapto groups were oxidized to sulfonic acids by heating the membranes in 10 wt % hydrogen peroxide for 1 h. At 80 °C and 100% relative humidity, a 20%–30% enhancement of proton conductivity was only observed when sulfonic acid modified particle less than 50 nm in diameter were used. At 120 °C, and 100% humidity, proton conductivity increased by 22%–42% with sulfonated particles with small particles showing the greatest enhancement. At 120 °C and 50% humidity, the sulfonated particles are less efficient at keeping the membranes hydrated, and the composites underperform Nafion and silica-Nafion nanocomposite membranes. PMID:26828525

  5. Proton Conductivity of Nafion/Ex-Situ Sulfonic Acid-Modified Stöber Silica Nanocomposite Membranes As a Function of Temperature, Silica Particles Size and Surface Modification.

    PubMed

    Muriithi, Beatrice; Loy, Douglas A

    2016-01-28

    The introduction of sulfonic acid modified silica in Nafion nanocomposite membranes is a good method of improving the Nafion performance at high temperature and low relative humidity. Sulfonic acid-modified silica is bifunctional, with silica phase expected to offer an improvement in membranes hydration while sulfonic groups enhance proton conductivity. However, as discussed in this paper, this may not always be the case. Proton conductivity enhancement of Nafion nanocomposite membranes is very dependent on silica particle size, sometimes depending on experimental conditions, and by surface modification. In this study, Sulfonated Preconcentrated Nafion Stober Silica composites (SPNSS) were prepared by modification of Stober silica particles with mercaptopropyltriethoxysilane, dispersing the particles into a preconcentrated solution of Nafion, then casting the membranes. The mercapto groups were oxidized to sulfonic acids by heating the membranes in 10 wt % hydrogen peroxide for 1 h. At 80 °C and 100% relative humidity, a 20%-30% enhancement of proton conductivity was only observed when sulfonic acid modified particle less than 50 nm in diameter were used. At 120 °C, and 100% humidity, proton conductivity increased by 22%-42% with sulfonated particles with small particles showing the greatest enhancement. At 120 °C and 50% humidity, the sulfonated particles are less efficient at keeping the membranes hydrated, and the composites underperform Nafion and silica-Nafion nanocomposite membranes.

  6. Measuring enthalpy of sublimation of volatiles by means of micro-thermogravimetry: the case of Dicarboxylic acids

    NASA Astrophysics Data System (ADS)

    Dirri, F.; Longobardo, A.; Palomba, E.; Zampetti, E.; Biondi, D.; Boccaccini, A.; Saggin, B.; Bearzotti, A.; Macagnano, A.

    2013-09-01

    VISTA (Volatile In Situ Thermogravimetry Analyser) is a thermogravimeter currently under study for the proposed mission MarcoPolo-R [1,2]. In the framework of this project, we developed a set-up to measure the enthalpy of sublimation ΔH of three dicarboxylic acids, i.e. adipic, succinic and oxalic. The obtained results are in good agreement with literature, and this demonstrates the capability of our device to perform this kind of measurements.

  7. Preparation of monodispersed macroporous core-shell molecularly imprinted particles and their application in the determination of 2,4-dichlorophenoxyacetic acid.

    PubMed

    Liu, Yongliang; He, Yonghuan; Jin, Yulong; Huang, Yanyan; Liu, Guoquan; Zhao, Rui

    2014-01-01

    Porous polymers have aroused extensive attention due to their controllable porous structure in favor of mass transfer and binding capacity. In this work, the novel macroporous core-shell molecularly imprinted polymers (MIP) for selective recognition of 2,4-dichlorophenoxyacetic acid (2,4-D) were prepared by surface initiated atom transfer radical polymerization (si-ATRP). By using one-step swelling and polymerization method, the monodispersed macroporous poly(glycidyl methacrylate) (PGMA) particles were synthesized and used as supporting matrix for preparing surface MIP particles (PGMA@MIP). Thanks to the inner and outer surface-located binding cavities and the macroporous structure, the PGMA@MIPs revealed desirable efficiency for template removal and mass transfer, and thus excellent accessibility and affinity toward template 2,4-D. Moreover, PGMA@MIPs exhibited much higher selectivity toward 2,4-D than PGMA@NIPs. PGMA@MIP particles were directly used to selectively enrich 2,4-D from tap water and the recoveries of 2,4-D were obtained as 90.0-93.4% with relative standard division of 3.1-3.4% (n=3). The macroporous PGMA@MIPs also possessed steady and excellent reusable performance for 2,4-D in four extraction/stripping cycles. This novel macroporous core-shell imprinted material may become a powerful tool for rapid and efficient enrichment and separation of target compounds from the complicated samples.

  8. Comparative studies on exenatide-loaded poly (D,L-lactic-co-glycolic acid) microparticles prepared by a novel ultra-fine particle processing system and spray drying.

    PubMed

    Zhu, Chune; Huang, Ying; Zhang, Xiaoying; Mei, Liling; Pan, Xin; Li, Ge; Wu, Chuanbin

    2015-08-01

    The purpose of this study was to compare the properties of exenatide-loaded poly (D,L-lactic-co-glycolic acid) microparticles (Ex-PLGA-MPs) prepared by a novel ultra-fine particle processing system (UPPS) and spray drying. UPPS is a proprietary technology developed by our group based on the disk rotation principle. Characteristics of the MPs including morphology, particle size distribution, drug content, encapsulation efficiency and in vitro release were comparatively studied. Cytotoxicity of the MPs was examined on A549 cells and the pharmacodynamics was investigated in vivo in type 2 diabetes Sprague-Dawley (SD) rats. Ex-PLGA-MPs prepared by UPPS showed larger particle size, denser surface, greater encapsulation efficiency, less initial burst release, and stable sustained release for more than one month in vitro as compared with the spray drying MPs. Meanwhile, the UPPS MPs effectively controlled the body growth rate and blood glucose in diabetes rats for at least three weeks after a single injection, while the spray drying MPs showed effective control period of about two weeks. UPPS technology was demonstrated to manufacture Ex-PLGA-MPs as a potential sustained release protein/polypeptide delivery system, which is an alternative method for the most commonly used spray drying. This comparative research provides a new guidance for microparticle preparation technology. PMID:26037698

  9. Piezoelectric crystal microbalance measurements of enthalpy of sublimation of C2-C9 dicarboxylic acids

    NASA Astrophysics Data System (ADS)

    Dirri, F.; Palomba, E.; Longobardo, A.; Zampetti, E.

    2016-02-01

    We present here a novel experimental set-up that is able to measure the enthalpy of sublimation of a given compound by means of piezoelectric crystal microbalances (PCMs). The PCM sensors have already been used for space measurements, such as for the detection of organic and non-organic volatile species and refractory materials in planetary environments. In Earth atmospherics applications, PCMs can be also used to obtain some physical-chemical processes concerning the volatile organic compounds (VOCs) present in atmospheric environments. The experimental set-up has been developed and tested on dicarboxylic acids. In this work, a temperature-controlled effusion cell was used to sublimate VOC, creating a molecular flux that was collimated onto a cold PCM. The VOC recondensed onto the PCM quartz crystal, allowing the determination of the deposition rate. From the measurements of deposition rates, it has been possible to infer the enthalpy of sublimation of adipic acid, i.e. ΔHsub : 141.6 ± 0.8 kJ mol-1, succinic acid, i.e. 113.3 ± 1.3 kJ mol-1, oxalic acid, i.e. 62.5 ± 3.1 kJ mol-1, and azelaic acid, i.e. 124.2 ± 1.2 kJ mol-1. The results obtained show an accuracy of 1 % for succinic, adipic, and azelaic acid and within 5 % for oxalic acid and are in very good agreement with previous works (within 6 % for adipic, succinic, and oxalic acid and within 11 % or larger for azelaic acid).

  10. Adjuvant Effect of an Alternative Plasticizer, Diisopropyl Adipate, on a Contact Hypersensitivity Mouse Model: Link with Sensory Ion Channel TRPA1 Activation.

    PubMed

    Kurohane, Kohta; Kimura, Ayako; Terasawa, Rie; Sahara, Yurina; Kobayashi, Kamiyu; Suzuki, Wakana; Matsuoka, Takeshi; Watanabe, Tatsuo; Imai, Yasuyuki

    2015-01-01

    Due to health concerns about phthalate esters, the use of alternative plasticizers is being considered. Phthalate esters enhance skin sensitization to fluorescein isothiocyanate (FITC) in mouse models. We have demonstrated that phthalate esters stimulate transient receptor potential ankyrin 1 (TRPA1) cation channels expressed on sensory neurons. We also found a correlation between TRPA1 activation and the enhancing effect on FITC-induced contact hypersensitivity (CHS) when testing various types of phthalate esters. Here we investigated the effects of an alternative plasticizer, diisopropyl adipate (DIA). Activation of TRPA1 by DIA was demonstrated by calcium mobilization using Chinese hamster ovary cells expressing TRPA1 in vitro. The effect of DIA was inhibited by a TRPA1-specific antagonist, HC-030031. The presence of DIA or dibutyl phthalate (DBP; positive control) during skin sensitization of BALB/c mice to FITC augmented the CHS response, as revealed by the level of ear-swelling. The enhancing effect of DIA was inhibited by in vivo pretreatment with HC-030031. FITC-presenting CD11c(+) dendritic cell (DC)-trafficking to draining lymph nodes was facilitated both by DIA and by DBP. DBP and DIA were similarly active in the enhancement of interferon-γ production by draining lymph nodes, but the effect on interleukin-4 production was weaker with DIA. Overall, DIA activated TRPA1 and enhanced FITC-induced CHS, as DBP did. The adjuvant effects of adipate esters may need to be considered because they are used as ingredients in cosmetics and drug formulations topically applied to the skin. PMID:25959058

  11. Effects of adding prescription omega-3 acid ethyl esters to simvastatin (20 mg/day) on lipids and lipoprotein particles in men and women with mixed dyslipidemia.

    PubMed

    Maki, Kevin C; McKenney, James M; Reeves, Matthew S; Lubin, Barry C; Dicklin, Mary R

    2008-08-15

    Prescription omega-3 acid ethyl esters (P-OM3) are commonly used for treatment of very high triglyceride levels, often in combination with a statin, to lower persistent hypertriglyceridemia. This randomized, crossover trial evaluated 6 weeks of combination therapy with simvastatin 20 mg/day plus P-OM3 4 g/day or placebo in 39 men and women (average age 58 years) with a triglyceride concentration 200 to 600 mg/dl and non-high-density lipoprotein (non-HDL) cholesterol greater than their National Cholesterol Education Program treatment goals after a 5-week diet lead-in. Non-HDL cholesterol decreased from baseline (209 mg/dl) by 40% for P-OM3 + simvastatin compared with 34% for placebo + simvastatin (p <0.001). Favorable changes for P-OM3 + simvastatin versus placebo + simvastatin were also observed for very low-density lipoprotein (VLDL) cholesterol (-42% vs -22%), triglyceride (-44% vs -29%), total cholesterol (-31% vs -26%), HDL cholesterol (+16% vs +11%), apolipoprotein B (-32% vs -28%), total cholesterol:HDL cholesterol ratio (-39% vs -33%), triglyceride:HDL cholesterol ratio (-51% vs -37%), and systolic (-5.0 vs 0.3 mm Hg) and diastolic (-3.3 vs -1.8 mm Hg) blood pressures (p <0.05 for all). VLDL particle concentration and size decreased and LDL particle size increased significantly more with P-OM3 + simvastatin than with placebo + simvastatin (all p <0.05). Changes in LDL cholesterol, LDL particle concentration, HDL particle size and concentration, and apolipoprotein A-I did not differ significantly between treatments. In conclusion, P-OM3 + simvastatin appears to be a useful therapeutic option for the management of mixed dyslipidemia. PMID:18678300

  12. Modification of carbon paste electrode with Fe(III)-clinoptilolite nano-particles for simultaneous voltammetric determination of acetaminophen and ascorbic acid.

    PubMed

    Sharifian, Samira; Nezamzadeh-Ejhieh, Alireza

    2016-01-01

    A novel carbon paste electrode (CPE) modified with Fe(III)-exchanged clinoptilolite nano-particles (Fe(III)-NClino/CPE) was constructed and used for simultaneous voltammetric (CV, SqW and chronoamperometry) determination of ascorbic acid and acetaminophen. Raw and modified zeolites were characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM). The square wave peak current was linearly increased in the concentration ranges of 1.0 × 10(-9)-1.0 × 10(-2) mol L(-1) for ascorbic acid and 1.0 × 10(-10-)1.0 × 10(-2) mol L(-1) for acetaminophen with detection limits of 1.8 × 10(-9) mol L(-1) and 9.9 × 10(-10) mol L(-1), respectively. The detection limits of 2.4 × 10(-10) mol L(-1) and 2.5 × 10(-11) mol L(-1) were also obtained for AA and AC in chronoamperometric measurements, respectively. The diffusion coefficients of 7.5 × 10(-5) cm(2) s(-1) and 2.4 × 10(-5) cm(2) s(-1) were respectively calculated for the oxidation of AC and AA by chronoamperometry. The proposed electrode exhibited high sensitivity and good stability, and would be valuable for the clinical assay of ascorbic acid and acetaminophen.

  13. Extraction of total nucleic acid based on silica-coated magnetic particles for RT-qPCR detection of plant RNA virus/viroid.

    PubMed

    Sun, Ning; Deng, Congliang; Zhao, Xiaoli; Zhou, Qi; Ge, Guanglu; Liu, Yi; Yan, Wenlong; Xia, Qiang

    2014-02-01

    In this study, a nucleic acid extraction method based on silica-coated magnetic particles (SMPs) and RT-qPCR assay was developed to detect Arabis mosaic virus (ArMV), Lily symptomless virus (LSV), Hop stunt viroid (HSVd) and grape yellow speckle viroid 1 (GYSVd-1). The amplification sequences of RT-qPCR were reversely transcribed in vitro as RNA standard templates. The standard curves covered six or seven orders of magnitude with a detection limit of 100 copies per each assay. Extraction efficiency of the SMPs method was evaluated by recovering spiked ssRNAs from plant samples and compared to two commercial kits (TRIzol and RNeasy Plant mini kit). Results showed that the recovery rate of SMPs method was comparable to the commercial kits when spiked ssRNAs were extracted from lily leaves, whereas it was two or three times higher than commercial kits when spiked ssRNAs were extracted from grapevine leaves. SMPs method was also used to extract viral nucleic acid from15 ArMV-positive lily leaf samples and 15 LSV-positive lily leaf samples. SMPs method did not show statistically significant difference from other methods on detecting ArMV, but LSV. The SMPs method has the same level of virus load as the TRIzol, and its mean virus load of was 0.5log10 lower than the RNeasy Plant mini kit. Nucleic acid was extracted from 19 grapevine-leaf samples with SMPs and the two commercial kits and subsequently screened for HSVd and GYSVd-1 by RT-qPCR. Regardless of HSVd or GYSVd-1, SMPs method outperforms other methods on both positive rate and the viroid load. In conclusion, SMPs method was able to efficiently extract the nucleic acid of RNA viruses or viroids, especially grapevine viroids, from lily-leaf or grapevine-leaf samples for RT-qPCR detection.

  14. A Novel Muconic Acid Biosynthesis Approach by Shunting Tryptophan Biosynthesis via Anthranilate

    PubMed Central

    Sun, Xinxiao; Lin, Yuheng; Huang, Qin; Yuan, Qipeng

    2013-01-01

    Muconic acid is the synthetic precursor of adipic acid, and the latter is an important platform chemical that can be used for the production of nylon-6,6 and polyurethane. Currently, the production of adipic acid relies mainly on chemical processes utilizing petrochemicals, such as benzene, which are generally considered environmentally unfriendly and nonrenewable, as starting materials. Microbial synthesis from renewable carbon sources provides a promising alternative under the circumstance of petroleum depletion and environment deterioration. Here we devised a novel artificial pathway in Escherichia coli for the biosynthesis of muconic acid, in which anthranilate, the first intermediate in the tryptophan biosynthetic branch, was converted to catechol and muconic acid by anthranilate 1,2-dioxygenase (ADO) and catechol 1,2-dioxygenase (CDO), sequentially and respectively. First, screening for efficient ADO and CDO from different microbial species enabled the production of gram-per-liter level muconic acid from supplemented anthranilate in 5 h. To further achieve the biosynthesis of muconic acid from simple carbon sources, anthranilate overproducers were constructed by overexpressing the key enzymes in the shikimate pathway and blocking tryptophan biosynthesis. In addition, we found that introduction of a strengthened glutamine regeneration system by overexpressing glutamine synthase significantly improved anthranilate production. Finally, the engineered E. coli strain carrying the full pathway produced 389.96 ± 12.46 mg/liter muconic acid from simple carbon sources in shake flask experiments, a result which demonstrates scale-up potential for microbial production of muconic acid. PMID:23603682

  15. Acid composition of particles and gases in a ponderosa pine forest during the BEACHON-RoMBAS campaign

    NASA Astrophysics Data System (ADS)

    Stark, H.; Yatavelli, L.; Thompson, S.; Kimmel, J. R.; Palm, B. B.; Day, D. A.; Campuzano-Jost, P.; Cubison, M. J.; Jayne, J.; Worsnop, D. R.; Thornton, J. A.; Jimenez, J. L.

    2012-12-01

    We present results from the high mass-resolution analysis of gas-phase and aerosol spectra collected with a chemical ionization high-resolution time-of-flight mass spectrometer, equipped with a micro-orifice volatilization impactor ("MOVI-HRToF-CIMS", Yatavelli and Thornton AS&T, 2010; Yatavelli et al., AS&T, 2012) during the 2011 Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen - Rocky Mountain Biogenic Aerosol Study ("BEACHON-RoMBAS"). The study was conducted during July - August 2011 in a ponderosa pine forest in Colorado. Choosing acetate (CH3C(O)O-) as the reagent ion and developing analysis tools for formula identification and elemental analysis allowed us to identify hundreds of individual acids in aerosol spectra. Positive Matrix Factorization (PMF) analysis of the ion time series is useful to account for backgrounds in the different modes of operation and to separate several gas-phase and particulate factors with different volatility and composition. Results on aerosol composition, including nitrogen- and sulfur-containing species as well as information about elemental ratios (e.g. O:C, H:C) and average carbon oxidation state are presented. Most of the acids detected have between 1 and 10 carbons and average carbon oxidation states (OsC) between -1 and 1. This suggests the importance of monoterpenes and MBO as precursors of the measured acids. We will discuss these results with special consideration of fragmentation on the heated surfaces of the instrument.

  16. Effect of Nitric Acid ``Washing'' Procedure on Electrochemical Behavior of Carbon Nanotubes and Glassy Carbon μ-Particles

    NASA Astrophysics Data System (ADS)

    Anik, Ülkü; Çevik, Serdar; Pumera, Martin

    2010-05-01

    The electroanalytic performances of glassy carbon paste electrode (GCPE), multi-walled carbon nanotube (MWCNT)-GCPE and double-walled carbon nanotube (DWCNT)-GCPE, which include HNO3 washed/unwashed materials, were compared by monitoring cyclic voltammograms of potassium ferricyanide and catechol. Electrodes were prepared by introducing proper amount of DWCNT and MWCNT into GCPE. First untreated materials (DWCNT, MWCNT, GC μ-particles) were used in the electrodes and then HNO3-treated materials were utilized for comparing difference in electrochemical performances. The effect of treatment procedure was also examined by applying Raman spectroscopy to treated and untreated materials. Moreover, TEM images were obtained for further investigation of MWCNT and DWCNT.

  17. Infra Red Dye and Endostar Loaded Poly Lactic Acid Nano Particles as a Novel Theranostic Nanomedicine for Breast Cancer.

    PubMed

    Zhang, Qian; Du, Yang; Jing, Lijia; Liang, Xiaolong; Li, Yaqian; Li, Xiaofeng; Dai, Zhifei; Tian, Jie

    2016-03-01

    Endostar, a novel recombinant human endostatin, has been proven to inhibit tumor angiogenesis and is utilized as an anticancer drug. While free drugs can display limited efficacy, nanoscaled anticancer drugs have been fabricated and proven to possess superior therapeutic effects. Poly(lactic acid) (PLA) is a FDA-approved biomaterial displaying excellent biocompatibility and low toxicity. In this study, Endostar-loaded PLA nanoparticles (EPNPs) were first prepared, and a near-infrared (NIR) dye, IRDye 800CW, was conjugated to the surface for detecting nanoparticle biodistribution through fluorescence molecular imaging (FMI) using an orthotopic breast tumor mouse model. The antitumor efficacy of EPNPs was examined using bioluminescence imaging (BLI) and immunohistology. To further improve the antitumor effects, we combined EPNPs with zoledronic acid monohydrate (ZA), which is known to decrease the tumor-associated macrophages (TAM) and inhibit tumor progression. We found that EPNPs decreased human umbilical vein endothelial cell (HUVEC) viability by inhibiting tumor growth gene expression more significantly than free Endostar in vitro. In vivo, EPNPs displayed better tumor growth inhibitory effects compared with free Endostar, and the combination of EPNPs with ZA exhibited more significant antitumor effects. As confirmed by CD31 and CD11b immunohistochemistry, the combination of EPNPs and ZA showed synergistic effects in reducing tumor angiogenesis and TAM accumulation in tumor regions. Taken together, this study presents a novel and effective form of nanoscaled Endostar for the treatment of breast cancer that displays synergistic antitumor effects in combination with ZA. PMID:27280247

  18. Nitric Acid Particles in Cold Thick Ice Clouds Observed at Global Scale: Link with Lightning, Temperature, and Upper Tropospheric Water Vapor

    NASA Technical Reports Server (NTRS)

    Chepfer, H.; Minnis, P.; Dubuisson, P.; Chiriaco, M.; Sun-Mack, S.; Riviere, E. D.

    2007-01-01

    Signatures of nitric acid particles (NAP) in cold thick ice clouds have been derived from satellite observations. Most NAP are detected in the Tropics (9 to 20% of clouds with T less than 202.5 K). Higher occurrences were found in the rare mid-latitudes very cold clouds. NAP occurrence increases as cloud temperature decreases and NAP are more numerous in January than July. Comparisons of NAP and lightning distributions show that lightning is the main source of the NOx, which forms NAP in cold clouds. Qualitative comparisons of NAP with upper tropospheric humidity distributions suggest that NAP play a role in the dehydration of the upper troposphere when the tropopause is colder than 195K.

  19. [Continuing medical education in Aesthetic Medicine: hands--on course on the usage of hyaluronic acids of different particle size on anatomic preparations].

    PubMed

    Reytan, Natalie; Plaschke, Martina; Hund, Martina; Bogusch, Gottfried; Rzany, Berthold

    2007-03-01

    The Division of Evidence Based Medicine (dEBM), Clinic for Dermatology, Venerology and Allergology, Charité--Universitätsmedizin Berlin, offers on a regular basis workshops focusing on different areas of aesthetic medicine. Once a year a joint course is provided in cooperation with the Institute of Anatomy, offering the participants the possibility to improve their injection techniques as well as their knowledge on the facial anatomy. This course is focused on treatment with hyaluronic acids of different particle size. Besides the classical indications, it considers new indications such as correcting the shape of the nose or lacrimal groove. Thirteen physicians participated in the course, which was evaluated as very helpful as it improved not only the injection technique but also the knowledge of anatomy.

  20. Effect of Exposure to Atmospheric Ultrafine Particles on Production of Free Fatty Acids and Lipid Metabolites in the Mouse Small Intestine

    PubMed Central

    Li, Rongsong; Navab, Kaveh; Hough, Greg; Daher, Nancy; Zhang, Min; Mittelstein, David; Lee, Katherine; Pakbin, Payam; Saffari, Arian; Bhetraratana, May; Sulaiman, Dawoud; Beebe, Tyler; Wu, Lan; Jen, Nelson; Wine, Eytan; Tseng, Chi-Hong; Araujo, Jesus A.; Fogelman, Alan; Sioutas, Constantinos; Navab, Mohamed

    2014-01-01

    N, Wine E, Tseng CH, Araujo JA, Fogelman A, Sioutas C, Navab M, Hsiai TK. 2015. Effect of exposure to atmospheric ultrafine particles on production of free fatty acids and lipid metabolites in the mouse small intestine. Environ Health Perspect 123:34–41; http://dx.doi.org/10.1289/ehp.1307036 PMID:25170928

  1. Characterization and optimization of a chromatographic process based on ethylenediamine-N,N,N',N'-tetra(methylphosphonic) acid-modified zirconia particles.

    PubMed

    Sarkar, Sabyasachi; Carr, Peter W; McNeff, Clayton V; Subramanian, Anu

    2003-06-25

    The primary objective of work was to characterize, optimize and model a chromatographic process based on ethylenediamine-N,N,N',N'-tetra(methylphosphonic) acid (EDTPA)-modified zirconia particles. Zirconia particles were produced by spray-drying colloidal zirconia. Zirconia spheres produced were further classified, calcined and modified with EDTPA to yield a solid-phase support for use in bio-chromatography (r_PEZ). Specifically, the ability of r_PEZ to selectively bind and enrich IgG, IgA, and IgM from biological fluids was evaluated and demonstrated. To better understand the force of interaction between the IgG and the r_PEZ, the equilibrium disassociation constant (K(d)) was determined by static binding isotherms, as a function of temperature and by frontal analysis at different linear velocities. The maximum static binding capacity (Q(max)) was found to be in the range 55-65 mg IgG per ml of beads, and unaffected by temperature. The maximum dynamic binding capacity (Q(x)) was found to be in the range 20-12 mg IgG per ml of beads. The adsorption rate constant (k(a)) was determined by a split-peak approach to be between 982 and 3242 l mol(-1) s(-1) depending on the linear velocity. The standard enthalpy and entropy values were estimated for this interaction of IgG with this novel support. PMID:12767327

  2. Poly-(lactic-co-glycolic-acid)-based particulate vaccines: particle uptake by dendritic cells is a key parameter for immune activation.

    PubMed

    Silva, A L; Rosalia, R A; Varypataki, E; Sibuea, S; Ossendorp, F; Jiskoot, W

    2015-02-11

    Poly(lactic-co-glycolic acid) (PLGA) particles have been extensively studied as biodegradable delivery system to improve the potency and safety of protein-based vaccines. In this study we analyzed how the size of PLGA particles, and hence their ability to be engulfed by dendritic cells (DC), affects the type and magnitude of the immune response in comparison to sustained release from a local depot. PLGA microparticles (MP, volume mean diameter≈112 μm) and nanoparticles (NP, Z-average diameter≈350 nm) co-encapsulating ovalbumin (OVA) and poly(I:C), with comparable antigen (Ag) release characteristics, were prepared and characterized. The immunogenicity of these two distinct particulate vaccines was evaluated in vitro and in vivo. NP were efficiently taken up by DC and greatly facilitated MHC I Ag presentation in vitro, whereas DC cultured in the presence of MP failed to internalize significant amounts of Ag and hardly showed MHC I Ag presentation. Vaccination of mice with NP resulted in significantly better priming of Ag-specific CD8(+) T cells compared to MP and OVA emulsified with incomplete Freund's adjuvant (IFA). Moreover, NP induced a balanced TH1/TH2-type antibody response, compared to vaccinations with IFA which stimulated a predominant TH2-type response, whereas MP failed to increase antibody titers. In conclusion, we postulate that particle internalization is of crucial importance and therefore particulate vaccines should be formulated in the nano- but not micro-size range to achieve efficient uptake, significant MHC class I cross-presentation and effective T and B cell responses.

  3. Effect of modified starch and nanoclay particles on biodegradability and mechanical properties of cross-linked poly lactic acid.

    PubMed

    Shayan, M; Azizi, H; Ghasemi, I; Karrabi, M

    2015-06-25

    Mechanical properties and biodegradation of cross-linked poly(lactic acid) (PLA)/maleated thermoplastic starch (MTPS)/montmorillonite (MMT) nanocomposite were studied. Crosslinking was carried out by adding di-cumyl peroxide (DCP) in the presence of triallyl isocyanurate (TAIC) as coagent. At first, MTPS was prepared by grafting maleic anhydride (MA) to thermoplastic starch in internal mixer. Experimental design was performed by using Box-Behnken method at three variables: MTPS, nanoclay and TAIC at three levels. Results showed that increasing TAIC amount substantially increased the gel fraction, enhanced tensile strength, and caused a decrease in elongation at break. Biodegradation was prevented by increasing TAIC amount in nanocomposite. Increasing MTPS amount caused a slight increase in gel fraction and decreased the tensile strength of nanocomposite. Also, MTPS could increase the elongation at break of nanocomposite and improve the biodegradation. Nanoclay had no effect on the gel fraction, but it improved tensile strength. PMID:25839817

  4. One-step synthesis of Poly(amic acid)/ZnO composite particles and its SERS applications

    NASA Astrophysics Data System (ADS)

    Wu, Jun Yi; Hsu, Keh-Ying

    2015-11-01

    Raspberry like structured PAA/ZnO microsphere were realized by coating the ZnO nanoparticles onto the surface of PAA microsphere via a novel solution method. The obtained materials were characterized by means of X-ray diffraction (XRD), scanning electron microscopy(SEM),transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and ultraviolet-visible (UV-Vis) absorption measurement. It was shown that ZnO nanoparticles were successfully grown on the surface of PAA microsphere. The absorption band of PAA/ZnO raspberry microsphere showed a large redshift comparing to pure ZnO nanoparticles, indicating the strong interfacial interaction between PAA and ZnO. This approach was simple, mild and readily scaled up, affording a simple method for the synthesis of raspberry like structure. The resulting Poly(amic acid)/ZnO composite structures could be used as a substrate for surface enhanced Raman scattering(SERS).

  5. Composite particles formed by complexation of poly(methacrylic acid) - stabilized magnetic fluid with chitosan: Magnetic material for bioapplications.

    PubMed

    Safarik, Ivo; Stepanek, Miroslav; Uchman, Mariusz; Slouf, Miroslav; Baldikova, Eva; Nydlova, Leona; Pospiskova, Kristyna; Safarikova, Mirka

    2016-10-01

    A simple procedure for the synthesis of magnetic fluid (ferrofluid) stabilized by poly(methacrylic acid) has been developed. This ferrofluid was used to prepare a novel type of magnetically responsive chitosan-based composite material. Both ferrofluid and magnetic chitosan composite were characterized by a combination of microscopy (optical microscopy, TEM, SEM), scattering (static and dynamic light scattering, SANS) and spectroscopy (FTIR) techniques. Magnetic chitosan was found to be a perspective material for various bioapplications, especially as a magnetic carrier for immobilization of enzymes and cells. Lipase from Candida rugosa was covalently attached after cross-linking and activation of chitosan using glutaraldehyde. Baker's yeast cells (Saccharomyces cerevisiae) were incorporated into the chitosan composite during its preparation; both biocatalysts were active after reaction with appropriate substrates. PMID:27287146

  6. Composite particles formed by complexation of poly(methacrylic acid) - stabilized magnetic fluid with chitosan: Magnetic material for bioapplications.

    PubMed

    Safarik, Ivo; Stepanek, Miroslav; Uchman, Mariusz; Slouf, Miroslav; Baldikova, Eva; Nydlova, Leona; Pospiskova, Kristyna; Safarikova, Mirka

    2016-10-01

    A simple procedure for the synthesis of magnetic fluid (ferrofluid) stabilized by poly(methacrylic acid) has been developed. This ferrofluid was used to prepare a novel type of magnetically responsive chitosan-based composite material. Both ferrofluid and magnetic chitosan composite were characterized by a combination of microscopy (optical microscopy, TEM, SEM), scattering (static and dynamic light scattering, SANS) and spectroscopy (FTIR) techniques. Magnetic chitosan was found to be a perspective material for various bioapplications, especially as a magnetic carrier for immobilization of enzymes and cells. Lipase from Candida rugosa was covalently attached after cross-linking and activation of chitosan using glutaraldehyde. Baker's yeast cells (Saccharomyces cerevisiae) were incorporated into the chitosan composite during its preparation; both biocatalysts were active after reaction with appropriate substrates.

  7. Removal of antibiotics from water in the coexistence of suspended particles and natural organic matters using amino-acid-modified-chitosan flocculants: A combined experimental and theoretical study.

    PubMed

    Jia, Shuying; Yang, Zhen; Ren, Kexin; Tian, Ziqi; Dong, Chang; Ma, Ruixue; Yu, Ge; Yang, Weiben

    2016-11-01

    Contamination of trace antibiotics is widely found in surface water sources. This work delineates removal of trace antibiotics (norfloxacin (NOR), sulfadiazine (SDZ) or tylosin (TYL)) from synthetic surface water by flocculation, in the coexistence of inorganic suspended particles (kaolin) and natural organic matter (humic acid, HA). To avoid extra pollution caused by petrochemical products-based modification reagents, environmental-friendly amino-acid-modified-chitosan flocculants, Ctrp and Ctyr, with different functional aromatic-rings structures were employed. Jar tests at various pHs exhibited that, Ctyr, owning phenol groups as electron donors, was favored for elimination of cationic NOR (∼50% removal; optimal pH: 6; optimal dosage: 4mg/L) and TYL (∼60% removal; optimal pH: 7; optimal dosage: 7.5mg/L), due to π-π electron donator-acceptor (EDA) effect and unconventional H-bonds. Differently, Ctrp with indole groups as electron acceptor had better removal rate (∼50%) of SDZ anions (electron donator). According to correlation analysis, the coexisted kaolin and HA played positive roles in antibiotics' removal. Detailed pairwise interactions in molecular level among different components were clarified by spectral analysis and theoretical calculations (density functional theory), which are important for both the structural design of new flocculants aiming at targeted contaminants and understanding the environmental behaviors of antibiotics in water.

  8. Removal of antibiotics from water in the coexistence of suspended particles and natural organic matters using amino-acid-modified-chitosan flocculants: A combined experimental and theoretical study.

    PubMed

    Jia, Shuying; Yang, Zhen; Ren, Kexin; Tian, Ziqi; Dong, Chang; Ma, Ruixue; Yu, Ge; Yang, Weiben

    2016-11-01

    Contamination of trace antibiotics is widely found in surface water sources. This work delineates removal of trace antibiotics (norfloxacin (NOR), sulfadiazine (SDZ) or tylosin (TYL)) from synthetic surface water by flocculation, in the coexistence of inorganic suspended particles (kaolin) and natural organic matter (humic acid, HA). To avoid extra pollution caused by petrochemical products-based modification reagents, environmental-friendly amino-acid-modified-chitosan flocculants, Ctrp and Ctyr, with different functional aromatic-rings structures were employed. Jar tests at various pHs exhibited that, Ctyr, owning phenol groups as electron donors, was favored for elimination of cationic NOR (∼50% removal; optimal pH: 6; optimal dosage: 4mg/L) and TYL (∼60% removal; optimal pH: 7; optimal dosage: 7.5mg/L), due to π-π electron donator-acceptor (EDA) effect and unconventional H-bonds. Differently, Ctrp with indole groups as electron acceptor had better removal rate (∼50%) of SDZ anions (electron donator). According to correlation analysis, the coexisted kaolin and HA played positive roles in antibiotics' removal. Detailed pairwise interactions in molecular level among different components were clarified by spectral analysis and theoretical calculations (density functional theory), which are important for both the structural design of new flocculants aiming at targeted contaminants and understanding the environmental behaviors of antibiotics in water. PMID:27348257

  9. Water-enhanced solubility of carboxylic acids in organic solvents and its applications to extraction processes

    SciTech Connect

    Starr, J.N.; King, C.J.

    1991-11-01

    The solubilities of carboxylic acids in certain organic solvents increase remarkably with an increasing amount of water in the organic phase. This phenomenon leads to a novel extract regeneration process in which the co-extracted water is selectively removed from an extract, and the carboxylic acid precipitates. This approach is potentially advantageous compared to other regeneration processes because it removes a minor component of the extract in order to achieve a large recovery of acid from the extract. Carboxylic acids of interest include adipic acid, fumaric acid, and succinic acid because of their low to moderate solubilities in organic solvents. Solvents were screened for an increase in acid solubility with increased water concentration in the organic phase. Most Lewis-base solvents were found to exhibit this increased solubility phenomena. Solvents that have a carbonyl functional group showed a very large increase in acid solubility. 71 refs., 52 figs., 38 tabs.

  10. Influence of gas-particle partitioning on ammonia and nitric acid fluxes above a deciduous forest in the Midwestern USA

    NASA Astrophysics Data System (ADS)

    Hansen, K.; Sørensen, L. L.; Hornsby, K. E.; Boegh, E.; Pryor, S. C.

    2013-12-01

    Quantifying the atmosphere-biosphere exchange of reactive nitrogen gasses (including ammonia (NH3) and nitric acid (HNO3)) is crucial to assessing the impact of anthropogenic activities on natural and semi-natural ecosystems. However, measuring the deposition of reactive nitrogen is challenging due to bi-directionality of the flux, and the dynamics of the chemical gas/aerosol equilibrium of NH3 and HNO3 (or other atmospheric acids) with aerosol-phase ammonium (NH4+) and nitrate (NO3-). NH3 and HNO3 are both very reactive and typically exhibit higher deposition velocities than aerosol NH4+. Therefore, the phase partitioning between gas and aerosol phases can have a significant effect on local budgets and atmospheric transport distances (Nemitz et al., Atmos. Chem. Phys., 2004). In this study, fluxes of NH3, HNO3 and carbon dioxide (CO2) along with size-resolved N-aerosol concentrations are measured above the deciduous forest, Morgan Monroe State Forest (MMSF) in south-central Indiana (39°53'N, 86°25'W) during a field campaign. Two relaxed eddy accumulation (REA) systems are used to measure fluxes and concentrations of NH3 and HNO3 at 44 m. The NH3 REA system operates based on wet effluent diffusion denuders with detection by florescence and half-hourly flux measurements are calculated. HNO3 REA system is based on gas capture on sodium chloride (NaCl) coated denuders with subsequent analysis by ion-chromatography, and the resulting fluxes have a resolution of 3-4 hours. CO2 fluxes are measured by eddy covariance using a closed-path Licor LI-7500, while two MSP MOUDI-110 impactors are used to measure the 24-hourly average inorganic and 48 hourly averaged organic ion concentrations in 11 size bins, respectively, just above the canopy level (28 m). The results of this field campaign are used to quantify the fluxes of NH3, HNO3, CO2 to/from the forest during the transition towards senescence, and to investigate process-level controls (e.g. the role of phase

  11. Reductive transformation of 2,4-dichlorophenoxyacetic acid by nanoscale and microscale Fe3O4 particles.

    PubMed

    Si, You B; Fang, Guo D; Zhou, Jing; Zhou, Dong M

    2010-04-01

    Reductive transformation of 2,4-dichlorophenoxyacetic acid (2,4-D) by nanoscale and microscale Fe(3)O(4) was investigated and compared. Disappearance of the parent species and formation of reaction intermediates and products were kinetically analyzed. Results suggest that the transformation of 2,4-D followed a primary pathway of its complete reduction to phenol and a secondary pathway of sequential reductive hydrogenolysis to 2,4-dichlorophenol (2,4-DCP), chlorophenol (2-CP, 4-CP) and phenol. About 65% of 2,4-D with initial concentration of 50 micro M was transformed within 48 h in the presence of 300 mg L(-1) nanoscale Fe(3)O(4), and the reaction rates increased with increasing dosage of nanoscale Fe(3)O(4). The decomposition of 2,4-D proceeded rapidly at optimum pH 3.0. Chloride was identified as a reduction product for 2,4-D in the magnetite-water system. Reductive transformation of 2,4-D by microscale Fe(3)O(4) was slower than that by nanoscale Fe(3)O(4). The reactions apparently followed pseudo-first-order kinetics with respect to the 2,4-D transformation. The degradation rate of 2,4-D decreased with the increase of initial 2,4-D concentration. In addition, anions had a significant adverse impact on the degradation efficiency of 2,4-D.

  12. Influence of Humic Acid on Stability and Attachment of nTiO2 Particles to Sand at Different pH

    NASA Astrophysics Data System (ADS)

    Cheng, T.

    2015-12-01

    Stability of nano-scale or micro-scale titanium dioxide particles (nTiO2) and their attachment to sediment grains have important implications to the fate and transport of nTiO2 in subsurface environments. nTiO2 may carry either positive or negative charges in natural water, therefore, environmental factors such as pH, humic substances, and Fe oxyhydroxide coatings on sediment grains, which are known to control the stability and transport of negatively charged colloids, may influence nTiO2 in different manners. The objective of this study is to investigate the effects of pH and humic acid (HA) on the stability and attachment of nTiO2 to sand, with special attention to low HA concentration ranges that are relevant to groundwater conditions. Stability and attachment of nTiO2 to quartz sand and Fe oxyhydroxide coated quartz sand were experimentally measured under a range of low HA concentrations at pH 5 and 9. Results showed that HA can either promote or hinder nTiO2 stability, depending on pH and HA concentration. We also found that HA can either enhance or reduce nTiO2 attachment to Fe oxyhydroxide coating at pH 5, depending on HA concentration. Results further showed that at pH 5, Fe oxyhydroxide coating reduced nTiO2 attachment to sand in the absence of HA but increased nTiO2 attachment in the presence of low concentration of HA. Derjaguin-Landau-Verwey-Overbeek (DLVO) theory was invoked to analyze particle-to-particle and particle-to-sand interactions in order to elucidate the roles of pH, HA, quartz, and Fe coating in nTiO2 stability and attachment. Overall, this study showed that changes in zeta potential of nTiO2 and Fe coating due to pH changes and/or HA adsorption are the key factors that influence stability and attachment of nTiO2.

  13. Hyaluronic acid functional amphipathic and redox-responsive polymer particles for the co-delivery of doxorubicin and cyclopamine to eradicate breast cancer cells and cancer stem cells

    NASA Astrophysics Data System (ADS)

    Hu, Kelei; Zhou, Huige; Liu, Ying; Liu, Zhu; Liu, Jing; Tang, Jinglong; Li, Jiayang; Zhang, Jiakun; Sheng, Wang; Zhao, Yuliang; Wu, Yan; Chen, Chunying

    2015-04-01

    Cancer stem cells (CSCs) have the ability to transform into bulk cancer cells, to promote tumor growth and establish tumor metastasis. To effectively inhibit tumor growth and prevent metastasis, treatments with conventional chemotherapy drugs should be combined with CSC targeted drugs. In this study, we describe the synthesis and characterization of a new amphiphilic polymer, hyaluronic acid-cystamine-polylactic-co-glycolic acid (HA-SS-PLGA), composed of a hydrophobic PLGA head and a hydrophilic HA segment linked by a bioreducible disulfide bond. With a double emulsion method, a nano delivery system was constructed to deliver doxorubicin (DOX) and cyclopamine (CYC, a primary inhibitor of the hedgehog signaling pathway of CSCs) to both a CD44-overexpressing breast CSC subpopulation and bulk breast cancer cells and allow an on-demand release. The resulting drug-loaded NPs exhibited a redox-responsive drug release profile. Dual drug-loaded particles potently diminished the number and size of tumorspheres and HA showed a targeting effect towards breast CSCs. In vivo combination therapy further demonstrated a remarkable synergistic anti-tumor effect and prolonged survival compared to mono-therapy using the orthotopic mammary fat pad tumor growth model. The co-delivery of drug and the CSC specific inhibitor towards targeted cancer chemotherapeutics provides an insight into anticancer strategy with facile control and high efficacy.Cancer stem cells (CSCs) have the ability to transform into bulk cancer cells, to promote tumor growth and establish tumor metastasis. To effectively inhibit tumor growth and prevent metastasis, treatments with conventional chemotherapy drugs should be combined with CSC targeted drugs. In this study, we describe the synthesis and characterization of a new amphiphilic polymer, hyaluronic acid-cystamine-polylactic-co-glycolic acid (HA-SS-PLGA), composed of a hydrophobic PLGA head and a hydrophilic HA segment linked by a bioreducible disulfide bond

  14. Inorganic ions in ambient fine particles over a National Park in central India: Seasonality, dependencies between SO42-, NO3-, and NH4+, and neutralization of aerosol acidity

    NASA Astrophysics Data System (ADS)

    Kumar, Samresh; Sunder Raman, Ramya

    2016-10-01

    suggested that in NH4+ rich samples, NO3- and non-sea salt SO42- were almost entirely neutralized by NH4+. In NH4+ poor samples, in addition to NH4+ non-sea salt K+ played a role in acidity neutralization. These observations are unlike those reported for PM10 and total suspended particles (TSP) over other locations in India, where mineral aerosol species (specifically Ca2+) played an important role in neutralizing acidic species. Additionally, both during 2012 and 2013, the aerosol acidity showed a pronounced seasonality - the aerosol was alkaline or near-neutral during the winter and post-monsoon seasons, while during the pre-monsoon and monsoon seasons it was acidic.

  15. Investigation on sodium benzoate release from poly(butylene adipate-co-terephthalate)/organoclay/sodium benzoate based nanocomposite film and their antimicrobial activity.

    PubMed

    Mondal, Dibyendu; Bhowmick, Biplab; Maity, Dipanwita; Mollick, Md Masud R; Rana, Dipak; Rangarajan, Vivek; Sen, Ramkrishna; Chattopadhyay, Dipankar

    2015-03-01

    Polymeric nanocomposites embedded with nontoxic antimicrobial agents have recently gained potential industrial significance, mainly for their applicability to preserve food quality and ensure safety. In this study, a poly(butylene adipate-co-terephthalate) (PBAT)/organoclay (CMMT) based nanocomposite film doped with sodium benzoate (SB) as antimicrobial agent was prepared by a solution mixing process. A homogenous dispersion of organoclay (cetyltrimethylammonium-modified montmorillonite [CMMT]) in PBAT matrix was observed by X-ray diffraction and transmission electron microscopy. PBAT/CMMT nanocomposite film showed higher barrier properties against water and methanol vapor compared to the PBAT film. The release of SB from PBAT and its nanocomposite film was measured and the relevant data were fitted to the Weibull model. The higher values of Weibull's shape factor and scale parameter as corroborated by experimental findings indicated faster rate of SB release from PBAT/CMMT/SB nanocomposite film, when compared to the pristine PBAT film. Bacterial inhibition studies were accomplished against 2 food pathogenic bacteria, Bacillus subtilis and Staphylococcus aureus, by determining the zone of inhibition and corresponding growth profiles. Both bacterial inhibition studies and growth profiles established that PBAT/CMMT/SB demonstrated better antimicrobial activity than PBAT/SB film. Therefore, PBAT/CMMT/SB nanocomposite film can be used for food packaging application as it showed good barrier properties and antimicrobial activity against food pathogenic bacteria. PMID:25644560

  16. Effect of Chain-Extenders on the Properties and Hydrolytic Degradation Behavior of the Poly(lactide)/Poly(butylene adipate-co-terephthalate) Blends

    PubMed Central

    Dong, Weifu; Zou, Benshu; Yan, Yangyang; Ma, Piming; Chen, Mingqing

    2013-01-01

    Biodegradable poly(lactide)/poly(butylene adipate-co-terephthalate) (PLA/PBAT) blends were prepared by reactive blending in the presence of chain-extenders. Two chain-extenders with multi-epoxy groups were studied. The effect of chain-extenders on the morphology, mechanical properties, thermal behavior, and hydrolytic degradation of the blends was investigated. The compatibility between the PLA and PBAT was significantly improved by in situ formation of PLA-co-PBAT copolymers in the presence of the chain-extenders, results in an enhanced ductility of the blends, e.g., the elongation at break was increased to 500% without any decrease in the tensile strength. The differential scanning calorimeter (DSC) results reveal that cold crystallization of PLA was enhanced due to heterogeneous nucleation effect of the in situ compatibilized PBAT domains. As known before, PLA is sensitive to hydrolysis and in the presence of PBAT and the chain-extenders, the hydrolytic degradation of the blend was evident. A three-stage hydrolysis mechanism for the system is proposed based on a study of weight loss and molecular weight reduction of the samples and the pH variation of the degradation medium. PMID:24152436

  17. Structure-barrier property relationship of biodegradable poly(butylene succinate) and poly[(butylene succinate)-co-(butylene adipate)] nanocomposites: influence of the rigid amorphous fraction.

    PubMed

    Charlon, S; Marais, S; Dargent, E; Soulestin, J; Sclavons, M; Follain, N

    2015-11-28

    Composites composed of polyesters, poly(butylene succinate) (PBS) or poly[(butylene succinate)-co-(butylene adipate)] (PBSA), and 5 wt% of montmorillonite (CNa) or organo-modified montmorillonite (C30B) were melt-processed and transformed into films by either compression-molding or extrusion-calendering. XRD, rheological measurements and TEM images clearly indicated that films containing CNa are microcomposites, while nanocomposites were observed for those containing C30B. Using Flash DSC, it was possible, for the first time, not only to measure the heat capacity step at the glass transition of these two materials in their amorphous state, but also to investigate whether the preparation technique influenced the Rigid Amorphous Fraction (RAF) in our PBS- and PBSA-based nanocomposites. In this work, we have successfully shown the correlation between the microstructure of the films and their barrier properties, and especially the role played by the RAF. Indeed, the lowest permeabilities to gases and to water were determined in the films containing the highest RAF in both PBS- and PBSA-based materials. PMID:26489904

  18. Active biodegradable films produced with blends of rice flour and poly(butylene adipate co-terephthalate): effect of potassium sorbate on film characteristics.

    PubMed

    Sousa, G M; Soares Júnior, M S; Yamashita, F

    2013-08-01

    The objective of work was to produce and characterize biodegradable films from rice flour, poly(butylene adipate co-terephthalate) (PBAT), glycerol and potassium sorbate, for application as active packaging for fresh lasagna pasta. The films were evaluated with respect to their optical, water vapor barrier, mechanical and microstructural properties. The mechanical properties and microstructure were evaluated after use as packaging material for fresh pasta for 45 days at 7°C. The blends of rice flour, PBAT, glycerol and potassium sorbate showed good processability and allowed for the pilot scale production of films by blow extrusion process. The addition of 1 to 5% potassium sorbate as plasticizer agent of films in place of glycerol did not alter the film mechanical properties and a sorbate concentration greater or equal than 3% reduced the opacity, although increasing the water vapor permeability. The films could be used as active packaging for fresh food pasta, since they remained integral and easy to handle after application. The rice flour was shown to be an excellent material for the formulation of biodegradable films, since it is a low-cost raw material from a renewable source. The addition of potassium sorbate did not affect the extrusion process, and could be used in the production of packaging for use with foods. PMID:23706195

  19. Osteoconductive bio-based meshes based on poly(hydroxybutyrate-co-hydroxyvalerate) and poly(butylene adipate-co-terephthalate) blends.

    PubMed

    Nar, Mangesh; Staufenberg, Gerrit; Yang, Bing; Robertson, Lesli; Patel, Rinkesh H; Varanasi, Venu G; D'Souza, Nandika Anne

    2014-05-01

    Poly(butylene adipate-co-terephthalate) (PBAT) and Poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) are biopolymers that have the potential to be used in applications of bone healing. In this study, it is hypothesized that the polymer blend has the combined strength and osteoconductivity to support osteoblast collagen formation. PBAT (PBAT 100), and a blend with 20% PHBV (PBAT 80) were extruded in the form of fibers and then knitted in the form of mesh. These were tested in the warp as well as weft direction for the tensile properties; these showed that the weft direction had higher performance than the warp. The individual fibers were kept in phosphate buffered saline (PBS) over the period of 8 weeks and were tested for the storage and loss modulus using a dynamic mechanical analyser (DMA). The results indicated that mechanical relaxation strength showed a decrease and then an increase. In vitro osteoconductivity studies were done by using differentiating osteoblasts (MC3T3-E1 subclone 4 cells). Environmental Scanning Electron Microscopy (ESEM) showed that pre-soaking the samples in α-MEM for two weeks resulted in cell attachment and growth. X-ray diffraction (XRD) was used to determine the change in structure of polymers due to in vitro degradation for two weeks. Raman spectroscopy showed that all scaffolds supported the formation of a collagenous network over the scaffold surfaces. For a combination of knittable manufacturing, mechanical performance and osteoconductivity, blends offer an effective route. PMID:24656384

  20. Effect of nanoclay loading on the thermal and mechanical properties of biodegradable polylactide/poly[(butylene succinate)-co-adipate] blend composites.

    PubMed

    Ojijo, Vincent; Sinha Ray, Suprakas; Sadiku, Rotimi

    2012-05-01

    Polylactide/poly[(butylene succinate)-co-adipate] (PLA/PBSA)-organoclay composites were prepared via melt compounding in a batch mixer. The weight ratio of PLA to PBSA was kept at 70:30, while the weight fraction of the organoclay was varied from 0 to 9%. Small angle X-ray scattering patterns showed slightly better dispersion in PBSA than PLA, and there was a tendency of the silicate layers to delaminate in PBSA at low clay content. Thermal analysis revealed that crystallinity was dependent on the clay content as well its localization within the composite. On the other hand, thermal stability marginally improved for composites with <2 wt % clay content in contrast to the deterioration observed in composites with clay content >2 wt %. Tensile properties showed dependence on clay content and localization. Composite with 2 wt % clay content showed slight improvement in elongation at break. Overall, the optimum property was found for a composite with 2 wt % of the organoclay. This paper therefore has demonstrated the significance of the clay content and localization on the properties of the PLA/PBSA blends.

  1. Effect of chain-extenders on the properties and hydrolytic degradation behavior of the poly(lactide)/poly(butylene adipate-co-terephthalate) blends.

    PubMed

    Dong, Weifu; Zou, Benshu; Yan, Yangyang; Ma, Piming; Chen, Mingqing

    2013-10-10

    Biodegradable poly(lactide)/poly(butylene adipate-co-terephthalate) (PLA/PBAT) blends were prepared by reactive blending in the presence of chain-extenders. Two chain-extenders with multi-epoxy groups were studied. The effect of chain-extenders on the morphology, mechanical properties, thermal behavior, and hydrolytic degradation of the blends was investigated. The compatibility between the PLA and PBAT was significantly improved by in situ formation of PLA-co-PBAT copolymers in the presence of the chain-extenders, results in an enhanced ductility of the blends, e.g., the elongation at break was increased to 500% without any decrease in the tensile strength. The differential scanning calorimeter (DSC) results reveal that cold crystallization of PLA was enhanced due to heterogeneous nucleation effect of the in situ compatibilized PBAT domains. As known before, PLA is sensitive to hydrolysis and in the presence of PBAT and the chain-extenders, the hydrolytic degradation of the blend was evident. A three-stage hydrolysis mechanism for the system is proposed based on a study of weight loss and molecular weight reduction of the samples and the pH variation of the degradation medium.

  2. Biomimetic Approach to Enhance Enzymatic Hydrolysis of the Synthetic Polyester Poly(1,4-butylene adipate): Fusing Binding Modules to Esterases.

    PubMed

    Perz, Veronika; Zumstein, Michael Thomas; Sander, Michael; Zitzenbacher, Sabine; Ribitsch, Doris; Guebitz, Georg M

    2015-12-14

    Mimicking a concept of nature for the hydrolysis of biopolymers, the Thermobifida cellulosilytica cutinase 1 (Thc_Cut1) was fused to a polymer binding module (PBM) to enhance the hydrolysis of the polyester poly(1,4-butylene adipate) (PBA). Namely, the binding module of a polyhydroxyalkanoate depolymerase from Alcaligenes faecalis (Thc_Cut1_PBM) was attached to the cutinase via two different linker sequences varying in length. In order to investigate the adsorption behavior, catalytically inactive mutants both of Thc_Cut1 and Thc_Cut1_PBM were successfully constructed by site-directed mutagenesis of serine 131 to alanine. Quartz crystal microbalance with dissipation monitoring (QCM-D) analysis revealed that the initial mass increase during enzyme adsorption was larger for the inactive enzymes linked with the PBM as compared to the enzyme without the PBM. The hydrolysis rates of PBA were significantly enhanced when incubated with the active, engineered Thc_Cut1_PBM as compared to the native Thc_Cut1. Thc_Cut1_PBM completely hydrolyzed PBA thin films on QCM-D sensors within approximately 40 min, whereas twice as much time was required for the complete hydrolysis by the native Thc_Cut1.

  3. Role of specific interfacial area in controlling properties of immiscible blends of biodegradable polylactide and poly[(butylene succinate)-co-adipate].

    PubMed

    Ojijo, Vincent; Sinha Ray, Suprakas; Sadiku, Rotimi

    2012-12-01

    Binary blends of two biodegradable polymers: polylactide (PLA), which has high modulus and strength but is brittle, and poly[(butylene succinate)-co-adipate] (PBSA), which is flexible and tough, were prepared through batch melt mixing. The PLA/PBSA compositions were 100/0, 90/10, 70/30, 60/40, 50/50, 40/60, 30/70, 10/90, and 0/100. Fourier-transform infrared measurements revealed the absence of any chemical interaction between the two polymers, resulting in a phase-separated morphology as shown by scanning electron microscopy (SEM). SEM micrographs showed that PLA-rich blends had smaller droplet sizes when compared to the PBSA-rich blends, which got smaller with the reduction in PBSA content due to the differences in their melt viscosities. The interfacial area of PBSA droplets per unit volume of the blend reached a maximum in the 70PLA/30PBSA blend. Thermal stability and mechanical properties were not only affected by the composition of the blend, but also by the interfacial area between the two polymers. Through differential scanning calorimetry, it was shown that molten PBSA enhanced crystallization of PLA while the stiff PLA hindered cold crystallization of PBSA. Optimal synergies of properties between the two polymers were found in the 70PLA/30PBSA blend because of the maximum specific interfacial area of the PBSA droplets.

  4. Osteoconductive bio-based meshes based on poly(hydroxybutyrate-co-hydroxyvalerate) and poly(butylene adipate-co-terephthalate) blends.

    PubMed

    Nar, Mangesh; Staufenberg, Gerrit; Yang, Bing; Robertson, Lesli; Patel, Rinkesh H; Varanasi, Venu G; D'Souza, Nandika Anne

    2014-05-01

    Poly(butylene adipate-co-terephthalate) (PBAT) and Poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) are biopolymers that have the potential to be used in applications of bone healing. In this study, it is hypothesized that the polymer blend has the combined strength and osteoconductivity to support osteoblast collagen formation. PBAT (PBAT 100), and a blend with 20% PHBV (PBAT 80) were extruded in the form of fibers and then knitted in the form of mesh. These were tested in the warp as well as weft direction for the tensile properties; these showed that the weft direction had higher performance than the warp. The individual fibers were kept in phosphate buffered saline (PBS) over the period of 8 weeks and were tested for the storage and loss modulus using a dynamic mechanical analyser (DMA). The results indicated that mechanical relaxation strength showed a decrease and then an increase. In vitro osteoconductivity studies were done by using differentiating osteoblasts (MC3T3-E1 subclone 4 cells). Environmental Scanning Electron Microscopy (ESEM) showed that pre-soaking the samples in α-MEM for two weeks resulted in cell attachment and growth. X-ray diffraction (XRD) was used to determine the change in structure of polymers due to in vitro degradation for two weeks. Raman spectroscopy showed that all scaffolds supported the formation of a collagenous network over the scaffold surfaces. For a combination of knittable manufacturing, mechanical performance and osteoconductivity, blends offer an effective route.

  5. Structure-barrier property relationship of biodegradable poly(butylene succinate) and poly[(butylene succinate)-co-(butylene adipate)] nanocomposites: influence of the rigid amorphous fraction.

    PubMed

    Charlon, S; Marais, S; Dargent, E; Soulestin, J; Sclavons, M; Follain, N

    2015-11-28

    Composites composed of polyesters, poly(butylene succinate) (PBS) or poly[(butylene succinate)-co-(butylene adipate)] (PBSA), and 5 wt% of montmorillonite (CNa) or organo-modified montmorillonite (C30B) were melt-processed and transformed into films by either compression-molding or extrusion-calendering. XRD, rheological measurements and TEM images clearly indicated that films containing CNa are microcomposites, while nanocomposites were observed for those containing C30B. Using Flash DSC, it was possible, for the first time, not only to measure the heat capacity step at the glass transition of these two materials in their amorphous state, but also to investigate whether the preparation technique influenced the Rigid Amorphous Fraction (RAF) in our PBS- and PBSA-based nanocomposites. In this work, we have successfully shown the correlation between the microstructure of the films and their barrier properties, and especially the role played by the RAF. Indeed, the lowest permeabilities to gases and to water were determined in the films containing the highest RAF in both PBS- and PBSA-based materials.

  6. Investigation on sodium benzoate release from poly(butylene adipate-co-terephthalate)/organoclay/sodium benzoate based nanocomposite film and their antimicrobial activity.

    PubMed

    Mondal, Dibyendu; Bhowmick, Biplab; Maity, Dipanwita; Mollick, Md Masud R; Rana, Dipak; Rangarajan, Vivek; Sen, Ramkrishna; Chattopadhyay, Dipankar

    2015-03-01

    Polymeric nanocomposites embedded with nontoxic antimicrobial agents have recently gained potential industrial significance, mainly for their applicability to preserve food quality and ensure safety. In this study, a poly(butylene adipate-co-terephthalate) (PBAT)/organoclay (CMMT) based nanocomposite film doped with sodium benzoate (SB) as antimicrobial agent was prepared by a solution mixing process. A homogenous dispersion of organoclay (cetyltrimethylammonium-modified montmorillonite [CMMT]) in PBAT matrix was observed by X-ray diffraction and transmission electron microscopy. PBAT/CMMT nanocomposite film showed higher barrier properties against water and methanol vapor compared to the PBAT film. The release of SB from PBAT and its nanocomposite film was measured and the relevant data were fitted to the Weibull model. The higher values of Weibull's shape factor and scale parameter as corroborated by experimental findings indicated faster rate of SB release from PBAT/CMMT/SB nanocomposite film, when compared to the pristine PBAT film. Bacterial inhibition studies were accomplished against 2 food pathogenic bacteria, Bacillus subtilis and Staphylococcus aureus, by determining the zone of inhibition and corresponding growth profiles. Both bacterial inhibition studies and growth profiles established that PBAT/CMMT/SB demonstrated better antimicrobial activity than PBAT/SB film. Therefore, PBAT/CMMT/SB nanocomposite film can be used for food packaging application as it showed good barrier properties and antimicrobial activity against food pathogenic bacteria.

  7. Surface modification of poly(tetramethylene adipate-co-terephthalate) membrane via layer-by-layer assembly of chitosan and dextran sulfate polyelectrolyte multiplayer.

    PubMed

    Yu, Da-Guang; Jou, Chi-Hsiung; Lin, Wen-Ching; Yang, Ming-Chien

    2007-02-15

    The improvement of hydrophilicity and hemocompatibility of poly(tetramethylene adipate-co-terephthalate) (PTAT) membrane was developed via polyelectrolyte multilayers (PEMs) immobilization. The polysaccharide PEMs included chitosan (CS, as a positive-charged and antibacterial agent) and dextran sulfate (DS, as a negative-charged and anti-adhesive agent) were successfully prepared using the aminolyzed PTAT membrane in a layer-by-layer (LBL) self-assembly manner. The obtained results showed that the contact angle of as-modified PTAT membranes reached to the steady value after four bilayers of coating, hence suggesting that the full coverage was achieved. It could be found that the PTAT-PEMs membranes with DS as the outmost layer could resist the platelet adhesion and human plasma fibrinogen (HPF) adsorption, thereby prolonging effectively the blood coagulation times. According to L929 fibroblast cell growth inhibition index, the as-prepared PTAT membranes exhibited non-cytotoxic. Overall results demonstrated that such an easy, valid and shape-independent processing should be potential for surface modification of PTAT membrane in the application of hemodialysis devices.

  8. Migration from plasticized films into foods. 2. Migration of di-(2-ethylhexyl)adipate from PVC films used for retail food packaging.

    PubMed

    Castle, L; Mercer, A J; Startin, J R; Gilbert, J

    1987-01-01

    A UK survey of di-(2-ethylhexyl)adipate (DEHA) levels in retail foods (83 samples) wrapped in plasticized PVC film has been carried out, examining a wide range of different food types obtained from retail and take-away outlets. Foodstuffs analysed included fresh meat and poultry, ready-cooked poultry, cheese, fruit, vegetables and baked goods such as cakes, bread rolls and sandwiches. Analysis by stable isotope dilution GC/MS showed DEHA levels ranging from 1.0 to 72.8 mg/kg in uncooked meat and poultry, 9.4 to 48.6 mg/kg in cooked chicken portions, 27.8 to 135.0 mg/kg in cheese, less than 2.0 mg/kg in fruit and vegetables and 11 to 212 mg/kg in baked goods and sandwiches. The level of DEHA migration correlated with the extent of contact between the film and exposed fatty portions of the food, whether that was the mayonnaise filling of a sandwich or the surface fat from a joint of uncooked meat. The level of DEHA in meat exposed to plasticized film was not reduced significantly by volatilization or chemical transformation on subsequent cooking by grilling or frying.

  9. Migration from plasticized films into foods. 1. Migration of di-(2-ethylhexyl)adipate from PVC films during home-use and microwave cooking.

    PubMed

    Startin, J R; Sharman, M; Rose, M D; Parker, I; Mercer, A J; Castle, L; Gilbert, J

    1987-01-01

    Migration of di-(2-ethylhexyl)adipate (DEHA) into a diverse range of foods arising from the domestic use of plasticized PVC films has been determined using a stable isotope dilution GC/MS procedure. Aspects of home use reported in this study include the wrapping and covering of foods such as cheese, cooked meats, sandwiches, cakes, fresh fruit and vegetables; the use of films during food preparation such as marinading; covering during microwave reheating of previously prepared foods, and covering during microwave cooking. Contact between film and foods was for differing temperatures and times, representative of the range of conditions likely to be experienced in practice in the home. Migration increased with both the length of contact time and temperature of exposure, with the highest levels observed where there was a direct contact between the film and food, and where the latter had a high fat content on the contact surface. Highest levels of migration were observed for cheese, cooked meats, cakes and for microwave-cooked foods, whilst lower levels were observed for wrapping of unfilled sandwiches, fruit and vegetables (except avocado), and for food preparation including microwave reheating where there was covering of the food in a container but little or no direct contact.

  10. The occurrence of phthalate ester and di-2-ethylhexyl adipate plasticizers in Canadian packaging and food sampled in 1985-1989: a survey.

    PubMed

    Page, B D; Lacroix, G M

    1995-01-01

    Selected foods (260 samples) packaged in materials with the potential to contribute plasticizers to the food, and available food composites (98 samples) obtained from the Canadian Health Protection Branch Total Diet Program, were analysed for phthalate plasticizers and di-2-ethylhexyl adipate (DEHA). The available contacting packaging was also analysed for plasticizers. The results show DEHA in food-contacting film and as a migrant in store-wrapped meat, poultry, fish, cheese and ready-to-eat foods at levels as high as 310 micrograms/g (cheese). DEHA levels in unheated film-wrapped ready-to-eat foods were increased by heating. The di-2-ethylhexyl, dibutyl, butylbenzyl and diethyl phthalate esters (DEHP, DBP, BBP and DEP, respectively) were also found in both the packaging and the contacted foods. Low levels of DEHP (0.065 micrograms/g, average in beverages and 0.29 micrograms/g, average in foods) associated with the use of DEHP-plasticized cap or lid seals, were found in a variety of glass-packaged foods; DBP, BBP and DEHP were found, as previously described, in butter and margarine as migrants from the aluminium foil-paper laminates; and DEP in pies at 1.8 micrograms/g (average) as a migrant from the pie carton windows. In most cases, plasticizers detected in the food were also found in the associated packaging. When possible, 'core' or non-contacting food portions were analysed to verify the migration phenomena.

  11. Biotechnological production of muconic acid: current status and future prospects.

    PubMed

    Xie, Neng-Zhong; Liang, Hong; Huang, Ri-Bo; Xu, Ping

    2014-01-01

    Muconic acid (MA), a high value-added bio-product with reactive dicarboxylic groups and conjugated double bonds, has garnered increasing interest owing to its potential applications in the manufacture of new functional resins, bio-plastics, food additives, agrochemicals, and pharmaceuticals. At the very least, MA can be used to produce commercially important bulk chemicals such as adipic acid, terephthalic acid and trimellitic acid. Recently, great progress has been made in the development of biotechnological routes for MA production. This present review provides a comprehensive and systematic overview of recent advances and challenges in biotechnological production of MA. Various biological methods are summarized and compared, and their constraints and possible solutions are also described. Finally, the future prospects are discussed with respect to the current state, challenges, and trends in this field, and the guidelines to develop high-performance microbial cell factories are also proposed for the MA production by systems metabolic engineering. PMID:24751381

  12. A new effective process for production of curdlan oligosaccharides based on alkali-neutralization treatment and acid hydrolysis of curdlan particles in water suspension.

    PubMed

    Li, Jing; Zhu, Li; Zheng, Zhi-Yong; Zhan, Xiao-Bei; Lin, Chi-Chung; Zong, Yu; Li, Wei-Jiang

    2013-10-01

    Biologically active β-1,3-oligosaccharides with rapidly growing biomedical applications are produced from hydrolysis of curdlan polysaccharide. The water-insoluble curdlan impedes its hydrolysis efficiency which is enhanced by our newly developed alkali-neutralization treatment process to increase the stability of curdlan suspension to more than 20 days, while the untreated control settled within 5 min. A putative double-layer structure model comprising of a compact core and a hydrated outer layer was proposed to describe the treated curdlan particles based on sedimentation and scanning electron microscopy observation. This model was verified by single- and two-step acid hydrolysis, indicative of the reduced susceptibility to hydrolysis when close to the compact core. Electrospray ionization-mass spectrometry, thin-layer chromatography analyses, and effective HPLC procedure led to the development of improved process to produce purified individual β-1,3-oligosaccharides with degrees of polymerization from 2 to 10 and potential for biomedical applications from curdlan hydrolyzate. Our new curdlan oligosaccharide production process offers an even better alternative to the previously published processes.

  13. The contribution of mycosporine-like amino acids, chromophoric dissolved organic matter and particles to the UV protection of sea-ice organisms in the Baltic Sea.

    PubMed

    Piiparinen, Jonna; Enberg, Sara; Rintala, Janne-Markus; Sommaruga, Ruben; Majaneva, Markus; Autio, Riitta; Vähätalo, Anssi V

    2015-05-01

    The effects of ultraviolet radiation (UVR) on the synthesis of mycosporine-like amino acids (MAAs) in sea-ice communities and on the other UV-absorption properties of sea ice were studied in a three-week long in situ experiment in the Gulf of Finland, Baltic Sea in March 2011. The untreated snow-covered ice and two snow-free ice treatments, one exposed to wavelengths > 400 nm (PAR) and the other to full solar spectrum (PAR + UVR), were analysed for MAAs and absorption coefficients of dissolved (aCDOM) and particulate (ap) fractions, the latter being further divided into non-algal (anap) and algal (aph) components. Our results showed that the diatom and dinoflagellate dominated sea-ice algal community responded to UVR down to 25-30 cm depth by increasing their MAA : chlorophyll-a ratio and by extending the composition of MAA pool from shinorine and palythine to porphyra-334 and an unknown compound with absorption peaks at ca. 335 and 360 nm. MAAs were the dominant absorbing components in algae in the top 10 cm of ice, and their contribution to total absorption became even more pronounced under UVR exposure. In addition to MAAs, the high absorption by chromophoric dissolved organic matter (CDOM) and by deposited atmospheric particles provided UV-protection for sea-ice organisms in the exposed ice. Efficient UV-protection will especially be of importance under the predicted future climate conditions with more frequent snow-free conditions.

  14. The contribution of mycosporine-like amino acids, chromophoric dissolved organic matter and particles to the UV protection of sea-ice organisms in the Baltic Sea.

    PubMed

    Piiparinen, Jonna; Enberg, Sara; Rintala, Janne-Markus; Sommaruga, Ruben; Majaneva, Markus; Autio, Riitta; Vähätalo, Anssi V

    2015-05-01

    The effects of ultraviolet radiation (UVR) on the synthesis of mycosporine-like amino acids (MAAs) in sea-ice communities and on the other UV-absorption properties of sea ice were studied in a three-week long in situ experiment in the Gulf of Finland, Baltic Sea in March 2011. The untreated snow-covered ice and two snow-free ice treatments, one exposed to wavelengths > 400 nm (PAR) and the other to full solar spectrum (PAR + UVR), were analysed for MAAs and absorption coefficients of dissolved (aCDOM) and particulate (ap) fractions, the latter being further divided into non-algal (anap) and algal (aph) components. Our results showed that the diatom and dinoflagellate dominated sea-ice algal community responded to UVR down to 25-30 cm depth by increasing their MAA : chlorophyll-a ratio and by extending the composition of MAA pool from shinorine and palythine to porphyra-334 and an unknown compound with absorption peaks at ca. 335 and 360 nm. MAAs were the dominant absorbing components in algae in the top 10 cm of ice, and their contribution to total absorption became even more pronounced under UVR exposure. In addition to MAAs, the high absorption by chromophoric dissolved organic matter (CDOM) and by deposited atmospheric particles provided UV-protection for sea-ice organisms in the exposed ice. Efficient UV-protection will especially be of importance under the predicted future climate conditions with more frequent snow-free conditions. PMID:25837523

  15. Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO3− aerosol during the 2013 Southern Oxidant and Aerosol Study

    DOE PAGES

    Allen, H. M.; Draper, D. C.; Ayres, B. R.; Ault, A.; Bondy, A.; Takahama, S.; Modini, R. L.; Baumann, K.; Edgerton, E.; Knote, C.; et al

    2015-09-25

    Inorganic aerosol composition was measured in the southeastern United States, a region that exhibits high aerosol mass loading during the summer, as part of the 2013 Southern Oxidant and Aerosol Study (SOAS) campaign. Measurements using a Monitor for AeRosols and GAses (MARGA) revealed two periods of high aerosol nitrate (NO3−) concentrations during the campaign. These periods of high nitrate were correlated with increased concentrations of supermicron crustal and sea spray aerosol species, particularly Na+ and Ca2+, and with a shift towards aerosol with larger (1 to 2.5 μm) diameters. We suggest this nitrate aerosol forms by multiphase reactions of HNO3more » and particles, reactions that are facilitated by transport of crustal dust and sea spray aerosol from a source within the United States. The observed high aerosol acidity prevents the formation of NH4NO3, the inorganic nitrogen species often dominant in fine-mode aerosol at higher pH. In addition, calculation of the rate of the heterogeneous uptake of HNO3 on mineral aerosol supports the conclusion that aerosol NO3− is produced primarily by this process, and is likely limited by the availability of mineral cation-containing aerosol surface area. Modeling of NO3− and HNO3 by thermodynamic equilibrium models (ISORROPIA II and E-AIM) reveals the importance of including mineral cations in the southeastern United States to accurately balance ion species and predict gas–aerosol phase partitioning.« less

  16. SBA-15-incorporated nanoscale zero-valent iron particles for chromium(VI) removal from groundwater: mechanism, effect of pH, humic acid and sustained reactivity.

    PubMed

    Sun, Xia; Yan, Yubo; Li, Jiansheng; Han, Weiqing; Wang, Lianjun

    2014-02-15

    Nanoscale zero-valent iron particles (NZVIs) were incorporated inside the channels of SBA-15 rods by a "two solvents" reduction technique and used to remove Cr(VI) from groundwater. The resulting NZVIs/SBA-15 composites before and after reaction were characterized by N2 adsorption/desorption, X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Results helped to propose the mechanism of Cr(VI) removal by NZVIs/SBA-15, where Cr(VI) in aqueous was firstly impregnated into the channels of the silica, then adsorbed on the surfaces of the incorporated NZVIs and reduced to Cr(III) directly in the inner pores of the silica. Corrosion products included Fe2O3, FeO(OH), Fe3O4 and Cr2FeO4. Batch experiments revealed that Cr(VI) removal decreased from 99.7% to 92.8% when the initial solution pH increased from 5.5 to 9.0, accompanied by the decrease of the kobs from 0.600 to 0.024 min(-1). Humic acid (HA) had a little effect on the removal efficiency of Cr(VI) by NZVIs/SBA-15 but could decrease the reduction rate. The stable reduction of NZVIs/SBA-15 was observed within six cycles. NZVIs/SBA-15 composites offer a promising alternative material to remove heavy metals from groundwater.

  17. Quantity of acid in acid fog

    SciTech Connect

    Deal, W.J.

    1983-07-01

    The chemical composition of fog particles has become of considerable interest, because of both the possibility of interpreting atmospheric- chemistry processes in fog particles in terms of the principles of aqueous chemistry and the potential health effects of species present in fog particles. The acidity of fog particles has received wide attention. This communication noted the actual magnitude of the excess acidity in acidic fog particles and suggested a possible line of inquiry into the health effects of such fog so that it can be determined whether a typical fog is detrimental or beneficial relative to dry air. (DP)

  18. Eicosapentaenoic Acid Inhibits Oxidation of ApoB-containing Lipoprotein Particles of Different Size In Vitro When Administered Alone or in Combination With Atorvastatin Active Metabolite Compared With Other Triglyceride-lowering Agents.

    PubMed

    Mason, R Preston; Sherratt, Samuel C R; Jacob, Robert F

    2016-07-01

    Eicosapentaenoic acid (EPA) is a triglyceride-lowering agent that reduces circulating levels of the apolipoprotein B (apoB)-containing lipoprotein particles small dense low-density lipoprotein (sdLDL), very-low-density lipoprotein (VLDL), and oxidized low-density lipoprotein (LDL). These benefits may result from the direct antioxidant effects of EPA. To investigate this potential mechanism, these particles were isolated from human plasma, preincubated with EPA in the absence or presence of atorvastatin (active) metabolite, and subjected to copper-initiated oxidation. Lipid oxidation was measured as a function of thiobarbituric acid reactive substances formation. EPA inhibited sdLDL (IC50 ∼2.0 μM) and LDL oxidation (IC50 ∼2.5 μM) in a dose-dependent manner. Greater antioxidant potency was observed for EPA in VLDL. EPA inhibition was enhanced when combined with atorvastatin metabolite at low equimolar concentrations. Other triglyceride-lowering agents (fenofibrate, niacin, and gemfibrozil) and vitamin E did not significantly affect sdLDL, LDL, or VLDL oxidation compared with vehicle-treated controls. Docosahexaenoic acid was also found to inhibit oxidation in these particles but over a shorter time period than EPA. These data support recent clinical findings and suggest that EPA has direct antioxidant benefits in various apoB-containing subfractions that are more pronounced than those of other triglyceride-lowering agents and docosahexaenoic acid. PMID:26945158

  19. Particle chemistry impactor experiment

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Snetsinger, K. G.; Ferry, G. V.; Goodman, J. K.; Verma, S.

    1990-01-01

    Polar stratospheric cloud (PSC) particles are collected on impactors and studied with regard to physical and chemical properties to help explain the importance of heterogeneous chemical reactions for stratospheric ozone depletion. The nitric, hydrochloric, and sulfuric acid content of stratospheric aerosol particles collected at 18 km altitude was determined. It is suggested that nitric acid is a component of polar stratospheric clouds. This is important for two reasons: (1) it proves that chlorine activation takes place at the surface of PSC particles by converting chemically inert chlorine nitrate to chlorine radicals that can react with ozone; and (2) if the PSC particles are large enough to settle out from the stratosphere, the possibility of nitric acid removal can result in the denitrification of the stratosphere.

  20. Enhancement of mechanical and thermal properties of oil palm empty fruit bunch fiber poly(butylene adipate-co-terephtalate) biocomposites by matrix esterification using succinic anhydride.

    PubMed

    Siyamak, Samira; Ibrahim, Nor Azowa; Abdolmohammadi, Sanaz; Yunus, Wan Md Zin Bin Wan; Rahman, Mohamad Zaki Ab

    2012-01-01

    In this work, the oil palm empty fruit bunch (EFB) fiber was used as a source of lignocellulosic filler to fabricate a novel type of cost effective biodegradable composite, based on the aliphatic aromatic co-polyester poly(butylene adipate-co-terephtalate) PBAT (Ecoflex™), as a fully biodegradable thermoplastic polymer matrix. The aim of this research was to improve the new biocomposites' performance by chemical modification using succinic anhydride (SAH) as a coupling agent in the presence and absence of dicumyl peroxide (DCP) and benzoyl peroxide (BPO) as initiators. For the composite preparation, several blends were prepared with varying ratios of filler and matrix using the melt blending technique. The composites were prepared at various fiber contents of 10, 20, 30, 40 and 50 (wt %) and characterized. The effects of fiber loading and coupling agent loading on the thermal properties of biodegradable polymer composites were evaluated using thermal gravimetric analysis (TGA). Scanning Electron Microscopy (SEM) was used for morphological studies. The chemical structure of the new biocomposites was also analyzed using the Fourier Transform Infrared (FTIR) spectroscopy technique. The PBAT biocomposite reinforced with 40 (wt %) of EFB fiber showed the best mechanical properties compared to the other PBAT/EFB fiber biocomposites. Biocomposite treatment with 4 (wt %) succinic anhydride (SAH) and 1 (wt %) dicumyl peroxide (DCP) improved both tensile and flexural strength as well as tensile and flexural modulus. The FTIR analyses proved the mechanical test results by presenting the evidence of successful esterification using SAH/DCP in the biocomposites' spectra. The SEM micrograph of the tensile fractured surfaces showed the improvement of fiber-matrix adhesion after using SAH. The TGA results showed that chemical modification using SAH/DCP improved the thermal stability of the PBAT/EFB biocomposite. PMID:22343368

  1. Effect of Fiber Esterification on Fundamental Properties of Oil Palm Empty Fruit Bunch Fiber/Poly(butylene adipate-co-terephthalate) Biocomposites

    PubMed Central

    Siyamak, Samira; Ibrahim, Nor Azowa; Abdolmohammadi, Sanaz; Yunus, Wan Md Zin Wan; Rahman, Mohamad Zaki AB

    2012-01-01

    A new class of biocomposites based on oil palm empty fruit bunch fiber and poly(butylene adipate-co-terephthalate) (PBAT), which is a biodegradable aliphatic aromatic co-polyester, were prepared using melt blending technique. The composites were prepared at various fiber contents of 10, 20, 30, 40 and 50 wt% and characterized. Chemical treatment of oil palm empty fruit bunch (EFB) fiber was successfully done by grafting succinic anhydride (SAH) onto the EFB fiber surface, and the modified fibers were obtained in two levels of grafting (low and high weight percentage gain, WPG) after 5 and 6 h of grafting. The FTIR characterization showed evidence of successful fiber esterification. The results showed that 40 wt% of fiber loading improved the tensile properties of the biocomposite. The effects of EFB fiber chemical treatments and various organic initiators content on mechanical and thermal properties and water absorption of PBAT/EFB 60/40 wt% biocomposites were also examined. The SAH-g-EFB fiber at low WPG in presence of 1 wt% of dicumyl peroxide (DCP) initiator was found to significantly enhance the tensile and flexural properties as well as water resistance of biocomposite (up to 24%) compared with those of untreated fiber reinforced composites. The thermal behavior of the composites was evaluated from thermogravimetric analysis (TGA)/differential thermogravimetric (DTG) thermograms. It was observed that, the chemical treatment has marginally improved the biocomposites’ thermal stability in presence of 1 wt% of dicumyl peroxide at the low WPG level of grafting. The improved fiber-matrix surface enhancement in the chemically treated biocomposite was confirmed by SEM analysis of the tensile fractured specimens. PMID:22408394

  2. Influence of low contents of superhydrophilic MWCNT on the properties and cell viability of electrospun poly (butylene adipate-co-terephthalate) fibers.

    PubMed

    Rodrigues, Bruno V M; Silva, Aline S; Melo, Gabriela F S; Vasconscellos, Luana M R; Marciano, Fernanda R; Lobo, Anderson O

    2016-02-01

    The use of poly (butylene adipate-co-terephthalate) (PBAT) in tissue engineering, more specifically in bone regeneration, has been underexplored to date due to its poor mechanical resistance. In order to overcome this drawback, this investigation presents an approach into the preparation of electrospun nanocomposite fibers from PBAT and low contents of superhydrophilic multi-walled carbon nanotubes (sMWCNT) (0.1-0.5wt.%) as reinforcing agent. We employed a wide range of characterization techniques to evaluate the properties of the resulting electrospun nanocomposites, including Field Emission Scanning Electronic Microscopy (FE-SEM), Transmission Electronic Microscopy (TEM), tensile tests, contact angle measurements (CA) and biological assays. FE-SEM micrographs showed that while the addition of sMWCNT increased the presence of beads on the electrospun fibers' surfaces, the increase of the neat charge density due to their presence reduced the fibers' average diameter. The tensile test results pointed that sMWCNT acted as reinforcement in the PBAT electrospun matrix, enhancing its tensile strength (from 1.3 to 3.6MPa with addition of 0.5wt.% of sMWCNT) and leading to stiffer materials (lower elongation at break). An evaluation using MG63 cells revealed cell attachment into the biomaterials and that all samples were viable for biomedical applications, once no cytotoxic effect was observed. MG-63 cells osteogenic differentiation, measured by ALP activity, showed that mineralized nodules formation was increased in PBAT/0.5%CNTs when compared to control group (cells). This investigation demonstrated a feasible novel approach for producing electrospun nanocomposites from PBAT and sMWCNT with enhanced mechanical properties and adequate cell viability levels, which allows for a wide range of biomedical applications for these materials. PMID:26652433

  3. Influence of low contents of superhydrophilic MWCNT on the properties and cell viability of electrospun poly (butylene adipate-co-terephthalate) fibers.

    PubMed

    Rodrigues, Bruno V M; Silva, Aline S; Melo, Gabriela F S; Vasconscellos, Luana M R; Marciano, Fernanda R; Lobo, Anderson O

    2016-02-01

    The use of poly (butylene adipate-co-terephthalate) (PBAT) in tissue engineering, more specifically in bone regeneration, has been underexplored to date due to its poor mechanical resistance. In order to overcome this drawback, this investigation presents an approach into the preparation of electrospun nanocomposite fibers from PBAT and low contents of superhydrophilic multi-walled carbon nanotubes (sMWCNT) (0.1-0.5wt.%) as reinforcing agent. We employed a wide range of characterization techniques to evaluate the properties of the resulting electrospun nanocomposites, including Field Emission Scanning Electronic Microscopy (FE-SEM), Transmission Electronic Microscopy (TEM), tensile tests, contact angle measurements (CA) and biological assays. FE-SEM micrographs showed that while the addition of sMWCNT increased the presence of beads on the electrospun fibers' surfaces, the increase of the neat charge density due to their presence reduced the fibers' average diameter. The tensile test results pointed that sMWCNT acted as reinforcement in the PBAT electrospun matrix, enhancing its tensile strength (from 1.3 to 3.6MPa with addition of 0.5wt.% of sMWCNT) and leading to stiffer materials (lower elongation at break). An evaluation using MG63 cells revealed cell attachment into the biomaterials and that all samples were viable for biomedical applications, once no cytotoxic effect was observed. MG-63 cells osteogenic differentiation, measured by ALP activity, showed that mineralized nodules formation was increased in PBAT/0.5%CNTs when compared to control group (cells). This investigation demonstrated a feasible novel approach for producing electrospun nanocomposites from PBAT and sMWCNT with enhanced mechanical properties and adequate cell viability levels, which allows for a wide range of biomedical applications for these materials.

  4. Enhancement of mechanical and thermal properties of oil palm empty fruit bunch fiber poly(butylene adipate-co-terephtalate) biocomposites by matrix esterification using succinic anhydride.

    PubMed

    Siyamak, Samira; Ibrahim, Nor Azowa; Abdolmohammadi, Sanaz; Yunus, Wan Md Zin Bin Wan; Rahman, Mohamad Zaki Ab

    2012-02-16

    In this work, the oil palm empty fruit bunch (EFB) fiber was used as a source of lignocellulosic filler to fabricate a novel type of cost effective biodegradable composite, based on the aliphatic aromatic co-polyester poly(butylene adipate-co-terephtalate) PBAT (Ecoflex™), as a fully biodegradable thermoplastic polymer matrix. The aim of this research was to improve the new biocomposites' performance by chemical modification using succinic anhydride (SAH) as a coupling agent in the presence and absence of dicumyl peroxide (DCP) and benzoyl peroxide (BPO) as initiators. For the composite preparation, several blends were prepared with varying ratios of filler and matrix using the melt blending technique. The composites were prepared at various fiber contents of 10, 20, 30, 40 and 50 (wt %) and characterized. The effects of fiber loading and coupling agent loading on the thermal properties of biodegradable polymer composites were evaluated using thermal gravimetric analysis (TGA). Scanning Electron Microscopy (SEM) was used for morphological studies. The chemical structure of the new biocomposites was also analyzed using the Fourier Transform Infrared (FTIR) spectroscopy technique. The PBAT biocomposite reinforced with 40 (wt %) of EFB fiber showed the best mechanical properties compared to the other PBAT/EFB fiber biocomposites. Biocomposite treatment with 4 (wt %) succinic anhydride (SAH) and 1 (wt %) dicumyl peroxide (DCP) improved both tensile and flexural strength as well as tensile and flexural modulus. The FTIR analyses proved the mechanical test results by presenting the evidence of successful esterification using SAH/DCP in the biocomposites' spectra. The SEM micrograph of the tensile fractured surfaces showed the improvement of fiber-matrix adhesion after using SAH. The TGA results showed that chemical modification using SAH/DCP improved the thermal stability of the PBAT/EFB biocomposite.

  5. Super-Robust Polylactide Barrier Films by Building Densely Oriented Lamellae Incorporated with Ductile in Situ Nanofibrils of Poly(butylene adipate-co-terephthalate).

    PubMed

    Zhou, Sheng-Yang; Huang, Hua-Dong; Ji, Xu; Yan, Ding-Xiang; Zhong, Gan-Ji; Hsiao, Benjamin S; Li, Zhong-Ming

    2016-03-01

    Remarkable combination of excellent gas barrier performance, high strength, and toughness was realized in polylactide (PLA) composite films by constructing the supernetworks of oriented and pyknotic crystals with the assistance of ductile in situ nanofibrils of poly(butylene adipate-co-terephthalate) (PBAT). On the basis that the permeation of gas molecules through polymer materials with anisotropic structure would be more frustrated, we believe that oriented crystalline textures cooperating with inerratic amorphism can be favorable for the enhancement of gas barrier property. By taking full advantage of intensively elongational flow field, the dispersed phase of PBAT in situ forms into nanofibrils, and simultaneously sufficient row-nuclei for PLA are induced. After appropriate thermal treatment with the acceleration effect of PBAT on PLA crystallization, oriented lamellae of PLA tend to be more perfect in a preferential direction and constitute into a kind of network interconnecting with each other. At the same time, the molecular chains between lamellae tend to be more extended. This unique structure manifests superior ability in ameliorating the performance of PLA film. The oxygen permeability coefficient can be achieved as low as 2 × 10(-15) cm(3) cm cm(-2) s(-1) Pa(-1), combining with the high strength, modulus, and ductility (104.5 MPa, 3484 MPa, and 110.6%, respectively). The methodology proposed in this work presents an industrially scalable processing method to fabricate super-robust PLA barrier films. It would indeed push the usability of biopolymers forward, and certainly prompt wider application of biodegradable polymers in the fields of environmental protection such as food packaging, medical packaging, and biodegradable mulch.

  6. Migration of di(2-ethylhexyl) adipate and acetyltributyl citrate plasticizers from food-grade PVC film into sweetened sesame paste (halawa tehineh): kinetic and penetration study.

    PubMed

    Goulas, Antonios E; Zygoura, Panagiota; Karatapanis, Andreas; Georgantelis, Dimitris; Kontominas, Michael G

    2007-04-01

    Food-grade polyvinyl chloride (PVC) cling-film containing 5.3% (w/w) di(2-ethylhexyl) adipate (DEHA) and 3.0% (w/w) acetyltributyl citrate (ATBC) plasticizers was used to wrap halawa tehineh (halva) samples. Samples were split into two groups and stored at 25+/-1 degrees C. One group was analyzed for DEHA and ATBC content at intervals between 0.5 and 240h of contact (kinetic study) and a second group was cut into slices (1.5mm thick) after 240h of halva/PVC contact and was analyzed for DEHA and ATBC content (penetration study). Determination of both plasticizers was performed using a direct gas chromatographic (GC) method after extraction of DEHA from halva samples. DEHA readily migrated into halva samples: the equilibrium amount of DEHA in halva (3.31mg/dm(2) film or 81.4mg/kg halva) corresponding to a loss of 54.7% (w/w) DEHA from PVC film. This value is slightly higher than the limit of 3mg/dm(2) of film surface set by the European Union for DEHA. The equilibrium amount of ATBC in halva was 1.46mg/dm(2) (36.1mg/kg) corresponding to a loss of 42.7% ATBC from PVC film. With regard to the penetration of both placticizers into halva samples, migration of DEHA was detectable up to the 7th slice beneath the surface of halva (total depth 10.5mm) while the migration of ATBC was detectable up to the 5th slice (total depth 7.5mm).

  7. Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO3- aerosol during the 2013 Southern Oxidant and Aerosol Study

    SciTech Connect

    Allen, Hannah M.; Draper, Danielle C.; Ayres, Benjamin R.; Ault, Andrew P.; Bondy, Amy L.; Takahama, S.; Modini, Robert; Baumann, K.; Edgerton, Eric S.; Knote, Christoph; Laskin, Alexander; Wang, Bingbing; Fry, Juliane L.

    2015-09-25

    The inorganic aerosol composition was measured in the southeastern United States, a region that exhibits high aerosol mass loading during the summer, as part of the 1 June to 15 July 2013 Southern Oxidant and Aerosol Study (SOAS) campaign. Measurements using a Monitor for AeRosols and GAses (MARGA), an ion chromatograph coupled with a wet rotating denuder and a steam-jet aerosol collector for monitoring of ambient inorganic gas and aerosol species, revealed two periods of high aerosol nitrate (NO3 ) concentrations during the campaign. These periods of high nitrate were correlated with increased concentrations of coarse mode mineral or sea spray aerosol species, particularly Na+ and Ca2+, and with a shift towards aerosol with larger (1 to 2.5 um) diameters. We suggest this nitrate aerosol forms by multiphase reactions of HNO3 and particles, reactions that are facilitated by transport of mineral dust and sea spray aerosol from a source within the United States. The observed high aerosol acidity prevents the formation of NH4NO3, the inorganic nitrogen species often dominant in fine-mode aerosol at higher pH. Calculation of the rate of the heterogeneous uptake of HNO3 on mineral aerosol supports the conclusion that aerosol NO3 is produced primarily by this process, and is likely limited by the availability of mineral dust surface area. Modeling of NO3 and HNO3 by thermodynamic equilibrium models (ISORROPIA II and E-AIM) reveals the importance of including mineral cations in the southeastern United States to accurately balance ion species and predict gas/aerosol phase partitioning.

  8. Prediction of blood levels following oral administration of weakly acidic drug particles such as sulfa drugs in rabbits from the in vitro dissolution behavior.

    PubMed

    Watari, N; Kaneniwa, N

    1984-06-01

    Prediction of blood levels following oral administration of weakly acidic drug particles such as sulfa drugs from data obtained in in vitro dissolution tests of drug suspensions was studied in the rabbit. The relationship between in vivo and in vitro dissolution rates or between absorption rate and in vitro dissolution rate was investigated. The drug absorption from aqueous solution was suggested to be rate-limited by the gastric emptying rate because the initial absorption rate constant in a biexponential time course of aqueous solution for the amount unabsorbed vs. time plot was almost the same among 9 of the 10 drugs tested, except for sulfacetamide. This indicated that when the in vivo dissolution rate constant is much slower than the initial absorption rate constant of aqueous solution, the time course of blood levels for the solid drug will deviate from that of aqueous solution. Based on the consideration, the critical in vitro dissolution rate constant corresponding to the initial absorption rate constants of aqueous solution was calculated by means of statistical analysis using the relationship between in vivo and in vitro parameters. The validity of this prediction was examined using four high-solubility drugs, and it was found that the prediction could be done whether the in vitro dissolution medium was distilled water or 0.1 N HCl solution. Although in the present study, the experiment was done using an aqueous suspension form in the rabbit, the applicability of this prediction method to other dosage forms and to the case of humans is discussed.

  9. Formation of stratospheric nitric acid by a hydrated ion cluster reaction: chemical and dynamical effects of energetic particle precipitation on the middle atmosphere

    NASA Astrophysics Data System (ADS)

    Kvissel, O. K.; Orsolini, Y. J.; Stordal, F.

    2012-04-01

    In order to Improve our understanding of the effects of energetic particle precipitation upon the nitrogen family (NOy) and ozone (O3), we have modelled the chemical and dynamical middle atmosphere response to the introduction of a chemical pathway that produces nitric acid (HNO3) by conversion of dinitrogen pentoxide (N2O5) upon hydrated water clusters H+•(H2O)n. We have used an ensemble of simulations with the National Center for Atmospheric Research (NCAR) Whole-Atmosphere Community Climate Model (WACCM) chemistry-climate model. The introduced chemical pathway alters the internal partitioning of NOy during winter months in both hemispheres, and ultimately triggers statistically significant changes in the climatological distributions of constituents including: i) a cold season production of HNO3 with a corresponding loss of N2O5, and ii) a cold season decrease in NOx/NOy-ratio and an increase of O3, in polar regions. We see an improved seasonal evolution of modelled HNO3 compared to satellite observations from Microwave Limb Sounder (MLS), albeit not enough HNO3 is produced at high altitudes. Through O3 changes, both temperature and dynamics are affected, allowing for complex chemical-dynamical feedbacks beyond the cold season when the introduced pathway is active. Hence, we also find a NOx polar increase in spring-to-summer in the SH, and in spring in the NH. The springtime NOx increase arises from anomalously strong poleward transport associated with a weaker polar vortex. In the southern hemisphere, a statistical significant weakening of the stratospheric jet is altered down to the lower stratosphere, and we argue that it is caused by strengthened planetary waves induced by mid-latitude zonal asymmetries in O3 and short-wave heating.

  10. Performance of AA5052 alloy anode in alkaline ethylene glycol electrolyte with dicarboxylic acids additives for aluminium-air batteries

    NASA Astrophysics Data System (ADS)

    Wang, DaPeng; Zhang, DaQuan; Lee, KangYong; Gao, LiXin

    2015-11-01

    Dicarboxylic acid compounds, i.e. succinic acid (SUA), adipic acid (ADA) and sebacic acid (SEA), are used as electrolyte additives in the alkaline ethylene glycol solution for AA5052 aluminium-air batteries. It shows that the addition of dicarboxylic acids lowers the hydrogen gas evolution rate of commercial AA5052 aluminium alloy anode. AA5052 aluminium alloy has wide potential window for electrochemical activity and better discharge performance in alkaline ethylene glycol solution containing dicarboxylic acid additives. ADA has the best inhibition effect for the self-corrosion of AA5052 anode among the three dicarboxylic acid additives. Fourier transform infrared spectroscopy (FT-IR) reveals that dicarboxylic acids and aluminium ions can form coordination complexes. Quantum chemical calculations shows that ADA has a smaller energy gap (ΔE, the energy difference between the lowest unoccupied orbital and the highest occupied orbital), indicating that ADA has the strongest interaction with aluminium ions.

  11. Effect of dicarboxylic acid chain length on the self-cleaning property of Nano-TiO2-coated cotton fabrics.

    PubMed

    Khajavi, Ramin; Berendjchi, Amirhosein

    2014-11-12

    In this study, the effect of dicarboxylic acid chain length on the amount of TiO2 nanoparticles (TiO2NPs) adsorption-produced self-cleaning property and washing durability on cotton fabrics were investigated. First, cotton fabric samples were treated with three kinds of dicarboxylic acids--oxalic, succinic, and adipic acids--and then dipped in TiO2NP solution with a certain concentration. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) was used to investigate bonds formation between dicarboxylic acid groups and hydroxyl groups of cellulose, and a scanning electron microscope (SEM) was applied for the analysis of surface morphology in specimens. Drop absorbency time was determined for samples using the AATCC TM 79:2000. Washing stability and the amount absorption of TiO2NPs were determined by weighing and absorption spectrophotometry procedures, and the stain removal evaluation was conducted to assess the self-cleaning property. Results showed that all of the dicarboxylic acids used in this experiment improved the amount of TiO2NPs absorbed onto cotton samples and their durability to washing. In addition, color variation of samples treated with oxalic acid after 180 min of UV irradiation and drop absorbency time for samples treated with succinic acid were significantly increased by about 126 and 600%, respectively. The best durability was obtained from adipic acid, while a better self-cleaning property was obtained from oxalic acid.

  12. Effect of dicarboxylic acid chain length on the self-cleaning property of Nano-TiO2-coated cotton fabrics.

    PubMed

    Khajavi, Ramin; Berendjchi, Amirhosein

    2014-11-12

    In this study, the effect of dicarboxylic acid chain length on the amount of TiO2 nanoparticles (TiO2NPs) adsorption-produced self-cleaning property and washing durability on cotton fabrics were investigated. First, cotton fabric samples were treated with three kinds of dicarboxylic acids--oxalic, succinic, and adipic acids--and then dipped in TiO2NP solution with a certain concentration. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) was used to investigate bonds formation between dicarboxylic acid groups and hydroxyl groups of cellulose, and a scanning electron microscope (SEM) was applied for the analysis of surface morphology in specimens. Drop absorbency time was determined for samples using the AATCC TM 79:2000. Washing stability and the amount absorption of TiO2NPs were determined by weighing and absorption spectrophotometry procedures, and the stain removal evaluation was conducted to assess the self-cleaning property. Results showed that all of the dicarboxylic acids used in this experiment improved the amount of TiO2NPs absorbed onto cotton samples and their durability to washing. In addition, color variation of samples treated with oxalic acid after 180 min of UV irradiation and drop absorbency time for samples treated with succinic acid were significantly increased by about 126 and 600%, respectively. The best durability was obtained from adipic acid, while a better self-cleaning property was obtained from oxalic acid. PMID:25275802

  13. Natural Attenuation of Metals from Acid Drainage in Surface Waters: Effects of Organic Matter in the Association of Arsenic to Hydrous Al and Fe Oxyhydroxides and Their Particle Size Distribution

    NASA Astrophysics Data System (ADS)

    Arce, G. J.; Pasten, P.; Coquery, M.; Abarca, M. I.; Montecinos, M.

    2015-12-01

    The presence of toxic metals in watersheds affected by acid drainage (AD) imposes a challenge for sustainable supply of water for cities, agriculture and industry. The formation and settling of metal-rich HFO (hydrous ferric oxides) and HAO (hydrous aluminum oxides) is a relevant mechanism for the attenuation of dissolved metals from AD, particularly for arsenic. Organic matter is known to alter the chemical speciation and key physical properties like particle size distribution (PSD) and settling velocity of HFO and HAO particle suspensions. However, available experimental studies focus either on chemical or physical properties. We used a suite of analytical techniques to probe the effects of organic matter on particle suspensions formed in natural waters and in laboratory model systems. Dissolved organic matter was added at different concentrations (0, 0.1, 0.3, 0.6, 1 and 1.5 mg C/L) to synthetic AD before neutralization with alkaline solutions. PSD and average particle size were measured with laser scattering transmissometry (LISST), while organic matter was characterized by total organic carbon (TOC) and UV-VIS spectrometry. Larger concentrations of organic matter lead to the formation of particle suspensions with larger particle volume and size. When 1.5 mg C/L were added, the total particle volume concentration increased from 0.67 to 23.74 μL/L, while the mean particle size increased from 102 to 176 μm. These results suggests that organic matter influences the fate of metals from AD. Undergoing measurements include total and dissolved metal analyses with total reflection X-ray fluorescence (TXRF) and ICP-OES to confirm increased removal of dissolved arsenic. The results from this research are necessary to understand the processes governing natural attenuation of metal contamination in fluvial systems affected by AD and to serve as the basis for enhanced natural attenuation schemes. The authors acknowledge funding from Fondecyt 1130936.

  14. Organic-Acid-Assisted Fabrication of Low-Cost Li-Rich Cathode Material (Li[Li1/6Fe1/6Ni1/6Mn1/2]O-2) for Lithium-Ion Battery

    SciTech Connect

    Zhao, Taolin; Chen, Shi; Li, Li; Zhang, Xiaoxiao; Wu, Huiming; Wu, Tianpin; Sun, Cheng-Jun; Chen, Renjie; Wu, Feng; Lu, Jun; Amine, Khalil

    2014-12-24

    A novel Li-rich cathode Li[Li1/6Fe1/6Ni1/6Mn1/2]O-2 (0.4Li(2)MnO(3-)0.6LiFe(1/3)Ni(1/3)Mn(1/3)O(2)) was synthesized by a solgel method, which uses citric acid (SC), tartaric acid (ST), or adipic acid (SA) as a chelating agent. The structural, morphological, and electrochemical properties of the prepared samples were characterized by various methods. X-ray diffraction showed that single-phase materials are formed mainly with typical alpha-NaFeO2 layered structure (R3 m), and the SC sample has the lowest Li/Ni cation disorder. The morphological study indicated homogeneous primary particles in good distribution size (100 nm) with small aggregates. The Fe, Ni, and Mn valences were determined by X-ray absorption near-edge structure analysis. In coin cell tests, the initial reversible discharge capacity of an SA electrode was 289.7 mAh g(-1) at the 0.1C rate in the 1.54.8 V voltage range, while an SC electrode showed a better cycling stability with relatively high capacity retention. At the 2C rate, the SC electrode can deliver a discharge capacity of 150 mAh g(-1) after 50 cycles. Differential capacity vs voltage curves were employed to further investigate the electrochemical reactions and the structural change process during cycling. This low-cost, Fe-based compound prepared by the solgel method has the potential to be used as the high capacity cathode material for Liion batteries.

  15. Heterogeneous reaction of peroxyacetic acid and hydrogen peroxide on ambient aerosol particles under dry and humid conditions: kinetics, mechanism and implications

    NASA Astrophysics Data System (ADS)

    Wu, Q. Q.; Huang, L. B.; Liang, H.; Zhao, Y.; Huang, D.; Chen, Z. M.

    2015-06-01

    Hydrogen peroxide (H2O2) and organic peroxides play important roles in the cycle of oxidants and the formation of secondary aerosols in the atmosphere. Recent field observations have suggested that the budget of peroxyacetic acid (PAA, CH3C(O)OOH) is potentially related to the aerosol phase processes, especially to secondary aerosol formation. Here, we present the first laboratory measurements of the uptake coefficient of gaseous PAA and H2O2 onto ambient fine particulate matter (PM2.5) as a function of relative humidity (RH) at 298 K. The results show that the PM2.5, which was collected in an urban area, can take up PAA and H2O2 at the uptake coefficient (γ) of 10-4, and both γPAA and γH2O2 increase with increasing RH. The value of γPAA at 90 % RH is 5.4 ± 1.9 times that at 3 % RH, whereas γH2O2 at 90 % RH is 2.4 ± 0.5 times that at 3 % RH, which suggests that PAA is more sensitive to the RH variation than H2O2 is. Considering the larger Henry's law constant of H2O2 than that of PAA, the smaller RH sensitivity of the H2O2 uptake coefficient suggests that the enhanced uptake of peroxide compounds on PM2.5 under humid conditions is dominated by chemical processes rather than dissolution. Considering that mineral dust is one of the main components of PM2.5 in Beijing, we also determined the uptake coefficients of gaseous PAA and H2O2 on authentic Asian Dust storm (ADS) and Arizona Test Dust (ATD) particles. Compared to ambient PM2.5, ADS shows a similar γ value and RH dependence in its uptake coefficient for PAA and H2O2, while ATD gives a negative dependence on RH. The present study indicates that, in addition to the mineral dust in PM2.5, other components (e.g., soluble inorganic salts) are also important to the uptake of peroxide compounds. When the heterogeneous reaction of PAA on PM2.5 is considered, its atmospheric lifetime is estimated to be 3.0 h on haze days and 7.1 h on non-haze days, values that are in good agreement with the field observations.

  16. Heterogeneous reaction of peroxyacetic acid and hydrogen peroxide on ambient aerosol particles under dry and humid conditions: kinetics, mechanism and implications

    NASA Astrophysics Data System (ADS)

    Wu, Q. Q.; Huang, L. B.; Liang, H.; Zhao, Y.; Huang, D.; Chen, Z. M.

    2015-02-01

    Hydrogen peroxide (H2O2) and organic peroxides play important roles in the cycle of oxidants and the formation of secondary aerosols in the atmosphere. Recent field observations suggest that peroxyacetic acid (PAA, CH3C(O)OOH) is one of the most important organic peroxides in the atmosphere, whose budget is potentially related to the aerosols. Here we present the first laboratory measurements of the uptake coefficient of gaseous PAA and H2O2 onto the ambient fine particulate matter (PM2.5) as a function of relative humidity (RH) at 298 K. The results show that the PM2.5, which was collected in an urban area, can take up PAA and H2O2 at the uptake coefficient (γ) of 10-4, and both γPAA and γH2O2 increase with increasing RH. However, γPAA is more sensitive to the RH variation than is γH2O2, which indicates that the enhanced uptake of peroxide compounds on PM2.5 under humid conditions is dominated by chemical processes rather than dissolution. Considering that mineral dust is one of the main components of PM2.5, we also determined the uptake coefficients of gaseous PAA and H2O2 on authentic Asian Dust Storm (ADS) and Arizona Test Dust (ATD) particles. Compared to ambient PM2.5, ADS shows a similar γ value and RH dependence in its uptake coefficient for PAA and H2O2, while ATD gives a negative dependence on RH. The present study indicates that in addition to the mineral dust in PM2.5, other components (e.g., inorganic soluble salts) are also important to the uptake of peroxide compounds. When the heterogeneous reaction of PAA on PM2.5 is considered, its atmospheric lifetime is estimated to be 3.3 h on haze days and 7.6 h on non-haze days, values which agree well with the field observed result.

  17. Stability of nTiO2 particles and their attachment to sand: Effects of humic acid at different pH.

    PubMed

    Wu, Yang; Cheng, Tao

    2016-01-15

    The fate and transport of nano-scale or micro-scale titanium dioxide particles (nTiO2) in subsurface environments are strongly influenced by the stability of nTiO2 and their attachment to sediment grains. nTiO2 may carry either positive or negative charges in natural water, therefore, environmental factors such as pH, humic substances, and Fe oxyhydroxide coatings on sediment grains, which are known to control the stability and transport of negatively-charged colloids, may influence nTiO2 in different manners. The objective of this study is to investigate the effects of pH and humic acid (HA) on the stability and attachment of nTiO2 to sand at HA concentrations that are relevant to typical groundwater conditions, so that mechanisms that control nTiO2 immobilization and transport in natural systems can be elucidated. Stability and attachment of nTiO2 to quartz sand and Fe oxyhydroxide coated quartz sand are experimentally measured under a range of HA concentrations at pH5 and 9. Results show that at pH5, negatively-charged HA strongly adsorbs to positively-charged nTiO2 and Fe oxyhydroxide, which, at low HA concentrations, partially neutralizes the positive charges on nTiO2 and Fe oxyhydroxide, and therefore decreases the repulsive electrostatic forces between the surfaces, resulting in nTiO2 aggregation and attachment. At high HA concentrations, adsorbed HA reverses the surface charges of nTiO2 and Fe oxyhydroxide, and makes nTiO2 and Fe oxyhydroxide strongly negatively charged, resulting in stable nTiO2 suspension and low nTiO2 attachment. At pH9, HA, nTiO2, and Fe oxyhydroxide are all negatively charged, and HA adsorption is low and does not have a strong impact on the stability and attachment of nTiO2. Overall, this study shows that changes in surface charges of nTiO2 and Fe oxyhydroxide coating caused by HA adsorption is a key factor that influences the stability and attachment of nTiO2.

  18. Effects of particle size, helium gas pressure and microparticle dose on the plasma concentration of indomethacin after bombardment of indomethacin-loaded poly-L-lactic acid microspheres using a Helios gun system.

    PubMed

    Uchida, Masaki; Natsume, Hideshi; Kobayashi, Daisuke; Sugibayashi, Kenji; Morimoto, Yasunori

    2002-05-01

    We investigated the effects of the particle size of indomethacin-loaded poly-L-lactic acid microspheres (IDM-loaded PLA MS), the helium pressure used to accelerate the particles, and the bombardment dose of PLA MS on the plasma concentration of IDM after bombarding with IDM-loaded PLA MS of different particle size ranges, 20-38, 44-53 and 75-100 microm, the abdomen of hairless rats using the Helios gene gun system (Helios gun system). Using larger particles and a higher helium pressure, produced an increase in the plasma IDM concentration and the area under the plasma concentration-time curve (AUC) and resultant F (relative bioavailability with respect to intracutaneous injection) of IDM increased by an amount depending on the particle size and helium pressure. Although a reduction in the bombardment dose led to a decrease in C(max) and AUC, F increased on decreasing the bombardment dose. In addition, a more efficient F was obtained after bombarding with IDM-loaded PLA MS of 75-100 microm in diameter at each low dose in different sites of the abdomen compared with that after bolus bombardment with a high dose (dose equivalent). These results suggest that the bombardment injection of drug-loaded microspheres by the Helios gun system is a very useful tool for delivering a variety of drugs in powder form into the skin and systemic circulation.

  19. Microbial production of specialty organic acids from renewable and waste materials.

    PubMed

    Alonso, Saúl; Rendueles, Manuel; Díaz, Mario

    2015-01-01

    Microbial production of organic acids has become a fast-moving field due to the increasing role of these compounds as platform chemicals. In recent years, the portfolio of specialty fermentation-derived carboxylic acids has increased considerably, including the production of glyceric, glucaric, succinic, butyric, xylonic, fumaric, malic, itaconic, lactobionic, propionic and adipic acid through innovative fermentation strategies. This review summarizes recent trends in the use of novel microbial platforms as well as renewable and waste materials for efficient and cost-effective bio-based production of emerging high-value organic acids. Advances in the development of robust and efficient microbial bioprocesses for producing carboxylic acids from low-cost feedstocks are also discussed. The industrial market scenario is also reviewed, including the latest information on the stage of development for producing these emerging bio-products via large-scale fermentation.

  20. Physical insights into salicylic acid release from poly(anhydrides).

    PubMed

    Dasgupta, Queeny; Chatterjee, Kaushik; Madras, Giridhar

    2016-01-21

    Salicylic acid (SA) based biodegradable polyanhydrides (PAHs) are of great interest for drug delivery in a variety of diseases and disorders owing to the multi-utility of SA. There is a need for the design of SA-based PAHs for tunable drug release, optimized for the treatment of different diseases. In this study, we devised a simple strategy for tuning the release properties and erosion kinetics of a family of PAHs. PAHs incorporating SA were derived from related aliphatic diacids, varying only in the chain length, and prepared by simple melt condensation polymerization. Upon hydrolysis induced erosion, the polymer degrades into cytocompatible products, including the incorporated bioactive SA and diacid. The degradation follows first order kinetics with the rate constant varying by nearly 25 times between the PAH obtained with adipic acid and that with dodecanedioic acid. The release profiles have been tailored from 100% to 50% SA release in 7 days across the different PAHs. The release rate constants of these semi-crystalline, surface eroding PAHs decreased almost linearly with an increase in the diacid chain length, and varied by nearly 40 times between adipic acid and dodecanedioic acid PAH. The degradation products with SA concentration in the range of 30-350 ppm were used to assess cytocompatibility and showed no cytotoxicity to HeLa cells. This particular strategy is expected to (a) enable synthesis of application specific PAHs with tunable erosion and release profiles; (b) encompass a large number of drugs that may be incorporated into the PAH matrix. Such a strategy can potentially be extended to the controlled release of other drugs that may be incorporated into the PAH backbone and has important implications for the rational design of drug eluting bioactive polymers.

  1. Enrichment adsorption of a labile substance to the surface of particular mineral particles in river water as investigated by SEM-EDX and dilute-acid extraction/ICP-MS.

    PubMed

    Kyotani, Tomohiro; Koshimizu, Satoshi

    2003-06-01

    The selective enrichment behavior of a labile substance, such as hydroxides, to the surface of particular mineral particles in river water was clarified by scanning electron microscopy/energy dispersive X-ray microanalysis (SEM-EDX). Individual particles other than diatom collected on a 0.45 microm filter from the Fuji and Sagami rivers, central Japan, were analyzed by SEM-EDX and classified into seventeen groups according to the chemical composition and shape. Phosphorus, sulfur, chlorine, manganese and copper detected in each particle collected on the 0.45 microm filter could be successfully used as effective indicators of labile substance secondarily formed and adsorbed afresh in river water, because the detection frequencies of such elements are quite low, or negligible, in fresh mineral particles derived from igneous rocks. The labile substance adsorbed on mineral particles collected on the 0.45 microm filter was also evaluated by dilute-acid leaching, followed by inductively coupled plasma mass spectrometry (ICP-MS). Almost all parts of the manganese detected in individual particles were those adsorbed afresh as hydroxides together with iron and aluminum. Also, anionic elements, such as phosphorus, sulfur and chlorine, formed complexes with the hydroxides and/or were incorporated in them. Mg and/or Ca-rich aluminosilicate groups were the most effective adsorbers of such labile species. However, Si-rich and Na-, K- and Na-Ca rich aluminosilicates did not significantly adsorb the labile substance. Consequently, the remarkable selectivity was clarified in the adsorption process of labile substance to individual mineral particles in river water.

  2. Enrichment adsorption of a labile substance to the surface of particular mineral particles in river water as investigated by SEM-EDX and dilute-acid extraction/ICP-MS.

    PubMed

    Kyotani, Tomohiro; Koshimizu, Satoshi

    2003-06-01

    The selective enrichment behavior of a labile substance, such as hydroxides, to the surface of particular mineral particles in river water was clarified by scanning electron microscopy/energy dispersive X-ray microanalysis (SEM-EDX). Individual particles other than diatom collected on a 0.45 microm filter from the Fuji and Sagami rivers, central Japan, were analyzed by SEM-EDX and classified into seventeen groups according to the chemical composition and shape. Phosphorus, sulfur, chlorine, manganese and copper detected in each particle collected on the 0.45 microm filter could be successfully used as effective indicators of labile substance secondarily formed and adsorbed afresh in river water, because the detection frequencies of such elements are quite low, or negligible, in fresh mineral particles derived from igneous rocks. The labile substance adsorbed on mineral particles collected on the 0.45 microm filter was also evaluated by dilute-acid leaching, followed by inductively coupled plasma mass spectrometry (ICP-MS). Almost all parts of the manganese detected in individual particles were those adsorbed afresh as hydroxides together with iron and aluminum. Also, anionic elements, such as phosphorus, sulfur and chlorine, formed complexes with the hydroxides and/or were incorporated in them. Mg and/or Ca-rich aluminosilicate groups were the most effective adsorbers of such labile species. However, Si-rich and Na-, K- and Na-Ca rich aluminosilicates did not significantly adsorb the labile substance. Consequently, the remarkable selectivity was clarified in the adsorption process of labile substance to individual mineral particles in river water. PMID:12834221

  3. Effect of short-term exposure to diesel exhaust particles and carboxylic acids on mitochondrial membrane disruption in airway epithelial cells

    EPA Science Inventory

    Rationale: Diesel exhaust has been shown to induce adverse pulmonary health effects; however, the underlying mechanisms for these effects are still unclear. Previous studies have imlplicated mitochondrial dysfunction in the toxicity of diesel exhaust particles (DEP). DEP contain...

  4. An integrated experimental-modeling approach to study the acid leaching behavior of lead from sub-micrometer lead silicate glass particles.

    PubMed

    van Elteren, Johannes T; Grilc, Miha; Beeston, Michael P; Reig, Milagros Santacatalina; Grgić, Irena

    2013-11-15

    This work focuses on the development of a procedure to study the mechanism of leaching of lead from sub-micrometer lead glass particles using 0.3 mo ll(-1) HNO3 as a leachant. Glass particles with an effective size distribution range from 0.05 to 1.4 μm were generated by laser ablation (213 nm Nd:YAG laser) and collected on an inline 0.2 μm syringe filter. Subsequently, the glass particles on the filter were subjected to online leaching and continuous monitoring of lead (Pb-208) in the leachate by quadrupole ICP-MS. The lead leaching profile, aided by the particle size distribution information from cascade impaction, was numerically fitted to a mathematical model based on the glass intraparticle diffusion, liquid film distribution and thermodynamic glass-leachant distribution equilibrium. The findings of the modeling show that the rate-limiting step of leaching is the migration of lead from the core to the surface of the glass particle by an ion-exchange mechanism, governed by the apparent intraparticle lead diffusivity in glass which was calculated to be 3.1 × 10(-18) m(2)s(-1). Lead leaching is illustrated in the form of graphs and animations of intraparticle lead release (in time and intraparticle position) from particles with sizes of 0.1 and 0.3 μm.

  5. Study on Dicarboxylic Acids in Aerosol Samples with Capillary Electrophoresis

    PubMed Central

    Adler, Heidi; Sirén, Heli

    2014-01-01

    The research was performed to study the simultaneous detection of a homologous series of α, ω-dicarboxylic acids (C2–C10), oxalic, malonic, succinic, glutaric, adipic, pimelic, suberic, azelaic, and sebacic acids, with capillary electrophoresis using indirect UV detection. Good separation efficiency in 2,6-pyridinedicarboxylic acid as background electrolyte modified with myristyl trimethyl ammonium bromide was obtained. The dicarboxylic acids were ionised and separated within five minutes. For the study, authentic samples were collected onto dry cellulose membrane filters of a cascade impactor (12 stages) from outdoor spring aerosols in an urban area. Hot water and ultrasonication extraction methods were used to isolate the acids from membrane filters. Due to the low concentrations of acids in the aerosols, the extracts were concentrated with solid-phase extraction (SPE) before determination. The enrichment of the carboxylic acids was between 86 and 134% with sample pretreatment followed by 100-time increase by preparation of the sample to 50 μL. Inaccuracy was optimised for all the sample processing steps. The aerosols contained dicarboxylic acids C2–C10. Then, mostly they contained C2, C5, and C10. Only one sample contained succinic acid. In the study, the concentrations of the acids in aerosols were lower than 10 ng/m3. PMID:24729915

  6. Rare particles

    SciTech Connect

    Kutschera, W.

    1984-01-01

    The use of Accelerator Mass Spectrometry (AMS) to search for hypothetical particles and known particles of rare processes is discussed. The hypothetical particles considered include fractionally charged particles, anomalously heavy isotopes, and superheavy elements. The known particles produced in rare processes discussed include doubly-charged negative ions, counting neutrino-produced atoms in detectors for solar neutrino detection, and the spontaneous emission of /sup 14/C from /sup 223/Ra. 35 references. (WHK)

  7. [Distribution characteristics of lead in different particle size fractions of surface soil of a lead-acid battery factory contaminated site].

    PubMed

    Yue, Xi; Sun, Ti-chang; Huang, Jin-lou

    2013-09-01

    In this research, six topsoil samples (0-20 cm) were collected in the heavy-metal lead contaminated soil of one lead battery factory in south-west China as research object, which were later divided into seven particle size fractions, and analyzed for the lead concentration as well as the correlation between the lead concentration and the organic matter content. The result showed that five soil samples were contaminated with lead with different pollution levels, and there were two different trends in the changes of lead concentration as of the change of soil particle size. The lead concentration of the three samples from sewage treatment workshop, the workshop A and the workshop B, showed a first declining and then ascending trend with the decreasing particle size. The lead concentration of the soil samples of the packing workshop and the former production workshop A showed a decreasing trend when the particle size decreased. The lead concentration and the organic matter content showed a positive linear correlation (R2 = 0.8232). Soil organic matter has the ability of lead enrichment, and the ability declines with the decreasing particle size. Soil texture may be an important factor for the interaction between soil organic matter and lead distribution.

  8. [Distribution characteristics of lead in different particle size fractions of surface soil of a lead-acid battery factory contaminated site].

    PubMed

    Yue, Xi; Sun, Ti-chang; Huang, Jin-lou

    2013-09-01

    In this research, six topsoil samples (0-20 cm) were collected in the heavy-metal lead contaminated soil of one lead battery factory in south-west China as research object, which were later divided into seven particle size fractions, and analyzed for the lead concentration as well as the correlation between the lead concentration and the organic matter content. The result showed that five soil samples were contaminated with lead with different pollution levels, and there were two different trends in the changes of lead concentration as of the change of soil particle size. The lead concentration of the three samples from sewage treatment workshop, the workshop A and the workshop B, showed a first declining and then ascending trend with the decreasing particle size. The lead concentration of the soil samples of the packing workshop and the former production workshop A showed a decreasing trend when the particle size decreased. The lead concentration and the organic matter content showed a positive linear correlation (R2 = 0.8232). Soil organic matter has the ability of lead enrichment, and the ability declines with the decreasing particle size. Soil texture may be an important factor for the interaction between soil organic matter and lead distribution. PMID:24289023

  9. Controlled delivery of stromal derived factor-1α from poly lactic-co-glycolic acid core-shell particles to recruit mesenchymal stem cells for cardiac regeneration.

    PubMed

    Zamani, Maedeh; Prabhakaran, Molamma P; Thian, Eng San; Ramakrishna, Seeram

    2015-08-01

    Stromal derived factor-1α (SDF-1α) has shown promising results in treatment of myocardial infarction (MI), via recruitment of endogenous stem cells into the injured myocardium. However, the bioactivity of this susceptible signalling chemokine is reduced significantly during the common fabrication processes of drug delivery systems, due to the exposure to organic-aqueous interfaces or elevated temperature. In this study, we developed a novel SDF-1α delivery system using coaxial electrospraying, the technique which enables fabrication of core-shell particles with minimized contact of organic-aqueous phases. The SDF-1α incorporated PLGA particles exhibited distinct core-shell structure, confirmed by transmission electron microscopy (TEM). Controlled release of SDF-1α was obtained for at least 40days, and the release rate was tailored by co-encapsulation of bovine serum albumin (BSA) into the core of the particles. The SDF-1α released from PLGA/SDF-1α and PLGA/BSA-SDF-1α particles retained its chemotactic activity, and enhanced the number of migrated mesenchymal stem cells (MSCs) by 38% and 54%, respectively, compared to basal medium used as the control. Moreover, both SDF-1α and BSA supported the proliferation of MSCs within 3days of cell culture. The SDF-1α incorporated core-shell particles developed by electrospraying technique, can be effectively employed as injectable drug delivery system for in situ cardiac regeneration. PMID:25897850

  10. Water-enhanced solubility of carboxylic acids in organic solvents and its application to extraction processes

    SciTech Connect

    Starr, J.N. ); King, C.J. )

    1992-11-01

    This paper reports on solubilities of carboxylic acids in certain organic solvents which increase sharply as the concentration of water in the solvent increases. This phenomenon leads to a method of regeneration for solvent-extraction processes whereby coextracted water is selectively removed from the extract, such as by stripping, thereby precipitating the acid. The removal of a minor constituent to cause precipitation reduces energy consumption, in contrast with bulk removal of solvent. Solubilities of fumaric acid were measured in a number of organic solvents, with varying amounts of water in the organic phase. Cyclohexanone and methylcyclohexanone were chosen as solvents for which detailed solid-liquid and liquid-liquid equilibria were measured for adipic, fumaric, and succinic acids in the presence of varying concentrations of water, at both 25 and 45[degrees]C. Batch precipitation experiments were performed to demonstrate the processing concept and determine the relative volatility of water to solvent in the presence of carbon.

  11. Roles of the major, small, acid-soluble spore proteins and spore-specific and universal DNA repair mechanisms in resistance of Bacillus subtilis spores to ionizing radiation from X rays and high-energy charged-particle bombardment.

    PubMed

    Moeller, Ralf; Setlow, Peter; Horneck, Gerda; Berger, Thomas; Reitz, Günther; Rettberg, Petra; Doherty, Aidan J; Okayasu, Ryuichi; Nicholson, Wayne L

    2008-02-01

    The role of DNA repair by nonhomologous end joining (NHEJ), homologous recombination, spore photoproduct lyase, and DNA polymerase I and genome protection via alpha/beta-type small, acid-soluble spore proteins (SASP) in Bacillus subtilis spore resistance to accelerated heavy ions (high-energy charged [HZE] particles) and X rays has been studied. Spores deficient in NHEJ and alpha/beta-type SASP were significantly more sensitive to HZE particle bombardment and X-ray irradiation than were the recA, polA, and splB mutant and wild-type spores, indicating that NHEJ provides an efficient DNA double-strand break repair pathway during spore germination and that the loss of the alpha/beta-type SASP leads to a significant radiosensitivity to ionizing radiation, suggesting the essential function of these spore proteins as protectants of spore DNA against ionizing radiation.

  12. Particle separation

    NASA Technical Reports Server (NTRS)

    Moosmuller, Hans (Inventor); Chakrabarty, Rajan K. (Inventor); Arnott, W. Patrick (Inventor)

    2011-01-01

    Embodiments of a method for selecting particles, such as based on their morphology, is disclosed. In a particular example, the particles are charged and acquire different amounts of charge, or have different charge distributions, based on their morphology. The particles are then sorted based on their flow properties. In a specific example, the particles are sorted using a differential mobility analyzer, which sorts particles, at least in part, based on their electrical mobility. Given a population of particles with similar electrical mobilities, the disclosed process can be used to sort particles based on the net charge carried by the particle, and thus, given the relationship between charge and morphology, separate the particles based on their morphology.

  13. Particle separation

    DOEpatents

    Moosmuller, Hans; Chakrabarty, Rajan K.; Arnott, W. Patrick

    2011-04-26

    Embodiments of a method for selecting particles, such as based on their morphology, is disclosed. In a particular example, the particles are charged and acquire different amounts of charge, or have different charge distributions, based on their morphology. The particles are then sorted based on their flow properties. In a specific example, the particles are sorted using a differential mobility analyzer, which sorts particles, at least in part, based on their electrical mobility. Given a population of particles with similar electrical mobilities, the disclosed process can be used to sort particles based on the net charge carried by the particle, and thus, given the relationship between charge and morphology, separate the particles based on their morphology.

  14. Feasibility of hydrofluoric acid etched sand particles for enrichment and determination of polychlorinated biphenyls at trace levels in environmental water samples.

    PubMed

    Xing, Han-Zhu; Chen, Xiang-Feng; Wang, Xia; Wang, Ming-Lin; Zhao, Ru-Song

    2014-06-01

    This study aims to investigate the feasibility of etched sand particles being used as solid-phase extraction adsorbents to enrich polychlorinated biphenyls (PCBs), which are typical persistent organic pollutants in the environment, at trace levels. Gas chromatography-tandem mass spectrometry was selected to detect the compounds. Etched sand particles exhibited excellent merits on the enrichment of PCBs. Related important factors affecting extraction efficiencies were investigated and optimized in detail. Under optimized conditions, low limits of detection (0.42 to 3.69 ng L(-1)), wide linear range (10 to 1,000 ng L(-1)), and high repeatability (1.9 to 8.2%) were achieved. The developed method was validated with several real water samples, and satisfactory results were obtained. All of these findings indicate that etched sand particles would be useful for the enrichment and determination of organic pollutants at trace levels in water samples.

  15. Difference in particle formation at a mountaintop location during spring and summer: Implications for the role of sulfuric acid and organics in nucleation

    NASA Astrophysics Data System (ADS)

    Yu, Fangqun; Hallar, A. Gannet

    2014-11-01

    New particle formation (NPF) has been observed frequently at Storm Peak Laboratory (SPL), a high-elevation mountaintop observatory in Colorado. A detailed analysis of field measurements taken in March and July 2012 at SPL reveals significant and interesting differences in NPF during the spring and summer months. Persistent long-lasting NPF occurred on a daily basis in March but was absent in July. Bursts of ultrafine particles did occur frequently in July, but such bursts were short-lasting and did not show any obvious pattern. A global chemical transport model (GEOS-Chem) coupled with a size-resolved advanced particle microphysics model is used to interpret in-depth this observed nucleation phenomenon. The model captures well the observed persistent daily nucleation events in March and the absence of regional-scale NPF in July. Model simulations indicate that aerosol precursors were dominated by H2SO4 gas in March and by low-volatile secondary organic gases (LV-SOGs) in July, which are consistent with previous particle composition measurements at SPL. The observed persistent daily NPF in March and the absence of regional-scale nucleation in July at SPL indicate that H2SO4 gas plays a much more critical role in the initial nucleation process, although LV-SOGs dominate particle growth in July. Our analysis suggests that the short-lasting bursts of ultrafine particles observed at SPL in July are likely associated with nucleation in subgrid power plant plumes, where concentrations of H2SO4 rather than LV-SOGs are expected to be higher.

  16. Fe and S K-edge XAS determination of iron-sulfur species present in a range of acid sulfate soils: Effects of particle size and concentration on quantitative XANES determinations

    NASA Astrophysics Data System (ADS)

    Morgan, Kate E.; Burton, Edward D.; Cook, Perran; Raven, Mark D.; Fitzpatrick, Robert W.; Bush, Richard; Sullivan, Leigh A.; Hocking, Rosalie K.

    2009-11-01

    Acid sulfate soils (ASS) are soils and soft sediments in which sulfuric acid may be produced from iron sulfides or have been produced leaving iron oxyhydroxysulfates in amounts that have a long lasting effect on soil characteristics. If soil material is exposed to rotting vegetation or other reducing material, the Fe-oxyhydroxysulfates can be bacterially reduced to sulfides including disulfides (pyrite and marcasite), and Monosulfidic Black Ooze (MBO) a poorly characterised material known to be a mixture of iron sulfides (especially mackinawite) and organic matter. The chemistry of these environments is strongly affected by Fe and S cycling processes and herein we have sought to identify key differences in environments that occur as a function of Fe and S concentration. In addition to our chemical results, we have found that the effects of particle size on self absorption in natural sediments play an important role in the spectroscopic identification of the relative proportions of different species present.

  17. Piezoelectric crystal microbalance measurements of enthalpy of sublimation of C2-C9 dicarboxylic acids

    NASA Astrophysics Data System (ADS)

    Dirri, F.; Palomba, E.; Longobardo, A.; Zampetti, E.

    2015-07-01

    We present here a novel experimental setup able to measure the enthalpy of sublimation of a given compound by means of Piezoelectric Crystal Microbalances (PCM). This experiment was performed in the TG-Lab facility in IAPS-INAF, dedicated to the development of TGA sensors for space measurements, such as detection of organic and non-organic volatile species and refractory materials in planetary environments. In order to study physical-chemical processes concerning the Volatile Organic Compounds (VOC) present in atmospheric environments, the setup has been tested on Dicarboxylic acids. Acids with low molecular weight are among the components of organic fraction of particulate matter in the atmosphere, coming from different sources (biogenic and anthropogenic). Considering their relative abundance, it is useful to consider Dicarboxylic acid as "markers" to define the biogenic or anthropogenic origin of the aerosol, thus obtaining some information of the emission sources. In this work, a temperature controlled effusion cell was used to sublimate VOC, creating a molecular flux that was collimated onto a cold PCM. The VOC re-condensed onto the PCM quartz crystal allowing the determination of the deposition rate. From the measurements of deposition rates, it was possible to infer the enthalpy of sublimation of Adipic acid, i.e. Δ Hsub: 141.6 ± 0.8 kJ mol-1, Succinic acid, i.e. 113.3 ± 1.3 kJ mol-1, Oxalic acid, i.e. 62.5 ± 3.1 kJ mol-1 and Azelaic acid, i.e. 124.2 ± 1.2 kJ mol-1 (weight average values). The results obtained are in very good agreement with literature within 10 % for the Adipic, Succinic and Oxalic acid.

  18. Abscisic acid-dependent regulation of small rubber particle protein gene expression in Taraxacum brevicorniculatum is mediated by TbbZIP1.

    PubMed

    Fricke, Julia; Hillebrand, Andrea; Twyman, Richard M; Prüfer, Dirk; Schulze Gronover, Christian

    2013-04-01

    Natural rubber is a high-molecular-mass biopolymer found in the latex of >2,500 plant species, including Hevea brasiliensis, Parthenium argentatum and Taraxacum spp. The active sites of rubber biosynthesis are rubber particles, which comprise a hydrophobic rubber core surrounded by a phospholipid monolayer membrane containing species-dependent lipids and associated proteins. Small rubber particle proteins are the most abundant rubber particle-associated proteins in Taraxacum brevicorniculatum (TbSRPPs) and may promote rubber biosynthesis by stabilizing the rubber particle architecture. We investigated the transcriptional regulation of genes encoding SRPPs and identified a bZIP transcription factor (TbbZIP.1) similar to the Arabidopsis thaliana ABI5-ABF-AREB subfamily, which is thought to include downstream targets of ABA and/or abiotic stress-inducible protein kinases. The TbbZIP.1 gene was predominantly expressed in laticifers and regulates the expression of TbSRPP genes in an ABA-dependent manner. The individual TbSRPP genes showed distinct induction profiles, suggesting diverse roles in rubber biosynthesis and stress adaptation. The potential involvement of TbSRPPs in the adaptation of T. brevicorniculatum plants to environmental stress is discussed based on our current knowledge of the stress-response roles of SRPPs and their homologs, and the protective function of latex and rubber against pathogens. Our data suggest that TbSRPPs contribute to stress tolerance in T. brevicorniculatum and that their effects are mediated by TbbZIP.1.

  19. Role of surface functionality on the formation of raspberry-like polymer/silica composite particles: Weak acid-base interaction and steric effect

    NASA Astrophysics Data System (ADS)

    Wang, Lan; Song, LinYong; Chao, ZhiYin; Chen, PengPeng; Nie, WangYan; Zhou, YiFeng

    2015-07-01

    The surface functionality of polymer microspheres is the crucial factor to determine the nucleation and growth of silica particles and to construct the organic/inorganic hierarchical structures. The objective of this work was to evaluate the surface functionality and hierarchical morphology relationship via in situ sol-gel reaction. Carboxylic-functionalized poly (styrene-co-maleic anhydride) [P(S-co-MA)], poly(ethylene glycol)-functionalized poly(styrene-co-poly(ethylene glycol) methacrylate) [P(S-co-PEGMA)], and hybrid functionalized poly(styrene-co-maleic anhydride-co-poly(ethylene glycol) methacrylate) [P(S-co-MA-co-PEGMA)] microspheres were synthesized by emulsifier-free polymerization and used as templates. The morphologies of the composite particles were observed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The results showed that core-shell structure was obtained with P(S-co-MA) as templates; raspberry-like structure was observed by using P(S-co-MA-co-PEGMA) as templates; and no silica particles were attached onto the surface of P(S-co-PEGMA) microspheres. These results indicated that the carboxylic groups on the surface formed by hydrolysis of anhydride groups were the determinate factor to control the nucleation of silica nanoparticles, and the PEG chains on the surface can affect the growth of silica particles. In addition, the particulate films were constructed by assembling these composite particles on glass substrates and modified with dodecyltrichlorosilane, the contact angles of water on the dual-sized structured surface were up to 160°.

  20. High-performance liquid chromatography of amino acids, peptides and proteins. CXXIX. Ceramic-based particles as chemically stable chromatographic supports.

    PubMed

    Wirth, H J; Eriksson, K O; Holt, P; Aguilar, M; Hearn, M T

    1993-08-27

    Porous zirconia based particles have been modified using different derivatisation procedures. The modified particles were characterised in terms of their accessible surface areas and degree of surface coverage of the bounded or physicoated phases utilising the strong and specific adsorption of phosphate ions to the zirconia surface. The hydroxyl group density was determined by a 1H NMR technique. The particles were modified by immobilising different silanes to introduce either hydrophobic ligands or reactive groups onto the zirconia surface. In the latter case, various ligands were then covalently attached to the activated supports. Using this type of modification, n-octadecyl- (C18), carbohydrate- and Cibacron Blue F3GA-modified zirconia particles were produced. Furthermore, polymeric coated particles were prepared either by using polybutadiene or by cross-linking the carbohydrate modified sorbents. The pH stability of the different sorbents were determined in batch experiments and under chromatographic conditions. The leakage of ligands was monitored by UV absorption and by employing radioactively labelled ligands. The performance of the C18 reversed-phase modified zirconia in packed columns was also used as an indicator of changes in the surface chemistry following pH stability tests. The experimental results indicate that the Cibacron Blue F3GA dye-modified sorbent was stable up to pH 10.5, the C18 reversed-phase packing up to pH 13 and the carbohydrate-bonded phase up to pH 12. These investigations substantiate the favourable chemical and physical characteristics anticipated for surface modified zirconias for potential use as chromatographic adsorbents. PMID:8408421

  1. Environmental remediation by an integrated microwave/UV illumination technique. 8. Fate of carboxylic acids, aldehydes, alkoxycarbonyl and phenolic substrates in a microwave radiation field in the presence of TiO2 particles under UV irradiation.

    PubMed

    Horikoshi, Satoshi; Hojo, Fukuyo; Hidaka, Hisao; Serpone, Nick

    2004-04-01

    Thermal and nonthermal effects originating when a system is subjected to a microwave radiation field in the TiO2-photocatalyzed transformation of model substances containing various functional groups (e.g., benzoic acid, phthalic acid, o-formylbenzoic acid, phthalaldehyde, succinic acid, dimethyl phthalate, diethyl phthalate, and phenol) have been examined under simultaneous irradiation by ultraviolet (UV) and microwave (MW) radiations. Characteristics of the microwave effects and the fate of each substrate during the microwave-assisted photocatalytic process were monitored by UV absorption spectroscopy, HPLC methods, total organic carbon assays, and identification of intermediates using electrospray mass spectral techniques. Microwave thermal and nonthermal effects were delineated by comparing results from MW-generated internal heat versus conventional external heating, and at constant ambient temperature under a microwave field. Factors involved in the nonthermal component of the microwave radiation were inferred for the initial adsorption of the substrate and its subsequent degradation occurring on the surface of TiO2 particles. Microwave effects bear on the mechanism through which a model substrate undergoes oxidative degradation. A characteristic feature of these effects was briefly examined by considering the behavior of polar (dipole moments) substrates in a microwave radiation field.

  2. Particle generator

    DOEpatents

    Hess, Wayne P.; Joly, Alan G.; Gerrity, Daniel P.; Beck, Kenneth M.; Sushko, Peter V.; Shlyuger, Alexander L.

    2005-06-28

    Energy tunable solid state sources of neutral particles are described. In a disclosed embodiment, a halogen particle source includes a solid halide sample, a photon source positioned to deliver photons to a surface of the halide, and a collimating means positioned to accept a spatially defined plume of hyperthermal halogen particles emitted from the sample surface.

  3. Design, characterization and in vitro evaluation of novel shell crosslinked poly(butylene adipate)-co-N-succinyl chitosan nanogels containing loteprednol etabonate: A new system for therapeutic effect enhancement via controlled drug delivery.

    PubMed

    Nasr, Farzaneh Hashemi; Khoee, Sepideh

    2015-09-18

    This study reports on the development of a novel mucoadhesive and biocompatible shell-crosslinked nanogel system based on poly(butylene adipate) (PBA) and N-succinyl chitosan (S-Cs) by coupling reaction with a new formulation method. For this purpose, two different molecular weights of dendrimerized PBA with amine terminated functional groups were synthesized separately and characterized well by FT-IR, (1)HNMR and GPC. The PBA nanoparticles containing loteprednol etabonate (LPE) prepared by O/W emulsion technique were reacted immediately with modified carboxylated chitosan via carbodiimide chemistry. TEM photographs of the nanoparticles and crosslinked nanoparticles displayed a spherical morphology closely corresponding to the results obtained by DLS. On The other hand, biodegradability, biocompatibility and bioadhesiveness of the prepared nanoparticles were also studied. It is concluded that the core-shell structured nanogels can be used as novel ocular drug delivery systems with appropriate loading capacity for slightly water soluble LPE as an anti-inflammatory drug.

  4. [Compositions of organic acids in PM10 emission sources in Xiamen urban atmosphere].

    PubMed

    Yang, Bing-Yu; Huang, Xing-Xing; Zheng, An; Liu, Bi-Lian; Wu, Shui-Ping

    2013-01-01

    The possible organic acid emission sources in PM10 in Xiamen urban atmosphere such as cooking, biomass burning, vehicle exhaust and soil/dust were obtained using a re-suspension test chamber. A total of 15 organic acids including dicarboxylic acids, fatty acids and aromatic acids were determined using GC/MS after derivatization with BF3/n-butanol. The results showed that the highest total concentration of 15 organic acids (53%) was found in cooking emission and the average concentration of the sum of linoleic acid and oleic acid was 24% +/- 14%. However, oxalic acid was the most abundant species followed by phthalic acid in gasoline vehicle exhaust. The ratios of adipic to azelaic acid in gasoline combustion emissions were significantly higher than those in other emission sources, which can be used to qualitatively differentiate anthropogenic and biological source of dicarboxylic acids in atmospheric samples. The ratios of malonic to succinic acid in source emissions (except gasoline generator emissions) were lower (0.07-0.44) than ambient PM10 samples (0.61-3.93), which can be used to qualitatively differentiate the primary source and the secondary source of dicarboxylic acids in urban PM10.

  5. Metabolic Engineering of a Novel Muconic Acid Biosynthesis Pathway via 4-Hydroxybenzoic Acid in Escherichia coli

    PubMed Central

    Sengupta, Sudeshna; Goonewardena, Lakshani; Juturu, Veeresh

    2015-01-01

    cis,cis-Muconic acid (MA) is a commercially important raw material used in pharmaceuticals, functional resins, and agrochemicals. MA is also a potential platform chemical for the production of adipic acid (AA), terephthalic acid, caprolactam, and 1,6-hexanediol. A strain of Escherichia coli K-12, BW25113, was genetically modified, and a novel nonnative metabolic pathway was introduced for the synthesis of MA from glucose. The proposed pathway converted chorismate from the aromatic amino acid pathway to MA via 4-hydroxybenzoic acid (PHB). Three nonnative genes, pobA, aroY, and catA, coding for 4-hydroxybenzoate hydrolyase, protocatechuate decarboxylase, and catechol 1,2-dioxygenase, respectively, were functionally expressed in E. coli to establish the MA biosynthetic pathway. E. coli native genes ubiC, aroFFBR, aroE, and aroL were overexpressed and the genes ptsH, ptsI, crr, and pykF were deleted from the E. coli genome in order to increase the precursors of the proposed MA pathway. The final engineered E. coli strain produced nearly 170 mg/liter of MA from simple carbon sources in shake flask experiments. The proposed pathway was proved to be functionally active, and the strategy can be used for future metabolic engineering efforts for production of MA from renewable sugars. PMID:26362984

  6. Metabolic engineering of a novel muconic acid biosynthesis pathway via 4-hydroxybenzoic acid in Escherichia coli.

    PubMed

    Sengupta, Sudeshna; Jonnalagadda, Sudhakar; Goonewardena, Lakshani; Juturu, Veeresh

    2015-12-01

    cis,cis-Muconic