Science.gov

Sample records for adipocyte hormone leptin

  1. Role of the Adipocyte-derived Hormone Leptin in Reproductive Control

    PubMed Central

    Garcia-Galiano, David; Allen, Susan J.; Elias, Carol F.

    2014-01-01

    Achievement of sexual maturation and maintenance of fertility in adulthood are functions sensitive to the metabolic status of the organism, particularly the magnitude of fat reserves. In this sense, the adipocyte-derived hormone, leptin, plays a major role linking metabolic cues and the control of multiple neuroendocrine axes. The hypothalamus is a key site mediating leptin actions, including those involved in the modulation of the hypothalamus-pituitary-gonads (HPG) axis at different stages of development and in different environmental conditions. In the present review, we intend to provide an update of the role of leptin in reproduction and to discuss its interactions with neurons, neurotransmitters and downstream targets of the reproductive axis, with a special emphasis on the actions of leptin in the central nervous system. We hope this review will contribute to the understanding of the mechanisms whereby metabolic signals, especially leptin, influence the reproductive neuroendocrine axis modulating its activity in different nutritional states. Special attention will be given to recent advances in the identification of key hypothalamic sites and signaling pathways relevant to leptin’s action in reproductive control. PMID:25390022

  2. Effects of nutritional status on plasma leptin levels and in vitro regulation of adipocyte leptin expression and secretion in rainbow trout.

    PubMed

    Salmerón, Cristina; Johansson, Marcus; Angotzi, Anna R; Rønnestad, Ivar; Jönsson, Elisabeth; Björnsson, Björn Thrandur; Gutiérrez, Joaquim; Navarro, Isabel; Capilla, Encarnación

    2015-01-01

    As leptin has a key role on appetite, knowledge about leptin regulation is important in order to understand the control of energy balance. We aimed to explore the modulatory effects of adiposity on plasma leptin levels in vivo and the role of potential regulators on leptin expression and secretion in rainbow trout adipocytes in vitro. Fish were fed a regular diet twice daily ad libitum or a high-energy diet once daily at two ration levels; satiation (SA group) or restricted (RE group) to 25% of satiation, for 8weeks. RE fish had significantly reduced growth (p<0.001) and adipose tissue weight (p<0.001), and higher plasma leptin levels (p=0.022) compared with SA fish. Moreover, plasma leptin levels negatively correlated with mesenteric fat index (p=0.009). Adipocytes isolated from the different fish were treated with insulin, ghrelin, leucine, eicosapentaenoic acid or left untreated (control). In adipocytes from fish fed regular diet, insulin and ghrelin increased leptin secretion dose-dependently (p=0.002; p=0.033, respectively). Leptin secretion in control adipocytes was significantly higher in RE than in SA fish (p=0.022) in agreement with the in vivo findings, indicating that adipose tissue may contribute to the circulating leptin levels. No treatment effects were observed in adipocytes from the high-energy diet groups, neither in leptin expression nor secretion, except that leptin secretion was significantly reduced by leucine in RE fish adipocytes (p=0.025). Overall, these data show that the regulation of leptin in rainbow trout adipocytes by hormones and nutrients seems to be on secretion, rather than at the transcriptional level.

  3. Triiodothyronine modulates the expression of leptin and adiponectin in 3T3-L1 adipocytes

    PubMed Central

    de Oliveira, Miriane; Síbio, Maria Teresa De; Olimpio, Regiane Marques Castro; Moretto, Fernanda Cristina Fontes; Luvizotto, Renata de Azevedo Melo; Nogueira, Celia Regina

    2015-01-01

    Objective To study the effect of different doses of triiodothyronine on gene expression of the adipokines leptin and adiponectin, at different times, and to evaluate the difference in expression between the two adipokines in each group. Methods 3T3-L1 adipocytes were incubated with triiodothyronine at physiological dose (10nM) and supraphysiological doses (100nM or 1,000nM), or without triiodothyronine (control, C) for 0.5, 6, or 24 hours. Leptin and adiponectin mRNA was detected using real-time polymerase chain reaction (RT-PCR). One-way analyses of variance, Tukey’s test or Student’s t test, were used to analyze data, and significance level was set at 5%. Results Leptin levels decreased in the 1,000nM-dose group after 0.5 hour. Adiponectin levels dropped in the 10nM-dose group, but increased at the 100nM dose. After 6 hours, both genes were suppressed in all hormone concentrations. After 24 hours, leptin levels increased at 10, 100 and 1,000nM groups as compared to the control group; and adiponectin levels increased only in the 100nM group as compared to the control group. Conclusion These results demonstrated fast actions of triiodothyronine on the leptin and adiponectin expression, starting at 0.5 hour, at a dose of 1,000nM for leptin and 100nM for adiponectin. Triiodothyronine stimulated or inhibited the expression of adipokines in adipocytes at different times and doses which may be useful to assist in the treatment of obesity, assuming that leptin is increased and adiponectin is decreased, in obesity cases. PMID:25993072

  4. Role of the Cytokine-like Hormone Leptin in Muscle-bone Crosstalk with Aging

    PubMed Central

    2017-01-01

    The cytokine-like hormone leptin is a classic adipokine that is secreted by adipocytes, increases with weight gain, and decreases with weight loss. Additional studies have, however, shown that leptin is also produced by skeletal muscle, and leptin receptors are abundant in both skeletal muscle and bone-derived mesenchymal (stromal) stem cells. These findings suggest that leptin may play an important role in muscle-bone crosstalk. Leptin treatment in vitro increases the expression of myogenic genes in primary myoblasts, and leptin treatment in vivo increases the expression of microRNAs involved in myogenesis. Bone marrow adipogenesis is associated with low bone mass in humans and rodents, and leptin can reduce marrow adipogenesis centrally through its receptors in the hypothalamus as well as directly via its receptors in bone marrow stem cells. Yet, central leptin resistance can increase with age, and low circulating levels of leptin have been observed among the frail elderly. Thus, aging appears to significantly alter leptin-mediated crosstalk among various organs and tissues. Aging is associated with bone loss and muscle atrophy, contributing to frailty, postural instability, and the incidence of falls. Therapeutic interventions such as protein and amino acid supplementation that can increase muscle mass and muscle-derived leptin may have multiple benefits for the elderly that can potentially reduce the incidence of falls and fractures. PMID:28326295

  5. Role of the Cytokine-like Hormone Leptin in Muscle-bone Crosstalk with Aging.

    PubMed

    Hamrick, Mark W

    2017-02-01

    The cytokine-like hormone leptin is a classic adipokine that is secreted by adipocytes, increases with weight gain, and decreases with weight loss. Additional studies have, however, shown that leptin is also produced by skeletal muscle, and leptin receptors are abundant in both skeletal muscle and bone-derived mesenchymal (stromal) stem cells. These findings suggest that leptin may play an important role in muscle-bone crosstalk. Leptin treatment in vitro increases the expression of myogenic genes in primary myoblasts, and leptin treatment in vivo increases the expression of microRNAs involved in myogenesis. Bone marrow adipogenesis is associated with low bone mass in humans and rodents, and leptin can reduce marrow adipogenesis centrally through its receptors in the hypothalamus as well as directly via its receptors in bone marrow stem cells. Yet, central leptin resistance can increase with age, and low circulating levels of leptin have been observed among the frail elderly. Thus, aging appears to significantly alter leptin-mediated crosstalk among various organs and tissues. Aging is associated with bone loss and muscle atrophy, contributing to frailty, postural instability, and the incidence of falls. Therapeutic interventions such as protein and amino acid supplementation that can increase muscle mass and muscle-derived leptin may have multiple benefits for the elderly that can potentially reduce the incidence of falls and fractures.

  6. Leptin activates chicken growth hormone promoter without chicken STAT3 in vitro.

    PubMed

    Murase, Daisuke; Namekawa, Shoko; Ohkubo, Takeshi

    2016-01-01

    Leptin is an adipocyte-derived hormone that not only regulates food intake and energy homeostasis but also induces growth hormone (GH) mRNA expression and release, thereby controlling growth and metabolism in mammals. The molecular mechanism of leptin-induced regulation of GH gene transcription is unclear. The current study investigated the effects of leptin on the chicken GH (cGH) promoter and the molecular mechanism underlying leptin-induced cGH gene expression in vitro. Leptin activated the cGH promoter in the presence of chPit-1α in CHO cells stably expressing the chicken leptin receptor. Promoter activation did not require STAT-binding elements in the cGH promoter or STAT3 activity. However, JAK2 activation was required for leptin-dependent activity. JAK2-dependent pathways include p42/44 MAPK and PI3K, and inhibition of these pathways partially blocked leptin-induced cGH gene transcription. Although CK2 directly activates JAK2, a CK2 inhibitor blocked leptin-dependent activation of the cGH gene without affecting JAK2 phosphorylation. The CK2 inhibitor suppressed Erk1/2 and Akt phosphorylation. Additional data implicate Src family kinases in leptin-dependent cGH gene activation. These results suggest that leptin activates the cGH gene in the presence of chPit-1α via several leptin-activated kinases. Although further study is required, we suggest that the leptin-induced JAK2/p42/44 MAPK and JAK2/PI3K cascades are activated by Src-meditated CK2, leading to CBP phosphorylation and interaction with chPit-1α, resulting in transactivation of the cGH promoter.

  7. Adipocytes secreted leptin is a pro-tumor factor for survival of multiple myeloma under chemotherapy

    PubMed Central

    Li, Qiu-bai; Mei, Hui-ling; Hu, Yu; Guo, Tao

    2016-01-01

    Accumulating evidences have shown that adipokines secreted from adipocytes contributes to tumor development, especially leptin. However, underlying mechanisms remain unclear. This study aims to explore the effect of leptin on development and chemoresistance in multiple myeloma cells and the potential mechanism. Analysis of levels of adipokines including leptin and adiponectin in 28 multiple myeloma patients identified significantly higher leptin compared with 28 normal controls(P < 0.05), and leptin level was positively correlated with clinical stage, IgG, ER, and ß2MG. Next, by using co-culture system of myeloma and adipocytes, and pharmacologic enhancement of leptin, we found that increased growth of myeloma cells and reduced toxicity of bortezomib were best observed at 50 ng/ml of leptin, along with increased expression of cyclinD1, Bcl-2 and decreased caspase-3 expression. We also found that phosphorylated AKT and STAT3 but not the proteins expression reached peak after 1h and 6h treatment of leptin, respectively. By using AG490, an agent blocking the phosphorylation of AKT and ERK, the proliferation of myeloma cells was inhibited, as well as the phosphorylation of AKT and STAT3, even adding leptin. Taken together, our study demonstrated that up-regulated leptin could stimulate proliferation of myeloma and reduce the anti-tumor effect of chemotherapy possibly via activating AKT and STAT3 pathways, and leptin might be one of the potential therapeutic targets for treating myeloma. PMID:27863383

  8. Effects of dopamine on leptin release and leptin gene (OB) expression in adipocytes from obese and hypertensive patients

    PubMed Central

    Alvarez-Aguilar, Cleto; Alvarez-Paredes, Alfonso Rafael; Lindholm, Bengt; Stenvinkel, Peter; García-López, Elvia; Mejía-Rodríguez, Oliva; López-Meza, Joel Edmundo; Amato, Dante; Paniagua, Ramon

    2013-01-01

    Background A reduction of dopaminergic (DAergic) activity with increased prolactin levels has been found in obese and hypertensive patients, suggesting its involvement as a pathophysiological mechanism promoting hypertension. Similarly, leptin action increasing sympathetic activity has been proposed to be involved in mechanisms of hypertension. The aim of this study was to analyze the effects of DA, norepinephrine (NE), and prolactin on leptin release and leptin gene (OB) expression in adipocytes from obese and hypertensive patients. Methods Leptin release and OB gene expression were analyzed in cultured adipocytes from 16 obese and hypertensive patients treated with DA (0.001, 0.01, 0.1, and 1.0 μmol/L), NE (1.0 μmol/L), insulin (0.1 μmol/L), and prolactin (1.0 μmol/L), and from five nonobese and normotensive controls treated with DA (1 μmol/L), NE (1 μmol/L), insulin (0.1 μmol/L), and prolactin (1.0 μmol/L). Results A dose-related reduction of leptin release and OB gene messenger ribonucleic acid expression under different doses of DA was observed in adipocytes from obese hypertensive patients. Whereas prolactin treatment elicited a significant increase of both leptin release and OB gene expression, NE reduced these parameters. Although similar effects of DA and NE were observed in adipocytes from controls, baseline values in controls were reduced to 20% of the value in adipocytes from obese hypertensive patients. Conclusion These results suggest that DAergic deficiency contributes to metabolic disorders linked to hyperleptinemia in obese and hypertensive patients. PMID:24348062

  9. Behavioral, hormonal and central serotonin modulating effects of injected leptin.

    PubMed

    Haleem, Darakhshan J; Haque, Zeba; Inam, Qurrat-ul-Aen; Ikram, Huma; Haleem, Muhammad Abdul

    2015-12-01

    Leptin is viewed as an important target for developing novel therapeutics for obesity, depression/anxiety and cognitive dysfunctions. The present study therefore concerns behavioral, hormonal and central serotonin modulating effects of systemically injected leptin. Pharmacological doses (100 and 500 μg/kg) of leptin injected systemically decreased 24h cumulative food intake and body weight in freely feeding rats and improved acquisition and retention of memory in Morris water maze test. Potential anxiety reducing, hormonal and serotonin modulating effects of the peptide hormone were determined in a separate experiment. Animals injected with 100 or 500 μg/kg leptin were tested for anxiety in an elevated plus maze test 1h later. A significant increase in the number of entries and time passed in open arm of the elevated plus maze in leptin injected animals suggested pronounced anxiety reducing effect. Moreover, circulating levels of leptin correlated significantly with anxiety reducing effects of the peptide hormone. Serum serotonin increased and ghrelin decreased in leptin injected animals and correlated, positively and negatively respectively, with circulating leptin. Corticosterone increased at low dose and levels were normal at higher dose. Serotonin metabolism in the hypothalamus and hippocampus decreased only at higher dose of leptin. The results support a role of leptin in the treatment of obesity, anxiety and cognitive dysfunctions. It is suggested that hormonal and serotonin modulating effects of leptin can alter treatment efficacy in particularly comorbid conditions.

  10. Inhibitory effect of leptin on rosiglitazone-induced differentiation of primary adipocytes prepared from TallyHO/Jng mice

    SciTech Connect

    Kim, Ki Young; Kim, Joo Young; Sung, Yoon-Young; Jung, Won Hoon; Kim, Hee-Youn; Park, Ji Seon; Cheon, Hyae Gyeong; Rhee, Sang Dal

    2011-03-25

    Research highlights: {yields} In this study, we investigated the effects of leptin on adipocyte differentiation prepared from subcutaneous fat of TallyHo mice. {yields} Leptin inhibited the adipocytes differentiation at physiological concentration via inhibition of PPAR{gamma} expression. {yields} Inhibitors of ERK and STAT1 restored the leptin's inhibitory activity both in vitro and in vivo. -- Abstract: The effects of leptin on rosiglitazone-induced adipocyte differentiation were investigated in the primary adipocytes prepared from subcutaneous fat of TallyHO/Jng (TallyHO) mouse, a recently developed model animal for type 2 diabetes mellitus (T2DM). The treatment of leptin inhibited the rosiglitazone-induced adipocyte differentiation with a decreased expression of peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) a key adipogenic transcription factor, both in mRNA and protein levels. Leptin (10 nM) was sufficient to inhibit the adipocyte differentiation, which seemed to come from increased expression of leptin receptor genes in the fat of TallyHO mice. The inhibition of adipogenesis by leptin was restored by the treatment of inhibitors for extracellular-signal-regulated kinase (ERK) (PD98059) and signal transducer and activator of transcription-1 (STAT1) (fludarabine). Furthermore, in vivo intraperitoneal administration of PD98059 and fludarabine increased the PPAR{gamma} expression in the subcutaneous fat of TallyHO mice. These data suggest that leptin could inhibit the PPAR{gamma} expression and adipocyte differentiation in its physiological concentration in TallyHO mice.

  11. Leptin Production by Encapsulated Adipocytes Increases Brown Fat, Decreases Resistin, and Improves Glucose Intolerance in Obese Mice

    PubMed Central

    DiSilvestro, David J.; Melgar-Bermudez, Emiliano; Yasmeen, Rumana; Fadda, Paolo; Lee, L. James; Kalyanasundaram, Anuradha; Gilor, Chen L.; Ziouzenkova, Ouliana

    2016-01-01

    The neuroendocrine effects of leptin on metabolism hold promise to be translated into a complementary therapy to traditional insulin therapy for diabetes and obesity. However, injections of leptin can provoke inflammation. We tested the effects of leptin, produced in the physiological adipocyte location, on metabolism in mouse models of genetic and dietary obesity. We generated 3T3-L1 adipocytes constitutively secreting leptin and encapsulated them in a poly-L-lysine membrane, which protects the cells from immune rejection. Ob/ob mice (OB) were injected with capsules containing no cells (empty, OB[Emp]), adipocytes (OB[3T3]), or adipocytes overexpressing leptin (OB[Lep]) into both visceral fat depots. Leptin was found in the plasma of OB[Lep], but not OB[Emp] and OB[3T3] mice at the end of treatment (72 days). The OB[Lep] and OB[3T3] mice have transiently suppressed appetite and weight loss compared to OB[Emp]. Only OB[Lep] mice have greater brown fat mass, metabolic rate, and reduced resistin plasma levels compared to OB[Emp]. Glucose tolerance was markedly better in OB[Lep] vs. OB[Emp] and OB[3T3] mice as well as in wild type mice with high-fat diet-induced obesity and insulin resistance treated with encapsulated leptin-producing adipocytes. Our proof-of-principle study provides evidence of long-term improvement of glucose tolerance with encapsulated adipocytes producing leptin. PMID:27055280

  12. Leptin is not the critical signal for kisspeptin or luteinising hormone restoration during exit from negative energy balance.

    PubMed

    True, C; Kirigiti, M A; Kievit, P; Grove, K L; Smith, M S

    2011-11-01

    Low levels of the adipocyte hormone leptin are considered to be the key signal contributing to inhibited gonadotrophin-releasing hormone (GnRH) release and reproductive acyclicity during negative energy balance. Hypoleptinaemia-induced inhibition of GnRH may be initiated with upstream inhibition of the secretagogue kisspeptin (Kiss1) because GnRH neurones do not express leptin receptors. The present study aimed to determine whether eliminating the hypoleptinaemia associated with caloric restriction (CR), by restoring leptin to normal basal levels, could reverse the suppression of the reproductive neuroendocrine axis. Fifty percent CR resulted in significant suppression of anteroventral periventricular Kiss1 mRNA, arcuate nucleus (ARH) Kiss1 and neurokinin B (NKB) mRNA levels and serum luteinising hormone (LH). Restoring leptin to normal basal levels did not restore Kiss1 or NKB mRNA or LH levels. Surprisingly, leptin did not activate expression of phosphorylated signal-transducer and activator of transcription-3 in ARC Kiss1 neurones, indicating that these neurones may not relay leptin signalling to GnRH neurones. Previous work in fasting models showing restoration of LH used a pharmacological dose of leptin. Therefore, in a 48-h fast study, replacement of leptin to pharmacological levels was compared with replacement of leptin to normal basal levels. Maintaining leptin at normal basal levels during the fast did not prevent inhibition of LH. By contrast, pharmacological levels of leptin did maintain LH at control values. These results suggest that, although leptin may be a permissive signal for reproductive function, hypoleptinaemia is unlikely to be the critical signal responsible for ARC Kiss1 and LH inhibition during negative energy balance.

  13. Monitoring blood plasma leptin and lactogenic hormones in pregnant sows.

    PubMed

    Saleri, R; Sabbioni, A; Cavalli, V; Superchi, P

    2015-04-01

    The mechanism of action of leptin in pregnant breeding sows, in which hyperphagia is managed through dietary strategies, is yet to be clarified. The aim of this study was to monitor leptin concentrations and their interactions with lactogenic hormones in Large White×Landrace breeding multiparous sows (n=15). All sows showed a normal body condition (mean body condition score: 2.96). Blood samples were collected the day after weaning the litters, at insemination, every 15 days up to day 45 of pregnancy and every 7 days from day 46 to farrowing. At delivery, the placenta was collected for the analysis of leptin and leptin receptor expressions. Plasma leptin levels increased from the end of mid gestation (day 72) and remained high until farrowing (P<0.05). As expected, plasma prolactin (PRL), low during most of pregnancy, increased during the 2 weeks before farrowing (P<0.05), whereas progesterone levels reached plateau at 30 days of gestation and decreased at farrowing (P<0.05). Cortisol levels peaked close to farrowing (P<0.05). Leptin was expressed in the placenta, where the receptor expression analysis showed the presence of the short form but not of the long form. A positive correlation was found between leptin and PRL concentrations during mid (r=0.430; P<0.001) and late (r=0.687; P<0.001) pregnancy, and with progesterone in early pregnancy (r=0.462; P<0.05). During late gestation, a positive correlation was observed between leptin and cortisol (r=0.585; P<0.001). Our results suggested that, in restrictively fed pregnant sows, the leptin levels increased from the end of mid pregnancy to delivery, confirming the presence of leptin resistance. We showed a correlation between leptin and lactogenic hormones during different stages of pregnancy in sows. Lactogenic hormones show pregnancy-specific changes in their secretion and all may become involved in modulating leptin signal.

  14. FABP4 reversed the regulation of leptin on mitochondrial fatty acid oxidation in mice adipocytes

    PubMed Central

    Gan, Lu; Liu, Zhenjiang; Cao, Weina; Zhang, Zhenzhen; Sun, Chao

    2015-01-01

    Fatty acid binding protein 4 (FABP4), plays key role in fatty acid transportation and oxidation, and increases with leptin synergistically during adipose inflammation process. However, the regulation mechanism between FABP4 and leptin on mitochondrial fatty acid oxidation remains unclear. In this study, we found that FABP4 reduced the expression of leptin, CPT-1 and AOX1 in mice adipocytes. Conversely, FABP4 was down-regulated in a time-dependent manner by leptin treatment. Additionally, forced expression of FABP4 attenuated the expression of PGC1-α, UCP2, CPT-1, AOX1 and COX2 compared with leptin incubation. Moreover, mitochondrial membrane potential, fatty acid oxidation enzyme medium-chain acyl-CoA dehydrogenase (MCAD), long-chain acyl-CoA dehydrogenase (LCAD) and Cyt C levels were reduced in response to the overexpression of FABP4. These reductions correspond well with the reduced release of free fatty acid and the inactivation of mitochondrial complexes I and III by FABP4 overexpression. Furthermore, addition of the Akt/mTOR pathway-specific inhibitor (MK2206) blocked the mitochondrial fatty acid oxidation and respiration factors, whereas interference of FABP4 overcame these effects. Taken together, FABP4 could reverse the activation of the leptin-induced mitochondrial fatty acid oxidation, and the inhibition of Akt/mTOR signal pathway played a key role in this process. PMID:26310911

  15. Reevaluation of lipolytic activity of growth hormone in rabbit adipocytes.

    PubMed

    Barenton, B; Batifol, V; Combarnous, Y; Dulor, J P; Durand, P; Vezinhet, A

    1984-07-18

    The lipolytic activities of porcine pituitary fractions and purified growth hormone (GH) from human (h), porcine (p), ovine (o) and rabbit (Rb) origin as well as ovine placental lactogen (oPL), were compared to that of ACTH on rabbit adipocytes. All the GH preparations and oPL were equivalent in inhibiting the binding of labelled oGH to liver plasma membranes from pregnant rabbits. ACTH, and to a lesser extent porcine pituitary fractions and hGH, stimulated free fatty acid production by isolated adipocytes. The sensitivity of the adipocytes to these factors was increased when adenosine deaminase was added to the incubation medium. But, RbGH, pGH, oGH and oPL had no effect. We conclude that GH is not directly involved in the control of lipolysis in rabbit adipocytes and that the effect of hGH is rather due to a contamination of this preparation by other pituitary factors.

  16. Cranberries (Oxycoccus quadripetalus) inhibit lipid metabolism and modulate leptin and adiponectin secretion in 3T3-L1 adipocytes.

    PubMed

    Kowalska, Katarzyna; Olejnik, Anna; Rychlik, Joanna; Grajek, Włodzimierz

    2015-10-15

    It has previously been shown that lyophilized cranberries (LCB) decreased lipid accumulation in 3T3-L1 cells and inhibited preadipocyte differentiation by down-regulation of the expression of key transcription factors (PPARγ, C/EBPα, SREBP1) of the adipogenesis pathway. To elucidate the molecular basis of anti-lipogenic activity of LCB, the expression of several genes involved in lipid metabolism, such as adipocyte fatty acid-binding protein (aP2), lipoprotein lipase (LPL), fatty acid synthase (FAS), hormone sensitive lipase (HSL) and perilipin 1 (PLIN1), was examined in the present study. Additionally, the effects of LCB on adiponectin and leptin expression and protein secretion were also investigated. LCB reduced lipid accumulation during preadipocyte differentiation by down-regulation of the mRNA level of aP2, FAS, LPL, HSL and PLIN1. Moreover, LCB decreased leptin gene expression and increased adiponectin gene expression and protein secretion in a dose-dependent manner. Therefore cranberries could be considered as bioactive factors, which are effective in the inhibition of adipose tissue mass production.

  17. Hormone and pharmaceutical regulation of ASP production in 3T3-L1 adipocytes.

    PubMed

    Gao, Ying; Gauvreau, Danny; Cianflone, Katherine

    2010-04-01

    Several studies have demonstrated increases in acylation stimulating protein (ASP), and precursor protein C3 in obesity, diabetes and dyslipidemia, however the nature of the regulation is unknown. To evaluate chronic hormonal and pharmaceutical mediated changes in ASP and potential mechanisms, 3T3-L1 adipocytes were treated with physiological concentrations of relevant hormones and drugs currently used in treatment of metabolic diseases for 48 h. Medium ASP production and C3 secretion were evaluated in relation to changes in adipocyte lipid metabolism (cellular triglyceride (TG) mass, non-esterified fatty acid (NEFA) release and real-time FA uptake). Chylomicrons increased ASP production (up to 411 +/- 133% P < 0.05), while leptin, triiodothyronine, and beta-blockers atenolol and propranolol had no effect. Dexamethasone, lovastatin, rosiglitazone and rimonabant decreased ASP production (-53 to -85%, P < 0.05), associated with a decrease in the precursor protein C3 (-37% to -65%, P < 0.01). By contrast, epinephrine, progesterone, testosterone, angiotensin II and metformin also decreased ASP (-54% to -100%, P < 0.05), but without change in precursor protein C3, suggesting a direct effect on convertase activity, possibly mediated by interference (except metformin) due to marked increases in NEFA (5.6-31-fold, increased P < 0.05). Both lovastatin and metformin induced decreases in ASP were also associated with decreased TG mass (maximal -60%, P < 0.05) and real-time FA uptake (maximum -75%, P < 0.05), suggesting a change in adipocyte differentiation status. These in vitro results are consistent with in vivo ASP profiles in subjects, and suggest that ASP may be regulated through precursor C3 availability, convertase activity and differentiation status.

  18. Characteristics associated with fasting appetite hormones (obestatin, ghrelin, and leptin).

    PubMed

    Beasley, Jeannette M; Ange, Brett A; Anderson, Cheryl A M; Miller Iii, Edgar R; Holbrook, Janet T; Appel, Lawrence J

    2009-02-01

    Obestatin, derived from the same gene as the hunger hormone ghrelin, may reduce food intake in animals. The role of obestatin in human physiology is unclear. We evaluated cross-sectional associations between participant characteristics and fasting levels of obestatin as well two other hormones associated with energy balance, ghrelin and leptin. Data are from the baseline visit of the Optimal Macronutrient Intake Trial to Prevent Heart Disease (OMNI-Heart) Trial that enrolled adults with elevated blood pressure (systolic 120-159 mm Hg or a diastolic of 80-99 mm Hg) but who were otherwise healthy. Partial Spearman's correlations and linear regression models estimated the association between age, gender, BMI, physical activity, and smoking with fasting hormones. Obestatin was directly associated with ghrelin (r = 0.45, P < 0.05). On average, overweight (BMI 25-30) and obese (BMI > 30) individuals had obestatin concentrations that were 12.6 (s.d. 8.8) and 25.4 (s.d. 8.4) pg/ml lower compared to normal weight (BMI < 25) individuals, respectively (P for trend = 0.002). Overweight (BMI 25-30) and obese (BMI > 30) individuals had ghrelin concentrations that were 161.7 (s.d. 69.6) and 284.7 (s.d. 66.5) pg/ml lower compared to normal weight (BMI < 25) individuals, respectively (P for trend <0.0001). A 5 unit increase in BMI was associated with 41.3% (s.d. 4.3%) (P < 0.0001) higher leptin. Obestatin and ghrelin are directly correlated and share the same patterns of association with participant characteristics. Modifiable risk factors for chronic diseases, such as BMI, are associated with fasting levels of leptin, obestatin, and ghrelin.

  19. Inhibition of adipogenesis and leptin production in 3T3-L1 adipocytes by a derivative of meridianin C

    SciTech Connect

    Park, Yu-Kyoung; Lee, Tae-Yoon; Choi, Jong-Soon; Hong, Victor Sukbong; Lee, Jinho; Park, Jong-Wook; Jang, Byeong-Churl

    2014-10-03

    Highlights: • Compound 7b, a meridianin C derivative, inhibits adipogenesis. • Compound 7b inhibits C/EBP-α, PPAR-γ, FAS, STAT-3, and STAT-5 in 3T3-L1 adipocytes. • Compound 7b inhibits leptin, but not adiponectin, expression in 3T3-L1 adipocytes. • Compound 7b thus may have therapeutic potential against obesity. - Abstract: Meridianin C, a marine alkaloid, is a potent protein kinase inhibitor and has anti-cancer activity. We have recently developed a series of meridianin C derivatives (compound 7a–7j) and reported their proviral integration Moloney Murine Leukemia Virus (pim) kinases’ inhibitory and anti-proliferative effects on human leukemia cells. Here we investigated the effect of these meridianin C derivatives on adipogenesis. Strikingly, among the derivatives tested, compound 7b most strongly inhibited lipid accumulation during the differentiation of 3T3-L1 preadipocytes into adipocytes. However, meridianin C treatment was largely cytotoxic to 3T3-L1 adipocytes. On mechanistic levels, compound 7b reduced not only the expressions of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), and fatty acid synthase (FAS) but also the phosphorylation levels of signal transducer and activator of transcription-3 (STAT-3) and STAT-5 during adipocyte differentiation. Moreover, compound 7b repressed leptin, but not adiponectin, expression during adipocyte differentiation. Collectively, these findings demonstrate that a meridianin C derivative inhibits adipogenesis by down-regulating expressions and/or phosphorylations of C/EBP-α, PPAR-γ, FAS, STAT-3 and STAT-5.

  20. Nutritional and hormonal control of lipolysis in isolated gilthead seabream (Sparus aurata) adipocytes.

    PubMed

    Albalat, A; Gómez-Requeni, P; Rojas, P; Médale, F; Kaushik, S; Vianen, G J; Van den Thillart, G; Gutiérrez, J; Pérez-Sánchez, J; Navarro, I

    2005-07-01

    We examined the effects of diet composition and fasting on lipolysis of freshly isolated adipocytes from gilthead seabream (Sparus aurata). We also analyzed the effects of insulin, glucagon, and growth hormone (GH) in adipocytes isolated from fish fed with different diets. Basal lipolysis, measured as glycerol release, increased proportionally with cell concentration and time of incubation, which validates the suitability of these cell preparations for the study of hormonal regulation of this metabolic process. Gilthead seabream were fed two different diets, FM (100% of fish meal) and PP (100% of plant protein supplied by plant sources) for 6 wk. After this period, each diet group was divided into two groups: fed and fasted (for 11 days). Lipolysis was significantly higher in adipocytes from PP-fed fish than in adipocytes from FM-fed fish. Fasting provoked a significant increase in the lipolytic rate, about threefold in isolated adipocytes regardless of nutritional history. Hormone effects were similar in the different groups: glucagon increased the lipolytic rate, whereas insulin had almost no effect. GH was clearly lipolytic, although the relative increase in glycerol over control was lower in isolated adipocytes from fasted fish compared with fed fish. Together, we demonstrate for the first time that lipolysis, measured in isolated seabream adipocytes, is affected by the nutritional state of the fish. Furthermore, our data suggest that glucagon and especially GH play a major role in the control of adipocyte lipolysis.

  1. Suprachiasmatic nuclei may regulate the rhythm of leptin hormone release in Syrian hamsters (Mesocricetus auratus).

    PubMed

    Karakas, Alper; Gündüz, Bülent

    2006-01-01

    The suprachiasmatic nuclei (SCN) generate the circadian rhythm of many hormones. The hormone leptin is a metabolic signal that informs the brain about fat and energy stores of the body. We investigated whether the rhythm of leptin hormone release in Syrian hamsters is directly controlled by the SCN. Three experiments were performed: in the first, hamsters were SCN-lesioned; in the second, hamsters were exposed to different feeding regimes; and in the third, hamsters were adrenalectomized and implanted with cortisol capsules to maintain constant glucocorticoid release. Blood samples were collected before and after the experiments at different clock times and examined for leptin levels by enzyme-linked immunosorbant assay (ELISA). Different feeding regimes and constant glucocorticoid release did not alter the rhythm of leptin release; whereas, SCN lesions abolished the rhythm. The results of the present study suggest the rhythm in leptin release in Syrian hamsters may be controlled by the SCN.

  2. Plasma leptin during reproduction in European Starlings (Sturnus vulgaris)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leptin, a systemic hormone produced by adipocytes or fat cells, has been widely studied in mammals, and is known to play diverse roles in body mass regulation, immune function, reproduction, etc. However we know very little about avian leptin, especially in free-living birds; indeed, this remains a ...

  3. Gamma-synuclein is an adipocyte-neuron gene coordinately expressed with leptin and increased in human obesity.

    PubMed

    Oort, Pieter J; Knotts, Trina A; Grino, Michel; Naour, Nadia; Bastard, Jean-Phillipe; Clément, Karine; Ninkina, Natalia; Buchman, Vladimir L; Permana, Paska A; Luo, Xunyi; Pan, Guohua; Dunn, Tamara N; Adams, Sean H

    2008-05-01

    Recently, we characterized tumor suppressor candidate 5 (Tusc5) as an adipocyte-neuron PPARgamma target gene. Our objective herein was to identify additional genes that display distinctly high expression in fat and neurons, because such a pattern could signal previously uncharacterized functional pathways shared in these disparate tissues. gamma-Synuclein, a marker of peripheral and select central nervous system neurons, was strongly expressed in white adipose tissue (WAT) and peripheral nervous system ganglia using bioinformatics and quantitative PCR approaches. Gamma-synuclein expression was determined during adipogenesis and in subcutaneous (SC) and visceral adipose tissue (VAT) from obese and nonobese humans. Gamma-synuclein mRNA increased from trace levels in preadipocytes to high levels in mature 3T3-L1 adipocytes and decreased approximately 50% following treatment with the PPARgamma agonist GW1929 (P < 0.01). Because gamma-synuclein limits growth arrest and is implicated in cancer progression in nonadipocytes, we suspected that expression would be increased in situations where WAT plasticity/adipocyte turnover are engaged. Consistent with this postulate, human WAT gamma-synuclein mRNA levels consistently increased in obesity and were higher in SC than in VAT; i.e. they increased approximately 1.7-fold in obese Pima Indian adipocytes (P = 0.003) and approximately 2-fold in SC and VAT of other obese cohorts relative to nonobese subjects. Expression correlated with leptin transcript levels in human SC and VAT (r = 0.887; P < 0.0001; n = 44). Gamma-synuclein protein was observed in rodent and human WAT but not in negative control liver. These results are consistent with the hypothesis that gamma-synuclein plays an important role in adipocyte physiology.

  4. Serum leptin levels and leptin expression in growth hormone (GH)-deficient and healthy adults: influence of GH treatment, gender, and fasting.

    PubMed

    Kristensen, K; Pedersen, S B; Fisker, S; Nørrelund, H; Rosenfalck, A M; Jørgensen, J O; Richelsen, B

    1998-12-01

    Growth hormone (GH) treatment is associated with a reduction in fat mass in healthy and GH-deficient (GHD) subjects. This is mainly mediated via a direct GH action on adipose cells and stimulation of lipolysis. Leptin is secreted from adipose tissue and may be involved in signaling information about adipose tissue stores to the brain. Hormonal regulation of leptin is still not fully elucidated, and in the present study, we investigated both the long-term (4-month) and short-term (28-hour) GH effects on serum leptin and leptin gene expression in subcutaneous adipose tissue. In GHD adults (n = 24), leptin correlated with most estimates of adiposity (r = .62 to .86), as previously found in healthy subjects. However, no correlation was observed with intraabdominal fat determined by computed tomographic (CT) scan (INTRA-CT). GH treatment for 4 months had no independent effect on either serum leptin or leptin gene expression. In a short-term study, we found that fasting gradually reduced leptin levels in both healthy men and GHD adults, with a maximum reduction of 58% to 60% (P < .01) after 31 hours. No independent effect of GH suppression or GH substitution on serum leptin was found during fasting. Adipose tissue leptin mRNA correlated with serum leptin (r = .51, P < .01) and the body mass index ([BMI] r = .55, P < .05). Serum leptin levels and gene expression were significantly higher in women compared with men (26.6 +/- 5.8 v 10.0 +/- 1.30 ng/mL, P < .05). However, in regression analysis accounting for the gender differences in subcutaneous femoral adipose tissue (FEM-CT), the difference in serum leptin disappeared, indicating that subcutaneous femoral fat or factors closely related to femoral fat (eg, sex hormones) may be causal factors for the gender difference in leptin.

  5. Effect of Cross-Sex Hormonal Replacement on Antioxidant Enzymes in Rat Retroperitoneal Fat Adipocytes

    PubMed Central

    Velázquez Espejel, Rodrigo; Cabrera-Orefice, Alfredo; Uribe-Carvajal, Salvador; Pavón, Natalia

    2016-01-01

    We report the effect of cross-sex hormonal replacement on antioxidant enzymes from rat retroperitoneal fat adipocytes. Eight rats of each gender were assigned to each of the following groups: control groups were intact female or male (F and M, resp.). Experimental groups were ovariectomized F (OvxF), castrated M (CasM), OvxF plus testosterone (OvxF + T), and CasM plus estradiol (CasM + E2) groups. After sacrifice, retroperitoneal fat was dissected and processed for histology. Adipocytes were isolated and the following enzymatic activities were determined: Cu-Zn superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST), and glutathione reductase (GR). Also, glutathione (GSH) and lipid peroxidation (LPO) were measured. In OvxF, retroperitoneal fat increased and adipocytes were enlarged, while in CasM rats a decrease in retroperitoneal fat and small adipocytes are observed. The cross-sex hormonal replacement in F rats was associated with larger adipocytes and a further decreased activity of Cu-Zn SOD, CAT, GPx, GST, GR, and GSH, in addition to an increase in LPO. CasM + E2 exhibited the opposite effects showing further activation antioxidant enzymes and decreases in LPO. In conclusion, E2 deficiency favors an increase in retroperitoneal fat and large adipocytes. Cross-sex hormonal replacement in F rats aggravates the condition by inhibiting antioxidant enzymes. PMID:27630756

  6. Food additives such as sodium sulphite, sodium benzoate and curcumin inhibit leptin release in lipopolysaccharide-treated murine adipocytes in vitro.

    PubMed

    Ciardi, Christian; Jenny, Marcel; Tschoner, Alexander; Ueberall, Florian; Patsch, Josef; Pedrini, Michael; Ebenbichler, Christoph; Fuchs, Dietmar

    2012-03-01

    Obesity leads to the activation of pro-inflammatory pathways, resulting in a state of low-grade inflammation. Recently, several studies have shown that the exposure to lipopolysaccharide (LPS) could initiate and maintain a chronic state of low-grade inflammation in obese people. As the daily intake of food additives has increased substantially, the aim of the present study was to investigate a potential influence of food additives on the release of leptin, IL-6 and nitrite in the presence of LPS in murine adipocytes. Leptin, IL-6 and nitrite concentrations were analysed in the supernatants of murine 3T3-L1 adipocytes after co-incubation with LPS and the food preservatives, sodium sulphite (SS), sodium benzoate (SB) and the spice and colourant, curcumin, for 24 h. In addition, the kinetics of leptin secretion was analysed. A significant and dose-dependent decrease in leptin was observed after incubating the cells with SB and curcumin for 12 and 24 h, whereas SS decreased leptin concentrations after 24 h of treatment. Moreover, SS increased, while curcumin decreased LPS-stimulated secretion of IL-6, whereas SB had no such effect. None of the compounds that were investigated influenced nitrite production. The food additives SS, SB and curcumin affect the leptin release after co-incubation with LPS from cultured adipocytes in a dose- and time-dependent manner. Decreased leptin release during the consumption of nutrition-derived food additives could decrease the amount of circulating leptin to which the central nervous system is exposed and may therefore contribute to an obesogenic environment.

  7. Drug targeting of leptin resistance.

    PubMed

    Santoro, Anna; Mattace Raso, Giuseppina; Meli, Rosaria

    2015-11-01

    Leptin regulates glucose, lipid and energy homeostasis as well as feeding behavior, serving as a bridge between peripheral metabolically active tissues and the central nervous system (CNS). Indeed, this adipocyte-derived hormone, whose circulating levels mirror fat mass, not only exerts its anti-obesity effects mainly modulating the activity of specific hypothalamic neurons expressing the long form of the leptin receptor (Ob-Rb), but it also shows pleiotropic functions due to the activation of Ob-Rb in peripheral tissues. Nevertheless, several mechanisms have been suggested to mediate leptin resistance, including obesity-associated hyperleptinemia, impairment of leptin access to CNS and the reduction in Ob-Rb signal transduction effectiveness, among others. During the onset and progression of obesity, the dampening of leptin sensitivity often occurs, preventing the efficacy of leptin replacement therapy from overcoming obesity and/or its comorbidities. This review focuses on obesity-associated leptin resistance and the mechanisms underpinning this condition, to highlight the relevance of leptin sensitivity restoration as a useful therapeutic strategy to treat common obesity and its complications. Interestingly, although promising strategies to counteract leptin resistance have been proposed, these pharmacological approaches have shown limited efficacy or even relevant adverse effects in preclinical and clinical studies. Therefore, the numerous findings from this review clearly indicate a lack of a single and efficacious treatment for leptin resistance, highlighting the necessity to find new therapeutic tools to improve leptin sensitivity, especially in patients with most severe disease profiles.

  8. Growth and anabolic hormones, leptin, and neuromuscular performance in moderately trained prepubescent athletes and untrained boys.

    PubMed

    Tsolakis, Charilaos; Vagenas, George; Dessypris, Athanasios

    2003-02-01

    We investigated hormonal regulators of growth and development, leptin levels, body composition, neuromuscular performance, and the associations among them in trained prepubertal athletes (experimental group [EG]) and an untrained control group (CG). Informed consent was obtained from the children and their parents. Their maturation stage was evaluated according to Tanner's criteria. There were no differences between EG and CG in physical characteristics, body mass index (BMI), lean body mass, testosterone (T), sex hormone-binding globulin, free androgen index, growth hormone (GH), hand grip strength, and jumping performance. Leptin levels and percent fat of the EG were significantly lower than those of the CG (p < 0.05-0.005). Leptin levels were significantly correlated to body fat and BMI for both the EG and the CG (r = 0.51-0.79). There is little evidence that leptin has a positive effect on growth and anabolic factors. Sex hormone-binding globulin and GH may explain the variation of leptin in athletes with low T (R(2) = 0.43) and in CG (R(2) = 0.35), respectively. Leptin seems to be a permissive factor for the onset of puberty, and the training background needs an optimal biological maturation to produce significant differences in muscle and power performance.

  9. Leptin in human physiology and pathophysiology.

    PubMed

    Mantzoros, Christos S; Magkos, Faidon; Brinkoetter, Mary; Sienkiewicz, Elizabeth; Dardeno, Tina A; Kim, Sang-Yong; Hamnvik, Ole-Petter R; Koniaris, Anastasia

    2011-10-01

    Leptin, discovered through positional cloning 15 years ago, is an adipocyte-secreted hormone with pleiotropic effects in the physiology and pathophysiology of energy homeostasis, endocrinology, and metabolism. Studies in vitro and in animal models highlight the potential for leptin to regulate a number of physiological functions. Available evidence from human studies indicates that leptin has a mainly permissive role, with leptin administration being effective in states of leptin deficiency, less effective in states of leptin adequacy, and largely ineffective in states of leptin excess. Results from interventional studies in humans demonstrate that leptin administration in subjects with congenital complete leptin deficiency or subjects with partial leptin deficiency (subjects with lipoatrophy, congenital or related to HIV infection, and women with hypothalamic amenorrhea) reverses the energy homeostasis and neuroendocrine and metabolic abnormalities associated with these conditions. More specifically, in women with hypothalamic amenorrhea, leptin helps restore abnormalities in hypothalamic-pituitary-peripheral axes including the gonadal, thyroid, growth hormone, and to a lesser extent adrenal axes. Furthermore, leptin results in resumption of menses in the majority of these subjects and, in the long term, may increase bone mineral content and density, especially at the lumbar spine. In patients with congenital or HIV-related lipoatrophy, leptin treatment is also associated with improvements in insulin sensitivity and lipid profile, concomitant with reduced visceral and ectopic fat deposition. In contrast, leptin's effects are largely absent in the obese hyperleptinemic state, probably due to leptin resistance or tolerance. Hence, another emerging area of research pertains to the discovery and/or usefulness of leptin sensitizers. Results from ongoing studies are expected to further increase our understanding of the role of leptin and the potential clinical

  10. Fat-mass-related hormone, plasma leptin, predicts brain volumes in the elderly.

    PubMed

    Rajagopalan, Priya; Toga, Arthur W; Jack, Clifford R; Weiner, Michael W; Thompson, Paul M

    2013-01-23

    Leptin, a hormone produced by body fat tissue, acts on hypothalamic receptors in the brain to regulate appetite and energy expenditure, and on neurons in the arcuate nucleus to signal that an individual has had enough to eat. Leptin enters the central nervous system at levels that depend on an individual's body fat. Obese people, on average, show greater brain atrophy in old age, so it is valuable to know whether brain atrophy relates to leptin levels, which can be targeted by interventions. We therefore determined how plasma leptin levels, and BMI, relate to brain structure, and whether leptin levels might account for BMI's effect on the brain. We measured regional brain volumes using tensor-based morphometry, in MRI scans of 517 elderly individuals with plasma leptin measured (mean: 13.3±0.6 ng/ml; mean age: 75.2±7.3 years; 321 men/196 women). We related plasma leptin levels to brain volumes at every location in the brain after adjusting for age, sex, and diagnosis and, later, also BMI. Plasma leptin levels were significantly higher (a) in women than men, and (b) in obese versus overweight, normal or underweight individuals. People with higher leptin levels showed deficits in frontal, parietal, temporal and occipital lobes, brainstem, and the cerebellum, irrespective of age, sex, or diagnosis. These associations persisted after controlling for BMI. Greater brain atrophy may occur in people with central leptin insufficiency, a marker of obesity. Therapeutic manipulation of leptin may be a promising direction for slowing brain decline.

  11. Dexamethasone and Acetate Modulate Cytoplasmic Leptin in Bovine Preadipocytes

    PubMed Central

    Yonekura, Shinichi; Hirota, Shohei; Tokutake, Yukako; Rose, Michael T.; Katoh, Kazuo; Aso, Hisashi

    2014-01-01

    Hormonal and nutrient signals regulate leptin synthesis and secretion. In rodents, leptin is stored in cytosolic pools of adipocytes. However, not much information is available regarding the regulation of intracellular leptin in ruminants. Recently, we demonstrated that leptin mRNA was expressed in bovine intramuscular preadipocyte cells (BIP cells) and that a cytoplasmic leptin pool may be present in preadipocytes. In the present study, we investigated the expression of cytoplasmic leptin protein in BIP cells during differentiation as well as the effects of various factors added to the differentiation medium on its expression in BIP cells. Leptin mRNA expression was observed only at 6 and 8 days after adipogenic induction, whereas the cytoplasmic leptin concentration was the highest on day 0 and decreased gradually thereafter. Cytoplasmic leptin was detected at 6 and 8 days after adipogenic induction, but not at 4 days after adipogenic induction. The cytoplasmic leptin concentration was reduced in BIP cells at 4 days after treatment with dexamethasone, whereas cytoplasmic leptin was not observed at 8 days after treatment. In contrast, acetate significantly enhanced the cytoplasmic leptin concentration in BIP cells at 8 days after treatment, although acetate alone did not induce adipocyte differentiation in BIP cells. These results suggest that dexamethasone and acetate modulate the cytoplasmic leptin concentration in bovine preadipocytes. PMID:25049989

  12. Leptin concentration in breast milk and its relationship to duration of lactation and hormonal status

    PubMed Central

    Ilcol, Yesim Ozarda; Hizli, Z Banu; Ozkan, Tanju

    2006-01-01

    Background Leptin, a hormone present in breast milk, is involved in energy regulation and metabolism. The objectives of this study were to assess leptin concentrations in breast milk during the first 180 days postpartum, and to determine the relationship between the concentrations of milk leptin and circulating hormone levels in lactating women. Methods Between April 2005 and January 2006, blood and breast milk samples were collected from 160 breastfeeding women enrolled either in the first three days (n = 37; colostrum), days 4–14 (n = 27; transitional milk), days 15–30 (n = 16; early mature milk), days 31–90 (n = 37; mature milk) or days 91–180 (n = 43; late mature milk) postpartum. Milk and serum leptin levels were measured by immunoradiometric assay. Cortisol was measured by radioimmunoassay method. Serum insulin, estradiol, prolactin and thyroxine were measured by chemiluminescent immunometric method. Results Leptin concentrations in breast milk were highest (3.28 ± 0.41 ng/ml) in colostrum, decreased during the first 180 days of lactation, showing a significant inverse relation (r = -0.694, p < 0.001) with the days of lactation. Colostrum leptin concentrations correlated with maternal serum leptin (r = 0.425, p < 0.01), cortisol (r = 0.549, p < 0.01) and thyroxine (r = -0.530, p < 0.01). Mature milk leptin concentrations correlated with maternal serum leptin (r = 0.547, p < 0.001), insulin (r = 0.331, p < 0.05) and thyroxine (r = -0.329, p < 0.01). Serum leptin concentrations correlated with serum insulin (r = 0.648, p < 0.001), estradiol (r = 0.639, p < 0.001), prolactin (r = 0.530, p < 0.001) and thyroxine (r = -0.327, p < 0.05) concentrations during days 1–3 postpartum. During 15–180 postpartum days, serum leptin concentrations correlated with serum insulin (r = 0.271, p < 0.01), and thyroxine (r = -0.345, p < 0.001). Conclusion Leptin concentrations in breast milk decrease with time during lactation and show significant relationships with

  13. Leptin signaling and leptin resistance.

    PubMed

    Zhou, Yingjiang; Rui, Liangyou

    2013-06-01

    Leptin is secreted into the bloodstream by adipocytes and is required for the maintenance of energy homeostasis and body weight. Leptin deficiency or genetic defects in the components of the leptin signaling pathways cause obesity. Leptin controls energy balance and body weight mainly through leptin receptor b (LEPRb)-expressing neurons in the brain, particularly in the hypothalamus. These LEPRb-expressing neurons function as the first-order neurons that project to the second-order neurons located within and outside the hypothalamus, forming a neural network that controls the energy homeostasis and body weight. Multiple factors, including inflammation and endoplasmic reticulum (ER) stress, contribute to leptin resistance. Leptin resistance is the key risk factor for obesity. This review is focused on recent advance about leptin action, leptin signaling, and leptin resistance.

  14. The mammalian target of rapamycin complex 1 regulates leptin biosynthesis in adipocytes at the level of translation: the role of the 5'-untranslated region in the expression of leptin messenger ribonucleic acid.

    PubMed

    Chakrabarti, Partha; Anno, Takatoshi; Manning, Brendan D; Luo, Zhijun; Kandror, Konstantin V

    2008-10-01

    Leptin production by adipose cells in vivo is increased after feeding and decreased by food deprivation. However, molecular mechanisms that control leptin expression in response to food intake remain unknown. Here, we test the hypothesis that leptin expression in adipose cells is regulated by nutrient- and insulin-sensitive mammalian target of rapamycin complex 1 (mTORC1)-mediated pathway. The activity of mTORC1 in 3T3-L1 adipocytes was up-regulated by stable expression of either constitutively active Rheb or dominant-negative AMP-activated protein kinase. In both cases, expression of endogenous leptin was significantly elevated at the level of translation. To investigate the role of leptin 5'-untranslated region (UTR) in the regulation of protein expression, we created bicistronic reporter constructs with and without the 5'-UTR. We found that the presence of leptin 5'-UTR renders mRNA resistant to regulation by mTORC1. It appears, therefore, that mTORC1 controls translation of leptin mRNA via a novel mechanism that does not require the presence of either the 5'-terminal oligopyrimidine tract or the 5'-UTR.

  15. Leptin and leptin receptor in pig spermatozoa: evidence of their involvement in sperm capacitation and survival.

    PubMed

    Aquila, Saveria; Rago, Vittoria; Guido, Carmela; Casaburi, Ivan; Zupo, Silvia; Carpino, Amalia

    2008-07-01

    Several studies have recently investigated the role of leptin, the adipocyte-secreted hormone, in the growth and reproduction of rodents, humans, and domestic animals. The present study was designed to explore the expression of leptin and its receptor in pig spermatozoa. Successful Western blot evidenced a 16 kDa band for leptin and six isoforms, ranging from 120 to 40 kDa, for the leptin receptor. Both leptin and leptin receptor were interestingly located at sperm acrosomal level, suggesting their involvement in the oocyte fertilization events. In fact, both capacitation indexes and acrosin activity were enhanced by leptin, and these effects were reduced by the anti-leptin receptor antibody. Afterwards, we investigated the main transduction pathways regulated by the hormone. Our results showed that, in pig sperm, leptin can trigger the signal transducer and activator of transcription 3, a classical component of cytokine signal transduction pathways, whose expression has not been previously reported in male gamete; in addition it was found constitutively activated. Besides, leptin was able to induce the activation of phosphatidylinositol phosphate kinase 3 and MAP kinase pathways as well as of BCL2, a known antiapoptotic protein. These data address to a role of leptin and its receptor on pig sperm survival. The presence of leptin and its receptor in pig sperm suggests that they, through an autocrine short loop, may induce signal transduction and molecular changes associated with sperm capacitation and survival.

  16. Exercise-Associated Amenorrhea: Are Altered Leptin Levels an Early Warning Sign?

    ERIC Educational Resources Information Center

    Warren, Michelle P.; Ramos, Russalind H.; Bronson, Emily M.

    2002-01-01

    Although the exact cause of the female athlete triad (amenorrhea, disordered eating, and osteoporosis) is unknown, recent research implicates leptin, a hormone secreted by adipocytes. Leptin may be an important indicator of nutritional status and may play a role in reproductive function. Physicians who develop a plan for early recognition and…

  17. Leptin resistance and hippocampal behavioral deficits.

    PubMed

    Van Doorn, Catherine; Macht, Victoria A; Grillo, Claudia A; Reagan, Lawrence P

    2017-03-04

    The adipocyte-derived hormone leptin is an important regulator of body weight and metabolism through activation of brain leptin receptors expressed in regions such as the hypothalamus. Beyond these well described and characterized activities of leptin in the hypothalamus, it is becoming increasingly clear that the central activities of leptin extend to the hippocampus. Indeed, leptin receptors are expressed in the hippocampus where these receptors are proposed to mediate various aspects of hippocampal synaptic plasticity that ultimately impact cognitive function. This concept is supported by studies demonstrating that leptin promotes hippocampal-dependent learning and memory, as well as studies indicating that leptin resistance is associated with deficits in hippocampal-dependent behaviors and in the induction of depressive-like behaviors. The effects of leptin on cognitive/behavioral plasticity in the hippocampus may be regulated by direct activation of leptin receptors expressed in the hippocampus; additionally, leptin-mediated activation of synaptic networks that project to the hippocampus may also impact hippocampal-mediated behaviors. In view of these previous observations, the goal of this review will be to discuss the mechanisms through which leptin facilitates cognition and behavior, as well as to dissect the loci at which leptin resistance leads to impairments in hippocampal synaptic plasticity, including the development of cognitive deficits and increased risk of depressive illness in metabolic disorders such as obesity and type 2 diabetes mellitus (T2DM).

  18. Adipocyte-derived hormones in heroin addicts: the influence of methadone maintenance treatment.

    PubMed

    Housová, J; Wilczek, H; Haluzík, M M; Kremen, J; Krízová, J; Haluzík, M

    2005-01-01

    Heroin addiction markedly affects the nutritional and metabolic status and frequently leads to malnutrition. The aim of our study was to compare circulating concentration of adipose tissue-derived hormones leptin, adiponectin and resistin in 12 patients with heroin addiction before and after one-year methadone maintenance treatment with the group of 20 age- and body mass index-matched healthy subjects. Basal serum leptin and adiponectin levels in heroin addicts were significantly decreased (3.4+/-0.4 vs. 4.5+/-0.6 ng/ml and 18.9+/-3.3 vs. 33.9+/-3.1 ng/microl, respectively; p 0.05) while serum resistin concentrations were increased compared to healthy subjects (10.1+/-1.2 vs. 4.6+/-0.3 ng/ml; p 0.05). Moreover, positive correlation of serum leptin levels with body mass index was lost in the addicts in contrast to control group. One year of methadone maintenance treatment normalized serum leptin, but not serum adiponectin and resistin concentrations. In conclusion, circulating concentrations of leptin, adiponectin and resistin are markedly altered in patients with chronic heroin addiction. These alterations appear to be relatively independent of nutritional status and insulin sensitivity.

  19. Difference in leptin hormone response to nutritional status in normal adult male albino rats.

    PubMed

    Al-Sowyan, Noorah S

    2009-01-15

    The present study investigated the effect of 14 days diet, enriched in butter, vitamin E (vit. E) and green tea, on the major regulators of energy expenditure. Leptin is the product OB gene. This 16 KDa protein is produced by mature adipocytes and is secreted in plasma. Its plasma levels are strongly correlated with adipose mass in rodents as well as in humans. Leptin inhibit food intake, reduces body weight and stimulates energy expenditure. In order to evaluate the effect of diet enriched in butter, vit. E and green tea on body weight, adipose tissue weight and organs weight, serum lipids, lipoproteins content and serum leptin levels in male albino rats supplemented for 14 days on the previous diet. This study showed that high fat diet significantly increased body weight and adipose tissue weight, while vit. E and green tea enriched diet significantly lowered body weight and adipose tissue weight, kidney and spleen weights didn't show significant changes in all the experimental groups. While liver weight decreased in diet supplemented with high fat diet. Also, the results showed that high fat diet and vit. E supplemented diet induced significant increase in total cholesterol, LDLc., triglyceride level with significant decrease in HDLc. level as compared to normal control rats. Finally green tea supplemented diet induced significant decrease in total cholesterol, LDLc., triglyceride level with insignificant increase in HDLc. level in control rats. On the other hand, high fat supplemented diet significantly increased serum leptin levels in rats compared to control group, while vit. E and green tea enriched diet significantly lowered serum leptin levels at the end of experimental period. In conclusion, improving the biological activity of leptin by diet modification may exist as a practical strategy for the treatment of obesity and related disorders and a diet rich in green tea to reduce the risk of cardiovascular disease (CVD) obesity and also protect the liver

  20. Polychlorinated biphenyls (PCB 101, PCB 153 and PCB 180) alter leptin signaling and lipid metabolism in differentiated 3T3-L1 adipocytes

    SciTech Connect

    Ferrante, Maria C.; Amero, Paola; Santoro, Anna; Monnolo, Anna; Simeoli, Raffaele; Di Guida, Francesca; Mattace Raso, Giuseppina; Meli, Rosaria

    2014-09-15

    Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) are highly lipophilic environmental contaminants that accumulate in lipid-rich tissues, such as adipose tissue. Here, we reported the effects induced by PCBs 101, 153 and 180, three of the six NDL-PCBs defined as indicators, on mature 3T3-L1 adipocytes. We observed an increase in lipid content, in leptin gene expression and a reduction of leptin receptor expression and signaling, when cells were exposed to PCBs, alone or in combination. These modifications were consistent with the occurrence of “leptin-resistance” in adipose tissue, a typical metabolic alteration related to obesity. Therefore, we investigated how PCBs affect the expression of pivotal proteins involved in the signaling of leptin receptor. We evaluated the PCB effect on the intracellular pathway JAK/STAT, determining the phosphorylation of STAT3, a downstream activator of the transcription of leptin gene targets, and the expression of SOCS3 and PTP1B, two important regulators of leptin resistance. In particular, PCBs 153 and 180 or all PCB combinations induced a significant reduction in pSTAT3/STAT3 ratio and an increase in PTP1B and SOCS3, evidencing an additive effect. The impairment of leptin signaling was associated with the reduction of AMPK/ACC pathway activation, leading to the increase in lipid content. These pollutants were also able to increase the transcription of inflammatory cytokines (IL-6 and TNFα). It is worthy to note that the PCB concentrations used are comparable to levels detectable in human adipose tissue. Our data strongly support the hypothesis that NDL-PCBs may interfere with the lipid metabolism contributing to the development of obesity and related diseases. - Highlights: • NDL-PCBs alter lipid content and metabolism in 3T3-L1 adipocytes. • Impairment of leptin signaling was induced by NDL-PCBs. • NDL-PCBs reduce AMPK and ACC activation. • NDL-PCBs induce the synthesis of pro-inflammatory cytokine by

  1. Leptin resistance in obesity: An epigenetic landscape.

    PubMed

    Crujeiras, Ana B; Carreira, Marcos C; Cabia, Begoña; Andrade, Sara; Amil, Maria; Casanueva, Felipe F

    2015-11-01

    Leptin is an adipocyte-secreted hormone that inhibits food intake and stimulates energy expenditure through interactions with neuronal pathways in the brain, particularly pathways involving the hypothalamus. Intact functioning of the leptin route is required for body weight and energy homeostasis. Given its function, the discovery of leptin increased expectations for the treatment of obesity. However, most obese individuals and subjects with a predisposition to regain weight after losing it have leptin concentrations than lean individuals, but despite the anorexigenic function of this hormone, appetite is not effectively suppressed in these individuals. This phenomenon has been deemed leptin resistance and could be the result of impairments at a number of levels in the leptin signalling pathway, including reduced access of the hormone to its receptor due to changes in receptor expression or changes in post-receptor signal transduction. Epigenetic regulation of the leptin signalling circuit could be a potential mechanism of leptin function disturbance. This review discusses the molecular mechanisms, particularly the epigenetic regulation mechanisms, involved in leptin resistance associated with obesity and the therapeutic potential of these molecular mechanisms in the battle against the obesity pandemic.

  2. Role of leptin on growth hormone and prolactin secretion by bovine pituitary explants.

    PubMed

    Accorsi, P A; Munno, A; Gamberoni, M; Viggiani, R; De Ambrogi, M; Tamanini, C; Seren, E

    2007-04-01

    Leptin is an important hormone regulating nutritional status in humans and animals. Its most relevant activity is at the hypothalamic level, where it modulates food behavior, thermogenesis, and secretion of several pituitary hormones. The exact mechanisms underlying these processes are unclear. The purpose of this study was to verify whether leptin could modulate growth hormone (GH) and prolactin (PRL) secretion acting directly on bovine pituitary cells. Adenohypophyseal explants were cultured with different concentrations of leptin (50, 250, and 500 ng/mL); GH and PRL concentrations in culture media were determined by RIA. On tissues treated with 250 ng/mL of leptin, GH and PRL mRNA, as well as protein content, were estimated by reverse transcription-PCR and Western immunoblotting, respectively. Concentrations of GH in culture media containing 250 and 500 ng/mL of leptin were significantly higher than in controls: 1,063.5 +/- 141.2 (mean +/- SEM) and 1,018.8 +/- 88.4 vs. 748.9 +/- 74.0 ng/mg of tissue, respectively, after 1 h of treatment. Prolactin concentrations were significantly higher in culture media containing 50, 250, and 500 ng/mL of leptin than in controls after 2 h of treatment (547.1 +/- 50.3, 547.5 +/- 58.8, and 577.0 +/- 63.7 vs. 406.8 +/- 43.9 ng/mg of tissue, respectively). Tissues cultured with 250 ng/mL of leptin had significantly higher GH mRNA and lower GH protein content than controls (389.7 +/- 17.9 vs. 289.7 +/- 16.7; 1,601.5 +/- 90.1 vs. 2,212.7 +/- 55.6 arbitrary units, respectively) after 5 h of treatment. In contrast, no significant differences were found for PRL mRNA and protein content, possibly because of a delay in the leptin stimulation of PRL secretion. The results suggest that GH and PRL secretion in bovine pituitary explants can be directly regulated by leptin.

  3. The inhibition of inflammatory molecule expression on 3T3-L1 adipocytes by berberine is not mediated by leptin signaling.

    PubMed

    Choi, Bong-Hyuk; Kim, Yu-Hee; Ahn, In-Sook; Ha, Jung-Heun; Byun, Jae-Min; Do, Myoung-Sool

    2009-01-01

    In our previous study, we have shown that berberine has both anti-adipogenic and anti-inflammatory effects on 3T3-L1 adipocytes, and the anti-adipogenic effect is due to the down-regulation of adipogenic enzymes and transcription factors. Here we focused more on anti-inflammatory effect of berberine using real time RT-PCR and found it changes expressions of adipokines. We hypothesized that anti-adipogenicity of berberine mediates anti-inflammtory effect and explored leptin as a candidate mediator of this signaling. We studied this hypothesis by western blot analysis, but our results showed that berberine has no effect on the phosphorylations of STAT-3 and ERK which have important roles on leptin signaling. These results led us to conclude that the anti-inflammatory effect of berberine is not mediated by the inhibition of leptin signal transduction. Moreover, we have found that berberine down-regulates NF-kappaB signaling, one of the inflammation-related signaling pathway, through western blot analysis. Taken together, the anti-inflammatory effect of berberine is not mediated by leptin, and berberine induces anti-inflammatory effect independent of leptin signaling.

  4. Body composition, leptin, and the leptin receptor and their relationship to the growth hormone (GH) axis in growing wethers treated with zeranol.

    PubMed

    Narro, L A; Thomas, M G; Silver, G A; Rozeboom, K J; Keisler, D H

    2003-04-01

    Age-related changes in body composition, leptin, and hypothalamic-pituitary expression of the leptin receptor and associative relationships of these factors to constituents of the growth hormone (GH) axis were evaluated. Seventy wethers were randomly assigned at birth to one of four treatment groups: control; treatment 1 implanted with the estrogenic compound zeranol (12 mg, Ralgro on days 0, 45, and 90; treatment 2 received zeranol on days 45 and 90; and treatment 3 received zeranol on day 90. Serum and tissues were collected from wethers (n > or = 5) from each group on days 28, 73, 118, and 135. Percent body fat and leptin increased linearly (P < 0.01) with age, but were not influenced (P > or = 0.14) by zeranol. The leptin receptor in the pituitary appeared to be differentially (P = 0.097) expressed across days 73-135, but no differences (P > or = 0.43) were detected in expression of this receptor in the hypothalamus among treatments and ages. Leptin and % body fat were negatively correlated (r > or = -0.52, P < 0.05) to mRNA levels of factors involved in pituitary synthesis and secretion of GH. Serum leptin increased with age as did percent body fat, but zeranol did not influence body composition, serum leptin, or expression of the leptin receptor in the hypothalamus or pituitary; however, the leptin receptor appeared to be differentially expressed among the hypothalamus and pituitary with level of body fat and leptin being inversely associated to transcriptional-factors involved in somatotrope synthesis and secretion of GH.

  5. Sida rhomboidea. Roxb leaf extract down-regulates expression of PPARγ2 and leptin genes in high fat diet fed C57BL/6J Mice and retards in vitro 3T3L1 pre-adipocyte differentiation.

    PubMed

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Ramani, Umed V; Devkar, Ranjitsinh V; Ramachandran, A V

    2011-01-01

    Sida rhomboidea. Roxb leaf extract (SRLE) is being used by the populace of North-East India to alleviate symptoms of diabetes and obesity. We have previously reported its hypolipidemic and anti-diabetic properties. In this study, we report the effect of SRLE on (i) in vivo modulation of genes controlling high fat diet (HFD) induced obesity and (ii) in vitro 3T3L1 pre-adipocyte differentiation and leptin release. Supplementation with SRLE significantly prevented HFD induced increment in bodyweight, plasma lipids and leptin, visceral adiposity and adipocyte hypertrophy. Also, SRLE supplementation reduced food intake, down regulated PPARγ2, SREBP1c, FAS and LEP expressions and up-regulated CPT-1 in epididymal adipose tissue compared to obese mice. In vitro adipogenesis of 3T3L1 pre-adipocytes was significantly retarded in the presence of SRLE extract. Also decreased triglyceride accumulation, leptin release and glyceraldehyde-3-Phosphate dehydrogenase activity along with higher glycerol release without significant alteration of viability of 3T3L1 pre-adipocytes, was recorded. Our findings suggest that prevention of HFD induced visceral adiposity is primarily by down regulation of PPARγ2 and leptin gene expression coupled with attenuation of food intake in C57BL/6J mice. SRLE induced prevention of pre-adipocytes differentiation, and leptin release further substantiated these findings and scientifically validates the potential application of SRLE as a therapeutic agent against obesity.

  6. Leptin alters the response of the growth hormone releasing factor- growth hormone--insulin-like growth factor-I axis to fasting.

    PubMed

    LaPaglia, N; Steiner, J; Kirsteins, L; Emanuele, M; Emanuele, N

    1998-10-01

    Proper nutritional status is critical for maintaining growth and metabolic function, playing an intimate role in neuroendocrine regulation. Leptin, the recently identified product of the obese gene, may very well be an integral signal which regulates neuroendocrine responses in times of food deprivation. The present study examines leptin's ability to regulate hormonal synthesis and secretion within the GRF-GH-IGF axis in the adult male rat during almost 3 days of fasting. Serum levels of GH and IGF-I were drastically suppressed by fasting. Daily leptin administration was able to fully prevent the fasting-induced fall in serum GH. Leptin failed to restore IGF-I to control levels, however, suggesting possible GH resistance. Fasting caused an insignificant increase in GH mRNA, while leptin injections significantly increased steady-state levels of this message. The GRF receptor (GRFr) message was not altered with fasting or leptin treatment. Leptin also exhibited effects at the hypothalamic level. Fasting induced a sharp fall in GRF mRNA expression and leptin injections partially prevented this fall. However, there were no observed changes in the hypothalamic GRF content. These results provide evidence that leptin may function as a neuromodulator of the GRF-GH-IGF axis communicating to this hormonal system the nutritional status of the animal.

  7. Growth hormone and adipose tissue: beyond the adipocyte

    PubMed Central

    Berryman, Darlene E.; List, Edward O.; Sackmann-Sala, Lucila; Lubbers, Ellen; Munn, Rachel; Kopchick, John J.

    2011-01-01

    The last two decades have seen resurgence in the interest in, and research on, adipose tissue. In part, the increased interest stems from an alarming increase in obesity rates worldwide. However, an understanding that this once simple tissue is significantly more intricate and interactive than previously realized has fostered additional attention. While few would argue that growth hormone (GH) radically alters adipose tissue, a better appreciation of the newer complexities requires that GH's influence on this tissue be reexamined. Therefore, the objective of this review is to describe the more recent understanding of adipose tissue and how GH may influence and contribute to these newer complexities with special focus on the available data from mice with altered GH action. PMID:21470887

  8. The effect of pinealectomy, melatonin and leptin hormones on ovarian follicular development in female Syrian hamsters (Mesocricetus auratus).

    PubMed

    Karakaş, A; Kaya, Aliye; Gündüz, B

    2010-12-01

    We studied the effects of melatonin and leptin hormones on ovarian follicular development in intact and pinealectomized female Syrian hamsters. We first monitored the oestrous cycle of the hamsters by the vaginal smear samples throughout a ten day period to start the injections simultaneously in all groups and performed saline, melatonin and leptin hormone injection groups for both control and pinealectomized hamsters. Then the injections were applied for four days starting the oestrus phase of the cycle and the ovaries were removed for preparation of histological analysis. We measured the diameters and the numbers of the follicles and we classified the follicles according to the number of the granulosa cell layer. Leptin hormone injection increased melatonin hormone injection decreased the number and the diameter of the follicles. The stimulating effect of the leptin hormone was more pronounced in the pinealectomized group. The results of the present study indicate that the removal of the pineal gland and leptin hormone administration are playing a stimulatory while melatonin hormone administration is playing an inhibitory role on the follicular development in female Syrian hamsters.

  9. Leptin resistance is not the primary cause of weight gain associated with reduced sex hormone levels in female mice.

    PubMed

    da Silva, Regina P; Zampieri, Thais T; Pedroso, João A B; Nagaishi, Vanessa S; Ramos-Lobo, Angela M; Furigo, Isadora C; Câmara, Niels O; Frazão, Renata; Donato, Jose

    2014-11-01

    Several studies have shown that estrogens mimic leptin's effects on energy balance regulation. However, the findings regarding the consequences of reduced sex hormone levels on leptin sensitivity are divergent. In the present study, we employed different experimental paradigms to elucidate the interaction between estrogens, leptin, and energy balance regulation. We confirmed previous reports showing that ovariectomy caused a reduction in locomotor activity and energy expenditure leading mice to obesity and glucose intolerance. However, the acute and chronic anorexigenic effects of leptin were preserved in ovariectomized (OVX) mice despite their increased serum leptin levels. We studied hypothalamic gene expression at different time points after ovariectomy and observed that changes in the expression of genes involved in leptin resistance (suppressors of cytokine signaling and protein-tyrosine phosphatases) did not precede the early onset of obesity in OVX mice. On the contrary, reduced sex hormone levels caused an up-regulation of the long form of the leptin receptor (LepR), resulting in increased activation of leptin signaling pathways in OVX leptin-treated animals. The up-regulation of the LepR was observed in long-term OVX mice (30 d or 24 wk after ovariectomy) but not 7 days after the surgery. In addition, we observed a progressive decrease in the coexpression of LepR and estrogen receptor-α in the hypothalamus after the ovariectomy, resulting in a low percentage of dual-labeled cells in OVX mice. Taken together, our findings suggest that the weight gain caused by reduced sex hormone levels is not primarily caused by induction of a leptin-resistance state.

  10. Aging influences steroid hormone release by mink ovaries and their response to leptin and IGF-I.

    PubMed

    Sirotkin, Alexander V; Mertin, Dušan; Süvegová, Karin; Harrath, Abdel Halim; Kotwica, Jan

    2016-01-21

    The aim of our study was to understand whether ovarian steroid hormones, and their response to the metabolic hormones leptin and IGF-I leptin, could be involved in the control of mink reproductive aging via changes in basal release of ovarian progesterone and estradiol. For this purpose, we compared the release of progesterone and estradiol by ovarian fragments isolated from young (yearlings) and old (3-5 years of age) minks cultured with and without leptin and IGF-I (0, 1, 10 or 100 ng/ml). We observed that isolated ovaries of older animals produced less progesterone but not less estradiol than the ovaries of young animals. Leptin addition stimulated estradiol release by the ovarian tissue of young animals but inhibited it in older females. Leptin did not influence progesterone output by the ovaries of either young or older animals. IGF-I inhibited estradiol output in young but not old animals, whereas progesterone release was inhibited by IGF-I irrespective of the animal age. Our observations demonstrate the involvement of both leptin and IGF-I in the control of mink ovarian steroid hormones release. Furthermore, our findings suggest that reproductive aging in minks can be due to (a) reduction in basal progesterone release and (b) alterations in the response of estradiol but not of progesterone to leptin and IGF-I.

  11. Aging influences steroid hormone release by mink ovaries and their response to leptin and IGF-I

    PubMed Central

    Sirotkin, Alexander V.; Mertin, Dušan; Süvegová, Karin; Harrath, Abdel Halim; Kotwica, Jan

    2016-01-01

    ABSTRACT The aim of our study was to understand whether ovarian steroid hormones, and their response to the metabolic hormones leptin and IGF-I leptin, could be involved in the control of mink reproductive aging via changes in basal release of ovarian progesterone and estradiol. For this purpose, we compared the release of progesterone and estradiol by ovarian fragments isolated from young (yearlings) and old (3-5 years of age) minks cultured with and without leptin and IGF-I (0, 1, 10 or 100 ng/ml). We observed that isolated ovaries of older animals produced less progesterone but not less estradiol than the ovaries of young animals. Leptin addition stimulated estradiol release by the ovarian tissue of young animals but inhibited it in older females. Leptin did not influence progesterone output by the ovaries of either young or older animals. IGF-I inhibited estradiol output in young but not old animals, whereas progesterone release was inhibited by IGF-I irrespective of the animal age. Our observations demonstrate the involvement of both leptin and IGF-I in the control of mink ovarian steroid hormones release. Furthermore, our findings suggest that reproductive aging in minks can be due to (a) reduction in basal progesterone release and (b) alterations in the response of estradiol but not of progesterone to leptin and IGF-I. PMID:26794607

  12. Presence and distribution of leptin and leptin receptor in the canine gallbladder.

    PubMed

    Lee, Sungin; Lee, Aeri; Kweon, Oh-Kyeong; Kim, Wan Hee

    2016-09-01

    The hormone leptin is produced by mature adipocytes and plays an important role in regulating food intake and energy metabolism through its interaction with the leptin receptor. In addition to roles in obesity and obesity-related diseases, leptin has been reported to affect the components and secretion of bile in leptin-deficient mice. Furthermore, gallbladder diseases such as cholelithiasis are known to be associated with serum leptin concentrations in humans. We hypothesized that the canine gallbladder is a source of leptin and that the leptin receptor may be localized in the gallbladder, where it plays a role in regulating the function of this organ. The aim of this study was to demonstrate the presence and expression patterns of leptin and its receptors in normal canine gallbladders using reverse transcriptase-PCR (RT-PCR) and immunohistochemistry. Clinically normal gallbladder tissue samples were obtained from four healthy beagle dogs with similar body condition scores. RT-PCR and sequencing of the amplified PCR products revealed the presence of leptin mRNA and its receptors in the gallbladder. Immunohistochemical investigations demonstrated the expression of leptin and its receptors in the luminal single columnar and tubuloalveolar glandular epithelial cells. In conclusion, the results of this study demonstrated the presence of leptin and its receptors in the gallbladders of dogs. Leptin and its receptor were both localized throughout the cytoplasm of luminal and glandular epithelial cells. These results suggested that the gallbladder is not only a source of leptin, but also a target of leptin though autocrine/paracrine mechanisms. The results of this study could increase the understanding of both the normal physiological functions of the gallbladder and the pathophysiological mechanisms of gallbladder diseases characterized by leptin system dysfunction.

  13. Leptin is a potent stimulator of spontaneous pulsatile growth hormone (GH) secretion and the GH response to GH-releasing hormone.

    PubMed

    Tannenbaum, G S; Gurd, W; Lapointe, M

    1998-09-01

    Pulsatile GH secretion is exquisitely sensitive to perturbations in nutritional status, but the underlying mechanisms are largely unknown. Leptin, a recently discovered adipose cell hormone, is thought to be a sensor of energy stores and to regulate body mass, appetite, and metabolism at the level of the brain. Receptors for leptin are abundantly expressed in hypothalamic nuclei known to be involved in GH regulation, suggesting that leptin may serve as an important hormonal signal to the GH neuroendocrine axis in normal animals. To test this hypothesis, we examined the effects of intracerebroventricular infusion of recombinant murine leptin, at a dose of 1.2 microg/day for 7 days, on both spontaneous and GH-releasing hormone (GHRH)-stimulated GH secretion in free-moving adult male rats. Concomitant with suppressive effects on food intake, body weight, and basal plasma insulin-like growth factor I, insulin, and glucose concentrations, central infusion of leptin resulted in a 2- to 3-fold augmentation of GH pulse amplitude, 5-fold higher GH nadir levels, and a 2- to 3-fold increase in the integrated area under the 6-h GH response curve compared with those in vehicle-infused controls (P < 0.001). The intracerebroventricular infusion of leptin also produced a 3- to 4-fold increase in GHRH-induced GH release at GH trough times (P < 0.01). These studies demonstrate a potent stimulatory action of leptin on both spontaneous pulsatile GH secretion and the GH response to GHRH. The results suggest that the GH-releasing activity of leptin is mediated, at least in part, by an inhibition of hypothalamic somatostatin release. Thus, leptin may be a critical hormonal signal of nutritional status in the neuroendocrine regulation of pulsatile GH secretion.

  14. The protein phosphatases responsible for dephosphorylation of hormone-sensitive lipase in isolated rat adipocytes.

    PubMed Central

    Wood, S L; Emmison, N; Borthwick, A C; Yeaman, S J

    1993-01-01

    The levels of the cytosolic serine/threonine protein phosphatases (PP) in rat adipocyte extracts have been determined, by using both reference substrates and hormone-sensitive lipase (HSL) as substrates. Adipocytes contain significant levels of both PP1 and 2A (1.6 and 2.0 m-units/ml of packed cells respectively), with lower levels of PP2C and virtually no PP2B activity. PP2A and 2C exhibit similar degrees of activity against HSL phosphorylated at site 1, together accounting for 92% of the total. In contrast, site 2 is dephosphorylated predominantly by PP2A (over 50% of total activity), whereas PP1 and PP2C contribute approx. 20% and 30% respectively to the total phosphatase activity against that site. Total phosphatase activity in the adipocyte extracts was 2-3-fold higher against site 2 than against site 1. The possible significance of these findings to the regulation of HSL activity in adipose tissue in vivo is discussed. PMID:8240253

  15. Protein phosphorylation in isolated human adipocytes - Adrenergic control of the phosphorylation of hormone-sensitive lipase

    SciTech Connect

    Smiley, R.M. Columbia Univ College of Physicians and Surgeons, New York, NY ); Paul, S.; Browning, M.D.; Leibel, R.L.; Hirsch, J. )

    1990-01-01

    The effect of adrenergic agents on protein phosphorylation in human adipocytes was examined. Freshly isolated human fat cells were incubated with {sup 32}PO{sub 4} in order to label intracellular ATP, then treated with a variety of adrenergic and other pharmacologic agents. Treatment with the {beta}-adrenergic agonist isoproterenol led to a significant increase in phosphate content of at least five protein bands (M{sub r} 52, 53, 63, 67, 84 kDa). The increase in phosphorylation was partially inhibited by the {alpha}-2 agonist clonidine. Epinephrine, a combined {alpha} and {beta} agonist, was less effective at increasing phosphate content of the proteins than was isoproterenol. Neither insulin nor the {alpha}-1 agonist phenylephrine had any discernible effect on the pattern of protein phosphorylation. The 84 kDa phosphorylated peptide band appears to contain hormone-sensitive lipase, a key enzyme in the lipolytic pathway which is activated by phosphorylation. These results are somewhat different than previously reported results for rat adipocytes, and represent the first report of overall pattern and adrenergic modulation of protein phosphorylation in human adipocytes.

  16. Leptin sustains spontaneous remyelination in the adult central nervous system

    PubMed Central

    Matoba, Ken; Muramatsu, Rieko; Yamashita, Toshihide

    2017-01-01

    Demyelination is a common feature of many central nervous system (CNS) diseases and is associated with neurological impairment. Demyelinated axons are spontaneously remyelinated depending on oligodendrocyte development, which mainly involves molecules expressed in the CNS environment. In this study, we found that leptin, a peripheral hormone secreted from adipocytes, promoted the proliferation of oligodendrocyte precursor cells (OPCs). Leptin increased the OPC proliferation via in vitro phosphorylation of extracellular signal regulated kinase (ERK); whereas leptin neutralization inhibited OPC proliferation and remyelination in a mouse model of toxin-induced demyelination. The OPC-specific leptin receptor long isoform (LepRb) deletion in mice inhibited both OPC proliferation and remyelination in the response to demyelination. Intrathecal leptin administration increased OPC proliferation. These results demonstrated a novel molecular mechanism by which leptin sustained OPC proliferation and remyelination in a pathological CNS. PMID:28091609

  17. The regulation of IGF-1 by leptin in the pig is tissue specific and independent of changes in growth hormone.

    PubMed

    Ajuwon, Kolapo M; Kuske, Joanne L; Ragland, Darryl; Adeola, Olayiwola; Hancock, Deana L; Anderson, David B; Spurlock, Michael E

    2003-09-01

    A combination of in vivo and in vitro experiments were performed to determine the extent to which exogenous leptin regulates serum growth hormone (GH) and insulin-like growth factor I (IGF-1) concentrations, and the abundance of IGF-1 mRNA in major peripheral tissues. Initially (Experiment 1), a recombinant human leptin analog was administered i.m. to young growing pigs (approximately 27 kg body weight) for 15 days at 0 (control), 0.003, 0.01 and 0.03 mg. kg(-1). day(-1). Although there was no sustained effect of leptin on serum GH, there was a reduction (P < 0.02) in serum IGF-1 at the intermediate dose that paralleled a decrease (P < 0.09) in hepatic IGF-1 expression. Leptin, at these doses, did not reduce feed intake (P > 0.57), nor was there an effect of leptin on dietary nitrogen retention (P > 0.97). In a second experiment, pigs were injected with vehicle or a higher dose of leptin (0.05 mg. kg(-1). day(-1)) for 14 days. A third treatment group was injected with vehicle and pair-fed to the intake of the group treated with leptin. In this study, exogenous leptin resulted in a sustained increase in serum leptin (P < 0.0001) and reduction in feed intake of approximately 30% (P < 0.0001). Serum IGF-1 was depressed in both the leptin-treated and pair-fed groups, relative to the group allowed ad-libitum intake (P < 0.01). Furthermore, there was no difference among treatments in the relative abundance of IGF-1 mRNA in skeletal muscle (P > 0.42) or adipose tissue (P > 0.26), and liver mRNA abundance was actually increased (P < 0.01) by leptin, despite the lower feed intake. Finally, to determine whether leptin altered the secretion of IGF-1 by isolated pig hepatocytes, primary cultures were incubated with leptin for 24 to 48 hr (Experiment 3). Leptin (100 nM) caused a sharp reduction (P < 0.0001) in dexamethasone-induced IGF-1 secretion at 24 hr (47% reduction) and at 48 hr (40% reduction). Collectively, these data indicate that leptin may regulate hepatic IGF-1

  18. α-Mangostin Improves Glucose Uptake and Inhibits Adipocytes Differentiation in 3T3-L1 Cells via PPARγ, GLUT4, and Leptin Expressions

    PubMed Central

    Taher, Muhammad; Mohamed Amiroudine, Mohamed Zaffar Ali; Tengku Zakaria, Tengku Muhamad Faris Syafiq; Ichwan, Solachuddin J. A.; Kaderi, Mohd Arifin; Ahmed, Qamar Uddin; Zakaria, Zainul Amiruddin

    2015-01-01

    Obesity has been often associated with the occurrence of cardiovascular diseases, type 2 diabetes, and cancer. The development of obesity is also accompanied by significant differentiation of preadipocytes into adipocytes. In this study, we investigated the activity of α-mangostin, a major xanthone component isolated from the stem bark of G. malaccensis, on glucose uptake and adipocyte differentiation of 3T3-L1 cells focusing on PPARγ, GLUT4, and leptin expressions. α-Mangostin was found to inhibit cytoplasmic lipid accumulation and adipogenic differentiation. Cells treated with 50 μM of α-mangostin reduced intracellular fat accumulation dose-dependently up to 44.4% relative to MDI-treated cells. Analyses of 2-deoxy-D-[3H] glucose uptake activity showed that α-mangostin significantly improved the glucose uptake (P < 0.05) with highest activity found at 25 μM. In addition, α-mangostin increased the amount of free fatty acids (FFA) released. The highest glycerol release level was observed at 50 μM of α-mangostin. qRT-PCR analysis showed reduced lipid accumulation via inhibition of PPARγ gene expression. Induction of glucose uptake and free fatty acid release by α-mangostin were accompanied by increasing mRNA expression of GLUT4 and leptin. These evidences propose that α-mangostin might be possible candidate for the effective management of obesity in future. PMID:25873982

  19. γ-Synuclein Is an Adipocyte-Neuron Gene Coordinately Expressed with Leptin and Increased in Human Obesity1–3

    PubMed Central

    Oort, Pieter J.; Knotts, Trina A.; Grino, Michel; Naour, Nadia; Bastard, Jean-Phillipe; Clément, Karine; Ninkina, Natalia; Buchman, Vladimir L.; Permana, Paska A.; Luo, Xunyi; Pan, Guohua; Dunn, Tamara N.; Adams, Sean H.

    2008-01-01

    Recently, we characterized tumor suppressor candidate 5 (Tusc5) as an adipocyte-neuron PPARγ target gene. Our objective herein was to identify additional genes that display distinctly high expression in fat and neurons, because such a pattern could signal previously uncharacterized functional pathways shared in these disparate tissues. γ-Synuclein, a marker of peripheral and select central nervous system neurons, was strongly expressed in white adipose tissue (WAT) and peripheral nervous system ganglia using bioinformatics and quantitative PCR approaches. γ-Synuclein expression was determined during adipogenesis and in subcutaneous (SC) and visceral adipose tissue (VAT) from obese and nonobese humans. γ-Synuclein mRNA increased from trace levels in preadipocytes to high levels in mature 3T3-L1 adipocytes and decreased ∼50% following treatment with the PPARγ agonist GW1929 (P < 0.01). Because γ-synuclein limits growth arrest and is implicated in cancer progression in nonadipocytes, we suspected that expression would be increased in situations where WAT plasticity/adipocyte turnover are engaged. Consistent with this postulate, human WAT γ-synuclein mRNA levels consistently increased in obesity and were higher in SC than in VAT; i.e. they increased ∼1.7-fold in obese Pima Indian adipocytes (P = 0.003) and ∼2-fold in SC and VAT of other obese cohorts relative to nonobese subjects. Expression correlated with leptin transcript levels in human SC and VAT (r = 0.887; P < 0.0001; n = 44). γ-Synuclein protein was observed in rodent and human WAT but not in negative control liver. These results are consistent with the hypothesis that γ-synuclein plays an important role in adipocyte physiology. PMID:18424589

  20. Effects of leptin on FSH cells in the pituitary gland of Podarcis siculus.

    PubMed

    Ferrandino, Ida; Monaco, Antonio; Grimaldi, Maria Consiglio

    2015-03-01

    Leptin is the hormone synthesised by adipocytes, which plays an important role in regulating appetite and metabolism. In mammals, this pleiotropic hormone also plays a key role in controlling gonadotropin secretion by stimulatory hypothalamic and pituitary actions. However, little is known about leptin in lower vertebrates and particularly few studies are available on reptiles. In the present work, we analysed the action of recombinant human leptin on FSH cells in the pituitary gland of Podarcis siculus female lizards exposed to four different concentrations of the hormone. FSH cells showed a dose-dependent reaction. The data are indicative of the role played by leptin in modulating the cellular activity of such cells in the pituitary gland of P. siculus, similar to what was already reported in mammals. A functional receptor is evidently able to respond to leptin in this lizard, but further comparative studies are needed to understand the role of this hormone in ectothermic vertebrates.

  1. Drug Insight: the role of leptin in human physiology and pathophysiology--emerging clinical applications.

    PubMed

    Brennan, Aoife M; Mantzoros, Christos S

    2006-06-01

    Leptin is an adipocyte-secreted hormone with a key role in energy homeostasis. Studies in animal models, in humans with congenital complete leptin deficiency, and observational and interventional studies in humans with relative leptin deficiency (lower than normal leptin levels) have all indicated that leptin regulates multiple physiological functions, primarily in states of energy deficiency. This information led to proof-of-concept clinical trials involving leptin administration to individuals with relative or complete leptin deficiency. These conditions include congenital complete leptin deficiency, due to mutations in the leptin gene, and states of relative leptin deficiency including lipoatrophy and some forms of hypothalamic amenorrhea. Leptin, in replacement doses, normalizes neuroendocrine, metabolic and immune function in patients with these conditions, but further clinical studies are required to determine its long-term efficacy and safety. Management of leptin-deficient states with replacement doses of leptin holds promise as a therapeutic option. In addition, elucidation of the mechanisms underlying leptin resistance, which characterizes hyperleptinemic states such as human obesity and diabetes, might provide novel therapeutic targets for these prevalent clinical problems.

  2. [Serum insulin, leptin and growth hormone levels are associated with body mass index and obesity index in adolescents].

    PubMed

    Molero-Conejo, Emperatriz; Morales, Luz Marina; Fernández, Virginia; Raleigh, Xiomara; Casanova, Angel; Connell, Lissette; Gómnez, Maria Esther; Ryder, Elena; Campos, Gilberto

    2006-03-01

    Leptin, insulin and growth hormone levels seem to regulate body composition, fat distribution and fat mass. The purpose of this study was to determine the relationship among insulin, leptin and growth hormone levels in a group of adolescents. Ninety five adolescents (31 boys and 64 girls) between 13 and 18 y. of age were studied. A medical and nutritional history was made which included body mass index (BMI) and subcutaneous skinfolds measurements. Basal levels of glucose, triglycerides, total cholesterol, HDL-C, LDL-C, VLDL-C, leptin, insulin and growth hormone were determined. The leptin and insulin levels were positively associated with body mass index (BMI) and obesity index (OBI). Insulin, leptin and obesity markers were negatively associated with growth hormone level. Fifty two percent of the adolescents with BMI = 21.09 kg/m2 were considered metabolically obese because they had elevated levels of insulin (18.68 +/- 1.52 vs. 10.08 +/- 0.38 microU/ml), HOMA IR (3.34 +/- 0.24 vs. 1.76 +/- 0.07), leptin (16.30 +/- 1.24 vs. 8.11 +/- 1.32 ng./dl) and triglycerides (78.56 +/- 4.38 vs. 64.39 +/- 5.48 mg/dl) and lower levels of HDL-C (39.09 +/- 1.27 vs. 43.30 +/- 2.38 mg/dl), compared with normal group. The same alterations were observed in the obese group, in which significative decrease in growth hormone level was added. We conclude that hyperinsulinemia, hyperleptinemia and low growth hormone levels, may be established as risk factors related to obesity markers, lipid alterations and insulin resistance that can lead to an early development of Type II diabetes and cardiovascular disease.

  3. The Leptin Receptor Complex: Heavier Than Expected?

    PubMed Central

    Wauman, Joris; Zabeau, Lennart; Tavernier, Jan

    2017-01-01

    Under normal physiological conditions, leptin and the leptin receptor (ObR) regulate the body weight by balancing food intake and energy expenditure. However, this adipocyte-derived hormone also directs peripheral processes, including immunity, reproduction, and bone metabolism. Leptin, therefore, can act as a metabolic switch connecting the body’s nutritional status to high energy consuming processes. We provide an extensive overview of current structural insights on the leptin–ObR interface and ObR activation, coupling to signaling pathways and their negative regulation, and leptin functioning under normal and pathophysiological conditions (obesity, autoimmunity, cancer, … ). We also discuss possible cross-talk with other receptor systems on the receptor (extracellular) and signaling cascade (intracellular) levels. PMID:28270795

  4. Role of leptin in pregnancy--a review.

    PubMed

    Sagawa, N; Yura, S; Itoh, H; Mise, H; Kakui, K; Korita, D; Takemura, M; Nuamah, M A; Ogawa, Y; Masuzaki, H; Nakao, K; Fujii, S

    2002-04-01

    Leptin is an adipocyte-derived hormone that decreases food intake and body weight via its receptor in the hypothalamus. In rodents, it also modulates glucose metabolism by increasing insulin sensitivity. We previously reported that leptin is produced by human placental trophoblasts. We also revealed that leptin gene expression in the placenta was augmented in severe pre-eclampsia, and suggested that placental hypoxia may play a role in this augmentation. Maternal plasma leptin levels correlated well with mean blood pressure, but not with body mass index. Plasma leptin levels in pre-eclamptic women with IUGR were higher than those without IUGR (P< 0.05). We further examined the effects of hyperleptinemia on the course of pregnancy by using transgenic mice (Tg) overexpressing leptin. In pregnant Tg mice, food intake was significantly less than non-Tg, and the fetal body weights were reduced to approximately 70 per cent of those of non-Tg. Resistin is a novel adipocyte-derived hormone that decreases insulin sensitivity and increases plasma glucose concentration, thus contributing the development of obesity-related type II diabetes mellitus. We recently found that resistin gene is expressed in the human placenta as well as adipose tissue. In this review, possible roles of placental leptin and resistin are discussed.

  5. A-FABP mediates adaptive thermogenesis by promoting intracellular activation of thyroid hormones in brown adipocytes

    PubMed Central

    Shu, Lingling; Hoo, Ruby L. C.; Wu, Xiaoping; Pan, Yong; Lee, Ida P. C.; Cheong, Lai Yee; Bornstein, Stefan R; Rong, Xianglu; Guo, Jiao; Xu, Aimin

    2017-01-01

    The adipokine adipocyte fatty acid-binding protein (A-FABP) has been implicated in obesity-related cardio-metabolic complications. Here we show that A-FABP increases thermogenesis by promoting the conversion of T4 to T3 in brown adipocytes. We find that A-FABP levels are increased in both white (WAT) and brown (BAT) adipose tissues and the bloodstream in response to thermogenic stimuli. A-FABP knockout mice have reduced thermogenesis and whole-body energy expenditure after cold stress or after feeding a high-fat diet, which can be reversed by infusion of recombinant A-FABP. Mechanistically, A-FABP induces the expression of type-II iodothyronine deiodinase in BAT via inhibition of the nuclear receptor liver X receptor α, thereby leading to the conversion of thyroid hormone from its inactive form T4 to active T3. The thermogenic responses to T4 are abrogated in A-FABP KO mice, but enhanced by A-FABP. Thus, A-FABP acts as a physiological stimulator of BAT-mediated adaptive thermogenesis. PMID:28128199

  6. Growth hormone, but not insulin, activates STAT5 proteins in adipocytes in vitro and in vivo.

    PubMed

    Zvonic, Sanjin; Story, David J; Stephens, Jacqueline M; Mynatt, Randall L

    2003-03-07

    STAT 5 proteins are latent transcription factors which have been shown to be activated by growth hormone (GH) in many cell types. However, some recent studies also suggest that STAT 5B is a physiological substrate of the insulin receptor. In our studies, we have shown that physiological levels of insulin do not induce STAT 5 tyrosine phosphorylation or affect the nuclear distribution of STATs 5A or 5B in 3T3-L1 adipocytes. Moreover, we did not observe the activation of STAT 5 in the adipose tissue or skeletal muscle of mice following an acute intraperitoneal injection of insulin. However, acute GH administration, both in vitro and in vivo, resulted in the activation of STAT 5 proteins. In summary, our results indicate that STAT 5 proteins are not activated by physiological levels of insulin in adipose tissue.

  7. Expression and immunohistochemical localization of leptin in human periapical granulomas

    PubMed Central

    Martín-González, Jénifer; Carmona-Fernández, Antonio; Pérez-Pérez, Antonio; Sánchez-Jiménez, Flora; Sánchez-Margalet, Víctor

    2015-01-01

    Background Leptin, initially described as an adipocyte-derived hormone to regulate weight control, is expressed in normal and inflamed human dental pulp, being up-regulated during pulp experimental inflammation. Leptin receptor (LER) has been identified in human periapical granulomas. The aim of this study was to analyze and characterize the expression of leptin in human periapical granulomas. Material and Methods Fifteen periapical inflammatory lesions were obtained from extracted human teeth and teeth which underwent periapical surgery. After their morphological categorization as periapical granulomas and gradation of the inflammatory infiltrate, they were examined by immunohistochemistry using human leptin policlonal antibodies. Leptin mRNA expression was also determined by quantitative real-time PCR (qRT-PCR) and the amount of leptin protein was analyzed by immunoblot. Results All periapical lesions exhibited the characteristic of chronic granulomatous inflammatory process with inflammatory infiltrate grade III. Leptin+ cells were detected in 13 periapical granulomas (86.6%). The median number of Leptin+ cells in periapical granulomas was 1.70 (0.00-7.4). Amongst the inflammatory cells in the periapical granulomas, only macrophages were reactive to leptin antibodies. Western blot analysis revealed the presence in all samples of a protein with apparent molecular weight of approximately 16 kDa, corresponding to the estimated molecular weights of leptin. The expression of leptin mRNA was confirmed by qRT-PCR analysis and the size of the amplified fragment (296 bp for leptin and 194 bp for cyclophilin) was assessed by agarose gel electrophoresis. Conclusions For the first time, it has been demonstrated that human periapical granuloma expresses the adipokine leptin. Key words: Apical granuloma, dental pulp, endodontics, leptin, leptin receptor, immune system, immunohistochemistry, periapical inflammatory response. PMID:25662559

  8. Hormonal modulation of food intake in response to low leptin levels induced by hypergravity

    NASA Technical Reports Server (NTRS)

    Moran, M. M.; Stein, T. P.; Wade, C. E.

    2001-01-01

    A loss in fat mass is a common response to centrifugation and it results in low circulating leptin concentrations. However, rats adapted to hypergravity are euphagic. The focus of this study was to examine leptin and other peripheral signals of energy balance in the presence of a hypergravity-induced loss of fat mass and euphagia. Male Sprague-Dawley rats were centrifuged for 14 days at gravity levels of 1.25, 1.5, or 2 G, or they remained stationary at 1 G. Urinary catecholamines, urinary corticosterone, food intake, and body mass were measured on Days 11 to 14. Plasma hormones and epididymal fat pad mass were measured on Day 14. Mean body mass of the 1.25, 1.5, and 2 G groups were significantly (P < 0.05) lower than controls, and no differences were found in food intake (g/day/100 g body mass) between the hypergravity groups and controls. Epididymal fat mass was 14%, 14%, and 21% lower than controls in the 1.25, 1.5, and 2.0 G groups, respectively. Plasma leptin was significantly reduced from controls by 46%, 45%, and 65% in the 1.25, 1.5, and 2 G groups, respectively. Plasma insulin was significantly lower in the 1.25, 1.5, and 2.0 G groups than controls by 35%, 38%, and 33%. No differences were found between controls and hypergravity groups in urinary corticosterone. Mean urinary epinephrine was significantly higher in the 1.5 and 2.0 G groups than in controls. Mean urinary norepinephrine was significantly higher in the 1.25, 1.5 and 2.0 G groups than in controls. Significant correlations were found between G load and body mass, fat mass, leptin, urinary epinephrine, and norepinephrine. During hypergravity exposure, maintenance of food intake is the result of a complex relationship between multiple pathways, which abates the importance of leptin as a primary signal.

  9. Leptin's Role in Lipodystrophic and Nonlipodystrophic Insulin-Resistant and Diabetic Individuals

    PubMed Central

    Moon, Hyun-Seuk; Dalamaga, Maria; Kim, Sang-Yong; Polyzos, Stergios A.; Hamnvik, Ole-Petter; Magkos, Faidon; Paruthi, Jason

    2013-01-01

    Leptin is an adipocyte-secreted hormone that has been proposed to regulate energy homeostasis as well as metabolic, reproductive, neuroendocrine, and immune functions. In the context of open-label uncontrolled studies, leptin administration has demonstrated insulin-sensitizing effects in patients with congenital lipodystrophy associated with relative leptin deficiency. Leptin administration has also been shown to decrease central fat mass and improve insulin sensitivity and fasting insulin and glucose levels in HIV-infected patients with highly active antiretroviral therapy (HAART)-induced lipodystrophy, insulin resistance, and leptin deficiency. On the contrary, the effects of leptin treatment in leptin-replete or hyperleptinemic obese individuals with glucose intolerance and diabetes mellitus have been minimal or null, presumably due to leptin tolerance or resistance that impairs leptin action. Similarly, experimental evidence suggests a null or a possibly adverse role of leptin treatment in nonlipodystrophic patients with nonalcoholic fatty liver disease. In this review, we present a description of leptin biology and signaling; we summarize leptin's contribution to glucose metabolism in animals and humans in vitro, ex vivo, and in vivo; and we provide insights into the emerging clinical applications and therapeutic uses of leptin in humans with lipodystrophy and/or diabetes. PMID:23475416

  10. Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels.

    PubMed

    Kilpeläinen, Tuomas O; Carli, Jayne F Martin; Skowronski, Alicja A; Sun, Qi; Kriebel, Jennifer; Feitosa, Mary F; Hedman, Åsa K; Drong, Alexander W; Hayes, James E; Zhao, Jinghua; Pers, Tune H; Schick, Ursula; Grarup, Niels; Kutalik, Zoltán; Trompet, Stella; Mangino, Massimo; Kristiansson, Kati; Beekman, Marian; Lyytikäinen, Leo-Pekka; Eriksson, Joel; Henneman, Peter; Lahti, Jari; Tanaka, Toshiko; Luan, Jian'an; Del Greco M, Fabiola; Pasko, Dorota; Renström, Frida; Willems, Sara M; Mahajan, Anubha; Rose, Lynda M; Guo, Xiuqing; Liu, Yongmei; Kleber, Marcus E; Pérusse, Louis; Gaunt, Tom; Ahluwalia, Tarunveer S; Ju Sung, Yun; Ramos, Yolande F; Amin, Najaf; Amuzu, Antoinette; Barroso, Inês; Bellis, Claire; Blangero, John; Buckley, Brendan M; Böhringer, Stefan; I Chen, Yii-Der; de Craen, Anton J N; Crosslin, David R; Dale, Caroline E; Dastani, Zari; Day, Felix R; Deelen, Joris; Delgado, Graciela E; Demirkan, Ayse; Finucane, Francis M; Ford, Ian; Garcia, Melissa E; Gieger, Christian; Gustafsson, Stefan; Hallmans, Göran; Hankinson, Susan E; Havulinna, Aki S; Herder, Christian; Hernandez, Dena; Hicks, Andrew A; Hunter, David J; Illig, Thomas; Ingelsson, Erik; Ioan-Facsinay, Andreea; Jansson, John-Olov; Jenny, Nancy S; Jørgensen, Marit E; Jørgensen, Torben; Karlsson, Magnus; Koenig, Wolfgang; Kraft, Peter; Kwekkeboom, Joanneke; Laatikainen, Tiina; Ladwig, Karl-Heinz; LeDuc, Charles A; Lowe, Gordon; Lu, Yingchang; Marques-Vidal, Pedro; Meisinger, Christa; Menni, Cristina; Morris, Andrew P; Myers, Richard H; Männistö, Satu; Nalls, Mike A; Paternoster, Lavinia; Peters, Annette; Pradhan, Aruna D; Rankinen, Tuomo; Rasmussen-Torvik, Laura J; Rathmann, Wolfgang; Rice, Treva K; Brent Richards, J; Ridker, Paul M; Sattar, Naveed; Savage, David B; Söderberg, Stefan; Timpson, Nicholas J; Vandenput, Liesbeth; van Heemst, Diana; Uh, Hae-Won; Vohl, Marie-Claude; Walker, Mark; Wichmann, Heinz-Erich; Widén, Elisabeth; Wood, Andrew R; Yao, Jie; Zeller, Tanja; Zhang, Yiying; Meulenbelt, Ingrid; Kloppenburg, Margreet; Astrup, Arne; Sørensen, Thorkild I A; Sarzynski, Mark A; Rao, D C; Jousilahti, Pekka; Vartiainen, Erkki; Hofman, Albert; Rivadeneira, Fernando; Uitterlinden, André G; Kajantie, Eero; Osmond, Clive; Palotie, Aarno; Eriksson, Johan G; Heliövaara, Markku; Knekt, Paul B; Koskinen, Seppo; Jula, Antti; Perola, Markus; Huupponen, Risto K; Viikari, Jorma S; Kähönen, Mika; Lehtimäki, Terho; Raitakari, Olli T; Mellström, Dan; Lorentzon, Mattias; Casas, Juan P; Bandinelli, Stefanie; März, Winfried; Isaacs, Aaron; van Dijk, Ko W; van Duijn, Cornelia M; Harris, Tamara B; Bouchard, Claude; Allison, Matthew A; Chasman, Daniel I; Ohlsson, Claes; Lind, Lars; Scott, Robert A; Langenberg, Claudia; Wareham, Nicholas J; Ferrucci, Luigi; Frayling, Timothy M; Pramstaller, Peter P; Borecki, Ingrid B; Waterworth, Dawn M; Bergmann, Sven; Waeber, Gérard; Vollenweider, Peter; Vestergaard, Henrik; Hansen, Torben; Pedersen, Oluf; Hu, Frank B; Eline Slagboom, P; Grallert, Harald; Spector, Tim D; Jukema, J W; Klein, Robert J; Schadt, Erik E; Franks, Paul W; Lindgren, Cecilia M; Leibel, Rudolph L; Loos, Ruth J F

    2016-02-01

    Leptin is an adipocyte-secreted hormone, the circulating levels of which correlate closely with overall adiposity. Although rare mutations in the leptin (LEP) gene are well known to cause leptin deficiency and severe obesity, no common loci regulating circulating leptin levels have been uncovered. Therefore, we performed a genome-wide association study (GWAS) of circulating leptin levels from 32,161 individuals and followed up loci reaching P<10(-6) in 19,979 additional individuals. We identify five loci robustly associated (P<5 × 10(-8)) with leptin levels in/near LEP, SLC32A1, GCKR, CCNL1 and FTO. Although the association of the FTO obesity locus with leptin levels is abolished by adjustment for BMI, associations of the four other loci are independent of adiposity. The GCKR locus was found associated with multiple metabolic traits in previous GWAS and the CCNL1 locus with birth weight. Knockdown experiments in mouse adipose tissue explants show convincing evidence for adipogenin, a regulator of adipocyte differentiation, as the novel causal gene in the SLC32A1 locus influencing leptin levels. Our findings provide novel insights into the regulation of leptin production by adipose tissue and open new avenues for examining the influence of variation in leptin levels on adiposity and metabolic health.

  11. Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels

    PubMed Central

    Kilpeläinen, Tuomas O.; Carli, Jayne F. Martin; Skowronski, Alicja A.; Sun, Qi; Kriebel, Jennifer; Feitosa, Mary F; Hedman, Åsa K.; Drong, Alexander W.; Hayes, James E.; Zhao, Jinghua; Pers, Tune H.; Schick, Ursula; Grarup, Niels; Kutalik, Zoltán; Trompet, Stella; Mangino, Massimo; Kristiansson, Kati; Beekman, Marian; Lyytikäinen, Leo-Pekka; Eriksson, Joel; Henneman, Peter; Lahti, Jari; Tanaka, Toshiko; Luan, Jian'an; Greco M, Fabiola Del; Pasko, Dorota; Renström, Frida; Willems, Sara M.; Mahajan, Anubha; Rose, Lynda M.; Guo, Xiuqing; Liu, Yongmei; Kleber, Marcus E.; Pérusse, Louis; Gaunt, Tom; Ahluwalia, Tarunveer S.; Ju Sung, Yun; Ramos, Yolande F.; Amin, Najaf; Amuzu, Antoinette; Barroso, Inês; Bellis, Claire; Blangero, John; Buckley, Brendan M.; Böhringer, Stefan; I Chen, Yii-Der; de Craen, Anton J. N.; Crosslin, David R.; Dale, Caroline E.; Dastani, Zari; Day, Felix R.; Deelen, Joris; Delgado, Graciela E.; Demirkan, Ayse; Finucane, Francis M.; Ford, Ian; Garcia, Melissa E.; Gieger, Christian; Gustafsson, Stefan; Hallmans, Göran; Hankinson, Susan E.; Havulinna, Aki S; Herder, Christian; Hernandez, Dena; Hicks, Andrew A.; Hunter, David J.; Illig, Thomas; Ingelsson, Erik; Ioan-Facsinay, Andreea; Jansson, John-Olov; Jenny, Nancy S.; Jørgensen, Marit E.; Jørgensen, Torben; Karlsson, Magnus; Koenig, Wolfgang; Kraft, Peter; Kwekkeboom, Joanneke; Laatikainen, Tiina; Ladwig, Karl-Heinz; LeDuc, Charles A.; Lowe, Gordon; Lu, Yingchang; Marques-Vidal, Pedro; Meisinger, Christa; Menni, Cristina; Morris, Andrew P.; Myers, Richard H.; Männistö, Satu; Nalls, Mike A.; Paternoster, Lavinia; Peters, Annette; Pradhan, Aruna D.; Rankinen, Tuomo; Rasmussen-Torvik, Laura J.; Rathmann, Wolfgang; Rice, Treva K.; Brent Richards, J; Ridker, Paul M.; Sattar, Naveed; Savage, David B.; Söderberg, Stefan; Timpson, Nicholas J.; Vandenput, Liesbeth; van Heemst, Diana; Uh, Hae-Won; Vohl, Marie-Claude; Walker, Mark; Wichmann, Heinz-Erich; Widén, Elisabeth; Wood, Andrew R.; Yao, Jie; Zeller, Tanja; Zhang, Yiying; Meulenbelt, Ingrid; Kloppenburg, Margreet; Astrup, Arne; Sørensen, Thorkild I. A.; Sarzynski, Mark A.; Rao, D. C.; Jousilahti, Pekka; Vartiainen, Erkki; Hofman, Albert; Rivadeneira, Fernando; Uitterlinden, André G.; Kajantie, Eero; Osmond, Clive; Palotie, Aarno; Eriksson, Johan G.; Heliövaara, Markku; Knekt, Paul B.; Koskinen, Seppo; Jula, Antti; Perola, Markus; Huupponen, Risto K.; Viikari, Jorma S.; Kähönen, Mika; Lehtimäki, Terho; Raitakari, Olli T.; Mellström, Dan; Lorentzon, Mattias; Casas, Juan P.; Bandinelli, Stefanie; März, Winfried; Isaacs, Aaron; van Dijk, Ko W.; van Duijn, Cornelia M.; Harris, Tamara B.; Bouchard, Claude; Allison, Matthew A.; Chasman, Daniel I.; Ohlsson, Claes; Lind, Lars; Scott, Robert A.; Langenberg, Claudia; Wareham, Nicholas J.; Ferrucci, Luigi; Frayling, Timothy M.; Pramstaller, Peter P.; Borecki, Ingrid B.; Waterworth, Dawn M.; Bergmann, Sven; Waeber, Gérard; Vollenweider, Peter; Vestergaard, Henrik; Hansen, Torben; Pedersen, Oluf; Hu, Frank B.; Eline Slagboom, P; Grallert, Harald; Spector, Tim D.; Jukema, J.W.; Klein, Robert J.; Schadt, Erik E; Franks, Paul W.; Lindgren, Cecilia M.; Leibel, Rudolph L.; Loos, Ruth J. F.

    2016-01-01

    Leptin is an adipocyte-secreted hormone, the circulating levels of which correlate closely with overall adiposity. Although rare mutations in the leptin (LEP) gene are well known to cause leptin deficiency and severe obesity, no common loci regulating circulating leptin levels have been uncovered. Therefore, we performed a genome-wide association study (GWAS) of circulating leptin levels from 32,161 individuals and followed up loci reaching P<10−6 in 19,979 additional individuals. We identify five loci robustly associated (P<5 × 10−8) with leptin levels in/near LEP, SLC32A1, GCKR, CCNL1 and FTO. Although the association of the FTO obesity locus with leptin levels is abolished by adjustment for BMI, associations of the four other loci are independent of adiposity. The GCKR locus was found associated with multiple metabolic traits in previous GWAS and the CCNL1 locus with birth weight. Knockdown experiments in mouse adipose tissue explants show convincing evidence for adipogenin, a regulator of adipocyte differentiation, as the novel causal gene in the SLC32A1 locus influencing leptin levels. Our findings provide novel insights into the regulation of leptin production by adipose tissue and open new avenues for examining the influence of variation in leptin levels on adiposity and metabolic health. PMID:26833098

  12. Differential distribution and expression of leptin and the functional leptin receptor in major salivary glands of humans.

    PubMed

    Bohlender, J; Rauh, M; Zenk, J; Gröschl, M

    2003-08-01

    Leptin plays a central role in the regulation of food intake and energy expenditure in rodents. However, it has become clear that this hormone has more than only a satiety-inducing function, and that there are other sources of leptin, such as the central nervous system, placenta and the gastrointestinal tract in addition to adipose tIssue. Knowing about the important role of the salivary glands in food intake and digestion, it was the objective of the present study to investigate how leptin and its receptor are expressed and distributed in the major salivary glands of humans. We found leptin distributed throughout the major salivary glands with obvious intracellular concentrations in granula. In contrast, immunostaining for the leptin receptor was found exclusively in the membranes of the glandular cells. A high density of the leptin receptor was localised in the epithelia of the duct lumen. PCR analysis proved the autonomous expression of leptin by the salivary glands independently from adipocytes. Accordingly the long receptor isoform was expressed by any examined tIssue. In the light of recent findings of leptin influencing the growth of rodent salivary glands, the presence and distribution of leptin and its receptor suggests an autocrine role of salivary leptin within the glands.

  13. Leptin as immune mediator: Interaction between neuroendocrine and immune system.

    PubMed

    Procaccini, Claudio; La Rocca, Claudia; Carbone, Fortunata; De Rosa, Veronica; Galgani, Mario; Matarese, Giuseppe

    2017-01-01

    Leptin is an adipocyte-derived hormone/cytokine that links nutritional status with neuroendocrine and immune functions. Initially described as an anti-obesity hormone, leptin has subsequently been shown to exert pleiotropic effects, being also able to influence haematopoiesis, thermogenesis, reproduction, angiogenesis, and more importantly immune homeostasis. As a cytokine, leptin can affect both innate and adaptive immunity, by inducing a pro-inflammatory response and thus playing a key role in the regulation of the pathogenesis of several autoimmune/inflammatory diseases. In this review, we discuss the most recent advances on the role of leptin as immune-modulator in mammals and we also provide an overview on its main functions in non-mammalian vertebrates.

  14. Changes in leptin and metabolite concentrations over time in finishing beef steers and heifers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leptin is a hormone produced in adipocytes that is involved in the control of feed intake, growth, and carcass composition. Composite breed cows were bred to working ranch bulls representing Angus, Charolais, Gelbvieh, Limousin, Red Angus, and Simmental breeds to produce calves with a wide range in...

  15. Facilitation of breathing by leptin effects in the central nervous system.

    PubMed

    Bassi, M; Furuya, W I; Zoccal, D B; Menani, J V; Colombari, D S A; Mulkey, D K; Colombari, E

    2016-03-15

    With the global epidemic of obesity, breathing disorders associated with excess body weight have markedly increased. Respiratory dysfunctions caused by obesity were originally attributed to mechanical factors; however, recent studies have suggested a pathophysiological component that involves the central nervous system (CNS) and hormones such as leptin produced by adipocytes as well as other cells. Leptin is suggested to stimulate breathing and leptin deficiency causes an impairment of the chemoreflex, which can be reverted by leptin therapy. This facilitation of the chemoreflex may depend on the action of leptin in the hindbrain areas involved in the respiratory control such as the nucleus of the solitary tract (NTS), a site that receives chemosensory afferents, and the ventral surface of the medulla that includes the retrotrapezoid nucleus (RTN), a central chemosensitive area, and the rostral ventrolateral medulla (RVLM). Although the mechanisms and pathways activated by leptin to facilitate breathing are still not completely clear, evidence suggests that the facilitatory effects of leptin on breathing require the brain melanocortin system, including the POMC-MC4R pathway, a mechanism also activated by leptin to modulate blood pressure. The results of all the studies that have investigated the effect of leptin on breathing suggest that disruption of leptin signalling as caused by obesity-induced reduction of central leptin function (leptin resistance) is a relevant mechanism that may contribute to respiratory dysfunctions associated with obesity.

  16. Facilitation of breathing by leptin effects in the central nervous system

    PubMed Central

    Furuya, W. I.; Zoccal, D. B.; Menani, J. V.; Colombari, D. S. A.; Mulkey, D. K.

    2015-01-01

    Abstract With the global epidemic of obesity, breathing disorders associated with excess body weight have markedly increased. Respiratory dysfunctions caused by obesity were originally attributed to mechanical factors; however, recent studies have suggested a pathophysiological component that involves the central nervous system (CNS) and hormones such as leptin produced by adipocytes as well as other cells. Leptin is suggested to stimulate breathing and leptin deficiency causes an impairment of the chemoreflex, which can be reverted by leptin therapy. This facilitation of the chemoreflex may depend on the action of leptin in the hindbrain areas involved in the respiratory control such as the nucleus of the solitary tract (NTS), a site that receives chemosensory afferents, and the ventral surface of the medulla that includes the retrotrapezoid nucleus (RTN), a central chemosensitive area, and the rostral ventrolateral medulla (RVLM). Although the mechanisms and pathways activated by leptin to facilitate breathing are still not completely clear, evidence suggests that the facilitatory effects of leptin on breathing require the brain melanocortin system, including the POMC–MC4R pathway, a mechanism also activated by leptin to modulate blood pressure. The results of all the studies that have investigated the effect of leptin on breathing suggest that disruption of leptin signalling as caused by obesity‐induced reduction of central leptin function (leptin resistance) is a relevant mechanism that may contribute to respiratory dysfunctions associated with obesity. PMID:26095748

  17. y-Synuclein is an Adipocyte-Neuron Gene Coordinately-Expressed with Leptin & Increased in Obesity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: Recently, we characterized tumor suppressor candidate 5 (Tusc5) as an adipocyte-neuron peroxisome proliferator activated receptor-y (PPARy) target gene (1). Our objective herein was to identify additional candidate genes that play shared roles in neuron-fat physiology. Research Methods an...

  18. Leptin and the brain.

    PubMed

    Chowen, Julie A; Argente, Jesús

    2011-10-01

    Leptin, which comes from the Greek root leptos meaning thin, has been the focus of intense investigation since its discovery in 1994. This hormone belongs to the cytokine family and is produced by adipocytes and circulates in proportion to fat mass, thus serving as a satiety signal and informing central metabolic control centers as to the status of peripheral energy stores. However, it participates in numerous other functions both peripherally and centrally, as indicated by the wide distribution of its various receptor isoforms. Leptin is involved in brain development, most notably in development of hypothalamic centers that control metabolism, but also in other brain areas. It acts as a nutritional cue to indicate adequacy of energy stores for pubertal development and reproductive capacity. The effects of this hormone on behavior and cognition are less well studied, but it clearly is involved in specific aspects of these physiological phenomena. As obesity is a major health problem in many areas of the world, the search for pharmacological treatments to decrease appetite and increase energy expenditure is intense. Understanding the mechanisms of actions of all physiological effects of this hormone is of great interest in the pursuit of such treatment.

  19. Leptin as regulator of pulmonary immune responses: Involvement in respiratory diseases

    PubMed Central

    Vernooy, Juanita H.J.; Ubags, Niki D.J.; Brusselle, Guy G.; Tavernier, Jan; Suratt, Benjamin T.; Joos, Guy F.; Wouters, Emiel F.M.; Bracke, Ken R.

    2014-01-01

    Leptin is an adipocyte-derived hormone, recognized as a critical mediator of the balance between food intake and energy expenditure by signalling through its functional receptor (Ob-Rb) in the hypothalamus. Structurally, leptin belongs to the long-chain helical cytokine family, and is now known to have pleiotropic functions in both innate and adaptive immunity. The presence of the functional leptin receptor in the lung together with evidence of increased airspace leptin levels arising during pulmonary inflammation, suggests an important role for leptin in lung development, respiratory immune responses and eventually pathogenesis of inflammatory respiratory diseases. The purpose of this article is to review our current understanding of leptin and its functional role on the different resident cell types of the lung in health as well as in the context of three major respiratory conditions being chronic obstructive pulmonary disease (COPD), asthma, and pneumonia. PMID:23542720

  20. Percentage of REM sleep is associated with overnight change in leptin.

    PubMed

    Olson, Christy A; Hamilton, Nancy A; Somers, Virend K

    2016-08-01

    Sleep contributes importantly to energy homeostasis, and may impact hormones regulating appetite, such as leptin, an adipocyte-derived hormone. There is increasing evidence that sleep duration, and reduced rapid eye movement sleep, are linked to obesity. Leptin has central neural effects beyond modulation of appetite alone. As sleep is not a unifrom process, interactions between leptin and sleep stages including rapid eye movement sleep may play a role in the relationship between sleep and obesity. This study examined the relationship between serum leptin and rapid eye movement sleep in a sample of healthy adults. Participants were 58 healthy adults who underwent polysomnography. Leptin was measured before and after sleep. It was hypothesized that a lower percentage of rapid eye movement sleep would be related to lower leptin levels during sleep. The relationship between percentage of rapid eye movement sleep and leptin was analysed using hierarchical linear regression. An increased percentage of rapid eye movement sleep was related to a greater reduction in leptin during sleep even when controlling for age, gender, percent body fat and total sleep time. A greater percentage of rapid eye movement sleep was accompanied by more marked reductions in leptin. Studies examining the effects of selective rapid eye movement sleep deprivation on leptin levels, and hence on energy homeostasis in humans, are needed.

  1. Association of Increased Serum Leptin with Ameliorated Anemia and Malnutrition in Stage 5 Chronic Kidney Disease Patients after Parathyroidectomy.

    PubMed

    Jiang, Yao; Zhang, Jingjing; Yuan, Yanggang; Zha, Xiaoming; Xing, Changying; Shen, Chong; Shen, Zhixiang; Qin, Chao; Zeng, Ming; Yang, Guang; Mao, Huijuan; Zhang, Bo; Yu, Xiangbao; Sun, Bin; Ouyang, Chun; Xu, Xueqiang; Ge, Yifei; Wang, Jing; Zhang, Lina; Cheng, Chen; Yin, Caixia; Zhang, Jing; Chen, Huimin; Ma, Haoyang; Wang, Ningning

    2016-06-16

    Leptin is an adipokine that regulates various metabolism, but its association with secondary hyperparathyroidism (SHPT), a clinical manifestation of chronic kidney disease-mineral and bone disorder (CKD-MBD), remains obscure. Parathyroidectomy (PTX) is recommended for severe SHPT patients. Here, the associations between circulating leptin and clinical characteristics in CKD patients were investigated. Effects of PTX on leptin production were analyzed in vivo and in vitro. Controls and CKD patients had approximate serum leptin levels in that a larger proportion of CKD patients with body mass index (BMI) <23 kg/m(2). Serum leptin was related to anemia, albumin, and bone metabolism disorders in CKD patients. Lower intact parathyroid hormone (PTH) was related with higher leptin in PTX patients group. Severe SHPT inhibited uremia-enhanced leptin production in 3T3-L1 adipocytes, which was attenuated after PTX. High levels of PTH were found to reduce Akt phosphorylation and leptin production in vitro but high levels of calcium and phosphorus were not. Successful PTX was found to improve anemia and malnutrition in severe SHPT patients, and this was correlated with increased circulating leptin levels via up-regulated Akt signaling in adipocytes. These findings indicated the therapeutic potential of leptin and related target pathway for improving survival and quality of life in CKD.

  2. Appetite and energy balance signals from adipocytes

    PubMed Central

    Trayhurn, Paul; Bing, Chen

    2006-01-01

    Interest in the biology of white adipose tissue has risen markedly with the recent surge in obesity and its associated disorders. The tissue is no longer viewed simply as a vehicle for lipid storage; instead, it is recognized as a major endocrine and secretory organ. White adipocytes release a multiplicity of protein hormones, signals and factors, termed adipokines, with an extensive range of physiological actions. Foremost among these various adipokines is the cytokine-like hormone, leptin, which is synthesized predominantly in white fat. Leptin plays a critical role in the control of appetite and energy balance, with mutations in the genes encoding the hormone or its receptor leading to profound obesity in both rodents and man. Leptin regulates appetite primarily through an interaction with hypothalamic neuroendocrine pathways, inhibiting orexigenic peptides such as neuropeptide Y and orexin A, and stimulating anorexigenic peptides such as proopiomelanocortin. White fat also secretes several putative appetite-related adipokines, which include interleukin-6 and adiponectin, but whether these are indeed significant signals in the regulation of food intake has not been established. Through leptin and the other adipokines it is evident that adipose tissue communicates extensively with other organs and plays a pervasive role in metabolic homeostasis. PMID:16815801

  3. Towards a pro-inflammatory and immunomodulatory emerging role of leptin.

    PubMed

    Otero, M; Lago, R; Gomez, R; Dieguez, C; Lago, F; Gómez-Reino, J; Gualillo, O

    2006-08-01

    Leptin is a 16 kDa adipocyte-secreted hormone that regulates weight centrally and links nutritional status with neuroendocrine and immune function. Since its cloning in 1994, leptin's role in regulating immune and inflammatory response has become increasingly evident. Actually, the increase of leptin production that occurs during infection and inflammation strongly suggests that leptin is a part of the cytokines loop which governs the inflammatory-immune response and the host defence mechanism. Indeed, leptin stimulates the production of pro-inflammatory cytokines from cultured monocytes and enhances the production of Th1 type cytokines from stimulated lymphocytes. Several studies have implicated leptin in the pathogenesis of autoimmune inflammatory conditions such as type 1 diabetes, rheumatoid arthritis and chronic bowel disease. Obesity is characterized by elevated circulating leptin levels which might contribute significantly to the so called low-grade systemic inflammation, making obese individuals more susceptible to the increased risk of developing cardiovascular diseases, type II diabetes or inflammatory articular degenerative disease such as osteorathritis (OA). As a matter of fact, a key role for leptin in OA has been recently demonstrated since leptin exhibits, in synergy with other pro-inflammatory cytokines, a detrimental effect on articular cartilage cells by promoting nitric oxide synthesis. This review will focus prevalently on the complex relationships existing among leptin, inflammatory response and immunity, trying to provide surprising insights into leptin's role and to discuss challenges and prospects for the future.

  4. Metabolic effects of a stabilizing peptide fusion protein of leptin in normal mice.

    PubMed

    Park, H; Lee, S-B; Koh, J; Kim, J

    2012-06-01

    Leptin is a protein hormone produced by adipocytes. It is secreted into the blood stream and plays a key role in regulating body energy homeostasis by inhibiting feeding behavior followed by decreased body weight. Because protein aggregation is a major problem in therapeutic proteins, we previously demonstrated that a stabilizing peptide (SP) fusion protein of leptin (SP-leptin) appeared to resist aggregation induced by agitation, freezing/thawing, or heat stress. In this study, we fused mouse leptin with the stabilizing peptide and compared the biological activities of leptin and SP-leptin in vivo using a male C57Bl mouse model and ex vivo using MCF7 breast cancer cell lines. Each group of mice was treated with saline, leptin, and SP-leptin for 20 days and the differences in body weight, food intake, abdominal fat contents, and TG concentration were measured. The SP-leptin appeared to decrease the body weight and food intake in male C57Bl mice more significantly than wild type leptin, and the SP-leptin treated MCF7 cells displayed better cell proliferation than leptin. As a consequence of decreased body weight, the SP-leptin treated mouse group showed decreased abdominal fat contents and low triglyceride (TG) concentration. Moreover, the SP-leptin treated mouse group had fewer lipid droplets in liver and reduced lipid droplet size when analyzed by Oil red O and H & E staining. These results demonstrated that SP-leptin is more effective than wild type leptin in normal mice in lowering their body weight and fat contents in the abdominal region, the serum, and the liver.

  5. The effect of sex hormones on peroxisome proliferator-activated receptor gamma expression and activity in mature adipocytes.

    PubMed

    Sato, Hiromi; Sugai, Hana; Kurosaki, Hiroshi; Ishikawa, Momoko; Funaki, Asami; Kimura, Yuki; Ueno, Koichi

    2013-01-01

    Peroxisome proliferator-activated receptor (PPAR) γ plays a major role in the regulation of lipid and carbohydrate metabolism. Pioglitazone is a PPARγ agonist that is widely used for the treatment of type 2 diabetes mellitus. However, female patients have been reported to experience stronger efficacy and adverse effects than male patients. This study evaluated the effects of sex hormones on PPARγ expression and activity in adipocytes. Mouse 3T3-L1 preadipocytes were used after being grown into matured adipocytes. The sex hormones 17β-estradiol (E2), testosterone (T), or 5α-androstan-17β-ol-3-one (dihydrotestosterone; DHT) were added to the matured adipocytes and the cells were then maintained for short (24-72 h) or long (1- or 2-weeks) periods. E2 significantly upregulated PPARγ protein expression in a concentration-dependent manner after extended exposure, whereas T and DHT did not have such an effect. When cells were co-treated with pioglitazone and E2, PPARγ protein expression significantly increased in an E2-dependent manner, whereas this expression seemed to be reduced by pioglitazone mono-treatment and co-treatment with DHT at higher concentrations. The secretion levels of adiponectin protein, a major indicator of PPARγ activity, were significantly decreased by DHT, but were not affected by E2. Finally a luciferase assay was performed using a PPAR response element-Luk reporter gene. Transcriptional activity was not changed by any of single sex hormone treatment, but was significantly downregulated by co-treatment with pioglitazone and DHT. Taken together, our results suggest that sex hormones may influence PPARγ expression and function, which may explain the observed sex-specific different effect of pioglitazone.

  6. Ghrelin and its interactions with growth hormone, leptin and orexins: implications for the sleep-wake cycle and metabolism.

    PubMed

    García-García, Fabio; Juárez-Aguilar, Enrique; Santiago-García, Juan; Cardinali, Daniel P

    2014-02-01

    Several studies have shown that ghrelin administration promotes wakefulness in rodents, while in human males it induces sleep but has no effect in women. Ghrelin also plays an important role in metabolism and appetite regulation, and as described in this review may participate in the energy balance during sleep. In this review, we summarize some of the effects induced by ghrelin administration on the sleep-wake cycle in relation to the effects of other hormones, such as growth hormone, leptin, and orexin. Finally we discuss the relationship between sleep deprivation, obesity and ghrelin secretion pattern.

  7. The effects of protein supplement on leptin concentrations in lambs and meat goat kids grazing Bermudagrass pastures in Central Oklahoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lambs and kids weaned and pastured on bermudagrass (BG; Cynodon dactylon) may not receive enough protein to reach maximal growth during mid to late summer when protein in BG pastures declines. As an indicator of physiological status, leptin is an adipocyte-derived hormone that increases as body cond...

  8. Interrelationship between feeding level and the metabolic hormones leptin, ghrelin and obestatin in control of chicken egg laying and release of ovarian hormones.

    PubMed

    Sirotkin, Alexander V; Grossmann, Roland

    2015-06-01

    The aim of the present experiment is to examine the role of nutritional status, metabolic hormones and their interrelationships in the control of chicken ovarian ovulatory and secretory activity. For this purpose, we identified the effect of food restriction, administration of leptin, ghrelin 1-18, obestatin and combinations of food restriction with these hormones for 3days on chicken ovulation (egg laying) rate and ovarian hormone release. The release of progesterone (P), testosterone (T), estradiol (E) and arginine-vasotocin (AVT) by isolated and cultured ovarian fragments was determined by EIA. It was observed that food restriction significantly reduced the egg-laying rate, T, E and AVT release and promoted P output by ovarian fragments. Leptin, administrated to ad libitum-fed chickens, did not change these parameters besides promoting E release. Nevertheless, administration of leptin was able to prevent the effect of food restriction on ovulation, T and E (but not P or AVT) release. Ghrelin 1-18 administration to ad libitum-fed birds did not affect the measured parameters besides a reduction in P release. Ghrelin 1-18 administration prevented the food restriction-induced decrease in ovarian T, E and AVT, but it did not change P output or egg laying. Obestatin administrated to control chicken promoted their ovarian P, E and inhibited ovarian AVT release but did not affect egg laying. It was able to promote the effect of food restriction on P, T and AVT, but not E release or egg laying. Our results (1) confirm an inhibitory effect of food restriction on chicken ovulation rate; (2) shows that food restriction-induced reduction in egg laying is associated with a decrease in ovarian T, E and AVT and an increase in ovarian P release; (3) confirm the involvement of metabolic hormones leptin, ghrelin and obestatin in the control of chicken ovarian hormones output; and (4) the ability of metabolic hormones to mimic/antagonize or prevent/promote the effects of food

  9. Pivotal roles of alpha-melanocyte-stimulating hormone and the melanocortin 4 receptor in leptin stimulation of prolactin secretion in rats.

    PubMed

    Watanobe, Hajime; Schiöth, Helgi B; Izumi, Junkichi

    2003-04-01

    Leptin, the obese gene product, was reported to stimulate prolactin (PRL) secretion, but the neuroendocrine mechanism underlying this hormonal response is largely unknown. Thus, in this study we examined the involvement of several important PRL regulators in the leptin-induced PRL secretion in male rats. Compared with the values in normally fed rats, food deprivation for 3 days significantly decreased both PRL and leptin levels in the plasma. These changes were reverted to normal by a 3-day constant infusion of 75 microg/kg/day of leptin to the fasted rats, while 225 microg/kg/day of leptin further elevated both PRL and leptin levels. These four groups of animals were used for the following experiments. Results of dopamine and serotonin turnover studies in the brain and the pituitary indicated that neither of these biogenic amines plays a primary role in mediating leptin's effects on PRL. Repeated intracerebroventricular injections over 72 h of neutralizing antibodies against vasoactive intestinal peptide, PRL-releasing peptide, or beta-endorphin, did not significantly suppress the leptin actions. However, both the blockade of the melanocortin (MC) 4 receptor (R) and the immunoquenching of brain alpha-melanocyte-stimulating hormone (alpha-MSH) completely abolished the leptin-induced PRL release, and the stimulation of the MC4-R, but not the MC3-R, significantly elevated PRL levels in the fasted rats. These results suggest that alpha-MSH, a cleaved peptide from pro-opiomelanocortin of which synthesis is stimulated by leptin, may be the pivotal neuropeptide in the brain mediating the leptin's stimulatory influence on PRL secretion. It was also suggested that the MC4-R may be the primary subtype of the MC-Rs mediating this action of alpha-MSH.

  10. Effects of leptin on gonadotropin-releasing hormone release from hypothalamic-infundibular explants and gonadotropin release from adenohypophyseal primary cell cultures: further evidence that fully nourished cattle are resistant to leptin.

    PubMed

    Amstalden, M; Harms, P G; Welsh, T H; Randel, R D; Williams, G L

    2005-01-01

    In rodents and pigs, leptin stimulates the release of gonadotropin-releasing hormone (GnRH) from hypothalamus, gonadotropins from adenohypophyseal (AP) explants and cells, and luteinizing hormone (LH) from full-fed animals. In the current studies, we investigated whether leptin could stimulate the release of GnRH from bovine hypothalamic-infundibular (HYP) explants and gonadotropins from bovine adenohypophyseal cells. In Experiment 1A, HYP explants collected from 17 bulls and seven steers were incubated with Krebs-Ringer bicarbonate buffer (KRB) containing 0, 10, 100, or 1000 ng/ml recombinant ovine leptin (oleptin) for 30 min after a 3-h period of equilibration. None of the doses of leptin affected (P > 0.05) GnRH release into the media. In Experiment 1B, HYP explants collected from six steers were incubated with KRB containing 0 or 1000 ng/ml oleptin for two consecutive 30-min periods and challenged with 60 mM K(+) afterwards. Leptin did not affect (P > 0.05) basal or K(+)-stimulated release of GnRH. In Experiment 2, adenohypophyses from steers were collected at slaughter and cells dispersed and cultured for 4 days. On day 5, cells were treated with media alone (control) or media containing 10(-11), 10(-10), 10(-9), and 10(-8)M oleptin. Three independent replications were performed. None of the doses of leptin stimulated (P > 0.05) the release of LH. Although leptin at 10(-11), 10(-10), and 10(-9)M increased (P < 0.03) slightly the release of FSH compared to control-treated cells in one replicate, this effect was not confirmed in the other two replicates. Results support the hypothesis that leptin has limited effects on the release of GnRH and gonadotropins in full-fed cattle and reiterate important species differences in responsiveness to leptin.

  11. Differential Role of Leptin and Adiponectin in Cardiovascular System

    PubMed Central

    Ghantous, C. M.; Azrak, Z.; Hanache, S.; Abou-Kheir, W.; Zeidan, A.

    2015-01-01

    Leptin and adiponectin are differentially expressed adipokines in obesity and cardiovascular diseases. Leptin levels are directly associated with adipose tissue mass, while adiponectin levels are downregulated in obesity. Although significantly produced by adipocytes, leptin is also produced by vascular smooth muscle cells and cardiomyocytes. Plasma leptin concentrations are elevated in cases of cardiovascular diseases, such as hypertension, congestive heart failure, and myocardial infarction. As for the event of left ventricular hypertrophy, researchers have been stirring controversy about the role of leptin in this form of cardiac remodeling. In this review, we discuss how leptin has been shown to play an antihypertrophic role in the development of left ventricular hypertrophy through in vitro experiments, population-based cross-sectional studies, and longitudinal cohort studies. Conversely, we also examine how leptin may actually promote left ventricular hypertrophy using in vitro analysis and human-based univariate and multiple linear stepwise regression analysis. On the other hand, as opposed to leptin's generally detrimental effects on the cardiovascular system, adiponectin is a cardioprotective hormone that reduces left ventricular and vascular hypertrophy, oxidative stress, and inflammation. In this review, we also highlight adiponectin signaling and its protective actions on the cardiovascular system. PMID:26064110

  12. Possible Integrative Actions of Leptin and Insulin Signaling in the Hypothalamus Targeting Energy Homeostasis

    PubMed Central

    Thon, Mina; Hosoi, Toru; Ozawa, Koichiro

    2016-01-01

    Obesity has emerged as one of the most burdensome conditions in modern society. In this context, understanding the mechanisms controlling food intake is critical. At present, the adipocyte-derived hormone leptin and the pancreatic β-cell-derived hormone insulin are considered the principal anorexigenic hormones. Although leptin and insulin signal transduction pathways are distinct, their regulation of body weight maintenance is concerted. Resistance to the central actions of leptin or insulin is linked to the emergence of obesity and diabetes mellitus. A growing body of evidence suggests a convergence of leptin and insulin intracellular signaling at the insulin–receptor–substrate–phosphatidylinositol-3-kinase level. Moreover, numerous factors mediating the pathophysiology of leptin resistance, a hallmark of obesity, such as endoplasmic reticulum stress, protein tyrosine phosphatase 1B, and suppressor of cytokine signaling 3 also contribute to insulin resistance. Recent studies have also indicated that insulin potentiates leptin-induced signaling. Thus, a greater understanding of the overlapping functions of leptin and insulin in the central nervous system is vital to understand the associated physiological and pathophysiological states. This mini-review focuses on the cross talk and integrative signaling of leptin and insulin in the regulation of energy homeostasis in the brain. PMID:27812350

  13. Intranasal delivery of N-terminal modified leptin-pluronic conjugate for treatment of obesity.

    PubMed

    Yuan, Dongfen; Yi, Xiang; Zhao, Yuling; Poon, Chi-Duen; Bullock, Kristin M; Hansen, Kim M; Salameh, Therese S; Farr, Susan A; Banks, William A; Kabanov, Alexander V

    2017-03-24

    Leptin is an adipocyte-secreted hormone that is delivered via a specific transport system across the blood-brain barrier (BBB) to the brain where it acts on the hypothalamus receptors to control appetite and thermogenesis. Peripheral resistance to leptin due to its impaired brain delivery prevents therapeutic use of leptin in overweight and moderately obese patients. To address this problem, we modified the N-terminal amine of leptin with Pluronic P85 (LepNP85) and administered this conjugate intranasally using the nose-to-brain (INB) route to bypass the BBB. We compared this conjugate with the native leptin, the N-terminal leptin conjugate with poly(ethylene glycol) (LepNPEG5K), and two conjugates of leptin with Pluronic P85 attached randomly to the lysine amino groups of the hormone. Compared to the random conjugates of leptin with P85, LepNP85 has shown higher affinity upon binding with the leptin receptor, and similarly to native hormone activated hypothalamus receptors after direct injection into brain. After INB delivery, LepNP85 conjugate was transported to the brain and accumulated in the hypothalamus and hippocampus to a greater extent than the native leptin and LepNPEG5K and activated leptin receptors in hypothalamus at lower dose than native leptin. Our work suggests that LepNP85 can access the brain directly after INB delivery and confirms our hypothesis that the improvement in brain accumulation of this conjugate is due to its enhanced brain absorption. In conclusion, the LepNP85 with optimized conjugation chemistry is a promising candidate for treatment of obesity.

  14. Leptin inhibits food-deprivation-induced increases in food intake and food hoarding.

    PubMed

    Keen-Rhinehart, Erin; Bartness, Timothy J

    2008-12-01

    Food deprivation stimulates foraging and hoarding and to a much lesser extent, food intake in Siberian hamsters. Leptin, the anorexigenic hormone secreted primarily from adipocytes, may act in the periphery, the brain, or both to inhibit these ingestive behaviors. Therefore, we tested whether leptin given either intracerebroventricularly or intraperitoneally, would block food deprivation-induced increases in food hoarding, foraging, and intake in animals with differing foraging requirements. Hamsters were trained in a running wheel-based food delivery foraging system coupled with simulated burrow housing. We determined the effects of food deprivation and several peripheral doses of leptin on plasma leptin concentrations. Hamsters were then food deprived for 48 h and given leptin (0, 10, 40, or 80 microg ip), and additional hamsters were food deprived for 48 h and given leptin (0, 1.25, 2.5, or 5.0 microg icv). Foraging, food intake, and hoarding were measured postinjection. Food deprivation stimulated food hoarding to a greater degree and duration than food intake. In animals with a foraging requirement, intracerebroventricular leptin almost completely blocked food deprivation-induced increased food hoarding and intake, but increased foraging. Peripheral leptin treatment was most effective in a sedentary control group, completely inhibiting food deprivation-induced increased food hoarding and intake at the two highest doses, and did not affect foraging at any dose. Thus, the ability of leptin to inhibit food deprivation-induced increases in ingestive behaviors differs based on foraging effort (energy expenditure) and the route of administration of leptin administration.

  15. Variability in leptin and adrenal response in juvenile Steller sea lions (Eumetopias jubatus) to adrenocorticotropic hormone (ACTH) in different seasons.

    PubMed

    Mashburn, Kendall L; Atkinson, Shannon

    2008-01-15

    Eight free-ranging juvenile Steller sea lions (SSL; 6 males, 2 females; 14-20 months) temporarily held under ambient conditions at the Alaska SeaLife Center were physiologically challenged through exogenous administration of adrenocorticotropic hormone (ACTH). Four individuals (3 males, 1 female) underwent ACTH challenge in each of two seasons, summer and winter. Following ACTH injection serial blood and fecal samples were collected for up to 3 and 96 h, respectively. A radioimmunoassay (RIA) was validated for leptin, and using a previously validated RIA for cortisol, collected sera were analyzed for both cortisol and leptin. ACTH injection resulted in a 2.9-fold increase (P=0.164) in leptin which preceded a 3.2-fold increase (P=0.0290) in cortisol by 105 min in summer. In winter, a 1.7-fold increase in leptin (P=0.020) preceded a 2.1-fold increase (P=0.001) in serum cortisol by 45 min. Mean fecal corticosteroid maxima were 10.4 and 16.7-fold above baseline 28 and 12 h post-injection and returned to baseline 52 and 32 h post-injection, in summer and winter, respectively. Data indicate acute activity in juvenile adrenal glands is detectable in feces approximately 12-24 h post-stimulus in either season, with a duration of approximately 40 h in summer and 20 h in winter. Changes in serum cortisol proved statistically significant both seasons and elevated concentrations were detected by 30 min post-stimulus (baseline 64.8+/-4.2; peak 209.5+/-18.3 ng/ml: summer; baseline 87.0+/-15.7; peak 237.6+/-10.0 ng/ml: winter), whereas the changes that occurred in serum leptin proved to be significant only in winter (baseline 6.4+/-0.6; peak 18.7+/-7.0 ng/ml: summer; baseline 4.2+/-0.5; peak 7.5+/-0.6 ng/ml: winter). Changes in fecal corticosteroids proved significant only in summer (baseline 117.8+/-36.7; peak 1219.3+/-298.4 ng/g, P=0.038: summer; baseline 71.8+/-13.7; peak 1198.6+/-369.9 ng/g, P=0.053: winter) due to a high degree of individual variability in winter months. The

  16. Hormone and metabolic factors associated with leptin mRNA expression in pre- and postmenopausal women.

    PubMed

    Fajardo, Martha E; Malacara, Juan M; Martínez-Rodríguez, Herminia G; Barrera-Saldaña, Hugo A

    2004-06-01

    Recent information has extended leptin's action, beyond the control of appetite, to various sites of metabolic regulation. To better understand leptin's role we studied its production in subcutaneous and visceral fat compartments before and after menopause. During elective abdominal surgery, biopsies of subcutaneous and omental tissues were taken from 20 women at pre- (BMI 28.4 +/- 4.5 kg/m2) and 10 at postmenopause (BMI 30.6 +/- 7.7 kg/m2). In both groups serum leptin levels were similar, and highly correlated with BMI. In subcutaneous adipose tissue, leptin mRNA expression was significantly higher in pre- than in postmenopausal women (50.4 +/- 20.5 amol/microg total RNA versus 34.5 +/- 24.9 amol/microg total RNA, respectively). Leptin mRNA expression in subcutaneous tissue was independently correlated with fasting glucose (R = 0.89, P < 0.006) at premenopause, and with serum estradiol (R = 0.77, P < 0.04) at postmenopause. Leptin mRNA expression in visceral fat was correlated with DHEAS (R = 0.86, P < 0.001), at premenopause. These results indicate that in both compartments, leptin production is sensitive to different but overlapping stimuli, conveying information about energy availability to central and peripheral sites under different conditions of estrogen exposure.

  17. Effects of dietary energy and protein density on plasma concentrations of leptin and metabolic hormones in dairy heifers.

    PubMed

    Chelikani, P K; Ambrose, D J; Keisler, D H; Kennelly, J J

    2009-04-01

    The hormonal and metabolic signals that communicate the level of body energy reserves to the reproductive-mammary axis remain undefined in dairy cattle; consequently, our hypothesis was that leptin may fulfill this role. Our objectives were to determine the effects of diets differing in energy and protein density on dry matter intake (DMI), growth traits [body weight (BW), body condition score (BCS), back-fat (BF) thickness], and temporal changes in plasma concentrations of leptin, insulin, growth hormone (GH), insulin-like growth factor-1 (IGF-1), glucose, and nonesterified fatty acids (NEFA) in dairy heifers during the pre- and postpubertal periods. In period 1, heifers were randomly allotted (n = 10/diet) at 103 kg of BW to diets for a predicted average daily gain of 1.10 (high, H), 0.80 (medium, M), or 0.50 kg/d (low, L). Five heifers in each of the H and L groups were further studied during period 2, either at 12 mo of age (HA, LA) or at 330 kg of BW (HW, LW). The data provide evidence that 1) DMI (18%), BW (17%), and BF (5%) together explained 40% of the variation in plasma leptin concentrations (r(2) = 0.396); 2) unlike the acute postprandial increase in plasma insulin as a result of increased nutrient density (H 1.42 +/- 0.09, M 1.02 +/- 0.09, L 0.68 +/- 0.11 ng/mL), plasma leptin concentrations did not respond acutely with a distinct postprandial profile; 3) although plasma leptin concentrations increased with age, leptin at puberty did not differ among treatment groups (H 5.63 +/- 2.48, M 4.28 +/- 0.55, L 4.12 +/- 0.72 ng/mL) and there was no evidence of an abrupt transition in prepubertal plasma leptin concentrations; 4) plasma leptin concentrations may not be a critical trigger for puberty in rapidly growing heifers, but are apparently essential for puberty in heifers with normal or restricted growth rates; and 5) plasma concentrations of insulin (H 0.59 +/- 0.07, M 0.43 +/- 0.09, L 0.30 +/- 0.09 ng/mL), IGF-1 (H 151.08 +/- 16.47, L 82.51 +/- 17.47 ng

  18. Genetic polymorphisms and protein structures in growth hormone, growth hormone receptor, ghrelin, insulin-like growth factor 1 and leptin in Mehraban sheep.

    PubMed

    Bahrami, A; Behzadi, Sh; Miraei-Ashtiani, S R; Roh, S-G; Katoh, K

    2013-09-15

    The somatotropic axis, the control system for growth hormone (GH) secretion and its endogenous factors involved in the regulation of metabolism and energy partitioning, has promising potentials for producing economically valuable traits in farm animals. Here we investigated single nucleotide polymorphisms (SNPs) of the genes of factors involved in the somatotropic axis for growth hormone (GH1), growth hormone receptor (GHR), ghrelin (GHRL), insulin-like growth factor 1 (IGF-I) and leptin (LEP), using polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) and DNA sequencing methods in 452 individual Mehraban sheep. A nonradioactive method to allow SSCP detection was used for genomic DNA and PCR amplification of six fragments: exons 4 and 5 of GH1; exon 10 of GH receptor (GHR); exon 1 of ghrelin (GHRL); exon 1 of insulin-like growth factor-I (IGF-I), and exon 3 of leptin (LEP). Polymorphisms were detected in five of the six PCR products. Two electrophoretic patterns were detected for GH1 exon 4. Five conformational patterns were detected for GH1 exon 5 and LEP exon 3, and three for IGF-I exon 1. Only GHR and GHRL were monomorphic. Changes in protein structures due to variable SNPs were also analyzed. The results suggest that Mehraban sheep, a major breed that is important for the animal industry in Middle East countries, has high genetic variability, opening interesting prospects for future selection programs and preservation strategies.

  19. Study of the correlation between growth hormone deficiency and serum leptin, adiponectin, and visfatin levels in adults.

    PubMed

    Li, Z-P; Zhang, M; Gao, J; Zhou, G-Y; Li, S-Q; An, Z-M

    2014-02-14

    We aimed to determine the significance and changes in leptin, adiponectin (ADP), and visfatin levels in adults with growth hormone deficiency (GHD). Forty adults (19 men, 21 women) who had been diagnosed with GHD comprised the observation group, while 36 healthy adults (18 men, 18 women) were used as the control group. Fasting venous blood was collected to detect leptin, ADP, and visfatin levels. There was no statistically significant difference (P > 0.05) between the GHD group and the control group in terms of gender ratio, age, and body mass index. The waist-to-hip ratio (0.894 ± 0.061 vs 0.830 ± 0.481), cholesterol (4.99 ± 1.046 vs 4.18 ± 0.683), triglyceride (1.97 ± 1.428 vs 1.08 ± 0.403), LDL (2.91 ± 0.980 vs 2.29 ± 0.540), leptin (3.00 ± 1.233 vs 1.89 ± 1.554), ADP (15.26 ± 6.449 vs 10.24 ± 7.608), and visfatin levels (10.42 ± 3.715 vs 5.87 ± 3.90) in the GHD group were significantly higher than those in the control group (all P < 0.05). The levels of growth hormone (1.68 ± 1.67 vs 15.53 ± 6.23), insulin-like growth factor-1 (IGF-1, 22.64 ± 16.41 vs 61.85 ± 28.48), IGF-binding protein-3 (4889 ± 2962 vs 6866 ± 3823), and dehydroepiandrosterone sulfate (1.466 ± 1.804 vs 6.000 ± 2.767) in the GHD group were significantly lower than those in the control group (all P < 0.05). Correlation analysis demonstrated that leptin level was positively correlated to ADP and visfatin in both the GHD and control groups and negatively correlated to IGF-1 (r = 0.332, P < 0.05). Logistic regression analysis demonstrated that leptin, ADP, and visfatin were independent risk factors for adults with GHD.

  20. Effect of growth hormone on the differentiation of bovine preadipocytes into adipocytes and the role of the signal transducer and activator of transcription 5b.

    PubMed

    Zhao, L; Wang, A; Corl, B A; Jiang, H

    2014-05-01

    We evaluated the effect of GH on the differentiation of primary bovine preadipocytes into adipocytes. Bovine preadipocytes, derived from adipose tissue explants, were induced to differentiate into adipocytes in the presence or absence of recombinant bovine GH. The differentiation status of adipocytes was assessed by Oil Red O staining and by measuring the activity of glycerol-3-phosphate dehydrogenase (G3PDH) and the rate of acetate incorporation. Fewer preadipocytes became adipocytes in the presence of GH than in the absence of GH; adipocytes formed in the presence of GH had lower G3PDH activity and lower rate of acetate incorporation than those formed without GH treatment (P < 0.05). These data suggest an inhibitory effect of GH on the differentiation of bovine preadipocytes into adipocytes. Growth hormone decreased the expression of C/EBPα and PPARγ mRNA in bovine adipocytes (P < 0.05). Because C/EBPα and PPARγ are the master regulators of adipocyte differentiation, this data suggests that GH might inhibit the differentiation of bovine preadipocytes into adipocytes by inhibiting the expression of C/EBPα and/or PPARγ. Because the signal transducer and activator of transcription 5 (STAT5) is a major component of signaling from the GH receptor, we next determined the potential role of STAT5 in GH inhibition of bovine adipocyte differentiation. Overexpression of a constitutively active form of STAT5b (STAT5bCA) in bovine preadipocytes through adenoviral transduction mimicked the effects of GH on the formation of lipid-containing adipocytes, G3PDH activity, and acetate incorporation rate. Overexpression of STAT5bCA was associated with decreased expression of C/EBPα mRNA (P < 0.05) but not that of PPARγ mRNA in bovine adipocytes. These results support a role of STAT5b in mediating GH inhibition of C/EBPα expression but not that of PPARγ expression in bovine preadipocytes. Overall, the present study suggests that GH may inhibit adipose growth in cattle in

  1. Effect of fat supplementation on leptin, insulin-like growth factor I, growth hormone, and insulin in cattle.

    PubMed

    Becú-Villalobos, Damasia; García-Tornadú, Isabel; Shroeder, Guillermo; Salado, Eloy E; Gagliostro, Gerardo; Delavaud, Carole; Chilliard, Yves; Lacau-Mengido, Isabel M

    2007-07-01

    We investigated the effect of fat supplementation on plasma levels of hormones related to metabolism, with special attention to leptin, in cows in early lactation and in feedlot steers. In experiment 1, 34 lactating cows received no fat or else 0.5 or 1.0 kg of partially hydrogenated oil per day in addition to their basal diet from day 20 before the expected calving date to day 70 postpartum. In experiment 2, part of the corn in the basal concentrate was replaced with 0.7 kg of the same oil such that the diets were isocaloric; 18 cows received the fat-substituted diet and 18 a control diet from day 20 before the expected calving date to day 75 postpartum. In experiment 3, calcium salts of fatty acids were added to the basal diet of 14 feedlot steers for 80 d; another 14 steers received a control diet. The basal plasma levels of leptin were higher in the cows than in the steers. Dietary fat supplementation did not affect the leptin levels in the lactating cows but lowered the levels in the feedlot steers despite greater energy intake and body fatness (body weight) in the steers receiving the supplement than in those receiving the control diet. The levels of insulin-like growth factor I and insulin were decreased with dietary fat supplementation in the lactating cows but were unaffected in the steers, suggesting that responses to fat ingestion depend on the physiological state of the animal, including age and sex. Finally, no effects of supplementary fat on the level of growth hormone were demonstrated in any of the models.

  2. Effects of season, food deprivation and re-feeding on leptin, ghrelin and growth hormone in arctic foxes (Alopex lagopus) on Svalbard, Norway.

    PubMed

    Fuglei, E; Mustonen, A-M; Nieminen, P

    2004-03-01

    The arctic fox (Alopex lagopus) is a medium-sized predator of the high Arctic experiencing extreme seasonal fluctuations in food availability, photoperiod and temperature. In this study, the plasma leptin, ghrelin and growth hormone (GH) concentrations of male arctic foxes were determined during a food deprivation period of 13 days and the subsequent recovery in November and May. Leptin, ghrelin and GH were present in arctic fox plasma in amounts comparable to other carnivores. The plasma leptin concentrations did not react to food deprivation unlike in humans and rodents. However, the leptin levels increased during re-feeding as an indicator of increasing energy reserves. The relatively high ghrelin-leptin ratio, decrease in the plasma ghrelin concentration, an increase in the circulating GH concentrations and the observed negative correlation between plasma ghrelin and free fatty acid levels during fasting suggest that these hormones take part in the weight-regulation and energy metabolism of this species by increasing fat utilisation during food deprivation. The results strengthen the hypothesis that the actions of these weight-regulatory hormones are species-specific and depend on seasonality and the life history of the animals.

  3. Leptin Promotes Glioblastoma

    PubMed Central

    Lawrence, Johnathan E.; Cook, Nicholas J.; Rovin, Richard A.; Winn, Robert J.

    2012-01-01

    The hormone leptin has a variety of functions. Originally known for its role in satiety and weight loss, leptin more recently has been shown to augment tumor growth in a variety of cancers. Within gliomas, there is a correlation between tumor grade and tumor expression of leptin and its receptor. This suggests that autocrine signaling within the tumor microenvironment may promote the growth of high-grade gliomas. Leptin does this through stimulation of cellular pathways that are also advantageous for tumor growth and recurrence: antiapoptosis, proliferation, angiogenesis, and migration. Conversely, a loss of leptin expression attenuates tumor growth. In animal models of colon cancer and melanoma, a decline in the expression and secretion of leptin resulted in a reduction of tumor growth. In these models, positive mental stimulation through environmental enrichment decreased leptin secretion and improved tumor outcome. This review explores the link between leptin and glioblastoma. PMID:22263109

  4. Leptin Responsive and GABAergic Projections to the Rostral Preoptic Area in Mice.

    PubMed

    Zuure, W A; Quennell, J H; Anderson, G M

    2016-03-01

    The adipocyte-derived hormone leptin plays a critical role in the control of reproduction via signalling in hypothalamic neurones. The drivers of the hypothalamic-pituitary-gonadal axis, the gonadotrophin-releasing hormone (GnRH) neurones, do not have the receptors for leptin. Therefore, intermediate leptin responsive neurones must provide leptin-to-GnRH signalling. We investigated the populations of leptin responsive neurones that provide input to the rostral preoptic area (rPOA) where GnRH cell bodies reside. Fluorescent retrograde tracer beads (RetroBeads; Lumafluor Inc., Naples, FL, USA) were injected into the rPOA of transgenic leptin receptor enhanced green fluorescent protein (Lepr-eGFP) reporter mice. Uptake of the RetroBeads by Lepr-eGFP neurones was assessed throughout the hypothalamus. RetroBead uptake was most evident in the medial arcuate nucleus (ARC), the dorsomedial nucleus (DMN) and the ventral premammillary nucleus (PMV) of the hypothalamus. The uptake of RetroBeads specifically by Lepr-eGFP neurones was highest in the medial ARC (18% of tracer-labelled neurones Lepr-eGFP-positive). Because neurones that are both leptin responsive and GABAergic play a critical role in the regulation of fertility by leptin, we next focussed on the location of these populations. To address whether GABAergic neurones in leptin-responsive hypothalamic regions project to the rPOA, the experiment was repeated in GABA neurone reporter mice (Vgat-tdTomato). Between 10% and 45% of RetroBead-labelled neurones in the ARC were GABAergic, whereas uptake of tracer by GABAergic neurones in the DMN and PMV was very low (< 5%). These results show that both leptin responsive and GABAergic neurones from the ARC project to the region of the GnRH cell bodies. Our findings suggest that LEPR-expressing GABA neurones from the ARC may be mediators of leptin-to-GnRH signalling.

  5. Role of leptin resistance in the development of obesity in older patients

    PubMed Central

    Carter, Sophie; Caron, Alexandre; Richard, Denis; Picard, Frédéric

    2013-01-01

    Obesity is a global epidemic associated with aging-like cellular processes; in both aging and obesity, resistance to hormones such as insulin and leptin can be observed. Leptin is a circulating hormone/cytokine with central and peripheral effects that is released mainly by subcutaneous white adipose tissue. Centrally, leptin controls food intake, energy expenditure, and fat distribution, whereas it controls (among several others) insulin sensitivity, free fatty acids (FFAs) oxidation, and lipolysis in the periphery. Aging is associated with important changes in both the distribution and the composition of adipose tissue. Fat is redistributed from the subcutaneous to the visceral depot and increased inflammation participates in adipocyte dysfunction. This redistribution of adipose tissue in favor of visceral fat influences negatively both longevity and healthy aging as shown in numerous animal models. These modifications observed during aging are also associated with leptin resistance. This resistance blunts normal central and peripheral functions of leptin, which leads to a decrease in neuroendocrine function and insulin sensitivity, an imbalance in energy regulation, and disturbances in lipid metabolism. Here, we review how age-related leptin resistance triggers metabolic disturbances and affects the longevity of obese patients. Furthermore, we discuss the potential impacts of leptin resistance on the decline of brown adipose tissue thermogenesis observed in elderly individuals. PMID:23869170

  6. Role of leptin resistance in the development of obesity in older patients.

    PubMed

    Carter, Sophie; Caron, Alexandre; Richard, Denis; Picard, Frédéric

    2013-01-01

    Obesity is a global epidemic associated with aging-like cellular processes; in both aging and obesity, resistance to hormones such as insulin and leptin can be observed. Leptin is a circulating hormone/cytokine with central and peripheral effects that is released mainly by subcutaneous white adipose tissue. Centrally, leptin controls food intake, energy expenditure, and fat distribution, whereas it controls (among several others) insulin sensitivity, free fatty acids (FFAs) oxidation, and lipolysis in the periphery. Aging is associated with important changes in both the distribution and the composition of adipose tissue. Fat is redistributed from the subcutaneous to the visceral depot and increased inflammation participates in adipocyte dysfunction. This redistribution of adipose tissue in favor of visceral fat influences negatively both longevity and healthy aging as shown in numerous animal models. These modifications observed during aging are also associated with leptin resistance. This resistance blunts normal central and peripheral functions of leptin, which leads to a decrease in neuroendocrine function and insulin sensitivity, an imbalance in energy regulation, and disturbances in lipid metabolism. Here, we review how age-related leptin resistance triggers metabolic disturbances and affects the longevity of obese patients. Furthermore, we discuss the potential impacts of leptin resistance on the decline of brown adipose tissue thermogenesis observed in elderly individuals.

  7. Endocrine factors in the hypothalamic regulation of food intake in females: a review of the physiological roles and interactions of ghrelin, leptin, thyroid hormones, oestrogen and insulin.

    PubMed

    Somogyi, V; Gyorffy, A; Scalise, T J; Kiss, D S; Goszleth, G; Bartha, T; Frenyo, V L; Zsarnovszky, A

    2011-06-01

    Controlling energy homeostasis involves modulating the desire to eat and regulating energy expenditure. The controlling machinery includes a complex interplay of hormones secreted at various peripheral endocrine endpoints, such as the gastrointestinal tract, the adipose tissue, thyroid gland and thyroid hormone-exporting organs, the ovary and the pancreas, and, last but not least, the brain itself. The peripheral hormones that are the focus of the present review (ghrelin, leptin, thyroid hormones, oestrogen and insulin) play integrated regulatory roles in and provide feedback information on the nutritional and energetic status of the body. As peripheral signals, these hormones modulate central pathways in the brain, including the hypothalamus, to influence food intake, energy expenditure and to maintain energy homeostasis. Since the growth of the literature on the role of various hormones in the regulation of energy homeostasis shows a remarkable and dynamic expansion, it is now becoming increasingly difficult to understand the individual and interactive roles of hormonal mechanisms in their true complexity. Therefore, our goal is to review, in the context of general physiology, the roles of the five best-known peripheral trophic hormones (ghrelin, leptin, thyroid hormones, oestrogen and insulin, respectively) and discuss their interactions in the hypothalamic regulation of food intake.

  8. Sodium acetate decreases phosphorylation of hormone sensitive lipase in isoproterenol-stimulated 3T3-L1 mature adipocytes.

    PubMed

    Aberdein, Nicola; Schweizer, Michael; Ball, Derek

    2014-04-01

    Lipolysis, the process of hydrolysis of stored triacylglycerol into glycerol and non-esterified fatty acids (NEFA), is reported to be reduced by short chain fatty acids (SCFA) but the mechanism of this inhibition is poorly understood. The aim of this study was to measure the phosphorylation at serine residue 563 of hormone sensitive lipase with and without exposure to sodium acetate. Using the 3T3-L1 cell line, we identified that stimulating the cells with isoproterenol increased phosphorylated hormone sensitive lipase (pHSL) expression by 60% compared with the basal state. In the presence of the SCFA acetate in stimulated cells, pHSL decreased by 15% compared with stimulated cells alone. These results were mirrored by the NEFA release from stimulated cells that had significantly decreased in the presence of sodium acetate after 60 min (from 0.53 µmol mg(-1) protein to 0.41 µmol mg(-1) protein, respectively, P = 0.004); and 180 min (1.73 µmol mg(-1) protein to 1.13 µmol mg(-1) protein, P = 0.020); however, treatment had no effect on glycerol release (P = 0.109). In conclusion, exposure to 4 mM acetate reduced the level of phosphorylation of HSL(SER563) in mature 3T3-L1 adipocytes and led to a significant reduction in NEFA release, although glycerol release was not affected.

  9. Hypothalamic Leptin Gene Therapy Reduces Bone Marrow Adiposity in ob/ob Mice Fed Regular and High-Fat Diets

    PubMed Central

    Lindenmaier, Laurence B.; Philbrick, Kenneth A.; Branscum, Adam J.; Kalra, Satya P.; Turner, Russell T.; Iwaniec, Urszula T.

    2016-01-01

    Low bone mass is often associated with elevated bone marrow adiposity. Since osteoblasts and adipocytes are derived from the same mesenchymal stem cell (MSC) progenitor, adipocyte formation may increase at the expense of osteoblast formation. Leptin is an adipocyte-derived hormone known to regulate energy and bone metabolism. Leptin deficiency and high-fat diet-induced obesity are associated with increased marrow adipose tissue (MAT) and reduced bone formation. Short-duration studies suggest that leptin treatment reduces MAT and increases bone formation in leptin-deficient ob/ob mice fed a regular diet. Here, we determined the long-duration impact of increased hypothalamic leptin on marrow adipocytes and osteoblasts in ob/ob mice following recombinant adeno-associated virus (rAAV) gene therapy. Eight- to 10-week-old male ob/ob mice were randomized into four groups: (1) untreated, (2) rAAV-Lep, (3) rAAV-green fluorescent protein (rAAV-GFP), or (4) pair-fed to rAAV-Lep. For vector administration, mice were injected intracerebroventricularly with either rAAV-leptin gene therapy (rAAV-Lep) or rAAV-GFP (9 × 107 particles) and maintained for 30 weeks. In a second study, the impact of increased hypothalamic leptin levels on MAT was determined in mice fed high-fat diets; ob/ob mice were randomized into two groups and treated with either rAAV-Lep or rAAV-GFP. At 7 weeks post-vector administration, half the mice in each group were switched to a high-fat diet for 8 weeks. Wild-type (WT) controls included age-matched mice fed regular or high-fat diet. High-fat diet resulted in a threefold increase in MAT in WT mice, whereas MAT was increased by leptin deficiency up to 50-fold. Hypothalamic leptin gene therapy increased osteoblast perimeter and osteoclast perimeter with minor change in cancellous bone architecture. The gene therapy decreased MAT levels in ob/ob mice fed regular or high-fat diet to values similar to WT mice fed regular diet. These findings suggest

  10. Leptin and reproductive function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adipose tissue plays a dynamic role in whole-body homeostasis by acting as an endocrine organ. Collective evidence indicates a strong link between neural influences and adipocyte expression and secretion of leptin. Developmental changes in these relationships are considered important for pubertal ...

  11. Effect of recombinant growth hormone on expression of growth hormone receptor, insulin-like growth factor mRNA and serum level of leptin in growing pigs.

    PubMed

    Xu, Qingfu; Zhao, Zhihui; Ni, Yingdong; Zhao, Ruqian; Chen, Jie

    2003-04-01

    Sixteen Large White x Landrace castrated male pigs were allotted into treatment and control group. The treatment group was injected intramuscularly with recombinant porcine growth hormone (rpGH, 4 mg d(-1)) and the control group with vehicle for 28 days. Animals were slaughtered 4 h after final injection for liver, longissimus dorsi (LD) muscle and blood sampling. Serum concentration of insulin-like growth factor 1 (IGF-I) and leptin were determined by RIA. The total RNA was extracted from tissues to measure the abundance of growth hormone receptor (GHR), IGF-I mRNA by RT-PCR with 18S rRNA internal standard. Results showed that rpGH enhanced the average daily weight gain by 26.1% (P < 0.05), the serum IGF-I concentration by 70.94% (P < 0.01), decreased serum leptin by 34.8% (P < 0.01). The relative abundance of GHR and IGF-I mRNA in liver were increased by 24.45% (P < 0.05) and 45.30% (P < 0.01), respectively, but no difference of GHR (P > 0.05) and IGF-I mRNA (P > 0.05) in LD between GH treated and control group was found. These results suggest that rpGH can up-regulate hepatic GHR and IGF-I gene expression and improve animal growth. However the effect of rpGH on GHR and IGF-I gene expression are tissue-specific.

  12. Serum leptin levels and anthropometric correlates in Ache Amerindians of eastern Paraguay.

    PubMed

    Bribiescas, R G

    2001-08-01

    Leptin is a recently discovered peptide hormone secreted primarily from adipocytes in humans and other mammals; it is a reflection of fat stores, and has been associated with reproductive function. However, few leptin measurements are available from nonindustrialized populations, including contemporary hunter/gatherer communities undergoing the transition to sedentary agriculture. This investigation reports single-sample serum leptin measurements in healthy Ache Amerindian males (n = 21; average age, 32.8 +/- 3.4 SE) and females (n = 12; average age, 31.3 +/- 4.3) in eastern Paraguay. Ache leptin concentrations were much lower than in industrialized populations, although significant sexual dimorphism was evident (female 5.64 ng/ml +/- 0.91 SE vs. male 1.13 ng/ml +/- 0.08; P < 0.0001). Indeed, female leptin levels were similar to those of anorexic women, despite apparently adequate adiposity. Controlling for fat percentage, no significant sex difference was evident, suggesting that adiposity was the primary source of leptin variation. Body fat percentage was highly correlated with leptin in females (r2 = 0.72; P < 0.0005) but not males, who exhibited a modest negative correlation (r2 = 0.25; P < 0.03). Weight (r2 = 0.45; P = 0.02) and BMI (kg/m2) (r2 = 0.81; P < 0.0001) were also significantly correlated in females but not males. These results suggest that: 1) clinical leptin norms based on industrialized populations may represent the highest range of human variation and may not be representative of most human populations; 2) hormonal priming may underlie population variation in leptin profiles; and 3) the relative importance of leptin as a proximate mechanism regulating reproductive effort during human evolution may have been modest.

  13. Leptin signaling regulates glucose homeostasis, but not adipostasis, in the zebrafish.

    PubMed

    Michel, Maximilian; Page-McCaw, Patrick S; Chen, Wenbiao; Cone, Roger D

    2016-03-15

    Leptin is the primary adipostatic factor in mammals. Produced largely by adipocytes in proportion to total adipose mass, the hormone informs the brain regarding total energy stored as triglycerides in fat cells. The hormone acts on multiple circuits in the brain to regulate food intake, autonomic outflow, and endocrine function to maintain energy balance. In addition to regulating adipose mass, mammalian leptin also plays a role in the regulation of glucose homeostasis and as a gating factor in reproductive competence. Leptin-deficient mice and people exhibit early onset profound hyperphagia and obesity, diabetes, and infertility. Although leptin and the leptin receptor are found in fish, the hormone is not expressed in adipose tissue, but is found in liver and other tissues. Here, we show that adult zebrafish lacking a functional leptin receptor do not exhibit hyperphagia or increased adiposity, and exhibit normal fertility. However, leptin receptor-deficient larvae have increased numbers of β-cells and increased levels of insulin mRNA. Furthermore, larval zebrafish have been shown to exhibit β-cell hyperplasia in response to high fat feeding or peripheral insulin resistance, and we show here that leptin receptor is required for this response. Adult zebrafish also have increased levels of insulin mRNA and other alterations in glucose homeostasis. Thus, a role for leptin in the regulation of β-cell mass and glucose homeostasis appears to be conserved across vertebrates, whereas its role as an adipostatic factor is likely to be a secondary role acquired during the evolution of mammals.

  14. Leptin signaling regulates glucose homeostasis, but not adipostasis, in the zebrafish

    PubMed Central

    Michel, Maximilian; Page-McCaw, Patrick S.; Chen, Wenbiao; Cone, Roger D.

    2016-01-01

    Leptin is the primary adipostatic factor in mammals. Produced largely by adipocytes in proportion to total adipose mass, the hormone informs the brain regarding total energy stored as triglycerides in fat cells. The hormone acts on multiple circuits in the brain to regulate food intake, autonomic outflow, and endocrine function to maintain energy balance. In addition to regulating adipose mass, mammalian leptin also plays a role in the regulation of glucose homeostasis and as a gating factor in reproductive competence. Leptin-deficient mice and people exhibit early onset profound hyperphagia and obesity, diabetes, and infertility. Although leptin and the leptin receptor are found in fish, the hormone is not expressed in adipose tissue, but is found in liver and other tissues. Here, we show that adult zebrafish lacking a functional leptin receptor do not exhibit hyperphagia or increased adiposity, and exhibit normal fertility. However, leptin receptor-deficient larvae have increased numbers of β-cells and increased levels of insulin mRNA. Furthermore, larval zebrafish have been shown to exhibit β-cell hyperplasia in response to high fat feeding or peripheral insulin resistance, and we show here that leptin receptor is required for this response. Adult zebrafish also have increased levels of insulin mRNA and other alterations in glucose homeostasis. Thus, a role for leptin in the regulation of β-cell mass and glucose homeostasis appears to be conserved across vertebrates, whereas its role as an adipostatic factor is likely to be a secondary role acquired during the evolution of mammals. PMID:26903647

  15. Novel molecular aspects of ghrelin and leptin in the control of adipobiology and the cardiovascular system.

    PubMed

    Rodríguez, Amaia

    2014-01-01

    Ghrelin and leptin show opposite effects on energy balance. Ghrelin constitutes a gut hormone that is secreted to the bloodstream in two major forms, acylated and desacyl ghrelin. The isoforms of ghrelin not only promote adiposity by the activation of hypothalamic orexigenic neurons but also directly stimulate the expression of several fat storage-related proteins in adipocytes, including ACC, FAS, LPL and perilipin, thereby stimulating intracytoplasmic lipid accumulation. Moreover, both acylated and desacyl ghrelin reduce TNF-α-induced apoptosis and autophagy in adipocytes, suggesting an anti-inflammatory role of ghrelin in human adipose tissue. On the other hand, leptin is an adipokine with lipolytic effects. In this sense, leptin modulates via PI3K/Akt/mTOR the expression of aquaglyceroporins such as AQP3 and AQP7 that facilitate glycerol efflux from adipocytes in response to the lipolytic stimuli via its translocation from the cytosolic fraction (AQP3) or lipid droplets (AQP7) to the plasma membrane. Ghrelin and leptin also participate in the homeostasis of the cardiovascular system. Ghrelin operates as a cardioprotective factor with increased circulating acylated ghrelin concentrations in patients with left ventricular hypertrophy (LVH) causally related to LV remodeling during the progression to LVH. Additionally, leptin induces vasodilation by inducible NO synthase expression (iNOS) in the vascular wall. In this sense, leptin inhibits the angiotensin II-induced Ca(2+) increase, contraction and proliferation of VSMC through NO-dependent mechanisms. Together, dysregulation of circulating ghrelin isoforms and leptin resistance associated to obesity, type 2 diabetes, or the metabolic syndrome contribute to cardiometabolic derangements observed in these pathologies.

  16. Role of leptin in energy-deprivation states: normal human physiology and clinical implications for hypothalamic amenorrhoea and anorexia nervosa.

    PubMed

    Chan, Jean L; Mantzoros, Christos S

    Leptin is an adipocyte-secreted hormone that plays a key part in energy homoeostasis. Advances in leptin physiology have established that the main role of this hormone is to signal energy availability in energy-deficient states. Studies in animals and human beings have shown that low concentrations of leptin are fully or partly responsible for starvation-induced changes in neuroendocrine axes, including low reproductive, thyroid, and insulin-like growth factor (IGF) hormones. Disease states such as exercise-induced hypothalamic amenorrhoea and anorexia nervosa are also associated with low concentrations of leptin and a similar spectrum of neuroendocrine abnormalities. We have recently shown in an interventional, proof-of-concept study that leptin can restore ovulatory menstrual cycles and improve reproductive, thyroid, and IGF hormones and bone markers in hypothalamic amenorrhoea. Further studies are warranted to establish the safety and effectiveness of leptin for the infertility and osteoporosis associated with hypothalamic amenorrhoea, and to clarify its role in anorexia nervosa.

  17. Molecular cloning and expression of leptin in gray and harbor seal blubber, bone marrow, and lung and its potential role in marine mammal respiratory physiology.

    PubMed

    Hammond, John A; Bennett, Kimberley A; Walton, Michael J; Hall, Ailsa J

    2005-08-01

    Leptin is a multifunctional hormone, produced predominantly in adipocytes. It regulates energy balance through its impact on appetite and fat metabolism, and its concentration indicates the size of body fat reserves. Leptin also plays a vital role in stretch-induced surfactant production during alveolar development in the fetus. The structure, expression pattern, and role of leptin have not previously been explored in marine mammals. Phocid seals undergo cyclical changes in body composition as a result of prolonged fasting and intensive foraging bouts and experience rapid, dramatic, and repeated changes in lung volume during diving. Here, we report the tissue-specific expression pattern of leptin in these animals. This is the first demonstration of leptin expression in the lung tissue of a mature mammal, in addition to its expression in the blubber and bone marrow, in common with other animals. We propose a role for leptin in seal pulmonary surfactant production, in addition to its likely role in long-term energy balance. We identify substitutions in the phocine leptin sequence in regions normally highly conserved between widely distinct vertebrate groups, and, using a purified seal leptin antiserum, we confirm the presence of the leptin protein in gray seal lung and serum fractions. Finally, we report the substantial inadequacies of using heterologous antibodies to measure leptin in unextracted gray seal serum.

  18. Physical exercise-induced hippocampal neurogenesis and antidepressant effects are mediated by the adipocyte hormone adiponectin.

    PubMed

    Yau, Suk Yu; Li, Ang; Hoo, Ruby L C; Ching, Yick Pang; Christie, Brian R; Lee, Tatia M C; Xu, Aimin; So, Kwok-Fai

    2014-11-04

    Adiponectin (ADN) is an adipocyte-secreted protein with insulin-sensitizing, antidiabetic, antiinflammatory, and antiatherogenic properties. Evidence is also accumulating that ADN has neuroprotective activities, yet the underlying mechanism remains elusive. Here we show that ADN could pass through the blood-brain barrier, and elevating its levels in the brain increased cell proliferation and decreased depression-like behaviors. ADN deficiency did not reduce the basal hippocampal neurogenesis or neuronal differentiation but diminished the effectiveness of exercise in increasing hippocampal neurogenesis. Furthermore, exercise-induced reduction in depression-like behaviors was abrogated in ADN-deficient mice, and this impairment in ADN-deficient mice was accompanied by defective running-induced phosphorylation of AMP-activated protein kinase (AMPK) in the hippocampal tissue. In vitro analyses indicated that ADN itself could increase cell proliferation of both hippocampal progenitor cells and Neuro2a neuroblastoma cells. The neurogenic effects of ADN were mediated by the ADN receptor 1 (ADNR1), because siRNA targeting ADNR1, but not ADNR2, inhibited the capacity of ADN to enhance cell proliferation. These data suggest that adiponectin may play a significant role in mediating the effects of exercise on hippocampal neurogenesis and depression, possibly by activation of the ADNR1/AMPK signaling pathways, and also raise the possibility that adiponectin and its agonists may represent a promising therapeutic treatment for depression.

  19. Physical exercise-induced hippocampal neurogenesis and antidepressant effects are mediated by the adipocyte hormone adiponectin

    PubMed Central

    Yau, Suk Yu; Li, Ang; Hoo, Ruby L. C.; Ching, Yick Pang; Christie, Brian R.; Lee, Tatia M. C.; Xu, Aimin; So, Kwok-Fai

    2014-01-01

    Adiponectin (ADN) is an adipocyte-secreted protein with insulin-sensitizing, antidiabetic, antiinflammatory, and antiatherogenic properties. Evidence is also accumulating that ADN has neuroprotective activities, yet the underlying mechanism remains elusive. Here we show that ADN could pass through the blood–brain barrier, and elevating its levels in the brain increased cell proliferation and decreased depression-like behaviors. ADN deficiency did not reduce the basal hippocampal neurogenesis or neuronal differentiation but diminished the effectiveness of exercise in increasing hippocampal neurogenesis. Furthermore, exercise-induced reduction in depression-like behaviors was abrogated in ADN-deficient mice, and this impairment in ADN-deficient mice was accompanied by defective running-induced phosphorylation of AMP-activated protein kinase (AMPK) in the hippocampal tissue. In vitro analyses indicated that ADN itself could increase cell proliferation of both hippocampal progenitor cells and Neuro2a neuroblastoma cells. The neurogenic effects of ADN were mediated by the ADN receptor 1 (ADNR1), because siRNA targeting ADNR1, but not ADNR2, inhibited the capacity of ADN to enhance cell proliferation. These data suggest that adiponectin may play a significant role in mediating the effects of exercise on hippocampal neurogenesis and depression, possibly by activation of the ADNR1/AMPK signaling pathways, and also raise the possibility that adiponectin and its agonists may represent a promising therapeutic treatment for depression. PMID:25331877

  20. Leptin-dependent neurotoxicity via induction of apoptosis in adult rat neurogenic cells

    PubMed Central

    Segura, Stéphanie; Efthimiadi, Laurie; Porcher, Christophe; Courtes, Sandrine; Coronas, Valérie; Krantic, Slavica; Moyse, Emmanuel

    2015-01-01

    Adipocyte-derived hormone leptin has been recently implicated in the control of neuronal plasticity. To explore whether modulation of adult neurogenesis may contribute to leptin control of neuronal plasticity, we used the neurosphere assay of neural stem cells derived from the adult rat subventricular zone (SVZ). Endogenous expression of specific leptin receptor (ObRb) transcripts, as revealed by RT-PCR, is associated with activation of both ERK and STAT-3 pathways via phosphorylation of the critical ERK/STAT-3 amino acid residues upon addition of leptin to neurospheres. Furthermore, leptin triggered withdrawal of neural stem cells from the cell cycle as monitored by Ki67 labeling. This effect was blocked by pharmacological inhibition of ERK activation thus demonstrating that ERK mediates leptin effects on neural stem cell expansion. Leptin-dependent withdrawal of neural stem cells from the cell cycle was associated with increased apoptosis, as detected by TUNEL, which was preceded by cyclin D1 induction. Cyclin D1 was indeed extensively colocalized with TUNEL-positive, apoptotic nuclei. Cyclin-D1 silencing by specific shRNA prevented leptin-induced decrease of the cell number per neurosphere thus pointing to the causal relationship between leptin actions on apoptosis and cyclin D1 induction. Leptin target cells in SVZ neurospheres were identified by double TUNEL/phenotypic marker immunocytofluorescence as differentiating neurons mostly. The inhibition of neural stem cell expansion via ERK/cyclin D1-triggered apoptosis defines novel biological action of leptin which may be involved in adiposity-dependent neurotoxicity. PMID:26441523

  1. Serum leptin, thyroxine and thyroid-stimulating hormone levels interact to affect cognitive function among US adults: evidence from a large representative survey.

    PubMed

    Beydoun, May A; Beydoun, Hind A; Shroff, Monal R; Kitner-Triolo, Melissa H; Zonderman, Alan B

    2012-08-01

    Neuroanatomical connections point to possible interactions between areas influencing energy homeostasis and those influencing cognition. We assessed whether serum leptin, thyroxine, and thyroid stimulating hormone (TSH) levels are associated with and interact to influence cognitive performance among US adults. Data from the National Health and Nutrition Examination Survey III (1988-1994) were used. Measures included a battery of neuropsychological tests and serum leptin, thyroxine, and TSH levels (20-59-year-old: n = 1114-2665; 60-90-year-old: n = 1365-5519). Among those 20-59-year-old, the middle tertile of leptin (vs. first tertile) was inversely related to the number of errors on the symbol digits substitution test. Increased thyroxine level was associated with a poorer performance on the serial digits test in the 20-59-year-old, but a better performance on the math test in 60-90-year-old group. TSH was associated with poor performance on various tests in the 20-59-year-old, but better performance in the 60-90-year-old group. Significant antagonistic interactions were found in both age groups between thyroxine, TSH, and leptin for a number of tests, including between leptin and thyroxine in the 60-90-year-old group in their association with word recall-correct score. We found significant associations of our main exposures with cognitive function among US adults, going in opposite directions between age groups in the cases of thyroid hormonal levels, as well as some interactive effects between exposures. It is important to conduct prospective cohort studies to provide further insight into potential interventions that would assess interactive effects of various hormonal replacement regimens.

  2. Leptin and the pituitary.

    PubMed

    Sone, M; Osamura, R Y

    2001-01-01

    -CSF) receptor, and the leukemia inhibitory factor (LIF) receptor. The leptin receptor is known to have at least six existing isoforms (Ob-Ra, b, c, d, e, f) from the difference in splicing. (Homozygote Mutation of Leptin and Leptin Receptor :Hormone Secretion Disorders) The point mutation of ob/ob mouse and the splicing mutation of db/db mouse show remarkable obesity and hyperphagia. These obesity models show a reproduction disorder with both the male and the female, and they develop with homozygote. The cause is thought to be the gonadotropin secretory abnormality in pituitary. Three family lines report the cases of this deficiency, and it is considered that the secretory abnormality in pituitary develops into hypogonadotropic. These patients show low value in plasma FSHbeta (follicle stimulating hormone-beta and LHbeta (luteinizing hormone-beta which are produced from pituitary, and the plasma GnRH (gonadotropin releasing hormone) level is also low. Furthermore, the leptin receptor deficient family line was reported in 1998, in which case only the homozygote developed. The plasma leptin concentration of normal human is about 8.0 ng/ml, and this case with leptin receptor deficiency has high value of 500-700 ng/ml, which is the equivalent to the db/db mouse. (Role of Leptin in Hypothalamus-Pituitary-Periphery Function) The role of leptin which regulates pituitary hormones suggests the promotion the GHRH (growth hormone releasing hormone) secretion in hypothalamus-pituitary axis, with the possibility of the rise in secretion of GH (growth hormone) in pituitary, i.e. effects of icv (intracerebroventricular) infusion of leptin has spontaneously stimulated GHRH, which promotes GH secretion in the normal rats. On the other hand, topical treatment of GH3 (derived from a rat pituitary GH-secreting cell line) with leptin directly inhibits cell proliferation. The obesity model animals (ob/ob, db/db, fa/fa) have equally plump body compared to the normal models, which shows signs of

  3. Leptin stimulates hepatic growth hormone receptor and insulin-like growth factor gene expression in a teleost fish, the hybrid striped bass.

    PubMed

    Won, Eugene T; Douros, Jonathan D; Hurt, David A; Borski, Russell J

    2016-04-01

    Leptin is an anorexigenic peptide hormone that circulates as an indicator of adiposity in mammals, and functions to maintain energy homeostasis by balancing feeding and energy expenditure. In fish, leptin tends to be predominantly expressed in the liver, another important energy storing tissue, rather than in fat depots as it is in mammals. The liver also produces the majority of circulating insulin-like growth factors (IGFs), which comprise the mitogenic component of the growth hormone (GH)-IGF endocrine growth axis. Based on similar regulatory patterns of leptin and IGFs that we have documented in previous studies on hybrid striped bass (HSB: Morone saxatilis×Morone chrysops), and considering the co-localization of these peptides in the liver, we hypothesized that leptin might regulate the endocrine growth axis in a manner that helps coordinate somatic growth with energy availability. Using a HSB hepatocyte culture system to simulate autocrine or paracrine exposure that might occur within the liver, this study examines the potential for leptin to modulate metabolism and growth through regulation of IGF gene expression directly, or indirectly through the regulation of GH receptors (GHR), which mediate GH-induced IGF expression. First, we verified that GH (50nM) has a classical stimulatory effect on IGF-1 and additionally show it stimulates IGF-2 transcription in hepatocytes. Leptin (5 and/or 50nM) directly stimulated in vitro GHR2 gene expression within 8h of exposure, and both GHR1 and GHR2 as well as IGF-1 and IGF-2 gene expression after 24h. Cells were then co-incubated with submaximal concentrations of leptin and GH (25nM each) to test if they had a synergistic effect on IGF gene expression, possibly through increased GH sensitivity following GHR upregulation by leptin. In combination, however, the treatments only had an additive effect on stimulating IGF-1 mRNA despite their capacity to increase GHR mRNA abundance. This suggests that leptin's stimulatory

  4. Polymorphisms of the porcine cathepsins, growth hormone-releasing hormone and leptin receptor genes and their association with meat quality traits in Ukrainian Large White breed.

    PubMed

    Balatsky, Viktor; Bankovska, Irina; Pena, Ramona N; Saienko, Artem; Buslyk, Tetyana; Korinnyi, Sergii; Doran, Olena

    2016-06-01

    Cathepsins, growth hormone-releasing hormone (GHRH) and leptin receptor (LEPR) genes have been receiving increasing attention as potential markers for meat quality and pig performance traits. This study investigated the allele variants in four cathepsin genes (CTSB, CTSK, CTSL, CTSS), GHRH and LEPR in pure-bred Ukrainian Large White pigs and evaluated effects of the allele variants on meat quality characteristics. The study was conducted on 72 pigs. Genotyping was performed using PCR-RFLP technique. Meat quality characteristics analysed were intramuscular fat content, tenderness, total water content, ultimate pH, crude protein and ashes. A medium level of heterozygosity values was established for GHRH and LEPR genes which corresponded to very high levels of informativeness indexes. Cathepsins CTSL, CTSB and CTSK had a low level of heterozygosity, and CTSS did not segregate in this breed. Association studies established that intramuscular fat content and tenderness were affected by the allele variance in GHRH and LEPR but not by CTSB and CTSL genes. The GHRH results could be particularly relevant for the production of lean prime cuts as the A allele is associated with both, a lower meat fat content and better tenderness values, which are two attributes highly regarded by consumers. Results of this study suggest that selective breeding towards GHRH/AA genotype would be particularly useful for improving meat quality characteristics in the production systems involving lean Large White lines, which typically have less than 2 % intramuscular fat content.

  5. Differential Role of Leptin as an Immunomodulator in Controlling Visceral Leishmaniasis in Normal and Leptin-Deficient Mice

    PubMed Central

    Maurya, Radheshyam; Bhattacharya, Parna; Ismail, Nevien; Dagur, Pradeep K.; Joshi, Amritanshu B.; Razdan, Kundan; McCoy, J. Philip; Ascher, Jill; Dey, Ranadhir; Nakhasi, Hira L.

    2016-01-01

    Visceral leishmaniasis (VL) is caused by the protozoan parasite Leishmania donovani. There are no vaccines and available drugs against leishmaniasis are toxic. Immunomodulators that specifically boost the anti-microbial activities of the immune cells could alleviate several of these limitations. Therefore, finding novel immunomodulators for VL therapy is a pressing need. This study is aimed to evaluate the immunomodulatory role of leptin, an adipocyte-derived hormone capable of regulating the immune response, in L. donovani-infected mice. We observed that recombinant leptin treatment reduced splenic parasite burden compared with non-treated infected normal mice. Decrease in parasite burden correlated with an induction of innate immune response in antigen-presenting cells that showed an increase in nitric oxide, enhanced pro-inflammatory cytokine (interferon gamma [IFNγ], interleukin12 [IL]12, and IL1β) response in the splenocytes, indicating host-protecting Th1 response mediated by leptin. Moreover, in infected normal mice, leptin treatment induced IFNγ production from both CD4+ and CD8+ T cells, compared with non-treated infected mice. Alternatively, leptin-deficient (Ob/Ob) mice had higher splenic and liver parasite burden compared with the infected normal mice. However, leptin treatment failed to reduce the splenic parasite burden and improve a host-protective cytokine response in these mice. In addition, in contrast to dendritic cells (DCs) from a normal mouse, Ob/Ob mouse–derived DCs showed a defect in the induction of innate immune response on Leishmania infection that could not be reversed by leptin treatment. Therefore, our findings reveal that leptin has a differential immunomodulatory effect in controlling VL in normal and Ob/Ob mice. PMID:27114296

  6. Fat mass and obesity-associated gene (FTO) is linked to higher plasma levels of the hunger hormone ghrelin and lower serum levels of the satiety hormone leptin in older adults.

    PubMed

    Benedict, Christian; Axelsson, Tomas; Söderberg, Stefan; Larsson, Anders; Ingelsson, Erik; Lind, Lars; Schiöth, Helgi B

    2014-11-01

    The mechanisms through which common polymorphisms in the fat mass and obesity-associated gene (FTO) drive the development of obesity in humans are poorly understood. Using cross-sectional data from 985 older people (50% females) who participated at age 70 years in the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS), circulating levels of ghrelin and leptin were measured after an overnight fast. In addition, subjects were genotyped for FTO rs17817449 (AA, n = 345 [35%]; AC/CA, n = 481 [48.8%]; CC, n = 159 [16.1%]). Linear regression analyses controlling for sex, self-reported physical activity level, fasting plasma glucose, and BMI were used. A positive relationship between the number of FTO C risk alleles and plasma ghrelin levels was found (P = 0.005; relative plasma ghrelin difference between CC and AA carriers = ∼ 9%). In contrast, serum levels of the satiety-enhancing hormone leptin were inversely linked to the number of FTO C risk alleles (P = 0.001; relative serum leptin difference between CC and AA carriers = ∼ 11%). These associations were also found when controlling for waist circumference. The present findings suggest that FTO may facilitate weight gain in humans by shifting the endocrine balance from the satiety hormone leptin toward the hunger-promoting hormone ghrelin.

  7. Beyond Leptin: Emerging Candidates for the Integration of Metabolic and Reproductive Function during Negative Energy Balance.

    PubMed

    True, Cadence; Grove, Kevin L; Smith, M Susan

    2011-01-01

    Reproductive status is tightly coupled to metabolic state in females, and ovarian cycling in mammals is halted when energy output exceeds energy input, a metabolic condition known as negative energy balance. This inhibition of reproductive function during negative energy balance occurs due to suppression of gonadotropin-releasing hormone (GnRH) release in the hypothalamus. The GnRH secretagogue kisspeptin is also inhibited during negative energy balance, indicating that inhibition of reproductive neuroendocrine circuits may occur upstream of GnRH itself. Understanding the metabolic signals responsible for the inhibition of reproductive pathways has been a compelling research focus for many years. A predominant theory in the field is that the status of energy balance is conveyed to reproductive neuroendocrine circuits via the adipocyte hormone leptin. Leptin is stimulatory for GnRH release and lower levels of leptin during negative energy balance are believed to result in decreased stimulatory drive for GnRH cells. However, recent evidence found that restoring leptin to physiological levels did not restore GnRH function in three different models of negative energy balance. This suggests that although leptin may be an important permissive signal for reproductive function as indicated by many years of research, factors other than leptin must critically contribute to negative energy balance-induced reproductive inhibition. This review will focus on emerging candidates for the integration of metabolic status and reproductive function during negative energy balance.

  8. Beyond Leptin: Emerging Candidates for the Integration of Metabolic and Reproductive Function during Negative Energy Balance

    PubMed Central

    True, Cadence; Grove, Kevin L.; Smith, M. Susan

    2011-01-01

    Reproductive status is tightly coupled to metabolic state in females, and ovarian cycling in mammals is halted when energy output exceeds energy input, a metabolic condition known as negative energy balance. This inhibition of reproductive function during negative energy balance occurs due to suppression of gonadotropin-releasing hormone (GnRH) release in the hypothalamus. The GnRH secretagogue kisspeptin is also inhibited during negative energy balance, indicating that inhibition of reproductive neuroendocrine circuits may occur upstream of GnRH itself. Understanding the metabolic signals responsible for the inhibition of reproductive pathways has been a compelling research focus for many years. A predominant theory in the field is that the status of energy balance is conveyed to reproductive neuroendocrine circuits via the adipocyte hormone leptin. Leptin is stimulatory for GnRH release and lower levels of leptin during negative energy balance are believed to result in decreased stimulatory drive for GnRH cells. However, recent evidence found that restoring leptin to physiological levels did not restore GnRH function in three different models of negative energy balance. This suggests that although leptin may be an important permissive signal for reproductive function as indicated by many years of research, factors other than leptin must critically contribute to negative energy balance-induced reproductive inhibition. This review will focus on emerging candidates for the integration of metabolic status and reproductive function during negative energy balance. PMID:22645510

  9. Ghrelin and leptin pathophysiology in chronic kidney disease.

    PubMed

    Gunta, Sujana S; Mak, Robert H

    2013-04-01

    Ghrelin is an orexigenic hormone with additional effects on the regulation of inflammation and the cardiovascular system. It may play an important role in the pathogenesis of cachexia/protein-energy wasting (PEW), inflammation and cardiovascular complications in chronic kidney disease (CKD). There are three circulating gene products of ghrelin, namely, acyl ghrelin, des-acyl ghrelin and obestatin, each with individual distinct functions. Perturbations of these circulating ghrelin proteins impact the overall milieu of CKD. Leptin is an anorexigenic hormone which is secreted from the adipocytes and interacts with ghrelin and other appetite-regulating hormones. Leptin also plays a role in regulating inflammation and the cardiovascular system. Indeed, ghrelin and leptin may play yin-and-yang roles in CKD pathophysiology. Clinical trials involving the use of the mimetics or antagonists of these hormones are limited to short-term phase I/II studies. Further understanding of their interactions in CKD pathophysiology is needed for potential large-scale clinical trials, which may impact the quality of life and survival of patients with CKD.

  10. Elsevier Trophoblast Research Award lecture: Molecular mechanisms underlying estrogen functions in trophoblastic cells--focus on leptin expression.

    PubMed

    Gambino, Y P; Maymó, J L; Pérez Pérez, A; Calvo, J C; Sánchez-Margalet, V; Varone, C L

    2012-02-01

    The steroid hormone 17β-estradiol is an estrogen that influences multiple aspects of placental function and fetal development in humans. During early pregnancy it plays a role in the regulation of blastocyst implantation, trophoblast differentiation and invasiveness, remodeling of uterine arteries, immunology and trophoblast production of hormones such as leptin. Estradiol exerts some effects through the action of classical estrogen receptors ERα and ERβ, which act as ligand-activated transcription factors and regulate gene expression. In addition, estradiol can elicit rapid responses from membrane-associated receptors, like activation of protein-kinase pathways. Thus, the cellular effects of estradiol will depend on the specific receptors expressed and the integration of their signaling events. Leptin, the 16,000MW protein product of the obese gene, was originally considered an adipocyte-derived signaling molecule for the central control of metabolism. However, pleiotropic effects of leptin have been identified in reproduction and pregnancy. The leptin gene is expressed in placenta, where leptin promotes proliferation and survival of trophoblastic cells. Expression of leptin in placenta is highly regulated by key pregnancy molecules as hCG and estradiol. The aim of this paper is to review the molecular mechanisms underlying estrogen functions in trophoblastic cells; focusing on mechanisms involved in estradiol regulation of placental leptin expression.

  11. Leptin Dysfunction and Alzheimer's Disease: Evidence from Cellular, Animal, and Human Studies.

    PubMed

    McGuire, Matthew J; Ishii, Makoto

    2016-03-01

    There is accumulating evidence from epidemiological studies that changes in body weight are associated with Alzheimer's disease (AD) from mid-life obesity increasing the risk of developing AD to weight loss occurring at the earliest stages of AD. Therefore, factors that regulate body weight are likely to influence the development and progression of AD. The adipocyte-derived hormone leptin has emerged as a major regulator of body weight mainly by activating hypothalamic neural circuits. Leptin also has several pleotropic effects including regulating cognitive function and having neuroprotective effects, suggesting a potential link between leptin and AD. Here, we will examine the relationship between leptin and AD by reviewing the recent evidence from cellular and animal models to human studies. We present a model where leptin has a bidirectional role in AD. Not only can alterations in leptin levels and function worsen cognitive decline and progression of AD pathology, but AD pathology, in of itself, can disrupt leptin signaling, which together would lead to a downward spiral of progressive neurodegeneration and worsening body weight and systemic metabolic deficits. Collectively, these studies serve as a framework to highlight the importance of understanding the molecular mechanisms underlying the body weight and systemic metabolic deficits in AD, which has the potential to open new avenues that may ultimately lead to novel therapeutic targets and diagnostic tools.

  12. Insulin enhanced leptin-induced STAT3 signaling by inducing GRP78

    PubMed Central

    Thon, Mina; Hosoi, Toru; Ozawa, Koichiro

    2016-01-01

    Leptin, an adipocyte-derived hormone, centrally regulates energy homeostasis. Overlaps in the regulation of glucose and energy homeostasis have been reported between leptin and insulin. However, the effects of insulin on leptin’s actions in the central nervous system (CNS) have not yet been elucidated in detail. In the present study, we found that insulin potentiated leptin’s actions through GRP78 in the neuronal cell line, SH-SY5Y-ObRb. Since insulin induces GRP78, we speculated that it may also enhance leptin’s actions through this induction. We found that insulin enhanced leptin-induced STAT3 phosphorylation and this effect was ameliorated by the knockdown of GRP78. The role of GRP78 in leptin’s actions was also confirmed by impairments in leptin-induced STAT3 phosphorylation in HEK293-ObRb cells in which GRP78 was knocked down. Furthermore, we found that the overexpression of GRP78 enhanced leptin-induced STAT3 phosphorylation. These results suggest that GRP78 plays an important role in leptin’s actions. Furthermore, insulin may enhance the leptin-induced activation of STAT3 by inducing GRP78, which may provide an important connection between insulin and leptin in the CNS. PMID:27677243

  13. Leptin dysfunction and Alzheimer’s disease: evidence from cellular, animal, and human studies

    PubMed Central

    McGuire, Matthew J.; Ishii, Makoto

    2016-01-01

    There is accumulating evidence from epidemiological studies that changes in body weight are associated with Alzheimer’s disease (AD) from mid-life obesity increasing the risk of developing AD to weight loss occurring at the earliest stages of AD. Therefore, factors that regulate body weight are likely to influence the development and progression of AD. The adipocyte-derived hormone leptin has emerged as a major regulator of body weight mainly by activating hypothalamic neural circuits. Leptin also has several pleotropic effects including regulating cognitive function and having neuroprotective effects, suggesting a potential link between leptin and AD. Here, we will examine the relationship between leptin and AD by reviewing the recent evidence from cellular and animal models to human studies. We present a model where leptin has a bidirectional role in AD. Not only can alterations in leptin levels and function worsen cognitive decline and progression of AD pathology, but AD pathology, in of itself, can disrupt leptin signaling, which together would lead to a downward spiral of progressive neurodegeneration and worsening body weight and systemic metabolic deficits. Collectively, these studies serve as a framework to highlight the importance of understanding the molecular mechanisms underlying the body weight and systemic metabolic deficits in AD, which has the potential to open new avenues that may ultimately lead to novel therapeutic targets and diagnostic tools. PMID:26993509

  14. Changes in leptin, ghrelin, growth hormone and neuropeptide-Y after an acute model of MDMA and methamphetamine exposure in rats.

    PubMed

    Kobeissy, Firas H; Jeung, Jennifer A; Warren, Matthew W; Geier, Jacqueline E; Gold, Mark S

    2008-03-01

    Club drug abuse is a growing problem in the United States. Beyond addiction and toxicity are endocrine effects which are not well characterized. Specifically, the changes in appetite following exposure to drugs of abuse are an interesting but poorly understood phenomenon. Serum hormones such as leptin, ghrelin, growth hormone (GH), and neuropeptide-Y (NP-Y) are known to affect appetite, but have not been studied extensively with drugs of abuse. In this work, we examine the effects of club drugs 3,4-methylenedioxymethamphetamine (MDMA) (ecstasy) and methamphetamine (METH) (doses of 5, 20 and 40 mg/kg) on serum concentrations of these hormones in adult male Sprague-Dawley rats 6, 12, 24 and 48 hours after drug administration. In a dose-dependent manner, MDMA was shown to cause transient significant decreases in serum leptin and GH followed by a base line recovery after 24 hours. Conversely, serum ghrelin increased and normalized after 24 hours. Interestingly, serum NP-Y showed a steady decrease in both treatment of MDMA and METH at different time points and dosages. In humans, abuse of these drugs reduces eating. As evident from these data, acute administration of METH and MDMA had significant effects on different serum hormone levels involved in appetite regulation. Future studies should be performed to see how chronic, low dose drug administration would affect hormone levels and try to answer questions about the physiological mechanisms involved in the anorexic paradigm observed in drug use.

  15. Association of polymorphisms in growth hormone and leptin candidate genes with live weight traits of Brahman cattle.

    PubMed

    Hernández, N; Martínez-González, J C; Parra-Bracamonte, G M; Sifuentes-Rincón, A M; López-Villalobos, N; Morris, S T; Briones-Encinia, F; Ortega-Rivas, E; Pacheco-Contreras, V I; L A Meza-García, And

    2016-09-02

    Polymorphisms in candidate genes can produce significant and favorable changes in the phenotype, and therefore are useful for the identification of the best combination of favorable variants for marker-assisted selection. In the present study, an assessment to evaluate the effect of 11 single nucleotide polymorphisms (SNPs) in candidate genes on live weight traits of registered Brahman cattle was performed. Data from purebred bulls were used in this assessment. The dataset included birth (BW), weaning (WW), and yearling (YW) weights. A panel of 11 SNP markers, selected by their formerly reported or apparent direct and indirect association with live weight traits, was included in an assessment previously confirming their minimum allele frequency (<0.05). Live weights were adjusted BW (aBW), WW (aWW), and YW (aYW) using a generalized linear model, which included the fixed effects of herd and season of birth and the random effect of the sire and year of birth. An SNP in a growth hormone gene (GH4.1) was significantly related to aWW (P = 0.035) with an estimate substitution effect of 3.97 kg (P = 0.0210). In addition, a leptin SNP (LEPg.978) was significantly associated with aYW (P = 0.003) with an estimate substitution effect of 9.57 kg (P = 0.0007). The results suggest that markers GH4.1 and LEPg.978 can be considered as candidate loci for assisted genetic improvement programs in Mexican Brahman cattle.

  16. Influence of weeks of circadian misalignment on leptin levels

    PubMed Central

    Nguyen, June; Wright, Kenneth P

    2010-01-01

    The neurobiology of circadian, wakefulness–sleep, and feeding systems interact to influence energy homeostasis. Sleep and circadian disruptions are reported to be associated with increased risk of diabetes and obesity, yet the roles of energy balance hormones in these associations are largely unknown. Therefore, in the current study we aimed to assess the influence of several weeks of circadian misalignment (sleep and wakefulness occurring at an inappropriate biological time) on the anorexigenic adipocyte hormone leptin. We utilized data from a previous study designed to assess physiological and cognitive consequences of changes in day length and light exposure as may occur during space flight, including exploration class space missions and exposure to the Martian Sol (day length). We hypothesized that circadian misalignment during an exploration class spaceflight simulation would reduce leptin levels. Following a three-week ~8 hours per night home sleep schedule, 14 healthy participants lived in the laboratory for more than one month. After baseline data collection, participants were scheduled to either 24.0 or 24.6 hours of wakefulness–sleep schedules for 25 days. Changes in the phase of the circadian melatonin rhythm, sleep, and leptin levels were assessed. Half of participants analyzed exhibited circadian misalignment with an average change in phase angle from baseline of ~4 hours and these participants showed reduced leptin levels, sleep latency, stage 2 and total sleep time (7.3 to 6.6 hours) and increased wakefulness after sleep onset (all P < 0.05). The control group remained synchronized and showed significant increases in sleep latency and leptin levels. Our findings indicate that weeks of circadian misalignment, such as that which occurs in circadian sleep disorders, alters leptin levels and therefore may have implications for appetite and energy balance. PMID:23524972

  17. Influence of weeks of circadian misalignment on leptin levels

    PubMed Central

    Nguyen, June; Wright, Kenneth P

    2010-01-01

    The neurobiology of circadian, wakefulness-sleep, and feeding systems interact to influence energy homeostasis. Sleep and circadian disruptions are reported to be associated with increased risk of diabetes and obesity, yet the roles of energy balance hormones in these associations are largely unknown. Therefore, in the current study we aimed to assess the influence of several weeks of circadian misalignment (sleep and wakefulness occurring at an inappropriate biological time) on the anorexigenic adipocyte hormone leptin. We utilized data from a previous study designed to assess physiological and cognitive consequences of changes in day length and light exposure as may occur during space fight, including exploration class space missions and exposure to the Martian Sol (day length). We hypothesized that circadian misalignment during an exploration class spaceflight simulation would reduce leptin levels. Following a three-week ~8 hours per night home sleep schedule, 14 healthy participants lived in the laboratory for more than one month. After baseline data collection, participants were scheduled to either 24.0 or 24.6 hours of wakefulness-sleep schedules for 25 days. Changes in the phase of the circadian melatonin rhythm, sleep, and leptin levels were assessed. Half of participants analyzed exhibited circadian misalignment with an average change in phase angle from baseline of ~4 hours and these participants showed reduced leptin levels, sleep latency, stage 2 and total sleep time (7.3 to 6.6 hours) and increased wakefulness after sleep onset (all P< 0.05). The control group remained synchronized and showed significant increases in sleep latency and leptin levels. Our findings indicate that weeks of circadian misalignment, such as that which occurs in circadian sleep disorders, alters leptin levels and therefore may have implications for appetite and energy balance. PMID:23616693

  18. Anterior pituitary influence on adipokine expression and secretion by porcine adipocytes.

    PubMed

    Saleri, R; Cavalli, V; Martelli, P; Borghetti, P

    2016-06-01

    Nutritional stressors may cause negative effects on animal health and growth and lead to significant economic impact. Adipose tissue is an endocrine organ producing, mediators and hormones, called adipokines. They play a dynamic role in body homeostasis and in the regulation of energy expenditure, interacting with feeding behavior, hormones and growth factors. This in vitro study aimed to investigate how nutritional conditions and growth hormone (GH) can influence nitric oxide (NO) production and the expression and secretion of three important adipokines, that is leptin, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), by swine adipocytes. In our experimental model, mesenchymal stem cells from omental adipose tissue were induced to adipogenic differentiation. After differentiation, adipocytes were incubated for 24 h (T0) with DMEM/Ham's F12 (group A) or DMEM/Ham's F12 salts (group B), a DMEM/Ham's F12 formulation deprived of nutritional components. Primary adipocyte cells were also co-cultured for 4 h (T+4) or 12 h (T+12) with or without anterior pituitary slices. To stimulate GH secretion by pituitary cells, growth hormone releasing hormone at 10-8 M was added at the start of the incubation times (4 or 12 h). At T0, T+4 and T+12, NO production, leptin, IL-6 and TNF-α expression and secretion were measured. NO increased (P<0.05) up to twofold in restricted culture conditions. Deprived medium and coincubation with anterior pituitary positively influenced leptin secretion and expression. TNF-α was expressed and secreted only in deprived culture condition groups (B, B1 and B2). Nutrients availability and pituitary co-culture did not affect IL-6 expression and secretion. Our study shows an endocrine function for porcine adipocytes. In our model, adipocytes readily responded to nutritional inputs by secretion of molecules affecting energy balance. This secretion capacity was modulated by GH. Improving our knowledge of the role of adipocyte in the endocrine

  19. Adipocytes as immune regulatory cells

    PubMed Central

    Vielma, Silvana A.; Klein, Richard L.; Levingston, Corinne A.; Young, M. Rita I.

    2013-01-01

    Obesity is a chronic inflammatory state and adipocytes are capable of contributing to this inflammation by their production of inflammatory mediators. The present study used fibroblast-derived adipocytes and normal spleen cells as a model to determine if adipocytes can also serve as immune regulatory cells by modulating the functions of conventional immune cells. Media conditioned by the adipocytes stimulated release of the Th1-type cytokines IL-2, IFN-γ and GM-CSF from cultures of normal spleen cells. The adipocytes also stimulated spleen cell release of inhibitory cytokines, although to varying degrees. This included IL-10, IL-13 and, to a lesser extent, IL-4. Spleen cell production of the inflammatory cytokines IL-6, TNF-α and IL-9 was stimulated by adipocytes, although production of the Th17-derived cytokine, IL-17, was not stimulated. The adipocyte-conditioned medium did not stimulate production of predominantly monocytes-derived chemokines CXCL9, CCL2, CCL3, CCL4, but stimulated production of the predominantly T-cell-derived chemokine CCL5. In all cases where cytokine/chemokine production from spleen cells was stimulated by adipocytes, it was to a far greater level than was produced by the adipocytes themselves. Studies initiated to determine the identity of the adipocyte-derived mediators showed that the spleen cell modulation could not be attributed to solely adiponectin or leptin. Studies to determine the source of some of the cytokines whose production was stimulated by adipocytes showed that expression of the inflammatory cytokine IL-6 was not increased in either CD4+ or CD8+ T-cell. When the splenic T-cells were examined for IFN-γ, the adipocyte stimulation of IFN-γ was within CD8+ T-cells, not CD4+ T-cells. These studies show that adipocytes may be able to serve as immune regulatory cells to stimulate conventional immune cells to release a spectrum of immune mediators. PMID:23587489

  20. Effect of Glycine on Adipocyte Hypertrophy in a Metabolic Syndrome Rat Model.

    PubMed

    López, Yazmín Reyes; Pérez-Torres, Israel; Zúñiga-Muñoz, Alejandra; Lans, Verónica Guarner; Díaz-Díaz, Eulises; Castro, Elizabeth Soria; Espejel, Rodrigo Velázquez

    2016-01-01

    Glycine (Gly) lowers hypercholesterolemia, hypertriglyceridemia and hypertension but its role in preventing adipocyte hypertrophy and modulating enzymatic activity of adipocytes has not been studied. Here we evaluate the effect of 1% Gly in the diet on adipocyte hypertrophy and the modulation of lipoprotein lipase (LPL) and hormone-sensitive lipase (HSL) in a metabolic syndrome (MS) rat model with intra-abdominal obesity. 32 Wistar rats were divided into 3 groups: control (C), MS, MS plus Gly (MS+Gly), and MS+Gly plus strychnine (MS+Gly+S). MS was induced by administering 30% sucrose in the drinking water for 16 weeks. In the MS+Gly and MS+Gly+S groups, the sucrose solution plus 1% Gly and 1 % Gly plus strychnine 10 μM were given during the last 4 weeks of the sucrose treatment. After 16 weeks of treatment, rats were sacrificed and the adipose tissue dissected. Gly in MS rats decreased body weight, intra-abdominal adipose tissue, adipocyte hypertrophy, blood pressure, triglycerides, insulin, HOMA-IR index, leptin, total fatty acids, non-esterified fatty acids and LPL activity. It increased fatty acids of the phospholipids, perilipin A expression and it decreased HSL expression, without changing LPL expression. The Gly receptor subunit-β was identified in adipocytes. In conclusion, Gly treatment regulates the activity of enzymes involved in the lipid metabolism of the adipocytes through the Gly receptor and it decreases the effects of the high sucrose diet.

  1. Prevalence of the metabolic syndrome, insulin resistance index, leptin and thyroid hormone levels in the general population of Merida (Venezuela).

    PubMed

    Uzcátegui, Euderruh; Valery, Lenin; Uzcátegui, Lilia; Gómez Pérez, Roald; Marquina, David; Baptista, Trino

    2015-06-01

    The metabolic syndrome (MetSyn) is a significant risk factor for cardiovascular events, but scarce information exists about its frequency in Venezuela. In this cross-sectional study, we quantified the prevalence of the MetSyn in a probabilistic, stratified sample of 274 subjects aged > or =18 years from the Libertador district in Merida, Venezuela. Secondary outcomes were the measurement of thyroid hormones (free T4 and TSH), leptin levels, and insulin resistance index (HOMA2-IR). The frequency of MetSyn (percentage +/- 95% confidence interval) according to several diagnostic criteria was as follows: National Cholesterol Education Panel (NCEP, original): 27.4% (22.1-32.7); modified NCEP: 31.8% (26.3-37.3); International Diabetes Federation: 40.9% (35.1-46.7); Latin American Diabetes Association: 27% (21.7-32.3), and Venezuelan criteria: 31.8% (26.3-37.3). The MetSyn was more frequent in males than in females with most diagnostic criteria. The estimated prevalence of type 2 diabetes mellitus was 2.9% either according to the patients' self reports or to fasting glucose level found to be above 126 mg/dL. Abnormal HOMA2-IR index, free T4 and TSH (above the 95th percentile) were detected in 4.5%, 4.4% and 5.1% of the sample, respectively. Free T4 and TSH levels below the 5th percentile were detected in 4.4% and 4.7% of subjects respectively. These values are presented for comparisons with forthcoming studies in specific clinical populations. While studies are being conducted about the different definitions of the MetSyn in Venezuela, we recommend analyzing and publishing local research data with all the available criteria so as to allow comparisons with the results already reported in the literature.

  2. Leptin reduces plasma ANP level via nitric oxide-dependent mechanism.

    PubMed

    Yuan, Kuichang; Yu, Jiahua; Shah, Amin; Gao, Shan; Kim, Sun Young; Kim, Sung Zoo; Park, Byung-Hyun; Kim, Suhn Hee

    2010-04-01

    Leptin is a circulating adipocyte-derived hormone that influences blood pressure (BP) and metabolism. This study was designed to define the possible role of leptin in regulation of the atrial natriuretic peptide (ANP) system using acute and chronic experiments. Intravenous infusion of rat leptin (250 microg/kg injection plus 2 microg.kg(-1).min(-1) for 20 min) into Sprague-Dawley rats increased BP by 25 mmHg and decreased plasma level of ANP from 80.3 +/- 3.45 to 51.8 +/- 3.3 pg/ml. Reserpinization attenuated the rise in BP, but not the reduction of plasma ANP during leptin infusion. N(omega)-nitro-l-arginine methyl ester prevented the effects of leptin on the reduction of ANP level. In hyperleptinemic rats that received adenovirus containing rat leptin cDNA (AdCMV-leptin), BP increased during first 2 days and then recovered to control value. Plasma concentration of ANP and expression of ANP mRNA, but not of atrial ANP, in hyperleptinemic rats were lower than in the control groups on the first and second week after administration of AdCMV-leptin. These effects were not observed by the pretreatment with N(omega)-nitro-l-arginine methyl ester. No differences in renal function and ANP receptor density in the kidney were found between hyperleptinemic and control rats. Basal ANP secretion and isoproterenol-induced suppression of ANP secretion from isolated, perfused atria of hyperleptinemic rats were not different from those of other control groups. These data suggest that leptin inhibits ANP secretion indirectly through nitric oxide without changing basal or isoproterenol-induced ANP secretion.

  3. Overview of the physiology and pathophysiology of leptin with special emphasis on its role in the kidney.

    PubMed

    Nasrallah, Mona P; Ziyadeh, Fuad N

    2013-01-01

    The adipocyte product leptin is a pleiotropic adipokine and hormone, with a role extending beyond appetite suppression and increased energy expenditure. This review summarizes the biology of the leptin system and the roles of its different receptors in a multitude of cellular functions in different organs, with special emphasis on the kidney. Leptin's physiological functions as well as deleterious effects in states of leptin deficiency or hyperleptinemia are emphasized. Chronic hyperleptinemia can increase blood pressure through the sympathetic nervous system and renal salt retention. The concept of selective leptin resistance in obesity is emerging, whereby leptin's effect on appetite and energy expenditure is blunted, with a concomitant increase in leptin's other effects as a result of the accompanying hyperleptinemia. The divergence in response likely is explained by different receptors and post-receptor activating mechanisms. Chronic kidney disease is a known cause of hyperleptinemia. There is an emerging view that the effect of hyperleptinemia on the kidney can contribute to the development and/or progression of chronic kidney disease in selective resistance states such as in obesity or type 2 diabetes mellitus. The mechanisms of renal injury are likely the result of exaggerated and undesirable hemodynamic influences as well as profibrotic effects.

  4. Association of adiponectin and leptin with relative telomere length in seven independent cohorts including 11,448 participants.

    PubMed

    Broer, Linda; Raschenberger, Julia; Deelen, Joris; Mangino, Massimo; Codd, Veryan; Pietiläinen, Kirsi H; Albrecht, Eva; Amin, Najaf; Beekman, Marian; de Craen, Anton J M; Gieger, Christian; Haun, Margot; Henneman, Peter; Herder, Christian; Hovatta, Iiris; Laser, Annika; Kedenko, Lyudmyla; Koenig, Wolfgang; Kollerits, Barbara; Moilanen, Eeva; Oostra, Ben A; Paulweber, Bernhard; Quaye, Lydia; Rissanen, Aila; Roden, Michael; Surakka, Ida; Valdes, Ana M; Vuolteenaho, Katriina; Thorand, Barbara; van Dijk, Ko Willems; Kaprio, Jaakko; Spector, Tim D; Slagboom, P Eline; Samani, Nilesh J; Kronenberg, Florian; van Duijn, Cornelia M; Ladwig, Karl-Heinz

    2014-09-01

    Oxidative stress and inflammation are major contributors to accelerated age-related relative telomere length (RTL) shortening. Both conditions are strongly linked to leptin and adiponectin, the most prominent adipocyte-derived protein hormones. As high leptin levels and low levels of adiponectin have been implicated in inflammation, one expects adiponectin to be positively associated with RTL while leptin should be negatively associated. Within the ENGAGE consortium, we investigated the association of RTL with adiponectin and leptin in seven independent cohorts with a total of 11,448 participants. We performed partial correlation analysis on Z-transformed RTL and LN-transformed leptin/adiponectin, adjusting for age and sex. In extended models we adjusted for body mass index (BMI) and C-reactive protein (CRP). Adiponectin showed a borderline significant association with RTL. This appeared to be determined by a single study and when the outlier study was removed, this association disappeared. The association between RTL and leptin was highly significant (r = -0.05; p = 1.81 × 10(-7)). Additional adjustment for BMI or CRP did not change the results. Sex-stratified analysis revealed no difference between men and women. Our study suggests that high leptin levels are associated with short RTL.

  5. Ghrelin Induces Leptin Resistance by Activation of Suppressor of Cytokine Signaling 3 Expression in Male Rats: Implications in Satiety Regulation

    PubMed Central

    Heldsinger, Andrea; Grabauskas, Gintautas; Wu, Xiaoyin; Zhou, ShiYi; Lu, Yuanxu; Song, Il

    2014-01-01

    The anorexigenic adipocyte-derived hormone leptin and the orexigenic hormone ghrelin act in opposition to regulate feeding behavior via the vagal afferent pathways. The mechanisms by which ghrelin exerts its inhibitory effects on leptin are unknown. We hypothesized that ghrelin activates the exchange protein activated by cAMP (Epac), inducing increased SOCS3 expression, which negatively affects leptin signal transduction and neuronal firing in nodose ganglia (NG) neurons. We showed that 91 ± 3% of leptin receptor (LRb) –bearing neurons contained ghrelin receptors (GHS-R1a) and that ghrelin significantly inhibited leptin-stimulated STAT3 phosphorylation in rat NG neurons. Studies of the signaling cascades used by ghrelin showed that ghrelin caused a significant increase in Epac and suppressor of cytokine signaling 3 (SOCS3) expression in cultured rat NG neurons. Transient transfection of cultured NG neurons to silence SOCS3 and Epac genes reversed the inhibitory effects of ghrelin on leptin-stimulated STAT3 phosphorylation. Patch-clamp studies and recordings of single neuronal discharges of vagal primary afferent neurons showed that ghrelin markedly inhibited leptin-stimulated neuronal firing, an action abolished by silencing SOCS3 expression in NG. Plasma ghrelin levels increased significantly during fasting. This was accompanied by enhanced SOCS3 expression in the NG and prevented by treatment with a ghrelin antagonist. Feeding studies showed that silencing SOCS3 expression in the NG reduced food intake evoked by endogenous leptin. We conclude that ghrelin exerts its inhibitory effects on leptin-stimulated neuronal firing by increasing SOCS3 expression. The SOCS3 signaling pathway plays a pivotal role in ghrelin's inhibitory effect on STAT3 phosphorylation, neuronal firing, and feeding behavior. PMID:25060362

  6. Ghrelin induces leptin resistance by activation of suppressor of cytokine signaling 3 expression in male rats: implications in satiety regulation.

    PubMed

    Heldsinger, Andrea; Grabauskas, Gintautas; Wu, Xiaoyin; Zhou, ShiYi; Lu, Yuanxu; Song, Il; Owyang, Chung

    2014-10-01

    The anorexigenic adipocyte-derived hormone leptin and the orexigenic hormone ghrelin act in opposition to regulate feeding behavior via the vagal afferent pathways. The mechanisms by which ghrelin exerts its inhibitory effects on leptin are unknown. We hypothesized that ghrelin activates the exchange protein activated by cAMP (Epac), inducing increased SOCS3 expression, which negatively affects leptin signal transduction and neuronal firing in nodose ganglia (NG) neurons. We showed that 91 ± 3% of leptin receptor (LRb) -bearing neurons contained ghrelin receptors (GHS-R1a) and that ghrelin significantly inhibited leptin-stimulated STAT3 phosphorylation in rat NG neurons. Studies of the signaling cascades used by ghrelin showed that ghrelin caused a significant increase in Epac and suppressor of cytokine signaling 3 (SOCS3) expression in cultured rat NG neurons. Transient transfection of cultured NG neurons to silence SOCS3 and Epac genes reversed the inhibitory effects of ghrelin on leptin-stimulated STAT3 phosphorylation. Patch-clamp studies and recordings of single neuronal discharges of vagal primary afferent neurons showed that ghrelin markedly inhibited leptin-stimulated neuronal firing, an action abolished by silencing SOCS3 expression in NG. Plasma ghrelin levels increased significantly during fasting. This was accompanied by enhanced SOCS3 expression in the NG and prevented by treatment with a ghrelin antagonist. Feeding studies showed that silencing SOCS3 expression in the NG reduced food intake evoked by endogenous leptin. We conclude that ghrelin exerts its inhibitory effects on leptin-stimulated neuronal firing by increasing SOCS3 expression. The SOCS3 signaling pathway plays a pivotal role in ghrelin's inhibitory effect on STAT3 phosphorylation, neuronal firing, and feeding behavior.

  7. Leptin in pregnancy.

    PubMed

    Henson, M C; Castracane, V D

    2000-11-01

    Leptin is a polypeptide hormone that aids in the regulation of body weight and energy homeostasis and is linked to a variety of reproductive processes in both animals and humans. Thus, leptin may help regulate ovarian development and steroidogenesis and serve as either a primary signal initiating puberty or as a permissive regulator of sexual maturation. Perhaps significantly, peripheral leptin concentrations, adjusted for adiposity, are dramatically higher in females than in males throughout life. During primate pregnancy, maternal levels that arise from adipose stores and perhaps the placenta increase with advancing gestational age. Proposed physiological roles for leptin in pregnancy include the regulation of conceptus growth and development, fetal/placental angiogenesis, embryonic hematopoiesis, and hormone biosynthesis within the maternal-fetoplacental unit. The specific localization of both leptin and its receptor in the syncytiotrophoblast implies autocrine and/or paracrine relationships in this endocrinologically active tissue. Interactions of leptin with mechanisms regulating pre-eclampsia and maternal diabetes have also been suggested. Collectively, therefore, reports suggest that a better understanding of the regulation of leptin and its role(s) throughout gestation may eventually impact those causes of human perinatal morbidity and mortality that are exacerbated by intrauterine growth retardation, macrosomia, placental insufficiency, or prematurity.

  8. The long road to leptin.

    PubMed

    Friedman, Jeffrey

    2016-12-01

    Leptin is an adipose tissue hormone that functions as an afferent signal in a negative feedback loop that maintains homeostatic control of adipose tissue mass. This endocrine system thus serves a critical evolutionary function by protecting individuals from the risks associated with being too thin (starvation) or too obese (predation and temperature dysregulation). Mutations in leptin or its receptor cause massive obesity in mice and humans, and leptin can effectively treat obesity in leptin-deficient patients. Leptin acts on neurons in the hypothalamus and elsewhere to elicit its effects, and mutations that affect the function of this neural circuit cause Mendelian forms of obesity. Leptin levels fall during starvation and elicit adaptive responses in many other physiologic systems, the net effect of which is to reduce energy expenditure. These effects include cessation of menstruation, insulin resistance, alterations of immune function, and neuroendocrine dysfunction, among others. Some or all of these effects are also seen in patients with constitutively low leptin levels, such as occur in lipodystrophy. Leptin is an approved treatment for generalized lipodystrophy, a condition associated with severe metabolic disease, and has also shown potential for the treatment of other types of diabetes. In addition, leptin restores reproductive capacity and increases bone mineral density in patients with hypothalamic amenorrhea, an infertility syndrome in females. Most obese patients have high endogenous levels of leptin, in some instances as a result of mutations in the neural circuit on which leptin acts, though in most cases, the pathogenesis of leptin resistance is not known. Obese patients with leptin resistance show a variable response to exogenous leptin but may respond to a combination of leptin plus amylin. Overall, the identification of leptin has provided a framework for studying the pathogenesis of obesity in the general population, clarified the nature of the

  9. The brain subfornical organ mediates leptin-induced increases in renal sympathetic activity but not its metabolic effects.

    PubMed

    Young, Colin N; Morgan, Donald A; Butler, Scott D; Mark, Allyn L; Davisson, Robin L

    2013-03-01

    The adipocyte-derived hormone leptin acts within the central nervous system to decrease food intake and body weight and to increase renal and thermogenic brown adipose tissue sympathetic nerve activity (SNA). Previous studies have focused on hypothalamic brain regions, although recent findings have identified leptin receptors (ObR) in a distributed brain network, including the circumventricular subfornical organ (SFO), a forebrain region devoid of a blood-brain barrier. We tested the hypothesis that ObR in the SFO are functionally linked to leptin-induced decreases in food intake and body weight and increases in SNA. SFO-targeted microinjections of an adenovirus encoding Cre-recombinase in ObR(flox/flox) mice resulted in selective ablation of ObR in the SFO. Interestingly, deletion of ObR in the SFO did not influence the decreases in either food intake or body weight in response to daily systemic or cerebroventricular administration of leptin. In line with these findings, reduction in SFO ObR did not attenuate leptin-mediated increases in thermogenic brown adipose tissue SNA. In contrast, increases in renal SNA induced by systemic or cerebroventricular administration of leptin were abolished in mice with SFO-targeted deletion of ObR. These results demonstrate that ObR in the SFO play an important role in leptin-induced renal sympathoexcitation, but not in the body weight, food intake, or brown adipose tissue SNA thermogenic effects of leptin. These findings highlight the concept of a distributed brain network of leptin action and illustrate that brain regions, including the SFO, can mediate distinct cardiovascular and metabolic responses to leptin.

  10. Adipocyte induced arterial calcification is prevented with sodium thiosulfate

    SciTech Connect

    Chen, Neal X.; O’Neill, Kalisha; Akl, Nader Kassis; Moe, Sharon M.

    2014-06-20

    Highlights: • High phosphorus can induce calcification of adipocytes, even when fully differentiated. • Adipocytes can induce vascular calcification in an autocrine manner. • Sodium thiosulfate inhibits adipocyte calcification. - Abstract: Background: Calcification can occur in fat in multiple clinical conditions including in the dermis, breasts and in the abdomen in calciphylaxis. All of these are more common in patients with advanced kidney disease. Clinically, hyperphosphatemia and obesity are risk factors. Thus we tested the hypothesis that adipocytes can calcify in the presence of elevated phosphorus and/or that adipocytes exposed to phosphorus can induce vascular smooth muscle cell (VSMC) calcification. Methods: 3T3-L1 preadipocytes were induced into mature adipocytes and then treated with media containing high phosphorus. Calcification was assessed biochemically and PCR performed to determine the expression of genes for osteoblast and adipocyte differentiation. Adipocytes were also co-cultured with bovine VSMC to determine paracrine effects, and the efficacy of sodium thiosulfate was determined. Results: The results demonstrated that high phosphorus induced the calcification of differentiated adipocytes with increased expression of osteopontin, the osteoblast transcription factor Runx2 and decreased expression of adipocyte transcription factors peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding protein α (CEBPα), indicating that high phosphorus led to a phenotypic switch of adipocytes to an osteoblast like phenotype. Sodium thiosulfate, dose dependently decreased adipocyte calcification and inhibited adipocyte induced increase of VSMC calcification. Co-culture studies demonstrated that adipocytes facilitated VSMC calcification partially mediated by changes of secretion of leptin and vascular endothelial growth factor (VEGF) from adipocytes. Conclusion: High phosphorus induced calcification of mature adipocytes, and

  11. Expression of leptin and leptin receptor during the development of liver fibrosis and cirrhosis.

    PubMed

    Otte, C; Otte, J-M; Strodthoff, D; Bornstein, S R; Fölsch, U R; Mönig, H; Kloehn, S

    2004-01-01

    Leptin is involved in the regulation of food intake and is mainly secreted by adipocytes. Major secretagogues are cytokines such as TNF-alpha or IL-1. Leptin in turn upregulates inflammatory immune responses. Elevated leptin serum levels have been detected in patients with liver cirrhosis, a disease frequently associated with elevated levels of circulating cytokines as well as hypermetabolism and altered body weight. Recently, leptin has been detected in activated hepatic stellate cells in vitro and an involvement of leptin in liver fibrogenisis has been suggested. The current study was designed to further clarify the role of leptin in liver disease by characterizing leptin and leptin receptor expression in the development and onset of experimental liver fibrosis. Liver fibrosis and cirrhosis was induced in rats by use of phenobarbitone and increasing doses of CCl (4). Leptin and leptin receptor mRNA expression was determined by semiquantitative RT-PCR, protein expression by Western blot analysis and localization of leptin and its receptor by immunohistochemistry. Normal liver tissue does not express leptin, but leptin receptor mRNA. Increasing levels of leptin mRNA were detected in fibrotic and cirrhotic livers correlated to the degree of fibrosis. Leptin receptor mRNA expression was not significantly altered in damaged livers. Increasing levels of leptin were detected in fibrotic and cirrhotic livers, whereas protein expression of the receptor remained unchanged. Throughout different stages of liver fibrosis, leptin immunoreactivity was localized in activated hepatic stellate cells only, whereas immunoreactivity for the receptor was mainly seen on hepatocytes. In conclusion, leptin is expressed at increasing levels in activated hepatic stellate cells in vivo, which may therefore be a source of increased leptin tissue and serum levels contributing to the pathophysiology and morphological changes of chronic liver disease.

  12. Adipocytes, myofibers, and cytokine biology: new horizons in the regulation of growth and body composition.

    PubMed

    Jacobi, S K; Gabler, N K; Ajuwon, K M; Davis, J E; Spurlock, M E

    2006-04-01

    Muscle growth in meat animals is a complex process governed by integrated signals emanating from multiple endocrine and immune cells. A generalized phenomenon among meat animal industries is that animals commonly fail to meet their genetic potential for growth in commercial production settings. Therefore, understanding the impact of stress and disease on muscle growth is essential to improving production efficiency. The adipocyte in particular seems to be well positioned as an interface between energy status and immune function, and may thus influence nutrient partitioning and growth through a combination of signals that influence fat metabolism, glucose uptake, and insulin sensitivity. Adipocytes and myofibers are active participants in the innate immune response, and as such, produce a number of metabolic regulators, including leptin, adiponectin, and proinflammatory cytokines. Specifically, adipocytes and muscle cells respond directly to bacterial lipopolysaccharide (LPS) by producing interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNFalpha). However, adipocytes are also the predominant source of the antiinflammatory hormone adiponectin, which regulates the nuclear factor kappa-B transcription factor. The ability to recognize antigens and produce regulatory molecules strategically positions adipocytes and myofibers to regulate growth locally, and to reciprocally regulate metabolism peripherally.

  13. [Leptin Signalings and Leptin Resistance].

    PubMed

    Yang, Xiao-Ning; Zhang, Chen-Yu; Wang Bing-Wei; Zhu, Shi-Gong; Zheng, Rui-Mao

    2015-10-01

    Leptin plays a critical role in the regulation of energy balance and metabolic homeostasis. Impairment of leptin function is closely involved in the pathogenesis of obesity, diabetes mellitus and some other metabolic diseases. Leptin initiates intracellular signal transductions in the leptin-receptor-expressing neurons in the central nervous system to exert its physiological functions. The fact that high circulating levels of leptin partially or completely fail to promote weight loss in obesity has given rise to the notion of "leptin resistance". Recently, the impairment of leptin signalings in the hypothalamus has been regarded as a critical contributor to leptin resistance. In this review, the studies on leptin signaling and leptin resistance are summarized with an emphasis on the progress made during the last five years.

  14. Obesity-induced hypertension: role of sympathetic nervous system, leptin, and melanocortins.

    PubMed

    Hall, John E; da Silva, Alexandre A; do Carmo, Jussara M; Dubinion, John; Hamza, Shereen; Munusamy, Shankar; Smith, Grant; Stec, David E

    2010-06-04

    Excess weight gain contributes to increased blood pressure in most patients with essential hypertension. Although the mechanisms of obesity hypertension are not fully understood, increased renal sodium reabsorption and impaired pressure natriuresis play key roles. Several mechanisms contribute to altered kidney function and hypertension in obesity, including activation of the sympathetic nervous system, which appears to be mediated in part by increased levels of the adipocyte-derived hormone leptin, stimulation of pro-opiomelanocortin neurons, and subsequent activation of central nervous system melanocortin 4 receptors.

  15. Increased risk of cardiovascular complications in chronic kidney disease: a possible role of leptin.

    PubMed

    Korolczuk, Agnieszka; Dudka, Jaroslaw

    2014-01-01

    Leptin is a small peptide hormone (16 kDa), a product of the obesity gene (Ob), and is mainly synthesized and secreted by adipocytes. It is removed from the blood by the kidneys. The kidney is not only a site of leptin clearance, but also a target organ for its action in different pathophysiological states. Several studies have documented a strong relationship between chronic kidney disease (CKD) and accelerated cardiovascular disease (CVD) defined as a cardiorenal syndrome. Patients with stage 3 and 4 CKD develop cardiovascular complications and are at increased risk of death from CVD. Renal dysfunction promotes several mechanisms responsible for exacerbation of cardiovascular disease. These include activation of the renin-angiotensin system, oxidative stress, elevated asymmetric dimethylarginine (ADMA), low-grade inflammation with increased circulating cytokines, and dyslipidemia. Recently, it has been observed that plasma leptin level is elevated in patients with cardiorenal syndrome. In obesity, hyperleptinemia combined with selective leptin resistance appear to have a critical role in the development and progression of kidney disease, CVD and metabolic syndrome. This has clinical implications for the treatment of obesity-related hypertension and kidney disease. In this paper the role of leptin in chronic kidney disease and accelerated cardiovascular disease is out lined. The link between hyperleptinemia and development and progression of morphologic changes that effect kidney in obese patients is also discussed.

  16. Comparison of Weight Loss, Ghrelin, and Leptin Hormones After Ligation of Left Gastric Artery and Sleeve Gastrectomy in a Rat Model

    PubMed Central

    Yardimci, Erkan; Bozkurt, Suleyman; Cengiz, Merve Busra; Malya, Fatma Umit

    2017-01-01

    Background Ligation of the left gastric artery (LLGA), which supplies the fundus of the stomach, may reduce the appetite hormone ghrelin, resulting in weight control. The aim of this study was to compare LLGA and sleeve gastrectomy (SG) in terms of postoperative outcomes in a rat model. Material/Methods Fifteen male Wistar albino rats, weighing >350 grams (range 350–525 grams), were enrolled in LLGA (N=5), SG (N=5), and control (N=5) groups. Blood samples were drawn preoperatively and also during the first and fourth week postoperatively to assay ghrelin and leptin hormone levels. Body weight was measured in each group. Results The maximum reduction in ghrelin level (41.5%) was found in the LLGA group. Considerable% total weight loss (TWL) (mean 24.1%) was observed in the SG group, and slight%TWL was noted in the control and LLGA groups (means of 0.1% and 2.1%, respectively). There was no significant difference in mean percent weight change between the LLGA and the SG groups (p=0.08). Blood sample analysis revealed no statistically significant changes in ghrelin or leptin levels between the groups (p=0.9 and p=0.3, respectively). Conclusions We present evidence that LLGA causes the same reduction in ghrelin hormone levels as SG at 4 weeks after surgery in a rat model. However, LLGA did not cause the same%TWL as SG. The mechanism of weight loss in SG is most likely due to restriction and to the effects of the procedure, rather than due to neurohormonal changes. PMID:28339424

  17. Concerted Trafficking Regulation of Kv2.1 and KATP Channels by Leptin in Pancreatic β-Cells.

    PubMed

    Wu, Yi; Shyng, Show-Ling; Chen, Pei-Chun

    2015-12-11

    In pancreatic β-cells, voltage-gated potassium 2.1 (Kv2.1) channels are the dominant delayed rectifier potassium channels responsible for action potential repolarization. Here, we report that leptin, a hormone secreted by adipocytes known to inhibit insulin secretion, causes a transient increase in surface expression of Kv2.1 channels in rodent and human β-cells. The effect of leptin on Kv2.1 surface expression is mediated by the AMP-activated protein kinase (AMPK). Activation of AMPK mimics whereas inhibition of AMPK occludes the effect of leptin. Inhibition of Ca(2+)/calmodulin-dependent protein kinase kinase β, a known upstream kinase of AMPK, also blocks the effect of leptin. In addition, the cAMP-dependent protein kinase (PKA) is involved in Kv2.1 channel trafficking regulation. Inhibition of PKA prevents leptin or AMPK activators from increasing Kv2.1 channel density, whereas stimulation of PKA is sufficient to promote Kv2.1 channel surface expression. The increased Kv2.1 surface expression by leptin is dependent on actin depolymerization, and pharmacologically induced actin depolymerization is sufficient to enhance Kv2.1 surface expression. The signaling and cellular mechanisms underlying Kv2.1 channel trafficking regulation by leptin mirror those reported recently for ATP-sensitive potassium (KATP) channels, which are critical for coupling glucose stimulation with membrane depolarization. We show that the leptin-induced increase in surface KATP channels results in more hyperpolarized membrane potentials than control cells at stimulating glucose concentrations, and the increase in Kv2.1 channels leads to a more rapid repolarization of membrane potential in cells firing action potentials. This study supports a model in which leptin exerts concerted trafficking regulation of KATP and Kv2.1 channels to coordinately inhibit insulin secretion.

  18. [The evaluation of changes in concentration of ghrelin, somatotropin, insulin-like growth factor-1, insulin, leptin and thyroid hormones in mother and umbilical blood in case of physiologic pregnancy with normosomia and macrosomia of fetus].

    PubMed

    Shul'ga, A S; Butenko, E V; Aleksandrova, A A; Gutnikova, L V; Rymashevskiĭ, A A; Shestopalov, A V; Shkurat, T P

    2013-02-01

    The sample of women with physiologic pregnancy consisting of 40 females with fetus normosomia and 8 females with fetus macrosomia were examined. The examination covered the evaluation of changes in concentration of ghrelin, somatotropin, insulin-like growth factor-I, insulin, leptin and thyroid hormones in mother and umbilical blood. In females with fetus macrosomia the changes in concentration of hormones regulating trophism, energy balance and anabolic processes in organisms of mother and fetus were detected

  19. Leptin Regulation of Immune Responses.

    PubMed

    Naylor, Caitlin; Petri, William A

    2016-02-01

    Leptin is a regulatory hormone with multiple roles in the immune system. We favor the concept that leptin signaling 'licenses' various immune cells to engage in immune responses and/or to differentiate. Leptin is an inflammatory molecule that is capable of activating both adaptive and innate immunity. It can also 'enhance' immune functions, including inflammatory cytokine production in macrophages, granulocyte chemotaxis, and increased Th17 proliferation. Leptin can also 'inhibit' cells; CD4(+) T cells are inhibited from differentiating into regulatory T cells in the presence of elevated leptin, while NK cells can exhibit impaired cytotoxicity under the same circumstances. Consequently, understanding the effect of leptin signaling is important to appreciate various aspects of immune dysregulation observed in malnutrition, obesity, and autoimmunity.

  20. Appliance-induced osteopenia of dentoalveolar bone in the rat: effect of reduced bone strains on serum bone markers and the multifunctional hormone leptin.

    PubMed

    Vinoth, Jayaseelan K; Patel, Kaval J; Lih, Wei-Song; Seow, Yian-San; Cao, Tong; Meikle, Murray C

    2013-12-01

    To understand, in greater detail, the molecular mechanisms regulating the complex relationship between mechanical strain and alveolar bone metabolism during orthodontic treatment, passive cross-arch palatal springs were bonded to the maxillary molars of 6-wk-old rats, which were killed after 4 and 8 d. Outcome measures included serum assays for markers of bone formation and resorption and for the multifunctional hormone leptin, and histomorphometry of the inter-radicular bone. The concentration of the bone-formation marker alkaline phosphatase (ALP) was significantly reduced at both time points in the appliance group, accompanied by a 50% reduction in inter-radicular bone volume; however, osteocalcin (bone Gla protein) levels remained unaffected. Bone collagen deoxypyridinoline (DPD) crosslinks increased 2.3-fold at 4 d only, indicating a transient increase in bone resorption; in contrast, the level of the osteoclast-specific marker, tartrate-resistant acid phosphatase 5b (TRACP 5b), was unchanged. Leptin levels closely paralleled ALP reductions at both time points, suggesting an important role in the mechanostat negative-feedback loop required to normalize bone mass. These data suggest that an orthodontic appliance, in addition to remodeling the periodontal ligament (PDL)-bone interface, may exert unexpected side-effects on the tooth-supporting alveolar bone, and highlights the importance of recognizing that bone strains can have negative, as well as positive, effects on bone mass.

  1. Goldfish Leptin-AI and Leptin-AII: Function and Central Mechanism in Feeding Control.

    PubMed

    Yan, Ai-Fen; Chen, Ting; Chen, Shuang; Ren, Chun-Hua; Hu, Chao-Qun; Cai, Yi-Ming; Liu, Fang; Tang, Dong-Sheng

    2016-05-30

    In mammals, leptin is a peripheral satiety factor that inhibits feeding by regulating a variety of appetite-related hormones in the brain. However, most of the previous studies examining leptin in fish feeding were performed with mammalian leptins, which share very low sequence homologies with fish leptins. To elucidate the function and mechanism of endogenous fish leptins in feeding regulation, recombinant goldfish leptin-AI and leptin-AII were expressed in methylotrophic yeast and purified by immobilized metal ion affinity chromatography (IMAC). By intraperitoneal (IP) injection, both leptin-AI and leptin-AII were shown to inhibit the feeding behavior and to reduce the food consumption of goldfish in 2 h. In addition, co-treatment of leptin-AI or leptin-AII could block the feeding behavior and reduce the food consumption induced by neuropeptide Y (NPY) injection. High levels of leptin receptor (lepR) mRNA were detected in the hypothalamus, telencephalon, optic tectum and cerebellum of the goldfish brain. The appetite inhibitory effects of leptins were mediated by downregulating the mRNA levels of orexigenic NPY, agouti-related peptide (AgRP) and orexin and upregulating the mRNA levels of anorexigenic cocaine-amphetamine-regulated transcript (CART), cholecystokinin (CCK), melanin-concentrating hormone (MCH) and proopiomelanocortin (POMC) in different areas of the goldfish brain. Our study, as a whole, provides new insights into the functions and mechanisms of leptins in appetite control in a fish model.

  2. Goldfish Leptin-AI and Leptin-AII: Function and Central Mechanism in Feeding Control

    PubMed Central

    Yan, Ai-Fen; Chen, Ting; Chen, Shuang; Ren, Chun-Hua; Hu, Chao-Qun; Cai, Yi-Ming; Liu, Fang; Tang, Dong-Sheng

    2016-01-01

    In mammals, leptin is a peripheral satiety factor that inhibits feeding by regulating a variety of appetite-related hormones in the brain. However, most of the previous studies examining leptin in fish feeding were performed with mammalian leptins, which share very low sequence homologies with fish leptins. To elucidate the function and mechanism of endogenous fish leptins in feeding regulation, recombinant goldfish leptin-AI and leptin-AII were expressed in methylotrophic yeast and purified by immobilized metal ion affinity chromatography (IMAC). By intraperitoneal (IP) injection, both leptin-AI and leptin-AII were shown to inhibit the feeding behavior and to reduce the food consumption of goldfish in 2 h. In addition, co-treatment of leptin-AI or leptin-AII could block the feeding behavior and reduce the food consumption induced by neuropeptide Y (NPY) injection. High levels of leptin receptor (lepR) mRNA were detected in the hypothalamus, telencephalon, optic tectum and cerebellum of the goldfish brain. The appetite inhibitory effects of leptins were mediated by downregulating the mRNA levels of orexigenic NPY, agouti-related peptide (AgRP) and orexin and upregulating the mRNA levels of anorexigenic cocaine-amphetamine-regulated transcript (CART), cholecystokinin (CCK), melanin-concentrating hormone (MCH) and proopiomelanocortin (POMC) in different areas of the goldfish brain. Our study, as a whole, provides new insights into the functions and mechanisms of leptins in appetite control in a fish model. PMID:27249000

  3. Dysregulation of leptin signaling in Alzheimer disease: evidence for neuronal leptin resistance.

    PubMed

    Bonda, David J; Stone, Jeremy G; Torres, Sandy L; Siedlak, Sandra L; Perry, George; Kryscio, Richard; Jicha, Gregory; Casadesus, Gemma; Smith, Mark A; Zhu, Xiongwei; Lee, Hyoung-Gon

    2014-01-01

    Leptin signaling has received considerable attention in the Alzheimer disease (AD) field. Within the past decade, the peptide hormone has been demonstrated to attenuate tau hyperphosphorylation in neuronal cells and to be modulated by amyloid-β. Moreover, a role in neuroprotection and neurogenesis within the hippocampus has been shown in animal models. To further characterize the association between leptin signaling and vulnerable regions in AD, we assessed the profile of leptin and the leptin receptor in AD and control patients. We analyzed leptin levels in CSF, and the concentration and localization of leptin and leptin receptor in the hippocampus. Significant elevations in leptin levels in both CSF and hippocampal tissue of AD patients, compared with age-matched control cases, indicate a physiological up-regulation of leptin in AD. However, the level of leptin receptor mRNA decreased in AD brain and the leptin receptor protein was localized to neurofibrillary tangles, suggesting a severe discontinuity in the leptin signaling pathway. Collectively, our results suggest that leptin resistance in the hippocampus may play a role in the characteristic changes associated with the disease. These findings are the first to demonstrate such dysregulated leptin-signaling circuitry and provide novel insights into the possible role of aberrant leptin signaling in AD. In this study, increased leptin was found in CSF and hippocampus in Alzheimer disease indicating its physiological up-regulation, yet leptin receptor mRNA was decreased and leptin receptor protein was localized to neurofibrillary tangles, suggesting a discontinuity in the leptin signaling pathway. The lack of leptin signaling within degenerating neurons may represent a novel neuronal leptin resistance in Alzheimer disease.

  4. Leptin Mediates High-Fat Diet Sensitization of Angiotensin II-Elicited Hypertension by Upregulating the Brain Renin-Angiotensin System and Inflammation.

    PubMed

    Xue, Baojian; Yu, Yang; Zhang, Zhongming; Guo, Fang; Beltz, Terry G; Thunhorst, Robert L; Felder, Robert B; Johnson, Alan Kim

    2016-05-01

    Obesity is characterized by increased circulating levels of the adipocyte-derived hormone leptin, which can increase sympathetic nerve activity and raise blood pressure. A previous study revealed that rats fed a high-fat diet (HFD) have an enhanced hypertensive response to subsequent angiotensin II administration that is mediated at least, in part, by increased activity of brain renin-angiotensin system and proinflammatory cytokines. This study tested whether leptin mediates this HFD-induced sensitization of angiotensin II-elicited hypertension by interacting with brain renin-angiotensin system and proinflammatory cytokine mechanisms. Rats fed an HFD for 3 weeks had significant increases in white adipose tissue mass, plasma leptin levels, and mRNA expression of leptin and its receptors in the lamina terminalis and hypothalamic paraventricular nucleus. Central infusion of a leptin receptor antagonist during HFD feeding abolished HFD sensitization of angiotensin II-elicited hypertension. Furthermore, central infusion of leptin mimicked the sensitizing action of HFD. Concomitant central infusions of the angiotensin II type 1 receptor antagonist irbesartan, the tumor necrosis factor-α synthesis inhibitor pentoxifylline, or the inhibitor of microglial activation minocycline prevented the sensitization produced by central infusion of leptin. RT-PCR analysis indicated that either HFD or leptin administration upregulated mRNA expression of several components of the renin-angiotensin system and proinflammatory cytokines in the lamina terminalis and paraventricular nucleus. The leptin antagonist and the inhibitors of angiotensin II type 1 receptor, tumor necrosis factor-α synthesis, and microglial activation all reversed the expression of these genes. The results suggest that HFD-induced sensitization of angiotensin II-elicited hypertension is mediated by leptin through upregulation of central renin-angiotensin system and proinflammatory cytokines.

  5. Genetic variation in the insulin, insulin-like growth factor, growth hormone, and leptin pathways in relation to breast cancer in African-American women: the AMBER consortium

    PubMed Central

    Ruiz-Narváez, Edward A; Lunetta, Kathryn L; Hong, Chi-Chen; Haddad, Stephen; Yao, Song; Cheng, Ting-Yuan David; Bensen, Jeannette T; Bandera, Elisa V; Haiman, Christopher A; Troester, Melissa A; Ambrosone, Christine B; Rosenberg, Lynn; Palmer, Julie R

    2016-01-01

    The insulin/insulin-like growth factor (IGF) system and related pathways such as growth hormone, and leptin signaling have a key role in cancer development. It is unclear how germline variation in these pathways affects breast cancer risk. We conducted gene-based analyses of 184 genes in the insulin/IGF, growth hormone, and leptin pathways to identify genetic variation associated with risk of breast cancer overall, and for estrogen receptor (ER) subtypes. Tag single-nucleotide polymorphisms (SNPs) for each gene were selected and genotyped on a customized Illumina SNP array. Imputation was carried out using 1000 Genomes haplotypes. The analysis included 91,627 SNPs genotyped or imputed in 3,663 breast cancer cases, (1,983 ER-positive and 1,098 ER-negative) and 4,687 controls from the African American Breast Cancer Epidemiology and Risk consortium, a collaborative project of four large studies of breast cancer in African-American women (Carolina Breast Cancer Study, Black Women's Health Study, Women's Circle of Health Study, and Multiethnic Cohort). We used a multi-locus adaptive joint test to determine the association of each gene with overall breast cancer and ER subtypes. The most significant gene associations (P ≤ 0.01) were BAIAP2 and CALM2 for overall breast cancer; BAIAP2 and CSNK2A1 for ER+ breast cancer; and BRAF, BAD, and MAPK3 for ER− breast cancer. The association of BAD with ER− breast cancer was explained by a two-SNP risk model; all other associations were best explained by one-SNP risk models. In total, six genes and seven SNPs had suggestive associations with overall breast cancer or ER subtypes in African-American women. PMID:27942580

  6. Role of leptin in autoimmune diseases.

    PubMed

    Cojocaru, Manole; Cojocaru, Inimioara Mihaela; Siloşi, Isabela; Rogoz, Suzana

    2013-03-01

    Leptin represents a link between metabolism, nutritional status, and immune responses. Leptin is important for optimal functioning of the immune system. Leptin is a cytokine-like hormone with proinflammatory properties linked to autoimmune diseases. Moreover, there has been increasing evidence that leptin is involved in the pathogenesis of various autoimmune diseases. Leptin has been shown to enhance immune reactions in autoimmune diseases that are commonly associated with inflammatory responses. Both high and low levels of leptin might contribute to autoimmune diseases. Leptin has been explored as a potential target for therapeutic development in treating autoimmune diseases. In this review, we review here the most recent advances on the role of leptin in autoimmunity and in immune-rheumatological diseases.

  7. Role of leptin in reverse epidemiology in chronic kidney disease.

    PubMed

    Scholze, Alexandra; Tepel, Martin

    2007-01-01

    Leptin is mainly produced by adipocytes and metabolized in the kidney. Leptin is taken up into the central nervous system by a saturable transport system, and controls appetite in rodents and in healthy subjects. Leptin acts on peripheral tissue and increases the inflammatory response by stimulating the production of tumor necrosis factor alpha, interleukin-6 and interleukin-12. In healthy humans, serum leptin concentration is related to the size of adipose tissue mass in the body. The majority of obese subjects have inappropriately high levels of circulating plasma leptin concentrations, indicating leptin resistance. In healthy subjects increased leptin concentration constitutes a biomarker for increased cardiovascular risk. On the other hand, a recent prospective long-term study in patients with chronic kidney disease stage 5 on hemodialysis therapy showed that reduced serum leptin concentration is an independent risk factor for mortality in these patients.

  8. Leptin and Cancer: From Cancer Stem Cells to Metastasis (Preprint)

    DTIC Science & Technology

    2011-01-01

    1 Endocrine-Related Cancer Commentary Leptin and Cancer: From Cancer Stem Cells to Metastasis Jiyoung Park 1 and Philipp E. Scherer...REPORT DATE JUN 2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Leptin And Cancer: From Cancer Stem Cells To...interest. Recently several groups have addressed the functional roles of leptin , an adipocyte-derived adipokine, for mammary tumor progression. In this

  9. Adipocyte and adipogenesis.

    PubMed

    Ali, Aus Tariq; Hochfeld, Warren E; Myburgh, Renier; Pepper, Michael S

    2013-01-01

    Adipocytes are the main constituent of adipose tissue and are considered to be a corner stone in the homeostatic control of whole body metabolism. Their primary function is to control energy balance by storing triacylglycerol in periods of energy excess and mobilizing it during energy deprivation. Besides the classical function of storing fat, adipocytes secrete numerous lipid and protein factors. Collectively they are considered to constitute a major endocrine organ which has a profound impact on the metabolism of other tissues, the regulation of appetite, insulin sensitivity, immunological responses and vascular disease. Adipogenesis is the process during which fibroblast like preadipocytes developed into mature adipocytes. Adipogenesis is a well-orchestrated multistep process that requires the sequential activation of numerous transcription factors, including the CCAAT/enhancer-binding protein (C/EBP) gene family and peroxisome proliferator activated receptor-γ (PPAR-γ). In order to reach maturity, these cells must go through two vital steps: adipocyte determination and adipocyte differentiation. Although many of the molecular details of adipogenesis are still unknown, several factors involved in this processes have been identified. Some stimulators include peroxisome proliferator-activated receptor γ (PPAR γ), insulin-like growth factor I (IGF-l), macrophage colony stimulating factor, fatty acids, prostaglandins and glucocorticoids. Inhibitors include glycoproteins, transforming growth factor-β (TGF-β), inflammatory cytokines and growth hormone. Beside these factors, there are others for example age, gender and life style that may affect this process in one way or another. An increase in the number and size of adipocytes causes white adipose tissue (WAT) to expand and this can lead to obesity. Adipogenesis can lead to central obesity if it occurs in the abdominal fat depot and peripheral obesity if it occurs in subcutaneous tissue.

  10. Feeding and insulin increase leptin translation. Importance of the leptin mRNA untranslated regions.

    PubMed

    Lee, Mi-Jeong; Yang, Rong-Ze; Gong, Da-Wei; Fried, Susan K

    2007-01-05

    The post-transcriptional mechanisms by which feeding and insulin increase leptin production are poorly understood. Starvation of 6-7-week-old rats for 14 h decreased leptin mRNA level by only 22% but decreased plasma levels, adipose tissue leptin content, and release by over 75%. The decreased leptin with starvation was explained by >85% decrease in relative rates of leptin biosynthesis measured by metabolic labeling and immunoprecipitation. In vitro insulin treatment of adipose tissue from fed or starved rats for 2 h increased relative rates of leptin biosynthesis by 2-3-fold, and the effect was blocked by inhibition of phosphatidylinositol 3-kinase or mammalian target of rapamycin. Consistent with the hypothesis that feeding/insulin increases leptin translation, more leptin mRNA was associated with polysomes in adipose tissue of fed than starved rats, and in vitro incubation of adipose tissue of starved rats with insulin shifted leptin mRNA into polysomes. To assess the mechanisms regulating leptin translation, chimeric human leptin untranslated region (UTR) reporter constructs were transiently transfected into differentiated 3T3-L1 adipocytes. The 5'-UTR of leptin mRNA increased luciferase reporter activity 2-3-fold, whereas the full-length 3'-UTR (nucleotides 1-2804) was inhibitory (-65%). Sequences between nucleotides 462 and 1130 of the leptin 3'-UTR conferred most of the inhibitory effect. Insulin stimulated the expression of constructs that included both the full-length 5'-UTR and the inhibitory 3'-UTR, and the effect was blocked by inhibition of phosphatidylinositol 3-kinase or mammalian target of rapamycin. Our data suggest that insulin derepresses leptin translation by a mechanism that requires both the 5'-UTR and the 3'-UTR and may contribute to the increase in leptin production with feeding.

  11. Atypical antipsychotics induce both proinflammatory and adipogenic gene expression in human adipocytes in vitro

    SciTech Connect

    Sárvári, Anitta K.; Veréb, Zoltán; Uray, Iván P.; Fésüs, László; Balajthy, Zoltán

    2014-08-08

    Highlights: • Antipsychotics modulate the expression of adipogenic genes in human adipocytes. • Secretion of proinflammatory cytokine IL8 and MCP-1 is induced by antipsychotics. • Adipocyte-dependent inflammatory abnormality could develop during chronic treatment. • Infiltrated macrophages would further enhance proinflammatory cytokine production. - Abstract: Schizophrenia requires lifelong treatment, potentially causing systemic changes in metabolic homeostasis. In the clinical setting, antipsychotic treatment may differentially lead to weight gain among individual patients, although the molecular determinants of such adverse effects are currently unknown. In this study, we investigated changes in the expression levels of critical regulatory genes of adipogenesis, lipid metabolism and proinflammatory genes during the differentiation of primary human adipose-derived stem cells (ADSCs). These cells were isolated from patients with body mass indices <25 and treated with the second-generation antipsychotics olanzapine, ziprasidone, clozapine, quetiapine, aripiprazole and risperidone and the first-generation antipsychotic haloperidol. We found that antipsychotics exhibited a marked effect on key genes involved in the regulation of cell cycle, signal transduction, transcription factors, nuclear receptors, differentiation markers and metabolic enzymes. In particular, we observed an induction of the transcription factor NF-KB1 and NF-KB1 target genes in adipocytes in response to these drugs, including the proinflammatory cytokines TNF-α, IL-1β, IL-8 and MCP-1. In addition, enhanced secretion of both IL8 and MCP-1 was observed in the supernatant of these cell cultures. In addition to their remarkable stimulatory effects on proinflammatory gene transcription, three of the most frequently prescribed antipsychotic drugs, clozapine, quetiapine and aripiprazole, also induced the expression of essential adipocyte differentiation genes and the adipocyte hormones leptin

  12. Obestatin regulates adipocyte function and protects against diet-induced insulin resistance and inflammation.

    PubMed

    Granata, Riccarda; Gallo, Davide; Luque, Raul M; Baragli, Alessandra; Scarlatti, Francesca; Grande, Cristina; Gesmundo, Iacopo; Córdoba-Chacón, Jose; Bergandi, Loredana; Settanni, Fabio; Togliatto, Gabriele; Volante, Marco; Garetto, Stefano; Annunziata, Marta; Chanclón, Belén; Gargantini, Eleonora; Rocchietto, Stefano; Matera, Lina; Datta, Giacomo; Morino, Mario; Brizzi, Maria Felice; Ong, Huy; Camussi, Giovanni; Castaño, Justo P; Papotti, Mauro; Ghigo, Ezio

    2012-08-01

    The metabolic actions of the ghrelin gene-derived peptide obestatin are still unclear. We investigated obestatin effects in vitro, on adipocyte function, and in vivo, on insulin resistance and inflammation in mice fed a high-fat diet (HFD). Obestatin effects on apoptosis, differentiation, lipolysis, and glucose uptake were determined in vitro in mouse 3T3-L1 and in human subcutaneous (hSC) and omental (hOM) adipocytes. In vivo, the influence of obestatin on glucose metabolism was assessed in mice fed an HFD for 8 wk. 3T3-L1, hSC, and hOM preadipocytes and adipocytes secreted obestatin and showed specific binding for the hormone. Obestatin prevented apoptosis in 3T3-L1 preadipocytes by increasing phosphoinositide 3-kinase (PI3K)/Akt and extracellular signal-regulated kinase (ERK)1/2 signaling. In both mice and human adipocytes, obestatin inhibited isoproterenol-induced lipolysis, promoted AMP-activated protein kinase phosphorylation, induced adiponectin, and reduced leptin secretion. Obestatin also enhanced glucose uptake in either the absence or presence of insulin, promoted GLUT4 translocation, and increased Akt phosphorylation and sirtuin 1 (SIRT1) protein expression. Inhibition of SIRT1 by small interfering RNA reduced obestatin-induced glucose uptake. In HFD-fed mice, obestatin reduced insulin resistance, increased insulin secretion from pancreatic islets, and reduced adipocyte apoptosis and inflammation in metabolic tissues. These results provide evidence of a novel role for obestatin in adipocyte function and glucose metabolism and suggest potential therapeutic perspectives in insulin resistance and metabolic dysfunctions.

  13. Leptin, resistin and visfatin: the missing link between endocrine metabolic disorders and immunity

    PubMed Central

    2013-01-01

    Adipose tissue is still regarded as a principle site for lipid storage and mobilizing tissue with an important role in the control of energy homeostasis. Additionally, adipose tissue-secreted hormones such as leptin, visfatin, resistin, apelin, omentin, sex steroids, and various growth factors are now regarded as a functional part of the endocrine system. These hormones also play an important role in the immune system. Several in vitro and in vivo studies have suggested the complex role of adipocyte-derived hormones in immune system and inflammation. Adipokines mediate beneficial and detrimental effects in immunity and inflammation. Many of these adipocytokines have a physiological role in metabolism. The uncontrolled secretions of several adipocytokines were associated with the stimulation of inflammatory processes leading to metabolic disorders including obesity, atherosclerosis, insulin resistance and type 2 diabetes. Obesity leads to the dysfunction of adipocytes andcorrelated with the imbalance of adipokines levels. In obese and diabetic conditions, leptin deficiency inhibited the Jak/Stat3/PI3K and insulin pathways. In this review, ample evidence exists to support the recognition of the adipocyte’s role in various tissues and pathologies. New integral insights may add dimensions to translate any potential agents into the future clinical armamentarium of chronic endocrine metabolic and inflammatory diseases. Functional balance of both adipocytes and immune cells is important to exert their effects on endocrine metabolic disorders; furthermore, adipose tissue should be renamed not only as a functional part of the endocrine system but also as a new part of the immune system. PMID:23634778

  14. The Effect of Leptin and Adiponectin on KiSS-1 and KissR mRNA Expression in Rat Islets of Langerhans and CRI-D2 Cell Line

    PubMed Central

    Mahmoodzadeh Sagheb, Mandana; Azarpira, Negar; Yaghobi, Ramin

    2014-01-01

    Background: Leptin and adiponectin are the two key metabolic hormones secreted from adipocytes to control food intake and energy expenditure. The action of both hormones in regulation of Gonadotropin Releasing Hormone (GnRH) secretion from the hypothalamus is mediated through Kisspeptins. Kisspeptins are products of KiSS-1 gene. Leptin and adiponectin are modulators of KiSS-1 expression in the hypothalamus. These peptides have also important roles in pancreatic β-cells to control insulin synthesis and secretion and their receptors are detected in Langerhans islets. We hypothesized that leptin and adiponectin might alter KiSS-1 and Kiss Receptor mRNA expression in the islets. Objectives: The aim of this study is to investigate any modulatory effect that leptin and adiponectin may have on the expression of Kiss-1 and KiSSR gene in Langerhans islets. Materials and Methods: We isolated the islets from adult male rats by collagenase and cultured CRI-D2 cell lines to investigate the effect of leptin and adiponectin. Then, we incubated them with different concentrations of leptin and adiponectin for 24 hours. After that, RNA was extracted from the islets and CRI-D2 cells and transcripted to cDNA. KiSS-1 and KissR expression levels were evaluated by real time PCR. Results: In islet and CRI-D2 cells, leptin increased the KiSS-1 mRNA expression significantly, but adiponectin decreased it was expected. Conclusions: These findings indicated the possibility that KiSS-1 mRNA expression is a mediator of leptin and adiponectin function in the islets. PMID:24910643

  15. Leptin Enhances Cholangiocarcinoma Cell Growth

    PubMed Central

    Fava, Giammarco; Alpini, Gianfranco; Rychlicki, Chiara; Saccomanno, Stefania; DeMorrow, Sharon; Trozzi, Luciano; Candelaresi, Cinzia; Venter, Julie; Di Sario, Antonio; Marzioni, Marco; Bearzi, Italo; Glaser, Shannon; Alvaro, Domenico; Marucci, Luca; Francis, Heather; Svegliati-Baroni, Gianluca; Benedetti, Antonio

    2008-01-01

    Cholangiocarcinoma is a strongly aggressive malignancy with a very poor prognosis. Effective therapeutic strategies are lacking because molecular mechanisms regulating cholangiocarcinoma cell growth are unknown. Furthermore, experimental in vivo animal models useful to study the pathophysiologic mechanisms of malignant cholangiocytes are lacking. Leptin, the hormone regulating caloric homeostasis, which is increased in obese patients, stimulates the growth of several cancers, such as hepatocellular carcinoma. The aim of this study was to define if leptin stimulates cholangiocarcinoma growth. We determined the expression of leptin receptors in normal and malignant human cholangiocytes. Effects on intrahepatic cholangiocarcinoma (HuH-28) cell proliferation, migration, and apoptosis of the in vitro exposure to leptin, together with the intracellular pathways, were then studied. Moreover, cholangiocarcinoma was experimentally induced in obese fa/fa Zucker rats, a genetically established animal species with faulty leptin receptors, and in their littermates by chronic feeding with thioacetamide, a potent carcinogen. After 24 weeks, the effect of leptin on cholangiocarcinoma development and growth was assessed. Normal and malignant human cholangiocytes express leptin receptors. Leptin increased the proliferation and the metastatic potential of cholangiocarcinoma cells in vitro through a signal transducers and activators of transcription 3–dependent activation of extracellular signal-regulated kinase 1/2. Leptin increased the growth and migration, and was antiapoptotic for cholangiocarcinoma cells. Moreover, the loss of leptin function reduced the development and the growth of cholangiocarcinoma. The experimental carcinogenesis model induced by thioacetamide administration is a valid and reproducible method to study cholangiocarcinoma pathobiology. Modulation of the leptin-mediated signal could be considered a valid tool for the prevention and treatment of

  16. Biology of leptin in the pig.

    PubMed

    Barb, C R; Hausman, G J; Houseknecht, K L

    2001-11-01

    The recently discovered protein, leptin, which is secreted by fat cells in response to changes in body weight or energy, has been implicated in regulation of feed intake, energy expenditure and the neuroendocrine axis in rodents and humans. Leptin was first identified as the gene product found deficient in the obese ob/ob mouse. Administration of leptin to ob/ob mice led to improved reproduction as well as reduced feed intake and weight loss. The porcine leptin receptor has been cloned and is a member of the class 1 cytokine family of receptors. Leptin has been implicated in the regulation of immune function and the anorexia associated with disease. The leptin receptor is localized in the brain and pituitary of the pig. The leptin response to acute inflammation is uncoupled from anorexia and is differentially regulated among swine genotypes. In vitro studies demonstrated that the leptin gene is expressed by porcine preadipocytes and leptin gene expression is highly dependent on dexamethasone induced preadipocyte differentiation. Hormonally driven preadipocyte recruitment and subsequent fat cell size may regulate leptin gene expression in the pig. Expression of CCAAT-enhancer binding proteinalpha (C/EBPalpha) mediates insulin dependent preadipocyte leptin gene expression during lipid accretion. In contrast, insulin independent leptin gene expression may be maintained by C/EBPalpha auto-activation and phosphorylation/dephosphorylation. Adipogenic hormones may increase adipose tissue leptin gene expression in the fetus indirectly by inducing preadipocyte recruitment and subsequent differentiation. Central administration of leptin to pigs suppressed feed intake and stimulated growth hormone (GH) secretion. Serum leptin concentrations increased with age and estradiol-induced leptin mRNA expression in fat was age and weight dependent in prepuberal gilts. This occurred at the time of expected puberty in intact contemporaries and was associated with greater LH secretion

  17. Leptin and cancer: from cancer stem cells to metastasis.

    PubMed

    Park, Jiyoung; Scherer, Philipp E

    2011-08-01

    There is growing evidence that obesity is a risk factor of cancer incidence and mortality. Hence, the identification of the mechanistic links between obesity and cancer progression is emerging as a topic of widespread interest. Recently, several groups have addressed the functional roles of leptin, an adipocyte-derived adipokine, for mammary tumor progression. In this issue of Endocrine-Related Cancer, Zheng et al. study the role of leptin on tumor growth in a xenograft model of MMTV-Wnt1-derived cancer cells. They study growth of these cancer cells in the context of obese animals, such as ob/ob mice (lacking leptin) and db/db mice (lacking functional leptin receptors (LEPR)) and find that leptin triggers LEPR-positive cancer stem cell differentiation, thereby promoting tumor cell survival. These findings highlight the therapeutic potential for leptin and leptin signaling in the context of mammary tumor growth.

  18. Hypothyroidism compromises hypothalamic leptin signaling in mice.

    PubMed

    Groba, Claudia; Mayerl, Steffen; van Mullem, Alies A; Visser, Theo J; Darras, Veerle M; Habenicht, Andreas J; Heuer, Heike

    2013-04-01

    The impact of thyroid hormone (TH) on metabolism and energy expenditure is well established, but the role of TH in regulating nutritional sensing, particularly in the central nervous system, is only poorly defined. Here, we studied the consequences of hypothyroidism on leptin production as well as leptin sensing in congenital hypothyroid TRH receptor 1 knockout (Trhr1 ko) mice and euthyroid control animals. Hypothyroid mice exhibited decreased circulating leptin levels due to a decrease in fat mass and reduced leptin expression in white adipose tissue. In neurons of the hypothalamic arcuate nucleus, hypothyroid mice showed increased leptin receptor Ob-R expression and decreased suppressor of cytokine signaling 3 transcript levels. In order to monitor putative changes in central leptin sensing, we generated hypothyroid and leptin-deficient animals by crossing hypothyroid Trhr1 ko mice with the leptin-deficient ob/ob mice. Hypothyroid Trhr1/ob double knockout mice showed a blunted response to leptin treatment with respect to body weight and food intake and exhibited a decreased activation of phospho-signal transducer and activator of transcription 3 as well as a up-regulation of suppressor of cytokine signaling 3 upon leptin treatment, particularly in the arcuate nucleus. These data indicate alterations in the intracellular processing of the leptin signal under hypothyroid conditions and thereby unravel a novel mode of action by which TH affects energy metabolism.

  19. Leptin-responsive GABAergic neurons regulate fertility through pathways that result in reduced kisspeptinergic tone.

    PubMed

    Martin, Cecilia; Navarro, Víctor M; Simavli, Serap; Vong, Linh; Carroll, Rona S; Lowell, Bradford B; Kaiser, Ursula B

    2014-04-23

    The adipocyte-derived hormone leptin plays a critical role in the central transmission of energy balance to modulate reproductive function. However, the neurocircuitry underlying this interaction remains elusive, in part due to incomplete knowledge of first-order leptin-responsive neurons. To address this gap, we explored the contribution of predominantly inhibitory (GABAergic) neurons versus excitatory (glutamatergic) neurons in the female mouse by selective ablation of the leptin receptor in each neuronal population: Vgat-Cre;Lepr(lox/lox) and Vglut2-Cre;Lepr(lox/lox) mice, respectively. Female Vgat-Cre;Lepr(lox/lox) but not Vglut2-Cre;Lepr(lox/lox) mice were obese. Vgat-Cre;Lepr(lox/lox) mice had delayed or absent vaginal opening, persistent diestrus, and atrophic reproductive tracts with absent corpora lutea. In contrast, Vglut2-Cre;Lepr(lox/lox) females exhibited reproductive maturation and function comparable to Lepr(lox/lox) control mice. Intracerebroventricular administration of kisspeptin-10 to Vgat-Cre;Lepr(lox/lox) female mice elicited robust gonadotropin responses, suggesting normal gonadotropin-releasing hormone neuronal and gonadotrope function. However, adult ovariectomized Vgat-Cre;Lepr(lox/lox) mice displayed significantly reduced levels of Kiss1 (but not Tac2) mRNA in the arcuate nucleus, and a reduced compensatory luteinizing hormone increase compared with control animals. Estradiol replacement after ovariectomy inhibited gonadotropin release to a similar extent in both groups. These animals also exhibited a compromised positive feedback response to sex steroids, as shown by significantly lower Kiss1 mRNA levels in the AVPV, compared with Lepr(lox/lox) mice. We conclude that leptin-responsive GABAergic neurons, but not glutamatergic neurons, act as metabolic sensors to regulate fertility, at least in part through modulatory effects on kisspeptin neurons.

  20. Leptin regulation of hippocampal synaptic function in health and disease

    PubMed Central

    Irving, Andrew J.; Harvey, Jenni

    2014-01-01

    The endocrine hormone leptin plays a key role in regulating food intake and body weight via its actions in the hypothalamus. However, leptin receptors are highly expressed in many extra-hypothalamic brain regions and evidence is growing that leptin influences many central processes including cognition. Indeed, recent studies indicate that leptin is a potential cognitive enhancer as it markedly facilitates the cellular events underlying hippocampal-dependent learning and memory, including effects on glutamate receptor trafficking, neuronal morphology and activity-dependent synaptic plasticity. However, the ability of leptin to regulate hippocampal synaptic function markedly declines with age and aberrant leptin function has been linked to neurodegenerative disorders such as Alzheimer's disease (AD). Here, we review the evidence supporting a cognitive enhancing role for the hormone leptin and discuss the therapeutic potential of using leptin-based agents to treat AD. PMID:24298156

  1. Leptin and the cardiovascular system: a review.

    PubMed

    Ashwin, Patel J; Dilipbhai, Patel J

    2007-06-01

    Obesity is an increasing health problem not only in the industrialized western countries but, also in the developing countries like India. The adipose tissue specific obese (ob) gene and its peptide product leptin were discovered in 1994. Leptin binding to specific receptors in the hypothalamus results in altered expression of orexigenic and anorexigenic neuropeptides that regulate neuroendocrine functions and energy homeostasis. Recent patents and experimental evidence suggest that leptin plays an important role in the pathogenesis of obesity and eating disorders. Central leptin action also includes regulation of blood pressure, bone mass, and immune function. Peripherally also, leptin plays an important role in direct regulation of immune cells, pancreatic beta cells, adipocytes and muscle cells. Leptin receptors are present on human endothelial cells, and it has been shown to induce angiogenesis both in vitro and in vivo. Further, leptin appears to be a potential pressure and volume regulating factor and may function pathophysiologically as a common link to obesity and hypertension. Obesity is also a risk factor for several other cardiovascular diseases like myocardial hypertrophy, myocardial infarction, coronary atherosclerosis and increased cardiovascular morbidity and mortality. Recent progress in understanding central and peripheral leptin receptor signaling pathways may provide potential new targets to combat obesity, hypertension etc.

  2. Leptin Alters Adrenal Responsiveness by Decreasing Expression of ACTH-R, StAR, and P450c21 in Hypoxemic Fetal Sheep

    PubMed Central

    Su, Yixin; Carey, Luke C.; Pulgar, Victor M.

    2012-01-01

    The late gestation increase in adrenal responsiveness to adrenocorticotropin (ACTH) is dependent upon the upregulation of the ACTH receptor (ACTH-R), steroidogenic acute regulatory protein (StAR), and steroidogenic enzymes in the fetal adrenal. Long-term hypoxia decreases the expression of these and adrenal responsiveness to ACTH in vivo. Leptin, an adipocyte-derived hormone which attenuates the peripartum increase in fetal plasma cortisol is elevated in hypoxic fetuses. Therefore, we hypothesized that increases in plasma leptin will inhibit the expression of the ACTH-R, StAR, and steroidogenic enzymes and attenuate adrenal responsiveness in hypoxic fetuses. Spontaneously hypoxemic fetal sheep (132 days of gestation, PO2 ∼15 mm Hg) were infused with recombinant human leptin (n = 8) or saline (n = 7) for 96 hours. An ACTH challenge was performed at 72 hours of infusion to assess adrenal responsiveness. Plasma cortisol and ACTH were measured daily and adrenals were collected after 96 hours infusion for messenger RNA (mRNA) and protein expression measurement. Plasma cortisol concentrations were lower in leptin- compared with saline-infused fetuses (14.8 ± 3.2 vs 42.3 ± 9.6 ng/mL, P < .05), as was the cortisol:ACTH ratio (0.9 ± 0.074 vs 46 ± 1.49, P < .05). Increases in cortisol concentrations were blunted in the leptin-treated group after ACTH1-24 challenge (F = 12.2, P < .0001). Adrenal ACTH-R, StAR, and P450c21 expression levels were reduced in leptin-treated fetuses (P < .05), whereas the expression of Ob-Ra and Ob-Rb leptin receptor isoforms remained unchanged. Our results indicate that leptin blunts adrenal responsiveness in the late gestation hypoxemic fetus, and this effect appears mediated by decreased adrenal ACTH-R, StAR, and P450c21 expression. PMID:22534336

  3. RhoA/ROCK pathway mediates leptin-induced uPA expression to promote cell invasion in ovarian cancer cells.

    PubMed

    Ghasemi, Ahmad; Hashemy, Seyed Isaac; Aghaei, Mahmoud; Panjehpour, Mojtaba

    2017-04-01

    Previous studies have shown that leptin, an adipocyte-secreted hormone, stimulates ovarian cancer invasion. Here, we investigated the contribution of uPA in leptin-induced ovarian cancer cell invasion. The cell invasion and migration experiments were carried out using matrigel invasion and wound healing assays in ovarian cancer cell lines (OVCAR3, SKOV3and CaoV-3). The mechanism underlying the invasive effect of leptin was examined using cell transfection with Ob-Rb siRNA, pre-treatment with a specific inhibitor of RhoA and ROCK, RhoA activation assay, OB-Rb, Rock and upA protein expression. Our results show that leptin induced ovarian cancer cell invasion via up-regulating upA in a time and dose-dependent manner, which was attenuated using knockdown of OB-Rb by siRNA. Moreover, pre-incubation with C3 (inhibitor of RhoA) and Y-27632 (inhibitor of ROCK) effectively attenuated leptin-induced upA expression and inhibited invasive ability of ovarian cancer cells. We also found that pretreatment with inhibitors of PI3K/AKT (LY294002), JAK/STAT (AG490) and NF-kB (BAY 11-7082) significantly reduced leptin-induced upA expression. Collectively, our findings demonstrate that OB-Rb, RhoA/ROCK, PI3K/AKT, JAK/STAT pathways and NF-kB activation are involved in leptin-induced upA expression. These results may provide a new mechanism that facilitates leptin-induced ovarian cancer invasion.

  4. Regulation of insulin-like growth factor II receptors by growth hormone and insulin in rat adipocytes

    SciTech Connect

    Loennroth, P.; Assmundsson, K.; Eden, S.; Enberg, G.; Gause, I.; Hall, K.; Smith, U.

    1987-06-01

    The acute and long-term effects of growth hormone (GH) on the binding of insulin-like growth factor II (IGF-II) were evaluated in adipose cells from hypophysectomized rats given replacement therapy with thyroxine and hydrocortisone and in cells from their sham-operated littermates. After the cells were incubated with insulin and/or GH, the recycling of /sup 125/I-labeled IGF-II receptors was metabolically inhibited by treating the cells with KCN. IGF-II binding was 100 +/- 20% higher in cells from GH-deficient animals when compared with sham-operated controls. These GH-deficient cells also showed an increased sensitivity for insulin as compared with control cells (the EC/sub 50/ for insulin was 0.06 ng/ml in GH-deficient cells and 0.3 ng/ml in control cells.). However, the maximal incremental effect of insulin on IGH-II binding was reduced approx. = 27% by hypophysectomy. GH added to the incubation medium increased the number of IGF-II binding sites by 100 +/- 18% in cells from hypophysectomized animals. This increase was rapidly induced, but the time course was slower than that for the stimulatory effect of insulin. Half-maximal effect of GH on IGF-II binding was obtained at approx. = 30 ng/ml. Thus, GH added in vitro exerted a rapid insulin-like effect on the number of IGH-II receptors. GH also appears to play a regulating role for maintaining the cellular number of IGH-II receptors and, in addition, modulates the stimulatory effect of insulin on IGF-II binding.

  5. Endometrial expression of leptin receptor and members of the growth hormone-Insulin-like growth factor system throughout the estrous cycle in heifers.

    PubMed

    Sosa, C; Carriquiry, M; Chalar, C; Crespi, D; Sanguinetti, C; Cavestany, D; Meikle, A

    2010-12-01

    The growth hormone (GH)-insulin-like growth factor (IGF) system is expressed in bovine uterus during the estrous cycle and early pregnancy and is acknowledged to play an important role in regulating the development of the embryo and uterus. The leptin receptor (LEPR) is also expressed in the bovine uterus although it is not known whether its expression varies during the estrous cycle. In this study, the expression of the IGF-I and -II, the type 1 IGF receptor (IGF-1R), GH receptor (GHR) and LEPR transcripts was determined on endometrial transcervical biopsies collected on days 0 (estrus), 5, 12 and 19 of the cow estrous cycle (n=8). The expression of mRNA was determined by RT real time PCR using ribosomal protein L19 as a housekeeping gene. It has been demonstrated for the first time that LEPR mRNA is expressed in the bovine uterus throughout the estrous cycle and that it presents a cycle-dependent variation, with higher levels observed during the luteal phase. The expression of IGF-I mRNA was greatest at estrus and day 5 (100%), and decreased on days 12 and 19 to 47% and 35% of the initial values. IGF-II mRNA increased on day 12 and decreased sharply thereafter (to one-third of day 12 values). Interestingly, IGF-1R showed the same pattern as IGF-II: increased 50% on day 12 compared to values at estrus and presented a sharp decrease on day 19. The expression of GHR transcript was greatest at estrus and on day 5 and progressively decreased thereafter. These results show that the GH-IGF system components are distinctively regulated during the estrous cycle suggesting that modulation of the IGF system may influence uterine activity during this period. The increase in the uterine sensitivity to IGFs during the late luteal phase - as demonstrated by the increased IGF-1R expression - concomitant with the increased IGF-II mRNA expression may reinforce the role of IGF-II during early pregnancy. Moreover, leptin is also likely to play roles during early embryo development.

  6. Leptin in Anorexia and Cachexia Syndrome

    PubMed Central

    Engineer, Diana R.; Garcia, Jose M.

    2012-01-01

    Leptin is a product of the obese (OB) gene secreted by adipocytes in proportion to fat mass. It decreases food intake and increases energy expenditure by affecting the balance between orexigenic and anorexigenic hypothalamic pathways. Low leptin levels are responsible for the compensatory increase in appetite and body weight and decreased energy expenditure (EE) following caloric deprivation. The anorexia-cachexia syndrome is a complication of many chronic conditions including cancer, chronic obstructive pulmonary disease, congestive heart failure, chronic kidney disease, and aging, where the decrease in body weight and food intake is not followed by a compensatory increase in appetite or decreased EE. Crosstalk between leptin and inflammatory signaling known to be activated in these conditions may be responsible for this paradox. This manuscript will review the evidence and potential mechanisms mediating changes in the leptin pathway in the setting of anorexia and cachexia associated with chronic diseases. PMID:22518191

  7. Breast Cancer and Early Onset Childhood Obesity: Cell Specific Gene Expression in Mammary Epithelia and Adipocytes

    DTIC Science & Technology

    2007-07-01

    hormone leptin (ob/ob mice) or its receptor (db/db mice, Zucker rat). These leptin signaling impaired animals are resistant to oncogene and...chemically induced mammary tumors (3,4). However, human obesity is not generally caused by mutations in leptin or its receptor (5). As expression of leptin ...morbidity factors associated with human obesity in the three groups of rats, including Leptin , Free fatty acids (FFA), triglycerides (TG) and insulin

  8. Profile of leptin, adiponectin, and body fat in patients with hyperprolactinemia: Response to treatment with cabergoline

    PubMed Central

    Pala, Nazir Ahmad; Laway, Bashir Ahmad; Misgar, Raiz Ahmad; Shah, Zaffar Amin; Gojwari, Tariq A.; Dar, Tariq A.

    2016-01-01

    Introduction: Though hypoadiponectinemia and leptin resistance have been proposed as potential factors for weight gain in patients with hyperprolactinemia (HPL), the effects of HPL and cabergoline on these adipocyte-derived hormones are not clear. Aims of this study were (i) to assess the alterations of body fat, leptin, and adiponectin in patients with HPL (ii) effect of cabergoline treatment on these parameters. Methods: Nineteen consecutive patients with prolactinoma (median prolactin [PRL] 118.6 (interquartile range: 105.3) μg/L) and 20 controls were studied in a nonrandomized matched prospective design. The controls were age, gender, and body mass index (BMI) matched. Anthropometric data, metabolic variables, leptin, and adiponectin were studied at baseline and 3 and 6 months after cabergoline treatment. Results: Patients with prolactinoma had increased level of fasting plasma glucose (P < 0.001) as compared to age-, gender-, and BMI-matched healthy controls. Estradiol concentration of controls was higher than that of patients (P = 0.018). Patients with prolactinoma had higher levels of leptin (P = 0.027) as compared to healthy controls without a significant difference in adiponectin levels. There was a significant decrease of body weight at 3 months (P = 0.029), with a further decline at 6 months (P < 0.001) of cabergoline therapy. Furthermore, there was a significant decrement of BMI (P < 0.001), waist circumference (P = 0.003), waist-hip ratio (P = 0.03), total body fat (P = 0.003), plasma glucose (P < 0.001), leptin levels (P = 0.013), and an increase in estradiol concentration (P = 0.03) at 6 months of cabergoline treatment. Conclusion: Patients with prolactinoma have adverse metabolic profile compared to matched controls. Normalization of PRL with cabergoline corrects all the metabolic abnormalities. PMID:27042412

  9. Long form leptin receptor mRNA expression in the brain, pituitary, and other tissues in the pig.

    PubMed

    Lin, J; Barb, C R; Matteri, R L; Kraeling, R R; Chen, X; Meinersmann, R J; Rampacek, G B

    2000-07-01

    Much effort has focused recently on understanding the role of leptin, the obese gene product secreted by adipocytes, in regulating growth and reproduction in rodents, humans and domestic animals. We previously demonstrated that leptin inhibited feed intake and stimulated growth hormone (GH) and luteinizing hormone (LH) secretion in the pig. This study was conducted to determine the location of long form leptin receptor (Ob-Rl) mRNA in various tissues of the pig. The leptin receptor has several splice variants in the human and mouse, but Ob-Rl is the major form capable of signal transduction. The Ob-Rl is expressed primarily in the hypothalamus of the human and rodents, but has been located in other tissues as well. In the present study, a partial porcine Ob-Rl cDNA, cloned in our laboratory and specific to the intracellular domain, was used to evaluate the Ob-Rl mRNA expression by RT-PCR in the brain and other tissues in three 105 d-old prepuberal gilts and in a 50 d-old fetus. In 105 d-old gilts, Ob-Rl mRNA was expressed in the hypothalamus, cerebral cortex, amygdala, thalamus, cerebellum, area postrema and anterior pituitary. In addition, Ob-Rl mRNA was expressed in ovary, uterine body, liver, kidney, pancreas, adrenal gland, heart, spleen, lung, intestine, bone marrow, muscle and adipose tissue. However, expression was absent in the thyroid, thymus, superior vena cava, aorta, spinal cord, uterine horn and oviduct. In the 50 d-old fetus, Ob-Rl mRNA was expressed in brain, intestine, muscle, fat, heart, liver and umbilical cord. These results support the idea that leptin might play a role in regulating numerous physiological functions.

  10. Nuclear Factor-Y is an adipogenic factor that regulates leptin gene expression

    PubMed Central

    Lu, Yi-Hsueh; Dallner, Olof Stefan; Birsoy, Kivanc; Fayzikhodjaeva, Gulya; Friedman, Jeffrey M.

    2015-01-01

    Objective Leptin gene expression is highly correlated with cellular lipid content in adipocytes but the transcriptional mechanisms controlling leptin expression in vivo are poorly understood. In this report, we set out to identify cis- and trans-regulatory elements controlling leptin expression. Methods Leptin-BAC luciferase transgenic mice combining with other computational and molecular techniques were used to identify transcription regulatory elements including a CCAAT-binding protein Nuclear Factor Y (NF-Y). The function of NF-Y in adipocyte was studied in vitro with 3T3-L1 cells and in vivo with adipocyte-specific knockout of NF-Y. Results Using Leptin-BAC luciferase mice, we showed that DNA sequences between −22 kb and +8.8 kb can confer quantitative expression of a leptin reporter. Computational analysis of sequences and gel shift assays identified a 32 bp sequence (chr6: 28993820–2899385) consisting a CCAAT binding site for Nuclear Factor Y (NF-Y) and this was confirmed by a ChIP assay in vivo. A deletion of this 32 bp sequence in the −22 kb to +8.8 kb leptin-luciferase BAC reporter completely abrogates luciferase reporter activity in vivo. RNAi mediated knockdown of NF-Y interfered with adipogenesis in vitro and adipocyte-specific knockout of NF-Y in mice reduced expression of leptin and other fat specific genes in vivo. Further analyses of the fat specific NF-Y knockout revealed that these animals develop a moderately severe lipodystrophy that is remediable with leptin therapy. Conclusions These studies advance our understanding of leptin gene expression and show that NF-Y controls the expression of leptin and other adipocyte genes and identifies a new form of lipodystrophy. PMID:25973387

  11. Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1.

    PubMed Central

    Kim, J B; Sarraf, P; Wright, M; Yao, K M; Mueller, E; Solanes, G; Lowell, B B; Spiegelman, B M

    1998-01-01

    The ability to regulate specific genes of energy metabolism in response to fasting and feeding is an important adaptation allowing survival of intermittent food supplies. However, little is known about transcription factors involved in such responses in higher organisms. We show here that gene expression in adipose tissue for adipocyte determination differentiation dependent factor (ADD) 1/sterol regulatory element binding protein (SREBP) 1, a basic-helix-loop-helix protein that has a dual DNA-binding specificity, is reduced dramatically upon fasting and elevated upon refeeding; this parallels closely the regulation of two adipose cell genes that are crucial in energy homeostasis, fatty acid synthetase (FAS) and leptin. This elevation of ADD1/SREBP1, leptin, and FAS that is induced by feeding in vivo is mimicked by exposure of cultured adipocytes to insulin, the classic hormone of the fed state. We also show that the promoters for both leptin and FAS are transactivated by ADD1/SREBP1. A mutation in the basic domain of ADD1/SREBP1 that allows E-box binding but destroys sterol regulatory element-1 binding prevents leptin gene transactivation but has no effect on the increase in FAS promoter function. Molecular dissection of the FAS promoter shows that most if not all of this action of ADD1/SREBP1 is through an E-box motif at -64 to -59, contained with a sequence identified previously as the major insulin response element of this gene. These results indicate that ADD1/SREBP1 is a key transcription factor linking changes in nutritional status and insulin levels to the expression of certain genes that regulate systemic energy metabolism. PMID:9421459

  12. Leptin regulates gonadotropins and steroid receptors in the rats ovary.

    PubMed

    Silveira Cavalcante, Fernanda; Aiceles, Verónica; da Fonte Ramos, Cristiane

    2013-01-01

    The leptin hormone is important to satiety and an important link between the nutritional status and reproductive processes. Owing to the contradictory effects of leptin on the ovary and the failure to clarify the precise mechanism by which leptin affects the ovary, our aim was to contribute to evaluation if leptin can directly regulate the gene expression of leptin itself and its receptors, and the expression of several genes related to the ovary function by a model of tissue culture. Ovaries from Wistar dams were used at 90 days of age and were submitted to medium with presence and absence of leptin. The results can demonstrate that leptin regulates gonadotropins and steroid receptors, which could suggest that the ovarian leptin role could be secondary to the changes in these receptors expression in rats.

  13. Leptin differentially regulates STAT3 activation in the ob/ob mice adipose mesenchymal stem cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leptin-deficient genetically obese ob/ob mice exhibit adipocyte hypertrophy and hyperplasia as well as elevated adipose tissue and systemic inflammation. Studies have shown that multipotent stem cells isolated from adult adipose tissue can differentiate into adipocytes ex vivo and thereby contribute...

  14. Leptin signalling pathways in hypothalamic neurons.

    PubMed

    Kwon, Obin; Kim, Ki Woo; Kim, Min-Seon

    2016-04-01

    Leptin is the most critical hormone in the homeostatic regulation of energy balance among those so far discovered. Leptin primarily acts on the neurons of the mediobasal part of hypothalamus to regulate food intake, thermogenesis, and the blood glucose level. In the hypothalamic neurons, leptin binding to the long form leptin receptors on the plasma membrane initiates multiple signaling cascades. The signaling pathways known to mediate the actions of leptin include JAK-STAT signaling, PI3K-Akt-FoxO1 signaling, SHP2-ERK signaling, AMPK signaling, and mTOR-S6K signaling. Recent evidence suggests that leptin signaling in hypothalamic neurons is also linked to primary cilia function. On the other hand, signaling molecules/pathways mitigating leptin actions in hypothalamic neurons have been extensively investigated in an effort to treat leptin resistance observed in obesity. These include SOCS3, tyrosine phosphatase PTP1B, and inflammatory signaling pathways such as IKK-NFκB and JNK signaling, and ER stress-mitochondrial signaling. In this review, we discuss leptin signaling pathways in the hypothalamus, with a particular focus on the most recently discovered pathways.

  15. Abalation of Ghrelin receptor in leptin-deficient mice has paradoxical effects on glucose homeostasis compared to Ghrelin-abalated Leptin-deficient mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ghrelin is produced predominantly in stomach and is known to be the endogenous ligand of the growth hormone secretagogue receptor (GHSR). Ghrelin is a GH stimulator and an orexigenic hormone. In contrast, leptin is an anorexic hormone, and leptin-deficient ob/ob mice are obese and diabetic. To study...

  16. Leptin resistance and diet-induced obesity: central and peripheral actions of leptin.

    PubMed

    Sáinz, Neira; Barrenetxe, Jaione; Moreno-Aliaga, María J; Martínez, José Alfredo

    2015-01-01

    Obesity is a chronic disease that represents one of the most serious global health burdens associated to an excess of body fat resulting from an imbalance between energy intake and expenditure, which is regulated by environmental and genetic interactions. The adipose-derived hormone leptin acts via a specific receptor in the brain to regulate energy balance and body weight, although this protein can also elicit a myriad of actions in peripheral tissues. Obese individuals, rather than be leptin deficient, have in most cases, high levels of circulating leptin. The failure of these high levels to control body weight suggests the presence of a resistance process to the hormone that could be partly responsible of disturbances on body weight regulation. Furthermore, leptin resistance can impair physiological peripheral functions of leptin such as lipid and carbohydrate metabolism and nutrient intestinal utilization. The present document summarizes those findings regarding leptin resistance development and the role of this hormone in the development and maintenance of an obese state. Thus, we focused on the effect of the impaired leptin action on adipose tissue, liver, skeletal muscle and intestinal function and the accompanying relationships with diet-induced obesity. The involvement of some inflammatory mediators implicated in the development of obesity and their roles in leptin resistance development are also discussed.

  17. 20 years of leptin: role of leptin in human reproductive disorders.

    PubMed

    Chou, Sharon H; Mantzoros, Christos

    2014-10-01

    Leptin, as a key hormone in energy homeostasis, regulates neuroendocrine function, including reproduction. It has a permissive role in the initiation of puberty and maintenance of the hypothalamic-pituitary-gonadal axis. This is notable in patients with either congenital or acquired leptin deficiency from a state of chronic energy insufficiency. Hypothalamic amenorrhea is the best-studied, with clinical trials confirming a causative role of leptin in hypogonadotropic hypogonadism. Implications of leptin deficiency have also emerged in the pathophysiology of hypogonadism in type 1 diabetes. At the other end of the spectrum, hyperleptinemia may play a role in hypogonadism associated with obesity, polycystic ovarian syndrome, and type 2 diabetes. In these conditions of energy excess, mechanisms of reproductive dysfunction include central leptin resistance as well as direct effects at the gonadal level. Thus, reproductive dysfunction due to energy imbalance at both ends can be linked to leptin.

  18. Atypical antipsychotics induce both proinflammatory and adipogenic gene expression in human adipocytes in vitro.

    PubMed

    Sárvári, Anitta K; Veréb, Zoltán; Uray, Iván P; Fésüs, László; Balajthy, Zoltán

    2014-08-08

    Schizophrenia requires lifelong treatment, potentially causing systemic changes in metabolic homeostasis. In the clinical setting, antipsychotic treatment may differentially lead to weight gain among individual patients, although the molecular determinants of such adverse effects are currently unknown. In this study, we investigated changes in the expression levels of critical regulatory genes of adipogenesis, lipid metabolism and proinflammatory genes during the differentiation of primary human adipose-derived stem cells (ADSCs). These cells were isolated from patients with body mass indices <25 and treated with the second-generation antipsychotics olanzapine, ziprasidone, clozapine, quetiapine, aripiprazole and risperidone and the first-generation antipsychotic haloperidol. We found that antipsychotics exhibited a marked effect on key genes involved in the regulation of cell cycle, signal transduction, transcription factors, nuclear receptors, differentiation markers and metabolic enzymes. In particular, we observed an induction of the transcription factor NF-KB1 and NF-KB1 target genes in adipocytes in response to these drugs, including the proinflammatory cytokines TNF-α, IL-1β, IL-8 and MCP-1. In addition, enhanced secretion of both IL8 and MCP-1 was observed in the supernatant of these cell cultures. In addition to their remarkable stimulatory effects on proinflammatory gene transcription, three of the most frequently prescribed antipsychotic drugs, clozapine, quetiapine and aripiprazole, also induced the expression of essential adipocyte differentiation genes and the adipocyte hormones leptin and adiponectin, suggesting that both glucose and fat metabolism may be affected by these drugs. These data further suggest that antipsychotic treatments in patients alter the gene expression patterns in adipocytes in a coordinated fashion and priming them for a low-level inflammatory state.

  19. Inflammatory markers and adipokines alter adipocyte-derived ASP production through direct and indirect immune interaction.

    PubMed

    Lu, H; Gauvreau, D; Tom, F-Q; Lapointe, M; Luo, X P; Cianflone, K

    2013-04-01

    Obesity and related metabolic diseases are associated with chronic low-grade inflammation, characterized by increased pro-inflammatory proteins. Several studies have demonstrated increases in acylation stimulating protein (ASP) and its precursor protein C3 in obesity, diabetes and dyslipidemia. To evaluate the effects of acute inflammatory factors and adipokines on ASP production and potential mechanisms of action, 3T3-L1 adipocytes were treated for 24 h with adipokines, cytokines, macrophage-conditioned media and direct co-culture with J774 macrophages. ASP and C3 in the media were evaluated in relation to changes in adipocyte lipid metabolism (cellular triglyceride stores). Leptin, adiponectin, IL-10, LPS and TNF-α increased ASP production (151%, 153%, 190%, 318%, 134%, P<0.05, respectively,). C5a and RANTES (Regulated and normal T cell expressed and secreted) decreased ASP production ( - 34%, - 47%, P<0.05), which was also associated with a decrease in the precursor protein C3 ( - 39% to - 51%, P<0.01), while keratinocyte chemoattractant (KC; murine IL-8 ortholog) had no effect on ASP and C3 secretion. By contrast, apelin, omentin and visfatin also decreased ASP ( - 27%, - 49%, - 22%, P<0.05), but without changes in precursor protein C3 secretion. Macrophage-conditioned media alone had little effect on C3 or ASP, while co-culture of adipocytes with macrophages markedly increased ASP and C3 production (272%, 167%, P<0.05). These in vitro results suggest various metabolic hormones and inflammatory factors can affect ASP production through increased precursor C3 production and/or by changing the rate of C3 conversion to ASP. As an adipokine, ASP could constitute a new link between adipocytes and macrophages.

  20. Cadmium modulates adipocyte functions in metallothionein-null mice

    SciTech Connect

    Kawakami, Takashige; Nishiyama, Kaori; Kadota, Yoshito; Sato, Masao; Inoue, Masahisa; Suzuki, Shinya

    2013-11-01

    Our previous study has demonstrated that exposure to cadmium (Cd), a toxic heavy metal, causes a reduction of adipocyte size and the modulation of adipokine expression. To further investigate the significance of the Cd action, we studied the effect of Cd on the white adipose tissue (WAT) of metallothionein null (MT{sup −/−}) mice, which cannot form atoxic Cd–MT complexes and are used for evaluating Cd as free ions, and wild type (MT{sup +/+}) mice. Cd administration more significantly reduced the adipocyte size of MT{sup −/−} mice than that of MT{sup +/+} mice. Cd exposure also induced macrophage recruitment to WAT with an increase in the expression level of Ccl2 (MCP-1) in the MT{sup −/−} mice. The in vitro exposure of Cd to adipocytes induce triglyceride release into culture medium, decrease in the expression levels of genes involved in fatty acid synthesis and lipid hydrolysis at 24 h, and at 48 h increase in phosphorylation of the lipid-droplet-associated protein perilipin, which facilitates the degradation of stored lipids in adipocytes. Therefore, the reduction in adipocyte size by Cd may arise from an imbalance between lipid synthesis and lipolysis. In addition, the expression levels of leptin, adiponectin and resistin decreased in adipocytes. Taken together, exposure to Cd may induce unusually small adipocytes and modulate the expression of adipokines differently from the case of physiologically small adipocytes, and may accelerate the risk of developing insulin resistance and type 2 diabetes. - Highlights: • Cd causes a marked reduction in adipocyte size in MT-null mice. • Cd enhances macrophage migration into adipose tissue and disrupt adipokine secretion. • MT gene alleviates Cd-induced adipocyte dysfunctions. • Cd enhances the degradation of stored lipids in adipocytes, mediated by perilipin. • Cd induces unusually small adipocytes and the abnormal expression of adipokines.

  1. Milk Leptin Surge and Biological Rhythms of Leptin and Other Regulatory Proteins in Breastmilk.

    PubMed

    Nozhenko, Yuriy; Asnani-Kishnani, Madhu; Rodríguez, Ana M; Palou, Andreu

    2015-01-01

    A significant number of chronic diseases are linked to perinatal nutrition, and prevention may be associated to naturally occurring components of breast milk. One key hormone in breast milk is leptin, related with the protection from obesity in the adulthood, thus knowing its changes through the day or lactation is crucial. We aimed to investigate the daily rhythms in the milk levels of leptin, together with other two related hormones, ghrelin and adiponectin, during lactation (days 5, 10 and 15) in rat dams, and the relation with morphometric parameters (dams and pups). Summarizing the main results, the existence of biological rhythms, but not daily and maybe circasemidian, was confirmed for the three hormones at the earliest period of lactation. The correlations performed generally showed a possible dependence of milk hormone levels on plasma levels at the early phase of lactation, while with the progression of lactation this dependence may fade and the hormone levels are suggested to be more dependent on mammary gland production/maturation. There was also a correlation between milk leptin and adiponectin levels, especially in the first half of lactation, suggesting a possible parallel regulation. Interestingly, we describe a milk leptin surge around the mid of lactation (at day 10) which may be related with pup's growth (males and females) and with the well-known (in the literature) plasma leptin surge in pups. All this knowledge may be crucial for future applications in the development of formula milk and in relation with the role of leptin surge during lactation.

  2. Leptin receptor in boar spermatozoa.

    PubMed

    De Ambrogi, Marco; Spinaci, Marcella; Galeati, Giovanna; Tamanini, Carlo

    2007-10-01

    Leptin is active in both metabolism and reproduction. In fact, it seems to exert an inhibitory action on gonadal functions by reducing testosterone production. The presence of leptin in human and boar seminal plasma and in human spermatozoa has been demonstrated; recently, leptin receptors (Ob-R) have been localized in human spermatozoa, thus suggesting a possible action of this hormone even on these cells. Our aim was to verify whether leptin receptor [the long form (Ob-Rb)] is present in boar spermatozoa. Immunofluorescence and reverse transcriptase-polymerase chain reaction (RT-PCR) techniques were employed. RNA was extracted from boar spermatozoa and a specific band (382 bp) for Ob-Rb was detected after RT-PCR. Ob-Rb was detected on acrosome, subequatorial area and either on the midpiece or on the whole tail. These localizations were maintained even in semen washed twice to eliminate seminal plasma. We conclude that Ob-R is present in boar spermatozoa where seminal plasma leptin can exert its effects.

  3. Leptin: A biomarker for sleep disorders?

    PubMed Central

    Pan, Weihong; Kastin, Abba J.

    2014-01-01

    SUMMARY Leptin, a pleiotropic protein hormone produced mainly by fat cells, regulates metabolic activity and many other physiological functions. The intrinsic circadian rhythm of blood leptin is modulated by gender, development, feeding, fasting, sleep, obesity, and endocrine disorders. Hyperleptinemia is implicated in leptin resistance. To determine the specificity and sensitivity of leptin concentrations in sleep disorders, we summarize here the alterations of leptin in four conditions in animal and human studies: short duration of sleep, sleep fragmentation, obstructive sleep apnea (OSA), and after use of continuous positive airway pressure (CPAP) to treat OSA. The presence and causes of contradictory findings are discussed. Though sustained insufficient sleep lowers fasting blood leptin and therefore probably contributes to increased appetite, obesity and OSA independently result in hyperleptinemia. Successful treatment of OSA by CPAP is predicted to decrease hyperleptinemia, making leptin an ancillary biomarker for treatment efficacy. Current controversies also call for translational studies to determine how sleep disorders regulate leptin homeostasis and how the information can be used to improve sleep treatment. PMID:24080454

  4. The role of leptin in human physiology and pathophysiology.

    PubMed

    Janeckova, R

    2001-01-01

    This review focuses on current knowledge of leptin biology and the role of leptin in various physiological and pathophysiological states. Leptin is involved in the regulation of body weight. Serum leptin can probably be considered as one of the best biological markers reflecting total body fat in both animals and humans. Obesity in man is accompanied by increased circulating leptin concentrations. Gender differences clearly exist. Leptin is not only correlated to a series of endocrine parameters such as insulin, glucocorticoids, thyroid hormones, testosterone, but it also seems to be involved in mediating some endocrine mechanisms (onset of puberty, insulin secretion) and diseases (obesity, polycystic ovary syndrome). It has also been suggested that leptin can act as a growth factor in the fetus and the neonate.

  5. Leptin, from fat to inflammation: old questions and new insights.

    PubMed

    Otero, Miguel; Lago, Rocío; Lago, Francisca; Casanueva, Felipe F; Dieguez, Carlos; Gómez-Reino, Juan Jesús; Gualillo, Oreste

    2005-01-17

    Leptin is 16 kDa adipokine that links nutritional status with neuroendocrine and immune functions. Initially thought to be a satiety factor that regulates body weight by inhibiting food intake and stimulating energy expenditure, leptin is a pleiotropic hormone whose multiple effects include regulation of endocrine function, reproduction, and immunity. Leptin can be considered as a pro-inflammatory cytokine that belongs to the family of long-chain helical cytokines and has structural similarity with interleukin-6, prolactin, growth hormone, IL-12, IL-15, granulocyte colony-stimulating factor and oncostatin M. Because of its dual nature as a hormone and cytokine, leptin links the neuroendocrine and the immune system. The role of leptin in the modulation of immune response and inflammation has recently become increasingly evident. The increase in leptin production that occurs during infection and inflammation strongly suggests that leptin is a part of the cytokine network which governs the inflammatory-immune response and the host defense mechanisms. Leptin plays an important role in inflammatory processes involving T cells and has been reported to modulate T-helper cells activity in the cellular immune response. Several studies have implicated leptin in the pathogenesis of autoimmune inflammatory conditions, such as experimental autoimmune encephalomyelitis, type 1 diabetes, rheumatoid arthritis, and intestinal inflammation. Very recently, a key role for leptin in osteoarthritis has been demonstrated: leptin indeed exhibits, in concert with other pro-inflammatory cytokines, a detrimental effect on articular cartilage by promoting nitric oxide synthesis in chondrocytes. Here, we review the recent advances regarding leptin biology with a special focus on those actions relevant to the role of leptin in the pathophysiology of inflammatory processes and immune responses.

  6. A higher response of plasma neuropeptide Y, growth hormone, leptin levels and extracellular glycerol levels in subcutaneous abdominal adipose tissue to Acipimox during exercise in patients with bulimia nervosa: single-blind, randomized, microdialysis study

    PubMed Central

    2011-01-01

    Background Neuropeptide Y (NPY) is an important central orexigenic hormone predominantly produced by the hypothalamus, and recently found to be secreted in adipose tissue (AT). Acipimox (Aci) inhibits lipolysis in AT and reduces plasma glycerol and free fatty acid (FFA) levels. Exercise and Aci are enhancers of growth hormone (GH) and NPY secretion and exercise may alter leptin levels. We expect to find abnormal neuropeptidergic response in plasma and AT in patients with bulimia nervosa (BN). We hypothesize that Aci influences these peptides via a FFA-independent mechanism and that Aci inhibits lipolysis through a cyclic adenosine monophosphate (cAMP)-dependent pathway. Dysregulations of the AT-brain axis peptides might be involved in binge eating as is the case in BN. Methods The objective of this study was to determine the responses of plasma NPY, GH, leptin, FFA and glycerol levels to exercise in BN patients and healthy women (C) given the anti-lipolytic drug Aci or placebo. The secondary objective of this study was to compare the responses of extracellular glycerol levels and plasma glycerol levels to exercise alone or together with Aci administration in BN patients and C women. Extracellular glycerol was measured in vivo in subcutaneous (sc) abdominal AT using microdialysis. Eight BN and eight C women were recruited for this single-blind, randomized study. Aci or placebo was given 1 hour before the exercise (45 min, 2 W/kg of lean body mass [LBM]). NPY, GH, leptin, FFA, glycerol plasma and AT glycerol levels were measured using commercial kits. Results The primary outcome of this study was that the exercise with Aci administration resulted in plasma NPY and GH increase (after a 45-minute exercise) and leptin (after a 90-minute post-exercise recovering phase) increased more in BN patients. The secondary outcomes of this study were that the exercise with Aci administration induced a higher decrease of extracellular glycerol in BN patients compared to the C group

  7. Leptin modulates β cell expression of IL-1 receptor antagonist and release of IL-1β in human islets

    PubMed Central

    Maedler, Kathrin; Sergeev, Pavel; Ehses, Jan A.; Mathe, Zoltan; Bosco, Domenico; Berney, Thierry; Dayer, Jean-Michel; Reinecke, Manfred; Halban, Philippe A.; Donath, Marc Y.

    2004-01-01

    High concentrations of glucose induce β cell production of IL-1β, leading to impaired β cell function and apoptosis in human pancreatic islets. IL-1 receptor antagonist (IL-1Ra) is a naturally occurring antagonist of IL-1β and protects cultured human islets from glucotoxicity. Therefore, the balance of IL-1β and IL-1Ra may play a crucial role in the pathogenesis of diabetes. In the present study, we observed expression of IL-1Ra in human pancreatic β cells of nondiabetic individuals, which was decreased in tissue sections of type 2 diabetic patients. In vitro, chronic exposure of human islets to leptin, a hormone secreted by adipocytes, decreased β cell production of IL-1Ra and induced IL-1β release from the islet preparation, leading to impaired β cell function, caspase-3 activation, and apoptosis. Exogenous addition of IL-1Ra protected cultured human islets from the deleterious effects of leptin. Antagonizing IL-1Ra by introduction of small interfering RNA to IL-1Ra into human islets led to caspase-3 activation, DNA fragmentation, and impaired β cell function. Moreover, siIL-1Ra enhanced glucose-induced β cell apoptosis. These findings demonstrate expression of IL-1Ra in the human β cell, providing localized protection against leptin- and glucose-induced islet IL-1β. PMID:15141093

  8. Phenomenon of leptin resistance in seasonal animals: the failure of leptin action in the brain.

    PubMed

    Szczesna, M; Zieba, D A

    2015-07-01

    The core of the leptin resistance hypothesis promulgated several years ago to explain obesity as a result of environmental causes consists of 2 tenets: the extinction of leptin-induced intracellular signaling downstream of leptin binding to the long form of the neuronal receptor LTRb in the hypothalamus and the impedance to leptin entry imposed at the blood-brain barrier (BBB). A recent comprehensive investigation concluded that a central leptin insufficiency associated with obesity can be attributed to a decreased efficiency of BBB leptin transport and not to leptin insensitivity within the hypothalamus. Interestingly, anorectic leptin's effects are counteracted in some individuals by a natural resistance associated with hyperleptinemia, which is related to changes in hypothalamic sensitivity to leptin (eg, due to malnutrition, obesity, or seasonal variations due to day-length-dependent reproduction changes). In sheep, it has been observed that the hypothalamus is resistant to leptin in some periods, which is related to the adaptation of these animals to annual changes in energy supply and demand. However, a broad range of ambiguities exists regarding the implications that the intracellular signaling of signal transducer and activator of transcription-2/suppressor of cytokine signaling 3 (STAT2/SOCS3) imparts central leptin resistance. Furthermore, several plausible alternative possibilities have been proposed, such as compensatory functional and anatomic reorganizations in the appetite regulating network, rearrangements in the afferent hormonal feedback signaling involved in weight homeostasis, and modifications in leptin transport to the hypothalamus across the BBB. Taken together, these observations suggest that the contention that impaired intracellular signaling downstream of leptin entry into the appetite regulating network expedites environmentally induced obesity remains unsubstantiated and requires further evidence. Furthermore, pregnancy decreases

  9. Food deprivation and leptin prioritize ingestive and sex behavior without affecting estrous cycles in Syrian hamsters.

    PubMed

    Schneider, Jill E; Casper, Janelle F; Barisich, Amanda; Schoengold, Candace; Cherry, Sandeep; Surico, Justine; DeBarba, Ashley; Fabris, Frank; Rabold, Elizabeth

    2007-03-01

    Energy consumption is critical for the energetically expensive processes related to reproduction, and thus, mechanisms that increase ingestive behavior are directly linked to reproductive success. Similarly, the mechanisms that inhibit hunger and ingestive behavior might be most adaptive when these mechanisms cause individuals to stop foraging, hoarding and eating in order to find and court potential mates. In the laboratory, ingestive behaviors are typically studied separately from reproductive behaviors even though it is likely that these behaviors evolved under conditions in which both food and mates were available. We examined the choice between paracopulatory and ingestive behaviors in a semi-natural environment in which both food and potential mates were available. Intact female Syrian hamsters showed a high preference for males on days 3 and 4 (day 4 being the day of ovulation and estrous behavior), and a 48-h period of food deprivation significantly decreased preference for sex and increased preference for eating and food hoarding on day 3 in 89% of the hamsters, although none became anestrous. The same period of food deprivation significantly decreased the level of vaginal marking without significant effects on plasma estradiol concentrations. Next, hamsters were either food deprived (FD) or fed ad libitum, and half of each group was treated with vehicle or the adipocyte hormone leptin. The percentage of females with a low preference for sex was significantly greater in the FD compared to the ad libitum-fed groups, and leptin treatment prevented this effect. Metabolic fuels, possibly acting through leptin and other hormones, might influence sensitivity to estradiol or enhance the downstream effects of estradiol, thereby increasing motivation for sex and decreasing the relative motivation to forage, hoard and eat food.

  10. Ablation of Leptin Signaling to Somatotropes: Changes in Metabolic Factors that Cause Obesity

    PubMed Central

    Akhter, Noor; Odle, Angela K.; Allensworth-James, Melody L.; Haney, Anessa C.; Syed, Mohsin M.; Cozart, Michael A.; Chua, Streamson; Kineman, Rhonda

    2012-01-01

    Mice with somatotrope-specific deletion of the Janus kinase binding site in leptin receptors are GH deficient as young adults and become obese by 6 months of age. This study focused on the metabolic status of young (3–4.5 month old) preobese mutant mice. These mutants had normal body weights, lean body mass, serum leptin, glucose, and triglycerides. Mutant males and females showed significantly higher respiratory quotients (RQ) and lower energy output, resulting from a higher volume of CO2 output and lower volume of O2 consumption. Deletion mutant females were significantly less active than controls; they had higher levels of total serum ghrelin and ate more food. Mutant females also had lower serum insulin and higher glucagon. In contrast, deletion mutant males were not hyperphagic, but they were more active and spent less time sleeping. Adiponectin and resistin, both products of adipocytes, were increased in male and female mutant mice. In addition, mutant males showed an increase in circulating levels of the potent lipogenic hormone, glucose-dependent insulinotropic peptide. Taken together, these results indicate that mutant mice may become obese due to a reduction in lipid oxidation and energy expenditure. This may stem from GH deficiency. Reduced fat oxidation and enhanced insulin sensitivity (in females) are directly related to GH deficiency in mutant mice because GH has been shown by others to increase insulin sensitivity and fat oxidation and reduce carbohydrate oxidation. Gender-dependent alterations in metabolic signals may further exacerbate the future obese phenotype and affect the timing of its onset. Females show a delay in onset of obesity, perhaps because of their low serum insulin, which is lipogenic, whereas young males already have higher levels of the lipogenic hormone, glucose-dependent insulinotropic peptide. These findings signify that leptin signals to somatotropes are vital for the normal metabolic activity needed to optimize body

  11. Induction of central leptin resistance in hyperphagic pseudopregnant rats by chronic prolactin infusion.

    PubMed

    Augustine, Rachael A; Grattan, David R

    2008-03-01

    Pregnancy in rats is associated with hyperphagia, increased fat deposition, and elevated plasma leptin concentrations. Elevated leptin would be expected to inhibit food intake, but hypothalamic leptin resistance develops around midpregnancy, allowing hyperphagia to be maintained and excess energy to be stored as fat in preparation for future metabolic demands of lactation. To investigate the hormonal mechanisms inducing leptin resistance during pregnancy, the anorectic response to leptin was examined during pseudopregnancy. Pseudopregnant rats have identical hormonal profiles to early pregnancy, but no placenta formation, allowing differentiation of maternal and placental hormone effects on appetite. To investigate the effect of leptin on food intake, d-9 pseudopregnant rats were injected with leptin (4 microg) via an intracerebroventricular (icv) cannula, and then food intake was measured 24 h later. Pseudopregnant rats were hyperphagic but had normal anorectic responses to leptin. We therefore hypothesized that a longer exposure time to high concentrations of progesterone might be required to mimic the leptin resistance that occurs on d 14 of pregnancy. Pseudopregnant rats were given progesterone to prolong pseudopregnancy beyond the time that leptin resistance develops during pregnancy. However, rats remained responsive to icv leptin. To model the placental lactogen secretion that occurs during pregnancy, pseudopregnant rats were given progesterone and chronic icv ovine prolactin infusion. Central icv injection of leptin had no effect on food intake in pseudopregnant rats receiving chronic ovine prolactin. These results suggest that chronically high lactogen levels, secreted by the placenta during the second half of pregnancy, induce central leptin resistance.

  12. Synchronicity of frequently sampled thyrotropin (TSH) and leptin concentrations in healthy adults and leptin-deficient subjects: evidence for possible partial TSH regulation by leptin in humans.

    PubMed

    Mantzoros, C S; Ozata, M; Negrao, A B; Suchard, M A; Ziotopoulou, M; Caglayan, S; Elashoff, R M; Cogswell, R J; Negro, P; Liberty, V; Wong, M L; Veldhuis, J; Ozdemir, I C; Gold, P W; Flier, J S; Licinio, J

    2001-07-01

    Leptin signals the status of energy reserves to the brain. Leptin stimulates biosynthesis of TRH in vitro and influences the activity of the hypothalamic-pituitary-thyroid axis in vivo in rodents. Because blood levels of both leptin and TSH display diurnal variation with a distinct nocturnal rise, we sought to determine whether a relationship exists between fluctuations in circulating leptin and TSH. We measured serum leptin and TSH levels every 7 min for 24 h in five healthy men and found that both leptin and TSH levels are highly organized and pulsatile. A similar pattern of leptin and TSH rhythms was observed, with TSH and leptin levels reaching a nadir in late morning and a peak in the early morning hours. Importantly, cosinor analysis on the absolute leptin and TSH levels revealed a statistically significant fit for a 24-h period and the two hormones showed similar probabilities of rhythm and superimposable peak values. Furthermore, this study shows a strong positive Pearson correlation between the 24-h patterns of variability of leptin and TSH in healthy subjects. Finally, the ultradian fluctuations in leptin levels showed pattern synchrony with those of TSH as determined by cross-correlation analysis, by cross-approximate enthropy and Bayessian analysis applied independently. To further explore whether these associations could reflect an underlying regulation of TSH secretion by leptin, we also studied frequently sampled leptin and TSH levels in four brothers, members of a family with leptin deficiency (one normal homozygote, two heterozygotes, and one leptin-deficient homozygote). Leptin levels of the homozygous leptin-deficient subject are detectable but bioinactive, and the rhythm of his TSH is disorganized. 24-h pattern of leptin and TSH variability in the heterozygous subjects, although significantly correlated, showed a weaker correlation compared with the strong correlation in the normal subjects. These data are consistent with the possibility that

  13. Leptin promotes proliferation and metastasis of human gallbladder cancer through OB-Rb leptin receptor.

    PubMed

    Zou, Hao; Liu, Yunxia; Wei, Dong; Wang, Tao; Wang, Kun; Huang, Songquan; Liu, Lixin; Li, Yuehua; Ge, Jiayun; Li, Xiao; Zhu, Hong; Wang, Lianmin; Zhao, Songling; Zhang, Xiaowen; Wang, Lin

    2016-07-01

    Emerging evidence has shown that leptin, an adipocyte-derived cytokine that is closely associated with obesity, play a significant role in carcinogenesis and tumorigenesis. However, its impact on gallbladder cancer (GBC) remains unclear. In this study, we firstly found that leptin and its functional receptor OB-Rb were significantly co-expressed in human GBC tissues and cell lines, the content of which were higher than those in normal human gallbladder tissues. Treatment with leptin promoted the proliferation, migration and invasion of GBC cells, which were attenuated by OB-Rb shRNA. Blocking in the G2/M period of cell cycle, increasing of MMP3 and MMP9, increasing of VEGF-C/D, activation of SOCS3/JAK2/p-STAT3 pathway was demonstrated after treatment with leptin. All of these positive responses were attenuated by OB-Rb receptor shRNA. Taken together, our findings suggest that leptin promoted the proliferation, migration and invasion of GBC cells by increasing OB-Rb expression through the SOCS3/JAK2/p-STAT3 signal pathway. Targeting the leptin/OB-Rb axis could be an attractive therapeutic strategy for treatment of GBC.

  14. Adipocyte secreted factors enhance aggressiveness of prostate carcinoma cells.

    PubMed

    Moreira, Ângela; Pereira, Sofia S; Costa, Madalena; Morais, Tiago; Pinto, Ana; Fernandes, Rúben; Monteiro, Mariana P

    2015-01-01

    Obesity has been associated with increased incidence and risk of mortality of prostate cancer. One of the proposed mechanisms underlying this risk association is the change in adipokines expression that could promote the development and progression of the prostate tumor cells. The main goal of this study was to evaluate the effect of preadipocyte and adipocyte secretome in the proliferation, migration and invasion of androgen independent prostate carcinoma cells (RM1) and to assess cell proliferation in the presence of the adiposity signals leptin and insulin. RM1 cells were co-cultured in with preadipocytes, adipocytes or cultured in their respective conditioned medium. Cell proliferation was assessed by flow cytometry and XTT viability test. Cell migration was evaluated using a wound healing injury assay of RM1 cells cultured with conditioned media. Cellular invasion of RM1 cells co-cultured with adipocytes and preadipocytes was assessed using matrigel membranes. Preadipocyte conditioned medium was associated with a small increase in RM1 proliferation, while adipocytes conditioned media significantly increased RM1 cell proliferation (p<0.01). Adipocytes also significantly increased the RM1 cells proliferation in co-culture (p <0.01). Cell migration was higher in RM1 cells cultured with preadipocyte and adipocyte conditioned medium. RM1 cell invasion was significantly increased after co-culture with preadipocytes and adipocytes (p <0.05). Insulin also increased significantly the cell proliferation in contrast to leptin, which showed no effect. In conclusion, prostate carcinoma cells seem to be influenced by factors secreted by adipocytes that are able to increase their ability to proliferate, migrate and invade.

  15. Adipocyte Secreted Factors Enhance Aggressiveness of Prostate Carcinoma Cells

    PubMed Central

    Moreira, Ângela; Pereira, Sofia S.; Costa, Madalena; Morais, Tiago; Pinto, Ana; Fernandes, Rúben; Monteiro, Mariana P.

    2015-01-01

    Obesity has been associated with increased incidence and risk of mortality of prostate cancer. One of the proposed mechanisms underlying this risk association is the change in adipokines expression that could promote the development and progression of the prostate tumor cells. The main goal of this study was to evaluate the effect of preadipocyte and adipocyte secretome in the proliferation, migration and invasion of androgen independent prostate carcinoma cells (RM1) and to assess cell proliferation in the presence of the adiposity signals leptin and insulin. RM1 cells were co-cultured in with preadipocytes, adipocytes or cultured in their respective conditioned medium. Cell proliferation was assessed by flow cytometry and XTT viability test. Cell migration was evaluated using a wound healing injury assay of RM1 cells cultured with conditioned media. Cellular invasion of RM1 cells co-cultured with adipocytes and preadipocytes was assessed using matrigel membranes. Preadipocyte conditioned medium was associated with a small increase in RM1 proliferation, while adipocytes conditioned media significantly increased RM1 cell proliferation (p<0.01). Adipocytes also significantly increased the RM1 cells proliferation in co-culture (p <0.01). Cell migration was higher in RM1 cells cultured with preadipocyte and adipocyte conditioned medium. RM1 cell invasion was significantly increased after co-culture with preadipocytes and adipocytes (p <0.05). Insulin also increased significantly the cell proliferation in contrast to leptin, which showed no effect. In conclusion, prostate carcinoma cells seem to be influenced by factors secreted by adipocytes that are able to increase their ability to proliferate, migrate and invade. PMID:25928422

  16. Duplicated Leptin Receptors in Two Species of Eel Bring New Insights into the Evolution of the Leptin System in Vertebrates

    PubMed Central

    Morini, Marina; Pasquier, Jérémy; Dirks, Ron; van den Thillart, Guido; Tomkiewicz, Jonna; Rousseau, Karine; Dufour, Sylvie; Lafont, Anne-Gaëlle

    2015-01-01

    Since its discovery in mammals as a key-hormone in reproduction and metabolism, leptin has been identified in an increasing number of tetrapods and teleosts. Tetrapods possess only one leptin gene, while most teleosts possess two leptin genes, as a result of the teleost third whole genome duplication event (3R). Leptin acts through a specific receptor (LEPR). In the European and Japanese eels, we identified two leptin genes, and for the first time in vertebrates, two LEPR genes. Synteny analyses indicated that eel LEPRa and LEPRb result from teleost 3R. LEPRb seems to have been lost in the teleost lineage shortly after the elopomorph divergence. Quantitative PCRs revealed a wide distribution of leptins and LEPRs in the European eel, including tissues involved in metabolism and reproduction. Noticeably, leptin1 was expressed in fat tissue, while leptin2 in the liver, reflecting subfunctionalization. Four-month fasting had no impact on the expression of leptins and LEPRs in control European eels. This might be related to the remarkable adaptation of silver eel metabolism to long-term fasting throughout the reproductive oceanic migration. In contrast, sexual maturation induced differential increases in the expression of leptins and LEPRs in the BPG-liver axis. Leptin2 was strikingly upregulated in the liver, the central organ of the reproductive metabolic challenge in teleosts. LEPRs were differentially regulated during sexual maturation, which may have contributed to the conservation of the duplicated LEPRs in this species. This suggests an ancient and positive role of the leptin system in the vertebrate reproductive function. This study brings new insights on the evolutionary history of the leptin system in vertebrates. Among extant vertebrates, the eel represents a unique case of duplicated leptins and leptin receptors as a result of 3R. PMID:25946034

  17. Duplicated leptin receptors in two species of eel bring new insights into the evolution of the leptin system in vertebrates.

    PubMed

    Morini, Marina; Pasquier, Jérémy; Dirks, Ron; van den Thillart, Guido; Tomkiewicz, Jonna; Rousseau, Karine; Dufour, Sylvie; Lafont, Anne-Gaëlle

    2015-01-01

    Since its discovery in mammals as a key-hormone in reproduction and metabolism, leptin has been identified in an increasing number of tetrapods and teleosts. Tetrapods possess only one leptin gene, while most teleosts possess two leptin genes, as a result of the teleost third whole genome duplication event (3R). Leptin acts through a specific receptor (LEPR). In the European and Japanese eels, we identified two leptin genes, and for the first time in vertebrates, two LEPR genes. Synteny analyses indicated that eel LEPRa and LEPRb result from teleost 3R. LEPRb seems to have been lost in the teleost lineage shortly after the elopomorph divergence. Quantitative PCRs revealed a wide distribution of leptins and LEPRs in the European eel, including tissues involved in metabolism and reproduction. Noticeably, leptin1 was expressed in fat tissue, while leptin2 in the liver, reflecting subfunctionalization. Four-month fasting had no impact on the expression of leptins and LEPRs in control European eels. This might be related to the remarkable adaptation of silver eel metabolism to long-term fasting throughout the reproductive oceanic migration. In contrast, sexual maturation induced differential increases in the expression of leptins and LEPRs in the BPG-liver axis. Leptin2 was strikingly upregulated in the liver, the central organ of the reproductive metabolic challenge in teleosts. LEPRs were differentially regulated during sexual maturation, which may have contributed to the conservation of the duplicated LEPRs in this species. This suggests an ancient and positive role of the leptin system in the vertebrate reproductive function. This study brings new insights on the evolutionary history of the leptin system in vertebrates. Among extant vertebrates, the eel represents a unique case of duplicated leptins and leptin receptors as a result of 3R.

  18. Crosstalk Between Leptin Receptor and IGF-IR in Breast Cancer: A Potential Mediator of Chemoresistance

    DTIC Science & Technology

    2011-04-01

    the connection between obesity and breast cancer (5). Leptin , a product of the obese (ob) gene, is an adipocytokine that regulates appetite , bone... Leptin Receptor and IGF-IR in Breast Cancer: A Potential Mediator of Chemoresistance Dr. Rita Nahta Emory University Atlanta, GA 30322 Obesity...hormones IGF-I and leptin and their receptors, IGF-IR and leptin receptor (Ob-R), are elevated in breast cancer. Co-immunoprecipitation and

  19. Role of C/EBPβ-LAP and C/EBPβ-LIP in early adipogenic differentiation of human white adipose-derived progenitors and at later stages in immature adipocytes.

    PubMed

    Lechner, Stefan; Mitterberger, Maria C; Mattesich, Monika; Zwerschke, Werner

    2013-01-01

    We investigated the role of the major isoforms of CCAAT enhancer binding protein β (C/EBPβ), C/EBPβ-LAP and C/EBPβ-LIP, in adipogenesis of human white adipose-derived stromal/progenitor cells (ASC). C/EBPβ gene expression was transiently induced early in adipogenesis. At later stages, in immature adipocytes, the C/EBPβ mRNA and protein levels declined. The C/EBPβ-LIP protein steady-state level decreased considerably stronger than the C/EBPβ-LAP level and the C/EBPβ-LIP half-life was significantly shorter than the C/EBPβ-LAP half-life. The turn-over of both C/EBPβ-isoforms was regulated by ubiquitin/proteasome-dependent degradation. These data suggest that the protein stability of the C/EBPβ-isoforms is differentially regulated in the course of adipogenesis and in immature adipocytes. Constitutive overexpression of C/EBPβ-LIP had antiadipogenic activity in human ASC. C/EBPβ-LAP, which promotes adipogenesis in mouse 3T3-L1 preadipocytes by directly activating expression of the adipogenic keyregulator PPARγ2, induced the expression of PPARγ2 and of the adipocyte differentiation gene product FABP4 in confluent ASC in the absence of adipogenic hormones. At later stages after hormone cocktail-induced adipogenesis, in immature adipocytes, constitutive overexpression of C/EBPβ-LAP led to reduced expression of PPARγ2 and FABP4, C/EBPα expression was downregulated and the expression of the adipocyte differentiation gene products adiponectin and leptin was impaired. These findings suggest that constitutive overexpression of C/EBPβ-LAP induces adipogenesis in human ASC and negatively regulates the expression of adipogenic regulators and certain adipocyte differentiation gene products in immature adipocytes. We conclude the regulation of both C/EBPβ gene expression and C/EBPβ-LIP and C/EBPβ-LAP protein turn-over plays an important role for the expression of adipogenic regulators and/or adipocyte differentiation genes in early adipogenic differentiation of

  20. Human osteoblasts derived from mesenchymal stem cells express adipogenic markers upon coculture with bone marrow adipocytes.

    PubMed

    Clabaut, Aline; Delplace, Séverine; Chauveau, Christophe; Hardouin, Pierre; Broux, Odile

    2010-07-01

    In osteoporosis, bone loss is accompanied by greater adiposity in the marrow. Given the cellular proximity within the bone marrow, we wondered whether adipocytes might have a paracrine impact on osteoblast differentiation. To test this hypothesis, we cocultured adipocytes with osteoblasts derived from mesenchymal stem cells (MSCs) in the absence of direct cell contact and then analyzed gene expression changes in the osteoblastic population by using real-time reverse transcription polymerase chain reaction. We found that, upon coculture, MSC-derived osteoblasts showed appearance of adipogenic (lipoprotein lipase, leptin) and decrease of osteogenic (osteocalcin) mRNA markers. Our results indicate that in vitro, MSC-derived adipocytes are capable of inducing MSC-derived osteoblasts to differentiate to an adipocyte phenotype. These new data suggest that (i) transdifferentiation of committed osteoblasts into adipocytes may contribute to the increase in marrow fat content at the expense of bone-forming cells and (ii) this switch might be initiated by the adipocytes themselves.

  1. Hormones

    MedlinePlus

    ... affect many different processes, including Growth and development Metabolism - how your body gets energy from the foods you eat Sexual function Reproduction Mood Endocrine glands, which are special groups of cells, make hormones. The major endocrine glands are the ...

  2. Impaired response of mature adipocytes of diabetic mice to hypoxia

    SciTech Connect

    Hong, Seok Jong Jin, Da P.; Buck, Donald W.; Galiano, Robert D.; Mustoe, Thomas A.

    2011-10-01

    Adipose tissue contains various cells such as infiltrated monocytes/macrophages, endothelial cells, preadipocytes, and adipocytes. Adipocytes have an endocrine function by secreting adipokines such as interleukin (IL)-6, tumor necrosis factor (TNF)-{alpha}, leptin, and adiponectin. Dysregulation of adipokines in adipose tissues leads to a chronic low-grade inflammation which could result in atherosclerosis, hypertension, and type 2 diabetes. A sustained inflammatory state, which is characterized by prolonged persistence of macrophages and neutrophils, is found in diabetic wounds. In addition, subcutaneous adipocytes are enormously increased in amount clinically in type 2 diabetes. However, the function of subcutaneous adipocytes, which play an important role in injured tissue subjected to hypoxia, has not been well characterized in vitro due to the difficulty of maintaining mature adipocytes in culture using conventional methods because of their buoyancy. In this study, we established a novel in vitro culture method of mature adipocytes by enclosing them in a hyaluronan (HA) based hydrogel to study their role in response to stress such as hypoxia. BrdU labeling and Ki67 immunostaining experiments showed that hydrogel enclosed mature adipocytes proliferate in vitro. Both mRNA and protein expression analyses for hypoxia regulated genes, such as vascular endothelial growth factor (VEGF) and heme oxygenase 1 (HO1), showed that mature adipocytes of wild type mice respond to hypoxia. In contrast, mature adipocytes of diabetic db/db and TallyHo mice did not efficiently respond to hypoxia. Our studies suggest that mature adipocytes are functionally active cells, and their abnormal function to hypoxia can be one of underlining mechanisms in type 2 diabetes.

  3. The 14th Ile residue is essential for Leptin function in regulating energy homeostasis in rat

    PubMed Central

    Xu, Shuyang; Zhu, Xianmin; Li, Hong; Hu, Youtian; Zhou, Jinping; He, Di; Feng, Yun; Lu, Lina; Du, Guizhen; Hu, Youjin; Liu, Tiancheng; Wang, Zhen; Ding, Guohui; Chen, Jiayu; Gao, Shaorong; Wu, Fang; Xue, Zhigang; Li, Yixue; Fan, Guoping

    2016-01-01

    LEPTIN (LEP) is a circulating hormone released primarily from white adipocytes and is crucial for regulating satiety and energy homeostasis in humans and animals. Using the CRISPR technology, we created a set of Lep mutant rats that carry either null mutations or a deletion of the 14th Ile (LEP∆I14) in the mature LEP protein. We examined the potential off-target sites (OTS) by whole-genome high-throughput sequencing and/or Sanger-sequencing analysis and found no OTS in mutant rats. Mature LEP∆I14 is incessantly produced and released to blood at a much elevated level due to the feedback loop. Structure modeling of binding conformation between mutant LEP∆I14 and LEPTIN receptor (LEPR) suggests that the conformation of LEP∆I14 impairs its binding with LEPR, consistent with its inability to activate STAT3-binding element in the luciferase reporter assay. Phenotypic study demonstrated that Lep∆I14 rats recapitulate phenotypes of Lep-null mutant rats including obesity, hyperinsulinemia, hepatic steatosis, nephropathy, and infertility. Compared to the existing ob/ob mouse models, this Lep∆I14/∆I14 rat strain provides a robust tool for further dissecting the roles of LEP in the diabetes related kidney disease and reproduction problem, beyond its well established function in regulating energy homeostasis. PMID:27378381

  4. Resistance to antidepressant treatment is associated with polymorphisms in the leptin gene, decreased leptin mRNA expression, and decreased leptin serum levels.

    PubMed

    Kloiber, Stefan; Ripke, Stephan; Kohli, Martin A; Reppermund, Simone; Salyakina, Daria; Uher, Rudolf; McGuffin, Peter; Perlis, Roy H; Hamilton, Steven P; Pütz, Benno; Hennings, Johannes; Brückl, Tanja; Klengel, Torsten; Bettecken, Thomas; Ising, Marcus; Uhr, Manfred; Dose, Tatjana; Unschuld, Paul G; Zihl, Josef; Binder, Elisabeth; Müller-Myhsok, Bertram; Holsboer, Florian; Lucae, Susanne

    2013-07-01

    Leptin, a peptide hormone from adipose tissue and key player in weight regulation, has been suggested to be involved in sleep and cognition and to exert antidepressant-like effects, presumably via its action on the HPA-axis and hippocampal function. This led us to investigate whether genetic variants in the leptin gene, the level of leptin mRNA-expression and leptin serum concentrations are associated with response to antidepressant treatment. Our sample consisted of inpatients from the Munich Antidepressant Response Signature (MARS) project with weekly Hamilton Depression ratings, divided into two subsamples. In the exploratory sample (n=251) 17 single nucleotide polymorphisms (SNPs) covering the leptin gene region were genotyped. We found significant associations of several SNPs with impaired antidepressant treatment outcome and impaired cognitive performance after correction for multiple testing. The SNP (rs10487506) showing the highest association with treatment response (p=3.9×10(-5)) was analyzed in the replication sample (n=358) and the association could be verified (p=0.021) with response to tricyclic antidepressants. In an additional meta-analysis combining results from the MARS study with data from the Genome-based Therapeutic Drugs for Depression (GENDEP) and the Sequenced Treatment Alternatives to Relieve Depression (STAR(⁎)D) studies, nominal associations of several polymorphisms in the upstream vicinity of rs10487506 with treatment outcome were detected (p=0.001). In addition, we determined leptin mRNA expression in lymphocytes and leptin serum levels in subsamples of the MARS study. Unfavorable treatment outcome was accompanied with decreased leptin mRNA and leptin serum levels. Our results suggest an involvement of leptin in antidepressant action and cognitive function in depression with genetic polymorphisms in the leptin gene, decreased leptin gene expression and leptin deficiency in serum being risk factors for resistance to antidepressant

  5. Dietary components in the development of leptin resistance.

    PubMed

    Vasselli, Joseph R; Scarpace, Philip J; Harris, Ruth B S; Banks, William A

    2013-03-01

    Classically, leptin resistance has been associated with increased body fat and circulating leptin levels, and the condition is believed to contribute to the onset and/or maintenance of obesity. Although a great deal is known about the central nervous system mechanisms mediating leptin resistance, considerably less is known about the role of diet in establishing and maintaining this altered hormonal state. An exciting new finding has recently been published demonstrating the existence of leptin resistance in normal-weight rats with lean leptin levels by feeding them a high-concentration-fructose diet. This finding has opened the possibility that specific macronutrients may be capable of inducing leptin resistance, independently of the amount of body fat or circulating leptin present in the treated animals. This review describes several lines of research that have recently emerged indicating that specific types of dietary sugars and fats are capable of inducing leptin resistance in experimental rodent models. The results further show that diet-induced leptin resistance is capable of increasing energy intake and elevating body weight gain under appropriate dietary challenges. It appears that biological mechanisms on multiple levels may underlie the dietary induction of leptin resistance, including alterations in the leptin blood-to-brain transport system, in peripheral glucose metabolism, and in central leptin receptor signaling pathways. What is clear from the findings reviewed here is that diet-induced leptin resistance can occur in the absence of elevated circulating leptin levels and body weight, rendering it a potential cause and/or predisposing factor to excess body weight gain and obesity.

  6. Dietary Components in the Development of Leptin Resistance123

    PubMed Central

    Vasselli, Joseph R.; Scarpace, Philip J.; Harris, Ruth B. S.; Banks, William A.

    2013-01-01

    Classically, leptin resistance has been associated with increased body fat and circulating leptin levels, and the condition is believed to contribute to the onset and/or maintenance of obesity. Although a great deal is known about the central nervous system mechanisms mediating leptin resistance, considerably less is known about the role of diet in establishing and maintaining this altered hormonal state. An exciting new finding has recently been published demonstrating the existence of leptin resistance in normal-weight rats with lean leptin levels by feeding them a high-concentration-fructose diet. This finding has opened the possibility that specific macronutrients may be capable of inducing leptin resistance, independently of the amount of body fat or circulating leptin present in the treated animals. This review describes several lines of research that have recently emerged indicating that specific types of dietary sugars and fats are capable of inducing leptin resistance in experimental rodent models. The results further show that diet-induced leptin resistance is capable of increasing energy intake and elevating body weight gain under appropriate dietary challenges. It appears that biological mechanisms on multiple levels may underlie the dietary induction of leptin resistance, including alterations in the leptin blood-to-brain transport system, in peripheral glucose metabolism, and in central leptin receptor signaling pathways. What is clear from the findings reviewed here is that diet-induced leptin resistance can occur in the absence of elevated circulating leptin levels and body weight, rendering it a potential cause and/or predisposing factor to excess body weight gain and obesity. PMID:23493533

  7. Leptin: A Novel Therapeutic Target in Alzheimer's Disease?

    PubMed Central

    Beccano-Kelly, Dayne; Harvey, Jenni

    2012-01-01

    It is well established that the hormone leptin circulates in the plasma in amounts proportional to body fat content and it regulates food intake and body weight via its actions in the hypothalamus. However, numerous studies have shown that leptin receptors are widely expressed throughout the CNS and evidence is growing that leptin plays a role in modulating a variety of neuronal processes. In particular, recent studies have highlighted a potential cognitive enhancing role for leptin as it regulates diverse aspects of hippocampal synaptic function that are thought to underlie learning and memory processes including glutamate receptor trafficking, dendritic morphology, and activity-dependent synaptic plasticity. Characterisation of the novel actions of leptin in limbic brain regions is providing valuable insights into leptin's role in higher cognitive functions in health and disease. PMID:22254146

  8. Deficient leptin signaling ameliorates systemic lupus erythematosus lesions in MRL/Mp-Fas lpr mice.

    PubMed

    Fujita, Yoshimasa; Fujii, Takao; Mimori, Tsuneyo; Sato, Tomomi; Nakamura, Takuji; Iwao, Haruka; Nakajima, Akio; Miki, Miyuki; Sakai, Tomoyuki; Kawanami, Takafumi; Tanaka, Masao; Masaki, Yasufumi; Fukushima, Toshihiro; Okazaki, Toshiro; Umehara, Hisanori

    2014-02-01

    Leptin is secreted by adipocytes, the placenta, and the stomach. It not only controls appetite through leptin receptors in the hypothalamus, it also regulates immunity. In the current study, we produced leptin-deficient MRL/Mp-Fas(lpr) mice to investigate the potential role of leptin in autoimmunity. C57BL/6J-ob/ob mice were backcrossed with MRL/Mp-Fas(lpr) mice, which develop human systemic lupus erythematosus (SLE)-like lesions. The effects of leptin deficiency on various SLE-like manifestations were investigated in MRL/Mp-Fas(lpr) mice. The regulatory T cell population in the spleen was analyzed by flow cytometry, and the effects of leptin on regulatory T cells and Th17 cells were evaluated in vitro. Compared with leptin-producing MRL/Mp-Fas(lpr) mice, leptin-deficient MRL/Mp-Fas(lpr) mice showed less marked splenomegaly and a particularly low population of CD3(+)CD4(-)CD8(-)B220(+) T cells (lpr cells). Their serum concentrations of Abs to dsDNA were lower, and renal histological changes at age 20 wk were ameliorated. Regulatory T cells were increased in the spleens of leptin-deficient MRL/Mp-Fas(lpr) mice. Leptin suppressed regulatory T cells and enhanced Th17 cells in vitro. In conclusion, blockade of leptin signaling may be of therapeutic benefit in patients with SLE and other autoimmune diseases.

  9. Leptin's effect on taste bud calcium responses and transmitter secretion.

    PubMed

    Meredith, Tricia L; Corcoran, Alan; Roper, Stephen D

    2015-05-01

    Leptin, a peptide hormone released by adipose tissue, acts on the hypothalamus to control cravings and appetite. Leptin also acts to decrease taste responses to sweet substances, though there is little detailed information regarding where leptin acts in the taste transduction cascade. The present study examined the effects of leptin on sweet-evoked responses and neuro transmitter release from isolated taste buds. Our results indicate that leptin moderately decreased sweet-evoked calcium mobilization in isolated mouse taste buds. We also employed Chinese hamster ovary biosensor cells to examine taste transmitter release from isolated taste buds. Leptin reduced ATP and increased serotonin release in response to sweet stimulation. However, leptin has no effect on bitter-evoked transmitter release, further showing that the action of leptin is sweet specific. Our results support those of previous studies, which state that leptin acts on taste tissue via the leptin receptor, most likely on Type II (Receptor) cells, but also possibly on Type III (Presynaptic) cells.

  10. Association of Leptin with Body Pain in Women

    PubMed Central

    Kapphahn, Kristopher; Brennan, Kathleen; Sullivan, Shannon D.; Stefanick, Marcia L.

    2016-01-01

    Abstract Leptin, an appetite-regulatory hormone, is also known to act as a proinflammatory adipokine. One of the effects of increased systemic leptin concentrations may be greater sensitivity to pain. We report the results of two studies examining the association between leptin and pain: a small pilot longitudinal study, followed by a large cross-sectional study. In Study 1, three women with physician-diagnosed fibromyalgia provided blood draws daily for 25 consecutive days, as well as daily self-reported musculoskeletal pain. Daily fluctuations in serum leptin were positively associated with pain across all three participants (F (1,63) = 12.8, p < 0.001), with leptin predicting ∼49% of the pain variance. In Study 2, the relationship between leptin and body pain was examined in a retrospective cross-sectional analysis of 5676 generally healthy postmenopausal women from the Women's Health Initiative. Leptin levels obtained from single blood draws were tested for a relationship with self-reported body pain. Body mass index (BMI) was also included as a predictor of pain. Both leptin and BMI were found to be independently associated with self-reported pain (p = 0.001 and p < 0.001, respectively), with higher leptin levels and greater BMI each being associated with greater pain. Leptin appears to be a predictor of body pain both within- and between-individuals and may be a driver of generalized pain states such as fibromyalgia. PMID:27028709

  11. Selective leptin resistance revisited.

    PubMed

    Mark, Allyn L

    2013-09-15

    In addition to effects on appetite and metabolism, leptin influences many neuroendocrine and physiological systems, including the sympathetic nervous system. Building on my Carl Ludwig Lecture of the American Physiological Society, I review the sympathetic and cardiovascular actions of leptin. The review focuses on a critical analysis of the concept of selective leptin resistance (SLR) and the role of leptin in the pathogenesis of obesity-induced hypertension in both experimental animals and humans. We introduced the concept of SLR in 2002 to explain how leptin might increase blood pressure (BP) in obese states, such as diet-induced obesity (DIO), that are accompanied by partial leptin resistance. This concept, analogous to selective insulin resistance in the metabolic syndrome, holds that in several genetic and acquired models of obesity, there is preservation of the renal sympathetic and pressor actions of leptin despite attenuation of the appetite and weight-reducing actions. Two potential overlapping mechanisms of SLR are reviewed: 1) differential leptin molecular signaling pathways that mediate selective as opposed to universal leptin action and 2) brain site-specific leptin action and resistance. Although the phenomenon of SLR in DIO has so far focused on preservation of sympathetic and BP actions of leptin, consideration should be given to the possibility that this concept may extend to preservation of other actions of leptin. Finally, I review perplexing data on the effects of leptin on sympathetic activity and BP in humans and its role in human obesity-induced hypertension.

  12. Spexin is a Novel Human Peptide that Reduces Adipocyte Uptake of Long Chain Fatty Acids and Causes Weight Loss in Rodents with Diet-induced Obesity*

    PubMed Central

    Walewski, José L.; Ge, Fengxia; Lobdell, Harrison; Levin, Nancy; Schwartz, Gary J.; Vasselli, Joseph; Pomp, Afons; Dakin, Gregory; Berk, Paul D.

    2014-01-01

    Objective Microarray studies identified Ch12:orf39 (Spexin) as the most dysregulated gene in obese human fat. Therefore we examined its role in obesity pathogenesis. Design and Methods Spexin effects on food intake, meal patterns, body weight, Respiratory Exchange Ratio (RER), and locomotor activity were monitored electronically in C57BL/6J mice or Wistar rats with dietary-induced obesity (DIO). Its effects on adipocyte [3H]-oleate uptake were determined. Results In humans, Spexin gene expression was down-regulated 14.9-fold in obese omental and subcutaneous fat. Circulating Spexin changed in parallel, correlating (r = −0.797) with Leptin. In rats, Spexin (35 μg/kg/day s.c) reduced caloric intake ~32% with corresponding weight loss. Meal patterns were unaffected. In mice, Spexin (25 μg/kg/day i.p.) significantly reduced the RER at night, and increased locomotion. Spexin incubation in vitro significantly inhibited facilitated fatty acid (FA) uptake into DIO mouse adipocytes. Conditioned taste aversion testing (70μg/kg/day i.p.) demonstrated no aversive Spexin effects. Conclusions Spexin gene expression is markedly down-regulated in obese human fat. The peptide produces weight loss in DIO rodents. Its effects on appetite and energy regulation are presumably central; those on adipocyte FA uptake appear direct and peripheral. Spexin is a novel hormone involved in weight regulation, with potential for obesity therapy. PMID:24550067

  13. Molecular Cloning and Gene Expression Analysis of the Leptin Receptor in the Chinese Mitten Crab Eriocheir sinensis

    PubMed Central

    Jiang, Hui; Ren, Fei; Sun, Jiangling; He, Lin; Li, Weiwei; Xie, Yannan; Wang, Qun

    2010-01-01

    Background Leptin is an adipocyte-derived hormone with multiple functions that regulates energy homeostasis and reproductive functions. Increased knowledge of leptin receptor function will enhance our understanding of the physiological roles of leptin in animals. Methodology/Principal Findings In the present study, a full-length leptin receptor (lepr) cDNA, consisting of 1,353 nucleotides, was cloned from Chinese mitten crab (Eriocheir sinensis) using rapid amplification of cDNA ends (RACE) following the identification of a single expressed sequence tag (EST) clone in a cDNA library. The lepr cDNA consisted of a 22-nucleotide 5′-untranslated region (5′ UTR), a 402-nucleotide open reading frame (ORF) and a 929-nucleotide 3′ UTR. Multiple sequence alignments revealed that Chinese mitten crab lepr shared a conserved vacuolar protein sorting 55 (Vps55) domain with other species. Chinese mitten crab lepr expression was determined in various tissues and at three different reproductive stages using quantitative real-time RT-PCR. Lepr expression was highest in the intestine, thoracic ganglia, gonad, and accessory gonad, moderate in hepatopancreas and cranial ganglia, and low in muscle, gill, heart, haemocytes, and stomach. Furthermore, lepr expression was significantly higher in the intestine, gonad and thoracic ganglia in immature crabs relative to precocious and mature crabs. In contrast, lepr expression was significantly lower in the hepatopancreas of immature crabs relative to mature crabs. Conclusions/Significance We are the first to identify the lepr gene and to determine its gene expression patterns in various tissues and at three different reproductive stages in Chinese mitten crab. Taken together, our results suggest that lepr may be involved in the nutritional regulation of metabolism and reproduction in Chinese mitten crabs. PMID:20567508

  14. Direct effects of leptin on brown and white adipose tissue.

    PubMed Central

    Siegrist-Kaiser, C A; Pauli, V; Juge-Aubry, C E; Boss, O; Pernin, A; Chin, W W; Cusin, I; Rohner-Jeanrenaud, F; Burger, A G; Zapf, J; Meier, C A

    1997-01-01

    Leptin is thought to exert its actions on energy homeostasis through the long form of the leptin receptor (OB-Rb), which is present in the hypothalamus and in certain peripheral organs, including adipose tissue. In this study, we examined whether leptin has direct effects on the function of brown and white adipose tissue (BAT and WAT, respectively) at the metabolic and molecular levels. The chronic peripheral intravenous administration of leptin in vivo for 4 d resulted in a 1.6-fold increase in the in vivo glucose utilization index of BAT, whereas no significant change was found after intracerebroventricular administration compared with pair-fed control rats, compatible with a direct effect of leptin on BAT. The effect of leptin on WAT fat pads from lean Zucker Fa/ fa rats was assessed ex vivo, where a 9- and 16-fold increase in the rate of lipolysis was observed after 2 h of exposure to 0.1 and 10 nM leptin, respectively. In contrast, no increase in lipolysis was observed in the fat pads from obese fa/fa rats, which harbor an inactivating mutation in the OB-Rb. At the level of gene expression, leptin treatment for 24 h increased malic enzyme and lipoprotein lipase RNA 1.8+/-0.17 and 1.9+/-0.14-fold, respectively, while aP2 mRNA levels were unaltered in primary cultures of brown adipocytes from lean Fa/fa rats. Importantly, however, no significant effect of leptin was observed on these genes in brown adipocytes from obese fa/fa animals. The presence of OB-Rb receptors in adipose tissue was substantiated by the detection of its transcripts by RT-PCR, and leptin treatment in vivo and in vitro activated the specific STATs implicated in the signaling pathway of the OB-Rb. Taken together, our data strongly suggest that leptin has direct effects on BAT and WAT, resulting in the activation of the Jak/STAT pathway and the increased expression of certain target genes, which may partially account for the observed increase in glucose utilization and lipolysis in leptin

  15. Leptin decreases heart rate associated with increased ventricular repolarization via its receptor.

    PubMed

    Lin, Yen-Chang; Huang, Jianying; Hileman, Stan; Martin, Karen H; Hull, Robert; Davis, Mary; Yu, Han-Gang

    2015-11-15

    Leptin has been proposed to modulate cardiac electrical properties via β-adrenergic receptor activation. The presence of leptin receptors and adipocytes in myocardium raised a question as to whether leptin can directly modulate cardiac electrical properties such as heart rate and QT interval via its receptor. In this work, the role of local direct actions of leptin on heart rate and ventricular repolarization was investigated. We identified the protein expression of leptin receptors at cell surface of sinus node, atrial, and ventricular myocytes isolated from rat heart. Leptin at low doses (0.1-30 μg/kg) decreased resting heart rate; at high doses (150-300 μg/kg), leptin induced a biphasic effect (decrease and then increase) on heart rate. In the presence of high-dose propranolol (30 mg/kg), high-dose leptin only reduced heart rate and sometimes caused sinus pauses and ventricular tachycardia. The leptin-induced inhibition of resting heart rate was fully reversed by leptin antagonist. Leptin also increased heart rate-corrected QT interval (QTc), and leptin antagonist did not. In isolated ventricular myocytes, leptin (0.03-0.3 μg/ml) reversibly increased the action potential duration. These results supported our hypothesis that in addition to indirect pathway via sympathetic tone, leptin can directly decrease heart rate and increase QT interval via its receptor independent of β-adrenergic receptor stimulation. During inhibition of β-adrenergic receptor activity, high concentration of leptin in myocardium can cause deep bradycardia, prolonged QT interval, and ventricular arrhythmias.

  16. Mexico City normal weight children exposed to high concentrations of ambient PM2.5 show high blood leptin and endothelin-1, vitamin D deficiency, and food reward hormone dysregulation versus low pollution controls. Relevance for obesity and Alzheimer disease.

    PubMed

    Calderón-Garcidueñas, Lilian; Franco-Lira, Maricela; D'Angiulli, Amedeo; Rodríguez-Díaz, Joel; Blaurock-Busch, Eleonore; Busch, Yvette; Chao, Chih-kai; Thompson, Charles; Mukherjee, Partha S; Torres-Jardón, Ricardo; Perry, George

    2015-07-01

    Millions of Mexico, US and across the world children are overweight and obese. Exposure to fossil-fuel combustion sources increases the risk for obesity and diabetes, while long-term exposure to fine particulate matter (PM2.5) and ozone (O3) above US EPA standards is associated with increased risk of Alzheimer's disease (AD). Mexico City Metropolitan Area children are chronically exposed to PM2.5 and O3 concentrations above the standards and exhibit systemic, brain and intrathecal inflammation, cognitive deficits, and Alzheimer disease neuropathology. We investigated adipokines, food reward hormones, endothelial dysfunction, vitamin D and apolipoprotein E (APOE) relationships in 80 healthy, normal weight 11.1±3.2 year olds matched by age, gender, BMI and SES, low (n: 26) versus high (n:54) PM2.5 exposures. Mexico City children had higher leptin and endothelin-1 (p<0.01 and p<0.000), and decreases in glucagon-like peptide-1 (GLP 1), ghrelin, and glucagon (<0.02) versus controls. BMI and leptin relationships were significantly different in low versus high PM2.5 exposed children. Mexico City APOE 4 versus 3 children had higher glucose (p=0.009). Serum 25-hydroxyvitamin D<30 ng/mL was documented in 87% of Mexico City children. Leptin is strongly positively associated to PM 2.5 cumulative exposures. Residing in a high PM2.5 and O3 environment is associated with 12h fasting hyperleptinemia, altered appetite-regulating peptides, vitamin D deficiency, and increases in ET-1 in clinically healthy children. These changes could signal the future trajectory of urban children towards the development of insulin resistance, obesity, type II diabetes, premature cardiovascular disease, addiction-like behavior, cognitive impairment and Alzheimer's disease. Increased efforts should be made to decrease pediatric PM2.5 exposures, to deliver health interventions prior to the development of obesity and to identify and mitigate environmental factors influencing obesity and Alzheimer

  17. Comparative study of leptin and leptin receptor gene expression in different swine breeds.

    PubMed

    Georgescu, S E; Manea, M A; Dinescu, S; Costache, M

    2014-02-14

    Leptin is an important regulator of appetite, energy metabolism, and reproduction and is mainly synthesized in the adipocytes and then secreted into the bloodstream. The leptin receptor was classified as type I cytokine receptor due to its structural homology with IL-6 receptors and the signaling pathways in which they are both involved. The aim of our study is to comparatively assess the gene expression levels of leptin (lep) and leptin receptor (lepr) in different swine breeds specialized either in meat production (Duroc, Belgian Landrace, Large White, Synthetic Lines LS-345, and LSP-2000) or fat production (Mangalitsa) in order to correlate them with morphological and productivity characteristics. Additionally, lepr pattern of expression was evaluated comparatively between different tissue types in the Mangalitsa breed. Our results revealed high expression of the lep gene in Mangalitsa compared to those of all the other breeds, while for the lepr gene, average/medium levels were registered in Mangalitsa and increased pattern of expression was found in the synthetic lines LS-345 and LSP-2000. Regarding the comparative analysis of lepr gene expression in various tissues in the Mangalitsa breed, elevated levels were found in the liver and kidney, while the lowest expression was identified in the brain and muscles. Our results suggest that the Mangalitsa population exhibits leptin resistance, which might be correlated with atypical morpho-productive characteristics for this breed, such as below-average prolificacy and a strong tendency to accumulate fat.

  18. Leptin regulation of neuronal morphology and hippocampal synaptic function

    PubMed Central

    Harvey, Jenni

    2013-01-01

    The central actions of the hormone leptin in regulating energy homeostasis via the hypothalamus are well documented. However, evidence is growing that this hormone can also modify the structure and function of synapses throughout the CNS. The hippocampus is a region of the forebrain that plays a crucial role in associative learning and memory and is an area also highly vulnerable to neurodegenerative processes. Recent studies indicate that leptin is a potential cognitive enhancer as it modulates the cellular processes underlying hippocampal-dependent learning and memory including dendritic morphology, glutamate receptor trafficking and activity-dependent synaptic plasticity. Here, we review the recent evidence implicating the hormone leptin as a key regulator of hippocampal synaptic function and discuss the role of leptin receptor-driven lipid signaling pathways involved in this process. PMID:23964236

  19. Role of leptin in energy homeostasis in humans

    PubMed Central

    Rosenbaum, Michael; Leibel, Rudolph L

    2015-01-01

    The hyperphagia, low sympathetic nervous system tone, and decreased circulating concentrations of bioactive thyroid hormones that are common to states of congenital leptin deficiency and hypoleptinemia following and during weight loss suggest that the major physiological function of leptin is to signal states of negative energy balance and decreased energy stores. In weight-reduced humans, these phenotypes together with pronounced hypometabolism and increased parasympathetic nervous system tone create the optimal circumstance for weight regain. Based on the weight loss induced by leptin administration in states of leptin deficiency (obese) and observed similarity of phenotypes in states of congenital and dietary-induced states of hypoleptinemia (reduced obese), it has been suggested that exogenous leptin could potentially be useful in initiating, promoting, and sustaining weight reduction. However, the responses of human beings to exogenous leptin administration are dependent not only on extant energy stores but also on energy balance. Leptin administration to humans at usual weight has little, if any, effect on body weight while leptin administration during weight loss mitigates hunger, especially if given in supraphysiological doses during severe caloric restriction. Leptin repletion is most effective following weight loss by dietary restriction. In this state of weight stability but reduced energy stores, leptin at least partially reverses many of the metabolic, autonomic, neuroendocrine, and behavioral adaptations that favor weight regain. The major physiological function of leptin is to signal states of negative energy balance and decreased energy stores. Leptin, and pharmacotherapies affecting leptin signaling pathways, is likely to be most useful in sustaining weight loss. PMID:25063755

  20. Association between adipose tissue expression and serum levels of leptin and adiponectin in women with polycystic ovary syndrome.

    PubMed

    Lecke, S B; Morsch, D M; Spritzer, P M

    2013-02-28

    We reviewed emerging evidence linking serum levels and adipose tissue expression of leptin and adiponectin in women with polycystic ovary syndrome (PCOS). Previous data obtained by our group from a sample of overweight/obese PCOS women and a control sample of normal weight controls, both stratified by BMI, were reanalyzed. Circulating levels of leptin and adiponectin were determined by commercially available enzyme-linked immunosorbent assays. Adipose tissue total RNA was reserve-transcripted into complementary DNA samples, which were used as templates for quantitative real-time PCR amplification. Positive correlations were found between serum and mRNA levels for both leptin (r = 0.321; P = 0.005) and adiponectin (r = 0.266; P = 0.024). Determination of leptin and adiponectin serum levels could serve as an indirect method to assess adipocyte production, since leptin and adiponectin are predominantly produced by subcutaneous adipocytes in women.

  1. Effects of androgen and leptin on behavioral and cellular responses in female rats.

    PubMed

    Feng, Yi; Shao, Ruijin; Weijdegård, Birgitta; Wang, Tienpei; Johansson, Julia; Sun, Shan; Wang, Wei; Egecioglu, Emil; Billig, Håkan; Stener-Victorin, Elisabet

    2011-09-01

    The causes of anxiety and depression in women with polycystic ovary syndrome (PCOS) remain elusive. To identify steps linking androgen signaling to the regulation of affective symptoms in vivo, we compared behavioral responses in female rats continuously exposed to DHT from puberty (a model of DHT-induced PCOS) and in rats exposed to DHT for 1week. Continuous and 1week of DHT exposure resulted in a general decrease in locomotor activity and time spent on the open arms in the elevated plus maze, indicating anxiety-like behavior. Rats with DHT-induced PCOS have increases in adiposity and circulating leptin levels accompanied by leptin resistance. One week of DHT exposure decreased androgen receptor (AR) expression in the hypothalamus and leptin synthesis and function in adipocytes; it also inhibited signal transducer and activator of transcription 3 (STAT3) and attenuated leptin activity by increasing levels of soluble leptin receptor, a leptin-binding protein, in the hypothalamus. This may affect the androgen-induced anxiety-related behavior in female rats. In conclusion, our results highlight the central role of androgens in behavioral function in female rats and suggest that androgens directly regulate the AR by decreasing its hypothalamic expression. Androgens also increase leptin synthesis in adipocytes, which drives central leptin signaling, and may regulate anxiety-related behaviors. Elucidating mechanisms by which androgens modulate female anxiety-like behavior may uncover useful approaches for treating women with PCOS who have symptoms of anxiety.

  2. Direct antidiabetic effect of leptin through triglyceride depletion of tissues

    PubMed Central

    Shimabukuro, Michio; Koyama, Kazunori; Chen, Guoxun; Wang, May-Yun; Trieu, Falguni; Lee, Young; Newgard, Christopher B.; Unger, Roger H.

    1997-01-01

    Leptin is currently believed to control body composition largely, if not entirely, via hypothalamic receptors that regulate food intake and thermogenesis. Here we demonstrate direct extraneural effects of leptin to deplete fat content of both adipocytes and nonadipocytes to levels far below those of pairfed controls. In cultured pancreatic islets, leptin lowered triglyceride (TG) content by preventing TG formation from free fatty acids (FFA) and by increasing FFA oxidation. In vivo hyperleptinemia, induced in normal rats by adenovirus gene transfer, depleted TG content in liver, skeletal muscle, and pancreas without increasing plasma FFA or ketones, suggesting intracellular oxidation. In islets of obese Zucker Diabetic Fatty rats with leptin receptor mutations, leptin had no effect in vivo or in vitro. The TG content was ≈20 times normal, and esterification capacity was increased 3- to 4-fold. Thus, in rats with normal leptin receptors but not in Zucker Diabetic Fatty rats, nonadipocytes and adipocytes esterify FFA, store them as TG, and later oxidize them intracellularly via an “indirect pathway” of intracellular fatty acid metabolism controlled by leptin. By maintaining insulin sensitivity and preventing islet lipotoxicity, this activity of leptin may prevent adipogenic diabetes. PMID:9114043

  3. Leptin, its Implication in Physical Exercise and Training: A Short Review

    PubMed Central

    Bouassida, Anissa; Zalleg, Dalenda; Bouassida, Semi; Zaouali, Monia; Feki, Youssef; Zbidi, Abdelkarim; Tabka, Zouhair

    2006-01-01

    Leptin, a hormone synthesized by fat tissue had been noted to regulate energy balance and metabolism and thus to influence body weight. The influence of acute exercise and chronic exercise training on circulating leptin and its relationship with hormonal and metabolic changes that induce energy balance are presented. Research that has examined the influence of exercise under various experimental conditions on leptin and the conflicts in the literature are presented. It appears that a significant caloric perturbation (> 800 kcals) is necessary for acute exercise to result in a significant reduction in leptin. In contrast, exercise training can result in a leptin decline but typically this manifests a reduction in adipose tissue stores. In addition, future directions are presented. Key Points Physical exercise and training have both inhibitory and stimulatory effects on leptin. Exercise with energy expenditure higher than 800 kcal can decrease leptinemia. Acute training may cause a decline in circulating leptin levels. PMID:24259989

  4. Anti-Inflammatory Effects of Rosiglitazone in Obesity-Impaired Wound Healing Depend on Adipocyte Differentiation

    PubMed Central

    Pfeilschifter, Josef; Frank, Stefan

    2016-01-01

    Combined diabetes-obesity syndromes severely impair regeneration of acute skin wounds in mouse models. This study assessed the contribution of subcutaneous adipose tissue to exacerbated wound inflammatory conditions. Genetically obese (ob/ob) mice showed an increased expression of positive transcriptional effectors of adipocyte differentiation such as Krüppel-like factor (KLF)-5 and peroxisome proliferator-activated receptor (PPAR)-γ and an associated expression of leptin and fatty acid-binding protein (FABP)-4, but also CXCL2 in isolated subcutaneous fat. This observation in obese mice is in keeping with differentially elevated levels of KLF-5, PPAR-γ, leptin, FABP-4 and CXCL2 in in vitro-differentiated 3T3-L1 adipocytes. Notably, CXCL2 expression restrictively appeared upon cytokine (IL-1β/TNF-α) stimulation only in mature, but not immature 3T3-L1 adipocytes. Of importance, the critical regulator of adipocyte maturation, PPAR-γ, was merely expressed in the final phase of in-vitro induced adipocyte differentiation from 3T3-L1 pre-adipocytes. Consistently, the PPAR-γ agonist rosiglitazone suppressed cytokine-induced CXCL2 release from mature adipocytes, but not from early 3T3-L1 adipocyte stages. The inhibitory effect of PPAR-γ activation on CXCL2 release appeared to be a general anti-inflammatory effect in mature adipocytes, as cytokine-induced cyclooxygenase (Cox)-2 was simultaneously repressed by rosiglitazone. In accordance with these findings, oral administration of rosiglitazone to wounded obese mice significantly changed subcutaneous adipocyte morphology, reduced wound CXCL2 and Cox-2 expression and improved tissue regeneration. Thus, our data suggest that PPAR-γ might provide a target to suppress inflammatory signals from mature adipocytes, which add to the prolonged wound inflammation observed in diabetes-obesity conditions. PMID:27992530

  5. Sex Differences in Somatotrope Dependency on Leptin Receptors in Young Mice: Ablation of LEPR Causes Severe Growth Hormone Deficiency and Abdominal Obesity in Males

    PubMed Central

    Odle, Angela; Haney, Anessa; Childs, Gwen

    2015-01-01

    Leptin receptor (LEPR) signaling controls appetite and energy expenditure. Somatotrope-specific deletion of the LEPRb signaling isoform causes GH deficiency and obesity. The present study selectively ablated Lepr exon 1 in somatotropes, which removes the signal peptide, causing the loss of all isoforms of LEPR. Excision of Lepr exon 1 was restricted to the pituitary, and mutant somatotropes failed to respond to leptin. Young (2–3 mo) males showed a severe 84% reduction in serum GH levels and more than 60% reduction in immunolabeled GH cells compared with 41%–42% reductions in GH and GH cells in mutant females. Mutant males (35 d) and females (45 d) weighed less than controls and males had lower lean body mass. Image analysis of adipose tissue by magnetic resonance imaging showed that young males had a 2-fold increase in abdominal fat mass and increased adipose tissue density. Young females had only an overall increase in adipose tissue. Both males and females showed lower energy expenditure and higher respiratory quotient, indicating preferential carbohydrate burning. Young mutant males slept less and were more restless during the dark phase, whereas the opposite was true of females. The effects of a Cre-bearing sire on his non-Cre-recombinase bearing progeny are seen by increased respiratory quotient and reduced litter sizes. These studies elucidate clear sex differences in the extent to which somatotropes are dependent on all isoforms of LEPR. These results, which were not seen with the ablation of Lepr exon 17, highlight the severe consequences of ablation of LEPR in male somatotropes. PMID:26168341

  6. Leptin as an uremic toxin: Deleterious role of leptin in chronic kidney disease.

    PubMed

    Alix, Pascaline M; Guebre-Egziabher, Fitsum; Soulage, Christophe O

    2014-10-01

    White adipose tissue secretes a large variety of compounds named adipokines amongst which, leptin exhibits pleiotropic metabolic actions. Leptin is an anorexigenic hormone, secreted in proportion of fat mass, with additional effects on the regulation of inflammation, cardiovascular system, immunity, hematopoiesis and bone metabolism. Chronic kidney disease (CKD) is characterized by an increase of plasma leptin concentration that may be explained by a lack of renal clearance. Hyperleptinemia plays a key role in the pathogenesis of complications associated with CKD such as cachexia, protein energy wasting, chronic inflammation, insulin resistance, cardiovascular damages and bone complications. Leptin is also involved in the progression of renal disease through its pro-fibrotic and pro-hypertensive actions. Most of the adverse effects of leptin have been documented both experimentally and clinically. Leptin may therefore be considered as an uremic toxin in CKD. The aim of this review is to summarize the pathophysiological and clinical role of leptin in in vitro studies, experimental models, as well as in patients suffering from CKD.

  7. Glucagon-Like Peptide-1 Receptor Agonists (GLP-1RAs) in the Brain-Adipocyte Axis.

    PubMed

    Geloneze, Bruno; de Lima-Júnior, José Carlos; Velloso, Lício A

    2017-02-23

    The complexity of neural circuits that control food intake and energy balance in the hypothalamic nuclei explains some of the constraints involved in the prevention and treatment of obesity. Two major neuronal populations present in the arcuate nucleus control caloric intake and energy expenditure: one population co-expresses orexigenic agouti-related peptide (AgRP) and neuropeptide Y and the other expresses the anorexigenic anorectic neuropeptides proopiomelanocortin and cocaine- and amphetamine-regulated transcript (POMC/CART). In addition to integrating signals from neurotransmitters and hormones, the hypothalamic systems that regulate energy homeostasis are affected by nutrients. Fat-rich diets, for instance, elicit hypothalamic inflammation (reactive activation and proliferation of microglia, a condition named gliosis). This process generates resistance to the anorexigenic hormones leptin and insulin, contributing to the genesis of obesity. Glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1RAs) have increasingly been used to treat type 2 diabetes mellitus. One compound (liraglutide) was recently approved for the treatment of obesity. Although most studies suggest that GLP-1RAs promote weight loss mainly due to their inhibitory effect on food intake, other central effects that have been described for native GLP-1 and some GLP-1RAs in rodents and humans encourage future clinical trials to explore additional mechanisms that potentially underlie the beneficial effects observed with this drug class. In this article we review the most relevant data exploring the mechanisms involved in the effects of GLP-1RAs in the brain-adipocyte axis.

  8. A role for leptin in the systemic inflammatory response syndrome (SIRS) and in immune response, an update.

    PubMed

    Waelput, W; Brouckaert, P; Broekaert, D; Tavernier, J

    2006-01-01

    Leptin was originally identified as an adipocyte-derived cytokine with a key role in the regulation of the energy balance. Subsequent research revealed that leptin's biological action is not restricted to its effects on appetite and food intake, but instead has a much more pleiotropic character. There is now ample evidence that leptin has important functions in reproduction, hematopoiesis, HPA-axis endocrinology and angiogenesis. In this review we have focused on the effects of leptin in the antigen-specific immunity and in the inflammatory effector system.

  9. Berberine reduces the expression of adipogenic enzymes and inflammatory molecules of 3T3-L1 adipocyte.

    PubMed

    Choi, Bong-Hyuk; Ahn, In-Sook; Kim, Yu-Hee; Park, Ji-Won; Lee, So-Young; Hyun, Chang-Kee; Do, Myoung-Sool

    2006-12-31

    Berberine (BBR), an isoquinoline alkaloid, has a wide range of pharmacological effects, yet its exact mechanism is unknown. In order to understand the anti-adipogenic effect of BBR, we studied the change of expression of several adipogenic enzymes of 3T3-L1 cells by BBR treatment. First, we measured the change of leptin and glycerol in the medium of 3T3-L1 cells treated with 1 micrometer, 5 micrometer and 10 micrometer concentrations of BBR. We also measured the changes of adipogenic and lipolytic factors of 3T3-L1. In 3T3-L1 cells, both leptin and adipogenic factors (SREBP-1c, C/EBP-alpha, PPAR-gamma, fatty acid synthase, acetyl-CoA carboxylase, acyl-CoA synthase and lipoprotein lipase) were reduced by BBR treatment. Glycerol secretion was increased, whereas expression of lipolytic enzymes (hormone-sensitive lipase and perilipin) mRNA was slightly decreased. Next, we measured the change of inflammation markers of 3T3-L1 cells by BBR treatment. This resulted in the down-regulation of mRNA level of inflammation markers such as TNF-alpha, IL-6, C- reactive protein and haptoglobin. Taken together, our data shows that BBR has both anti-adipogenic and anti-inflammatory effects on 3T3-L1 adipocytes, and the anti-adipogenic effect seems to be due to the down-regulation of adipogenic enzymes and transcription factors.

  10. [Contribution of leptin in the development of insulin resistance in pregnant women with obesity].

    PubMed

    Tarasenko, K

    2014-03-01

    The aim of the present study was to investigate contribution of leptin in the development of insulin resistance in obese pregnant women depending on the obesity class as well as its effect on the progression of pregnancy. 36 pregnant women of I and II obesity classes and 21 pregnant women with normal body mass participated in the study. Concentrations of insulin, leptin and C-reactive protein in blood serum were measured with immunoenzymatic assays. Insulin resistance (IR) was determined with the Caro index. Contribution of leptin to development of IR was assessed with the ratio "leptin/Caro index". An increase of leptin concentration in blood serum was found in pregnant women with obesity compared to healthy controls. Moreover, the ratio "leptin/Caro index" increased with IR progression and reached maximum in the group with obesity class II, where it was 5.8 times higher than in the control group. An increased frequency of gestoses and placentary dysfunction were manifestations of weakening of adaptive mechanisms of the organism associated with the IR progression and increased role of leptin in its development. Therefore, activation of adipocyte function through the increased leptin secretion and increased ratio "leptin/Caro index" reflects the important role of leptin in pathogenesis of IR in pregnant women with obesity.

  11. 3T3 cells in adipocytic conversion.

    PubMed

    O'Shea Alvarez, M S

    1991-01-01

    3T3 are murine cells of an established heteroploid cellular line. Some clones of this cellular line, when cultured under adequate conditions differentiate into adipocytes. During the process of differentiation, the cells undergo a change from the elongated fibroblastic shape to a round or oval form and accumulate small drops of lipids within their cytoplasma. These lipid drops fuse into one large drop which displaces the nucleus towards the periphery, giving the cell the aspect of a mature adipocyte of white adipose tissue. The cells not only change their morphology, but they also present important biochemical changes. They show a simultaneous increase in triglyceride synthesis and activity of lipogenic enzymes. There is also an increase in the response of the activity of various hormones and the de novo synthesis of the receptors to such hormones, as insulin and ACTH. During the process of differentiation important changes occur in the synthesis of various proteins, such as actin, tubulin, and other proteins which also make up the cellular cytoskeleton, forming part of the lipid transportation within the adipose cell. The adipocytic differentiation of 3T3 cells depends on adipogenic serum factors used in the supplementary culture medium. These adipogenic factors seem to play an important role in the development of adipose tissue. There are hormones, chemical agents and serum factors which modulate adipocytic differentiation. The clone must be susceptible to adipocytic differentiation, it must reach a quiescent state and find itself in adipogenic conditions for the 3T3 cells to differentiate into adipocytes. It must also carry out an DNA synthesis which is an expression of the new phenotype. The differentiation of 3T3 cells in terminal. The fact that these cells present an adipocytic conversion under physiologic conditions and with adipogenic hormones which exist in the whole animal has been demonstrated. All of these characteristics show that the 3T3 cells may be

  12. Growth hormone ameliorates adipose dysfunction during oxidative stress and inflammation and improves glucose tolerance in obese mice.

    PubMed

    Fukushima, M; Okamoto, Y; Katsumata, H; Ishikawa, M; Ishii, S; Okamoto, M; Minami, S

    2014-08-01

    Patients with adult growth hormone deficiency exhibit visceral fat accumulation, which gives rise to a cluster of metabolic disorders such as impaired glucose tolerance and dyslipidemia. Plasma growth hormone levels are lower in obese patients with metabolic syndrome than in healthy subjects. Here we examined the hypothesis that exogenous growth hormone administration regulates function of adipose tissue to improve glucose tolerance in diet-induced obese mice. Twelve-week-old obese male C57BL/6 J mice received bovine growth hormone daily for 6 weeks. In epididymal fat, growth hormone treatment antagonized diet-induced changes in the gene expression of adiponectin, leptin, and monocyte chemoattractant protein-1, and significantly increased the gene expression of interleukin-10 and CD206. Growth hormone also suppressed the accumulation of oxidative stress marker, thiobarbituric acid-reactive substances, in the epididymal fat and enhanced the gene expression of anti-oxidant enzymes. Moreover, growth hormone significantly restored glucose tolerance in obese mice. In cultured 3T3-L1 adipocytes, growth hormone prevented the decline in adiponectin gene expression in the presence of hydrogen peroxide. These results suggest that growth hormone administration ameliorates glucose intolerance in obese mice presumably by decreasing adipose mass, oxidative stress, and chronic inflammation in the visceral fat.

  13. Resveratrol Metabolites Modify Adipokine Expression and Secretion in 3T3-L1 Pre-Adipocytes and Mature Adipocytes

    PubMed Central

    Eseberri, Itziar; Lasa, Arrate; Churruca, Itziar; Portillo, María P.

    2013-01-01

    Objective Due to the low bioavailability of resveratrol, determining whether its metabolites exert any beneficial effect is an interesting issue. Methods 3T3-L1 maturing pre-adipocytes were treated during differentiation with 25 µM of resveratrol or with its metabolites and 3T3-L1 mature adipocytes were treated for 24 hours with 10 µM resveratrol or its metabolites. The gene expression of adiponectin, leptin, visfatin and apelin was assessed by Real Time RT-PCR and their concentration in the incubation medium was quantified by ELISA. Results Resveratrol reduced mRNA levels of leptin and increased those of adiponectin. It induced the same changes in leptin secretion. Trans-resveratrol-3-O-glucuronide and trans-resveratrol-4′-O-glucuronide increased apelin and visfatin mRNA levels. Trans-resveratrol-3-O-sulfate reduced leptin mRNA levels and increased those of apelin and visfatin. Conclusions The present study shows for the first time that resveratrol metabolites have a regulatory effect on adipokine expression and secretion. Since resveratrol has been reported to reduce body-fat accumulation and to improve insulin sensitivity, and considering that these effects are mediated in part by changes in the analyzed adipokines, it may be proposed that resveratrol metabolites play a part in these beneficial effects of resveratrol. PMID:23717508

  14. Leptin Levels Are Higher in Whole Compared to Skim Human Milk, Supporting a Cellular Contribution

    PubMed Central

    Kugananthan, Sambavi; Lai, Ching Tat; Gridneva, Zoya; Mark, Peter J.; Geddes, Donna T.; Kakulas, Foteini

    2016-01-01

    Human milk (HM) contains a plethora of metabolic hormones, including leptin, which is thought to participate in the regulation of the appetite of the developing infant. Leptin in HM is derived from a combination of de novo mammary synthesis and transfer from the maternal serum. Moreover, leptin is partially lipophilic and is also present in HM cells. However, leptin has predominately been measured in skim HM, which contains neither fat nor cells. We optimised an enzyme-linked immunosorbent assay for leptin measurement in both whole and skim HM and compared leptin levels between both HM preparations collected from 61 lactating mothers. Whole HM leptin ranged from 0.2 to 1.47 ng/mL, whilst skim HM leptin ranged from 0.19 to 0.9 ng/mL. Whole HM contained, on average, 0.24 ± 0.01 ng/mL more leptin than skim HM (p < 0.0001, n = 287). No association was found between whole HM leptin and fat content (p = 0.17, n = 287), supporting a cellular contribution to HM leptin. No difference was found between pre- and post-feed samples (whole HM: p = 0.29, skim HM: p = 0.89). These findings highlight the importance of optimising HM leptin measurement and assaying it in whole HM to accurately examine the amount of leptin received by the infant during breastfeeding. PMID:27834797

  15. Leptin Levels Are Higher in Whole Compared to Skim Human Milk, Supporting a Cellular Contribution.

    PubMed

    Kugananthan, Sambavi; Lai, Ching Tat; Gridneva, Zoya; Mark, Peter J; Geddes, Donna T; Kakulas, Foteini

    2016-11-08

    Human milk (HM) contains a plethora of metabolic hormones, including leptin, which is thought to participate in the regulation of the appetite of the developing infant. Leptin in HM is derived from a combination of de novo mammary synthesis and transfer from the maternal serum. Moreover, leptin is partially lipophilic and is also present in HM cells. However, leptin has predominately been measured in skim HM, which contains neither fat nor cells. We optimised an enzyme-linked immunosorbent assay for leptin measurement in both whole and skim HM and compared leptin levels between both HM preparations collected from 61 lactating mothers. Whole HM leptin ranged from 0.2 to 1.47 ng/mL, whilst skim HM leptin ranged from 0.19 to 0.9 ng/mL. Whole HM contained, on average, 0.24 ± 0.01 ng/mL more leptin than skim HM (p < 0.0001, n = 287). No association was found between whole HM leptin and fat content (p = 0.17, n = 287), supporting a cellular contribution to HM leptin. No difference was found between pre- and post-feed samples (whole HM: p = 0.29, skim HM: p = 0.89). These findings highlight the importance of optimising HM leptin measurement and assaying it in whole HM to accurately examine the amount of leptin received by the infant during breastfeeding.

  16. Measurement of immunofunctional leptin to detect and monitor patients with functional leptin deficiency

    PubMed Central

    Pridzun, Lutz; Ranke, Michael; von Schnurbein, Julia; Moss, Anja; Brandt, Stephanie; Kohlsdorf, Katja; Moepps, Barbara; Schaab, Michael; Funcke, Jan-Bernd; Gierschik, Peter; Fischer-Posovszky, Pamela; Flehmig, Bertram

    2016-01-01

    Context and aims Functional leptin deficiency is characterized by high levels of circulating immunoreactive leptin (irLep), but a reduced bioactivity of the hormone due to defective receptor binding. As a result of the fact that affected patients can be successfully treated with metreleptin, it was aimed to develop and validate a diagnostic tool to detect functional leptin deficiency. Methods An immunoassay capable of recognizing the functionally relevant receptor-binding complex with leptin was developed (bioLep). The analytical quality of bioLep was validated and compared to a conventional assay for immune-reactive leptin (irLep). Its clinical relevance was evaluated in a cohort of lean and obese children and adults as well as in children diagnosed with functional leptin deficiency and their parents. Results In the clinical cohort, a bioLep/irLep ratio of 1.07 (range: 0.80–1.41) was observed. Serum of patients with non-functional leptin due to homozygous amino acid exchanges (D100Y or N103K) revealed high irLep but non-detectable bioLep levels. Upon treatment of these patients with metreleptin, irLep levels decreased, whereas levels of bioLep increased continuously. In patient relatives with heterozygous amino acid exchanges, a bioLep/irLep ratio of 0.52 (range: 0.48–0.55) being distinct from normal was observed. Conclusions The new bioLep assay is able to diagnose impaired leptin bioactivity in severely obese patients with a homozygous gene defect and in heterozygous carriers of such mutations. The assay serves as a diagnostic tool to monitor leptin bioactivity during treatment of these patients. PMID:28007844

  17. Identification of targets of leptin action in rat hypothalamus.

    PubMed Central

    Schwartz, M W; Seeley, R J; Campfield, L A; Burn, P; Baskin, D G

    1996-01-01

    The hypothesis that leptin (OB protein) acts in the hypothalamus to reduce food intake and body weight is based primarily on evidence from leptin-deficient, ob/ob mice. To investigate whether leptin exerts similar effects in normal animals, we administered leptin intracerebroventricularly (icv) to Long-Evans rats. Leptin administration (3.5 microg icv) at the onset of nocturnal feeding reduced food intake by 50% at 1 h and by 42% at 4 h, as compared with vehicle-treated controls (both P < 0.05). To investigate the basis for this effect, we used in situ hybridization (ISH) to determine whether leptin alters expression of hypothalamic neuropeptides involved in energy homeostasis. Two injections of leptin (3.5 microg icv) during a 40 h fast significantly decreased levels of mRNA for neuropeptide Y (NPY, which stimulates food intake) in the arcuate nucleus (-24%) and increased levels of mRNA for corticotrophin releasing hormone (CRH, an inhibitor of food intake) in the paraventricular nucleus (by 38%) (both P < 0.05 vs. vehicle-treated controls). To investigate the anatomic basis for these effects, we measured leptin receptor gene expression in rat brain by ISH using a probe complementary to mRNA for all leptin receptor splice variants. Leptin receptor mRNA was densely concentrated in the arcuate nucleus, with lower levels present in the ventromedial and dorsomedial hypothalamic nuclei and other brain areas involved in energy balance. These findings suggest that leptin action in rat hypothalamus involves altered expression of key neuropeptide genes, and implicate leptin in the hypothalamic response to fasting. PMID:8787671

  18. PET imaging of leptin biodistribution and metabolism in rodents and primates.

    PubMed

    Ceccarini, Giovanni; Flavell, Robert R; Butelman, Eduardo R; Synan, Michael; Willnow, Thomas E; Bar-Dagan, Maya; Goldsmith, Stanley J; Kreek, Mary J; Kothari, Paresh; Vallabhajosula, Shankar; Muir, Tom W; Friedman, Jeffrey M

    2009-08-01

    We have determined the systemic biodistribution of the hormone leptin by PET imaging. PET imaging using (18)F- and (68)Ga-labeled leptin revealed that, in mouse, the hormone was rapidly taken up by megalin (gp330/LRP2), a multiligand endocytic receptor localized in renal tubules. In addition, in rhesus monkeys, 15% of labeled leptin localized to red bone marrow, which was consistent with hormone uptake in rodent tissues. These data confirm a megalin-dependent mechanism for renal uptake in vivo. The significant binding to immune cells and blood cell precursors in bone marrow is also consistent with prior evidence showing that leptin modulates immune function. These experiments set the stage for similar studies in humans to assess the extent to which alterations of leptin's biodistribution might contribute to obesity; they also provide a general chemical strategy for (18)F labeling of proteins for PET imaging of other polypeptide hormones.

  19. A role for leptin in the systemic inflammatory response syndrome (SIRS) and in immune response.

    PubMed

    Waelput, W; Brouckaert, P; Broekaert, D; Tavernier, J

    2002-09-01

    Leptin was originally identified as an adipocyte-derived cytokine with a key role in the regulation of the energy balance. Subsequent research has, however, revealed that leptin's biological action is not restricted to its effects on appetite and food intake, but rather has a much more pleiotropic character. Evidence is now accumulating that it has important functions in reproduction, hematopoiesis, HPA-axis endocrinology and angiogenesis. In this review, we have focused on the effects of leptin in the immune system, which can be found in both the antigen-specific immunity and in the inflammatory effector system.

  20. Transdifferentiation properties of adipocytes in the adipose organ.

    PubMed

    Cinti, Saverio

    2009-11-01

    Mammals have two types of adipocytes, white and brown, but their anatomy and physiology is different. White adipocytes store lipids, and brown adipocytes burn them to produce heat. Previous descriptions implied their localization in distinct sites, but we demonstrated that they are mixed in many depots, raising the concept of adipose organ. We explain the reason for their cohabitation with the hypothesis of reversible physiological transdifferentiation; they are able to convert one into each other. If needed, the brown component of the organ could increase at the expense of the white component and vice versa. This plasticity is important because the brown phenotype of the organ associates with resistance to obesity and related disorders. Another example of physiological transdifferetiation of adipocytes is offered by the mammary gland; the pregnancy hormonal stimuli seems to trigger a reversible transdifferentiation of adipocytes into milk-secreting epithelial glands. The obese adipose organ is infiltrated by macrophages inducing chronic inflamation that is widely considered as a causative factor for insulin resistance. We showed that the vast majority of macrophages infiltrating the obese organ are arranged around dead adipocytes, forming characteristic crown-like structures. We recently found that visceral fat is more infiltrated than the subcutaneous fat despite a smaller size of visceral adipocytes. This suggests a different susceptibility of visceral and subcutaneous adipocytes to death, raising the concept of smaller critical death size that could be important to explain the key role of visceral fat for the metabolic disorders associated with obesity.

  1. De Novo Synthesis of Steroids and Oxysterols in Adipocytes*

    PubMed Central

    Li, Jiehan; Daly, Edward; Campioli, Enrico; Wabitsch, Martin; Papadopoulos, Vassilios

    2014-01-01

    Local production and action of cholesterol metabolites such as steroids or oxysterols within endocrine tissues are currently recognized as an important principle in the cell type- and tissue-specific regulation of hormone effects. In adipocytes, one of the most abundant endocrine cells in the human body, the de novo production of steroids or oxysterols from cholesterol has not been examined. Here, we demonstrate that essential components of cholesterol transport and metabolism machinery in the initial steps of steroid and/or oxysterol biosynthesis pathways are present and active in adipocytes. The ability of adipocyte CYP11A1 in producing pregnenolone is demonstrated for the first time, rendering adipocyte a steroidogenic cell. The oxysterol 27-hydroxycholesterol (27HC), synthesized by the mitochondrial enzyme CYP27A1, was identified as one of the major de novo adipocyte products from cholesterol and its precursor mevalonate. Inhibition of CYP27A1 activity or knockdown and deletion of the Cyp27a1 gene induced adipocyte differentiation, suggesting a paracrine or autocrine biological significance for the adipocyte-derived 27HC. These findings suggest that the presence of the 27HC biosynthesis pathway in adipocytes may represent a defense mechanism to prevent the formation of new fat cells upon overfeeding with dietary cholesterol. PMID:24280213

  2. Differential regulation of metabolic, neuroendocrine, and immune function by leptin in humans.

    PubMed

    Chan, Jean L; Matarese, Giuseppe; Shetty, Greeshma K; Raciti, Patricia; Kelesidis, Iosif; Aufiero, Daniela; De Rosa, Veronica; Perna, Francesco; Fontana, Silvia; Mantzoros, Christos S

    2006-05-30

    To elucidate whether the role of leptin in regulating neuroendocrine and immune function during short-term starvation in healthy humans is permissive, i.e., occurs only when circulating leptin levels are below a critical threshold level, we studied seven normal-weight women during a normoleptinemic-fed state and two states of relative hypoleptinemia induced by 72-h fasting during which we administered either placebo or recombinant methionyl human leptin (r-metHuLeptin) in replacement doses. Fasting for 72 h decreased leptin levels by approximately = 80% from a midphysiologic (14.7 +/- 2.6 ng/ml) to a low-physiologic (2.8 +/- 0.3 ng/ml) level. Administration of r-metHuLeptin during fasting fully restored leptin to physiologic levels (28.8 +/- 2.0 ng/ml) and reversed the fasting-associated decrease in overnight luteinizing hormone pulse frequency but had no effect on fasting-induced changes in thyroid-stimulating hormone pulsatility, thyroid and IGF-1 hormone levels, hypothalamic-pituitary-adrenal and renin-aldosterone activity. FSH and sex steroid levels were not altered. Short-term reduction of leptin levels decreased the number of circulating cells of the adaptive immune response, but r-metHuLeptin did not have major effects on their number or in vitro function. Thus, changes of leptin levels within the physiologic range have no major physiologic effects in leptin-replete humans. Studies involving more severe and/or chronic leptin deficiency are needed to precisely define the lower limit of normal leptin levels for each of leptin's physiologic targets.

  3. Adipose tissue as an endocrine organ: role of leptin and adiponectin in the pathogenesis of cardiovascular diseases.

    PubMed

    Fortuño, A; Rodríguez, A; Gómez-Ambrosi, J; Frühbeck, G; Díez, J

    2003-03-01

    Obesity, the most common nutritional disorder in industrial countries, is associated with increased cardiovascular mortality and morbidity. Nevertheless, the molecular basis linking obesity with cardiovascular disturbances have not yet been fully clarified. Recent advances in the biology of adipose tissue indicate that it is not simply an energy storage organ, but also a secretory organ, producing a variety of bioactive substances, including leptin and adiponectin, that may influence the function as well as the structural integrity of the cardiovascular system. Leptin, besides being a satiety signal for the central nervous system and to be related to insulin and glucose metabolism, may also play an important role in regulating vascular tone because of the widespread distribution of functional receptors in the vascular cells. On the other hand, the more recently discovered protein, adiponectin, seems to play a protective role in experimental models of vascular injury, in probable relation to its ability to suppress the attachment of monocytes to endothelial cells, which is an early event in the atherosclerotic process. There is already considerable evidence linking altered production of some adipocyte hormones with the cardiovascular complications of obesity. Therefore, the knowledge of alterations in the endocrine function of adipose tissue may help to further understand the high cardiovascular risk associated with obesity.

  4. Signal transduction mechanism for glucagon-induced leptin gene expression in goldfish liver

    PubMed Central

    Yan, Ai-fen; Chen, Ting; Chen, Shuang; Tang, Dong-sheng; Liu, Fang; Jiang, Xiao; Huang, Wen; Ren, Chun-hua; Hu, Chao-qun

    2016-01-01

    Leptin is a peripheral satiety hormone that also plays important roles in energy homeostasis in vertebrates ranging from fish to mammals. In teleost fish, however, the regulatory mechanism for leptin gene expression still remains unclear. In this study, we found that glucagon, a key hormone in glucose homeostasis, was effective at elevating the leptin-AI and leptin-AII transcript levels in goldfish liver via both in vivo intraperitoneal injection and in vitro cells incubation approaches. The responses of leptin-AI and leptin-AII mRNA to glucagon treatment were highly comparable. In contrast, blockade of local glucagon action could reduce the basal and induced leptin-AI and leptin-AII mRNA expression. The stimulation of leptin levels by glucagon was caused by the activation of adenylate cyclase (AC)/cyclic-AMP (cAMP)/ protein kinase A (PKA), and probably cAMP response element-binding protein (CREB) cascades. Our study described the effect and signal transduction mechanism of glucagon on leptin gene expression in goldfish liver, and may also provide new insight into leptin as a mediator in the regulatory network of energy metabolism in the fish model. PMID:27994518

  5. Signal transduction mechanism for glucagon-induced leptin gene expression in goldfish liver.

    PubMed

    Yan, Ai-Fen; Chen, Ting; Chen, Shuang; Tang, Dong-Sheng; Liu, Fang; Jiang, Xiao; Huang, Wen; Ren, Chun-Hua; Hu, Chao-Qun

    2016-01-01

    Leptin is a peripheral satiety hormone that also plays important roles in energy homeostasis in vertebrates ranging from fish to mammals. In teleost fish, however, the regulatory mechanism for leptin gene expression still remains unclear. In this study, we found that glucagon, a key hormone in glucose homeostasis, was effective at elevating the leptin-AI and leptin-AII transcript levels in goldfish liver via both in vivo intraperitoneal injection and in vitro cells incubation approaches. The responses of leptin-AI and leptin-AII mRNA to glucagon treatment were highly comparable. In contrast, blockade of local glucagon action could reduce the basal and induced leptin-AI and leptin-AII mRNA expression. The stimulation of leptin levels by glucagon was caused by the activation of adenylate cyclase (AC)/cyclic-AMP (cAMP)/ protein kinase A (PKA), and probably cAMP response element-binding protein (CREB) cascades. Our study described the effect and signal transduction mechanism of glucagon on leptin gene expression in goldfish liver, and may also provide new insight into leptin as a mediator in the regulatory network of energy metabolism in the fish model.

  6. Leptin regulates striatal regions and human eating behavior.

    PubMed

    Farooqi, I Sadaf; Bullmore, Edward; Keogh, Julia; Gillard, Jonathan; O'Rahilly, Stephen; Fletcher, Paul C

    2007-09-07

    Studies of the fat-derived hormone leptin have provided key insights into the molecular and neural components of feeding behavior and body weight regulation. An important challenge lies in understanding how the rewarding properties of food interact with, and can override, physiological satiety signals and promote overeating. We used functional magnetic resonance imaging to measure brain responses in two human patients with congenital leptin deficiency who were shown images of food before and after 7 days of leptin replacement therapy. Leptin was found to modulate neural activation in key striatal regions, suggesting that the hormone acts on neural circuits governing food intake to diminish the perception of food reward while enhancing the response to satiety signals generated during food consumption.

  7. Adipocytes promote prostate cancer stem cell self-renewal through amplification of the cholecystokinin autocrine loop

    PubMed Central

    Tang, Kai-Dun; Liu, Ji; Jovanovic, Lidija; An, Jiyuan; Hill, Michelle M.; Vela, Ian; Lee, Terence Kin-Wah; Ma, Stephanie; Nelson, Colleen; Russell, Pamela J.; Clements, Judith A.; Ling, Ming-Tat

    2016-01-01

    Obesity has long been linked with prostate cancer progression, although the underlying mechanism is still largely unknown. Here, we report that adipocytes promote the enrichment of prostate cancer stem cells (CSCs) through a vicious cycle of autocrine amplification. In the presence of adipocytes, prostate cancer cells actively secrete the peptide hormone cholecystokinin (CCK), which not only stimulates prostate CSC self-renewal, but also induces cathepsin B (CTSB) production of the adipocytes. In return, CTSB facilitates further CCK secretion by the cancer cells. More importantly, inactivation of CCK receptor not only suppresses CTSB secretion by the adipocytes, but also synergizes the inhibitory effect of CTSB inhibitor on adipocyte-promoted prostate CSC self-renewal. In summary, we have uncovered a novel mechanism underlying the mutual interplay between adipocytes and prostate CSCs, which may help explaining the role of adipocytes in prostate cancer progression and provide opportunities for effective intervention. PMID:26700819

  8. Adipocytes promote prostate cancer stem cell self-renewal through amplification of the cholecystokinin autocrine loop.

    PubMed

    Tang, Kai-Dun; Liu, Ji; Jovanovic, Lidija; An, Jiyuan; Hill, Michelle M; Vela, Ian; Lee, Terence Kin-Wah; Ma, Stephanie; Nelson, Colleen; Russell, Pamela J; Clements, Judith A; Ling, Ming-Tat

    2016-01-26

    Obesity has long been linked with prostate cancer progression, although the underlying mechanism is still largely unknown. Here, we report that adipocytes promote the enrichment of prostate cancer stem cells (CSCs) through a vicious cycle of autocrine amplification. In the presence of adipocytes, prostate cancer cells actively secrete the peptide hormone cholecystokinin (CCK), which not only stimulates prostate CSC self-renewal, but also induces cathepsin B (CTSB) production of the adipocytes. In return, CTSB facilitates further CCK secretion by the cancer cells. More importantly, inactivation of CCK receptor not only suppresses CTSB secretion by the adipocytes, but also synergizes the inhibitory effect of CTSB inhibitor on adipocyte-promoted prostate CSC self-renewal. In summary, we have uncovered a novel mechanism underlying the mutual interplay between adipocytes and prostate CSCs, which may help explaining the role of adipocytes in prostate cancer progression and provide opportunities for effective intervention.

  9. Hyperphagia and central mechanisms for leptin resistance during pregnancy.

    PubMed

    Trujillo, M L; Spuch, C; Carro, E; Señarís, R

    2011-04-01

    The purpose of this work was to study the central mechanisms involved in food intake regulation and leptin resistance during gestation in the rat. Sprague Dawley rats of 7, 13, and 18 d of pregnancy [days of gestation (G) 7, G13, and G18] were used and compared with nonpregnant animals in diestrus-1. Food intake was already increased in G7, before hyperleptinemia and central leptin resistance was established in midpregnancy. Leptin resistance was due to a reduction in leptin transport through the blood-brain barrier (BBB) and to alterations in leptin signaling within the hypothalamus based on an increase in suppressor of cytokine signaling 3 levels and a blockade of signal transducer and activator of transcription-3 phosphorylation (G13), followed by a decrease in LepRb and of Akt phosphorylation (G18). In early gestation (G7), no change in hypothalamic neuropeptide Y (NPY), agouti-related peptide (AgRP), or proopiomelanocortin (POMC) expression was shown. Nevertheless, an increase in NPY and AgRP and a decrease in POMC mRNA were observed in G13 and G18 rats, probably reflecting the leptin resistance. To investigate the effect of maternal vs. placental hormones on these mechanisms, we used a model of pseudogestation. Rats of 9 d of pseudogestation were hyperphagic, showing an increase in body and adipose tissue weight, normoleptinemia, and normal responses to iv/intracerebroventricular leptin on hypothalamic leptin signaling, food intake, and body weight. Leptin transport through the BBB, and hypothalamic NPY, AgRP and POMC expression were unchanged. Finally, the transport of leptin through the BBB was assessed using a double-chamber culture system of choroid plexus epithelial cells or brain microvascular endothelial cells. We found that sustained high levels of prolactin significantly reduced leptin translocation through the barrier, whereas progesterone and β-estradiol did not show any effect. Our data demonstrate a dual mechanism of leptin resistance during mid

  10. The Anti-Tumor Activity of a Neutralizing Nanobody Targeting Leptin Receptor in a Mouse Model of Melanoma

    PubMed Central

    McMurphy, Travis; Xiao, Run; Magee, Daniel; Slater, Andrew; Zabeau, Lennart; Tavernier, Jan; Cao, Lei

    2014-01-01

    Environmental and genetic activation of a brain-adipocyte axis inhibits cancer progression. Leptin is the primary peripheral mediator of this anticancer effect in a mouse model of melanoma. In this study we assessed the effect of a leptin receptor antagonist on melanoma progression. Local administration of a neutralizing nanobody targeting the leptin receptor at low dose adjacent to tumor decreased tumor mass with no effects on body weight or food intake. In contrast, systemic administration of the nanobody failed to suppress tumor growth. Daily intraperitoneal injection of high-dose nanobody led to weight gain, hyperphagia, increased adiposity, hyperleptinemia, and hyperinsulinemia, and central effects mimicking leptin deficiency. The blockade of central actions of leptin by systemic delivery of nanobody may compromise its anticancer effect, underscoring the need to develop peripherally acting leptin antagonists coupled with efficient cancer-targeting delivery. PMID:24587106

  11. Leptin in chronic kidney disease: a link between hematopoiesis, bone metabolism, and nutrition.

    PubMed

    Zhang, Jingjing; Wang, Ningning

    2014-06-01

    Anemia, dyslipidemia, malnutrition, together with mineral and bone disorders are common complications in patients with chronic kidney disease (CKD). All are associated with increased risk of mortality. Leptin is a small peptide hormone that is mainly but not exclusively produced in adipose tissue. It is also secreted by normal human osteoblasts, subchondral osteoblasts, placental syncytiotrophoblasts, and the gastric epithelium. Leptin binds to its receptors in the hypothalamus to regulate bone metabolism and food intake. Leptin also has several other important metabolic effects on peripheral tissues, including the liver, skeletal muscle, and bone marrow. Leptin is cleared principally by the kidney. Not surprisingly, serum leptin appears to increase concurrently with declines in the glomerular filtration rate in patients with CKD. A growing body of evidence suggests that leptin might be closely related to hematopoiesis, nutrition, and bone metabolism in CKD patients. Results are conflicting regarding leptin in patients with CKD, in whom both beneficial and detrimental effects on uremia outcome are found. This review elucidates the discovery of leptin and its receptors, changes in serum or plasma leptin levels, the functions of leptin, relationships between leptin and the complications mentioned above, and pharmaceutical interventions in serum leptin levels in patients with CKD.

  12. Plasma Leptin Levels in Children Hospitalized with Cholera in Bangladesh.

    PubMed

    Falkard, Brie; Uddin, Taher; Rahman, M Arifur; Franke, Molly F; Aktar, Amena; Uddin, Muhammad Ikhtear; Bhuiyan, Taufiqur Rahman; Leung, Daniel T; Charles, Richelle C; Larocque, Regina C; Harris, Jason B; Calderwood, Stephen B; Qadri, Firdausi; Ryan, Edward T

    2015-08-01

    Vibrio cholerae, the cause of cholera, induces both innate and adaptive immune responses in infected humans. Leptin is a hormone that plays a role in both metabolism and mediating immune responses. We characterized leptin levels in 11 children with cholera in Bangladesh, assessing leptin levels on days 2, 7, 30, and 180 following cholera. We found that patients at the acute stage of cholera had significantly lower plasma leptin levels than matched controls, and compared with levels in late convalescence. We then assessed immune responses to V. cholerae antigens in 74 children with cholera, correlating these responses to plasma leptin levels on day 2 of illness. In multivariate analysis, we found an association between day 2 leptin levels and development of later anti-cholera toxin B subunit (CtxB) responses. This finding appeared to be limited to children with better nutritional status. Interestingly, we found no association between leptin levels and antibody responses to V. cholerae lipopolysaccharide, a T cell-independent antigen. Our results suggest that leptin levels may be associated with cholera, including the development of immune responses to T cell-dependent antigens.

  13. Leptin and the brain: influences on brain development, cognitive functioning and psychiatric disorders.

    PubMed

    Farr, Olivia M; Tsoukas, Michael A; Mantzoros, Christos S

    2015-01-01

    Receptors of leptin, the prototypical adipokine, are expressed throughout the cortex and several other areas of the brain. Although typically studied for its role in energy intake and expenditure, leptin plays a critical role in many other neurocognitive processes and interacts with various other hormones and neurotransmitters to perform these functions. Here, we review the literature on how leptin influences brain development, neural degradation, Alzheimer's disease, psychiatric disorders, and more complicated cognitive functioning and feeding behaviors. We also discuss modulators of leptin and the leptin receptor as they relate to normal cognitive functioning and may mediate some of the actions of leptin in the brain. Although we are beginning to better understand the critical role leptin plays in normal cognitive functioning, there is much to be discovered.

  14. Crosstalk between Leptin Receptor and Igf-Ir in Breast Cancer: A Potential Mediator of Chemoresistance

    DTIC Science & Technology

    2008-04-01

    AD_________________ Award Number: W81XWH-06-1-0452 TITLE: Crosstalk between Leptin Receptor and Igf...NUMBER Crosstalk between Leptin Receptor and Igf-Ir in Breast Cancer: A Potential Mediator of Chemoresistance 5b. GRANT NUMBER W81XWH-06-1...cancer, and is associated with reduced treatment response and reduced overall survival. The obesity-associated hormones IGF-I and leptin and their

  15. Hormonal regulation of energy partitioning.

    PubMed

    Rohner-Jeanrenaud, F

    2000-06-01

    A loop system exists between hypothalamic neuropeptide Y (NPY) and peripheral adipose tissue leptin to maintain normal body homeostasis. When hypothalamic NPY levels are increased by fasting or by intracerebroventricular (i.c.v.) infusion, food intake and body weight increase. NPY has genuine hormono-metabolic effects. It increases insulin and corticosterone secretion relative to controls. These hormonal changes, acting singly or combined, favor adipose tissue lipogenic activity, while producing muscle insulin resistance. They also promote leptin release from adipose tissue. When infused i.c.v. to normal rats to mimic its central effects, leptin decreases NPY levels, thus food intake and body weight. Leptin i.c.v. has also genuine hormono-metabolic effects. It decreases insulinemia and adipose tissue storage ability, enhancing glucose disposal. Leptin increases the expression of uncoupling proteins (UCP-1, -2, -3) and thus energy dissipation. Leptin-induced changes favor oxidation at the expense of storage. Circadian fluctuations of NPY and leptin levels maintain normal body homeostasis. In animal obesity, defective hypothalamic leptin receptor activation prevent leptin from acting, with resulting obesity, insulin and leptin resistance.

  16. Knockdown of PTRF ameliorates adipocyte differentiation and functionality of human mesenchymal stem cells.

    PubMed

    Perez-Diaz, Sergio; Garcia-Rodriguez, Beatriz; Gonzalez-Irazabal, Yolanda; Valero, Monica; Lagos-Lizan, Javier; Arbones-Mainar, Jose M

    2017-01-01

    Healthy expansion of human adipose tissue requires mesenchymal stem cells (hMSC) able to proliferate and differentiate into mature adipocytes. Hence, characterization of those factors that coordinate hMSC-to-adipocyte transition is of paramount importance to modulate the adipose tissue expansion. It has been previously reported that the adipogenic program of hMSC can be disrupted by upregulating caveolar proteins, and polymerase I and transcript release factor (PTRF) is an integral component of caveolae, highly expressed in adipose tissue. Here, we hypothesized that the role of PTRF in adipocyte functionality might stem from an effect on hMSC. To test this hypothesis, we isolated hMSC from the subcutaneous fat depot. We found an upregulated expression of the PTRF associated with decreased adipogenic potential of hMSC, likely due to the existence of senescent adipocyte precursors. Employing short hairpin RNA-based constructs to stably reduce PTRF, we were able to restore insulin sensitivity and reduced basal lipolysis and leptin levels in human adipocytes with high levels of PTRF. Additionally, we pinpointed the detrimental effect caused by PTRF on the adipose tissue to the existence of senescent adipocyte precursors unable to proliferate and differentiate into adipocytes. This study provides evidence that impaired adipocyte functionality can be corrected, at least partially, by PTRF downregulation and warrants further in vivo research in patients with dysfunctional adipose tissue to prevent metabolic complications.

  17. Characterization of Tusc5, an adipocyte gene co-expressed in peripheral neurons.

    PubMed

    Oort, Pieter J; Warden, Craig H; Baumann, Thomas K; Knotts, Trina A; Adams, Sean H

    2007-09-30

    Tumor suppressor candidate 5 (Tusc5, also termed brain endothelial cell derived gene-1 or BEC-1), a CD225 domain-containing, cold-repressed gene identified during brown adipose tissue (BAT) transcriptome analyses was found to be robustly-expressed in mouse white adipose tissue (WAT) and BAT, with similarly high expression in human adipocytes. Tusc5 mRNA was markedly increased from trace levels in pre-adipocytes to significant levels in developing 3T3-L1 adipocytes, coincident with several mature adipocyte markers (phosphoenolpyruvate carboxykinase 1, GLUT4, adipsin, leptin). The Tusc5 transcript levels were increased by the peroxisome proliferator activated receptor-gamma (PPARgamma) agonist GW1929 (1microg/mL, 18h) by >10-fold (pre-adipocytes) to approximately 1.5-fold (mature adipocytes) versus controls (p<0.0001). Taken together, these results suggest an important role for Tusc5 in maturing adipocytes. Intriguingly, we discovered robust co-expression of the gene in peripheral nerves (primary somatosensory neurons). In light of the marked repression of the gene observed after cold exposure, these findings may point to participation of Tusc5 in shared adipose-nervous system functions linking environmental cues, CNS signals, and WAT-BAT physiology. Characterization of such links is important for clarifying the molecular basis for adipocyte proliferation and could have implications for understanding the biology of metabolic disease-related neuropathies.

  18. Leptin as a mediator of tumor-stromal interactions promotes breast cancer stem cell activity.

    PubMed

    Giordano, Cinzia; Chemi, Francesca; Panza, Salvatore; Barone, Ines; Bonofiglio, Daniela; Lanzino, Marilena; Cordella, Angela; Campana, Antonella; Hashim, Adnan; Rizza, Pietro; Leggio, Antonella; Győrffy, Balázs; Simões, Bruno M; Clarke, Robert B; Weisz, Alessandro; Catalano, Stefania; Andò, Sebastiano

    2016-01-12

    Breast cancer stem cells (BCSCs) play crucial roles in tumor initiation, metastasis and therapeutic resistance. A strict dependency between BCSCs and stromal cell components of tumor microenvironment exists. Thus, novel therapeutic strategies aimed to target the crosstalk between activated microenvironment and BCSCs have the potential to improve clinical outcome. Here, we investigated how leptin, as a mediator of tumor-stromal interactions, may affect BCSC activity using patient-derived samples (n = 16) and breast cancer cell lines, and determined the potential benefit of targeting leptin signaling in these model systems. Conditioned media (CM) from cancer-associated fibroblasts and breast adipocytes significantly increased mammosphere formation in breast cancer cells and depletion of leptin from CM completely abrogated this effect. Mammosphere cultures exhibited increased leptin receptor (OBR) expression and leptin exposure enhanced mammosphere formation. Microarray analyses revealed a similar expression profile of genes involved in stem cell biology among mammospheres treated with CM and leptin. Interestingly, leptin increased mammosphere formation in metastatic breast cancers and expression of OBR as well as HSP90, a target of leptin signaling, were directly correlated with mammosphere formation in metastatic samples (r = 0.68/p = 0.05; r = 0.71/p = 0.036, respectively). Kaplan-Meier survival curves indicated that OBR and HSP90 expression were associated with reduced overall survival in breast cancer patients (HR = 1.9/p = 0.022; HR = 2.2/p = 0.00017, respectively). Furthermore, blocking leptin signaling by using a full leptin receptor antagonist significantly reduced mammosphere formation in breast cancer cell lines and patient-derived samples. Our results suggest that leptin/leptin receptor signaling may represent a potential therapeutic target that can block the stromal-tumor interactions driving BCSC-mediated disease progression.

  19. Leptin in early life: a key factor for the development of the adult metabolic profile.

    PubMed

    Granado, Miriam; Fuente-Martín, Esther; García-Cáceres, Cristina; Argente, Jesús; Chowen, Julie A

    2012-01-01

    Leptin levels during the perinatal period are important for the development of metabolic systems involved in energy homeostasis. In rodents, there is a postnatal leptin surge, with circulating leptin levels increasing around postnatal day (PND) 5 and peaking between PND 9 and PND 10. At this time circulating leptin acts as an important trophic factor for the development of hypothalamic circuits that control energy homeostasis and food seeking and reward behaviors. Blunting the postnatal leptin surge results in long-term leptin insensitivity and increased susceptibility to diet-induced obesity during adulthood. Pharmacologically increased leptin levels in the postnatal period also have long-term effects on metabolism. Nevertheless, this effect is controversial as postnatal hyperleptinemia is reported to both increase and decrease the predisposition to obesity in adulthood. The different effects reported in the literature could be explained by the different moments at which this hormone was administered, suggesting that modifications of the neonatal leptin surge at specific time points could selectively affect the development of central and peripheral systems that are undergoing modifications at this moment resulting in different metabolic and behavioral outcomes. In addition, maternal nutrition and the hormonal environment during pregnancy and lactation may also modulate the offspring's response to postnatal modifications in leptin levels. This review highlights the importance of leptin levels during the perinatal period in the development of metabolic systems that control energy homeostasis and how modifications of these levels may induce long-lasting and potentially irreversible effects on metabolism.

  20. Leptin as a Marker of Body Fat and Hyperinsulinemia in College Students

    ERIC Educational Resources Information Center

    Kempf, Angela M.; Strother, Myra L.; Li, Chaoyang; Kaur, Harsohena; Huang, Terry T-K.

    2006-01-01

    Little is known about obesity and insulin resistance in college students. Leptin is a hormone secreted by fat cells and has been shown to strongly correlate with both obesity and insulin resistance in children and adults. We investigated associations of leptin with insulin secretion and action in 119 normal-weight students aged 18-24 years. Leptin…

  1. Leptin treatment: facts and expectations.

    PubMed

    Paz-Filho, Gilberto; Mastronardi, Claudio A; Licinio, Julio

    2015-01-01

    Leptin has key roles in the regulation of energy balance, body weight, metabolism, and endocrine function. Leptin levels are undetectable or very low in patients with lipodystrophy, hypothalamic amenorrhea, and congenital leptin deficiency (CLD) due to mutations in the leptin gene. For these patients, leptin replacement therapy with metreleptin (a recombinant leptin analog) has improved or normalized most of their phenotypes, including normalization of endocrine axes, decrease in insulin resistance, and improvement of lipid profile and hepatic steatosis. Remarkable weight loss has been observed in patients with CLD. Due to its effects, leptin therapy has also been evaluated in conditions where leptin levels are normal or high, such as common obesity, diabetes (types 1 and 2), and Rabson-Mendenhall syndrome. A better understanding of the physiological roles of leptin may lead to the development of leptin-based therapies for other prevalent disorders such as obesity-associated nonalcoholic fatty liver disease, depression and dementia.

  2. Induction by leptin of uncoupling protein-2 and enzymes of fatty acid oxidation

    PubMed Central

    Zhou, Yan-Ting; Shimabukuro, Michio; Koyama, Kazunori; Lee, Young; Wang, May-Yun; Trieu, Falguni; Newgard, Christopher B.; Unger, Roger H.

    1997-01-01

    We have studied mechanisms by which leptin overexpression, which reduces body weight via anorexic and thermogenic actions, induces triglyceride depletion in adipocytes and nonadipocytes. Here we show that leptin alters in pancreatic islets the mRNA of the genes encoding enzymes of free fatty acid metabolism and uncoupling protein-2 (UCP-2). In animals infused with a recombinant adenovirus containing the leptin cDNA, the levels of mRNAs encoding enzymes of mitochondrial and peroxisomal oxidation rose 2- to 3-fold, whereas mRNA encoding an enzyme of esterification declined in islets from hyperleptinemic rats. Islet UCP-2 mRNA rose 6-fold. All in vivo changes occurred in vitro in normal islets cultured with recombinant leptin, indicating direct extraneural effects. Leptin overexpression increased UCP-2 mRNA by more than 10-fold in epididymal, retroperitoneal, and subcutaneous fat tissue of normal, but not of leptin–receptor-defective obese rats. By directly regulating the expression of enzymes of free fatty acid metabolism and of UCP-2, leptin controls intracellular triglyceride content of certain nonadipocytes, as well as adipocytes. PMID:9177227

  3. Role of leptin in female reproduction.

    PubMed

    Pérez-Pérez, Antonio; Sánchez-Jiménez, Flora; Maymó, Julieta; Dueñas, José L; Varone, Cecilia; Sánchez-Margalet, Víctor

    2015-01-01

    Reproductive function is dependent on energy resources. The role of weight, body composition, fat distribution and the effect of diet have been largely investigated in experimental female animals as well as in women. Any alteration in diet and/or weight may induce abnormalities in timing of sexual maturation and fertility. However, the cellular mechanisms involved in the fine coordination of energy balance and reproduction are largely unknown. The brain and hypothalamic structures receive endocrine and/or metabolic signals providing information on the nutritional status and the degree of fat stores. Adipose tissue acts both as a store of energy and as an active endocrine organ, secreting a large number of biologically important molecules termed adipokines. Adipokines have been shown to be involved in regulation of the reproductive functions. The first adipokine described was leptin. Extensive research over the last 10 years has shown that leptin is not only an adipose tissue-derived messenger of the amount of energy stores to the brain, but also a crucial hormone/cytokine for a number of diverse physiological processes, such as inflammation, angiogenesis, hematopoiesis, immune function, and most importantly, reproduction. Leptin plays an integral role in the normal physiology of the reproductive system with complex interactions at all levels of the hypothalamic-pituitary gonadal (HPG) axis. In addition, leptin is also produced by placenta, where it plays an important autocrine function. Observational studies have demonstrated that states of leptin excess, deficiency, or resistance can be associated with abnormal reproductive function. This review focuses on the leptin action in female reproduction.

  4. Shrinking and development of lipid droplets in adipocytes during catecholamine-induced lipolysis.

    PubMed

    Nagayama, Masafumi; Shimizu, Kyoko; Taira, Toshio; Uchida, Tsutomu; Gohara, Kazutoshi

    2010-01-04

    Time-lapse observation of adipocytes during catecholamine-induced lipolysis clearly shows that shrinking of existing lipid droplets (LDs) occurs in some adipocytes and that small LDs are newly developed in almost all cells. Immunofluorescence imaging reveals that activation and localization of hormone-sensitive lipase (HSL) on the surface of LDs, which are required for conferring maximal lipolysis, are necessary for the shrinking of the LDs. However, not all adipocytes in which phosphorylated HSL is localized on LDs exhibit shrinking of LDs. The simultaneous shrinking and development of LDs yield apparent fragmentation and dispersion of LDs in adipocytes stimulated with catecholamine.

  5. Carbon monoxide-releasing molecules reverse leptin resistance induced by endoplasmic reticulum stress.

    PubMed

    Zheng, Min; Zhang, Qinggao; Joe, Yeonsoo; Kim, Seul-Ki; Uddin, Md Jamal; Rhew, Hyunyul; Kim, Taeksang; Ryter, Stefan W; Chung, Hun Taeg

    2013-04-01

    Leptin, a circulating hormone, regulates food intake and body weight. While leptin resistance represents a major cause of obesity, the underlying mechanisms remain unclear. Endoplasmic reticulum (ER) stress can contribute to leptin resistance. Carbon monoxide (CO), a gaseous molecule, exerts antiapoptotic and anti-inflammatory effects in animal models of tissue injury. We hypothesized that CO could inhibit leptin resistance during ER stress. Thapsigargin or tunicamycin was used to induce ER stress in human cells expressing the leptin receptor. These agents markedly inhibited leptin-induced STAT3 phosphorylation, confirming that ER stress induces leptin resistance. The CO-releasing molecule CORM-2 blocked the ER stress-dependent inhibition of leptin-induced STAT3 phosphorylation. CORM-2 treatment induced the phosphorylation of protein kinase R-like endoplasmic reticulum kinase (PERK), and eukaryotic translation initiation factor-2α and enhanced PERK phosphorylation during ER stress. Furthermore, CORM-2 inhibited X-box binding protein-1 expression, activating transcription factor-6 cleavage, and inositol-requiring enzyme (IRE)1α phosphorylation induced by ER stress. IRE1α knockdown rescued leptin resistance, whereas PERK knockdown blocked CO-dependent regulation of IRE1α. In vivo, CO inhalation normalized body weight in animals fed high-fat diets. Furthermore, CO modulated ER stress pathways and rescued leptin resistance in vivo. In conclusion, the pathological mechanism of leptin resistance may be ameliorated by the pharmacological application of CO.

  6. Leptin and its receptors in the course of pregnancy in the rat.

    PubMed

    Szczepankiewicz, Dawid; Wojciechowicz, Tatiana; Kaczmarek, Przemyslaw; Nowak, Krzysztof W

    2006-01-01

    Control of processes responsible for food intake and regulation of energy homeostasis during pregnancy is crucial for mother as well as for fetus development. Leptin is one of the main hormonal factors involved in regulation these processes in organisms. During pregnancy leptin regulates mother's energy balance and may also affect fetus growth and development, particularly via receptors in hypothalamus arcuate nuclei (ARC), pituitary and placenta. In the present study, serum leptin levels and expression of both short (ObRs) and long (ObRb) form of leptin receptor in the hypothalamus, pituitary and placenta were measured in the course of pregnancy. The results of these studies indicate that leptin concentration in serum increases during pregnancy and decreases 24 h after the delivery. The expression of both short and long forms of the leptin receptor in the hypothalamus decreases in the course of pregnancy and increases after the delivery. In the pituitary, however, a decrease of leptin receptor mRNA during pregnancy was observed only for ObRb. Analysis of placental leptin receptor expression demonstrated an increase of ObRb and constant high levels of ObRs mRNA. Our results suggest that changes in leptin level and its receptor expression may influence the energy homeostasis during pregnancy. In addition, changes in ObR expression are suggestive for: i) leptin resistance in the hypothalamus and pituitary; and ii) an increased leptin-dependent signaling in the placenta.

  7. PPAR gamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance.

    PubMed

    Kubota, N; Terauchi, Y; Miki, H; Tamemoto, H; Yamauchi, T; Komeda, K; Satoh, S; Nakano, R; Ishii, C; Sugiyama, T; Eto, K; Tsubamoto, Y; Okuno, A; Murakami, K; Sekihara, H; Hasegawa, G; Naito, M; Toyoshima, Y; Tanaka, S; Shiota, K; Kitamura, T; Fujita, T; Ezaki, O; Aizawa, S; Kadowaki, T

    1999-10-01

    Agonist-induced activation of peroxisome proliferator-activated receptor gamma (PPAR gamma) is known to cause adipocyte differentiation and insulin sensitivity. The biological role of PPAR gamma was investigated by gene targeting. Homozygous PPAR gamma-deficient embryos died at 10.5-11.5 dpc due to placental dysfunction. Quite unexpectedly, heterozygous PPAR gamma-deficient mice were protected from the development of insulin resistance due to adipocyte hypertrophy under a high-fat diet. These phenotypes were abrogated by PPAR gamma agonist treatment. Heterozygous PPAR gamma-deficient mice showed overexpression and hypersecretion of leptin despite the smaller size of adipocytes and decreased fat mass, which may explain these phenotypes at least in part. This study reveals a hitherto unpredicted role for PPAR gamma in high-fat diet-induced obesity due to adipocyte hypertrophy and insulin resistance, which requires both alleles of PPAR gamma.

  8. Conjugated Linoleic Acid Induces Human Adipocyte Delipidation

    PubMed Central

    Brown, J. Mark; Boysen, Maria Sandberg; Chung, Soonkyu; Fabiyi, Olowatoyin; Morrison, Ron F.; Mandrup, Susanne; McIntosh, Michael K.

    2005-01-01

    Dietary conjugated linoleic acid (CLA) reduces body fat in animals and some humans. Here we show that trans-10, cis-12 CLA, but not cis-9, trans-11 CLA, when added to cultures of stromal vascular cells containing newly differentiated human adipocytes, caused a time-dependent decrease in triglyceride content, insulin-stimulated glucose and fatty acid uptake, incorporation into lipid, and oxidation compared with controls. In parallel, gene expression of peroxisome proliferator-activated receptor-γ and many of its downstream targets were diminished by trans-10, cis-12 CLA, whereas leptin gene expression was increased. Prior to changes in gene expression and metabolism, trans-10, cis-12 CLA caused a robust and sustained activation of mitogen-activated protein kinase kinase/extracellular signal-related kinase (MEK/ERK) signaling. Furthermore, the trans-10, cis-12 CLA-mediated activation of MEK/ERK could be attenuated by pretreatment with U0126 and pertussis toxin. In parallel, pretreatment with U0126 blocked the ability of trans-10, cis-12 CLA to alter gene expression and attenuate glucose and fatty acid uptake of the cultures. Intriguingly, the induction by CLA of MEK/ERK signaling was linked to hypersecretion of adipocytokines interleukin-6 and interleukin-8. Collectively, these data demonstrate for the first time that trans-10, cis-12 CLA decreases the triglyceride content of newly differentiated human adipocytes by inducing MEK/ERK signaling through the autocrine/paracrine actions of interleukins-6 and 8. PMID:15067015

  9. Leptin secretion and leptin receptor in the human stomach

    PubMed Central

    Sobhani, I; Bado, A; Vissuzaine, C; Buyse, M; Kermorgant, S; Laigneau, J; Attoub, S; Lehy, T; Henin, D; Mignon, M; Lewin, M

    2000-01-01

    BACKGROUND AND AIM—The circulating peptide leptin produced by fat cells acts on central receptors to control food intake and body weight homeostasis. Contrary to initial reports, leptin expression has also been detected in the human placenta, muscles, and recently, in rat gastric chief cells. Here we investigate the possible presence of leptin and leptin receptor in the human stomach.
METHODS—Leptin and leptin receptor expression were assessed by immunohistochemistry, reverse transcriptase-polymerase chain reaction (RT-PCR), and western blot analysis on biopsy samples from 24 normal individuals. Fourteen (10 healthy volunteers and four patients with non-ulcer dyspepsia and normal gastric mucosa histology) were analysed for gastric secretions. Plasma and fundic mucosa leptin content was determined by radioimmunoassay.
RESULTS—In fundic biopsies from normal individuals, immunoreactive leptin cells were found in the lower half of the fundic glands. mRNA encoding ob protein was detected in the corpus of the human stomach. The amount of fundic leptin was 10.4 (3.7) ng leptin/g mucosa, as determined by radioimmunoassay. Intravenous infusions of pentagastrin or secretin caused an increase in circulating leptin levels and leptin release into the gastric juice. The leptin receptor was present in the basolateral membranes of fundic and antral gastric cells. mRNA encoding Ob-RL was detected in both the corpus and antrum, consistent with a protein of ~120 kDa detected by immunoblotting.
CONCLUSION—These data provide the first evidence of the presence of leptin and leptin receptor proteins in the human stomach and suggest that gastric epithelial cells may be direct targets for leptin. Therefore, we conclude that leptin may have a physiological role in the human stomach, although much work is required to establish this.


Keywords: leptin; leptin receptor; human stomach; gastrin; secretin PMID:10896907

  10. [Leptin in persons with simple obesity].

    PubMed

    Stejskal, D; Růzicka, V; Hrubísková, L; Hrebícek, J; Bartek, J; Franková, M; Pastorková, R; Mohapl, P; Vávrová, J

    1997-09-01

    Obesity is a disease with distinct genetic determination and its phenotype is defined by the still unknown number of genes whose expression can be influenced by environmental factors. Several years ago, "obesity gene" was isolated in animals. This gene, coding protein which consists of 165 amino acids, is called leptin. Leptin is supposed to be a key substance controlling homeostasis of body weight and energy balance; it is produced by adipocytes and its value correlates highly significantly with anthropometric parameters that characterize physical constitution and amount of subcutaneous fatty tissue. The obese individuals often display hyperleptinemia which is frequently caused by a postreceptor disorder; sporadically, a different leptin structure or hypoleptinemia (caused by genetic anomaly) are reported. It is supposed that either absolute or relative leptin deficiency in obese persons are associated with causal obesity (e.g. appetite stimulation). Leptinemia values correlate with percentage of subcutaneous fatty tissue, insulinemia and sometimes with glycemia. In our study we examined 200 probands, patients of the Metabolic and Diabetologic Out-Patient Department, Hospital in Sternberk. A very close correlation between the amount of subcutaneous fatty tissue (measured by a caliper in 10 skinfolds) and the leptine serum concentration was found. The values of leptinemia in men of normal constitution ranged within 1-11 ng/ml, non-obese women had 3-4 times higher values. Leptinemia in some obese individuals reached up to 70 ng/ml. However, the currently calculated and reported parameters of physical constitution (BMI, WHR, Grant index) did not correlate significantly with leptinemia. Similarly, biochemical parameters considered as general markers of insulin resistance (often associated with obesity) did not correlate significantly with leptinemia. This finding indicates that some calculated parameters, quantifying and gualifying physical constitution, may be

  11. Mechanical Vibration Mitigates the Decrease of Bone Quantity and Bone Quality of Leptin Receptor-Deficient Db/Db Mice by Promoting Bone Formation and Inhibiting Bone Resorption.

    PubMed

    Jing, Da; Luo, Erping; Cai, Jing; Tong, Shichao; Zhai, Mingming; Shen, Guanghao; Wang, Xin; Luo, Zhuojing

    2016-09-01

    Leptin, a major hormonal product of adipocytes, is involved in regulating appetite and energy metabolism. Substantial studies have revealed the anabolic actions of leptin on skeletons and bone cells both in vivo and in vitro. Growing evidence has substantiated that leptin receptor-deficient db/db mice exhibit decreased bone mass and impaired bone microstructure despite several conflicting results previously reported. We herein systematically investigated bone microarchitecture, mechanical strength, bone turnover and its potential molecular mechanisms in db/db mice. More importantly, we also explored an effective approach for increasing bone mass in leptin receptor-deficient animals in an easy and noninvasive manner. Our results show that deterioration of trabecular and cortical bone microarchitecture and decreases of skeletal mechanical strength-including maximum load, yield load, stiffness, energy, tissue-level modulus and hardness-in db/db mice were significantly ameliorated by 12-week, whole-body vibration (WBV) with 0.5 g, 45 Hz via micro-computed tomography (μCT), three-point bending, and nanoindentation examinations. Serum biochemical analysis shows that WBV significantly decreased serum tartrate-resistant acid phosphatase 5b (TRACP5b) and CTx-1 levels and also mitigated the reduction of serum osteocalcin (OCN) in db/db mice. Bone histomorphometric analysis confirmed that decreased bone formation-lower mineral apposition rate, bone formation rate, and osteoblast numbers in cancellous bone-in db/db mice were suppressed by WBV. Real-time PCR assays show that WBV mitigated the reductions of tibial alkaline phosphatase (ALP), OCN, Runt-related transcription factor 2 (RUNX2), type I collagen (COL1), BMP2, Wnt3a, Lrp6, and β-catenin mRNA expression, and prevented the increases of tibial sclerostin (SOST), RANK, RANKL, RANL/osteoprotegerin (OPG) gene levels in db/db mice. Our results show that WBV promoted bone quantity and quality in db/db mice with obvious

  12. Leptin enhances survival and induces migration, degranulation, and cytokine synthesis of human basophils.

    PubMed

    Suzukawa, Maho; Nagase, Hiroyuki; Ogahara, Ikuko; Han, Kaiyu; Tashimo, Hiroyuki; Shibui, Akiko; Koketsu, Rikiya; Nakae, Susumu; Yamaguchi, Masao; Ohta, Ken

    2011-05-01

    Basophils are the rarest leukocytes in human blood, but they are now recognized as one of the most important immunomodulatory as well as effector cells in allergic inflammation. Leptin, a member of the IL-6 cytokine family, has metabolic effects as an adipokine, and it is also known to participate in the pathogenesis of inflammatory reactions. Because there is an epidemiologic relationship between obesity and allergy, we examined whether basophil functions are modified by leptin. We found that human basophils express leptin receptor (LepR) at both the mRNA and surface protein levels, which were upregulated by IL-33. Leptin exerted strong effects on multiple basophil functions. It induced a strong migratory response in human basophils, similar in potency to that of basophil-active chemokines. Also, leptin enhanced survival of human basophils, although its potency was less than that of IL-3. Additionally, CD63, a basophil activation marker expressed on the cell surface, was upregulated by leptin, an effect that was neutralized by blocking of LepR. Assessments of basophil degranulation and cytokine synthesis found that leptin showed a strong priming effect on human basophil degranulation in response to FcεRI aggregation and induced Th2, but not Th1, cytokine production by the cells. In summary, the present findings indicate that leptin may be a key molecule mediating the effects of adipocytes on inflammatory cells such as basophils by binding to LepR and activating the cellular functions, presumably exacerbating allergic inflammation.

  13. Resistance to adenovirally induced hyperleptinemia in rats. Comparison of ventromedial hypothalamic lesions and mutated leptin receptors.

    PubMed Central

    Koyama, K; Shimabukuro, M; Chen, G; Wang, M Y; Lee, Y; Kalra, P S; Dube, M G; Kalra, S P; Newgard, C B; Unger, R H

    1998-01-01

    Leptin regulates appetite and body weight via hypothalamic targets, but it can act directly on cultured pancreatic islets to regulate their fat metabolism. To obtain in vivo evidence that leptin may act peripherally as well as centrally, we compared the effect of adenovirally induced hyperleptinemia on food intake, body weight, and islet fat content in ventromedial hypothalamic-lesioned (VMHL) rats, sham-lesioned (SL) controls, and Zucker Diabetic Fatty (ZDF) rats in which the leptin receptor is mutated. Infusion with recombinant adenovirus containing the rat leptin cDNA increased plasma leptin by approximately 20 ng/ml in VMHL and ZDF rats but had no effect on their food intake, body weight, or fat tissue weight. Caloric matching of hyperphagic VMHL rats to SL controls did not reduce their resistance to hyperleptinemia. Whereas prediabetic ZDF rats had a fourfold elevation in islet fat, in VMHL rats islet fat was normal and none of them became diabetic. Isolated islets from ZDF rats were completely resistant to the lipopenic action of leptin, while VMHL islets exhibited 50% of the normal response; caloric matching of VMHL rats to SL controls increased leptin responsiveness of their islets to 92% of controls. We conclude that leptin regulation of adipocyte fat requires an intact VMH but that islet fat content is regulated independently of the VMH. PMID:9710441

  14. Circulating leptin levels in juvenile idiopathic arthritis: a marker of nutritional status?

    PubMed Central

    Perfetto, F; Tarquini, R; Simonini, G; Bindi, G; Mancuso, F; Guiducci, S; Matucci-Cerinic, M; Falcini, F

    2005-01-01

    Objective: To assess if plasma leptin is a mediator of cytokine dependent decreased food intake during inflammatory diseases and if it is increased in JIA. Methods: Leptin levels were determined in 31 patients with polyarticular disease and in 37 with oligoarticular disease; 32 healthy children served as controls. Results: Patients had significantly reduced body mass index (BMI) compared with controls (17.3 (3) v 19.1 (3) kg/m2; p<0.005). Leptin was significantly lower in patients than controls (8.1 (4.8) v 10.7 (7.3) ng/ml; p = 0.036), but leptin/BMI values were similar. Absolute (8.2 (4.8) v 8 (4.9); p>0.05) and normalised (0.45 (0.24) v 0.47 (0.24); p>0.05) leptin levels were not significantly different between patients with active and inactive disease and between patients with oligoarticular and polyarticular arthritis (7.8 (4.4) v 8.6 (5.3); p>0.05 and 0.45 (0.23) v 0.48 (0.26); p>0.05, respectively). Conclusions: Leptin production per unit of fat mass is similar in patients and controls. The hypothesis that high levels of proinflammatory cytokines that characterise JIA might induce an increase of adipocytes leptin production is not supported by the results. Leptin may be a marker of nutritional status of JIA. PMID:15608316

  15. High fat diet-induced obesity modifies the methylation pattern of leptin promoter in rats.

    PubMed

    Milagro, F I; Campión, J; García-Díaz, D F; Goyenechea, E; Paternain, L; Martínez, J A

    2009-03-01

    Leptin is an adipokine involved in body weight and food intake regulation whose promoter region presents CpG islands that could be subject to dynamic methylation. This methylation process could be affected by environmental (e.g. diet) or endogenous (e.g., adipocyte differentiation, inflammation, hypoxia) factors, and could influence adipocyte leptin gene expression. The aim of this article was to study whether a high-energy diet may affect leptin gene promoter methylation in rats. A group of eleven male Wistar rats were assigned into two dietary groups, one fed on a control diet for 11 weeks and the other on a high-fat cafeteria diet. Rats fed a high-energy diet become overweight and hyperleptinemic as compared to the controls. DNA isolated from retroperitoneal adipocytes was treated with bisulfite and a distal portion of leptin promoter (from -694 to -372 bp) including 13 CpG sites was amplified by PCR and sequenced. The studied promoter portion was slightly more methylated in the cafeteria-fed animals, which was statistically significant (p < 0.05) for one of the CpG sites (located at the position -443). In obese rats, such methylation was associated to lower circulating leptin levels, suggesting that this position could be important in the regulation of leptin gene expression, probably by being a target sequence of different transcription factors. Our findings reveal, for the first time, that leptin methylation pattern can be influenced by diet-induced obesity, and suggest that epigenetic mechanisms could be involved in obesity by regulating the expression of important epiobesigenic genes.

  16. Cancer-associated adipocytes promotes breast tumor radioresistance

    SciTech Connect

    Bochet, Ludivine; Meulle, Aline; Imbert, Sandrine; Salles, Bernard; Valet, Philippe; Muller, Catherine

    2011-07-22

    Highlights: {yields} Tumor-surrounding adipocytes contribute to breast cancer progression. {yields} Breast tumor cells previously co-cultivated with mature adipocytes exhibit radioresistance. {yields} Increased in Chk1 phosphorylation is observed in irradiated co-cultivated tumor cells. {yields} IL-6 is over-expressed in tumor cells co-cultivated with adipocytes. {yields} IL-6 exposure confers increased Chk1 phosphorylation and radioresistance in tumor cells. -- Abstract: Mature adipocytes are excellent candidates to influence tumor behavior through heterotypic signaling processes since these cells produce hormones, growth factors, cytokines and other molecules, a heterogeneous group of molecules named adipokines. Using a 2D coculture system, we demonstrate that breast tumor cells previously co-cultivated with mature adipocytes exhibit radioresistance and an earlier and higher increase in the effector kinase Chk1, a phenotype that was associated with decreased cell death as compared to tumor cells grown alone. Interestingly, the adipocytes-induced tumor changes taking place during the coculture time preceding the exposure to IR were sufficient to confer the radioresistant effect. Notorious among the changes brought by adipocytes was the significant increase of IL-6 expression in tumor cells, whose activity may well account for the observed tumor cell protection from IR toxicity. Indeed, our data confirmed the protective role of this cytokine as tumor cells incubated after irradiation with recombinant IL-6 exhibit an increased in Chk1 phosphorylation and a radioresistant phenotype, thus far recapitulating the effects observed in the presence of adipocytes. Our current study sheds light on a new role of tumor-surrounding adipocytes in fostering a radioresistant phenotype in breast tumors, a finding that might have important clinical implications in obese patients that frequently exhibit aggressive diseases.

  17. Leptin effects on the regenerative capacity of human periodontal cells.

    PubMed

    Nokhbehsaim, Marjan; Keser, Sema; Nogueira, Andressa Vilas Boas; Jäger, Andreas; Jepsen, Søren; Cirelli, Joni Augusto; Bourauel, Christoph; Eick, Sigrun; Deschner, James

    2014-01-01

    Obesity is increasing throughout the globe and characterized by excess adipose tissue, which represents a complex endocrine organ. Adipose tissue secrets bioactive molecules called adipokines, which act at endocrine, paracrine, and autocrine levels. Obesity has recently been shown to be associated with periodontitis, a disease characterized by the irreversible destruction of the tooth-supporting tissues, that is, periodontium, and also with compromised periodontal healing. Although the underlying mechanisms for these associations are not clear yet, increased levels of proinflammatory adipokines, such as leptin, as found in obese individuals, might be a critical pathomechanistic link. The objective of this study was to examine the impact of leptin on the regenerative capacity of human periodontal ligament (PDL) cells and also to study the local leptin production by these cells. Leptin caused a significant downregulation of growth (TGFβ1, and VEGFA) and transcription (RUNX2) factors as well as matrix molecules (collagen, and periostin) and inhibited SMAD signaling under regenerative conditions. Moreover, the local expression of leptin and its full-length receptor was significantly downregulated by inflammatory, microbial, and biomechanical signals. This study demonstrates that the hormone leptin negatively interferes with the regenerative capacity of PDL cells, suggesting leptin as a pathomechanistic link between obesity and compromised periodontal healing.

  18. Linking zinc and leptin in chronic kidney disease: future directions.

    PubMed

    Lobo, Julie Calixto; Aranha, Luciana Nicolau; Moraes, Cristiane; Brito, Luciana Catunda; Mafra, Denise

    2012-04-01

    Anorexia is a common complication in patients with chronic kidney disease (CKD) and is associated with the development of malnutrition and an increased risk of mortality. Several compounds are linked to anorexia in these patients; however, the mechanisms are unknown. Zinc (Zn) deficiency is associated with decreased food intake and has been observed in CKD patients. In addition, leptin is an anorexigenic peptide, and patients with CKD present generally high levels of this hormone. Studies have suggested an association between Zn and leptin status in human and rats; however, the results are inconsistent. Some claimed that Zn supplementation does not change leptin release or that there is no significant relationship between Zn and leptin. Others have reported that Zn might be a mediator of leptin production. CKD patients have hyperleptinemia and hypozincemia, but the relationship between Zn deficiency and leptin levels in CKD patients has been poorly understood until now. The aim of this review is to integrate knowledge on leptin and Zn actions to provide a cohesive clinical perspective regarding their interactions in CKD patients.

  19. Serum leptin levels in gastric cancer patients and the relationship with insulin resistance

    PubMed Central

    Aslan, Mehmet; Dulger, Ahmet Cumhur; Emre, Habib; Kemik, Ahu; Kemik, Ozgur; Esen, Ramazan

    2015-01-01

    Introduction Serum leptin levels have been examined in various cancers, with conflicting results. However, there is limited information regarding serum leptin levels and insulin resistance in gastric cancer patients. Therefore, we aimed to investigate serum leptin levels, performance status, insulin levels and insulin resistance in patients with gastric cancer. In addition, we examined the relationship between these measurements and leptin levels. Material and methods Thirty-nine patients with gastric cancer and 30 control subjects were enrolled in the study. Serum leptin, total protein, albumin, growth hormone, insulin and glucose levels were measured. The homeostasis model assessment (HOMA) was used to assess insulin resistance. Results Serum levels of insulin, glucose and growth hormone and insulin resistance were significantly lower in gastric cancer patients than controls (p < 0.05 for all). In the Pearson correlation analysis, insulin resistance was found to be significantly correlated with serum leptin levels in gastric cancer patients (r = 0.320, p = 0.047). We observed a significant negative correlation between performance status and insulin resistance in patients with cachexia (r = –0.512, p = 0.030), while no association was found in non-cachectic patients. Conclusions We concluded that serum leptin levels are significantly lower in gastric cancer patients. In addition, gastric cancer patients have decreases in insulin levels, insulin resistance and growth hormone levels. This study found a positive association between serum leptin levels and insulin resistance. Moreover, there is a negative association between serum leptin levels and growth hormone levels. Thus, low insulin and growth hormone levels may suppress the production of leptin in gastric cancer patients. PMID:25995751

  20. Two isoforms of leptin in the White-clouds Mountain minnow (Tanichthys albonubes): Differential regulation by estrogen despite similar response to fasting.

    PubMed

    Chen, Ting; Chen, Shuang; Ren, Chunhua; Hu, Chaoqun; Tang, Dongsheng; Yan, Aifen

    2016-01-01

    Leptin has been well-established as a canonical anorexic peptide hormone in mammals, though much of its function in fish remains obscure. In this study, the cDNAs of two leptin isoforms (leptin-A and leptin-B) were cloned from the liver of a small cyprinid fish, Tanichthys albonubes. The two T. albonubes leptins, sharing low primary amino acid sequence homology with their mammalian counterparts, and between themselves, are highly conserved in three-dimensional protein structures and gene structures. Liver is a major source of leptin mRNA in T. albonubes with leptin-A being the dominant form. The expression of hepatic leptin-A but not leptin-B mRNA in female fish is significantly higher than in male fish. Transcriptional hepatic levels of leptin-A and leptin-B in both male and female fish were demonstrated to increase after long-term fasting (10-25days) but decline upon re-feeding (3days). Strikingly, estrogen (E2) administration induced only leptin-A but not leptin-B hepatic mRNA expression in both male and female fish. Our study here provides the first evidence for differential regulation of two leptins in fish, and sheds new light on the possible origin of leptin in lower vertebrates.

  1. Human breast milk and adipokines--A potential role for the soluble leptin receptor (sOb-R) in the regulation of infant energy intake and development.

    PubMed

    Zepf, F D; Rao, P; Moore, J; Stewart, R; Ladino, Yuli Martinez; Hartmann, B T

    2016-01-01

    Concentrations of different adipokines in human breast milk are thought to be able to affect energy intake of the infant. Leptin is a hormone synthesized by adipose tissue and the human placenta and favors satiety. The availability of leptin in breast milk is influenced by epithelial cells of the mammary gland that are known to be able to produce leptin, as well as leptin from maternal circulation that is transported to the breast milk, and which can thus in turn reach neonatal blood after absorption. Research so far as mainly focused on leptin concentrations in breast milk. However, evidence suggests that in addition to leptin concentrations levels of the so-called soluble leptin receptor (sOb-R), the main high-affinity binding protein for leptin in humans, are necessary in order to calculate the free leptin index (FLI) and to assess function of the leptin axis. FLI is calculated from the ratio of leptin to the sOb-R, and serves as the main parameter for assessing function of the leptin axis throughout maturation and development. Here we propose that assessing sOb-R levels in addition to leptin concentrations in breast milk could serve as a valuable tool to investigate effects of the leptin axis in breast milk because sOb-R concentrations can impact available leptin levels, and which in turn can have significant implications for infant energy intake and related development.

  2. Hypothalamic ER stress: A bridge between leptin resistance and obesity.

    PubMed

    Ramírez, Sara; Claret, Marc

    2015-06-22

    The prevalence of obesity has increased worldwide at an alarming rate. However, non-invasive pharmacological treatments remain elusive. Leptin resistance is a general feature of obesity, thus strategies aimed at enhancing the sensitivity to this hormone may constitute an excellent therapeutical approach to counteract current obesity epidemics. Nevertheless, the etiology and neuronal basis of leptin resistance remains an enigma. A recent hypothesis gaining substantial experimental support is that hypothalamic endoplasmic reticulum (ER) stress plays a causal role in the development of leptin resistance and obesity. The objective of this review article is to provide an updated view on current evidence connecting hypothalamic ER stress with leptin resistance. We discuss the experimental findings supporting this hypothesis, as well as the potential causes and underlying mechanisms leading to this metabolic disorder. Understanding these mechanisms may provide key insights into the development of novel intervention approaches.

  3. No Kiss1ng by leptin during puberty?

    PubMed

    Ahima, Rexford S

    2011-01-01

    Leptin exerts a permissive action on puberty by stimulating release of gonadotropin-releasing hormone (GnRH) in the hypothalamus. However, GnRH neurons lack leptin receptor (LepR), indicating that leptin must indirectly regulate these neurons. The Kiss1 gene produces kisspeptins that stimulate GnRH secretion. Because Kiss1 neurons express LepR and inactivation of Kiss1 causes hypogonadotropic hypogonadism, Donato et al., in this issue of the JCI, assessed whether deletion of LepR from Kiss1 neurons would prevent sexual maturation. Unexpectedly, mice lacking LepR in Kiss1 neurons had normal pubertal development and fertility. In contrast, deletion of LepR from the ventral premammillary nucleus, a region of the brain involved in sexual behavior, prevented puberty and fertility. These findings highlight the complex biology of leptin in reproduction.

  4. Lateral Thinking About Leptin: A Review of Leptin Action via the Lateral Hypothalamus

    PubMed Central

    Leinninger, Gina M.

    2011-01-01

    The lateral hypothalamic area (LHA) was initially described as a “feeding center” but we are now beginning to understand that the LHA contributes to other aspects of physiology as well. Indeed, the best-characterized neuronal populations of the LHA (which contain melanin-concentrating hormone (MCH) or the hypocretins/orexins (OX) are not strictly orexigenic, but also have roles in regulation of the autonomic and sympathetic nervous systems as well as in modulating motivated behavior. Leptin is an anorectic hormone that regulates energy homeostasis and the mesolimbic DA system (which transduces the wanting of food, drugs of abuse and sex) in part, via actions at the LHA. At least three populations of LHA neurons are regulated by leptin: those containing MCH, OX or the long form of the leptin receptor, LepRb. The emerging picture of leptin interaction with these LHA populations suggests that the LHA is not merely regulating feeding, but is a crucial integrator of energy balance and motivated behavior. PMID:21550356

  5. Lateral thinking about leptin: a review of leptin action via the lateral hypothalamus.

    PubMed

    Leinninger, Gina M

    2011-09-26

    The lateral hypothalamic area (LHA) was initially described as a "feeding center" but we are now beginning to understand that the LHA contributes to other aspects of physiology as well. Indeed, the best-characterized neuronal populations of the LHA (which contain melanin-concentrating hormone (MCH) or the hypocretins/orexins (OX)) are not strictly orexigenic, but also have roles in regulation of the autonomic and sympathetic nervous systems as well as in modulating motivated behavior. Leptin is an anorectic hormone that regulates energy homeostasis and the mesolimbic DA system (which transduces the wanting of food, drugs of abuse, and sex) in part, via actions at the LHA. At least three populations of LHA neurons are regulated by leptin: those containing MCH, OX or the long form of the leptin receptor, LepRb. The emerging picture of leptin interaction with these LHA populations suggests that the LHA is not merely regulating feeding, but is a crucial integrator of energy balance and motivated behavior.

  6. Leptin induces CYP1B1 expression in MCF-7 cells through ligand-independent activation of the ERα pathway

    SciTech Connect

    Khanal, Tilak; Kim, Hyung Gyun; Do, Minh Truong; Choi, Jae Ho; Won, Seong Su; Kang, Wonku; Chung, Young Chul; Jeong, Tae Cheon; Jeong, Hye Gwang

    2014-05-15

    Leptin, a hormone with multiple biological actions, is produced predominantly by adipose tissue. Among its functions, leptin can stimulate tumour cell growth. Oestrogen receptor α (ERα), which plays an essential role in breast cancer development, can be transcriptionally activated in a ligand-independent manner. In this study, we investigated the effect of leptin on CYP1B1 expression and its mechanism in breast cancer cells. Leptin induced CYP1B1 protein, messenger RNA expression and promoter activity in ERα-positive MCF-7 cells but not in ERα-negative MDA-MB-231 cells. Additionally, leptin increased 4-hydroxyoestradiol in MCF-7 cells. Also, ERα knockdown by siRNA significantly blocked the induction of CYP1B1 expression by leptin, indicating that leptin induced CYP1B1 expression via an ERα-dependent mechanism. Transient transfection with CYP1B1 deletion promoter constructs revealed that the oestrogen response element (ERE) plays important role in the up-regulation of CYP1B1 by leptin. Furthermore, leptin stimulated phosphorylation of ERα at serine residues 118 and 167 and increased ERE-luciferase activity, indicating that leptin induced CYP1B1 expression by ERα activation. Finally, we found that leptin activated ERK and Akt signalling pathways, which are upstream kinases related to ERα phosphorylation induced by leptin. Taken together, our results indicate that leptin-induced CYP1B1 expression is mediated by ligand-independent activation of the ERα pathway as a result of the activation of ERK and Akt in MCF-7 cells. - Highlights: • Leptin increased 4-hydroxyoestradiol in MCF-7 breast cancer cells. • Leptin activated ERK and Akt kinases related to ERα phosphorylation. • Leptin induces phosphorylation of ERα at serine residues 118 and 167. • Leptin induces ERE-luciferase activity.

  7. Betaine reduces the expression of inflammatory adipokines caused by hypoxia in human adipocytes.

    PubMed

    Olli, K; Lahtinen, S; Rautonen, N; Tiihonen, K

    2013-01-14

    Obesity is characterised by a state of chronic low-grade inflammation and the elevated circulating and tissue levels of inflammatory markers, including inflammation-related adipokines, released from white adipose tissue. The expression and release of these adipokines generally rises as the adipose tissue expands and hypoxic conditions start to develop within the tissue. Here, the effect of betaine, a trimethylglycine having a biological role as an osmolyte and a methyl donor, on the expression of inflammation-related markers was tested in human adipocytes under hypoxia. Differentiated adipocytes were cultivated under low (1 %) oxygen tension for 8-20 h. The expression of different adipokines, including IL-6, leptin, PPARγ, TNF-α and adiponectin, was measured by quantitative PCR by determining the relative mRNA level from the adipocytes. Hypoxia, in general, led to a decrease in the expression of PPARγ mRNA in human adipocytes, whereas the expression levels of leptin and IL-6 mRNA were substantially increased by hypoxia. The cultivation of adipocytes under hypoxia also led to a reduction in the expression of TNF-α mRNA. The results showed that hypoxia increased the relative quantification of leptin gene transcription, and that betaine (250 μmol/l) reduced this effect, caused by low oxygen conditions. Under hypoxia, betaine also reduced the mRNA level of the pro-inflammatory markers IL-6 and TNF-α. These results demonstrate that the extensive changes in the expression of inflammation-related adipokines in human adipocytes caused by hypoxia can be diminished by the presence of physiologically relevant concentrations of betaine.

  8. Effects of fermented rooibos (Aspalathus linearis) on adipocyte differentiation.

    PubMed

    Sanderson, Micheline; Mazibuko, Sithandiwe E; Joubert, Elizabeth; de Beer, Dalene; Johnson, Rabia; Pheiffer, Carmen; Louw, Johan; Muller, Christo J F

    2014-01-15

    Rooibos (Aspalathus linearis) contains a rich complement of polyphenols, including flavonoids, considered to be largely responsible for its health promoting effects, including combatting obesity. The purpose of this study was to examine the effect of fermented rooibos hot water soluble solids on in vitro adipocyte differentiation by using differentiating 3T3-L1 adipocytes. Hot water soluble solids were obtained when preparing an infusion of fermented rooibos at "cup-of-tea" strength. The major phenolic compounds (>5 mg/g) were isoorientin, orientin, quercetin-3-O-robinobioside and enolic phenylpyruvic acid-2-O-β-D-glucoside. Treatment of 3T3-L1 adipocytes with 10 μg/ml and 100 μg/ml of the rooibos soluble solids inhibited intracellular lipid accumulation by 22% (p<0.01) and 15% (p<0.05), respectively. Inhibition of adipogenesis was accompanied by decreased messenger RNA (mRNA) expression of PPARγ, PPARα, SREBF1 and FASN. Western blot analysis exhibited decreased PPARα, SREBF1 and AMPK protein expression. Impeded glycerol release into the culture medium was observed after rooibos treatment. None of the concentrations of rooibos hot water soluble solids was cytotoxic, in terms of ATP content. Interestingly, the higher concentration of hot water soluble solids increased ATP concentrations which were associated with increased basal glucose uptake. Decreased leptin secretion was observed after rooibos treatment. Our data show that hot water soluble solids from fermented rooibos inhibit adipogenesis and affect adipocyte metabolism, suggesting its potential in preventing obesity.

  9. Leptin, GH, PRL, insulin and metabolic parameters throughout the dry period and lactation in dairy cows.

    PubMed

    Accorsi, P A; Govoni, N; Gaiani, R; Pezzi, C; Seren, E; Tamanini, C

    2005-06-01

    Leptin may play a role in the endocrine-metabolic processes that guarantee the physiological course of lactation in dairy cattle. This study was aimed at determining the changes in plasma concentrations of leptin and some of the main hormones and metabolites involved in the lactogenetic process in high-yielding dairy cows throughout lactation; we also wanted to assess whether leptin secretion is subjected to seasonal influences. Blood samples were collected from 23 Italian Friesian dairy cows from the end of a lactation to the ninth month of the subsequent one; in addition, blood was sampled from 47 dairy cows in different phases of lactation during February and July. Plasma concentrations of leptin, growth hormone (GH), insulin, prolactin (PRL), glucose, non-esterified fatty acids (NEFA) and urea were quantified by either validated radioimmunoassay (RIA) or enzymatic colorimetric methods. At the beginning of lactation, GH concentrations significantly increased, while a significant reduction occurred in leptin and insulin. This endocrine condition, such as the significant increase in NEFA plasma concentrations, is indicative of a marked lipid mobilization. In the more advanced stages of lactation, when both energy and protein balances become positive, leptin plasma concentrations increased, whereas GH and NEFA concentrations declined. During the summer months, a significant increase in leptin plasma concentrations, irrespective of the phase of lactation, was observed. Collectively, our findings suggest that, in dairy cows, leptin may represent a 'metabolic signal' of animal's status of fattening and nutritional level; in addition, leptin seems to be influenced by photoperiod and environmental temperature.

  10. The adipokine Chemerin induces lipolysis and adipogenesis in bovine intramuscular adipocytes.

    PubMed

    Fu, Yuan-Yuan; Chen, Kun-Lin; Li, Hui-Xia; Zhou, Guang-Hong

    2016-07-01

    The adipokine Chemerin is reported to regulate adipogenesis and glucose homeostasis in vivo and in 3T3-L1 cells. Our team is focused on the role of Chemerin in metabolism and intramuscular adipocyte differentiation because intramuscular fat is the basic material for the formation of marbling in livestock and poultry meat. In this study, bovine intramuscular mature adipocytes were cultured in medium with Chemerin, and the process of lipolysis of mature adipocytes and the adipogenesis of de-differentiated preadipocytes were investigated. The results showed that Chemerin induced significant lipolytic metabolism in intramuscular mature adipocytes, indicated by increased levels of glycerol, FFA, and up-regulated expression of the lipolysis critical factors HSL, LPL, and leptin. Meanwhile, the expressions of adipogenic key factors PPARγ, C/EBPα, and A-FABP were decreased by Chemerin during lipolysis or dedifferentiation in mature adipocytes. The de-differentiated preadipocytes could re-differentiate into mature adipocytes. Intriguingly, the formation of cells' lipid droplets was promoted by Chemerin during preadipocyte differentiation. In addition, mRNA and protein expressions of PPARγ, C/EBPα, and A-FABP were up-regulated by Chemerin during preadipocytes differentiation. These results suggest that Chemerin promotes lipolysis in mature adipocytes and induces adipogenesis during preadipocyte re-differentiation, further indicating a dual role for Chemerin in the deposition of intramuscular fat in ruminant animals.

  11. Leptin signaling in GFAP-expressing adult glia cells regulates hypothalamic neuronal circuits and feeding

    PubMed Central

    Kim1, Jae Geun; Suyama, Shigetomo; Koch, Marco; Jin, Sungho; Argente-Arizon, Pilar; Argente, Jesus; Liu, Zhong-Wu; Zimmer, Marcelo R.; Jeong, Jin Kwon; Szigeti-Buck, Klara; Gao, Yuanqing; Garcia-Caceres, Cristina; Yi, Chun-Xia; Salmaso, Natalina; Vaccarino, Flora M.; Chowen, Julie; Diano, Sabrina; Dietrich, Marcelo O; Tschöp, Matthias H.; Horvath, Tamas L.

    2014-01-01

    We have shown that synaptic re-organization of hypothalamic feeding circuits in response to metabolic shifts involves astrocytes, cells that can directly respond to the metabolic hormone, leptin, in vitro. It is not known whether the role of glia cells in hypothalamic synaptic adaptions is active or passive. Here we show that leptin receptors are expressed in hypothalamic astrocytes and that conditional, adult deletion of leptin receptors in astrocytes leads to altered glial morphology, decreased glial coverage and elevated synaptic inputs onto pro-opiomelanocortin (POMC)- and Agouti-related protein (AgRP)-producing neurons. Leptin-induced suppression of feeding was diminished, while rebound feeding after fasting or ghrelin administration was elevated in mice with astrocyte-specific leptin receptor deficiency. These data unmask an active role of glial cells in the initiation of hypothalamic synaptic plasticity and neuroendocrine control of feeding by leptin. PMID:24880214

  12. Leptin potentiates GABAergic synaptic transmission in the developing rodent hippocampus

    PubMed Central

    Guimond, Damien; Diabira, Diabe; Porcher, Christophe; Bader, Francesca; Ferrand, Nadine; Zhu, Mingyan; Appleyard, Suzanne M.; Wayman, Gary A.; Gaiarsa, Jean-Luc

    2014-01-01

    It is becoming increasingly clear that leptin is not only a hormone regulating energy homeostasis but also a neurotrophic factor impacting a number of brain regions, including the hippocampus. Although leptin promotes the development of GABAergic transmission in the hypothalamus, little is known about its action on the GABAergic system in the hippocampus. Here we show that leptin modulates GABAergic transmission onto developing CA3 pyramidal cells of newborn rats. Specifically, leptin induces a long-lasting potentiation (LLP-GABAA) of miniature GABAA receptor-mediated postsynaptic current (GABAA-PSC) frequency. Leptin also increases the amplitude of evoked GABAA-PSCs in a subset of neurons along with a decrease in the coefficient of variation and no change in the paired-pulse ratio, pointing to an increased recruitment of functional synapses. Adding pharmacological blockers to the recording pipette showed that the leptin-induced LLP-GABAA requires postsynaptic calcium released from internal stores, as well as postsynaptic MAPK/ERK kinases 1 and/or 2 (MEK1/2), phosphoinositide 3 kinase (PI3K) and calcium-calmodulin kinase kinase (CaMKK). Finally, study of CA3 pyramidal cells in leptin-deficient ob/ob mice revealed a reduction in the basal frequency of miniature GABAA-PSCs compared to wild type littermates. In addition, presynaptic GAD65 immunostaining was reduced in the CA3 stratum pyramidale of mutant animals, both results converging to suggest a decreased number of functional GABAergic synapses in ob/ob mice. Overall, these results show that leptin potentiates and promotes the development of GABAergic synaptic transmission in the developing hippocampus likely via an increase in the number of functional synapses, and provide insights into the intracellular pathways mediating this effect. This study further extends the scope of leptin's neurotrophic action to a key regulator of hippocampal development and function, namely GABAergic transmission. PMID:25177272

  13. Narrative review: the role of leptin in human physiology: emerging clinical applications.

    PubMed

    Kelesidis, Theodore; Kelesidis, Iosif; Chou, Sharon; Mantzoros, Christos S

    2010-01-19

    Leptin is a hormone secreted by adipose tissue in direct proportion to amount of body fat. The circulating leptin levels serve as a gauge of energy stores, thereby directing the regulation of energy homeostasis, neuroendocrine function, and metabolism. Persons with congenital deficiency are obese, and treatment with leptin results in dramatic weight loss through decreased food intake and possible increased energy expenditure. However, most obese persons are resistant to the weight-reducing effects of leptin. Recent studies suggest that leptin is physiologically more important as an indicator of energy deficiency, rather than energy excess, and may mediate adaptation by driving increased food intake and directing neuroendocrine function to converse energy, such as inducing hypothalamic hypogonadism to prevent fertilization. Current studies investigate the role of leptin in weight-loss management because persons who have recently lost weight have relative leptin deficiency that may drive them to regain weight. Leptin deficiency is also evident in patients with diet- or exercise-induced hypothalamic amenorrhea and lipoatrophy. Replacement of leptin in physiologic doses restores ovulatory menstruation in women with hypothalamic amenorrhea and improves metabolic dysfunction in patients with lipoatrophy, including lipoatrophy associated with HIV or highly active antiretroviral therapy. The applications of leptin continue to grow and will hopefully soon be used therapeutically.

  14. Differential Acute and Chronic Effects of Leptin on Hypothalamic Astrocyte Morphology and Synaptic Protein Levels

    PubMed Central

    García-Cáceres, Cristina; Fuente-Martín, Esther; Burgos-Ramos, Emma; Granado, Miriam; Frago, Laura M.; Barrios, Vicente; Horvath, Tamas

    2011-01-01

    Astrocytes participate in neuroendocrine functions partially through modulation of synaptic input density in the hypothalamus. Indeed, glial ensheathing of neurons is modified by specific hormones, thus determining the availability of neuronal membrane space for synaptic inputs, with the loss of this plasticity possibly being involved in pathological processes. Leptin modulates synaptic inputs in the hypothalamus, but whether astrocytes participate in this action is unknown. Here we report that astrocyte structural proteins, such as glial fibrillary acidic protein (GFAP) and vimentin, are induced and astrocyte morphology modified by chronic leptin administration (intracerebroventricular, 2 wk), with these changes being inversely related to modifications in synaptic protein densities. Similar changes in glial structural proteins were observed in adult male rats that had increased body weight and circulating leptin levels due to neonatal overnutrition (overnutrition: four pups/litter vs. control: 12 pups/litter). However, acute leptin treatment reduced hypothalamic GFAP levels and induced synaptic protein levels 1 h after administration, with no effect on vimentin. In primary hypothalamic astrocyte cultures leptin also reduced GFAP levels at 1 h, with an induction at 24 h, indicating a possible direct effect of leptin. Hence, one mechanism by which leptin may affect metabolism is by modifying hypothalamic astrocyte morphology, which in turn could alter synaptic inputs to hypothalamic neurons. Furthermore, the responses to acute and chronic leptin exposure are inverse, raising the possibility that increased glial activation in response to chronic leptin exposure could be involved in central leptin resistance. PMID:21343257

  15. In vivo but not in vitro leptin enhances lymphocyte proliferation in Siberian hamsters (Phodopus sungorus).

    PubMed

    Demas, Gregory E

    2010-04-01

    Mounting an immune response requires a relatively substantial investment of energy and marked reductions in energy availability can suppress immune function and presumably increase disease susceptibility. We have previously demonstrated that a moderate reduction in energy stores by partial surgical lipectomy impairs humoral immunity of Siberian hamsters (Phodopus sungorus) and is mediated, in part, by changes in the adipose tissue hormone leptin. The goals of the present study were to assess the role of leptin in cell-mediated immunity and to determine if the potential effects of leptin on immunity are via the direct actions of this hormone on lymphocytes, or indirect, via the sympathetic nervous system (SNS). In Experiment 1, hamsters received osmotic minipumps containing either murine leptin (0.5 microl/h) or vehicle alone for 10 days and splenocyte proliferation in response to the T-cell mitogen Concanavalin A (Con A) was determined. In Experiment 2, Con A-induced splenocyte proliferation was tested in the presence or absence of leptin in vitro. In Experiment 3, exogenous leptin was administered to intact or sympathetically denervated hamsters. Hamsters treated with in vivo leptin displayed increased splenocyte proliferation compared with control hamsters receiving vehicle. In contrast, in vitro leptin had no effect on splenocyte proliferation. Sympathetic denervation attenuated, but did not block, leptin-induced increases in immunity. Taken together, these results are consistent with the idea that leptin can enhance cell-mediated immunity; the SNS appears to contribute, least in part, to leptin-induced increases in immunity. Importantly, these findings confirm previous studies that leptin serves as an important endocrine link between energy balance and immunity.

  16. Low-Dose Bisphenol-A Impairs Adipogenesis and Generates Dysfunctional 3T3-L1 Adipocytes.

    PubMed

    Ariemma, Fabiana; D'Esposito, Vittoria; Liguoro, Domenico; Oriente, Francesco; Cabaro, Serena; Liotti, Antonietta; Cimmino, Ilaria; Longo, Michele; Beguinot, Francesco; Formisano, Pietro; Valentino, Rossella

    2016-01-01

    Environmental endocrine disruptors (EDCs), including bisphenol-A (BPA), have been recently involved in obesity and diabetes by dysregulating adipose tissue function. Our aim was to examine whether prolonged exposure to low doses of BPA could affect adipogenesis and adipocyte metabolic functions. Therefore, 3T3-L1 pre-adipocytes were cultured for three weeks with BPA 1 nM to mimic human environmental exposure. We evaluated BPA effect on cell proliferation, differentiation, gene expression and adipocyte metabolic function. BPA significantly increased pre-adipocyte proliferation (p<0.01). In 3T3-L1 adipocytes differentiated in the presence of BPA, the expression of Peroxisome proliferator-activated receptor gamma (PPARγ), Fatty Acid Binding Protein 4/Adipocyte Protein 2 (FABP4/AP2) and CCAAT/enhancer binding protein (C/EBPα) was increased by 3.5, 1.5 and 3 folds, respectively. Mature adipocytes also showed a significant increase in lipid accumulation (p<0.05) and alterations of insulin action, with significant reduction in insulin-stimulated glucose utilization (p<0.001). Moreover, in mature adipocytes, mRNA levels of Leptin, interleukin-6 (IL6) and interferon-γ (IFNγ) were significantly increased (p<0.05). In conclusion, BPA prolonged exposure at low doses, consistent with those found in the environment, may affect adipocyte differentiation program, enhancing pre-adipocyte proliferation and anticipating the expression of the master genes involved in lipid/glucose metabolism. The resulting adipocytes are hypertrophic, with impaired insulin signaling, reduced glucose utilization and increased pro-inflammatory cytokine expression. Thus, these data supported the hypothesis that BPA exposure, during critical stages of adipose tissue development, may cause adipocyte metabolic dysfunction and inflammation, thereby increasing the risk of developing obesity-related diseases.

  17. Low-Dose Bisphenol-A Impairs Adipogenesis and Generates Dysfunctional 3T3-L1 Adipocytes

    PubMed Central

    Ariemma, Fabiana; D’Esposito, Vittoria; Liguoro, Domenico; Oriente, Francesco; Cabaro, Serena; Liotti, Antonietta; Cimmino, Ilaria; Longo, Michele; Beguinot, Francesco; Formisano, Pietro; Valentino, Rossella

    2016-01-01

    Environmental endocrine disruptors (EDCs), including bisphenol-A (BPA), have been recently involved in obesity and diabetes by dysregulating adipose tissue function. Our aim was to examine whether prolonged exposure to low doses of BPA could affect adipogenesis and adipocyte metabolic functions. Therefore, 3T3-L1 pre-adipocytes were cultured for three weeks with BPA 1nM to mimic human environmental exposure. We evaluated BPA effect on cell proliferation, differentiation, gene expression and adipocyte metabolic function. BPA significantly increased pre-adipocyte proliferation (p<0.01). In 3T3-L1 adipocytes differentiated in the presence of BPA, the expression of Peroxisome proliferator-activated receptor gamma (PPARγ), Fatty Acid Binding Protein 4/Adipocyte Protein 2 (FABP4/AP2) and CCAAT/enhancer binding protein (C/EBPα) was increased by 3.5, 1.5 and 3 folds, respectively. Mature adipocytes also showed a significant increase in lipid accumulation (p<0.05) and alterations of insulin action, with significant reduction in insulin-stimulated glucose utilization (p<0.001). Moreover, in mature adipocytes, mRNA levels of Leptin, interleukin-6 (IL6) and interferon-γ (IFNγ) were significantly increased (p<0.05). In conclusion, BPA prolonged exposure at low doses, consistent with those found in the environment, may affect adipocyte differentiation program, enhancing pre-adipocyte proliferation and anticipating the expression of the master genes involved in lipid/glucose metabolism. The resulting adipocytes are hypertrophic, with impaired insulin signaling, reduced glucose utilization and increased pro-inflammatory cytokine expression. Thus, these data supported the hypothesis that BPA exposure, during critical stages of adipose tissue development, may cause adipocyte metabolic dysfunction and inflammation, thereby increasing the risk of developing obesity-related diseases. PMID:26942597

  18. CNS Regulation of Energy Metabolism: Ghrelin versus Leptin

    PubMed Central

    Nogueiras, Ruben; Tschöp, Matthias H.; Zigman, Jeffrey M.

    2010-01-01

    In this brief review, we introduce some major themes in the regulation of energy, lipid and glucose metabolism by the central nervous system (CNS). Rather than comprehensively discussing the field, we instead will discuss some of the key findings made regarding the interaction of the hormones ghrelin and leptin with the CNS. PMID:18448790

  19. The leptin system and its expression at different nutritional and pregnant stages in lined seahorse (Hippocampus erectus)

    PubMed Central

    Zhang, Huixian; Qin, Geng; Zhang, Yanhong; Li, Shuisheng

    2016-01-01

    ABSTRACT Leptin is an essential hormone for the regulation of energy metabolism and food intake in vertebrate animals. To better understand the physiological roles of leptin in nutrient regulation in paternal ovoviviparous fish (family Syngnathidae), the present study cloned the full-length of leptin-a and leptin receptor (lepr) genes in lined seahorse (Hippocampus erectus). Results showed that there was a 576-bp intron between two exons in leptin-a gene but no leptin-b gene in seahorse. Although the primary amino acid sequence conservation of seahorse leptin-a was very low, the 3-D structure modeling of seahorse leptin-a revealed strong conservation of tertiary structure with other vertebrates. Seahorse leptin-a mRNA was highly expressed in brain, whereas lepr mRNA was mainly expressed in ovary and gill. Interestingly, both leptin-a and lepr mRNA were expressed in the brood pouch of male seahorse, suggesting the leptin system plays a role during the male pregnancy. Physiological experiments showed that the expression of hepatic leptin-a and lepr mRNA in unfed seahorses was significantly higher than that in those fed 100%, as well as 60%, of their food during the fasting stage, showing that seahorse might initiate the leptin system to regulate its energy metabolism while starving. Moreover, the expression of leptin-a in the brood pouch of pregnant seahorse was significantly upregulated compared with non-pregnant seahorse, whereas the expression of lepr was downregulated, suggesting that the leptin system might be involved in the male pregnancy. In conclusion, the leptin system plays a role in the energy metabolism and food intake, and might provide new insights into molecular regulation of male pregnancy in seahorse. PMID:27628034

  20. Leptin regulates CD16 expression on human monocytes in a sex‐specific manner

    PubMed Central

    Cannon, Joseph G.; Sharma, Gyanendra; Sloan, Gloria; Dimitropoulou, Christiana; Baker, R. Randall; Mazzoli, Andrew; Kraj, Barbara; Mulloy, Anthony; Cortez‐Cooper, Miriam

    2014-01-01

    Abstract Fat mass is linked mechanistically to the cardiovascular system through leptin, a 16 kDa protein produced primarily by adipocytes. In addition to increasing blood pressure via hypothalamic‐sympathetic pathways, leptin stimulates monocyte migration, cytokine secretion, and other functions that contribute to atherosclerotic plaque development. These functions are also characteristics of CD16‐positive monocytes that have been implicated in the clinical progression of atherosclerosis. This investigation sought to determine if leptin promoted the development of such CD16‐positive monocytes. Cells from 45 healthy men and women with age ranging from 20 to 59 years were analyzed. Circulating numbers of CD14++16++ monocytes, which are primary producers of TNFα, were positively related to plasma leptin concentrations (P < 0.0001), with a stronger correlation in men (P < 0.05 for leptin × sex interaction). In vitro, recombinant human leptin induced CD16 expression in a dose‐related manner (P = 0.02), with a stronger influence on monocytes from men (P = 0.03 for leptin × sex interaction). There were no sex‐related differences in total leptin receptor expression on any monocyte subtypes, relative expression of long versus short isoforms of the receptor, or soluble leptin receptor concentrations in the plasma. The number of circulating CD14+16++ monocytes, which preferentially migrate into nascent plaques, was positively related to systolic blood pressure (R = 0.56, P = 0.0008) and intima‐media thickness (R = 0.37, P = 0.03), and negatively related to carotid compliance (R = −0.39, P = 0.02). These observations indicate that leptin promotes the development of CD16‐positive monocyte populations in a sex‐specific manner and that these subpopulations are associated with diminished vascular function. PMID:25303952

  1. Leptin differentially increases sympathetic nerve activity and its baroreflex regulation in female rats: role of oestrogen.

    PubMed

    Shi, Zhigang; Brooks, Virginia L

    2015-04-01

    Obesity and hypertension are commonly associated, and activation of the sympathetic nervous system is considered to be a major contributor, at least in part due to the central actions of leptin. However, while leptin increases sympathetic nerve activity (SNA) in males, whether leptin is equally effective in females is unknown. Here, we show that intracerebroventricular (i.c.v.) leptin increases lumbar (LSNA) and renal (RSNA) SNA and baroreflex control of LSNA and RSNA in α-chloralose anaesthetized female rats, but only during pro-oestrus. In contrast, i.c.v. leptin increased basal and baroreflex control of splanchnic SNA (SSNA) and heart rate (HR) in rats in both the pro-oestrus and dioestrus states. The effects of leptin on basal LSNA, RSNA, SSNA and HR were similar in males and pro-oestrus females; however, i.c.v. leptin increased mean arterial pressure (MAP) only in males. Leptin did not alter LSNA or HR in ovariectomized rats, but its effects were normalized with 4 days of oestrogen treatment. Bilateral nanoinjection of SHU9119 into the paraventricular nucleus of the hypothalamus (PVN), to block α-melanocyte-stimulating hormone (α-MSH) type 3 and 4 receptors, decreased LSNA in leptin-treated pro-oestrus but not dioestrus rats. Unlike leptin, i.c.v. insulin infusion increased basal and baroreflex control of LSNA and HR similarly in pro-oestrus and dioestrus rats; these responses did not differ from those in male rats. We conclude that, in female rats, leptin's stimulatory effects on SNA are differentially enhanced by oestrogen, at least in part via an increase in α-MSH activity in the PVN. These data further suggest that the actions of leptin and insulin to increase the activity of various sympathetic nerves occur via different neuronal pathways or cellular mechanisms. These results may explain the poor correlation in females of SNA with adiposity, or of MAP with leptin.

  2. Role of leptin and leptin receptors in hematological malignancies.

    PubMed

    Uddin, Shahab; Mohammad, Ramzi M

    2016-01-01

    Leptin is an adipose-derived cytokine that has an important role in bodyweight homeostasis and energy balance. There are a number of studies which have suggested that leptin and its receptors dysregulation play a critical role in the development of malignancies including hematological malignancies, mainly via activation of the JAK/STAT pathway which regulates downstream signaling pathways such as PI3K/AKT signaling and ERK1/2. In this review, current understandings of leptin/leptin receptors mediated pathogenesis in various lymphoid malignancies are described. Blocking of the leptin receptor might be a unique therapeutic approach for many hematological malignancies.

  3. Caffeine attenuated ER stress-induced leptin resistance in neurons.

    PubMed

    Hosoi, Toru; Toyoda, Keisuke; Nakatsu, Kanako; Ozawa, Koichiro

    2014-05-21

    Exposing the endoplasmic reticulum (ER) to stress causes the accumulation of unfolded proteins, and subsequently results in ER stress. ER stress may be involved in various disorders such as obesity, diabetes, and neurodegenerative diseases. Leptin is an important circulating hormone, that inhibits food intake and accelerates energy consumption, which suppresses body weight gain. Recent studies demonstrated that leptin resistance is one of the main factors involved in the development of obesity. We and other groups recently reported the role of ER stress in the development of leptin resistance. Therefore, identifying drugs that target ER stress may be a promising fundamental strategy for the treatment of obesity. In the present study, we investigated whether caffeine could affect ER stress and the subsequent development of leptin resistance. We showed that caffeine exhibited chaperone activity, which attenuated protein aggregation. Caffeine also inhibited the ER stress-induced activation of IRE1 and PERK, which suggested the attenuation of ER stress. Moreover, caffeine markedly improved ER stress-induced impairments in the leptin-induced phosphorylation of STAT3. Therefore, these results suggest caffeine may have pharmacological properties that ameliorate leptin resistance by reducing ER stress.

  4. Etiologic theories of idiopathic scoliosis: autonomic nervous system and the leptin-sympathetic nervous system concept for the pathogenesis of adolescent idiopathic scoliosis.

    PubMed

    Burwell, R G; Dangerfield, P H; Moulton, A; Anderson, S I

    2008-01-01

    The autonomic nervous system through its hypothalamic neuroendocrine control of puberty, skeletal growth and menarche contributes importantly to the pathogenesis of adolescent idiopathic scoliosis (AIS). Melatonin dysfunction detected in AIS subjects also involves the autonomic nervous system. The thoracospinal concept for the pathogenesis of right thoracic AIS in girls thought by some to result from dysfunction of the sympathetic nervous system (SNS), is supported by recent vascular and peripheral nerve studies. Lower body mass index (BMI).in girls with AIS is associated with decreased circulating leptin levels. Leptin, secreted by adipocytes, is a master hormone with many regulatory functions for growth and reproduction, including: 1) appetite repression, anorexigenic; 2) initiation of puberty in girls in a permissive action, and 3) in mice, longitudinal bone growth, chondrogenic and angiogenic, and in bone formation, antiosteogenic acting centrally through the SNS and possibly directly. In AIS girls, autonomic nervous system activity was reported to be higher than in controls. We suggest that in AIS susceptible girls, given adequate nutrition and energy stores, circulating leptin talks to the hypothalamus where dysfunction leads to an altered sensitivity to leptin resulting in increased SNS activity contributing with neuroendocrine mechanisms to: 1) earlier age at, and increased peak height velocity, 2) general skeletal overgrowth, 3) earlier skeletal maturation, 4) extra-spinal skeletal length asymmetries, including periapical ribs and ilia, 5) generalized osteopenia, and 6) lower BMI. The SNS-driven effects may also add adventitious changes to the spine including asymmetries complicating the neuroendocrine effects on adolescent spinal growth. In AIS pathogenesis, the leptin-SNS concept is complementary to our NOTOM escalator concept involving the somatic nervous system. Together these two concepts view AIS in girls as being initiated by a hypothalamic

  5. Separate systems for serotonin and leptin in appetite control.

    PubMed

    Halford, J C; Blundell, J E

    2000-04-01

    Appetite control involves an integration of the drive signals arising form energy stores in the body with the satiety signals generated by periodic episodes of food consumption. Serotonin (5-hydroxytryptamine, 5-HT) has been implicated in the processes of within-meal satiation and postmeal satiety (5-HT1B and 5-HT2C postsynaptic receptors) which are concerned with the signals arising form the pattern of food intake. Central nervous system (CNS) 5-HT is sensitive to circulating levels of the precursor tryptophan, certain macronutrients and peripheral satiety factors such as cholecystokinin (CCK) and enterostatin. Hypothalamic 5-HT receptor systems inhibit neuropeptide Y (NPY), a potent stimulator of hunger and food intake. In contrast to the linking of 5-HT with the consequences of food ingestion, the hormone leptin (OB protein) is regarded as a signal linking adipose tissue status with a number of key CNS circuits. Leptin itself stimulates CNS leptin receptors (OB-r receptor) which link with pro-opiomelanocortin (POMC)/ MC-4 receptors. The effects of leptin may also be modulated by factors such as the corticotrophin-releasing factor (CRF), cocaine and amphetamine-regulated transcript (CART), orexins and galanin. Very little evidence exists to support any direct link between the actions of 5-HT and leptin, suggesting that they are separate systems. 5-HT is a part of an integrated network for short-acting satiety signals (episodic in nature), and leptin is a hormonal indicator of long-term (tonic) energy reserves. At a conceptual level, these may represent the distinction between 'satiety' and 'drive'. Interestingly, both 5-HT and leptin modulate the action of NPY, which may form a part of a common output pathway for the expression of appetite.

  6. Leptin and body mass index in polycystic ovary syndrome

    PubMed Central

    Jalilian, Nasrin; Haghnazari, Lida; Rasolinia, Samira

    2016-01-01

    Objective: Polycystic ovary syndrome (PCOS) is a common endocrine disorder associated with obesity. Human and animal studies showed a direct relationship between leptin level and obesity, however, results from different studies were mixed. This study investigated the status of leptin level in PCOS and its relationship with body mass index (BMI) in a group of Iranian women with PCOS. Methods: In this cross-sectional study, 40 women with PCOS and 36 healthy women were assigned to experimental and control groups, respectively. Those in the PCOS group were not prescribed any medications for 3 months prior to the study. Fasting blood samples were then collected during the 2nd or 3rd day of menstruation for laboratory measurement of serum total leptin, blood glucose (fasting blood sugar), serum insulin, follicle-stimulating hormone, and luteinizing hormone (LH). Results: Mean BMI of the PCOS and control groups were 26.62 ± 4.03 kg/m2 and 23.52 ± 2.52 kg/m2, respectively (P = 0.006). The mean total leptin in the PCO group was also 10.69 ± 5.37 ng/mL and 5.73 ± 2.36 ng/mL in the control group (P = 0.0001). A significant relationship was found between leptin level and BMI as well as LH level among women with PCOS (P < 0.05). However, there was no significant correlation between leptin and insulin (P > 0.05). Conclusion: The results of this study indicated an increased leptin level among women with PCOS that positively associated with BMI and LH. PMID:27186548

  7. Monitoring leptin activity using the chicken leptin receptor.

    PubMed

    Hen, Gideon; Yosefi, Sera; Ronin, Ana; Einat, Paz; Rosenblum, Charles I; Denver, Robert J; Friedman-Einat, Miriam

    2008-05-01

    We report on the construction of a leptin bioassay based on the activation of chicken leptin receptor in cultured cells. A human embryonic kidney (HEK)-293 cell line, stably transfected with the full-length cDNA of chicken leptin receptor together with a STAT3-responsive reporter gene specifically responded to recombinant human and Xenopus leptins. The observed higher sensitivity of chicken leptin receptor to the former is in agreement with the degree of sequence similarity among these species (about 60 and 38% identical amino acids between humans and chickens, and between humans and Xenopus respectively). The specific activation of signal transduction through the chicken leptin receptor, shown here for the first time, suggests that the transition of Gln269 (implicated in the Gln-to-Pro Zucker fatty mutation in rats) to Glu in chickens does not impair its activity. Analysis of leptin-like activity in human serum samples of obese and lean subjects coincided well with leptin levels determined by RIA. Serum samples of pre- and post partum cows showed a tight correlation with the degree of adiposity. However, specific activation of the chicken leptin receptor in this assay was not observed with serum samples from broiler or layer chickens (representing fat and lean phenotypes respectively) or with those from turkey. Similar leptin receptor activation profiles were observed with cells transfected with human leptin receptor. Further work is needed to determine whether the lack of leptin-like activity in the chicken serum samples is due to a lack of leptin in this species or simply to a serum level of leptin that is below the detection threshold.

  8. High-fat meals reduce 24-h circulating leptin concentrations in women.

    PubMed

    Havel, P J; Townsend, R; Chaump, L; Teff, K

    1999-02-01

    Leptin induces weight loss in rodents via its effects on food intake and energy expenditure. High-fat diets induce weight gain, but the mechanism is not well understood. Previous studies have not found an effect of dietary fat content on fasting leptin. There is a nocturnal increase of leptin, however, which is related to insulin responses to meals. We have reported that adipocyte glucose utilization is involved in insulin-induced leptin secretion in vitro. Accordingly, high-fat, low-carbohydrate (HF/LC) meals, which induce smaller insulin and glucose responses, would produce lower leptin concentrations than low-fat, high-carbohydrate (LF/HC) meals. Blood samples were collected every 30-60 min for 24 h from 19 normal-weight (BMI, 24.2 +/- 0.7 kg/m2; percent body fat = 31 +/- 1%) women on 2 days (10 days apart) during which the subjects were randomized to consume three isocaloric 730-kcal meals containing either 60/20 or 20/60% of energy as fat/carbohydrate. Overall insulin and glycemic responses (24-h area under the curve [AUC]) were reduced by 55 and 61%, respectively, on the HF/LC day (P < 0.0001). During LF/HC feeding, there were larger increases of leptin 4-6 h after breakfast (38 +/- 7%, P < 0.001) and lunch (78 +/- 14%, P < 0.001) than after HF/LC meals (both P < 0.02). During LF/HC feeding, leptin increased from a morning baseline of 10.7 +/- 1.6 ng/ml to a nocturnal peak of 21.3 +/- 1.3 ng/ml (change, 10.6 +/- 1.3 ng/ml; percent change, 123 +/- 16%; P < 0.0001). The amplitudes of the nocturnal rise of leptin and the 24-h leptin AUC were 21 +/- 8% (P < 0.005) and 38 +/- 12% (P < 0.0025) larger, respectively, on the LF/HC day. In summary, consumption of HF/LC meals results in lowered 24-h circulating leptin concentrations. This result may be a consequence of decreased adipocyte glucose metabolism. Decreases of 24-h circulating leptin could contribute to the weight gain during consumption of high-fat diets.

  9. Moderate physical activity correlates with elevated leptin in physically active 10-12-year-old boys with normal BMI.

    PubMed

    Cicchella, Antonio; Stefanelli, Claudio; Jürimäe, Toivo; Saar, Meeli; Purge, Priit

    2013-10-01

    The aim of this study is to examine the relations between physical activity of differing intensity and duration with body energy-balance hormone leptin in 10-12-year-old boys (N = 94) who participated in moderate-to-vigorous physical activity at least four to five times per week. The boys reported their physical activity using a questionnaire. They had normal body mass index (BMI, kg/ m2), and were at Tanner Stage 2 of development. Boys were divided into three subgroups by leptin levels: normal serum leptin (M +/- .5 SD, n = 44, 1.2-3.9 ng/ml), low leptin (< or = M - .5 SD; n = 31, < 1.2 ng/ml), and high leptin (> or = M + .5 SD; n = 19, > 3.9 ng/ml). There were significant differences between subgroups in anthropometric parameters and serum leptin levels, but not in physical activity. A significant correlation was found between leptin and moderate physical activity of at least five times per week for at least 30 minutes each time in the high leptin group (r = .61). In conclusion, the correlations between physical activity and leptin are weak; only moderate physical activity was correlated with leptin levels in the high leptin

  10. Leptin stimulates fibroblast growth factor 23 expression in bone and suppresses renal 1alpha,25-dihydroxyvitamin D3 synthesis in leptin-deficient mice.

    PubMed

    Tsuji, Kiyomi; Maeda, Toyonobu; Kawane, Tetsuya; Matsunuma, Ayako; Horiuchi, Noboru

    2010-08-01

    Leptin is the LEP (ob) gene product secreted by adipocytes. We previously reported that leptin decreases renal expression of the 25-hydroxyvitamin D(3) 1alpha-hydroxylase (CYP27B1) gene through the leptin receptor (ObRb) by indirectly acting on the proximal tubules. This study focused on bone-derived fibroblast growth factor 23 (FGF-23) as a mediator of the influence of leptin on renal 1alpha-hydroxylase mRNA expression in leptin-deficient ob/ob mice. Exposure to leptin (200 ng/mL) for 24 hours stimulated FGF-23 expression by primary cultured rat osteoblasts. Administration of leptin (4 mg/kg i.p. at 12-hour intervals for 2 days) to ob/ob mice markedly increased the serum FGF-23 concentration while significantly reducing the serum levels of calcium, phosphate, and 1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)]. Administration of FGF-23 (5 microg i.p. at 12-hour intervals for 2 days) to ob/ob mice suppressed renal 1alpha-hydroxylase mRNA expression. The main site of FGF-23 mRNA expression was the bone, and leptin markedly increased the FGF-23 mRNA level in ob/ob mice. In addition, leptin significantly reduced 1alpha-hydroxylase and sodium-phosphate cotransporters (NaP(i)-IIa and NaP(i)-IIc) mRNA levels but did not affect Klotho mRNA expression in the kidneys of ob/ob mice. Furthermore, the serum FGF-23 level and renal expression of 1alpha-hydroxylase mRNA were not influenced by administration of leptin to leptin receptor-deficient (db/db) mice. These results indicate that leptin directly stimulates FGF-23 synthesis by bone cells in ob/ob mice, suggesting that inhibition of renal 1,25(OH)(2)D(3) synthesis in these mice is at least partly due to elevated bone production of FGF-23.

  11. Liver X Receptor (LXR) Regulates Human Adipocyte Lipolysis*

    PubMed Central

    Stenson, Britta M.; Rydén, Mikael; Venteclef, Nicolas; Dahlman, Ingrid; Pettersson, Annie M. L.; Mairal, Aline; Åström, Gaby; Blomqvist, Lennart; Wang, Victoria; Jocken, Johan W. E.; Clément, Karine; Langin, Dominique; Arner, Peter; Laurencikiene, Jurga

    2011-01-01

    The Liver X receptor (LXR) is an important regulator of carbohydrate and lipid metabolism in humans and mice. We have recently shown that activation of LXR regulates cellular fuel utilization in adipocytes. In contrast, the role of LXR in human adipocyte lipolysis, the major function of human white fat cells, is not clear. In the present study, we stimulated in vitro differentiated human and murine adipocytes with the LXR agonist GW3965 and observed an increase in basal lipolysis. Microarray analysis of human adipocyte mRNA following LXR activation revealed an altered gene expression of several lipolysis-regulating proteins, which was also confirmed by quantitative real-time PCR. We show that expression and intracellular localization of perilipin1 (PLIN1) and hormone-sensitive lipase (HSL) are affected by GW3965. Although LXR activation does not influence phosphorylation status of HSL, HSL activity is required for the lipolytic effect of GW3965. This effect is abolished by PLIN1 knockdown. In addition, we demonstrate that upon activation, LXR binds to the proximal regions of the PLIN1 and HSL promoters. By selective knock-down of either LXR isoform, we show that LXRα is the major isoform mediating the lipolysis-related effects of LXR. In conclusion, the present study demonstrates that activation of LXRα up-regulates basal human adipocyte lipolysis. This is at least partially mediated through LXR binding to the PLIN1 promoter and down-regulation of PLIN1 expression. PMID:21030586

  12. Autoadjusting-CPAP effect on serum Leptin concentrations in Obstructive Sleep Apnoea patients

    PubMed Central

    Drummond, Marta; Winck, João C; Guimarães, João T; Santos, Ana C; Almeida, João; Marques, José A

    2008-01-01

    Background Leptin is an hormone that regulates body weight. Studies have shown increasing leptin concentrations according to body mass index (BMI) and intermittent hypoxia. Our aim is to evaluate the basal leptin levels in OSA patients and its possible relation to OSA severity, independently of confounders and investigate the Autoadjusting-CPAP effect on leptin values. Methods In ninety eight male patients with moderate to severe OSA leptin serum levels were evaluated before therapy, 9 days and 6 months after therapy. Results In this group mean age was 55.3 years, mean BMI was 33.2 Kg/m2 and mean Apnoea- Hypopnea Index (AHI) was 51.7/h. Mean basal serum leptin value was 12.1 ug/L. Univariate analysis showed a significant correlation between serum leptin values and BMI (R = 0.68; p < 0.001), waist-hip ratio (R = 0.283; p = 0.004) and AHI (R = 0.198; p = 0.048); in stepwise multiple regression analysis only BMI (p < 0.001) was a predictor of serum leptin values. One week after therapy, mean leptin serum level decreased to 11.0 ug/L and 6 months after it was 11.4 ug/L. (p = 0.56 and p = 0.387, respectively) Conclusion Baseline leptin serum levels positively correlate with BMI, fat distributioand OSA severity. BMI is the only predictor of basal leptin levels. Treatment with Autoadjusting-CPAP has a small effect on leptin levels. PMID:18828917

  13. Reduction of obesity, as induced by leptin, reverses endothelial dysfunction in obese (Lep(ob)) mice

    NASA Technical Reports Server (NTRS)

    Winters, B.; Mo, Z.; Brooks-Asplund, E.; Kim, S.; Shoukas, A.; Li, D.; Nyhan, D.; Berkowitz, D. E.

    2000-01-01

    Obesity is a major health care problem and is associated with significant cardiovascular morbidity. Leptin, a neuroendocrine hormone released by adipose tissue, is important in modulating obesity by signaling satiety and increasing metabolism. Moreover, leptin receptors are expressed on vascular endothelial cells (ECs) and mediate angiogenesis. We hypothesized that leptin may also play an important role in vasoregulation. We investigated vasoregulatory mechanisms in the leptin-deficient obese (ob/ob) mouse model and determined the influence of leptin replacement on endothelial-dependent vasorelaxant responses. The direct effect of leptin on EC nitric oxide (NO) production was also tested by using 4, 5-diaminofluorescein-2 diacetate staining and measurement of nitrate and nitrite concentrations. Vasoconstrictor responses to phenylephrine, norepinephrine, and U-46619 were markedly enhanced in aortic rings from ob/ob mice and were modulated by NO synthase inhibition. Vasorelaxant responses to ACh were markedly attenuated in mesenteric microvessels from ob/ob mice. Leptin replacement resulted in significant weight loss and reversal of the impaired endothelial-dependent vasorelaxant responses observed in ob/ob mice. Preincubation of ECs with leptin enhanced the release of NO production. Thus leptin-deficient ob/ob mice demonstrate marked abnormalities in vasoregulation, including impaired endothelial-dependent vasodilation, which is reversed by leptin replacement. These findings may be partially explained by the direct effect of leptin on endothelial NO production. These vascular abnormalities are similar to those observed in obese, diabetic, leptin-resistant humans. The ob/ob mouse may, therefore, be an excellent new model for the study of the cardiovascular effects of obesity.

  14. Leptin, Insulin, and Cinnamon Polyphenols Attenuate Glial Swelling and Mitochondrial Dysfunction in Ischemic Injury

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Obesity is a major risk factor for stroke, and tissue injury following a stroke may be more severe in the obese. A key feature of obesity is increased serum levels of obesity-related hormones including leptin and insulin, indicating a state of resistance to these hormones. Insulin resistance is gen...

  15. Evaluation of the synuclein-y (SNCG) gene as a PPARy target in murine adipocytes, dorsal root ganglia somatosensory neurons, and human adipose tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synuclein-gamma is highly expressed in both adipocytes and peripheral nervous system (PNS) somatosensory neurons. Its mRNA is induced during adipogenesis, increased in obese human white adipose tissue (WAT), may be coordinately regulated with leptin, and is decreased following treatment of murine 3T...

  16. [ROLE OF LEPTIN IN THE FORMATION OF SECONDARY AMENORRHEA IN ADOLESCENT GIRLS].

    PubMed

    Levenets, S A; Nachotova, T A; Kashkalda, D A

    2015-01-01

    In order to understand the role of leptin in the formation of secondary amenorrhea (SA) during puberty, 78 girls aged from 13 to 17 years with SA and 74 girls of the same age with regular menstrual cycle have been examined with the estimation of body mass index (BMI) and hormonal/metabolic state. The obtained data show a strong connection between leptin level, BMI and parameters of energetic metabolic state (insulin; HOMA index); regression analysis results indicated the participation of leptin in steroidogenesis. Odds ratio (OR) values indicated an important role of leptin in the formation of SA during body weight deficit and normal BMI. It has been found that various clinical types of SA have different patterns of leptin influence.

  17. Leptin does not seem to influence glucose uptake by bovine mammary explants.

    PubMed

    Accorsi, P A; Gamberoni, M; Isani, G; Govoni, N; Viggiani, R; Monari, M; De Ambrogi, M; Munno, A; Tamanini, C; Seren, E

    2005-12-01

    Leptin, a protein produced and secreted by adipocytes, is know to regulate food intake and whole-body energy metabolism, but knowledge about its possible effect in bovine mammary gland is scarce. Leptin may be involved in the regulation of glucose transport even though this effect at the tissue level remains controversial. Once uptaken by the mammary gland, glucose is utilised in several ways but the majority, about 60-70%, is drained for lactose synthesis. This study was aimed at investigating the effect of leptin on glucose regulation in bovine mammary gland. We have examined the effects of leptin on the expression of GLUT1 mRNA, pyruvate kinase (PK) as well as glucose-6-phosphate dehydrogenase (G6PDH) activity. Treatment of mammary gland explants with recombinant leptin did not influence glucose assimilation, pathway transport (GLUT1 mRNA) and glucose metabolism (PK and G6PDH) in this tissue. The results from this study seem to exclude an involvement of leptin in glucose uptake and metabolism in bovine mammary gland.

  18. Peripheral cannabinoid-1 receptor inverse agonism reduces obesity by reversing leptin resistance.

    PubMed

    Tam, Joseph; Cinar, Resat; Liu, Jie; Godlewski, Grzegorz; Wesley, Daniel; Jourdan, Tony; Szanda, Gergő; Mukhopadhyay, Bani; Chedester, Lee; Liow, Jeih-San; Innis, Robert B; Cheng, Kejun; Rice, Kenner C; Deschamps, Jeffrey R; Chorvat, Robert J; McElroy, John F; Kunos, George

    2012-08-08

    Obesity-related leptin resistance manifests in loss of leptin's ability to reduce appetite and increase energy expenditure. Obesity is also associated with increased activity of the endocannabinoid system, and CB(1) receptor (CB(1)R) inverse agonists reduce body weight and the associated metabolic complications, although adverse neuropsychiatric effects halted their therapeutic development. Here we show that in mice with diet-induced obesity (DIO), the peripherally restricted CB(1)R inverse agonist JD5037 is equieffective with its brain-penetrant parent compound in reducing appetite, body weight, hepatic steatosis, and insulin resistance, even though it does not occupy central CB(1)R or induce related behaviors. Appetite and weight reduction by JD5037 are mediated by resensitizing DIO mice to endogenous leptin through reversing the hyperleptinemia by decreasing leptin expression and secretion by adipocytes and increasing leptin clearance via the kidney. Thus, inverse agonism at peripheral CB(1)R not only improves cardiometabolic risk in obesity but has antiobesity effects by reversing leptin resistance.

  19. Taste bud leptin: sweet dampened at initiation site.

    PubMed

    Travers, Susan P; Frank, Marion E

    2015-05-01

    The intriguing observation that leptin decreases sweet-evoked peripheral gustatory responses has aroused much interest (Kawai K, Sugimoto K, Nakashima K, Miura H, Ninomiya Y. 2000. Leptin as a modulator of sweet taste sensitivities in mice. Proc Natl Acad Sci U S A. 97(20):11044-11049.) due to its implied importance in controlling appetite. The effects of this anorexic hormone, however, appear more conditional than originally believed. In this issue of Chemical Senses, a careful study by Glendinning and colleagues, find no effects of leptin on sweet-evoked chorda tympani responses, whereas an equally careful study by Meredith and colleagues, find decreased release of ATP and increased release of 5-HT from taste buds in response to sweet stimuli.

  20. Leptin administration restores the altered adipose and hepatic expression of aquaglyceroporins improving the non-alcoholic fatty liver of ob/ob mice.

    PubMed

    Rodríguez, Amaia; Moreno, Natalia R; Balaguer, Inmaculada; Méndez-Giménez, Leire; Becerril, Sara; Catalán, Victoria; Gómez-Ambrosi, Javier; Portincasa, Piero; Calamita, Giuseppe; Soveral, Graça; Malagón, María M; Frühbeck, Gema

    2015-07-10

    Glycerol is an important metabolite for the control of lipid accumulation in white adipose tissue (WAT) and liver. We aimed to investigate whether exogenous administration of leptin improves features of non-alcoholic fatty liver disease (NAFLD) in leptin-deficient ob/ob mice via the regulation of AQP3 and AQP7 (glycerol channels mediating glycerol efflux in adipocytes) and AQP9 (aquaglyceroporin facilitating glycerol influx in hepatocytes). Twelve-week-old male wild type and ob/ob mice were divided in three groups as follows: control, leptin-treated (1 mg/kg/d) and pair-fed. Leptin deficiency was associated with obesity and NAFLD exhibiting an AQP3 and AQP7 increase in WAT, without changes in hepatic AQP9. Adipose Aqp3 and hepatic Aqp9 transcripts positively correlated with markers of adiposity and hepatic steatosis. Chronic leptin administration (4-weeks) was associated with improved body weight, whole-body adiposity, and hepatosteatosis of ob/ob mice and to a down-regulation of AQP3, AQP7 in WAT and an up-regulation of hepatic AQP9. Acute leptin stimulation in vitro (4-h) induced the mobilization of aquaglyceroporins towards lipid droplets (AQP3) and the plasma membrane (AQP7) in murine adipocytes. Our results show that leptin restores the coordinated regulation of fat-specific AQP7 and liver-specific AQP9, a step which might prevent lipid overaccumulation in WAT and liver in obesity.

  1. Leptin administration restores the altered adipose and hepatic expression of aquaglyceroporins improving the non-alcoholic fatty liver of ob/ob mice

    PubMed Central

    Rodríguez, Amaia; Moreno, Natalia R.; Balaguer, Inmaculada; Méndez-Giménez, Leire; Becerril, Sara; Catalán, Victoria; Gómez-Ambrosi, Javier; Portincasa, Piero; Calamita, Giuseppe; Soveral, Graça; Malagón, María M.; Frühbeck, Gema

    2015-01-01

    Glycerol is an important metabolite for the control of lipid accumulation in white adipose tissue (WAT) and liver. We aimed to investigate whether exogenous administration of leptin improves features of non-alcoholic fatty liver disease (NAFLD) in leptin-deficient ob/ob mice via the regulation of AQP3 and AQP7 (glycerol channels mediating glycerol efflux in adipocytes) and AQP9 (aquaglyceroporin facilitating glycerol influx in hepatocytes). Twelve-week-old male wild type and ob/ob mice were divided in three groups as follows: control, leptin-treated (1 mg/kg/d) and pair-fed. Leptin deficiency was associated with obesity and NAFLD exhibiting an AQP3 and AQP7 increase in WAT, without changes in hepatic AQP9. Adipose Aqp3 and hepatic Aqp9 transcripts positively correlated with markers of adiposity and hepatic steatosis. Chronic leptin administration (4-weeks) was associated with improved body weight, whole-body adiposity, and hepatosteatosis of ob/ob mice and to a down-regulation of AQP3, AQP7 in WAT and an up-regulation of hepatic AQP9. Acute leptin stimulation in vitro (4-h) induced the mobilization of aquaglyceroporins towards lipid droplets (AQP3) and the plasma membrane (AQP7) in murine adipocytes. Our results show that leptin restores the coordinated regulation of fat-specific AQP7 and liver-specific AQP9, a step which might prevent lipid overaccumulation in WAT and liver in obesity. PMID:26159457

  2. A mathematical model of leptin resistance.

    PubMed

    Jacquier, Marine; Soula, Hédi A; Crauste, Fabien

    2015-09-01

    Obesity is often associated with leptin resistance, which leads to a physiological system with high leptin concentration but unable to respond to leptin signals and to regulate food intake. We propose a mathematical model of the leptin-leptin receptors system, based on the assumption that leptin is a regulator of its own receptor activity, and investigate its qualitative behavior. Based on current knowledge and previous models developed for body weight dynamics in rodents, the model includes the dynamics of leptin, leptin receptors and the regulation of food intake and body weight. It displays two stable equilibria, one representing a healthy state and the other one an obese and leptin resistant state. We show that a constant leptin injection can lead to leptin resistance and that a temporal variation in some parameter values influencing food intake can induce a change of equilibrium and a pathway to leptin resistance and obesity.

  3. 20 years of leptin: connecting leptin signaling to biological function.

    PubMed

    Allison, Margaret B; Myers, Martin G

    2014-10-01

    Hypothalamic leptin action promotes negative energy balance and modulates glucose homeostasis, as well as serving as a permissive signal to the neuroendocrine axes that control growth and reproduction. Since the initial discovery of leptin 20 years ago, we have learned a great deal about the molecular mechanisms of leptin action. An important aspect of this has been the dissection of the cellular mechanisms of leptin signaling, and how specific leptin signals influence physiology. Leptin acts via the long form of the leptin receptor LepRb. LepRb activation and subsequent tyrosine phosphorylation recruits and activates multiple signaling pathways, including STAT transcription factors, SHP2 and ERK signaling, the IRS-protein/PI3Kinase pathway, and SH2B1. Each of these pathways controls specific aspects of leptin action and physiology. Important inhibitory pathways mediated by suppressor of cytokine signaling proteins and protein tyrosine phosphatases also limit physiologic leptin action. This review summarizes the signaling pathways engaged by LepRb and their effects on energy balance, glucose homeostasis, and reproduction. Particular emphasis is given to the multiple mouse models that have been used to elucidate these functions in vivo.

  4. Proteomic identification of fat-browning markers in cultured white adipocytes treated with curcumin.

    PubMed

    Kim, Sang Woo; Choi, Jae Heon; Mukherjee, Rajib; Hwang, Ki-Chul; Yun, Jong Won

    2016-04-01

    We previously reported that curcumin induces browning of primary white adipocytes via enhanced expression of brown adipocyte-specific genes. In this study, we attempted to identify target proteins responsible for this fat-browning effect by analyzing proteomic changes in cultured white adipocytes in response to curcumin treatment. To elucidate the role of curcumin in fat-browning, we conducted comparative proteomic analysis of primary adipocytes between control and curcumin-treated cells using two-dimensional electrophoresis combined with MALDI-TOF-MS. We also investigated fatty acid metabolic targets, mitochondrial biogenesis, and fat-browning-associated proteins using combined proteomic and network analyses. Proteomic analysis revealed that 58 protein spots from a total of 325 matched spots showed differential expression between control and curcumin-treated adipocytes. Using network analysis, most of the identified proteins were proven to be involved in various metabolic and cellular processes based on the PANTHER classification system. One of the most striking findings is that hormone-sensitive lipase (HSL) was highly correlated with main browning markers based on the STRING database. HSL and two browning markers (UCP1, PGC-1α) were co-immunoprecipitated with these markers, suggesting that HSL possibly plays a role in fat-browning of white adipocytes. Our results suggest that curcumin increased HSL levels and other browning-specific markers, suggesting its possible role in augmentation of lipolysis and suppression of lipogenesis by trans-differentiation from white adipocytes into brown adipocytes (beige).

  5. Hexim1, a Novel Regulator of Leptin Function, Modulates Obesity and Glucose Disposal

    PubMed Central

    Dhar-Mascareno, Manya; Ramirez, Susan N.; Rozenberg, Inna; Rouille, Yves; Kral, John G.

    2016-01-01

    Leptin triggers signaling events with significant transcriptional responses that are essential to metabolic processes affecting obesity and glucose disposal. We asked whether hexamethylene bis-acetamide inducible-1 (Hexim1), an inhibitor of RNA II polymerase-dependent transcription elongation, regulates leptin-Janus kinase 2 signaling axis in the hypothalamus. We subjected C57BL6 Hexim1 heterozygous (HT) mice to high-fat diet and when compared with wild type, HT mice were resistant to high-fat diet-induced weight gain and remain insulin sensitive. HT mice exhibited increased leptin-pY705Stat3 signaling in the hypothalamus, with normal adipocyte size, increased type I oxidative muscle fiber density, and enhanced glucose transporter 4 expression. We also observed that normal Hexim1 protein level is required to facilitate the expression of CCAAT/enhancer-binding proteins (C/EBPs) required for adipogenesis and inducible suppressor of cytokine signaling 3 (SOCS) expression. Further support on the role of Hexim1 regulating C/EBPs during adipocyte differentiation was shown when HT 3T3L1 fibroblasts failed to undergo adipogenesis. Hexim1 selectively modulates leptin-mediated signal transduction pathways in the hypothalamus, the expression of C/EBPs and peroxisome proliferator-activated receptor-γ (PPAR γ) in skeletal muscle and adipose tissue during the adaptation to metabolic stress. We postulate that Hexim1 might be a novel factor involved in maintaining whole-body energy balance. PMID:26859361

  6. Mesolimbic leptin signaling negatively regulates cocaine-conditioned reward.

    PubMed

    Shen, M; Jiang, C; Liu, P; Wang, F; Ma, L

    2016-12-06

    The regulatory mechanisms underlying the response to addictive drugs are complex, and increasing evidence indicates that there is a role for appetite-regulating pathways in substance abuse. Leptin, an important adipose hormone that regulates energy balance and appetite, exerts its physiological functions via leptin receptors. However, the role of leptin signaling in regulating the response to cocaine remains unclear. Here we examined the potential role of leptin signaling in cocaine reward using a conditioned place preference (CPP) procedure. Our results showed that inhibition of leptin signaling by intracerebroventricular infusion of the leptin receptor (LepR) antagonist SMLA during cocaine conditioning increased the cocaine-CPP and upregulated the level of dopamine and its metabolites in the nucleus accumbens (NAc). We then selectively knocked down the LepR in the mesolimbic ventral tegmental area (VTA), NAc core and central amygdala (CeA) by injecting AAV-Cre into Lepr(flox/flox) mice. LepR deletion in the VTA increased the dopamine levels in the NAc and enhanced the cocaine-conditioned reward. LepR deletion in the NAc core enhanced the cocaine-conditioned reward and impaired the effect of the D2-dopamine receptor on cocaine-CPP, whereas LepR deletion in the CeA had no effect on cocaine-CPP but increased the anxiety level of mice. In addition, prior exposure to saccharin increased LepR mRNA and STAT3 phosphorylation in the NAc and VTA and impaired cocaine-CPP. These results indicate that leptin signaling is critically involved in cocaine-conditioned reward and the regulation of drug reward by a natural reward and that these effects are dependent on mesolimbic LepR.

  7. Mesolimbic leptin signaling negatively regulates cocaine-conditioned reward

    PubMed Central

    Shen, M; Jiang, C; Liu, P; Wang, F; Ma, L

    2016-01-01

    The regulatory mechanisms underlying the response to addictive drugs are complex, and increasing evidence indicates that there is a role for appetite-regulating pathways in substance abuse. Leptin, an important adipose hormone that regulates energy balance and appetite, exerts its physiological functions via leptin receptors. However, the role of leptin signaling in regulating the response to cocaine remains unclear. Here we examined the potential role of leptin signaling in cocaine reward using a conditioned place preference (CPP) procedure. Our results showed that inhibition of leptin signaling by intracerebroventricular infusion of the leptin receptor (LepR) antagonist SMLA during cocaine conditioning increased the cocaine-CPP and upregulated the level of dopamine and its metabolites in the nucleus accumbens (NAc). We then selectively knocked down the LepR in the mesolimbic ventral tegmental area (VTA), NAc core and central amygdala (CeA) by injecting AAV-Cre into Leprflox/flox mice. LepR deletion in the VTA increased the dopamine levels in the NAc and enhanced the cocaine-conditioned reward. LepR deletion in the NAc core enhanced the cocaine-conditioned reward and impaired the effect of the D2-dopamine receptor on cocaine-CPP, whereas LepR deletion in the CeA had no effect on cocaine-CPP but increased the anxiety level of mice. In addition, prior exposure to saccharin increased LepR mRNA and STAT3 phosphorylation in the NAc and VTA and impaired cocaine-CPP. These results indicate that leptin signaling is critically involved in cocaine-conditioned reward and the regulation of drug reward by a natural reward and that these effects are dependent on mesolimbic LepR. PMID:27922639

  8. The role of leptin in diabetes: metabolic effects.

    PubMed

    Meek, Thomas H; Morton, Gregory J

    2016-05-01

    While it is well established that the adiposity hormone leptin plays a key role in the regulation of energy homeostasis, growing evidence suggests that leptin is also critical for glycaemic control. In this review we examine the role of the brain in the glucose-lowering actions of leptin and the potential mediators responsible for driving hyperglycaemia in states of uncontrolled insulin-deficient diabetes (uDM). These considerations highlight the possibility of targeting leptin-sensitive pathways as a therapeutic option for the treatment of diabetes. This review summarises a presentation given at the 'Is leptin coming back?' symposium at the 2015 annual meeting of the EASD. It is accompanied by two other reviews on topics from this symposium (by Christoffer Clemmensen and colleagues, DOI: 10.1007/s00125-016-3906-7 , and by Gerald Shulman and colleagues, DOI: 10.1007/s00125-016-3909-4 ) and an overview by the Session Chair, Ulf Smith (DOI: 10.1007/s00125-016-3894-7 ).

  9. Interpersonal Stressors Predict Ghrelin and Leptin Levels in Women

    PubMed Central

    Jaremka, Lisa M.; Belury, Martha A.; Andridge, Rebecca R.; Malarkey, William B.; Glaser, Ronald; Christian, Lisa; Emery, Charles F.; Kiecolt-Glaser, Janice K.

    2014-01-01

    Objective Stressful events enhance risk for weight gain and adiposity. Ghrelin and leptin, two hormones that are implicated in appetite regulation, may link stressful events to weight gain; a number of rodent studies suggest that stressors increase ghrelin production. The present study investigated the links among daily stressors, ghrelin and leptin, and dietary intake in humans. Method Women (N = 50) completed three study appointments that were scheduled at least 2 weeks apart. At each visit, women arrived fasting and ate a standardized breakfast and lunch. Blood samples were collected 45 minutes after each meal. Women completed a self-report version of the Daily Inventory of Stressful Events (DISE) at each appointment. Two composites were created from the DISE data, reflecting the number of stressors that did and did not involve interpersonal tension. Results Women who experienced more stressors involving interpersonal tension had higher ghrelin and lower leptin levels than those who experienced fewer interpersonal stressors. Furthermore, women who experienced more interpersonal stressors had a diet that was higher in calories, fat, carbohydrates, protein, sugar, sodium, and fiber, and marginally higher in cholesterol, vegetables (but not fruits), vitamin A, and vitamin C. Stressors that did not involve interpersonal tension were unrelated to ghrelin and leptin levels or any of the dietary components examined. Conclusions These data suggest that ghrelin and leptin may link daily interpersonal stressors to weight gain and obesity. PMID:25032903

  10. Temporal changes in nutritional state affect hypothalamic POMC peptide levels independently of leptin in adult male mice.

    PubMed

    Mercer, Aaron J; Stuart, Ronald C; Attard, Courtney A; Otero-Corchon, Veronica; Nillni, Eduardo A; Low, Malcolm J

    2014-04-15

    Hypothalamic proopiomelanocortin (POMC) neurons constitute a critical anorexigenic node in the central nervous system (CNS) for maintaining energy balance. These neurons directly affect energy expenditure and feeding behavior by releasing bioactive neuropeptides but are also subject to signals directly related to nutritional state such as the adipokine leptin. To further investigate the interaction of diet and leptin on hypothalamic POMC peptide levels, we exposed 8- to 10-wk-old male POMC-Discosoma red fluorescent protein (DsRed) transgenic reporter mice to either 24-48 h (acute) or 2 wk (chronic) food restriction, high-fat diet (HFD), or leptin treatment. Using semiquantitative immunofluorescence and radioimmunoassays, we discovered that acute fasting and chronic food restriction decreased the levels of adrenocorticotropic hormone (ACTH), α-melanocyte-stimulating hormone (α-MSH), and β-endorphin in the hypothalamus, together with decreased DsRed fluorescence, compared with control ad libitum-fed mice. Furthermore, acute but not chronic HFD or leptin administration selectively increased α-MSH levels in POMC fibers and increased DsRed fluorescence in POMC cell bodies. HFD and leptin treatments comparably increased circulating leptin levels at both time points, suggesting that transcription of Pomc and synthesis of POMC peptide products are not modified in direct relation to the concentration of plasma leptin. Our findings indicate that negative energy balance persistently downregulated POMC peptide levels, and this phenomenon may be partially explained by decreased leptin levels, since these changes were blocked in fasted mice treated with leptin. In contrast, sustained elevation of plasma leptin by HFD or hormone supplementation did not significantly alter POMC peptide levels, indicating that enhanced leptin signaling does not chronically increase Pomc transcription and peptide synthesis.

  11. Temporal changes in nutritional state affect hypothalamic POMC peptide levels independently of leptin in adult male mice

    PubMed Central

    Mercer, Aaron J.; Stuart, Ronald C.; Attard, Courtney A.; Otero-Corchon, Veronica; Nillni, Eduardo A.

    2014-01-01

    Hypothalamic proopiomelanocortin (POMC) neurons constitute a critical anorexigenic node in the central nervous system (CNS) for maintaining energy balance. These neurons directly affect energy expenditure and feeding behavior by releasing bioactive neuropeptides but are also subject to signals directly related to nutritional state such as the adipokine leptin. To further investigate the interaction of diet and leptin on hypothalamic POMC peptide levels, we exposed 8- to 10-wk-old male POMC-Discosoma red fluorescent protein (DsRed) transgenic reporter mice to either 24–48 h (acute) or 2 wk (chronic) food restriction, high-fat diet (HFD), or leptin treatment. Using semiquantitative immunofluorescence and radioimmunoassays, we discovered that acute fasting and chronic food restriction decreased the levels of adrenocorticotropic hormone (ACTH), α-melanocyte-stimulating hormone (α-MSH), and β-endorphin in the hypothalamus, together with decreased DsRed fluorescence, compared with control ad libitum-fed mice. Furthermore, acute but not chronic HFD or leptin administration selectively increased α-MSH levels in POMC fibers and increased DsRed fluorescence in POMC cell bodies. HFD and leptin treatments comparably increased circulating leptin levels at both time points, suggesting that transcription of Pomc and synthesis of POMC peptide products are not modified in direct relation to the concentration of plasma leptin. Our findings indicate that negative energy balance persistently downregulated POMC peptide levels, and this phenomenon may be partially explained by decreased leptin levels, since these changes were blocked in fasted mice treated with leptin. In contrast, sustained elevation of plasma leptin by HFD or hormone supplementation did not significantly alter POMC peptide levels, indicating that enhanced leptin signaling does not chronically increase Pomc transcription and peptide synthesis. PMID:24518677

  12. The role of falling leptin levels in the neuroendocrine and metabolic adaptation to short-term starvation in healthy men.

    PubMed

    Chan, Jean L; Heist, Kathleen; DePaoli, Alex M; Veldhuis, Johannes D; Mantzoros, Christos S

    2003-05-01

    To elucidate the role of leptin in regulating neuroendocrine and metabolic function during an acute fast, six to eight healthy, lean men were studied under four separate conditions: a baseline fed state and three 72-hour fasting studies with administration of either placebo, low-dose recombinant-methionyl human leptin (r-metHuLeptin), or replacement-dose r-metHuLeptin designed to maintain serum leptin at levels similar to those in the fed state. Replacement-dose r-metHuLeptin administered during fasting prevents the starvation-induced changes in the hypothalamic-pituitary-gonadal axis and, in part, the hypothalamic-pituitary-thyroid axis and IGF-1 binding capacity in serum. Thus, in normal men, the fall in leptin with fasting may be both necessary and sufficient for the physiologic adaptations of these axes, which require leptin levels above a certain threshold for activation. In contrast to findings in mice, fasting-induced changes in the hypothalamic-pituitary-adrenal, renin-aldosterone, and growth hormone-IGF-1 axes as well as fuel utilization may be independent of leptin in humans. The role of leptin in normalizing several starvation-induced neuroendocrine changes may have important implications for the pathophysiology and treatment of eating disorders and obesity.

  13. The effect of prolactin and relaxin on insulin binding by adipocytes from pregnant women.

    PubMed

    Jarrett JC2nd; Ballejo, G; Saleem, T H; Tsibris, J C; Spellacy, W N

    1984-06-01

    The effects of prolactin and relaxin on insulin binding by isolated human adipocytes from women at term gestation were studied in vitro. It was found that prolactin decreases, and relaxin increases, insulin binding to the adipocytes. Both changes appear to be due to alterations in the affinity of the insulin receptors. These effects seem to be mediated through specific prolactin and relaxin receptors of the adipocyte and require the presence of an intact cellular cytoskeleton. This suggests that one hormone, for example, prolactin, can interact with its own specific receptor and thereby after the affinity of a heterologous receptor for its hormone (insulin). Heterologous hormone-receptor complex interactions ("cross-talk") may be widespread and could represent a fundamental mechanism in the functioning of the endocrine system.

  14. Estradiol and Estrogen Receptor Agonists Oppose Oncogenic Actions of Leptin in HepG2 Cells

    PubMed Central

    Shen, Minqian; Shi, Haifei

    2016-01-01

    Obesity is a significant risk factor for certain cancers, including hepatocellular carcinoma (HCC). Leptin, a hormone secreted by white adipose tissue, precipitates HCC development. Epidemiology data show that men have a much higher incidence of HCC than women, suggesting that estrogens and its receptors may inhibit HCC development and progression. Whether estrogens antagonize oncogenic action of leptin is uncertain. To investigate potential inhibitory effects of estrogens on leptin-induced HCC development, HCC cell line HepG2 cells were treated with leptin in combination with 17 β-estradiol (E2), estrogen receptor-α (ER-α) selective agonist PPT, ER-β selective agonist DPN, or G protein-coupled ER (GPER) selective agonist G-1. Cell number, proliferation, and apoptosis were determined, and leptin- and estrogen-related intracellular signaling pathways were analyzed. HepG2 cells expressed a low level of ER-β mRNA, and leptin treatment increased ER-β expression. E2 suppressed leptin-induced HepG2 cell proliferation and promoted cell apoptosis in a dose-dependent manner. Additionally E2 reversed leptin-induced STAT3 and leptin-suppressed SOCS3, which was mainly achieved by activation of ER-β. E2 also enhanced ERK via activating ER-α and GPER and activated p38/MAPK via activating ER-β. To conclude, E2 and its receptors antagonize the oncogenic actions of leptin in HepG2 cells by inhibiting cell proliferation and stimulating cell apoptosis, which was associated with reversing leptin-induced changes in SOCS3/STAT3 and increasing p38/MAPK by activating ER-β, and increasing ERK by activating ER-α and GPER. Identifying roles of different estrogen receptors would provide comprehensive understanding of estrogenic mechanisms in HCC development and shed light on potential treatment for HCC patients. PMID:26982332

  15. Serum Leptin Is a Biomarker of Malnutrition in Decompensated Cirrhosis

    PubMed Central

    Rachakonda, Vikrant; Borhani, Amir A.; Dunn, Michael A.; Andrzejewski, Margaret; Martin, Kelly; Behari, Jaideep

    2016-01-01

    Background and Aims Malnutrition is a leading cause of morbidity and mortality in cirrhosis. There is no consensus as to the optimal approach for identifying malnutrition in end-stage liver disease. The aim of this study was to measure biochemical, serologic, hormonal, radiographic, and anthropometric features in a cohort of hospitalized cirrhotic patients to characterize biomarkers for identification of malnutrition. Design In this prospective observational cohort study, 52 hospitalized cirrhotic patients were classified as malnourished (42.3%) or nourished (57.7%) based on mid-arm muscle circumference < 23 cm and dominant handgrip strength < 30 kg. Anthropometric measurements were obtained. Appetite was assessed using the Simplified Nutrition Appetite Questionnaire (SNAQ) score. Fasting levels of serum adipokines, cytokines, and hormones were determined using Luminex assays. Logistic regression analysis was used to determine features independently associated with malnutrition. Results Subjects with and without malnutrition differed in several key features of metabolic phenotype including wet and dry BMI, skeletal muscle index, visceral fat index and HOMA-IR. Serum leptin levels were lower and INR was higher in malnourished subjects. Serum leptin was significantly correlated with HOMA-IR, wet and dry BMI, mid-arm muscle circumference, skeletal muscle index, and visceral fat index. Logistic regression analysis revealed that INR and log-transformed leptin were independently associated with malnutrition. Conclusions Low serum leptin and elevated INR are associated with malnutrition in hospitalized patients with end-stage liver disease. PMID:27583675

  16. Roles of leptin in bone metabolism and bone diseases.

    PubMed

    Chen, Xu Xu; Yang, Tianfu

    2015-09-01

    Adipose tissue has been more accepted as an active contributor to whole body homeostasis, rather than just a fat depot, since leptin, a 16 kDa protein, was discovered as the product of the obese gene in 1994. With more and more studies conducted on this hormone, it has been shown that there is a close relationship between adipose tissue and bone, which have important effects on each other. Bone is the source of many hormones, such as osteocalcin, that can affect energy metabolism and then the anabolism or catabolism of fat tissue. In contrast, the adipose tissue synthesizes and releases a series of adipokines, which are involved in bone metabolism through direct or indirect effects on bone formation and resorption. Interestingly, leptin, one of the most important cytokines derived from fat tissue, seems to account for the largest part of effects on bone, through direct or indirect involvement in bone remodeling and by playing a significant role in many bone diseases, such as osteoporosis, osteoarthritis, rheumatic arthritis, bone tumors and even fractures. In this review, we will discuss the progress in leptin research, particularly focusing on the roles of leptin in bone diseases.

  17. Postnatal leptin is necessary for maturation of numerous organs in newborn rats.

    PubMed

    Attig, Linda; Larcher, Thibaut; Gertler, Arieh; Abdennebi-Najar, Latifa; Djiane, Jean

    2011-01-01

    The postnatal leptin surge, described particularly in rodents, has been demonstrated to be crucial for hypothalamic maturation and brain development. In the present study, the possible general effects of this hormone on maturation of numerous peripheral organs have been explored. To test this hypothesis, we used a leptin antagonist (L39A/D40A/F41A) to investigate the effects of the blockage of postnatal leptin action on neonatal growth and maturation of organs involved in metabolism regulation, reproduction and immunity. For that purpose, newborn female pups were subcutaneously injected from days 2-13 with either saline or leptin antagonist and sacrificed at weaning. Organs were submitted to histological and immunohistochemical analyses. Leptin antagonist treatment clearly impaired the maturation of pancreas, kidney, thymus and ovary. All these alterations, at the organ level, occurred without changes in the whole-body mass of the animals. Leptin antagonist treatment induced: (1) a reduction in b cell area and a concomitant increase of a cells in Langherans islets in the pancreas, (2) a reduction in the number of glomeruli and a persistence of immature glomeruli in kidney, (3) an increase in the thymic cortical layer thickness, reflecting an unmatured stage, (4) a drastic reduction of the pool of primordial follicles, in ovaries. All these results strongly argue for a crucial role of leptin for the achievement of organ maturation, opening new perspectives in the field of leptin physiology and organ development.

  18. A role for the central histaminergic system in the leptin-mediated increase in cardiovascular dynamics.

    PubMed

    Rao, Sumangala P; Dunbar, Joseph C

    2005-01-15

    The central nervous system (CNS) histaminergic neurons have been shown to regulate feeding behavior and are a target of leptin in the brain. The present study aimed to examine the involvement of the histaminergic system in the leptin-mediated regulation of cardiovascular dynamics. We investigated the cardiovascular responses to the CNS administration of histamine, leptin and alpha-melanocyte stimulating hormone (alpha-MSH) both in the presence and absence of the histamine H1 antagonist, chlorpheniramine. The intracerebroventricular (i.c.v.) administration of histamine resulted in an immediate increase in both mean arterial pressure (MAP) and heart rate (HR) and vasoconstricted the iliac, renal and superior mesenteric vessels. The i.c.v. pretreatment with chlorpheniramine attenuated the histamine-induced increase in MAP, HR and decreased vascular conductance. The i.c.v. administration of leptin increased MAP and HR and decreased vascular conductance. The i.c.v. pretreatment with chlorpheniramine decreased the leptin-induced increase in MAP and the leptin-mediated iliac vasoconstriction. The i.c.v. administration of alpha-MSH also increased MAP, HR and decreased vascular conductance. However, pretreatment with chlorpheniramine did not influence the central alpha-MSH-mediated increase in MAP, HR and decreased vascular conductance. These results indicate that the central histaminergic system mediated by H1 receptors have a role in the central signaling pathway and is involved in leptin's regulation of cardiovascular dynamics. It appears that leptin directly or indirectly stimulates histaminergic neurons that lead to increased cardiovascular activity.

  19. Postnatal leptin is necessary for maturation of numerous organs in newborn rats

    PubMed Central

    Larcher, Thibaut; Gertler, Arieh; Abdennebi-Najar, Latifa

    2011-01-01

    The postnatal leptin surge, described particularly in rodents, has been demonstrated to be crucial for hypothalamic maturation and brain development. In the present study, the possible general effects of this hormone on maturation of numerous peripheral organs have been explored. To test this hypothesis, we used a leptin antagonist (L39A/D40A/F41A) to investigate the effects of the blockage of postnatal leptin action on neonatal growth and maturation of organs involved in metabolism regulation, reproduction and immunity. For that purpose, newborn female pups were subcutaneously injected from days 2–13 with either saline or leptin antagonist and sacrificed at weaning. Organs were submitted to histological and immunohistochemical analyses. Leptin antagonist treatment clearly impaired the maturation of pancreas, kidney, thymus and ovary. All these alterations, at the organ level, occurred without changes in the whole-body mass of the animals. Leptin antagonist treatment induced: (1) a reduction in β cell area and a concomitant increase of α cells in Langherans islets in the pancreas, (2) a reduction in the number of glomeruli and a persistence of immature glomeruli in kidney, (3) an increase in the thymic cortical layer thickness, reflecting an unmatured stage, (4) a drastic reduction of the pool of primordial follicles, in ovaries. All these results strongly argue for a crucial role of leptin for the achievement of organ maturation, opening new perspectives in the field of leptin physiology and organ development. PMID:21378499

  20. Neuroprotective effects of leptin in the context of obesity and metabolic disorders.

    PubMed

    Davis, Cecilia; Mudd, Jeremy; Hawkins, Meredith

    2014-12-01

    As the population of the world ages, the prevalence of neurodegenerative disease continues to rise, accompanied by increases in disease burden related to obesity and metabolic disorders. Thus, it will be essential to develop tools for preventing and slowing the progression of these major disease entities. Epidemiologic studies have shown strong associations between obesity, metabolic dysfunction, and neurodegeneration, while animal models have provided insights into the complex relationships between these conditions. Experimentally, the fat-derived hormone leptin has been shown to act as a neuroprotective agent in various animal models of dementia, toxic insults, ischemia/reperfusion, and other neurodegenerative processes. Specifically, leptin minimizes neuronal damage induced by neurotoxins and pro-apoptotic conditions. Leptin has also demonstrated considerable promise in animal models of obesity and metabolic disorders via modulation of glucose homeostasis and energy intake. However, since obesity is known to induce leptin resistance, we hypothesize that resistance to the neuroprotective effects of leptin contributes to the pathogenesis of obesity-associated neurodegenerative diseases. This review aims to explore the literature pertinent to the role of leptin in the protection of neurons from the toxic effects of aging, obesity and metabolic disorders, to investigate the physiological state of leptin resistance and its causes, and to consider how leptin might be employed therapeutically in the prevention and treatment of neurodegenerative disease.

  1. Human white adipocytes convert into "rainbow" adipocytes in vitro.

    PubMed

    Maurizi, Giulia; Poloni, Antonella; Mattiucci, Domenico; Santi, Spartaco; Maurizi, Angela; Izzi, Valerio; Giuliani, Angelica; Mancini, Stefania; Zingaretti, Maria Cristina; Perugini, Jessica; Severi, Ilenia; Falconi, Massimo; Vivarelli, Marco; Rippo, Maria Rita; Corvera, Silvia; Giordano, Antonio; Leoni, Pietro; Cinti, Saverio

    2016-12-17

    White adipocytes are plastic cells able to reversibly transdifferentiate into brown adipocytes and into epithelial glandular cells under physiologic stimuli in vivo. These plastic properties could be used in future for regenerative medicine, but are incompletely explored in their details. Here, we focused on plastic properties of human mature adipocytes (MA) combining gene expression profile through microarray analysis with morphologic data obtained by electron and time lapse microscopy. Primary MA showed the classic morphology and gene expression profile of functional mature adipocytes. Notably, despite their committed status, MA expressed high levels of reprogramming genes. MA from ceiling cultures underwent transdifferentiation towards fibroblast-like cells with a well-differentiated morphology and maintaining stem cell gene signatures. The main morphologic aspect of the transdifferentiation process was the secretion of large lipid droplets and the development of organelles necessary for exocrine secretion further supported the liposecretion process. Of note, electron microscope findings suggesting liposecretion phenomena were found also in explants of human fat and rarely in vivo in fat biopsies from obese patients. In conclusion, both MA and post-liposecretion adipocytes show a well-differentiated phenotype with stem cell properties in line with the extraordinary plasticity of adipocytes in vivo. This article is protected by copyright. All rights reserved.

  2. Paradoxical Effects of Partial Leptin Deficiency on Bone in Growing Female Mice

    PubMed Central

    Philbrick, Kenneth A.; Turner, Russell T.; Branscum, Adam J.; Wong, Carmen P.; Iwaniec, Urszula T.

    2015-01-01

    Morbidly obese, leptin-deficient ob/ob mice display low bone mass, mild osteoclast-rich osteopetrosis, and increased bone marrow adiposity. While partial leptin deficiency results in increased weight, the skeletal manifestations of partial leptin deficiency are less well defined. We therefore analyzed femora and lumbar vertebrae in growing (7-week-old) female C57BL/6 wildtype (WT) mice, partial leptin-deficient ob/+ mice, and leptin-deficient ob/ob mice. The bones were evaluated by dual energy absorptiometry, microcomputed tomography and histomorphometry. As expected, ob/+ mice were heavier, had more white adipose tissue, and lower serum leptin than WT mice, but were lighter and had less white adipose tissue than ob/ob mice. With a few exceptions, cancellous bone architecture, cell (osteoblast, osteoclast, and adipocyte), and dynamic measurements did not differ between WT and ob/+ mice. In contrast, compared to WT and ob/+ mice, ob/ob mice had lower cancellous bone volume fraction and higher bone marrow adiposity in the femur metaphysis, and higher cancellous bone volume fraction in lumbar vertebra. Paradoxically, ob/+ mice had greater femoral bone volume than either WT or ob/ob mice. There was a positive correlation between body weight and femur volume in all three genotypes. However, the positive effect of weight on bone occurred with lower body weight in leptin-producing mice. The paradoxical differences in bone size among WT, ob/+, and ob/ob mice may be explained if leptin, in addition to stimulating bone growth and cancellous bone turnover, acts to lower the set-point at which increased body weight leads to a commensurate increase in bone size. PMID:26370912

  3. Cross-talk between reproduction and energy homeostasis: central impact of estrogens, leptin and kisspeptin signaling

    PubMed Central

    Nestor, Casey C; Kelly, Martin J.; Rønnekleiv, Oline K.

    2016-01-01

    The central nervous system receives hormonal cues (e.g., estrogens and leptin, among others) that influence reproduction and energy homeostasis. 17β-estradiol (E2) is known to regulate gonadotropin-releasing hormone (GnRH) secretion via classical steroid signaling and rapid non-classical membrane-initiated signaling. Because GnRH neurons are void of leptin receptors, the actions of leptin on these neurons must be indirect. Although it is clear that the arcuate nucleus of the hypothalamus is the primary site of overlap between these two systems, it is still unclear which neural network(s) participate in the cross-talk of E2 and leptin, two hormones essential for reproductive function and metabolism. Herein we review the progress made in understanding the interactions between reproduction and energy homeostasis by focusing on the advances made to understand the cellular signaling of E2 and leptin on three neural networks: kisspeptin, pro-opiomelanocortin (POMC) and neuropeptide Y (NPY). Although critical in mediating the actions of E2 and leptin, considerable work still remains to uncover how these neural networks interact in vivo. PMID:25372735

  4. Cross-talk between reproduction and energy homeostasis: central impact of estrogens, leptin and kisspeptin signaling.

    PubMed

    Nestor, Casey C; Kelly, Martin J; Rønnekleiv, Oline K

    2014-03-01

    The central nervous system receives hormonal cues (e.g., estrogens and leptin, among others) that influence reproduction and energy homeostasis. 17β-estradiol (E2) is known to regulate gonadotropin-releasing hormone (GnRH) secretion via classical steroid signaling and rapid non-classical membrane-initiated signaling. Because GnRH neurons are void of leptin receptors, the actions of leptin on these neurons must be indirect. Although it is clear that the arcuate nucleus of the hypothalamus is the primary site of overlap between these two systems, it is still unclear which neural network(s) participate in the cross-talk of E2 and leptin, two hormones essential for reproductive function and metabolism. Herein we review the progress made in understanding the interactions between reproduction and energy homeostasis by focusing on the advances made to understand the cellular signaling of E2 and leptin on three neural networks: kisspeptin, pro-opiomelanocortin (POMC) and neuropeptide Y (NPY). Although critical in mediating the actions of E2 and leptin, considerable work still remains to uncover how these neural networks interact in vivo.

  5. Dehydroepiandrosterone down-regulates the expression of peroxisome proliferator-activated receptor gamma in adipocytes.

    PubMed

    Kajita, Kazuo; Ishizuka, Tatsuo; Mune, Tomoatsu; Miura, Atsushi; Ishizawa, Masayoshi; Kanoh, Yoshinori; Kawai, Yasunori; Natsume, Yoshiyuki; Yasuda, Keigo

    2003-01-01

    Dehydroepiandrosterone (DHEA) is expected to have a weight-reducing effect. In this study, we evaluated the effect of DHEA on genetically obese Otsuka Long Evans Fatty rats (OLETF) compared with Long-Evans Tokushima rats (LETO) as control. Feeding with 0.4% DHEA-containing food for 2 wk reduced the weight of sc, epididymal, and perirenal adipose tissue in association with decreased plasma leptin levels in OLETF. Adipose tissue from OLETF showed increased expression of peroxisome proliferator-activated receptor gamma (PPARgamma) protein, which was prevented by DHEA treatment. Further, we examined the effect of DHEA on PPARgamma in primary cultured adipocytes and monolayer adipocytes differentiated from rat preadipocytes. PPARgamma protein level was decreased in a time- and concentration-dependent manner, and DHEA significantly reduced mRNA levels of PPARgamma, adipocyte lipid-binding protein, and sterol regulatory element-binding protein, but not CCAAT/enhancer binding protein alpha. DHEA-sulfate also reduced the PPARgamma protein, but dexamethasone, testosterone, or androstenedione did not alter its expression. In addition, treatment with DHEA for 5 d reduced the triglyceride content in monolayer adipocytes. These results suggest that DHEA down-regulates adiposity through the reduction of PPARgamma in adipocytes.

  6. Effects of estrogen on food intake, serum leptin levels and leptin mRNA expression in adipose tissue of female rats.

    PubMed

    Fungfuang, Wirasak; Terada, Misao; Komatsu, Noriyuki; Moon, Changjong; Saito, Toru R

    2013-09-01

    The integration of metabolism and reproduction involves complex interactions of hypothalamic neuropeptides with metabolic hormones, fuels, and sex steroids. Of these, estrogen influences food intake, body weight, and the accumulation and distribution of adipose tissue. In this study, the effects of estrogen on food intake, serum leptin levels, and leptin mRNA expression were evaluated in ovariectomized rats. Seven-week-old female Wistar-Imamichi rats were ovariectomized and divided into three treatment groups: group 1 (the control group) received sesame oil, group 2 was given 17β-estradiol benzoate, and group 3 received 17β-estradiol benzoate plus progesterone. The body weight and food consumption of each rat were determined daily. Serum leptin levels and leptin mRNA expression were measured by ELISA and quantitative RT-PCR, respectively. Food consumption in the control group was significantly higher (P<0.05) than that in groups 2 and 3, although body weight did not significantly differ among the three groups. The serum leptin concentration and leptin mRNA expression were significantly higher (P<0.05) in groups 2 and 3 than in group 1, but no significant difference existed between groups 2 and 3. In conclusion, estrogen influenced food intake via the modulation of leptin signaling pathway in ovariectomized rats.

  7. Effects of cardiotrophin on adipocytes.

    PubMed

    Zvonic, Sanjin; Hogan, Jessica C; Arbour-Reily, Patricia; Mynatt, Randall L; Stephens, Jacqueline M

    2004-11-12

    Cardiotrophin (CT-1) is a naturally occurring protein member of the interleukin (IL)-6 cytokine family and signals through the gp130/leukemia inhibitory factor receptor (LIFR) heterodimer. The formation of gp130/LIFR complex triggers the auto/trans-phosphorylation of associated Janus kinases, leading to the activation of Janus kinase/STAT and MAPK (ERK1 and -2) signaling pathways. Since adipocytes express both gp130 and LIFR proteins and are responsive to other IL-6 family cytokines, we examined the effects of CT-1 on 3T3-L1 adipocytes. Our studies have shown that CT-1 administration results in a dose- and time-dependent activation and nuclear translocation of STAT1, -3, -5A, and -5B as well as ERK1 and -2. We also confirmed the ability of CT-1 to induce signaling in fat cells in vivo. Our studies revealed that neither CT-1 nor ciliary neurotrophic factor treatment affected adipocyte differentiation. However, acute CT-1 treatment caused an increase in SOCS-3 mRNA in adipocytes and a transient decrease in peroxisome proliferator-activated receptor gamma (PPARgamma) mRNA that was regulated by the binding of STAT1 to the PPARgamma2 promoter. The effects of CT-1 on SOCS-3 and PPARgamma mRNA were independent of MAPK activation. Chronic administration of CT-1 to 3T3-L1 adipocytes resulted in a decrease of both fatty acid synthase and insulin receptor substrate-1 protein expression yet did not effect the expression of a variety of other adipocyte proteins. Moreover, chronic CT-1 treatment resulted in the development of insulin resistance as judged by a decrease in insulin-stimulated glucose uptake. In summary, CT-1 is a potent regulator of signaling in adipocytes in vitro and in vivo, and our current efforts are focused on determining the role of this cardioprotective cytokine on adipocyte physiology.

  8. Menstrual cycle hormones, food intake, and cravings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: Food craving and intake are affected by steroid hormones during the menstrual cycle, especially in the luteal phase, when craving for certain foods has been reported to increase. However, satiety hormones such as leptin have also been shown to affect taste sensitivity, and therefore food ...

  9. From the conceptual basis to the discovery of leptin.

    PubMed

    Fève, Bruno; Bastard, Jean-Philippe

    2012-10-01

    Two years ago, the Lasker Award was shared by Douglas Coleman and Jeffrey Friedman for their discovery of leptin, a hormone that exerts a key role in the central regulation of appetite and body weight. Douglas Coleman is recognized as the researcher who raised the hypothesis and predicted that a circulating satiety factor was lacking in the ob/ob mouse, and predicted that this factor acted at the hypothalamic level to modulate food intake. After three decades, in an attempt to identify the genes that were mutated in the ob/ob mouse, Jeffrey Friedman found that the ob gene encodes a protein hormone that reverses obesity and other abnormalities of this genetic rodent model of obesity. This discovery was a landmark event in physiology, and revolutionized our understanding of energy homeostasis. This short review aims to summarize the main steps that lead to the identification of leptin, the product of the ob gene.

  10. Human adipocytes from the subcutaneous superficial layer have greater adipogenic potential and lower PPAR-γ DNA methylation levels than deep layer adipocytes.

    PubMed

    Kosaka, Kentaro; Kubota, Yoshitaka; Adachi, Naoki; Akita, Shinsuke; Sasahara, Yoshitaro; Kira, Tomoe; Kuroda, Masayuki; Mitsukawa, Nobuyuki; Bujo, Hideaki; Satoh, Kaneshige

    2016-08-01

    Human subcutaneous fat tissue consists of two layers, superficial adipose tissue (SAT) and deep adipose tissue (DAT). Some recent reports suggest that a disproportionate accumulation of DAT is related to obesity-associated metabolic complications. However, the differences in adipocyte function between SAT and DAT are unclear. To clarify the differences in human adipocyte characteristics between SAT and DAT, human ceiling culture-derived proliferative adipocytes (ccdPAs) were primary cultured from SAT and DAT of three lean female patients. Differences in adipogenic differentiation potential and sensitivity to exogenous adipogenic factors were examined. Epigenetic modification of the CpG island DNA methylation levels of genes related to adipogenesis was measured. In histological analyses, the mean adipocyte size in SAT was significantly larger than that in DAT (8,741 ± 416 vs. 7,732 ± 213 μm(2), P < 0.05). Primary cultured adipocytes from SAT showed significantly greater adipogenesis than did those of DAT. Sensitivity to partial adipogenic stimulation was significantly different between ccdPAs of SAT and DAT. Peroxisome proliferator-activated receptor-γ (PPAR-γ) protein expression and leptin protein secretion from ccdPAs were significantly higher in SAT than DAT. DNA methylation levels of PPAR-γ were significantly lower in ccdPAs of SAT than DAT. Adipocyte size was larger in SAT than DAT in vivo. This is consistent with the findings of an in vitro study that, compared with ccdPAs in DAT, ccdPAs in SAT have higher adipogenic potential and lower DNA methylation levels of PPAR-γ.

  11. In vivo regulation of intestinal absorption of amino acids by leptin.

    PubMed

    Fanjul, Carmen; Barrenetxe, Jaione; De Pablo-Maiso, Lorena; Lostao, María Pilar

    2015-01-01

    Leptin is secreted by the gastric mucosa and is able to reach the intestinal lumen and bind to its receptors located in the apical membranes of enterocytes. We have previously demonstrated that apical leptin inhibits uptake of amino acids in rat intestine in vitro and in Caco-2 cells. The aim of the present work was to investigate the effect of leptin on absorption of amino acids using in vivo techniques, which generate situations closer to physiological conditions. In vivo intestinal absorption of amino acids in rats was measured by isolating a jejunal loop and using the single-pass perfusion system. Disappearance of glutamine (Gln), proline (Pro), and β-alanine (β-Ala) from the perfusate, in the absence or presence of leptin, was measured using a radioactivity method. Luminal leptin (25 nM) inhibited the absorption of 2 mM Pro, 5 mM β-Ala, and 5 mM Gln by approximately 45% after 5-15 min; the effect remained constant until the end of the experiment (80 min) and was rapidly and completely reversed when leptin was removed from the perfusion medium. Moreover, leptin was able to regulate the absorption of galactose and Gln in the same animal, indicating a direct action of the hormone on the specific transporters implicated in the uptake of each nutrient. The results of the present work indicate that luminal leptin decreases absorption of amino acids in vivo in a short-term manner and in a reversible way. These results, together with our previous findings, make it evident that leptin can be considered as a hormone which provides the intestine with a control mechanism to handle absorption of nutrients.

  12. Leptin mediates seasonal variation in some but not all symptoms of sickness in Siberian hamsters

    PubMed Central

    Carlton, Elizabeth D.; Demas, Gregory E.

    2014-01-01

    Many seasonally breeding species, including Siberian hamsters (Phodopus sungorus), exhibit seasonal variation in sickness responses. One hypothesis regarding the mechanism of this variation is that sickness intensity tracks an animal's energetic state, such that sickness is attenuated in the season that an animal has the lowest fat stores. Energetic state may be signaled via leptin, an adipose hormone that provides a signal of fat stores. Siberian hamsters respond to extended housing in short, winter-like days by reducing fat stores and leptin levels, relative to those housed in long, summer-like days. Sickness responses are also attenuated in short-day hamsters as compared to long-day hamsters. We hypothesized that leptin provides a physiological signal by which seasonally breeding animals modulate sickness responses, such that animals with higher leptin levels show increased sickness intensity. To test this, we provided short-day hamsters with a long-day-like leptin signal and assessed their responses to lipopolysaccharide (LPS), a sickness-inducing antigen. We compared these responses to short-day vehicle-, long-day vehicle-, and long-day leptin-treated hamsters. Unexpectedly, LPS induced a hypothermic response (rather than fever) in all groups. Short-day vehicle-treated hamsters exhibited the greatest LPS-induced hypothermia, and leptin treatment attenuated this response, making hypothermia more long-day-like. Contrary to our hypothesis, short-day leptin-treated hamsters showed the least pronounced LPS-induced anorexia among all groups. These results suggest that leptin may mediate some but not all aspects of seasonal sickness variation in this species. Future studies should be targeted at determining roles of other energetic hormones in regulating seasonal sickness response variation. PMID:25461974

  13. Leptin mediates seasonal variation in some but not all symptoms of sickness in Siberian hamsters.

    PubMed

    Carlton, Elizabeth D; Demas, Gregory E

    2014-11-01

    Many seasonally breeding species, including Siberian hamsters (Phodopus sungorus), exhibit seasonal variation in sickness responses. One hypothesis regarding the mechanism of this variation is that sickness intensity tracks an animal's energetic state, such that sickness is attenuated in the season that an animal has the lowest fat stores. Energetic state may be signaled via leptin, an adipose hormone that provides a signal of fat stores. Siberian hamsters respond to extended housing in short, winter-like days by reducing fat stores and leptin levels, relative to those housed in long, summer-like days. Sickness responses are also attenuated in short-day hamsters as compared to long-day hamsters. We hypothesized that leptin provides a physiological signal by which seasonally breeding animals modulate sickness responses, such that animals with higher leptin levels show increased sickness intensity. To test this, we provided short-day hamsters with a long-day-like leptin signal and assessed their responses to lipopolysaccharide (LPS), a sickness-inducing antigen. We compared these responses to short-day vehicle-, long-day vehicle-, and long-day leptin-treated hamsters. Unexpectedly, LPS induced a hypothermic response (rather than fever) in all groups. Short-day vehicle-treated hamsters exhibited the greatest LPS-induced hypothermia, and leptin treatment attenuated this response, making hypothermia more long-day-like. Contrary to our hypothesis, short-day leptin-treated hamsters showed the least pronounced LPS-induced anorexia among all groups. These results suggest that leptin may mediate some but not all aspects of seasonal sickness variation in this species. Future studies should be targeted at determining roles of other energetic hormones in regulating seasonal sickness response variation.

  14. Effects of C-reactive protein on adipokines genes expression in 3T3-L1 adipocytes

    SciTech Connect

    Yuan, Guoyue; Jia, Jue; Di, Liangliang; Zhou, Libin; Dong, Sijing; Ye, Jingjing; Wang, Dong; Yang, Ling; Wang, Jifang; Li, Lianxi; Yang, Ying; Mao, Chaoming; Chen, Mingdao

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer CRP increases TNF-{alpha} and IL-6 genes expression in matured 3T3-L1 adipocytes. Black-Right-Pointing-Pointer CRP suppresses adiponectin, leptin and PPAR-{gamma} mRNA levels in matured 3T3-L1 cells. Black-Right-Pointing-Pointer Wortmannin reverses effects of CRP on adiponectin, TNF-{alpha} and leptin mRNA levels. Black-Right-Pointing-Pointer CRP may regulate IR, obesity and metabolic syndrome by this mechanism. -- Abstract: Adipose tissue is now recognized to be an important endocrine organ, secreting a variety of adipokines that are involved in the regulation of energy metabolism, insulin resistance and metabolic syndrome. C-reactive protein (CRP) is considered as one of the most sensitive markers of inflammation. A number of studies have shown that elevation of CRP concentrations is an independent predictive parameter of type 2 diabetes mellitus, which is also strongly associated with various components of the metabolic syndrome. The aim of the present study is to investigate the effects of CRP on adipokines genes expression in 3T3-L1 adipocytes. Quantitative real-time PCR analysis revealed that CRP inhibited adiponectin, leptin and peroxisome proliferator-activated receptor-gamma (PPAR-{gamma}) genes expression and raised tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-6 (IL-6) mRNA levels in matured 3T3-L1 adipocytes in a dose and time-dependent manner. Pharmacological inhibition of phosphatidylinositol (PI)-3 kinase by wortmannin partially reversed the effects of CRP on adiponectin, TNF-{alpha} and leptin genes expression. These results collectively suggest that CRP regulates adiponectin, TNF-{alpha}, leptin, IL-6 and PPAR-{gamma} genes expression, and that might represent a mechanism by which CRP regulates insulin resistance, obesity and metabolic syndrome.

  15. Traditional Herbal Formula Oyaksungi-San Inhibits Adipogenesis in 3T3-L1 Adipocytes

    PubMed Central

    Seo, Chang-Seob; Shin, Hyeun-Kyoo

    2015-01-01

    Background. Oyaksungi-san (OYSGS) is a herbal formula that has been used for treating cardiovascular diseases in traditional Asian medicine. Here, we investigated the antiadipogenic effect of OYSGS extract in 3T3-L1 adipose cells. Methods. 3T3-L1 preadipocytes were differentiated into adipocytes with or without OYSGS. After differentiation, we measured Oil Red O staining, glycerol-3-phosphate dehydrogenase (GPDH) activity, leptin production, mRNA, and protein levels of adipogenesis-related factors. Results. OYSGS extract dramatically inhibited intracellular lipid accumulation in the differentiated adipocytes. It also significantly suppressed the (GPDH) activity, triglyceride (TG) content, and leptin production by reducing the expression of adipogenesis-related genes including lipoprotein lipase, fatty acid binding protein 4, CCAAT/enhancer-binding protein-alpha (C/EBP-α), and peroxisome proliferator-activated receptor gamma (PPAR-γ). Furthermore, OYSGS clearly enhanced phosphorylation of AMP-activated protein kinase (AMPK) as well as its substrate acetyl CoA (ACC) carboxylase. Conclusions. Our results demonstrate that OYSGS negatively controls TG accumulation in 3T3-L1 adipocytes. We suggest antiadipogenic activity of OYSGS and its potential benefit in preventing obesity. PMID:25802547

  16. Pmch-deficiency in rats is associated with normal adipocyte differentiation and lower sympathetic adipose drive.

    PubMed

    Mul, Joram D; O'Duibhir, Eoghan; Shrestha, Yogendra B; Koppen, Arjen; Vargoviç, Peter; Toonen, Pim W; Zarebidaki, Eleen; Kvetnansky, Richard; Kalkhoven, Eric; Cuppen, Edwin; Bartness, Timothy J

    2013-01-01

    The orexigenic neuropeptide melanin-concentrating hormone (MCH), a product of Pmch, is an important mediator of energy homeostasis. Pmch-deficient rodents are lean and smaller, characterized by lower food intake, body-, and fat mass. Pmch is expressed in hypothalamic neurons that ultimately are components in the sympathetic nervous system (SNS) drive to white and interscapular brown adipose tissue (WAT, iBAT, respectively). MCH binds to MCH receptor 1 (MCH1R), which is present on adipocytes. Currently it is unknown if Pmch-ablation changes adipocyte differentiation or sympathetic adipose drive. Using Pmch-deficient and wild-type rats on a standard low-fat diet, we analyzed dorsal subcutaneous and perirenal WAT mass and adipocyte morphology (size and number) throughout development, and indices of sympathetic activation in WAT and iBAT during adulthood. Moreover, using an in vitro approach we investigated the ability of MCH to modulate 3T3-L1 adipocyte differentiation. Pmch-deficiency decreased dorsal subcutaneous and perirenal WAT mass by reducing adipocyte size, but not number. In line with this, in vitro 3T3-L1 adipocyte differentiation was unaffected by MCH. Finally, adult Pmch-deficient rats had lower norepinephrine turnover (an index of sympathetic adipose drive) in WAT and iBAT than wild-type rats. Collectively, our data indicate that MCH/MCH1R-pathway does not modify adipocyte differentiation, whereas Pmch-deficiency in laboratory rats lowers adiposity throughout development and sympathetic adipose drive during adulthood.

  17. Novel expression of resistin in rat testis: functional role and regulation by nutritional status and hormonal factors.

    PubMed

    Nogueiras, Ruben; Barreiro, M Luz; Caminos, Jorge E; Gaytán, Francisco; Suominen, Janne S; Navarro, Victor M; Casanueva, Felipe F; Aguilar, Enrique; Toppari, Jorma; Diéguez, Carlos; Tena-Sempere, Manuel

    2004-07-01

    Resistin, a recently cloned adipose-secreted factor, is primarily involved in the modulation of insulin sensitivity and adipocyte differentiation. However, additional metabolic or endocrine functions of this molecule remain largely unexplored. In this study, a series of experiments were undertaken to explore the potential expression, regulation and functional role of this novel adipocytokine in rat testis. Resistin gene expression was demonstrated in rat testis throughout postnatal development, with maximum mRNA levels in adult specimens. At this age, resistin peptide was immunodetected in interstitial Leydig cells and Sertoli cells within seminiferous tubules. Testicular expression of resistin was under hormonal regulation of pituitary gonadotropins and showed stage-specificity, with peak expression values at stages II-VI of the seminiferous epithelial cycle. In addition, testicular resistin mRNA was down-regulated by the selective agonist of PPARgamma, rosiglitazone, in vivo and in vitro. Similarly, fasting and central administration of the adipocyte-derived factor, leptin, evoked a significant reduction in testicular resistin mRNA levels, whereas they remained unaltered in a model of diet-induced obesity. From a functional standpoint, resistin, in a dose-dependent manner, significantly increased both basal and choriogonadotropin-stimulated testosterone secretion in vitro. Overall, our present results provide the first evidence for the expression, regulation and functional role of resistin in rat testis. These data underscore a reproductive facet of this recently cloned molecule, which may operate as a novel endocrine integrator linking energy homeostasis and reproduction.

  18. Weight-dependent changes of immune system in adipose tissue: Importance of leptin

    SciTech Connect

    Caspar-Bauguil, S.; Cousin, B.; Andre, M.; Nibbelink, M.; Galinier, A.; Periquet, B.; Casteilla, L.; Penicaud, L. . E-mail: penicaud@toulouse.inserm.fr

    2006-07-15

    Ancestral lymphoid cells reside in adipose tissues, and their numbers are highly altered in obesity. Leptin, production of which is correlated to fat mass, is strongly involved in the relationships between adipose tissues and immune system. We investigated in epididymal (EPI) and inguinal (ING) fat pads to determine whether 1) lymphocyte phenotypes were correlated to the tissue weight and 2) leptin was involved in such relationships. Immunohistological analyses revealed a tight relationship between the T and NK lymphocytes of the stromal vascular fraction and adipocytes. We identified a significant negative and positive correlation between EPI weight and the percentage of NK and total T cells respectively by cytofluorometric analyses. The NK and ancestral {gamma}{delta} T cell contents were directly dependent of leptin since they increased significantly in high-fat (HF) diet mice but not in leptin-deficient (ob/ob) mice as compared to control. By contrast, the {alpha}{beta} T cell content seemed independent of leptin because their percentages increased significantly with the EPI weight whatever the type of mice (control, HF, ob/ob). The present study suggests that adipose tissues present, according to their localization, different immunological mechanisms that might be involved in the regulation of adipose cells functions and proliferations.

  19. Endogenous leptin contributes to baroreflex suppression within the solitary tract nucleus of aged rats.

    PubMed

    Arnold, Amy C; Diz, Debra I

    2014-12-01

    The decline in cardiovagal baroreflex function that occurs with aging is accompanied by an increase in circulating leptin levels. Our previous studies showed that exogenous leptin impairs the baroreflex sensitivity for control of heart rate in younger rats, but the contribution of this hormone to baroreflex dysfunction during aging is unknown. Thus we assessed the effect of bilateral leptin microinjection (500 fmol/60 nl) within the solitary tract nucleus (NTS) on the baroreflex sensitivity in older (66 ± 2 wk of age) urethane/chloralose anesthetized Sprague-Dawley rats with elevated circulating leptin levels. In contrast to the 63% reduction observed in younger rats, leptin did not alter the baroreflex sensitivity for bradycardia evoked by phenylephrine in older rats (0.76 ± 0.19 baseline vs. 0.71 ± 0.15 ms/mmHg after leptin; P = 0.806). We hypothesized that this loss of sensitivity reflected endogenous suppression of the baroreflex by elevated leptin, rather than cardiovascular resistance to the peptide. Indeed, NTS administration of a leptin receptor antagonist (75 pmol/120 nl) improved the baroreflex sensitivity for bradycardia in older rats (0.73 ± 0.13 baseline vs. 1.19 ± 0.26 at 10 min vs. 1.87 ± 0.32 at 60 min vs. 1.22 ± 0.54 ms/mmHg at 120 min; P = 0.002), with no effect in younger rats. There was no effect of the leptin antagonist on the baroreflex sensitivity for tachycardia, responses to cardiac vagal chemosensitive fiber activation, or resting hemodynamics in older rats. These findings suggest that the actions of endogenous leptin within the NTS, either produced locally or derived from the circulation, contribute to baroreflex suppression during aging.

  20. Acute effects of leptin on 5'-deiodinases are modulated by thyroid state of fed rats.

    PubMed

    Cabanelas, A; Lisboa, P C; Moura, E G; Pazos-Moura, C C

    2007-11-01

    Leptin has been shown to modulate deiodinase type 1 (D1) and type 2 (D2) enzymes responsible for thyroxine (T4) to triiodothyronine (T3) conversion. Previously, it was demonstrated that a single injection of leptin in euthyroid fed rats rapidly increased liver, pituitary, and thyroid D1 activity, and simultaneously decreased brown adipose tissue (BAT) and hypothalamic D2 activity. We have now examined D1 and D2 activities, two hours after a single subcutaneous injection of leptin (8 microg/100 g BW) into hypo- and hyperthyroid rats. In hypothyroid rats, leptin did not modify pituitary, liver and thyroid D1, and thyroid D2 activity, while pituitary D2 was decreased by 41% (p<0.05) and hypothalamic D2 showed a 1.5-fold increase. In hyperthyroid rats, thyroid and pituitary D1, and pituitary and hypothalamic D2 were not affected by leptin injection, while liver D1 showed a 42% decrease (p<0.05). BAT D2 was decreased by leptin injection both in hypo- and hyperthyroid states (42 and 48% reduction, p<0.001). Serum TH and TSH showed the expected variations of hypo- and hyperthyroid state, and leptin had no effect. Serum insulin was lower in hypothyroid than in hyperthyroid rats and remained unchanged after leptin. Therefore, acute effects of leptin on D1 and D2 activity, expect for BAT D2, were abolished or modified by altered thyroid state, in a tissue-specific manner, showing an IN VIVO interplay of thyroid hormones and leptin in deiodinase regulation.

  1. Evaluation of Salivary Leptin Levels in Healthy Subjects and Patients with Advanced Periodontitis

    PubMed Central

    Khorsand, Afshin; Bayani, Mojtaba; Torabi, Sepehr; Kharrazifard, Mohammad Javad; Mohammadnejhad, Fatemeh

    2016-01-01

    Objectives: Leptin is a hormone-like protein produced by the adipose tissue. It plays an important role in protection of host against inflammation and infection. Some studies have reported changes in leptin levels in the gingival crevicular fluid (GCF), saliva and blood serum of patients with periodontal disease compared to healthy individuals. The aim of the present study was to compare the salivary leptin levels in patients with advanced periodontitis and healthy individuals. Materials and Methods: In this case-control study, the salivary samples of healthy individuals and patients with advanced periodontitis with clinical attachment loss >5mm were obtained using a standardized method and the leptin levels were measured in the salivary samples by means of ELISA. The effects of the periodontal status and sex on the salivary leptin levels of both groups were statistically analyzed by two-way ANOVA. Results: The means ± standard deviation (SD) of salivary leptin levels in healthy subjects and patients with advanced periodontitis were 34.27±6.88 and 17.87±5.89 pg/mL, respectively. Statistical analysis showed that the effect of sex on the salivary leptin levels was not significant (P=0.91), while the effect of advanced periodontitis on the salivary leptin levels was significant compared to healthy individuals (P<0.0001). Conclusions: In patients with advanced periodontitis, the salivary leptin levels were significantly lower compared to healthy individuals. Thus, assessment of salivary leptin can be done as a non-invasive and simple method to determine the susceptibility of patients to advanced periodontitis. PMID:27536322

  2. α-Naphthoflavone Increases Lipid Accumulation in Mature Adipocytes and Enhances Adipocyte-Stimulated Endothelial Tube Formation

    PubMed Central

    Wang, Mei-Lin; Lin, Shyh-Hsiang; Hou, Yuan-Yu; Chen, Yue-Hwa

    2015-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated factor that regulates biological effects associated with obesity. The AhR agonists, such as environmental contaminants 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and β-naphthoflavone (BNF), inhibit preadipocyte differentiation and interfere with the functions of adipose tissue, whereas the antagonist may have opposite or protective effects in obesity. This study investigated the effects of α-naphthoflavone (α-NF), an AhR antagonist, on adipogenesis- and angiogenesis-associated factors in mature adipocytes and on cross-talk of mature adipocytes with endothelial cells (ECs). Besides, the roles of the AhR on lipid accumulation and on secretion of vascular endothelial growth factor were also determined by introducing siRNA of AhR. Differentiated 3T3-L1 cells were treated with α-naphthoflavone (α-NF) (1–5 μM) for 16 h. Lipid accumulation and the expressions of AhR-associated factors in the cells were determined. The interaction between adipocytes and ECs was investigated by cultivating ECs with conditioned medium (CM) from α-NF-treated mature adipocytes, followed by the determination of endothelial tube formation. The results showed that α-NF significantly increased triglyceride (TG) accumulation in mature adipocytes, which was associated with increased expression of hormone-sensitive lipase (HSL), estrogen receptor (ER), as well as decreased expression of AhR, AhR nuclear translocator (ARNT), cytochrome P4501B1 (CYP1B1), and nuclear factor erythroid-2-related factor (NRF-2) proteins. In addition, CM stimulated formation of tube-like structures in ECs, and α-NF further enhanced such stimulation in association with modulated the secretions of various angiogenic mediators by mature adipocytes. Similarly, increased TG accumulation and vascular endothelial growth factor (VEGF) secretion were observed in AhR-knockout cells. In conclusion, α-NF increased TG accumulation in mature adipocytes and enhanced

  3. Autophagy induction by leptin contributes to suppression of apoptosis in cancer cells and xenograft model: involvement of p53/FoxO3A axis.

    PubMed

    Nepal, Saroj; Kim, Mi Jin; Hong, Jin Tae; Kim, Sang Hyun; Sohn, Dong-Hwan; Lee, Sung Hee; Song, Kyung; Choi, Dong Young; Lee, Eung Seok; Park, Pil-Hoon

    2015-03-30

    Leptin, a hormone mainly produced from adipose tissue, has been shown to induce proliferation of cancer cells. However, the molecular mechanisms underlying leptin-induced tumor progression have not been clearly elucidated. In the present study, we investigated the role of autophagy in leptin-induced cancer cell proliferation using human hepatoma (HepG2) and breast cancer cells (MCF-7), and tumor growth in a xenograft model. Herein, we showed that leptin treatment caused autophagy induction as assessed by increase in expression of autophagy-related genes, including beclin-1, Atg5 and LC3 II, further induction of autophagosome formation and autophagic flux. Interestingly, inhibition of autophagic process by treatment with inhibitors and LC3B gene silencing blocked leptin-induced increase in cell number and suppression of apoptosis, indicating a crucial role of autophagy in leptin-induced tumor progression. Moreover, gene silencing of p53 or FoxO3A prevented leptin-induced LC3 II protein expression, suggesting an involvement of p53/FoxO3A axis in leptin-induced autophagy activation. Leptin administration also accelerated tumor growth in BALB/c nude mice, which was found to be autophagy dependent. Taken together, our results demonstrate that leptin-induced tumor growth is mediated by autophagy induction and autophagic process would be a promising target to regulate development of cancer caused by leptin production.

  4. Serum leptin as an indicator of fat levels in white-tailed deer (Odocoileus virginianus) in the southeastern USA.

    PubMed

    Chitwood, M Colter; Phillips, Shannon P; Whisnant, Scott; Tyndall, James; Lashley, Marcus A; DePerno, Christopher S

    2014-10-01

    Leptin is a hormone that plays a key role in regulating energy intake, appetite, and metabolism. In some mammals, leptin has been shown to circulate at levels proportional to body fat, which could make it useful for nonlethal evaluation of body condition. Leptin's usefulness for estimating fat levels (i.e., body condition) of white-tailed deer (Odocoileus virginianus) is unknown. We quantified serum leptin concentrations in a sample of free-ranging, female deer collected in July 2008 and March 2009 from coastal North Carolina, USA. We compared leptin concentrations with kidney fat index, femur marrow fat index, and kidney fat mass. Additionally, we assessed differences in leptin concentrations between the two seasons, lactating and nonlactating females, and gestating and nongestating females. Leptin concentrations were similar between seasons but were lower in lactating and gestating females. We did not detect significant relationships between leptin and the body fat metrics, indicating that leptin may have limited value for estimating fat reserves in white-tailed deer.

  5. Investigation of the leptin levels in the blood serum of Cyprinus carpio (Linnaeus, 1758) and Capoeta trutta (Heckel, 1843).

    PubMed

    Köprücü, S; Algül, S

    2015-06-01

    Leptin is a peptide hormone secreted by adipose tissues in the various teleost fish and vertebrates. Leptin has been suggested to have an important role in a range physiological function, including regulation of food intake, reproduction, immune function, energy expenditure, lipid and carbohydrate metabolism. In this study, leptin levels in the blood serum of Cyprinus carpio and Capoeta trutta were determined. Then the results were compared between two species and between sexes of each species. In addition, leptin levels were also compared with the body weight and length of both C. carpio and C. trutta. Leptin level was analysed using available enzyme-linked immunoassay (ELISA) kit (Rat leptin ELISA kit, catalog no: SK00050-08). Leptin levels showed no significant difference (p > 0.05) that in relation to between two species and between sexes of each species. It has been shown that not significantly correlated when examined correlations between the leptin level in blood serum and body weight (r = 0.192, p = 0.380) or length (r = 0.102, p = 0.644) of C. carpio. Similarly, the correlations between leptin level in blood serum and body weight (r = 0.021, p = 0.959) or length (r = 0.123, p = 0.595) of C. trutta were also not significant.

  6. Decreased Implantation Number After In Utero Artificial Insemination Can Reflect an Impairment of Fertility in Adult Male Rats After Exogenous Leptin Exposure.

    PubMed

    Fernandez, Carla D B; Fernandes, Glaura S A; Favareto, Ana Paula A; Perobelli, Juliana E; Sanabria, Marciana; Kempinas, Wilma D G

    2017-02-01

    Leptin is a protein secreted by the adipocytes, which serves as a link between fat and brain. Its main action is to decrease appetite and increase energy expenditure, but it is also involved in the control of different neuroendocrine systems, including gonadal axis. Although the effects of leptin deficiency on reproduction are well recognized, the effect of excess leptin on male reproductive function is not clear. The aim of this study was to evaluate fertility and sperm parameters of male rats exposed to exogenous leptin. A group of adult male rats received exogenous leptin intraperitoneally (30 μg/kg/day) for 42 days, and a control group received only the vehicle during the same period. After the treatment, animals were evaluated for sperm count, sperm motility, and fertility after intrauterine artificial insemination. There was no statistically significant difference between the groups related to sperm production, sperm concentration, and sperm motility. However, fertility evaluation after artificial insemination showed a quantitative decrease in the uterus plus fetuses weight, number of implantation sites, and number of live fetuses. The fertility potential showed a reduction of about 40%, whereas the preimplantation loss rate increased more than 2-fold in leptin-treated animals. In conclusion, leptin administration to nonobese male rats impairs ability of treated animals to generate offspring, since the occurrence of implantation was diminished. So leptin can impair sperm quality, affecting the reproductive capacity.

  7. Reduced fasting-induced activation of hypothalamic arcuate neurons is associated with hyperleptinemia and increased leptin sensitivity in obese mice.

    PubMed

    Becskei, Csilla; Lutz, Thomas A; Riediger, Thomas

    2010-08-01

    Fasting increases c-Fos expression in neuropeptide Y (NPY) neurons of the hypothalamic arcuate nucleus (ARC) in lean, but not in hyperleptinemic mice with late-onset obesity (LOO). Although obesity is associated with leptin resistance, we hypothesized that under fasting conditions, leptin sensitivity might be restored and that hyperleptinemia may counteract the neuronal response to fasting. We investigated whether the reduced fasting response of ARC neurons in LOO is paralleled by an increase in leptin sensitivity, as measured by leptin-induced STAT-3 phosphorylation. To assess leptin's role in the modulation of the fasting-induced ARC activation, we investigated c-Fos responses and hormone and metabolite levels in hyperleptinemic diet-induced obese (DIO) and in leptin-deficient ob/ob mice. Leptin induced a stronger STAT-3 phosphorylation in fasted LOO and lean mice than in ad libitum-fed animals. Similar to LOO, hyperleptinemic DIO mice showed no c-Fos response after fasting, while ob/ob mice showed a stronger response than lean control mice. Mimicking hyperleptinemia by repeated leptin injections in lean mice during fasting attenuated the fasting-induced c-Fos expression. Our findings indicate that high leptin levels prevent the fasting-induced activation of ARC neurons in mice. Moreover, leptin sensitivity is dynamic in obese subjects and depends on the feeding status. During short-term increases in leptin sensitivity, e.g., during fasting, leptin signaling appears to be effective, even in hyperleptinemic obesity. As reflected by the blockade of the fasting-induced ARC activation, fasting seems to interfere with the responsiveness of the ARC to signals related to the status of energy intake.

  8. Differentiation of Pre-Adipocytes in Modelled Microgravity

    NASA Astrophysics Data System (ADS)

    Coinu, R.; Postiglione, I.; Meloni, M. A.; Galleri, G.; Pippia, P.; Palumbo, G.

    2008-06-01

    It has been demonstrated that microgravity affects biological and biochemical functions of cells including: morphology, cytoskeleton and embryogenesis [1]; proliferation, reduction of DNA, protein synthesis and glucose transport [2]; signalling, reduction of EGF-dependant c-fos and c-jun expression [3]; gene expression, reduction of IL2 expression and release by activated T-cells [4]. Moreover it has be found that peroxisome proliferators activated receptor γ (PPARγ2), which is known to be important for adipocyte differentiation, adipsin, leptin, and glucose transporter-4, are highly expressed in response to modelled microgravity [5]. These findings prompted us to investigate the effects of microgravity on cellular differentiation rate using a well characterized model. Such model consists in murine pre-adipocyte cells (3T3-L1) properly stimulated with insulin, dexamethazone and isobuthylmethyl-xantine (DMI protocol). The adipogenic program is completed within a short time. The entire process requires coordinated and temporarily beated molecular events. Early events. Growth arrest at confluence; Clonal expansion (this process involves synchronous entry of cells into S phase of the cell cycle, leading to one or two rounds of mitosis); Early expression of C/EBPβ and C/EBPδ. Late events. Expression of PPARγ and C/EBPα Assumption of rounded morphology and accumulation of lipid droplets.

  9. Effect of intravenous infusion of recombinant ovine leptin on feed intake and serum concentrations of GH, LH, insulin, IGF-1, cortisol, and thyroxine in growing prepubertal ewe lambs.

    PubMed

    Morrison, C D; Wood, R; McFadin, E L; Whitley, N C; Keisler, D H

    2002-04-01

    In sheep, serum concentrations of leptin change congruently with increases or decreases in nutritional status, while intracerebroventricular infusions of leptin dramatically suppress feed intake in well-fed lambs, and may also increase growth hormone (GH), and/or luteinizing hormone (LH) in undernourished lambs. The objective of the present study was to determine the effects of peripherally delivered ovine leptin, via intravenous infusions, on feed intake and serum concentrations of GH, LH, insulin, IGF-1, cortisol, and thyroxine. Twelve ewe lambs weighing 29.4 +/- 0.7 kg were infused intravenously with a linearly increasing dose of leptin or saline (n = 6 per group) for 10 days, reaching a maximum dose delivered of 0.5mg/h on day 10. Feed intake was assessed twice daily, and blood samples were collected every 10 min for 6 h on days 0, 2, 5, 8, and 10. Serum concentrations of leptin increased in leptin-treated lambs by day 2 (P = 0.05), and continued to increase to concentrations 9-fold greater than saline-infused lambs by day 10 (P < 0.001). Despite the substantial increase in serum leptin, feed intake did not differ between leptin and saline-infused lambs except on day 3.5 (P = 0.01). Furthermore, intravenous infusions of leptin did not significantly influence serum concentrations of insulin, cortisol, IGF-1, thyroxine, LH, or GH. Collectively, these observations contrast with the potent hypophagic effects of leptin when delivered intracerebroventricularly into well-fed lambs. The reasons for the disparate response of lambs treated intravenously with leptin, versus that reported for lambs treated intracerebroventricularly with leptin are not known, but may provide insight into the mechanism(s) of leptin resistance.

  10. Leptin increases L-type Ca2+ channel expression and GnRH-stimulated LH release in LβT2 gonadotropes

    PubMed Central

    Avelino-Cruz, José E.; Flores, Amira; Cebada, Jorge; Mellon, Pamela L.; Felix, Ricardo; Monjaraz, Eduardo

    2009-01-01

    Leptin, a mediator of long-term regulation of energy balance, has been implicated in the release of adenohypophyseal gonadotropins by regulating gonadotropin-releasing hormone (GnRH) secretion from the hypothalamus. However, a direct effect of leptin on hormone release from gonadotropes remains virtually unexplored. In the current report, we assessed the long-term (48 h) actions of leptin on voltage-gated channel activity and luteinizing hormone (LH) production in mouse pituitary gonadotrope LβT2 cells. Electrophysiological recordings showed that leptin treatment significantly increased whole-cell patch clamp Ba2+ current through L-type Ca2+ channels. Quantitative RT-PCR analysis revealed increased levels of L-type (α1D) Ca2+ channel mRNA. Likewise, radioimmunoassays using specific antibodies provided evidence that leptin alone had no effect on LH release but did enhance GnRH-induced secretion of the hormone. Leptin had no apparent effects on LH gene transcription in absence of GnRH, as measured by transient transfection assays using a LH promoter-reporter gene and real time RT-PCR. These observations suggest that leptin might affect LH release by acting directly on the gonadotropes, favoring hormone production by enhancing responsiveness to GnRH as a result of increased Ca2+ channel expression. PMID:18834922

  11. Does leptin signal adiposity in the egg-laying mammal, Tachyglossus aculeatus?

    PubMed

    Sprent, Jenny; Jones, Susan M; Nicol, Stewart C

    2012-09-01

    Leptin is a peptide hormone best known for its role in feedback regulation of adiposity in eutherian mammals. Normally an increase in adipose tissue mass leads to an increase in circulating leptin which increases energy expenditure and limits food intake, but in hibernating eutherian mammals this relationship may change to allow prehibernatory fattening. The echidna (Tachyglossus aculeatus) is a monotreme mammal which accumulates significant fat reserves before entering hibernation, and mates immediately at the end of hibernation. We hypothesised that echidnas would show a strong relationship between body mass and plasma leptin for most of the year which would change during the pre-hibernatory period. We measured plasma leptin and body mass in free-ranging echidnas over several reproductive and hibernation cycles. There were significant seasonal variations in plasma leptin in both sexes, with the highest levels occurring in hibernation and in mating females. The lowest levels were found in males when they were foraging maximally after the reproductive period. We used mass%, body mass at the time of sampling as a percentage of long term mean mass, as a proxy for adiposity. There was a weak negative relationship between mass% and plasma leptin, from which we infer a weak negative relationship between adiposity and plasma leptin as has been found in reptiles and birds, rather than the strong positive relationship found in other mammals.

  12. Leptin intake during lactation prevents obesity and affects food intake and food preferences in later life.

    PubMed

    Palou, Andreu; Picó, Catalina

    2009-02-01

    Breast milk is practically the only food ingested during the first months of life in fully breastfed infants and it is assumed to match the infant's nutritional needs. Epidemiological data suggest that breastfeeding compared with infant formula feeding confers protection against several chronic diseases later on in life and, particularly, against obesity and related medical complications. However, causality has not been related to any specific compound of breast milk. Recent data in our laboratory have identified leptin as the specific compound that is responsible for some of these beneficial effects of breastfeeding. The hormone leptin was identified as a key candidate because it is present in breast milk, but is not present in infant formula, and when ingested during the suckling period can be absorbed by the immature stomach exerting biological effects. Evidence of the beneficial effects of breast milk leptin was obtained from human studies, showing that milk-borne maternal leptin appeared to give moderate protection to infants from excess weight gain. Direct cause-effect evidence was obtained in rats, where oral leptin supplementation during the suckling period resulted in a decrease in food intake, affected food preferences in favour of carbohydrates versus fat, and protected against overweight in adulthood, with an improvement of related parameters such as leptin and insulin sensitivity. These findings open a new area of research on the use of leptin in the design of more appropriate infant formula, which is significant considering the increasing incidence of obesity and its associated medical complications.

  13. TSH effects on thermogenesis in rat brown adipocytes.

    PubMed

    Martinez-deMena, Raquel; Anedda, Andrea; Cadenas, Susana; Obregon, Maria-Jesus

    2015-03-15

    TSH receptor (TSHR) is present in the thyroid and other tissues, as adipose tissue. In brown adipose tissue (BAT) TSH increases UCP1 expression and lipolysis. We have studied the regulation of Tshr mRNA expression and the effect of TSH on Ucp1 and Dio2 mRNA, on D2 activity and O2 consumption in rat brown adipocytes and the TSH signaling pathways. Tshr increased during brown adipocyte differentiation, was up-regulated by insulin and low TSH concentrations and down-regulated by high TSH concentrations, T3 and/or NE. TSH increased basal Ucp1 mRNA in a dose-dependent way acting synergistically with T3, while had no effect when NE was present. High TSH concentrations increased basal Dio2 mRNA (12-fold) and were synergistic with T3 (100-fold), but decreased Dio2 mRNA in T3+NE-treated cells. TSH increased D2 activities in T3-treated cells and inhibition of ERK pathway decreased the TSH effect by 55%. In T3+NE treated-cells TSH decreased D2 activity by 50%, in a dose-dependent manner. TSH activated Akt and Erk phosphorylation, while inhibition of PKA promoted Akt phosphorylation. TSH inhibited leptin mRNA. TSH increased O2 consumption by 20% and T3 enhanced its effect. Tshr is expressed in brown adipocytes and is regulated by insulin, TSH, T3 and NE. TSH increases basal and T3-stimulated Ucp1 and Dio2 expression and D2 activity only when T3 is present, but decreases Dio2 mRNA and D2 activity stimulated by NE+T3. TSH increases O2 consumption, confirming the role of TSH in the maintenance of thermogenesis.

  14. Role of Leptin Deficiency, Inefficiency, and Leptin Receptors in Obesity.

    PubMed

    Wasim, Muhammad; Awan, Fazli Rabbi; Najam, Syeda Sadia; Khan, Abdul Rehman; Khan, Haq Nawaz

    2016-10-01

    Leptin protein consists of 167 amino acids, which is mainly secreted from the white adipose tissue. This protein acts on the hypothalamic regions of the brain which control eating behavior, thus playing a significant role in maintaining body's metabolism. Leptin receptors belong to glycoprotein 130 (gp130) family of cytokine receptors and exist in six isoforms (LEPR a-f), and all the isoforms are encoded by LEPR gene; out of these isoforms, the LEPR-b receptor is the 'longest form,' and in most of the cases, mutations in this isoform cause severe obesity. Also, mutations in the leptin gene (LEP) or its receptors gene can lead to obesity. Some biochemical pathways affect the bioactivity of leptin and/or its receptors. To date, eleven pathogenic mutations have been reported in the LEP which are p.L72S, p.N103K, p.R105W, p.H118L, p.S141C, p.W121X c.104_106delTCA, c.135del3bp, c.398delG, c.481_482delCT, and c.163C>T. Different mutations in the LEPR have also been reported as c.2396-1 G>T, c.1675 G>A, p.P316T, etc. In some studies, where leptin was deficient, leptin replacement therapy has shown positive impact by preventing weight gain and obesity.

  15. The role of cannabinoids and leptin in neurological diseases.

    PubMed

    Agar, E

    2015-12-01

    Cannabinoids exert a neuroprotective influence on some neurological diseases, including Alzheimer's, Parkinson's, Huntington's, multiple sclerosis and epilepsy. Synthetic cannabinoid receptor agonists/antagonists or compounds can provide symptom relief or control the progression of neurological diseases. However, the molecular mechanism and the effectiveness of these agents in controlling the progression of most of these diseases remain unclear. Cannabinoids may exert effects via a number of mechanisms and interactions with neurotransmitters, neurotropic factors and neuropeptides. Leptin is a peptide hormone involved in the regulation of food intake and energy balance via its actions on specific hypothalamic nuclei. Leptin receptors are widely expressed throughout the brain, especially in the hippocampus, basal ganglia, cortex and cerebellum. Leptin has also shown neuroprotective properties in a number of neurological disorders, such as Parkinson's and Alzheimer's. Therefore, cannabinoid and leptin hold therapeutic potential for neurological diseases. Further elucidation of the molecular mechanisms underlying the effects on these agents may lead to the development of new therapeutic strategies for the treatment of neurological disorders.

  16. Leptin, a mediator of cardiac damage associated with obesity.

    PubMed

    Martínez-Martínez, E; Jurado-López, R; Cervantes-Escalera, P; Cachofeiro, V; Miana, M

    2014-04-01

    Obesity and excess of adipose tissue are associated with the development of cardiovascular risk factors such as diabetes, hypertension, and hyperlipidemia. At the cardiac level, various morphological adaptations in cardiac structure and function occur in obese individuals. Different mechanisms linking obesity to these modifications have been postulated. Adipose tissue and epicardial fat releases a large number of cytokines and bioactive mediators such as leptin. Leptin circulates in proportion to body fat mass, thus serving as a satiety signal and informing central metabolic control centers as to the status of peripheral energy stores. It participates in numerous other functions both peripherally and centrally, as indicated by the wide distribution of leptin and the different isoforms of its receptor in different tissues including the heart. This hormone has distinct effects on the reproductive, cardiovascular, and immune systems; however, its role in the heart could mediate wide physiological effects observed in obese individuals. Oxidative stress is associated with obesity and may be considered to be a unifying mechanism in the development of obesity-related comorbidities. It has been reported that obesity may induce systemic oxidative stress; in turn, oxidative stress is associated with an irregular production of adipokines. We herein review the current knowledge of cardiac effects of leptin and the possible mechanisms that are involved, including oxidative stress that plays a major role in the development of cardiovascular damage.

  17. Role of the neural pathway from hindbrain to hypothalamus in interaction of GLP1 and leptin in rats.

    PubMed

    Akieda-Asai, Sayaka; Poleni, Paul-Emile; Hasegawa, Kazuya; Date, Yukari

    2014-02-01

    Glucagon-like peptide-1 (GLP1) and leptin are anorectic hormones. Previously, we have shown that i.p. coadministration of subthreshold GLP1 with leptin dramatically reduced food intake in rats. In this study, by using midbrain-transected rats, we investigated the role of the neural pathway from the hindbrain to the hypothalamus in the interaction of GLP1 and leptin in reducing food intake. Food intake reduction induced by coinjection of GLP1 and leptin was blocked in midbrain-transected rats. These findings indicate that the ascending neural pathway from the hindbrain plays an important role in transmitting the anorectic signals provided by coinjection of GLP1 and leptin.

  18. Leptin in human physiology and therapeutics.

    PubMed

    Dardeno, Tina A; Chou, Sharon H; Moon, Hyun-Seuk; Chamberland, John P; Fiorenza, Christina G; Mantzoros, Christos S

    2010-07-01

    Leptin regulates energy homeostasis and reproductive, neuroendocrine, immune, and metabolic functions. In this review, we describe the role of leptin in human physiology and review evidence from recent "proof of concept" clinical trials using recombinant human leptin in subjects with congenital leptin deficiency, hypoleptinemia associated with energy-deficient states, and hyperleptinemia associated with garden-variety obesity. Since most obese individuals are largely leptin-tolerant or -resistant, therapeutic uses of leptin are currently limited to patients with complete or partial leptin deficiency, including hypothalamic amenorrhea and lipoatrophy. Leptin administration in these energy-deficient states may help restore associated neuroendocrine, metabolic, and immune function and bone metabolism. Leptin treatment is currently available for individuals with congenital leptin deficiency and congenital lipoatrophy. The long-term efficacy and safety of leptin treatment in hypothalamic amenorrhea and acquired lipoatrophy are currently under investigation. Whether combination therapy with leptin and potential leptin sensitizers will prove effective in the treatment of garden-variety obesity and whether leptin may have a role in weight loss maintenance is being greatly anticipated.

  19. Hippocampal leptin suppresses methamphetamine-induced hyperlocomotion.

    PubMed

    Nishio, Masahiro; Watanabe, Yasuhiro

    2010-10-01

    Leptin is an anorexigenic peptide which is synthesized in white adipose tissue. The actions of leptin are mediated by the leptin receptor which is abundantly localized in the hypothalamus and is involved in energy regulation and balance. Recently, there has been evidence suggesting that the leptin receptor is also present in the hippocampus and may be involved with hippocampal excitability and long-term depression. To investigate the physiological function of leptin signalling in the hippocampus, we studied the effects of leptin on methamphetamine-induced ambulatory hyperactivity by utilizing intra-hippocampal infusion (i.h.) in mice. Our results show that the infusion of leptin (5 ng each bilaterally i.h.) does not affect the basal ambulatory activity but significantly suppresses methamphetamine-induced ambulatory hyperactivity as compared to saline-infused controls. Interestingly, higher dose of leptin increases the suppression of the methamphetamine-induced ambulatory hyperactivity. The i.h. infusion of leptin did not activate the JAK-STAT pathway, which is the cellular signalling pathway through which leptin acts in the hypothalamus. The infusion of leptin also did not affect activation of p42/44 MAPK which is known to be another leptin-induced signalling pathway in the brain. These results demonstrate that leptin has a novel potential suppressive effect on methamphetamine-induced hyperlocomotion and also suggest that there must be an alternative pathway in the hippocampus through which leptin signalling is being mediated.

  20. Leptin in Human Physiology and Therapeutics

    PubMed Central

    Dardeno, Tina A.; Chou, Sharon H.; Moon, Hyun-Seuk; Chamberland, John P.; Fiorenza, Christina G.; Mantzoros, Christos S.

    2010-01-01

    Leptin regulates energy homeostasis and reproductive, neuroendocrine, immune, and metabolic functions. In this review, we describe the role of leptin in human physiology and review evidence from recent “proof of concept” clinical trials using recombinant human leptin in subjects with congenital leptin deficiency, hypoleptinemia associated with energy-deficient states, and hyperleptinemia associated with garden-variety obesity. Since most obese individuals are largely leptin-tolerant or -resistant, therapeutic uses of leptin are currently limited to patients with complete or partial leptin deficiency, including hypothalamic amenorrhea and lipoatrophy. Leptin administration in these energy-deficient states may help restore associated neuroendocrine, metabolic, and immune function and bone metabolism. Leptin treatment is currently available for individuals with congenital leptin deficiency and congenital lipoatrophy. The long-term efficacy and safety of leptin treatment in hypothalamic amenorrhea and acquired lipoatrophy are currently under investigation. Whether combination therapy with leptin and potential leptin sensitizers will prove effective in the treatment of garden-variety obesity and whether leptin may have a role in weight loss maintenance is being greatly anticipated. PMID:20600241

  1. Sam68 Mediates the Activation of Insulin and Leptin Signalling in Breast Cancer Cells

    PubMed Central

    Pérez-Pérez, Antonio; Sánchez-Jiménez, Flora; Vilariño-García, Teresa; de la Cruz, Luis; Virizuela, Juan A.; Sánchez-Margalet, Víctor

    2016-01-01

    Obesity is a well-known risk factor for breast cancer development in postmenopausal women. High insulin and leptin levels seem to have a role modulating the growth of these tumours. Sam68 is an RNA-binding protein with signalling functions that has been found to be overexpressed in breast cancer. Moreover, Sam68 may be recruited to insulin and leptin signalling pathways, mediating its effects on survival, growth and proliferation in different cellular types. We aimed to study the expression of Sam68 and its phosphorylation level upon insulin and leptin stimulation, and the role of Sam68 in the proliferative effect and signalling pathways that are activated by insulin or leptin in human breast adenocarcinoma cells. In the human breast adenocarcinoma cell lines MCF7, MDA-MB-231 and BT-474, Sam68 protein quantity and gene expression were increased upon leptin or insulin stimulation, as it was checked by qPCR and immunoblot. Moreover, both insulin and leptin stimulation promoted an increase in Sam68 tyrosine phosphorylation and negatively regulated its RNA binding capacity. siRNA was used to downregulate Sam68 expression, which resulted in lower proliferative effects of both insulin and leptin, as well as a lower activation of MAPK and PI3K pathways promoted by both hormones. These effects may be partly explained by the decrease in IRS-1 expression by down-regulation of Sam68. These results suggest the participation of Sam68 in both leptin and insulin receptor signaling in human breast cancer cells, mediating the trophic effects of these hormones in proliferation and cellular growth. PMID:27415018

  2. Promotion of human adipocyte precursor replication by 17beta-estradiol in culture.

    PubMed Central

    Roncari, D A; Van, R L

    1978-01-01

    The influence of 17beta-estradiol and 17alpha-estradiol on adult human omental adipocyte precursors grown in a propagating culture system was studied. Cells were grown in subculture in the presence or absence of hormone. 17beta-estradiol resulted in significant promotion of adipocyte precursor replication, as determined by cell counting and incorporation of radioactive thymidine into DNA. The hormone stimulated cell multiplication in the concentration range 0.5--500 ng/ml growth medium. The highest level tested was 500 ng/ml. The maximal effects were obtained at 50 ng/ml (P less than 0.001 by paired t test, 48 h after hormone addition). All 10 cell strains (five were derived from men and five from women) that were tested responded similarly to the hormone. 17beta-estradiol did not affect cell size. 17alpha-estradiol did not promote the replication of adipocyte precursors, nor did it influence cell size. Thus, 17beta-estradiol, which is the active isomer in known target tissues, stimulates the multiplication of human adipocyte precursors in culture. Images PMID:690182

  3. Perilipin Promotes HSL-Mediated Adipocyte Lipolysis via Phosphorylation-dependent and Independent Mechanisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hormone-sensitive lipase (HSL) is the predominant lipase effector of catecholamine-stimulated lipolysis in adipocytes. HSL-dependent lipolysis, in response to catecholamines, is mediated by protein kinase A (PKA)-dependent phosphorylation of perilipin A (Peri A), an essential lipid droplet (LD)-ass...

  4. Suppression of Lipid Accumulation by Indole-3-Carbinol Is Associated with Increased Expression of the Aryl Hydrocarbon Receptor and CYP1B1 Proteins in Adipocytes and with Decreased Adipocyte-Stimulated Endothelial Tube Formation

    PubMed Central

    Wang, Mei-Lin; Lin, Shyh-Hsiang; Hou, Yuan-Yu; Chen, Yue-Hwa

    2016-01-01

    This study investigated the effects of indole-3-carbinol (I3C) on adipogenesis- and angiogenesis-associated factors in mature adipocytes. The cross-talk between mature adipocytes and endothelial cells (ECs) was also explored by cultivating ECs in a conditioned medium (CM) by using I3C-treated adipocytes. The results revealed that I3C significantly inhibited triglyceride accumulation in mature adipocytes in association with significantly increased expression of AhR and CYP1B1 proteins as well as slightly decreased nuclear factor erythroid-derived factor 2–related factor 2, hormone-sensitive lipase, and glycerol-3-phosphate dehydrogenase expression by mature adipocytes. Furthermore, I3C inhibited CM-stimulated endothelial tube formation, which was accompanied by the modulated secretion of angiogenic factors in adipocytes, including vascular endothelial growth factor, interleukin-6, matrix metalloproteinases, and nitric oxide. In conclusion, I3C reduced lipid droplet accumulation in adipocytes and suppressed adipocyte-stimulated angiogenesis in ECs, suggesting that I3C is a potential therapeutic agent for treating obesity and obesity-associated disorders. PMID:27527145

  5. Adiponectin, leptin, and yoga practice.

    PubMed

    Kiecolt-Glaser, Janice K; Christian, Lisa M; Andridge, Rebecca; Hwang, Beom Seuk; Malarkey, William B; Belury, Martha A; Emery, Charles F; Glaser, Ronald

    2012-12-05

    To address the mechanisms underlying hatha yoga's potential stress-reduction benefits, we compared adiponectin and leptin data from well-matched novice and expert yoga practitioners. These adipocytokines have counter-regulatory functions in inflammation; leptin plays a proinflammatory role, while adiponectin has anti-inflammatory properties. Fifty healthy women (mean age=41.32, range=30-65), 25 novices and 25 experts, provided fasting blood samples during three separate visits. Leptin was 36% higher among novices compared to experts, P=.008. Analysis of adiponectin revealed a borderline effect of yoga expertise, P=.08; experts' average adiponectin levels were 28% higher than novices across the three visits. In contrast, experts' average adiponectin to leptin ratio was nearly twice that of novices, P=.009. Frequency of self-reported yoga practice showed significant negative relationships with leptin; more weeks of yoga practice over the last year, more lifetime yoga sessions, and more years of yoga practice were all significantly associated with lower leptin, with similar findings for the adiponectin to leptin ratio. Novices and experts did not show even marginal differences on behavioral and physiological dimensions that might represent potential confounds, including BMI, central adiposity, cardiorespiratory fitness, and diet. Prospective studies addressing increased risk for type II diabetes, hypertension, and cardiovascular disease have highlighted the importance of these adipocytokines in modulating inflammation. Although these health risks are clearly related to more extreme values then we found in our healthy sample, our data raise the possibility that longer-term and/or more intensive yoga practice could have beneficial health consequences by altering leptin and adiponectin production.

  6. Dietary Omega-3 Fatty Acids Prevented Adipocyte Hypertrophy by Downregulating DGAT-2 and FABP-4 in a Sex-Dependent Fashion.

    PubMed

    Balogun, Kayode A; Cheema, Sukhinder K

    2016-01-01

    Obesity is characterized by an increase in fat mass primarily as a result of adipocyte hypertrophy. Diets enriched in omega (n)-3 polyunsaturated fatty acids (PUFA) are suggested to reduce obesity, however, the mechanisms are not well understood. We investigated the effect of n-3 PUFA on adipocyte hypertrophy and the key genes involved in adipocyte hypertrophy. Female C57BL/6 mice were fed semi-purified diets (20 % w/w fat) containing high n-3 PUFA before mating, during pregnancy, and until weaning. Male and female offspring were continued on high n-3 PUFA (10 % w/w), medium n-3 PUFA (4 % w/w), or low n-3 PUFA (2 % w/w) diet for 16 weeks postweaning. Adipocyte area was quantified using microscopy, and gonadal mRNA expression of acyl CoA:diacylglycerol acyltransferase-2 (DGAT-2), fatty acid binding protein-4 (FABP-4) and leptin were measured. The high n-3 PUFA group showed higher levels of total n-3 PUFA in gonadal TAG compared to the medium and low n-3 PUFA groups (P < 0.001). The high n-3 PUFA male group had a lower adipocyte area compared to the medium and low n-3 PUFA group (P < 0.001); however, no difference was observed in females. The high n-3 PUFA male group showed lower mRNA expression of FABP-4, DGAT-2 and leptin compared to the low n-3 PUFA group, with no difference in females. Plasma lipid levels were lower in the high n-3 PUFA group compared to the other groups. Our findings show for the first time that n-3 PUFA prevents adipocyte hypertrophy by downregulating FABP-4, DGAT-2 and leptin; the effects are however sex-specific.

  7. Leptin pharmacokinetics in male mice

    PubMed Central

    Dobos, Robin C; Agnew, Linda L; Smart, Neil A; McFarlane, James R

    2017-01-01

    Pharmacokinetics of leptin in mammals has not been studied in detail and only one study has examined more than one time point in non-mutant mice and this was in a female mice. This is the first study to describe leptin distribution over a detailed time course in normal male mice. A physiologic dose (12 ng) of radiolabelled leptin was injected into adult male mice via the lateral tail vein and tissues were dissected out and measured for radioactivity over a time course of up to two hours. Major targets were the digestive tract, kidneys, skin and lungs. The brain was not a major target, and 0.15% of the total dose was recovered from the brain 5 min after administration. Major differences appear to exist in the distribution of leptin between the male and female mice, indicating a high degree of sexual dimorphism. Although the half-lives were similar between male and female mice, almost twice the proportion of leptin was recovered from the digestive tract of male mice in comparison to that reported previously for females. This would seem to indicate a major difference in leptin distribution and possibly function between males and females. PMID:27998953

  8. Leptin deficiency in maltreated children.

    PubMed

    Danese, A; Dove, R; Belsky, D W; Henchy, J; Williams, B; Ambler, A; Arseneault, L

    2014-09-23

    Consistent with findings from experimental research in nonhuman primates exposed to early-life stress, children exposed to maltreatment are at high risk of detrimental physical health conditions, such as obesity and systemic inflammation. Because leptin is a key molecule involved in the regulation of both energy balance and immunity, we investigated abnormalities in leptin physiology among maltreated children. We measured leptin, body mass index and C-reactive protein in 170 12-year-old children members of the Environmental-Risk Longitudinal Twin Study, for whom we had prospectively-collected information on maltreatment exposure. We found that maltreated children exhibited blunted elevation in leptin levels in relation to increasing levels of physiological stimuli, adiposity and inflammation, compared with a group of non-maltreated children matched for gender, zygosity and socioeconomic status. These findings were also independent of key potential artifacts and confounders, such as time of day at sample collection, history of food insecurity, pubertal maturation and depressive symptoms. Furthermore, using birth weight as a proxy measure for leptin, we found that physiological abnormalities were presumably not present at birth in children who went on to be maltreated but only emerged over the course of childhood, after maltreatment exposure. Leptin deficiency may contribute to onset, persistence and progression of physical health problems in maltreated children.

  9. Effects of Rilpivirine on Human Adipocyte Differentiation, Gene Expression, and Release of Adipokines and Cytokines

    PubMed Central

    Díaz-Delfín, Julieta; Domingo, Pere; Mateo, Maria Gracia; Gutierrez, Maria del Mar; Domingo, Joan Carles; Giralt, Marta

    2012-01-01

    Rilpivirine is a nonnucleoside reverse transcriptase inhibitor (NNRTI) recently developed as a drug of choice for initial antiretroviral treatment of HIV-1 infection. Disturbances in lipid metabolism and, ultimately, in adipose tissue distribution and function are common concerns as secondary effects of antiretroviral treatment. Efavirenz, the most commonly used NNRTI, causes mild dyslipidemic effects in patients and strongly impaired adipocyte differentiation in vitro. In this study, we provide the first demonstration of the effects of rilpivirine on human adipocyte differentiation, gene expression, and release of regulatory proteins (adipokines and cytokines) and compare them with those caused by efavirenz. Rilpivirine caused a repression of adipocyte differentiation that was associated with impaired expression of the master adipogenesis regulators peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT enhancer binding protein alpha (C/EBPα), and sterol regulatory element binding transcription factor 1 (SREBP-1) and their target genes encoding lipoprotein lipase and the adipokines leptin and adiponectin. Rilpivirine also repressed adiponectin release by adipocytes, but only at high concentrations, and did not alter leptin release. Rilpivirine induced the release of proinflammatory cytokines (interleukin-6 and -8, monocyte chemoattractant protein 1 [MCP-1], plasminogen activator inhibitor type 1 [PAI-1]) only at very high concentrations (10 μM). A comparison of the effects of rilpivirine and efavirenz at the same concentration (4 μM) or even at lower concentrations of efavirenz (2 μM) showed that rilpivirine-induced impairment of adipogenesis and induction of proinflammatory cytokine expression and release were systematically milder than those of efavirenz. It is concluded that rilpivirine causes an antiadipogenic and proinflammatory response pattern, but only at high concentrations, whereas efavirenz causes similar effects at lower concentrations

  10. Leptin Matures Aspects of Lung Structure and Function in the Ovine Fetus.

    PubMed

    De Blasio, Miles J; Boije, Maria; Kempster, Sarah L; Smith, Gordon C S; Charnock-Jones, D Stephen; Denyer, Alice; Hughes, Alexandra; Wooding, F B Peter; Blache, Dominique; Fowden, Abigail L; Forhead, Alison J

    2016-01-01

    In human and ovine fetuses, glucocorticoids stimulate leptin secretion, although the extent to which leptin mediates the maturational effects of glucocorticoids on pulmonary development is unclear. This study investigated the effects of leptin administration on indices of lung structure and function before birth. Chronically catheterized singleton sheep fetuses were infused iv for 5 days with either saline or recombinant ovine leptin (0.5 mg/kg · d leptin (LEP), 0.5 LEP or 1.0 mg/kg · d, 1.0 LEP) from 125 days of gestation (term ∼145 d). Over the infusion, leptin administration increased plasma leptin, but not cortisol, concentrations. On the fifth day of infusion, 0.5 LEP reduced alveolar wall thickness and increased the volume at closing pressure of the pressure-volume deflation curve, interalveolar septal elastin content, secondary septal crest density, and the mRNA abundance of the leptin receptor (Ob-R) and surfactant protein (SP) B. Neither treatment influenced static lung compliance, maximal lung volume at 40 cmH2O, lung compartment volumes, alveolar surface area, pulmonary glycogen, protein content of the long form signaling Ob-Rb or phosphorylated signal transducers and activators of transcription-3, or mRNA levels of SP-A, C, or D, elastin, vascular endothelial growth factor-A, the vascular endothelial growth factor receptor 2, angiotensin-converting enzyme, peroxisome proliferator-activated receptor γ, or parathyroid hormone-related peptide. Leptin administration in the ovine fetus during late gestation promotes aspects of lung maturation, including up-regulation of SP-B.

  11. Leptin regulated calcium channels of neuropeptide Y and proopiomelanocortin neurons by activation of different signal pathways.

    PubMed

    Wang, J-H; Wang, F; Yang, M-J; Yu, D-F; Wu, W-N; Liu, J; Ma, L-Q; Cai, F; Chen, J-G

    2008-09-22

    The fat-derived hormone leptin regulates food intake and body weight in part by modulating the activity of neuropeptide Y (NPY) and proopiomelanocortin (POMC) neurons in the hypothalamic arcuate nucleus (ARC). To investigate the electrophysiological activity of these neurons and their responses to leptin, we recorded whole-cell calcium currents on NPY and POMC neurons in the ARC of rats, which we identified by morphologic features and immunocytochemical identification at the end of recording. Leptin decreased the peak amplitude of high voltage-activated calcium currents (I(HVA)) in the isolated neurons from ARC, which were subsequently shown to be immunoreactive for NPY. The inhibition was prevented by pretreatment with inhibitors of Janus kinase 2 (JAK2) and mitogen-activated protein kinases (MAPK). In contrast, leptin increased the amplitude of I(HVA) in POMC-containing neurons. The stimulations of I(HVA) were inhibited by blockers of JAK2 and phosphatidylino 3-kinase (PI3-k). Both of these effects were counteracted by the L-type calcium channel antagonist nifedipine, suggesting that L-type calcium channels were involved in the regulation induced by leptin. These data indicated that leptin exerted opposite effects on these two classes of neurons. Leptin directly inhibited I(HVA) in NPY neurons via leptin receptor (LEPR) -JAK2-MAPK pathways, whereas evoked I(HVA) in POMC neurons by LEPR-JAK2-PI3-k pathways. These neural pathways and intracellular signaling mechanisms may play key roles in regulating NPY and POMC neuron activity, anorectic action of leptin and, thereby, feeding.

  12. Growth restriction, leptin, and the programming of adult behavior in mice.

    PubMed

    Meyer, Lauritz R; Zhu, Vivian; Miller, Alise; Roghair, Robert D

    2014-12-15

    Prematurity and neonatal growth restriction (GR) are risk factors for autism and attention deficit hyperactivity disorder (ADHD). Leptin production is suppressed during periods of undernutrition, and we have shown that isolated neonatal leptin deficiency leads to adult hyperactivity while neonatal leptin supplementation normalizes the brain morphology of GR mice. We hypothesized that neonatal leptin would prevent the development of GR-associated behavioral abnormalities. From postnatal day 4-14, C57BL/6 mice were randomized to daily injections of saline or leptin (80ng/g), and GR was identified by a weanling weight below the tenth percentile. The behavioral phenotypes of GR and control mice were assessed beginning at 4 months. Within the tripartite chamber, GR mice had significantly impaired social interaction. Baseline escape times from the Barnes maze were faster for GR mice (65+/-6s vs 87+/-7s for controls, p<0.05), but GR mice exhibited regression in their escape times on days 2 and 3 (56% regressed vs 22% of control saline mice, p<0.05). Compared to controls, GR mice entered the open arms of the elevated plus maze more often and stayed there longer (72+/-10s vs 36+/-5s, p<0.01). Neonatal leptin supplementation normalized the behavior of GR mice across all behavioral assays. In conclusion, GR alters the social interactions, learning and activity of mice, and supplementation with the neurotrophic hormone leptin mitigates these effects. We speculate neonatal leptin deficiency may contribute to the adverse neurodevelopmental outcomes associated with postnatal growth restriction, and postnatal leptin therapy may be protective.

  13. Ghrelin levels are not regulated by recombinant leptin administration and/or three days of fasting in healthy subjects.

    PubMed

    Chan, Jean L; Bullen, John; Lee, Jennifer H; Yiannakouris, Nikos; Mantzoros, Christos S

    2004-01-01

    Ghrelin, a stomach-derived orexigenic peptide, and leptin, a fat-derived anorexigenic hormone, act primarily in the hypothalamus to regulate energy homeostasis and have been reported to be regulated in opposite directions by acute and chronic changes in nutritional state. Nutritional, anthropometric, and hormonal predictors of circulating ghrelin have not yet been fully elucidated, and whether ghrelin is regulated by leptin in humans remains unknown. To address these questions, we performed cross-sectional and interventional studies. In 120 healthy men and women, ghrelin was negatively associated with leptin as well as overall and central adiposity, but not with total energy or specific macronutrient intake. The sexual dimorphism in ghrelin levels (higher levels in women than in men) and the negative correlation between ghrelin and insulin are largely mediated by central adiposity. In six lean men, complete fasting for 3 d resulted in a low leptin state without a major change in fat mass and abolished the meal-related secretory pattern of ghrelin without increasing 24-h ghrelin levels. In addition, recombinant human leptin administration in physiological and pharmacological doses did not regulate ghrelin over several hours to a few days. These data do not support a role for regulation of circulating ghrelin by leptin levels independently of changes in adiposity and suggest that the leptin and ghrelin systems for energy homeostasis function independently of each other in healthy humans.

  14. Leptin reduces gentamicin-induced apoptosis in rat renal tubular cells via the PI3K-Akt signaling pathway.

    PubMed

    Chen, Yen-Cheng; Chen, Cheng-Hsien; Hsu, Yung-Ho; Chen, Tso-Hsiao; Sue, Yuh-Mou; Cheng, Chung-Yi; Chen, Tzen-Wen

    2011-05-11

    Leptin, a circulating hormone secreted mainly from adipose tissues, possesses protective effects on many cell types. Serum leptin concentration increases in patients with chronic renal failure and those undergoing maintenance dialysis. Gentamicin, a widely used antibiotic for the treatment of bacterial infection, can cause nephrotoxicity. In the present study, we intended to investigate the influence of leptin on apoptotic pathways and its mechanism in rat renal tubular cells treated with gentamicin. By using Annexin V-FITC/propidium iodide double staining, we found that leptin expressed a dose-dependent protective effect against gentamicin-induced apoptosis in rat renal tubular cells (NRK-52E) within 24h. Pretreatment of the cells with 50 or 100 ng/ml of leptin induced Bcl-2 and Bcl-x(L), increased the phosphorylation of Bad, and decreased the cleaved caspase-3 and caspase-9 in gentamicin-treated NRK-52E cells. Leptin also suppressed the activation of the transcription factor NF-κB and upregulated Akt activation in gentamicin-treated NRK-52E cells. We found that leptin activated the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway as demonstrated by the suppression of the anti-apoptotic effect of leptin by wortmannin. The treatment of wortmannin suppressed the leptin-induced phospho-Akt, Bcl-2, phospho-Bad as well as Bcl-x(L), and recovered the leptin-reduced cleaved caspase-3 and caspase-9. Based on our results, we suggested that leptin can attenuate gentamicin-induced apoptotic injury in rat renal tubular cells through PI3K/Akt signaling pathway.

  15. Oncogenic role of leptin and Notch interleukin-1 leptin crosstalk outcome in cancer

    PubMed Central

    Lipsey, Crystal C; Harbuzariu, Adriana; Daley-Brown, Danielle; Gonzalez-Perez, Ruben R

    2016-01-01

    Obesity is a global pandemic characterized by high levels of body fat (adiposity) and derived-cytokines (i.e., leptin). Research shows that adiposity and leptin provide insight on the link between obesity and cancer progression. Leptin’s main function is to regulate energy balance. However, obese individuals routinely develop leptin resistance, which is the consequence of the breakdown in the signaling mechanism controlling satiety resulting in the accumulation of leptin. Therefore, leptin levels are often chronically elevated in human obesity. Elevated leptin levels are related to higher incidence, increased progression and poor prognosis of several human cancers. In addition to adipose tissue, cancer cells can also secrete leptin and overexpress leptin receptors. Leptin is known to act as a mitogen, inflammatory and pro-angiogenic factor that induces cancer cell proliferation and tumor angiogenesis. Moreover, leptin signaling induces cancer stem cells, which are involved in cancer recurrence and drug resistance. A novel and complex signaling crosstalk between leptin, Notch and interleukin-1 (IL-1) [Notch, IL-1 and leptin crosstalk outcome (NILCO)] seems to be an important driver of leptin-induced oncogenic actions. Leptin and NILCO signaling mediate the activation of cancer stem cells that can affect drug resistance. Thus, leptin and NILCO signaling are key links between obesity and cancer progression. This review presents updated data suggesting that adiposity affects cancer incidence, progression, and response to treatment. Here we show data supporting the oncogenic role of leptin in breast, endometrial, and pancreatic cancers. PMID:27019796