Science.gov

Sample records for adipocyte leptin gene

  1. Effects of dopamine on leptin release and leptin gene (OB) expression in adipocytes from obese and hypertensive patients

    PubMed Central

    Alvarez-Aguilar, Cleto; Alvarez-Paredes, Alfonso Rafael; Lindholm, Bengt; Stenvinkel, Peter; García-López, Elvia; Mejía-Rodríguez, Oliva; López-Meza, Joel Edmundo; Amato, Dante; Paniagua, Ramon

    2013-01-01

    Background A reduction of dopaminergic (DAergic) activity with increased prolactin levels has been found in obese and hypertensive patients, suggesting its involvement as a pathophysiological mechanism promoting hypertension. Similarly, leptin action increasing sympathetic activity has been proposed to be involved in mechanisms of hypertension. The aim of this study was to analyze the effects of DA, norepinephrine (NE), and prolactin on leptin release and leptin gene (OB) expression in adipocytes from obese and hypertensive patients. Methods Leptin release and OB gene expression were analyzed in cultured adipocytes from 16 obese and hypertensive patients treated with DA (0.001, 0.01, 0.1, and 1.0 μmol/L), NE (1.0 μmol/L), insulin (0.1 μmol/L), and prolactin (1.0 μmol/L), and from five nonobese and normotensive controls treated with DA (1 μmol/L), NE (1 μmol/L), insulin (0.1 μmol/L), and prolactin (1.0 μmol/L). Results A dose-related reduction of leptin release and OB gene messenger ribonucleic acid expression under different doses of DA was observed in adipocytes from obese hypertensive patients. Whereas prolactin treatment elicited a significant increase of both leptin release and OB gene expression, NE reduced these parameters. Although similar effects of DA and NE were observed in adipocytes from controls, baseline values in controls were reduced to 20% of the value in adipocytes from obese hypertensive patients. Conclusion These results suggest that DAergic deficiency contributes to metabolic disorders linked to hyperleptinemia in obese and hypertensive patients. PMID:24348062

  2. [Leptin: adipocyte hormone].

    PubMed

    Castagna, L; De Gregorio, T; Allegra, A; Buemi, M; Corsonello, A; Bonanzinga, S; Catanoso, M; Ceruso, D; Corica, F

    1998-04-01

    The authors reviewed the most recent literature on leptin, a protein produced by adipocytes which exerts its action on hypothalamus, modifying eating behavior and inhibiting the lust for food consumption. This one appeared to be the main, if not the only, physiologic action of leptin. Later leptin has been acknowledged a major role in the homeostasis. The regulation of the synthesis, and the mechanisms by which the protein modulates both food intake and energetic balance have been evaluated, and the hypotheses on the regulatory function exerted by leptin on the homeostasis, by acting on neuroendocrine system, on sexual maturity and fertility, on the sympathetic nervous system, on hemopoiesis and hydroelectrolytic balance have been discussed, some of which being already supported by experimental evidences.

  3. DNA Methylation Suppresses Leptin Gene in 3T3-L1 Adipocytes

    PubMed Central

    Kuroda, Masashi; Tominaga, Ayako; Nakagawa, Kasumi; Nishiguchi, Misa; Sebe, Mayu; Miyatake, Yumiko; Kitamura, Tadahiro; Tsutsumi, Rie; Harada, Nagakatsu; Nakaya, Yutaka; Sakaue, Hiroshi

    2016-01-01

    Leptin is a key regulator of energy intake and expenditure. This peptide hormone is expressed in mouse white adipose tissue, but hardly expressed in 3T3-L1 adipocytes. Using bisulfite sequencing, we found that CpG islands in the leptin promoter are highly methylated in 3T3-L1cells. 5-azacytidine, an inhibitor of DNA methyltransferase, markedly increased leptin expression as pre-adipocytes matured into adipocytes. Remarkably, leptin expression was stimulated by insulin in adipocytes derived from precursor cells exposed to 5-azacytidine, but suppressed by thiazolidinedione and dexamethasone. In contrast, adipocytes derived from untreated precursor cells were unresponsive to both 5-azacytidine and hormonal stimuli, although lipid accumulation was sufficient to boost leptin expression in the absence of demethylation. Taken together, the results suggest that leptin expression in 3T3-L1 cells requires DNA demethylation prior to adipogenesis, transcriptional activation during adipogenesis, and lipid accumulation after adipogenesis. PMID:27494408

  4. Adipocyte iron regulates leptin and food intake

    PubMed Central

    Gao, Yan; Li, Zhonggang; Gabrielsen, J. Scott; Simcox, Judith A.; Lee, Soh-hyun; Jones, Deborah; Cooksey, Bob; Stoddard, Gregory; Cefalu, William T.; McClain, Donald A.

    2015-01-01

    Dietary iron supplementation is associated with increased appetite. Here, we investigated the effect of iron on the hormone leptin, which regulates food intake and energy homeostasis. Serum ferritin was negatively associated with serum leptin in a cohort of patients with metabolic syndrome. Moreover, the same inverse correlation was observed in mice fed a high-iron diet. Adipocyte-specific loss of the iron exporter ferroportin resulted in iron loading and decreased leptin, while decreased levels of hepcidin in a murine hereditary hemochromatosis (HH) model increased adipocyte ferroportin expression, decreased adipocyte iron, and increased leptin. Treatment of 3T3-L1 adipocytes with iron decreased leptin mRNA in a dose-dependent manner. We found that iron negatively regulates leptin transcription via cAMP-responsive element binding protein activation (CREB activation) and identified 2 potential CREB-binding sites in the mouse leptin promoter region. Mutation of both sites completely blocked the effect of iron on promoter activity. ChIP analysis revealed that binding of phosphorylated CREB is enriched at these two sites in iron-treated 3T3-L1 adipocytes compared with untreated cells. Consistent with the changes in leptin, dietary iron content was also directly related to food intake, independently of weight. These findings indicate that levels of dietary iron play an important role in regulation of appetite and metabolism through CREB-dependent modulation of leptin expression. PMID:26301810

  5. Brazilian propolis extract increases leptin expression in mouse adipocytes.

    PubMed

    Washio, Kohei; Shimamoto, Yoshinori; Kitamura, Hiroshi

    2015-01-01

    We investigated the anti-obesity effects of Brazilian green propolis ethanol extract using a mouse model of obesity. Repeated intraperitoneal injection of propolis (100 mg/kg twice a week) caused feeding suppression in C57BL/6 mice, whereas this treatment had negligible effects on C57BL/6 ob/ob mice. Since C57BL/6 ob/ob mice have a missense mutation in the Lep gene, leptin is likely to contribute to the propolis-induced feeding suppression. We found that propolis treatment indeed clearly increased leptin mRNA production in the visceral adipose tissues. Moreover, propolis extract directly elevated leptin expression in differentiated 3T3-L1 adipocytes. Artepillin C, an important organic compound found in Brazilian green propolis, failed to induce leptin mRNA in 3T3-L1 cells. Compounds other than artepillin C in Brazilian propolis must thus cause leptin induction in adipocytes, possibly resulting in the suppression of feeding and obesity.

  6. Sida rhomboidea. Roxb Leaf Extract Down-Regulates Expression of PPARγ2 and Leptin Genes in High Fat Diet Fed C57BL/6J Mice and Retards in Vitro 3T3L1 Pre-Adipocyte Differentiation

    PubMed Central

    Thounaojam, Menaka C.; Jadeja, Ravirajsinh N.; Ramani, Umed V.; Devkar, Ranjitsinh V.; Ramachandran, A. V.

    2011-01-01

    Sida rhomboidea. Roxb leaf extract (SRLE) is being used by the populace of North-East India to alleviate symptoms of diabetes and obesity. We have previously reported its hypolipidemic and anti-diabetic properties. In this study, we report the effect of SRLE on (i) in vivo modulation of genes controlling high fat diet (HFD) induced obesity and (ii) in vitro 3T3L1 pre-adipocyte differentiation and leptin release. Supplementation with SRLE significantly prevented HFD induced increment in bodyweight, plasma lipids and leptin, visceral adiposity and adipocyte hypertrophy. Also, SRLE supplementation reduced food intake, down regulated PPARγ2, SREBP1c, FAS and LEP expressions and up-regulated CPT-1 in epididymal adipose tissue compared to obese mice. In vitro adipogenesis of 3T3L1 pre-adipocytes was significantly retarded in the presence of SRLE extract. Also decreased triglyceride accumulation, leptin release and glyceraldehyde-3-Phosphate dehydrogenase activity along with higher glycerol release without significant alteration of viability of 3T3L1 pre-adipocytes, was recorded. Our findings suggest that prevention of HFD induced visceral adiposity is primarily by down regulation of PPARγ2 and leptin gene expression coupled with attenuation of food intake in C57BL/6J mice. SRLE induced prevention of pre-adipocytes differentiation, and leptin release further substantiated these findings and scientifically validates the potential application of SRLE as a therapeutic agent against obesity. PMID:21845103

  7. Sida rhomboidea. Roxb leaf extract down-regulates expression of PPARγ2 and leptin genes in high fat diet fed C57BL/6J Mice and retards in vitro 3T3L1 pre-adipocyte differentiation.

    PubMed

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Ramani, Umed V; Devkar, Ranjitsinh V; Ramachandran, A V

    2011-01-01

    Sida rhomboidea. Roxb leaf extract (SRLE) is being used by the populace of North-East India to alleviate symptoms of diabetes and obesity. We have previously reported its hypolipidemic and anti-diabetic properties. In this study, we report the effect of SRLE on (i) in vivo modulation of genes controlling high fat diet (HFD) induced obesity and (ii) in vitro 3T3L1 pre-adipocyte differentiation and leptin release. Supplementation with SRLE significantly prevented HFD induced increment in bodyweight, plasma lipids and leptin, visceral adiposity and adipocyte hypertrophy. Also, SRLE supplementation reduced food intake, down regulated PPARγ2, SREBP1c, FAS and LEP expressions and up-regulated CPT-1 in epididymal adipose tissue compared to obese mice. In vitro adipogenesis of 3T3L1 pre-adipocytes was significantly retarded in the presence of SRLE extract. Also decreased triglyceride accumulation, leptin release and glyceraldehyde-3-Phosphate dehydrogenase activity along with higher glycerol release without significant alteration of viability of 3T3L1 pre-adipocytes, was recorded. Our findings suggest that prevention of HFD induced visceral adiposity is primarily by down regulation of PPARγ2 and leptin gene expression coupled with attenuation of food intake in C57BL/6J mice. SRLE induced prevention of pre-adipocytes differentiation, and leptin release further substantiated these findings and scientifically validates the potential application of SRLE as a therapeutic agent against obesity.

  8. y-Synuclein is an Adipocyte-Neuron Gene Coordinately-Expressed with Leptin & Increased in Obesity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: Recently, we characterized tumor suppressor candidate 5 (Tusc5) as an adipocyte-neuron peroxisome proliferator activated receptor-y (PPARy) target gene (1). Our objective herein was to identify additional candidate genes that play shared roles in neuron-fat physiology. Research Methods an...

  9. Inhibitory effect of leptin on rosiglitazone-induced differentiation of primary adipocytes prepared from TallyHO/Jng mice

    SciTech Connect

    Kim, Ki Young; Kim, Joo Young; Sung, Yoon-Young; Jung, Won Hoon; Kim, Hee-Youn; Park, Ji Seon; Cheon, Hyae Gyeong; Rhee, Sang Dal

    2011-03-25

    Research highlights: {yields} In this study, we investigated the effects of leptin on adipocyte differentiation prepared from subcutaneous fat of TallyHo mice. {yields} Leptin inhibited the adipocytes differentiation at physiological concentration via inhibition of PPAR{gamma} expression. {yields} Inhibitors of ERK and STAT1 restored the leptin's inhibitory activity both in vitro and in vivo. -- Abstract: The effects of leptin on rosiglitazone-induced adipocyte differentiation were investigated in the primary adipocytes prepared from subcutaneous fat of TallyHO/Jng (TallyHO) mouse, a recently developed model animal for type 2 diabetes mellitus (T2DM). The treatment of leptin inhibited the rosiglitazone-induced adipocyte differentiation with a decreased expression of peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) a key adipogenic transcription factor, both in mRNA and protein levels. Leptin (10 nM) was sufficient to inhibit the adipocyte differentiation, which seemed to come from increased expression of leptin receptor genes in the fat of TallyHO mice. The inhibition of adipogenesis by leptin was restored by the treatment of inhibitors for extracellular-signal-regulated kinase (ERK) (PD98059) and signal transducer and activator of transcription-1 (STAT1) (fludarabine). Furthermore, in vivo intraperitoneal administration of PD98059 and fludarabine increased the PPAR{gamma} expression in the subcutaneous fat of TallyHO mice. These data suggest that leptin could inhibit the PPAR{gamma} expression and adipocyte differentiation in its physiological concentration in TallyHO mice.

  10. Roles of leptin and ghrelin in adipogenesis and lipid metabolism of rainbow trout adipocytes in vitro.

    PubMed

    Salmerón, Cristina; Johansson, Marcus; Asaad, Maryam; Angotzi, Anna R; Rønnestad, Ivar; Stefansson, Sigurd O; Jönsson, Elisabeth; Björnsson, Björn Thrandur; Gutiérrez, Joaquim; Navarro, Isabel; Capilla, Encarnación

    2015-10-01

    Leptin and ghrelin are important regulators of energy homeostasis in mammals, whereas their physiological roles in fish have not been fully elucidated. In the present study, the effects of leptin and ghrelin on adipogenesis, lipolysis and on expression of lipid metabolism-related genes were examined in rainbow trout adipocytes in vitro. Leptin expression and release increased from preadipocytes to mature adipocytes in culture, but did not affect the process of adipogenesis. While ghrelin and its receptor were identified in cultured differentiated adipocytes, ghrelin did not influence either preadipocyte proliferation or differentiation, indicating that it may have other adipose-related roles. Leptin and ghrelin increased lipolysis in mature freshly isolated adipocytes, but mRNA expression of lipolysis markers was not significantly modified. Leptin significantly suppressed the fatty acid transporter-1 expression, suggesting a decrease in fatty acid uptake and storage, but did not affect expression of any of the lipogenesis or β-oxidation genes studied. Ghrelin significantly increased the mRNA levels of lipoprotein lipase, fatty acid synthase and peroxisome proliferator-activated receptor-β, and thus appears to stimulate synthesis of triglycerides as well as their mobilization. Overall, the study indicates that ghrelin, but not leptin seems to be an enhancer of lipid turn-over in adipose tissue of rainbow trout, and this regulation may at least partly be mediated through autocrine/paracrine mechanisms. The mode of action of both hormones needs to be further explored to better understand their roles in regulating adiposity in fish.

  11. Human leptin: from an adipocyte hormone to an endocrine mediator.

    PubMed

    Wauters, M; Considine, R V; Van Gaal, L F

    2000-09-01

    Leptin is a mainly adipocyte-secreted protein that was discovered 5 years ago. Most of the research following this discovery focused on the role of leptin in body weight regulation, aiming to illuminate the pathophysiology of human obesity. However, more and more data are emerging that leptin is not only important in the regulation of food intake and energy balance, but that it also has a function as a metabolic and neuroendocrine hormone. It is now clear that it is especially involved in glucose metabolism, as well as in normal sexual maturation and reproduction. Besides this, interactions with the hypothalamic-pituitary-adrenal, thyroid and GH axes and even with haematopoiesis and the immune system have also been described. It has been shown that leptin secretion by the adipocyte is partly regulated by other hormones, such as insulin, cortisol, and sex steroids, mainly testosterone. Also, other hormones like thyroid hormone and GH are possibly involved in leptin synthesis. Leptin itself exerts effects on different endocrine axes, mainly on the hypothalamic-pituitary-gonadal axis and on insulin metabolism, but also on the hypothalamic-pituitary-adrenal, thyroid and GH axes. Leptin may thus be considered a new endocrine mediator, besides its obvious role in body weight regulation.

  12. Adipocyte Versus Pituitary Leptin in the Regulation of Pituitary Hormones: Somatotropes Develop Normally in the Absence of Circulating Leptin

    PubMed Central

    Odle, Angela K.; Haney, Anessa; Allensworth-James, Melody; Akhter, Noor

    2014-01-01

    Leptin is a cytokine produced by white fat cells, skeletal muscle, the placenta, and the pituitary gland among other tissues. Best known for its role in regulating appetite and energy expenditure, leptin is produced largely by and in proportion to white fat cells. Leptin is also important to the maintenance and function of the GH cells of the pituitary. This was shown when the deletion of leptin receptors on somatotropes caused decreased numbers of GH cells, decreased circulating GH, and adult-onset obesity. To determine the source of leptin most vital to GH cells and other pituitary cell types, we compared two different leptin knockout models with Cre-lox technology. The global Lep-null model is like the ob/ob mouse, whereby only the entire exon 3 is deleted. The selective adipocyte-Lep-null model lacks adipocyte leptin but retains pituitary leptin, allowing us to investigate the pituitary as a potential source of circulating leptin. Male and female mice lacking adipocyte leptin (Adipocyte-lep-null) did not produce any detectable circulating leptin and were infertile, suggesting that the pituitary does not contribute to serum levels. In the presence of only pituitary leptin, however, these same mutants were able to maintain somatotrope numbers and GH mRNA levels. Serum GH trended low, but values were not significant. However, hypothalamic GHRH mRNA was significantly reduced in these animals. Other serum hormone and pituitary mRNA differences were observed, some of which varied from previous results reported in ob/ob animals. Whereas pituitary leptin is capable of maintaining somatotrope numbers and GH mRNA production, the decreased hypothalamic GHRH mRNA and low (but not significant) serum GH levels indicate an important role for adipocyte leptin in the regulation of GH secretion in the mouse. Thus, normal GH secretion may require the coordinated actions of both adipocyte and pituitary leptin. PMID:25116704

  13. Leptin resistance of adipocytes in obesity: role of suppressors of cytokine signaling.

    PubMed

    Wang, Z; Zhou, Y T; Kakuma, T; Lee, Y; Kalra, S P; Kalra, P S; Pan, W; Unger, R H

    2000-10-14

    Liver-derived hyperleptinemia induced in normal rats by adenovirus-induced gene transfer causes rapid disappearance of body fat, whereas the endogenous adipocyte-derived hyperleptinemia of obesity does not. Here we induce liver-derived hyperleptinemia in rats with adipocyte-derived hyperleptinemia of acquired obesity caused by ventromedial hypothalamus lesioning (VMH rats) or by feeding 60% fat (DIO rats). Liver-derived hyperleptinemia in obese rats caused only a 5-7% loss of body weight, compared to a 13% loss in normoleptinemic lean animals; but in actual grams of weight lost there was no significant difference between obese and lean groups, suggesting that a subset of cells remain leptin-sensitive in obesity. mRNA and protein of a putative leptin-resistance factor, suppressor of cytokine signaling (SOCS)-1 or -3, were both increased in white adipose tissues (WAT) of VMH and DIO rats. Since transgenic overexpression of SOCS-3 in islets reduced the lipopenic effect of leptin by 75%, we conclude that the increased expression of SOCS-1 and -3 in WAT of rats with acquired obesity could have blocked leptin's lipopenic action in the leptin-resistant WAT population.

  14. Triiodothyronine modulates the expression of leptin and adiponectin in 3T3-L1 adipocytes

    PubMed Central

    de Oliveira, Miriane; Síbio, Maria Teresa De; Olimpio, Regiane Marques Castro; Moretto, Fernanda Cristina Fontes; Luvizotto, Renata de Azevedo Melo; Nogueira, Celia Regina

    2015-01-01

    Objective To study the effect of different doses of triiodothyronine on gene expression of the adipokines leptin and adiponectin, at different times, and to evaluate the difference in expression between the two adipokines in each group. Methods 3T3-L1 adipocytes were incubated with triiodothyronine at physiological dose (10nM) and supraphysiological doses (100nM or 1,000nM), or without triiodothyronine (control, C) for 0.5, 6, or 24 hours. Leptin and adiponectin mRNA was detected using real-time polymerase chain reaction (RT-PCR). One-way analyses of variance, Tukey’s test or Student’s t test, were used to analyze data, and significance level was set at 5%. Results Leptin levels decreased in the 1,000nM-dose group after 0.5 hour. Adiponectin levels dropped in the 10nM-dose group, but increased at the 100nM dose. After 6 hours, both genes were suppressed in all hormone concentrations. After 24 hours, leptin levels increased at 10, 100 and 1,000nM groups as compared to the control group; and adiponectin levels increased only in the 100nM group as compared to the control group. Conclusion These results demonstrated fast actions of triiodothyronine on the leptin and adiponectin expression, starting at 0.5 hour, at a dose of 1,000nM for leptin and 100nM for adiponectin. Triiodothyronine stimulated or inhibited the expression of adipokines in adipocytes at different times and doses which may be useful to assist in the treatment of obesity, assuming that leptin is increased and adiponectin is decreased, in obesity cases. PMID:25993072

  15. Nuclear Factor-Y is an adipogenic factor that regulates leptin gene expression

    PubMed Central

    Lu, Yi-Hsueh; Dallner, Olof Stefan; Birsoy, Kivanc; Fayzikhodjaeva, Gulya; Friedman, Jeffrey M.

    2015-01-01

    Objective Leptin gene expression is highly correlated with cellular lipid content in adipocytes but the transcriptional mechanisms controlling leptin expression in vivo are poorly understood. In this report, we set out to identify cis- and trans-regulatory elements controlling leptin expression. Methods Leptin-BAC luciferase transgenic mice combining with other computational and molecular techniques were used to identify transcription regulatory elements including a CCAAT-binding protein Nuclear Factor Y (NF-Y). The function of NF-Y in adipocyte was studied in vitro with 3T3-L1 cells and in vivo with adipocyte-specific knockout of NF-Y. Results Using Leptin-BAC luciferase mice, we showed that DNA sequences between −22 kb and +8.8 kb can confer quantitative expression of a leptin reporter. Computational analysis of sequences and gel shift assays identified a 32 bp sequence (chr6: 28993820–2899385) consisting a CCAAT binding site for Nuclear Factor Y (NF-Y) and this was confirmed by a ChIP assay in vivo. A deletion of this 32 bp sequence in the −22 kb to +8.8 kb leptin-luciferase BAC reporter completely abrogates luciferase reporter activity in vivo. RNAi mediated knockdown of NF-Y interfered with adipogenesis in vitro and adipocyte-specific knockout of NF-Y in mice reduced expression of leptin and other fat specific genes in vivo. Further analyses of the fat specific NF-Y knockout revealed that these animals develop a moderately severe lipodystrophy that is remediable with leptin therapy. Conclusions These studies advance our understanding of leptin gene expression and show that NF-Y controls the expression of leptin and other adipocyte genes and identifies a new form of lipodystrophy. PMID:25973387

  16. Leptin regulates gallbladder genes related to absorption and secretion.

    PubMed

    Swartz-Basile, Deborah A; Lu, Debao; Basile, David P; Graewin, Shannon J; Al-Azzawi, Hayder; Kiely, James M; Mathur, Abhishek; Yancey, Kyle; Pitt, Henry A

    2007-07-01

    Dysregulation of gallbladder ion and water absorption and/or secretion has been linked to cholesterol crystal and gallstone formation. We have recently demonstrated that obese, leptin-deficient (Lep(ob)) mice have enlarged gallbladder volumes and decreased gallbladder contractility and that leptin administration to these mice normalizes gallbladder function. However, the effect of leptin on gallbladder absorption/secretion is not known. Therefore, we sought to determine whether leptin would alter the expression of genes involved in water and ion transport across the gallbladder epithelium. Affymetrix oligonucleotide microarrays representing 39,000 transcripts were used to compare gallbladder gene-expression profiles from 12-wk-old control saline-treated Lep(ob) and from leptin-treated Lep(ob) female mice. Leptin administration to Lep(ob) mice decreased gallbladder volume, bile sodium concentration, and pH. Leptin repletion upregulated the expression of aquaporin 1 water channel by 1.3-fold and downregulated aquaporin 4 by 2.3-fold. A number of genes involved in sodium transport were also influenced by leptin replacement. Epithelial sodium channel-alpha and sodium hydrogen exchangers 1 and 3 were moderately downregulated by 2.0-, 1.6-, and 1.3-fold, respectively. Carbonic anhydrase-IV, which plays a role in the acidification of bile, was upregulated 3.7-fold. In addition, a number of inflammatory cytokines that are known to influence gallbladder epithelial cell absorption and secretion were upregulated. Thus leptin, an adipocyte-derived cytokine involved with satiety and energy balance, influences gallbladder bile volume, sodium, and pH as well as multiple inflammatory cytokine genes and genes related to water, sodium, chloride, and bicarbonate transport.

  17. Korean Curcuma longa L. induces lipolysis and regulates leptin in adipocyte cells and rats

    PubMed Central

    Song, Won-Yeong

    2016-01-01

    BACKGROUND/OBJECTIVES Turmeric (Curcuma longa L.) has been reported to have many biological functions including anti-obesity. Leptin, peptide hormone produced by adipocytes and its concentration is increased in proportion to the amount of the adipocytes. In the present study, we examined the effects of Korean turmeric on the regulation of adiposity and leptin levels in 3T3-L1 adipocytes and rats fed a high-fat and high-cholesterol diet. MATERIALS/METHODS Leptin secretion, free fatty acid and glycerol contents in 3T3-L1 adipocytes were measured after incubation of cells with turmeric for 24 hours. Rats were divided into four experimental groups: a normal diet group (N), a high-fat and high-cholesterol diet group (HF), a high-fat and high-cholesterol diet group supplemented with 2.5% turmeric extracts (TPA group) and a high-fat and high-cholesterol diet group supplemented with 5% turmeric extracts (TPB group). Serum samples were used for the measurement of leptin concentration. RESULTS Contents of free fatty acid and glycerol showed concentration dependent increase in response to turmeric extracts. Effects of turmeric extracts on reduction of lipid accumulation in 3T3-L1 cells were examined by Oil Red O staining. Treatment with turmeric extracts resulted in increased expression levels of adipose triglyceride lipase and hormone-sensitive lipase mRNA. The concentration of leptin from 3T3-L1 adipocytes was significantly decreased by turmeric. Proportional abdominal and epididymal fats weights of the turmeric 5% supplemented group, TPB has significantly decreased compared to the HF group. The serum levels of leptin in the TPA and TPB groups were significantly lower than those of the HF group. CONCLUSIONS Based on these results, we suggested that Korean turmeric may contribute to the decreasing of body fat and regulating leptin secretion. PMID:27698955

  18. Korean Curcuma longa L. induces lipolysis and regulates leptin in adipocyte cells and rats

    PubMed Central

    Song, Won-Yeong

    2016-01-01

    BACKGROUND/OBJECTIVES Turmeric (Curcuma longa L.) has been reported to have many biological functions including anti-obesity. Leptin, peptide hormone produced by adipocytes and its concentration is increased in proportion to the amount of the adipocytes. In the present study, we examined the effects of Korean turmeric on the regulation of adiposity and leptin levels in 3T3-L1 adipocytes and rats fed a high-fat and high-cholesterol diet. MATERIALS/METHODS Leptin secretion, free fatty acid and glycerol contents in 3T3-L1 adipocytes were measured after incubation of cells with turmeric for 24 hours. Rats were divided into four experimental groups: a normal diet group (N), a high-fat and high-cholesterol diet group (HF), a high-fat and high-cholesterol diet group supplemented with 2.5% turmeric extracts (TPA group) and a high-fat and high-cholesterol diet group supplemented with 5% turmeric extracts (TPB group). Serum samples were used for the measurement of leptin concentration. RESULTS Contents of free fatty acid and glycerol showed concentration dependent increase in response to turmeric extracts. Effects of turmeric extracts on reduction of lipid accumulation in 3T3-L1 cells were examined by Oil Red O staining. Treatment with turmeric extracts resulted in increased expression levels of adipose triglyceride lipase and hormone-sensitive lipase mRNA. The concentration of leptin from 3T3-L1 adipocytes was significantly decreased by turmeric. Proportional abdominal and epididymal fats weights of the turmeric 5% supplemented group, TPB has significantly decreased compared to the HF group. The serum levels of leptin in the TPA and TPB groups were significantly lower than those of the HF group. CONCLUSIONS Based on these results, we suggested that Korean turmeric may contribute to the decreasing of body fat and regulating leptin secretion.

  19. Adipocyte Versus Somatotrope Leptin: Regulation of Metabolic Functions in the Mouse.

    PubMed

    Odle, Angela Katherine; Allensworth-James, Melody; Haney, Anessa; Akhter, Noor; Syed, Mohsin; Childs, Gwen V

    2016-04-01

    Leptin regulates food intake and energy expenditure (EE) and is produced in adipocytes, the pituitary, and several other tissues. Animals that are leptin or leptin receptor deficient have major metabolic complications, including obesity. This study tests the hypothesis that the pituitary somatotrope may contribute a source of leptin that maintains some of these metabolic functions. We created 2 different tissue-specific leptin knockout animals: a Somatotrope-Lep-null model and an Adipocyte-Lep-null model. Metabolic analysis of both models, along with a global deletion model, was performed. The Somatotrope-Lep-null animals had fewer somatotropes, and females had a 76% decrease in serum prolactin. During the dark (feeding) phase, females had a 35% increase in ambulation coupled with a 4% increase in EE. Mutants showed no change in food intake or weight gain and EE was unchanged in males. During the light (sleep) phase, Somatotrope-Lep-null mutant males had lower EE and females continued to have higher EE. The respiratory quotients (RQs) of mutants and littermate controls were decreased in males and increased in females; all were within the range that indicates predominant carbohydrate burning. The massively obese Adipocyte-Lep-null animals, however, had significant increases in food intake, sleep, and increased EE, with decreased activity. Changes in RQ were sexually dimorphic, with female mutants having higher RQ and males having decreased RQ. We conclude that both adipocyte and somatotrope leptin contribute to the metabolic homeostasis of the mouse, and that extraadipocyte sources of leptin cannot overcome the major metabolic challenges seen in these animals.

  20. Leptin Production by Encapsulated Adipocytes Increases Brown Fat, Decreases Resistin, and Improves Glucose Intolerance in Obese Mice

    PubMed Central

    DiSilvestro, David J.; Melgar-Bermudez, Emiliano; Yasmeen, Rumana; Fadda, Paolo; Lee, L. James; Kalyanasundaram, Anuradha; Gilor, Chen L.; Ziouzenkova, Ouliana

    2016-01-01

    The neuroendocrine effects of leptin on metabolism hold promise to be translated into a complementary therapy to traditional insulin therapy for diabetes and obesity. However, injections of leptin can provoke inflammation. We tested the effects of leptin, produced in the physiological adipocyte location, on metabolism in mouse models of genetic and dietary obesity. We generated 3T3-L1 adipocytes constitutively secreting leptin and encapsulated them in a poly-L-lysine membrane, which protects the cells from immune rejection. Ob/ob mice (OB) were injected with capsules containing no cells (empty, OB[Emp]), adipocytes (OB[3T3]), or adipocytes overexpressing leptin (OB[Lep]) into both visceral fat depots. Leptin was found in the plasma of OB[Lep], but not OB[Emp] and OB[3T3] mice at the end of treatment (72 days). The OB[Lep] and OB[3T3] mice have transiently suppressed appetite and weight loss compared to OB[Emp]. Only OB[Lep] mice have greater brown fat mass, metabolic rate, and reduced resistin plasma levels compared to OB[Emp]. Glucose tolerance was markedly better in OB[Lep] vs. OB[Emp] and OB[3T3] mice as well as in wild type mice with high-fat diet-induced obesity and insulin resistance treated with encapsulated leptin-producing adipocytes. Our proof-of-principle study provides evidence of long-term improvement of glucose tolerance with encapsulated adipocytes producing leptin. PMID:27055280

  1. Leptin Production by Encapsulated Adipocytes Increases Brown Fat, Decreases Resistin, and Improves Glucose Intolerance in Obese Mice.

    PubMed

    DiSilvestro, David J; Melgar-Bermudez, Emiliano; Yasmeen, Rumana; Fadda, Paolo; Lee, L James; Kalyanasundaram, Anuradha; Gilor, Chen L; Ziouzenkova, Ouliana

    2016-01-01

    The neuroendocrine effects of leptin on metabolism hold promise to be translated into a complementary therapy to traditional insulin therapy for diabetes and obesity. However, injections of leptin can provoke inflammation. We tested the effects of leptin, produced in the physiological adipocyte location, on metabolism in mouse models of genetic and dietary obesity. We generated 3T3-L1 adipocytes constitutively secreting leptin and encapsulated them in a poly-L-lysine membrane, which protects the cells from immune rejection. Ob/ob mice (OB) were injected with capsules containing no cells (empty, OB[Emp]), adipocytes (OB[3T3]), or adipocytes overexpressing leptin (OB[Lep]) into both visceral fat depots. Leptin was found in the plasma of OB[Lep], but not OB[Emp] and OB[3T3] mice at the end of treatment (72 days). The OB[Lep] and OB[3T3] mice have transiently suppressed appetite and weight loss compared to OB[Emp]. Only OB[Lep] mice have greater brown fat mass, metabolic rate, and reduced resistin plasma levels compared to OB[Emp]. Glucose tolerance was markedly better in OB[Lep] vs. OB[Emp] and OB[3T3] mice as well as in wild type mice with high-fat diet-induced obesity and insulin resistance treated with encapsulated leptin-producing adipocytes. Our proof-of-principle study provides evidence of long-term improvement of glucose tolerance with encapsulated adipocytes producing leptin. PMID:27055280

  2. Leptin and insulin modulate nutrient partitioning and weight loss in ob/ob mice through regulation of long-chain fatty acid uptake by adipocytes.

    PubMed

    Fan, Xinqing; Bradbury, Michael W; Berk, Paul D

    2003-09-01

    Leptin treatment of ob/ob mice leads to weight loss appreciably greater than that in pair-fed mice. To test whether this "extra" weight loss is mediated by leptin-induced alterations in nutrient partitioning, the effects in ob/ob mice of subcutaneous leptin infusion (500 ng/h for adipocyte fatty acid uptake and transporter gene expression were examined. Mice were initially hyperinsulinemic (5.25 +/- 1.57 nmol/L). Plasma insulin decreased by 55 +/- 10% within 8 h of leptin infusion, declining progressively to normal by d 14. The V(max) for saturable adipocyte fatty acid uptake fell from 31.1 +/- 5.6 to 25.2 +/- 4.0 pmol/(s. 50000 cells) (P < 0.05) by 24 h, and to a normal rate (8.0 +/- 0.8 pmol/(s. 50000 cells) by d 21 (P > 0.5 vs. normal C57BL/6J controls). Adipocyte mRNA levels for plasma membrane fatty acid binding protein and fatty acid translocase, putative fatty acid transporters that are up-regulated three- to fourfold in adipocytes from ob/ob mice, had also normalized by d 21. The initial changes in V(max) preceded decreases in food intake and body weight by at least 24 h. In pair-fed mice, insulin levels, V(max) and body weight all declined more slowly than in leptin-treated mice, and all remained significantly elevated compared with normal values at d 21. The data suggest that insulin up-regulates and leptin down-regulates adipocyte fatty acid uptake, leading to alterations in fatty acid partitioning that affect adiposity.

  3. FABP4 reversed the regulation of leptin on mitochondrial fatty acid oxidation in mice adipocytes

    PubMed Central

    Gan, Lu; Liu, Zhenjiang; Cao, Weina; Zhang, Zhenzhen; Sun, Chao

    2015-01-01

    Fatty acid binding protein 4 (FABP4), plays key role in fatty acid transportation and oxidation, and increases with leptin synergistically during adipose inflammation process. However, the regulation mechanism between FABP4 and leptin on mitochondrial fatty acid oxidation remains unclear. In this study, we found that FABP4 reduced the expression of leptin, CPT-1 and AOX1 in mice adipocytes. Conversely, FABP4 was down-regulated in a time-dependent manner by leptin treatment. Additionally, forced expression of FABP4 attenuated the expression of PGC1-α, UCP2, CPT-1, AOX1 and COX2 compared with leptin incubation. Moreover, mitochondrial membrane potential, fatty acid oxidation enzyme medium-chain acyl-CoA dehydrogenase (MCAD), long-chain acyl-CoA dehydrogenase (LCAD) and Cyt C levels were reduced in response to the overexpression of FABP4. These reductions correspond well with the reduced release of free fatty acid and the inactivation of mitochondrial complexes I and III by FABP4 overexpression. Furthermore, addition of the Akt/mTOR pathway-specific inhibitor (MK2206) blocked the mitochondrial fatty acid oxidation and respiration factors, whereas interference of FABP4 overcame these effects. Taken together, FABP4 could reverse the activation of the leptin-induced mitochondrial fatty acid oxidation, and the inhibition of Akt/mTOR signal pathway played a key role in this process. PMID:26310911

  4. [Leptin].

    PubMed

    Nedvídková, J

    1997-12-01

    Leptin (ob-protein), a previously unknown protein signal, is secreted from adipose tissue, circulates in the blood, probably bound to a family of binding proteins, and acts on central neural networks, that regulate weight and energy homeostasis. Leptin provides a communication link between fat tissue and the brain. Ob protein appears to play a major role in the control of body fat stores through coordinated regulation of feeding behavior, metabolism, autonomic nervous system and body energy balance in rodents, primates and humans. Leptin levels have pulsative and diurnal character. In lean subjects with relatively low adipose tissue, the majority of circulating leptin is in the bound form. On other hand, in obese individuals the majority of leptin circulates in free form presumably bioactive protein, and thus obese subjects are resistant to free leptin. Leptin's resistance is often coupled with insuline resistance postreceptor type. Leptin receptor is product of db genes. Ob-protein receptor belongs to the cytokine superfamily of receptors and has several variants. Leptin-receptor gene is expressed in abundant degree in ovary, uterus, testes, less in hypothalamus, hypophysis, and little in kidney. Leptin stimulates the reproductive endocrine system and may serve as a permissive signal to the reproductive system of normal animals. Ob-gene product, leptin is regulated by feedings patterns and hormones, such as insulin and glucocorticoids. There is assumed that neuropeptide Y (NPY) and melanocyte-stimulating hormone (MSH) and its receptor (MCR) are a critical components of the biological response to leptin levels. MCR in contrast to leptin receptors are coupled with G-transduction system.

  5. Cranberries (Oxycoccus quadripetalus) inhibit lipid metabolism and modulate leptin and adiponectin secretion in 3T3-L1 adipocytes.

    PubMed

    Kowalska, Katarzyna; Olejnik, Anna; Rychlik, Joanna; Grajek, Włodzimierz

    2015-10-15

    It has previously been shown that lyophilized cranberries (LCB) decreased lipid accumulation in 3T3-L1 cells and inhibited preadipocyte differentiation by down-regulation of the expression of key transcription factors (PPARγ, C/EBPα, SREBP1) of the adipogenesis pathway. To elucidate the molecular basis of anti-lipogenic activity of LCB, the expression of several genes involved in lipid metabolism, such as adipocyte fatty acid-binding protein (aP2), lipoprotein lipase (LPL), fatty acid synthase (FAS), hormone sensitive lipase (HSL) and perilipin 1 (PLIN1), was examined in the present study. Additionally, the effects of LCB on adiponectin and leptin expression and protein secretion were also investigated. LCB reduced lipid accumulation during preadipocyte differentiation by down-regulation of the mRNA level of aP2, FAS, LPL, HSL and PLIN1. Moreover, LCB decreased leptin gene expression and increased adiponectin gene expression and protein secretion in a dose-dependent manner. Therefore cranberries could be considered as bioactive factors, which are effective in the inhibition of adipose tissue mass production. PMID:25952883

  6. Cranberries (Oxycoccus quadripetalus) inhibit lipid metabolism and modulate leptin and adiponectin secretion in 3T3-L1 adipocytes.

    PubMed

    Kowalska, Katarzyna; Olejnik, Anna; Rychlik, Joanna; Grajek, Włodzimierz

    2015-10-15

    It has previously been shown that lyophilized cranberries (LCB) decreased lipid accumulation in 3T3-L1 cells and inhibited preadipocyte differentiation by down-regulation of the expression of key transcription factors (PPARγ, C/EBPα, SREBP1) of the adipogenesis pathway. To elucidate the molecular basis of anti-lipogenic activity of LCB, the expression of several genes involved in lipid metabolism, such as adipocyte fatty acid-binding protein (aP2), lipoprotein lipase (LPL), fatty acid synthase (FAS), hormone sensitive lipase (HSL) and perilipin 1 (PLIN1), was examined in the present study. Additionally, the effects of LCB on adiponectin and leptin expression and protein secretion were also investigated. LCB reduced lipid accumulation during preadipocyte differentiation by down-regulation of the mRNA level of aP2, FAS, LPL, HSL and PLIN1. Moreover, LCB decreased leptin gene expression and increased adiponectin gene expression and protein secretion in a dose-dependent manner. Therefore cranberries could be considered as bioactive factors, which are effective in the inhibition of adipose tissue mass production.

  7. Polychlorinated biphenyls (PCB 101, PCB 153 and PCB 180) alter leptin signaling and lipid metabolism in differentiated 3T3-L1 adipocytes

    SciTech Connect

    Ferrante, Maria C.; Amero, Paola; Santoro, Anna; Monnolo, Anna; Simeoli, Raffaele; Di Guida, Francesca; Mattace Raso, Giuseppina; Meli, Rosaria

    2014-09-15

    Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) are highly lipophilic environmental contaminants that accumulate in lipid-rich tissues, such as adipose tissue. Here, we reported the effects induced by PCBs 101, 153 and 180, three of the six NDL-PCBs defined as indicators, on mature 3T3-L1 adipocytes. We observed an increase in lipid content, in leptin gene expression and a reduction of leptin receptor expression and signaling, when cells were exposed to PCBs, alone or in combination. These modifications were consistent with the occurrence of “leptin-resistance” in adipose tissue, a typical metabolic alteration related to obesity. Therefore, we investigated how PCBs affect the expression of pivotal proteins involved in the signaling of leptin receptor. We evaluated the PCB effect on the intracellular pathway JAK/STAT, determining the phosphorylation of STAT3, a downstream activator of the transcription of leptin gene targets, and the expression of SOCS3 and PTP1B, two important regulators of leptin resistance. In particular, PCBs 153 and 180 or all PCB combinations induced a significant reduction in pSTAT3/STAT3 ratio and an increase in PTP1B and SOCS3, evidencing an additive effect. The impairment of leptin signaling was associated with the reduction of AMPK/ACC pathway activation, leading to the increase in lipid content. These pollutants were also able to increase the transcription of inflammatory cytokines (IL-6 and TNFα). It is worthy to note that the PCB concentrations used are comparable to levels detectable in human adipose tissue. Our data strongly support the hypothesis that NDL-PCBs may interfere with the lipid metabolism contributing to the development of obesity and related diseases. - Highlights: • NDL-PCBs alter lipid content and metabolism in 3T3-L1 adipocytes. • Impairment of leptin signaling was induced by NDL-PCBs. • NDL-PCBs reduce AMPK and ACC activation. • NDL-PCBs induce the synthesis of pro-inflammatory cytokine by

  8. Ontogeny of the long form of leptin receptor gene expression in the porcine ovarian follicles.

    PubMed

    Smolinska, N; Kaminski, T; Siawrys, G; Przala, J

    2013-01-01

    Leptin is a polypeptide hormone produced predominantly in adipocytes. It has been found to be implicated in the regulation of satiety and energy homeostasis. A role for leptin in reproduction was later suggested by findings that this hormone may be involved in the regulation of the hypothalamic-pituitary-gonadal axis via endocrine, paracrine and/or autocrine pathways. The objective of the study was to investigate the ontogeny of the long isoform of leptin receptor (OB-Rb) gene in porcine ovarian follicles. The expression of OB-Rb gene was detected in porcine primordial, primary, secondary and antral follicles by in situ hybridization. In summary, our data suggest that leptin might have a direct effect on porcine follicles and plays an important role in the follicular development.

  9. Hypothalamic Leptin Gene Therapy Reduces Bone Marrow Adiposity in ob/ob Mice Fed Regular and High-Fat Diets.

    PubMed

    Lindenmaier, Laurence B; Philbrick, Kenneth A; Branscum, Adam J; Kalra, Satya P; Turner, Russell T; Iwaniec, Urszula T

    2016-01-01

    Low bone mass is often associated with elevated bone marrow adiposity. Since osteoblasts and adipocytes are derived from the same mesenchymal stem cell (MSC) progenitor, adipocyte formation may increase at the expense of osteoblast formation. Leptin is an adipocyte-derived hormone known to regulate energy and bone metabolism. Leptin deficiency and high-fat diet-induced obesity are associated with increased marrow adipose tissue (MAT) and reduced bone formation. Short-duration studies suggest that leptin treatment reduces MAT and increases bone formation in leptin-deficient ob/ob mice fed a regular diet. Here, we determined the long-duration impact of increased hypothalamic leptin on marrow adipocytes and osteoblasts in ob/ob mice following recombinant adeno-associated virus (rAAV) gene therapy. Eight- to 10-week-old male ob/ob mice were randomized into four groups: (1) untreated, (2) rAAV-Lep, (3) rAAV-green fluorescent protein (rAAV-GFP), or (4) pair-fed to rAAV-Lep. For vector administration, mice were injected intracerebroventricularly with either rAAV-leptin gene therapy (rAAV-Lep) or rAAV-GFP (9 × 10(7) particles) and maintained for 30 weeks. In a second study, the impact of increased hypothalamic leptin levels on MAT was determined in mice fed high-fat diets; ob/ob mice were randomized into two groups and treated with either rAAV-Lep or rAAV-GFP. At 7 weeks post-vector administration, half the mice in each group were switched to a high-fat diet for 8 weeks. Wild-type (WT) controls included age-matched mice fed regular or high-fat diet. High-fat diet resulted in a threefold increase in MAT in WT mice, whereas MAT was increased by leptin deficiency up to 50-fold. Hypothalamic leptin gene therapy increased osteoblast perimeter and osteoclast perimeter with minor change in cancellous bone architecture. The gene therapy decreased MAT levels in ob/ob mice fed regular or high-fat diet to values similar to WT mice fed regular diet. These findings suggest

  10. Hypothalamic Leptin Gene Therapy Reduces Bone Marrow Adiposity in ob/ob Mice Fed Regular and High-Fat Diets.

    PubMed

    Lindenmaier, Laurence B; Philbrick, Kenneth A; Branscum, Adam J; Kalra, Satya P; Turner, Russell T; Iwaniec, Urszula T

    2016-01-01

    Low bone mass is often associated with elevated bone marrow adiposity. Since osteoblasts and adipocytes are derived from the same mesenchymal stem cell (MSC) progenitor, adipocyte formation may increase at the expense of osteoblast formation. Leptin is an adipocyte-derived hormone known to regulate energy and bone metabolism. Leptin deficiency and high-fat diet-induced obesity are associated with increased marrow adipose tissue (MAT) and reduced bone formation. Short-duration studies suggest that leptin treatment reduces MAT and increases bone formation in leptin-deficient ob/ob mice fed a regular diet. Here, we determined the long-duration impact of increased hypothalamic leptin on marrow adipocytes and osteoblasts in ob/ob mice following recombinant adeno-associated virus (rAAV) gene therapy. Eight- to 10-week-old male ob/ob mice were randomized into four groups: (1) untreated, (2) rAAV-Lep, (3) rAAV-green fluorescent protein (rAAV-GFP), or (4) pair-fed to rAAV-Lep. For vector administration, mice were injected intracerebroventricularly with either rAAV-leptin gene therapy (rAAV-Lep) or rAAV-GFP (9 × 10(7) particles) and maintained for 30 weeks. In a second study, the impact of increased hypothalamic leptin levels on MAT was determined in mice fed high-fat diets; ob/ob mice were randomized into two groups and treated with either rAAV-Lep or rAAV-GFP. At 7 weeks post-vector administration, half the mice in each group were switched to a high-fat diet for 8 weeks. Wild-type (WT) controls included age-matched mice fed regular or high-fat diet. High-fat diet resulted in a threefold increase in MAT in WT mice, whereas MAT was increased by leptin deficiency up to 50-fold. Hypothalamic leptin gene therapy increased osteoblast perimeter and osteoclast perimeter with minor change in cancellous bone architecture. The gene therapy decreased MAT levels in ob/ob mice fed regular or high-fat diet to values similar to WT mice fed regular diet. These findings suggest

  11. Hypothalamic Leptin Gene Therapy Reduces Bone Marrow Adiposity in ob/ob Mice Fed Regular and High-Fat Diets

    PubMed Central

    Lindenmaier, Laurence B.; Philbrick, Kenneth A.; Branscum, Adam J.; Kalra, Satya P.; Turner, Russell T.; Iwaniec, Urszula T.

    2016-01-01

    Low bone mass is often associated with elevated bone marrow adiposity. Since osteoblasts and adipocytes are derived from the same mesenchymal stem cell (MSC) progenitor, adipocyte formation may increase at the expense of osteoblast formation. Leptin is an adipocyte-derived hormone known to regulate energy and bone metabolism. Leptin deficiency and high-fat diet-induced obesity are associated with increased marrow adipose tissue (MAT) and reduced bone formation. Short-duration studies suggest that leptin treatment reduces MAT and increases bone formation in leptin-deficient ob/ob mice fed a regular diet. Here, we determined the long-duration impact of increased hypothalamic leptin on marrow adipocytes and osteoblasts in ob/ob mice following recombinant adeno-associated virus (rAAV) gene therapy. Eight- to 10-week-old male ob/ob mice were randomized into four groups: (1) untreated, (2) rAAV-Lep, (3) rAAV-green fluorescent protein (rAAV-GFP), or (4) pair-fed to rAAV-Lep. For vector administration, mice were injected intracerebroventricularly with either rAAV-leptin gene therapy (rAAV-Lep) or rAAV-GFP (9 × 107 particles) and maintained for 30 weeks. In a second study, the impact of increased hypothalamic leptin levels on MAT was determined in mice fed high-fat diets; ob/ob mice were randomized into two groups and treated with either rAAV-Lep or rAAV-GFP. At 7 weeks post-vector administration, half the mice in each group were switched to a high-fat diet for 8 weeks. Wild-type (WT) controls included age-matched mice fed regular or high-fat diet. High-fat diet resulted in a threefold increase in MAT in WT mice, whereas MAT was increased by leptin deficiency up to 50-fold. Hypothalamic leptin gene therapy increased osteoblast perimeter and osteoclast perimeter with minor change in cancellous bone architecture. The gene therapy decreased MAT levels in ob/ob mice fed regular or high-fat diet to values similar to WT mice fed regular diet. These findings suggest

  12. Leptin stimulates uncoupling protein-2 mRNA expression and Krebs cycle activity and inhibits lipid synthesis in isolated rat white adipocytes.

    PubMed

    Ceddia, R B; William, W N; Lima, F B; Flandin, P; Curi, R; Giacobino, J P

    2000-10-01

    The treatment of rats and mice with leptin causes dramatic body fat reduction and in some cases even disappearance of fat tissue. Here, we report the effects of leptin (10 and 100 ng.mL-1) on isolated rat adipocytes maintained for 15 h in culture. Leptin decreased the incorporation of acetate into total lipids by 30%. A reduction in this incorporation (42%) was still observed after the leptin-cultivated adipocytes were exposed to a supra-physiological insulin concentration (10 000 microU.mL-1). On the other hand, leptin increased acetate degradation by 69% and the maximal activity of citrate synthase by 50% in isolated adipocytes. It also increased oleate degradation by 35 and 50% at concentrations of 10 and 100 ng. mL-1, respectively. Eventually, leptin upregulated the uncoupling protein-2 (UCP2) mRNA level by 63% and had no effect on uncoupling protein-3 (UCP3) mRNA in isolated adipocytes. The upregulation of UCP2 mRNA might have contributed to the stimulation of acetate and fatty acid degradation by leptin. The peripheral effects of leptin observed in this study are in line with the general energy dissipating role postulated for this hormone and for UCP2. They suggest mechanisms by which adipocytes regulate their fat content by an autocrine pathway without the participation of the central nervous system.

  13. Transcriptional Characterization of Porcine Leptin and Leptin Receptor Genes

    PubMed Central

    Pérez-Montarelo, Dafne; Fernández, Almudena; Barragán, Carmen; Noguera, Jose L.; Folch, Josep M.; Rodríguez, M. Carmen; Óvilo, Cristina; Silió, Luis; Fernández, Ana I.

    2013-01-01

    The leptin (LEP) and its receptor (LEPR) regulate food intake and energy balance through hypothalamic signaling. However, the LEP-LEPR axis seems to be more complex and its expression regulation has not been well described. In pigs, LEP and LEPR genes have been widely studied due to their relevance. Previous studies reported significant effects of SNPs located in both genes on growth and fatness traits. The aim of this study was to determine the expression profiles of LEP and LEPR across hypothalamic, adipose, hepatic and muscle tissues in Iberian x Landrace backcrossed pigs and to analyze the effects of gene variants on transcript abundance. To our knowledge, non porcine LEPR isoforms have been described rather than LEPRb. A short porcine LEPR isoform (LEPRa), that encodes a protein lacking the intracellular residues responsible of signal transduction, has been identified for the first time. The LEPRb isoform was only quantifiable in hypothalamus while LEPRa appeared widely expressed across tissues, but at higher levels in liver, suggesting that both isoforms would develop different roles. The unique LEP transcript showed expression in backfat and muscle. The effects of gene variants on transcript expression revealed interesting results. The LEPRc.1987C>T polymorphism showed opposite effects on LEPRb and LEPRa hypothalamic expression. In addition, one out of the 16 polymorphisms identified in the LEPR promoter region revealed high differential expression in hepatic LEPRa. These results suggest a LEPR isoform-specific regulation at tissue level. Conversely, non-differential expression of LEP conditional on the analyzed polymorphisms could be detected, indicating that its regulation is likely affected by other mechanisms rather than gene sequence variants. The present study has allowed a transcriptional characterization of LEP and LEPR isoforms on a range of tissues. Their expression patterns seem to indicate that both molecules develop peripheral roles apart from

  14. Transcriptional Characterization of Porcine Leptin and Leptin Receptor Genes.

    PubMed

    Pérez-Montarelo, Dafne; Fernández, Almudena; Barragán, Carmen; Noguera, Jose L; Folch, Josep M; Rodríguez, M Carmen; Ovilo, Cristina; Silió, Luis; Fernández, Ana I

    2013-01-01

    The leptin (LEP) and its receptor (LEPR) regulate food intake and energy balance through hypothalamic signaling. However, the LEP-LEPR axis seems to be more complex and its expression regulation has not been well described. In pigs, LEP and LEPR genes have been widely studied due to their relevance. Previous studies reported significant effects of SNPs located in both genes on growth and fatness traits. The aim of this study was to determine the expression profiles of LEP and LEPR across hypothalamic, adipose, hepatic and muscle tissues in Iberian x Landrace backcrossed pigs and to analyze the effects of gene variants on transcript abundance. To our knowledge, non porcine LEPR isoforms have been described rather than LEPRb. A short porcine LEPR isoform (LEPRa), that encodes a protein lacking the intracellular residues responsible of signal transduction, has been identified for the first time. The LEPRb isoform was only quantifiable in hypothalamus while LEPRa appeared widely expressed across tissues, but at higher levels in liver, suggesting that both isoforms would develop different roles. The unique LEP transcript showed expression in backfat and muscle. The effects of gene variants on transcript expression revealed interesting results. The LEPRc.1987C>T polymorphism showed opposite effects on LEPRb and LEPRa hypothalamic expression. In addition, one out of the 16 polymorphisms identified in the LEPR promoter region revealed high differential expression in hepatic LEPRa. These results suggest a LEPR isoform-specific regulation at tissue level. Conversely, non-differential expression of LEP conditional on the analyzed polymorphisms could be detected, indicating that its regulation is likely affected by other mechanisms rather than gene sequence variants. The present study has allowed a transcriptional characterization of LEP and LEPR isoforms on a range of tissues. Their expression patterns seem to indicate that both molecules develop peripheral roles apart from

  15. Atypical antipsychotics induce both proinflammatory and adipogenic gene expression in human adipocytes in vitro

    SciTech Connect

    Sárvári, Anitta K.; Veréb, Zoltán; Uray, Iván P.; Fésüs, László; Balajthy, Zoltán

    2014-08-08

    Highlights: • Antipsychotics modulate the expression of adipogenic genes in human adipocytes. • Secretion of proinflammatory cytokine IL8 and MCP-1 is induced by antipsychotics. • Adipocyte-dependent inflammatory abnormality could develop during chronic treatment. • Infiltrated macrophages would further enhance proinflammatory cytokine production. - Abstract: Schizophrenia requires lifelong treatment, potentially causing systemic changes in metabolic homeostasis. In the clinical setting, antipsychotic treatment may differentially lead to weight gain among individual patients, although the molecular determinants of such adverse effects are currently unknown. In this study, we investigated changes in the expression levels of critical regulatory genes of adipogenesis, lipid metabolism and proinflammatory genes during the differentiation of primary human adipose-derived stem cells (ADSCs). These cells were isolated from patients with body mass indices <25 and treated with the second-generation antipsychotics olanzapine, ziprasidone, clozapine, quetiapine, aripiprazole and risperidone and the first-generation antipsychotic haloperidol. We found that antipsychotics exhibited a marked effect on key genes involved in the regulation of cell cycle, signal transduction, transcription factors, nuclear receptors, differentiation markers and metabolic enzymes. In particular, we observed an induction of the transcription factor NF-KB1 and NF-KB1 target genes in adipocytes in response to these drugs, including the proinflammatory cytokines TNF-α, IL-1β, IL-8 and MCP-1. In addition, enhanced secretion of both IL8 and MCP-1 was observed in the supernatant of these cell cultures. In addition to their remarkable stimulatory effects on proinflammatory gene transcription, three of the most frequently prescribed antipsychotic drugs, clozapine, quetiapine and aripiprazole, also induced the expression of essential adipocyte differentiation genes and the adipocyte hormones leptin

  16. Inhibition of adipogenesis and leptin production in 3T3-L1 adipocytes by a derivative of meridianin C

    SciTech Connect

    Park, Yu-Kyoung; Lee, Tae-Yoon; Choi, Jong-Soon; Hong, Victor Sukbong; Lee, Jinho; Park, Jong-Wook; Jang, Byeong-Churl

    2014-10-03

    Highlights: • Compound 7b, a meridianin C derivative, inhibits adipogenesis. • Compound 7b inhibits C/EBP-α, PPAR-γ, FAS, STAT-3, and STAT-5 in 3T3-L1 adipocytes. • Compound 7b inhibits leptin, but not adiponectin, expression in 3T3-L1 adipocytes. • Compound 7b thus may have therapeutic potential against obesity. - Abstract: Meridianin C, a marine alkaloid, is a potent protein kinase inhibitor and has anti-cancer activity. We have recently developed a series of meridianin C derivatives (compound 7a–7j) and reported their proviral integration Moloney Murine Leukemia Virus (pim) kinases’ inhibitory and anti-proliferative effects on human leukemia cells. Here we investigated the effect of these meridianin C derivatives on adipogenesis. Strikingly, among the derivatives tested, compound 7b most strongly inhibited lipid accumulation during the differentiation of 3T3-L1 preadipocytes into adipocytes. However, meridianin C treatment was largely cytotoxic to 3T3-L1 adipocytes. On mechanistic levels, compound 7b reduced not only the expressions of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), and fatty acid synthase (FAS) but also the phosphorylation levels of signal transducer and activator of transcription-3 (STAT-3) and STAT-5 during adipocyte differentiation. Moreover, compound 7b repressed leptin, but not adiponectin, expression during adipocyte differentiation. Collectively, these findings demonstrate that a meridianin C derivative inhibits adipogenesis by down-regulating expressions and/or phosphorylations of C/EBP-α, PPAR-γ, FAS, STAT-3 and STAT-5.

  17. α-Mangostin Improves Glucose Uptake and Inhibits Adipocytes Differentiation in 3T3-L1 Cells via PPARγ, GLUT4, and Leptin Expressions

    PubMed Central

    Taher, Muhammad; Mohamed Amiroudine, Mohamed Zaffar Ali; Tengku Zakaria, Tengku Muhamad Faris Syafiq; Ichwan, Solachuddin J. A.; Kaderi, Mohd Arifin; Ahmed, Qamar Uddin; Zakaria, Zainul Amiruddin

    2015-01-01

    Obesity has been often associated with the occurrence of cardiovascular diseases, type 2 diabetes, and cancer. The development of obesity is also accompanied by significant differentiation of preadipocytes into adipocytes. In this study, we investigated the activity of α-mangostin, a major xanthone component isolated from the stem bark of G. malaccensis, on glucose uptake and adipocyte differentiation of 3T3-L1 cells focusing on PPARγ, GLUT4, and leptin expressions. α-Mangostin was found to inhibit cytoplasmic lipid accumulation and adipogenic differentiation. Cells treated with 50 μM of α-mangostin reduced intracellular fat accumulation dose-dependently up to 44.4% relative to MDI-treated cells. Analyses of 2-deoxy-D-[3H] glucose uptake activity showed that α-mangostin significantly improved the glucose uptake (P < 0.05) with highest activity found at 25 μM. In addition, α-mangostin increased the amount of free fatty acids (FFA) released. The highest glycerol release level was observed at 50 μM of α-mangostin. qRT-PCR analysis showed reduced lipid accumulation via inhibition of PPARγ gene expression. Induction of glucose uptake and free fatty acid release by α-mangostin were accompanied by increasing mRNA expression of GLUT4 and leptin. These evidences propose that α-mangostin might be possible candidate for the effective management of obesity in future. PMID:25873982

  18. Expression of leptin and its receptor genes in the ovarian follicles of cycling and early pregnant pigs.

    PubMed

    Smolinska, N; Kaminski, T; Siawrys, G; Przala, J

    2013-01-01

    Leptin is a polypeptide hormone produced primarily by adipocytes. It has been implicated in the regulation of satiety and energy homeostasis. Leptin has been suggested to play a role in reproduction based on its involvement in the regulation of the hypothalamic-pituitary-gonadal axis via endocrine, paracrine and/or autocrine pathways. The aim of the present study was to localize the cellular distribution of leptin and the long isoform of leptin receptor (OB-Rb) genes in porcine ovarian antral follicles and to compare the expression levels of leptin and OB-Rb mRNAs in porcine granulosa cells (GC), theca interna (TIC) and theca externa (TEC) cells during the luteal phase of the estrous cycle and in early pregnancy. The expression of leptin and OB-Rb genes was detected in GC, TIC and TEC. Significantly higher levels of leptin gene expression in GC were observed during the mid- and late-luteal phases of the cycle than on days 30 to 32 of pregnancy. On days 14 to 16 of pregnancy, leptin mRNA expression was higher than that on days 14 to 16 of the cycle. The expression of the OB-Rb gene in GC and TEC increased during pregnancy in comparison with the analyzed luteal phases of the cycle. Our results validate the hypothesis that locally produced leptin plays a role in the regulation of porcine reproduction at the ovarian level and exerts a direct effect on porcine follicles. The differences in OB-Rb gene expression in porcine GC and theca cells also suggest that their sensitivity to leptin varies in the ovaries of pregnant and cyclic pigs.

  19. Effects of leptin and leptin receptor gene polymorphisms on lung cancer.

    PubMed

    Unsal, Meftun; Kara, Nurten; Karakus, Nevin; Tural, Sengul; Elbistan, Mehmet

    2014-10-01

    Leptin (LEP), an adipocyte-derived cytokine, has been reported to participate in carcinogenesis. Elevated levels of systemic and pulmonary LEP are associated with diseases related to lung injury and lung cancer. The purpose of the present study was to investigate if the LEP and leptin receptor (LEPR) gene polymorphisms are associated with lung cancer in a cohort of Turkish population. One hundred and sixty-two lung cancer patients and 130 healthy controls were included in the study. The genotypes of LEP gene -2548G > A and LEPR gene Q223R polymorphisms were determined using polymerase chain reaction (PCR) based restriction fragment length polymorphism (RFLP) analysis. The genotype frequencies of LEP -2548G > A polymorphism showed statistically significant differences between lung cancer patients and controls (p = 0.007). GA + AA genotypes and A allele of LEP -2548G > A polymorphism was found to be susceptibility factors for lung cancer (p = 0.003, odds ratio (OR) 2.32, 95 % confidence interval (CI) 1.32-4.10; p = 0.003, OR 1.65, 95 % CI 1.18-2.29, respectively). The genotype and allele frequencies of LEPR Q223R polymorphism did not show any statistically significant differences between lung cancer patients and controls (p = 0.782 and p = 0.762, respectively). Although AA-QQ and AA-QR combined genotypes of LEP -2548G > A-LEPR Q223R loci were significantly higher in lung cancer patients (p = 0.020 and p = 0.047, respectively), GG-QQ, GG-QR, and AA-RR combined genotypes were significantly higher in control group. As a result, susceptibility effects of LEP -2548G > A polymorphism alone or in combination with LEPR Q223R polymorphism on lung cancer were observed. Further studies are necessary to prove the association of LEP and LEPR gene polymorphisms with lung cancer.

  20. Effects of C-reactive protein on adipokines genes expression in 3T3-L1 adipocytes

    SciTech Connect

    Yuan, Guoyue; Jia, Jue; Di, Liangliang; Zhou, Libin; Dong, Sijing; Ye, Jingjing; Wang, Dong; Yang, Ling; Wang, Jifang; Li, Lianxi; Yang, Ying; Mao, Chaoming; Chen, Mingdao

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer CRP increases TNF-{alpha} and IL-6 genes expression in matured 3T3-L1 adipocytes. Black-Right-Pointing-Pointer CRP suppresses adiponectin, leptin and PPAR-{gamma} mRNA levels in matured 3T3-L1 cells. Black-Right-Pointing-Pointer Wortmannin reverses effects of CRP on adiponectin, TNF-{alpha} and leptin mRNA levels. Black-Right-Pointing-Pointer CRP may regulate IR, obesity and metabolic syndrome by this mechanism. -- Abstract: Adipose tissue is now recognized to be an important endocrine organ, secreting a variety of adipokines that are involved in the regulation of energy metabolism, insulin resistance and metabolic syndrome. C-reactive protein (CRP) is considered as one of the most sensitive markers of inflammation. A number of studies have shown that elevation of CRP concentrations is an independent predictive parameter of type 2 diabetes mellitus, which is also strongly associated with various components of the metabolic syndrome. The aim of the present study is to investigate the effects of CRP on adipokines genes expression in 3T3-L1 adipocytes. Quantitative real-time PCR analysis revealed that CRP inhibited adiponectin, leptin and peroxisome proliferator-activated receptor-gamma (PPAR-{gamma}) genes expression and raised tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-6 (IL-6) mRNA levels in matured 3T3-L1 adipocytes in a dose and time-dependent manner. Pharmacological inhibition of phosphatidylinositol (PI)-3 kinase by wortmannin partially reversed the effects of CRP on adiponectin, TNF-{alpha} and leptin genes expression. These results collectively suggest that CRP regulates adiponectin, TNF-{alpha}, leptin, IL-6 and PPAR-{gamma} genes expression, and that might represent a mechanism by which CRP regulates insulin resistance, obesity and metabolic syndrome.

  1. Inhibition of adipogenesis and leptin production in 3T3-L1 adipocytes by a derivative of meridianin C.

    PubMed

    Park, Yu-Kyoung; Lee, Tae-Yoon; Choi, Jong-Soon; Hong, Victor Sukbong; Lee, Jinho; Park, Jong-Wook; Jang, Byeong-Churl

    2014-10-01

    Meridianin C, a marine alkaloid, is a potent protein kinase inhibitor and has anti-cancer activity. We have recently developed a series of meridianin C derivatives (compound 7a-7j) and reported their proviral integration Moloney Murine Leukemia Virus (pim) kinases' inhibitory and anti-proliferative effects on human leukemia cells. Here we investigated the effect of these meridianin C derivatives on adipogenesis. Strikingly, among the derivatives tested, compound 7b most strongly inhibited lipid accumulation during the differentiation of 3T3-L1 preadipocytes into adipocytes. However, meridianin C treatment was largely cytotoxic to 3T3-L1 adipocytes. On mechanistic levels, compound 7b reduced not only the expressions of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), and fatty acid synthase (FAS) but also the phosphorylation levels of signal transducer and activator of transcription-3 (STAT-3) and STAT-5 during adipocyte differentiation. Moreover, compound 7b repressed leptin, but not adiponectin, expression during adipocyte differentiation. Collectively, these findings demonstrate that a meridianin C derivative inhibits adipogenesis by down-regulating expressions and/or phosphorylations of C/EBP-α, PPAR-γ, FAS, STAT-3 and STAT-5. PMID:25245291

  2. Leptin augments recruitment of IRF-1 and CREB to thrombospondin-1 gene promoter in vascular smooth muscle cells in vitro.

    PubMed

    Sahu, Soumyadip; Ganguly, Rituparna; Raman, Priya

    2016-08-01

    We previously reported that high pathophysiological concentrations of leptin, the adipocyte-secreted peptide, upregulate the expression of a potent proatherogenic matricellular protein, thrombospondin-1 (TSP-1), in vascular smooth muscle cells. Moreover, this regulation was found to occur at the level of transcription; however, the underlying molecular mechanisms remain unknown. The goal of the present study was to investigate the specific transcriptional mechanisms that mediate upregulation of TSP-1 expression by leptin. Primary human aortic smooth muscle cell cultures were transiently transfected with different TSP-1 gene (THBS1) promoter-linked luciferase reporter constructs, and luciferase activity in response to leptin (100 ng/ml) was assessed. We identified a long THBS1 promoter (-1270/+750) fragment with specific leptin response elements that are required for increased TSP-1 transcription by leptin. Promoter analyses, protein/DNA array and gel shift assays demonstrated activation and association of transcription factors, interferon regulatory factor-1 (IRF-1) and cAMP response element-binding protein (CREB), to the distal fragment of the THBS1 promoter in response to leptin. Supershift, chromatin immunoprecipitation, and coimmunoprecipitation assays revealed formation of a single complex between IRF-1 and CREB in response to leptin; importantly, recruitment of this complex to the THBS1 promoter mediated leptin-induced TSP-1 transcription. Finally, binding sequence decoy oligomer and site-directed mutagenesis revealed that regulatory elements for both IRF-1 (-1019 to -1016) and CREB (-1198 to -1195), specific to the distal THBS1 promoter, were required for leptin-induced TSP-1 transcription. Taken together, these findings demonstrate that leptin promotes a cooperative association between IRF-1 and CREB on the THBS1 promoter driving TSP-1 transcription in vascular smooth muscle cells. PMID:27281481

  3. Leptin Gene Epigenetic Adaptation to Impaired Glucose Metabolism During Pregnancy

    PubMed Central

    Bouchard, Luigi; Thibault, Stéphanie; Guay, Simon-Pierre; Santure, Marta; Monpetit, Alexandre; St-Pierre, Julie; Perron, Patrice; Brisson, Diane

    2010-01-01

    OBJECTIVE To verify whether the leptin gene epigenetic (DNA methylation) profile is altered in the offspring of mothers with gestational impaired glucose tolerance (IGT). RESEARCH DESIGN AND METHODS Placental tissues and maternal and cord blood samples were obtained from 48 women at term including 23 subjects with gestational IGT. Leptin DNA methylation, gene expression levels, and circulating concentration were measured using the Sequenom EpiTYPER system, quantitative real-time RT-PCR, and enzyme-linked immunosorbent assay, respectively. IGT was assessed after a 75-g oral glucose tolerance test (OGTT) at 24–28 weeks of gestation. RESULTS We have shown that placental leptin gene DNA methylation levels were correlated with glucose levels (2-h post-OGTT) in women with IGT (fetal side: ρ = −0.44, P ≤ 0.05; maternal side: ρ = 0.53, P ≤ 0.01) and with decreased leptin gene expression (n = 48; ρ ≥ −0.30, P ≤ 0.05) in the whole cohort. Placental leptin mRNA levels accounted for 16% of the variance in maternal circulating leptin concentration (P < 0.05). CONCLUSIONS IGT during pregnancy was associated with leptin gene DNA methylation adaptations with potential functional impacts. These epigenetic changes provide novel mechanisms that could contribute to explaining the detrimental health effects associated with fetal programming, such as long-term increased risk of developing obesity and type 2 diabetes. PMID:20724651

  4. Food additives such as sodium sulphite, sodium benzoate and curcumin inhibit leptin release in lipopolysaccharide-treated murine adipocytes in vitro.

    PubMed

    Ciardi, Christian; Jenny, Marcel; Tschoner, Alexander; Ueberall, Florian; Patsch, Josef; Pedrini, Michael; Ebenbichler, Christoph; Fuchs, Dietmar

    2012-03-01

    Obesity leads to the activation of pro-inflammatory pathways, resulting in a state of low-grade inflammation. Recently, several studies have shown that the exposure to lipopolysaccharide (LPS) could initiate and maintain a chronic state of low-grade inflammation in obese people. As the daily intake of food additives has increased substantially, the aim of the present study was to investigate a potential influence of food additives on the release of leptin, IL-6 and nitrite in the presence of LPS in murine adipocytes. Leptin, IL-6 and nitrite concentrations were analysed in the supernatants of murine 3T3-L1 adipocytes after co-incubation with LPS and the food preservatives, sodium sulphite (SS), sodium benzoate (SB) and the spice and colourant, curcumin, for 24 h. In addition, the kinetics of leptin secretion was analysed. A significant and dose-dependent decrease in leptin was observed after incubating the cells with SB and curcumin for 12 and 24 h, whereas SS decreased leptin concentrations after 24 h of treatment. Moreover, SS increased, while curcumin decreased LPS-stimulated secretion of IL-6, whereas SB had no such effect. None of the compounds that were investigated influenced nitrite production. The food additives SS, SB and curcumin affect the leptin release after co-incubation with LPS from cultured adipocytes in a dose- and time-dependent manner. Decreased leptin release during the consumption of nutrition-derived food additives could decrease the amount of circulating leptin to which the central nervous system is exposed and may therefore contribute to an obesogenic environment.

  5. The role of leptin in obesity and the potential for leptin replacement therapy.

    PubMed

    Feng, Helin; Zheng, Lihua; Feng, Zhangying; Zhao, Yaheng; Zhang, Ning

    2013-08-01

    Leptin (from the Greek word "lepto'' meaning "thin") is a 167-amino acid peptide hormone encoded by the obesity (ob) gene and secreted by white adipocytes. Blood leptin concentrations are increased in obese individuals. Leptin is a satiety hormone that provides negative feedback to the hypothalamus, controlling appetite and energy expenditure. Leptin binds to presynaptic GABAergic neurons to produce its effect, raising the distinct possibility that GABAergic axon terminals are the ultimate subcellular site of action for its effects. Released into the circulation, leptin crosses the blood-brain barrier and binds to leptin receptors, influencing the activity of various hypothalamic neurons, as well as encoding orexigenic and anorexigenic neuropeptides. Moreover, leptin affects a wide range of metabolic functions in the peripheral tissue. In this review, we discuss some physiologic functions of leptin, including effects on obesity and some effects of leptin replacement therapy. PMID:23274948

  6. Impact of elvitegravir on human adipocytes: Alterations in differentiation, gene expression and release of adipokines and cytokines.

    PubMed

    Moure, Ricardo; Domingo, Pere; Gallego-Escuredo, José M; Villarroya, Joan; Gutierrez, Maria Del Mar; Mateo, Maria G; Domingo, Joan C; Giralt, Marta; Villarroya, Francesc

    2016-08-01

    Elvitegravir is a recently developed integrase inhibitor used for antiretroviral treatment of HIV infection. Secondary effects, including disturbances in lipid metabolism and, ultimately, in adipose tissue distribution and function, are common concerns associated with antiretroviral treatments. Here, we provide the first study of the effects of elvitegravir (in comparison with efavirenz, a non-nucleoside analog inhibitor of reverse transcriptase; and raltegravir, another integrase inhibitor) on human adipocyte differentiation, gene expression and secretion of adipokines and cytokines. Elvitegravir impaired adipogenesis and adipocyte metabolism in human SGBS adipocytes in a concentration-dependent manner (delaying acquisition of adipocyte morphology and reducing the expression of adipogenesis marker genes such as PPARγ, glucose transporter GLUT4, lipoprotein lipase, and the adipokines adiponectin and leptin). Compared with efavirenz, the effects of elvitegravir were similar but tended to occur at higher concentrations than those elicited by efavirenz, or were somewhat less intense than those caused by efavirenz at similar concentration. Elvitegravir tended to cause a more moderate induction of pro-inflammatory cytokines than efavirenz. Efavirenz induced a marked concentration-dependent increase in interleukin-8 expression and release whereas elvitregravir had little effect. Raltegravir had totally neutral actions of adipogenesis, adipocyte metabolism-related gene expression and release of adipokines and cytokines. In conclusion, elvitegravir alters adipocyte differentiation and function and promotes induction of pro-inflammatory cytokines similarly to efavirenz, but several effects were less intense. Further assessment of lipid metabolism and adipose tissue function in patients administered elvitegravir-based regimes is advisable considering that totally neutral effects of elvitegravir on lipid homeostasis cannot be anticipated from the current study in

  7. Adipocyte induced arterial calcification is prevented with sodium thiosulfate

    SciTech Connect

    Chen, Neal X.; O’Neill, Kalisha; Akl, Nader Kassis; Moe, Sharon M.

    2014-06-20

    Highlights: • High phosphorus can induce calcification of adipocytes, even when fully differentiated. • Adipocytes can induce vascular calcification in an autocrine manner. • Sodium thiosulfate inhibits adipocyte calcification. - Abstract: Background: Calcification can occur in fat in multiple clinical conditions including in the dermis, breasts and in the abdomen in calciphylaxis. All of these are more common in patients with advanced kidney disease. Clinically, hyperphosphatemia and obesity are risk factors. Thus we tested the hypothesis that adipocytes can calcify in the presence of elevated phosphorus and/or that adipocytes exposed to phosphorus can induce vascular smooth muscle cell (VSMC) calcification. Methods: 3T3-L1 preadipocytes were induced into mature adipocytes and then treated with media containing high phosphorus. Calcification was assessed biochemically and PCR performed to determine the expression of genes for osteoblast and adipocyte differentiation. Adipocytes were also co-cultured with bovine VSMC to determine paracrine effects, and the efficacy of sodium thiosulfate was determined. Results: The results demonstrated that high phosphorus induced the calcification of differentiated adipocytes with increased expression of osteopontin, the osteoblast transcription factor Runx2 and decreased expression of adipocyte transcription factors peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding protein α (CEBPα), indicating that high phosphorus led to a phenotypic switch of adipocytes to an osteoblast like phenotype. Sodium thiosulfate, dose dependently decreased adipocyte calcification and inhibited adipocyte induced increase of VSMC calcification. Co-culture studies demonstrated that adipocytes facilitated VSMC calcification partially mediated by changes of secretion of leptin and vascular endothelial growth factor (VEGF) from adipocytes. Conclusion: High phosphorus induced calcification of mature adipocytes, and

  8. Identification of microsatellite markers linked to the human leptin receptor gene on chromosome 1

    SciTech Connect

    Winick, J.D.; Friedman, J.M.; Stoffel, M.

    1996-08-15

    This report describes the localization of the human leptin receptor gene to human chromosome 1 using polymerase chain reaction of somatic cell hybrids. Leptin is a secreted protein important in the regulation of body weight. 16 refs., 1 fig.

  9. Evaluation of the synuclein-γ (SNCG) gene as a PPARγ target in murine adipocytes, dorsal root ganglia somatosensory neurons, and human adipose tissue.

    PubMed

    Dunn, Tamara N; Akiyama, Tasuku; Lee, Hyun Woo; Kim, Jae Bum; Knotts, Trina A; Smith, Steven R; Sears, Dorothy D; Carstens, Earl; Adams, Sean H

    2015-01-01

    Recent evidence in adipocytes points to a role for synuclein-γ in metabolism and lipid droplet dynamics, but interestingly this factor is also robustly expressed in peripheral neurons. Specific regulation of the synuclein-γ gene (Sncg) by PPARγ requires further evaluation, especially in peripheral neurons, prompting us to test if Sncg is a bona fide PPARγ target in murine adipocytes and peripheral somatosensory neurons derived from the dorsal root ganglia (DRG). Sncg mRNA was decreased in 3T3-L1 adipocytes (~68%) by rosiglitazone, and this effect was diminished by the PPARγ antagonist T0070907. Chromatin immunoprecipitation experiments confirmed PPARγ protein binding at two promoter sequences of Sncg during 3T3-L1 adipogenesis. Rosiglitazone did not affect Sncg mRNA expression in murine cultured DRG neurons. In subcutaneous human WAT samples from two cohorts treated with pioglitazone (>11 wks), SNCG mRNA expression was reduced, albeit highly variable and most evident in type 2 diabetes. Leptin (Lep) expression, thought to be coordinately-regulated with Sncg based on correlations in human adipose tissue, was also reduced in 3T3-L1 adipocytes by rosiglitazone. However, Lep was unaffected by PPARγ antagonist, and the LXR agonist T0901317 significantly reduced Lep expression (~64%) while not impacting Sncg. The results support the concept that synuclein-γ shares some, but not all, gene regulators with leptin and is a PPARγ target in adipocytes but not DRG neurons. Regulation of synuclein-γ by cues such as PPARγ agonism in adipocytes is logical based on recent evidence for an important role for synuclein-γ in the maintenance and dynamics of adipocyte lipid droplets. PMID:25756178

  10. Evidence for positive selection on the leptin gene in Cetacea and Pinnipedia.

    PubMed

    Yu, Li; Jin, Wei; Zhang, Xin; Wang, Ding; Zheng, Jin-song; Yang, Guang; Xu, Shi-xia; Cho, Soochin; Zhang, Ya-ping

    2011-01-01

    The leptin gene has received intensive attention and scientific investigation for its importance in energy homeostasis and reproductive regulation in mammals. Furthermore, study of the leptin gene is of crucial importance for public health, particularly for its role in obesity, as well as for other numerous physiological roles that it plays in mammals. In the present work, we report the identification of novel leptin genes in 4 species of Cetacea, and a comparison with 55 publicly available leptin sequences from mammalian genome assemblies and previous studies. Our study provides evidence for positive selection in the suborder Odontoceti (toothed whales) of the Cetacea and the family Phocidae (earless seals) of the Pinnipedia. We also detected positive selection in several leptin gene residues in these two lineages. To test whether leptin and its receptor evolved in a coordinated manner, we analyzed 24 leptin receptor gene (LPR) sequences from available mammalian genome assemblies and other published data. Unlike the case of leptin, our analyses did not find evidence of positive selection for LPR across the Cetacea and Pinnipedia lineages. In line with this, positively selected sites identified in the leptin genes of these two lineages were located outside of leptin receptor binding sites, which at least partially explains why co-evolution of leptin and its receptor was not observed in the present study. Our study provides interesting insights into current understanding of the evolution of mammalian leptin genes in response to selective pressures from life in an aquatic environment, and leads to a hypothesis that new tissue specificity or novel physiologic functions of leptin genes may have arisen in both odontocetes and phocids. Additional data from other species encompassing varying life histories and functional tests of the adaptive role of the amino acid changes identified in this study will help determine the factors that promote the adaptive evolution of the

  11. Evidence for Positive Selection on the Leptin Gene in Cetacea and Pinnipedia

    PubMed Central

    Zhang, Xin; Wang, Ding; Zheng, Jin-song; Yang, Guang; Xu, Shi-xia; Cho, Soochin; Zhang, Ya-ping

    2011-01-01

    The leptin gene has received intensive attention and scientific investigation for its importance in energy homeostasis and reproductive regulation in mammals. Furthermore, study of the leptin gene is of crucial importance for public health, particularly for its role in obesity, as well as for other numerous physiological roles that it plays in mammals. In the present work, we report the identification of novel leptin genes in 4 species of Cetacea, and a comparison with 55 publicly available leptin sequences from mammalian genome assemblies and previous studies. Our study provides evidence for positive selection in the suborder Odontoceti (toothed whales) of the Cetacea and the family Phocidae (earless seals) of the Pinnipedia. We also detected positive selection in several leptin gene residues in these two lineages. To test whether leptin and its receptor evolved in a coordinated manner, we analyzed 24 leptin receptor gene (LPR) sequences from available mammalian genome assemblies and other published data. Unlike the case of leptin, our analyses did not find evidence of positive selection for LPR across the Cetacea and Pinnipedia lineages. In line with this, positively selected sites identified in the leptin genes of these two lineages were located outside of leptin receptor binding sites, which at least partially explains why co-evolution of leptin and its receptor was not observed in the present study. Our study provides interesting insights into current understanding of the evolution of mammalian leptin genes in response to selective pressures from life in an aquatic environment, and leads to a hypothesis that new tissue specificity or novel physiologic functions of leptin genes may have arisen in both odontocetes and phocids. Additional data from other species encompassing varying life histories and functional tests of the adaptive role of the amino acid changes identified in this study will help determine the factors that promote the adaptive evolution of the

  12. Leptin Genes in Blunt Snout Bream: Cloning, Phylogeny and Expression Correlated to Gonads Development

    PubMed Central

    Zhao, Honghao; Zeng, Cong; Yi, Shaokui; Wan, Shiming; Chen, Boxiang; Gao, Zexia

    2015-01-01

    To investigate the leptin related genes expression patterns and their possible function during the gonadal development in fish, the cDNA and genomic sequences of leptin, leptin receptor (leptinR), and leptin receptor overlapping transcript like-1 (leprotl1) were cloned and their expression levels were quantified in the different gonadal development stages of Megalobrama amblycephala. The results showed that the full length cDNA sequences of leptin, leptinR and leprotl1 were 953, 3432 and 1676 bp, coding 168, 1082, and 131 amino acid polypeptides, and the genomic sequences were 1836, 28,528 and 5480 bp, which respectively had 3, 15 and 4 exons, respectively. The phylogenetic analysis revealed that three genes were relatively conserved in fish species. Quantitative real-time PCR results showed that the three genes were ubiquitously expressed in all examined tissues during the different gonadal development stages. The leptin and leptinR took part in the onset of puberty, especially in female M. amblycephala, by increasing the expression levels in brain during the stage I to III of ovary. The expression levels of leptin and leptinR had significant differences between male and female in hypothalamic-pituitary-gonadal (HPG) axis tissues (p < 0.05). The leptinR had the same variation tendency with leptin, but the opposite changes of expression levels were found in leprotl1, which may resist the expression of leptinR for inhibiting the function of leptin in target organ. These findings revealed details about the possible role of these genes in regulating gonadal maturation in fish species. PMID:26593912

  13. Leptin Genes in Blunt Snout Bream: Cloning, Phylogeny and Expression Correlated to Gonads Development.

    PubMed

    Zhao, Honghao; Zeng, Cong; Yi, Shaokui; Wan, Shiming; Chen, Boxiang; Gao, Zexia

    2015-11-18

    To investigate the leptin related genes expression patterns and their possible function during the gonadal development in fish, the cDNA and genomic sequences of leptin, leptin receptor (leptinR), and leptin receptor overlapping transcript like-1 (leprotl1) were cloned and their expression levels were quantified in the different gonadal development stages of Megalobrama amblycephala. The results showed that the full length cDNA sequences of leptin, leptinR and leprotl1 were 953, 3432 and 1676 bp, coding 168, 1082, and 131 amino acid polypeptides, and the genomic sequences were 1836, 28,528 and 5480 bp, which respectively had 3, 15 and 4 exons, respectively. The phylogenetic analysis revealed that three genes were relatively conserved in fish species. Quantitative real-time PCR results showed that the three genes were ubiquitously expressed in all examined tissues during the different gonadal development stages. The leptin and leptinR took part in the onset of puberty, especially in female M. amblycephala, by increasing the expression levels in brain during the stage I to III of ovary. The expression levels of leptin and leptinR had significant differences between male and female in hypothalamic-pituitary-gonadal (HPG) axis tissues (p < 0.05). The leptinR had the same variation tendency with leptin, but the opposite changes of expression levels were found in leprotl1, which may resist the expression of leptinR for inhibiting the function of leptin in target organ. These findings revealed details about the possible role of these genes in regulating gonadal maturation in fish species.

  14. An siRNA-based method for efficient silencing of gene expression in mature brown adipocytes.

    PubMed

    Isidor, Marie S; Winther, Sally; Basse, Astrid L; Petersen, M Christine H; Cannon, Barbara; Nedergaard, Jan; Hansen, Jacob B

    2016-01-01

    Brown adipose tissue is a promising therapeutic target for opposing obesity, glucose intolerance and insulin resistance. The ability to modulate gene expression in mature brown adipocytes is important to understand brown adipocyte function and delineate novel regulatory mechanisms of non-shivering thermogenesis. The aim of this study was to optimize a lipofection-based small interfering RNA (siRNA) transfection protocol for efficient silencing of gene expression in mature brown adipocytes. We determined that a critical parameter was to deliver the siRNA to mature adipocytes by reverse transfection, i.e. transfection of non-adherent cells. Using this protocol, we effectively knocked down both high- and low-abundance transcripts in a model of mature brown adipocytes (WT-1) as well as in primary mature mouse brown adipocytes. A functional consequence of the knockdown was confirmed by an attenuated increase in uncoupled respiration (thermogenesis) in response to β-adrenergic stimulation of mature WT-1 brown adipocytes transfected with uncoupling protein 1 siRNA. Efficient gene silencing was also obtained in various mouse and human white adipocyte models (3T3-L1, primary mouse white adipocytes, hMADS) with the ability to undergo "browning." In summary, we report an easy and versatile reverse siRNA transfection protocol to achieve specific silencing of gene expression in various models of mature brown and browning-competent white adipocytes, including primary cells. PMID:27386153

  15. Leptin (ob gene) of the South African clawed frog Xenopus laevis

    PubMed Central

    Crespi, Erica J.; Denver, Robert J.

    2006-01-01

    Leptin, the protein product of the obese (ob) gene, is a type-I cytokine hormone secreted by fat that is integral to food intake regulation and influences almost every physiological system in juvenile and adult mammals. Since the identification of leptin in the mouse in 1994, biologists have searched for orthologous genes in other species with limited success. In this article, we report the identification and functional characterization of leptin and leptin receptor (LR) in Xenopus. Despite low amino acid sequence similarity to mammalian leptins (≈35%) the frog protein has a nearly identical predicted tertiary structure and can activate the frog and mouse LRs in vitro. We showed that recombinant frog leptin (rxLeptin) is a potent anorexigen in frogs, as it is in mammals, but this response does not develop until midprometamorphosis. However, during early prometamorphosis, exogenous rxLeptin induced growth and development of the hind limb, where LR mRNA is expressed. The rxLeptin also stimulated cell proliferation in cultured hind limbs from early prometamorphic tadpoles, as measured by [3H]thymidine uptake. These findings are evidence that leptin can influence limb growth and differentiation during early development. Furthermore, the isolation and characterization of leptin and its receptor in a nonamniote provides an essential foundation for elucidating the structural and functional evolution of this important hormone. PMID:16782821

  16. Alpha-tocopheryl-phosphate regulation of gene expression in pre-adipocytes and adipocytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A correct function of adipocytes in connection with cellular fatty acid loading and release is a vital aspect of energy homeostasis; dysregulation of these reactions can result in obesity and type 2 diabetes mellitus. In addition, adipocytes have been proposed to play a major role in preventing lipo...

  17. Human coronary artery perivascular adipocytes overexpress genes responsible for regulating vascular morphology, inflammation, and hemostasis

    PubMed Central

    Aronow, Bruce J.; Tong, Wilson S.; Manka, David; Tang, Yaoliang; Bogdanov, Vladimir Y.; Unruh, Dusten; Blomkalns, Andra L.; Piegore, Mark G.; Weintraub, Daniel S.; Rudich, Steven M.; Kuhel, David G.; Hui, David Y.; Weintraub, Neal L.

    2013-01-01

    Inflammatory cross talk between perivascular adipose tissue and the blood vessel wall has been proposed to contribute to the pathogenesis of atherosclerosis. We previously reported that human perivascular (PV) adipocytes exhibit a proinflammatory phenotype and less adipogenic differentiation than do subcutaneous (SQ) adipocytes. To gain a global view of the genomic basis of biologic differences between PV and SQ adipocytes, we performed genome-wide expression analyses to identify differentially expressed genes between adipocytes derived from human SQ vs. PV adipose tissues. Although >90% of well-expressed genes were similarly regulated, we identified a signature of 307 differentially expressed genes that were highly enriched for functions associated with the regulation of angiogenesis, vascular morphology, inflammation, and blood clotting. Of the 156 PV upregulated genes, 59 associate with angiogenesis, vascular biology, or inflammation, noteworthy of which include TNFRSF11B (osteoprotegerin), PLAT, TGFB1, THBS2, HIF1A, GATA6, and SERPINE1. Of 166 PV downregulated genes, 21 associated with vascular biology and inflammation, including ANGPT1, ANGPTL1, and VEGFC. Consistent with the emergent hypothesis that PV adipocytes differentially regulate angiogenesis and inflammation, cell culture-derived adipocyte-conditioned media from PV adipocytes strongly enhanced endothelial cell tubulogenesis and monocyte migration compared with media from SQ adipocytes. These findings demonstrate that PV adipocytes have the potential to significantly modulate vascular inflammatory crosstalk in the setting of atherosclerosis by their ability to signal to both endothelial and inflammatory cells. PMID:23737535

  18. Leptin in male reproduction: the testis paradigm.

    PubMed

    Tena-Sempere, M; Barreiro, M L

    2002-02-25

    Leptin, the adipocyte-derived hormone that plays a key role in body weight homeostasis, has recently emerged as a relevant neuroendocrine mediator in different systems, including the reproductive axis. Thus, compelling evidence points out a major role of leptin in the regulation of female pubertal development and fertility, both in humans and experimental animals. The contribution of leptin to the proper functioning of the male reproductive system has been less clear. However, data gathered in recent years, from independent groups and through a variety of experimental approaches, strongly suggest that leptin is able to act at different levels of the hypothalamic-pituitary-testicular axis. Herein, we review the biological effects and potential mechanisms of action of leptin upon rodent testis. Leptin appears to act as a direct inhibitory signal for testicular steroidogenesis, which may be relevant to explain the link between decreased testosterone secretion and hyperleptinaemia in obese men. Analysis of the molecular basis for leptin-induced inhibition of testosterone secretion revealed the potential involvement of decreased gene expression of several up-stream factors (e.g. SF-1, StAR and P450scc) in the steroidogenic pathway. In this context, testicular expression of leptin receptor (Ob-R) gene shows a complex pattern of alternative splicing with generation of multiple variants, including the functional leptin receptor type-b (Ob-Rb) and several short isoforms. Moreover, Ob-R mRNA expression in rat testis was regulated by homologous (leptin) as well as heterologous (gonadotropins) signals. Overall, the current data indicate that the testis is a direct target for leptin actions. Furthermore, the available evidence is suggestive of a tightly regulated, complex mode of action of leptin at different levels of the male gonadal axis that involves not only stimulatory but also inhibitory effects.

  19. Discovery and characterization of the first genuine avian leptin gene in the rock dove (Columba livia).

    PubMed

    Friedman-Einat, Miriam; Cogburn, Larry A; Yosefi, Sara; Hen, Gideon; Shinder, Dmitry; Shirak, Andrey; Seroussi, Eyal

    2014-09-01

    Leptin, the key regulator of mammalian energy balance, has been at the center of a great controversy in avian biology for the last 15 years since initial reports of a putative leptin gene (LEP) in chickens. Here, we characterize a novel LEP in rock dove (Columba livia) with low similarity of the predicted protein sequence (30% identity, 47% similarity) to the human ortholog. Searching the Sequence-Read-Archive database revealed leptin transcripts, in the dove's liver, with 2 noncoding exons preceding 2 coding exons. This unusual 4-exon structure was validated by sequencing of a GC-rich product (76% GC, 721 bp) amplified from liver RNA by RT-PCR. Sequence alignment of the dove leptin with orthologous leptins indicated that it consists of a leader peptide (21 amino acids; aa) followed by the mature protein (160 aa), which has a putative structure typical of 4-helical-bundle cytokines except that it is 12 aa longer than human leptin. Extra residues (10 aa) were located within the loop between 2 5'-helices, interrupting the amino acid motif that is conserved in tetrapods and considered essential for activation of leptin receptor (LEPR) but not for receptor binding per se. Quantitative RT-PCR of 11 tissues showed highest (P < .05) expression of LEP in the dove's liver, whereas the dove LEPR peaked (P < .01) in the pituitary. Both genes were prominently expressed in the gonads and at lower levels in tissues involved in mammalian leptin signaling (adipose; hypothalamus). A bioassay based on activation of the chicken LEPR in vitro showed leptin activity in the dove's circulation, suggesting that dove LEP encodes an active protein, despite the interrupted loop motif. Providing tools to study energy-balance control at an evolutionary perspective, our original demonstration of leptin signaling in dove predicts a more ancient role of leptin in growth and reproduction in birds, rather than appetite control.

  20. Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels.

    PubMed

    Kilpeläinen, Tuomas O; Carli, Jayne F Martin; Skowronski, Alicja A; Sun, Qi; Kriebel, Jennifer; Feitosa, Mary F; Hedman, Åsa K; Drong, Alexander W; Hayes, James E; Zhao, Jinghua; Pers, Tune H; Schick, Ursula; Grarup, Niels; Kutalik, Zoltán; Trompet, Stella; Mangino, Massimo; Kristiansson, Kati; Beekman, Marian; Lyytikäinen, Leo-Pekka; Eriksson, Joel; Henneman, Peter; Lahti, Jari; Tanaka, Toshiko; Luan, Jian'an; Del Greco M, Fabiola; Pasko, Dorota; Renström, Frida; Willems, Sara M; Mahajan, Anubha; Rose, Lynda M; Guo, Xiuqing; Liu, Yongmei; Kleber, Marcus E; Pérusse, Louis; Gaunt, Tom; Ahluwalia, Tarunveer S; Ju Sung, Yun; Ramos, Yolande F; Amin, Najaf; Amuzu, Antoinette; Barroso, Inês; Bellis, Claire; Blangero, John; Buckley, Brendan M; Böhringer, Stefan; I Chen, Yii-Der; de Craen, Anton J N; Crosslin, David R; Dale, Caroline E; Dastani, Zari; Day, Felix R; Deelen, Joris; Delgado, Graciela E; Demirkan, Ayse; Finucane, Francis M; Ford, Ian; Garcia, Melissa E; Gieger, Christian; Gustafsson, Stefan; Hallmans, Göran; Hankinson, Susan E; Havulinna, Aki S; Herder, Christian; Hernandez, Dena; Hicks, Andrew A; Hunter, David J; Illig, Thomas; Ingelsson, Erik; Ioan-Facsinay, Andreea; Jansson, John-Olov; Jenny, Nancy S; Jørgensen, Marit E; Jørgensen, Torben; Karlsson, Magnus; Koenig, Wolfgang; Kraft, Peter; Kwekkeboom, Joanneke; Laatikainen, Tiina; Ladwig, Karl-Heinz; LeDuc, Charles A; Lowe, Gordon; Lu, Yingchang; Marques-Vidal, Pedro; Meisinger, Christa; Menni, Cristina; Morris, Andrew P; Myers, Richard H; Männistö, Satu; Nalls, Mike A; Paternoster, Lavinia; Peters, Annette; Pradhan, Aruna D; Rankinen, Tuomo; Rasmussen-Torvik, Laura J; Rathmann, Wolfgang; Rice, Treva K; Brent Richards, J; Ridker, Paul M; Sattar, Naveed; Savage, David B; Söderberg, Stefan; Timpson, Nicholas J; Vandenput, Liesbeth; van Heemst, Diana; Uh, Hae-Won; Vohl, Marie-Claude; Walker, Mark; Wichmann, Heinz-Erich; Widén, Elisabeth; Wood, Andrew R; Yao, Jie; Zeller, Tanja; Zhang, Yiying; Meulenbelt, Ingrid; Kloppenburg, Margreet; Astrup, Arne; Sørensen, Thorkild I A; Sarzynski, Mark A; Rao, D C; Jousilahti, Pekka; Vartiainen, Erkki; Hofman, Albert; Rivadeneira, Fernando; Uitterlinden, André G; Kajantie, Eero; Osmond, Clive; Palotie, Aarno; Eriksson, Johan G; Heliövaara, Markku; Knekt, Paul B; Koskinen, Seppo; Jula, Antti; Perola, Markus; Huupponen, Risto K; Viikari, Jorma S; Kähönen, Mika; Lehtimäki, Terho; Raitakari, Olli T; Mellström, Dan; Lorentzon, Mattias; Casas, Juan P; Bandinelli, Stefanie; März, Winfried; Isaacs, Aaron; van Dijk, Ko W; van Duijn, Cornelia M; Harris, Tamara B; Bouchard, Claude; Allison, Matthew A; Chasman, Daniel I; Ohlsson, Claes; Lind, Lars; Scott, Robert A; Langenberg, Claudia; Wareham, Nicholas J; Ferrucci, Luigi; Frayling, Timothy M; Pramstaller, Peter P; Borecki, Ingrid B; Waterworth, Dawn M; Bergmann, Sven; Waeber, Gérard; Vollenweider, Peter; Vestergaard, Henrik; Hansen, Torben; Pedersen, Oluf; Hu, Frank B; Eline Slagboom, P; Grallert, Harald; Spector, Tim D; Jukema, J W; Klein, Robert J; Schadt, Erik E; Franks, Paul W; Lindgren, Cecilia M; Leibel, Rudolph L; Loos, Ruth J F

    2016-01-01

    Leptin is an adipocyte-secreted hormone, the circulating levels of which correlate closely with overall adiposity. Although rare mutations in the leptin (LEP) gene are well known to cause leptin deficiency and severe obesity, no common loci regulating circulating leptin levels have been uncovered. Therefore, we performed a genome-wide association study (GWAS) of circulating leptin levels from 32,161 individuals and followed up loci reaching P<10(-6) in 19,979 additional individuals. We identify five loci robustly associated (P<5 × 10(-8)) with leptin levels in/near LEP, SLC32A1, GCKR, CCNL1 and FTO. Although the association of the FTO obesity locus with leptin levels is abolished by adjustment for BMI, associations of the four other loci are independent of adiposity. The GCKR locus was found associated with multiple metabolic traits in previous GWAS and the CCNL1 locus with birth weight. Knockdown experiments in mouse adipose tissue explants show convincing evidence for adipogenin, a regulator of adipocyte differentiation, as the novel causal gene in the SLC32A1 locus influencing leptin levels. Our findings provide novel insights into the regulation of leptin production by adipose tissue and open new avenues for examining the influence of variation in leptin levels on adiposity and metabolic health. PMID:26833098

  1. Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels.

    PubMed

    Kilpeläinen, Tuomas O; Carli, Jayne F Martin; Skowronski, Alicja A; Sun, Qi; Kriebel, Jennifer; Feitosa, Mary F; Hedman, Åsa K; Drong, Alexander W; Hayes, James E; Zhao, Jinghua; Pers, Tune H; Schick, Ursula; Grarup, Niels; Kutalik, Zoltán; Trompet, Stella; Mangino, Massimo; Kristiansson, Kati; Beekman, Marian; Lyytikäinen, Leo-Pekka; Eriksson, Joel; Henneman, Peter; Lahti, Jari; Tanaka, Toshiko; Luan, Jian'an; Del Greco M, Fabiola; Pasko, Dorota; Renström, Frida; Willems, Sara M; Mahajan, Anubha; Rose, Lynda M; Guo, Xiuqing; Liu, Yongmei; Kleber, Marcus E; Pérusse, Louis; Gaunt, Tom; Ahluwalia, Tarunveer S; Ju Sung, Yun; Ramos, Yolande F; Amin, Najaf; Amuzu, Antoinette; Barroso, Inês; Bellis, Claire; Blangero, John; Buckley, Brendan M; Böhringer, Stefan; I Chen, Yii-Der; de Craen, Anton J N; Crosslin, David R; Dale, Caroline E; Dastani, Zari; Day, Felix R; Deelen, Joris; Delgado, Graciela E; Demirkan, Ayse; Finucane, Francis M; Ford, Ian; Garcia, Melissa E; Gieger, Christian; Gustafsson, Stefan; Hallmans, Göran; Hankinson, Susan E; Havulinna, Aki S; Herder, Christian; Hernandez, Dena; Hicks, Andrew A; Hunter, David J; Illig, Thomas; Ingelsson, Erik; Ioan-Facsinay, Andreea; Jansson, John-Olov; Jenny, Nancy S; Jørgensen, Marit E; Jørgensen, Torben; Karlsson, Magnus; Koenig, Wolfgang; Kraft, Peter; Kwekkeboom, Joanneke; Laatikainen, Tiina; Ladwig, Karl-Heinz; LeDuc, Charles A; Lowe, Gordon; Lu, Yingchang; Marques-Vidal, Pedro; Meisinger, Christa; Menni, Cristina; Morris, Andrew P; Myers, Richard H; Männistö, Satu; Nalls, Mike A; Paternoster, Lavinia; Peters, Annette; Pradhan, Aruna D; Rankinen, Tuomo; Rasmussen-Torvik, Laura J; Rathmann, Wolfgang; Rice, Treva K; Brent Richards, J; Ridker, Paul M; Sattar, Naveed; Savage, David B; Söderberg, Stefan; Timpson, Nicholas J; Vandenput, Liesbeth; van Heemst, Diana; Uh, Hae-Won; Vohl, Marie-Claude; Walker, Mark; Wichmann, Heinz-Erich; Widén, Elisabeth; Wood, Andrew R; Yao, Jie; Zeller, Tanja; Zhang, Yiying; Meulenbelt, Ingrid; Kloppenburg, Margreet; Astrup, Arne; Sørensen, Thorkild I A; Sarzynski, Mark A; Rao, D C; Jousilahti, Pekka; Vartiainen, Erkki; Hofman, Albert; Rivadeneira, Fernando; Uitterlinden, André G; Kajantie, Eero; Osmond, Clive; Palotie, Aarno; Eriksson, Johan G; Heliövaara, Markku; Knekt, Paul B; Koskinen, Seppo; Jula, Antti; Perola, Markus; Huupponen, Risto K; Viikari, Jorma S; Kähönen, Mika; Lehtimäki, Terho; Raitakari, Olli T; Mellström, Dan; Lorentzon, Mattias; Casas, Juan P; Bandinelli, Stefanie; März, Winfried; Isaacs, Aaron; van Dijk, Ko W; van Duijn, Cornelia M; Harris, Tamara B; Bouchard, Claude; Allison, Matthew A; Chasman, Daniel I; Ohlsson, Claes; Lind, Lars; Scott, Robert A; Langenberg, Claudia; Wareham, Nicholas J; Ferrucci, Luigi; Frayling, Timothy M; Pramstaller, Peter P; Borecki, Ingrid B; Waterworth, Dawn M; Bergmann, Sven; Waeber, Gérard; Vollenweider, Peter; Vestergaard, Henrik; Hansen, Torben; Pedersen, Oluf; Hu, Frank B; Eline Slagboom, P; Grallert, Harald; Spector, Tim D; Jukema, J W; Klein, Robert J; Schadt, Erik E; Franks, Paul W; Lindgren, Cecilia M; Leibel, Rudolph L; Loos, Ruth J F

    2016-02-01

    Leptin is an adipocyte-secreted hormone, the circulating levels of which correlate closely with overall adiposity. Although rare mutations in the leptin (LEP) gene are well known to cause leptin deficiency and severe obesity, no common loci regulating circulating leptin levels have been uncovered. Therefore, we performed a genome-wide association study (GWAS) of circulating leptin levels from 32,161 individuals and followed up loci reaching P<10(-6) in 19,979 additional individuals. We identify five loci robustly associated (P<5 × 10(-8)) with leptin levels in/near LEP, SLC32A1, GCKR, CCNL1 and FTO. Although the association of the FTO obesity locus with leptin levels is abolished by adjustment for BMI, associations of the four other loci are independent of adiposity. The GCKR locus was found associated with multiple metabolic traits in previous GWAS and the CCNL1 locus with birth weight. Knockdown experiments in mouse adipose tissue explants show convincing evidence for adipogenin, a regulator of adipocyte differentiation, as the novel causal gene in the SLC32A1 locus influencing leptin levels. Our findings provide novel insights into the regulation of leptin production by adipose tissue and open new avenues for examining the influence of variation in leptin levels on adiposity and metabolic health.

  2. Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels

    PubMed Central

    Kilpeläinen, Tuomas O.; Carli, Jayne F. Martin; Skowronski, Alicja A.; Sun, Qi; Kriebel, Jennifer; Feitosa, Mary F; Hedman, Åsa K.; Drong, Alexander W.; Hayes, James E.; Zhao, Jinghua; Pers, Tune H.; Schick, Ursula; Grarup, Niels; Kutalik, Zoltán; Trompet, Stella; Mangino, Massimo; Kristiansson, Kati; Beekman, Marian; Lyytikäinen, Leo-Pekka; Eriksson, Joel; Henneman, Peter; Lahti, Jari; Tanaka, Toshiko; Luan, Jian'an; Greco M, Fabiola Del; Pasko, Dorota; Renström, Frida; Willems, Sara M.; Mahajan, Anubha; Rose, Lynda M.; Guo, Xiuqing; Liu, Yongmei; Kleber, Marcus E.; Pérusse, Louis; Gaunt, Tom; Ahluwalia, Tarunveer S.; Ju Sung, Yun; Ramos, Yolande F.; Amin, Najaf; Amuzu, Antoinette; Barroso, Inês; Bellis, Claire; Blangero, John; Buckley, Brendan M.; Böhringer, Stefan; I Chen, Yii-Der; de Craen, Anton J. N.; Crosslin, David R.; Dale, Caroline E.; Dastani, Zari; Day, Felix R.; Deelen, Joris; Delgado, Graciela E.; Demirkan, Ayse; Finucane, Francis M.; Ford, Ian; Garcia, Melissa E.; Gieger, Christian; Gustafsson, Stefan; Hallmans, Göran; Hankinson, Susan E.; Havulinna, Aki S; Herder, Christian; Hernandez, Dena; Hicks, Andrew A.; Hunter, David J.; Illig, Thomas; Ingelsson, Erik; Ioan-Facsinay, Andreea; Jansson, John-Olov; Jenny, Nancy S.; Jørgensen, Marit E.; Jørgensen, Torben; Karlsson, Magnus; Koenig, Wolfgang; Kraft, Peter; Kwekkeboom, Joanneke; Laatikainen, Tiina; Ladwig, Karl-Heinz; LeDuc, Charles A.; Lowe, Gordon; Lu, Yingchang; Marques-Vidal, Pedro; Meisinger, Christa; Menni, Cristina; Morris, Andrew P.; Myers, Richard H.; Männistö, Satu; Nalls, Mike A.; Paternoster, Lavinia; Peters, Annette; Pradhan, Aruna D.; Rankinen, Tuomo; Rasmussen-Torvik, Laura J.; Rathmann, Wolfgang; Rice, Treva K.; Brent Richards, J; Ridker, Paul M.; Sattar, Naveed; Savage, David B.; Söderberg, Stefan; Timpson, Nicholas J.; Vandenput, Liesbeth; van Heemst, Diana; Uh, Hae-Won; Vohl, Marie-Claude; Walker, Mark; Wichmann, Heinz-Erich; Widén, Elisabeth; Wood, Andrew R.; Yao, Jie; Zeller, Tanja; Zhang, Yiying; Meulenbelt, Ingrid; Kloppenburg, Margreet; Astrup, Arne; Sørensen, Thorkild I. A.; Sarzynski, Mark A.; Rao, D. C.; Jousilahti, Pekka; Vartiainen, Erkki; Hofman, Albert; Rivadeneira, Fernando; Uitterlinden, André G.; Kajantie, Eero; Osmond, Clive; Palotie, Aarno; Eriksson, Johan G.; Heliövaara, Markku; Knekt, Paul B.; Koskinen, Seppo; Jula, Antti; Perola, Markus; Huupponen, Risto K.; Viikari, Jorma S.; Kähönen, Mika; Lehtimäki, Terho; Raitakari, Olli T.; Mellström, Dan; Lorentzon, Mattias; Casas, Juan P.; Bandinelli, Stefanie; März, Winfried; Isaacs, Aaron; van Dijk, Ko W.; van Duijn, Cornelia M.; Harris, Tamara B.; Bouchard, Claude; Allison, Matthew A.; Chasman, Daniel I.; Ohlsson, Claes; Lind, Lars; Scott, Robert A.; Langenberg, Claudia; Wareham, Nicholas J.; Ferrucci, Luigi; Frayling, Timothy M.; Pramstaller, Peter P.; Borecki, Ingrid B.; Waterworth, Dawn M.; Bergmann, Sven; Waeber, Gérard; Vollenweider, Peter; Vestergaard, Henrik; Hansen, Torben; Pedersen, Oluf; Hu, Frank B.; Eline Slagboom, P; Grallert, Harald; Spector, Tim D.; Jukema, J.W.; Klein, Robert J.; Schadt, Erik E; Franks, Paul W.; Lindgren, Cecilia M.; Leibel, Rudolph L.; Loos, Ruth J. F.

    2016-01-01

    Leptin is an adipocyte-secreted hormone, the circulating levels of which correlate closely with overall adiposity. Although rare mutations in the leptin (LEP) gene are well known to cause leptin deficiency and severe obesity, no common loci regulating circulating leptin levels have been uncovered. Therefore, we performed a genome-wide association study (GWAS) of circulating leptin levels from 32,161 individuals and followed up loci reaching P<10−6 in 19,979 additional individuals. We identify five loci robustly associated (P<5 × 10−8) with leptin levels in/near LEP, SLC32A1, GCKR, CCNL1 and FTO. Although the association of the FTO obesity locus with leptin levels is abolished by adjustment for BMI, associations of the four other loci are independent of adiposity. The GCKR locus was found associated with multiple metabolic traits in previous GWAS and the CCNL1 locus with birth weight. Knockdown experiments in mouse adipose tissue explants show convincing evidence for adipogenin, a regulator of adipocyte differentiation, as the novel causal gene in the SLC32A1 locus influencing leptin levels. Our findings provide novel insights into the regulation of leptin production by adipose tissue and open new avenues for examining the influence of variation in leptin levels on adiposity and metabolic health. PMID:26833098

  3. PPAR{alpha} does not suppress muscle-associated gene expression in brown adipocytes but does influence expression of factors that fingerprint the brown adipocyte

    SciTech Connect

    Walden, Tomas B.; Petrovic, Natasa; Nedergaard, Jan

    2010-06-25

    Brown adipocytes and myocytes develop from a common adipomyocyte precursor. PPAR{alpha} is a nuclear receptor important for lipid and glucose metabolism. It has been suggested that in brown adipose tissue, PPAR{alpha} represses the expression of muscle-associated genes, in this way potentially acting to determine cell fate in brown adipocytes. To further understand the possible role of PPAR{alpha} in these processes, we measured expression of muscle-associated genes in brown adipose tissue and brown adipocytes from PPAR{alpha}-ablated mice, including structural genes (Mylpf, Tpm2, Myl3 and MyHC), regulatory genes (myogenin, Myf5 and MyoD) and a myomir (miR-206). However, in our hands, the expression of these genes was not influenced by the presence or absence of PPAR{alpha}, nor by the PPAR{alpha} activator Wy-14,643. Similarly, the expression of genes common for mature brown adipocyte and myocytes (Tbx15, Meox2) were not affected. However, the brown adipocyte-specific regulatory genes Zic1, Lhx8 and Prdm16 were affected by PPAR{alpha}. Thus, it would not seem that PPAR{alpha} represses muscle-associated genes, but PPAR{alpha} may still play a role in the regulation of the bifurcation of the adipomyocyte precursor into a brown adipocyte or myocyte phenotype.

  4. Phytanic acid, a novel activator of uncoupling protein-1 gene transcription and brown adipocyte differentiation.

    PubMed Central

    Schlüter, Agatha; Barberá, Maria José; Iglesias, Roser; Giralt, Marta; Villarroya, Francesc

    2002-01-01

    Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) is a phytol-derived branched-chain fatty acid present in dietary products. Phytanic acid increased uncoupling protein-1 (UCP1) mRNA expression in brown adipocytes differentiated in culture. Phytanic acid induced the expression of the UCP1 gene promoter, which was enhanced by co-transfection with a retinoid X receptor (RXR) expression vector but not with other expression vectors driving peroxisome proliferator-activated receptor (PPAR)alpha, PPARgamma or a form of RXR devoid of ligand-dependent sensitivity. The effect of phytanic acid on the UCP1 gene required the 5' enhancer region of the gene and the effects of phytanic acid were mediated in an additive manner by three binding sites for RXR. Moreover, phytanic acid activates brown adipocyte differentiation: long-term exposure of brown preadipocytes to phytanic acid promoted the acquisition of the brown adipocyte morphology and caused a co-ordinate induction of the mRNAs for gene markers of brown adipocyte differentiation, such as UCP1, adipocyte lipid-binding protein aP2, lipoprotein lipase, the glucose transporter GLUT4 or subunit II of cytochrome c oxidase. In conclusion, phytanic acid is a natural product of phytol metabolism that activates brown adipocyte thermogenic function. It constitutes a potential nutritional signal linking dietary status to adaptive thermogenesis. PMID:11829740

  5. Sex steroids stimulate leptin gene expression in Atlantic salmon parr hepatocytes in vitro.

    PubMed

    Trombley, Susanne; Rocha, Ana; Schmitz, Monika

    2015-09-15

    In mammals, leptin plays an important role in puberty and reproduction and leptin is regulated by sex steroids. Elevated leptin levels have been associated with sexual maturation in some teleosts such as Atlantic salmon. In the present study, primary cultures of Atlantic salmon hepatocytes were used to investigate the direct effects of different sex steroids on expression of the two salmon leptin-a genes, lepa1 and lepa2. Testosterone (T) stimulated both lepa1 and lepa2 in a dose dependent manner after four days of incubation. The stimulatory effect of T on leptin expression was not prevented by co-incubation with the aromatase inhibitor fadrozole, indicating a direct androgen effect on transcription. The non-aromatizable androgen 11-ketotestosterone (11-KT), which is the main androgen in fish, was generally slightly less potent than T in stimulating lepa1 and lepa2. The strongest stimulatory response was seen for 17β-estradiol (E2). E2 treatment significantly up-regulated lepa1 and lepa2 gene expression at doses of 10nM and 1nM for each gene, respectively. Lepa1, but not lepa2, was stimulated by T and 11-KT in immature male and immature female parr, while E2 stimulated expression of both genes. The sensitivity to sex steroid stimulation differed in maturing males compared to immature. In maturing males, the androgens and E2 stimulated lepa2 but not lepa1, while in immature males, the androgens and E2 stimulated lepa1, but only E2 stimulated lepa2. The differential response of the two leptin paralogues to the sex steroids suggests differences in regulation of the two leptin genes during maturation. Altogether, these results indicate that leptin expression in Atlantic salmon hepatocytes is directly regulated at the transcriptional level by the main teleost androgens and an estrogen, and that the response might depend on the developmental stage of the fish.

  6. The Association of Polymorphisms in Leptin/Leptin Receptor Genes and Ghrelin/Ghrelin Receptor Genes With Overweight/Obesity and the Related Metabolic Disturbances: A Review

    PubMed Central

    Ghalandari, Hamid; Hosseini-Esfahani, Firoozeh; Mirmiran, Parvin

    2015-01-01

    Context: Leptin and ghrelin are two important appetite and energy balance-regulating peptides. Common polymorphisms in the genes coding these peptides and their related receptors are shown to be associated with body weight, different markers of obesity and metabolic abnormalities. This review article aims to investigate the association of common polymorphisms of these genes with overweight/obesity and the metabolic disturbances related to it. Evidence Acquisition: The keywords leptin, ghrelin, polymorphism, single-nucleotide polymorphism (SNP), obesity, overweight, Body Mass Index, metabolic syndrome, and type 2 diabetes mellitus (T2DM) (MeSH headings) were used to search in the following databases: Pubmed, Sciencedirect (Elsevier), and Google scholar. Overall, 24 case-control studies, relevant to our topic, met the criteria and were included in the review. Results: The most prevalent leptin/leptin receptor genes (LEP/LEPR) and ghrelin/ghrelin receptor genes (GHRL/GHSR) single nucleotide polymorphisms studied were LEP G-2548A, LEPR Q223R, and Leu72Met, respectively. Nine studies of the 17 studies on LEP/LEPR, and three studies of the seven studies on GHRL/GHSR showed significant relationships. Conclusions: In general, our study suggests that the association between LEP/LEPR and GHRL/GHSR with overweight/obesity and the related metabolic disturbances is inconclusive. These results may be due to unidentified gene-environment interactions. More investigations are needed to further clarify this association. PMID:26425125

  7. Hypothalamic leptin gene therapy reduces body weight without accelerating age-related bone loss.

    PubMed

    Turner, Russell T; Dube, Michael; Branscum, Adam J; Wong, Carmen P; Olson, Dawn A; Zhong, Xiaoying; Kweh, Mercedes F; Larkin, Iske V; Wronski, Thomas J; Rosen, Clifford J; Kalra, Satya P; Iwaniec, Urszula T

    2015-12-01

    Excessive weight gain in adults is associated with a variety of negative health outcomes. Unfortunately, dieting, exercise, and pharmacological interventions have had limited long-term success in weight control and can result in detrimental side effects, including accelerating age-related cancellous bone loss. We investigated the efficacy of using hypothalamic leptin gene therapy as an alternative method for reducing weight in skeletally-mature (9 months old) female rats and determined the impact of leptin-induced weight loss on bone mass, density, and microarchitecture, and serum biomarkers of bone turnover (CTx and osteocalcin). Rats were implanted with cannulae in the 3rd ventricle of the hypothalamus and injected with either recombinant adeno-associated virus encoding the gene for rat leptin (rAAV-Leptin, n=7) or a control vector encoding green fluorescent protein (rAAV-GFP, n=10) and sacrificed 18 weeks later. A baseline control group (n=7) was sacrificed at vector administration. rAAV-Leptin-treated rats lost weight (-4±2%) while rAAV-GFP-treated rats gained weight (14±2%) during the study. At study termination, rAAV-Leptin-treated rats weighed 17% less than rAAV-GFP-treated rats and had lower abdominal white adipose tissue weight (-80%), serum leptin (-77%), and serum IGF1 (-34%). Cancellous bone volume fraction in distal femur metaphysis and epiphysis, and in lumbar vertebra tended to be lower (P<0.1) in rAAV-GFP-treated rats (13.5 months old) compared to baseline control rats (9 months old). Significant differences in cancellous bone or biomarkers of bone turnover were not detected between rAAV-Leptin and rAAV-GFP rats. In summary, rAAV-Leptin-treated rats maintained a lower body weight compared to baseline and rAAV-GFP-treated rats with minimal effects on bone mass, density, microarchitecture, or biochemical markers of bone turnover.

  8. Discovery of a novel functional leptin protein (LEP) in zebra finches: evidence for the existence of an authentic avian leptin gene predominantly expressed in the brain and pituitary.

    PubMed

    Huang, Guian; Li, Juan; Wang, Hongning; Lan, Xinyu; Wang, Yajun

    2014-09-01

    Leptin (LEP) is reported to play important roles in controlling energy balance in vertebrates, including birds. However, it remains an open question whether an authentic "LEP gene" exists and functions in birds. Here, we identified and characterized a LEP gene (zebra finch LEP [zbLEP]) encoding a 172-amino acid precursor in zebra finches. Despite zbLEP showing limited amino acid sequence identity (26%-29%) to human and mouse LEPs, synteny analysis proved that zbLEP is orthologous to mammalian LEP. Using a pAH32 luciferase reporter system and Western blot analysis, we demonstrated that the recombinant zbLEP protein could potently activate finch and chicken LEP receptors (zbLEPR; cLEPR) expressed in human embryonic kidney 293 cells and enhance signal transducer and activator of transcription 3 phosphorylation, further indicating that zbLEP is a functional ligand for avian LEPRs. Interestingly, quantitative real-time RT-PCR revealed that zbLEP mRNA is expressed nearly exclusively in the pituitary and various brain regions but undetectable in adipose tissue and liver, whereas zbLEPR mRNA is widely expressed in adult finch tissues examined with abundant expression noted in pituitary, implying that unlike mammalian LEP, finch LEP may not act as an adipocyte-derived signal to control energy balance. As in finches, a LEP highly homologous to zbLEP was also identified in budgerigar genome. Strikingly, finch and budgerigar LEPs show little homology with chicken LEP (cLEP) previously reported, suggesting that the so-called cLEP is incorrect. Collectively, our data provide convincing evidence for the existence of an authentic functional LEP in avian species and suggest an important role of brain- and pituitary-derived LEP played in vertebrates.

  9. Oligopeptide complex for targeted non-viral gene delivery to adipocytes

    NASA Astrophysics Data System (ADS)

    Won, Young-Wook; Adhikary, Partho Protim; Lim, Kwang Suk; Kim, Hyung Jin; Kim, Jang Kyoung; Kim, Yong-Hee

    2014-12-01

    Commercial anti-obesity drugs acting in the gastrointestinal tract or the central nervous system have been shown to have limited efficacy and severe side effects. Anti-obesity drug development is thus focusing on targeting adipocytes that store excess fat. Here, we show that an adipocyte-targeting fusion-oligopeptide gene carrier consisting of an adipocyte-targeting sequence and 9-arginine (ATS-9R) selectively transfects mature adipocytes by binding to prohibitin. Injection of ATS-9R into obese mice confirmed specific binding of ATS-9R to fat vasculature, internalization and gene expression in adipocytes. We also constructed a short-hairpin RNA (shRNA) for silencing fatty-acid-binding protein 4 (shFABP4), a key lipid chaperone in fatty-acid uptake and lipid storage in adipocytes. Treatment of obese mice with ATS-9R/shFABP4 led to metabolic recovery and body-weight reduction (>20%). The ATS-9R/shFABP4 oligopeptide complex could prove to be a safe therapeutic approach to regress and treat obesity as well as obesity-induced metabolic syndromes.

  10. Leptin and its receptor in hematologic malignancies

    PubMed Central

    Han, Tian-Jie; Wang, Xin

    2015-01-01

    Leptin is an adipocyte-derived cytokine coded by the obese gene, not only regulates metabolism, but also participates in hematopoiesis. Aberrant leptin levels in patients with hematologic malignancies were observed and associates with clinical characters, such as body mass index (BMI), gender, blast cell percentage. Leptin concentrations alter while diseases progress or remission. Leptin receptor is expressed in hematopoietic CD34+ stem cells, erythrocytes, lymphocytes, blast cells and samples in leukemia and lymphoma patients. The adipokine stimulates cell proliferation, cytokine secretion and protects malignant cells from apoptosis through Janus kinase-signal transducer and activator of transcription (JAK-STAT), mitogen-activated protein kinase and extracellular signal activated kinase 1/2 (MAPK/ERK1/2), or 3 kinase (PI3K) signaling pathways. These findings indicate leptin signaling possibility take part in occurrence, progression and prognosis of hematologic malignancies. This article reviews leptin/leptin receptor expression and the correlations with clinical characters, treatment and prognosis in myeloid and lymphoid neoplasms. PMID:26884894

  11. Two leptin genes and a leptin receptor gene of female chub mackerel (Scomber japonicus): Molecular cloning, tissue distribution and expression in different obesity indices and pubertal stages.

    PubMed

    Ohga, Hirofumi; Matsumori, Kojiro; Kodama, Ryoko; Kitano, Hajime; Nagano, Naoki; Yamaguchi, Akihiko; Matsuyama, Michiya

    2015-10-01

    Leptin is a hormone produced by fat cells that regulates the amount of fat stored in the body and conveys nutritional status to the reproductive axis in mammals. In the present study we identified two subtypes of leptin genes (lepa and lepb) and a leptin receptor gene (lepr) from chub mackerel (Scomber japonicus) and there gene expression under different feeding conditions (control and high-feed) and pubertal development stages was analyzed using quantitative real-time PCR. The protein lengths of LepA, LepB and LepR were 161 amino acids (aa), 163 aa and 1149 aa, respectively and both leptin subtypes shared only 15% similarity in aa sequences. In pubertal females, lepa was expressed in the brain, pituitary gland, liver, adipose tissue and ovary; however, in adult (gonadal maturation after the second in the life) females, lepa was expressed only in the liver. lepb was expressed primarily in the brain of all fish tested and was expressed strongly in the adipose tissue of adults. lepr was characterized by expression in the pituitary. The high-feed group showed a high conditioning factor level; unexpectedly, hepatic lepa and brain lepr were significantly more weakly expressed compared with the control-feed group. Furthermore, the expression levels of lepa, lepb and lepr genes showed no significant differences between pre-pubertal and post-pubertal fish. On the other hand, pituitary fshβ and lhβ showed no significant differences between different feeding groups of pre-pubertal fish. In contrast, fshβ and lhβ expressed abundantly in the post-pubertal fish of control feed group. Based on these results, whether leptin plays an important role in the nutritional status and pubertal onset of chub mackerel remains unknown.

  12. Gene expression profiling in multipotent DFAT cells derived from mature adipocytes

    SciTech Connect

    Ono, Hiromasa; Oki, Yoshinao; Bono, Hidemasa; Kano, Koichiro

    2011-04-15

    Highlights: {yields} Adipocyte dedifferentiation is evident in a significant decrease in typical genes. {yields} Cell proliferation is strongly related to adipocyte dedifferentiation. {yields} Dedifferentiated adipocytes express several lineage-specific genes. {yields} Comparative analyses using publicly available datasets boost the interpretation. -- Abstract: Cellular dedifferentiation signifies the withdrawal of cells from a specific differentiated state to a stem cell-like undifferentiated state. However, the mechanism of dedifferentiation remains obscure. Here we performed comparative transcriptome analyses during dedifferentiation in mature adipocytes (MAs) to identify the transcriptional signatures of multipotent dedifferentiated fat (DFAT) cells derived from MAs. Using microarray systems, we explored similarly expressed as well as significantly differentially expressed genes in MAs during dedifferentiation. This analysis revealed significant changes in gene expression during this process, including a significant reduction in expression of genes for lipid metabolism concomitantly with a significant increase in expression of genes for cell movement, cell migration, tissue developmental processes, cell growth, cell proliferation, cell morphogenesis, altered cell shape, and cell differentiation. Our observations indicate that the transcriptional signatures of DFAT cells derived from MAs are summarized in terms of a significant decrease in functional phenotype-related genes and a parallel increase in cell proliferation, altered cell morphology, and regulation of the differentiation of related genes. A better understanding of the mechanisms involved in dedifferentiation may enable scientists to control and possibly alter the plasticity of the differentiated state, which may lead to benefits not only in stem cell research but also in regenerative medicine.

  13. Leptin promotes cell proliferation and survival of trophoblastic cells.

    PubMed

    Magariños, María Paula; Sánchez-Margalet, Víctor; Kotler, Mónica; Calvo, Juan Carlos; Varone, Cecilia L

    2007-02-01

    Leptin, the 16-kDa protein product of the obese gene, was originally considered as an adipocyte-derived signaling molecule for the central control of metabolism. However, leptin has been suggested to be involved in other functions during pregnancy, particularly in placenta. In the present work, we studied a possible effect of leptin on trophoblastic cell proliferation, survival, and apoptosis. Recombinant human leptin added to JEG-3 and BeWo choriocarcinoma cell lines showed a stimulatory effect on cell proliferation up to 3 and 2.4 times, respectively, measured by (3)H-thymidine incorporation and cell counting. These effects were time and dose dependent. Maximal effect was achieved at 250 ng leptin/ml for JEG-3 cells and 50 ng leptin/ml for BeWo cells. Moreover, by inhibiting endogenous leptin expression with 2 microM of an antisense oligonucleotide (AS), cell proliferation was diminished. We analyzed cell population distribution during the different stages of cell cycle by fluorescence-activated cell sorting, and we found that leptin treatment displaced the cells towards a G2/M phase. We also found that leptin upregulated cyclin D1 expression, one of the key cell cycle-signaling proteins. Since proliferation and death processes are intimately related, the effect of leptin on cell apoptosis was investigated. Treatment with 2 microM leptin AS increased the number of apoptotic cells 60 times, as assessed by annexin V-fluorescein isothiocyanate/propidium iodide staining, and the caspase-3 activity was increased more than 2 fold. This effect was prevented by the addition of 100 ng leptin/ml. In conclusion, we provide evidence that suggests that leptin is a trophic and mitogenic factor for trophoblastic cells by virtue of its inhibiting apoptosis and promoting proliferation. PMID:17021346

  14. Human adipocytes are highly sensitive to intermittent hypoxia induced NF-kappaB activity and subsequent inflammatory gene expression

    SciTech Connect

    Taylor, Cormac T.; Kent, Brian D.; Crinion, Sophie J.; McNicholas, Walter T.; Ryan, Silke

    2014-05-16

    Highlights: • Intermittent hypoxia (IH) leads to NF-κB activation in human primary adipocytes. • Adipocytes bear higher pro-inflammatory potential than other human primary cells. • IH leads to upregulation of multiple pro-inflammatory genes in human adipocytes. - Abstract: Introduction: Intermittent hypoxia (IH)-induced activation of pro-inflammatory pathways is a major contributing factor to the cardiovascular pathophysiology associated with obstructive sleep apnea (OSA). Obesity is commonly associated with OSA although it remains unknown whether adipose tissue is a major source of inflammatory mediators in response to IH. The aim of this study was to test the hypothesis that IH leads to augmented inflammatory responses in human adipocytes when compared to cells of non-adipocyte lineages. Methods and results: Human primary subcutaneous and visceral adipocytes, human primary microvascular pulmonary endothelial cells (HUMEC-L) and human primary small airway epithelial cells (SAEC) were exposed to 0, 6 or 12 cycles of IH or stimulated with tumor necrosis factor (TNF)-α. IH led to a robust increase in NF-κB DNA-binding activity in adipocytes compared with normoxic controls regardless of whether the source of adipocytes was visceral or subcutaneous. Notably, the NF-κB response of adipocytes to both IH and TNF-α was significantly greater than that in HUMEC-L and SAEC. Western blotting confirmed enhanced nuclear translocation of p65 in adipocytes in response to IH, accompanied by phosphorylation of I-κB. Parallel to p65 activation, we observed a significant increase in secretion of the adipokines interleukin (IL)-8, IL-6 and TNF-α with IH in adipocytes accompanied by significant upregulation of mRNA expression. PCR-array suggested profound influence of IH on pro-inflammatory gene expression in adipocytes. Conclusion: Human adipocytes demonstrate strong sensitivity to inflammatory gene expression in response to acute IH and hence, adipose tissue may be a key

  15. Gene structure, recombinant expression and functional characterization of grass carp leptin.

    PubMed

    Li, Guan-Gui; Liang, Xu-Fang; Xie, Qiuling; Li, Guangzhao; Yu, Ying; Lai, Kaaseng

    2010-03-01

    Leptin is an important hormone for the regulation of food intake, energy expenditure and reproduction in mammals, but information regarding its role in teleosts remains scant. In the present study, the gene structures of grass carp (Ctenopharyngodon idellus) and silver carp (Hypophthalmichthys molitrix) leptins were characterized. Recombinant grass carp leptin (rgc-LEP) was expressed in Escherichia coli and purified, and identified by mass spectrometric analysis. A strong anorexic effect on food intake was observed in grass carp on the first day after intraperitoneal (IP) injection of rgc-LEP, but not during the following days. Body weight of the leptin group (LEP group) and the pair-fed group (PF group) showed no difference throughout the experimental period. The acute and chronic effects on the expression of key genes correlating to food intake, energy expenditure, lipid metabolism and digestion were further characterized by real-time PCR. Accordingly, the mRNA levels of neuropeptide Y (NPY), Stearoyl-CoA desaturase 1 (SCD1) and lipoprotein lipase (LPL) were significantly reduced whereas the mRNA levels of uncoupling protein 2 (UCP2), bile salt-activated lipase (BSAL) and fatty acid elongase (ELO) were significantly elevated on the first day after injection. No effect on the expression of these genes (except LPL) was observed on day 13. In contrast to the down-regulation by exogenous leptin in mammals, the mRNA level of grass carp leptin was elevated 5.76-fold on the first day after rgc-LEP treatment. Our results suggest that leptin has an acute effect on the regulation of food intake, energy expenditure and lipid metabolism in grass carp, but the effect can be rapidly counteracted through mechanisms that are currently unknown.

  16. Cadmium modulates adipocyte functions in metallothionein-null mice

    SciTech Connect

    Kawakami, Takashige; Nishiyama, Kaori; Kadota, Yoshito; Sato, Masao; Inoue, Masahisa; Suzuki, Shinya

    2013-11-01

    Our previous study has demonstrated that exposure to cadmium (Cd), a toxic heavy metal, causes a reduction of adipocyte size and the modulation of adipokine expression. To further investigate the significance of the Cd action, we studied the effect of Cd on the white adipose tissue (WAT) of metallothionein null (MT{sup −/−}) mice, which cannot form atoxic Cd–MT complexes and are used for evaluating Cd as free ions, and wild type (MT{sup +/+}) mice. Cd administration more significantly reduced the adipocyte size of MT{sup −/−} mice than that of MT{sup +/+} mice. Cd exposure also induced macrophage recruitment to WAT with an increase in the expression level of Ccl2 (MCP-1) in the MT{sup −/−} mice. The in vitro exposure of Cd to adipocytes induce triglyceride release into culture medium, decrease in the expression levels of genes involved in fatty acid synthesis and lipid hydrolysis at 24 h, and at 48 h increase in phosphorylation of the lipid-droplet-associated protein perilipin, which facilitates the degradation of stored lipids in adipocytes. Therefore, the reduction in adipocyte size by Cd may arise from an imbalance between lipid synthesis and lipolysis. In addition, the expression levels of leptin, adiponectin and resistin decreased in adipocytes. Taken together, exposure to Cd may induce unusually small adipocytes and modulate the expression of adipokines differently from the case of physiologically small adipocytes, and may accelerate the risk of developing insulin resistance and type 2 diabetes. - Highlights: • Cd causes a marked reduction in adipocyte size in MT-null mice. • Cd enhances macrophage migration into adipose tissue and disrupt adipokine secretion. • MT gene alleviates Cd-induced adipocyte dysfunctions. • Cd enhances the degradation of stored lipids in adipocytes, mediated by perilipin. • Cd induces unusually small adipocytes and the abnormal expression of adipokines.

  17. Leptin and leptin receptor gene polymorphisms and their association with plasma leptin levels and obesity in a multi-ethnic Malaysian suburban population

    PubMed Central

    2014-01-01

    Background This study was to investigate the prevalence of single nucleotide polymorphisms (SNPs) in leptin gene LEP (A19G and G2548A) and leptin receptor gene LEPR (K109R and Q223R) and their association with fasting plasma leptin level (PLL) and obesity in a Malaysian suburban population in Kampar, Perak. Methods Convenience sampling was performed with informed consents, and the study sample was drawn from patients who were patrons of the Kampar Health Clinic. A total of 408 subjects (mean age, 52.4 ± 13.7 years; 169 men, 239 women; 190 obese, 218 non-obese; 148 Malays, 177 ethnic Chinese, 83 ethnic Indians) participated. Socio-demographic data and anthropometric measurements were taken, and genotyping was performed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Results The LEP A19G, G2548A and LEPR K109R, Q223R variant allele frequencies were 0.74, 0.67 and 0.61, 0.79, respectively. The genotype and allele distributions of these gene variants were significantly different among ethnic groups, but not among body mass index (BMI) classes. Subjects with LEPR K109 and Q223 allele had significantly higher systolic blood pressure and adiposity indices after adjustment for ethnicity (higher BMI, total body and subcutaneous fat; lower skeletal muscle percentage). Subjects with LEPR 109R allele had lower PLL than their wild-type allele counterparts. The influence of LEP A19G and G2548A SNPs on blood pressures, anthropometrics, and PLL was not evident. Interestingly, synergistic effect of the LEP and LEPR SNPs was observed as subjects homozygous for all four SNPs studied exhibited significantly higher subcutaneous fat and PLL than those with other genotype combinations. Conclusions The LEP and LEPR SNPs in this study may not be an obesity marker among Malaysians in this population, but were associated with ethnicity. Our findings suggest that each of these SNPs contributes to minor but significant variation in obesity

  18. Experimental Model to Study the Role of Retinoblastoma Gene Product (pRb) for Determination of Adipocyte Differentiation.

    PubMed

    Popov, B V; Shilo, P S; Zhidkova, O V; Zaichik, A M; Petrov, N S

    2015-06-01

    Using stable constitutive expression of retinoblastoma gene product (pRb) in polypotent mesenchymal 10T1/2 cells we obtained stable cell lines hyperexpressing functionally active or inactive mutant pRb. The cells producing active exogenous pRb demonstrated high sensitivity to adipocyte differentiation inductors, whereas production of inactive form of the exogenous protein suppressed adipocyte differentiation. The obtained lines can serve as the experimental model for studying the role of pRb in determination of adipocyte differentiation.

  19. Molecular cloning, characterization and expression profiles of multiple leptin genes and a leptin receptor gene in orange-spotted grouper (Epinephelus coioides).

    PubMed

    Zhang, Huixian; Chen, Huapu; Zhang, Yong; Li, Shuisheng; Lu, Danqi; Zhang, Haifa; Meng, Zining; Liu, Xiaochun; Lin, Haoran

    2013-01-15

    Leptin plays key roles in body weight regulation, energy metabolism, food intake, reproduction and immunity in mammals. However, its function in teleosts is still unclear. In the present study, two leptin genes (gLepA and gLepB) and one leptin receptor gene (gLepR) were cloned and characterized in orange-spotted grouper (Epinephelus coioides). The cDNAs of gLepA and gLepB were 671 bp and 684 bp in length, encoding for proteins of 161 amino acid (aa) and 158 aa, respectively. The three-dimensional (3D) structures modeling of gLepA and gLepB showed strong conservation of tertiary structure with that of other vertebrates. The total length of gLepR cDNA was 4242 bp, encoding a protein of 1169 aa which contained all functionally important domains conserved among vertebrate LEPR. Tissue distribution analysis showed that gLepA was highly expressed in cerebellum, liver and ovary, while gLepB mRNA abundantly in the brain regions, as well as in the ovary with some extend. The gLepR was mainly expressed in kidney, head kidney and most of brain regions. Analysis of expression profiles of gLep and gLepR genes during the embryonic stages showed that high expression of gLepR was observed in the brain vesicle stage, while neither gLepA nor gLepB mRNA was detected during different embryonic stages. Finally, fasting and refeeding experiments were carried out to investigate the possible function of leptin genes in food intake and energy metabolism, and the results showed that a significant increase of gLepA expression in the liver was induced by food deprivation in both short-term (7 days) and long-term (3 weeks) fasting and gLepA mRNA upregulation was eliminated after refeeding, while gLepB wasn't detected in the liver of grouper during fasting. No significant differences in hypothalamic leptin and leptin receptor expression were found during short-term fasting and refeeding. Hepatic expression of gLepA mRNA increased significantly 9h after a single meal. These results suggested g

  20. Leptin activates chicken growth hormone promoter without chicken STAT3 in vitro.

    PubMed

    Murase, Daisuke; Namekawa, Shoko; Ohkubo, Takeshi

    2016-01-01

    Leptin is an adipocyte-derived hormone that not only regulates food intake and energy homeostasis but also induces growth hormone (GH) mRNA expression and release, thereby controlling growth and metabolism in mammals. The molecular mechanism of leptin-induced regulation of GH gene transcription is unclear. The current study investigated the effects of leptin on the chicken GH (cGH) promoter and the molecular mechanism underlying leptin-induced cGH gene expression in vitro. Leptin activated the cGH promoter in the presence of chPit-1α in CHO cells stably expressing the chicken leptin receptor. Promoter activation did not require STAT-binding elements in the cGH promoter or STAT3 activity. However, JAK2 activation was required for leptin-dependent activity. JAK2-dependent pathways include p42/44 MAPK and PI3K, and inhibition of these pathways partially blocked leptin-induced cGH gene transcription. Although CK2 directly activates JAK2, a CK2 inhibitor blocked leptin-dependent activation of the cGH gene without affecting JAK2 phosphorylation. The CK2 inhibitor suppressed Erk1/2 and Akt phosphorylation. Additional data implicate Src family kinases in leptin-dependent cGH gene activation. These results suggest that leptin activates the cGH gene in the presence of chPit-1α via several leptin-activated kinases. Although further study is required, we suggest that the leptin-induced JAK2/p42/44 MAPK and JAK2/PI3K cascades are activated by Src-meditated CK2, leading to CBP phosphorylation and interaction with chPit-1α, resulting in transactivation of the cGH promoter.

  1. Effect of leptin gene polymorphisms on growth, slaughter and meat quality traits of grazing Brangus steers.

    PubMed

    Corva, P M; Fernández Macedo, G V; Soria, L A; Papaleo Mazzucco, J; Motter, M; Villarreal, E L; Schor, A; Mezzadra, C A; Melucci, L M; Miquel, M C

    2009-01-01

    Leptin is a hormone that affects the regulation of feed intake, energy balance and body composition in mammals. Several polymorphisms in the bovine leptin gene have been associated with phenotypic variance of these traits. We evaluated two known single nucleotide polymorphisms (SNPs) in the leptin gene of 253 grazing Brangus steers. Brangus is a 5/8 Angus-3/8 Brahman composite. Data were collected during two consecutive growth/fattening cycles from two farms in southeast Buenos Aires province, Argentina. One of the markers is in the promoter region of the gene (SNP1) and the other is a non-synonymous polymorphism in exon 2 (SNP2). The traits that we evaluated were live weight gain in the spring, gain in backfat thickness in the spring, final live weight, final ultrasound backfat thickness, final ultrasound rib eye area, carcass weight and length, carcass yield, kidney fat, kidney fat percentage, backfat thickness, rib eye area, and intramuscular fat percentage. Both markers affected some meat traits; though the only significant associations were of SNP1 with ultrasound rib eye area and of SNP2 with carcass yield and backfat thickness. Under the same conditions as in the present study, leptin markers could be of help only as part of a larger genotyping panel including other relevant genes. PMID:19283678

  2. Characterization of leptin receptor gene in Bubalus bubalis and association analysis with body measurement traits.

    PubMed

    De Matteis, Giovanna; Scatà, Maria Carmela; Catillo, Gennaro; Terzano, Giuseppina Maria; Grandoni, Francesco; Napolitano, Francesco

    2015-06-01

    Leptin has a pleiotropic effect on regulating appetite, energy metabolism, growth, reproduction, body composition and immunity. This property supports leptin and its receptor as candidate genes for evaluating genetic polymorphisms to associate with growth, milk yield and other economic traits. The aim of this study is to characterize the leptin receptor gene in Bubalus bubalis, to identify single-nucleotide polymorphism (SNP) sites in different coding and non-coding regions and to analyse potential associations between SNPs identified and the body measurements traits of growing buffalo heifers. A group of 64 animals were genotyped by direct sequencing and twenty-eight SNPs were detected. A sequence analysis revealed the presence of nine interesting SNPs in gene sequence. The association analysis of polymorphisms with the body measurements traits of growing buffalo heifers shows significant statistical effects on chest depth and sacrum height. Therefore according to the results obtained from this study, the leptin receptor gene appears to have potential effects on the body measurement traits of Bubalus bubalis. PMID:25431006

  3. Effect of leptin gene polymorphisms on growth, slaughter and meat quality traits of grazing Brangus steers.

    PubMed

    Corva, P M; Fernández Macedo, G V; Soria, L A; Papaleo Mazzucco, J; Motter, M; Villarreal, E L; Schor, A; Mezzadra, C A; Melucci, L M; Miquel, M C

    2009-02-03

    Leptin is a hormone that affects the regulation of feed intake, energy balance and body composition in mammals. Several polymorphisms in the bovine leptin gene have been associated with phenotypic variance of these traits. We evaluated two known single nucleotide polymorphisms (SNPs) in the leptin gene of 253 grazing Brangus steers. Brangus is a 5/8 Angus-3/8 Brahman composite. Data were collected during two consecutive growth/fattening cycles from two farms in southeast Buenos Aires province, Argentina. One of the markers is in the promoter region of the gene (SNP1) and the other is a non-synonymous polymorphism in exon 2 (SNP2). The traits that we evaluated were live weight gain in the spring, gain in backfat thickness in the spring, final live weight, final ultrasound backfat thickness, final ultrasound rib eye area, carcass weight and length, carcass yield, kidney fat, kidney fat percentage, backfat thickness, rib eye area, and intramuscular fat percentage. Both markers affected some meat traits; though the only significant associations were of SNP1 with ultrasound rib eye area and of SNP2 with carcass yield and backfat thickness. Under the same conditions as in the present study, leptin markers could be of help only as part of a larger genotyping panel including other relevant genes.

  4. Altered adipocyte structure and function in nutritionally programmed microswine offspring

    PubMed Central

    DuPriest, E. A.; Kupfer, P.; Lin, B.; Sekiguchi, K.; Morgan, T. K.; Saunders, K. E.; Chatkupt, T. T.; Denisenko, O. N.; Purnell, J. Q.; Bagby, S. P.

    2015-01-01

    Adipose tissue (AT) dysfunction links obesity of any cause with cardiometabolic disease, but whether early-life nutritional deficiency can program adipocyte dysfunction independently of obesity is untested. In 3–5-month-old juvenile microswine offspring exposed to isocaloric perinatal maternal protein restriction (MPR) and exhibiting accelerated prepubertal fat accrual without obesity, we assessed markers of acquired obesity: adiponectin and tumor necrosis factor (TNF)-α messenger ribonucleic acid (mRNA) levels and adipocyte size in intra-abdominal (ABD-AT) and subcutaneous (SC-AT) adipose tissues. Plasma cortisol, leptin and insulin levels were measured in fetal, neonatal and juvenile offspring. In juvenile low-protein offspring (LPO), adipocyte size in ABD-AT was reduced 22% (P=0.011 v. controls), whereas adipocyte size in SC-AT was increased in female LPO (P=0.05) and normal in male LPO; yet, adiponectin mRNA in LPO was low in both sexes and in both depots (P<0.001). Plasma leptin (P=0.004) and cortisol (P<0.05) were reduced only in neonatal LPO during MPR. In juveniles, correlations between % body fat and adiponectin mRNA, TNF-α mRNA or plasma leptin were significant in normal-protein offspring (NPO) but absent in LPO. Plasma glucose in juvenile LPO was increased in males but decreased in females (interaction, P=0.023); plasma insulin levels and insulin sensitivity were unaffected. Findings support nutritional programming of adipocyte size and gene expression and subtly altered glucose homeostasis. Reduced adiponectin mRNA and adipokine dysregulation in juvenile LPO following accelerated growth occurred independently of obesity, adipocyte hypertrophy or inflammatory markers; thus, perinatal MPR and/or growth acceleration can alter adipocyte structure and disturb adipokine homeostasis in metabolically adverse patterns predictive of enhanced disease risk. PMID:25102010

  5. Interaction between HMGA1 and retinoblastoma protein is required for adipocyte differentiation.

    PubMed

    Esposito, Francesco; Pierantoni, Giovanna Maria; Battista, Sabrina; Melillo, Rosa Marina; Scala, Stefania; Chieffi, Paolo; Fedele, Monica; Fusco, Alfredo

    2009-09-18

    It is generally accepted that the regulation of adipogenesis prevents obesity. However, the mechanisms controlling adipogenesis have not been completely defined. We have previously demonstrated that HMGA1 proteins play a critical role in adipogenesis. In fact, suppression of HMGA1 protein synthesis by antisense technology dramatically increased growth rate and impaired adipocyte differentiation in 3T3-L1 cells. Furthermore, we showed that HMGA1 strongly potentiates the capacity of the CCAAT/enhancer-binding protein beta (C/EBPbeta) transcriptional factor to transactivate the leptin promoter, an adipocytic-specific promoter. In this study we demonstrate that HMGA1 physically interacts with retinoblastoma protein (RB), which is also required in adipocyte differentiation. Moreover, we show that RB, C/EBPbeta, and HMGA1 proteins all cooperate in controlling both Id1 and leptin gene transcriptions, which are down- and up-regulated during adipocyte differentiation, respectively. We also demonstrate that HMGA1/RB interaction regulates CDC25A and CDC6 promoter activities, which are induced by E2F-1 protein during early adipocyte differentiation, by displacing HDAC1 from the RB-E2F1 complex. Furthermore, by using Hmga1(-/-) embryonic stem cells, which failed to undergo adipocyte differentiation, we show the crucial role of HMGA1 proteins in adipocyte differentiation due to its pivotal involvement in the formation of the RB-C/EBPbeta complex. Altogether these data demonstrate a key role of the interaction between HMGA1 and RB in adipocyte differentiation. PMID:19633359

  6. Evaluation of the synuclein-y (SNCG) gene as a PPARy target in murine adipocytes, dorsal root ganglia somatosensory neurons, and human adipose tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synuclein-gamma is highly expressed in both adipocytes and peripheral nervous system (PNS) somatosensory neurons. Its mRNA is induced during adipogenesis, increased in obese human white adipose tissue (WAT), may be coordinately regulated with leptin, and is decreased following treatment of murine 3T...

  7. Osteoarthritis: genes, nature-nurture interaction and the role of leptin.

    PubMed

    Garner, Malgorzata; Alshameeri, Zeiad; Khanduja, Vikas

    2013-12-01

    Osteoarthritis (OA) is a common disease affecting patients at different ages regardless of gender or ethnicity. As with many chronic diseases, OA is thought to have a multifactorial aetiology, which is not fully understood. Whereas the pathophysiological process of OA can be analysed at a cellular and molecular level, the interaction between genes and lifestyle remains an important factor in the development of this disease. The expanding awareness of different genes that may play a role in OA, together with many chemical mediators thought to be associated with the progression of the disease, will help in better management of this condition. Some of the chemical mediators recently implicated in this condition are the adipokines (leptin, adiponectin and resistin). Few but consistent studies suggest that leptin in association with obesity could be an important factor in OA aetiology. Hence, this could establish a strong and direct molecular link between patient life style (nurture) and the pathological process of OA (nature). However, neither a clear mechanism nor a direct clinical association linking leptin to OA has yet been established. In this article, we explore some of the genetic and environmental factors in OA aetiology. We discuss leptin in obesity and assess its possible association with OA aetiology. This should emphasise the important role of health professionals in treating obesity in order to control OA symptoms and possibly progression.

  8. JAZF1 can regulate the expression of lipid metabolic genes and inhibit lipid accumulation in adipocytes

    SciTech Connect

    Ming, Guang-feng; Xiao, Di; Gong, Wei-jing; Liu, Hui-xia; Liu, Jun; Zhou, Hong-hao; Liu, Zhao-qian

    2014-03-14

    Highlights: • JAZF1 was significantly upregulated during the differentiation of 3T3-L1 preadipocytes. • JAZF1 overexpression inhibited lipid accumulation in differentiated mature 3T3-L1 adipocytes. • JAZF1 overexpression inhibited the expression of SREBP1, ACC, and FAS. • JAZF1 overexpression upregulated the expression of HSL and ATGL. • SREBP1 and JAZF1 could regulate each other in adipocytes. - Abstract: JAZF1 is a newly identified gene with unknown functions. A recent genome-wide association study showed that JAZF1 is associated with type 2 diabetes and is highly expressed in liver and adipose tissue. Studies have demonstrated that JAZF1 is the co-repressor for nuclear orphan receptor TAK1, whereas most nuclear orphan receptor family members are involved in the regulation of lipid metabolism. Therefore, JAZF1 could be closely related to glycolipid metabolism. In this study, JAZF1 was significantly upregulated during the induced differentiation process of 3T3-L1 preadipocytes. The overexpression of JAZF1 inhibited lipid accumulation in differentiated mature 3T3-L1 adipocytes and significantly inhibited the expression of SREBPl, ACC, and FAS, which were important in lipid synthesis, while upregulating the expression of key enzyme hormone-sensitive lipase in lipoclasis. Moreover, SREBPl exhibited an inhibitory function on the expression of JAZF1. SREBP1 reversed the inhibitory action on lipid accumulation of JAZF1. SREBP1 and JAZF1 were observed to regulate each other in adipocytes. Therefore, JAZF1 could regulate the expression of particular genes related to lipid metabolism and inhibit lipid accumulation in adipocytes. This result suggests that JAZF1 may be a potential target for the treatment of diseases, such as obesity and lipid metabolism disorders.

  9. A leptin derived 30-amino-acid peptide modified pegylated poly-L-lysine dendrigraft for brain targeted gene delivery.

    PubMed

    Liu, Yang; Li, Jianfeng; Shao, Kun; Huang, Rongqin; Ye, Liya; Lou, Jinning; Jiang, Chen

    2010-07-01

    The blood-brain barrier is the major obstacle that prevents diagnostic and therapeutic drugs being delivered to the central nervous systems in order to exert their effects. Specific ligand-receptor binding mediated endocytosis is one of the possible strategies to cross this barrier. A 30-amino-acid peptide (leptin30) derived from an endogenic hormone-leptin is exploited as brain-targeting ligand as it is reported to possess the same brain accumulation efficiency after intravenous injection. Dendrigraft poly-L-lysine (DGL) is used as non-viral gene vector in this study. DGL-PEG-Leptin30 was complexed with plasmid DNA yielding nanoparticles (NPs). The cellular uptake characteristic and mechanism were explored in brain capillary endothelial cells (BCECs) which express leptin receptors. Furthermore, brain parenchyma microglia cells such as BV-2 cells expressing leptin receptors could promote ligand-receptor mediated endocytosis leading to enhanced gene transfection ability of DGL-PEG-Leptin30/DNA NPs. The targeted NPs were proved to be transported across in vitro BBB model effectively and accumulate more in brains after i.v. resulting in a relatively high gene transfection efficiency both in vitro and in vivo. Besides, the NPs showed low cytotoxicity after in vitro transfection. Thus, DGL-PEG-Leptin30 provides a safe and noninvasive approach for the delivery of gene across the blood-brain barrier.

  10. Polymorphisms of leptin-b gene associated with growth traits in orange-spotted grouper (Epinephelus coioides).

    PubMed

    Huang, Hai; Wei, Yun; Meng, Zining; Zhang, Yong; Liu, Xiaochun; Guo, Liang; Luo, Jian; Chen, Guohua; Lin, Haoran

    2014-07-07

    In mammals, leptin has been demonstrated to perform important roles in many physiological activities and to influence development, growth, metabolism and reproduction. However, in fish, its function is still unclear. Duplicate leptin genes, leptin-a and leptin-b, have been identified in the orange-spotted grouper. In the present study, the polymorphisms in the leptin-b gene of the orange-spotted grouper were detected, and the relation between these polymorphisms and 12 growth traits were analyzed. Six polymorphisms (including 3 single nucleotide polymorphisms (c.14G>A, c.93A>G, c.149G>A) in exon 1, 2 SNPs (c.181A>G, c.193G>A) in intron 1, and 1 SNP (c.360C>T) in exon 2) were identified and genotyped from 200 different individuals. The results revealed that the SNP c.149G>A was significantly associated with growth traits, that the heterozygous mutation genotype GA having negative effects on growth traits. However, the other five SNPs (c.14G>A, c.93A>G, c.181A>G, c.193G>A, c.360C>T) did not show significant associations with all the growth traits. Compared with our findings in leptin-a gene, the results suggested that the leptin-a hormone has more important physiological effects in fish bodies than the leptin-b type. Moreover, leptin genes were supposed to be one class of major candidate genes of regulating growth traits in the orange-spotted grouper.

  11. Acute Systemic Inflammation is Unlikely to Affect Adiponectin and Leptin Synthesis in Humans

    PubMed Central

    Ekström, Mattias; Söderberg, Stefan; Tornvall, Per

    2015-01-01

    Adipose tissue (AT), classically thought to be merely an energy store, has been shown to produce inflammatory and metabolically active cytokines. Recently, adiponectin and leptin, adipokines primarily synthesized by adipocytes, have attracted considerable attention because inflammation has been suggested to modulate adipokine levels. However, the regulation of adiponectin and leptin is complex and the knowledge about their synthesis within the early onset of inflammation is poorly understood. The aim of this study was to investigate if the synthesis of adiponectin and leptin is affected during the early phase of an acute systemic inflammation. Eighteen healthy subjects were allocated to vaccination against Salmonella typhi or to a control group, and adiponectin and leptin concentrations measured in plasma during 24 h. Nine patients, without markers of inflammation, undergoing open heart surgery were investigated before and after the operation by analysis of plasma levels and AT gene expression of adiponectin and leptin. Plasma interleukin (IL)-6 concentrations were measured in both cohorts. Plasma levels of IL-6 were doubled after vaccination and increased 30-fold after open heart surgery. Plasma levels of adiponectin and leptin were unchanged after vaccination whereas adiponectin and leptin tended to decrease after surgery. The gene expression of adiponectin and leptin was unaltered in omental and subcutaneous AT after surgery. Despite the use of two models of stimulated in vivo systemic inflammation, we found no evidence of an early regulation of adiponectin and leptin synthesis, indicating that these two adipokines are not key elements in an acute systemic inflammation in humans. PMID:26664879

  12. Quercetin Impacts Expression of Metabolism- and Obesity-Associated Genes in SGBS Adipocytes.

    PubMed

    Leiherer, Andreas; Stoemmer, Kathrin; Muendlein, Axel; Saely, Christoph H; Kinz, Elena; Brandtner, Eva M; Fraunberger, Peter; Drexel, Heinz

    2016-05-12

    Obesity is characterized by the rapid expansion of visceral adipose tissue, resulting in a hypoxic environment in adipose tissue which leads to a profound change of gene expression in adipocytes. As a consequence, there is a dysregulation of metabolism and adipokine secretion in adipose tissue leading to the development of systemic inflammation and finally resulting in the onset of metabolic diseases. The flavonoid quercetin as well as other secondary plant metabolites also referred to as phytochemicals have anti-oxidant, anti-inflammatory, and anti-diabetic effects known to be protective in view of obesity-related-diseases. Nevertheless, its underlying molecular mechanism is still obscure and thus the focus of this study was to explore the influence of quercetin on human SGBS (Simpson Golabi Behmel Syndrome) adipocytes' gene expression. We revealed for the first time that quercetin significantly changed expression of adipokine (Angptl4, adipsin, irisin and PAI-1) and glycolysis-involved (ENO2, PFKP and PFKFB4) genes, and that this effect not only antagonized but in part even overcompensated the effect mediated by hypoxia in adipocytes. Thus, these results are explained by the recently proposed hypothesis that the protective effect of quercetin is not solely due to its free radical-scavenging activity but also to a direct effect on mitochondrial processes, and they demonstrate that quercetin might have the potential to counteract the development of obesity-associated complications.

  13. Leptin and Inflammation

    PubMed Central

    Iikuni, Noriko; Lam, Queenie Lai Kwan; Lu, Liwei; Matarese, Giuseppe; La Cava, Antonio

    2009-01-01

    The past few years of research on leptin have provided important information on the link between metabolism and immune homeostasis. Adipocytes influence not only the endocrine system but also the immune response through several cytokine-like mediators known as adipokines, which include leptin. It is widely accepted that leptin can directly link nutritional status and pro-inflammatory T helper 1 immune responses, and that a decrease of leptin plasma concentration during food deprivation can lead to an impaired immune function. Additionally, several studies have implicated leptin in the pathogenesis of chronic inflammation, and the elevated circulating leptin levels in obesity appear to contribute to the low-grade inflammatory background which makes obese individuals more susceptible to increased risk of developing cardiovascular diseases, type II diabetes, or degenerative disease including autoimmunity and cancer. Conversely, reduced levels of leptin such as those found in malnourished individuals have been linked to increased risk of infection and reduced cell-mediated immune responses. We discuss here the functional influences of leptin in the physiopathology of inflammation, and the effects of leptin in the modulation of such responses. PMID:20198122

  14. Gene-manipulated Adipocytes for the Treatment of Various Intractable Diseases.

    PubMed

    Kuroda, Masayuki; Bujo, Hideaki; Aso, Masayuki; Saito, Yasushi; Yokote, Koutaro

    2016-01-01

    Although protein replacement is an effective treatment for serum protein deficiencies such as diabetes and hemophilia, recombinant protein products are not available for all rare inherited diseases due to the instability of the recombinant proteins and/or to cost. Gene therapy is the most attractive option for treating patients with such rare diseases. To develop an effective ex vivo gene therapy-based protein replacement treatment requires recipient cells that differ from those used in standard gene therapy, which is performed to correct the function of the recipient cells. Adipose tissue is an expected source of proliferative cells for cell-based therapies, including regenerative medicine and gene transfer applications. Based on recent advances in cell biology and extensive clinical experience in transplantation therapy for adipose tissue, we focused on the mature adipocyte fraction, which is the floating fraction after collagenase digestion and centrifugation of adipose tissue. Proliferative adipocytes were propagated from the floating fraction by the ceiling culture technique. These cells are designated as ceiling culture-derived proliferative adipocytes (ccdPAs). We first focused on lecithin:cholesterol acyltransferase (LCAT) deficiency, an inherited metabolic disorder caused by lcat gene mutation, and ccdPAs as a therapeutic gene vehicle for LCAT replacement therapy. In our recent in vitro and animal model studies, we developed an adipose cell manipulation procedure using advanced gene transduction methods and transplantation scaffolds. We herein introduce the progress made in novel adipose tissue-based therapeutic strategies for the treatment of protein deficiencies and describe their future applications for other intractable diseases. PMID:27150923

  15. Leptin Receptor Gene Polymorphism may Affect Subclinical Atherosclerosis in Patients with Acromegaly

    PubMed Central

    Turgut, Sebahat; Topsakal, Senay; Ata, Melek Tunç; Herek, Duygu; Akın, Fulya; Özkan, Şeyma; Turgut, Günfer

    2016-01-01

    Background: Acromegaly is associated with increased morbidity and mortality related to cardiovascular diseases. Leptin (LEP) and Leptin Receptor (LEPR) gene polymorphisms can increase cardiovascular risks. The aim of this study was to investigate association between the frequencies of LEP and LEPR gene polymorphisms and subclinical atherosclerosis in acromegalic patients. Methods: Forty-four acromegalic patients and 30 controls were admitted to study. The polymorphisms were identified by using polymerase chain reaction from peripheral blood samples. The levels of systolic and diastolic blood pressure, BMI, fasting plasma glucose, fasting insulin, IGF-I, GH, IGFBP3, leptin, triglyceride, carotid Intima Media Thickness (cIMT) and HDL and LDL cholesterol concentrations were evaluated. Results: There was statistically significant difference between the LEPR genotypes of acromegalic patients (GG 11.4%, GA 52.3%, and AA 36.4%) and controls (GG 33.3%, GA 50%, and AA 16.7%) although their LEP genotype distribution was similar. In addition, the prevalence of the LEPR gene G and A alleles was significantly different between patients and controls. No significant difference was found among the G(-2548) A leptin genotypes of groups in terms of the clinical parameters. cIMT significantly increased homozygote LEPR GG genotype group compared to AA subjects in patients. But the other parameters were not different between LEPR genotypes groups of patients and controls. Conclusion: It can be said that the LEPR gene polymorphism may affect cIMT in patients. The reason is that LEPR GG genotype carriers may have more risk than other genotypes in the development of subclinical atherosclerosis in acromegaly. PMID:27563428

  16. The Fto Gene Regulates the Proliferation and Differentiation of Pre-Adipocytes in Vitro

    PubMed Central

    Jiao, Yang; Zhang, Jingying; Lu, Lunjie; Xu, Jiaying; Qin, Liqiang

    2016-01-01

    The highly regulated differentiation and proliferation of pre-adipocytes play a key role in the initiation of obesity. Fat mass and obesity associated (FTO) is a novel gene strongly associated with the risk of obesity. A deficiency of FTO may cause growth retardation in addition to fat mass and adipocyte size reduction in vivo. To investigate the potential role of Fto gene on the proliferation and differentiation of pre-adipocytes, we generated Fto-knockdown and overexpressed 3T3-L1 cells. Using numerous proliferation assays our results suggest that Fto knockdown leads to suppression of proliferation, lower mitochondrial membrane potential, less cellular ATP, and decreased and smaller intracellular lipid droplets compared with controls (p < 0.05). Western blot analysis demonstrated that Fto knockdown can significantly suppress peroxisome proliferator-activated receptor gamma (PPARγ) and glucose transporter type 4 (GLUT4) expression and inhibit Akt phosphorylation. By contrast, overexpression of Fto had the opposing effect on proliferation, mitochondrial membrane potential, ATP generation, in vitro differentiation, Akt phosphorylation, and PPARγ and GLUT4 expression. Moreover, we demonstrated that Wortmannin, a phosphoinositide 3-kinase (PI3K) inhibitor, could inhibit phospho-Akt in Fto overexpressed 3T3-L1 cells. Taken together, the results suggest that Fto regulates the proliferation and differentiation of 3T3-L1 cells via multiple mechanisms, including PPARγ and PI3K/Akt signaling. PMID:26907332

  17. Alterations in Mouse Hypothalamic Adipokine Gene Expression and Leptin Signaling following Chronic Spinal Cord Injury and with Advanced Age

    PubMed Central

    Bigford, Gregory E.; Bracchi-Ricard, Valerie C.; Nash, Mark S.; Bethea, John R.

    2012-01-01

    Chronic spinal cord injury (SCI) results in an accelerated trajectory of several cardiovascular disease (CVD) risk factors and related aging characteristics, however the molecular mechanisms that are activated have not been explored. Adipokines and leptin signaling are known to play a critical role in neuro-endocrine regulation of energy metabolism, and are now implicated in central inflammatory processes associated with CVD. Here, we examine hypothalamic adipokine gene expression and leptin signaling in response to chronic spinal cord injury and with advanced age. We demonstrate significant changes in fasting-induced adipose factor (FIAF), resistin (Rstn), long-form leptin receptor (LepRb) and suppressor of cytokine-3 (SOCS3) gene expression following chronic SCI and with advanced age. LepRb and Jak2/stat3 signaling is significantly decreased and the leptin signaling inhibitor SOCS3 is significantly elevated with chronic SCI and advanced age. In addition, we investigate endoplasmic reticulum (ER) stress and activation of the uncoupled protein response (UPR) as a biological hallmark of leptin resistance. We observe the activation of the ER stress/UPR proteins IRE1, PERK, and eIF2alpha, demonstrating leptin resistance in chronic SCI and with advanced age. These findings provide evidence for adipokine-mediated inflammatory responses and leptin resistance as contributing to neuro-endocrine dysfunction and CVD risk following SCI and with advanced age. Understanding the underlying mechanisms contributing to SCI and age related CVD may provide insight that will help direct specific therapeutic interventions. PMID:22815920

  18. Global life-long health benefits of repression of hypothalamic NPY system by central leptin gene therapy.

    PubMed

    Kalra, Satya P

    2007-01-01

    A minute-to-minute crosstalk between the hypothalamic neuropeptide Y (NPY) network and the hormone leptin is essential for energy homeostasis. Leptin insufficiency i.e. lack of leptin restraint due to genetic and environmental factors on the hypothalamic NPY system confers obesity, a cluster of metabolic afflictions and shorter lifespan. A state-of-the-art gene transfer technology using recombinant adeno-associated viral vector to overcome hypothalamic leptin insufficiency was employed in rodent models of obesity, metabolic syndrome and shorter lifespan. Our findings show that life-long tonic repression of NPY system with a stable increase in leptin availability in the hypothalamus prevented the age-related and high fat-diet-induced obesity, hyperinsulinemia and diabetes and extended lifespan. Additional health benefits include increased energy expenditure and normalization of neuroendocrine control on reproduction, and promotion of brain and bone growth. We propose that central leptin gene therapy or novel long-acting leptin mimetics should be tested clinically to decelerate the worldwide epidemic of obesity, diabetes and shortened lifespan.

  19. Impaired response of mature adipocytes of diabetic mice to hypoxia

    SciTech Connect

    Hong, Seok Jong Jin, Da P.; Buck, Donald W.; Galiano, Robert D.; Mustoe, Thomas A.

    2011-10-01

    Adipose tissue contains various cells such as infiltrated monocytes/macrophages, endothelial cells, preadipocytes, and adipocytes. Adipocytes have an endocrine function by secreting adipokines such as interleukin (IL)-6, tumor necrosis factor (TNF)-{alpha}, leptin, and adiponectin. Dysregulation of adipokines in adipose tissues leads to a chronic low-grade inflammation which could result in atherosclerosis, hypertension, and type 2 diabetes. A sustained inflammatory state, which is characterized by prolonged persistence of macrophages and neutrophils, is found in diabetic wounds. In addition, subcutaneous adipocytes are enormously increased in amount clinically in type 2 diabetes. However, the function of subcutaneous adipocytes, which play an important role in injured tissue subjected to hypoxia, has not been well characterized in vitro due to the difficulty of maintaining mature adipocytes in culture using conventional methods because of their buoyancy. In this study, we established a novel in vitro culture method of mature adipocytes by enclosing them in a hyaluronan (HA) based hydrogel to study their role in response to stress such as hypoxia. BrdU labeling and Ki67 immunostaining experiments showed that hydrogel enclosed mature adipocytes proliferate in vitro. Both mRNA and protein expression analyses for hypoxia regulated genes, such as vascular endothelial growth factor (VEGF) and heme oxygenase 1 (HO1), showed that mature adipocytes of wild type mice respond to hypoxia. In contrast, mature adipocytes of diabetic db/db and TallyHo mice did not efficiently respond to hypoxia. Our studies suggest that mature adipocytes are functionally active cells, and their abnormal function to hypoxia can be one of underlining mechanisms in type 2 diabetes.

  20. A short form of leptin receptor performs signal transduction.

    PubMed

    Murakami, T; Yamashita, T; Iida, M; Kuwajima, M; Shima, K

    1997-02-01

    The obese (ob) gene product, leptin, a peptide hormone, which is synthesized in adipocytes, is a satiety factor and is involved in the control of body weight via the regulation of energy homeostasis. Several alternate spliced isoforms (a-e, as well as others) of the leptin receptor (OBR) have been cloned, all of which, except for OBRe (soluble form), contain a single transmembrane domain. They share the same extracellular domain, with homology to the class I cytokine receptor family. The OBRb, which has longest cytoplasmic domain, is expressed in high levels in the hypothalamus and is thought to be the only isoform capable of signal transmission. Herein, we report the mRNA expression of immediate early genes, c-fos, c-jun and jun-B, which are induced by leptin addition, not only in CHO cells expressing the OBRb, but also in cells expressing one of the short form receptors, OBRa.

  1. Leptin is an endogenous protective protein against the toxicity exerted by tumor necrosis factor.

    PubMed

    Takahashi, N; Waelput, W; Guisez, Y

    1999-01-01

    Tumor necrosis factor (TNF) is a central mediator of a number of important pathologies such as the systemic inflammatory response syndrome. Administration of high TNF doses induces acute anorexia, metabolic derangement, inflammation, and eventually shock and death. The in vivo effects of TNF are largely mediated by a complex network of TNF-induced cytokines and hormones acting together or antagonistically. Since TNF also induces leptin, a hormone secreted by adipocytes that modulates food intake and metabolism, we questioned the role of leptin in TNF-induced pathology. To address this question, we tested mouse strains that were defective either in leptin gene (ob/ob) or in functional leptin receptor gene (db/db), and made use of a receptor antagonist of leptin. Ob/ob and db/db mice, as well as normal mice treated with antagonist, exhibited increased sensitivity to the lethal effect of TNF. Exogenous leptin afforded protection to TNF in ob/ob mice, but failed to enhance the protective effect of endogenous leptin in normal mice. We conclude that leptin is involved in the protective mechanisms that allow an organism to cope with the potentially autoaggressive effects of its immune system.

  2. Appetite and energy balance signals from adipocytes

    PubMed Central

    Trayhurn, Paul; Bing, Chen

    2006-01-01

    Interest in the biology of white adipose tissue has risen markedly with the recent surge in obesity and its associated disorders. The tissue is no longer viewed simply as a vehicle for lipid storage; instead, it is recognized as a major endocrine and secretory organ. White adipocytes release a multiplicity of protein hormones, signals and factors, termed adipokines, with an extensive range of physiological actions. Foremost among these various adipokines is the cytokine-like hormone, leptin, which is synthesized predominantly in white fat. Leptin plays a critical role in the control of appetite and energy balance, with mutations in the genes encoding the hormone or its receptor leading to profound obesity in both rodents and man. Leptin regulates appetite primarily through an interaction with hypothalamic neuroendocrine pathways, inhibiting orexigenic peptides such as neuropeptide Y and orexin A, and stimulating anorexigenic peptides such as proopiomelanocortin. White fat also secretes several putative appetite-related adipokines, which include interleukin-6 and adiponectin, but whether these are indeed significant signals in the regulation of food intake has not been established. Through leptin and the other adipokines it is evident that adipose tissue communicates extensively with other organs and plays a pervasive role in metabolic homeostasis. PMID:16815801

  3. Candidate Genes from Molecular Pathways Related to Appetite Regulatory Neural Network and Adipocyte Homeostasis and Obesity: the Coronary Artery Risk Development in Young Adults (CARDIA) Study

    PubMed Central

    Friedlander, Yechiel; Li, Guo; Fornage, Myriam; Williams, O. Dale; Lewis, Cora E.; Schreiner, Pamela; Pletcher, Mark J.; Enquobahrie, Daniel; Williams, Michelle; Siscovick, David S.

    2010-01-01

    Background Appetite regulatory neural network and adipocyte homeostasis molecular pathways are critical to long-term weight maintenance. Genetic variation in these pathways may explain variability of obesity in the general population. Aims The associations of four genes in these pathways (leptin (LEP), leptin receptor (LEPR), neuropeptide Y2 receptor (NPY2R) and peptide YY (PYY)) with obesity-related phenotypes were examined among participants in the CARDIA Study. Participants were 18-30 years old upon recruitment (1985-86). Weight, BMI and waist circumference were measured at baseline and at years 2, 5, 7, 10, 15, and 20. Genotyping was conducted using tag SNPs that characterize the common pattern of genetic variation in these genes. Race-specific linear regression models were used to examine associations of the various SNPs with obesity-related measurements, controlling for sex and age. The overall association based on the 7 repeated anthropometric measurements was tested with GEE. False discovery rate was used to adjust for multiple testing. Results In African-Americans, SNPs across the LEP gene demonstrated significant overall associations with obesity-related phenotypes. The associations between rs17151919 in LEP gene with weight tended to increase with time (SNP × time interaction p=0.0193). The difference in weight levels associated with each additional minor allele ranged from 2.6 kg at entry to 4.8 kg at year 20. Among African-American men, the global tests indicated that SNPs across the NPY2R gene were also associated with waist circumference measurements (p=0.0462). In Caucasians, SNPs across the LEP gene also tended to be associated with weight measurements (p=0.0471) and rs11684664 in PYY gene was associated with obesity-related phenotypes (p= 0.010-0.026) in women only. Conclusions Several SNPs in the LEP, NPY2R and PYY but not the LEPR genes were associated with obesity-related phenotypes in young adults. The associations were more prominent for the

  4. Quercetin Impacts Expression of Metabolism- and Obesity-Associated Genes in SGBS Adipocytes

    PubMed Central

    Leiherer, Andreas; Stoemmer, Kathrin; Muendlein, Axel; Saely, Christoph H.; Kinz, Elena; Brandtner, Eva M.; Fraunberger, Peter; Drexel, Heinz

    2016-01-01

    Obesity is characterized by the rapid expansion of visceral adipose tissue, resulting in a hypoxic environment in adipose tissue which leads to a profound change of gene expression in adipocytes. As a consequence, there is a dysregulation of metabolism and adipokine secretion in adipose tissue leading to the development of systemic inflammation and finally resulting in the onset of metabolic diseases. The flavonoid quercetin as well as other secondary plant metabolites also referred to as phytochemicals have anti-oxidant, anti-inflammatory, and anti-diabetic effects known to be protective in view of obesity-related-diseases. Nevertheless, its underlying molecular mechanism is still obscure and thus the focus of this study was to explore the influence of quercetin on human SGBS (Simpson Golabi Behmel Syndrome) adipocytes’ gene expression. We revealed for the first time that quercetin significantly changed expression of adipokine (Angptl4, adipsin, irisin and PAI-1) and glycolysis-involved (ENO2, PFKP and PFKFB4) genes, and that this effect not only antagonized but in part even overcompensated the effect mediated by hypoxia in adipocytes. Thus, these results are explained by the recently proposed hypothesis that the protective effect of quercetin is not solely due to its free radical-scavenging activity but also to a direct effect on mitochondrial processes, and they demonstrate that quercetin might have the potential to counteract the development of obesity-associated complications. PMID:27187453

  5. Drug targeting of leptin resistance.

    PubMed

    Santoro, Anna; Mattace Raso, Giuseppina; Meli, Rosaria

    2015-11-01

    Leptin regulates glucose, lipid and energy homeostasis as well as feeding behavior, serving as a bridge between peripheral metabolically active tissues and the central nervous system (CNS). Indeed, this adipocyte-derived hormone, whose circulating levels mirror fat mass, not only exerts its anti-obesity effects mainly modulating the activity of specific hypothalamic neurons expressing the long form of the leptin receptor (Ob-Rb), but it also shows pleiotropic functions due to the activation of Ob-Rb in peripheral tissues. Nevertheless, several mechanisms have been suggested to mediate leptin resistance, including obesity-associated hyperleptinemia, impairment of leptin access to CNS and the reduction in Ob-Rb signal transduction effectiveness, among others. During the onset and progression of obesity, the dampening of leptin sensitivity often occurs, preventing the efficacy of leptin replacement therapy from overcoming obesity and/or its comorbidities. This review focuses on obesity-associated leptin resistance and the mechanisms underpinning this condition, to highlight the relevance of leptin sensitivity restoration as a useful therapeutic strategy to treat common obesity and its complications. Interestingly, although promising strategies to counteract leptin resistance have been proposed, these pharmacological approaches have shown limited efficacy or even relevant adverse effects in preclinical and clinical studies. Therefore, the numerous findings from this review clearly indicate a lack of a single and efficacious treatment for leptin resistance, highlighting the necessity to find new therapeutic tools to improve leptin sensitivity, especially in patients with most severe disease profiles.

  6. Adipocyte gene expression is altered in formerly obese mice and as a function of diet composition.

    PubMed

    Miller, Ryan S; Becker, Kevin G; Prabhu, Vinayakumar; Cooke, David W

    2008-06-01

    In the development of obesity, the source of excess energy may influence appetite and metabolism. To determine the effects of differences in diet composition in obesity, mice were fed either a high-carbohydrate diet (HC; 10% fat energy) or a high-fat energy-restricted diet (HFR; 60% fat energy) over 18 wk in weight-matched groups of mice. To identify obesity-associated genes with persistently altered expression following weight reduction, mice were fed either a standard low-fat diet (LF; 10% fat energy), an unrestricted high-fat diet (HF; 60% fat energy), or a HF diet followed by weight reduction (WR). Mice fed a HF diet had significantly greater gonadal fat mass and higher whole blood glucose concentrations than mice fed an HC diet. Of the mice fed a high-fat diet, total body weight and serum insulin concentrations were greater in HF than in HFR. Microarray analysis revealed that HF vs. HC feeding resulted in global differences in adipocyte gene expression patterns. Although we identified genes whose expression was altered in both moderately and severely obese mice, there were also a large number of genes with altered expression only in severe obesity. Formerly obese, WR mice did not differ significantly from lean controls in total body weight or physiological measures. However, microarray analysis revealed distinctly different patterns of adipocyte gene expression. Furthermore, there were 398 genes with altered expression in HF mice that persisted in WR mice. Genes with persistently altered expression following obesity may play a role in rebound weight gain following weight reduction.

  7. Expression of leptin and leptin receptor isoforms in the human stomach

    PubMed Central

    Mix, H; Widjaja, A; Jandl, O; Cornberg, M; Kaul, A; Goke, M; Beil, W; Kuske, M; Brabant, G; Manns, M; Wagner, S

    2000-01-01

    BACKGROUND—Leptin is an important regulator of food intake and energy expenditure. Initially it was thought to be expressed exclusively in and secreted by adipocytes. Recently, leptin expression was also noted in other tissues, including rat gastric mucosa. Information on leptin and leptin receptor expression in the human stomach is lacking.
AIM—To investigate expression of leptin and its corresponding receptors in human gastric epithelial cells.
METHODS—Fundic and antral gastric mucosal biopsies, primary cultures of human gastric epithelial cells, and the human gastric cancer cell line AGS were screened for expression of leptin and different leptin receptor isoform mRNA by reverse transcriptase-polymerase chain reaction. Immunohistochemistry was performed for localisation of leptin and leptin receptor proteins in gastric mucosa.
RESULTS—mRNA of leptin and its four receptor isoforms (huOB-R, long receptor isoform; huB219.1-3, short receptor isoforms) was detected in gastric mucosal biopsies, cultured human gastric epithelial cells, and gastric cancer cells. Immunohistochemistry demonstrated that chief as well as parietal cells were reactive to leptin and leptin receptors.
CONCLUSIONS—Leptin and leptin receptors are expressed in human gastric mucosa. These findings suggest a paracrine and/or autocrine effect of leptin on gastric epithelial cell function.


Keywords: leptin; leptin receptor isoforms; immunohistochemistry; gastric mucosa PMID:10986207

  8. Cholesteryl ester transfer protein gene expression during differentiation of human preadipocytes to adipocytes in primary culture.

    PubMed

    Gauthier, B; Robb, M; McPherson, R

    1999-02-01

    The expression pattern of the CETP gene in relationship to that of LPL, adipsin, PPARgamma, C/EBPalpha, ADD1/SREBPI and actin was examined by RT-PCR during differentiation of human fibroblastic preadipocytes to adipocytes in primary culture. Preadipocytes were isolated from subcutaneous fat obtained from healthy female subjects undergoing mammary reduction procedures, and induced to differentiate in culture. Morphologically, adipogenesis was confirmed by the accumulation of lipid droplets in cells. We show that the gene encoding CETP is expressed in preadipocytes and is present throughout differentiation as compared to LPL and adipsin which were detected in the majority of samples by day 2 or 3 of adipogenesis. The transcription factors, PPARgamma, ADD1/SREBP1 and C/EBPalpha were expressed by day 2, concomitant with the appearance of LPL and adipsin but subsequent to the appearance of CETP. CETP mRNA was not detectable in human skin fibroblasts. These studies demonstrate that CETP. expression is induced at an early stage of commitment to the adipocyte lineage and may be activated by transcription factor(s), which are not members of the PPAR, ADD1/SREBP1 or C/EBP families. PMID:10030381

  9. Localization and role of leptin in the thyroid gland of the lizard Podarcis sicula (Reptilia, Lacertidae).

    PubMed

    Sciarrillo, Rosaria; Virgilio, Francesca; De Falco, Maria; Laforgia, Vincenza; Varano, Lorenzo; Paolucci, Marina

    2005-08-01

    Leptin, the product of the ob gene, is a hormone secreted by adipocytes that regulates food intake and energy expenditure. The hypothalamus-pituitary-thyroid axis is markedly influenced by the metabolism status, being suppressed during food deprivation. The present study was designed to ascertain whether (1) lizard thyroid gland expresses the long form of leptin receptor (Ob-Rb) and (2) the leptin administration affects the thyroid gland activity in this species (and to verify whether leptin plays a similar role in reptiles as observed in the other vertebrates). The presence of leptin receptor in the thyroid gland of Podarcis sicula was demonstrated by immunohistochemical technique (avidin-biotin-peroxidase complex--ABC method). The role of leptin in the control of thyroid gland activity was studied in vivo using light microscopy (LM) technique coupled to a specific radioimmunoassay for thyroid-stimulating hormone (TSH) and thyroid hormones (T4 and T3). Leptin (0.1 mg/100 g body wt)/day increased T4 and T3 release for 3 days but decreased the plasma concentration of TSH; using LM clear signs of stimulation in the thyroid gland were observed. These findings suggest that systemic administration of leptin stimulates the morphophysiology of the thyroid gland in the lizard through a direct mechanism involving Ob-Rb.

  10. Regulation of UCP gene expression in brown adipocytes differentiated in primary culture. Effects of a new beta-adrenoceptor agonist.

    PubMed

    Champigny, O; Holloway, B R; Ricquier, D

    1992-07-01

    Primary cultures of precursor cells from mouse and rat brown adipose tissue (BAT) were used to study the effect of a new beta-agonist (ICI D7114) on the uncoupling protein (UCP) gene expression. ICI 215001 (the active metabolite of D7114) increased the expression of UCP and its mRNA in brown adipocytes differentiating in vitro in a dose-dependent manner. This stimulating effect was not inhibited by propranolol, a non-specific beta-antagonist, but was partially reduced by bupranolol, a beta 3-antagonist. No expression of UCP mRNA was ever induced by ICI 215001 in white adipocytes differentiated in vitro. It was concluded that the drug could affect the brown adipose cells through a beta 3-pathway. It could clearly modulate the expression of UCP in brown adipocytes differentiated in vitro, but was not able by itself to turn on the gene. PMID:1355051

  11. Nuclear factor of activated T cell (NFAT) transcription proteins regulate genes involved in adipocyte metabolism and lipolysis

    SciTech Connect

    Holowachuk, Eugene W. . E-mail: geneh@telenet.net

    2007-09-21

    NFAT involvement in adipocyte physiological processes was examined by treatment with CsA and/or GSK3{beta} inhibitors (Li{sup +} or TZDZ-8), which prevent or increase NFAT nuclear translocation, respectively. CsA treatment reduced basal and TNF{alpha}-induced rates of lipolysis by 50%. Adipocytes preincubated with Li{sup +} or TZDZ-8 prior to CsA and/or TNF{alpha}, exhibited enhanced basal rates of lipolysis and complete inhibition of CsA-mediated decreased rates of lipolysis. CsA treatment dramatically reduced the mRNA levels of adipocyte-specific genes (aP2, HSL, PPAR{gamma}, ACS and Adn), compared with control or TNF{alpha}-treatment, whereas Li{sup +} pretreatment blocked the inhibitory effects of CsA, and mRNA levels of aP2, HSL, PPAR{gamma}, and ACS were found at or above control levels. NFAT nuclear localization, assessed by EMSA, confirmed that CsA or Li{sup +} treatments inhibited or increased NFAT nuclear translocation, respectively. These results show that NFAT proteins in mature adipocytes participate in the transcriptional control of genes involved in adipocyte metabolism and lipolysis.

  12. Dopamine Receptors in Human Adipocytes: Expression and Functions

    PubMed Central

    Borcherding, Dana C.; Hugo, Eric R.; Idelman, Gila; De Silva, Anuradha; Richtand, Nathan W.; Loftus, Jean; Ben-Jonathan, Nira

    2011-01-01

    Introduction Dopamine (DA) binds to five receptors (DAR), classified by their ability to increase (D1R-like) or decrease (D2R-like) cAMP. In humans, most DA circulates as dopamine sulfate (DA-S), which can be de-conjugated to bioactive DA by arylsulfatase A (ARSA). The objective was to examine expression of DAR and ARSA in human adipose tissue and determine whether DA regulates prolactin (PRL) and adipokine expression and release. Methods DAR were analyzed by RT-PCR and Western blotting in explants, primary adipocytes and two human adipocyte cell lines, LS14 and SW872. ARSA expression and activity were determined by qPCR and enzymatic assay. PRL expression and release were determined by luciferase reporter and Nb2 bioassay. Analysis of cAMP, cGMP, leptin, adiponectin and interleukin 6 (IL-6) was done by ELISA. Activation of MAPK and PI3 kinase/Akt was determined by Western blotting. Results DAR are variably expressed at the mRNA and protein levels in adipose tissue and adipocytes during adipogenesis. ARSA activity in adipocyte increases after differentiation. DA at nM concentrations suppresses cAMP, stimulates cGMP, and activates MAPK in adipocytes. Acting via D2R-like receptors, DA and DA-S inhibit PRL gene expression and release. Acting via D1R/D5R receptors, DA suppresses leptin and stimulates adiponectin and IL-6 release. Conclusions This is the first report that human adipocytes express functional DAR and ARSA, suggesting a regulatory role for peripheral DA in adipose functions. We speculate that the propensity of some DAR-activating antipsychotics to increase weight and alter metabolic homeostasis is due, in part, to their direct action on adipose tissue. PMID:21966540

  13. Regulation of GLUT4 gene expression by SREBP-1c in adipocytes

    PubMed Central

    Im, Seung-Soon; Kwon, Sool-Ki; Kang, Seung-Youn; Kim, Tae-Hyun; Kim, Ha-Il; Hur, Man-Wook; Kim, Kyung-Sup; Ahn, Yong-Ho

    2006-01-01

    Expression of the GLUT4 (glucose transporter type 4 isoform) gene in adipocytes is subject to hormonal or metabolic control. In the present study, we have characterized an adipose tissue transcription factor that is influenced by fasting/refeeding regimens and insulin. Northern blotting showed that refeeding increased GLUT4 mRNA levels for 24 h in adipose tissue. Consistent with an increased GLUT4 gene expression, the mRNA levels of SREBP (sterol-regulatory-element-binding protein)-1c in adipose tissue were also increased by refeeding. In streptozotocin-induced diabetic rats, insulin treatment increased the mRNA levels of GLUT4 in adipose tissue. Serial deletion, luciferase reporter assays and electrophoretic mobility-shift assay studies indicated that the putative sterol response element is located in the region between bases −109 and −100 of the human GLUT4 promoter. Transduction of the SREBP-1c dominant negative form to differentiated 3T3-L1 adipocytes caused a reduction in the mRNA levels of GLUT4, suggesting that SREBP-1c mediates the transcription of GLUT4. In vivo chromatin immunoprecipitation revealed that refeeding increased the binding of SREBP-1 to the putative sterol-response element in the GLUT4. Furthermore, treating streptozotocin-induced diabetic rats with insulin restored SREBP-1 binding. In addition, we have identified an Sp1 binding site adjacent to the functional sterol-response element in the GLUT4 promoter. The Sp1 site appears to play an additive role in SREBP-1c mediated GLUT4 gene upregulation. These results suggest that upregulation of GLUT4 gene transcription might be directly mediated by SREBP-1c in adipose tissue. PMID:16787385

  14. Superparamagnetic iron oxide nanoparticles alter expression of obesity and T2D-associated risk genes in human adipocytes

    PubMed Central

    Sharifi, S.; Daghighi, S.; Motazacker, M. M.; Badlou, B.; Sanjabi, B.; Akbarkhanzadeh, A.; Rowshani, A. T.; Laurent, S.; Peppelenbosch, M. P.; Rezaee, F.

    2013-01-01

    Adipocytes hypertrophy is the main cause of obesity and its affliction such as type 2 diabetes (T2D). Since superparamagnetic iron oxide nanoparticles (SPIONs) are used for a wide range of biomedical/medical applications, we aimed to study the effect of SPIONs on 22 and 29 risk genes (Based on gene wide association studies) for obesity and T2D in human adipocytes. The mRNA expression of lipid and glucose metabolism genes was changed upon the treatment of human primary adipocytes with SPIONs. mRNA of GULP1, SLC30A8, NEGR1, SEC16B, MTCH2, MAF, MC4R, and TMEM195 were severely induced, whereas INSIG2, NAMPT, MTMR9, PFKP, KCTD15, LPL and GNPDA2 were down-regulated upon SPIONs stimulation. Since SEC16B gene assist the phagocytosis of apoptotic cells and this gene were highly expressed upon SPIONs treatment in adipocytes, it is logic to assume that SPIONs may play a crucial role in this direction, which requires more consideration in the future. PMID:23838847

  15. Superparamagnetic iron oxide nanoparticles alter expression of obesity and T2D-associated risk genes in human adipocytes

    NASA Astrophysics Data System (ADS)

    Sharifi, S.; Daghighi, S.; Motazacker, M. M.; Badlou, B.; Sanjabi, B.; Akbarkhanzadeh, A.; Rowshani, A. T.; Laurent, S.; Peppelenbosch, M. P.; Rezaee, F.

    2013-07-01

    Adipocytes hypertrophy is the main cause of obesity and its affliction such as type 2 diabetes (T2D). Since superparamagnetic iron oxide nanoparticles (SPIONs) are used for a wide range of biomedical/medical applications, we aimed to study the effect of SPIONs on 22 and 29 risk genes (Based on gene wide association studies) for obesity and T2D in human adipocytes. The mRNA expression of lipid and glucose metabolism genes was changed upon the treatment of human primary adipocytes with SPIONs. mRNA of GULP1, SLC30A8, NEGR1, SEC16B, MTCH2, MAF, MC4R, and TMEM195 were severely induced, whereas INSIG2, NAMPT, MTMR9, PFKP, KCTD15, LPL and GNPDA2 were down-regulated upon SPIONs stimulation. Since SEC16B gene assist the phagocytosis of apoptotic cells and this gene were highly expressed upon SPIONs treatment in adipocytes, it is logic to assume that SPIONs may play a crucial role in this direction, which requires more consideration in the future.

  16. Mismatch Amplification Mutation Assay Real-Time PCR Analysis of the Leptin Gene G2548A and A19G Polymorphisms and Serum Leptin in Infancy: A Preliminary Investigation.

    PubMed

    Savino, Francesco; Rossi, Lorenza; Di Stasio, Liliana; Galliano, Ilaria; Montanari, Paola; Bergallo, Massimiliano

    2016-01-01

    Leptin is a hormone that regulates food intake and energy metabolism. Its coding gene (LEP) is one of the most promising candidates for obesity. Although some studies have detected associations of different single nucleotide polymorphisms (SNPs) in the LEP gene with serum leptin levels and obesity-related traits, the results are still conflicting. We investigated two SNPs to find relationships with leptin concentrations. Thirty healthy Caucasian infants younger than 6 months were genotyped for the SNPs G2548A and A19G with polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and amplification refractory mutation system-mismatch amplification mutation assay (ARMS- MAMA) real-time PCR, and serum leptin concentrations were measured with a radioimmunoassay method. Considering the significant linkage disequilibrium observed between the two SNPs, we divided the sample according to the number of GG haplotypes and observed that individuals homozygous for the GG haplotype had higher serum leptin levels in early infancy than the others. Although these preliminary results are based on a limited sample, they suggest that the genetic background seems to play a role in modulating leptin levels in infancy, but changes in leptin levels over infancy and their correlation with obesity need to be further explored. We describe an ARMS-MAMA real-time PCR procedure which could be profitably applied in routine genetic screening.

  17. Low-Dose Bisphenol-A Impairs Adipogenesis and Generates Dysfunctional 3T3-L1 Adipocytes

    PubMed Central

    Ariemma, Fabiana; D’Esposito, Vittoria; Liguoro, Domenico; Oriente, Francesco; Cabaro, Serena; Liotti, Antonietta; Cimmino, Ilaria; Longo, Michele; Beguinot, Francesco; Formisano, Pietro; Valentino, Rossella

    2016-01-01

    Environmental endocrine disruptors (EDCs), including bisphenol-A (BPA), have been recently involved in obesity and diabetes by dysregulating adipose tissue function. Our aim was to examine whether prolonged exposure to low doses of BPA could affect adipogenesis and adipocyte metabolic functions. Therefore, 3T3-L1 pre-adipocytes were cultured for three weeks with BPA 1nM to mimic human environmental exposure. We evaluated BPA effect on cell proliferation, differentiation, gene expression and adipocyte metabolic function. BPA significantly increased pre-adipocyte proliferation (p<0.01). In 3T3-L1 adipocytes differentiated in the presence of BPA, the expression of Peroxisome proliferator-activated receptor gamma (PPARγ), Fatty Acid Binding Protein 4/Adipocyte Protein 2 (FABP4/AP2) and CCAAT/enhancer binding protein (C/EBPα) was increased by 3.5, 1.5 and 3 folds, respectively. Mature adipocytes also showed a significant increase in lipid accumulation (p<0.05) and alterations of insulin action, with significant reduction in insulin-stimulated glucose utilization (p<0.001). Moreover, in mature adipocytes, mRNA levels of Leptin, interleukin-6 (IL6) and interferon-γ (IFNγ) were significantly increased (p<0.05). In conclusion, BPA prolonged exposure at low doses, consistent with those found in the environment, may affect adipocyte differentiation program, enhancing pre-adipocyte proliferation and anticipating the expression of the master genes involved in lipid/glucose metabolism. The resulting adipocytes are hypertrophic, with impaired insulin signaling, reduced glucose utilization and increased pro-inflammatory cytokine expression. Thus, these data supported the hypothesis that BPA exposure, during critical stages of adipose tissue development, may cause adipocyte metabolic dysfunction and inflammation, thereby increasing the risk of developing obesity-related diseases. PMID:26942597

  18. Low-Dose Bisphenol-A Impairs Adipogenesis and Generates Dysfunctional 3T3-L1 Adipocytes.

    PubMed

    Ariemma, Fabiana; D'Esposito, Vittoria; Liguoro, Domenico; Oriente, Francesco; Cabaro, Serena; Liotti, Antonietta; Cimmino, Ilaria; Longo, Michele; Beguinot, Francesco; Formisano, Pietro; Valentino, Rossella

    2016-01-01

    Environmental endocrine disruptors (EDCs), including bisphenol-A (BPA), have been recently involved in obesity and diabetes by dysregulating adipose tissue function. Our aim was to examine whether prolonged exposure to low doses of BPA could affect adipogenesis and adipocyte metabolic functions. Therefore, 3T3-L1 pre-adipocytes were cultured for three weeks with BPA 1 nM to mimic human environmental exposure. We evaluated BPA effect on cell proliferation, differentiation, gene expression and adipocyte metabolic function. BPA significantly increased pre-adipocyte proliferation (p<0.01). In 3T3-L1 adipocytes differentiated in the presence of BPA, the expression of Peroxisome proliferator-activated receptor gamma (PPARγ), Fatty Acid Binding Protein 4/Adipocyte Protein 2 (FABP4/AP2) and CCAAT/enhancer binding protein (C/EBPα) was increased by 3.5, 1.5 and 3 folds, respectively. Mature adipocytes also showed a significant increase in lipid accumulation (p<0.05) and alterations of insulin action, with significant reduction in insulin-stimulated glucose utilization (p<0.001). Moreover, in mature adipocytes, mRNA levels of Leptin, interleukin-6 (IL6) and interferon-γ (IFNγ) were significantly increased (p<0.05). In conclusion, BPA prolonged exposure at low doses, consistent with those found in the environment, may affect adipocyte differentiation program, enhancing pre-adipocyte proliferation and anticipating the expression of the master genes involved in lipid/glucose metabolism. The resulting adipocytes are hypertrophic, with impaired insulin signaling, reduced glucose utilization and increased pro-inflammatory cytokine expression. Thus, these data supported the hypothesis that BPA exposure, during critical stages of adipose tissue development, may cause adipocyte metabolic dysfunction and inflammation, thereby increasing the risk of developing obesity-related diseases. PMID:26942597

  19. 3T3-L1 adipocytes display phenotypic characteristics of multiple adipocyte lineages

    PubMed Central

    Morrison, Shona; McGee, Sean L

    2015-01-01

    Differentiated 3T3-L1 adipocytes are a widely used in vitro model of white adipocytes. In addition to classical white and brown adipocytes that are derived from different cell lineages, beige adipocytes have also been identified, which have characteristics of both white and brown adipocytes. Here we show that 3T3-L1 adipocytes display features of multiple adipocytes lineages. While the gene expression profile and basal bioenergetics of 3T3-L1 adipocytes was typical of white adipocytes, they responded acutely to catecholamines by increasing oxygen consumption in an UCP1-dependent manner, and by increasing the expression of genes enriched in brown but not beige adipocytes. Chronic exposure to catecholamines exacerbated this phenotype. However, a beige adipocyte differentiation procedure did not induce a beige adipocyte phenotype in 3T3-L1 fibroblasts. These multiple lineage features should be considered when interpreting data from experiments utilizing 3T3-L1 adipocytes. PMID:26451286

  20. The impact of a leptin gene SNP on beef calf weaning weights.

    PubMed

    DeVuyst, E A; Bauer, M L; Cheng, F-C; Mitchell, J; Larson, D

    2008-06-01

    Prior research indicates that a SNP at position 305 of exon 2 in the leptin gene affects milk production in dairy cows. Dairy cows with at least one copy of the T allele have been shown to have higher milk production than CC cows. If that effect carries over to beef breeds, it is reasonable to expect that CT and TT beef cows will wean heavier calves than CC beef cows. We tested this hypothesis for a herd of mixed breed cows using anova. Results indicated that both crossbred CT and TT beef cows wean significantly heavier beef calves than CC crossbred beef cows. A lack of observations generally hinders detection of significance in other breeds. However, two other comparisons were found to be significant. The results suggest further investigation into the link between leptin genotype and calf weaning weights. Aside from interest to animal scientists, these results have the potential to alter mating and replacement selection decisions by cow-calf producers, given the importance of weaning weights on profitability.

  1. The adipocyte specific transcription factor C/EBPalpha modulates human ob gene expression.

    PubMed Central

    Miller, S G; De Vos, P; Guerre-Millo, M; Wong, K; Hermann, T; Staels, B; Briggs, M R; Auwerx, J

    1996-01-01

    The ob gene product, leptin, apparently exclusively expressed in adipose tissue, is a signaling factor regulating body weight homeostasis and energy balance. ob gene expression is increased in obese rodents and regulated by feeding, insulin, and glucocorticoids, which supports the concept that ob gene expression is under hormonal control, which is expected for a key factor controlling body weight homeostasis and energy balance. In humans, ob mRNA expression is increased in gross obesity; however, the effects of the above factors on human ob expression are unknown. We describe the structure of the human ob gene and initial functional analysis of its promoter. The human ob gene's three exons cover approximately 15 kb of genomic DNA. The entire coding region is contained in exons 2 and 3, which are separated by a 2-kb intron. The first small 30-bp untranslated exon is located >10.5 kb upstream of the initiator ATG codon. Three kilobases of DNA upstream of the transcription start site has been cloned and characterized. Only 217 bp of 5' sequence are required for basal adipose tissue-specific expression of the ob gene as well as enhanced expression by C/EBPalpha. Mutation of the single C/EBPalpha site in this region abolished inducibility of the promoter by C/EBPalpha in cotransfection assays. The gene structure will facilitate our analysis of ob mutations in human obesity, whereas knowledge of sequence elements and factors regulating ob gene expression should be of major importance in the prevention and treatment of obesity. Images Fig. 1 Fig. 2 PMID:8643605

  2. Leptin receptor gene Gln223Arg polymorphism is not associated with obesity and metabolic syndrome in Turkish children.

    PubMed

    Komşu-Ornek, Zuhal; Demirel, Fatma; Dursun, Ahmet; Ermiş, Bahri; Pişkin, Etem; Bideci, Aysun

    2012-01-01

    The aim of the study was to investigate the relationship between leptin receptor gene (LEPR) Gln223Arg polymorphism and obesity in Turkish children. Ninety-two obese and 99 lean children (between 5-15 years) were included in the study. Twenty-three of the obese children were diagnosed with metabolic syndrome. Blood samples were collected for morning fasting blood glucose, insulin, leptin, and lipid level measurements. LEPR Gln223Arg polymorphism was analyzed by restriction fragment length polymorphism. Significant differences were observed in anthropometric measurements, fasting blood glucose, insulin, leptin, and lipid levels between obese and lean children. Serum leptin levels were markedly higher in obese children. No significant association was noted between Gln223Arg polymorphism and serum leptin, insulin and lipid levels. There were no differences in the genotype frequencies or allele distribution for Gln223Arg polymorphism among obese, obese with metabolic syndrome and lean children. Our findings suggest that there is no association between Gln223Arg polymorphism and obesity in Turkish children.

  3. Leptin receptor gene in the European sea bass (Dicentrarchus labrax): Cloning, phylogeny, tissue distribution and neuroanatomical organization.

    PubMed

    Escobar, Sebastián; Rocha, Ana; Felip, Alicia; Carrillo, Manuel; Zanuy, Silvia; Kah, Olivier; Servili, Arianna

    2016-04-01

    In this study, we report the cloning of three transcripts for leptin receptor in the European sea bass, a marine teleost of economic interest. The two shortest variants, generated by different splice sites, encode all functional extracellular and intracellular domains but missed the transmembrane domain. The resulting proteins are therefore potential soluble binding proteins for leptin. The longest transcript (3605bp), termed sblepr, includes all the essential domains for binding and transduction of the signal. Thus, it is proposed as the ortholog for the human LEPR gene, the main responsible for leptin signaling. Phylogenetic analysis shows the sblepr clustered within the teleost leptin receptor group in 100% of the bootstrap replicates. The neuroanatomical localization of sblepr expressing cells has been assessed by in situ hybridization in brains of sea bass of both sexes during their first sexual maturation. At histological level, the distribution pattern of sblepr expressing cells in the brain shows no clear differences regarding sex or reproductive season. Transcripts of the sblepr have a widespread distribution throughout the forebrain and midbrain until the caudal portion of the hypothalamus. A high hybridization signal is detected in the telencephalon, preoptic area, medial basal and caudal hypothalamus and in the pituitary gland. In a more caudal region, sblepr expressing cells are identified in the longitudinal torus. The expression pattern observed for sblepr suggests that in sea bass, leptin is very likely to be involved in the control of food intake, energy reserves and reproduction. PMID:26979276

  4. Rosiglitazone improves insulin sensitivity with increased serum leptin levels in patients with type 2 diabetes mellitus.

    PubMed

    Kim, Hae Jin; Kim, Soo Kyung; Shim, Wan Sub; Lee, Jae Hyuk; Hur, Kyu Yeon; Kang, Eun Seok; Ahn, Chul Woo; Lim, Sung Kil; Lee, Hyun Chul; Cha, Bong Soo

    2008-07-01

    Rosiglitazone (RSG) is known to be an agonist for the peroxisome proliferator-activated receptor-gamma (PPARgamma) and promotes differentiation of pre-adipocytes into adipocytes. Leptin is highly correlated with adiposity, while the activation of PPARgamma is known to inhibit Lep gene expression and leptin release. This study was performed to evaluate the relationship between changes in circulating leptin levels, insulin sensitivity and regional adiposity after RSG treatment. Two hundred fifty-one type 2 diabetic patients (176 men and 75 women) who had been treated with sulfonylurea and/or metformin received 4 mg of RSG daily, in addition to the previous medications. Before and after RSG treatment (average duration 5.6+/-0.9 months), indices of insulin resistance, metabolic parameters, and serum leptin and adiponectin levels were measured. Abdominal subcutaneous fat thickness (SFT(max)) and visceral fat thickness were measured by sonography. After RSG treatment, HOMA-IR index decreased significantly (2.82+/-1.94 vs. 2.01+/-1.58), while BMI and SFT(max) increased, and leptin (4.72+/-3.77 vs. 5.69+/-4.30 ng/ml) and adiponectin levels (7.54+/-10.20 vs. 12.89+/-10.13 microg/ml) increased. The increase in serum leptin correlated with an increase in SFT(max) (r=0.511, p<0.001) and with a reduction in HOMA-IR (r=-0.368, p<0.001). The correlation of Delta leptin with Delta HOMA-IR and with Delta SFT(max) was higher in females and among insulin-resistant subjects. In conclusion, RSG improves the insulin sensitivity with increased serum leptin levels in patients with type 2 diabetes mellitus, which is related to an increase in subcutaneous adiposity.

  5. Role of leptin in reproduction.

    PubMed

    Mantzoros, C S

    2000-01-01

    Leptin is a 16-kDa adipocyte-secreted protein the serum levels of which reflect mainly the amount of energy stores but are also influenced by short-term energy imbalance as well as several cytokines and hormones. Leptin, by binding to specific receptors, alters the expression of several hypothalamic neuropeptides that regulate neuroendocrine function as well as energy intake and expenditure. More specifically, accumulating evidence suggests that this hormone may serve to signal to the brain information on the critical amount of fat stores that are necessary for LHRH secretion and activation of the hypothalamic-pituitary-gonadal axis. Rising leptin levels have been associated with initiation of puberty in animals and humans and normal leptin levels are needed for maintenance of menstrual cycles and normal reproductive function. Moreover, circadian and ultradian variations of leptin levels are associated with minute to minute variations of LH and estradiol in normal women. Falling leptin levels in response to starvation result in decreased estradiol levels and amenorrhea in subjects with anorexia nervosa or strenuously exercising athletes. In addition, leptin has a potentially important role during pregnancy and in the physiology of the neonate. Finally, recent evidence suggests that leptin may influence ovarian steroidogenesis directly, but the exact role of intraovarian leptin action in the physiology and pathophysiology of the human reproductive system needs to be further elucidated.

  6. Association Between Leptin (-2548G/A) Genes Polymorphism and Breast Cancer Susceptibility: A Meta-Analysis.

    PubMed

    Yan, Wanjun; Ma, Xingcong; Gao, Xiaoyan; Zhang, Shuqun

    2016-01-01

    Leptin is a confirmed breast cancer susceptibility gene. However, published studies reported mixed results. This meta-analysis was conducted to systematically get a more accurate estimation of the association between the Leptin (-2548G/A) gene polymorphism and breast cancer risk. To assess the effect of Leptin (-2548G/A) gene polymorphism on breast cancer susceptibility, we searched PUBMED, ISI Web of Knowledge, EMBASE, Chinese National Knowledge Infrastructure (CNKI) databases until September 2015 to identify eligible studies, without restriction. Summary odds ratios (ORs) and 95% confidence intervals (CIs) were used to evaluate the susceptibility to breast cancer. Separate analyses were conducted on features of the population such as ethnicity, source of controls, and country. A total of 9 case-control studies on Leptin (-2548G/A) gene polymorphism and breast cancer risk, including 3725 cases and 3093 case-free controls were identified. The results revealed that compared with the G allele, the A allele was associated with modestly increased risk of overall breast cancer (A vs G: OR = 1.12, 95%CI = 1.04-1.20, P = 0.002, Phet P < 0.00001). Following further stratified analyses, in the subgroup analyses by ethnicity, a significantly increased risk was observed among Caucasian (A vs G: OR = 1.11, 95%CI = 1.03-1.20, P = 0.006, Phet = 0.00001). No publication bias was found in the present study. In conclusion, our meta-analysis suggests that the Leptin (-2548G/A) gene polymorphism plays an important role in breast cancer susceptibility, especially in Caucasian. PMID:26825898

  7. Elsevier Trophoblast Research Award lecture: Molecular mechanisms underlying estrogen functions in trophoblastic cells--focus on leptin expression.

    PubMed

    Gambino, Y P; Maymó, J L; Pérez Pérez, A; Calvo, J C; Sánchez-Margalet, V; Varone, C L

    2012-02-01

    The steroid hormone 17β-estradiol is an estrogen that influences multiple aspects of placental function and fetal development in humans. During early pregnancy it plays a role in the regulation of blastocyst implantation, trophoblast differentiation and invasiveness, remodeling of uterine arteries, immunology and trophoblast production of hormones such as leptin. Estradiol exerts some effects through the action of classical estrogen receptors ERα and ERβ, which act as ligand-activated transcription factors and regulate gene expression. In addition, estradiol can elicit rapid responses from membrane-associated receptors, like activation of protein-kinase pathways. Thus, the cellular effects of estradiol will depend on the specific receptors expressed and the integration of their signaling events. Leptin, the 16,000MW protein product of the obese gene, was originally considered an adipocyte-derived signaling molecule for the central control of metabolism. However, pleiotropic effects of leptin have been identified in reproduction and pregnancy. The leptin gene is expressed in placenta, where leptin promotes proliferation and survival of trophoblastic cells. Expression of leptin in placenta is highly regulated by key pregnancy molecules as hCG and estradiol. The aim of this paper is to review the molecular mechanisms underlying estrogen functions in trophoblastic cells; focusing on mechanisms involved in estradiol regulation of placental leptin expression.

  8. Interleukin-17 and leptin genes polymorphisms and their levels in relation to recurrent pregnancy loss in Egyptian females.

    PubMed

    Zidan, Haidy E; Rezk, Noha A; Alnemr, Amr Abd Almohsen; Moniem, Mohamed I Abdel

    2015-11-01

    Recurrent pregnancy loss (RPL) is a common problem during early gestation. The aim of our study was to investigate the association of IL-17 F( rs763780), IL-17 A (rs2275913), and leptin (2548 G/A) gene polymorphisms with RPL in obese and lean Egyptian females, and to find out whether these gene polymorphisms affect the women’s serum levels. One hundred and twenty patients with RPL and 120 fertile volunteers with no history of pregnancy loss were genotyped for leptin (2548 G/A), IL-17 A (rs2275913), and IL-17 F (rs763780) polymorphisms by RFLP. The serum level of IL-17 was measured by ELISA, while serum leptin level was measured by HPLC. We found that IL-17 F (rs763780) polymorphism was associated with a decreased risk of RPL in Egyptian females, and we also found that IL-17 A (rs2275913) and LEP (2548 G/A) SNP were associated with an increased risk of RPL. We also demonstrated that both the IL-17 and leptin levels were elevated in the women with RPL and in an obese subgroup within RPL in comparison to a lean one. PMID:26467330

  9. Photoperiodic regulation of leptin sensitivity in the Siberian hamster, Phodopus sungorus, is reflected in arcuate nucleus SOCS-3 (suppressor of cytokine signaling) gene expression.

    PubMed

    Tups, Alexander; Ellis, Claire; Moar, Kim M; Logie, Tracy J; Adam, Clare L; Mercer, Julian G; Klingenspor, Martin

    2004-03-01

    We present the first evidence that suppressor of cytokine signaling-3 (SOCS3), a protein inhibiting Janus kinase/signal transducer and activator of transcription (STAT) signaling distal of the leptin receptor, conveys seasonal changes in leptin sensitivity in the Siberian hamster. Food deprivation (48 h) reduced SOCS3 gene expression in hamsters acclimated to either long (LD) or short (SD) photoperiods, suggesting that leptin signals acute starvation regardless of photoperiod. However, SOCS3 mRNA levels were substantially lower in the hypothalamic arcuate nucleus of hamsters acclimated to SD than in those raised in LD. In juveniles raised in LD, a rapid increase in SOCS3 mRNA was observed within 4 d of weaning, which was completely prevented by transfer to SD on the day of weaning. The early increase in SOCS3 gene expression in juvenile hamsters in LD clearly preceded the establishment of different body weight trajectories in LD and SD. In adult LD hamsters, SOCS3 mRNA was maintained at an elevated level despite the chronic food restriction imposed to lower body weight and serum leptin to or even below SD levels. A single injection of leptin in SD hamsters elevated SOCS3 mRNA to LD levels, whereas leptin treatment had no effect on SOCS3 gene expression in LD hamsters. Our results suggest that the development of leptin resistance in LD-acclimated hamsters involves SOCS3-mediated suppression of leptin signaling in the arcuate nucleus. Increased SOCS3 expression in LD hamsters is independent of body fat and serum leptin levels, suggesting that the photoperiod is able to trigger the biannual reversible switch in leptin sensitivity.

  10. Leptin promoter variant G2548A is associated with serum leptin and HDL-C levels in a case control observational study in association with obesity in a Pakistani cohort.

    PubMed

    Shabana, -; Hasnain, Shahida

    2016-06-01

    Leptin is a protein hormone synthesized by adipocytes and is involved in the regulation of food intake and energy expenditure. We hypothesized that any change in the promoter sequence can affect the expression of the gene and hence leptin protein levels in the serum. The aim of the current study was to investigate the relationship of such a promoter variant of the leptin gene, G-2548A polymorphism, with obesity and its effect on various anthropometric and metabolic parameters in a Pakistani cohort consisting of 250 obese and 225 non-obese control subjects. Body weight, height, waist circumference (WC), hip circumference (HC) and blood pressure (BP) were measured by standard methods and levels of fasting blood glucose (FBG), total cholesterol, triglycerides, HDLC, LDLC, and leptin were determined. Genotyping was done by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The results showed that the LEP G-2548A polymorphism showed significant association with obesity in Pakistan. In addition, the polymorphism showed association with weight, height, BMI, WC, HDLC and serum leptin levels. The findings suggest that the leptin promoter G-2548A variant may play its part in the progression to obesity by not only affecting the body's fat distribution but also by changing the serum leptin and HDLC levels. PMID:27240985

  11. A heliocentric view of leptin.

    PubMed

    Frühbeck, G

    2001-08-01

    Leptin is significantly broadening our understanding of the mechanisms underlying neuroendocrine function. Initially, based on a rather static view of the hormone, most investigations focused on the effects of leptin on food intake control and body-weight homeostasis, with attention primarily focused on the implications of leptin as a lipostatic factor and central satiety agent. However, the almost ubiquitous distribution of leptin receptors in peripheral tissues provided a fertile area for investigation and a more dynamic view of leptin started to unfold. This adipocyte-derived circulating peptidic hormone, with a tertiary structure resembling that of members of the long-chain helical cytokine family, has generated an enormous interest in the interaction as well as integration between brain targets and peripheral signals. Considerable evidence for systemic effects of leptin on specific tissues and metabolic pathways indicates that leptin operates both directly and indirectly to orchestrate complex pathophysiological processes. Disentangling the biochemical and molecular mechanisms in which leptin is involved represents one of the major challenges ahead.

  12. Estrogen-related receptor {alpha} modulates the expression of adipogenesis-related genes during adipocyte differentiation

    SciTech Connect

    Ijichi, Nobuhiro; Ikeda, Kazuhiro; Horie-Inoue, Kuniko; Yagi, Ken; Okazaki, Yasushi; Inoue, Satoshi . E-mail: INOUE-GER@h.u-tokyo.ac.jp

    2007-07-06

    Estrogen-related receptor {alpha} (ERR{alpha}) is an orphan nuclear receptor that regulates cellular energy metabolism by modulating gene expression involved in fatty acid oxidation and mitochondrial biogenesis in brown adipose tissue. However, the physiological role of ERR{alpha} in adipogenesis and white adipose tissue development has not been well studied. Here, we show that ERR{alpha} and ERR{alpha}-related transcriptional coactivators, peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) coactivator-1{alpha} (PGC-1{alpha}) and PGC-1{beta}, can be up-regulated in 3T3-L1 preadipocytes at mRNA levels under the adipogenic differentiation condition including the inducer of cAMP, glucocorticoid, and insulin. Gene knockdown by ERR{alpha}-specific siRNA results in mRNA down-regulation of fatty acid binding protein 4, PPAR{gamma}, and PGC-1{alpha} in 3T3-L1 cells in the adipogenesis medium. ERR{alpha} and PGC-1{beta} mRNA expression can be also up-regulated in another preadipocyte lineage DFAT-D1 cells and a pluripotent mesenchymal cell line C3H10T1/2 under the differentiation condition. Furthermore, stable expression of ERR{alpha} in 3T3-L1 cells up-regulates adipogenic marker genes and promotes triglyceride accumulation during 3T3-L1 differentiation. These results suggest that ERR{alpha} may play a critical role in adipocyte differentiation by modulating the expression of various adipogenesis-related genes.

  13. Leptin gene transfer regulates fibromuscular development and lipid deposition in muscles via SIRT1, FOXO3a and PGC-1α in mice in vivo.

    PubMed

    Wang, Yi-Zhen; Huang, Yan-Na; Sun, Kai-Yue; Qi, Jian-Hua; Xiang, Lan

    2011-10-01

    Leptin gene transfer in the liver by hydrodynamic-based gene delivery instead of peptide administration was used to investigate the effects of leptin on muscle mass accretion and lipid accumulation in muscles of wild-type mice. Food intake (P<0.01), body weight (P<0.01) and white adipose tissue (P<0.01) were significantly reduced in the leptin gene-treated group compared with the control group. Moreover, plasma leptin concentration was significantly increased after administration of the mouse leptin gene at a dose of 15 µg per mouse for 1 day (P<0.01) or 1 week (P<0.05). Furthermore, the mRNA abundance of myosin heavy chain type I (MyHC-I), myosin heavy chain type II (MyHC-IIa, MyHC-IIx), adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL) and lipoprotein lipase (LPL) genes in gastrocnemius muscle and extensor digitorum longus after administration of leptin for 1 week were significantly increased compared with the control group. Finally, we investigated the mechanism by which leptin gene transfer affects fibromuscular and fat deposition in muscle. Gene expression and protein levels of SIRT1, and proliferator-activated receptor-γ coactivator-1α (PGC-1α) were remarkably increased in extensor digitorum longus. On the other hand, PGC-1α and FOXO3a gene expression was observed to have significantly increased in gastrocnemius muscle. However, only changes in the protein levels of PGC-1α were observed (P<0.05). These results suggest that leptin may affect the growth and development of muscle, and fat deposition in wild-type mice via SIRT1 and FOXO3a and their downstream targets, including PGC-1α.

  14. Hypomethylation of the LEP gene in placenta and elevated maternal leptin concentration in early onset pre-eclampsia.

    PubMed

    Hogg, Kirsten; Blair, John D; von Dadelszen, Peter; Robinson, Wendy P

    2013-03-10

    In pre-eclampsia, placental leptin is up-regulated and leptin is elevated in maternal plasma. To investigate potential epigenetic regulation of the leptin (LEP) gene in normal and complicated pregnancy, DNA methylation was assessed at multiple reported regulatory regions in placentae from control pregnancies (n=111), and those complicated by early onset pre-eclampsia (EOPET; arising <34 weeks; n=19), late onset pre-eclampsia (LOPET; arising ≥34 weeks; n=18) and normotensive intrauterine growth restriction (nIUGR; n=13). The LEP promoter was hypomethylated in EOPET, but not LOPET or nIUGR placentae, particularly at CpG sites downstream of the transcription start site (-10.1%; P<0.0001). Maternal plasma leptin was elevated in EOPET and LOPET (P<0.05), but not nIUGR, compared with controls. EOPET cases showed a trend towards biallelic LEP expression rather than skewed allelic expression observed in control placentae, suggesting that loss of normal monoallelic expression at the LEP locus is associated with hypomethylation, leading to increased overall LEP expression.

  15. Perinatal malnutrition programs gene expression of leptin receptors isoforms in testis and prostate of adult rats.

    PubMed

    Gombar, Flavia Meireles; Ramos, Cristiane Fonte

    2013-06-10

    The aim of this paper was to evaluate if maternal malnutrition during lactation programs the expression of leptin receptor isoforms in the testes and prostate ventral lobe of adult rats. At delivery, Wistar rats were separated into 3 groups: control group (C) with free access to a standard laboratory diet containing 22% protein; protein-energy restricted group (PER) with free access to an isoenergy and protein-restricted diet containing 8% protein; and energy-restricted group (ER) receiving standard laboratory diet in restricted quantities, which were calculated according to the mean ingestion of the PER group. All animals were sacrificed at 90 days of age. Both PER and ER groups presented low body weight from the first days after birth, however, while the ER group reached the control weight around day 80, the body weight of PER group was significantly lower compared to controls until the day the animals were killed. In relation to tissue weight, only the relative testis weight of the ER group presented an alteration compared to the control group (p<0.03). There was also no alteration in the leptin serum levels among the groups. The main leptin receptors isoforms, OBRa and OBRb were significantly increased in the testis (OBRa: C=0.71±0.10; PER=1.14±0.17; ER=1.92±0.70, p<0.0007, OBRb: C=0.87±0.04; PER=1.20±0.05; ER=1.44±0.17, p<0.001) and prostate (OBRa: C=0.70±0.18; PER=1.30±0.14; ER=1.65±0.22, p<0.014, OBRb: C=0.77±0.14; PER=1.16±0.04; ER=1.30±0.13, p<0.027) of both malnourished groups. However, the testis OBRc (C=1.52±0.06; PER=1.35±0.23; ER=3.50±0.72, p<0.023) and OBRf (C=1.31±0.12; PER=1.66±0.27; ER=3.47±0.55, p<0.009) and prostate OBRc (C=0.48±0.13; ER=1.18±0.34, p<0.01) and OBRf (C=0.73±0.15; PER=0.99±0.11; ER=1.83±0.30, p<0.016) isoforms were significantly increased only in the ER group. The results presented here show for the first time that both testis and prostate leptin receptor isoforms gene expression are programmed by perinatal

  16. Dexamethasone and Acetate Modulate Cytoplasmic Leptin in Bovine Preadipocytes

    PubMed Central

    Yonekura, Shinichi; Hirota, Shohei; Tokutake, Yukako; Rose, Michael T.; Katoh, Kazuo; Aso, Hisashi

    2014-01-01

    Hormonal and nutrient signals regulate leptin synthesis and secretion. In rodents, leptin is stored in cytosolic pools of adipocytes. However, not much information is available regarding the regulation of intracellular leptin in ruminants. Recently, we demonstrated that leptin mRNA was expressed in bovine intramuscular preadipocyte cells (BIP cells) and that a cytoplasmic leptin pool may be present in preadipocytes. In the present study, we investigated the expression of cytoplasmic leptin protein in BIP cells during differentiation as well as the effects of various factors added to the differentiation medium on its expression in BIP cells. Leptin mRNA expression was observed only at 6 and 8 days after adipogenic induction, whereas the cytoplasmic leptin concentration was the highest on day 0 and decreased gradually thereafter. Cytoplasmic leptin was detected at 6 and 8 days after adipogenic induction, but not at 4 days after adipogenic induction. The cytoplasmic leptin concentration was reduced in BIP cells at 4 days after treatment with dexamethasone, whereas cytoplasmic leptin was not observed at 8 days after treatment. In contrast, acetate significantly enhanced the cytoplasmic leptin concentration in BIP cells at 8 days after treatment, although acetate alone did not induce adipocyte differentiation in BIP cells. These results suggest that dexamethasone and acetate modulate the cytoplasmic leptin concentration in bovine preadipocytes. PMID:25049989

  17. NADPH Oxidase-derived Reactive Oxygen Species Increases Expression of Monocyte Chemotactic Factor Genes in Cultured Adipocytes*

    PubMed Central

    Han, Chang Yeop; Umemoto, Tomio; Omer, Mohamed; Den Hartigh, Laura J.; Chiba, Tsuyoshi; LeBoeuf, Renee; Buller, Carolyn L.; Sweet, Ian R.; Pennathur, Subramaniam; Abel, E. Dale; Chait, Alan

    2012-01-01

    Excess glucose and free fatty acids delivered to adipose tissue causes local inflammation, which contributes to insulin resistance. Glucose and palmitate generate reactive oxygen species (ROS) in adipocytes, leading to monocyte chemotactic factor gene expression. Docosahexaenoate (DHA) has the opposite effect. In this study, we evaluated the potential sources of ROS in the presence of excess nutrients. Differentiated 3T3-L1 adipocytes were exposed to palmitate and DHA (250 μm) in either 5 or 25 mm glucose to evaluate the relative roles of mitochondrial electron transport and NADPH oxidases (NOX) as sources of ROS. Excess glucose and palmitate did not increase mitochondrial oxidative phosphorylation. However, glucose exposure increased glycolysis. Of the NOX family members, only NOX4 was expressed in adipocytes. Moreover, its activity was increased by excess glucose and palmitate and decreased by DHA. Silencing NOX4 inhibited palmitate- and glucose-stimulated ROS generation and monocyte chemotactic factor gene expression. NADPH, a substrate for NOX, and pentose phosphate pathway activity increased with glucose but not palmitate and decreased with DHA exposure. Inhibition of the pentose phosphate pathway by glucose-6-phosphate dehydrogenase inhibitors and siRNA suppressed ROS generation and monocyte chemotactic factor gene expression induced by both glucose and palmitate. Finally, both high glucose and palmitate induced NOX4 translocation into lipid rafts, effects that were blocked by DHA. Excess glucose and palmitate generate ROS via NOX4 rather than by mitochondrial oxidation in cultured adipocytes. NOX4 is regulated by both NADPH generated in the PPP and translocation of NOX4 into lipid rafts, leading to expression of monocyte chemotactic factors. PMID:22287546

  18. Leptin stimulates fibroblast growth factor 23 expression in bone and suppresses renal 1alpha,25-dihydroxyvitamin D3 synthesis in leptin-deficient mice.

    PubMed

    Tsuji, Kiyomi; Maeda, Toyonobu; Kawane, Tetsuya; Matsunuma, Ayako; Horiuchi, Noboru

    2010-08-01

    Leptin is the LEP (ob) gene product secreted by adipocytes. We previously reported that leptin decreases renal expression of the 25-hydroxyvitamin D(3) 1alpha-hydroxylase (CYP27B1) gene through the leptin receptor (ObRb) by indirectly acting on the proximal tubules. This study focused on bone-derived fibroblast growth factor 23 (FGF-23) as a mediator of the influence of leptin on renal 1alpha-hydroxylase mRNA expression in leptin-deficient ob/ob mice. Exposure to leptin (200 ng/mL) for 24 hours stimulated FGF-23 expression by primary cultured rat osteoblasts. Administration of leptin (4 mg/kg i.p. at 12-hour intervals for 2 days) to ob/ob mice markedly increased the serum FGF-23 concentration while significantly reducing the serum levels of calcium, phosphate, and 1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)]. Administration of FGF-23 (5 microg i.p. at 12-hour intervals for 2 days) to ob/ob mice suppressed renal 1alpha-hydroxylase mRNA expression. The main site of FGF-23 mRNA expression was the bone, and leptin markedly increased the FGF-23 mRNA level in ob/ob mice. In addition, leptin significantly reduced 1alpha-hydroxylase and sodium-phosphate cotransporters (NaP(i)-IIa and NaP(i)-IIc) mRNA levels but did not affect Klotho mRNA expression in the kidneys of ob/ob mice. Furthermore, the serum FGF-23 level and renal expression of 1alpha-hydroxylase mRNA were not influenced by administration of leptin to leptin receptor-deficient (db/db) mice. These results indicate that leptin directly stimulates FGF-23 synthesis by bone cells in ob/ob mice, suggesting that inhibition of renal 1,25(OH)(2)D(3) synthesis in these mice is at least partly due to elevated bone production of FGF-23.

  19. Effects of MicroRNA-23a on Differentiation and Gene Expression Profiles in 3T3-L1 Adipocytes

    PubMed Central

    Huang, Yong; Huang, Jinxiu; Qi, Renli; Wang, Qi; Wu, Yongjiang; Wang, Jing

    2016-01-01

    MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate growth, development, and programmed death of cells. A newly-published study has shown that miRNA-23a could regulate 3T3-L1 adipocyte differentiation. Here, we identified miRNA-23a as a negative regulator of 3T3-L1 adipocyte differentiation again. Over-expression of miRNA-23a inhibited differentiation and decreased lipogenesis as well as down-regulated mRNA and protein expression of both peroxisome proliferator-activated receptor (PPAR) γ and fatty acid binding protein (FABP) 4, whereas knock down of miRNA-23a showed the opposite effects on differentiation as well as increasing the number of apoptotic cells. Additionally, digital gene expression profiling sequencing (DGE-Seq) was used to assay changes in gene expression profiles following alterations in the level of miR-23a. In total, over-expression or knock down of miRNA-23a significantly changed the expression of 313 and 425 genes, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that these genes were mainly involved in the stress response, immune system, metabolism, cell cycle, among other pathways. Additionally, the signal transducer and activator of transcription 1 (Stat1) was shown to be a target of miRNA-23a by computational and dual-luciferase reporter assays that indicated Janus Kinase (Jak)-Stat signal pathway was implicated in regulating adipogenesis mediated by miRNA-23a in adipocytes. PMID:27783036

  20. Effects of vitamin a status on expression of ucp1 and brown/beige adipocyte-related genes in white adipose tissues of beef cattle.

    PubMed

    Kanamori, Yohei; Yamada, Tomoya; Asano, Hiroki; Kida, Ryosuke; Qiao, Yuhang; Abd Eldaim, Mabrouk A; Tomonaga, Shozo; Matsui, Tohru; Funaba, Masayuki

    2014-09-01

    We previously reported the presence of brown/beige adipocytes in the white fat depots of mature cattle. The present study examined the effects of dietary vitamin A on the expression of brown/beige adipocyte-related genes in the white fat depots of fattening cattle. No significant differences were observed in the expression of Ucp1 between vitamin A-deficient cattle and control cattle. However, the expression of the other brown/beige adipocyte-related genes was slightly higher in the mesenteric fat depots of vitamin A-deficient cattle. The present results suggest that a vitamin A deficiency does not markedly affect the expression of Ucp1 in white fat depots, but imply that it may stimulate the emergence of beige adipocytes in the mesenteric fat depots of fattening cattle.

  1. Leptin as a cardiac pro-hypertrophic factor and its potential role in the development of heart failure.

    PubMed

    Karmazyn, Morris; Rajapurohitam, Venkatesh

    2014-01-01

    The identification of the adipocyte as a source of production of biologically-active peptides has materialized into an active area of research related to the role of these peptides in physiology and pathophysiology. Moreover, this research has resulted in the identification of the adipocyte as an endocrine organ producing potent bioactive compounds. An increasing number of these adipokines are being identified, the first of which was leptin, a product of the obesity gene whose primary function is to act as a satiety factor but which is now known to exert a myriad of effects. It is now recognized that virtually all adipokines produce effects on numerous organ systems including the heart and many of these, including leptin, are produced by cardiac tissue. Here we focus primarily on the diverse effects of leptin on the heart especially as it pertains to hypertrophy and discuss the potential cell signaling mechanisms underlying their actions. Current evidence suggests that leptin is a cardiac hypertrophic factor and from clinical studies there is evidence that hyperleptinemia is associated with cardiovascular risk especially as it pertains to heart failure. While more substantial research needs to be carried out, leptin may represent a potential link between obesity, which is associated with hyperleptinemia, and increased cardiovascular risk.

  2. Analysis of Gln223Agr polymorphism of Leptin Receptor Gene in type II diabetic mellitus subjects among Malaysians.

    PubMed

    Etemad, Ali; Ramachandran, Vasudevan; Pishva, Seyyed Reza; Heidari, Farzad; Aziz, Ahmad Fazli Abdul; Yusof, Ahmad Khairuddin Mohamed; Pei, Chong Pei; Ismail, Patimah

    2013-09-18

    Leptin is known as the adipose peptide hormone. It plays an important role in the regulation of body fat and inhibits food intake by its action. Moreover, it is believed that leptin level deductions might be the cause of obesity and may play an important role in the development of Type 2 Diabetes Mellitus (T2DM), as well as in cardiovascular diseases (CVD). The Leptin Receptor (LEPR) gene and its polymorphisms have not been extensively studied in relation to the T2DM and its complications in various populations. In this study, we have determined the association of Gln223Agr loci of LEPR gene in three ethnic groups of Malaysia, namely: Malays, Chinese and Indians. A total of 284 T2DM subjects and 281 healthy individuals were recruited based on International Diabetes Federation (IDF) criteria. Genomic DNA was extracted from the buccal specimens of the subjects. The commercial polymerase chain reaction (PCR) method was carried out by proper restriction enzyme MSP I to both amplify and digest the Gln223Agr polymorphism. The p-value among the three studied races was 0.057, 0.011 and 0.095, respectively. The values such as age, WHR, FPG, HbA1C, LDL, HDL, Chol and Family History were significantly different among the subjects with Gln223Agr polymorphism of LEPR (p < 0.05).

  3. Analysis of Gln223Agr polymorphism of Leptin Receptor Gene in type II diabetic mellitus subjects among Malaysians.

    PubMed

    Etemad, Ali; Ramachandran, Vasudevan; Pishva, Seyyed Reza; Heidari, Farzad; Aziz, Ahmad Fazli Abdul; Yusof, Ahmad Khairuddin Mohamed; Pei, Chong Pei; Ismail, Patimah

    2013-01-01

    Leptin is known as the adipose peptide hormone. It plays an important role in the regulation of body fat and inhibits food intake by its action. Moreover, it is believed that leptin level deductions might be the cause of obesity and may play an important role in the development of Type 2 Diabetes Mellitus (T2DM), as well as in cardiovascular diseases (CVD). The Leptin Receptor (LEPR) gene and its polymorphisms have not been extensively studied in relation to the T2DM and its complications in various populations. In this study, we have determined the association of Gln223Agr loci of LEPR gene in three ethnic groups of Malaysia, namely: Malays, Chinese and Indians. A total of 284 T2DM subjects and 281 healthy individuals were recruited based on International Diabetes Federation (IDF) criteria. Genomic DNA was extracted from the buccal specimens of the subjects. The commercial polymerase chain reaction (PCR) method was carried out by proper restriction enzyme MSP I to both amplify and digest the Gln223Agr polymorphism. The p-value among the three studied races was 0.057, 0.011 and 0.095, respectively. The values such as age, WHR, FPG, HbA1C, LDL, HDL, Chol and Family History were significantly different among the subjects with Gln223Agr polymorphism of LEPR (p < 0.05). PMID:24051404

  4. Analysis of Gln223Agr Polymorphism of Leptin Receptor Gene in Type II Diabetic Mellitus Subjects among Malaysians

    PubMed Central

    Etemad, Ali; Ramachandran, Vasudevan; Pishva, Seyyed Reza; Heidari, Farzad; Aziz, Ahmad Fazli Abdul; Yusof, Ahmad Khairuddin Mohamed; Pei, Chong Pei; Ismail, Patimah

    2013-01-01

    Leptin is known as the adipose peptide hormone. It plays an important role in the regulation of body fat and inhibits food intake by its action. Moreover, it is believed that leptin level deductions might be the cause of obesity and may play an important role in the development of Type 2 Diabetes Mellitus (T2DM), as well as in cardiovascular diseases (CVD). The Leptin Receptor (LEPR) gene and its polymorphisms have not been extensively studied in relation to the T2DM and its complications in various populations. In this study, we have determined the association of Gln223Agr loci of LEPR gene in three ethnic groups of Malaysia, namely: Malays, Chinese and Indians. A total of 284 T2DM subjects and 281 healthy individuals were recruited based on International Diabetes Federation (IDF) criteria. Genomic DNA was extracted from the buccal specimens of the subjects. The commercial polymerase chain reaction (PCR) method was carried out by proper restriction enzyme MSP I to both amplify and digest the Gln223Agr polymorphism. The p-value among the three studied races was 0.057, 0.011 and 0.095, respectively. The values such as age, WHR, FPG, HbA1C, LDL, HDL, Chol and Family History were significantly different among the subjects with Gln223Agr polymorphism of LEPR (p < 0.05). PMID:24051404

  5. The relationship between leptin gene polymorphisms and reproductive traits in Jersey cows.

    PubMed

    Komisarek, J; Antkowiak, I

    2007-01-01

    The aim of the study was to analyse the relationship between three leptin gene polymorphisms, and indices of reproductive performance--age at first calving, days open, calving interval, number of inseminations per conception, and gestation length in Jersey cattle. A total of 219 cows were tested for the R4C, A59V and C(-963)T mutations using the PCR-RFLP technique. The following allele frequencies were found: R4C--0.80 (C) and 0.20 (T), A59V--0.67 (C) and 0.33 (T), C(-963)T--0.83 (C) and 0.17 (T). The statistically significant correlation (P < or = 0.05) was found only for the A59V mutation. Cows with the TT genotype were characterized by shorter calving interval and time of days open than animals with CT and CC genotype. Also, the number of inseminations per conception was lower in A59V--TT homozygotes compared with two other genotypes. The association analysis did not reveal any significant correlations for both R4C and C(-963)T polymorphisms.

  6. Leptin in Alzheimer's disease.

    PubMed

    Magalhães, C A; Carvalho, M G; Sousa, L P; Caramelli, P; Gomes, K B

    2015-10-23

    Alzheimer's disease (AD) is the most common cause of progressive dementia in the elderly population. AD is histologically characterized by accumulation of amyloid-β protein (Aβ) on extracellular plaques and deposition of hyperphosphorylated tau protein in intracellular neurofibrillary tangles. Several studies have shown that obesity may precede dementia and that lifestyle factors play a critical role in the onset of AD. Furthermore, accumulating evidence indicates that obesity is an independent risk factor for developing AD. In this scenario, the understanding of the role of adipose tissue in brain health is essential to clarify the establishment of demential processes. The objective of this work was to review studies regarding leptin, an anorexigenic peptide hormone synthesized in adipocytes, in the context of dementia. Some authors proposed that leptin evaluation might be a better predictor of dementia than traditional anthropometric measures. Leptin, once established as a biomarker, could enhance the understanding of late-onset AD risk over the life course, as well as the clinical progression of prodromal state to manifested AD. Other studies have proposed that leptin presents neuroprotective activities, which could be explained by inhibiting the amyloidogenic process, reducing the levels of tau protein phosphorylation and improving the cognitive function.

  7. Molecular characterization of the leptin receptor gene as a candidate gene in the pulmonary hypertension syndrome in broiler chickens.

    PubMed

    Bamidele, O; Van As, P; Elferink, M G

    2012-12-15

    Leptin Receptor Gene (LEPR) is a candidate gene in understanding the genetic basis of the Pulmonary Hypertension Syndrome (PHS) in broilers. Identification and evaluation of genetic polymorphisms in LEPR may provide a link between traits like Body Weight (BW) and Total Ventricle weight (TV) to the development of PHS. In this study, primers were designed in exons, upstream and downstream sequences to identify mutations in the LEPR on four broilers selected with respect to the PHS-related traits. About 77% of the 11,820 bp of the LEPR gene covered by the primers were sequenced. No mutations were found between the chickens associating the traits to the occurrence of PHS. However, 42 single nucleotide polymorphisms and four Indels were found between the reference sequences of the red jungle fowl and the experimental population. Ten of these mutations were not previously reported in LEPR at the genomic and transcript sequences (NP_989654.1, ENSGALT00000018009). The 10 mutations include six SNPs in intron regions, two Indels and two non-synonymous SNPs. The two new non-synonymous SNPs; G301A and A1637G, led to amino acid change A89T and N534S, respectively. PMID:23755410

  8. Sp1 mediates repression of the resistin gene by PPAR{gamma} agonists in 3T3-L1 adipocytes

    SciTech Connect

    Chung, S.S.; Choi, H.H.; Cho, Y.M.; Lee, H.K.; Park, K.S. . E-mail: kspark@snu.ac.kr

    2006-09-15

    Resistin is an adipokine related to obesity and insulin resistance. Expression of the resistin gene is repressed by the treatment of peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) agonists, thiazolidinediones (TZDs). In this study, we investigated the mechanism by which TZDs inhibit the resistin gene expression. Resistin gene expression was decreased by TZD in fully differentiated 3T3-L1 adipocytes, which was abolished after treatment of cycloheximide (a protein synthesis inhibitor). TZD could not repress the expression of the resistin gene in the presence of mithramycin A (an Sp1 binding inhibitor). Sp1 binding site of the resistin promoter (-122/-114 bp) was necessary for the repression. Further investigation of the effect of TZDs on the modification of Sp1 showed that the level of O-glycosylation of Sp1 was decreased in this process. These results suggest that PPAR{gamma} activation represses the expression of the resistin gene by modulating Sp1 activity.

  9. Monitoring leptin activity using the chicken leptin receptor.

    PubMed

    Hen, Gideon; Yosefi, Sera; Ronin, Ana; Einat, Paz; Rosenblum, Charles I; Denver, Robert J; Friedman-Einat, Miriam

    2008-05-01

    We report on the construction of a leptin bioassay based on the activation of chicken leptin receptor in cultured cells. A human embryonic kidney (HEK)-293 cell line, stably transfected with the full-length cDNA of chicken leptin receptor together with a STAT3-responsive reporter gene specifically responded to recombinant human and Xenopus leptins. The observed higher sensitivity of chicken leptin receptor to the former is in agreement with the degree of sequence similarity among these species (about 60 and 38% identical amino acids between humans and chickens, and between humans and Xenopus respectively). The specific activation of signal transduction through the chicken leptin receptor, shown here for the first time, suggests that the transition of Gln269 (implicated in the Gln-to-Pro Zucker fatty mutation in rats) to Glu in chickens does not impair its activity. Analysis of leptin-like activity in human serum samples of obese and lean subjects coincided well with leptin levels determined by RIA. Serum samples of pre- and post partum cows showed a tight correlation with the degree of adiposity. However, specific activation of the chicken leptin receptor in this assay was not observed with serum samples from broiler or layer chickens (representing fat and lean phenotypes respectively) or with those from turkey. Similar leptin receptor activation profiles were observed with cells transfected with human leptin receptor. Further work is needed to determine whether the lack of leptin-like activity in the chicken serum samples is due to a lack of leptin in this species or simply to a serum level of leptin that is below the detection threshold.

  10. Monitoring leptin activity using the chicken leptin receptor.

    PubMed

    Hen, Gideon; Yosefi, Sera; Ronin, Ana; Einat, Paz; Rosenblum, Charles I; Denver, Robert J; Friedman-Einat, Miriam

    2008-05-01

    We report on the construction of a leptin bioassay based on the activation of chicken leptin receptor in cultured cells. A human embryonic kidney (HEK)-293 cell line, stably transfected with the full-length cDNA of chicken leptin receptor together with a STAT3-responsive reporter gene specifically responded to recombinant human and Xenopus leptins. The observed higher sensitivity of chicken leptin receptor to the former is in agreement with the degree of sequence similarity among these species (about 60 and 38% identical amino acids between humans and chickens, and between humans and Xenopus respectively). The specific activation of signal transduction through the chicken leptin receptor, shown here for the first time, suggests that the transition of Gln269 (implicated in the Gln-to-Pro Zucker fatty mutation in rats) to Glu in chickens does not impair its activity. Analysis of leptin-like activity in human serum samples of obese and lean subjects coincided well with leptin levels determined by RIA. Serum samples of pre- and post partum cows showed a tight correlation with the degree of adiposity. However, specific activation of the chicken leptin receptor in this assay was not observed with serum samples from broiler or layer chickens (representing fat and lean phenotypes respectively) or with those from turkey. Similar leptin receptor activation profiles were observed with cells transfected with human leptin receptor. Further work is needed to determine whether the lack of leptin-like activity in the chicken serum samples is due to a lack of leptin in this species or simply to a serum level of leptin that is below the detection threshold. PMID:18434362

  11. Plasma leptin during reproduction in European Starlings (Sturnus vulgaris)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leptin, a systemic hormone produced by adipocytes or fat cells, has been widely studied in mammals, and is known to play diverse roles in body mass regulation, immune function, reproduction, etc. However we know very little about avian leptin, especially in free-living birds; indeed, this remains a ...

  12. IGF-I is a mitogen involved in differentiation-related gene expression in fetal rat brown adipocytes

    PubMed Central

    1993-01-01

    Fetal rat brown adipocytes at time zero of culture constitute a population of cells of broad spectrum, as estimated by cell size, endogenous fluorescence and lipid content, and show an intrinsic mitogenic competence. They express constitutively early growth-related genes such as c-myc, c-fos, and beta-actin, tissue specific-genes such as the uncoupling protein (UCP) and the lipogenic marker malic enzyme (ME). Fetal brown adipocytes bear a high expression of insulin-like growth factor receptor (IGF-IR), and show a high affinity IGF-I specific-binding to its receptor, and a high number of binding sites per cell. After cell quiescence, insulin-like growth factor I (IGF-I) was as potent as 10% FCS in inducing DNA synthesis, cell number increase, and the entry of cells into the cell-cycle. In addition, IGF- I or 10% FCS for 48 h increased the percentage of [3H]thymidine-labeled nuclei as compared to quiescent cells. Single cell autoradiographic microphotographs show typical multilocular fat droplets brown adipocytes, resulting positive to [3H]thymidine-labeled nuclei in response to IGF-I. IGF-I increased mRNA expression of the early- response genes c-fos (30 min), c-myc (2 and 24 h), and H-ras (4 and 24 h). 10% FCS also increased c-fos and c-myc, but failed to increase H- ras as an early event. IGF-I or 10% FCS, however, similarly increased the mRNA late expression of c-myc, H-ras, c-raf, beta-actin, and glucose 6-phosphate dehydrogenase (G6PD) at 72 h, as compared to quiescent cells. IGF-I or FCS maintained at 24 h or increased at 48 and 72 h UCP mRNA expression. The results demonstrate that IGF-I is a mitogen for fetal rat brown adipocytes, capable of inducing the expression of early and late growth-regulated genes, and of increasing the lipogenic marker ME and the tissue-specific gene UCP, suggesting the involvement of IGF-I in the differentiation as well as in the proliferation processes. PMID:8253851

  13. Leptin: From structural insights to the design of antagonists.

    PubMed

    Zabeau, Lennart; Peelman, Frank; Tavernier, Jan

    2015-11-01

    After its discovery in 1994, it soon became clear that leptin acts as an adipocyte-derived hormone with a central role in the control of body weight and energy homeostasis. However, a growing body of evidence has revealed that leptin is a pleiotropic cytokine with activities on many peripheral cell types. Inappropriate leptin signaling can promote autoimmunity, certain cardiovascular diseases, elevated blood pressure and cancer, which makes leptin and the leptin receptor interesting targets for antagonism. Profound insights in the leptin receptor (LR) activation mechanisms are a prerequisite for the rational design of these antagonists. In this review, we focus on the molecular mechanisms underlying leptin receptor activation and signaling. We also discuss the current strategies to interfere with leptin signaling and their therapeutic potential.

  14. Leptin and its cardiovascular effects: Focus on angiogenesis

    PubMed Central

    Tahergorabi, Zoya; Khazaei, Majid

    2015-01-01

    Leptin is an endocrine hormone synthesized by adipocytes. It plays a key role in the energy homeostasis in central and peripheral tissues and has additional roles are attributed to it, such as the regulation of reproduction, immune function, bone homeostasis, and angiogenesis. The plasma concentration of leptin significantly increases in obese individuals. In the present review, we give an introduction concerning leptin, its receptors, signaling pathways, and its effect on cardiovascular system, especially on angiogenesis. PMID:26015905

  15. Leptin increases HER2 protein levels through a STAT3-mediated up-regulation of Hsp90 in breast cancer cells.

    PubMed

    Giordano, Cinzia; Vizza, Donatella; Panza, Salvatore; Barone, Ines; Bonofiglio, Daniela; Lanzino, Marilena; Sisci, Diego; De Amicis, Francesca; Fuqua, Suzanne A W; Catalano, Stefania; Andò, Sebastiano

    2013-06-01

    Obesity condition confers risks to breast cancer development and progression, and several reports indicate that the adipokine leptin, whose synthesis and plasma levels increase with obesity, might play an important role in modulating breast cancer cell phenotype. Functional crosstalk occurring between leptin and different signaling molecules contribute to breast carcinogenesis. In this study, we show, in different human breast cancer cell lines, that leptin enhanced the expression of a chaperone protein Hsp90 resulting in increased HER2 protein levels. Silencing of Hsp90 gene expression by RNA interference abrogated leptin-mediated HER2 up-regulation. Leptin effects were dependent on JAK2/STAT3 activation, since inhibition of this signaling cascade by AG490 or ectopic expression of a STAT3 dominant negative abrogated leptin-induced HER2 and Hsp90 expressions. Functional experiments showed that leptin treatment significantly up-regulated human Hsp90 promoter activity. This occurred through an enhanced STAT3 transcription factor binding to its specific responsive element located in the Hsp90 promoter region as revealed by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. Analysis of HER2, Akt and MAPK phosphorylation levels revealed that leptin treatment amplified the responsiveness of breast cancer cells to growth factor stimulation. Furthermore, we found that long-term leptin exposure reduced sensitivity of breast cancer cells to the antiestrogen tamoxifen. In the same experimental conditions, the combined treatment of tamoxifen with the Hsp90 inhibitor 17-AAG completely abrogated leptin-induced anchorage-independent breast cancer cell growth. In conclusion, our results highlight, for the first time, the ability of the adipocyte-secreted factor leptin to modulate Hsp90/HER2 expressions in breast cancer cells providing novel insights into the molecular mechanism linking obesity to breast cancer growth and progression.

  16. Soluble extract of soybean fermented with Aspergillus oryzae GB107 inhibits fat accumulation in cultured 3T3-L1 adipocytes

    PubMed Central

    So, Kyoung-Ha; Suzuki, Yasuki; Yonekura, Shinichi; Suzuki, Yutaka; Lee, Chan Ho; Kim, Sung Woo; Katoh, Kazuo

    2015-01-01

    BACKGROUND/OBJECTIVES This study was conducted to investigate the effects of fermented soybean (FS) extract on adipocyte differentiation and fat accumulation using cultured 3T3-L1 adipocytes. MATERIALS/METHODS 3T3-L1 adipocytes were treated with FS and nonfermented soybean (NFS) extract during differentiation for 10 days in vitro. Oil red O staining was performed and glycerol-3-phosphate dehydrogenase (GPDH) activity was measured for analysis of fat accumulation. Expressions of adipogenic genes were measured. RESULTS Soluble extract of soybean fermented with Aspergillus oryzae GB107 contained higher levels of low-molecular-weight protein than conventional soybean protein did. FS extract (50 µg/ml) inhibited adipocyte differentiation and fat accumulation during differentiation of 3T3-L1 preadipocytes for 10 days in vitro. Significantly lower GPDH activity was observed in differentiated adipocytes treated with the FS extract than those treated with NFS extract. Treatment with FS extract resulted in decreased expression levels of leptin, adiponectin, and adipogenin genes, which are associated with adipogenesis. CONCLUSIONS This report is the first to demonstrate that the water-soluble extract from FS inhibits fat accumulation and lipid storage in 3T3-L1 adipocytes. Thus, the soybean extract fermented with A. oryzae GB107 could be used to control lipid accumulation in adipocytes. PMID:26244085

  17. Transcriptional regulatory program in wild-type and retinoblastoma gene-deficient mouse embryonic fibroblasts during adipocyte differentiation

    PubMed Central

    2011-01-01

    Background Although many molecular regulators of adipogenesis have been identified a comprehensive catalogue of components is still missing. Recent studies showed that the retinoblastoma protein (pRb) was expressed in the cell cycle and late cellular differentiation phase during adipogenesis. To investigate this dual role of pRb in the early and late stages of adipogenesis we used microarrays to perform a comprehensive systems-level analysis of the common transcriptional program of the classic 3T3-L1 preadipocyte cell line, wild-type mouse embryonic fibroblasts (MEFs), and retinoblastoma gene-deficient MEFs (Rb-/- MEFs). Findings Comparative analysis of the expression profiles of 3T3-L1 cells and wild-type MEFs revealed genes involved specifically in early regulation of the adipocyte differentiation as well as secreted factors and signaling molecules regulating the later phase of differentiation. In an attempt to identify transcription factors regulating adipogenesis, bioinformatics analysis of the promoters of coordinately and highly expressed genes was performed. We were able to identify a number of high-confidence target genes for follow-up experimental studies. Additionally, combination of experimental data and computational analyses pinpointed a feedback-loop between Pparg and Foxo1. To analyze the effects of the retinoblastoma protein at the transcriptional level we chose a perturbated system (Rb-/- MEFs) for comparison to the transcriptional program of wild-type MEFs. Gene ontology analysis of 64 deregulated genes showed that the Rb-/- MEF model exhibits a brown(-like) adipocyte phenotype. Additionally, the analysis results indicate a different or additional role for pRb family member involvement in the lineage commitment. Conclusion In this study a number of commonly modulated genes during adipogenesis in 3T3-L1 cells and MEFs, potential transcriptional regulation mechanisms, and differentially regulated targets during adipocyte differentiation of Rb

  18. Mendelian randomization supports causality between maternal hyperglycemia and epigenetic regulation of leptin gene in newborns

    PubMed Central

    Allard, C; Desgagné, V; Patenaude, J; Lacroix, M; Guillemette, L; Battista, MC; Doyon, M; Ménard, J; Ardilouze, JL; Perron, P; Bouchard, L; Hivert, MF

    2015-01-01

    Leptin is an adipokine that acts in the central nervous system and regulates energy balance. Animal models and human observational studies have suggested that leptin surge in the perinatal period has a critical role in programming long-term risk of obesity. In utero exposure to maternal hyperglycemia has been associated with increased risk of obesity later in life. Epigenetic mechanisms are suspected to be involved in fetal programming of long term metabolic diseases. We investigated whether DNA methylation levels near LEP locus mediate the relation between maternal glycemia and neonatal leptin levels using the 2-step epigenetic Mendelian randomization approach. We used data and samples from up to 485 mother-child dyads from Gen3G, a large prospective population-based cohort. First, we built a genetic risk score to capture maternal glycemia based on 10 known glycemic genetic variants (GRS10) and showed it was an adequate instrumental variable (β = 0.046 mmol/L of maternal fasting glucose per additional risk allele; SE = 0.007; P = 7.8 × 10−11; N = 467). A higher GRS10 was associated with lower methylation levels at cg12083122 located near LEP (β = −0.072 unit per additional risk allele; SE = 0.04; P = 0.05; N = 166). Direction and effect size of association between the instrumental variable GRS10 and methylation at cg12083122 were consistent with the negative association we observed using measured maternal glycemia. Lower DNA methylation levels at cg12083122 were associated with higher cord blood leptin levels (β = −0.17 log of cord blood leptin per unit; SE = 0.07; P = 0.01; N = 170). Our study supports that maternal glycemia is part of causal pathways influencing offspring leptin epigenetic regulation. PMID:25800063

  19. Mendelian randomization supports causality between maternal hyperglycemia and epigenetic regulation of leptin gene in newborns.

    PubMed

    Allard, C; Desgagné, V; Patenaude, J; Lacroix, M; Guillemette, L; Battista, M C; Doyon, M; Ménard, J; Ardilouze, J L; Perron, P; Bouchard, L; Hivert, M F

    2015-01-01

    Leptin is an adipokine that acts in the central nervous system and regulates energy balance. Animal models and human observational studies have suggested that leptin surge in the perinatal period has a critical role in programming long-term risk of obesity. In utero exposure to maternal hyperglycemia has been associated with increased risk of obesity later in life. Epigenetic mechanisms are suspected to be involved in fetal programming of long term metabolic diseases. We investigated whether DNA methylation levels near LEP locus mediate the relation between maternal glycemia and neonatal leptin levels using the 2-step epigenetic Mendelian randomization approach. We used data and samples from up to 485 mother-child dyads from Gen3G, a large prospective population-based cohort. First, we built a genetic risk score to capture maternal glycemia based on 10 known glycemic genetic variants (GRS10) and showed it was an adequate instrumental variable (β = 0.046 mmol/L of maternal fasting glucose per additional risk allele; SE = 0.007; P = 7.8 × 10(-11); N = 467). A higher GRS10 was associated with lower methylation levels at cg12083122 located near LEP (β = -0.072 unit per additional risk allele; SE = 0.04; P = 0.05; N = 166). Direction and effect size of association between the instrumental variable GRS10 and methylation at cg12083122 were consistent with the negative association we observed using measured maternal glycemia. Lower DNA methylation levels at cg12083122 were associated with higher cord blood leptin levels (β = -0.17 log of cord blood leptin per unit; SE = 0.07; P = 0.01; N = 170). Our study supports that maternal glycemia is part of causal pathways influencing offspring leptin epigenetic regulation. PMID:25800063

  20. Leptin promotes breast cancer cell migration and invasion via IL-18 expression and secretion.

    PubMed

    Li, Kuangfa; Wei, Lan; Huang, Yunxiu; Wu, Yang; Su, Min; Pang, Xueli; Wang, Nian; Ji, Feihu; Zhong, Changli; Chen, Tingmei

    2016-06-01

    In recent years, crosstalk between tumor microenvironment and cancer cells have received increasing attention. Accumulating research data suggests that leptin, a key adipokine secreted from adipocytes, plays important roles in breast cancer development. In our study, the effects of leptin on polarization of tumor-associated macrophages (TAMs) and promotion of the invasiveness of tumor cells were investigated. THP1 cells were used to differentiate M2 polarization macrophages. After stimulated by leptin, we established a co-culture system of tumor cells and macrophages to evaluate the function of leptin-induced macrophages in the migration and invasion of breast cancer cells. The gene and protein expressions were analyzed and the underlying mechanisms were evaluated. Moreover, pathological human specimens, and xenografts in nude mice, were detected to strengthen the in vitro results. Leptin elevated the expression of an array of cytokines in TAMs, IL-18 was the most increased, with an activation of the NF-κB/NF-κB1 signalling pathway. Additionally, after treated with leptin, TAMs significantly promoted the migration and invasion of breast cancer cells. However, these effects of leptin were abolished by the co-incubation of Bay11‑7082, a pharmacological NF-κB inhibitor. Leptin also directly stimulated IL-18 expression in breast cancer cells, which, differently, was via the PI3K/AKT-ATF-2 signaling pathway. In vivo studies showed that malignant breast carcinoma exhibited strong higher expression of Leptin, IL-8, and TAMs markers. Xenograft tumor-bearing mouse models showed that leptin significantly increased tumor volume, enhanced lung metastases, and increased expression of IL-8 and TAM markers, which were abolished by depletion of macrophages by clophosome-clodronate liposomes (CCL). Leptin could induce IL-18 expression both in TAMs and breast cancer cells. Leptin-induced IL-18 expression was regulated via NF-κB/NF-κB1 signaling in TAMs, while via PI3K

  1. Leptin modulates both resorption and formation while preventing disuse-induced bone loss in tail-suspended female rats.

    PubMed

    Martin, Aline; de Vittoris, Raphaël; David, Valentin; Moraes, Ricardo; Bégeot, Martine; Lafage-Proust, Marie-Hélène; Alexandre, Christian; Vico, Laurence; Thomas, Thierry

    2005-08-01

    In vitro studies have demonstrated leptin-positive effects on the osteoblast lineage and negative effects on osteoclastogenesis. Therefore, we tested the hypothesis that leptin may prevent tail-suspension-induced bone loss characterized by an uncoupling pattern of bone remodeling, through both mechanisms. Female rats were randomly tail-suspended or not and treated either with ip administration of leptin or vehicle for 3, 7, and 14 d. As measured by dual energy x-ray absorptiometry, tail-suspension induced a progressive decrease in tibia-metaphysis bone mineral density, which was prevented by leptin. Histomorphometry showed that this was related to the prevention of the transient increase in osteoclast number observed with suspension at d 7. These effects could be mediated by the receptor activator of nuclear factor kappaB-ligand (RANKL)/osteoprotegerin (OPG) pathway since we observed using direct RT-PCR, a suspension-induced increase in RANKL gene expression in proximal tibia at d 3, which was counterbalanced by leptin administration with a similar 3-fold increase in OPG expression and a RANKL to OPG ratio close to nonsuspended conditions. In addition, leptin prevented the decrease in bone formation rate induced by tail-suspension at d 14. The latter could be related to the role of leptin in mediating the reciprocal differentiation between adipocytes and osteoblasts, because leptin concurrently blunted the disuse-induced increase in bone marrow adipogenesis. In summary, these data suggest that peripheral administration of leptin could prevent disuse-induced bone loss through, first, a major inhibitory effect on bone resorption and, second, a delayed effect preventing the decrease in bone formation.

  2. Osteocalcin (BGP), gene expression, and protein production by marrow stromal adipocytes.

    PubMed

    Benayahu, D; Shamay, A; Wientroub, S

    1997-02-13

    This study was designed to demonstrate the expression and production of osteocalcin, a bone Gla-protein (BGP), by marrow stromal cells. We were able to accomplish this by using a series of marrow stromal cell lines (MBA cells). A unique expression of the osteocalcin was detected by the adipocyte 14F1.1 cells. This was at the mRNA level by Northern blot and by RT-PCR analysis. The secreted protein was quantitated by radioimmunoassay (RIA), in conditioned medium (CM) harvested from these cultured cells. These findings offer the first evidence that marrow adipocyte 14F1.1 derived cells express mRNA for osteocalcin and produce the protein. PMID:9070297

  3. Leptin resistance in obesity: An epigenetic landscape.

    PubMed

    Crujeiras, Ana B; Carreira, Marcos C; Cabia, Begoña; Andrade, Sara; Amil, Maria; Casanueva, Felipe F

    2015-11-01

    Leptin is an adipocyte-secreted hormone that inhibits food intake and stimulates energy expenditure through interactions with neuronal pathways in the brain, particularly pathways involving the hypothalamus. Intact functioning of the leptin route is required for body weight and energy homeostasis. Given its function, the discovery of leptin increased expectations for the treatment of obesity. However, most obese individuals and subjects with a predisposition to regain weight after losing it have leptin concentrations than lean individuals, but despite the anorexigenic function of this hormone, appetite is not effectively suppressed in these individuals. This phenomenon has been deemed leptin resistance and could be the result of impairments at a number of levels in the leptin signalling pathway, including reduced access of the hormone to its receptor due to changes in receptor expression or changes in post-receptor signal transduction. Epigenetic regulation of the leptin signalling circuit could be a potential mechanism of leptin function disturbance. This review discusses the molecular mechanisms, particularly the epigenetic regulation mechanisms, involved in leptin resistance associated with obesity and the therapeutic potential of these molecular mechanisms in the battle against the obesity pandemic.

  4. Leptin as a modulator of neuroendocrine function in humans.

    PubMed

    Khan, Sami M; Hamnvik, Ole-Petter R; Brinkoetter, Mary; Mantzoros, Christos S

    2012-07-01

    Leptin, a peptide hormone secreted by adipocytes in proportion of the amount of energy stored in fat, plays a central role in regulating human energy homeostasis. In addition, leptin plays a significant permissive role in the physiological regulation of several neuroendocrine axes, including the hypothalamic-pituitary-gonadal, -thyroid, -growth hormone, and -adrenal axes. Decreased levels of leptin, also known as hypoleptinemia, signal to the brain a state of energy deprivation. Hypoleptinemia can be a congenital or acquired condition, and is associated with alterations of the aforementioned axes aimed at promoting survival. More specifically, gonadotropin levels decrease and become less pulsatile under conditions of energy deprivation, and these changes can be at least partially reversed through leptin administration in physiological replacement doses. Similarly, leptin deficiency is associated with thyroid axis abnormalities including abnormal levels of thyrotropin-releasing hormone, and leptin administration may at least partially attenuate this effect. Leptin deficiency results in decreased insulin-like growth factor 1 levels which can be partially ameliorated through leptin administration, and leptin appears to have a much more pronounced effect on the growth of rodents than that of humans. Similarly, adrenal axis function is regulated more tightly by low leptin in rodents than in humans. In addition to congenital leptin deficiency, conditions that may be associated with decreased leptin levels include hypothalamic amenorrhea, anorexia nervosa, and congenital or acquired lipodystrophy syndromes. Accumulating evidence from proof of concept studies suggests that leptin administration, in replacement doses, may ameliorate neuroendocrine abnormalities in individuals who suffer from these conditions.

  5. Epigenetic reprogramming of IGF1 and leptin genes by serum deprivation in multipotential mesenchymal stromal cells.

    PubMed

    Sanchez, Cecilia; Oskowitz, Adam; Pochampally, Radhika R

    2009-02-01

    Recent studies on the therapeutic effect of multipotential mesenchymal stem cells (MSCs) in various models of injury have shown that paracrine factors secreted by MSCs are responsible for tissue repair with very little engraftment. In this study we tested the hypothesis that MSCs under stress undergo epigenetic modifications that direct secretion of paracrine factors responsible for tissue repair. Microarray assays of MSCs that had been deprived of serum (SD-MSCs), to induce stress, demonstrated an increase in the expression of several angiogenic, prosurvival, and antiapoptotic factors, including insulin-like growth factor 1 (IGF1) and leptin. Real-time polymerase chain reaction assays demonstrated a >200-fold increase in the expression of IGF1 and leptin in SD-MSCs. Chromatin immunoprecipitation of SD-MSCs revealed histone tail modifications consistent with transcriptional activation of IGF1 and leptin promoters in a reversible manner. To identify the functional significance of the epigenetic changes in stressed MSCs, we tested the prosurvival properties of SD-MSCs and the ability of conditioned medium from SD-MSCs to enhance survival of apoptotic cancer cells. First, we showed that SD-MSCs are more resistant to oxidative damage than MSCs using alkaline comet assays. Next, we demonstrated that conditioned medium from SD-MSCs decreased staurosporin-induced cell death in the KHOS osteosarcoma cell line, and that this effect was partially reversed by immunodepletion of IGF1 or leptin from the conditioned medium. In conclusion, we demonstrate that serum deprivation induces epigenetic changes in MSCs to upregulate the expression of the proangiogenic and antiapoptotic factors IGF1 and leptin. PMID:19038795

  6. Increased risk of cardiovascular complications in chronic kidney disease: a possible role of leptin.

    PubMed

    Korolczuk, Agnieszka; Dudka, Jaroslaw

    2014-01-01

    Leptin is a small peptide hormone (16 kDa), a product of the obesity gene (Ob), and is mainly synthesized and secreted by adipocytes. It is removed from the blood by the kidneys. The kidney is not only a site of leptin clearance, but also a target organ for its action in different pathophysiological states. Several studies have documented a strong relationship between chronic kidney disease (CKD) and accelerated cardiovascular disease (CVD) defined as a cardiorenal syndrome. Patients with stage 3 and 4 CKD develop cardiovascular complications and are at increased risk of death from CVD. Renal dysfunction promotes several mechanisms responsible for exacerbation of cardiovascular disease. These include activation of the renin-angiotensin system, oxidative stress, elevated asymmetric dimethylarginine (ADMA), low-grade inflammation with increased circulating cytokines, and dyslipidemia. Recently, it has been observed that plasma leptin level is elevated in patients with cardiorenal syndrome. In obesity, hyperleptinemia combined with selective leptin resistance appear to have a critical role in the development and progression of kidney disease, CVD and metabolic syndrome. This has clinical implications for the treatment of obesity-related hypertension and kidney disease. In this paper the role of leptin in chronic kidney disease and accelerated cardiovascular disease is out lined. The link between hyperleptinemia and development and progression of morphologic changes that effect kidney in obese patients is also discussed.

  7. Leptin stimulates hepatic growth hormone receptor and insulin-like growth factor gene expression in a teleost fish, the hybrid striped bass.

    PubMed

    Won, Eugene T; Douros, Jonathan D; Hurt, David A; Borski, Russell J

    2016-04-01

    Leptin is an anorexigenic peptide hormone that circulates as an indicator of adiposity in mammals, and functions to maintain energy homeostasis by balancing feeding and energy expenditure. In fish, leptin tends to be predominantly expressed in the liver, another important energy storing tissue, rather than in fat depots as it is in mammals. The liver also produces the majority of circulating insulin-like growth factors (IGFs), which comprise the mitogenic component of the growth hormone (GH)-IGF endocrine growth axis. Based on similar regulatory patterns of leptin and IGFs that we have documented in previous studies on hybrid striped bass (HSB: Morone saxatilis×Morone chrysops), and considering the co-localization of these peptides in the liver, we hypothesized that leptin might regulate the endocrine growth axis in a manner that helps coordinate somatic growth with energy availability. Using a HSB hepatocyte culture system to simulate autocrine or paracrine exposure that might occur within the liver, this study examines the potential for leptin to modulate metabolism and growth through regulation of IGF gene expression directly, or indirectly through the regulation of GH receptors (GHR), which mediate GH-induced IGF expression. First, we verified that GH (50nM) has a classical stimulatory effect on IGF-1 and additionally show it stimulates IGF-2 transcription in hepatocytes. Leptin (5 and/or 50nM) directly stimulated in vitro GHR2 gene expression within 8h of exposure, and both GHR1 and GHR2 as well as IGF-1 and IGF-2 gene expression after 24h. Cells were then co-incubated with submaximal concentrations of leptin and GH (25nM each) to test if they had a synergistic effect on IGF gene expression, possibly through increased GH sensitivity following GHR upregulation by leptin. In combination, however, the treatments only had an additive effect on stimulating IGF-1 mRNA despite their capacity to increase GHR mRNA abundance. This suggests that leptin's stimulatory

  8. Leptin stimulates hepatic growth hormone receptor and insulin-like growth factor gene expression in a teleost fish, the hybrid striped bass.

    PubMed

    Won, Eugene T; Douros, Jonathan D; Hurt, David A; Borski, Russell J

    2016-04-01

    Leptin is an anorexigenic peptide hormone that circulates as an indicator of adiposity in mammals, and functions to maintain energy homeostasis by balancing feeding and energy expenditure. In fish, leptin tends to be predominantly expressed in the liver, another important energy storing tissue, rather than in fat depots as it is in mammals. The liver also produces the majority of circulating insulin-like growth factors (IGFs), which comprise the mitogenic component of the growth hormone (GH)-IGF endocrine growth axis. Based on similar regulatory patterns of leptin and IGFs that we have documented in previous studies on hybrid striped bass (HSB: Morone saxatilis×Morone chrysops), and considering the co-localization of these peptides in the liver, we hypothesized that leptin might regulate the endocrine growth axis in a manner that helps coordinate somatic growth with energy availability. Using a HSB hepatocyte culture system to simulate autocrine or paracrine exposure that might occur within the liver, this study examines the potential for leptin to modulate metabolism and growth through regulation of IGF gene expression directly, or indirectly through the regulation of GH receptors (GHR), which mediate GH-induced IGF expression. First, we verified that GH (50nM) has a classical stimulatory effect on IGF-1 and additionally show it stimulates IGF-2 transcription in hepatocytes. Leptin (5 and/or 50nM) directly stimulated in vitro GHR2 gene expression within 8h of exposure, and both GHR1 and GHR2 as well as IGF-1 and IGF-2 gene expression after 24h. Cells were then co-incubated with submaximal concentrations of leptin and GH (25nM each) to test if they had a synergistic effect on IGF gene expression, possibly through increased GH sensitivity following GHR upregulation by leptin. In combination, however, the treatments only had an additive effect on stimulating IGF-1 mRNA despite their capacity to increase GHR mRNA abundance. This suggests that leptin's stimulatory

  9. Factor for adipocyte differentiation 158 gene disruption prevents the body weight gain and insulin resistance induced by a high-fat diet.

    PubMed

    Hayashi, Takahiro; Nozaki, Yuriko; Nishizuka, Makoto; Ikawa, Masahito; Osada, Shigehiro; Imagawa, Masayoshi

    2011-01-01

    To clarify the molecular mechanism of adipocyte differentiation, we previously isolated a novel gene, factor for adipocyte differentiation (fad) 158, whose expression was induced during the earliest stages of adipogenesis, and its product was localized to the endoplasmic reticulum. We found that the knockdown of fad158 expression prevented the differentiation of 3T3-L1 cells into adipocytes. In addition, over-expression of fad158 promoted the differentiation of NIH-3T3 cells, which do not usually differentiate into adipocytes. Although these findings strongly suggest that fad158 has a crucial role in regulating adipocyte differentiation, the physiological role of the gene is still unclear. In this study, we generated mice in which fad158 expression was deleted. The fad158-deficient mice did not show remarkable changes in body weight or the weight of white adipose tissue on a chow diet, but had significantly lower body weights and fat mass than wild-type mice when fed a high-fat diet. Furthermore, although the disruption of fad158 did not influence insulin sensitivity on the chow diet, it improved insulin resistance induced by the high-fat diet. These results indicate that fad158 is a key factor in the development of obesity and insulin resistance caused by a high-fat diet.

  10. [Adipocytic tumors].

    PubMed

    Stock, Nathalie

    2015-01-01

    Adipocytic tumors are the most common mesenchymal neoplasms, liposarcoma accounting for approximately 20% of soft tissue sarcomas. The differential diagnosis between benign and malignant tumors is often problematic and represents a significant proportion of consultation cases. The goal of this article is to review liposarcoma subtypes, the main benign adipocytic neoplasms: lipoblastoma, hibernoma, spindle/pleomorphic cell lipoma, chondroid lipoma, as well as non adipocytic neoplasms with a lipomatous component such as lipomatous solitary fibrous tumor, emphasizing on practical differential diagnosis issues, and immunohistochemical and molecular tools allowing their resolution.

  11. HSD1 and AQP7 short-term gene regulation by cortisone in 3T3-L1 adipocytes.

    PubMed

    Quesada-López, Tania; González-Dávalos, Laura; Piña, Enrique; Mora, Ofelia

    2016-01-01

    Adipose Tissue (AT) is a complex organ with a crucial regulatory role in energy metabolism and in the development of obesity and the Metabolic Syndrome (MS). Modified responses and the metabolism of hormones have been observed in visceral adiposity during obesity, specifically as related with cortisone. The objective of this study was to assess, in the 3T3-L1 adipocyte cell line, the short-term effect of cortisone on the expression of 11β-Hydroxysteroid dehydrogenase 1 (Hsd1), which is responsible for activation of cortisone into cortisol, and for Aquaporin 7 (Aqp7), involved in glycerol transport through the cell membrane. Total RNA (tRNA) and complementary DNA (cDNA) were obtained from cell samples treated with cortisone (0.1, 1, and 10 μM) during different times (0, 5, 10, 15, and 20 min, and 48 h) to quantify the expression of the aforementioned genes by real time PCR employing MnSOD and Ppia as housekeeping genes. There was a time-dependent response of Aqp7, a dose-dependent response of Hsd1, and an increase observed in the expression of both genes during min 1 of treatment (5- and 6-fold, respectively), followed by a decrease during the following 5-10 min (P < 0.05). With the 1-μM cortisone treatment, both genes showed cubic tendencies in their expression; the Hsd1 tendency is described by the equation y = 0.18×(3)-1.65×(2)+3.59x+1.31, while the Aqp7 tendency is described by y = 0.33×(3)-2.67×(2)+4.93x+1.84. There are immediate and quantitatively important actions of cortisone on the expression of Aqp7 and Hsd1 in 3T3-L1 adipocytes.

  12. HSD1 and AQP7 short-term gene regulation by cortisone in 3T3-L1 adipocytes.

    PubMed

    Quesada-López, Tania; González-Dávalos, Laura; Piña, Enrique; Mora, Ofelia

    2016-01-01

    Adipose Tissue (AT) is a complex organ with a crucial regulatory role in energy metabolism and in the development of obesity and the Metabolic Syndrome (MS). Modified responses and the metabolism of hormones have been observed in visceral adiposity during obesity, specifically as related with cortisone. The objective of this study was to assess, in the 3T3-L1 adipocyte cell line, the short-term effect of cortisone on the expression of 11β-Hydroxysteroid dehydrogenase 1 (Hsd1), which is responsible for activation of cortisone into cortisol, and for Aquaporin 7 (Aqp7), involved in glycerol transport through the cell membrane. Total RNA (tRNA) and complementary DNA (cDNA) were obtained from cell samples treated with cortisone (0.1, 1, and 10 μM) during different times (0, 5, 10, 15, and 20 min, and 48 h) to quantify the expression of the aforementioned genes by real time PCR employing MnSOD and Ppia as housekeeping genes. There was a time-dependent response of Aqp7, a dose-dependent response of Hsd1, and an increase observed in the expression of both genes during min 1 of treatment (5- and 6-fold, respectively), followed by a decrease during the following 5-10 min (P < 0.05). With the 1-μM cortisone treatment, both genes showed cubic tendencies in their expression; the Hsd1 tendency is described by the equation y = 0.18×(3)-1.65×(2)+3.59x+1.31, while the Aqp7 tendency is described by y = 0.33×(3)-2.67×(2)+4.93x+1.84. There are immediate and quantitatively important actions of cortisone on the expression of Aqp7 and Hsd1 in 3T3-L1 adipocytes. PMID:27617175

  13. Leptin: a novel therapeutic strategy for Alzheimer's disease.

    PubMed

    Tezapsidis, Nikolaos; Johnston, Jane M; Smith, Mark A; Ashford, J Wesson; Casadesus, Gemma; Robakis, Nikolaos K; Wolozin, Benjamin; Perry, George; Zhu, Xiongwei; Greco, Steven J; Sarkar, Sraboni

    2009-01-01

    Adipocyte-derived leptin appears to regulate a number of features defining Alzheimer's disease (AD) at the molecular and physiological level. Leptin has been shown to reduce the amount of extracellular amyloid beta, both in cell culture and animal models, as well as to reduce tau phosphorylation in neuronal cells. Importantly, chronic administration of leptin resulted in a significant improvement in the cognitive performance of transgenic animal models. In AD, weight loss often precedes the onset of dementia and the level of circulating leptin is inversely proportional to the severity of cognitive decline. It is speculated that a deficiency in leptin levels or function may contribute to systemic and CNS abnormalities leading to disease progression. Furthermore, a leptin deficiency may aggravate insulin-controlled pathways, known to be aberrant in AD. These observations suggest that a leptin replacement therapy may be beneficial for these patients. PMID:19387109

  14. Leptin Mediates High-Fat Diet Sensitization of Angiotensin II-Elicited Hypertension by Upregulating the Brain Renin-Angiotensin System and Inflammation.

    PubMed

    Xue, Baojian; Yu, Yang; Zhang, Zhongming; Guo, Fang; Beltz, Terry G; Thunhorst, Robert L; Felder, Robert B; Johnson, Alan Kim

    2016-05-01

    Obesity is characterized by increased circulating levels of the adipocyte-derived hormone leptin, which can increase sympathetic nerve activity and raise blood pressure. A previous study revealed that rats fed a high-fat diet (HFD) have an enhanced hypertensive response to subsequent angiotensin II administration that is mediated at least, in part, by increased activity of brain renin-angiotensin system and proinflammatory cytokines. This study tested whether leptin mediates this HFD-induced sensitization of angiotensin II-elicited hypertension by interacting with brain renin-angiotensin system and proinflammatory cytokine mechanisms. Rats fed an HFD for 3 weeks had significant increases in white adipose tissue mass, plasma leptin levels, and mRNA expression of leptin and its receptors in the lamina terminalis and hypothalamic paraventricular nucleus. Central infusion of a leptin receptor antagonist during HFD feeding abolished HFD sensitization of angiotensin II-elicited hypertension. Furthermore, central infusion of leptin mimicked the sensitizing action of HFD. Concomitant central infusions of the angiotensin II type 1 receptor antagonist irbesartan, the tumor necrosis factor-α synthesis inhibitor pentoxifylline, or the inhibitor of microglial activation minocycline prevented the sensitization produced by central infusion of leptin. RT-PCR analysis indicated that either HFD or leptin administration upregulated mRNA expression of several components of the renin-angiotensin system and proinflammatory cytokines in the lamina terminalis and paraventricular nucleus. The leptin antagonist and the inhibitors of angiotensin II type 1 receptor, tumor necrosis factor-α synthesis, and microglial activation all reversed the expression of these genes. The results suggest that HFD-induced sensitization of angiotensin II-elicited hypertension is mediated by leptin through upregulation of central renin-angiotensin system and proinflammatory cytokines.

  15. Three-dimensional arrangement of genes involved in lipid metabolism in nuclei of porcine adipocytes and fibroblasts in relation to their transcription level.

    PubMed

    Kociucka, B; Cieslak, J; Szczerbal, I

    2012-01-01

    The 3-dimensional arrangement of chromosomes and genes within a nuclear space is considered to represent the level of transcriptional regulation. Understanding how the nuclear architecture of adipocyte cells contributes to gene expression has become the subject of great interest in the context of obesity research. In this study we investigated nuclear positioning of 3 gene loci involved in lipid metabolism in the pig (Sus scrofa, SSC) which is considered as an important animal model for obesity in humans. We found that the position of the SCD gene in the 3-dimensional space of the cell nucleus is not correlated with transcriptional activity. The gene locus as well as chromosome territory SSC14 occupied the same peripheral location in adipocyte and fibroblast cells, in spite of the fact that their transcription level differs significantly between both cell types. For the 2 other investigated genes, i.e. ACACA and SREBF1 and their chromosome territory (SSC12), slightly different nuclear locations were found. They occupied intermediate nuclear positions in fibroblast nuclei, while in adipocytes they were positioned in the nuclear interior. The more internal location of these genes corresponds to increased transcription levels in fat cells. Our results confirm the non-random position of genes and chromosome territories in nuclei of adult porcine cells and indicate that relationship between transcription activity and gene positioning exists only for some but not all genes.

  16. Traditional Herbal Formula Oyaksungi-San Inhibits Adipogenesis in 3T3-L1 Adipocytes

    PubMed Central

    Seo, Chang-Seob; Shin, Hyeun-Kyoo

    2015-01-01

    Background. Oyaksungi-san (OYSGS) is a herbal formula that has been used for treating cardiovascular diseases in traditional Asian medicine. Here, we investigated the antiadipogenic effect of OYSGS extract in 3T3-L1 adipose cells. Methods. 3T3-L1 preadipocytes were differentiated into adipocytes with or without OYSGS. After differentiation, we measured Oil Red O staining, glycerol-3-phosphate dehydrogenase (GPDH) activity, leptin production, mRNA, and protein levels of adipogenesis-related factors. Results. OYSGS extract dramatically inhibited intracellular lipid accumulation in the differentiated adipocytes. It also significantly suppressed the (GPDH) activity, triglyceride (TG) content, and leptin production by reducing the expression of adipogenesis-related genes including lipoprotein lipase, fatty acid binding protein 4, CCAAT/enhancer-binding protein-alpha (C/EBP-α), and peroxisome proliferator-activated receptor gamma (PPAR-γ). Furthermore, OYSGS clearly enhanced phosphorylation of AMP-activated protein kinase (AMPK) as well as its substrate acetyl CoA (ACC) carboxylase. Conclusions. Our results demonstrate that OYSGS negatively controls TG accumulation in 3T3-L1 adipocytes. We suggest antiadipogenic activity of OYSGS and its potential benefit in preventing obesity. PMID:25802547

  17. PPARγ partial agonist GQ-16 strongly represses a subset of genes in 3T3-L1 adipocytes

    SciTech Connect

    Milton, Flora Aparecida; Cvoro, Aleksandra; Amato, Angelica A.; Sieglaff, Douglas H.; Filgueira, Carly S.; Arumanayagam, Anithachristy Sigamani; Caro Alves de Lima, Maria do; Rocha Pitta, Ivan; Assis Rocha Neves, Francisco de; Webb, Paul

    2015-08-28

    Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor gamma (PPARγ) agonists that improve insulin resistance but trigger side effects such as weight gain, edema, congestive heart failure and bone loss. GQ-16 is a PPARγ partial agonist that improves glucose tolerance and insulin sensitivity in mouse models of obesity and diabetes without inducing weight gain or edema. It is not clear whether GQ-16 acts as a partial agonist at all PPARγ target genes, or whether it displays gene-selective actions. To determine how GQ-16 influences PPARγ activity on a gene by gene basis, we compared effects of rosiglitazone (Rosi) and GQ-16 in mature 3T3-L1 adipocytes using microarray and qRT-PCR. Rosi changed expression of 1156 genes in 3T3-L1, but GQ-16 only changed 89 genes. GQ-16 generally showed weak effects upon Rosi induced genes, consistent with partial agonist actions, but a subset of modestly Rosi induced and strongly repressed genes displayed disproportionately strong GQ-16 responses. PPARγ partial agonists MLR24 and SR1664 also exhibit disproportionately strong effects on transcriptional repression. We conclude that GQ-16 displays a continuum of weak partial agonist effects but efficiently represses some negatively regulated PPARγ responsive genes. Strong repressive effects could contribute to physiologic actions of GQ-16. - Highlights: • GQ-16 is an insulin sensitizing PPARγ ligand with reduced harmful side effects. • GQ-16 displays a continuum of weak partial agonist activities at PPARγ-induced genes. • GQ-16 exerts strong repressive effects at a subset of genes. • These inhibitor actions should be evaluated in models of adipose tissue inflammation.

  18. Leptin, BMI, and a Metabolic Gene Expression Signature Associated with Clinical Outcome to VEGF Inhibition in Colorectal Cancer.

    PubMed

    Pommier, Aurélien J C; Farren, Matthew; Patel, Bhavika; Wappett, Mark; Michopoulos, Filippos; Smith, Neil R; Kendrew, Jane; Frith, Jeremy; Huby, Russell; Eberlein, Catherine; Campbell, Hayley; Womack, Christopher; Smith, Paul D; Robertson, Jane; Morgan, Shethah; Critchlow, Susan E; Barry, Simon T

    2016-01-12

    VEGF (vascular endothelial growth factor) signaling inhibitors are widely used in different cancer types; however, patient selection remains a challenge. Analyses of samples from a phase III clinical trial in metastatic colorectal cancer testing chemotherapy versus chemotherapy with the small molecule VEGF receptors inhibitor cediranib identified circulating leptin levels, BMI, and a tumor metabolic and angiogenic gene expression signature associated with improved clinical outcome in patients treated with cediranib. Patients with a glycolytic and hypoxic/angiogenic profile were associated with increased benefit from cediranib, whereas patients with a high lipogenic, oxidative phosphorylation and serine biosynthesis signature did not gain benefit. These findings translated to pre-clinical tumor xenograft models where the same metabolic gene expression profiles were associated with in vivo sensitivity to cediranib as monotherapy. These findings suggest a link between patient physiology, tumor biology, and response to antiangiogenics, which may guide patient selection for VEGF therapy in the future. PMID:26626460

  19. Maintained expression of genes associated with metabolism in the ventromedial hypothalamic nucleus despite development of leptin resistance during pregnancy in the rat

    PubMed Central

    Phillipps, Hollian R; Ladyman, Sharon R; Grattan, David R

    2013-01-01

    Hyperphagia and weight gain to acquire energy stores for development and growth of the fetus and to prepare for the demands of lactation are important adaptations to support a healthy pregnancy. As a consequence, hypothalamic leptin resistance develops to enable maintenance of a positive energy state. During pregnancy there is a decrease in leptin receptor expression and reduced leptin-induced phospho signal transducer and activator of transcription 3 (pSTAT3) in the ventromedial nucleus of the hypothalamus (VMN), suggesting that the VMN is a key site of pregnancy-induced modification in the control of energy homeostasis. The aim of this study was to investigate expression levels of known gene targets, which are involved in metabolic regulation and glucosensing, within the VMN during pregnancy. Using in situ hybridization, pituitary adenylate cyclase–activated polypeptide (Pacap), brain-derived neurotrophic factor (Bdnf), and glucokinase messenger ribonucleic acid (mRNA) expression were localized in the hypothalamus of nonpregnant and day 14 pregnant rats, then expression levels were compared by quantitative polymerase chain reaction (qPCR) using laser capture microdissection of the VMN and arcuate nucleus. Despite significantly elevated plasma leptin and insulin concentrations, and lower blood glucose levels, during pregnancy, no significant changes in gene expression of Pacap, Bdnf, or glucokinase were detected between nonpregnant and day 14 pregnant groups. These data suggest that loss of leptin and insulin sensitivity in the VMN might allow gene expression to be maintained at normal/control levels in this nucleus, despite marked changes in the levels of these important regulatory hormones. These data provide further evidence for development of leptin resistance in the VMN as an adaptive response during pregnancy. PMID:24400163

  20. Single nucleotide polymorphisms in the leptin-a gene and associations with growth traits in the orange-spotted grouper (Epinephelus coioides).

    PubMed

    Wei, Yun; Huang, Hai; Meng, Zining; Zhang, Yong; Luo, Jian; Chen, Guohua; Lin, Haoran

    2013-04-22

    Leptin is a multifunctional protein involved in processes such as body weight regulation, energy expenditure, fat metabolism, food intake, and appetite regulation. Duplicate leptin genes, leptin-a and leptin-b, were previously detected in the orange-spotted grouper. In this study, we cloned the full-length open reading frame (ORF) of the leptin-a gene in the orange-spotted grouper, searched for polymorphisms, and performed association analyses between these polymorphisms and seven growth traits. Six polymorphisms, consisting of 2 SNPs in intron 1 (c.182T > G, c.183G > T) and 4 SNPs in exon 2 (c.339C > G, c.345C > T, c.447G > A, c.531C > T), were identified and genotyped in 200 individuals. The c.182T > G and c.183G > T polymorphisms showed complete linkage and were analyzed together. Association analyses revealed that the c.182 + 183TG > GT polymorphism was significantly associated with body weight (BWT) and body width (BWH), with the AB (TG/GT) genotype showing positive effects on growth traits. Additionally, the SNP c.447G > A was significantly associated with BWT, BWH, overall length (OL), trunk width (TW), and head length (HL), with the GA genotype displaying positive effects on growth traits. The c.531C > T SNP showed a close association between the TT genotype and decreased growth. Our results demonstrate that several polymorphisms in the leptin-a gene are associated with growth traits and can be used for marker-assisted selection (MAS) in orange-spotted grouper populations.

  1. The Role of Leptin, Melanocortin, and Neurotrophin System Genes on Body Weight in Anorexia Nervosa and Bulimia Nervosa

    PubMed Central

    Yilmaz, Zeynep; Kaplan, Allan S.; Tiwari, Arun K.; Levitan, Robert D.; Piran, Sara; Bergen, Andrew W.; Kaye, Walter H.; Hakonarson, Hakon; Wang, Kai; Berrettini, Wade H.; Brandt, Harry A.; Bulik, Cynthia M.; Crawford, Steve; Crow, Scott; Fichter, Manfred M.; Halmi, Katherine A.; Johnson, Craig L.; Keel, Pamela K.; Klump, Kelly L.; Magistretti, Pierre; Mitchell, James E.; Strober, Michael; Thornton, Laura M.; Treasure, Janet; Woodside, D. Blake; Knight, Joanne; Kennedy, James L.

    2014-01-01

    Objective Although low weight is a key factor contributing to the high mortality in anorexia nervosa (AN), it is unclear how AN patients sustain low weight compared with bulimia nervosa (BN) patients with similar psychopathology. Studies of genes involved in appetite and weight regulation in eating disorders have yielded variable findings in part due to small sample size and clinical heterogeneity. This study: (1) assessed the role of leptin, melanocortin, and neurotrophin genetic variants in conferring risk for AN and BN and (2) explored the involvement of these genes in body mass index (BMI) variations within AN and BN. Method Our sample consisted of 745 individuals with AN without a history of BN, 245 with BN without a history of AN, and 321 controls. We genotyped 20 markers with known or putative function among genes selected from leptin, melanocortin, and neurotrophin systems. Results There were no significant differences in allele frequencies among individuals with AN, BN, and controls. AGRP rs13338499 polymorphism was associated with lowest illness-related BMI in those with AN (p=0.0013), and NTRK2 rs1042571 was associated with highest BMI in those with BN (p=0.0018). Discussion To our knowledge, this is the first study to address the issue of clinical heterogeneity in eating disorder genetics and to explore the role of known or putatively functional markers in genes regulating appetite and weight in individuals with AN and BN. If replicated, our results may serve as an important first step toward gaining a better understanding of weight regulation in eating disorders. PMID:24831852

  2. Impact of Metabolic Regulators on the Expression of the Obesity Associated Genes FTO and NAMPT in Human Preadipocytes and Adipocytes

    PubMed Central

    Schönberg, Maria; Bernhard, Falk; Büttner, Petra; Landgraf, Kathrin; Kiess, Wieland; Körner, Antje

    2011-01-01

    Background FTO and NAMPT/PBEF/visfatin are thought to play a role in obesity but their transcriptional regulation in adipocytes is not fully understood. In this study, we evaluated the transcriptional regulation of FTO and NAMPT in preadipocytes and adipocytes by metabolic regulators. Methodology and Principal Findings We assessed FTO mRNA expression during human adipocyte differentiation of Simpson-Golabi-Behmel syndrome (SGBS) cells and primary subcutaneous preadipocytes in vitro and evaluated the effect of the metabolic regulators glucose, insulin, dexamethasone, IGF-1 and isoproterenol on FTO and NAMPT mRNA expression in SGBS preadipocytes and adipocytes. FTO mRNA levels were not significantly modulated during adipocyte differentiation. Also, metabolic regulators had no impact on FTO expression in preadipocytes or adipocytes. In SGBS preadipocytes NAMPT expression was more than 3fold induced by dexamethasone and isoproterenol and 1.6fold by dexamethasone in adipocytes. Complete glucose restriction caused an increase in NAMPT mRNA expression by more than 5fold and 1.4fold in SGBS preadipocytes and adipocytes, respectively. Conclusion FTO mRNA expression is not significantly affected by differentiation or metabolic regulators in human adipocytes. The stimulation of NAMPT expression by dexamethasone, isoproterenol and complete glucose restriction may indicate a regulation of NAMPT by metabolic stress, which was more pronounced in preadipocytes compared to mature adipocytes. PMID:21687707

  3. Transcriptional and epigenetic mechanisms underlying enhanced in vitro adipocyte differentiation by the brominated flame retardant BDE-47.

    PubMed

    Kamstra, Jorke H; Hruba, Eva; Blumberg, Bruce; Janesick, Amanda; Mandrup, Susanne; Hamers, Timo; Legler, Juliette

    2014-04-01

    Recent studies suggest that exposure to endocrine-disrupting compounds (EDCs) may play a role in the development of obesity. EDCs such as the flame retardant 2,2',4,4'-tetrabrominated diphenyl ether (BDE-47) have been shown to enhance adipocyte differentiation in the murine 3T3-L1 model. The mechanisms by which EDCs direct preadipocytes to form adipocytes are poorly understood. Here, we examined transcriptional and epigenetic mechanisms underlying the induction of in vitro adipocyte differentiation by BDE-47. Quantitative high content microscopy revealed concentration-dependent enhanced adipocyte differentiation following exposure to BDE-47 or the antidiabetic drug troglitazone (TROG). BDE-47 modestly activated the key adipogenic transcription factor peroxisome proliferator-activated receptor gamma (PPARγ) in COS7 cells, transiently transfected with a GAL4 reporter construct. Increased gene expression was observed for Pparγ2, leptin (Lep), and glucose-6-phophatase catalytic subunit (G6pc) in differentiated 3T3-L1 cells after BDE-47 exposure compared to TROG. Methylation-sensitive high resolution melting (MS-HRM) revealed significant demethylation of three CpG sites in the Pparγ2 promoter after exposure to both BDE-47 and TROG in differentiated 3T3-L1 cells. This study shows the potential of BDE-47 to induce adipocyte differentiation through various mechanisms that include Pparγ2 gene induction and promoter demethylation accompanied by activation of PPARγ, and possible disruption of glucose homeostasis and IGF1 signaling. PMID:24559133

  4. Effects of adipocyte-secreted factors on decidualized endometrial cells: modulation of endometrial receptivity in vitro.

    PubMed

    Gamundi-Segura, Silvia; Serna, Jose; Oehninger, Sergio; Horcajadas, Jose A; Arbones-Mainar, Jose M

    2015-09-01

    Obesity is defined as an excessive accumulation of adipose tissue that may lead to health complications. Mounting evidence indicates that obesity has a negative impact on fertility. Yet, the link between adipose tissue biology and infertility remains unclear. We aimed to investigate the communication between the adipose tissue and the reproductive system and the importance of this cross talk for the development of a receptive endometrium. To that end, we generated an in vitro model with endometrial and adipocyte cell lines. Sexual hormones, progesterone and estradiol, were used to decidualize endometrial cells and sensitize adipocytes. Decidualization produced a simultaneous increase of adipokine receptors in endometrial cells paralleling changes in their receptivity status. Furthermore, sensitization of 3T3-L1 adipocytes increased mRNA levels of leptin and resistin and decreased the expression of adiponectin and chemerin levels. This was accompanied by increased isoproterenol-induced lipolysis and reduced insulin-stimulated glucose uptake. Lastly, conditioned culture medium of those sensitized adipocytes was used to feed endometrial cells. This treatment resulted in (i) upregulation of genes previously identified as positive regulators of endometrial receptivity, such as leukemia inhibitory factor and glutathione peroxidase 3, and (ii) downregulation of interleukin-15 and mucin1, both genes negatively related with endometrial receptivity. Our results indicate that the endocrine communication between adipose tissue and the reproductive system is bidirectional and stress the importance of the adipose tissue to modulate the reproductive fitness.

  5. Leptin and leptin receptor mRNA and protein expression in the murine fetus and placenta.

    PubMed

    Hoggard, N; Hunter, L; Duncan, J S; Williams, L M; Trayhurn, P; Mercer, J G

    1997-09-30

    Leptin is a 167-aa protein that is secreted from adipose tissue and is important in the regulation of energy balance. It also functions in hematopoiesis and reproduction. To assess whether leptin is involved in fetal growth and development we have examined the distribution of mRNAs encoding leptin and the leptin receptor (which has at least six splice variants) in the 14.5-day postcoitus mouse fetus and in the placenta using reverse transcription-PCR and in situ hybridization. High levels of gene expression for leptin, the leptin receptor, and the long splice variant of the leptin receptor with an intracellular signaling domain were observed in the placenta, fetal cartilage/bone, and hair follicles. Receptor expression also was detected in the lung, as well as the leptomeninges and choroid plexus of the fetal brain. Western blotting and immunocytochemistry, using specific antibodies, demonstrated the presence of leptin and leptin receptor protein in these tissues. These results suggest that leptin may play a role in the growth and development of the fetus, both through placental and fetal expression of the leptin and leptin receptor genes. In the fetus, leptin may be multifunctional and have both paracrine and endocrine effects.

  6. Human adipocytes from the subcutaneous superficial layer have greater adipogenic potential and lower PPAR-γ DNA methylation levels than deep layer adipocytes.

    PubMed

    Kosaka, Kentaro; Kubota, Yoshitaka; Adachi, Naoki; Akita, Shinsuke; Sasahara, Yoshitaro; Kira, Tomoe; Kuroda, Masayuki; Mitsukawa, Nobuyuki; Bujo, Hideaki; Satoh, Kaneshige

    2016-08-01

    Human subcutaneous fat tissue consists of two layers, superficial adipose tissue (SAT) and deep adipose tissue (DAT). Some recent reports suggest that a disproportionate accumulation of DAT is related to obesity-associated metabolic complications. However, the differences in adipocyte function between SAT and DAT are unclear. To clarify the differences in human adipocyte characteristics between SAT and DAT, human ceiling culture-derived proliferative adipocytes (ccdPAs) were primary cultured from SAT and DAT of three lean female patients. Differences in adipogenic differentiation potential and sensitivity to exogenous adipogenic factors were examined. Epigenetic modification of the CpG island DNA methylation levels of genes related to adipogenesis was measured. In histological analyses, the mean adipocyte size in SAT was significantly larger than that in DAT (8,741 ± 416 vs. 7,732 ± 213 μm(2), P < 0.05). Primary cultured adipocytes from SAT showed significantly greater adipogenesis than did those of DAT. Sensitivity to partial adipogenic stimulation was significantly different between ccdPAs of SAT and DAT. Peroxisome proliferator-activated receptor-γ (PPAR-γ) protein expression and leptin protein secretion from ccdPAs were significantly higher in SAT than DAT. DNA methylation levels of PPAR-γ were significantly lower in ccdPAs of SAT than DAT. Adipocyte size was larger in SAT than DAT in vivo. This is consistent with the findings of an in vitro study that, compared with ccdPAs in DAT, ccdPAs in SAT have higher adipogenic potential and lower DNA methylation levels of PPAR-γ. PMID:27251439

  7. Cold exposure inhibits hypothalamic Kiss-1 gene expression, serum leptin concentration, and delays reproductive development in male Brandt's vole ( Lasiopodomys brandtii)

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Lin, Yi; Zhang, Xue-Ying; Wang, De-Hua

    2015-06-01

    Cold commonly affects growth and reproductive development in small mammals. Here, we test the hypothesis that low ambient temperature will affect growth and puberty onset, associated with altered hypothalamic Kiss-1 gene expression and serum leptin concentration in wild rodents. Male Brandt's voles ( Lasiopodomys brandtii) were exposed to cold (4 ± 1 °C) and warm (23 ± 1 °C) conditions from the birth and sacrificed on different developmental stages (day 26, day 40, day 60, and day 90, respectively). Brandt's voles increased the thermogenic capacity of brown adipose tissue, mobilized body fat, decreased serum leptin levels, and delayed the reproductive development especially on day 40 in the cold condition. They increased food intake to compensate for the high energy demands in the cold. The hypothalamic Kiss-1 gene expression on day 26 was decreased, associated with lower wet testis mass and testis testosterone concentration on day 40, in the cold-exposed voles compared to that in the warm. Serum leptin was positively correlated with body fat, testis mass, and testosterone concentration. These data suggested that cold exposure inhibited hypothalamic Kiss-1 gene expression during the early stage of development, decreased serum leptin concentration, and delayed reproductive development in male Brandt's voles.

  8. Therapeutic use of recombinant methionyl human leptin.

    PubMed

    Vatier, Camille; Gautier, Jean-François; Vigouroux, Corinne

    2012-10-01

    Recombinant methionyl human leptin (r-metHuLeptin) was first used as a replacement therapy in patients bearing inactivating mutations in the leptin gene. In this indication, it was shown since 1999 to be very efficient in inducing a dramatic weight loss in rare children and adults with severe obesity due to the lack of leptin. These first clinical trials clearly showed that r-metHuLeptin acted centrally to reduce food intake, inducing loss of fat mass, and to correct metabolic alterations, immune and neuroendocrine defects. A few years later, r-metHuLeptin was also shown to reverse the metabolic complications associated with lipodystrophic syndromes, due to primary defects in fat storage, which induce leptin deficiency. The beneficial effects, which could be mediated by central and/or peripheral mechanisms, are thought to mainly involve the lowering effects of leptin on ectopic lipid storage, in particular in liver and muscles, reducing insulin resistance. Interestingly, r-metHuLeptin therapy also reversed the hypothalamic-pituitary-gonadal axis dysfunctions associated with hypothalamic amenorrhea. However, if r-metHuLeptin treatment has been shown to be dramatically efficient in leptin-deficient states, its very limited effect in inducing weight loss in common obese patients revealed that, in patients with adequate leptin secretion, mechanisms of leptin resistance and leptin tolerance prevent r-metHuLeptin from inducing any additional effects. This review will present the current data about the effects of r-metHuLeptin therapy in humans, and discuss the recent perspectives of this therapy in new indications.

  9. Decelerating Mature Adipocyte Dedifferentiation by Media Composition.

    PubMed

    Huber, Birgit; Kluger, Petra J

    2015-12-01

    The establishment of adipose tissue test systems is still a major challenge in the investigation of cellular and molecular interactions responsible for the pathogenesis of inflammatory diseases involving adipose tissue. Mature adipocytes are mainly involved in these pathologies, but rarely used in vitro, due to the lack of an appropriate culture medium which inhibits dedifferentiation and maintains adipocyte functionality. In our study, we showed that Dulbecco's Modified Eagle's Medium/Ham's F-12 with 10% fetal calf serum (FCS) reported for the culture of mature adipocytes favors dedifferentiation, which was accompanied by a high glycerol release, a decreasing release of leptin, and a low expression of the adipocyte marker perilipin A, but high expression of CD73 after 21 days. Optimized media containing FCS, biotin, pantothenate, insulin, and dexamethasone decelerated the dedifferentiation process. These cells showed a lower lipolysis rate, a high level of leptin release, as well as a high expression of perilipin A. CD73-positive dedifferentiated fat cells were only found in low quantity. In this work, we showed that mature adipocytes when cultured under optimized conditions could be highly valuable for adipose tissue engineering in vitro. PMID:26228997

  10. Structure, production and signaling of leptin

    PubMed Central

    Münzberg, Heike; Morrison, Christopher D.

    2014-01-01

    The cloning of leptin in 1994 was an important milestone in obesity research. In those days obesity was stigmatized as a condition caused by lack of character and self-control. Mutations in either leptin or its receptor were the first single gene mutations found to cause morbid obesity, and it is now appreciated that obesity is caused by a dysregulation of central neuronal circuits. From the first discovery of the leptin deficient obese mouse (ob/ob), to the cloning of leptin (ob aka lep) and leptin receptor (db aka lepr) genes, much has been learned about leptin and its action in the central nervous system. The initial high hopes that leptin would cure obesity were quickly dampened by the discovery that most obese humans have increased leptin levels and develop leptin resistance. Nevertheless, leptin target sites in the brain represent an excellent blueprint for distinct neuronal circuits that control energy homeostasis. A better understanding of the regulation and interconnection of these circuits will further guide and improve the development of safe and effective interventions to treat obesity. This review will highlight our current knowledge about the hormone leptin, its signaling pathways and its central actions to mediate distinct physiological functions. PMID:25305050

  11. Roles of leptin, adiponectin and resistin in the transcriptional regulation of steroidogenic genes contributing to decreased Leydig cells function in obesity.

    PubMed

    Roumaud, Pauline; Martin, Luc J

    2015-10-01

    The increase in obesity rate is a major public health issue associated with increased pathological conditions such as type 2 diabetes or cardiovascular diseases. Obesity also contributes to decreased testosterone levels in men. Indeed, the adipose tissue is an endocrine organ which produces hormones such as leptin, adiponectin and resistin. Obesity results in pathological accumulations of leptin and resistin, whereas adiponectin plasma levels are markedly reduced, all having a negative impact on testosterone synthesis. This review focuses on current knowledge related to transcriptional regulation of Leydig cells' steroidogenesis by leptin, adiponectin and resistin. We show that there are crosstalks between the regulatory mechanisms of these hormones and androgen production which may result in a dramatic negative influence on testosterone plasma levels. Indeed leptin, adiponectin and resistin can impact expression of different steroidogenic genes such as Star, Cyp11a1 or Sf1. Further investigations will be required to better define the implications of adipose derived hormones on regulation of steroidogenic genes expression within Leydig cells under physiological as well as pathological conditions.

  12. Adipocyte Accumulation of Long-Chain Fatty Acids in Obesity is Multifactorial, Resulting from Increased Fatty Acid Uptake and Decreased Activity of Genes Involved in Fat Utilization

    PubMed Central

    Walewski, José L.; Ge, Fengxia; Gagner, Michel; Inabnet, William B.; Pomp, Alfons; Branch, Andrea D.

    2010-01-01

    Background The obesity epidemic causes significant morbidity and mortality. Knowledge of cellular function and gene expression in obese adipose tissue will yield insights into obesity pathogenesis and suggest therapeutic targets. The aim of this work is to study the processes determining fat accumulation in adipose tissue from obese patients. Methods Omental fat was collected from two cohorts of obese bariatric surgery patients and sex-matched normal-weight donors. Isolated adipocytes were compared for cell size, volume, and long-chain fatty acid (LCFA) uptake. Omental fat RNAs were screened by 10K microarray (cohort 1: three obese, three normal) or Whole Genome microarray (cohort 2: seven obese, four normal). Statistical differences in gene and pathway expression were identified in cohort 1 using the GeneSifter Software (Geospiza) with key results confirmed in cohort 2 samples by microarray, quantitative real-time polymerase chain reaction, and pathway analysis. Results Obese omental adipocytes had increased surface area, volume, and Vmax for saturable LCFA uptake. Dodecenoyl-coenzyme A delta isomerase, central to LCFA metabolism, was approximately 1.6-fold underexpressed in obese fat in cohorts 1 and 2. Additionally, the Kyoto Encyclopedia of Genes and Genomics pathway analysis identified oxidative phosphorylation and fatty acid metabolism pathways as having coordinate, nonrandom down-regulation of gene expression in both cohorts. Conclusions In obese omental fat, saturable adipocyte LCFA uptake was greater than in controls, and expression of key genes involved in lipolysis, β-oxidation, and metabolism of fatty acids was reduced. Thus, both increased uptake and reduced metabolism of LCFAs contribute to the accumulation of LCFAs in obese adipocytes. PMID:19866242

  13. Exercise Decreases Lipogenic Gene Expression in Adipose Tissue and Alters Adipocyte Cellularity during Weight Regain After Weight Loss

    PubMed Central

    Giles, Erin D.; Steig, Amy J.; Jackman, Matthew R.; Higgins, Janine A.; Johnson, Ginger C.; Lindstrom, Rachel C.; MacLean, Paul S.

    2016-01-01

    Exercise is a potent strategy to facilitate long-term weight maintenance. In addition to increasing energy expenditure and reducing appetite, exercise also favors the oxidation of dietary fat, which likely helps prevent weight re-gain. It is unclear whether this exercise-induced metabolic shift is due to changes in energy balance, or whether exercise imparts additional adaptations in the periphery that limit the storage and favor the oxidation of dietary fat. To answer this question, adipose tissue lipid metabolism and related gene expression were studied in obese rats following weight loss and during the first day of relapse to obesity. Mature, obese rats were weight-reduced for 2 weeks with or without daily treadmill exercise (EX). Rats were weight maintained for 6 weeks, followed by relapse on: (a) ad libitum low fat diet (LFD), (b) ad libitum LFD plus EX, or (c) a provision of LFD to match the positive energy imbalance of exercised, relapsing animals. 24 h retention of dietary- and de novo-derived fat were assessed directly using 14C palmitate/oleate and 3H20, respectively. Exercise decreased the size, but increased the number of adipocytes in both retroperitoneal (RP) and subcutaneous (SC) adipose depots, and prevented the relapse-induced increase in adipocyte size. Further, exercise decreased the expression of genes involved in lipid uptake (CD36 and LPL), de novo lipogenesis (FAS, ACC1), and triacylglycerol synthesis (MGAT and DGAT) in RP adipose during relapse following weight loss. This was consistent with the metabolic data, whereby exercise reduced retention of de novo-derived fat even when controlling for the positive energy imbalance. The decreased trafficking of dietary fat to adipose tissue with exercise was explained by reduced energy intake which attenuated energy imbalance during refeeding. Despite having decreased expression of lipogenic genes, the net retention of de novo-derived lipid was higher in both the RP and SC adipose of exercising

  14. Exercise Decreases Lipogenic Gene Expression in Adipose Tissue and Alters Adipocyte Cellularity during Weight Regain After Weight Loss.

    PubMed

    Giles, Erin D; Steig, Amy J; Jackman, Matthew R; Higgins, Janine A; Johnson, Ginger C; Lindstrom, Rachel C; MacLean, Paul S

    2016-01-01

    Exercise is a potent strategy to facilitate long-term weight maintenance. In addition to increasing energy expenditure and reducing appetite, exercise also favors the oxidation of dietary fat, which likely helps prevent weight re-gain. It is unclear whether this exercise-induced metabolic shift is due to changes in energy balance, or whether exercise imparts additional adaptations in the periphery that limit the storage and favor the oxidation of dietary fat. To answer this question, adipose tissue lipid metabolism and related gene expression were studied in obese rats following weight loss and during the first day of relapse to obesity. Mature, obese rats were weight-reduced for 2 weeks with or without daily treadmill exercise (EX). Rats were weight maintained for 6 weeks, followed by relapse on: (a) ad libitum low fat diet (LFD), (b) ad libitum LFD plus EX, or (c) a provision of LFD to match the positive energy imbalance of exercised, relapsing animals. 24 h retention of dietary- and de novo-derived fat were assessed directly using (14)C palmitate/oleate and (3)H20, respectively. Exercise decreased the size, but increased the number of adipocytes in both retroperitoneal (RP) and subcutaneous (SC) adipose depots, and prevented the relapse-induced increase in adipocyte size. Further, exercise decreased the expression of genes involved in lipid uptake (CD36 and LPL), de novo lipogenesis (FAS, ACC1), and triacylglycerol synthesis (MGAT and DGAT) in RP adipose during relapse following weight loss. This was consistent with the metabolic data, whereby exercise reduced retention of de novo-derived fat even when controlling for the positive energy imbalance. The decreased trafficking of dietary fat to adipose tissue with exercise was explained by reduced energy intake which attenuated energy imbalance during refeeding. Despite having decreased expression of lipogenic genes, the net retention of de novo-derived lipid was higher in both the RP and SC adipose of exercising

  15. Exercise Decreases Lipogenic Gene Expression in Adipose Tissue and Alters Adipocyte Cellularity during Weight Regain After Weight Loss.

    PubMed

    Giles, Erin D; Steig, Amy J; Jackman, Matthew R; Higgins, Janine A; Johnson, Ginger C; Lindstrom, Rachel C; MacLean, Paul S

    2016-01-01

    Exercise is a potent strategy to facilitate long-term weight maintenance. In addition to increasing energy expenditure and reducing appetite, exercise also favors the oxidation of dietary fat, which likely helps prevent weight re-gain. It is unclear whether this exercise-induced metabolic shift is due to changes in energy balance, or whether exercise imparts additional adaptations in the periphery that limit the storage and favor the oxidation of dietary fat. To answer this question, adipose tissue lipid metabolism and related gene expression were studied in obese rats following weight loss and during the first day of relapse to obesity. Mature, obese rats were weight-reduced for 2 weeks with or without daily treadmill exercise (EX). Rats were weight maintained for 6 weeks, followed by relapse on: (a) ad libitum low fat diet (LFD), (b) ad libitum LFD plus EX, or (c) a provision of LFD to match the positive energy imbalance of exercised, relapsing animals. 24 h retention of dietary- and de novo-derived fat were assessed directly using (14)C palmitate/oleate and (3)H20, respectively. Exercise decreased the size, but increased the number of adipocytes in both retroperitoneal (RP) and subcutaneous (SC) adipose depots, and prevented the relapse-induced increase in adipocyte size. Further, exercise decreased the expression of genes involved in lipid uptake (CD36 and LPL), de novo lipogenesis (FAS, ACC1), and triacylglycerol synthesis (MGAT and DGAT) in RP adipose during relapse following weight loss. This was consistent with the metabolic data, whereby exercise reduced retention of de novo-derived fat even when controlling for the positive energy imbalance. The decreased trafficking of dietary fat to adipose tissue with exercise was explained by reduced energy intake which attenuated energy imbalance during refeeding. Despite having decreased expression of lipogenic genes, the net retention of de novo-derived lipid was higher in both the RP and SC adipose of exercising

  16. Expression and immunohistochemical localization of leptin in human periapical granulomas

    PubMed Central

    Martín-González, Jénifer; Carmona-Fernández, Antonio; Pérez-Pérez, Antonio; Sánchez-Jiménez, Flora; Sánchez-Margalet, Víctor

    2015-01-01

    Background Leptin, initially described as an adipocyte-derived hormone to regulate weight control, is expressed in normal and inflamed human dental pulp, being up-regulated during pulp experimental inflammation. Leptin receptor (LER) has been identified in human periapical granulomas. The aim of this study was to analyze and characterize the expression of leptin in human periapical granulomas. Material and Methods Fifteen periapical inflammatory lesions were obtained from extracted human teeth and teeth which underwent periapical surgery. After their morphological categorization as periapical granulomas and gradation of the inflammatory infiltrate, they were examined by immunohistochemistry using human leptin policlonal antibodies. Leptin mRNA expression was also determined by quantitative real-time PCR (qRT-PCR) and the amount of leptin protein was analyzed by immunoblot. Results All periapical lesions exhibited the characteristic of chronic granulomatous inflammatory process with inflammatory infiltrate grade III. Leptin+ cells were detected in 13 periapical granulomas (86.6%). The median number of Leptin+ cells in periapical granulomas was 1.70 (0.00-7.4). Amongst the inflammatory cells in the periapical granulomas, only macrophages were reactive to leptin antibodies. Western blot analysis revealed the presence in all samples of a protein with apparent molecular weight of approximately 16 kDa, corresponding to the estimated molecular weights of leptin. The expression of leptin mRNA was confirmed by qRT-PCR analysis and the size of the amplified fragment (296 bp for leptin and 194 bp for cyclophilin) was assessed by agarose gel electrophoresis. Conclusions For the first time, it has been demonstrated that human periapical granuloma expresses the adipokine leptin. Key words: Apical granuloma, dental pulp, endodontics, leptin, leptin receptor, immune system, immunohistochemistry, periapical inflammatory response. PMID:25662559

  17. Leptin and leptin receptor: Analysis of a structure to function relationship in interaction and evolution from humans to fish

    PubMed Central

    Prokop, JW; Duff, RJ; Ball, HC; Copeland, DL; Londraville, RL

    2012-01-01

    Leptin is a circulating protein which regulates dietary intake through binding the leptin receptor. Numerous labs have used known structures and mutagenesis to study this binding process in common animal models (human, mouse and rat). Understanding this binding process in other vertebrate species will allow for a better understanding of leptin and leptin receptor function. The binding site between leptin and leptin receptor is highly conserved in mammals as confirmed through sequence alignments mapped onto structures of both leptin and leptin receptor. More variation in this interaction is found in lizard and frog sequences. Using our models, we show that the avian leptin sequences have far less variation in the binding site than does the leptin receptor. This analysis further suggests that avian leptins are artifactual. In fish, gene duplication events have led to the expression of multiple leptin proteins. These multiple leptin proteins have variation in the regions interacting with leptin receptor. In zebrafish and the Japanese rice fish, we propose that leptin A has a higher binding energy than does B. Differing binding energies are evidence of either divergent functions, different binding confirmations, or other protein partners of leptin B. PMID:23085324

  18. Impact of single nucleotide polymorphisms in leptin, leptin receptor, growth hormone receptor, and diacylglycerol acyltransferase (DGAT1) gene loci on milk production, feed, and body energy traits of UK dairy cows.

    PubMed

    Banos, G; Woolliams, J A; Woodward, B W; Forbes, A B; Coffey, M P

    2008-08-01

    The impact of 9 single nucleotide polymorphisms (SNP) in the leptin (LEP), leptin receptor (LEPR), growth hormone receptor (GHR), and diacylglycerol acyltransferase (DGAT1) gene loci on daily milk production, feed intake, and feed conversion, and weekly measures of live weight, BCS, and body energy traits was evaluated using genetic and phenotypic data on 571 Holstein cows raised at the Langhill Dairy Cattle Research Center in Scotland. Six SNP were typed on the LEP gene and 1 on each of the other 3 loci. Of the 6 LEP SNP, 3 were in very high linkage disequilibrium, meaning there is little gain in typing all of them in the future. Seven LEP haplotypes were identified by parsimony-based analyses. Random-regression allele-substitution models were used to assess the impact of each SNP allele or haplotype on the traits of interest. Diacylglycerol acyltransferase had a significant effect on milk yield, whereas GHR significantly affected feed intake, feed conversion, and body energy traits. There was also evidence of dominance in allelic effects on milk yield and BCS. The LEP haplotype CCGTTT (corresponding to leptin SNP C207T, C528T, A1457G, C963T, A252T, and C305T, respectively) significantly affected milk yield and feed and dry matter intake. Animals carrying this haplotype produced 3.13 kg more milk daily and consumed 4.64 kg more feed. Furthermore, they tended to preserve more energy than average. Such results may be used to facilitate genetic selection in animal breeding programs.

  19. Role of Leptin Deficiency, Inefficiency, and Leptin Receptors in Obesity.

    PubMed

    Wasim, Muhammad; Awan, Fazli Rabbi; Najam, Syeda Sadia; Khan, Abdul Rehman; Khan, Haq Nawaz

    2016-10-01

    Leptin protein consists of 167 amino acids, which is mainly secreted from the white adipose tissue. This protein acts on the hypothalamic regions of the brain which control eating behavior, thus playing a significant role in maintaining body's metabolism. Leptin receptors belong to glycoprotein 130 (gp130) family of cytokine receptors and exist in six isoforms (LEPR a-f), and all the isoforms are encoded by LEPR gene; out of these isoforms, the LEPR-b receptor is the 'longest form,' and in most of the cases, mutations in this isoform cause severe obesity. Also, mutations in the leptin gene (LEP) or its receptors gene can lead to obesity. Some biochemical pathways affect the bioactivity of leptin and/or its receptors. To date, eleven pathogenic mutations have been reported in the LEP which are p.L72S, p.N103K, p.R105W, p.H118L, p.S141C, p.W121X c.104_106delTCA, c.135del3bp, c.398delG, c.481_482delCT, and c.163C>T. Different mutations in the LEPR have also been reported as c.2396-1 G>T, c.1675 G>A, p.P316T, etc. In some studies, where leptin was deficient, leptin replacement therapy has shown positive impact by preventing weight gain and obesity. PMID:27313173

  20. Role of Leptin Deficiency, Inefficiency, and Leptin Receptors in Obesity.

    PubMed

    Wasim, Muhammad; Awan, Fazli Rabbi; Najam, Syeda Sadia; Khan, Abdul Rehman; Khan, Haq Nawaz

    2016-10-01

    Leptin protein consists of 167 amino acids, which is mainly secreted from the white adipose tissue. This protein acts on the hypothalamic regions of the brain which control eating behavior, thus playing a significant role in maintaining body's metabolism. Leptin receptors belong to glycoprotein 130 (gp130) family of cytokine receptors and exist in six isoforms (LEPR a-f), and all the isoforms are encoded by LEPR gene; out of these isoforms, the LEPR-b receptor is the 'longest form,' and in most of the cases, mutations in this isoform cause severe obesity. Also, mutations in the leptin gene (LEP) or its receptors gene can lead to obesity. Some biochemical pathways affect the bioactivity of leptin and/or its receptors. To date, eleven pathogenic mutations have been reported in the LEP which are p.L72S, p.N103K, p.R105W, p.H118L, p.S141C, p.W121X c.104_106delTCA, c.135del3bp, c.398delG, c.481_482delCT, and c.163C>T. Different mutations in the LEPR have also been reported as c.2396-1 G>T, c.1675 G>A, p.P316T, etc. In some studies, where leptin was deficient, leptin replacement therapy has shown positive impact by preventing weight gain and obesity.

  1. Exercise-Associated Amenorrhea: Are Altered Leptin Levels an Early Warning Sign?

    ERIC Educational Resources Information Center

    Warren, Michelle P.; Ramos, Russalind H.; Bronson, Emily M.

    2002-01-01

    Although the exact cause of the female athlete triad (amenorrhea, disordered eating, and osteoporosis) is unknown, recent research implicates leptin, a hormone secreted by adipocytes. Leptin may be an important indicator of nutritional status and may play a role in reproductive function. Physicians who develop a plan for early recognition and…

  2. Genetic relationships of body composition, serum leptin, and age at puberty in gilts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leptin produced by adipocytes acts through leptin receptors in the hypothalamus to control appetite and food intake and thus communicates information about degree of fatness. It is thought that a degree of body fat is required for initiation of puberty and maintenance of reproductive function in mam...

  3. Leptin Promotes cPLA₂ Gene Expression through Activation of the MAPK/NF-κB/p300 Cascade.

    PubMed

    Hsu, Pei-Sung; Wu, Chi-Sheng; Chang, Jia-Feng; Lin, Wei-Ning

    2015-11-18

    Hyperplasia or hypertrophy of adipose tissues plays a crucial role in obesity, which is accompanied by the release of leptin. Recently, obesity was determined to be associated with various pulmonary diseases including asthma, acute lung injury, and chronic obstructive pulmonary disease. However, how obesity contributes to pulmonary diseases and whether leptin directly regulates lung inflammation remains unclear. We used cell and animal models to study the mechanisms of leptin mediation of pulmonary inflammation. We found that leptin activated de novo synthesis of cytosolic phospholipase A₂-α (cPLA₂-α) in vitro in the lung alveolar type II cells, A549, and in vivo in ICR mice. Upregulated cPLA₂-α protein was attenuated by pretreatment with an OB-R blocking antibody, U0126, SB202190, SP600125, Bay11-7086, garcinol, and p300 siRNA, suggesting roles of p42/p44 MAPK, p38 MAPK, JNK1/2, NF-κB, and p300 in leptin effects. Leptin enhanced the activities of p42/p44 MAPK, p38 MAPK, JNK1/2, and p65 NF-κB in a time-dependent manner. Additional studies have suggested the participation of OB-R, p42/p44 MAPK, and JNK1/2 in leptin-increased p65 phosphorylation. Furthermore, p300 phosphorylation and histone H4 acetylation were reduced by blockage of OB-R, p42/p44 MAPK, p38 MAPK, JNK1/2, and NF-κB in leptin-stimulated cells. Similarly, blockage of the MAPKs/NF-κB/p300 cascade significantly inhibited leptin-mediated cPLA₂-α mRNA expression. Our data as a whole showed that leptin contributed to lung cPLA₂-α expression through OB-R-dependent activation of the MAPKs/NF-κB/p300 cascade.

  4. Effect of polymorphisms in the leptin, leptin receptor and acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) genes and genetic polymorphism of milk proteins on bovine milk composition.

    PubMed

    Glantz, Maria; Lindmark Månsson, Helena; Stålhammar, Hans; Paulsson, Marie

    2012-02-01

    The relations between cow genetics and milk composition have gained a lot of attention during the past years, however, generally only a few compositional traits have been examined. The aim of this study was to determine if polymorphisms in the leptin (LEP), leptin receptor (LEPR) and acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) genes as well as genetic polymorphism of β-casein (β-CN), κ-CN and β-lactoglobulin (β-LG) impact several bovine milk composition traits. Individual milk samples from the Swedish Red and Swedish Holstein breeds were analyzed for components in the protein, lipid, carbohydrate and mineral profiles. Cow alleles were determined on the following SNP: A1457G, A252T, A59V and C963T on the LEP gene, T945M on the LEPR gene and Nt984+8(A-G) on the DGAT1 gene. Additionally, genetic variants of β-CN, κ-CN and β-LG were determined. For both the breeds, the same tendency of minor allele frequency was found for all SNPs and protein genes, except on LEPA1457G and LEPC963T. This study indicated significant (P<0·05) associations between the studied SNPs and several compositional parameters. Protein content was influenced by LEPA1457G (G>A) and LEPC963T (T>C), whereas total Ca, ionic Ca concentration and milk pH were affected by LEPA1457G, LEPA59V, LEPC963T and LEPRT945M. However, yields of milk, protein, CN, lactose, total Ca and P were mainly affected by β-CN (A2>A1) and κ-CN (A>B>E). β-LG was mainly associated with whey protein yield and ionic Ca concentration (A>B). Thus, this study shows possibilities of using these polymorphisms as markers within genetic selection programs to improve and adjust several compositional parameters.

  5. Leptin treatment prevents type I diabetic marrow adiposity but not bone loss in mice.

    PubMed

    Motyl, Katherine J; McCabe, Laura R

    2009-02-01

    Leptin is a hormone secreted by adipocytes that is implicated in the regulation of bone density. Serum leptin levels are decreased in rodent models of type 1 (T1-) diabetes and in diabetic patients. Whether leptin mediates diabetic bone changes is unclear. Therefore, we treated control and T1-diabetic mice with chronic (28 days) subcutaneous infusion of leptin or saline to elucidate the therapeutic potential of leptin for diabetic osteoporosis. Leptin prevented the increase of marrow adipocytes and the increased aP2 expression that we observed in vehicle-treated diabetic mice. However, leptin did not prevent T1-diabetic decreases in trabecular bone volume fraction or bone mineral density in tibia or vertebrae. Consistent with this finding, markers of bone formation (osteocalcin RNA and serum levels) in diabetic mice were not restored to normal levels with leptin treatment. Interestingly, markers of bone resorption (TRAP5 RNA and serum levels) were decreased in diabetic mice by leptin treatment. In summary, we have demonstrated a link between low leptin levels in T1-diabetes and marrow adiposity. However, leptin treatment alone was not successful in preventing bone loss.

  6. The novel SNPs of leptin gene and their associations with growth traits in Chinese Nanjiang Yellow goat.

    PubMed

    Wang, Cen; Zhang, Hao; Niu, Lili; Guo, Jiazhong; Jia, Xianbo; Wang, Linjie; Li, Li; Zhang, Hongping; Zhong, Tao

    2015-11-01

    The leptin (LEP) gene encodes a protein that greatly affects the regulation of body weight, energy balance, and food intake in mammals. The objective of the present work was to identify genetic variants of the caprine LEP gene in 411 individuals from five Chinese goat breeds. Six novel single nucleotide polymorphisms (SNPs) (g.117T > C, g.1642G > A, g.2883G > A, g.3053T > C, g.3190G > A, and g.3314T > C) were detected using DNA sequencing. A chi-squared (χ(2)) test showed that all of the LEP SNPs were in Hardy-Weinberg equilibrium in the studied population (P > 0.05). Six common haplotypes were identified in the five goat populations, with frequencies ranging from 0.083 to 0.244. The r(2) linkage disequilibrium plot of the LEP SNPs indicated linkage disequilibrium only in the cultured breeds (NJ and JY). Statistical analysis revealed that all of the six SNPs of the LEP gene were associated with growth traits. The individuals with the GG genotype at g.1642G>A and g.3190G > A loci showed higher birth weight (2.38 ± 0.03, 2.43 ± 0.05) and weight at 2 months of age (10.59 ± 0.16, 10.71 ± 0.26) than the A-bearing genotypes (AA or GA, P < 0.05). Our findings indicate that polymorphisms of the caprine LEP gene might be important genetic factors influencing growth traits, and these genetic markers may be useful for future marker-assisted selection programs in goat breeding and production.

  7. Identification of novel PPAR{gamma} target genes by integrated analysis of ChIP-on-chip and microarray expression data during adipocyte differentiation

    SciTech Connect

    Nakachi, Yutaka; Yagi, Ken; Nikaido, Itoshi; Bono, Hidemasa; Tonouchi, Mio; Schoenbach, Christian; Okazaki, Yasushi

    2008-07-25

    PPAR{gamma} (peroxisome proliferator-activated receptor gamma) acts as a key molecule of adipocyte differentiation, and transactivates multiple target genes involved in lipid metabolic pathways. Identification of PPAR{gamma} target genes will facilitate to predict the extent to which the drugs can affect and also to understand the molecular basis of lipid metabolism. Here, we have identified five target genes regulated directly by PPAR{gamma} during adipocyte differentiation in 3T3-L1 cells using integrated analyses of ChIP-on-chip and expression microarray. We have confirmed the direct PPAR{gamma} regulation of five genes by luciferase reporter assay in NIH-3T3 cells. Of these five genes Hp, Tmem143 and 1100001G20Rik are novel PPAR{gamma} targets. We have also detected PPREs (PPAR response elements) sequences in the promoter region of the five genes computationally. Unexpectedly, most of the PPREs detected proved to be atypical, suggesting the existence of more atypical PPREs than previously thought in the promoter region of PPAR{gamma} regulated genes.

  8. Association of the Ala16Val MnSOD gene polymorphism with plasma leptin levels and oxidative stress biomarkers in obese patients.

    PubMed

    Becer, Eda; Çırakoğlu, Ayşe

    2015-08-15

    Chronic oxidative stress is a major characteristic of obesity. Manganese superoxide dismutase (MnSOD) is an antioxidant enzyme known to be present within mitochondria and is considered a main defense against oxidative stress. The aim of this study was to investigate the association between the MnSOD gene Ala16Val polymorphism in obesity in terms of body mass index (BMI), lipid parameters, plasma leptin levels, homeostasis model assessment of insulin resistance (HOMA-IR), and oxidative stress biomarkers. The study included 150 obese and 120 non-obese subjects. The MnSOD Ala16Val polymorphism was determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Plasma leptin levels, serum lipid, superoxide dismutase (SOD), malondialdehyde (MDA), and anthropometric parameters were measured. No association was found between the MnSOD gene Ala16Val polymorphism and BMI in the study or control group. Strikingly, in the study group, obese subjects with the VV genotype had significantly higher plasma leptin levels (p<0.001) than those with the AA and AV genotypes. Serum total cholesterol (p<0.01) and MDA (p<0.001) levels were significantly higher in subjects with the VV genotype for MnSOD in the obese and non-obese groups. In the obese group, subjects with the VV genotype had significantly lower SOD (p<0.001) activity than the AA and AV genotypes. Our results suggest that the MnSOD gene polymorphism was associated with leptin levels and superoxide dismutase activity in the obese group but had no direct association with obesity. Moreover, the Ala16Val polymorphism has a significant effect on lipid profiles and MDA levels in both obese and non-obese subjects.

  9. The expression of leptin receptor in the ovary of the queen: leptin receptor expression in queen ovary.

    PubMed

    Albrizio, M; Roscino, M T; Trisolini, C; Binetti, F; Rizzo, A; Sciorsci, R L

    2013-10-01

    Leptin is a Ob gene product secreted mainly by adipose tissue. Several reports showed leptin production by other tissue including the ovary. The action of leptin is mediated upon binding to its receptor widely expressed in reproductive tissues in different species. In fact, there are growing evidences that leptin plays an important role in the modulation of reproductive functions. Therefore, the aim of this study was to evaluate in the queen, the expression of leptin receptor during the functional ovarian cycle and pregnancy. We found that the ovaries of the queen express leptin receptor in all the examined phases. The highest leptin receptor expression was found in the luteal phase (pseudopregnancy, pregnancy) compared to other phases of the cycle (anestrus, proestrus, estrus). The variations in the expression of leptin receptor suggest a likely implication of leptin in the modulation of ovarian activity, in the examined species.

  10. Differentiation of Pre-Adipocytes in Modelled Microgravity

    NASA Astrophysics Data System (ADS)

    Coinu, R.; Postiglione, I.; Meloni, M. A.; Galleri, G.; Pippia, P.; Palumbo, G.

    2008-06-01

    It has been demonstrated that microgravity affects biological and biochemical functions of cells including: morphology, cytoskeleton and embryogenesis [1]; proliferation, reduction of DNA, protein synthesis and glucose transport [2]; signalling, reduction of EGF-dependant c-fos and c-jun expression [3]; gene expression, reduction of IL2 expression and release by activated T-cells [4]. Moreover it has be found that peroxisome proliferators activated receptor γ (PPARγ2), which is known to be important for adipocyte differentiation, adipsin, leptin, and glucose transporter-4, are highly expressed in response to modelled microgravity [5]. These findings prompted us to investigate the effects of microgravity on cellular differentiation rate using a well characterized model. Such model consists in murine pre-adipocyte cells (3T3-L1) properly stimulated with insulin, dexamethazone and isobuthylmethyl-xantine (DMI protocol). The adipogenic program is completed within a short time. The entire process requires coordinated and temporarily beated molecular events. Early events. Growth arrest at confluence; Clonal expansion (this process involves synchronous entry of cells into S phase of the cell cycle, leading to one or two rounds of mitosis); Early expression of C/EBPβ and C/EBPδ. Late events. Expression of PPARγ and C/EBPα Assumption of rounded morphology and accumulation of lipid droplets.

  11. Soluble leptin receptor in serum of subjects with complete resistance to leptin: relation to fat mass.

    PubMed

    Lahlou, N; Clement, K; Carel, J C; Vaisse, C; Lotton, C; Le Bihan, Y; Basdevant, A; Lebouc, Y; Froguel, P; Roger, M; Guy-Grand, B

    2000-08-01

    Leptin resistance and obesity have been related to mutations of the leptin receptor gene in rodents and, recently, in a consanguineous family. The latter mutation results in a receptor lacking transmembrane and intracellular domains. Homozygous and heterozygous individuals with this mutation had serum leptin levels higher than expected, given their BMIs: 600, 670, and 526 ng/ml and 145, 362, 294, 240, and 212 ng/ml, respectively. Their serum leptin was fractionated by gel filtration: >80% was present as a high-molecular size complex vs. 7.5% in the nonmutated sister. Western blot analysis showed a band at 146 kDa reacting specifically with an antibody directed against the leptin receptor ectodomain. In 10 obese control subjects, as in the mutated patients, free leptin levels correlated with BMI (r = 0.70, P = 0.0011) and reflected fat mass, regardless of leptin receptor functioning. In the patients, bound leptin levels correlated with BMI (r = 0.99, P = 0.0002) and were related to the number of mutated alleles. These data demonstrate that the truncated receptor is secreted into blood and binds the majority of serum leptin, markedly increasing bound and total leptin. Free serum leptin was similarly correlated with BMI in the mutated and nonmutated obese individuals, providing evidence that the relationship between BMI and circulating free leptin is preserved in this family. This finding suggests that the leptin receptor itself may not be specifically involved in the control of leptin secretion, and it supports the concept of relative resistance to leptin in common obesity. PMID:10923636

  12. Characterization of Tusc5, a Unique Adipocyte Gene Co-Expressed in Peripheral Somatosensory Neurons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tumor suppressor candidate 5 (Tusc5, GenBank nomenclature) is a cold-repressed gene encoding a member of the CD225 domain-containing family, identified through analysis of transcripts differentially-expressed in brown adipose tissue (BAT) with changes in ambient temperature. Tusc5 mRNA was found to ...

  13. Obesity in BSB mice is correlated with expression of genes foriron homeostasis and leptin

    SciTech Connect

    Farahani, Poupak; Chiu, Sally; Bowlus, Christopher L.; Boffelli,Dario; Lee, Eric; Fisler, Janis S.; Krauss, Ronald M.; Warden, Craig H.

    2003-04-01

    Obesity is a complex disease. To date, over 100 chromosomal loci for body weight, body fat, regional white adipose tissue weight, and other obesity-related traits have been identified in humans and in animal models. For most loci, the underlying genes are not yet identified; some of these chromosomal loci will be alleles of known obesity genes, whereas many will represent alleles of unknown genes. Microarray analysis allows simultaneous multiple gene and pathway discovery. cDNA and oligonucleotide arrays are commonly used to identify differentially expressed genes by surveys of large numbers of known and unnamed genes. Two papers previously identified genes differentially expressed in adipose tissue of mouse models of obesity and diabetes by analysis of hybridization to Affymetrix oligonucleotide chips.

  14. Leptin regulates gonadotropins and steroid receptors in the rats ovary.

    PubMed

    Silveira Cavalcante, Fernanda; Aiceles, Verónica; da Fonte Ramos, Cristiane

    2013-01-01

    The leptin hormone is important to satiety and an important link between the nutritional status and reproductive processes. Owing to the contradictory effects of leptin on the ovary and the failure to clarify the precise mechanism by which leptin affects the ovary, our aim was to contribute to evaluation if leptin can directly regulate the gene expression of leptin itself and its receptors, and the expression of several genes related to the ovary function by a model of tissue culture. Ovaries from Wistar dams were used at 90 days of age and were submitted to medium with presence and absence of leptin. The results can demonstrate that leptin regulates gonadotropins and steroid receptors, which could suggest that the ovarian leptin role could be secondary to the changes in these receptors expression in rats.

  15. Cooperation between HMGA1 and HIF-1 Contributes to Hypoxia-Induced VEGF and Visfatin Gene Expression in 3T3-L1 Adipocytes

    PubMed Central

    Messineo, Sebastiano; Laria, Anna Elisa; Arcidiacono, Biagio; Chiefari, Eusebio; Luque Huertas, Raúl M.; Foti, Daniela P.; Brunetti, Antonio

    2016-01-01

    The architectural transcription factor high-mobility group AT-hook 1 (HMGA1) is a chromatin regulator with implications in several biological processes, including tumorigenesis, inflammation, and metabolism. Previous studies have indicated a role for this factor in promoting the early stages of adipogenesis, while inhibiting adipocyte terminal differentiation, and decreasing fat mass. It has been demonstrated that hypoxia – through the hypoxia-inducible factor 1 (HIF-1) – plays a major role in triggering changes in the adipose tissue of the obese, leading to inhibition of adipocyte differentiation, adipose cell dysfunction, inflammation, insulin resistance, and type 2 diabetes. To examine the possible cooperation between HMGA1 and HIF-1, herein, we investigated the role of HMGA1 in the regulation of Visfatin and VEGF, two genes normally expressed in adipose cells, which are both responsive to hypoxia. We demonstrated that HMGA1 enhanced Visfatin and VEGF gene expression in human embryonic kidney (HEK) 293 cells in hypoxic conditions, whereas HMGA1 knockdown in differentiated 3T3-L1 adipocytes reduced these effects. Reporter gene analysis showed that Visfatin and VEGF transcriptional activity was increased by the addition of either HMGA1 or HIF-1 and even further by the combination of both factors. As demonstrated by chromatin immunoprecipitation in intact cells, HMGA1 directly interacted with the VEGF gene, and this interaction was enhanced in hypoxic conditions. Furthermore, as indicated by co-immunoprecipitation studies, HMGA1 and HIF-1 physically interacted with each other, supporting the notion that this association may corroborate a functional link between these factors. Therefore, our findings provide evidence for molecular cross-talk between HMGA1 and HIF-1, and this may be important for elucidating protein and gene networks relevant to obesity. PMID:27445976

  16. Cooperation between HMGA1 and HIF-1 Contributes to Hypoxia-Induced VEGF and Visfatin Gene Expression in 3T3-L1 Adipocytes.

    PubMed

    Messineo, Sebastiano; Laria, Anna Elisa; Arcidiacono, Biagio; Chiefari, Eusebio; Luque Huertas, Raúl M; Foti, Daniela P; Brunetti, Antonio

    2016-01-01

    The architectural transcription factor high-mobility group AT-hook 1 (HMGA1) is a chromatin regulator with implications in several biological processes, including tumorigenesis, inflammation, and metabolism. Previous studies have indicated a role for this factor in promoting the early stages of adipogenesis, while inhibiting adipocyte terminal differentiation, and decreasing fat mass. It has been demonstrated that hypoxia - through the hypoxia-inducible factor 1 (HIF-1) - plays a major role in triggering changes in the adipose tissue of the obese, leading to inhibition of adipocyte differentiation, adipose cell dysfunction, inflammation, insulin resistance, and type 2 diabetes. To examine the possible cooperation between HMGA1 and HIF-1, herein, we investigated the role of HMGA1 in the regulation of Visfatin and VEGF, two genes normally expressed in adipose cells, which are both responsive to hypoxia. We demonstrated that HMGA1 enhanced Visfatin and VEGF gene expression in human embryonic kidney (HEK) 293 cells in hypoxic conditions, whereas HMGA1 knockdown in differentiated 3T3-L1 adipocytes reduced these effects. Reporter gene analysis showed that Visfatin and VEGF transcriptional activity was increased by the addition of either HMGA1 or HIF-1 and even further by the combination of both factors. As demonstrated by chromatin immunoprecipitation in intact cells, HMGA1 directly interacted with the VEGF gene, and this interaction was enhanced in hypoxic conditions. Furthermore, as indicated by co-immunoprecipitation studies, HMGA1 and HIF-1 physically interacted with each other, supporting the notion that this association may corroborate a functional link between these factors. Therefore, our findings provide evidence for molecular cross-talk between HMGA1 and HIF-1, and this may be important for elucidating protein and gene networks relevant to obesity.

  17. Novel leptin OB3 peptide-induced signaling and progression in thyroid cancers: Comparison with leptin

    PubMed Central

    Hsieh, Meng-Ti; Lai, Hsuan-Yu; Ke, Chien-Chih; Crawford, Dana R.; Lee, Oscar K.; Fu, Earl; Mousa, Shaker A.; Grasso, Patricia; Liu, Leroy F.; Chang, Heng-Yu; Tang, Heng-Yuan; Lin, Hung-Yun; Davis, Paul J.

    2016-01-01

    Obesity results in increased secretion of cytokines from adipose tissue and is a risk factor for various cancers. Leptin is largely produced by adipose tissue and cancer cells. It induces cell proliferation and may serve to induce various cancers. OB3-leptin peptide (OB3) is a new class of functional leptin peptide. However, its mitogenic effect has not been determined. In the present study, because of a close link between leptin and the hypothalamic-pituitary-thyroid axis, OB3 was compared with leptin in different thyroid cancer cells for gene expression, proliferation and invasion. Neither agent stimulated cell proliferation. Leptin stimulated cell invasion, but reduced adhesion in anaplastic thyroid cancer cells. Activated ERK1/2 and STAT3 contributed to leptin-induced invasion. In contrast, OB3 did not affect expression of genes involved in proliferation and invasion. In vivo studies in the mouse showed that leptin, but not OB3, significantly increased circulating levels of thyrotropin (TSH), a growth factor for thyroid cancer. In summary, OB3 is a derivative of leptin that importantly lacks the mitogenic effects of leptin on thyroid cancer cells. PMID:27050378

  18. Search for common targets of lithium and valproic acid identifies novel epigenetic effects of lithium on the rat leptin receptor gene

    PubMed Central

    Lee, R S; Pirooznia, M; Guintivano, J; Ly, M; Ewald, E R; Tamashiro, K L; Gould, T D; Moran, T H; Potash, J B

    2015-01-01

    Epigenetics may have an important role in mood stabilizer action. Valproic acid (VPA) is a histone deacetylase inhibitor, and lithium (Li) may have downstream epigenetic actions. To identify genes commonly affected by both mood stabilizers and to assess potential epigenetic mechanisms that may be involved in their mechanism of action, we administered Li (N=12), VPA (N=12), and normal chow (N=12) to Brown Norway rats for 30 days. Genomic DNA and mRNA were extracted from the hippocampus. We used the mRNA to perform gene expression analysis on Affymetrix microarray chips, and for genes commonly regulated by both Li and VPA, we validated expression levels using quantitative real-time PCR. To identify potential mechanisms underlying expression changes, genomic DNA was bisulfite treated for pyrosequencing of key CpG island ‘shores' and promoter regions, and chromatin was prepared from both hippocampal tissue and a hippocampal-derived cell line to assess modifications of histones. For most genes, we found little evidence of DNA methylation changes in response to the medications. However, we detected histone H3 methylation and acetylation in the leptin receptor gene, Lepr, following treatment with both drugs. VPA-mediated effects on histones are well established, whereas the Li effects constitute a novel mechanism of transcriptional derepression for this drug. These data support several shared transcriptional targets of Li and VPA, and provide evidence suggesting leptin signaling as an epigenetic target of two mood stabilizers. Additional work could help clarify whether leptin signaling in the brain has a role in the therapeutic action of Li and VPA in bipolar disorder. PMID:26171981

  19. Electroacupuncture Reduces Weight Gain Induced by Rosiglitazone through PPARγ and Leptin Receptor in CNS

    PubMed Central

    Jing, Xinyue; Ou, Chen; Chen, Hui; Wang, Tianlin; Xu, Bin; Lu, Shengfeng; Zhu, Bing-Mei

    2016-01-01

    We investigate the effect of electroacupuncture (EA) on protecting the weight gain side effect of rosiglitazone (RSG) in type 2 diabetes mellitus (T2DM) rats and its possible mechanism in central nervous system (CNS). Our study showed that RSG (5 mg/kg) significantly increased the body weight and food intake of the T2DM rats. After six-week treatment with RSG combined with EA, body weight, food intake, and the ratio of IWAT to body weight decreased significantly, whereas the ratio of BAT to body weight increased markedly. HE staining indicated that the T2DM-RSG rats had increased size of adipocytes in their IWAT, but EA treatment reduced the size of adipocytes. EA effectively reduced the lipid contents without affecting the antidiabetic effect of RSG. Furthermore, we noticed that the expression of PPARγ gene in hypothalamus was reduced by EA, while the expressions of leptin receptor and signal transducer and activator of transcription 3 (STAT3) were increased. Our results suggest that EA is an effective approach for inhibiting weight gain in T2DM rats treated by RSG. The possible mechanism might be through increased levels of leptin receptor and STAT3 and decreased PPARγ expression, by which food intake of the rats was reduced and RSG-induced weight gain was inhibited. PMID:26904147

  20. Effect of polymorphisms in the leptin, leptin receptor, and acyl-coenzyme A:diacylglycerol acyltransferase 1 (DGAT1) genes and genetic polymorphism of milk proteins on cheese characteristics.

    PubMed

    Glantz, M; Lindmark Månsson, H; Stålhammar, H; Paulsson, M

    2011-07-01

    Cheese production has increased worldwide during the last decade and is expected to increase within the coming decade as well. Despite this, the relations between cow genetics and cheese characteristics are not fully known. The aim of this study was to determine if polymorphisms in the leptin (LEP), leptin receptor (LEPR), and acyl-coenzyme A:diacylglycerol acyltransferase 1 (DGAT1) genes as well as genetic variants of β-casein (β-CN), κ-CN, and β-lactoglobulin (β-LG) affect technological properties important for cheese production and, hence, could act as genetic makers for cheese quality. Individual milk samples from the Swedish Red and the Swedish Holstein breeds were analyzed for sizes of CN micelles and fat globules as well as rennet-induced gel strength, gelation time, and yield stress. Model cheeses were produced to study yield, hardness, and pH of the cheeses. The A1457G, A252T, A59V, and C963T single nucleotide polymorphisms (SNP) were analyzed on the LEP gene, the T945M SNP on the LEPR gene, and the Nt984+8(A-G) SNP on the DGAT1 gene. In addition, genetic variants of β-CN, κ-CN, and β-LG were determined. The results indicate that technological properties were influenced by the LEPR(T945M) polymorphism, which had an association with gel strength, yield stress, and cheese hardness (T > C). However, also LEP(A252T) was shown to affect gel strength (T > A), whereas the LEP(A59V) had an effect on fat globule size (T > C). For the milk protein genes, favorable effects were found for the A and B variants of β-LG and κ-CN, respectively, on gel strength, gelation time, and yield stress. In addition, the B variant of κ-CN was shown to be associated with smaller CN micelles than the A variant. Thus, the results demonstrate potential genetic markers for cheese characteristics. However, milk composition traits also affected the obtained results, thus making it necessary to thoroughly assess the different aspects regarding the influence of gene effects on

  1. The effect of plasminogen activator inhibitor-1 -675 4G/5G polymorphism on PAI-1 gene expression and adipocyte differentiation.

    PubMed

    Ozel Demiralp, Duygu; Aktas, Huseyin; Akar, Nejat

    2008-10-01

    Obesity is a complex, multifactorial chronic disease frequently associated with cardiovascular risks, hypertriglyceridemia, low high-density lipoprotein-cholesterol, high blood pressure, and the insulin resistance that appears to be central to the pathogenesis of Type II diabetes. Plasminogen activator inhibitor-1 expression induced in differentiating adipose tissue, but its role in adipogenesis and obesity is poorly understood. Circulating plasminogen activator inhibitor-1 levels are elevated at an early stage of impaired glucose tolerance, resulting in diabetes and metabolic syndrome. Plasminogen activator inhibitor-1 levels are also significantly elevated in the plasma of obese individuals and in adipose tissues of obese mice and humans. Some investigators proposed that the -675 4G/5G polymorphism in plasminogen activator inhibitor-1 promoter caused overexpression of this gene and predisposed carriers to obesity. In this study, we investigated the role of -675 4G/5G polymorphism in plasminogen activator inhibitor-1 promoter in the expression of this gene and the contribution of plasminogen activator inhibitor-1 to adipogenesis. Using a dual-luciferase promoter assay, we determined that the -675 4G/5G polymorphism contributes significantly to overexpression of plasminogen activator inhibitor-1 in the course of adipogenesis. The antidiabetic agents troglitazone and ciglitazone inhibited reporter gene expression driven by wild-type and -675 4G/5G mutant promoter, as well as the expression of endogenous plasminogen activator inhibitor-1, indicating that suppression of plasminogen activator inhibitor-1 expression may contribute to antidiabetic effects of these agents. The results indicate that absence of plasminogen activator inhibitor-1 in adipocytes may protect the cells against insulin resistance by promoting glucose uptake and adipocyte differentiation via a decrease in the peroxisome proliferator activated receptor-gamma expression that modulates the adipocyte

  2. Adipocyte hypoxia promotes epithelial-mesenchymal transition-related gene expression and estrogen receptor-negative phenotype in breast cancer cells

    PubMed Central

    YAO-BORENGASSER, AIWEI; MONZAVI-KARBASSI, BEHJATOLAH; HEDGES, REBECCA A; ROGERS, LORA J; KADLUBAR, SUSAN A; KIEBER-EMMONS, THOMAS

    2015-01-01

    The development of breast cancer is linked to the loss of estrogen receptor (ER) during the course of tumor progression, resulting in loss of responsiveness to hormonal treatment. The mechanisms underlying dynamic ERα gene expression change in breast cancer remain unclear. A range of physiological and biological changes, including increased adipose tissue hypoxia, accompanies obesity. Hypoxia in adipocytes can establish a pro-malignancy environment in breast tissues. Epidemiological studies have linked obesity with basal-like breast cancer risk and poor disease outcome, suggesting that obesity may affect the tumor phenotype by skewing the microenvironment toward support of more aggressive tumor phenotypes. In the present study, human SGBS adipocytes were co-cultured with ER-positive MCF7 cells for 24 h. After co-culture, HIF1α, TGF-β, and lectin-type oxidized LDL receptor 1 (LOX1) mRNA levels in the SGBS cells were increased. Expression levels of the epithelial-mesenchymal transition (EMT)-inducing transcription factors FOXC2 and TWIST1 were increased in the co-cultured MCF7 cells. In addition, the E-cadherin mRNA level was decreased, while the N-cadherin mRNA level was increased in the co-cultured MCF7 cells. ERα mRNA levels were significantly repressed in the co-cultured MCF7 cells. ERα gene expression in the MCF7 cells was decreased due to increased HIF1α in the SGBS cells. These results suggest that adipocytes can modify breast cancer cell ER gene expression through hypoxia and also can promote EMT processes in breast cancer cells, supporting an important role of obesity in aggressive breast cancer development. PMID:25823469

  3. Adipocyte expression of PU.1 transcription factor causes insulin resistance through upregulation of inflammatory cytokine gene expression and ROS production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have reported previously that ETS family transcription factor PU.1 is expressed in mature adipocytes of white adipose tissue. PU.1 expression is increased greatly in mouse models of genetic or diet-induced obesity. Here, we show that PU.1 expression is increased only in visceral but not subcutane...

  4. White adipose tissue genome wide-expression profiling and adipocyte metabolic functions after soy protein consumption in rats.

    PubMed

    Frigolet, Maria E; Torres, Nimbe; Uribe-Figueroa, Laura; Rangel, Claudia; Jimenez-Sanchez, Gerardo; Tovar, Armando R

    2011-02-01

    Obesity is associated with an increase in adipose tissue mass due to an imbalance between high dietary energy intake and low physical activity; however, the type of dietary protein may contribute to its development. The aim of the present work was to study the effect of soy protein versus casein on white adipose tissue genome profiling, and the metabolic functions of adipocytes in rats with diet-induced obesity. The results showed that rats fed a Soy Protein High-Fat (Soy HF) diet gained less weight and had lower serum leptin concentration than rats fed a Casein High-Fat (Cas HF) diet, despite similar energy intake. Histological studies indicated that rats fed the Soy HF diet had significantly smaller adipocytes than those fed the Cas HF diet, and this was associated with a lower triglyceride/DNA content. Fatty acid synthesis in isolated adipocytes was reduced by the amount of fat consumed but not by the type of protein ingested. Expression of genes of fatty acid oxidation increased in adipose tissue of rats fed Soy diets; microarray analysis revealed that Soy protein consumption modified the expression of 90 genes involved in metabolic functions and inflammatory response in adipose tissue. Network analysis showed that the expression of leptin was regulated by the type of dietary protein and it was identified as a central regulator of the expression of lipid metabolism genes in adipose tissue. Thus, soy maintains the size and metabolic functions of adipose tissue through biochemical adaptations, adipokine secretion, and global changes in gene expression.

  5. Analysis of leptin signalling in hematopoietic cells using an adapted MAPPIT strategy.

    PubMed

    Montoye, T; Piessevaux, J; Lavens, D; Wauman, J; Catteeuw, D; Vandekerckhove, J; Lemmens, I; Tavernier, J

    2006-05-29

    The adipocyte-secreted hormone leptin participates in the regulation of hematopoiesis and enhances proliferation of hematopoietic cells. We used an adaptation of the MAPPIT mammalian two-hybrid method to study leptin signalling in a hematopoietic setting. We confirmed the known interactions of suppressor of cytokine signalling 3 (SOCS3) and STAT5 with the Y985 and Y1077 motifs of the leptin receptor, respectively. We also provide evidence for novel interactions at the Y1077 motif, including phospholipase C gamma and several members of the SOCS protein family, further underscoring the important role of the Y1077 motif in leptin signalling. PMID:16698021

  6. Adipocyte Metrnl Antagonizes Insulin Resistance Through PPARγ Signaling.

    PubMed

    Li, Zhi-Yong; Song, Jie; Zheng, Si-Li; Fan, Mao-Bing; Guan, Yun-Feng; Qu, Yi; Xu, Jian; Wang, Pei; Miao, Chao-Yu

    2015-12-01

    Adipokines play important roles in metabolic homeostasis and disease. We have recently identified a novel adipokine Metrnl, also known as Subfatin, for its high expression in subcutaneous fat. Here, we demonstrate a prodifferentiation action of Metrnl in white adipocytes. Adipocyte-specific knockout of Metrnl exacerbates insulin resistance induced by high-fat diet (HFD), whereas adipocyte-specific transgenic overexpression of Metrnl prevents insulin resistance induced by HFD or leptin deletion. Body weight and adipose content are not changed by adipocyte Metrnl. Consistently, no correlation is found between serum Metrnl level and BMI in humans. Metrnl promotes white adipocyte differentiation, expandability, and lipid metabolism and inhibits adipose inflammation to form functional fat, which contributes to its activity against insulin resistance. The insulin sensitization of Metrnl is blocked by PPARγ inhibitors or knockdown. However, Metrnl does not drive white adipose browning. Acute intravenous injection of recombinant Metrnl has no hypoglycemic effect, and 1-week intravenous administration of Metrnl is unable to rescue insulin resistance exacerbated by adipocyte Metrnl deficiency. Our results suggest adipocyte Metrnl controls insulin sensitivity at least via its local autocrine/paracrine action through the PPARγ pathway. Adipocyte Metrnl is an inherent insulin sensitizer and may become a therapeutic target for insulin resistance. PMID:26307585

  7. Pathophysiogical role of leptin in lifestyle-related diseases. Studies with transgenic skinny mice overexpressing leptin.

    PubMed

    Ogawa, Yoshihiro; Masuzaki, Hiroaki; Ebihara, Ken; Shintani, Mitsuyo; Aizawa-Abe, Megumi; Miyanaga, Fumiko; Nakao, Kazuwa

    2002-01-01

    Leptin is a major adipocyte-derived hormone that is involved in the regulation of food intake and energy expenditure. Plasma leptin concentrations are elevated in obese subjects, suggesting its pathophysiological role in obesity-related lifestyle-related diseases. We have recently succeeded in the generation of transgenic skinny mice overexpressing leptin. They exhibit increased glucose metabolism and insulin sensitivity accompanied by a significant increase in insulin signaling for glucose utilization in the skeletal muscle and liver. They also show blood pressure elevation through the sympathetic activation. Introduction of the lethal yellow agouti (A(y)) allele into transgenic skinny mice results in late-onset obesity and diabetes with blood pressure elevation similar to those found in nontransgenic agouti mice (A(y)/+ mice). After caloric restriction, blood pressure elevation is reversed but insulin resistance still remains in A(y)/+ mice in parallel with a reduction of plasma leptin concentrations. By contrast, blood pressure elevation is sustained but insulin resistance is reversed in transgenic mice overexpressing leptin with the A(y) allele (Tg/+:A(y)/+ mice), which remain hyperleptinemic. Collectively, our data suggest the pathophysiologic and therapeutic implication of leptin in obesity-related insulin resistance and hypertension.

  8. Inhibition of hormone-sensitive lipase gene expression by cAMP and phorbol esters in 3T3-F442A and BFC-1 adipocytes.

    PubMed

    Plée-Gautier, E; Grober, J; Duplus, E; Langin, D; Forest, C

    1996-09-15

    Hormone-sensitive lipase (HSL) catalyses the rate-limiting step in adipocyte lipolysis. Short-term hormonal regulation of HSL activity is well characterized, whereas little is known about the control of HSL gene expression. We have measured HSL mRNA content of 3T3-F442A and BFC-1 adipocytes in response to the cAMP analogue 8-(4-chlorophenylthio)-cAMP (8-CPT-cAMP) and to the phorbol ester phorbol 12-myristate 13-acetate (PMA) by Northern blot, using a specific mouse cDNA fragment. Treatment of the cells for 12 or 6 h with, respectively, 0.5 mM 8-CPT-cAMP or 1 microM PMA produced a maximal decrease of about 60% in HSL mRNA. These effects were unaffected by the protein-synthesis inhibitor anisomycin, suggesting that cAMP and PMA actions were direct. The reduction in HSL mRNA was accompanied by a reduction in HSL total activity. The intracellular routes that cAMP and PMA follow for inducing such an effect seemed clearly independent. (i) After desensitization of the protein kinase C regulation pathway by a 24 h treatment of the cells with 1 microM PMA, PMA action was abolished whereas cAMP was still fully active. (ii) Treatment with saturating concentrations of both agents produced an additive effect. (iii) The synthetic glucocorticoid dexamethasone had no proper effect on HSL gene expression but potentiated cAMP action without affecting PMA action. cAMP inhibitory action on HSL is unexpected. Indeed, the second messenger of catecholamines is the main activator of HSL by phosphorylation. We envision that a long-term cAMP treatment of adipocytes induces a counter-regulatory process that reduces HSL content and, ultimately, limits fatty acid depletion from stored triacylglycerols.

  9. Duplicated Leptin Receptors in Two Species of Eel Bring New Insights into the Evolution of the Leptin System in Vertebrates

    PubMed Central

    Morini, Marina; Pasquier, Jérémy; Dirks, Ron; van den Thillart, Guido; Tomkiewicz, Jonna; Rousseau, Karine; Dufour, Sylvie; Lafont, Anne-Gaëlle

    2015-01-01

    Since its discovery in mammals as a key-hormone in reproduction and metabolism, leptin has been identified in an increasing number of tetrapods and teleosts. Tetrapods possess only one leptin gene, while most teleosts possess two leptin genes, as a result of the teleost third whole genome duplication event (3R). Leptin acts through a specific receptor (LEPR). In the European and Japanese eels, we identified two leptin genes, and for the first time in vertebrates, two LEPR genes. Synteny analyses indicated that eel LEPRa and LEPRb result from teleost 3R. LEPRb seems to have been lost in the teleost lineage shortly after the elopomorph divergence. Quantitative PCRs revealed a wide distribution of leptins and LEPRs in the European eel, including tissues involved in metabolism and reproduction. Noticeably, leptin1 was expressed in fat tissue, while leptin2 in the liver, reflecting subfunctionalization. Four-month fasting had no impact on the expression of leptins and LEPRs in control European eels. This might be related to the remarkable adaptation of silver eel metabolism to long-term fasting throughout the reproductive oceanic migration. In contrast, sexual maturation induced differential increases in the expression of leptins and LEPRs in the BPG-liver axis. Leptin2 was strikingly upregulated in the liver, the central organ of the reproductive metabolic challenge in teleosts. LEPRs were differentially regulated during sexual maturation, which may have contributed to the conservation of the duplicated LEPRs in this species. This suggests an ancient and positive role of the leptin system in the vertebrate reproductive function. This study brings new insights on the evolutionary history of the leptin system in vertebrates. Among extant vertebrates, the eel represents a unique case of duplicated leptins and leptin receptors as a result of 3R. PMID:25946034

  10. Duplicated leptin receptors in two species of eel bring new insights into the evolution of the leptin system in vertebrates.

    PubMed

    Morini, Marina; Pasquier, Jérémy; Dirks, Ron; van den Thillart, Guido; Tomkiewicz, Jonna; Rousseau, Karine; Dufour, Sylvie; Lafont, Anne-Gaëlle

    2015-01-01

    Since its discovery in mammals as a key-hormone in reproduction and metabolism, leptin has been identified in an increasing number of tetrapods and teleosts. Tetrapods possess only one leptin gene, while most teleosts possess two leptin genes, as a result of the teleost third whole genome duplication event (3R). Leptin acts through a specific receptor (LEPR). In the European and Japanese eels, we identified two leptin genes, and for the first time in vertebrates, two LEPR genes. Synteny analyses indicated that eel LEPRa and LEPRb result from teleost 3R. LEPRb seems to have been lost in the teleost lineage shortly after the elopomorph divergence. Quantitative PCRs revealed a wide distribution of leptins and LEPRs in the European eel, including tissues involved in metabolism and reproduction. Noticeably, leptin1 was expressed in fat tissue, while leptin2 in the liver, reflecting subfunctionalization. Four-month fasting had no impact on the expression of leptins and LEPRs in control European eels. This might be related to the remarkable adaptation of silver eel metabolism to long-term fasting throughout the reproductive oceanic migration. In contrast, sexual maturation induced differential increases in the expression of leptins and LEPRs in the BPG-liver axis. Leptin2 was strikingly upregulated in the liver, the central organ of the reproductive metabolic challenge in teleosts. LEPRs were differentially regulated during sexual maturation, which may have contributed to the conservation of the duplicated LEPRs in this species. This suggests an ancient and positive role of the leptin system in the vertebrate reproductive function. This study brings new insights on the evolutionary history of the leptin system in vertebrates. Among extant vertebrates, the eel represents a unique case of duplicated leptins and leptin receptors as a result of 3R. PMID:25946034

  11. Leptin in congenital and HIV-associated lipodystrophy.

    PubMed

    Tsoukas, Michael A; Farr, Olivia M; Mantzoros, Christos S

    2015-01-01

    Leptin is a hormone secreted by adipocytes that regulates energy metabolism via peripheral action on glucose synthesis and utilization as well as through central regulation of food intake. Patients with decreased amounts of fat in their adipose tissue (lipoatrophy) will have low leptin levels, and hypoleptinemic states have been associated with a variety of metabolic dysfunctions. Pronounced complications of insulin resistance, dyslipidemia and fatty liver are observed in patients suffering from congenital or acquired generalized lipodystrophy while somewhat less pronounced abnormalities are associated with human immunodeficiency virus (HIV) and the use of highly active antiretroviral therapy, the so-called HIV-associated lipodystrophy. Previous uncontrolled open-label studies have demonstrated that physiological doses of leptin repletion have corrected many of the metabolic derangements observed in subjects with rare fat maldistribution syndromes such as generalized lipodystrophy. In the much more commonly encountered HIV-associated lipodystrophy, leptin replacement has been shown to decrease central fat mass and to improve insulin sensitivity, dyslipidemia, and glucose levels. The United States Food and Drug Administration has recently granted approval for recombinant leptin therapy for congenital and acquired generalized lipodystrophy, however large, well-designed, placebo-controlled studies are needed to assess long-term efficacy, safety and adverse effects of leptin replacement. In this review, we present the role of leptin in the metabolic complications of congenital and acquired lipodystrophy and discuss current and emerging clinical therapeutic uses of leptin in humans with lipodystrophy.

  12. The role of leptin in reproduction: experimental and clinical aspects.

    PubMed

    Baldelli, Roberto; Dieguez, Carlos; Casanueva, Felipe F

    2002-01-01

    The discovery of the adipocyte-produced hormone leptin has greatly changed the field of obesity research and future treatment as well as our understanding of energy homeostasis in man. In addition to its relevant role as a metabolic adaptor to overweight and fasting states, new and previously unsuspected neuroendocrinological roles have emerged for leptin. In reproduction, leptin is implicated in fertility regulation and appears as a permissive factor for puberty. In particular, various sets of data suggest that leptin may serve as a signal to the central nervous system (CNS) with information on the critical amount of adipose tissue stores that is necessary for gonadotropin-releasing hormone (GnRH) secretion and pubertal activation of the hypothalamic-pituitary-gonadal axis. Leptin also acts at the periphery, directly on the ovary and testis where it may control steroidogenesis, although the exact role of intragonadal action in the physiology and pathophysiology of the human reproductive system needs to be further elucidated. Furthermore, relevant gender-based differences in leptin levels exist, with higher levels in women, even at birth, and which persist throughout life. In adult life, there is experimental evidence that leptin is a permissive factor for the menstrual cycle, with a regulatory role exerted at hypothalamic, pituitary and gonadal levels, and with severe changes in pregnancy and postpartum. Moreover, leptin is present in both human and commercial milk, and may play a role in the adaptive responses of the newborn.

  13. Differential Role of Leptin and Adiponectin in Cardiovascular System

    PubMed Central

    Ghantous, C. M.; Azrak, Z.; Hanache, S.; Abou-Kheir, W.; Zeidan, A.

    2015-01-01

    Leptin and adiponectin are differentially expressed adipokines in obesity and cardiovascular diseases. Leptin levels are directly associated with adipose tissue mass, while adiponectin levels are downregulated in obesity. Although significantly produced by adipocytes, leptin is also produced by vascular smooth muscle cells and cardiomyocytes. Plasma leptin concentrations are elevated in cases of cardiovascular diseases, such as hypertension, congestive heart failure, and myocardial infarction. As for the event of left ventricular hypertrophy, researchers have been stirring controversy about the role of leptin in this form of cardiac remodeling. In this review, we discuss how leptin has been shown to play an antihypertrophic role in the development of left ventricular hypertrophy through in vitro experiments, population-based cross-sectional studies, and longitudinal cohort studies. Conversely, we also examine how leptin may actually promote left ventricular hypertrophy using in vitro analysis and human-based univariate and multiple linear stepwise regression analysis. On the other hand, as opposed to leptin's generally detrimental effects on the cardiovascular system, adiponectin is a cardioprotective hormone that reduces left ventricular and vascular hypertrophy, oxidative stress, and inflammation. In this review, we also highlight adiponectin signaling and its protective actions on the cardiovascular system. PMID:26064110

  14. Leptin replacement alters brain response to food cues in genetically leptin-deficient adults

    PubMed Central

    Baicy, Kate; London, Edythe D.; Monterosso, John; Wong, Ma-Li; Delibasi, Tuncay; Sharma, Anil; Licinio, Julio

    2007-01-01

    A missense mutation in the ob gene causes leptin deficiency and morbid obesity. Leptin replacement to three adults with this mutation normalized body weight and eating behavior. Because the neural circuits mediating these changes were unknown, we paired functional magnetic resonance imaging (fMRI) with presentation of food cues to these subjects. During viewing of food-related stimuli, leptin replacement reduced brain activation in regions linked to hunger (insula, parietal and temporal cortex) while enhancing activation in regions linked to inhibition and satiety (prefrontal cortex). Leptin appears to modulate feeding behavior through these circuits, suggesting therapeutic targets for human obesity. PMID:17986612

  15. The molecular clock mediates leptin-regulated bone formation.

    PubMed

    Fu, Loning; Patel, Millan S; Bradley, Allan; Wagner, Erwin F; Karsenty, Gerard

    2005-09-01

    The hormone leptin is a regulator of bone remodeling, a homeostatic function maintaining bone mass constant. Mice lacking molecular-clock components (Per and Cry), or lacking Per genes in osteoblasts, display high bone mass, suggesting that bone remodeling may also be subject to circadian regulation. Moreover, Per-deficient mice experience a paradoxical increase in bone mass following leptin intracerebroventricular infusion. Thus, clock genes may mediate the leptin-dependent sympathetic regulation of bone formation. We show that expression of clock genes in osteoblasts is regulated by the sympathetic nervous system and leptin. Clock genes mediate the antiproliferative function of sympathetic signaling by inhibiting G1 cyclin expression. Partially antagonizing this inhibitory loop, leptin also upregulates AP-1 gene expression, which promotes cyclin D1 expression, osteoblast proliferation, and bone formation. Thus, leptin determines the extent of bone formation by modulating, via sympathetic signaling, osteoblast proliferation through two antagonistic pathways, one of which involves the molecular clock.

  16. Green Tea (-)-Epigallotocatechin-3-Gallate Induces PGC-1α Gene Expression in HepG2 Cells and 3T3-L1 Adipocytes.

    PubMed

    Lee, Mak-Soon; Lee, Seohyun; Doo, Miae; Kim, Yangha

    2016-03-01

    Green tea (Camellia sinensis) is one of the most popular beverages in the world and has been acknowledged for centuries as having significant health benefits. (-)-Epigallocatechin-3-gallate (EGCG) is the most abundant catechin in green tea, and it has been reported to have health benefit effects. Peroxisome proliferator-activated receptor γ coactivator (PGC)-1α is a crucial regulator of mitochondrial biogenesis and hepatic gluconeogenesis. The objective of this study was to investigate whether EGCG from green tea can affect the ability of transcriptional regulation on PGC-1α mRNA expression in HepG2 cells and 3T3-L1 adipocytes. To study the molecular mechanism that allows EGCG to control PGC-1α expression, the promoter activity levels of PGC-1α were examined. The PGC-1α mRNA level was measured using quantitative real-time PCR. The -970/+412 bp of PGC-1α promoter was subcloned into the pGL3-Basic vector that includes luciferase as a reporter gene. EGCG was found to up-regulate the PGC-1α mRNA levels significantly with 10 μmol/L of EGCG in HepG2 cells and differentiated 3T3-L1 adipocytes. PGC-1α promoter activity was also increased by treatment with 10 μmol/L of EGCG in both cells. These results suggest that EGCG may induce PGC-1α gene expression, potentially through promoter activation. PMID:27069908

  17. Green Tea (−)-Epigallotocatechin-3-Gallate Induces PGC-1α Gene Expression in HepG2 Cells and 3T3-L1 Adipocytes

    PubMed Central

    Lee, Mak-Soon; Lee, Seohyun; Doo, Miae; Kim, Yangha

    2016-01-01

    Green tea (Camellia sinensis) is one of the most popular beverages in the world and has been acknowledged for centuries as having significant health benefits. (−)-Epigallocatechin-3-gallate (EGCG) is the most abundant catechin in green tea, and it has been reported to have health benefit effects. Peroxisome proliferator-activated receptor γ coactivator (PGC)-1α is a crucial regulator of mitochondrial biogenesis and hepatic gluconeogenesis. The objective of this study was to investigate whether EGCG from green tea can affect the ability of transcriptional regulation on PGC-1α mRNA expression in HepG2 cells and 3T3-L1 adipocytes. To study the molecular mechanism that allows EGCG to control PGC-1α expression, the promoter activity levels of PGC-1α were examined. The PGC-1α mRNA level was measured using quantitative real-time PCR. The −970/+412 bp of PGC-1α promoter was subcloned into the pGL3-Basic vector that includes luciferase as a reporter gene. EGCG was found to up-regulate the PGC-1α mRNA levels significantly with 10 μmol/L of EGCG in HepG2 cells and differentiated 3T3-L1 adipocytes. PGC-1α promoter activity was also increased by treatment with 10 μmol/L of EGCG in both cells. These results suggest that EGCG may induce PGC-1α gene expression, potentially through promoter activation. PMID:27069908

  18. Genetics Home Reference: leptin receptor deficiency

    MedlinePlus

    ... leptin receptor gene causes obesity and pituitary dysfunction. Nature. 1998 Mar 26;392(6674):398-401. Citation ... and human weight regulation: lessons from experiments of nature. Ann Acad Med Singapore. 2009 Jan;38(1): ...

  19. Transcriptional and Epigenetic Mechanisms Underlying Enhanced in Vitro Adipocyte Differentiation by the Brominated Flame Retardant BDE-47

    PubMed Central

    2015-01-01

    Recent studies suggest that exposure to endocrine-disrupting compounds (EDCs) may play a role in the development of obesity. EDCs such as the flame retardant 2,2′,4,4′-tetrabrominated diphenyl ether (BDE-47) have been shown to enhance adipocyte differentiation in the murine 3T3-L1 model. The mechanisms by which EDCs direct preadipocytes to form adipocytes are poorly understood. Here, we examined transcriptional and epigenetic mechanisms underlying the induction of in vitro adipocyte differentiation by BDE-47. Quantitative high content microscopy revealed concentration-dependent enhanced adipocyte differentiation following exposure to BDE-47 or the antidiabetic drug troglitazone (TROG). BDE-47 modestly activated the key adipogenic transcription factor peroxisome proliferator-activated receptor gamma (PPARγ) in COS7 cells, transiently transfected with a GAL4 reporter construct. Increased gene expression was observed for Pparγ2, leptin (Lep), and glucose-6-phophatase catalytic subunit (G6pc) in differentiated 3T3-L1 cells after BDE-47 exposure compared to TROG. Methylation-sensitive high resolution melting (MS-HRM) revealed significant demethylation of three CpG sites in the Pparγ2 promoter after exposure to both BDE-47 and TROG in differentiated 3T3-L1 cells. This study shows the potential of BDE-47 to induce adipocyte differentiation through various mechanisms that include Pparγ2 gene induction and promoter demethylation accompanied by activation of PPARγ, and possible disruption of glucose homeostasis and IGF1 signaling. PMID:24559133

  20. Leptin expression affects metabolic rate in zebrafish embryos (D. rerio).

    PubMed

    Dalman, Mark R; Liu, Qin; King, Mason D; Bagatto, Brian; Londraville, Richard L

    2013-01-01

    We used antisense morpholino oligonucleotide technology to knockdown leptin-(A) gene expression in developing zebrafish embryos and measured its effects on metabolic rate and cardiovascular function. Using two indicators of metabolic rate, oxygen consumption was significantly lower in leptin morphants early in development [<48 hours post-fertilization (hpf)], while acid production was significantly lower in morphants later in development (>48 hpf). Oxygen utilization rates in <48 hpf embryos and acid production in 72 hpf embryos could be rescued to that of wildtype embryos by recombinant leptin coinjected with antisense morpholino. Leptin is established to influence metabolic rate in mammals, and these data suggest leptin signaling also influences metabolic rate in fishes.

  1. Comparative endocrinology of leptin: Assessing function in a phylogenetic context

    PubMed Central

    Londraville, Richard L.; Macotela, Yazmin; Duff, Robert J.; Easterling, Marietta R.; Liu, Qin; Crespi, Erica J.

    2014-01-01

    As we approach the end of two decades of leptin research, the comparative biology of leptin is just beginning. We now have several leptin orthologs described from nearly every major clade among vertebrates, and are moving beyond gene descriptions to functional studies. Even at this early stage, it is clear that non-mammals display clear functional similarities and differences with their better-studied mammalian counterparts. This review assesses what we know about leptin function in mammals and non-mammals, and gives examples of how these data can inform leptin biology in humans. PMID:24525452

  2. Adipocyte Secreted Factors Enhance Aggressiveness of Prostate Carcinoma Cells

    PubMed Central

    Moreira, Ângela; Pereira, Sofia S.; Costa, Madalena; Morais, Tiago; Pinto, Ana; Fernandes, Rúben; Monteiro, Mariana P.

    2015-01-01

    Obesity has been associated with increased incidence and risk of mortality of prostate cancer. One of the proposed mechanisms underlying this risk association is the change in adipokines expression that could promote the development and progression of the prostate tumor cells. The main goal of this study was to evaluate the effect of preadipocyte and adipocyte secretome in the proliferation, migration and invasion of androgen independent prostate carcinoma cells (RM1) and to assess cell proliferation in the presence of the adiposity signals leptin and insulin. RM1 cells were co-cultured in with preadipocytes, adipocytes or cultured in their respective conditioned medium. Cell proliferation was assessed by flow cytometry and XTT viability test. Cell migration was evaluated using a wound healing injury assay of RM1 cells cultured with conditioned media. Cellular invasion of RM1 cells co-cultured with adipocytes and preadipocytes was assessed using matrigel membranes. Preadipocyte conditioned medium was associated with a small increase in RM1 proliferation, while adipocytes conditioned media significantly increased RM1 cell proliferation (p<0.01). Adipocytes also significantly increased the RM1 cells proliferation in co-culture (p <0.01). Cell migration was higher in RM1 cells cultured with preadipocyte and adipocyte conditioned medium. RM1 cell invasion was significantly increased after co-culture with preadipocytes and adipocytes (p <0.05). Insulin also increased significantly the cell proliferation in contrast to leptin, which showed no effect. In conclusion, prostate carcinoma cells seem to be influenced by factors secreted by adipocytes that are able to increase their ability to proliferate, migrate and invade. PMID:25928422

  3. Adrenergic stimulation of lipoprotein lipase gene expression in rat brown adipocytes differentiated in culture: mediation via beta3- and alpha1-adrenergic receptors.

    PubMed Central

    Kuusela, P; Rehnmark, S; Jacobsson, A; Cannon, B; Nedergaard, J

    1997-01-01

    In order to investigate whether the positive effect of adrenergic stimulation on lipoprotein lipase (LPL) gene expression in brown adipose tissue is a direct effect on the brown adipocytes themselves, the expression of the LPL gene was investigated by measuring LPL mRNA levels in brown adipocytes, isolated as precursors from the brown adipose tissue of rats and grown in culture in a fully defined medium before experimentation. Addition of noradrenaline led to an enhancement of LPL gene expression; the mRNA levels increased as a linear function of time for at least 5 h and were finally approx. 3 times higher than in control cells, an increase commensurate with that seen in vivo in both LPL mRNA levels and LPL activity during physiological stimulation. The increase was dependent on transcription. The effect of noradrenaline showed simple Michaelis-Menten kinetics with an EC50 of approx. 11 nM. beta3-Agonists (BRL-37344 and CGP-12177) could mimic the effect of noradrenaline; the beta1-agonist dobutamine and the beta2-agonist salbutamol could not; the alpha1-agonist cirazoline had only a weak effect. The effect of noradrenaline was fully inhibited by the beta-antagonist propranolol and was halved by the alpha1-antagonist prazosin; the alpha2-antagonist yohimbine was without effect. An increase in LPL mRNA level similar to (but not significantly exceeding) that caused by noradrenaline could also be induced by the cAMP-elevating agents forskolin and cholera toxin, and 8-Br-cAMP also increased LPL mRNA levels. The increase in LPL gene expression was not mediated via an increase in the level of an intermediary proteinaceous factor. It is concluded that the physiologically induced increase in LPL gene expression is a direct effect of noradrenaline on the brown adipocytes themselves, mediated via a dominant beta3-adrenergic pathway and an auxiliary alpha1-adrenergic pathway which converge at a regulatory point in transcriptional control. PMID:9032464

  4. Effect of cyproheptadine on serum leptin levels.

    PubMed

    Calka, Omer; Metin, Ahmet; Dülger, Haluk; Erkoç, Reha

    2005-01-01

    Leptin is a 167 amino acid protein encoded by the obesity gene that is synthesized in adipose tissue and interacts with receptors in the hypothalamus linked to the regulation of appetite and metabolism. It is known to suppress appetite and increase energy expenditure. Cyproheptadine is a piperidine antihistamine that increases appetite through its antiserotonergic effect on 5-HT2 receptors in the brain. Although both leptin and cyproheptadine are effective in controlling appetite, their interaction has not been addressed in clinical studies. This study evaluated serum leptin concentrations in patients who received cyproheptadine to treat a variety of disorders. Sixteen patients aged 7 to 71 years (mean, 26.25 years) were given cyproheptadine 2 to 6 mg/day for a minimum of 7 days. Body weight was measured and blood samples were obtained at baseline and after 1 week of treatment. Serum leptin levels were determined by leptin radioimmunoassay. The mean body weight at baseline (52.59 kg) did not differ significantly from that at 1 week after treatment (52.84 kg; P > .05), but the mean leptin level after 1 week of treatment with cyproheptadine (3.14 ng/mL) was 14.2% higher than that at baseline (2.75 ng/mL; P < .05). This increase may suggest that both leptin and cyproheptadine may affect appetite via similar receptors and that cyproheptadine does not impair leptin activity through these receptors. Further study will be necessary to clarify this relationship.

  5. Regulation of adipocyte lipolysis.

    PubMed

    Frühbeck, Gema; Méndez-Giménez, Leire; Fernández-Formoso, José-Antonio; Fernández, Secundino; Rodríguez, Amaia

    2014-06-01

    In adipocytes the hydrolysis of TAG to produce fatty acids and glycerol under fasting conditions or times of elevated energy demands is tightly regulated by neuroendocrine signals, resulting in the activation of lipolytic enzymes. Among the classic regulators of lipolysis, adrenergic stimulation and the insulin-mediated control of lipid mobilisation are the best known. Initially, hormone-sensitive lipase (HSL) was thought to be the rate-limiting enzyme of the first lipolytic step, while we now know that adipocyte TAG lipase is the key enzyme for lipolysis initiation. Pivotal, previously unsuspected components have also been identified at the protective interface of the lipid droplet surface and in the signalling pathways that control lipolysis. Perilipin, comparative gene identification-58 (CGI-58) and other proteins of the lipid droplet surface are currently known to be key regulators of the lipolytic machinery, protecting or exposing the TAG core of the droplet to lipases. The neuroendocrine control of lipolysis is prototypically exerted by catecholaminergic stimulation and insulin-induced suppression, both of which affect cyclic AMP levels and hence the protein kinase A-mediated phosphorylation of HSL and perilipin. Interestingly, in recent decades adipose tissue has been shown to secrete a large number of adipokines, which exert direct effects on lipolysis, while adipocytes reportedly express a wide range of receptors for signals involved in lipid mobilisation. Recently recognised mediators of lipolysis include some adipokines, structural membrane proteins, atrial natriuretic peptides, AMP-activated protein kinase and mitogen-activated protein kinase. Lipolysis needs to be reanalysed from the broader perspective of its specific physiological or pathological context since basal or stimulated lipolytic rates occur under diverse conditions and by different mechanisms.

  6. Regulation of adipocyte lipolysis.

    PubMed

    Frühbeck, Gema; Méndez-Giménez, Leire; Fernández-Formoso, José-Antonio; Fernández, Secundino; Rodríguez, Amaia

    2014-06-01

    In adipocytes the hydrolysis of TAG to produce fatty acids and glycerol under fasting conditions or times of elevated energy demands is tightly regulated by neuroendocrine signals, resulting in the activation of lipolytic enzymes. Among the classic regulators of lipolysis, adrenergic stimulation and the insulin-mediated control of lipid mobilisation are the best known. Initially, hormone-sensitive lipase (HSL) was thought to be the rate-limiting enzyme of the first lipolytic step, while we now know that adipocyte TAG lipase is the key enzyme for lipolysis initiation. Pivotal, previously unsuspected components have also been identified at the protective interface of the lipid droplet surface and in the signalling pathways that control lipolysis. Perilipin, comparative gene identification-58 (CGI-58) and other proteins of the lipid droplet surface are currently known to be key regulators of the lipolytic machinery, protecting or exposing the TAG core of the droplet to lipases. The neuroendocrine control of lipolysis is prototypically exerted by catecholaminergic stimulation and insulin-induced suppression, both of which affect cyclic AMP levels and hence the protein kinase A-mediated phosphorylation of HSL and perilipin. Interestingly, in recent decades adipose tissue has been shown to secrete a large number of adipokines, which exert direct effects on lipolysis, while adipocytes reportedly express a wide range of receptors for signals involved in lipid mobilisation. Recently recognised mediators of lipolysis include some adipokines, structural membrane proteins, atrial natriuretic peptides, AMP-activated protein kinase and mitogen-activated protein kinase. Lipolysis needs to be reanalysed from the broader perspective of its specific physiological or pathological context since basal or stimulated lipolytic rates occur under diverse conditions and by different mechanisms. PMID:24872083

  7. Apolipoprotein E promotes lipid accumulation and differentiation in human adipocytes

    SciTech Connect

    Lasrich, Dorothee; Bartelt, Alexander; Grewal, Thomas; Heeren, Joerg

    2015-09-10

    Several studies in mice indicate a role for apolipoprotein E (APOE) in lipid accumulation and adipogenic differentiation in adipose tissue. However, little is yet known if APOE functions in a similar manner in human adipocytes. This prompted us to compare lipid loading and expression of adipocyte differentiation markers in APOE-deficient and control adipocytes using the differentiated human mesenchymal stem cell line hMSC-Tert as well as primary human and mouse adipocytes as model systems. Differentiated hMSC-Tert were stably transduced with or without siRNA targeting APOE while murine adipocytes were isolated from wild type and Apoe knockout mice. Human APOE knockdown hMSC-Tert adipocytes accumulated markedly less triglycerides compared to control cells. This correlated with strongly decreased gene expression levels of adipocyte markers such as adiponectin (ADIPOQ) and fatty acid binding protein 4 (FABP4) as well as the key transcription factor driving adipocyte differentiation, peroxisome proliferator activator receptor gamma (PPARG), in particular the PPARG2 isoform. Similarly, differentiation of murine Apoe-deficient adipocytes was characterized by reduced gene expression of Adipoq, Fabp4 and Pparg. Interestingly, incubation of APOE-deficient hMSC-Tert adipocytes with conditioned media from APOE3-overexpressing adipocytes or APOE-containing Very Low Density Lipoprotein (VLDL) partially restored triglyceride accumulation, but were unable to induce adipocyte differentiation, as judged by expression of adipocyte markers. Taken together, depletion of endogenous APOE in human adipocytes severely impairs lipid accumulation, which is associated with an inability to initiate differentiation. - Highlights: • Immortalized human mesenchymal stem cells were used to study adipocyte development. • Knockdown of endogenous APOE lead to impaired lipid accumulation and adipogenesis. • APOE supplementation partially restored lipid accumulation but not differentiation.

  8. Deficient Leptin Signaling Ameliorates Systemic Lupus Erythematosus Lesions in MRL/Mp-Faslpr Mice

    PubMed Central

    Fujii, Takao; Mimori, Tsuneyo; Sato, Tomomi; Nakamura, Takuji; Iwao, Haruka; Nakajima, Akio; Miki, Miyuki; Sakai, Tomoyuki; Kawanami, Takafumi; Tanaka, Masao; Masaki, Yasufumi; Fukushima, Toshihiro; Okazaki, Toshiro; Umehara, Hisanori

    2014-01-01

    Leptin is secreted by adipocytes, the placenta, and the stomach. It not only controls appetite through leptin receptors in the hypothalamus, it also regulates immunity. In the current study, we produced leptin-deficient MRL/Mp-Faslpr mice to investigate the potential role of leptin in autoimmunity. C57BL/6J-ob/ob mice were backcrossed with MRL/Mp-Faslpr mice, which develop human systemic lupus erythematosus (SLE)-like lesions. The effects of leptin deficiency on various SLE-like manifestations were investigated in MRL/Mp-Faslpr mice. The regulatory T cell population in the spleen was analyzed by flow cytometry, and the effects of leptin on regulatory T cells and Th17 cells were evaluated in vitro. Compared with leptin-producing MRL/Mp-Faslpr mice, leptin-deficient MRL/Mp-Faslpr mice showed less marked splenomegaly and a particularly low population of CD3+CD4−CD8−B220+ T cells (lpr cells). Their serum concentrations of Abs to dsDNA were lower, and renal histological changes at age 20 wk were ameliorated. Regulatory T cells were increased in the spleens of leptin-deficient MRL/Mp-Faslpr mice. Leptin suppressed regulatory T cells and enhanced Th17 cells in vitro. In conclusion, blockade of leptin signaling may be of therapeutic benefit in patients with SLE and other autoimmune diseases. PMID:24391210

  9. Interleukin-17A Differentially Induces Inflammatory and Metabolic Gene Expression in the Adipose Tissues of Lean and Obese Mice

    PubMed Central

    Qu, Yine; Zhang, Qiuyang; Ma, Siqi; Liu, Sen; Chen, Zhiquan; Mo, Zhongfu; You, Zongbing

    2016-01-01

    The functions of interleukin-17A (IL-17A) in adipose tissues and adipocytes have not been well understood. In the present study, male mice were fed with a regular diet (n = 6, lean mice) or a high-fat diet (n = 6, obese mice) for 30 weeks. Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) were analyzed for IL-17A levels. SAT and VAT were treated with IL-17A and analyzed for inflammatory and metabolic gene expression. Mouse 3T3-L1 pre-adipocytes were differentiated into adipocytes, followed with IL-17A treatment and analysis for inflammatory and metabolic gene expression. We found that IL-17A levels were higher in obese SAT than lean SAT; the basal expression of inflammatory and metabolic genes was different between SAT and VAT and between lean and obese adipose tissues. IL-17A differentially induced expression of inflammatory and metabolic genes, such as tumor necrosis factor α, Il-6, Il-1β, leptin, and glucose transporter 4, in adipose tissues of lean and obese mice. IL-17A also differentially induced expression of inflammatory and metabolic genes in pre-adipocytes and adipocytes, and IL-17A selectively activated signaling pathways in adipose tissues and adipocytes. These findings suggest that IL-17A differentially induces inflammatory and metabolic gene expression in the adipose tissues of lean and obese mice. PMID:27070576

  10. Interleukin-17A Differentially Induces Inflammatory and Metabolic Gene Expression in the Adipose Tissues of Lean and Obese Mice.

    PubMed

    Qu, Yine; Zhang, Qiuyang; Ma, Siqi; Liu, Sen; Chen, Zhiquan; Mo, Zhongfu; You, Zongbing

    2016-04-07

    The functions of interleukin-17A (IL-17A) in adipose tissues and adipocytes have not been well understood. In the present study, male mice were fed with a regular diet (n = 6, lean mice) or a high-fat diet (n = 6, obese mice) for 30 weeks. Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) were analyzed for IL-17A levels. SAT and VAT were treated with IL-17A and analyzed for inflammatory and metabolic gene expression. Mouse 3T3-L1 pre-adipocytes were differentiated into adipocytes, followed with IL-17A treatment and analysis for inflammatory and metabolic gene expression. We found that IL-17A levels were higher in obese SAT than lean SAT; the basal expression of inflammatory and metabolic genes was different between SAT and VAT and between lean and obese adipose tissues. IL-17A differentially induced expression of inflammatory and metabolic genes, such as tumor necrosis factor α, Il-6, Il-1β, leptin, and glucose transporter 4, in adipose tissues of lean and obese mice. IL-17A also differentially induced expression of inflammatory and metabolic genes in pre-adipocytes and adipocytes, and IL-17A selectively activated signaling pathways in adipose tissues and adipocytes. These findings suggest that IL-17A differentially induces inflammatory and metabolic gene expression in the adipose tissues of lean and obese mice.

  11. Interleukin-17A Differentially Induces Inflammatory and Metabolic Gene Expression in the Adipose Tissues of Lean and Obese Mice.

    PubMed

    Qu, Yine; Zhang, Qiuyang; Ma, Siqi; Liu, Sen; Chen, Zhiquan; Mo, Zhongfu; You, Zongbing

    2016-01-01

    The functions of interleukin-17A (IL-17A) in adipose tissues and adipocytes have not been well understood. In the present study, male mice were fed with a regular diet (n = 6, lean mice) or a high-fat diet (n = 6, obese mice) for 30 weeks. Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) were analyzed for IL-17A levels. SAT and VAT were treated with IL-17A and analyzed for inflammatory and metabolic gene expression. Mouse 3T3-L1 pre-adipocytes were differentiated into adipocytes, followed with IL-17A treatment and analysis for inflammatory and metabolic gene expression. We found that IL-17A levels were higher in obese SAT than lean SAT; the basal expression of inflammatory and metabolic genes was different between SAT and VAT and between lean and obese adipose tissues. IL-17A differentially induced expression of inflammatory and metabolic genes, such as tumor necrosis factor α, Il-6, Il-1β, leptin, and glucose transporter 4, in adipose tissues of lean and obese mice. IL-17A also differentially induced expression of inflammatory and metabolic genes in pre-adipocytes and adipocytes, and IL-17A selectively activated signaling pathways in adipose tissues and adipocytes. These findings suggest that IL-17A differentially induces inflammatory and metabolic gene expression in the adipose tissues of lean and obese mice. PMID:27070576

  12. Key role of the ERK1/2 MAPK pathway in the transcriptional regulation of the Stearoyl-CoA Desaturase (SCD1) gene expression in response to leptin.

    PubMed

    Mauvoisin, Daniel; Prévost, Michèle; Ducheix, Simon; Arnaud, Marie-Pierre; Mounier, Catherine

    2010-05-01

    Stearoyl-CoA Desaturase-1 (SCD1) is the rate limiting enzyme catalyzing the synthesis of monounsaturated fatty acids. Variation of SCD1 activity and the ratio of saturated to unsaturated fatty acids have been implicated in a variety of diseases including obesity, type II diabetes and cancers. In liver, many factors regulate SCD1 expression including dietary and hormonal factors such as insulin and leptin. We previously showed in hepatic cells that insulin acts through the PI3K and mTOR pathways to upregulate SCD1 expression. In the present study, using HepG2 cells, we characterized the signaling pathway mediating the leptin inhibitory response on SCD1 gene expression. We showed that leptin inhibits SCD1 at the transcriptional level. Inhibition of the ERK1/2 MAPK pathway with the PD98059 reverses the effect of leptin on SCD1 expression. Our data also demonstrated that the effect of leptin is entirely independent of the effect of insulin. Using the pharmaceutical inhibitors Ag490 and SL0101, we showed that the inhibitory effect of leptin is also mediated by the Janus Kinase 2 (Jak2) and p90RSK. EMSA and transfection experiments suggest a key role for the Sp1 transcription factor, which in turn may compete for the binding of other transcription factors such as AP-1, leading to the inhibition of SCD1 transcription. Taken together, our observations showed that, independently of insulin action, leptin exerts an inhibitory effect on SCD1 transcription via a signaling pathway implicating Jak2, ERK1/2, and p90RSK which probably targets the downstream transcription factor Sp1 on the SCD1 promoter.

  13. Leptin decreases heart rate associated with increased ventricular repolarization via its receptor.

    PubMed

    Lin, Yen-Chang; Huang, Jianying; Hileman, Stan; Martin, Karen H; Hull, Robert; Davis, Mary; Yu, Han-Gang

    2015-11-15

    Leptin has been proposed to modulate cardiac electrical properties via β-adrenergic receptor activation. The presence of leptin receptors and adipocytes in myocardium raised a question as to whether leptin can directly modulate cardiac electrical properties such as heart rate and QT interval via its receptor. In this work, the role of local direct actions of leptin on heart rate and ventricular repolarization was investigated. We identified the protein expression of leptin receptors at cell surface of sinus node, atrial, and ventricular myocytes isolated from rat heart. Leptin at low doses (0.1-30 μg/kg) decreased resting heart rate; at high doses (150-300 μg/kg), leptin induced a biphasic effect (decrease and then increase) on heart rate. In the presence of high-dose propranolol (30 mg/kg), high-dose leptin only reduced heart rate and sometimes caused sinus pauses and ventricular tachycardia. The leptin-induced inhibition of resting heart rate was fully reversed by leptin antagonist. Leptin also increased heart rate-corrected QT interval (QTc), and leptin antagonist did not. In isolated ventricular myocytes, leptin (0.03-0.3 μg/ml) reversibly increased the action potential duration. These results supported our hypothesis that in addition to indirect pathway via sympathetic tone, leptin can directly decrease heart rate and increase QT interval via its receptor independent of β-adrenergic receptor stimulation. During inhibition of β-adrenergic receptor activity, high concentration of leptin in myocardium can cause deep bradycardia, prolonged QT interval, and ventricular arrhythmias.

  14. Effects of leptin on sympathetic nerve activity in conscious mice

    PubMed Central

    Morgan, Donald A; Despas, Fabien; Rahmouni, Kamal

    2015-01-01

    The adipocyte-derived hormone, leptin, has emerged as an important regulator of regional sympathetic nerve activity (SNA) with pathophysiological implications in obesity. Genetically engineered mice are useful to understand the molecular pathways underlying the SNA responses evoked by leptin. However, so far the effect of leptin on direct SNA in mice has been studied under general anesthesia. Here, we examined the sympathetic responses evoked by leptin in conscious mice. Mice were instrumented, under ketamine/xylazine anesthesia, with renal or lumbar SNA recordings using a thin (40 gauge) bipolar platinum–iridium wire. The electrodes were exteriorized at the nape of the neck and mice were allowed (5 h) to recover from anesthesia. Interestingly, the reflex increases in renal and lumbar SNA caused by sodium nitroprusside (SNP)-induced hypotension was higher in the conscious phase versus the anesthetized state, whereas the increase in both renal and lumbar SNA evoked by leptin did not differ between anesthetized or conscious mice. Next, we assessed whether isoflurane anesthesia would yield a better outcome. Again, the SNP-induced increase in renal SNA and baroreceptor-renal SNA reflex were significantly elevated in the conscious states relative to isoflurane-anesthetized phase, but the renal SNA response induced by leptin in the conscious states were qualitatively comparable to those evoked above. Thus, despite improvement in sympathetic reflexes in conscious mice the sympathetic responses evoked by leptin mimic those induced during anesthesia. PMID:26381017

  15. Effects of leptin on sympathetic nerve activity in conscious mice.

    PubMed

    Morgan, Donald A; Despas, Fabien; Rahmouni, Kamal

    2015-09-01

    The adipocyte-derived hormone, leptin, has emerged as an important regulator of regional sympathetic nerve activity (SNA) with pathophysiological implications in obesity. Genetically engineered mice are useful to understand the molecular pathways underlying the SNA responses evoked by leptin. However, so far the effect of leptin on direct SNA in mice has been studied under general anesthesia. Here, we examined the sympathetic responses evoked by leptin in conscious mice. Mice were instrumented, under ketamine/xylazine anesthesia, with renal or lumbar SNA recordings using a thin (40 gauge) bipolar platinum-iridium wire. The electrodes were exteriorized at the nape of the neck and mice were allowed (5 h) to recover from anesthesia. Interestingly, the reflex increases in renal and lumbar SNA caused by sodium nitroprusside (SNP)-induced hypotension was higher in the conscious phase versus the anesthetized state, whereas the increase in both renal and lumbar SNA evoked by leptin did not differ between anesthetized or conscious mice. Next, we assessed whether isoflurane anesthesia would yield a better outcome. Again, the SNP-induced increase in renal SNA and baroreceptor-renal SNA reflex were significantly elevated in the conscious states relative to isoflurane-anesthetized phase, but the renal SNA response induced by leptin in the conscious states were qualitatively comparable to those evoked above. Thus, despite improvement in sympathetic reflexes in conscious mice the sympathetic responses evoked by leptin mimic those induced during anesthesia.

  16. Association of Increased Serum Leptin with Ameliorated Anemia and Malnutrition in Stage 5 Chronic Kidney Disease Patients after Parathyroidectomy

    PubMed Central

    Jiang, Yao; Zhang, Jingjing; Yuan, Yanggang; Zha, Xiaoming; Xing, Changying; Shen, Chong; Shen, Zhixiang; Qin, Chao; Zeng, Ming; Yang, Guang; Mao, Huijuan; Zhang, Bo; Yu, Xiangbao; Sun, Bin; Ouyang, Chun; Xu, Xueqiang; Ge, Yifei; Wang, Jing; Zhang, Lina; Cheng, Chen; Yin, Caixia; Zhang, Jing; Chen, Huimin; Ma, Haoyang; Wang, Ningning

    2016-01-01

    Leptin is an adipokine that regulates various metabolism, but its association with secondary hyperparathyroidism (SHPT), a clinical manifestation of chronic kidney disease-mineral and bone disorder (CKD-MBD), remains obscure. Parathyroidectomy (PTX) is recommended for severe SHPT patients. Here, the associations between circulating leptin and clinical characteristics in CKD patients were investigated. Effects of PTX on leptin production were analyzed in vivo and in vitro. Controls and CKD patients had approximate serum leptin levels in that a larger proportion of CKD patients with body mass index (BMI) <23 kg/m2. Serum leptin was related to anemia, albumin, and bone metabolism disorders in CKD patients. Lower intact parathyroid hormone (PTH) was related with higher leptin in PTX patients group. Severe SHPT inhibited uremia-enhanced leptin production in 3T3-L1 adipocytes, which was attenuated after PTX. High levels of PTH were found to reduce Akt phosphorylation and leptin production in vitro but high levels of calcium and phosphorus were not. Successful PTX was found to improve anemia and malnutrition in severe SHPT patients, and this was correlated with increased circulating leptin levels via up-regulated Akt signaling in adipocytes. These findings indicated the therapeutic potential of leptin and related target pathway for improving survival and quality of life in CKD. PMID:27307101

  17. Leptin overexpression in VTA trans-activates the hypothalamus whereas prolonged leptin action in either region cross-desensitizes.

    PubMed

    Scarpace, P J; Matheny, M; Kirichenko, N; Gao, Y X; Tümer, N; Zhang, Y

    2013-02-01

    High-fat feeding or CNS leptin overexpression in chow-fed rats results in a region-specific cellular leptin resistance in medial basal hypothalamic regions and the ventral tegmental area (VTA). The present investigation examined the effects of targeted chronic leptin overexpression in the VTA as compared with the medial basal hypothalamus on long-term body weight homeostasis. The study also examined if this targeted intervention conserves regional leptin sensitivity or results in localized leptin resistance. Cellular leptin resistance was assessed by leptin-stimulated phosphorylation of signal transducers and activators of transcription 3 (STAT3). Tyrosine hydroxylase was measured in hypothalamus and VTA along with brown adipose tissue uncoupling protein 1. Leptin overexpression in VTA tempered HF-induced obesity, but to a slightly lesser extent than that with leptin overexpression in the hypothalamus. Moreover, the overexpression of leptin in the VTA stimulated cellular STAT3 phosphorylation in several regions of the medial basal hypothalamus, whereas verexpression in the hypothalamus did not activate STAT3 signaling in the VTA. This unidirectional trans-stimulation did not appear to involve migration of either the vector or the gene product. Long-term leptin overexpression in either the medial basal hypothalamus or VTA caused desensitization of leptin signaling in the treated region and cross-desensitization of leptin signaling in the untreated region. These results demonstrate a role of leptin receptors in the VTA in long-term body weight regulation, but the trans-activation of the hypothalamus following VTA leptin stimulation suggests that an integrative response involving both brain regions may account for the observed physiological outcomes.

  18. Prolactin affects leptin action in the bovine mammary gland via the mammary fat pad.

    PubMed

    Feuermann, Y; Mabjeesh, S J; Niv-Spector, L; Levin, D; Shamay, A

    2006-11-01

    One of the roles of the endocrine system is to synchronize mammary function. Hormones, such as estrogen, progesterone, and prolactin act directly on the mammary gland. Metabolic hormones, such as GH, glucocorticoids, insulin, and leptin are responsible for coordinating the body's response to metabolic homeostasis. Leptin has been shown to be an important factor in regulating the metabolic adaptation of nutrient partitioning during the energy-consuming processes of lactation. In the present study, we show that leptin is secreted from the mammary fat, and is regulated by prolactin. The expression of alpha-casein in a co-culture of epithelial cells and fat explants was enhanced by prolactin compared with that in epithelial cells cultured alone. Leptin antagonist abolished the effect of leptin on alpha-casein expression in mammary gland explants when exogenous leptin was not present in the medium. This finding supports our hypothesis that the antagonist abolishes the action of endogenous leptin secreted by the mammary adipocytes. These results lead us to the hypothesis that prolactin and leptin act in the bovine mammary gland, via mammary fat pad/adipocytes. PMID:17088410

  19. Role of C/EBPβ-LAP and C/EBPβ-LIP in early adipogenic differentiation of human white adipose-derived progenitors and at later stages in immature adipocytes.

    PubMed

    Lechner, Stefan; Mitterberger, Maria C; Mattesich, Monika; Zwerschke, Werner

    2013-01-01

    We investigated the role of the major isoforms of CCAAT enhancer binding protein β (C/EBPβ), C/EBPβ-LAP and C/EBPβ-LIP, in adipogenesis of human white adipose-derived stromal/progenitor cells (ASC). C/EBPβ gene expression was transiently induced early in adipogenesis. At later stages, in immature adipocytes, the C/EBPβ mRNA and protein levels declined. The C/EBPβ-LIP protein steady-state level decreased considerably stronger than the C/EBPβ-LAP level and the C/EBPβ-LIP half-life was significantly shorter than the C/EBPβ-LAP half-life. The turn-over of both C/EBPβ-isoforms was regulated by ubiquitin/proteasome-dependent degradation. These data suggest that the protein stability of the C/EBPβ-isoforms is differentially regulated in the course of adipogenesis and in immature adipocytes. Constitutive overexpression of C/EBPβ-LIP had antiadipogenic activity in human ASC. C/EBPβ-LAP, which promotes adipogenesis in mouse 3T3-L1 preadipocytes by directly activating expression of the adipogenic keyregulator PPARγ2, induced the expression of PPARγ2 and of the adipocyte differentiation gene product FABP4 in confluent ASC in the absence of adipogenic hormones. At later stages after hormone cocktail-induced adipogenesis, in immature adipocytes, constitutive overexpression of C/EBPβ-LAP led to reduced expression of PPARγ2 and FABP4, C/EBPα expression was downregulated and the expression of the adipocyte differentiation gene products adiponectin and leptin was impaired. These findings suggest that constitutive overexpression of C/EBPβ-LAP induces adipogenesis in human ASC and negatively regulates the expression of adipogenic regulators and certain adipocyte differentiation gene products in immature adipocytes. We conclude the regulation of both C/EBPβ gene expression and C/EBPβ-LIP and C/EBPβ-LAP protein turn-over plays an important role for the expression of adipogenic regulators and/or adipocyte differentiation genes in early adipogenic differentiation of

  20. Adiponectin and Leptin Molecular Actions and Clinical Significance in Breast Cancer

    PubMed Central

    Nalabolu, Mohan Reddy; Palasamudram, Kalyani

    2014-01-01

    Obesity is an important public health problem and major risk factor for postmenopausal breast cancer. Adipose tissue is the major component involved in the control of the metabolism through energy homeostasis, adipocyte differentiation, insulin sensitivity and the activation of anti-inflammatory metabolic and immune pathways. Leptin and Adiponectin pathways are involved in proliferation process in breast cancer. Current review describes potential relationship between the molecular actions and clinical significance of leptin and adiponectin in breast cancer. PMID:24505549

  1. Expression of functional leptin receptors in rodent Leydig cells.

    PubMed

    Caprio, M; Isidori, A M; Carta, A R; Moretti, C; Dufau, M L; Fabbri, A

    1999-11-01

    Several studies indicate that the size of body fat stores and the circulating levels of the adipocyte-derived hormone leptin are able to influence the activity of the hypothalamic-pituitary-gonadal axis. The leptin-hypothalamic-pituitary-gonadal interactions have been mainly studied at the level of the central nervous system. In this study, we investigated the possibility that leptin may have direct effects on the rodent Leydig cell function. To probe this hypothesis, we first analyzed the expression of leptin receptors (OB-R) in rodent Leydig cells in culture. RT-PCR studies showed that rat Leydig cells express both the long (OB-Rb) and short isoform (OB-Ra) of leptin receptor, whereas MLTC-1 cells (a murine Leydig tumor cell line) express only the long isoform. Short-term (30-90 min) incubation of rat Leydig cells with increasing concentrations ofleptin (2-500 ng/ml) led to a significant and dose-dependent inhibition of human (h)CG-stimulated testosterone (T) production (approximately 60% reduction, IC50 = 20 ng/ml) but no change in basal androgen release. Also, leptin (150 ng/ml) amplified hCG-induced intracellular cAMP formation (1- to 2-fold) without modifying basal cAMP levels. Subsequent experiments showed that leptin inhibited 8Br-cAMP-stimulated T production, indicating that leptin's effect is exerted beyond cAMP. The inhibitory effect of leptin on hCG-induced T secretion was accompanied by a significant reduction of androstenedione and a concomitant rise of the precursor metabolites pregnenolone, progesterone, and 17-OH-progesterone, conceivable with a leptin-induced lesion of 17,20 lyase activity. Separate experiments performed with the MLTC-1 cells (not expressing cytochrome P450-17alpha) showed that leptin, though amplifying hCG-stimulated cAMP production, did not modify hCG-stimulated pregnenolone and progesterone release. These results further indicate that leptin action on steroidogenesis occurs downstream of progesterone synthesis. Northern Blot

  2. Percentage of REM sleep is associated with overnight change in leptin.

    PubMed

    Olson, Christy A; Hamilton, Nancy A; Somers, Virend K

    2016-08-01

    Sleep contributes importantly to energy homeostasis, and may impact hormones regulating appetite, such as leptin, an adipocyte-derived hormone. There is increasing evidence that sleep duration, and reduced rapid eye movement sleep, are linked to obesity. Leptin has central neural effects beyond modulation of appetite alone. As sleep is not a unifrom process, interactions between leptin and sleep stages including rapid eye movement sleep may play a role in the relationship between sleep and obesity. This study examined the relationship between serum leptin and rapid eye movement sleep in a sample of healthy adults. Participants were 58 healthy adults who underwent polysomnography. Leptin was measured before and after sleep. It was hypothesized that a lower percentage of rapid eye movement sleep would be related to lower leptin levels during sleep. The relationship between percentage of rapid eye movement sleep and leptin was analysed using hierarchical linear regression. An increased percentage of rapid eye movement sleep was related to a greater reduction in leptin during sleep even when controlling for age, gender, percent body fat and total sleep time. A greater percentage of rapid eye movement sleep was accompanied by more marked reductions in leptin. Studies examining the effects of selective rapid eye movement sleep deprivation on leptin levels, and hence on energy homeostasis in humans, are needed. PMID:26919408

  3. Leptin inhibits food-deprivation-induced increases in food intake and food hoarding.

    PubMed

    Keen-Rhinehart, Erin; Bartness, Timothy J

    2008-12-01

    Food deprivation stimulates foraging and hoarding and to a much lesser extent, food intake in Siberian hamsters. Leptin, the anorexigenic hormone secreted primarily from adipocytes, may act in the periphery, the brain, or both to inhibit these ingestive behaviors. Therefore, we tested whether leptin given either intracerebroventricularly or intraperitoneally, would block food deprivation-induced increases in food hoarding, foraging, and intake in animals with differing foraging requirements. Hamsters were trained in a running wheel-based food delivery foraging system coupled with simulated burrow housing. We determined the effects of food deprivation and several peripheral doses of leptin on plasma leptin concentrations. Hamsters were then food deprived for 48 h and given leptin (0, 10, 40, or 80 microg ip), and additional hamsters were food deprived for 48 h and given leptin (0, 1.25, 2.5, or 5.0 microg icv). Foraging, food intake, and hoarding were measured postinjection. Food deprivation stimulated food hoarding to a greater degree and duration than food intake. In animals with a foraging requirement, intracerebroventricular leptin almost completely blocked food deprivation-induced increased food hoarding and intake, but increased foraging. Peripheral leptin treatment was most effective in a sedentary control group, completely inhibiting food deprivation-induced increased food hoarding and intake at the two highest doses, and did not affect foraging at any dose. Thus, the ability of leptin to inhibit food deprivation-induced increases in ingestive behaviors differs based on foraging effort (energy expenditure) and the route of administration of leptin administration.

  4. Single Gene Deletions of Orexin, Leptin, Neuropeptide Y, and Ghrelin Do Not Appreciably Alter Food Anticipatory Activity in Mice

    PubMed Central

    Gunapala, Keith M.; Gallardo, Christian M.; Hsu, Cynthia T.; Steele, Andrew D.

    2011-01-01

    Timing activity to match resource availability is a widely conserved ability in nature. Scheduled feeding of a limited amount of food induces increased activity prior to feeding time in animals as diverse as fish and rodents. Typically, food anticipatory activity (FAA) involves temporally restricting unlimited food access (RF) to several hours in the middle of the light cycle, which is a time of day when rodents are not normally active. We compared this model to calorie restriction (CR), giving the mice 60% of their normal daily calorie intake at the same time each day. Measurement of body temperature and home cage behaviors suggests that the RF and CR models are very similar but CR has the advantage of a clearly defined food intake and more stable mean body temperature. Using the CR model, we then attempted to verify the published result that orexin deletion diminishes food anticipatory activity (FAA) but observed little to no diminution in the response to CR and, surprisingly, that orexin KO mice are refractory to body weight loss on a CR diet. Next we tested the orexigenic neuropeptide Y (NPY) and ghrelin and the anorexigenic hormone, leptin, using mouse mutants. NPY deletion did not alter the behavior or physiological response to CR. Leptin deletion impaired FAA in terms of some activity measures, such as walking and rearing, but did not substantially diminish hanging behavior preceding feeding time, suggesting that leptin knockout mice do anticipate daily meal time but do not manifest the full spectrum of activities that typify FAA. Ghrelin knockout mice do not have impaired FAA on a CR diet. Collectively, these results suggest that the individual hormones and neuropepetides tested do not regulate FAA by acting individually but this does not rule out the possibility of their concerted action in mediating FAA. PMID:21464907

  5. Ethanol extract of lotus (Nelumbo nucifera) root exhibits an anti-adipogenic effect in human pre-adipocytes and anti-obesity and anti-oxidant effects in rats fed a high-fat diet.

    PubMed

    You, Jeong Soon; Lee, Yun Ju; Kim, Kyoung Soo; Kim, Sung Hoon; Chang, Kyung Ja

    2014-03-01

    Lotus (Nelumbo Nucifera) root, a well-known medicinal plant in Asia, is reported to have various therapeutic benefits, including anti-diabetes, anti-hypertension, and anti-hyperlipidaemia. We hypothesized that the ethanol extract of lotus root (ELR) would exhibit an anti-adipogenic effect in human pre-adipocytes as well as anti-obesity and anti-oxidant effects in rats fed a high-fat diet. Treatment with ELR in human pre-adipocytes resulted in inhibition of lipid accumulation and attenuated expression of adipogenic transcription factors such as peroxisome proliferator-activated receptor gamma and adipocyte marker genes, such as glucose transporter 4 and leptin. Administration of ELR resulted in a significant decrease in relative weights of adipose tissues in rats fed a high-fat diet. Consumption of a high-fat diet resulted in an increase in serum total cholesterol (TC) and triglyceride (TG) levels; however, administration of ELR resulted in a decrease in the levels of TC and TG. Administration of ELR resulted in a decrease in the level of serum leptin and insulin. Administration of ELR in rats fed a high-fat diet resulted in a decrease in hepatic thiobarbituric acid reactive substance content, elevated by a high-fat diet and an increase in superoxide dismutase activity and hepatic glutathione content. These results suggest that lotus root exerts anti-oxidant and anti-obesity effects and could be used as a functional and nutraceutical ingredient in combatting obesity-related diseases.

  6. Endogenous adipocyte apolipoprotein E is colocalized with caveolin at the adipocyte plasma membrane

    PubMed Central

    Yue, Lili; Mazzone, Theodore

    2011-01-01

    Apolipoprotein (apo)E is well established as a secreted protein that plays an important role in systemic lipoprotein metabolism and vascular wall homeostasis. Recently, endogenous expression of apoE in adipocytes has been shown to play an important role in adipocyte lipoprotein metabolism and gene expression consistent with a nonsecreted cellular itinerary for apoE. We designed studies to evaluate if adipocyte apoE was retained as a constituent protein in adipocytes and to identify a cellular retention compartment. Using confocal microscopy, coimmunoprecipitation, and sucrose density cellular fractionation, we establish that endogenous apoE shares a cellular itinerary with the constituent protein caveolin-1. Altering adipocyte caveolar number by modulating cellular cholesterol flux or altering caveolin expression regulates the distribution of cellular apoE between cytoplasmic and plasma membrane compartments. A mechanism for colocalization of apoE with caveolin was established by demonstrating a noncovalent interaction between an aromatic amino acid-enriched apoE N-terminal domain with the caveolin scaffolding domain. Absent apoE expression in adipocytes alters caveolar lipid composition. These observations provide evidence for an interaction between two proteins involved in cellular lipid metabolism in a cell specialized for lipid storage and flux, and rationalize a biological basis for the impact of adipocyte apoE expression on adipocyte lipoprotein metabolism. PMID:21169230

  7. Relationships between plasma leptin levels, leptin G2548A, leptin receptor Gln223Arg polymorphisms and gestational diabetes mellitus in Chinese population

    PubMed Central

    Yang, Mei; Peng, Songxu; Li, Wei; Wan, Zhihua; Fan, Linlin; Du, Yukai

    2016-01-01

    The purposes of this study were to examine concentrations of leptin and biochemical parameters in gestational diabetes mellitus (GDM) patients and normal glucose tolerance (NGT) individuals, and also to explore the links of leptin (LEP) G2548A and leptin receptor (LEPR) Gln223Arg polymorphisms with leptin levels and GDM risk among Chinese. Our study included 357 GDM and 355 NGT individuals who were at 24~30 gestational weeks. Plasma leptin and insulin levels were analyzed by ELISA. Gene polymorphisms were genotyped using TaqMan real-time polymerase chain reaction assay. The results showed that plasma leptin levels were significantly higher in the impaired fasting glucose (IFG) group than NGT group (34.35 (26.54, 56.48) ng/mL vs 26.31 (17.99, 37.87) ng/mL, P < 0.05). Plasma leptin levels correlated with plasma fasting insulin levels, pre-pregnant body mass index, homeostasis model assessment-insulin resistance and quantitative insulin sensitivity check index both in GDM and NGT group (P < 0.05). However, neither LEP G2548A nor LEPR Gln223Arg polymorphisms were significantly associated with GDM risk and plasma leptin levels (P > 0.05). Our findings showed that high leptin level was associated with GDM. And larger and more rigorous researches were needed to further explore the association of LEP and LEPR gene polymorphisms and GDM among Chinese population. PMID:27034205

  8. Spexin is a Novel Human Peptide that Reduces Adipocyte Uptake of Long Chain Fatty Acids and Causes Weight Loss in Rodents with Diet-induced Obesity*

    PubMed Central

    Walewski, José L.; Ge, Fengxia; Lobdell, Harrison; Levin, Nancy; Schwartz, Gary J.; Vasselli, Joseph; Pomp, Afons; Dakin, Gregory; Berk, Paul D.

    2014-01-01

    Objective Microarray studies identified Ch12:orf39 (Spexin) as the most dysregulated gene in obese human fat. Therefore we examined its role in obesity pathogenesis. Design and Methods Spexin effects on food intake, meal patterns, body weight, Respiratory Exchange Ratio (RER), and locomotor activity were monitored electronically in C57BL/6J mice or Wistar rats with dietary-induced obesity (DIO). Its effects on adipocyte [3H]-oleate uptake were determined. Results In humans, Spexin gene expression was down-regulated 14.9-fold in obese omental and subcutaneous fat. Circulating Spexin changed in parallel, correlating (r = −0.797) with Leptin. In rats, Spexin (35 μg/kg/day s.c) reduced caloric intake ~32% with corresponding weight loss. Meal patterns were unaffected. In mice, Spexin (25 μg/kg/day i.p.) significantly reduced the RER at night, and increased locomotion. Spexin incubation in vitro significantly inhibited facilitated fatty acid (FA) uptake into DIO mouse adipocytes. Conditioned taste aversion testing (70μg/kg/day i.p.) demonstrated no aversive Spexin effects. Conclusions Spexin gene expression is markedly down-regulated in obese human fat. The peptide produces weight loss in DIO rodents. Its effects on appetite and energy regulation are presumably central; those on adipocyte FA uptake appear direct and peripheral. Spexin is a novel hormone involved in weight regulation, with potential for obesity therapy. PMID:24550067

  9. Calcium-dependent intracellular signal pathways in primary cultured adipocytes and ANK3 gene variation in patients with bipolar disorder and healthy controls.

    PubMed

    Hayashi, A; Le Gal, K; Södersten, K; Vizlin-Hodzic, D; Ågren, H; Funa, K

    2015-08-01

    Bipolar disorder (BD) is a chronic psychiatric disorder of public health importance affecting >1% of the Swedish population. Despite progress, patients still suffer from chronic mood switches with potential severe consequences. Thus, early detection, diagnosis and initiation of correct treatment are critical. Cultured adipocytes from 35 patients with BD and 38 healthy controls were analysed using signal pathway reporter assays, that is, protein kinase C (PKC), protein kinase A (PKA), mitogen-activated protein kinases (extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK)), Myc, Wnt and p53. The levels of activated target transcriptional factors were measured in adipocytes before and after stimulation with lithium and escitalopram. Variations were analysed in the loci of 25 different single-nucleotide polymorphisms (SNPs). Activation of intracellular signals in several pathways analysed were significantly higher in patients than in healthy controls upon drug stimulation, especially with escitalopram stimulation of PKC, JNK and Myc, as well as lithium-stimulated PKC, whereas no meaningful difference was observed before stimulation. Univariate analyses of contingency tables for 80 categorical SNP results versus diagnoses showed a significant link with the ANK3 gene (rs10761482; likelihood ratio χ(2)=4.63; P=0.031). In a multivariate ordinal logistic fit for diagnosis, a backward stepwise procedure selected ANK3 as the remaining significant predictor. Comparison of the escitalopram-stimulated PKC activity and the ANK3 genotype showed them to add their share of the diagnostic variance, with no interaction (15% of variance explained, P<0.002). The study is cross-sectional with no longitudinal follow-up. Cohorts are relatively small with no medication-free patients, and there are no 'ill patient' controls. It takes 3 to 4 weeks of culture to expand adipocytes that may change epigenetic profiles but remove the possibility of medication effects

  10. Leptin and the hypothalamic-pituitary regulation of the gonadotropin-gonadal axis.

    PubMed

    Chan, J L; Mantzoros, C S

    2001-01-01

    Leptin is an adipocyte-derived protein hormone which not only conveys a signal of the amount of energy stores to the central nervous system but also plays an important role in regulating neuroendocrine function. The importance of leptin in the reproductive system has been suggested by the reproductive dysfunction associated with leptin deficiency and resistance in both animal models and humans as well as the ability of leptin to accelerate the onset of reproductive function in normal mice. Transgenic mice overexpressing leptin also have accelerated puberty, and leptin administration reverses the fasting-induced suppression of sexual maturation in rodents, indicating that leptin may serve as the critical link between sufficient energy stores and proper functioning of the reproductive system. Normal women have a pulsatile release pattern of leptin that is significantly associated with the variations in luteinizing hormone (LH) and estradiol levels. In various animal models, leptin administration restores the LH pulsatility pattern which is suppressed during fasting, indicating a hypothalamic site of action since LH pulsatility is under the control of gonadotropin-releasing hormone (GnRH). In humans, leptin has been administered to a 9-year-old leptin-deficient girl, resulting in a gonadotropin secretory pattern consistent with early puberty. While in vitro experiments with hypothalamic explants and a GnRH-secreting neuronal cell line have shown that leptin can directly stimulate GnRH secretion, the lack of leptin receptors on GnRH neurons suggests that leptin may act through other hypothalamic neuropeptides. Several neuropeptides which act as downstream effectors of leptin have been investigated, and recent studies indicate that cocaine and amphetamine-regulated transcript may be such a mediator of leptin's effect on GnRH. Leptin receptors have also been identified in human pituitaries, and leptin may influence LH release from the pituitary. However, the current

  11. Adipocytes as a new source of catecholamine production.

    PubMed

    Vargovic, Peter; Ukropec, Jozef; Laukova, Marcela; Cleary, Susannah; Manz, Bernhard; Pacak, Karel; Kvetnansky, Richard

    2011-07-21

    Catecholamines are an important regulator of lipolysis in adipose tissue. Here we show that rat adipocytes, isolated from mesenteric adipose tissue, express genes of catecholamine biosynthetic enzymes and produce catecholamines de novo. Administration of tyrosine hydroxylase inhibitor, alpha-methyl-p-tyrosine, in vitro significantly reduced concentration of catecholamines in isolated adipocytes. We hypothesize that the sympathetic innervation of adipose tissues is not the only source of catecholamines, since adipocytes also have the capacity to produce both norepinephrine and epinephrine.

  12. Oleic acid enhances G protein coupled receptor 43 expression in bovine intramuscular adipocytes but not in subcutaneous adipocytes.

    PubMed

    Chung, K Y; Smith, S B; Choi, S H; Johnson, B J

    2016-05-01

    We hypothesized that fatty acids would differentially affect G protein coupled receptor (GPR) 43 mRNA expression and GPR43 protein concentrations in bovine intramuscular (IM) and subcutaneous (SC) adipocytes. The GPR43 protein was detected in bovine liver, pancreas, and semimembranosus (MUS) muscle in samples taken at slaughter. Similarly, GPR43 protein levels were similar in IM adipose tissue and SM muscle but was barely detectable in SC adipose tissue. Primary cultures of IM and SC stromal vascular cells were isolated from bovine adipose tissues. Oleic acid (100 μ) stimulated PPARγ gene expression and decreased stearoyl-CoA desaturase (SCD) gene expression but had no effect on GPR43 gene expression, which was readily detectable in both IM and SC adipocytes. Differentiation cocktail (Diff; 10 μ insulin, 4 μ dexamethasone, and 10 μ ciglitizone) stimulated CCAAT/enhancer-binding protein β (C/EBPβ) and PPARγ gene expression in SC but not IM adipocytes, but Diff increased SCD gene expression in both cell types. Linoleic acid (10 µ) increased PPARγ gene expression relative to Diff cocktail in SC adipocytes, whereas linoleic acid and α-linolenic decreased SCD gene expression relative to control adipocytes and adipocytes incubated with Diff ( < 0.05). Increasing concentrations of oleic acid (1, 10, 100, and 500 μM) increased GPR43 protein and mRNA expression in IM but not SC adipocytes. These data indicated that oleic acid alters mRNA and protein concentrations of GPR43 in bovine IM adipocytes. PMID:27285685

  13. Featured Article: Dexamethasone and rosiglitazone are sufficient and necessary for producing functional adipocytes from mesenchymal stem cells

    PubMed Central

    Ezquer, Fernando; Espinosa, Maximiliano; Arango-Rodriguez, Martha; Puebla, Carlos; Sobrevia, Luis; Conget, Paulette

    2015-01-01

    The final product of adipogenesis is a functional adipocyte. This mature cell acquires the necessary machinery for lipid metabolism, loses its proliferation potential, increases its insulin sensitivity, and secretes adipokines. Multipotent mesechymal stromal cells have been recognized as a source of adipocytes both in vivo and in vitro. The in vitro adipogenic differentiation of human MSC (hMSC) has been induced up to now by using a complex stimulus which includes dexamethasone, 3-isobutyl-1-methylxanthine, indomethacin, and insulin (a classical cocktail) and evaluated according to morphological changes. The present work was aimed at demonstrating that the simultaneous activation of dexamethasone’s canonical signaling pathways, through the glucocorticoid receptor and CCAAT-enhancer-binding proteins (C/EBPs) and rosiglitazone through peroxisome proliferator-activated receptor gamma (PPAR-gamma) is sufficient yet necessary for inducing hMSC adipogenic differentiation. It was also ascertained that hMSC exposed just to dexamethasone and rosiglitazone (D&R) differentiated into cells which accumulated neutral lipid droplets, expressed C/EBP-alpha, PPAR-gamma, aP2, lipoprotein lipase, acyl-CoA synthetase, phosphoenolpyruvate carboxykinase, adiponectin, and leptin genes but did not proliferate. Glucose uptake was dose dependent on insulin stimulus and high levels of adipokines were secreted (i.e. displaying not only the morphology but also expressing mature adipocytes’ specific genes and functional characteristics). This work has demonstrated that (i) the activating C/EBPs and PPAR-gamma signaling pathways were sufficient to induce adipogenic differentiation from hMSC, (ii) D&R producing functional adipocytes from hMSC, (iii) D&R induce adipogenic differentiation from mammalian MSC (including those which are refractory to classical adipogenic differentiation stimuli). D&R would thus seem to be a useful tool for MSC characterization, studying adipogenesis pathways and

  14. Association of the leptin gene E2-169T>C and E3-299T>A mutations with carcass and meat quality traits of the Chinese Simmental-cross steers.

    PubMed

    Tian, Jing; Zhao, Zhihui; Zhang, Lupei; Zhang, Qingfeng; Yu, Zhongjiang; Li, Junya; Yang, Runjun

    2013-04-15

    Leptin is a hormone affecting the regulation of body composition, energy balance, and meat quality in mammals. The objective of this study was to evaluate the association of novel single nucleotide polymorphisms in coding region for leptin gene with carcass and meat quality traits of Chinese Simmental-cross steers. Two SNPs (E2-169 T>C and E3-299 T>A) were genotyped on 135 crossbred bulls. The 45 traits being measured included dressing percentage, dressed weight, marbling score, muscle color score, backfat thickness, fatty acid content, etc. Statistical analysis revealed that two SNPs in the exon of leptin gene were associated with the carcass and meat quality traits. The C-bearing genotypes (CC or TC) of E2-169 T>C (C57R) showed higher dressed weight, thickness of loin, MCS, FCS, intramuscular fat content, and polyunsaturated fatty acid content (P<0.05). E3-299 >A(S100T) also showed a significant association with the carcass traits (dressing percentage, living QIB) and fatty acid content in Simmental-cross steers(P<0.05). Our findings suggested that polymorphisms in leptin might be one of the important genetic factors that influence carcass yield and meat quality in beef cattle, and it may be a useful marker for meat quality traits in future marker-assisted selection programs in beef cattle breeding and production. PMID:23291417

  15. Association of the leptin gene E2-169T>C and E3-299T>A mutations with carcass and meat quality traits of the Chinese Simmental-cross steers.

    PubMed

    Tian, Jing; Zhao, Zhihui; Zhang, Lupei; Zhang, Qingfeng; Yu, Zhongjiang; Li, Junya; Yang, Runjun

    2013-04-15

    Leptin is a hormone affecting the regulation of body composition, energy balance, and meat quality in mammals. The objective of this study was to evaluate the association of novel single nucleotide polymorphisms in coding region for leptin gene with carcass and meat quality traits of Chinese Simmental-cross steers. Two SNPs (E2-169 T>C and E3-299 T>A) were genotyped on 135 crossbred bulls. The 45 traits being measured included dressing percentage, dressed weight, marbling score, muscle color score, backfat thickness, fatty acid content, etc. Statistical analysis revealed that two SNPs in the exon of leptin gene were associated with the carcass and meat quality traits. The C-bearing genotypes (CC or TC) of E2-169 T>C (C57R) showed higher dressed weight, thickness of loin, MCS, FCS, intramuscular fat content, and polyunsaturated fatty acid content (P<0.05). E3-299 >A(S100T) also showed a significant association with the carcass traits (dressing percentage, living QIB) and fatty acid content in Simmental-cross steers(P<0.05). Our findings suggested that polymorphisms in leptin might be one of the important genetic factors that influence carcass yield and meat quality in beef cattle, and it may be a useful marker for meat quality traits in future marker-assisted selection programs in beef cattle breeding and production.

  16. Leptin and its clinical implications in chronic renal failure.

    PubMed

    Stenvinkel, P

    1999-01-01

    Leptin, the recently identified ob gene product, regulates food intake and energy expenditure in animal models. Leptin reaches the brain by a saturable transport mechanism and, via direct effects on the hypothalamus, decreases appetite and increases metabolism. Several recent studies have demonstrated markedly elevated serum leptin levels in patients with chronic renal failure (CRF) and it has been speculated that hyperleptinemia may contribute to uremic anorexia and malnutrition. Several factors may influence serum leptin levels in uremia and apart from decreased glomerular filtration rate also body fat mass and plasma insulin levels are important factors that determine serum leptin levels. The possible influence of chronic inflammation on serum leptin levels in CRF need further studies. Patients treated by peritoneal dialysis seem to have higher leptin levels compared to patients treated by hemodialysis. This could be the effect of a marked increase in body fat mass as a consequence of the continuous carbohydrate load. Leptin receptors have by now been identified in several peripheral organs which suggests that leptin besides having central effects also has a pleiotropic action. Indeed, recent findings indicate that besides regulating appetite leptin may play a role in sympathico-activation, insulin metabolism, renal sodium handling and hematopoiesis.

  17. Prenatal caffeine exposure induced a lower level of fetal blood leptin mainly via placental mechanism.

    PubMed

    Wu, Yi-Meng; Luo, Han-Wen; Kou, Hao; Wen, Yin-Xian; Shen, Lang; Pei, Ling-Guo; Zhou, Jin; Zhang, Yuan-Zhen; Wang, Hui

    2015-11-15

    It's known that blood leptin level is reduced in intrauterine growth retardation (IUGR) fetus, and placental leptin is the major source of fetal blood leptin. This study aimed to investigate the decreased fetal blood leptin level by prenatal caffeine exposure (PCE) and its underlying placental mechanisms. Pregnant Wistar rats were intragastrically administered caffeine (30-120 mg/kg day) from gestational day 9 to 20. The level of fetal serum leptin and the expression of placental leptin-related genes were analyzed. Furthermore, we investigated the molecular mechanism of the reduced placental leptin's expression by treatment with caffeine (0.8-20 μM) in the BeWo cells. In vivo, PCE significantly decreased fetal serum leptin level in caffeine dose-dependent manner. Meanwhile, placental mRNA expression of adenosine A2a receptor (Adora2a), cAMP-response element binding protein (CREB), a short-type leptin receptor (Ob-Ra) and leptin was reduced in the PCE groups. In vitro, caffeine significantly decreased the mRNA expression of leptin, CREB and ADORA2A in concentration and time-dependent manners. The addition of ADORA2A agonist or adenylyl cyclase (AC) agonist reversed the inhibition of leptin expression induced by caffeine. PCE induced a lower level of fetal blood leptin, which the primary mechanism is that caffeine inhibited antagonized Adora2a and AC activities to decreased cAMP synthesis, thus inhibited the expression of the transcription factor CREB and target gene leptin in the placenta. Meantime, the reduced transportation of maternal leptin by placental Ob-Ra also contributed to the reduced fetal blood leptin. Together, PCE decreased fetal blood leptin mainly via reducing the expression and transportation of leptin in the placenta.

  18. Bacterial translocation - impact on the adipocyte compartment.

    PubMed

    Kruis, Tassilo; Batra, Arvind; Siegmund, Britta

    2014-01-01

    Over the last decade it became broadly recognized that adipokines and thus the fat tissue compartment exert a regulatory function on the immune system. Our own group described the pro-inflammatory function of the adipokine leptin within intestinal inflammation in a variety of animal models. Following-up on this initial work, the aim was to reveal stimuli and mechanisms involved in the activation of the fat tissue compartment and the subsequent release of adipokines and other mediators paralleled by the infiltration of immune cells. This review will summarize the current literature on the possible role of the mesenteric fat tissue in intestinal inflammation with a focus on Crohn's disease (CD). CD is of particular interest in this context since the transmural intestinal inflammation has been associated with a characteristic hypertrophy of the mesenteric fat, a phenomenon called "creeping fat." The review will address three consecutive questions: (i) What is inducing adipocyte activation, (ii) which factors are released after activation and what are the consequences for the local fat tissue compartment and infiltrating cells; (iii) do the answers generated before allow for an explanation of the role of the mesenteric fat tissue within intestinal inflammation? With this review we will provide a working model indicating a close interaction in between bacterial translocation, activation of the adipocytes, and subsequent direction of the infiltrating immune cells. In summary, the models system mesenteric fat indicates a unique way how adipocytes can directly interact with the immune system.

  19. Cut-like Homeobox 1 (CUX1) Regulates Expression of the Fat Mass and Obesity-associated and Retinitis Pigmentosa GTPase Regulator-interacting Protein-1-like (RPGRIP1L) Genes and Coordinates Leptin Receptor Signaling*

    PubMed Central

    Stratigopoulos, George; LeDuc, Charles A.; Cremona, Maria L.; Chung, Wendy K.; Leibel, Rudolph L.

    2011-01-01

    The first intron of FTO contains common single nucleotide polymorphisms associated with body weight and adiposity in humans. In an effort to identify the molecular basis for this association, we discovered that FTO and RPGRIP1L (a ciliary gene located in close proximity to the transcriptional start site of FTO) are regulated by isoforms P200 and P110 of the transcription factor, CUX1. This regulation occurs via a single AATAAATA regulatory site (conserved in the mouse) within the FTO intronic region associated with adiposity in humans. Single nucleotide polymorphism rs8050136 (located in this regulatory site) affects binding affinities of P200 and P110. Promoter-probe analysis revealed that binding of P200 to this site represses FTO, whereas binding of P110 increases transcriptional activity from the FTO as well as RPGRIP1L minimal promoters. Reduced expression of Fto or Rpgrip1l affects leptin receptor isoform b trafficking and leptin signaling in N41 mouse hypothalamic or N2a neuroblastoma cells in vitro. Leptin receptor clusters in the vicinity of the cilium of arcuate hypothalamic neurons in C57BL/6J mice treated with leptin, but not in fasted mice, suggesting a potentially important role of the cilium in leptin signaling that is, in part, regulated by FTO and RPGRIP1L. Decreased Fto/Rpgrip1l expression in the arcuate hypothalamus coincides with decreased nuclear enzymatic activity of a protease (cathepsin L) that has been shown to cleave full-length CUX1 (P200) to P110. P200 disrupts (whereas P110 promotes) leptin receptor isoform b clustering in the vicinity of the cilium in vitro. Clustering of the receptor coincides with increased leptin signaling as reflected in protein levels of phosphorylated Stat3 (p-Stat3). Association of the FTO locus with adiposity in humans may reflect functional consequences of A/C alleles at rs8050136. The obesity-risk (A) allele shows reduced affinity for the FTO and RPGRIP1L transcriptional activator P110, leading to the

  20. Mammary Fat Can Adjust Prolactin Effect on Mammary Epithelial Cells via Leptin and Estrogen.

    PubMed

    Feuermann, Yonatan; Mabjeesh, Sameer J; Shamay, Avi

    2009-01-01

    Leptin, like estrogen, is one of the endo/paracrine factors, which are synthesized in and secreted from mature adipocytes. The roles of the mammary fat pad and mammary adipocytes in the initiation of lactation are not clear. In this study, we showed that combination of prolactin, leptin and estrogen elevated the expression of the milk protein beta-lactoglobulin. We also showed that after prolactin stimulate the secretion of leptin from the mammary fat, leptin upregulated the expression of estrogen receptor alpha in the mammary epithelial cells. Also, prolactin affected aromatase mRNA expression in the bovine mammary fat and we demonstrated that leptin and prolactin can affect cholesterol secretion from explants in culture to the medium. Therefore, we suggest that prolactin initiates estrogen expression (as represented by aromatase mRNA) in the mammary fat pad, whereas leptin stimulates estrogen receptor alpha expression in the mammary epithelial cells. We hypothesize that leptin and estrogen, secreted from the mammary fat regulate lactation after stimulation of prolactin. PMID:20049155

  1. Effects of long-term restricted feeding on plasma leptin, hepatic leptin expression and leptin receptor expression in juvenile Atlantic salmon (Salmo salar L.).

    PubMed

    Trombley, Susanne; Maugars, Gersende; Kling, Peter; Björnsson, Björn Thrandur; Schmitz, Monika

    2012-01-01

    Leptin is a pleiotropic hormone and plays a key role in body weight regulation, energy homeostasis and lipid store utilization in mammals. In this study, we investigated the effect of feed-restriction on leptin genes (lepa1 and lepa2), leptin receptor (lepr) gene expression and plasma leptin levels in juvenile Atlantic salmon parr. Feed restriction was performed from late April to mid-June, in order to gain insight into the role of the leptin system in energy balance regulation and adiposity in juvenile salmon. A significant increase in lepa1 expression as well as higher levels of plasma leptin was found in feed-restricted fish in June compared to fully fed controls, while lepa2 gene expression decreased in both groups during the treatment period. Lepa2 was, however significantly higher in the feed-restricted group in June. Leptin receptor expression was up regulated during the period of enhanced growth and lipid deposition in the fully fed control, indicating a seasonal effect on the receptor expression in the brain. Both lepa1 and lepa2 genes very mainly expressed in the liver in juvenile salmon, while lepr was expressed in the brain but showed also considerable expression in various peripheral tissues. The study provides evidence that the leptin system is sensitive to the metabolic status of the fish as both season and restricted feeding affect lepa1 and lepa2 gene expression in the liver and brain leptin receptor expression, however, for lepa1 expression and leptin plasma level in an opposite way as that observed in the mammalian system.

  2. DNA methylation and genetic polymorphisms of the Leptin gene interact to influence lung function outcomes and asthma at 18 years of age

    PubMed Central

    Mukherjee, Nandini; Lockett, Gabrielle A; Merid, Simon K; Melén, Erik; Pershagen, Göran; Holloway, John W; Arshad, Syed Hasan; Ewart, Susan; Zhang, Hongmei; Karmaus, Wilfried

    2016-01-01

    The leptin gene (LEP) plays a regulatory role in satiety, inflammation, and allergy. Prior findings linking leptin to asthma motivated us to investigate whether DNA methylation (DNA-M) of CpG (cytosine-phosphate-guanine) sites in concert with single nucleotide polymorphisms (SNPs) of LEP can explain the risk of asthma and lung function. Methylation of CpG sites was assessed using the Illumina Infinium Human Methylation 450 beadchip in blood samples collected from 10- and 18-year-old boys and girls from the Isle of Wight (IOW) birth cohort (UK). Four LEP SNPs were genotyped. Linear and log linear models were used for the analysis, adjusting for false discovery rate (FDR). The analyses were repeated in the BAMSE cohort (Sweden). In the IOW study, the interaction of cg00666422 and rs11763517 (CT vs TT and CC) was associated with FEV1 (FDR-adjusted p-value: 0.03), FEV1/FVC ratio (FDR-adjusted p-value: 0.0096), and FEF25-75% (FDR-adjusted p-value: 0.00048) such that they decreased with increasing DNA-M. The interaction of the same CpG-SNP pair was also associated with increased risk of asthma at age 18. We replicated the findings for FEV1/FVC and FEF25-75% in a smaller sample of 34 participants at age 10. Regarding the BAMSE cohort, although, the interaction of cg00666422 and rs11763517 on lung function were not significant, the direction of the effect was the same as in IOW cohort. Thus, penetrance of LEP genotype seems to be modified by methylation at cg00666422 and is linked to airway obstruction and asthma. PMID:27186323

  3. Leptin and puberty.

    PubMed

    Urbanski, H F

    2001-12-01

    Leptin is thought to relay metabolic information to the hypothalamic-pituitary- gonadal axis and to participate in the neuroendocrine control of puberty. To help elucidate the underlying mechanism, Cheung et al. recently performed a diverse series of experiments, the results of which undermine the prevailing hypothesis that leptin acts as a metabolic trigger for the initiation of puberty. Instead, their results suggest that leptin is one of many permissive metabolic factors that allow pubertal development to proceed.

  4. Leptin stimulates protein synthesis-activating translation machinery in human trophoblastic cells.

    PubMed

    Pérez-Pérez, Antonio; Maymó, Julieta; Gambino, Yésica; Dueñas, José L; Goberna, Raimundo; Varone, Cecilia; Sánchez-Margalet, Víctor

    2009-11-01

    Leptin was originally considered as an adipocyte-derived signaling molecule for the central control of metabolism. However, pleiotropic effects of leptin have been identified in reproduction and pregnancy, particularly in placenta, where it may work as an autocrine hormone, mediating angiogenesis, growth, and immunomodulation. Leptin receptor (LEPR, also known as Ob-R) shows sequence homology to members of the class I cytokine receptor (gp130) superfamily. In fact, leptin may function as a proinflammatory cytokine. We have previously found that leptin is a trophic and mitogenic factor for trophoblastic cells. In order to further investigate the mechanism by which leptin stimulates cell growth in JEG-3 cells and trophoblastic cells, we studied the phosphorylation state of different proteins of the initiation stage of translation and the total protein synthesis by [(3)H]leucine incorporation in JEG-3 cells. We have found that leptin dose-dependently stimulates the phosphorylation and activation of the translation initiation factor EIF4E as well as the phosphorylation of the EIF4E binding protein EIF4EBP1 (PHAS-I), which releases EIF4E to form active complexes. Moreover, leptin dose-dependently stimulates protein synthesis, and this effect can be partially prevented by blocking mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3 kinase (PIK3) pathways. In conclusion, leptin stimulates protein synthesis, at least in part activating the translation machinery, via the activation of MAPK and PIK3 pathways.

  5. Identification of targets of leptin action in rat hypothalamus.

    PubMed Central

    Schwartz, M W; Seeley, R J; Campfield, L A; Burn, P; Baskin, D G

    1996-01-01

    The hypothesis that leptin (OB protein) acts in the hypothalamus to reduce food intake and body weight is based primarily on evidence from leptin-deficient, ob/ob mice. To investigate whether leptin exerts similar effects in normal animals, we administered leptin intracerebroventricularly (icv) to Long-Evans rats. Leptin administration (3.5 microg icv) at the onset of nocturnal feeding reduced food intake by 50% at 1 h and by 42% at 4 h, as compared with vehicle-treated controls (both P < 0.05). To investigate the basis for this effect, we used in situ hybridization (ISH) to determine whether leptin alters expression of hypothalamic neuropeptides involved in energy homeostasis. Two injections of leptin (3.5 microg icv) during a 40 h fast significantly decreased levels of mRNA for neuropeptide Y (NPY, which stimulates food intake) in the arcuate nucleus (-24%) and increased levels of mRNA for corticotrophin releasing hormone (CRH, an inhibitor of food intake) in the paraventricular nucleus (by 38%) (both P < 0.05 vs. vehicle-treated controls). To investigate the anatomic basis for these effects, we measured leptin receptor gene expression in rat brain by ISH using a probe complementary to mRNA for all leptin receptor splice variants. Leptin receptor mRNA was densely concentrated in the arcuate nucleus, with lower levels present in the ventromedial and dorsomedial hypothalamic nuclei and other brain areas involved in energy balance. These findings suggest that leptin action in rat hypothalamus involves altered expression of key neuropeptide genes, and implicate leptin in the hypothalamic response to fasting. PMID:8787671

  6. Opposite effects of leptin on bone metabolism: a dose-dependent balance related to energy intake and insulin-like growth factor-I pathway.

    PubMed

    Martin, Aline; David, Valentin; Malaval, Luc; Lafage-Proust, Marie-Hélène; Vico, Laurence; Thomas, Thierry

    2007-07-01

    Published data describing leptin effects on bone are at variance with both positive and negative consequences reported. These findings are consistent with a bimodal threshold response to serum leptin levels. To test this theory, two groups of female rats (tail-suspended and unsuspended) were treated with ip leptin at two different doses or vehicle for 14 d. In tail-suspended rats, low-dose leptin compensated the decrease in serum leptin levels observed with suspension and was able to prevent the induced bone loss at both the trabecular and cortical level (assessed by three-dimensional microtomography). In contrast, high-dose leptin inhibited femoral bone growth and reduced bone mass by decreasing bone formation rate and increasing bone resorption in both tail-suspended and unsuspended groups. High- and low-dose leptin administration resulted in a reduced medullar adipocytic volume in all groups. High-dose leptin (but not low) induced a decrease in body-weight abdominal fat mass and serum IGF-I levels. Thus, the observed bone changes at high-dose leptin are at least partly mediated by a leptin-induced energy imbalance. In conclusion, a balance between negative and positive leptin effects on bone is dependent on a bimodal threshold that is triggered by leptin serum concentration. Also, the negative effects of high leptin levels are likely induced by reduced energy intake and related hormonal changes. The respective part of each pathway will be unraveled by additional studies.

  7. Energy stores, lipid mobilization and leptin endocrinology of rainbow trout.

    PubMed

    Johansson, Marcus; Morgenroth, Daniel; Einarsdottir, Ingibjörg Eir; Gong, Ningping; Björnsson, Björn Thrandur

    2016-08-01

    The physiological role of leptin in fish is not fully elucidated. In the present study, the involvement of the leptin system in lipid deposition and mobilization in rainbow trout during feeding and 1, 2 and 4 weeks of fasting was investigated in two lines of rainbow trout with different muscle and visceral adiposity: a fat line (FL) with high total energy reserves, high muscle adiposity, but low visceral adiposity and a lean line (LL) with lower total energy reserves and lower muscle adiposity, but higher visceral adiposity. During 4 weeks of fasting, muscle lipids decreased by 63 % in the FL fish, while no such energy mobilization from muscle occurred in the LL fish. On the other hand, lipid stores in liver and visceral adipose tissue was utilized to a similar extent by the two fish lines during fasting. Under normal feeding conditions, plasma leptin levels were higher in the LL than the FL fish, suggesting a possible contribution of visceral adipocytes to plasma leptin levels. Plasma leptin-binding protein levels did not differ between the lines and were not affected by fasting. After 4 weeks of fasting, the long leptin receptor and the leptin-binding protein isoforms 1 and 3 muscle expression increased in the LL fish, as well as hepatic expression of leptin A1 and the two binding protein isoforms. These responses were not seen in the FL fish. The data suggest that the Lep system in rainbow trout is involved in regulation of energy stores and their mobilization.

  8. Oral administration of Lactobacillus plantarum 299v modulates gene expression in the ileum of pigs: prediction of crosstalk between intestinal immune cells and sub-mucosal adipocytes.

    PubMed

    Hulst, Marcel; Gross, Gabriele; Liu, Yaping; Hoekman, Arjan; Niewold, Theo; van der Meulen, Jan; Smits, Mari

    2015-05-01

    To study host-probiotic interactions in parts of the intestine only accessible in humans by surgery (jejunum, ileum and colon), pigs were used as model for humans. Groups of eight 6-week-old pigs were repeatedly orally administered with 5 × 10(12) CFU Lactobacillus plantarum 299v (L. plantarum 299v) or PBS, starting with a single dose followed by three consecutive daily dosings 10 days later. Gene expression was assessed with pooled RNA samples isolated from jejunum, ileum and colon scrapings of the eight pigs per group using Affymetrix porcine microarrays. Comparison of gene expression profiles recorded from L. plantarum 299v-treated pigs with PBS-treated pigs indicated that L. plantarum 299v affected metabolic and immunological processes, particularly in the ileum. A higher expression level of several B cell-specific transcription factors/regulators was observed, suggesting that an influx of B cells from the periphery to the ileum and/or the proliferation of progenitor B cells to IgA-committed plasma cells in the Peyer's patches of the ileum was stimulated. Genes coding for enzymes that metabolize leukotriene B4, 1,25-dihydroxyvitamin D3 and steroids were regulated in the ileum. Bioinformatics analysis predicted that these metabolites may play a role in the crosstalk between intestinal immune cells and sub-mucosal adipocytes. Together with regulation of genes that repress NFKB- and PPARG-mediated transcription, this crosstalk may contribute to tempering of inflammatory reactions. Furthermore, the enzyme adenosine deaminase, responsible for the breakdown of the anti-inflammatory mediator adenosine, was strongly down-regulated in response to L. plantarum 299v. This suggested that L. plantarum 299v-regulated production of adenosine by immune cells like regulatory T cells may also be a mechanism that tempers inflammation in the ileum, and perhaps also in other parts of the pig's body. PMID:25861755

  9. Leptins and leptin receptor expression in the goldfish (Carassius auratus). Regulation by food intake and fasting/overfeeding conditions.

    PubMed

    Tinoco, Ana Belén; Nisembaum, Laura Gabriela; Isorna, Esther; Delgado, María Jesús; de Pedro, Nuria

    2012-04-01

    Leptin is a hormone involved in feeding and body weight regulation in vertebrates, but the relationship between energy status and leptin has not been clearly established in fish. The aim of this study was to investigate in a teleost, the goldfish (Carassius auratus), the tissue expression pattern of two leptins (gLep-aI and gLep-aII) and leptin receptor (gLepR); and the effect of feeding on expression of these genes. Leptin system expression in goldfish was firstly analyzed in fish under overfeeding (2 weeks) or fasting (1 week), and secondly, at different postfeeding times (0, 3, 6, 9 and 12h). Goldfish has two Lep-a paralog genes, gLep-aI was widely expressed in central and peripheral tissues, whereas gLep-aII was preferentially expressed in brain. This different distribution pattern of leptins suggests that they can play different physiological roles in goldfish. The gLepR mRNA was ubiquitous expressed, with the highest expression in the telencephalon and hypothalamus. No significant differences in the leptin system expression were found among control, overfed and fasting groups, suggesting an apparent lack of correlation between nutritional status and leptin system in goldfish. Hepatic expression of gLep-aI significantly increased 9h after feeding time, while hypothalamic leptin system expression did not change after feeding. In summary, leptin in goldfish could signal short-term changes in food intake, as postprandial satiety, but seems to be independent of fasting/overfeeding conditions in this teleost. The widespread distribution of leptins and leptin receptor in goldfish strongly supports that this hormone may have pleitropic actions in fish.

  10. Adipocyte-Specific Deletion of Manganese Superoxide Dismutase Protects From Diet-Induced Obesity Through Increased Mitochondrial Uncoupling and Biogenesis.

    PubMed

    Han, Yong Hwan; Buffolo, Márcio; Pires, Karla Maria; Pei, Shaobo; Scherer, Philipp E; Boudina, Sihem

    2016-09-01

    Obesity and insulin resistance are associated with oxidative stress (OS). The causal role of adipose OS in the pathogenesis of these conditions is unknown. To address this issue, we generated mice with an adipocyte-selective deletion of manganese superoxide dismutase (MnSOD). When fed a high-fat diet (HFD), the AdSod2 knockout (KO) mice exhibited less adiposity, reduced adipocyte hypertrophy, and decreased circulating leptin. The resistance to diet-induced adiposity was the result of an increased metabolic rate and energy expenditure. Furthermore, palmitate oxidation was elevated in the white adipose tissue (WAT) and brown adipose tissue of AdSod2 KO mice fed an HFD, and the expression of key fatty acid oxidation genes was increased. To gain mechanistic insight into the increased fat oxidation in HFD-fed AdSod2 KO mice, we quantified the mitochondrial function and mitochondrial content in WAT and found that MnSOD deletion increased mitochondrial oxygen consumption and induced mitochondrial biogenesis. This effect was preserved in cultured adipocytes from AdSod2 KO mice in vitro. As expected from the enhanced fat oxidation, circulating levels of free fatty acids were reduced in the HFD-fed AdSod2 KO mice. Finally, HFD-fed AdSod2 KO mice were protected from hepatic steatosis, adipose tissue inflammation, and glucose and insulin intolerance. Taken together, these results demonstrate that MnSOD deletion in adipocytes triggered an adaptive stress response that activated mitochondrial biogenesis and enhanced mitochondrial fatty acid oxidation, thereby preventing diet-induced obesity and insulin resistance. PMID:27284109

  11. Changes in leptin and metabolite concentrations over time in finishing beef steers and heifers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leptin is a hormone produced in adipocytes that is involved in the control of feed intake, growth, and carcass composition. Composite breed cows were bred to working ranch bulls representing Angus, Charolais, Gelbvieh, Limousin, Red Angus, and Simmental breeds to produce calves with a wide range in...

  12. Influence of phenotype conversion of epicardial adipocytes on the coronary atherosclerosis and its potential molecular mechanism

    PubMed Central

    Wang, Jing; Chen, Dong; Cheng, Xun-Min; Zhang, Qi-Gao; Peng, Yong-Ping; Wang, Li-Jun; He, Song-Qing; Gong, Jian-Bin

    2015-01-01

    Objective: To investigate the phenotype conversion of epicardial adipocytes and its potential molecular mechanism during the occurrence and development of coronary atherosclerosis. Methods: A total of 30 health male New Zealand white rabbits were used. In experiment group (n=15), rabbits were fed with high fat food to establish atherosclerosis animal model; rabbits in control group (n=15) were fed with normal food. Results: At week 0, UCP-1 and PPARγ mRNA expressions in EAT and sBAT were significantly higher than in eWAT, and leptin mRNA expression lower than (P<0.05). In experiment group, the mRNA expressions of UCP-1 and PPARγ reduced gradually, but leptin mRNA increased progressively in EAT (P<0.05). UCP-1 expression reduced gradually, the newly generated blood vessels reduced significantly, but leptin and RAM11 increased gradually (P<0.05). The adipocyte volume in EAT increased gradually, but the adipocyte number reduced progressively (P<0.05). The number of mitochondria with multiple crests reduced gradually in EAT; IL-6 reduced the mRNA expressions of UCP-1 and PPARγ in adipocytes of BAT in a dose dependent manner, but it increased the mRNA expressions of leptin and STAT3 (P<0.05). In the presence of IL-6, JSI-124 increased the mRNA expressions of UCP-1 and PPAR-γ in adipocytes of BAT in a dose dependent manner, but it reduced the mRNA expressions of leptin and STAT3 (P<0.05). Conclusion: During the progression of atherosclerosis, there is a phenotype conversion of EAT from BAT to WAT, which further promotes the focal occurrence and development of atherosclerosis; IL-6 may activate JAK-STAT3 pathway to induce this conversion. PMID:26692919

  13. Chito-oligosaccharide inhibits the de-methylation of a 'CpG' island within the leptin (LEP) promoter during adipogenesis of 3T3-L1 cells.

    PubMed

    Bahar, Bojlul; O'Doherty, John V; O'Doherty, Alan M; Sweeney, Torres

    2013-01-01

    Chito-oligosaccharide (COS) is a natural bioactive compound, which has been shown to suppress lipid metabolic genes and lipid accumulation in differentiating adipocytes. Leptin has been identified as a key regulator of energy homeostasis and is known to be under epigenetic regulation during adipogenesis. Hence, the first objective of this experiment was to compare leptin gene (LEP) expression and leptin secretion during the different stages of adipogenesis and to investigate the effect of COS on these processes. As COS inhibited LEP expression during adipogenesis, the second aim was to investigate the methylation dynamics of a 'CpG' island in the proximal region of the LEP promoter during adipogenesis and to determine the effect of COS on this process. Mouse 3T3-L1 cells were stimulated to differentiate in the absence or presence of COS and the levels of leptin mRNA and protein were evaluated on days 0, 2, 4 and 6 post-induction of differentiation (PID). The extent of de-methylation of six CpG sites was evaluated. LEP mRNA transcript and protein could not be detected on either day 0PID or 2PID. In contrast, both were detected on day 4PID (P<0.05) and 6PID (P<0.001) and both were inhibited by COS (P<0.001). Of the six CpG sites analyzed, CpG_52, CpG_62 and CpG_95 became 11.5, 5.0 and 5.0% de-methylated between day 2PID and 6PID, respectively. COS blocked this de-methylation event at CpG_52 (P<0.001), CpG_62 (P<0.01) and CpG_95 (P<0.01) on day 6PID. These data suggest that COS can have an epigenetic effect on differentiating adipocytes, a novel biological function of COS which has potential applications for the manipulation of leptin gene expression, adipogenesis, and conditions within the metabolic syndrome spectrum.

  14. Differential Role of Leptin as an Immunomodulator in Controlling Visceral Leishmaniasis in Normal and Leptin-Deficient Mice

    PubMed Central

    Maurya, Radheshyam; Bhattacharya, Parna; Ismail, Nevien; Dagur, Pradeep K.; Joshi, Amritanshu B.; Razdan, Kundan; McCoy, J. Philip; Ascher, Jill; Dey, Ranadhir; Nakhasi, Hira L.

    2016-01-01

    Visceral leishmaniasis (VL) is caused by the protozoan parasite Leishmania donovani. There are no vaccines and available drugs against leishmaniasis are toxic. Immunomodulators that specifically boost the anti-microbial activities of the immune cells could alleviate several of these limitations. Therefore, finding novel immunomodulators for VL therapy is a pressing need. This study is aimed to evaluate the immunomodulatory role of leptin, an adipocyte-derived hormone capable of regulating the immune response, in L. donovani-infected mice. We observed that recombinant leptin treatment reduced splenic parasite burden compared with non-treated infected normal mice. Decrease in parasite burden correlated with an induction of innate immune response in antigen-presenting cells that showed an increase in nitric oxide, enhanced pro-inflammatory cytokine (interferon gamma [IFNγ], interleukin12 [IL]12, and IL1β) response in the splenocytes, indicating host-protecting Th1 response mediated by leptin. Moreover, in infected normal mice, leptin treatment induced IFNγ production from both CD4+ and CD8+ T cells, compared with non-treated infected mice. Alternatively, leptin-deficient (Ob/Ob) mice had higher splenic and liver parasite burden compared with the infected normal mice. However, leptin treatment failed to reduce the splenic parasite burden and improve a host-protective cytokine response in these mice. In addition, in contrast to dendritic cells (DCs) from a normal mouse, Ob/Ob mouse–derived DCs showed a defect in the induction of innate immune response on Leishmania infection that could not be reversed by leptin treatment. Therefore, our findings reveal that leptin has a differential immunomodulatory effect in controlling VL in normal and Ob/Ob mice. PMID:27114296

  15. Leptin inhibits testosterone secretion from adult rat testis in vitro.

    PubMed

    Tena-Sempere, M; Pinilla, L; González, L C; Diéguez, C; Casanueva, F F; Aguilar, E

    1999-05-01

    Leptin, the product of the ob gene, has emerged recently as a pivotal signal in the regulation of fertility. Although the actions of leptin in the control of reproductive function are thought to be exerted mainly at the hypothalamic level, the potential direct effects of leptin at the pituitary and gonadal level have been poorly characterised. In the present study, we first assessed the ability of leptin to regulate testicular testosterone secretion in vitro. Secondly, we aimed to evaluate whether leptin can modulate basal gonadotrophin and prolactin (PRL) release by incubated hemi-pituitaries from fasted male rats. To attain the first goal, testicular slices from prepubertal and adult rats were incubated with increasing concentrations (10(-9)-10(-7) M) of recombinant leptin. Assuming that in vitro testicular responsiveness to leptin may be dependent on the background leptin levels, testicular tissue from both food-deprived and normally-fed animals was used. Furthermore, leptin modulation of stimulated testosterone secretion was evaluated by incubation of testicular samples with different doses of leptin in the presence of 10 IU human chorionic gonadotrophin (hCG). In addition, analysis of leptin actions on pituitary function was carried out using hemi-pituitaries from fasted adult male rats incubated in the presence of increasing concentrations (10(-9)-10(-7) M) of recombinant leptin. Serum testosterone levels, and basal and hCG-stimulated testosterone secretion by incubated testicular tissue were significantly decreased by fasting in prepubertal and adult male rats. However, a significant reduction in circulating LH levels was only evident in adult fasted rats. Doses of 10(-9)-10(-7) M leptin had no effect on basal or hCG-stimulated testosterone secretion by testes from prepubertal rats, regardless of the nutritional state of the donor animal. In contrast, leptin significantly decreased basal and hCG-induced testosterone secretion by testes from fasted and fed

  16. Leptin inhibits testosterone secretion from adult rat testis in vitro.

    PubMed

    Tena-Sempere, M; Pinilla, L; González, L C; Diéguez, C; Casanueva, F F; Aguilar, E

    1999-05-01

    Leptin, the product of the ob gene, has emerged recently as a pivotal signal in the regulation of fertility. Although the actions of leptin in the control of reproductive function are thought to be exerted mainly at the hypothalamic level, the potential direct effects of leptin at the pituitary and gonadal level have been poorly characterised. In the present study, we first assessed the ability of leptin to regulate testicular testosterone secretion in vitro. Secondly, we aimed to evaluate whether leptin can modulate basal gonadotrophin and prolactin (PRL) release by incubated hemi-pituitaries from fasted male rats. To attain the first goal, testicular slices from prepubertal and adult rats were incubated with increasing concentrations (10(-9)-10(-7) M) of recombinant leptin. Assuming that in vitro testicular responsiveness to leptin may be dependent on the background leptin levels, testicular tissue from both food-deprived and normally-fed animals was used. Furthermore, leptin modulation of stimulated testosterone secretion was evaluated by incubation of testicular samples with different doses of leptin in the presence of 10 IU human chorionic gonadotrophin (hCG). In addition, analysis of leptin actions on pituitary function was carried out using hemi-pituitaries from fasted adult male rats incubated in the presence of increasing concentrations (10(-9)-10(-7) M) of recombinant leptin. Serum testosterone levels, and basal and hCG-stimulated testosterone secretion by incubated testicular tissue were significantly decreased by fasting in prepubertal and adult male rats. However, a significant reduction in circulating LH levels was only evident in adult fasted rats. Doses of 10(-9)-10(-7) M leptin had no effect on basal or hCG-stimulated testosterone secretion by testes from prepubertal rats, regardless of the nutritional state of the donor animal. In contrast, leptin significantly decreased basal and hCG-induced testosterone secretion by testes from fasted and fed

  17. Real-time monitoring of inflammation status in 3T3-L1 adipocytes possessing a secretory Gaussia luciferase gene under the control of nuclear factor-kappa B response element

    SciTech Connect

    Nagasaki, Haruka; Yoshimura, Takeshi; Aoki, Naohito

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer Inflammation status in adipocytes can be monitored by the new assay system. Black-Right-Pointing-Pointer Only an aliquot of conditioned medium is required without cell lysis. Black-Right-Pointing-Pointer Inflammation-attenuating compounds can be screened more conveniently. -- Abstract: We have established 3T3-L1 cells possessing a secretory Gaussia luciferase (GLuc) gene under the control of nuclear factor-kappa B (NF-{kappa}B) response element. The 3T3-L1 cells named 3T3-L1-NF-{kappa}B-RE-GLuc could differentiate into adipocyte as comparably as parental 3T3-L1 cells. Inflammatory cytokines such as tumor necrosis factor (TNF)-{alpha} and interleukin (IL)-1{beta} induced GLuc secretion of 3T3-L1-NF-{kappa}B-RE-GLuc adipocytes in a concentration- and time-dependent manner. GLuc secretion of 3T3-L1-NF-{kappa}B-RE-GLuc adipocytes was also induced when cultured with RAW264.7 macrophages and was dramatically enhanced by lipopolysaccharide (LPS)-activated macrophages. An NF-{kappa}B activation inhibitor BAY-11-7085 and an antioxidant N-acetyl cysteine significantly suppressed GLuc secretion induced by macrophages. Finally, we found that rosemary-derived carnosic acid strongly suppressed GLuc secretion induced by macrophages and on the contrary up-regulated adiponectin secretion. Collectively, by using 3T3-L1-NF-{kappa}B-RE-GLuc adipocytes, inflammation status can be monitored in real time and inflammation-attenuating compounds can be screened more conveniently.

  18. Serum Leptin and Loss of Control Eating in Children and Adolescents

    PubMed Central

    Miller, Rachel; Tanofsky-Kraff, Marian; Shomaker, Lauren B.; Field, Sara E.; Hannallah, Louise; Reina, Samantha A.; Mooreville, Mira; Sedaka, Nicole; Brady, Sheila M.; Condarco, Tania; Reynolds, James C.; Yanovski, Susan Z.; Yanovski, Jack A.

    2014-01-01

    Background Both insufficiency and resistance to the actions of the adipocyte-derived hormone leptin promote hunger, increased food intake, and greater body weight. Some studies suggest adults reporting binge eating have increased serum leptin compared to those without binge eating, even after adjusting for the greater adiposity that characterizes binge eaters. Pediatric binge or loss of control (LOC) eating are prospective risk factors for excessive weight gain and may predict development of metabolic abnormalities, but whether LOC eating is associated with higher leptin among children is unknown. We therefore examined leptin and LOC eating in a pediatric cohort. Methods A convenience sample of 506 lean and obese youth (7–18y) was recruited from Washington, DC and its suburbs. Serum leptin was collected after an overnight fast. Adiposity was measured by dual-energy x-ray absorptiometry or air displacement plethysmography. LOC eating was assessed by interview methodology. Results Leptin was strongly associated with fat mass (r=.79, p<.001). However, even after adjusting for adiposity and other relevant covariates, youth with LOC eating had higher serum leptin compared to those without LOC episodes (15.42±1.05 vs. 12.36±1.04 ng/mL, p<.001). Neither reported amount of food consumed during a recent LOC episode nor number of LOC episodes in the previous month accounted for differences in leptin (ps>.05). The relationship between LOC eating and leptin appeared to be significant for females only (p=0.002). Conclusions Reports of LOC eating were associated with higher fasting leptin in youth, beyond the contributions of body weight. Prospective studies are required to elucidate if LOC eating promotes greater leptin or if greater leptin resistance may promote LOC eating. PMID:23835660

  19. Mechanisms involved in p53 downregulation by leptin in trophoblastic cells.

    PubMed

    Toro, Ayelén Rayen; Pérez-Pérez, Antonio; Corrales Gutiérrez, Isabel; Sánchez-Margalet, Víctor; Varone, Cecilia Laura

    2015-11-01

    Leptin, a 16-kDa polypeptide hormone, is produced by the adipocyte and can also be synthesized by placenta. We previously demonstrated that leptin promotes proliferation and survival in placenta, in part mediated by the p53 pathway. In this work, we investigated the mechanisms involved in leptin down-regulation of p53 level. The human first trimester cytotrophoblastic Swan-71 cell line and human placental explants at term were used. In order to study the late phase of apoptosis, triggered by serum deprivation, experiments of DNA fragmentation were carried out. Exogenous leptin added to human placental explants, showed a decrease on DNA ladder formation and MAPK pathway is involved in this leptin effect. We also found that under serum deprivation condition, leptin decreases p53 levels and the inhibitory leptin effect is lost when cells were pretreated with 50 μM PD98059 or 10 μM LY29004; or were transfected with dominant negative mutants of intermediates of these pathways, suggesting that MAPK and PI3K signaling pathways are necessaries for leptin action. Additionally, leptin diminished Ser-46 p53 phosphorylation and this effect in placental explants was mediated by the activation of MAPK and PI3K pathways. Finally, in order to assess leptin effect on p53 half-life experiments with cycloheximide were performed and MDM-2 expression was analyzed. Leptin diminished p53 half-life and up-regulated MDM-2 expression. In summary, we provided evidence suggesting that leptin anti-apoptotic effect is mediated by MAPK and PI3K pathways.

  20. Leptin mRNA expresses in the bull reproductive organ.

    PubMed

    Abavisani, A; Baghbanzadeh, A; Shayan, P; Tajik, P; Dehghani, H; Mirtorabi, M

    2009-12-01

    Leptin, a 167-amino acid hormone, is secreted mainly by fat tissue. It has some powerful effects on the regulation of metabolism and reproductive function through endocrine and probably paracrine mechanisms. The contribution rate of leptin function on the male reproductive system is not still clear. Characterization of leptin expression in reproductive organs will suggest that in addition to its endocrine action, leptin has also paracrine/autocrine effects on reproduction. The expression of functional leptin receptor mRNA has been already recognized in testis of rodents, human and cattle. Thus, the aim of the present study was to investigate the presence of leptin mRNA in the bovine testis, because it will be the first step for understanding of its paracrine/autocrine effects on the male reproductive organs in cattle. The present study was the first to showed leptin mRNA expression in the testis of Holstein cattle using reverse transcription and polymerase chain reaction (RT-PCR) analysis. RT-PCR products were amplified with nested PCR using inner leptin primer pairs to emphasis the first results. Besides, bovine beta actin gene was acted as an internal positive control as well as RNA purification marker. Our findings suggest that in addition to its endocrine actions at the hypothalamic-pituitary axis, leptin can has an autocrine and/or paracrine role in bull testicular function.

  1. Discovery of the Elusive Leptin in Birds: Identification of Several ‘Missing Links’ in the Evolution of Leptin and Its Receptor

    PubMed Central

    Prokop, Jeremy W.; Schmidt, Cameron; Gasper, Donald; Duff, Robert J.; Milsted, Amy; Ohkubo, Takeshi; Ball, Hope C.; Shawkey, Matthew D.; Mays, Herman L.; Cogburn, Larry A.; Londraville, Richard L.

    2014-01-01

    Leptin is a pleiotropic protein best known for regulation of appetite and fat storage in mammals. While many leptin orthologs have been identified among vertebrates, an authentic leptin in birds has remained elusive and controversial. Here we identify leptin sequence from the Peregrine falcon, Falco peregrinus (pfleptin), and identify sequences from two other birds (mallard and zebra finch), and ‘missing’ vertebrates (elephant shark, alligator, Indian python, Chinese soft-shelled turtle, and coelacanth). The pattern of genes surrounding leptin (snd1, rbm28) is syntenic between the falcon and mammalian genomes. Phylogenetic analysis of all known leptin protein sequences improves our understanding of leptin’s evolution. Structural modeling of leptin orthologs highlights a highly conserved hydrophobic core in the four-helix cytokine packing domain. A docked model of leptin with the leptin receptor for Peregrine falcon reveals several conserved amino acids important for the interaction and possible coevolution of leptin with its receptor. We also show for the first time, an authentic avian leptin sequence that activates the JAK-STAT signaling pathway. These newly identified sequences, structures, and tools for avian leptin and its receptor will allow elucidation of the function of these proteins in feral and domestic birds. PMID:24663438

  2. Differential expression and regulation of leptin receptor isoforms in the rat brain: effects of fasting and oestrogen.

    PubMed

    Bennett, P A; Lindell, K; Karlsson, C; Robinson, I C; Carlsson, L M; Carlsson, B

    1998-01-01

    Leptin affects body weight and reproduction mainly via receptors in the central nervous system. Different isoforms of the leptin receptor (leptin-R) exist, including a long isoform (leptin-RL) with signalling capacity and short isoforms (leptin-RS) with unknown function. The aim of this study was to examine leptin-R gene expression in different regions of the brain under conditions with altered body weight, in the female rat, including ovariectomy (OVX), oestradiol (E2) treatment, fasting and a genetic model of obesity (Zucker fa/fa). Leptin-R gene expression was analysed by in situ hybridization using probes recognizing all receptor isoforms (leptin-R) or specifically leptin-RL. Transcripts recognized by the leptin-R probe were abundant in the choroid plexus (CP), arcuate nucleus (ARC), ventromedial nucleus (VMN), thalamus (TH) and piriform cortex (PC). Leptin-RL transcripts were detected in the ARC, VMN, TH and PC but not in the CP. Although no sex difference was observed, leptin-R gene expression was reduced by E2 administration and increased by OVX. Administration of E2 reduced leptin-RL gene expression in the ARC and VMN but did not alter the expression in the TH or PC. OVX had no effect on the expression of leptin-RL mRNA. Fasting also caused a differential regulation of leptin-R mRNAs, with an increase in abundance of leptin-RL transcripts in the TH despite a decrease in leptin-R in this area. Obese Zucker rats had a similar pattern of expression with an increased expression of leptin-RL transcripts in all brain areas analysed and a decrease in leptin-R gene expression. These results demonstrate a differential regulation of leptin-RL and leptin-RS which could provide a mechanism for regulating access to, and sensitivity of, discrete regions of the brain for circulating leptin. We suggest that fasting and E2 alter the balance between leptin-RL and leptin-RS and that this could increase tissue sensitivity to leptin.

  3. RPL13A and EEF1A1 Are Suitable Reference Genes for qPCR during Adipocyte Differentiation of Vascular Stromal Cells from Patients with Different BMI and HOMA-IR

    PubMed Central

    Gentile, Adriana-Mariel; Lhamyani, Said; Coín-Aragüez, Leticia; Oliva-Olivera, Wilfredo; Zayed, Hatem; Vega-Rioja, Antonio; Monteseirin, Javier; Romero-Zerbo, Silvana-Yanina; Tinahones, Francisco-José; Bermúdez-Silva, Francisco-Javier; El Bekay, Rajaa

    2016-01-01

    Real-time or quantitative PCR (qPCR) is a useful technique that requires reliable reference genes for data normalization in gene expression analysis. Adipogenesis is among the biological processes suitable for this technique. The selection of adequate reference genes is essential for qPCR gene expression analysis of human Vascular Stromal Cells (hVSCs) during their differentiation into adipocytes. To the best of our knowledge, there are no studies validating reference genes for the analyses of visceral and subcutaneous adipose tissue hVSCs from subjects with different Body Mass Index (BMI) and Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) index. The present study was undertaken to analyze this question. We first analyzed the stability of expression of five potential reference genes: CYC, GAPDH, RPL13A, EEF1A1, and 18S ribosomal RNA, during in vitro adipogenic differentiation, in samples from these types of patients. The expression of RPL13A and EEF1A1 was not affected by differentiation, thus being these genes the most stable candidates, while CYC, GAPDH, and 18S were not suitable for this sort of analysis. This work highlights that RPL13A and EEF1A1 are good candidates as reference genes for qPCR analysis of hVSCs differentiation into adipocytes from subjects with different BMI and HOMA-IR. PMID:27304673

  4. Partial cloning and localization of leptin and leptin receptor in the mammary gland of the Egyptian water buffalo.

    PubMed

    Sayed-Ahmed, A; Elmorsy, S Elm; Rudas, P; Bartha, T

    2003-10-01

    Originally an overall metabolic control was attributed to the leptin hormone, which is produced mainly by the adipose tissue. Recently, leptin gene expression was demonstrated in several additional peripheral tissues. Furthermore, several isoforms of leptin receptor were found both in the central nervous system and in the peripheral tissues. Using reverse transcription and polymerase chain reaction analysis we demonstrate that leptin is expressed both in the adipose tissue and in the lactating mammary gland tissue of Egyptian water buffalo. Our results show that, short and long isoforms of leptin receptor are expressed in buffalo mammary gland tissue. We have partially cloned the buffalo leptin and its short and long isoforms of receptor, which show a high sequence homology to previously published sequences of other mammalian species especially to that of other ruminants. Localization of leptin and its receptor mRNA transcripts, as determined by in situ hybridization procedure, revealed that leptin and its receptor transcripts are expressed specifically in the alveolar epithelial cells of the mammary gland. These morphological data support that leptin could also act as an autocrine and paracrine mediator for mammary gland metabolism and as a facilitator of alveolar epithelial cell activity during lactation.

  5. [The adipocyte, prodigious cell].

    PubMed

    Domínguez Carmona, Manuel

    2005-01-01

    In this work, I stand out the rich endocrine role of adipocytes, that together with its function of lipidic deposit and regulating of metabolism, this confers them a central place in physiology and pathology.

  6. Increased glucose metabolism and insulin sensitivity in transgenic skinny mice overexpressing leptin.

    PubMed

    Ogawa, Y; Masuzaki, H; Hosoda, K; Aizawa-Abe, M; Suga, J; Suda, M; Ebihara, K; Iwai, H; Matsuoka, N; Satoh, N; Odaka, H; Kasuga, H; Fujisawa, Y; Inoue, G; Nishimura, H; Yoshimasa, Y; Nakao, K

    1999-09-01

    Excess of body fat, or obesity, is a major health problem and confers a higher risk of cardiovascular and metabolic disorders such as diabetes, hypertension, and coronary heart disease. Leptin is an adipocyte-derived satiety factor that plays an important role in the regulation of energy homeostasis, and its synthesis and secretion are markedly increased in obese subjects. To explore the metabolic consequences of an increased amount of leptin on a long-term basis in vivo, we generated transgenic skinny mice with elevated plasma leptin concentrations comparable to those in obese subjects. Overexpression of leptin in the liver has resulted in complete disappearance of white and brown adipose tissue for a long period of time in mice. Transgenic skinny mice exhibit increased glucose metabolism accompanied by the activation of insulin signaling in the skeletal muscle and liver. They also show small-sized livers with a marked decrease in glycogen and lipid storage. The phenotypes are in striking contrast to those of recently reported animal models of lipoatrophic diabetes and patients with lipoatrophic diabetes with reduced amount of leptin. The present study provides evidence that leptin is an adipocyte-derived antidiabetic hormone in vivo and suggests its pathophysiologic and therapeutic implications in diabetes.

  7. Leptin secretion and leptin receptor in the human stomach

    PubMed Central

    Sobhani, I; Bado, A; Vissuzaine, C; Buyse, M; Kermorgant, S; Laigneau, J; Attoub, S; Lehy, T; Henin, D; Mignon, M; Lewin, M

    2000-01-01

    BACKGROUND AND AIM—The circulating peptide leptin produced by fat cells acts on central receptors to control food intake and body weight homeostasis. Contrary to initial reports, leptin expression has also been detected in the human placenta, muscles, and recently, in rat gastric chief cells. Here we investigate the possible presence of leptin and leptin receptor in the human stomach.
METHODS—Leptin and leptin receptor expression were assessed by immunohistochemistry, reverse transcriptase-polymerase chain reaction (RT-PCR), and western blot analysis on biopsy samples from 24 normal individuals. Fourteen (10 healthy volunteers and four patients with non-ulcer dyspepsia and normal gastric mucosa histology) were analysed for gastric secretions. Plasma and fundic mucosa leptin content was determined by radioimmunoassay.
RESULTS—In fundic biopsies from normal individuals, immunoreactive leptin cells were found in the lower half of the fundic glands. mRNA encoding ob protein was detected in the corpus of the human stomach. The amount of fundic leptin was 10.4 (3.7) ng leptin/g mucosa, as determined by radioimmunoassay. Intravenous infusions of pentagastrin or secretin caused an increase in circulating leptin levels and leptin release into the gastric juice. The leptin receptor was present in the basolateral membranes of fundic and antral gastric cells. mRNA encoding Ob-RL was detected in both the corpus and antrum, consistent with a protein of ~120 kDa detected by immunoblotting.
CONCLUSION—These data provide the first evidence of the presence of leptin and leptin receptor proteins in the human stomach and suggest that gastric epithelial cells may be direct targets for leptin. Therefore, we conclude that leptin may have a physiological role in the human stomach, although much work is required to establish this.


Keywords: leptin; leptin receptor; human stomach; gastrin; secretin PMID:10896907

  8. Increased apoptosis and browning of TAK1-deficient adipocytes protects against obesity

    PubMed Central

    Singh, Pratibha; Tang, Cong; Wietelmann, Astrid; Wettschureck, Nina; Offermanns, Stefan

    2016-01-01

    Obesity is an increasing health problem worldwide, and nonsurgical strategies to treat obesity have remained rather inefficient. We here show that acute loss of TGF-β–activated kinase 1 (TAK1) in adipocytes results in an increased rate of apoptotic adipocyte death and increased numbers of M2 macrophages in white adipose tissue. Mice with adipocyte-specific TAK1 deficiency have reduced adipocyte numbers and are resistant to obesity induced by a high-fat diet or leptin deficiency. In addition, adipocyte-specific TAK1-deficient mice under a high-fat diet showed increased energy expenditure, which was accompanied by enhanced expression of the uncoupling protein UCP1. Interestingly, acute induction of adipocyte-specific TAK1 deficiency in mice already under a high-fat diet was able to stop further weight gain and improved glucose tolerance. Thus, loss of TAK1 in adipocytes reduces the total number of adipocytes, increases browning of white adipose tissue, and may be an attractive strategy to treat obesity, obesity-dependent diabetes, and other associated complications. PMID:27699262

  9. Increased apoptosis and browning of TAK1-deficient adipocytes protects against obesity

    PubMed Central

    Singh, Pratibha; Tang, Cong; Wietelmann, Astrid; Wettschureck, Nina; Offermanns, Stefan

    2016-01-01

    Obesity is an increasing health problem worldwide, and nonsurgical strategies to treat obesity have remained rather inefficient. We here show that acute loss of TGF-β–activated kinase 1 (TAK1) in adipocytes results in an increased rate of apoptotic adipocyte death and increased numbers of M2 macrophages in white adipose tissue. Mice with adipocyte-specific TAK1 deficiency have reduced adipocyte numbers and are resistant to obesity induced by a high-fat diet or leptin deficiency. In addition, adipocyte-specific TAK1-deficient mice under a high-fat diet showed increased energy expenditure, which was accompanied by enhanced expression of the uncoupling protein UCP1. Interestingly, acute induction of adipocyte-specific TAK1 deficiency in mice already under a high-fat diet was able to stop further weight gain and improved glucose tolerance. Thus, loss of TAK1 in adipocytes reduces the total number of adipocytes, increases browning of white adipose tissue, and may be an attractive strategy to treat obesity, obesity-dependent diabetes, and other associated complications.

  10. Genetic and phenotypic relationships of serum leptin concentration with performance, efficiency of gain, and carcass merit of feedlot cattle.

    PubMed

    Nkrumah, J D; Keisler, D H; Crews, D H; Basarab, J A; Wang, Z; Li, C; Price, M A; Okine, E K; Moore, S S

    2007-09-01

    Leptin is the hormone product of the obese gene that is synthesized and predominantly expressed by adipocytes. This study estimated the genetic variation in serum leptin concentration and evaluated the genetic and phenotypic relationships of serum leptin concentration with performance, efficiency of gain, and carcass merit. There were 464 steers with records for serum leptin concentration, performance, and efficiency of gain and 381 steers with records for carcass traits. The analyses included a total of 813 steers, including those without phenotypic records. Phenotypic and genetic parameter estimates were obtained using SAS and ASREML, respectively. Serum leptin concentration was moderately heritable (h2 = 0.34 +/- 0.13) and averaged 13.91 (SD = 5.74) ng/mL. Sire breed differences in serum leptin concentration correlated well with breed differences in body composition. Specifically, the serum leptin concentration was 20% greater in Angus-sired steers compared with Charolais-sired steers (P < 0.001). Consequently, ultrasound backfat (27%), carcass 12th-rib fat (31%), ultrasound marbling (14%), and carcass marbling (15%) were less in Charolais- than Angus-sired steers (P < 0.001). Conversely, carcass LM area (P = 0.05) and carcass lean meat yield (P < 0.001) were greater in Charolais- compared with Angus-sired steers. Steers with greater serum leptin concentration also had greater DMI (P < 0.001), greater residual feed intake (P = 0.04), and partial efficiency of growth (P = 0.01), but did not differ in feed conversion ratio (P > 0.10). Serum leptin concentration was correlated phenotypically with ultrasound backfat (r = 0.41; P < 0.001), carcass 12th-rib fat (r = 0.42; P < 0.001), ultrasound marbling (r = 0.25; P < 0.01), carcass marbling (r = 0.28; P < 0.01), ultrasound LM area (r = -0.19; P < 0.01), carcass LM area (r = -0.17; P < 0.05), lean meat yield (r = -0.38; P < 0.001), and yield grade (r = 0.32; P < 0.001). The corresponding genetic correlations were

  11. Resistance to adenovirally induced hyperleptinemia in rats. Comparison of ventromedial hypothalamic lesions and mutated leptin receptors.

    PubMed Central

    Koyama, K; Shimabukuro, M; Chen, G; Wang, M Y; Lee, Y; Kalra, P S; Dube, M G; Kalra, S P; Newgard, C B; Unger, R H

    1998-01-01

    Leptin regulates appetite and body weight via hypothalamic targets, but it can act directly on cultured pancreatic islets to regulate their fat metabolism. To obtain in vivo evidence that leptin may act peripherally as well as centrally, we compared the effect of adenovirally induced hyperleptinemia on food intake, body weight, and islet fat content in ventromedial hypothalamic-lesioned (VMHL) rats, sham-lesioned (SL) controls, and Zucker Diabetic Fatty (ZDF) rats in which the leptin receptor is mutated. Infusion with recombinant adenovirus containing the rat leptin cDNA increased plasma leptin by approximately 20 ng/ml in VMHL and ZDF rats but had no effect on their food intake, body weight, or fat tissue weight. Caloric matching of hyperphagic VMHL rats to SL controls did not reduce their resistance to hyperleptinemia. Whereas prediabetic ZDF rats had a fourfold elevation in islet fat, in VMHL rats islet fat was normal and none of them became diabetic. Isolated islets from ZDF rats were completely resistant to the lipopenic action of leptin, while VMHL islets exhibited 50% of the normal response; caloric matching of VMHL rats to SL controls increased leptin responsiveness of their islets to 92% of controls. We conclude that leptin regulation of adipocyte fat requires an intact VMH but that islet fat content is regulated independently of the VMH. PMID:9710441

  12. Leptin does not induce an inflammatory response in the murine placenta.

    PubMed

    Appel, S; Turnwald, E-M; Alejandre-Alcazar, M A; Ankerne, J; Rother, E; Janoschek, R; Wohlfarth, M; Vohlen, C; Schnare, M; Meißner, U; Dötsch, J

    2014-06-01

    Leptin is described as a pro-inflammatory signal in fat tissue, which is released from adipocytes and in turn activates immune cells. Also, leptin levels are known to be increased in pregnancies complicated with enhanced inflammatory processes in the placenta. Hence, we assumed that increased leptin amounts might contribute to inducing an inflammatory response in the placenta. To test this hypothesis, pregnant mice were continuously infused with recombinant murine leptin s. c. from day g13 to g16, resulting in a 3-fold increase of maternal circulating serum leptin levels. Dissected placentas were examined for the expression of pro-inflammatory cytokines IL-6 and TNF-alpha and the anti-inflammatory cytokine IL-10 using qPCR analysis. No changes were found except for TNF-alpha, which was slightly elevated upon leptin stimulation. However, TNF-alpha protein levels were not significantly higher in placentas from leptin treated mice. Also, leukocyte infiltration in the labyrinth section of placentas was not increased. In summary, our data demonstrate for the first time that elevated leptin levels alone do not induce an inflammatory response in the placenta.

  13. Possible Integrative Actions of Leptin and Insulin Signaling in the Hypothalamus Targeting Energy Homeostasis

    PubMed Central

    Thon, Mina; Hosoi, Toru; Ozawa, Koichiro

    2016-01-01

    Obesity has emerged as one of the most burdensome conditions in modern society. In this context, understanding the mechanisms controlling food intake is critical. At present, the adipocyte-derived hormone leptin and the pancreatic β-cell-derived hormone insulin are considered the principal anorexigenic hormones. Although leptin and insulin signal transduction pathways are distinct, their regulation of body weight maintenance is concerted. Resistance to the central actions of leptin or insulin is linked to the emergence of obesity and diabetes mellitus. A growing body of evidence suggests a convergence of leptin and insulin intracellular signaling at the insulin–receptor–substrate–phosphatidylinositol-3-kinase level. Moreover, numerous factors mediating the pathophysiology of leptin resistance, a hallmark of obesity, such as endoplasmic reticulum stress, protein tyrosine phosphatase 1B, and suppressor of cytokine signaling 3 also contribute to insulin resistance. Recent studies have also indicated that insulin potentiates leptin-induced signaling. Thus, a greater understanding of the overlapping functions of leptin and insulin in the central nervous system is vital to understand the associated physiological and pathophysiological states. This mini-review focuses on the cross talk and integrative signaling of leptin and insulin in the regulation of energy homeostasis in the brain. PMID:27812350

  14. Selection of non-competitive leptin antagonists using a random nanobody-based approach.

    PubMed

    Zabeau, Lennart; Verhee, Annick; Catteeuw, Dominiek; Faes, Liesbeth; Seeuws, Sylvie; Decruy, Tine; Elewaut, Dirk; Peelman, Frank; Tavernier, Jan

    2012-01-01

    The adipocyte-derived cytokine leptin acts as a metabolic switch, connecting the body's metabolism to high-energy consuming processes such as reproduction and immune responses. Accumulating evidence suggests that leptin plays a role in human pathologies, such as autoimmune diseases and cancer, thus providing a rationale for the development of leptin antagonists. In the present study, we generated and evaluated a panel of neutralizing nanobodies targeting the LR (leptin receptor). A nanobody comprises the variable domain of the naturally occurring single-chain antibodies found in members of the Camelidae family. We identified three classes of neutralizing nanobodies targeting different LR subdomains: i.e. the CRH2 (cytokine receptor homology 2), Ig-like and FNIII (fibronectin type III) domains. Only nanobodies directed against the CRH2 domain inhibited leptin binding. We could show that a nanobody that targets the Ig-like domain potently interfered with leptin-dependent regulation of hypothalamic NPY (neuropeptide Y) expression. As a consequence, daily intraperitoneal injection increased body weight, body fat content, food intake, liver size and serum insulin levels. All of these characteristics resemble the phenotype of leptin and LR-deficient animals. The results of the present study support proposed models of the activated LR complex, and demonstrate that it is possible to block LR signalling without affecting ligand binding. These nanobodies form new tools to study the mechanisms of BBB (blood-brain barrier) leptin transport and the effect of LR inhibition in disease models. PMID:21851341

  15. Skeletal bone morphology is resistant to the high amplitude seasonal leptin cycle in the Siberian hamster.

    PubMed

    Rousseau, K; Atcha, Z; Denton, J; Cagampang, F R A; Ennos, A R; Freemont, A J; Loudon, A S I

    2005-09-01

    Recent studies have suggested that the adipocyte-derived hormone, leptin, plays a role in the regulation of metabolism. Here, we tested this hypothesis in the seasonally breeding Siberian hamster, as this species exhibits profound seasonal changes in adiposity and circulating leptin concentrations driven by the annual photoperiodic cycle. Male hamsters were kept in either long (LD) or short (SD) photoperiods. Following exposure to short photoperiods for 8 weeks animals exhibited a significant weight-loss and a 16-fold reduction of serum leptin concentrations. At Week 9, animals in both photoperiods were infused with leptin or PBS via osmotic mini-pump for 14 days. Chronic leptin infusion mimicked LD-like concentrations in SD-housed animals and caused a further decline in body weight and adipose tissue. In LD-housed animals, leptin infusion resulted in a significant elevation of serum concentrations above natural LD-like levels, but had no discernable effect on body weight or overall adiposity. Both bending and compression characteristics and histomorphometric measurements of trabecular bone mass were unaltered by leptin treatment or photoperiod. Our data therefore show that despite a high natural amplitude cycle of leptin, this hormone has no apparent role in the regulation of bone metabolism, and therefore do not support recent propositions that this hormone is an important component in the metabolism of bone tissue.

  16. Dynamics of protein secretion during adipocyte differentiation.

    PubMed

    Ojima, Koichi; Oe, Mika; Nakajima, Ikuyo; Muroya, Susumu; Nishimura, Takanori

    2016-08-01

    The major functions of adipocytes include both lipid storage and the production of secretory factors. However, the type of proteins released from mouse 3T3-L1 cells during adipocyte differentiation remains poorly understood. We examined the dynamics of secreted proteins during adipocyte differentiation using mass spectrometry (MS) combined with an iTRAQ (®) labeling method that enables the simultaneous analysis of relative protein expression levels. A total of 215 proteins were identified and quantified from approximately 10 000 MS/MS spectra. Of these, approximately 38% were categorized as secreted proteins based on gene ontology classification. Adipokine secretion levels were increased with the progression of differentiation. By contrast, levels of fibril collagen components, such as subunits of type I and III collagens, were decreased during differentiation. Basement membrane components attained their peak levels at day 4 when small lipid droplets accumulated in differentiated 3T3-L1 cells. Simultaneously, peak levels of collagen microfibril components that comprise type V and VI collagen subunits were also observed. Our data demonstrated that extracellular matrix components were predominantly released during the early and middle stages of adipocyte differentiation, with a subsequent increase in the secretion of adipokines. This suggests that 3T3-L1 cells secrete adipokines after their ECM is constructed during adipocyte differentiation. PMID:27516960

  17. Insights into an adipocyte whitening program

    PubMed Central

    Hill, Bradford G

    2015-01-01

    White adipose tissue plays a critical role in regulating systemic metabolism and can remodel rapidly in response to changes in nutrient availability. Nevertheless, little is known regarding the metabolic changes occurring in adipocytes during obesity. Our laboratory recently addressed this issue in a commonly used, high-fat-diet mouse model of obesity. We found remarkable changes in adipocyte metabolism that occur prior to infiltration of macrophages in expanding adipose tissue. Results of metabolomic analyses, adipose tissue respirometry, electron microscopy, and expression analyses of key genes and proteins revealed dysregulation of several metabolic pathways, loss of mitochondrial biogenetic capacity, and apparent activation of mitochondrial autophagy which were followed in time by downregulation of numerous mitochondrial proteins important for maintaining oxidative capacity. These findings demonstrate the presence of an adipocyte whitening program that may be critical for regulating adipose tissue remodeling under conditions of chronic nutrient excess. PMID:26167407

  18. Leptin Responsive and GABAergic Projections to the Rostral Preoptic Area in Mice.

    PubMed

    Zuure, W A; Quennell, J H; Anderson, G M

    2016-03-01

    The adipocyte-derived hormone leptin plays a critical role in the control of reproduction via signalling in hypothalamic neurones. The drivers of the hypothalamic-pituitary-gonadal axis, the gonadotrophin-releasing hormone (GnRH) neurones, do not have the receptors for leptin. Therefore, intermediate leptin responsive neurones must provide leptin-to-GnRH signalling. We investigated the populations of leptin responsive neurones that provide input to the rostral preoptic area (rPOA) where GnRH cell bodies reside. Fluorescent retrograde tracer beads (RetroBeads; Lumafluor Inc., Naples, FL, USA) were injected into the rPOA of transgenic leptin receptor enhanced green fluorescent protein (Lepr-eGFP) reporter mice. Uptake of the RetroBeads by Lepr-eGFP neurones was assessed throughout the hypothalamus. RetroBead uptake was most evident in the medial arcuate nucleus (ARC), the dorsomedial nucleus (DMN) and the ventral premammillary nucleus (PMV) of the hypothalamus. The uptake of RetroBeads specifically by Lepr-eGFP neurones was highest in the medial ARC (18% of tracer-labelled neurones Lepr-eGFP-positive). Because neurones that are both leptin responsive and GABAergic play a critical role in the regulation of fertility by leptin, we next focussed on the location of these populations. To address whether GABAergic neurones in leptin-responsive hypothalamic regions project to the rPOA, the experiment was repeated in GABA neurone reporter mice (Vgat-tdTomato). Between 10% and 45% of RetroBead-labelled neurones in the ARC were GABAergic, whereas uptake of tracer by GABAergic neurones in the DMN and PMV was very low (< 5%). These results show that both leptin responsive and GABAergic neurones from the ARC project to the region of the GnRH cell bodies. Our findings suggest that LEPR-expressing GABA neurones from the ARC may be mediators of leptin-to-GnRH signalling.

  19. Plasma concentration of total leptin and human lung-cancer-associated cachexia.

    PubMed

    Simons, J P; Schols, A M; Campfield, L A; Wouters, E F; Saris, W H

    1997-09-01

    1. Adipocyte-derived leptin is postulated to represent the afferent hormonal signal to the hypothalamus in a feedback mechanism that regulates fat mass. In this proposed feedback mechanism, increased fat mass leads to an elevated plasma leptin level that eventually induces a decrease in appetite and an increase in energy expenditure, and vice versa. 2. As anorexia and hypermetabolism play a role in the development of cancer cachexia, we investigated the hypothesis that underlying abnormalities in the leptin feedback mechanism (in particular relatively high plasma leptin levels or, on the other hand, a hypothalamic insensitivity to a fall in leptin levels) might be involved. For this purpose, total plasma leptin, body composition (fat mass and fat-free mass), appetite and resting energy expenditure were assessed in 21 male lung-cancer patients. 3. Total leptin was detectable in six patients and non-detectable in 15. In comparison with the latter, the patients with detectable leptin were characterized by a trend towards less weight loss (3.4% compared with 11.0%, P = 0.07), as being less underweight (body mass index 23.8 kg/m2 compared with 19.4 kg/m2, P = 0.004) and by a higher fat mass (21.4 kg compared with 9.7 kg, P = 0.001). Significant between-group differences in appetite and resting energy expenditure were lacking. 4. Based on these findings, we conclude that in cancer the afferent part of the leptin feedback mechanism functions normally and that, in particular, elevated leptin levels are not involved in the development of cachexia. Since the absence of plasma leptin was not associated with an increased appetite and decreased energy expenditure, disturbances in the hypothalamic part of the feedback mechanism are hypothesized. PMID:9337643

  20. Evaluation of leptin receptor expression on buffalo leukocytes.

    PubMed

    De Matteis, Giovanna; Grandoni, Francesco; Scatà, Maria Carmela; Catizone, Angela; Reale, Anna; Crisà, Alessandra; Moioli, Bianca

    2016-09-01

    Experimental evidences support a direct role for leptin in immunity. Besides controlling food intake and energy expenditure, leptin was reported to be involved in the regulation of the immune system in ruminants. The aim of this work was to highlight the expression of leptin receptor (LEPR) on Bubalus bubalis immune cells using a multi-approach assessment: flow cytometry, confocal microscopy and gene expression analysis. Flow cytometric analysis of LEPR expression showed that peripheral blood monocytes were the predominant cells expressing LEPR. This result was corroborated by confocal microscopy and RT-PCR analysis. Moreover, among lymphocytes, LEPR was mainly expressed by B lymphocytes and Natural Killer cells. Evidence of LEPR expression on buffalo blood leukocytes showed to be a good indicator of the responsivity of these cells to leptin, so confirming the involvement of leptin in buffalo immune response. PMID:27436440

  1. Leptin Is an Anti-Apoptotic Effector in Placental Cells Involving p53 Downregulation

    PubMed Central

    Toro, Ayelén Rayen; Maymó, Julieta Lorena; Ibarbalz, Federico Matías; Pérez, Antonio Pérez; Maskin, Bernardo; Faletti, Alicia Graciela; Margalet, Víctor Sánchez; Varone, Cecilia Laura

    2014-01-01

    Leptin, a peripheral signal synthetized by the adipocyte to regulate energy metabolism, can also be produced by placenta, where it may work as an autocrine hormone. We have previously demonstrated that leptin promotes proliferation and survival of trophoblastic cells. In the present work, we aimed to study the molecular mechanisms that mediate the survival effect of leptin in placenta. We used the human placenta choriocarcinoma BeWo and first trimester Swan-71 cell lines, as well as human placental explants. We tested the late phase of apoptosis, triggered by serum deprivation, by studying the activation of Caspase-3 and DNA fragmentation. Recombinant human leptin added to BeWo cell line and human placental explants, showed a decrease on Caspase-3 activation. These effects were dose dependent. Maximal effect was achieved at 250 ng leptin/ml. Moreover, inhibition of endogenous leptin expression with 2 µM of an antisense oligonucleotide, reversed Caspase-3 diminution. We also found that the cleavage of Poly [ADP-ribose] polymerase-1 (PARP-1) was diminished in the presence of leptin. We analyzed the presence of low DNA fragments, products from apoptotic DNA cleavage. Placental explants cultivated in the absence of serum in the culture media increased the apoptotic cleavage of DNA and this effect was prevented by the addition of 100 ng leptin/ml. Taken together these results reinforce the survival effect exerted by leptin on placental cells. To improve the understanding of leptin mechanism in regulating the process of apoptosis we determined the expression of different intermediaries in the apoptosis cascade. We found that under serum deprivation conditions, leptin increased the anti-apoptotic BCL-2 protein expression, while downregulated the pro-apoptotic BAX and BID proteins expression in Swan-71 cells and placental explants. In both models leptin augmented BCL-2/BAX ratio. Moreover we have demonstrated that p53, one of the key cell cycle-signaling proteins, is

  2. The response of the hypothalamic-pituitary-gonadal axis to fasting is modulated by leptin.

    PubMed

    Steiner, J; LaPaglia, N; Kirsteins, L; Emanuele, M; Emanuele, N

    2003-05-01

    Reproductive function is intimately related to caloric consumption. During fasting states, the hormones regulating reproduction, those of the hypothalamic-pituitary-gonadal axis, in particular, are severely altered. With the exciting observations that the obese (ob) gene product leptin, may also modulate neuroendocrine functions, we examined leptin's ability to prevent the consequences of fasting on reproductive hormones. Two groups of male rats, aged 65 days old, were either fasted and saline-injected or fasted and leptin-treated for approximately three days. Another group was given free access to rat chow. Leptin was able to prevent the fasting-induced fall of serum testosterone. Similar to testosterones dependence on leptin, leptin concentrations were somewhat dependent on testosterone. Castration accelerated the normal, age-related increase in serum leptin. Leptin also prevented the fasting-induced fall in luteinizing hormone (LH). The increase of beta-LH mRNA seen in the fasting state was prevented by leptin. There were no differences noted in luteinizing hormone releasing hormone (LHRH) mRNA among any of the groups. While neither fasting nor fasting plus leptin caused changes in serum prolactin, the increase in prolactin mRNA seen in fasted animals was prevented by leptin treatment. These data support the hypothesis that leptin plays a specific role in mediating the response of reproductive hormones to the nutritional status of the organism.

  3. Expression of interleukins, neuropeptides, and growth hormone receptor and leptin receptor genes in adipose tissue from growing broiler chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, total RNA was collected from abdominal adipose tissue samples obtained from ten broiler chickens at 3, 4, 5, and 6 weeks of age and prepared for quantitative real-time PCR analysis. Studies of the gene expression of cytokines and associated genes in chicken adipose tissue were initia...

  4. Association of polymorphisms at DGAT1, leptin, SCD1, CAPN1 and CAST genes with color, marbling and water holding capacity in meat from beef cattle populations in Sweden.

    PubMed

    Li, Xin; Ekerljung, Marie; Lundström, Kerstin; Lundén, Anne

    2013-06-01

    The objective of this study was to investigate the associations of single nucleotide polymorphisms (SNPs) at five candidate genes with meat pH, color, marbling and water holding capacity (WHC) in young bulls from five beef breeds (n=243) in Sweden. The UASMS2 polymorphism at the leptin gene and the SNPs at the Stearoyl-CoA desaturase 1 gene (SCD1.878) and μ-calpain gene (CAPN1:c.947) were associated with variation in meat color traits after 6days of exposure to air. The K232A polymorphism at the diacylglycerol O-acyltransferase 1 (DGAT1) gene and the CAPN1:c.947 SNP were associated with level of beef marbling. There was no association between the SNP at the calpastatin gene (CAST:c.155) and meat quality traits, nor was there any association of the tested SNPs with WHC traits and pH value.

  5. Leptin selectively decreases visceral adiposity and enhances insulin action.

    PubMed Central

    Barzilai, N; Wang, J; Massilon, D; Vuguin, P; Hawkins, M; Rossetti, L

    1997-01-01

    Intraabdominal adiposity and insulin resistance are risk factors for diabetes mellitus, dyslipidemia, arteriosclerosis, and mortality. Leptin, a fat-derived protein encoded by the ob gene, has been postulated to be a sensor of energy storage in adipose tissue capable of mediating a feedback signal to sites involved in the regulation of energy homeostasis. Here, we provide evidence for specific effects of leptin on fat distribution and in vivo insulin action. Leptin (LEP) or vehicle (CON) was administered by osmotic minipumps for 8 d to pair-fed adult rats. During the 8 d of the study, body weight and total fat mass decreased similarly in LEP and in CON. However, while moderate calorie restriction (CON) resulted in similar decreases in whole body (by 20%) and visceral (by 21%) fat, leptin administration led to a specific and marked decrease (by 62%) in visceral adiposity. During physiologic hyperinsulinemia (insulin clamp), leptin markedly enhanced insulin action on both inhibition of hepatic glucose production and stimulation of glucose uptake. Finally, leptin exerted complex effects on the hepatic gene expression of key metabolic enzymes and on the intrahepatic partitioning of metabolic fluxes, which are likely to represent a defense against excessive storage of energy in adipose depots. These studies demonstrate novel actions of circulating leptin in the regulation of fat distribution, insulin action, and hepatic gene expression and suggest that it may play a role in the pathophysiology of abdominal obesity and insulin resistance. PMID:9399957

  6. Leptin recruits Creb-regulated transcriptional coactivator 1 to improve hyperglycemia in insulin-deficient diabetes

    PubMed Central

    Kim, Geun Hyang; Szabo, Andras; King, Emily M.; Ayala, Jennifer; Ayala, Julio E.; Altarejos, Judith Y.

    2014-01-01

    Objective Leptin alleviates hyperglycemia in rodent models of Type 1 diabetes by activating leptin receptors within the central nervous system. Here we delineate whether non-canonical leptin signaling through the Creb-regulated transcriptional coactivator 1 (Crtc1) contributes to leptin-dependent improvements in diabetic glucose metabolism. Methods We employed mice with a targeted genetic disruption of Crtc1, tracer dilution techniques and neuroanatomical studies to interrogate whether Crtc1 enables leptin to improve glucose metabolism in streptozotocin-induced (STZ) diabetes. Results Here we show that leptin improves diabetic glucose metabolism through Crtc1-dependent and independent mechanisms. We find that leptin reduces diabetic hyperglycemia, hepatic gluconeogenic gene expression and selectively increases glucose disposal to brown adipose tissue and heart, in STZ-diabetic Crtc1WT mice but not Crtc1+/− mice. By contrast, leptin decreases circulating glucagon levels in both STZ-diabetic Crtc1WT and Crtc1+/− mice. We also demonstrate that leptin promotes Crtc1 nuclear translocation in pro-opiomelanocortin (Pomc) and non-Pomc neurons within the hypothalamic arcuate nucleus (ARC). Accordingly, leptin's ability to induce Pomc gene expression in the ARC is blunted in STZ-diabetic Crtc1+/− mice. Conclusions Our study reveals that Crtc1 functions as a conduit for leptin's glucoregulatory actions in insulin-dependent diabetes. This study also highlights a new role for Crtc1 in modulating peripheral glucose metabolism. PMID:25737949

  7. Specific increase in leptin production in obese (falfa) rat adipose cells.

    PubMed Central

    Turban, Sophie; Hainault, Isabelle; Truccolo, Johan; Andre, Jocelyne; Ferre, Pascal; Quignard-Boulange, Annie; Guerre-Millo, Michèle

    2002-01-01

    In the obese state, enlarged adipose cells display an altered gene-expression profile and metabolic capacity. The aim of this study was to gain insight into their secretory function, by assessing two secreted proteins, leptin and angiotensinogen, in adipose cells of obese (fa/fa) Zucker rats. A marked and co-ordinate increase in leptin mRNA, gene transcription and promoter activity was observed in obese compared with lean (Fa/fa) rat adipose cells, and this resulted in increased leptin release in culture. Two sets of observations suggest that this effect is due to the fa mutation. First, adipose-cell leptin release was higher in heterozygous (Fa/fa) than in homozygous (Fa/Fa) lean rats. Second, leptin release was not enhanced in enlarged adipose cells of FalFa rats fed a high-fat diet for 15 days. At variance with leptin, angiotensinogen production was not significantly increased in the obese cells. Dexamethasone stimulated both leptin and angiotensinogen release in lean and obese rat adipose cells. The magnitude of leptin stimulation was higher in fa/fa than in Fa/fa rats, whereas angiotensinogen release was increased to the same extent in both genotypes. These observations suggest that leptin production is specifically enhanced in enlarged adipose cells of obese Zucker rats and that cell hypertrophy is not the sole determinant of this feature. Increased leptin production might be related to disruption of leptin signalling by the fa mutation. PMID:11829746

  8. Specific increase in leptin production in obese (falfa) rat adipose cells.

    PubMed

    Turban, Sophie; Hainault, Isabelle; Truccolo, Johan; Andre, Jocelyne; Ferre, Pascal; Quignard-Boulange, Annie; Guerre-Millo, Michèle

    2002-02-15

    In the obese state, enlarged adipose cells display an altered gene-expression profile and metabolic capacity. The aim of this study was to gain insight into their secretory function, by assessing two secreted proteins, leptin and angiotensinogen, in adipose cells of obese (fa/fa) Zucker rats. A marked and co-ordinate increase in leptin mRNA, gene transcription and promoter activity was observed in obese compared with lean (Fa/fa) rat adipose cells, and this resulted in increased leptin release in culture. Two sets of observations suggest that this effect is due to the fa mutation. First, adipose-cell leptin release was higher in heterozygous (Fa/fa) than in homozygous (Fa/Fa) lean rats. Second, leptin release was not enhanced in enlarged adipose cells of FalFa rats fed a high-fat diet for 15 days. At variance with leptin, angiotensinogen production was not significantly increased in the obese cells. Dexamethasone stimulated both leptin and angiotensinogen release in lean and obese rat adipose cells. The magnitude of leptin stimulation was higher in fa/fa than in Fa/fa rats, whereas angiotensinogen release was increased to the same extent in both genotypes. These observations suggest that leptin production is specifically enhanced in enlarged adipose cells of obese Zucker rats and that cell hypertrophy is not the sole determinant of this feature. Increased leptin production might be related to disruption of leptin signalling by the fa mutation.

  9. Up-regulation of blood-brain barrier short-form leptin receptor gene products in rats fed a high fat diet.

    PubMed

    Boado, R J; Golden, P L; Levin, N; Pardridge, W M

    1998-10-01

    Leptin is a 16-kDa protein synthesized in adipose tissue that produces a satiety effect in the CNS. Leptin may gain access to the brain via receptor-mediated transport through the blood-brain barrier (BBB), and the BBB leptin receptor (OBR) may regulate the availability of circulating leptin to brain cells. The aim of the present study was twofold: first, to identify the OBR isoform expressed at the BBB, i.e., short, or "a," and long, or "b," form; and second, to compare the abundance of the BBB OBR mRNA and protein between control and high fat-fed rats. RT-PCR with isoform-specific primers showed that OBRa is the most abundant isoform at the BBB. BBB OBRa transcript content was markedly increased in high fat-fed rats compared with controls (11-fold), and no changes were observed in the expression of the internal standard control actin. The high fat feeding induction of OBR mRNA was correlated with an increase in the immunoreactive BBB OBR determined by immunocytochemistry using an all-isoform reactive antibody in high fat-fed obese rats. This investigation demonstrates (a) the OBRa is the principal leptin receptor expressed at the BBB and (b) this BBB OBR isoform is up-regulated by a high fat diet.

  10. The effects of protein supplement on leptin concentrations in lambs and meat goat kids grazing Bermudagrass pastures in Central Oklahoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lambs and kids weaned and pastured on bermudagrass (BG; Cynodon dactylon) may not receive enough protein to reach maximal growth during mid to late summer when protein in BG pastures declines. As an indicator of physiological status, leptin is an adipocyte-derived hormone that increases as body cond...

  11. Methanolic leaf extract of Gymnema sylvestre augments glucose uptake and ameliorates insulin resistance by upregulating glucose transporter-4, peroxisome proliferator-activated receptor-gamma, adiponectin, and leptin levels in vitro

    PubMed Central

    Kumar, Puttanarasaiah Mahesh; Venkataranganna, Marikunte V.; Manjunath, Kirangadur; Viswanatha, Gollapalle L.; Ashok, Godavarthi

    2016-01-01

    Aims: The present study was undertaken to evaluate the effect of methanolic leaf extract of Gymnema sylvestre (MLGS) on glucose transport (GLUT) and insulin resistance in vitro. Materials and Methods: Peroxisome proliferator-activated receptor-gamma (PPAR-γ) and GLUT-4 expression were assessed in L6 myotubes for concluding the GLUT activity, and adiponectin and leptin expression was studied in 3T3 L1 murine adipocyte cell line to determine the effect of MLGS (250-750 μg/ml) on insulin resistance. Results: The findings of the experiments have demonstrated a significant and dose-dependent increase in glucose uptake in all the tested concentrations of MLGS, further the glucose uptake activity of MLGS (750 μg/ml) was at par with rosiglitazone (50 μg/ml). Concomitantly, MLGS has shown enhanced GLUT-4 and PPAR-γ gene expressions in L6 myotubes. Furthermore, cycloheximide (CHX) had completely abolished the glucose uptake activity of MLGS when co-incubated, which further confirmed that glucose uptake activity of MLGS was linked to enhanced expression of GLUT-4 and PPAR-γ. In addition, in another experimental set, MLGS showed enhanced expression of adiponectin and leptin, thus confirms the ameliorative effect of MLGS on insulin resistance. Conclusion: These findings suggest that MLGS has an enhanced glucose uptake activity in L6 myotubes, and ameliorate the insulin resistance in 3T3 L1 murine adipocyte cell line in vitro. PMID:27104035

  12. Insulin enhanced leptin-induced STAT3 signaling by inducing GRP78

    PubMed Central

    Thon, Mina; Hosoi, Toru; Ozawa, Koichiro

    2016-01-01

    Leptin, an adipocyte-derived hormone, centrally regulates energy homeostasis. Overlaps in the regulation of glucose and energy homeostasis have been reported between leptin and insulin. However, the effects of insulin on leptin’s actions in the central nervous system (CNS) have not yet been elucidated in detail. In the present study, we found that insulin potentiated leptin’s actions through GRP78 in the neuronal cell line, SH-SY5Y-ObRb. Since insulin induces GRP78, we speculated that it may also enhance leptin’s actions through this induction. We found that insulin enhanced leptin-induced STAT3 phosphorylation and this effect was ameliorated by the knockdown of GRP78. The role of GRP78 in leptin’s actions was also confirmed by impairments in leptin-induced STAT3 phosphorylation in HEK293-ObRb cells in which GRP78 was knocked down. Furthermore, we found that the overexpression of GRP78 enhanced leptin-induced STAT3 phosphorylation. These results suggest that GRP78 plays an important role in leptin’s actions. Furthermore, insulin may enhance the leptin-induced activation of STAT3 by inducing GRP78, which may provide an important connection between insulin and leptin in the CNS. PMID:27677243

  13. Leptin Deficiency Causes Insulin Resistance Induced by Uncontrolled Diabetes

    PubMed Central

    German, Jonathan P.; Wisse, Brent E.; Thaler, Joshua P.; Oh-I, Shinsuke; Sarruf, David A.; Ogimoto, Kayoko; Kaiyala, Karl J.; Fischer, Jonathan D.; Matsen, Miles E.; Taborsky, Gerald J.; Schwartz, Michael W.; Morton, Gregory J.

    2010-01-01

    OBJECTIVE Depletion of body fat stores during uncontrolled, insulin-deficient diabetes (uDM) results in markedly reduced plasma leptin levels. This study investigated the role of leptin deficiency in the genesis of severe insulin resistance and related metabolic and neuroendocrine derangements induced by uDM. RESEARCH DESIGN AND METHODS Adult male Wistar rats remained nondiabetic or were injected with the β-cell toxin, streptozotocin (STZ) to induce uDM and subsequently underwent subcutaneous implantation of an osmotic minipump containing either vehicle or leptin at a dose (150 μg/kg/day) designed to replace leptin at nondiabetic plasma levels. To control for leptin effects on food intake, another group of STZ-injected animals were pair fed to the intake of those receiving leptin. Food intake, body weight, and blood glucose levels were measured daily, with body composition and indirect calorimetry performed on day 11, and an insulin tolerance test to measure insulin sensitivity performed on day 16. Plasma hormone and substrate levels, hepatic gluconeogenic gene expression, and measures of tissue insulin signal transduction were also measured. RESULTS Physiologic leptin replacement prevented insulin resistance in uDM via a mechanism unrelated to changes in food intake or body weight. This effect was associated with reduced total body fat and hepatic triglyceride content, preservation of lean mass, and improved insulin signal transduction via the insulin receptor substrate–phosphatidylinositol-3-hydroxy kinase pathway in the liver, but not in skeletal muscle or adipose tissue. Although physiologic leptin replacement lowered blood glucose levels only slightly, it fully normalized elevated plasma glucagon and corticosterone levels and reversed the increased hepatic expression of gluconeogenic enzymes characteristic of rats with uDM. CONCLUSIONS We conclude that leptin deficiency plays a key role in the pathogenesis of severe insulin resistance and related endocrine

  14. Up-regulation of apolipoprotein E by leptin in the hypothalamus of mice and rats

    PubMed Central

    Shen, Ling; Tso, Patrick; Wang, David Q.-H.; Woods, Stephen C.; Davidson, W. Sean; Sakai, Randall; Liu, Min

    2009-01-01

    Apolipoprotein E (apoE) is a satiation factor, playing an important role in the regulation of food intake and body weight. We previously reported that apoE was present in the hypothalamus, but it is unclear which type of the cells in this brain area expressing apoE. In addition, hypothalamic apoE mRNA levels were significantly reduced in both genetically obese ob/ob (leptin deficient) mice and high-fat diet-induced obese (leptin resistant) rats, raising the possibility that deficient leptin signaling might be related to the change in apoE gene expression. In the present studies, using double-staining immunohistochemistry, we demonstrated that apoE is mainly present in astrocytes. To characterize the effect of leptin on apoE gene expression, ob/ob and db/db mice were treated with recombinant mouse leptin (3 μg/g daily, i.p.) or vehicle for 5 days. We found that the increased hypothalamic apoE mRNA levels occurred only in leptin-treated ob/ob, but not in pair-fed ob/ob, or db/db, mice, indicating that leptin up-regulated hypothalamic apoE gene expression depends upon an intact leptin receptor, and this effect is not related to the changes in food intake and body weight. The reduced apoE gene expression caused by fasting, which also results in relatively lower leptin level, is restored by intracerebroventricular administration of leptin. In addition, leptin was significantly less efficacious in apoE KO mice because these animals consumed more food and lost less weight following leptin treatment, compared with wild-type controls. These observations imply that apoE signaling, at least partially, mediates the inhibitory effects of leptin on feeding. PMID:19481557

  15. Leptin in reproduction.

    PubMed

    Caprio, M; Fabbrini, E; Isidori, A M; Aversa, A; Fabbri, A

    2001-03-01

    In mammals, the function of the reproductive system is dependent on the availability of energy in the environment. It is well established that acute modifications of energy balance modulate the hypothalamic-pituitary-gonadal axis. In several species, fasting and caloric restriction have been shown to cause the suppression of pulsatile luteinizing hormone secretion, via an inhibition of the gonadotropin-releasing hormone pulse generator. Such a mechanism probably prevents energy being wasted for reproduction. By contrast, excessive energy storage and obesity interfere with the correct regulation of the reproductive axis. The identification of leptin and leptin receptors, along with studies performed in animal models of leptin deficiency and resistance, has focused attention on the role of this molecule in reproduction, and disclosed new aspects of the relationship between energy stores, adipose tissue and reproductive function. Here, we discuss the central and peripheral effects of leptin on reproductive tissues, and try to fit a complex reality into a simplified model. In particular, the roles of leptin in reproduction at different anatomical levels and in various clinical and experimental settings are discussed.

  16. The leptin system and its expression at different nutritional and pregnant stages in lined seahorse (Hippocampus erectus)

    PubMed Central

    Zhang, Huixian; Qin, Geng; Zhang, Yanhong; Li, Shuisheng

    2016-01-01

    ABSTRACT Leptin is an essential hormone for the regulation of energy metabolism and food intake in vertebrate animals. To better understand the physiological roles of leptin in nutrient regulation in paternal ovoviviparous fish (family Syngnathidae), the present study cloned the full-length of leptin-a and leptin receptor (lepr) genes in lined seahorse (Hippocampus erectus). Results showed that there was a 576-bp intron between two exons in leptin-a gene but no leptin-b gene in seahorse. Although the primary amino acid sequence conservation of seahorse leptin-a was very low, the 3-D structure modeling of seahorse leptin-a revealed strong conservation of tertiary structure with other vertebrates. Seahorse leptin-a mRNA was highly expressed in brain, whereas lepr mRNA was mainly expressed in ovary and gill. Interestingly, both leptin-a and lepr mRNA were expressed in the brood pouch of male seahorse, suggesting the leptin system plays a role during the male pregnancy. Physiological experiments showed that the expression of hepatic leptin-a and lepr mRNA in unfed seahorses was significantly higher than that in those fed 100%, as well as 60%, of their food during the fasting stage, showing that seahorse might initiate the leptin system to regulate its energy metabolism while starving. Moreover, the expression of leptin-a in the brood pouch of pregnant seahorse was significantly upregulated compared with non-pregnant seahorse, whereas the expression of lepr was downregulated, suggesting that the leptin system might be involved in the male pregnancy. In conclusion, the leptin system plays a role in the energy metabolism and food intake, and might provide new insights into molecular regulation of male pregnancy in seahorse. PMID:27628034

  17. Role of leptin and leptin receptors in hematological malignancies.

    PubMed

    Uddin, Shahab; Mohammad, Ramzi M

    2016-01-01

    Leptin is an adipose-derived cytokine that has an important role in bodyweight homeostasis and energy balance. There are a number of studies which have suggested that leptin and its receptors dysregulation play a critical role in the development of malignancies including hematological malignancies, mainly via activation of the JAK/STAT pathway which regulates downstream signaling pathways such as PI3K/AKT signaling and ERK1/2. In this review, current understandings of leptin/leptin receptors mediated pathogenesis in various lymphoid malignancies are described. Blocking of the leptin receptor might be a unique therapeutic approach for many hematological malignancies.

  18. Analysis of Tyr to Phe and fa/fa leptin receptor mutations in the PC12 cell line.

    PubMed

    Eyckerman, S; Waelput, W; Verhee, A; Broekaert, D; Vandekerckhove, J; Tavernier, J

    1999-12-01

    Weight regulation through body-fat content and energy homeostasis, is regulated mainly through the actions of leptin. Herein, we analyse the effect of mutations in the mouse leptin receptor using the PC12 pheochromocytoma cell line as a model system. Both the induction of pancreatitis associated protein 1 and metallothionein-II, two leptin regulated genes in PC12, was evaluated. Tyr to Phe mutations in the cytoplasmic tail of the mouse leptin receptor confirmed the critical role of Tyr1138 (a YxxQ motif) and STAT-3 activation for induction of leptin-induced genes in PC12. In addition, the Tyr985Phe mutation showed enhanced responsiveness to leptin, which was even more pronounced in combination with Tyr1077Phe. The short isoform of the leptin receptor showed complete loss of stimulation of both genes. In contrast, a leptin receptor devoid of all Tyr residues in its cytoplasmic tail was still capable of a limited induction of the PAP 1 gene. A mutant mouse leptin receptor containing the fa/fa mutation showed constitutive signalling and impaired responsiveness to leptin. Treatment with the adenylate cyclase activator forskolin alone, in the absence of leptin was sufficient to obtain full induction of both genes. PMID:10586122

  19. Synchronicity of frequently sampled, 24-h concentrations of circulating leptin, luteinizing hormone, and estradiol in healthy women.

    PubMed

    Licinio, J; Negrão, A B; Mantzoros, C; Kaklamani, V; Wong, M L; Bongiorno, P B; Mulla, A; Cearnal, L; Veldhuis, J D; Flier, J S; McCann, S M; Gold, P W

    1998-03-01

    Leptin, an adipocyte hormone, is a trophic factor for the reproductive system; however, it is still unknown whether there is a dynamic relation between fluctuations in circulating leptin and hypothalamic-pituitary-ovarian (HPO) axis hormones. To test the hypothesis that fluctuations in plasma leptin concentrations are related to the levels of luteinizing hormone (LH) and estradiol, we sampled plasma from six healthy women every 7 min for 24 h during days 8-11 of the menstrual cycle. Cross-correlation analysis throughout the 24-h cycle revealed a relation between release patterns of leptin and LH, with a lag of 42-84 min but no significant cross-correlation between LH and estradiol. The ultradian fluctuations in leptin levels showed pattern synchrony with those of both LH and estradiol as determined by cross-approximate entropy (cross-ApEn). At night, as leptin levels rose to their peak, the pulsatility profiles of LH changed significantly and became synchronous with those of leptin. LH pulses were fewer, of longer duration, higher amplitude, and larger area than during the day. Moreover, the synchronicity of LH and leptin occurred late at night, at which time estradiol and leptin also exhibited significantly stronger pattern coupling than during the day. We propose that leptin may regulate the minute-to-minute oscillations in the levels of LH and estradiol, and that the nocturnal rise in leptin may determine the change in nocturnal LH profile in the mid-to-late follicular phase that precedes ovulation. This may explain the disruption of hypothalamic-pituitary-ovarian function that is characteristic of states of low leptin release, such as anorexia nervosa and cachexia.

  20. ASK1 signalling regulates brown and beige adipocyte function

    PubMed Central

    Hattori, Kazuki; Naguro, Isao; Okabe, Kohki; Funatsu, Takashi; Furutani, Shotaro; Takeda, Kohsuke; Ichijo, Hidenori

    2016-01-01

    Recent studies suggest that adult humans have active brown or beige adipocytes, the activation of which might be a therapeutic strategy for the treatment of diverse metabolic diseases. Here we show that the protein kinase ASK1 regulates brown and beige adipocytes function. In brown or white adipocytes, the PKA-ASK1-p38 axis is activated in response to cAMP signalling and contributes to the cell-autonomous induction of genes, including Ucp1. Global and fat-specific ASK1 deficiency leads to impaired metabolic responses, including thermogenesis and oxygen consumption, at the cell and whole-body levels, respectively. Our data thus indicate that the ASK1 signalling axis is a regulator of brown and beige adipocyte gene expression and function. PMID:27045525

  1. Retinoic acid has different effects on UCP1 expression in mouse and human adipocytes

    PubMed Central

    2013-01-01

    Background Increased adipose thermogenesis is being considered as a strategy aimed at preventing or reversing obesity. Thus, regulation of the uncoupling protein 1 (UCP1) gene in human adipocytes is of significant interest. Retinoic acid (RA), the carboxylic acid form of vitamin A, displays agonist activity toward several nuclear hormone receptors, including RA receptors (RARs) and peroxisome proliferator-activated receptor δ (PPARδ). Moreover, RA is a potent positive regulator of UCP1 expression in mouse adipocytes. Results The effects of all-trans RA (ATRA) on UCP1 gene expression in models of mouse and human adipocyte differentiation were investigated. ATRA induced UCP1 expression in all mouse white and brown adipocytes, but inhibited or had no effect on UCP1 expression in human adipocyte cell lines and primary human white adipocytes. Experiments with various RAR agonists and a RAR antagonist in mouse cells demonstrated that the stimulatory effect of ATRA on UCP1 gene expression was indeed mediated by RARs. Consistently, a PPARδ agonist was without effect. Moreover, the ATRA-mediated induction of UCP1 expression in mouse adipocytes was independent of PPARγ coactivator-1α. Conclusions UCP1 expression is differently affected by ATRA in mouse and human adipocytes. ATRA induces UCP1 expression in mouse adipocytes through activation of RARs, whereas expression of UCP1 in human adipocytes is not increased by exposure to ATRA. PMID:24059847

  2. Transient increase in obese gene expression after food intake or insulin administration.

    PubMed

    Saladin, R; De Vos, P; Guerre-Millo, M; Leturque, A; Girard, J; Staels, B; Auwerx, J

    1995-10-12

    Obesity is a disorder of energy balance, indicating a chronic disequilibrium between energy intake and expenditure. Recently, the mouse ob gene, and subsequently its human and rat homologues, have been cloned. The ob gene product, leptin, is expressed exclusively in adipose tissue, and appears to be a signalling factor regulating body-weight homeostasis and energy balance. Because the level of ob gene expression might indicate the size of the adipose depot, we suggest that it is regulated by factors modulating adipose tissue size. Here we show that ob gene exhibits diurnal variation, increasing during the night, after rats start eating. This variation was linked to changes in food intake, as fasting prevented the cyclic variation and decreased ob messenger RNA. Furthermore, refeeding fasted rats restored ob mRNA within 4 hours to levels of fed animals. A single insulin injection in fasted animals increased ob mRNA to levels of fed controls. Experiments to control glucose and insulin independently in animals, and studies in primary adipocytes, showed that insulin regulates ob gene expression directly in rats, regardless of its glucose-lowering effects. Whereas the ob gene product, leptin, has been shown to reduce food intake and increase energy expenditure, our data demonstrate that ob gene expression is increased after food ingestion in rats, perhaps through a direct action of insulin on the adipocyte.

  3. The BBSome Controls Energy Homeostasis by Mediating the Transport of the Leptin Receptor to the Plasma Membrane

    PubMed Central

    Guo, Deng-Fu; Cui, Huxing; Zhang, Qihong; Morgan, Donald A.; Thedens, Daniel R.; Nishimura, Darryl; Grobe, Justin L.; Sheffield, Val C.; Rahmouni, Kamal

    2016-01-01

    Bardet-Biedl syndrome (BBS) is a highly pleiotropic autosomal recessive disorder associated with a wide range of phenotypes including obesity. However, the underlying mechanism remains unclear. Here, we show that neuronal BBSome is a critical determinant of energy balance through its role in the regulation of the trafficking of the long signaling form of the leptin receptor (LRb). Targeted disruption of the BBSome by deleting the Bbs1 gene from the nervous system causes obesity in mice, and this phenotype is reproduced by ablation of the Bbs1 gene selectively in the LRb-expressing cells, but not from adipocytes. Obesity developed as a consequence of both increased food intake and decreased energy expenditure in mice lacking the Bbs1 gene in LRb-expressing cells. Strikingly, the well-known role of BBS proteins in the regulation of ciliary formation and function is unlikely to account for the obesogenic effect of BBS1 loss as disruption of the intraflagellar transport (IFT) machinery required for ciliogenesis by deleting the Ift88 gene in LRb-expressing cells caused a marginal increase in body weight and adiposity. Instead, we demonstrate that silencing BBS proteins, but not IFT88, impair the trafficking of the LRb to the plasma membrane leading to central leptin resistance in a manner independent of obesity. Our data also demonstrate that postnatal deletion of the Bbs1 gene in the mediobasal hypothalamus can cause obesity in mice, arguing against an early neurodevelopmental origin of obesity in BBS. Our results depict a novel mechanism underlying energy imbalance and obesity in BBS with potential implications in common forms of human obesity. PMID:26926121

  4. p53 signaling is involved in leptin-induced growth of hepatic and breast cancer cells.

    PubMed

    Shrestha, Mohan; Park, Pil-Hoon

    2016-09-01

    Leptin, an adipokine predominantly produced from adipose tissue, is well known to induce tumor growth. However, underlying molecular mechanisms are not established yet. While p53 has long been well recognized as a potent tumor suppressor gene, accumulating evidence has also indicated its potential role in growth and survival of cancer cells depending on experimental environments. In the present study, we examined if p53 signaling is implicated in leptin-induced growth of cancer cells. Herein, we demonstrated that leptin treatment significantly increased p53 protein expression in both hepatic (HepG2) and breast (MCF-7) cancer cells without significant effect on mRNA expression. Enhanced p53 expression by leptin was mediated via modulation of ubiquitination, in particular ubiquitin specific protease 2 (USP2)-dependent manner. Furthermore, gene silencing of p53 by small interfering RNA (siRNA) suppressed leptin-induced growth of hepatic and breast cancer cells, indicating the role of p53 signaling in tumor growth by leptin. In addition, we also showed that knockdown of p53 restored suppression of caspase-3 activity by leptin through modulating Bax expression and prevented leptin-induced cell cycle progression, implying the involvement of p53 signaling in the regulation of both apoptosis and cell cycle progression in cancer cells treated with leptin. Taken together, the results in the present study demonstrated the potential role of p53 signaling in leptin-induced tumor growth.

  5. p53 signaling is involved in leptin-induced growth of hepatic and breast cancer cells

    PubMed Central

    Shrestha, Mohan

    2016-01-01

    Leptin, an adipokine predominantly produced from adipose tissue, is well known to induce tumor growth. However, underlying molecular mechanisms are not established yet. While p53 has long been well recognized as a potent tumor suppressor gene, accumulating evidence has also indicated its potential role in growth and survival of cancer cells depending on experimental environments. In the present study, we examined if p53 signaling is implicated in leptin-induced growth of cancer cells. Herein, we demonstrated that leptin treatment significantly increased p53 protein expression in both hepatic (HepG2) and breast (MCF-7) cancer cells without significant effect on mRNA expression. Enhanced p53 expression by leptin was mediated via modulation of ubiquitination, in particular ubiquitin specific protease 2 (USP2)-dependent manner. Furthermore, gene silencing of p53 by small interfering RNA (siRNA) suppressed leptin-induced growth of hepatic and breast cancer cells, indicating the role of p53 signaling in tumor growth by leptin. In addition, we also showed that knockdown of p53 restored suppression of caspase-3 activity by leptin through modulating Bax expression and prevented leptin-induced cell cycle progression, implying the involvement of p53 signaling in the regulation of both apoptosis and cell cycle progression in cancer cells treated with leptin. Taken together, the results in the present study demonstrated the potential role of p53 signaling in leptin-induced tumor growth. PMID:27610035

  6. p53 signaling is involved in leptin-induced growth of hepatic and breast cancer cells.

    PubMed

    Shrestha, Mohan; Park, Pil-Hoon

    2016-09-01

    Leptin, an adipokine predominantly produced from adipose tissue, is well known to induce tumor growth. However, underlying molecular mechanisms are not established yet. While p53 has long been well recognized as a potent tumor suppressor gene, accumulating evidence has also indicated its potential role in growth and survival of cancer cells depending on experimental environments. In the present study, we examined if p53 signaling is implicated in leptin-induced growth of cancer cells. Herein, we demonstrated that leptin treatment significantly increased p53 protein expression in both hepatic (HepG2) and breast (MCF-7) cancer cells without significant effect on mRNA expression. Enhanced p53 expression by leptin was mediated via modulation of ubiquitination, in particular ubiquitin specific protease 2 (USP2)-dependent manner. Furthermore, gene silencing of p53 by small interfering RNA (siRNA) suppressed leptin-induced growth of hepatic and breast cancer cells, indicating the role of p53 signaling in tumor growth by leptin. In addition, we also showed that knockdown of p53 restored suppression of caspase-3 activity by leptin through modulating Bax expression and prevented leptin-induced cell cycle progression, implying the involvement of p53 signaling in the regulation of both apoptosis and cell cycle progression in cancer cells treated with leptin. Taken together, the results in the present study demonstrated the potential role of p53 signaling in leptin-induced tumor growth. PMID:27610035

  7. p53 signaling is involved in leptin-induced growth of hepatic and breast cancer cells

    PubMed Central

    Shrestha, Mohan

    2016-01-01

    Leptin, an adipokine predominantly produced from adipose tissue, is well known to induce tumor growth. However, underlying molecular mechanisms are not established yet. While p53 has long been well recognized as a potent tumor suppressor gene, accumulating evidence has also indicated its potential role in growth and survival of cancer cells depending on experimental environments. In the present study, we examined if p53 signaling is implicated in leptin-induced growth of cancer cells. Herein, we demonstrated that leptin treatment significantly increased p53 protein expression in both hepatic (HepG2) and breast (MCF-7) cancer cells without significant effect on mRNA expression. Enhanced p53 expression by leptin was mediated via modulation of ubiquitination, in particular ubiquitin specific protease 2 (USP2)-dependent manner. Furthermore, gene silencing of p53 by small interfering RNA (siRNA) suppressed leptin-induced growth of hepatic and breast cancer cells, indicating the role of p53 signaling in tumor growth by leptin. In addition, we also showed that knockdown of p53 restored suppression of caspase-3 activity by leptin through modulating Bax expression and prevented leptin-induced cell cycle progression, implying the involvement of p53 signaling in the regulation of both apoptosis and cell cycle progression in cancer cells treated with leptin. Taken together, the results in the present study demonstrated the potential role of p53 signaling in leptin-induced tumor growth.

  8. Correlations Between Leptin Gene Polymorphisms 223 A/G, 1019 G/A, 492 G/C, 976 C/A, and Anthropometrical and Biochemical Parameters in Children With Obesity

    PubMed Central

    Mărginean, Cristina Oana; Mărginean, Claudiu; Voidăzan, Septimiu; Meliţ, Lorena; Crauciuc, Andrei; Duicu, Carmen; Bănescu, Claudia

    2016-01-01

    Abstract The aim of this study was to establish the manner in which the LEPR 223, 1019, 492, and 976 gene polymorphisms influence child obesity. We performed a prospective case-control study on 264 hospitalized children from Romania (Nutrichild study) whom we divided into 2 groups: Group I —143 controls and Group II—121 obese children. The 2 groups were evaluated regarding the anthropometry (MUAC, TST, H/L, hip, and abdominal circumference), paraclinical results (protein, leptin, adiponectin, TNF alfa, IL 6, IL 8, VEGF, protein, albumin) and LEPR 223, 1019, 492, and 976 gene polymorphisms. We noticed that the most frequent genotypes in obese children were AG+GG for LEPR 223 gene (P = 0.0001) and GA+AA for LEPR 1019 gene (P = 0.0001), whereas LEPR 492 and LEPR 976 gene polymorphisms did not correlate with obesity. MUAC, TST, H/L, leptin, and adiponectin were correlated with the GG genotype of the LEPR 223 gene, whereas the AG genotype correlated with TNF alpha and serum IL 8. Hip and abdominal perimeters were higher in LEPR 1019 AA genotype carriers, whereas TNF alpha and IL 6 correlated with the GG genotype of the same gene. Obesity did not correlate with protein serum levels. We observed that obesity is more frequent in children with LEPR 223 AG+GG and LEPR 1019 GA+AA genotypes. In obese children LEPR 223/492/1019 AG/GG/GA, GG/GG/GA and AA/GG/GA combined genotypes are more frequent. PMID:27015185

  9. Two isoforms of leptin in the White-clouds Mountain minnow (Tanichthys albonubes): Differential regulation by estrogen despite similar response to fasting.

    PubMed

    Chen, Ting; Chen, Shuang; Ren, Chunhua; Hu, Chaoqun; Tang, Dongsheng; Yan, Aifen

    2016-01-01

    Leptin has been well-established as a canonical anorexic peptide hormone in mammals, though much of its function in fish remains obscure. In this study, the cDNAs of two leptin isoforms (leptin-A and leptin-B) were cloned from the liver of a small cyprinid fish, Tanichthys albonubes. The two T. albonubes leptins, sharing low primary amino acid sequence homology with their mammalian counterparts, and between themselves, are highly conserved in three-dimensional protein structures and gene structures. Liver is a major source of leptin mRNA in T. albonubes with leptin-A being the dominant form. The expression of hepatic leptin-A but not leptin-B mRNA in female fish is significantly higher than in male fish. Transcriptional hepatic levels of leptin-A and leptin-B in both male and female fish were demonstrated to increase after long-term fasting (10-25days) but decline upon re-feeding (3days). Strikingly, estrogen (E2) administration induced only leptin-A but not leptin-B hepatic mRNA expression in both male and female fish. Our study here provides the first evidence for differential regulation of two leptins in fish, and sheds new light on the possible origin of leptin in lower vertebrates.

  10. Leptin: a potential novel antidepressant.

    PubMed

    Lu, Xin-Yun; Kim, Chung Sub; Frazer, Alan; Zhang, Wei

    2006-01-31

    Leptin, a hormone secreted from adipose tissue, was originally discovered to regulate body weight. The localization of the leptin receptor in limbic structures suggests a potential role for leptin in emotional processes. Here, we show that rats exposed to chronic unpredictable stress and chronic social defeat exhibit low leptin levels in plasma. Systemic leptin treatment reversed the hedonic-like deficit induced by chronic unpredictable stress and improved behavioral despair dose-dependently in the forced swim test (FST), a model widely used for screening potential antidepressant efficacy. The behavioral effects of leptin in the FST were accompanied by increased neuronal activation in limbic structures, particularly in the hippocampus. Intrahippocampal infusion of leptin produced a similar antidepressant-like effect in the FST as its systemic administration. By contrast, infusion of leptin into the hypothalamus decreased body weight but had no effect on FST behavior. These findings suggest that: (i) impaired leptin production and secretion may contribute to chronic stress-induced depression-like phenotypes, (ii) the hippocampus is a brain site mediating leptin's antidepressant-like activity, and (iii) elevating leptin signaling in brain may represent a novel approach for the treatment of depressive disorders. PMID:16423896

  11. Leptin and its receptors are present in the rat olfactory mucosa and modulated by the nutritional status.

    PubMed

    Baly, Christine; Aioun, Josiane; Badonnel, Karine; Lacroix, Marie-Christine; Durieux, Didier; Schlegel, Claire; Salesse, Roland; Caillol, Monique

    2007-01-19

    Leptin is an adipocyte-derived cytokine that regulates body weight mainly via the long form of the leptin receptor (Ob-Rb). Leptin and its receptors are expressed in several tissues, suggesting that leptin might also be effective peripherally. We hypothesized that, as shown in taste cells, leptin and its receptors isoforms (Ob-Rs) could be present in the rat olfactory mucosa (OM). Using RT-PCR, light and electron microscopy immunohistochemistry (ICC), we found that different isoforms of the receptor were expressed in OM and localized in sustentacular cells and in a subpopulation of maturating neurons; in addition, immunoreactivity was also present in differentiated neurons and enriched at the cilia membranes, where the odorants bind to their receptors. Moreover, using RT-PCR, ICC and RIA measurements, we showed that leptin is synthesized locally in the olfactory mucosa. In addition, we demonstrate that fasting causes a significant enhanced transcription of both leptin and Ob-Rs in rat OM by quantitative RT-PCR data. Altogether, these results strongly suggested that leptin, acting as an endocrine or a paracrine factor, could be an important regulator of olfactory function, as a neuromodulator of the olfactory message in cilia of mature olfactory receptors neurons (ORN), but also for the homeostasis of this complex tissue, acting on differentiating neurons and on sustentacular cells.

  12. Leptin signaling in GABA neurons, but not glutamate neurons, is required for reproductive function.

    PubMed

    Zuure, Wieteke A; Roberts, Amy L; Quennell, Janette H; Anderson, Greg M

    2013-11-01

    The adipocyte-derived hormone leptin acts in the brain to modulate the central driver of fertility: the gonadotropin releasing hormone (GnRH) neuronal system. This effect is indirect, as GnRH neurons do not express leptin receptors (LEPRs). Here we test whether GABAergic or glutamatergic neurons provide the intermediate pathway between the site of leptin action and the GnRH neurons. Leptin receptors were deleted from GABA and glutamate neurons using Cre-Lox transgenics, and the downstream effects on puberty onset and reproduction were examined. Both mouse lines displayed the expected increase in body weight and region-specific loss of leptin signaling in the hypothalamus. The GABA neuron-specific LEPR knock-out females and males showed significantly delayed puberty onset. Adult fertility observations revealed that these knock-out animals have decreased fecundity. In contrast, glutamate neuron-specific LEPR knock-out mice displayed normal fertility. Assessment of the estrogenic hypothalamic-pituitary-gonadal axis regulation in females showed that leptin action on GABA neurons is not necessary for estradiol-mediated suppression of tonic luteinizing hormone secretion (an indirect measure of GnRH neuron activity) but is required for regulation of a full preovulatory-like luteinizing hormone surge. In conclusion, leptin signaling in GABAergic (but not glutamatergic neurons) plays a critical role in the timing of puberty onset and is involved in fertility regulation throughout adulthood in both sexes. These results form an important step in explaining the role of central leptin signaling in the reproductive system. Limiting the leptin-to-GnRH mediators to GABAergic cells will enable future research to focus on a few specific types of neurons.

  13. Leptin signaling regulates glucose homeostasis, but not adipostasis, in the zebrafish

    PubMed Central

    Michel, Maximilian; Page-McCaw, Patrick S.; Chen, Wenbiao; Cone, Roger D.

    2016-01-01

    Leptin is the primary adipostatic factor in mammals. Produced largely by adipocytes in proportion to total adipose mass, the hormone informs the brain regarding total energy stored as triglycerides in fat cells. The hormone acts on multiple circuits in the brain to regulate food intake, autonomic outflow, and endocrine function to maintain energy balance. In addition to regulating adipose mass, mammalian leptin also plays a role in the regulation of glucose homeostasis and as a gating factor in reproductive competence. Leptin-deficient mice and people exhibit early onset profound hyperphagia and obesity, diabetes, and infertility. Although leptin and the leptin receptor are found in fish, the hormone is not expressed in adipose tissue, but is found in liver and other tissues. Here, we show that adult zebrafish lacking a functional leptin receptor do not exhibit hyperphagia or increased adiposity, and exhibit normal fertility. However, leptin receptor-deficient larvae have increased numbers of β-cells and increased levels of insulin mRNA. Furthermore, larval zebrafish have been shown to exhibit β-cell hyperplasia in response to high fat feeding or peripheral insulin resistance, and we show here that leptin receptor is required for this response. Adult zebrafish also have increased levels of insulin mRNA and other alterations in glucose homeostasis. Thus, a role for leptin in the regulation of β-cell mass and glucose homeostasis appears to be conserved across vertebrates, whereas its role as an adipostatic factor is likely to be a secondary role acquired during the evolution of mammals. PMID:26903647

  14. Leptin signaling regulates glucose homeostasis, but not adipostasis, in the zebrafish.

    PubMed

    Michel, Maximilian; Page-McCaw, Patrick S; Chen, Wenbiao; Cone, Roger D

    2016-03-15

    Leptin is the primary adipostatic factor in mammals. Produced largely by adipocytes in proportion to total adipose mass, the hormone informs the brain regarding total energy stored as triglycerides in fat cells. The hormone acts on multiple circuits in the brain to regulate food intake, autonomic outflow, and endocrine function to maintain energy balance. In addition to regulating adipose mass, mammalian leptin also plays a role in the regulation of glucose homeostasis and as a gating factor in reproductive competence. Leptin-deficient mice and people exhibit early onset profound hyperphagia and obesity, diabetes, and infertility. Although leptin and the leptin receptor are found in fish, the hormone is not expressed in adipose tissue, but is found in liver and other tissues. Here, we show that adult zebrafish lacking a functional leptin receptor do not exhibit hyperphagia or increased adiposity, and exhibit normal fertility. However, leptin receptor-deficient larvae have increased numbers of β-cells and increased levels of insulin mRNA. Furthermore, larval zebrafish have been shown to exhibit β-cell hyperplasia in response to high fat feeding or peripheral insulin resistance, and we show here that leptin receptor is required for this response. Adult zebrafish also have increased levels of insulin mRNA and other alterations in glucose homeostasis. Thus, a role for leptin in the regulation of β-cell mass and glucose homeostasis appears to be conserved across vertebrates, whereas its role as an adipostatic factor is likely to be a secondary role acquired during the evolution of mammals.

  15. Leptin enhances ICAM-1 expression, induces migration and cytokine synthesis, and prolongs survival of human airway epithelial cells.

    PubMed

    Suzukawa, Maho; Koketsu, Rikiya; Baba, Shintaro; Igarashi, Sayaka; Nagase, Hiroyuki; Yamaguchi, Masao; Matsutani, Noriyuki; Kawamura, Masafumi; Shoji, Shunsuke; Hebisawa, Akira; Ohta, Ken

    2015-10-15

    There is rising interest in how obesity affects respiratory diseases, since epidemiological findings indicate a strong relationship between the two conditions. Leptin is a potent adipokine produced mainly by adipocytes. It regulates energy storage and expenditure and also induces inflammation. Previous studies have shown that leptin is able to activate inflammatory cells such as lymphocytes and granulocytes, but little is known about its effect on lung structural cells. The present study investigated the effects of leptin on human airway epithelial cells by using human primary airway epithelial cells and a human airway epithelial cell line, BEAS-2B. Flow cytometry showed enhanced ICAM-1 expression by both of those cells in response to leptin, and that effect was abrogated by dexamethasone or NF-κB inhibitor. Flow cytometry and quantitative PCR showed that airway epithelial cells expressed leptin receptor (Ob-R), whose expression level was downregulated by leptin itself. Multiplex cytokine analysis demonstrated enhanced production of CCL11, G-CSF, VEGF, and IL-6 by BEAS-2B cells stimulated with leptin. Furthermore, transfection of Ob-R small interference RNA decreased the effect of leptin on CCL11 production as assessed by quantitative PCR. Finally, leptin induced migration of primary airway epithelial cells toward leptin, suppressed BEAS-2B apoptosis induced with TNF-α and IFN-γ, and enhanced proliferation of primary airway epithelial cells. In summary, leptin was able to directly activate human airway epithelial cells by binding to Ob-R and by NF-κB activation, resulting in upregulation of ICAM-1 expression, induction of CCL11, VEGF, G-CSF, and IL-6 synthesis, induction of migration, inhibition of apoptosis, and enhancement of proliferation.

  16. Leptin enhances ICAM-1 expression, induces migration and cytokine synthesis, and prolongs survival of human airway epithelial cells.

    PubMed

    Suzukawa, Maho; Koketsu, Rikiya; Baba, Shintaro; Igarashi, Sayaka; Nagase, Hiroyuki; Yamaguchi, Masao; Matsutani, Noriyuki; Kawamura, Masafumi; Shoji, Shunsuke; Hebisawa, Akira; Ohta, Ken

    2015-10-15

    There is rising interest in how obesity affects respiratory diseases, since epidemiological findings indicate a strong relationship between the two conditions. Leptin is a potent adipokine produced mainly by adipocytes. It regulates energy storage and expenditure and also induces inflammation. Previous studies have shown that leptin is able to activate inflammatory cells such as lymphocytes and granulocytes, but little is known about its effect on lung structural cells. The present study investigated the effects of leptin on human airway epithelial cells by using human primary airway epithelial cells and a human airway epithelial cell line, BEAS-2B. Flow cytometry showed enhanced ICAM-1 expression by both of those cells in response to leptin, and that effect was abrogated by dexamethasone or NF-κB inhibitor. Flow cytometry and quantitative PCR showed that airway epithelial cells expressed leptin receptor (Ob-R), whose expression level was downregulated by leptin itself. Multiplex cytokine analysis demonstrated enhanced production of CCL11, G-CSF, VEGF, and IL-6 by BEAS-2B cells stimulated with leptin. Furthermore, transfection of Ob-R small interference RNA decreased the effect of leptin on CCL11 production as assessed by quantitative PCR. Finally, leptin induced migration of primary airway epithelial cells toward leptin, suppressed BEAS-2B apoptosis induced with TNF-α and IFN-γ, and enhanced proliferation of primary airway epithelial cells. In summary, leptin was able to directly activate human airway epithelial cells by binding to Ob-R and by NF-κB activation, resulting in upregulation of ICAM-1 expression, induction of CCL11, VEGF, G-CSF, and IL-6 synthesis, induction of migration, inhibition of apoptosis, and enhancement of proliferation. PMID:26276826

  17. QTL mapping of genes controlling plasma insulin and leptin concentrations: metabolic effect of obesity QTLs identified in an F2 intercross between C57BL/6J and DDD.Cg-A(y) inbred mice.

    PubMed

    Suto, Jun-ichi

    2013-07-31

    DDD.Cg-A(y) female mice developed massive obesity as compared with B6.Cg-A(y) female mice. We previously identified quantitative trait loci (QTLs) for obesity on chromosomes 1, 6, 9 and 17 in F2 female mice, including F2A(y) (F2 mice with the A(y) allele) and F2 non- A(y) mice (F2 mice without the A(y) allele), produced by crossing C57BL/6J and DDD.Cg-A(y) strains. We here addressed the question whether the obesity QTLs share genetic bases with putative QTLs for plasma glucose, insulin and leptin concentrations. We performed QTL analyses for the first principal component (PC1) extracted from these metabolic measurements to identify the genes that contributed to the comprehensive evaluation of metabolic traits. By single QTL scans, we identified two significant QTLs for insulin concentration on chromosomes 6 and 12, three for leptin concentration on chromosomes 1, 6 and 17, and five for PC1 on chromosomes 1, 6, 12 (two loci) and 17. Although insulin and leptin concentrations and PC1 were not normally distributed in combined F2 mice, results of single QTL scans by parametric and non-parametric methods were very similar. Therefore, QTL scan by the parametric method was performed with the agouti locus genotype as a covariate. A significant QTL × covariate interaction was found for PC1 on chromosome 9. All obesity QTLs had significant metabolic effects. Thus, obesity- and diabetes-related traits in DDD.Cg-A(y) mice were largely controlled by QTLs on chromosomes 1, 6, 9, 12 and 17.

  18. Circulating leptin and adiponectin levels in patients with primary hyperparathyroidism.

    PubMed

    Delfini, Enrica; Petramala, Luigi; Caliumi, Chiara; Cotesta, Darlo; De Toma, Giorgio; Cavallaro, Giuseppe; Panzironi, Giuseppe; Diacinti, Daniele; Minisola, Savatore; D' Erasmo, Emilio; Mazzuoli, Gian Franco; Letizia, Claudio

    2007-01-01

    Primary hyperparathyroidism (PHPT) has been associated with high cardiovascular morbidity and mortality; its pathogenesis is not fully understood. Moreover, many metabolic abnormalities are frequently present in patients with PHPT. Several substances (such as leptin and adiponectin) are secreted from adipocytes, which may contribute to regulate energy homeostasis and the development of cardiovascular diseases. We examined the relationship between leptin and adiponectin levels and metabolic disorders in 67 newly diagnosed never-treated patients with PHPT and in 46 healthy subjects (HS). Twenty (29.8%) patients with PHPT presented a metabolic syndrome (as defined by Adult Treatment Panel III criteria). Serum leptin and adiponectin levels in HS were 6.28 +/- 3.3 ng/mL (range, 1.7-19.2 ng/mL) and 6.65 +/- 1.7 microg/mL (range, 3.72-10.86 microg/mL), respectively. In all patients with PHPT, the mean leptin levels (34.28 +/- 20.4 ng/mL) were significantly higher than those of HS (P < .01) and, in particular, in PHPT patients with metabolic syndrome (52.63 +/- 31.2 ng/mL) and positively correlated with body mass index, waist circumference, and cholesterol. The mean adiponectin level was significantly lower (4.34 +/- 3.5 mug/mL) only in PHPT patients with metabolic syndrome (P < .005) and negatively correlated with waist circumference and fasting glucose. We concluded that increased serum level of leptin and decreased serum level of adiponectin coexist in patients with PHPT and may represent a pathogenetic factor for cardiovascular disease in this condition.

  19. Accelerated puberty and late-onset hypothalamic hypogonadism in female transgenic skinny mice overexpressing leptin.

    PubMed

    Yura, S; Ogawa, Y; Sagawa, N; Masuzaki, H; Itoh, H; Ebihara, K; Aizawa-Abe, M; Fujii, S; Nakao, K

    2000-03-01

    Excess or loss of body fat can be associated with infertility, suggesting that adequate fat mass is essential for proper reproductive function. Leptin is an adipocyte-derived hormone that is involved in the regulation of food intake and energy expenditure, and its synthesis and secretion are markedly increased in obesity. Short-term administration of leptin accelerates the onset of puberty in normal mice and corrects the sterility of leptin-deficient ob/ob mice. These findings suggest a role for leptin as an endocrine signal between fat depots and the reproductive axis, but the effect of hyperleptinemia on the initiation and maintenance of reproductive function has not been elucidated. To address this issue, we examined the reproductive phenotypes of female transgenic skinny mice with elevated plasma leptin concentrations comparable to those in obese subjects. With no apparent adipose tissue, female transgenic skinny mice exhibit accelerated puberty and intact fertility at younger ages followed by successful delivery of healthy pups. However, at older ages, they develop hypothalamic hypogonadism characterized by prolonged menstrual cycles, atrophic ovary, reduced hypothalamic gonadotropin releasing hormone contents, and poor pituitary luteinizing hormone secretion. This study has demonstrated for the first time to our knowledge that accelerated puberty and late-onset hypothalamic hypogonadism are associated with chronic hyperleptinemia, thereby leading to a better understanding of the pathophysiological and therapeutic implication of leptin.

  20. Development and Characterization of High Affinity Leptins and Leptin Antagonists*

    PubMed Central

    Shpilman, Michal; Niv-Spector, Leonora; Katz, Meirav; Varol, Chen; Solomon, Gili; Ayalon-Soffer, Michal; Boder, Eric; Halpern, Zamir; Elinav, Eran; Gertler, Arieh

    2011-01-01

    Leptin is a pleiotropic hormone acting both centrally and peripherally. It participates in a variety of biological processes, including energy metabolism, reproduction, and modulation of the immune response. So far, structural elements affecting leptin binding to its receptor remain unknown. We employed random mutagenesis of leptin, followed by selection of high affinity mutants by yeast surface display and discovered that replacing residue Asp-23 with a non-negatively charged amino acid leads to dramatically enhanced affinity of leptin for its soluble receptor. Rational mutagenesis of Asp-23 revealed the D23L substitution to be most effective. Coupling the Asp-23 mutation with alanine mutagenesis of three amino acids (L39A/D40A/F41A) previously reported to convert leptin into antagonist resulted in potent antagonistic activity. These novel superactive mouse and human leptin antagonists (D23L/L39A/D40A/F41A), termed SMLA and SHLA, respectively, exhibited over 60-fold increased binding to leptin receptor and 14-fold higher antagonistic activity in vitro relative to the L39A/D40A/F41A mutants. To prolong and enhance in vivo activity, SMLA and SHLA were monopegylated mainly at the N terminus. Administration of the pegylated SMLA to mice resulted in a remarkably rapid, significant, and reversible 27-fold more potent increase in body weight (as compared with pegylated mouse leptin antagonist), because of increased food consumption. Thus, recognition and mutagenesis of Asp-23 enabled construction of novel compounds that induce potent and reversible central and peripheral leptin deficiency. In addition to enhancing our understanding of leptin interactions with its receptor, these antagonists enable in vivo study of the role of leptin in metabolic and immune processes and hold potential for future therapeutic use in disease pathologies involving leptin. PMID:21119198

  1. Development and characterization of high affinity leptins and leptin antagonists.

    PubMed

    Shpilman, Michal; Niv-Spector, Leonora; Katz, Meirav; Varol, Chen; Solomon, Gili; Ayalon-Soffer, Michal; Boder, Eric; Halpern, Zamir; Elinav, Eran; Gertler, Arieh

    2011-02-11

    Leptin is a pleiotropic hormone acting both centrally and peripherally. It participates in a variety of biological processes, including energy metabolism, reproduction, and modulation of the immune response. So far, structural elements affecting leptin binding to its receptor remain unknown. We employed random mutagenesis of leptin, followed by selection of high affinity mutants by yeast surface display and discovered that replacing residue Asp-23 with a non-negatively charged amino acid leads to dramatically enhanced affinity of leptin for its soluble receptor. Rational mutagenesis of Asp-23 revealed the D23L substitution to be most effective. Coupling the Asp-23 mutation with alanine mutagenesis of three amino acids (L39A/D40A/F41A) previously reported to convert leptin into antagonist resulted in potent antagonistic activity. These novel superactive mouse and human leptin antagonists (D23L/L39A/D40A/F41A), termed SMLA and SHLA, respectively, exhibited over 60-fold increased binding to leptin receptor and 14-fold higher antagonistic activity in vitro relative to the L39A/D40A/F41A mutants. To prolong and enhance in vivo activity, SMLA and SHLA were monopegylated mainly at the N terminus. Administration of the pegylated SMLA to mice resulted in a remarkably rapid, significant, and reversible 27-fold more potent increase in body weight (as compared with pegylated mouse leptin antagonist), because of increased food consumption. Thus, recognition and mutagenesis of Asp-23 enabled construction of novel compounds that induce potent and reversible central and peripheral leptin deficiency. In addition to enhancing our understanding of leptin interactions with its receptor, these antagonists enable in vivo study of the role of leptin in metabolic and immune processes and hold potential for future therapeutic use in disease pathologies involving leptin.

  2. A mathematical model of leptin resistance.

    PubMed

    Jacquier, Marine; Soula, Hédi A; Crauste, Fabien

    2015-09-01

    Obesity is often associated with leptin resistance, which leads to a physiological system with high leptin concentration but unable to respond to leptin signals and to regulate food intake. We propose a mathematical model of the leptin-leptin receptors system, based on the assumption that leptin is a regulator of its own receptor activity, and investigate its qualitative behavior. Based on current knowledge and previous models developed for body weight dynamics in rodents, the model includes the dynamics of leptin, leptin receptors and the regulation of food intake and body weight. It displays two stable equilibria, one representing a healthy state and the other one an obese and leptin resistant state. We show that a constant leptin injection can lead to leptin resistance and that a temporal variation in some parameter values influencing food intake can induce a change of equilibrium and a pathway to leptin resistance and obesity.

  3. Bacterial Translocation – Impact on the Adipocyte Compartment

    PubMed Central

    Kruis, Tassilo; Batra, Arvind; Siegmund, Britta

    2013-01-01

    Over the last decade it became broadly recognized that adipokines and thus the fat tissue compartment exert a regulatory function on the immune system. Our own group described the pro-inflammatory function of the adipokine leptin within intestinal inflammation in a variety of animal models. Following-up on this initial work, the aim was to reveal stimuli and mechanisms involved in the activation of the fat tissue compartment and the subsequent release of adipokines and other mediators paralleled by the infiltration of immune cells. This review will summarize the current literature on the possible role of the mesenteric fat tissue in intestinal inflammation with a focus on Crohn’s disease (CD). CD is of particular interest in this context since the transmural intestinal inflammation has been associated with a characteristic hypertrophy of the mesenteric fat, a phenomenon called “creeping fat.” The review will address three consecutive questions: (i) What is inducing adipocyte activation, (ii) which factors are released after activation and what are the consequences for the local fat tissue compartment and infiltrating cells; (iii) do the answers generated before allow for an explanation of the role of the mesenteric fat tissue within intestinal inflammation? With this review we will provide a working model indicating a close interaction in between bacterial translocation, activation of the adipocytes, and subsequent direction of the infiltrating immune cells. In summary, the models system mesenteric fat indicates a unique way how adipocytes can directly interact with the immune system. PMID:24432024

  4. Leptin Regulation of Immune Responses.

    PubMed

    Naylor, Caitlin; Petri, William A

    2016-02-01

    Leptin is a regulatory hormone with multiple roles in the immune system. We favor the concept that leptin signaling 'licenses' various immune cells to engage in immune responses and/or to differentiate. Leptin is an inflammatory molecule that is capable of activating both adaptive and innate immunity. It can also 'enhance' immune functions, including inflammatory cytokine production in macrophages, granulocyte chemotaxis, and increased Th17 proliferation. Leptin can also 'inhibit' cells; CD4(+) T cells are inhibited from differentiating into regulatory T cells in the presence of elevated leptin, while NK cells can exhibit impaired cytotoxicity under the same circumstances. Consequently, understanding the effect of leptin signaling is important to appreciate various aspects of immune dysregulation observed in malnutrition, obesity, and autoimmunity.

  5. A single-nucleotide polymorphism in the 3'-UTR region of the adipocyte fatty acid binding protein 4 gene is associated with prognosis of triple-negative breast cancer.

    PubMed

    Wang, Wenmiao; Yuan, Peng; Yu, Dianke; Du, Feng; Zhu, Anjie; Li, Qing; Zhang, Pin; Lin, Dongxin; Xu, Binghe

    2016-04-01

    Triple-negative breast cancer (TNBC) is a subtype of breast cancer with poor prognosis and high heterogeneity. The aim of this study was to screen patients for single-nucleotide polymorphisms (SNPs) associated with the prognosis of TNBC. Database-derived SNPs (NextBio, Ensembl, NCBI and MirSNP) located in the 3'-untranslated regions (3'-UTRs) of genes that are differentially expressed in breast cancer were selected. The possible associations between 111 SNPs and progression risk among 323 TNBC patients were investigated using a two-step case-control study with a discovery cohort (n=162) and a validation cohort (n=161). We identified the rs1054135 SNP in the adipocyte fatty acid binding protein 4 (FABP4) gene as a predictor of TNBC recurrence. The G allele of rs1054135 was associated with a reduced risk of disease progression as well as a prolonged disease-free survival time (DFS), with a hazard ratio (HR) for recurrence in the combined sample of 0.269 [95%CI: 0.098-0.735;P=0.001]. Notably, for individuals having the rs1054135 SNP with the AA/AG genotype, the magnitude of increased tumour recurrence risk for overweight patients (BMI≥25kg/m2) was significantly elevated (HR2.53; 95%CI: 1.06-6.03). Immunohistochemical staining of adipocytes adjacent to TNBC tissues showed that the expression level of FABP4 was statistically significantly lower in patients with the rs1054135-GG genotype and those in the disease-free group (P=0.0004 and P=0.0091, respectively). These results suggested that the expression of a lipid metabolism-related gene and an important SNP in the 3'-UTR of FABP4 are associated with TNBC prognosis, which may aid in the screening of high-risk patients with TNBC recurrence and the development of novel chemotherapeutic agents.

  6. SSA 04-3 LEPTIN/ADIPONECTIN IN CARDIOMETABOLIC DISEASE.

    PubMed

    Lopez-Jaramillo, Patricio

    2016-09-01

    2, coronary artery disease, hypertension, and left ventricular hypertrophy. High concentrations of adiponectin are associated with a decreased risk of coronary artery disease, with an improvement in the differentiation of preadipocytes into adipocytes, and with increased endotelial nitric oxide production. Therefore, it appears that interactions between angiotensin II and leptin/adiponectin imbalance may be important mediators of the elevated risk of developing DM2 and CVD associated with AO.While in the developed world the incidence of CVD is stabilizing or decreasing and prognosis is improving, incidence is increasing in the developing world. These differences in the global epidemiological profile of CVD may be due to diverse geographical, environmental, demographic, socioeconomic, and ethnic characteristics. One of the explanations for these differences is that the populations of developing countries are more prone to develop cardiovascular and metabolic diseases at lower levels of AO as a result of shorter exposure times to the new lifestyles associated with modernization. The shorter the exposure time, the less adapted the population and the greater the risk of an inflammatory imbalance at lower levels of AO. Ethnic differences in insulin resistance and cardiometabolic disease risk have been described and it has been proposed that these may be the result of differences in circulating adipokines and inflammatory markers associated with ethnic variations in obesity and body fat distribution. In United States (US) significant ethnic differences in adiponectin has been reported, compared with white Americans, African-American men and women, Japanese-American women, and native Hawaiian women have significantly lower levels. Another study conducted in healthy Canadian Aboriginal, Chinese, European, and South Asian adults found that South Asians had the greatest insulin resistance, followed by Aboriginals, Chinese, and Europeans. Plasma adiponectin concentrations were

  7. Hexim1, a Novel Regulator of Leptin Function, Modulates Obesity and Glucose Disposal

    PubMed Central

    Dhar-Mascareno, Manya; Ramirez, Susan N.; Rozenberg, Inna; Rouille, Yves; Kral, John G.

    2016-01-01

    Leptin triggers signaling events with significant transcriptional responses that are essential to metabolic processes affecting obesity and glucose disposal. We asked whether hexamethylene bis-acetamide inducible-1 (Hexim1), an inhibitor of RNA II polymerase-dependent transcription elongation, regulates leptin-Janus kinase 2 signaling axis in the hypothalamus. We subjected C57BL6 Hexim1 heterozygous (HT) mice to high-fat diet and when compared with wild type, HT mice were resistant to high-fat diet-induced weight gain and remain insulin sensitive. HT mice exhibited increased leptin-pY705Stat3 signaling in the hypothalamus, with normal adipocyte size, increased type I oxidative muscle fiber density, and enhanced glucose transporter 4 expression. We also observed that normal Hexim1 protein level is required to facilitate the expression of CCAAT/enhancer-binding proteins (C/EBPs) required for adipogenesis and inducible suppressor of cytokine signaling 3 (SOCS) expression. Further support on the role of Hexim1 regulating C/EBPs during adipocyte differentiation was shown when HT 3T3L1 fibroblasts failed to undergo adipogenesis. Hexim1 selectively modulates leptin-mediated signal transduction pathways in the hypothalamus, the expression of C/EBPs and peroxisome proliferator-activated receptor-γ (PPAR γ) in skeletal muscle and adipose tissue during the adaptation to metabolic stress. We postulate that Hexim1 might be a novel factor involved in maintaining whole-body energy balance. PMID:26859361

  8. Mechanism of Regulation of Adipocyte Numbers in Adult Organisms Through Differentiation and Apoptosis Homeostasis

    PubMed Central

    Bozec, Aline; Hannemann, Nicole

    2016-01-01

    Considering that adipose tissue (AT) is an endocrine organ, it can influence whole body metabolism. Excessive energy storage leads to the dysregulation of adipocytes, which in turn induces abnormal secretion of adipokines, triggering metabolic syndromes such as obesity, dyslipidemia, hyperglycemia, hyperinsulinemia, insulin resistance and type 2 diabetes. Therefore, investigating the molecular mechanisms behind adipocyte dysregulation could help to develop novel therapeutic strategies. Our protocol describes methods for evaluating the molecular mechanism affected by hypoxic conditions of the AT, which correlates with adipocyte apoptosis in adult mice. This protocol describes how to analyze AT in vivo through gene expression profiling as well as histological analysis of adipocyte differentiation, proliferation and apoptosis during hypoxia exposure, ascertained through staining of hypoxic cells or HIF-1α protein. Furthermore, in vitro analysis of adipocyte differentiation and its responses to various stimuli completes the characterization of the molecular pathways behind possible adipocyte dysfunction leading to metabolic syndromes. PMID:27284940

  9. Leptin and its receptors.

    PubMed

    Wada, Nobuhiro; Hirako, Satoshi; Takenoya, Fumiko; Kageyama, Haruaki; Okabe, Mai; Shioda, Seiji

    2014-11-01

    Leptin is mainly produced in the white adipose tissue before being secreted into the blood and transported across the blood-brain barrier. Leptin binds to a specific receptor (LepR) that has numerous subtypes (LepRa, LepRb, LepRc, LepRd, LepRe, and LepRf). LepRb, in particular, is expressed in several brain nuclei, including the arcuate nucleus, the paraventricular nucleus, and the dorsomedial, lateral and ventromedial regions of the hypothalamus. LepRb is also co-expressed with several neuropeptides, including proopiomelanocortin, neuropeptide Y, galanin, galanin-like peptide, gonadotropin-releasing hormone, tyrosine hydroxylase and neuropeptide W. Functionally, LepRb induces activation of the JAK2/ERK, /STAT3, /STAT5 and IRS/PI3 kinase signaling cascades, which are important for the regulation of energy homeostasis and appetite in mammals. In this review, we discuss the structure, genetics and distribution of the leptin receptors, and their role in cell signaling mechanisms. PMID:25218975

  10. Cannabidiol promotes browning in 3T3-L1 adipocytes.

    PubMed

    Parray, Hilal Ahmad; Yun, Jong Won

    2016-05-01

    Recruitment of the brown-like phenotype in white adipocytes (browning) and activation of existing brown adipocytes are currently being investigated as a means to combat obesity. Thus, a wide variety of dietary agents that contribute to browning of white adipocytes have been identified. The present study was designed to investigate the effects of cannabidiol (CBD), a major nonpsychotropic phytocannabinoid of Cannabis sativa, on induction of browning in 3T3-L1 adipocytes. CBD enhanced expression of a core set of brown fat-specific marker genes (Ucp1, Cited1, Tmem26, Prdm16, Cidea, Tbx1, Fgf21, and Pgc-1α) and proteins (UCP1, PRDM16, and PGC-1α). Increased expression of UCP1 and other brown fat-specific markers contributed to the browning of 3T3-L1 adipocytes possibly via activation of PPARγ and PI3K. In addition, CBD increased protein expression levels of CPT1, ACSL, SIRT1, and PLIN while down-regulating JNK2, SREBP1, and LPL. These data suggest possible roles for CBD in browning of white adipocytes, augmentation of lipolysis, thermogenesis, and reduction of lipogenesis. In conclusion, the current data suggest that CBD plays dual modulatory roles in the form of inducing the brown-like phenotype as well as promoting lipid metabolism. Thus, CBD may be explored as a potentially promising therapeutic agent for the prevention of obesity. PMID:27067870

  11. Macrophage-secreted factors induce adipocyte inflammation and insulin resistance

    SciTech Connect

    Permana, Paska A. . E-mail: Paska.Permana@med.va.gov; Menge, Christopher; Reaven, Peter D.

    2006-03-10

    Macrophage infiltration into adipose tissue increases with obesity, a condition associated with low-grade inflammation and insulin resistance. We investigated the direct effects of macrophage-secreted factors on adipocyte inflammation and insulin resistance. 3T3-L1 adipocytes incubated with media conditioned by RAW264.7 macrophages (RAW-CM) showed dramatically increased transcription of several inflammation-related genes, greater nuclear factor kappa B (NF-{kappa}B) activity, and enhanced binding of U937 monocytes. All of these effects were prevented by co-incubation with pyrrolidinedithiocarbamate, an NF-{kappa}B inhibitor. Adipocytes incubated with RAW-CM also released more non-esterified fatty acids and this increased lipolysis was not suppressed by insulin. In addition, RAW-CM treatment decreased insulin-stimulated glucose uptake in adipocytes. Taken together, these results indicate that macrophage-secreted factors induce inflammatory responses and reduce insulin responsiveness in adipocytes. These effects of macrophage-secreted factors on adipocytes may contribute significantly to the systemic inflammation and insulin resistance associated with obesity.

  12. Insulin: pancreatic secretion and adipocyte regulation.

    PubMed

    Baumgard, L H; Hausman, G J; Sanz Fernandez, M V

    2016-01-01

    Insulin is the primary acute anabolic coordinator of nutrient partitioning. Hyperglycemia is the main stimulant of insulin secretion, but other nutrients such as specific amino acids, fatty acids, and ketoacids can potentiate pancreatic insulin release. Incretins are intestinal hormones with insulinotropic activity and are secreted in response to food ingestion, thus integrating diet chemical composition with the regulation of insulin release. In addition, prolactin is required for proper islet development, and it stimulates β-cell proliferation. Counterintuitively, bacterial components appear to signal insulin secretion. In vivo lipopolysaccharide infusion acutely increases circulating insulin, which is paradoxical as endotoxemia is a potent catabolic condition. Insulin is a potent anabolic orchestrator of nutrient partitioning, and this is particularly true in adipocytes. Insulin dictates lipid accretion in a dose-dependent manner during preadipocyte development in adipose tissue-derived stromal vascular cell culture. However, in vivo studies focused on insulin's role in regulating adipose tissue metabolism from growing, and market weight pigs are sometimes inconsistent, and this variability appears to be animal, age and depot dependent. Additionally, porcine adipose tissue synthesizes and secretes a number of adipokines (leptin, adiponectin, and so forth) that directly or indirectly influence insulin action. Therefore, because insulin has an enormous impact on agriculturally important phenotypes, it is critical to have a better understanding of how insulin homeostasis is governed.

  13. Paradoxical effects of partial leptin deficiency on bone in growing female mice.

    PubMed

    Philbrick, Kenneth A; Turner, Russell T; Branscum, Adam J; Wong, Carmen P; Iwaniec, Urszula T

    2015-12-01

    Morbidly obese, leptin-deficient ob/ob mice display low bone mass, mild osteoclast-rich osteopetrosis, and increased bone marrow adiposity. While partial leptin deficiency results in increased weight, the skeletal manifestations of partial leptin deficiency are less well defined. We therefore analyzed femora and lumbar vertebrae in growing (7-week-old) female C57BL/6 wildtype (WT) mice, partial leptin-deficient ob/+ mice, and leptin-deficient ob/ob mice. The bones were evaluated by dual energy absorptiometry, microcomputed tomography and histomorphometry. As expected, ob/+ mice were heavier, had more white adipose tissue, and lower serum leptin than WT mice, but were lighter and had less white adipose tissue than ob/ob mice. With a few exceptions, cancellous bone architecture, cell (osteoblast, osteoclast, and adipocyte), and dynamic measurements did not differ between WT and ob/+ mice. In contrast, compared to WT and ob/+ mice, ob/ob mice had lower cancellous bone volume fraction, and higher bone marrow adiposity in the femur metaphysis, and higher cancellous bone volume fraction in lumbar vertebra. Paradoxically, ob/+ mice had greater femoral bone volume than either WT or ob/ob mice. There was a positive correlation between body weight and femur volume in all three genotypes. However, the positive effect of weight on bone occurred with lower body weight in leptin-producing mice. The paradoxical differences in bone size among WT, ob/+, and ob/ob mice may be explained if leptin, in addition to stimulating bone growth and cancellous bone turnover, acts to lower the set-point at which increased body weight leads to a commensurate increase in bone size.

  14. Transgenic overexpression of leptin rescues insulin resistance and diabetes in a mouse model of lipoatrophic diabetes.

    PubMed

    Ebihara, K; Ogawa, Y; Masuzaki, H; Shintani, M; Miyanaga, F; Aizawa-Abe, M; Hayashi, T; Hosoda, K; Inoue, G; Yoshimasa, Y; Gavrilova, O; Reitman, M L; Nakao, K

    2001-06-01

    Lipoatrophic diabetes is caused by a deficiency of adipose tissue and is characterized by severe insulin resistance, hypoleptinemia, and hyperphagia. The A-ZIP/F-1 mouse (A-ZIPTg/+) is a model of severe lipoatrophic diabetes and is insulin resistant, hypoleptinemic, hyperphagic, and shows severe hepatic steatosis. We have also produced transgenic "skinny" mice that have hepatic overexpression of leptin (LepTg/+) and no adipocyte triglyceride stores, and are hypophagic and show increased insulin sensitivity. To explore the pathophysiological and therapeutic roles of leptin in lipoatrophic diabetes, we crossed LepTg/+ and A-ZIPTg/+ mice, producing doubly transgenic mice (LepTg/+:A-ZIPTg/+) virtually lacking adipose tissue but having greatly elevated leptin levels. The LepTg/+:A-ZIPTg/+ mice were hypophagic and showed improved hepatic steatosis. Glucose and insulin tolerance tests revealed increased insulin sensitivity, comparable to LepTg/+ mice. These effects were stable over at least 6 months of age. Pair-feeding the A-ZIPTg/+ mice to the amount of food consumed by LepTg/+:A-ZIPTg/+ mice did not improve their insulin resistance, diabetes, or hepatic steatosis, demonstrating that the beneficial effects of leptin were not due to the decreased food intake. Continuous leptin administration that elevates plasma leptin concentrations to those of LepTg/+:A-ZIPTg/+ mice also effectively improved hepatic steatosis and the disorder of glucose and lipid metabolism in A-ZIP/F-1 mice. These data demonstrate that leptin can improve the insulin resistance and diabetes of a mouse model of severe lipoatrophic diabetes, suggesting that leptin may be therapeutically useful in the long-term treatment of lipoatrophic diabetes.

  15. MicroRNAs are required for the feature maintenance and differentiation of brown adipocytes.

    PubMed

    Kim, Hye-Jin; Cho, Hyunjii; Alexander, Ryan; Patterson, Heide Christine; Gu, Minxia; Lo, Kinyui Alice; Xu, Dan; Goh, Vera J; Nguyen, Long N; Chai, Xiaoran; Huang, Cher X; Kovalik, Jean-Paul; Ghosh, Sujoy; Trajkovski, Mirko; Silver, David L; Lodish, Harvey; Sun, Lei

    2014-12-01

    Brown adipose tissue (BAT) is specialized to burn lipids for heat generation as a natural defense against cold and obesity. Previous studies established microRNAs (miRNAs) as essential regulators of brown adipocyte differentiation, but whether miRNAs are required for the feature maintenance of mature brown adipocytes remains unknown. To address this question, we ablated Dgcr8, a key regulator of the miRNA biogenesis pathway, in mature brown as well as in white adipocytes. Adipose tissue-specific Dgcr8 knockout mice displayed enlarged but pale interscapular brown fat with decreased expression of genes characteristic of brown fat and were intolerant to cold exposure. Primary brown adipocyte cultures in vitro confirmed that miRNAs are required for marker gene expression in mature brown adipocytes. We also demonstrated that miRNAs are essential for the browning of subcutaneous white adipocytes in vitro and in vivo. Using this animal model, we performed miRNA expression profiling analysis and identified a set of BAT-specific miRNAs that are upregulated during brown adipocyte differentiation and enriched in brown fat compared with other organs. We identified miR-182 and miR-203 as new regulators of brown adipocyte development. Taken together, our study demonstrates an essential role of miRNAs in the maintenance as well as in the differentiation of brown adipocytes.

  16. MicroRNAs Are Required for the Feature Maintenance and Differentiation of Brown Adipocytes

    PubMed Central

    Kim, Hye-Jin; Cho, Hyunjii; Alexander, Ryan; Patterson, Heide Christine; Gu, Minxia; Lo, Kinyui Alice; Xu, Dan; Goh, Vera J.; Nguyen, Long N.; Chai, Xiaoran; Huang, Cher X.; Kovalik, Jean-Paul; Ghosh, Sujoy; Trajkovski, Mirko; Silver, David L.; Lodish, Harvey

    2014-01-01

    Brown adipose tissue (BAT) is specialized to burn lipids for heat generation as a natural defense against cold and obesity. Previous studies established microRNAs (miRNAs) as essential regulators of brown adipocyte differentiation, but whether miRNAs are required for the feature maintenance of mature brown adipocytes remains unknown. To address this question, we ablated Dgcr8, a key regulator of the miRNA biogenesis pathway, in mature brown as well as in white adipocytes. Adipose tissue–specific Dgcr8 knockout mice displayed enlarged but pale interscapular brown fat with decreased expression of genes characteristic of brown fat and were intolerant to cold exposure. Primary brown adipocyte cultures in vitro confirmed that miRNAs are required for marker gene expression in mature brown adipocytes. We also demonstrated that miRNAs are essential for the browning of subcutaneous white adipocytes in vitro and in vivo. Using this animal model, we performed miRNA expression profiling analysis and identified a set of BAT-specific miRNAs that are upregulated during brown adipocyte differentiation and enriched in brown fat compared with other organs. We identified miR-182 and miR-203 as new regulators of brown adipocyte development. Taken together, our study demonstrates an essential role of miRNAs in the maintenance as well as in the differentiation of brown adipocytes. PMID:25008181

  17. Differential Chemokine Signature between Human Preadipocytes and Adipocytes

    PubMed Central

    Ignacio, Rosa Mistica C.; Gibbs, Carla R.; Lee, Eun-Sook

    2016-01-01

    Obesity is characterized as an accumulation of adipose tissue mass represented by chronic, low-grade inflammation. Obesity-derived inflammation involves chemokines as important regulators contributing to the pathophysiology of obesity-related diseases such as cardiovascular disease, diabetes and some cancers. The obesity-driven chemokine network is poorly understood. Here, we identified the profiles of chemokine signature between human preadipocytes and adipocytes, using PCR arrays and qRT-PCR. Both preadipocytes and adipocytes showed absent or low levels in chemokine receptors in spite of some changes. On the other hand, the chemokine levels of CCL2, CCL7-8, CCL11, CXCL1-3, CXCL6 and CXCL10-11 were dominantly expressed in preadipocytes compared to adipocytes. Interestingly, CXCL14 was the most dominant chemokine expressed in adipocytes compared to preadipocytes. Moreover, there is significantly higher protein level of CXCL14 in conditioned media from adipocytes. In addition, we analyzed the data of the chemokine signatures in adipocytes obtained from healthy lean and obese postmenopausal women based on Gene Expression Omnibus (GEO) dataset. Adipocytes from obese individuals had significantly higher levels in chemokine signature as follows: CCL2, CCL13, CCL18-19, CCL23, CCL26, CXCL1, CXCL3 and CXCL14, as compared to those from lean ones. Also, among the chemokine networks, CXCL14 appeared to be the highest levels in adipocytes from both lean and obese women. Taken together, these results identify CXCL14 as an important chemokine induced during adipogenesis, requiring further research elucidating its potential therapeutic benefits in obesity. PMID:27340388

  18. Leptin in teleostean fish, towards the origins of leptin physiology.

    PubMed

    Gorissen, Marnix; Flik, Gert

    2014-11-01

    Teleostean leptin was first cloned in 2005, more than a decade after the discovery of mammalian leptin. The reason for this delay lies in the very poor primary sequence conservation (∼13-25%) between mammalian and fish leptins. These low sequence conservations indicate a high degree of molecular evolvability and warrant a search for different and original functions of leptin in teleosts. Indeed, new and original insights are obtained because of the unique phylogenetic position of teleostean fish as the earliest vertebrates and because of their ectothermy, which means that teleosts are more flexible in changing their metabolism than mammals and leptin could play a role in this flexibility. Research during the last decade reveals that leptin is a truly pleiotropic hormone in fish and mammals alike, with functions among others in the regulation of food intake and body weight, development, but also in the regulation of the stress axis and acclimation processes to for instance low oxygen levels in the water. In this review, we provide an overview of the teleostean leptin work done in the last ten years, and demonstrate that the power of a comparative approach leads to new insights on the origins of leptin physiology. PMID:24977940

  19. Glucose metabolism and insulin sensitivity in transgenic mice overexpressing leptin with lethal yellow agouti mutation: usefulness of leptin for the treatment of obesity-associated diabetes.

    PubMed

    Masuzaki, H; Ogawa, Y; Aizawa-Abe, M; Hosoda, K; Suga, J; Ebihara, K; Satoh, N; Iwai, H; Inoue, G; Nishimura, H; Yoshimasa, Y; Nakao, K

    1999-08-01

    Leptin acts as an adipocyte-derived blood-borne satiety factor that can increase glucose metabolism. To elucidate the therapeutic implications of leptin for obesity-associated diabetes, we crossed transgenic skinny mice overexpressing leptin (Tg/+), which we have developed recently, and lethal yellow KKAy mice (Ay/+), a genetic model for obesity-diabetes syndrome, and examined the metabolic phenotypes of F1 animals. At 6 weeks of age, plasma leptin concentrations in Tg/+ mice with the Ay allele (Tg/+:Ay/+) were significantly higher than those in Ay/+ mice. Although no significant differences in body weight were noted among Tg/+:Ay/+ mice, Ay/+ mice, and their wild-type lean littermates (+/+), glucose and insulin tolerance tests revealed increased glucose tolerance and insulin sensitivity in Tg/+:Ay/+ compared with Ay/+ mice. However, at 12 weeks of age, when plasma leptin concentrations in Ay/+ mice were comparable to those in Tg/+:Ay/+ mice, Tg/+:Ay/+ mice developed obesity-diabetes syndrome similar to that of Ay/+ mice. Body weights of 12-week-old Tg/+:Ay/+ and Ay/+ mice were reduced to those of +/+ mice by a 3-week food restriction; when plasma leptin concentrations remained high in Tg/+:Ay/+ mice but were markedly reduced in Ay/+ and +/+ mice, glucose tolerance and insulin sensitivity in Tg/+:Ay/+ mice were markedly improved as compared with Ay/+ and +/+ mice. The present study demonstrates that hyperleptinemia can delay the onset of impaired glucose metabolism and accelerate the recovery from diabetes during caloric restriction in Tg/+:Ay/+ mice, thereby suggesting the potential usefulness of leptin in combination with a long-term caloric restriction for the treatment of obesity-associated diabetes.

  20. Free leptin, bound leptin, and soluble leptin receptor in normal and diabetic pregnancies.

    PubMed

    Lewandowski, K; Horn, R; O'Callaghan, C J; Dunlop, D; Medley, G F; O'Hare, P; Brabant, G

    1999-01-01

    We measured serum levels of free leptin, bound leptin, and soluble leptin receptor by specific RIA methods in 20 normal and 19 insulin-dependent diabetes mellitus subjects at 20 and 30 weeks gestation and postpartum, and analyzed the data using hierarchical statistical models. Total leptin levels rise from 20-30 weeks gestation (688 +/- 58 to 785 +/- 62 pmol/L, mean +/- SEM; P = 0.009). There is a significant postpartum fall to 445 +/- 47 pmol/L (P < 0.001). This rise is caused by the rise in the bound leptin levels, as there is no significant change in free leptin levels between 20 and 30 weeks (P = 0.17). There is a significant postpartum fall in free leptin levels (P < 0.001). Insulin requirements rise in the third trimester, but despite this there was no significant difference in free or bound leptin levels between the normal and diabetic subjects at any stage [free leptin, 223 +/- 35 and 266 +/- 24, 237 +/- 45 and 223 +/- 27, and 109 +/- 16 and 104 +/- 24 (P = 0.34); bound leptin, 410 +/- 73 and 428 +/- 54, 501 +/- 78 and 562 +/- 71, and 330 +/- 47 and 271 +/- 46 (P = 0.84); for normals and diabetics at 20 and 30 weeks gestation and postpartum, respectively]. Diabetic subjects, however, had significantly higher soluble leptin receptor levels at all stages (P < 0.001), which rose further in the third trimester from 3742 +/- 268 (mean +/- SEM) to 4134 +/- 239 pmol/L, whereas in the normal group there was a fall from 3149 +/- 169 to 2712 +/- 123 (P = 0.05). There is a linear relationship between the soluble leptin receptor levels and the body mass index in the diabetic group only. We conclude that there is no significant difference in free or bound leptin levels between the normal and insulin-dependent diabetic subjects either during pregnancy or postpartum, but female insulin-dependent diabetic subjects have significantly higher soluble leptin receptor levels. We speculate that high soluble leptin receptor levels might be implicated in the development of the

  1. Leptin induces macrophage lipid body formation by a phosphatidylinositol 3-kinase- and mammalian target of rapamycin-dependent mechanism.

    PubMed

    Maya-Monteiro, Clarissa M; Almeida, Patricia E; D'Avila, Heloisa; Martins, Aline S; Rezende, Ana Paula; Castro-Faria-Neto, Hugo; Bozza, Patricia T

    2008-01-25

    Leptin is an adipocyte-derived hormone/cytokine that links nutritional status with neuroendocrine and immune functions. Lipid bodies (lipid droplets) are emerging as dynamic organelles with roles in lipid metabolism and inflammation. Here we investigated the roles of leptin in signaling pathways involved in cytoplasmic lipid body biogenesis and leukotriene B(4) synthesis in macrophages. Our results demonstrated that leptin directly activated macrophages and induced the formation of adipose differentiation-related protein-enriched lipid bodies. Newly formed lipid bodies were sites of 5-lipoxygenase localization and correlated with an enhanced capacity of leukotriene B(4) production. We demonstrated that leptin-induced macrophage activation was dependent on phosphatidylinositol 3-kinase (PI3K) activity, since the lipid body formation was inhibited by LY294002 and was absent in the PI3K knock-out mice. Leptin induces phosphorylation of p70(S6K) and 4EBP1 key downstream signaling intermediates of the mammalian target of rapamycin (mTOR) pathway in a rapamycin-sensitive mechanism. The mTOR inhibitor, rapamycin, inhibited leptin-induced lipid body formation, both in vivo and in vitro. In addition, rapamycin inhibited leptin-induced adipose differentiation-related protein accumulation in macrophages and lipid body-dependent leukotriene synthesis, demonstrating a key role for mTOR in lipid body biogenesis and function. Our results establish PI3K/mTOR as an important signaling pathway for leptin-induced cytoplasmic lipid body biogenesis and adipose differentiation-related protein accumulation. Furthermore, we demonstrate a previously unrecognized link between intracellular (mTOR) and systemic (leptin) nutrient sensors in macrophage lipid metabolism. Leptin-induced increased formation of cytoplasmic lipid bodies and enhanced inflammatory mediator production in macrophages may have implications for obesity-related cardiovascular diseases. PMID:18039669

  2. Serum leptin measured in early pregnancy is higher in women with preeclampsia compared with normotensive pregnant women.

    PubMed

    Taylor, Brandie D; Ness, Roberta B; Olsen, Jørn; Hougaard, David M; Skogstrand, Kristin; Roberts, James M; Haggerty, Catherine L

    2015-03-01

    Leptin, an adipocyte-derived hormone, plays an important role in reproduction and angiogenesis. Studies examining leptin in preeclampsia are inconsistent, possibly because of small sample sizes and variability in sampling and outcome. We conducted a nested case-control study to examine associations between serum leptin (measured: 9-26 weeks gestation) and preeclampsia among 430 primiparous preeclamptic women and 316 primiparous normotensive controls from the Danish National Birth Cohort. Median (interquartile range) leptin concentrations were calculated. Associations between leptin and preeclampsia (blood pressure ≥140/90 mm Hg), term preeclampsia (preeclampsia and delivery ≥37 weeks gestation), or preterm preeclampsia (preeclampsia and delivery <37 weeks gestation) were examined using generalized linear models adjusting for body mass index, gestational age at blood draw, maternal age, smoking, and socio-occupational status. As leptin is increased in obese women and the risk of preeclampsia increases with body mass index, we used the Sobel test to examine whether leptin is a mediator of this relationship. After adjustments, leptin concentrations were significantly higher in women with preeclampsia (30.5 [24.6]; P=0.0117) and term preeclampsia (30.4 [24.9]; P=0.0228) compared with controls (20.9 [28.3]). There was no significant difference between preterm preeclampsia (30.6 [23.4]; P=0.2210) and controls. Leptin is a possible mediator of the association between body mass index and preeclampsia (P=0.0276). Leptin concentrations are higher in women with preeclampsia compared with normotensive controls and may mediate some of the relationship between body mass index and preeclampsia.

  3. Increased Soluble Leptin Receptor Levels in Morbidly Obese Patients With Insulin Resistance and Nonalcoholic Fatty Liver disease

    PubMed Central

    Medici, Valentina; Ali, Mohamed R.; Seo, Suk; Aoki, Christopher A.; Rossaro, Lorenzo; Kim, Kyoungmi; Fuller, Will D.; Vidovszky, Tamas J.; Smith, William; Jiang, Joy X.; Maganti, Kalyani; Havel, Peter J.; Kamboj, Amit; Ramsamooj, Rajendra; Török, Natalie J.

    2016-01-01

    The adipocyte hormone, leptin has been demonstrated to have profibrogenic actions in vitro and in animal models. However, no correlation was found between plasma leptin levels and fibrosis stage in humans. Thus, our aim was to study whether soluble leptin receptor (SLR) or free leptin index (FLI; calculated as the ratio of leptin to SLR), may correlate better with the features of metabolic syndrome and with the histological grade and stage of nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH). We studied a population (n = 104) of morbidly obese patients undergoing bariatric surgery. Data including BMI, type 2 diabetes mellitus, hypertension, and hyperlipidemia were obtained. Plasma fasting leptin and SLR, fasting glucose and insulin were measured, and homeostasis model of assessment insulin resistance (HOMAIR) index and FLI were calculated. All patients had intraoperative liver biopsies. Leptin levels correlated with the BMI. The multiple regression analysis indicated that increasing HOMA and decreasing FLI were predictors of steatosis in the liver (P < 0.0003). SLR levels were positively correlated with the presence of diabetes mellitus and the stage of fibrosis. In conclusion, increased SLR levels in morbidly obese patients with diabetes are correlated with the stage of liver fibrosis, and may reflect progressive liver disease. PMID:20448542

  4. Increased soluble leptin receptor levels in morbidly obese patients with insulin resistance and nonalcoholic fatty liver disease.

    PubMed

    Medici, Valentina; Ali, Mohamed R; Seo, Suk; Aoki, Christopher A; Rossaro, Lorenzo; Kim, Kyoungmi; Fuller, Will D; Vidovszky, Tamas J; Smith, William; Jiang, Joy X; Maganti, Kalyani; Havel, Peter J; Kamboj, Amit; Ramsamooj, Rajendra; Török, Natalie J

    2010-12-01

    The adipocyte hormone, leptin has been demonstrated to have profibrogenic actions in vitro and in animal models. However, no correlation was found between plasma leptin levels and fibrosis stage in humans. Thus, our aim was to study whether soluble leptin receptor (SLR) or free leptin index (FLI; calculated as the ratio of leptin to SLR), may correlate better with the features of metabolic syndrome and with the histological grade and stage of nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH). We studied a population (n = 104) of morbidly obese patients undergoing bariatric surgery. Data including BMI, type 2 diabetes mellitus, hypertension, and hyperlipidemia were obtained. Plasma fasting leptin and SLR, fasting glucose and insulin were measured, and homeostasis model of assessment insulin resistance (HOMA(IR)) index and FLI were calculated. All patients had intraoperative liver biopsies. Leptin levels correlated with the BMI. The multiple regression analysis indicated that increasing HOMA and decreasing FLI were predictors of steatosis in the liver (P < 0.0003). SLR levels were positively correlated with the presence of diabetes mellitus and the stage of fibrosis. In conclusion, increased SLR levels in morbidly obese patients with diabetes are correlated with the stage of liver fibrosis, and may reflect progressive liver disease. PMID:20448542

  5. The effect of leptin on Na(+)-H(+) antiport (NHE 1) activity of obese and normal subjects erythrocytes.

    PubMed

    Konstantinou-Tegou, A; Kaloyianni, M; Bourikas, D; Koliakos, G

    2001-10-25

    Obesity is currently considered as a chronic metabolic disease, associated with a high risk of cardiovascular complications. Leptin, an adipocyte-derived hormone has a variety target cells influencing a wide range of processes. Possible counteractions of hyperleptinaemia are currently investigated. The Na(+)-H(+) exchanger (NHE 1) is involved in multiple cellular functions and its activation has been related to hypertension and obesity. NHE 1 is present on erythrocytes and can be stimulated by various hormones. Erythrocytes have on their surface a variety of receptors with mostly unknown function. In the present paper, the effect of leptin on erythrocytes NHE 1 activity has been investigated. For this reason, the intracellular pH and sodium influxes were measured before and after addition of leptin in erythrocyte suspensions from normal and obese individuals. Amiloride, a specific NHE 1 inhibitor, and staurosporine a protein kinase C inhibitor were used to inhibit erythrocyte NHE 1. For the binding study leptin was labeled with fluorescein isothiocyanate (FITC) and the binding on erythrocytes was estimated by Scatchard analysis. NHE 1 activity increased in the presence of leptin but significantly less in the obese than in the control group. Furthermore the concentrations of leptin binding sites on the surface of erythrocytes were lower in erythrocytes drawn from obese individuals than in erythrocytes drawn from normal subjects. Since NHE 1 activity has been associated with insulin resistance and hypertension, the activation of this antiport by leptin may represent a link between adipose tissue hypertrophy and cardiovascular complications of obesity.

  6. Follistatin promotes adipocyte differentiation, browning, and energy metabolism.

    PubMed

    Braga, Melissa; Reddy, Srinivasa T; Vergnes, Laurent; Pervin, Shehla; Grijalva, Victor; Stout, David; David, John; Li, Xinmin; Tomasian, Venina; Reid, Christopher B; Norris, Keith C; Devaskar, Sherin U; Reue, Karen; Singh, Rajan

    2014-03-01

    Follistatin (Fst) functions to bind and neutralize the activity of members of the transforming growth factor-β superfamily. Fst has a well-established role in skeletal muscle, but we detected significant Fst expression levels in interscapular brown and subcutaneous white adipose tissue, and further investigated its role in adipocyte biology. Fst expression was induced during adipogenic differentiation of mouse brown preadipocytes and mouse embryonic fibroblasts (MEFs) as well as in cold-induced brown adipose tissue from mice. In differentiated MEFs from Fst KO mice, the induction of brown adipocyte proteins including uncoupling protein 1, PR domain containing 16, and PPAR gamma coactivator-1α was attenuated, but could be rescued by treatment with recombinant FST. Furthermore, Fst enhanced thermogenic gene expression in differentiated mouse brown adipocytes and MEF cultures from both WT and Fst KO groups, suggesting that Fst produced by adipocytes may act in a paracrine manner. Our microarray gene expression profiling of WT and Fst KO MEFs during adipogenic differentiation identified several genes implicated in lipid and energy metabolism that were significantly downregulated in Fst KO MEFs. Furthermore, Fst treatment significantly increases cellular respiration in Fst-deficient cells. Our results implicate a novel role of Fst in the induction of brown adipocyte character and regulation of energy metabolism. PMID:24443561

  7. Soshiho-Tang Aqueous Extract Exerts Antiobesity Effects in High Fat Diet-Fed Mice and Inhibits Adipogenesis in 3T3-L1 Adipocytes

    PubMed Central

    Lee, Mee-young; Kang, Byoung-Kab

    2016-01-01

    Soshiho-tang (SST; sho-saiko-to in Japanese; xiaochaihu-tang in Chinese) has generally been used to improve liver fibrosis- and cirrhosis-related symptoms in traditional Korean medicine. Although many studies have investigated the pharmacological properties of SST, its antiobesity effect has not been elucidated. Thus, our present study was carried out to evaluate the antiobesity effect of SST using a high fat diet- (HFD) induced obese mouse model and 3T3-L1 adipose cells. C57BL/6J mice were randomly divided into four groups (n = 6/group), normal diet (ND), HFD-fed group, and HFD- and SST-fed groups (S200: 200 mg/kg of SST; S600: 600 mg/kg of SST) and given HFD with or without SST extract for 8 weeks. 3T3-L1 preadipocytes were differentiated into adipocytes for 8 days with or without SST. In the HFD-fed obese mice, body weight and fat accumulation in adipose tissue were significantly reduced by SST administration. Compared with control-differentiated adipocytes, SST significantly inhibited lipid accumulation by decreasing the triglyceride (TG) content and leptin concentration in 3T3-L1 adipocytes. SST also decreased the expression of adipogenesis-related genes including lipoprotein lipase (LPL), fatty acid binding protein 4 (FABP4), CCAAT/enhancer-binding protein-alpha (C/EBP-α), and peroxisome proliferator-activated receptor-gamma (PPAR-γ). Our findings suggest that SST has potential as a nontoxic antiobesity medication. PMID:27777595

  8. Regulation of leptin expression by 17beta-estradiol in human placental cells involves membrane associated estrogen receptor alpha.

    PubMed

    Gambino, Yésica P; Pérez Pérez, Antonio; Dueñas, José L; Calvo, Juan Carlos; Sánchez-Margalet, Víctor; Varone, Cecilia L

    2012-04-01

    The placenta produces a wide number of molecules that play essential roles in the establishment and maintenance of pregnancy. In this context, leptin has emerged as an important player in reproduction. The synthesis of leptin in normal trophoblastic cells is regulated by different endogenous biochemical agents, but the regulation of placental leptin expression is still poorly understood. We have previously reported that 17β-estradiol (E(2)) up-regulates placental leptin expression. To improve the understanding of estrogen receptor mechanisms in regulating leptin gene expression, in the current study we examined the effect of membrane-constrained E(2) conjugate, E-BSA, on leptin expression in human placental cells. We have found that leptin expression was induced by E-BSA both in BeWo cells and human placental explants, suggesting that E(2) also exerts its effects through membrane receptors. Moreover E-BSA rapidly activated different MAPKs and AKT pathways, and these pathways were involved in E(2) induced placental leptin expression. On the other hand we demonstrated the presence of ERα associated to the plasma membrane of BeWo cells. We showed that E(2) genomic and nongenomic actions could be mediated by ERα. Supporting this idea, the downregulation of ERα level through a specific siRNA, decreased E-BSA effects on leptin expression. Taken together, these results provide new evidence of the mechanisms whereby E(2) regulates leptin expression in placenta and support the importance of leptin in placental physiology.

  9. Site-specific circadian expression of leptin and its receptor in human adipose tissue

    PubMed Central

    Abellán, P. Gómez; Santos, C. Gómez; Madrid, J. A.; Milagro, F. I.; Campion, J.; Martínez, J. A.; Luján, J. A.; Ordovás, J. M.; Garaulet, M.

    2015-01-01

    Introduction Circadian variability of circulating leptin levels has been well established over the last decade. However, the circadian behavior of leptin in human adipose tissue remains unknown. This also applies to the soluble leptin receptor. Objective We investigated the ex vivo circadian behavior of leptin and its receptor expression in human adipose tissue (AT). Subjects and methods Visceral and subcutaneous abdominal AT biopsies (n = 6) were obtained from morbid obese women (BMI ≥ 40 kg/m2). Anthropometric variables and fasting plasma glucose, leptin, lipids and lipoprotein concentrations were determined. In order to investigate rhythmic expression pattern of leptin and its receptor, AT explants were cultured during 24-h and gene expression was analyzed at the following times: 08:00, 14:00, 20:00, 02:00 h, using quantitative real-time PCR. Results Leptin expression showed an oscillatory pattern that was consistent with circadian rhythm in cultured AT. Similar patterns were noted for the leptin receptor. Leptin showed its achrophase (maximum expression) during the night, which might be associated to a lower degree of fat accumulation and higher mobilization. When comparing both fat depots, visceral AT anticipated its expression towards afternoon and evening hours. Interestingly, leptin plasma values were associated with decreased amplitude of LEP rhythm. This association was lost when adjusting for waist circumference. Conclusion Circadian rhythmicity has been demonstrated in leptin and its receptor in human AT cultures in a site-specific manner. This new knowledge paves the way for a better understanding of the autocrine/paracrine role of leptin in human AT. PMID:22411388

  10. Activation of peroxisome proliferator-activated receptor-{alpha} enhances fatty acid oxidation in human adipocytes

    SciTech Connect

    Lee, Joo-Young; Hashizaki, Hikari; Goto, Tsuyoshi; Sakamoto, Tomoya; Takahashi, Nobuyuki; Kawada, Teruo

    2011-04-22

    Highlights: {yields} PPAR{alpha} activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. {yields} PPAR{alpha} activation also increased insulin-dependent glucose uptake in human adipocytes. {yields} PPAR{alpha} activation did not affect lipid accumulation in human adipocytes. {yields} PPAR{alpha} activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPAR{alpha} in adipocytes have been unclarified. We examined the functions of PPAR{alpha} using human multipotent adipose tissue-derived stem cells as a human adipocyte model. Activation of PPAR{alpha} by GW7647, a potent PPAR{alpha} agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPAR{gamma}, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPAR{alpha} activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPAR{gamma} is activated. On the other hand, PPAR{alpha} activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPAR{alpha}-dependent manner. Moreover, PPAR{alpha} activation increased the production of CO{sub 2} and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPAR{alpha} stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPAR{alpha} agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected

  11. Ubc9 Impairs Activation of the Brown Fat Energy Metabolism Program in Human White Adipocytes.

    PubMed

    Hartig, Sean M; Bader, David A; Abadie, Kathleen V; Motamed, Massoud; Hamilton, Mark P; Long, Weiwen; York, Brian; Mueller, Michaela; Wagner, Martin; Trauner, Michael; Chan, Lawrence; Bajaj, Mandeep; Moore, David D; Mancini, Michael A; McGuire, Sean E

    2015-09-01

    Insulin resistance and type 2 diabetes mellitus (T2DM) result from an inability to efficiently store and catabolize surplus energy in adipose tissue. Subcutaneous adipocytes protect against insulin resistance and T2DM by coupling differentiation with the induction of brown fat gene programs for efficient energy metabolism. Mechanisms that disrupt these programs in adipocytes are currently poorly defined, but represent therapeutic targets for the treatment of T2DM. To gain insight into these mechanisms, we performed a high-throughput microscopy screen that identified ubiquitin carrier protein 9 (Ubc9) as a negative regulator of energy storage in human sc adipocytes. Ubc9 depletion enhanced energy storage and induced the brown fat gene program in human sc adipocytes. Induction of adipocyte differentiation resulted in decreased Ubc9 expression commensurate with increased brown fat gene expression. Thiazolidinedione treatment reduced the interaction between Ubc9 and peroxisome proliferator-activated receptor (PPAR)γ, suggesting a mechanism by which Ubc9 represses PPARγ activity. In support of this hypothesis, Ubc9 overexpression remodeled energy metabolism in human sc adipocytes by selectively inhibiting brown adipocyte-specific function. Further, Ubc9 overexpression decreased uncoupling protein 1 expression by disrupting PPARγ binding at a critical uncoupling protein 1 enhancer region. Last, Ubc9 is significantly elevated in sc adipose tissue isolated from mouse models of insulin resistance as well as diabetic and insulin-resistant humans. Taken together, our findings demonstrate a critical role for Ubc9 in the regulation of sc adipocyte energy homeostasis.

  12. Ubc9 Impairs Activation of the Brown Fat Energy Metabolism Program in Human White Adipocytes

    PubMed Central

    Bader, David A.; Abadie, Kathleen V.; Motamed, Massoud; Hamilton, Mark P.; Long, Weiwen; York, Brian; Mueller, Michaela; Wagner, Martin; Trauner, Michael; Chan, Lawrence; Bajaj, Mandeep; Moore, David D.; Mancini, Michael A.; McGuire, Sean E.

    2015-01-01

    Insulin resistance and type 2 diabetes mellitus (T2DM) result from an inability to efficiently store and catabolize surplus energy in adipose tissue. Subcutaneous adipocytes protect against insulin resistance and T2DM by coupling differentiation with the induction of brown fat gene programs for efficient energy metabolism. Mechanisms that disrupt these programs in adipocytes are currently poorly defined, but represent therapeutic targets for the treatment of T2DM. To gain insight into these mechanisms, we performed a high-throughput microscopy screen that identified ubiquitin carrier protein 9 (Ubc9) as a negative regulator of energy storage in human sc adipocytes. Ubc9 depletion enhanced energy storage and induced the brown fat gene program in human sc adipocytes. Induction of adipocyte differentiation resulted in decreased Ubc9 expression commensurate with increased brown fat gene expression. Thiazolidinedione treatment reduced the interaction between Ubc9 and peroxisome proliferator-activated receptor (PPAR)γ, suggesting a mechanism by which Ubc9 represses PPARγ activity. In support of this hypothesis, Ubc9 overexpression remodeled energy metabolism in human sc adipocytes by selectively inhibiting brown adipocyte-specific function. Further, Ubc9 overexpression decreased uncoupling protein 1 expression by disrupting PPARγ binding at a critical uncoupling protein 1 enhancer region. Last, Ubc9 is significantly elevated in sc adipose tissue isolated from mouse models of insulin resistance as well as diabetic and insulin-resistant humans. Taken together, our findings demonstrate a critical role for Ubc9 in the regulation of sc adipocyte energy homeostasis. PMID:26192107

  13. Loss of CD24 in Mice Leads to Metabolic Dysfunctions and a Reduction in White Adipocyte Tissue.

    PubMed

    Fairbridge, Nicholas A; Southall, Thomas M; Ayre, D Craig; Komatsu, Yumiko; Raquet, Paula I; Brown, Robert J; Randell, Edward; Kovacs, Christopher S; Christian, Sherri L

    2015-01-01

    CD24 is a glycophosphatidylinositol (GPI)-linked cell surface receptor that is involved in regulating the survival or differentiation of several different cell types. CD24 has been used to identify pre-adipocytes that are able to reconstitute white adipose tissue (WAT) in vivo. Moreover, we recently found that the dynamic upregulation of CD24 in vitro during early phases of adipogenesis is necessary for mature adipocyte development. To determine the role of CD24 in adipocyte development in vivo, we evaluated the development of the inguinal and interscapular subcutaneous WAT and the epididymal visceral WAT in mice with a homozygous deletion of CD24 (CD24KO). We observed a significant decrease in WAT mass of 40% to 74% in WAT mass from both visceral and subcutaneous depots in male mice, with no significant effect in female mice, compared to wild-type (WT) sex- and age-matched controls. We also found that CD24KO mice had increased fasting glucose and free fatty acids, decreased fasting insulin, and plasma leptin. No major differences were observed in the sensitivity to insulin or glucose, or in circulating triglycerides, total cholesterol, HDL-cholesterol, or LDL-cholesterol levels between WT and CD24KO mice. Challenging the CD24KO mice with either high sucrose (35%) or high fat (45%) diets that promote increased adiposity, increased WAT mass and fasting insulin, adiponectin and leptin levels, as well as reduced the sensitivity to insulin and glucose, to the levels of WT mice on the same diets. The CD24-mediated reduction in fat pad size was due to a reduction in adipocyte cell size in all depots with no significant reduction pre-adipocyte or adipocyte cell number. Thus, we have clearly demonstrated that the global absence of CD24 affects adipocyte cell size in vivo in a sex- and diet-dependent manner, as well as causing metabolic disturbances in glucose homeostasis and free fatty acid levels. PMID:26536476

  14. Loss of CD24 in Mice Leads to Metabolic Dysfunctions and a Reduction in White Adipocyte Tissue

    PubMed Central

    Fairbridge, Nicholas A.; Southall, Thomas M.; Ayre, D. Craig; Komatsu, Yumiko; Raquet, Paula I.; Brown, Robert J.; Randell, Edward; Kovacs, Christopher S.; Christian, Sherri L.

    2015-01-01

    CD24 is a glycophosphatidylinositol (GPI)-linked cell surface receptor that is involved in regulating the survival or differentiation of several different cell types. CD24 has been used to identify pre-adipocytes that are able to reconstitute white adipose tissue (WAT) in vivo. Moreover, we recently found that the dynamic upregulation of CD24 in vitro during early phases of adipogenesis is necessary for mature adipocyte development. To determine the role of CD24 in adipocyte development in vivo, we evaluated the development of the inguinal and interscapular subcutaneous WAT and the epididymal visceral WAT in mice with a homozygous deletion of CD24 (CD24KO). We observed a significant decrease in WAT mass of 40% to 74% in WAT mass from both visceral and subcutaneous depots in male mice, with no significant effect in female mice, compared to wild-type (WT) sex- and age-matched controls. We also found that CD24KO mice had increased fasting glucose and free fatty acids, decreased fasting insulin, and plasma leptin. No major differences were observed in the sensitivity to insulin or glucose, or in circulating triglycerides, total cholesterol, HDL-cholesterol, or LDL-cholesterol levels between WT and CD24KO mice. Challenging the CD24KO mice with either high sucrose (35%) or high fat (45%) diets that promote increased adiposity, increased WAT mass and fasting insulin, adiponectin and leptin levels, as well as reduced the sensitivity to insulin and glucose, to the levels of WT mice on the same diets. The CD24-mediated reduction in fat pad size was due to a reduction in adipocyte cell size in all depots with no significant reduction pre-adipocyte or adipocyte cell number. Thus, we have clearly demonstrated that the global absence of CD24 affects adipocyte cell size in vivo in a sex- and diet-dependent manner, as well as causing metabolic disturbances in glucose homeostasis and free fatty acid levels. PMID:26536476

  15. Silibinin Regulates Lipid Metabolism and Differentiation in Functional Human Adipocytes

    PubMed Central

    Barbagallo, Ignazio; Vanella, Luca; Cambria, Maria T.; Tibullo, Daniele; Godos, Justyna; Guarnaccia, Laura; Zappalà, Agata; Galvano, Fabio; Li Volti, Giovanni

    2016-01-01

    Silibinin, a natural plant flavonolignan is the main active constituent found in milk thistle (Silybum marianum). It is known to have hepatoprotective, anti-neoplastic effect, and suppresses lipid accumulation in adipocytes. Objective of this study was to investigate the effect of silibinin on adipogenic differentiation and thermogenic capacity of human adipose tissue derived mesenchymal stem cells. Silibinin (10 μM) treatment, either at the beginning or at the end of adipogenic differentiation, resulted in an increase of SIRT-1, PPARα, Pgc-1α, and UCPs gene expression. Moreover, silibinin administration resulted in a decrease of PPARγ, FABP4, FAS, and MEST/PEG1 gene expression during the differentiation, confirming that this compound is able to reduce fatty acid accumulation and adipocyte size. Our data showed that silibinin regulated adipocyte lipid metabolism, inducing thermogenesis and promoting a brown remodeling in adipocyte. Taken together, our findings suggest that silibinin increases UCPs expression by stimulation of SIRT1, PPARα, and Pgc-1α, improved metabolic parameters, decreased lipid mass leading to the formation of functional adipocytes. PMID:26834634

  16. The role of leptin in striped hamsters subjected to food restriction and refeeding

    PubMed Central

    ZHAO, Zhi-Jun; LIU, Yong-An; XING, Jing-Ya; ZHANG, Mao-Lun; NI, Xiao-Ying; CAO, Jing

    2014-01-01

    Food restriction (FR) and refeeding (Re) have been suggested to impair body mass regulation and thereby making it easier to regain the lost weight and develop over-weight when FR ends. However, it is unclear if this is the case in small mammals showing seasonal forging behaviors. In the present study, energy budget, body fat and serum leptin level were measured in striped hamsters that were exposed to FR-Re. The effects of leptin on food intake, body fat and genes expressions of several hypothalamus neuropeptides were determined. Body mass, fat content and serum leptin level decreased during FR and then increased during Re. Leptin supplement significantly attenuated the increase in food intake during Re, decreased genes expressions of neuropepetide Y (NPY) and agouti-related protein (AgRP) of hypothalamus and leptin of white adipose tissue (WAT). Hormone-sensitive lipase (HSL) gene expression of WAT increased in leptin-treated hamsters that were fed ad libitum, but decreased in FR-Re hamsters. This indicates that the adaptive regulation of WAT HSL gene expression may be involved in the mobilization of fat storage during Re, which partly contributes to the resistance to FR-Re-induced overweight. Leptin may be involved in the down regulations of hypothalamus orexigenic peptides gene expression and consequently plays a crucial role in controlling food intake when FR ends. PMID:25017744

  17. Decreased triglyceride-rich lipoproteins in transgenic skinny mice overexpressing leptin.

    PubMed

    Matsuoka, N; Ogawa, Y; Masuzaki, H; Ebihara, K; Aizawa-Abe, M; Satoh, N; Ishikawa, E; Fujisawa, Y; Kosaki, A; Yamada, K; Kuzuya, H; Nakao, K

    2001-02-01

    Leptin is an adipocyte-derived circulating satiety factor with a variety of biological effects. Evidence has accumulated suggesting that leptin may modulate glucose and lipid metabolism. In the present study, we examined lipid metabolism in transgenic skinny mice with elevated plasma leptin concentrations. The plasma concentrations of triglycerides and free fatty acids in transgenic skinny mice were 71.5 (P < 0.01) and 89.1% (P < 0.05) of those in their nontransgenic littermates, respectively. Separation of plasma into lipoprotein classes by ultracentrifugation revealed that very low density lipoprotein-triglyceride concentrations were markedly reduced in transgenic skinny mice relative to the controls. The clearance of triglycerides estimated by a fat-loading test was enhanced in transgenic skinny mice; the triglyceride concentration in transgenic skinny mice 3 h after fat loading was 39.7% (P < 0.05) of that of their nontransgenic littermates. Postheparin plasma lipoprotein lipase activity increased 1.4-fold (P < 0.05) in transgenic skinny mice. Our data demonstrated a significant reduction in plasma triglyceride concentrations, accompanied by increased lipoprotein lipase activity in transgenic skinny mice overexpressing leptin, suggesting that leptin plays a role in long-term triglyceride metabolism.

  18. Weight-dependent changes of immune system in adipose tissue: Importance of leptin

    SciTech Connect

    Caspar-Bauguil, S.; Cousin, B.; Andre, M.; Nibbelink, M.; Galinier, A.; Periquet, B.; Casteilla, L.; Penicaud, L. . E-mail: penicaud@toulouse.inserm.fr

    2006-07-15

    Ancestral lymphoid cells reside in adipose tissues, and their numbers are highly altered in obesity. Leptin, production of which is correlated to fat mass, is strongly involved in the relationships between adipose tissues and immune system. We investigated in epididymal (EPI) and inguinal (ING) fat pads to determine whether 1) lymphocyte phenotypes were correlated to the tissue weight and 2) leptin was involved in such relationships. Immunohistological analyses revealed a tight relationship between the T and NK lymphocytes of the stromal vascular fraction and adipocytes. We identified a significant negative and positive correlation between EPI weight and the percentage of NK and total T cells respectively by cytofluorometric analyses. The NK and ancestral {gamma}{delta} T cell contents were directly dependent of leptin since they increased significantly in high-fat (HF) diet mice but not in leptin-deficient (ob/ob) mice as compared to control. By contrast, the {alpha}{beta} T cell content seemed independent of leptin because their percentages increased significantly with the EPI weight whatever the type of mice (control, HF, ob/ob). The present study suggests that adipose tissues present, according to their localization, different immunological mechanisms that might be involved in the regulation of adipose cells functions and proliferations.

  19. A functional leptin system is essential for sodium tungstate antiobesity action.

    PubMed

    Canals, Ignasi; Carmona, María C; Amigó, Marta; Barbera, Albert; Bortolozzi, Analía; Artigas, Francesc; Gomis, Ramon

    2009-02-01

    Sodium tungstate is a novel agent in the treatment of obesity. In diet-induced obese rats, it is able to reduce body weight gain by increasing energy expenditure. This study evaluated the role of leptin, a key regulator of energy homeostasis, in the tungstate antiobesity effect. Leptin receptor-deficient Zucker fa/fa rats and leptin-deficient ob/ob mice were treated with tungstate. In lean animals, tungstate administration reduced body weight gain and food intake and increased energy expenditure. However, in animals with deficiencies in the leptin system, treatment did not modify these parameters. In ob/ob mice in which leptin deficiency was restored through adipose tissue transplantation, treatment restored the tungstate-induced body weight gain and food intake reduction as well as energy expenditure increase. Furthermore, in animals in which tungstate administration increased energy expenditure, changes in the expression of key genes involved in brown adipose tissue thermogenesis were detected. Finally, the gene expression of the hypothalamic neuropeptides, Npy, Agrp, and Cart, involved in the leptin regulation of energy homeostasis, was also modified by tungstate in a leptin-dependent manner. In summary, the results indicate that the effectiveness of tungstate in reducing body weight gain is completely dependent on a functional leptin system.

  20. Predictive value of serum and follicular fluid leptin concentrations during assisted reproductive cycles in normal women and in women with the polycystic ovarian syndrome.

    PubMed

    Mantzoros, C S; Cramer, D W; Liberman, R F; Barbieri, R L

    2000-03-01

    Leptin is an adipocyte-derived hormone which plays a central role in the regulation of body weight and energy homeostasis and in signalling to the brain that adequate energy stores are available for reproduction. Although leptin may affect reproduction by regulating the hypothalamic-pituitary-gonadal axis, recent in-vitro observations indicate that leptin may also have direct intra-ovarian actions. Leptin concentrations were measured in women who succeeded in becoming pregnant within three cycles of in-vitro fertilization (IVF) or gamete intra-fallopian transfer (n = 53), in women who failed to become pregnant within three cycles (n = 50), and in women with polycystic ovarian syndrome (PCOS) (n = 22). It was found that lower follicular fluid leptin concentrations were a marker of assisted reproduction treatment success in normal women. Women with PCOS had higher leptin concentrations than women without such a diagnosis, but this was due to their higher body mass index (BMI). After adjustment for age and BMI, women with PCOS who became pregnant tended to have lower mean follicular fluid leptin concentrations than women with PCOS who did not succeed at becoming pregnant. Further studies exploiting the strengths of the IVF model are needed to assess whether the prognostic role for follicular fluid leptin in human reproduction is independent of other factors, and to elucidate the underlying mechanisms.

  1. Concerted Trafficking Regulation of Kv2.1 and KATP Channels by Leptin in Pancreatic β-Cells.

    PubMed

    Wu, Yi; Shyng, Show-Ling; Chen, Pei-Chun

    2015-12-11

    In pancreatic β-cells, voltage-gated potassium 2.1 (Kv2.1) channels are the dominant delayed rectifier potassium channels responsible for action potential repolarization. Here, we report that leptin, a hormone secreted by adipocytes known to inhibit insulin secretion, causes a transient increase in surface expression of Kv2.1 channels in rodent and human β-cells. The effect of leptin on Kv2.1 surface expression is mediated by the AMP-activated protein kinase (AMPK). Activation of AMPK mimics whereas inhibition of AMPK occludes the effect of leptin. Inhibition of Ca(2+)/calmodulin-dependent protein kinase kinase β, a known upstream kinase of AMPK, also blocks the effect of leptin. In addition, the cAMP-dependent protein kinase (PKA) is involved in Kv2.1 channel trafficking regulation. Inhibition of PKA prevents leptin or AMPK activators from increasing Kv2.1 channel density, whereas stimulation of PKA is sufficient to promote Kv2.1 channel surface expression. The increased Kv2.1 surface expression by leptin is dependent on actin depolymerization, and pharmacologically induced actin depolymerization is sufficient to enhance Kv2.1 surface expression. The signaling and cellular mechanisms underlying Kv2.1 channel trafficking regulation by leptin mirror those reported recently for ATP-sensitive potassium (KATP) channels, which are critical for coupling glucose stimulation with membrane depolarization. We show that the leptin-induced increase in surface KATP channels results in more hyperpolarized membrane potentials than control cells at stimulating glucose concentrations, and the increase in Kv2.1 channels leads to a more rapid repolarization of membrane potential in cells firing action potentials. This study supports a model in which leptin exerts concerted trafficking regulation of KATP and Kv2.1 channels to coordinately inhibit insulin secretion.

  2. Plasma leptin levels and risk of breast cancer in premenopausal women

    PubMed Central

    Harris, Holly R.; Tworoger, Shelley S.; Hankinson, Susan E.; Rosner, Bernard A.; Michels, Karin B.

    2011-01-01

    Background Body mass index (BMI) is inversely related to the risk of premenopausal breast cancer, but the underlying biological mechanisms of this association are poorly understood. Leptin, a peptide hormone produced primarily by adipocytes, is a potential mediator of the BMI association since BMI and total body fat are positively associated with circulating leptin levels and leptin and its receptor are overexpressed in breast tumors. Methods We conducted a prospective case-control study nested within the Nurses’ Health Study II cohort examining the association between plasma leptin levels in premenopausal women and breast cancer risk. Leptin was measured in blood samples collected between 1996 and 1999. The analysis included 330 incident breast cancer cases diagnosed after blood collection and 636 matched controls. Logistic regression models, controlling for breast cancer risk factors, were used to calculate odds ratios (OR) and 95% confidence intervals (95% CIs). Results After adjustment for BMI at age 18, weight change since age 18 to blood draw, and other breast cancer risk factors, plasma leptin levels were inversely associated with breast cancer risk (OR for top vs. bottom quartile 0.55; 95% CI 0.31–0.99; p for trend=0.04). Adjustment for BMI at blood draw attenuated the association (OR=0.69; 95% CI 0.38–1.23; p for trend=0.26). Conclusion Our results suggest that leptin may be inversely associated with breast cancer risk, but it is unclear whether any part of this association is independent of BMI. PMID:21680707

  3. The Associations of Novel Vitamin D3 Metabolic Gene CYP27A1 Polymorphism, Adiponectin/Leptin Ratio, and Metabolic Syndrome in Middle-Aged Taiwanese Males

    PubMed Central

    Liu, Chia-Chu; Huang, Chun-Nung; Lee, Yung-Chin; Chu, Chih-Sheng; Chang, Chu-Fen; Kuo, Po-Lin; Lai, Wen-Ter

    2015-01-01

    Metabolic syndrome (MetS) confers increased risks of cardiovascular disease (CVD). Both vitamin D3 and adipocytokines (especially adiponectin and leptin) have a great impact on CVD and MetS. In vitamin D3 metabolism, the vitamin D3 25-hydroxylase (CYP27A1) and 25-hydroxyvitamin D3 1-alpha-hydroxylase (CYP27B1) are two key enzymes. This study aimed to examine the influence of vitamin D3 CYP27 single nucleotide polymorphisms (SNPs) on adipocytokines and MetS. Cross-sectional data and DNA samples were collected from male volunteers (n = 649, age: 55.7 ± 4.7 years). Two tagging SNPs, CYP27A1 rs4674344 and CYP27B1 rs10877012, were selected from the HapMap project. MetS was significantly associated with the CYP27A1 rs4674344 SNP (P = 0.04) and the ratio of adiponectin/leptin (A/L ratio) was most correlated to the CYP27A1 rs4674344 SNP, appearing to be significantly lower in T-carriers than in AA subjects (3.7 ± 4.0 versus 5.1 ± 6.0, P = 0.001) and significantly negatively associated after adjustment. For each MetS component associated with the CYP27A1 rs4674344 SNP, the A/L ratios were significantly negative in preclinical stage (condition not meeting the individual criteria), except the blood pressure. In conclusion, CYP27A1 rs4674344 SNP, A/L ratio, and MetS are significantly associated and T-carriers might have a higher risk of developing MetS due to low A/L ratios in the preclinical stage. PMID:25628655

  4. Interactions between leptin and NPY affecting lipid mobilization in adipose tissue.

    PubMed

    Martínez, J A; Aguado, M; Frühbeck, G

    2000-03-01

    Lipid turnover and deposition is under the control of developmental, nutritional, metabolic and neuroendocrine influences. The aim of the current investigations was focused on the study of the involvement of leptin and neuropeptide Y in lipid mobilization. The lipolytic rate was assessed through glycerol release after incubation with leptin and NPY at concentrations ranging from 10(-6) to 10(-12) M in isolated adipocytes obtained from female rats. The presence of leptin at concentrations of 10(-12) to 10(-7) M in the incubation medium of isolated fat cells significantly increased (p < 0.0001) glycerol release, except at the concentration of 10(-11) M, where the increase was (p < 0.01) as compared to the basal lipolytic activity. On the other hand, isolated fat cells of Wistar rats bathed in 10(-10) to 10(-6) M concentrations of NPY demonstrated a statistically significant decrease (p < 0.0001) in glycerol release. At equimolar concentrations of leptin and NPY (10(-12) to 10(-6) M) the observed lipolytic activity is comparable to the basal lipolytic activity, except at a concentration of 10(-9) M where upon a significant increase in lipolysis is observed. A further increase in the equimolar concentrations, beyond 10(-9) M results in a return to the basal lipolytic activity. Summing up, new evidence suggests that NPY and leptin may interact in a homeostatic loop to regulate body-fat mass and energy balance not only at the central nervous system level, but also directly at the adipocyte level.

  5. Adenovirus-mediated gene transfer of dominant negative ras(asn17) in 3T3L1 adipocytes does not alter insulin-stimulated P13-kinase activity or glucose transport.

    PubMed

    Gnudi, L; Frevert, E U; Houseknecht, K L; Erhardt, P; Kahn, B B

    1997-01-01

    Recent studies suggest that the ras-map kinase and PI3-kinase cascades converge. We sought to determine whether PI3-kinase is downstream of ras in insulin signaling in a classic insulin target cell. We generated a recombinant adenovirus encoding dominant negative ras by cloning the human H-ras cDNA with a ser to asn substitution at amino acid 17 (ras(asn17)) into the pACCMVpLpA vector and cotransfecting 293 cells with the pJM17 plasmid containing the adenoviral genome. Efficiency of gene transfer was assessed by infecting fully differentiated 3T3L1 adipocytes with a recombinant adenovirus expressing beta-galactosidase (beta-gal); greater than 70% of cells were infected. Infection of adipocytes with ras(asn17) resulted in 10-fold greater expression than endogenous ras. This high efficiency gene transfer allowed biochemical assays. Insulin stimulation of ras-GTP formation was inhibited in ras(asn17)-expressing cells. Map kinase gel mobility shift revealed that insulin (1 UM) or epidermal growth factor (100 ng/ml) resulted in the appearance of a hyperphosphorylated species of p42 map kinase in uninfected cells and those expressing beta-gal but not in cells expressing ras(asn17). In contrast, insulin increased IRS-1-associated PI3-kinase activity approximately 10-fold in control cells and high level overexpression of ras(asn17) did not impair this effect. Similarly, insulin and epidermal growth factor activation of total (no immunoprecipitation) PI3-kinase activity in both cytosol and total cellular membranes and insulin stimulation of glucose transport were not affected by expression of dominant negative ras. Thus, adenovirus-mediated gene transfer is effective for studying insulin signaling in fully differentiated insulin target cells. Inhibition of ras activation abolishes insulin-stimulated phosphorylation of map kinase but does not affect insulin stimulation of PI3-kinase activity. In normal cell physiology, PI3-kinase does not appear to be downstream of ras in

  6. Shifting to a control diet after a high-fat, high-sucrose diet intake induces epigenetic changes in retroperitoneal adipocytes of Wistar rats.

    PubMed

    Uriarte, G; Paternain, L; Milagro, F I; Martínez, J A; Campion, J

    2013-09-01

    The aim of the study was to analyze the phenotypic and epigenetic changes induced by the shift to a chow diet after an obesogenic environment. Animals were randomized to fed chow (control group) or high-fat-sucrose diet (HFS). After 10 weeks, half of the rats fed with HFS diet were reassigned to a chow diet (rest group) while the other half continued with the obesogenic diet (HFS group) until week 20. Changes in fat content, biochemical profile, and DNA methylation levels of several gene promoters from retroperitoneal adipocytes were analyzed. HFS diet intake for 10 weeks induced obese phenotype in the animals, increasing body weight and fat content. These effects were maintained until the end of the trial in HFS group, where an increase in liver fat content, a modification of lipid profile, and retroperitoneal adipose tissue hypertrophy were also observed. Changing the dietary pattern reversed these parameters. Epigenetic analysis showed that HFS diet intake for 20 weeks hypermethylated several CpG sites (6.7 and 29.30) and hypomethylated CpG site 15 from leptin gene promoter. Moreover, the obesogenic diet also hypomethylated CpG site 1 from Fasn (fatty acid synthase) gene promoter, without changes on Ppargc1a (peroxisome proliferator-activated receptor gamma coactivator 1-alpha), Srebf1 (sterol regulatory element-binding transcription factor 1), and aquaporin 7. Shifting to a chow diet reverted HFS-induced DNA methylation levels of some CpG sites of leptin promoter. Changing the dietary pattern hypomethylated a CpG site of Srebf1 and hypermethylated other CpGs on Ppargc1a and Fasn promoter. This study shed light on the reversibility of phenotypical and epigenetic changes induced by a HFS diet intake.

  7. Small Molecule-Induced Complement Factor D (Adipsin) Promotes Lipid Accumulation and Adipocyte Differentiation.

    PubMed

    Song, No-Joon; Kim, Suji; Jang, Byung-Hyun; Chang, Seo-Hyuk; Yun, Ui Jeong; Park, Ki-Moon; Waki, Hironori; Li, Dean Y; Tontonoz, Peter; Park, Kye Won

    2016-01-01

    Adipocytes are differentiated by various transcriptional cascades integrated on the master regulator, Pparγ. To discover new genes involved in adipocyte differentiation, preadipocytes were treated with three newly identified pro-adipogenic small molecules and GW7845 (a Pparγ agonist) for 24 hours and transcriptional profiling was analyzed. Four genes, Peroxisome proliferator-activated receptor γ (Pparγ), human complement factor D homolog (Cfd), Chemokine (C-C motif) ligand 9 (Ccl9), and GIPC PDZ Domain Containing Family Member 2 (Gipc2) were induced by at least two different small molecules but not by GW7845. Cfd and Ccl9 expressions were specific to adipocytes and they were altered in obese mice. Small hairpin RNA (shRNA) mediated knockdown of Cfd in preadipocytes inhibited lipid accumulation and expression of adipocyte markers during adipocyte differentiation. Overexpression of Cfd promoted adipocyte differentiation, increased C3a production, and led to induction of C3a receptor (C3aR) target gene expression. Similarly, treatments with C3a or C3aR agonist (C4494) also promoted adipogenesis. C3aR knockdown suppressed adipogenesis and impaired the pro-adipogenic effects of Cfd, further suggesting the necessity for C3aR signaling in Cfd-mediated pro-adipogenic axis. Together, these data show the action of Cfd in adipogenesis and underscore the application of small molecules to identify genes in adipocytes. PMID:27611793

  8. Small Molecule-Induced Complement Factor D (Adipsin) Promotes Lipid Accumulation and Adipocyte Differentiation

    PubMed Central

    Jang, Byung-Hyun; Chang, Seo-Hyuk; Yun, Ui Jeong; Park, Ki-Moon; Waki, Hironori; Li, Dean Y.; Tontonoz, Peter; Park, Kye Won

    2016-01-01

    Adipocytes are differentiated by various transcriptional cascades integrated on the master regulator, Pparγ. To discover new genes involved in adipocyte differentiation, preadipocytes were treated with three newly identified pro-adipogenic small molecules and GW7845 (a Pparγ agonist) for 24 hours and transcriptional profiling was analyzed. Four genes, Peroxisome proliferator-activated receptor γ (Pparγ), human complement factor D homolog (Cfd), Chemokine (C-C motif) ligand 9 (Ccl9), and GIPC PDZ Domain Containing Family Member 2 (Gipc2) were induced by at least two different small molecules but not by GW7845. Cfd and Ccl9 expressions were specific to adipocytes and they were altered in obese mice. Small hairpin RNA (shRNA) mediated knockdown of Cfd in preadipocytes inhibited lipid accumulation and expression of adipocyte markers during adipocyte differentiation. Overexpression of Cfd promoted adipocyte differentiation, increased C3a production, and led to induction of C3a receptor (C3aR) target gene expression. Similarly, treatments with C3a or C3aR agonist (C4494) also promoted adipogenesis. C3aR knockdown suppressed adipogenesis and impaired the pro-adipogenic effects of Cfd, further suggesting the necessity for C3aR signaling in Cfd-mediated pro-adipogenic axis. Together, these data show the action of Cfd in adipogenesis and underscore the application of small molecules to identify genes in adipocytes. PMID:27611793

  9. The circadian modulation of leptin-controlled bone formation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mice with circadian gene Period and Cryptochrome mutations develop high bone mass early in life. Such a phenotype is accompanied by an increase in osteoblast numbers in mutant bone and cannot be corrected by leptin intracerebroventricular infusion. Thus, the molecular clock plays a key role in lepti...

  10. Liver X Receptor (LXR) Regulates Human Adipocyte Lipolysis*

    PubMed Central

    Stenson, Britta M.; Rydén, Mikael; Venteclef, Nicolas; Dahlman, Ingrid; Pettersson, Annie M. L.; Mairal, Aline; Åström, Gaby; Blomqvist, Lennart; Wang, Victoria; Jocken, Johan W. E.; Clément, Karine; Langin, Dominique; Arner, Peter; Laurencikiene, Jurga

    2011-01-01

    The Liver X receptor (LXR) is an important regulator of carbohydrate and lipid metabolism in humans and mice. We have recently shown that activation of LXR regulates cellular fuel utilization in adipocytes. In contrast, the role of LXR in human adipocyte lipolysis, the major function of human white fat cells, is not clear. In the present study, we stimulated in vitro differentiated human and murine adipocytes with the LXR agonist GW3965 and observed an increase in basal lipolysis. Microarray analysis of human adipocyte mRNA following LXR activation revealed an altered gene expression of several lipolysis-regulating proteins, which was also confirmed by quantitative real-time PCR. We show that expression and intracellular localization of perilipin1 (PLIN1) and hormone-sensitive lipase (HSL) are affected by GW3965. Although LXR activation does not influence phosphorylation status of HSL, HSL activity is required for the lipolytic effect of GW3965. This effect is abolished by PLIN1 knockdown. In addition, we demonstrate that upon activation, LXR binds to the proximal regions of the PLIN1 and HSL promoters. By selective knock-down of either LXR isoform, we show that LXRα is the major isoform mediating the lipolysis-related effects of LXR. In conclusion, the present study demonstrates that activation of LXRα up-regulates basal human adipocyte lipolysis. This is at least partially mediated through LXR binding to the PLIN1 promoter and down-regulation of PLIN1 expression. PMID:21030586

  11. Liver X receptor (LXR) regulates human adipocyte lipolysis.

    PubMed

    Stenson, Britta M; Rydén, Mikael; Venteclef, Nicolas; Dahlman, Ingrid; Pettersson, Annie M L; Mairal, Aline; Aström, Gaby; Blomqvist, Lennart; Wang, Victoria; Jocken, Johan W E; Clément, Karine; Langin, Dominique; Arner, Peter; Laurencikiene, Jurga

    2011-01-01

    The Liver X receptor (LXR) is an important regulator of carbohydrate and lipid metabolism in humans and mice. We have recently shown that activation of LXR regulates cellular fuel utilization in adipocytes. In contrast, the role of LXR in human adipocyte lipolysis, the major function of human white fat cells, is not clear. In the present study, we stimulated in vitro differentiated human and murine adipocytes with the LXR agonist GW3965 and observed an increase in basal lipolysis. Microarray analysis of human adipocyte mRNA following LXR activation revealed an altered gene expression of several lipolysis-regulating proteins, which was also confirmed by quantitative real-time PCR. We show that expression and intracellular localization of perilipin1 (PLIN1) and hormone-sensitive lipase (HSL) are affected by GW3965. Although LXR activation does not influence phosphorylation status of HSL, HSL activity is required for the lipolytic effect of GW3965. This effect is abolished by PLIN1 knockdown. In addition, we demonstrate that upon activation, LXR binds to the proximal regions of the PLIN1 and HSL promoters. By selective knock-down of either LXR isoform, we show that LXRα is the major isoform mediating the lipolysis-related effects of LXR. In conclusion, the present study demonstrates that activation of LXRα up-regulates basal human adipocyte lipolysis. This is at least partially mediated through LXR binding to the PLIN1 promoter and down-regulation of PLIN1 expression. PMID:21030586

  12. A novel role of the checkpoint kinase ATR in leptin signaling.

    PubMed

    Ericson, Elke; Wennberg Huldt, Charlotte; Strömstedt, Maria; Brodin, Peter

    2015-09-01

    In a world with increasing incidences of obesity, it becomes critical to understand the detailed regulation of appetite. To identify novel regulators of the signaling mediated by one of the key hormones of energy homeostasis, leptin, we screened a set of compounds for their effect on the downstream Signal Transducer and Activator of Transcription 3 (STAT3) signaling. Interestingly, cells exposed to inhibitors of the Ataxia Telangiectasia and RAD3-related protein ATR increased their leptin dependent STAT3 activity. This was due to failure of the cells to induce the negative feedback mediator Suppressor of Cytokine Signaling 3 (SOCS3), suggesting that ATR has a previously unknown role in the negative feedback regulation of leptin signaling. This is an important finding not only because it sheds light on additional genes involved in leptin signaling, but also because it brings forward a new potential therapeutic intervention point for increasing leptin signaling in obese individuals.

  13. Anti-obesity and antioxidative effects of purple sweet potato extract in 3T3-L1 adipocytes in vitro.

    PubMed

    Ju, Jae-Hyun; Yoon, Hong-Sup; Park, Hyun-Joon; Kim, Mi-Young; Shin, Hyeun-Kil; Park, Kun-Young; Yang, Jin-Oh; Sohn, Min-Shik; Do, Myoung-Sool

    2011-10-01

    The purpose of the current study was to determine the anti-obesity and anti-inflammatory effects of an extract of purple sweet potatoes (PSPs) on 3T3-L1 adipocytes. For this purpose, differentiated 3T3-L1 adipocytes were treated with a PSP extract at concentrations of 1,000, 2,000, and 3,000 μg/mL for 24 hours. Then, we measured the changes in the sizes of the adipocytes, the secretion of leptin, and the mRNA/protein expression of lipogenic, inflammatory, and lipolytic factors after the treatment with the PSP extract. The PSP extract diminished leptin secretion, indicating that growth of fat droplets was suppressed. The extract also suppressed the expression of mRNAs of lipogenic and inflammatory factors and promoted lipolytic action. The antioxidative activity of the PSP extract was also measured using three different in vitro methods: 1,1-diphenyl-2-picrylhydrazyl free radical scavenging activity, ferric reducing ability potential assay, and chelating activity of transition metal ions. Taken together, our study shows that PSP extract has antilipogenic, anti-inflammatory, and lipolytic effects on adipocytes and has radical scavenging and reducing activity. PMID:21861722

  14. Expression of miR-199a-3p in human adipocytes is regulated by free fatty acids and adipokines.

    PubMed

    Gu, Nan; You, Lianghui; Shi, Chunmei; Yang, Lei; Pang, Lingxia; Cui, Xianwei; Ji, Chenbo; Zheng, Wen; Guo, Xirong

    2016-08-01

    Obesity is associated with a notable risk for disease, including risk of cardiovascular disorders, type 2 diabetes mellitus (T2DM) and hypertension. Adipose tissue modulates the metabolism by releasing free fatty acids (FFAs) and adipokines, including leptin, resistin, tumor necrosis factor-α (TNF-α) and interleukin 6 (IL‑6). Altered secretion patterns of FFAs and adipokines have been demonstrated to result in obesity‑associated insulin resistance (IR) and inflammatory responses. MicroRNA-199a-3p (miR)-199a-3p expression is significantly induced in differentiated human adipose-derived mesenchymal stem cells and indicates the association with T2DM. However, the association between miR-199a-3p levels in adipocytes and obesity‑associated IR, as well as inflammatory responses remains to be elucidated. The present study observed an elevation of miR‑199a‑3p expression level in mature human adipocytes (visceral) compared with pre-adipocytes. In addition, miR‑199a‑3p expression was higher in visceral adipose deposits from obese subjects. FFA, TNF-α, IL‑6 and leptin significantly induced miR‑199a‑3p expression in mature human adipocytes, while resistin had the opposite effect. miR‑199a‑3p may represent a factor in the modulation of obesity‑associated IR and inflammatory responses. PMID:27279151

  15. Anti-obesity and antioxidative effects of purple sweet potato extract in 3T3-L1 adipocytes in vitro.

    PubMed

    Ju, Jae-Hyun; Yoon, Hong-Sup; Park, Hyun-Joon; Kim, Mi-Young; Shin, Hyeun-Kil; Park, Kun-Young; Yang, Jin-Oh; Sohn, Min-Shik; Do, Myoung-Sool

    2011-10-01

    The purpose of the current study was to determine the anti-obesity and anti-inflammatory effects of an extract of purple sweet potatoes (PSPs) on 3T3-L1 adipocytes. For this purpose, differentiated 3T3-L1 adipocytes were treated with a PSP extract at concentrations of 1,000, 2,000, and 3,000 μg/mL for 24 hours. Then, we measured the changes in the sizes of the adipocytes, the secretion of leptin, and the mRNA/protein expression of lipogenic, inflammatory, and lipolytic factors after the treatment with the PSP extract. The PSP extract diminished leptin secretion, indicating that growth of fat droplets was suppressed. The extract also suppressed the expression of mRNAs of lipogenic and inflammatory factors and promoted lipolytic action. The antioxidative activity of the PSP extract was also measured using three different in vitro methods: 1,1-diphenyl-2-picrylhydrazyl free radical scavenging activity, ferric reducing ability potential assay, and chelating activity of transition metal ions. Taken together, our study shows that PSP extract has antilipogenic, anti-inflammatory, and lipolytic effects on adipocytes and has radical scavenging and reducing activity.

  16. Regulation of fatty acid homeostasis in cells: Novel role of leptin

    PubMed Central

    Unger, Roger H.; Zhou, Yan-Ting; Orci, Lelio

    1999-01-01

    It is proposed that an important function of leptin is to confine the storage of triglycerides (TG) to the adipocytes, while limiting TG storage in nonadipocytes, thus protecting them from lipotoxicity. The fact that TG content in nonadipocytes normally remains within a narrow range, while that of adipocytes varies enormously with food intake, is consistent with a system of TG homeostasis in normal nonadipocytes. The facts that when leptin receptors are dysfunctional, TG content in nonadipocytes such as islets can increase 100-fold, and that constitutively expressed ectopic hyperleptinemia depletes TG, suggest that leptin controls the homeostatic system for intracellular TG. The fact that the function and viability of nonadipocytes is compromised when their TG content rises above or falls below the normal range suggests that normal homeostasis of their intracellular TG is critical for optimal function and to prevent lipoapoptosis. Thus far, lipotoxic diabetes of fa/fa Zucker diabetic fatty rats is the only proven lipodegenerative disease, but the possibility of lipotoxic disease of skeletal and/or cardiac muscle may require investigation, as does the possible influence of the intracellular TG content on autoimmune and neoplastic processes. PMID:10051641

  17. Adiponectin, leptin, and yoga practice.

    PubMed

    Kiecolt-Glaser, Janice K; Christian, Lisa M; Andridge, Rebecca; Hwang, Beom Seuk; Malarkey, William B; Belury, Martha A; Emery, Charles F; Glaser, Ronald

    2012-12-01

    To address the mechanisms underlying hatha yoga's potential stress-reduction benefits, we compared adiponectin and leptin data from well-matched novice and expert yoga practitioners. These adipocytokines have counter-regulatory functions in inflammation; leptin plays a proinflammatory role, while adiponectin has anti-inflammatory properties. Fifty healthy women (mean age=41.32, range=30-65), 25 novices and 25 experts, provided fasting blood samples during three separate visits. Leptin was 36% higher among novices compared to experts, P=.008. Analysis of adiponectin revealed a borderline effect of yoga expertise, P=.08; experts' average adiponectin levels were 28% higher than novices across the three visits. In contrast, experts' average adiponectin to leptin ratio was nearly twice that of novices, P=.009. Frequency of self-reported yoga practice showed significant negative relationships with leptin; more weeks of yoga practice over the last year, more lifetime yoga sessions, and more years of yoga practice were all significantly associated with lower leptin, with similar findings for the adiponectin to leptin ratio. Novices and experts did not show even marginal differences on behavioral and physiological dimensions that might represent potential confounds, including BMI, central adiposity, cardiorespiratory fitness, and diet. Prospective studies addressing increased risk for type II diabetes, hypertension, and cardiovascular disease have highlighted the importance of these adipocytokines in modulating inflammation. Although these health risks are clearly related to more extreme values then we found in our healthy sample, our data raise the possibility that longer-term and/or more intensive yoga practice could have beneficial health consequences by altering leptin and adiponectin production. PMID:22306535

  18. MicroRNA-192* impairs adipocyte triglyceride storage.

    PubMed

    Mysore, Raghavendra; Zhou, You; Sädevirta, Sanja; Savolainen-Peltonen, Hanna; Nidhina Haridas, P A; Soronen, Jarkko; Leivonen, Marja; Sarin, Antti-Pekka; Fischer-Posovszky, Pamela; Wabitsch, Martin; Yki-Järvinen, Hannele; Olkkonen, Vesa M

    2016-04-01

    We investigated the expression of miR-192* (miR-192-3p) in the visceral adipose tissue (VAT) of obese subjects and its function in cultured human adipocytes. This miRNA is a 3' arm derived from the same pre-miRNA as miR-192 (miR-192-5p) implicated in type 2 diabetes, liver disease and cancers, and is predicted to target key genes in lipid metabolism. In morbidly obese subjects undergoing bariatric surgery preceded by a very low calorie diet, miR-192* in VAT correlated negatively (r=-0.387; p=0.046) with serum triglyceride (TG) and positively with high-density lipoprotein (HDL) concentration (r=0.396; p=0.041). In a less obese patient cohort, the miRNA correlated negatively with the body mass index (r=-0.537; p=0.026). To characterize the function of miR-192*, we overexpressed it in cultured adipocytes and analyzed the expression of adipogenic differentiation markers as well as cellular TG content. Reduced TG and expression of the adipocyte marker proteins aP2 (adipocyte protein 2) and perilipin 1 were observed. The function of miR-192* was further investigated by transcriptomic profiling of adipocytes expressing this miRNA, revealing impacts on key lipogenic genes. A number of the mRNA alterations were validated by qPCR. Western analysis confirmed a marked reduction of the lipogenic enzyme SCD (stearoyl coenzyme A desaturase-1), the fatty aldehyde dehydrogenase ALDH3A2 (aldehyde dehydrogenase 3 family member A2) and the high-density lipoprotein receptor SCARB1 (scavenger receptor B, type I). SCD and ALDH3A2 were demonstrated to be direct targets of miR-192*. To conclude, the present data identify miR-192* as a novel controller of adipocyte differentiation and lipid homeostasis.

  19. What fans the fire: insights into mechanisms of leptin in metabolic syndrome-associated heart diseases.

    PubMed

    Dong, Maolong; Ren, Jun

    2014-01-01

    Obesity and metabolic syndrome are one of the most devastating risk factors for cardiovascular diseases. The obesity gene product leptin plays a central role in the regulation of food intake and energy expenditure. The physiological and pathophysiological roles of leptin in cardiovascular system have been investigated extensively since its discovery in 1994. In addition to its well-established metabolic effects, more recent evidence have depicted a rather pivotal role of leptin in inflammation, oxidative stress, endoplasmic reticulum stress, apoptosis and tissue remodeling en route to the pathogenesis of type 2 diabetes mellitus, hypertension, atherosclerosis, and insulin resistance. Under physiological condition, leptin is known to reduce appetite, promote energy expenditure, increase sympathetic activity, facilitate glucose utilization and improve insulin sensitivity. In addition, leptin may regulate cardiac and vascular function through a nitric oxide-dependent mechanism. However, hyperleptinemia usually occurs with progressively increased body weight and metabolic syndrome development, leading to a state of global or selective leptin resistance. Both central and peripheral leptin resistance may be present under pathophysiological conditions such as inflammation, insulin resistance, hyperlipidemia and a cadre of other cardiovascular diseases including hypertension, atherosclerosis, obesity, ischemic heart disease and heart failure. In this review, we will discuss cardiovascular actions of leptin related to various components of metabolic syndrome. Particular emphasis will be given to insights derived from therapeutic interventions with lifestyle modification, cardiovascular drugs, anti-diabetic and anti-obesity drugs.

  20. Upregulation of survivin by leptin/STAT3 signaling in MCF-7 cells

    SciTech Connect

    Jiang Haiping; Yu Jinming Guo Hongbo; Song Hao; Chen Shaoqing

    2008-03-28

    Leptin and its receptors are overexpressed in breast cancer tissues and correlate with poor prognosis. Survivin, a member of the inhibitor of apoptosis protein (IAP) gene family, is generally upregulated in tumor tissues and prevents tumor cells from apoptosis. Here we showed that leptin upregulated survivin mRNA and protein expression in MCF-7 breast cancer cells. Meanwhile, leptin suppressed docetaxel-induced apoptosis by inhibiting caspase activity. Knockdown of signal transducer and activator transcription 3 (STAT3) expression by small interfering RNA (siRNA) blocked leptin-induced upregulation of survivin. TransAM ELISA showed that leptin increased nuclear translocation of active STAT3. In addition, chromatin immunoprecipitation (ChIP) assay detected an enhanced binding of STAT3 to survivin promoter in MCF-7 cells after treatment by leptin. Further studies showed that leptin enhanced the transcriptional activity of survivin promoter. Collectively, our findings identify leptin/STAT3 signaling as a novel pathway for survivin expression in breast cancer cells.

  1. Ancient origins and evolutionary conservation of intracellular and neural signaling pathways engaged by the leptin receptor.

    PubMed

    Cui, Melissa Y; Hu, Caroline K; Pelletier, Chris; Dziuba, Adam; Slupski, Rose H; Li, Choi; Denver, Robert J

    2014-11-01

    In mammals, leptin acts on leptin receptor (LepR) -expressing neurons in the brain to suppress food intake and stimulate whole-body metabolism. A similar action of leptin on food intake has been reported in the frog Xenopus laevis and in several bony fishes. However, the intracellular signaling and neural pathways by which leptin regulates energy balance have not be