Science.gov

Sample records for adipocyte marker genes

  1. Proteomic identification of fat-browning markers in cultured white adipocytes treated with curcumin.

    PubMed

    Kim, Sang Woo; Choi, Jae Heon; Mukherjee, Rajib; Hwang, Ki-Chul; Yun, Jong Won

    2016-04-01

    We previously reported that curcumin induces browning of primary white adipocytes via enhanced expression of brown adipocyte-specific genes. In this study, we attempted to identify target proteins responsible for this fat-browning effect by analyzing proteomic changes in cultured white adipocytes in response to curcumin treatment. To elucidate the role of curcumin in fat-browning, we conducted comparative proteomic analysis of primary adipocytes between control and curcumin-treated cells using two-dimensional electrophoresis combined with MALDI-TOF-MS. We also investigated fatty acid metabolic targets, mitochondrial biogenesis, and fat-browning-associated proteins using combined proteomic and network analyses. Proteomic analysis revealed that 58 protein spots from a total of 325 matched spots showed differential expression between control and curcumin-treated adipocytes. Using network analysis, most of the identified proteins were proven to be involved in various metabolic and cellular processes based on the PANTHER classification system. One of the most striking findings is that hormone-sensitive lipase (HSL) was highly correlated with main browning markers based on the STRING database. HSL and two browning markers (UCP1, PGC-1α) were co-immunoprecipitated with these markers, suggesting that HSL possibly plays a role in fat-browning of white adipocytes. Our results suggest that curcumin increased HSL levels and other browning-specific markers, suggesting its possible role in augmentation of lipolysis and suppression of lipogenesis by trans-differentiation from white adipocytes into brown adipocytes (beige).

  2. Human osteoblasts derived from mesenchymal stem cells express adipogenic markers upon coculture with bone marrow adipocytes.

    PubMed

    Clabaut, Aline; Delplace, Séverine; Chauveau, Christophe; Hardouin, Pierre; Broux, Odile

    2010-07-01

    In osteoporosis, bone loss is accompanied by greater adiposity in the marrow. Given the cellular proximity within the bone marrow, we wondered whether adipocytes might have a paracrine impact on osteoblast differentiation. To test this hypothesis, we cocultured adipocytes with osteoblasts derived from mesenchymal stem cells (MSCs) in the absence of direct cell contact and then analyzed gene expression changes in the osteoblastic population by using real-time reverse transcription polymerase chain reaction. We found that, upon coculture, MSC-derived osteoblasts showed appearance of adipogenic (lipoprotein lipase, leptin) and decrease of osteogenic (osteocalcin) mRNA markers. Our results indicate that in vitro, MSC-derived adipocytes are capable of inducing MSC-derived osteoblasts to differentiate to an adipocyte phenotype. These new data suggest that (i) transdifferentiation of committed osteoblasts into adipocytes may contribute to the increase in marrow fat content at the expense of bone-forming cells and (ii) this switch might be initiated by the adipocytes themselves.

  3. ChIP-seq profiling of the active chromatin marker H3K4me3 and PPARγ, CEBPα and LXR target genes in human SGBS adipocytes

    PubMed Central

    Galhardo, Mafalda; Sinkkonen, Lasse; Berninger, Philipp; Lin, Jake; Sauter, Thomas; Heinäniemi, Merja

    2014-01-01

    Transcription factors (TFs) represent key factors to establish a cellular phenotype. It is known that several TFs could play a role in disease, yet less is known so far how their targets overlap. We focused here on identifying the most highly induced TFs and their putative targets during human adipogenesis. Applying chromatin immunoprecipitation coupled with deep sequencing (ChIP-Seq) in the human SGBS pre-adipocyte cell line, we identified genes with binding sites in their vicinity for the three TFs studied, PPARγ, CEBPα and LXR. Here we describe the experimental design and quality controls in detail for the deep sequencing data and related results published by Galhardo et al. in Nucleic Acids Research 2014 [1] associated with the data uploaded to NCBI Gene Expression Omnibus (GSE41578). PMID:26484099

  4. Characterization of Tusc5, an adipocyte gene co-expressed in peripheral neurons.

    PubMed

    Oort, Pieter J; Warden, Craig H; Baumann, Thomas K; Knotts, Trina A; Adams, Sean H

    2007-09-30

    Tumor suppressor candidate 5 (Tusc5, also termed brain endothelial cell derived gene-1 or BEC-1), a CD225 domain-containing, cold-repressed gene identified during brown adipose tissue (BAT) transcriptome analyses was found to be robustly-expressed in mouse white adipose tissue (WAT) and BAT, with similarly high expression in human adipocytes. Tusc5 mRNA was markedly increased from trace levels in pre-adipocytes to significant levels in developing 3T3-L1 adipocytes, coincident with several mature adipocyte markers (phosphoenolpyruvate carboxykinase 1, GLUT4, adipsin, leptin). The Tusc5 transcript levels were increased by the peroxisome proliferator activated receptor-gamma (PPARgamma) agonist GW1929 (1microg/mL, 18h) by >10-fold (pre-adipocytes) to approximately 1.5-fold (mature adipocytes) versus controls (p<0.0001). Taken together, these results suggest an important role for Tusc5 in maturing adipocytes. Intriguingly, we discovered robust co-expression of the gene in peripheral nerves (primary somatosensory neurons). In light of the marked repression of the gene observed after cold exposure, these findings may point to participation of Tusc5 in shared adipose-nervous system functions linking environmental cues, CNS signals, and WAT-BAT physiology. Characterization of such links is important for clarifying the molecular basis for adipocyte proliferation and could have implications for understanding the biology of metabolic disease-related neuropathies.

  5. Phytanic acid, a novel activator of uncoupling protein-1 gene transcription and brown adipocyte differentiation.

    PubMed Central

    Schlüter, Agatha; Barberá, Maria José; Iglesias, Roser; Giralt, Marta; Villarroya, Francesc

    2002-01-01

    Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) is a phytol-derived branched-chain fatty acid present in dietary products. Phytanic acid increased uncoupling protein-1 (UCP1) mRNA expression in brown adipocytes differentiated in culture. Phytanic acid induced the expression of the UCP1 gene promoter, which was enhanced by co-transfection with a retinoid X receptor (RXR) expression vector but not with other expression vectors driving peroxisome proliferator-activated receptor (PPAR)alpha, PPARgamma or a form of RXR devoid of ligand-dependent sensitivity. The effect of phytanic acid on the UCP1 gene required the 5' enhancer region of the gene and the effects of phytanic acid were mediated in an additive manner by three binding sites for RXR. Moreover, phytanic acid activates brown adipocyte differentiation: long-term exposure of brown preadipocytes to phytanic acid promoted the acquisition of the brown adipocyte morphology and caused a co-ordinate induction of the mRNAs for gene markers of brown adipocyte differentiation, such as UCP1, adipocyte lipid-binding protein aP2, lipoprotein lipase, the glucose transporter GLUT4 or subunit II of cytochrome c oxidase. In conclusion, phytanic acid is a natural product of phytol metabolism that activates brown adipocyte thermogenic function. It constitutes a potential nutritional signal linking dietary status to adaptive thermogenesis. PMID:11829740

  6. Atypical antipsychotics induce both proinflammatory and adipogenic gene expression in human adipocytes in vitro

    SciTech Connect

    Sárvári, Anitta K.; Veréb, Zoltán; Uray, Iván P.; Fésüs, László; Balajthy, Zoltán

    2014-08-08

    Highlights: • Antipsychotics modulate the expression of adipogenic genes in human adipocytes. • Secretion of proinflammatory cytokine IL8 and MCP-1 is induced by antipsychotics. • Adipocyte-dependent inflammatory abnormality could develop during chronic treatment. • Infiltrated macrophages would further enhance proinflammatory cytokine production. - Abstract: Schizophrenia requires lifelong treatment, potentially causing systemic changes in metabolic homeostasis. In the clinical setting, antipsychotic treatment may differentially lead to weight gain among individual patients, although the molecular determinants of such adverse effects are currently unknown. In this study, we investigated changes in the expression levels of critical regulatory genes of adipogenesis, lipid metabolism and proinflammatory genes during the differentiation of primary human adipose-derived stem cells (ADSCs). These cells were isolated from patients with body mass indices <25 and treated with the second-generation antipsychotics olanzapine, ziprasidone, clozapine, quetiapine, aripiprazole and risperidone and the first-generation antipsychotic haloperidol. We found that antipsychotics exhibited a marked effect on key genes involved in the regulation of cell cycle, signal transduction, transcription factors, nuclear receptors, differentiation markers and metabolic enzymes. In particular, we observed an induction of the transcription factor NF-KB1 and NF-KB1 target genes in adipocytes in response to these drugs, including the proinflammatory cytokines TNF-α, IL-1β, IL-8 and MCP-1. In addition, enhanced secretion of both IL8 and MCP-1 was observed in the supernatant of these cell cultures. In addition to their remarkable stimulatory effects on proinflammatory gene transcription, three of the most frequently prescribed antipsychotic drugs, clozapine, quetiapine and aripiprazole, also induced the expression of essential adipocyte differentiation genes and the adipocyte hormones leptin

  7. Temporal Changes in Gene Expression Profile during Mature Adipocyte Dedifferentiation

    PubMed Central

    Côté, Julie Anne; Guénard, Frédéric; Lessard, Julie; Lapointe, Marc; Biron, Simon

    2017-01-01

    Objective. To characterize changes in gene expression profile during human mature adipocyte dedifferentiation in ceiling culture. Methods. Subcutaneous (SC) and omental (OM) adipose tissue samples were obtained from 4 participants paired for age and BMI. Isolated adipocytes were dedifferentiated in ceiling culture. Gene expression analysis at days 0, 4, 7, and 12 of the cultures was performed using Affymetrix Human Gene 2.0 STvi arrays. Hierarchical clustering according to similarity of expression changes was used to identify overrepresented functions. Results. Four clusters gathered genes with similar expression between day 4 to day 7 but decreasing expression from day 7 to day 12. Most of these genes coded for proteins involved in adipocyte functions (LIPE, PLIN1, DGAT2, PNPLA2, ADIPOQ, CEBPA, LPL, FABP4, SCD, INSR, and LEP). Expression of several genes coding for proteins implicated in cellular proliferation and growth or cell cycle increased significantly from day 7 to day 12 (WNT5A, KITLG, and FGF5). Genes coding for extracellular matrix proteins were differentially expressed between days 0, 4, 7, and 12 (COL1A1, COL1A2, and COL6A3, MMP1, and TGFB1). Conclusion. Dedifferentiation is associated with downregulation of transcripts encoding proteins involved in mature adipocyte functions and upregulation of genes involved in matrix remodeling, cellular development, and cell cycle.

  8. Evaluation of markers of beige adipocytes in white adipose tissue of the mouse

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: There is a growing interest in exploiting the induction of beige or “brite” (brown in white) adipocytes (beigeing) to combat obesity and its comorbidities. However, there is some uncertainty regarding the best markers to evaluate the occurrence or magnitude of beigeing in white adipose t...

  9. Atypical antipsychotics induce both proinflammatory and adipogenic gene expression in human adipocytes in vitro.

    PubMed

    Sárvári, Anitta K; Veréb, Zoltán; Uray, Iván P; Fésüs, László; Balajthy, Zoltán

    2014-08-08

    Schizophrenia requires lifelong treatment, potentially causing systemic changes in metabolic homeostasis. In the clinical setting, antipsychotic treatment may differentially lead to weight gain among individual patients, although the molecular determinants of such adverse effects are currently unknown. In this study, we investigated changes in the expression levels of critical regulatory genes of adipogenesis, lipid metabolism and proinflammatory genes during the differentiation of primary human adipose-derived stem cells (ADSCs). These cells were isolated from patients with body mass indices <25 and treated with the second-generation antipsychotics olanzapine, ziprasidone, clozapine, quetiapine, aripiprazole and risperidone and the first-generation antipsychotic haloperidol. We found that antipsychotics exhibited a marked effect on key genes involved in the regulation of cell cycle, signal transduction, transcription factors, nuclear receptors, differentiation markers and metabolic enzymes. In particular, we observed an induction of the transcription factor NF-KB1 and NF-KB1 target genes in adipocytes in response to these drugs, including the proinflammatory cytokines TNF-α, IL-1β, IL-8 and MCP-1. In addition, enhanced secretion of both IL8 and MCP-1 was observed in the supernatant of these cell cultures. In addition to their remarkable stimulatory effects on proinflammatory gene transcription, three of the most frequently prescribed antipsychotic drugs, clozapine, quetiapine and aripiprazole, also induced the expression of essential adipocyte differentiation genes and the adipocyte hormones leptin and adiponectin, suggesting that both glucose and fat metabolism may be affected by these drugs. These data further suggest that antipsychotic treatments in patients alter the gene expression patterns in adipocytes in a coordinated fashion and priming them for a low-level inflammatory state.

  10. Upregulation of the expression of inflammatory and angiogenic markers in human adipocytes by a synthetic cannabinoid, JTE-907.

    PubMed

    González-Muniesa, P; Bing, C; Trayhurn, P

    2010-09-01

    Inflammation in adipose tissue is a characteristic of obesity and the metabolic syndrome. It is suggested that the endocannabinoid system is involved in the regulation of inflammatory and angiogenic processes within the tissue. Human subcutaneous preadipocytes (Zen Bio) were used as the source of human preadipocytes or adipocytes. Gene expression was examined by RT-PCR and real-time PCR. The secretion of inflammation-related proteins was determined by an ELISA array. In experiments on adipocytes treated at day 14 post-differentiation, JTE-907, a synthetic cannabinoid, upregulated the expression of key inflammatory markers - IL-6, MCP-1 and IL-1 beta - and angiogenic factors - VEGF and ANGPTL4 - at 10 microM after 20 h of treatment, having also increased the expression of TRPV1 at 10 microM. JTE-907 showed no effect after 4 h. The ELISA array showed a 2.6-fold increase in IL-6 protein release. The effect of JTE-907 was inhibited by AM251 (CB1 antagonist), and partially by arachidonyl serotonin (TRPV1 and FAAH antagonist). The CB2 antagonist, AM630, partially upregulated the effect of JTE-907. Preadipocytes fed 14 days after 100% confluence exhibited downregulation of CB1, MCP-1, and IL-1 beta, 20 h after having been exposed to JTE-907. CB1 and TRPV1 receptors participate in the regulation of several inflammatory and angiogenic factors in human adipocytes, indicating their potential value as targets for the treatment of disorders related to obesity.

  11. An siRNA-based method for efficient silencing of gene expression in mature brown adipocytes

    PubMed Central

    Isidor, Marie S.; Winther, Sally; Basse, Astrid L.; Petersen, M. Christine H.; Cannon, Barbara; Nedergaard, Jan; Hansen, Jacob B.

    2016-01-01

    ABSTRACT Brown adipose tissue is a promising therapeutic target for opposing obesity, glucose intolerance and insulin resistance. The ability to modulate gene expression in mature brown adipocytes is important to understand brown adipocyte function and delineate novel regulatory mechanisms of non-shivering thermogenesis. The aim of this study was to optimize a lipofection-based small interfering RNA (siRNA) transfection protocol for efficient silencing of gene expression in mature brown adipocytes. We determined that a critical parameter was to deliver the siRNA to mature adipocytes by reverse transfection, i.e. transfection of non-adherent cells. Using this protocol, we effectively knocked down both high- and low-abundance transcripts in a model of mature brown adipocytes (WT-1) as well as in primary mature mouse brown adipocytes. A functional consequence of the knockdown was confirmed by an attenuated increase in uncoupled respiration (thermogenesis) in response to β-adrenergic stimulation of mature WT-1 brown adipocytes transfected with uncoupling protein 1 siRNA. Efficient gene silencing was also obtained in various mouse and human white adipocyte models (3T3-L1, primary mouse white adipocytes, hMADS) with the ability to undergo “browning.” In summary, we report an easy and versatile reverse siRNA transfection protocol to achieve specific silencing of gene expression in various models of mature brown and browning-competent white adipocytes, including primary cells. PMID:27386153

  12. Alpha-tocopheryl-phosphate regulation of gene expression in pre-adipocytes and adipocytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A correct function of adipocytes in connection with cellular fatty acid loading and release is a vital aspect of energy homeostasis; dysregulation of these reactions can result in obesity and type 2 diabetes mellitus. In addition, adipocytes have been proposed to play a major role in preventing lipo...

  13. Human coronary artery perivascular adipocytes overexpress genes responsible for regulating vascular morphology, inflammation, and hemostasis

    PubMed Central

    Aronow, Bruce J.; Tong, Wilson S.; Manka, David; Tang, Yaoliang; Bogdanov, Vladimir Y.; Unruh, Dusten; Blomkalns, Andra L.; Piegore, Mark G.; Weintraub, Daniel S.; Rudich, Steven M.; Kuhel, David G.; Hui, David Y.; Weintraub, Neal L.

    2013-01-01

    Inflammatory cross talk between perivascular adipose tissue and the blood vessel wall has been proposed to contribute to the pathogenesis of atherosclerosis. We previously reported that human perivascular (PV) adipocytes exhibit a proinflammatory phenotype and less adipogenic differentiation than do subcutaneous (SQ) adipocytes. To gain a global view of the genomic basis of biologic differences between PV and SQ adipocytes, we performed genome-wide expression analyses to identify differentially expressed genes between adipocytes derived from human SQ vs. PV adipose tissues. Although >90% of well-expressed genes were similarly regulated, we identified a signature of 307 differentially expressed genes that were highly enriched for functions associated with the regulation of angiogenesis, vascular morphology, inflammation, and blood clotting. Of the 156 PV upregulated genes, 59 associate with angiogenesis, vascular biology, or inflammation, noteworthy of which include TNFRSF11B (osteoprotegerin), PLAT, TGFB1, THBS2, HIF1A, GATA6, and SERPINE1. Of 166 PV downregulated genes, 21 associated with vascular biology and inflammation, including ANGPT1, ANGPTL1, and VEGFC. Consistent with the emergent hypothesis that PV adipocytes differentially regulate angiogenesis and inflammation, cell culture-derived adipocyte-conditioned media from PV adipocytes strongly enhanced endothelial cell tubulogenesis and monocyte migration compared with media from SQ adipocytes. These findings demonstrate that PV adipocytes have the potential to significantly modulate vascular inflammatory crosstalk in the setting of atherosclerosis by their ability to signal to both endothelial and inflammatory cells. PMID:23737535

  14. Impact of elvitegravir on human adipocytes: Alterations in differentiation, gene expression and release of adipokines and cytokines.

    PubMed

    Moure, Ricardo; Domingo, Pere; Gallego-Escuredo, José M; Villarroya, Joan; Gutierrez, Maria Del Mar; Mateo, Maria G; Domingo, Joan C; Giralt, Marta; Villarroya, Francesc

    2016-08-01

    Elvitegravir is a recently developed integrase inhibitor used for antiretroviral treatment of HIV infection. Secondary effects, including disturbances in lipid metabolism and, ultimately, in adipose tissue distribution and function, are common concerns associated with antiretroviral treatments. Here, we provide the first study of the effects of elvitegravir (in comparison with efavirenz, a non-nucleoside analog inhibitor of reverse transcriptase; and raltegravir, another integrase inhibitor) on human adipocyte differentiation, gene expression and secretion of adipokines and cytokines. Elvitegravir impaired adipogenesis and adipocyte metabolism in human SGBS adipocytes in a concentration-dependent manner (delaying acquisition of adipocyte morphology and reducing the expression of adipogenesis marker genes such as PPARγ, glucose transporter GLUT4, lipoprotein lipase, and the adipokines adiponectin and leptin). Compared with efavirenz, the effects of elvitegravir were similar but tended to occur at higher concentrations than those elicited by efavirenz, or were somewhat less intense than those caused by efavirenz at similar concentration. Elvitegravir tended to cause a more moderate induction of pro-inflammatory cytokines than efavirenz. Efavirenz induced a marked concentration-dependent increase in interleukin-8 expression and release whereas elvitregravir had little effect. Raltegravir had totally neutral actions of adipogenesis, adipocyte metabolism-related gene expression and release of adipokines and cytokines. In conclusion, elvitegravir alters adipocyte differentiation and function and promotes induction of pro-inflammatory cytokines similarly to efavirenz, but several effects were less intense. Further assessment of lipid metabolism and adipose tissue function in patients administered elvitegravir-based regimes is advisable considering that totally neutral effects of elvitegravir on lipid homeostasis cannot be anticipated from the current study in vitro.

  15. Ceiling culture-derived proliferative adipocytes retain high adipogenic potential suitable for use as a vehicle for gene transduction therapy.

    PubMed

    Asada, Sakiyo; Kuroda, Masayuki; Aoyagi, Yasuyuki; Fukaya, Yoshitaka; Tanaka, Shigeaki; Konno, Shunichi; Tanio, Masami; Aso, Masayuki; Satoh, Kaneshige; Okamoto, Yoshitaka; Nakayama, Toshinori; Saito, Yasushi; Bujo, Hideaki

    2011-07-01

    Adipose tissue is expected to provide a source of proliferative cells for regenerative medicine and cell-transplantation therapies using gene transfer manipulation. We have recently identified ceiling culture-derived proliferative adipocytes (ccdPAs) from the mature adipocyte fraction as cells suitable as a therapeutic gene vehicle because of their stable proliferative capacity. In this study, we examined the capability of adipogenic differentiation of the ccdPAs compared with stromal vascular fraction (SVF)-derived progenitor cells (adipose-derived stem cells, ASCs) with regard to their multipotential ability to be converted to another lineage and therefore their potential to be used for regenerative medicine research. After in vitro passaging, the surface antigen profile and the basal levels of adipogenic marker genes of the ccdPAs were not obviously different from those of the ASCs. However, the ccdPAs showed increased lipid-droplet accumulation accompanied with higher adipogenic marker gene expression after stimulation of differentiation compared with the ASCs. The higher adipogenic potential of the ccdPAs than the ASCs from the SVF was maintained for 42 days in culture. Furthermore, the difference in the adipogenic response was enhanced after partial stimulation without indomethacin. These results indicate that the ccdPAs retain a high adipogenic potential even after in vitro passaging, thus suggesting the commitment of ccdPAs to stable mature adipocytes after autotransplantation, indicating that they may have potential for use in regenerative and gene-manipulated medicine.

  16. Cold exposure induces the acquisition of brown adipocyte gene expression profiles in cattle inguinal fat normalized with a new set of reference genes for qRT-PCR.

    PubMed

    Cao, K X; Hao, D; Wang, J; Peng, W W; Yan, Y J; Cao, H X; Sun, F; Chen, H

    2017-02-24

    The last few years have seen great advances in our understanding of browning in white adipose tissue (WAT) where white adipocytes take on characteristics of brown adipocytes. At present, the economic significance of browning for animal husbandry is beginning to be realized with the emerging evidence that browning affects body weight not only in human and rodent but in farm animals. Quantitative RT-PCR provides a quick and sensitive way to preliminary determine browning of WAT. However, there have been no established condition specific reference genes for browning of cattle WAT. As the results showed, the most two stable reference genes for diet treatment were Wdr33 (M=0.38) and Hdac3 (M=0.43), while the most three internal controls for temperature treatment were Hdac3 (M=0.28), Wdr33 (M=0.32), and Hprt1 (M=0.39) among the ten candidates. The mRNA relative expression levels of selective marker genes were normalized by normalization factor (geometric mean of control genes quantities). Cold exposure rather than high energy diet induced transcript elevations of brite specific markers (Cited1, Tbx1), thermoregulatory markers (brown and beige versus white markers, i.e., Cidea, Cox7a1, Ucp1), mitochondrial biogenesis markers (Nrf1, Nrf2, Tfam), and transcription regulators (brown and beige versus white markers, i.e., Pgc1α) (P<0.05) in cattle inguinal fat (iWAT). Quantitative RT-PCR is a preliminary study for WAT browning. In conclusion, cattle inguinal fat acquired brown adipocyte gene expression features upon cold acclimation with prerequisite identification of stable reference genes.

  17. Differential association of S100A9, an inflammatory marker, and p53, a cell cycle marker, expression with epicardial adipocyte size in patients with cardiovascular disease.

    PubMed

    Agra, Rosa María; Fernández-Trasancos, Ángel; Sierra, Juan; González-Juanatey, José Ramón; Eiras, Sonia

    2014-10-01

    S100A9 (calgranulin B) has inflammatory and oxidative stress properties and was found to be associated with atherosclerosis and obesity. One of the proteins that can regulate S100A9 transcription is p53, which is involved in cell cycle, apoptosis and adipogenesis. Thus, it triggers adipocyte enlargement and finally obesity. Because epicardial adipose tissue (EAT) volume and thickness is related to coronary artery disease (CAD), we studied the gene expression of this pathway in patients with cardiovascular disease and its association with obesity. Adipocytes and stromal cells from EAT and subcutaneous adipose tissue (SAT) from 48 patients who underwent coronary artery bypass graft and/or valve replacement were obtained after collagenase digestion and differential centrifugation. The expression levels of the involved genes on adipogenesis and cell cycle like fatty acid-binding protein (FABP) 4, retinol-binding protein (RBP)4, p53 and S100A9 were determined by real-time polymerase chain reaction (PCR). Adipocyte diameter was measured by optical microscopy. We found that epicardial adipocytes expressed significantly lower levels of adipogenic genes (FABP4 and RBP4) and cell cycle-related genes (S100A9 and p53) than subcutaneous adipocytes. However, in obese patients, upregulation of adipogenic and cell cycle-related genes in subcutaneous and epicardial adipocytes, respectively, was observed. The enlargement of adipocyte size was related to FABP4, S100A9 and p53 expression levels in stromal cells. But only the p53 association was maintained in epicardial stromal cells from obese patients (p=0.003). The expression of p53, but not S100A9, in epicardial stromal cells is related to adipocyte enlargement in obese patients with cardiovascular disease. These findings suggest new mechanisms for understanding the relationship between epicardial fat thickness, obesity and cardiovascular disease.

  18. Gene Expression and Histological Analysis of Activated Brown Adipocytes in Adipose Tissue.

    PubMed

    Lee, Yun-Hee

    2017-01-01

    With the rediscovery of brown adipose tissue in adult humans, identification and characterization of brown adipocytes have been topics of great interest in the field of adipose tissue research. In particular, identification of the molecular mechanisms that activate thermogenic adipocytes suggests promising targets for increasing energy expenditure and ultimately combatting obesity and obesity-related metabolic disease. Thus, the methodology for identifying brown adipocytes in vivo is important for the precise determination of the metabolic activity of brown adipose tissue and de novo brown adipogenesis in white adipose tissue. In addition, in vivo analysis of brown adipocytes in combination with lineage tracing is essential to investigate the cellular origins of brown adipocytes. This chapter first provides a brief overview of lineage tracing studies performed in the search for the cellular origins of brown adipocytes. The chapter then describes the immunohistochemistry methodology for identifying brown adipocytes in adipose tissue, including analyses in histologic tissue sections and whole mount tissue. Lastly, it discusses flow cytometric analysis of dissociated cells from adipose tissue, and isolation of live adipocytes for subsequent gene expression profiling using fluorescence-activated cell sorting.

  19. Gamma-synuclein is an adipocyte-neuron gene coordinately expressed with leptin and increased in human obesity.

    PubMed

    Oort, Pieter J; Knotts, Trina A; Grino, Michel; Naour, Nadia; Bastard, Jean-Phillipe; Clément, Karine; Ninkina, Natalia; Buchman, Vladimir L; Permana, Paska A; Luo, Xunyi; Pan, Guohua; Dunn, Tamara N; Adams, Sean H

    2008-05-01

    Recently, we characterized tumor suppressor candidate 5 (Tusc5) as an adipocyte-neuron PPARgamma target gene. Our objective herein was to identify additional genes that display distinctly high expression in fat and neurons, because such a pattern could signal previously uncharacterized functional pathways shared in these disparate tissues. gamma-Synuclein, a marker of peripheral and select central nervous system neurons, was strongly expressed in white adipose tissue (WAT) and peripheral nervous system ganglia using bioinformatics and quantitative PCR approaches. Gamma-synuclein expression was determined during adipogenesis and in subcutaneous (SC) and visceral adipose tissue (VAT) from obese and nonobese humans. Gamma-synuclein mRNA increased from trace levels in preadipocytes to high levels in mature 3T3-L1 adipocytes and decreased approximately 50% following treatment with the PPARgamma agonist GW1929 (P < 0.01). Because gamma-synuclein limits growth arrest and is implicated in cancer progression in nonadipocytes, we suspected that expression would be increased in situations where WAT plasticity/adipocyte turnover are engaged. Consistent with this postulate, human WAT gamma-synuclein mRNA levels consistently increased in obesity and were higher in SC than in VAT; i.e. they increased approximately 1.7-fold in obese Pima Indian adipocytes (P = 0.003) and approximately 2-fold in SC and VAT of other obese cohorts relative to nonobese subjects. Expression correlated with leptin transcript levels in human SC and VAT (r = 0.887; P < 0.0001; n = 44). Gamma-synuclein protein was observed in rodent and human WAT but not in negative control liver. These results are consistent with the hypothesis that gamma-synuclein plays an important role in adipocyte physiology.

  20. PPAR{alpha} does not suppress muscle-associated gene expression in brown adipocytes but does influence expression of factors that fingerprint the brown adipocyte

    SciTech Connect

    Walden, Tomas B.; Petrovic, Natasa; Nedergaard, Jan

    2010-06-25

    Brown adipocytes and myocytes develop from a common adipomyocyte precursor. PPAR{alpha} is a nuclear receptor important for lipid and glucose metabolism. It has been suggested that in brown adipose tissue, PPAR{alpha} represses the expression of muscle-associated genes, in this way potentially acting to determine cell fate in brown adipocytes. To further understand the possible role of PPAR{alpha} in these processes, we measured expression of muscle-associated genes in brown adipose tissue and brown adipocytes from PPAR{alpha}-ablated mice, including structural genes (Mylpf, Tpm2, Myl3 and MyHC), regulatory genes (myogenin, Myf5 and MyoD) and a myomir (miR-206). However, in our hands, the expression of these genes was not influenced by the presence or absence of PPAR{alpha}, nor by the PPAR{alpha} activator Wy-14,643. Similarly, the expression of genes common for mature brown adipocyte and myocytes (Tbx15, Meox2) were not affected. However, the brown adipocyte-specific regulatory genes Zic1, Lhx8 and Prdm16 were affected by PPAR{alpha}. Thus, it would not seem that PPAR{alpha} represses muscle-associated genes, but PPAR{alpha} may still play a role in the regulation of the bifurcation of the adipomyocyte precursor into a brown adipocyte or myocyte phenotype.

  1. Estrogen-related receptor alpha modulates the expression of adipogenesis-related genes during adipocyte differentiation.

    PubMed

    Ijichi, Nobuhiro; Ikeda, Kazuhiro; Horie-Inoue, Kuniko; Yagi, Ken; Okazaki, Yasushi; Inoue, Satoshi

    2007-07-06

    Estrogen-related receptor alpha (ERRalpha) is an orphan nuclear receptor that regulates cellular energy metabolism by modulating gene expression involved in fatty acid oxidation and mitochondrial biogenesis in brown adipose tissue. However, the physiological role of ERRalpha in adipogenesis and white adipose tissue development has not been well studied. Here, we show that ERRalpha and ERRalpha-related transcriptional coactivators, peroxisome proliferator-activated receptor gamma (PPARgamma) coactivator-1alpha (PGC-1alpha) and PGC-1beta, can be up-regulated in 3T3-L1 preadipocytes at mRNA levels under the adipogenic differentiation condition including the inducer of cAMP, glucocorticoid, and insulin. Gene knockdown by ERRalpha-specific siRNA results in mRNA down-regulation of fatty acid binding protein 4, PPARgamma, and PGC-1alpha in 3T3-L1 cells in the adipogenesis medium. ERRalpha and PGC-1beta mRNA expression can be also up-regulated in another preadipocyte lineage DFAT-D1 cells and a pluripotent mesenchymal cell line C3H10T1/2 under the differentiation condition. Furthermore, stable expression of ERRalpha in 3T3-L1 cells up-regulates adipogenic marker genes and promotes triglyceride accumulation during 3T3-L1 differentiation. These results suggest that ERRalpha may play a critical role in adipocyte differentiation by modulating the expression of various adipogenesis-related genes.

  2. Oligopeptide complex for targeted non-viral gene delivery to adipocytes

    NASA Astrophysics Data System (ADS)

    Won, Young-Wook; Adhikary, Partho Protim; Lim, Kwang Suk; Kim, Hyung Jin; Kim, Jang Kyoung; Kim, Yong-Hee

    2014-12-01

    Commercial anti-obesity drugs acting in the gastrointestinal tract or the central nervous system have been shown to have limited efficacy and severe side effects. Anti-obesity drug development is thus focusing on targeting adipocytes that store excess fat. Here, we show that an adipocyte-targeting fusion-oligopeptide gene carrier consisting of an adipocyte-targeting sequence and 9-arginine (ATS-9R) selectively transfects mature adipocytes by binding to prohibitin. Injection of ATS-9R into obese mice confirmed specific binding of ATS-9R to fat vasculature, internalization and gene expression in adipocytes. We also constructed a short-hairpin RNA (shRNA) for silencing fatty-acid-binding protein 4 (shFABP4), a key lipid chaperone in fatty-acid uptake and lipid storage in adipocytes. Treatment of obese mice with ATS-9R/shFABP4 led to metabolic recovery and body-weight reduction (>20%). The ATS-9R/shFABP4 oligopeptide complex could prove to be a safe therapeutic approach to regress and treat obesity as well as obesity-induced metabolic syndromes.

  3. Apolipoprotein E promotes lipid accumulation and differentiation in human adipocytes

    SciTech Connect

    Lasrich, Dorothee; Bartelt, Alexander; Grewal, Thomas; Heeren, Joerg

    2015-09-10

    Several studies in mice indicate a role for apolipoprotein E (APOE) in lipid accumulation and adipogenic differentiation in adipose tissue. However, little is yet known if APOE functions in a similar manner in human adipocytes. This prompted us to compare lipid loading and expression of adipocyte differentiation markers in APOE-deficient and control adipocytes using the differentiated human mesenchymal stem cell line hMSC-Tert as well as primary human and mouse adipocytes as model systems. Differentiated hMSC-Tert were stably transduced with or without siRNA targeting APOE while murine adipocytes were isolated from wild type and Apoe knockout mice. Human APOE knockdown hMSC-Tert adipocytes accumulated markedly less triglycerides compared to control cells. This correlated with strongly decreased gene expression levels of adipocyte markers such as adiponectin (ADIPOQ) and fatty acid binding protein 4 (FABP4) as well as the key transcription factor driving adipocyte differentiation, peroxisome proliferator activator receptor gamma (PPARG), in particular the PPARG2 isoform. Similarly, differentiation of murine Apoe-deficient adipocytes was characterized by reduced gene expression of Adipoq, Fabp4 and Pparg. Interestingly, incubation of APOE-deficient hMSC-Tert adipocytes with conditioned media from APOE3-overexpressing adipocytes or APOE-containing Very Low Density Lipoprotein (VLDL) partially restored triglyceride accumulation, but were unable to induce adipocyte differentiation, as judged by expression of adipocyte markers. Taken together, depletion of endogenous APOE in human adipocytes severely impairs lipid accumulation, which is associated with an inability to initiate differentiation. - Highlights: • Immortalized human mesenchymal stem cells were used to study adipocyte development. • Knockdown of endogenous APOE lead to impaired lipid accumulation and adipogenesis. • APOE supplementation partially restored lipid accumulation but not differentiation.

  4. Evaluation of markers of beige adipocytes in white adipose tissue of the mouse

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beige or brite (brown in white) adipocytes are cells that arise in white adipose tissue (WAT) in response to stimuli like excess energy, exercise, or cold exposure. The induction of beige adipocytes (beigeing) confers resistance to obesity and type-2 diabetes in animal models. There is a growing int...

  5. Gene expression profiling in multipotent DFAT cells derived from mature adipocytes

    SciTech Connect

    Ono, Hiromasa; Oki, Yoshinao; Bono, Hidemasa; Kano, Koichiro

    2011-04-15

    Highlights: {yields} Adipocyte dedifferentiation is evident in a significant decrease in typical genes. {yields} Cell proliferation is strongly related to adipocyte dedifferentiation. {yields} Dedifferentiated adipocytes express several lineage-specific genes. {yields} Comparative analyses using publicly available datasets boost the interpretation. -- Abstract: Cellular dedifferentiation signifies the withdrawal of cells from a specific differentiated state to a stem cell-like undifferentiated state. However, the mechanism of dedifferentiation remains obscure. Here we performed comparative transcriptome analyses during dedifferentiation in mature adipocytes (MAs) to identify the transcriptional signatures of multipotent dedifferentiated fat (DFAT) cells derived from MAs. Using microarray systems, we explored similarly expressed as well as significantly differentially expressed genes in MAs during dedifferentiation. This analysis revealed significant changes in gene expression during this process, including a significant reduction in expression of genes for lipid metabolism concomitantly with a significant increase in expression of genes for cell movement, cell migration, tissue developmental processes, cell growth, cell proliferation, cell morphogenesis, altered cell shape, and cell differentiation. Our observations indicate that the transcriptional signatures of DFAT cells derived from MAs are summarized in terms of a significant decrease in functional phenotype-related genes and a parallel increase in cell proliferation, altered cell morphology, and regulation of the differentiation of related genes. A better understanding of the mechanisms involved in dedifferentiation may enable scientists to control and possibly alter the plasticity of the differentiated state, which may lead to benefits not only in stem cell research but also in regenerative medicine.

  6. Effects of C-reactive protein on adipokines genes expression in 3T3-L1 adipocytes

    SciTech Connect

    Yuan, Guoyue; Jia, Jue; Di, Liangliang; Zhou, Libin; Dong, Sijing; Ye, Jingjing; Wang, Dong; Yang, Ling; Wang, Jifang; Li, Lianxi; Yang, Ying; Mao, Chaoming; Chen, Mingdao

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer CRP increases TNF-{alpha} and IL-6 genes expression in matured 3T3-L1 adipocytes. Black-Right-Pointing-Pointer CRP suppresses adiponectin, leptin and PPAR-{gamma} mRNA levels in matured 3T3-L1 cells. Black-Right-Pointing-Pointer Wortmannin reverses effects of CRP on adiponectin, TNF-{alpha} and leptin mRNA levels. Black-Right-Pointing-Pointer CRP may regulate IR, obesity and metabolic syndrome by this mechanism. -- Abstract: Adipose tissue is now recognized to be an important endocrine organ, secreting a variety of adipokines that are involved in the regulation of energy metabolism, insulin resistance and metabolic syndrome. C-reactive protein (CRP) is considered as one of the most sensitive markers of inflammation. A number of studies have shown that elevation of CRP concentrations is an independent predictive parameter of type 2 diabetes mellitus, which is also strongly associated with various components of the metabolic syndrome. The aim of the present study is to investigate the effects of CRP on adipokines genes expression in 3T3-L1 adipocytes. Quantitative real-time PCR analysis revealed that CRP inhibited adiponectin, leptin and peroxisome proliferator-activated receptor-gamma (PPAR-{gamma}) genes expression and raised tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-6 (IL-6) mRNA levels in matured 3T3-L1 adipocytes in a dose and time-dependent manner. Pharmacological inhibition of phosphatidylinositol (PI)-3 kinase by wortmannin partially reversed the effects of CRP on adiponectin, TNF-{alpha} and leptin genes expression. These results collectively suggest that CRP regulates adiponectin, TNF-{alpha}, leptin, IL-6 and PPAR-{gamma} genes expression, and that might represent a mechanism by which CRP regulates insulin resistance, obesity and metabolic syndrome.

  7. Increased lipid accumulation and adipogenic gene expression of adipocytes in 3D bioprinted nanocellulose scaffolds.

    PubMed

    Henriksson, I; Gatenholm, P; Hägg, D A

    2017-02-21

    Compared to standard 2D culture systems, new methods for 3D cell culture of adipocytes could provide more physiologically accurate data and a deeper understanding of metabolic diseases such as diabetes. By resuspending living cells in a bioink of nanocellulose and hyaluronic acid, we were able to print 3D scaffolds with uniform cell distribution. After one week in culture, cell viability was 95%, and after two weeks the cells displayed a more mature phenotype with larger lipid droplets than standard 2D cultured cells. Unlike cells in 2D culture, the 3D bioprinted cells did not detach upon lipid accumulation. After two weeks, the gene expression of the adipogenic marker genes PPARγ and FABP4 was increased 2.0- and 2.2-fold, respectively, for cells in 3D bioprinted constructs compared with 2D cultured cells. Our 3D bioprinted culture system produces better adipogenic differentiation of mesenchymal stem cells and a more mature cell phenotype than conventional 2D culture systems.

  8. Human adipocytes are highly sensitive to intermittent hypoxia induced NF-kappaB activity and subsequent inflammatory gene expression

    SciTech Connect

    Taylor, Cormac T.; Kent, Brian D.; Crinion, Sophie J.; McNicholas, Walter T.; Ryan, Silke

    2014-05-16

    Highlights: • Intermittent hypoxia (IH) leads to NF-κB activation in human primary adipocytes. • Adipocytes bear higher pro-inflammatory potential than other human primary cells. • IH leads to upregulation of multiple pro-inflammatory genes in human adipocytes. - Abstract: Introduction: Intermittent hypoxia (IH)-induced activation of pro-inflammatory pathways is a major contributing factor to the cardiovascular pathophysiology associated with obstructive sleep apnea (OSA). Obesity is commonly associated with OSA although it remains unknown whether adipose tissue is a major source of inflammatory mediators in response to IH. The aim of this study was to test the hypothesis that IH leads to augmented inflammatory responses in human adipocytes when compared to cells of non-adipocyte lineages. Methods and results: Human primary subcutaneous and visceral adipocytes, human primary microvascular pulmonary endothelial cells (HUMEC-L) and human primary small airway epithelial cells (SAEC) were exposed to 0, 6 or 12 cycles of IH or stimulated with tumor necrosis factor (TNF)-α. IH led to a robust increase in NF-κB DNA-binding activity in adipocytes compared with normoxic controls regardless of whether the source of adipocytes was visceral or subcutaneous. Notably, the NF-κB response of adipocytes to both IH and TNF-α was significantly greater than that in HUMEC-L and SAEC. Western blotting confirmed enhanced nuclear translocation of p65 in adipocytes in response to IH, accompanied by phosphorylation of I-κB. Parallel to p65 activation, we observed a significant increase in secretion of the adipokines interleukin (IL)-8, IL-6 and TNF-α with IH in adipocytes accompanied by significant upregulation of mRNA expression. PCR-array suggested profound influence of IH on pro-inflammatory gene expression in adipocytes. Conclusion: Human adipocytes demonstrate strong sensitivity to inflammatory gene expression in response to acute IH and hence, adipose tissue may be a key

  9. Estrogen-related receptor {alpha} modulates the expression of adipogenesis-related genes during adipocyte differentiation

    SciTech Connect

    Ijichi, Nobuhiro; Ikeda, Kazuhiro; Horie-Inoue, Kuniko; Yagi, Ken; Okazaki, Yasushi; Inoue, Satoshi . E-mail: INOUE-GER@h.u-tokyo.ac.jp

    2007-07-06

    Estrogen-related receptor {alpha} (ERR{alpha}) is an orphan nuclear receptor that regulates cellular energy metabolism by modulating gene expression involved in fatty acid oxidation and mitochondrial biogenesis in brown adipose tissue. However, the physiological role of ERR{alpha} in adipogenesis and white adipose tissue development has not been well studied. Here, we show that ERR{alpha} and ERR{alpha}-related transcriptional coactivators, peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) coactivator-1{alpha} (PGC-1{alpha}) and PGC-1{beta}, can be up-regulated in 3T3-L1 preadipocytes at mRNA levels under the adipogenic differentiation condition including the inducer of cAMP, glucocorticoid, and insulin. Gene knockdown by ERR{alpha}-specific siRNA results in mRNA down-regulation of fatty acid binding protein 4, PPAR{gamma}, and PGC-1{alpha} in 3T3-L1 cells in the adipogenesis medium. ERR{alpha} and PGC-1{beta} mRNA expression can be also up-regulated in another preadipocyte lineage DFAT-D1 cells and a pluripotent mesenchymal cell line C3H10T1/2 under the differentiation condition. Furthermore, stable expression of ERR{alpha} in 3T3-L1 cells up-regulates adipogenic marker genes and promotes triglyceride accumulation during 3T3-L1 differentiation. These results suggest that ERR{alpha} may play a critical role in adipocyte differentiation by modulating the expression of various adipogenesis-related genes.

  10. Fat accumulation in differentiated brown adipocytes is linked with expression of Hox genes.

    PubMed

    Singh, Smita; Rajput, Yudhishthir S; Barui, Amit K; Sharma, Rajan; Datta, Tirtha K

    2016-03-01

    Homeobox (Hox) genes are involved in body plan of embryo along the anterior-posterior axis. Presence of several Hox genes in white adipose tissue (WAT) and brown adipose tissue (BAT) is indicative of involvement of Hox genes in adipogenesis. We propose that differentiation inducing agents viz. isobutyl-methyl-xanthine (IBMX), indomethacin, dexamethasone (DEX), triiodothyronine (T3) and insulin may regulate differentiation in brown adipose tissue through Hox genes. In vitro culture of brown fat stromalvascular fraction (SVF) in presence or absence of differentiation inducing agents was used for establishing relationship between fat accumulation in differentiated adipocytes and expression of Hox genes. Relative expression of Pref1, UCP1 and Hox genes was determined in different stages of adipogenesis. Presence or absence of IBMX, indomethacin and DEX during differentiation of proliferated pre-adipocytes resulted in marked differences in expression of Hox genes and lipid accumulation. In presence of these inducing agents, lipid accumulation as well as expression of HoxA1, HoxA5, HoxC4 &HoxC8 markedly enhanced. Irrespective of presence or absence of T3, insulin down regulates HoxA10. T3 results in over expression of HoxA5, HoxC4 and HoxC8 genes, whereas insulin up regulates expression of only HoxC8. Findings suggest that accumulation of fat in differentiated adipocytes is linked with expression of Hox genes.

  11. Poly(ADP-ribose)polymerase-1 (PARP1) controls adipogenic gene expression and adipocyte function.

    PubMed

    Erener, Süheda; Hesse, Mareike; Kostadinova, Radina; Hottiger, Michael O

    2012-01-01

    Poly(ADP-ribose)polymerase-1 (PARP1) is a chromatin-associated enzyme that was described to affect chromatin compaction. Previous reports suggested a dynamic modulation of the chromatin landscape during adipocyte differentiation. We thus hypothesized that PARP1 plays an important transcriptional role in adipogenesis and metabolism and therefore used adipocyte development and function as a model to elucidate the molecular action of PARP1 in obesity-related diseases. Our results show that PARP1-dependent ADP-ribose polymer (PAR) formation increases during adipocyte development and, at late time points of adipogenesis, is involved in the sustained expression of PPARγ2 and of PPARγ2 target genes. During adipogenesis, PARP1 was recruited to PPARγ2 target genes such as CD36 or aP2 in a PAR-dependent manner. Our results also reveal a PAR-dependent decrease in repressory histone marks (e.g. H3K9me3) and an increase in stimulatory marks (e.g. H3K4me3) at the PPARγ2 promoter, suggesting that PARP1 may exert its regulatory function during adipogenesis by altering histone marks. Interestingly, activation of PARP1 enzymatic activity was prevented with a topoisomerase II inhibitor. These data hint at topoisomerase II-dependent, transient, site-specific double-strand DNA breaks as the cause for poly(ADP)-ribose formation, adipogenic gene expression, and adipocyte function. Together, our study identifies PARP1 as a critical regulator of PPARγ2-dependent gene expression with implications in adipocyte function and obesity-related disease models.

  12. Serum Amyloid A3 Gene Expression in Adipocytes is an Indicator of the Interaction with Macrophages

    PubMed Central

    Sanada, Yohei; Yamamoto, Takafumi; Satake, Rika; Yamashita, Akiko; Kanai, Sumire; Kato, Norihisa; van de Loo, Fons AJ; Nishimura, Fusanori; Scherer, Philipp E.; Yanaka, Noriyuki

    2016-01-01

    The infiltration of macrophages into adipose tissue and their interaction with adipocytes are essential for the chronic low-grade inflammation of obese adipose tissue. In this study, we identified the serum amyloid A3 (Saa3) gene as a key adipocyte-derived factor that is affected by interaction with macrophages. We showed that the Saa3 promoter in adipocytes actually responds to activated macrophages in a co-culture system. Decreasing C/EBPβ abundance in 3T3-L1 adipocytes or point mutation of C/EBPβ elements suppressed the increased promoter activity in response to activated macrophages, suggesting an essential role of C/EBPβ in Saa3 promoter activation. Bioluminescence based on Saa3 promoter activity in Saa3-luc mice was promoted in obese adipose tissue, showing that Saa3 promoter activity is most likely related to macrophage infiltration. This study suggests that the level of expression of the Saa3 gene could be utilized for the number of infiltrated macrophages in obese adipose tissue. PMID:27929048

  13. Functional Human Beige Adipocytes from Induced Pluripotent Stem Cells.

    PubMed

    Guénantin, Anne-Claire; Briand, Nolwenn; Capel, Emilie; Dumont, Florent; Morichon, Romain; Provost, Claire; Stillitano, Francesca; Jeziorowska, Dorota; Siffroi, Jean-Pierre; Hajjar, Roger J; Fève, Bruno; Hulot, Jean-Sébastien; Collas, Philippe; Capeau, Jacqueline; Vigouroux, Corinne

    2017-03-07

    Activation of thermogenic beige adipocytes has recently emerged as a promising therapeutic target in obesity and diabetes. Relevant human models for beige adipocyte differentiation are essential to implement such therapeutic strategies. We report a straightforward and efficient protocol to generate functional human beige adipocytes from induced pluripotent stem cells (hiPSCs). Without overexpression of exogenous adipogenic genes, our method recapitulates an adipogenic developmental pathway through successive mesodermal and adipogenic progenitor stages. hiPSC-derived adipocytes are insulin-sensitive and display beige-specific markers and functional properties including upregulation of thermogenic genes, increased mitochondrial content and increased oxygen consumption upon activation with cAMP analogues. Engraftment of hiPSC-derived adipocytes in mice produces well-organized and vascularized adipose tissue, capable of β-adrenergic-responsive glucose uptake. Our model of human beige adipocyte development provides a new and scalable tool for disease modeling and therapeutic screening.

  14. JAZF1 can regulate the expression of lipid metabolic genes and inhibit lipid accumulation in adipocytes

    SciTech Connect

    Ming, Guang-feng; Xiao, Di; Gong, Wei-jing; Liu, Hui-xia; Liu, Jun; Zhou, Hong-hao; Liu, Zhao-qian

    2014-03-14

    Highlights: • JAZF1 was significantly upregulated during the differentiation of 3T3-L1 preadipocytes. • JAZF1 overexpression inhibited lipid accumulation in differentiated mature 3T3-L1 adipocytes. • JAZF1 overexpression inhibited the expression of SREBP1, ACC, and FAS. • JAZF1 overexpression upregulated the expression of HSL and ATGL. • SREBP1 and JAZF1 could regulate each other in adipocytes. - Abstract: JAZF1 is a newly identified gene with unknown functions. A recent genome-wide association study showed that JAZF1 is associated with type 2 diabetes and is highly expressed in liver and adipose tissue. Studies have demonstrated that JAZF1 is the co-repressor for nuclear orphan receptor TAK1, whereas most nuclear orphan receptor family members are involved in the regulation of lipid metabolism. Therefore, JAZF1 could be closely related to glycolipid metabolism. In this study, JAZF1 was significantly upregulated during the induced differentiation process of 3T3-L1 preadipocytes. The overexpression of JAZF1 inhibited lipid accumulation in differentiated mature 3T3-L1 adipocytes and significantly inhibited the expression of SREBPl, ACC, and FAS, which were important in lipid synthesis, while upregulating the expression of key enzyme hormone-sensitive lipase in lipoclasis. Moreover, SREBPl exhibited an inhibitory function on the expression of JAZF1. SREBP1 reversed the inhibitory action on lipid accumulation of JAZF1. SREBP1 and JAZF1 were observed to regulate each other in adipocytes. Therefore, JAZF1 could regulate the expression of particular genes related to lipid metabolism and inhibit lipid accumulation in adipocytes. This result suggests that JAZF1 may be a potential target for the treatment of diseases, such as obesity and lipid metabolism disorders.

  15. Inflammatory markers and adipokines alter adipocyte-derived ASP production through direct and indirect immune interaction.

    PubMed

    Lu, H; Gauvreau, D; Tom, F-Q; Lapointe, M; Luo, X P; Cianflone, K

    2013-04-01

    Obesity and related metabolic diseases are associated with chronic low-grade inflammation, characterized by increased pro-inflammatory proteins. Several studies have demonstrated increases in acylation stimulating protein (ASP) and its precursor protein C3 in obesity, diabetes and dyslipidemia. To evaluate the effects of acute inflammatory factors and adipokines on ASP production and potential mechanisms of action, 3T3-L1 adipocytes were treated for 24 h with adipokines, cytokines, macrophage-conditioned media and direct co-culture with J774 macrophages. ASP and C3 in the media were evaluated in relation to changes in adipocyte lipid metabolism (cellular triglyceride stores). Leptin, adiponectin, IL-10, LPS and TNF-α increased ASP production (151%, 153%, 190%, 318%, 134%, P<0.05, respectively,). C5a and RANTES (Regulated and normal T cell expressed and secreted) decreased ASP production ( - 34%, - 47%, P<0.05), which was also associated with a decrease in the precursor protein C3 ( - 39% to - 51%, P<0.01), while keratinocyte chemoattractant (KC; murine IL-8 ortholog) had no effect on ASP and C3 secretion. By contrast, apelin, omentin and visfatin also decreased ASP ( - 27%, - 49%, - 22%, P<0.05), but without changes in precursor protein C3 secretion. Macrophage-conditioned media alone had little effect on C3 or ASP, while co-culture of adipocytes with macrophages markedly increased ASP and C3 production (272%, 167%, P<0.05). These in vitro results suggest various metabolic hormones and inflammatory factors can affect ASP production through increased precursor C3 production and/or by changing the rate of C3 conversion to ASP. As an adipokine, ASP could constitute a new link between adipocytes and macrophages.

  16. γ-Synuclein Is an Adipocyte-Neuron Gene Coordinately Expressed with Leptin and Increased in Human Obesity1–3

    PubMed Central

    Oort, Pieter J.; Knotts, Trina A.; Grino, Michel; Naour, Nadia; Bastard, Jean-Phillipe; Clément, Karine; Ninkina, Natalia; Buchman, Vladimir L.; Permana, Paska A.; Luo, Xunyi; Pan, Guohua; Dunn, Tamara N.; Adams, Sean H.

    2008-01-01

    Recently, we characterized tumor suppressor candidate 5 (Tusc5) as an adipocyte-neuron PPARγ target gene. Our objective herein was to identify additional genes that display distinctly high expression in fat and neurons, because such a pattern could signal previously uncharacterized functional pathways shared in these disparate tissues. γ-Synuclein, a marker of peripheral and select central nervous system neurons, was strongly expressed in white adipose tissue (WAT) and peripheral nervous system ganglia using bioinformatics and quantitative PCR approaches. γ-Synuclein expression was determined during adipogenesis and in subcutaneous (SC) and visceral adipose tissue (VAT) from obese and nonobese humans. γ-Synuclein mRNA increased from trace levels in preadipocytes to high levels in mature 3T3-L1 adipocytes and decreased ∼50% following treatment with the PPARγ agonist GW1929 (P < 0.01). Because γ-synuclein limits growth arrest and is implicated in cancer progression in nonadipocytes, we suspected that expression would be increased in situations where WAT plasticity/adipocyte turnover are engaged. Consistent with this postulate, human WAT γ-synuclein mRNA levels consistently increased in obesity and were higher in SC than in VAT; i.e. they increased ∼1.7-fold in obese Pima Indian adipocytes (P = 0.003) and ∼2-fold in SC and VAT of other obese cohorts relative to nonobese subjects. Expression correlated with leptin transcript levels in human SC and VAT (r = 0.887; P < 0.0001; n = 44). γ-Synuclein protein was observed in rodent and human WAT but not in negative control liver. These results are consistent with the hypothesis that γ-synuclein plays an important role in adipocyte physiology. PMID:18424589

  17. Quercetin Impacts Expression of Metabolism- and Obesity-Associated Genes in SGBS Adipocytes.

    PubMed

    Leiherer, Andreas; Stoemmer, Kathrin; Muendlein, Axel; Saely, Christoph H; Kinz, Elena; Brandtner, Eva M; Fraunberger, Peter; Drexel, Heinz

    2016-05-12

    Obesity is characterized by the rapid expansion of visceral adipose tissue, resulting in a hypoxic environment in adipose tissue which leads to a profound change of gene expression in adipocytes. As a consequence, there is a dysregulation of metabolism and adipokine secretion in adipose tissue leading to the development of systemic inflammation and finally resulting in the onset of metabolic diseases. The flavonoid quercetin as well as other secondary plant metabolites also referred to as phytochemicals have anti-oxidant, anti-inflammatory, and anti-diabetic effects known to be protective in view of obesity-related-diseases. Nevertheless, its underlying molecular mechanism is still obscure and thus the focus of this study was to explore the influence of quercetin on human SGBS (Simpson Golabi Behmel Syndrome) adipocytes' gene expression. We revealed for the first time that quercetin significantly changed expression of adipokine (Angptl4, adipsin, irisin and PAI-1) and glycolysis-involved (ENO2, PFKP and PFKFB4) genes, and that this effect not only antagonized but in part even overcompensated the effect mediated by hypoxia in adipocytes. Thus, these results are explained by the recently proposed hypothesis that the protective effect of quercetin is not solely due to its free radical-scavenging activity but also to a direct effect on mitochondrial processes, and they demonstrate that quercetin might have the potential to counteract the development of obesity-associated complications.

  18. The Fto Gene Regulates the Proliferation and Differentiation of Pre-Adipocytes in Vitro.

    PubMed

    Jiao, Yang; Zhang, Jingying; Lu, Lunjie; Xu, Jiaying; Qin, Liqiang

    2016-02-19

    The highly regulated differentiation and proliferation of pre-adipocytes play a key role in the initiation of obesity. Fat mass and obesity associated (FTO) is a novel gene strongly associated with the risk of obesity. A deficiency of FTO may cause growth retardation in addition to fat mass and adipocyte size reduction in vivo. To investigate the potential role of Fto gene on the proliferation and differentiation of pre-adipocytes, we generated Fto-knockdown and overexpressed 3T3-L1 cells. Using numerous proliferation assays our results suggest that Fto knockdown leads to suppression of proliferation, lower mitochondrial membrane potential, less cellular ATP, and decreased and smaller intracellular lipid droplets compared with controls (p < 0.05). Western blot analysis demonstrated that Fto knockdown can significantly suppress peroxisome proliferator-activated receptor gamma (PPARγ) and glucose transporter type 4 (GLUT4) expression and inhibit Akt phosphorylation. By contrast, overexpression of Fto had the opposing effect on proliferation, mitochondrial membrane potential, ATP generation, in vitro differentiation, Akt phosphorylation, and PPARγ and GLUT4 expression. Moreover, we demonstrated that Wortmannin, a phosphoinositide 3-kinase (PI3K) inhibitor, could inhibit phospho-Akt in Fto overexpressed 3T3-L1 cells. Taken together, the results suggest that Fto regulates the proliferation and differentiation of 3T3-L1 cells via multiple mechanisms, including PPARγ and PI3K/Akt signaling.

  19. Effects of Rilpivirine on Human Adipocyte Differentiation, Gene Expression, and Release of Adipokines and Cytokines

    PubMed Central

    Díaz-Delfín, Julieta; Domingo, Pere; Mateo, Maria Gracia; Gutierrez, Maria del Mar; Domingo, Joan Carles; Giralt, Marta

    2012-01-01

    Rilpivirine is a nonnucleoside reverse transcriptase inhibitor (NNRTI) recently developed as a drug of choice for initial antiretroviral treatment of HIV-1 infection. Disturbances in lipid metabolism and, ultimately, in adipose tissue distribution and function are common concerns as secondary effects of antiretroviral treatment. Efavirenz, the most commonly used NNRTI, causes mild dyslipidemic effects in patients and strongly impaired adipocyte differentiation in vitro. In this study, we provide the first demonstration of the effects of rilpivirine on human adipocyte differentiation, gene expression, and release of regulatory proteins (adipokines and cytokines) and compare them with those caused by efavirenz. Rilpivirine caused a repression of adipocyte differentiation that was associated with impaired expression of the master adipogenesis regulators peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT enhancer binding protein alpha (C/EBPα), and sterol regulatory element binding transcription factor 1 (SREBP-1) and their target genes encoding lipoprotein lipase and the adipokines leptin and adiponectin. Rilpivirine also repressed adiponectin release by adipocytes, but only at high concentrations, and did not alter leptin release. Rilpivirine induced the release of proinflammatory cytokines (interleukin-6 and -8, monocyte chemoattractant protein 1 [MCP-1], plasminogen activator inhibitor type 1 [PAI-1]) only at very high concentrations (10 μM). A comparison of the effects of rilpivirine and efavirenz at the same concentration (4 μM) or even at lower concentrations of efavirenz (2 μM) showed that rilpivirine-induced impairment of adipogenesis and induction of proinflammatory cytokine expression and release were systematically milder than those of efavirenz. It is concluded that rilpivirine causes an antiadipogenic and proinflammatory response pattern, but only at high concentrations, whereas efavirenz causes similar effects at lower concentrations

  20. Feed-forward inhibition of androgen receptor activity by glucocorticoid action in human adipocytes.

    PubMed

    Hartig, Sean M; He, Bin; Newberg, Justin Y; Ochsner, Scott A; Loose, David S; Lanz, Rainer B; McKenna, Neil J; Buehrer, Benjamin M; McGuire, Sean E; Marcelli, Marco; Mancini, Michael A

    2012-09-21

    We compared transcriptomes of terminally differentiated mouse 3T3-L1 and human adipocytes to identify cell-specific differences. Gene expression and high content analysis (HCA) data identified the androgen receptor (AR) as both expressed and functional, exclusively during early human adipocyte differentiation. The AR agonist dihydrotestosterone (DHT) inhibited human adipocyte maturation by downregulation of adipocyte marker genes, but not in 3T3-L1. It is interesting that AR induction corresponded with dexamethasone activation of the glucocorticoid receptor (GR); however, when exposed to the differentiation cocktail required for adipocyte maturation, AR adopted an antagonist conformation and was transcriptionally repressed. To further explore effectors within the cocktail, we applied an image-based support vector machine (SVM) classification scheme to show that adipocyte differentiation components inhibit AR action. The results demonstrate human adipocyte differentiation, via GR activation, upregulates AR but also inhibits AR transcriptional activity.

  1. Fat depot-specific differences in pref-1 gene expression and adipocyte cellularity between Wagyu and Holstein cattle.

    PubMed

    Yamada, Tomoya; Higuchi, Mikito; Nakanishi, Naoto

    2014-03-07

    Preadipocyte factor-1 (pref-1) is specifically expressed in preadipocytes and acts as a gatekeeper of adipogenesis by maintaining the preadipocyte state and preventing adipocyte differentiation. We hypothesized that the breed differences of adipogenic capacity in cattle could be explained by the expression level of pref-1. In this experiment, we studied the expression level of the pref-1 gene and adipocyte cellularity in subcutaneous and mesenteric adipose tissues of Japanese Black (Wagyu) and Holstein fattening cattle. In subcutaneous adipose tissue, there were no significant differences in the pref-1 gene expression levels and adipocyte sizes between the breeds. In contrast, the expression level of the pref-1 gene in mesenteric adipose tissue of Holsteins was significantly higher than that of Wagyu. In addition, the size of mesenteric adipocytes in Holsteins was significantly smaller than that of Wagyu. These results indicate that the breed differences of fattening cattle affect the expression pattern of the pref-1 gene and adipocyte cellularity in a fat depot-specific manner.

  2. Quercetin Impacts Expression of Metabolism- and Obesity-Associated Genes in SGBS Adipocytes

    PubMed Central

    Leiherer, Andreas; Stoemmer, Kathrin; Muendlein, Axel; Saely, Christoph H.; Kinz, Elena; Brandtner, Eva M.; Fraunberger, Peter; Drexel, Heinz

    2016-01-01

    Obesity is characterized by the rapid expansion of visceral adipose tissue, resulting in a hypoxic environment in adipose tissue which leads to a profound change of gene expression in adipocytes. As a consequence, there is a dysregulation of metabolism and adipokine secretion in adipose tissue leading to the development of systemic inflammation and finally resulting in the onset of metabolic diseases. The flavonoid quercetin as well as other secondary plant metabolites also referred to as phytochemicals have anti-oxidant, anti-inflammatory, and anti-diabetic effects known to be protective in view of obesity-related-diseases. Nevertheless, its underlying molecular mechanism is still obscure and thus the focus of this study was to explore the influence of quercetin on human SGBS (Simpson Golabi Behmel Syndrome) adipocytes’ gene expression. We revealed for the first time that quercetin significantly changed expression of adipokine (Angptl4, adipsin, irisin and PAI-1) and glycolysis-involved (ENO2, PFKP and PFKFB4) genes, and that this effect not only antagonized but in part even overcompensated the effect mediated by hypoxia in adipocytes. Thus, these results are explained by the recently proposed hypothesis that the protective effect of quercetin is not solely due to its free radical-scavenging activity but also to a direct effect on mitochondrial processes, and they demonstrate that quercetin might have the potential to counteract the development of obesity-associated complications. PMID:27187453

  3. y-Synuclein is an Adipocyte-Neuron Gene Coordinately-Expressed with Leptin & Increased in Obesity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: Recently, we characterized tumor suppressor candidate 5 (Tusc5) as an adipocyte-neuron peroxisome proliferator activated receptor-y (PPARy) target gene (1). Our objective herein was to identify additional candidate genes that play shared roles in neuron-fat physiology. Research Methods an...

  4. Knockdown of CTRP6 inhibits adipogenesis via lipogenic marker genes and Erk1/2 signalling pathway.

    PubMed

    Wu, Wen-jing; Mo, De-lin; Zhao, Cun-zhen; Zhao, Chen; Chen, Yao-sheng; Pang, Wei-jun; Yang, Gong-she

    2015-05-01

    C1q/tumor necrosis factor-related protein 6 (CTRP6), an adipose-tissue secretory factor, plays an important role in inflammatory reaction and carcinogenesis. However, the biological function of CTRP6 in adipogenesis remains unclear. In this study, we examined the effects of CTRP6 knockdown on lipogenesis of 3T3-L1 adipocytes. The results showed that after 3T3-L1 adipocytes transfected with anti-CTRP6 small interfering RNA (siRNA), not only levels of secreted CTRP6 protein in the culture medium but also the expression level of the CTRP6 protein in the 3T3-L1 adipocytes was significantly reduced (P < 0.01). In addition, the number of lipid droplets in the adipocytes was reduced, as well as the OD values reflecting the fat content being significantly decreased (P < 0.01). Meanwhile the levels of adipogenic markers, including peroxisome proliferator activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), CCAAT/enhancer-binding protein β (C/EBPβ) and adipocyte fatty acid-binding protein 4 (aP2), were decreased after treatment with anti-CTRP6 siRNA, whereas the expression of adipose triglyceride lipase (ATGL) and triacylglycerol hydrolase (TGH) were increased. Furthermore, after transfection, activity of phosphorylated Erk1/2 (p-Erk1/2) was inhibited in the early stage of differentiation, but in terminal differentiation of adipocytes, its activity was activated. Taken together, the results indicate that knockdown of CTRP6 can inhibit adipogenesis of 3T3-L1 adipocytes through lipogenic marker genes and Erk1/2 signaling pathway.

  5. Regulation of GLUT4 gene expression by SREBP-1c in adipocytes.

    PubMed

    Im, Seung-Soon; Kwon, Sool-Ki; Kang, Seung-Youn; Kim, Tae-Hyun; Kim, Ha-Il; Hur, Man-Wook; Kim, Kyung-Sup; Ahn, Yong-Ho

    2006-10-01

    Expression of the GLUT4 (glucose transporter type 4 isoform) gene in adipocytes is subject to hormonal or metabolic control. In the present study, we have characterized an adipose tissue transcription factor that is influenced by fasting/refeeding regimens and insulin. Northern blotting showed that refeeding increased GLUT4 mRNA levels for 24 h in adipose tissue. Consistent with an increased GLUT4 gene expression, the mRNA levels of SREBP (sterol-regulatory-element-binding protein)-1c in adipose tissue were also increased by refeeding. In streptozotocin-induced diabetic rats, insulin treatment increased the mRNA levels of GLUT4 in adipose tissue. Serial deletion, luciferase reporter assays and electrophoretic mobility-shift assay studies indicated that the putative sterol response element is located in the region between bases -109 and -100 of the human GLUT4 promoter. Transduction of the SREBP-1c dominant negative form to differentiated 3T3-L1 adipocytes caused a reduction in the mRNA levels of GLUT4, suggesting that SREBP-1c mediates the transcription of GLUT4. In vivo chromatin immunoprecipitation revealed that refeeding increased the binding of SREBP-1 to the putative sterol-response element in the GLUT4. Furthermore, treating streptozotocin-induced diabetic rats with insulin restored SREBP-1 binding. In addition, we have identified an Sp1 binding site adjacent to the functional sterol-response element in the GLUT4 promoter. The Sp1 site appears to play an additive role in SREBP-1c mediated GLUT4 gene upregulation. These results suggest that upregulation of GLUT4 gene transcription might be directly mediated by SREBP-1c in adipose tissue.

  6. Superparamagnetic iron oxide nanoparticles alter expression of obesity and T2D-associated risk genes in human adipocytes

    PubMed Central

    Sharifi, S.; Daghighi, S.; Motazacker, M. M.; Badlou, B.; Sanjabi, B.; Akbarkhanzadeh, A.; Rowshani, A. T.; Laurent, S.; Peppelenbosch, M. P.; Rezaee, F.

    2013-01-01

    Adipocytes hypertrophy is the main cause of obesity and its affliction such as type 2 diabetes (T2D). Since superparamagnetic iron oxide nanoparticles (SPIONs) are used for a wide range of biomedical/medical applications, we aimed to study the effect of SPIONs on 22 and 29 risk genes (Based on gene wide association studies) for obesity and T2D in human adipocytes. The mRNA expression of lipid and glucose metabolism genes was changed upon the treatment of human primary adipocytes with SPIONs. mRNA of GULP1, SLC30A8, NEGR1, SEC16B, MTCH2, MAF, MC4R, and TMEM195 were severely induced, whereas INSIG2, NAMPT, MTMR9, PFKP, KCTD15, LPL and GNPDA2 were down-regulated upon SPIONs stimulation. Since SEC16B gene assist the phagocytosis of apoptotic cells and this gene were highly expressed upon SPIONs treatment in adipocytes, it is logic to assume that SPIONs may play a crucial role in this direction, which requires more consideration in the future. PMID:23838847

  7. Superparamagnetic iron oxide nanoparticles alter expression of obesity and T2D-associated risk genes in human adipocytes.

    PubMed

    Sharifi, S; Daghighi, S; Motazacker, M M; Badlou, B; Sanjabi, B; Akbarkhanzadeh, A; Rowshani, A T; Laurent, S; Peppelenbosch, M P; Rezaee, F

    2013-01-01

    Adipocytes hypertrophy is the main cause of obesity and its affliction such as type 2 diabetes (T2D). Since superparamagnetic iron oxide nanoparticles (SPIONs) are used for a wide range of biomedical/medical applications, we aimed to study the effect of SPIONs on 22 and 29 risk genes (Based on gene wide association studies) for obesity and T2D in human adipocytes. The mRNA expression of lipid and glucose metabolism genes was changed upon the treatment of human primary adipocytes with SPIONs. mRNA of GULP1, SLC30A8, NEGR1, SEC16B, MTCH2, MAF, MC4R, and TMEM195 were severely induced, whereas INSIG2, NAMPT, MTMR9, PFKP, KCTD15, LPL and GNPDA2 were down-regulated upon SPIONs stimulation. Since SEC16B gene assist the phagocytosis of apoptotic cells and this gene were highly expressed upon SPIONs treatment in adipocytes, it is logic to assume that SPIONs may play a crucial role in this direction, which requires more consideration in the future.

  8. Superparamagnetic iron oxide nanoparticles alter expression of obesity and T2D-associated risk genes in human adipocytes

    NASA Astrophysics Data System (ADS)

    Sharifi, S.; Daghighi, S.; Motazacker, M. M.; Badlou, B.; Sanjabi, B.; Akbarkhanzadeh, A.; Rowshani, A. T.; Laurent, S.; Peppelenbosch, M. P.; Rezaee, F.

    2013-07-01

    Adipocytes hypertrophy is the main cause of obesity and its affliction such as type 2 diabetes (T2D). Since superparamagnetic iron oxide nanoparticles (SPIONs) are used for a wide range of biomedical/medical applications, we aimed to study the effect of SPIONs on 22 and 29 risk genes (Based on gene wide association studies) for obesity and T2D in human adipocytes. The mRNA expression of lipid and glucose metabolism genes was changed upon the treatment of human primary adipocytes with SPIONs. mRNA of GULP1, SLC30A8, NEGR1, SEC16B, MTCH2, MAF, MC4R, and TMEM195 were severely induced, whereas INSIG2, NAMPT, MTMR9, PFKP, KCTD15, LPL and GNPDA2 were down-regulated upon SPIONs stimulation. Since SEC16B gene assist the phagocytosis of apoptotic cells and this gene were highly expressed upon SPIONs treatment in adipocytes, it is logic to assume that SPIONs may play a crucial role in this direction, which requires more consideration in the future.

  9. Zinc-transporter genes in human visceral and subcutaneous adipocytes: lean versus obese.

    PubMed

    Smidt, Kamille; Pedersen, Steen B; Brock, Birgitte; Schmitz, Ole; Fisker, Sanne; Bendix, Jørgen; Wogensen, Lise; Rungby, Jørgen

    2007-01-29

    Zinc ions influence adipose tissue metabolism by regulating leptin secretion and by promoting free fatty acid release and glucose uptake. The mechanisms controlling zinc metabolism in adipose tissue are unknown. We therefore examined the gene-expression levels of a number of zinc-transporting proteins in adipose tissue, comparing subcutaneous fat with visceral fat from lean and obese humans. Both ZnT-proteins responsible for zinc transport from cytosol to extracellular compartments and intracellular vesicles and Zip-proteins responsible for zinc transport to the cytoplasm were expressed in all samples. This suggests that zinc metabolism in adipocytes is actively controlled by zinc-transporters. The expression levels were different in lean and obese subjects suggesting a role for these proteins in obesity. Furthermore, the expression levels were different from subcutaneous fat to intra-abdominal fat suggesting that the metabolic activity in adipocytes is to some extent dependent upon zinc and the activity of zinc-transporting proteins or vice versa.

  10. Gene expression profiling in multipotent DFAT cells derived from mature adipocytes.

    PubMed

    Ono, Hiromasa; Oki, Yoshinao; Bono, Hidemasa; Kano, Koichiro

    2011-04-15

    Cellular dedifferentiation signifies the withdrawal of cells from a specific differentiated state to a stem cell-like undifferentiated state. However, the mechanism of dedifferentiation remains obscure. Here we performed comparative transcriptome analyses during dedifferentiation in mature adipocytes (MAs) to identify the transcriptional signatures of multipotent dedifferentiated fat (DFAT) cells derived from MAs. Using microarray systems, we explored similarly expressed as well as significantly differentially expressed genes in MAs during dedifferentiation. This analysis revealed significant changes in gene expression during this process, including a significant reduction in expression of genes for lipid metabolism concomitantly with a significant increase in expression of genes for cell movement, cell migration, tissue developmental processes, cell growth, cell proliferation, cell morphogenesis, altered cell shape, and cell differentiation. Our observations indicate that the transcriptional signatures of DFAT cells derived from MAs are summarized in terms of a significant decrease in functional phenotype-related genes and a parallel increase in cell proliferation, altered cell morphology, and regulation of the differentiation of related genes. A better understanding of the mechanisms involved in dedifferentiation may enable scientists to control and possibly alter the plasticity of the differentiated state, which may lead to benefits not only in stem cell research but also in regenerative medicine.

  11. Differential adipogenic and inflammatory properties of small adipocytes in Zucker Obese and Lean rats.

    PubMed

    Liu, Alice; Sonmez, Alper; Yee, Gail; Bazuine, Merlijn; Arroyo, Matilde; Sherman, Arthur; McLaughlin, Tracey; Reaven, Gerald; Cushman, Samuel; Tsao, Philip

    2010-10-01

    We recently reported that a preponderance of small adipose cells, decreased expression of cell differentiation markers, and enhanced inflammatory activity in human subcutaneous whole adipose tissue were associated with insulin resistance. To test the hypothesis that small adipocytes exhibited these differential properties, we characterised small adipocytes from epididymal adipose tissue of Zucker Obese (ZO) and Lean (ZL) rats. Rat epididymal fat pads were removed and adipocytes isolated by collagenase digestion. Small adipocytes were separated by sequential filtration through nylon meshes. Adipocytes were fixed in osmium tetroxide for cell size distribution analysis via Beckman Coulter Multisizer. Quantitative real-time PCR for cell differentiation and inflammatory genes was performed. Small adipocytes represented a markedly greater percentage of the total adipocyte population in ZO than ZL rats (58±4% vs. 12±3%, p<0.001). In ZO rats, small as compared with total adipocytes had 4-fold decreased adiponectin, and 4-fold increased visfatin and IL-6 levels. Comparison of small adipocytes in ZO versus ZL rats revealed 3-fold decreased adiponectin and PPARγ levels, and 2.5-fold increased IL-6. In conclusion, ZO rat adipose tissue harbours a large proportion of small adipocytes that manifest impaired cell differentiation and pro-inflammatory activity, two mechanisms by which small adipocytes may contribute to insulin resistance.

  12. Brown adipogenic potential of brown adipocytes and peri-renal adipocytes from human embryo

    PubMed Central

    Wu, Nan-Nan; Zhang, Chuan-Hai; Lee, Hyuek-Jong; Ma, Yan; Wang, Xin; Ma, Xiao-Juan; Ma, Wei; Zhao, Dong; Feng, Ying-Mei

    2016-01-01

    Both brown adipocytes (BAC) and beige cells hold therapeutic potential for the treatment of metabolic disorders. Unfortunately, the amount and activity of these cells are limited in adults. Although BAC marker expression has been shown in peri-renal adipose tissues in children and adults, functional assessment is lacking. Furthermore, it is entirely unknown whether adipose progenitors are present in human embryo and able to give rise to BAC in situ during evolution. Therefore, adipose tissues in the interscapular and peri-renal regions were dissected from human embryo and subcutaneous white adipose tissues (sWAT) were obtained from an adult. After subjected to differentiation in vitro, adipocyte progenitors were detected present in all these adipose tissues. When stimulated for adipogenesis, differentiated adipocytes in the intercapular and peri-renal regions showed similar features: (1) induced BAC and beige cell marker expression including UCP1 and PRDM16 and comparable mitochondrion copy number; (2) similar gene expression patterns by RNA-Seq analysis; and (3) similar maximal oxygen consumption rates examined by respirometry. Nevertheless, stimulation of adipocyte progenitors in sWAT induces neither BAC and beige cell marker expression nor any change of oxygen consumption. In conclusion, peri-renal adipocyte progenitors in human embryo hold browning potential for BAC production. PMID:27982067

  13. Study of lactoferrin gene expression in human and mouse adipose tissue, human preadipocytes and mouse 3T3-L1 fibroblasts. Association with adipogenic and inflammatory markers.

    PubMed

    Moreno-Navarrete, José María; Serrano, Marta; Sabater, Mònica; Ortega, Francisco; Serino, Matteo; Pueyo, Neus; Luche, Elodie; Waget, Aurelie; Rodriguez-Hermosa, José Ignacio; Ricart, Wifredo; Burcelin, Remy; Fernández-Real, José Manuel

    2013-07-01

    Lactoferrin is considered an epithelial protein present in different gland secretions. Administration of exogenous lactoferrin is also known to modulate adipogenesis and insulin action in human adipocytes. Here, we aimed to investigate lactoferrin gene expression (real-time polymerase chain reaction) and protein (enzyme-linked immunosorbent assay) levels in human (n=143) and mice adipose tissue samples, in adipose tissue fractions and during human preadipocyte and 3T3-L1 cell line differentiation, evaluating the effects of inducers (rosiglitazone) and disruptors (inflammatory factors) of adipocyte differentiation. Lactoferrin (LTF) gene and protein were detectable at relatively high levels in whole adipose tissue and isolated adipocytes in direct association with low-density lipoprotein-related protein 1 (LRP1, its putative receptor). Obese subjects with type 2 diabetes and increased triglycerides had the lowest levels of LTF gene expression in subcutaneous adipose tissue. Specifically, LTF gene expression was significantly increased in adipocytes, mainly from lean subjects, increasing during differentiation in parallel to adipogenic genes and gene markers of lipid droplets. The induction or disruption of adipogenesis led to concomitant changes (increase and decrease, respectively) of lactoferrin levels during adipocyte differentiation also in parallel to gene markers of adipogenesis and lipid droplet development. The administration of lactoferrin led to autopotentiated increased expression of the LTF gene. The decreased lactoferrin mRNA levels in association with obesity and diabetes were replicated in mice adipose tissue. In conclusion, this is the first observation, to our knowledge, of lactoferrin gene expression in whole adipose tissue and isolated adipocytes, increasing during adipogenesis and suggesting a possible contribution in adipose tissue physiology through LRP1.

  14. Effects of dopamine on leptin release and leptin gene (OB) expression in adipocytes from obese and hypertensive patients

    PubMed Central

    Alvarez-Aguilar, Cleto; Alvarez-Paredes, Alfonso Rafael; Lindholm, Bengt; Stenvinkel, Peter; García-López, Elvia; Mejía-Rodríguez, Oliva; López-Meza, Joel Edmundo; Amato, Dante; Paniagua, Ramon

    2013-01-01

    Background A reduction of dopaminergic (DAergic) activity with increased prolactin levels has been found in obese and hypertensive patients, suggesting its involvement as a pathophysiological mechanism promoting hypertension. Similarly, leptin action increasing sympathetic activity has been proposed to be involved in mechanisms of hypertension. The aim of this study was to analyze the effects of DA, norepinephrine (NE), and prolactin on leptin release and leptin gene (OB) expression in adipocytes from obese and hypertensive patients. Methods Leptin release and OB gene expression were analyzed in cultured adipocytes from 16 obese and hypertensive patients treated with DA (0.001, 0.01, 0.1, and 1.0 μmol/L), NE (1.0 μmol/L), insulin (0.1 μmol/L), and prolactin (1.0 μmol/L), and from five nonobese and normotensive controls treated with DA (1 μmol/L), NE (1 μmol/L), insulin (0.1 μmol/L), and prolactin (1.0 μmol/L). Results A dose-related reduction of leptin release and OB gene messenger ribonucleic acid expression under different doses of DA was observed in adipocytes from obese hypertensive patients. Whereas prolactin treatment elicited a significant increase of both leptin release and OB gene expression, NE reduced these parameters. Although similar effects of DA and NE were observed in adipocytes from controls, baseline values in controls were reduced to 20% of the value in adipocytes from obese hypertensive patients. Conclusion These results suggest that DAergic deficiency contributes to metabolic disorders linked to hyperleptinemia in obese and hypertensive patients. PMID:24348062

  15. G0/G1 switch gene-2 regulates human adipocyte lipolysis by affecting activity and localization of adipose triglyceride lipase.

    PubMed

    Schweiger, Martina; Paar, Margret; Eder, Christina; Brandis, Janina; Moser, Elena; Gorkiewicz, Gregor; Grond, Susanne; Radner, Franz P W; Cerk, Ines; Cornaciu, Irina; Oberer, Monika; Kersten, Sander; Zechner, Rudolf; Zimmermann, Robert; Lass, Achim

    2012-11-01

    The hydrolysis of triglycerides in adipocytes, termed lipolysis, provides free fatty acids as energy fuel. Murine lipolysis largely depends on the activity of adipose triglyceride lipase (ATGL), which is regulated by two proteins annotated as comparative gene identification-58 (CGI-58) and G0/G1 switch gene-2 (G0S2). CGI-58 activates and G0S2 inhibits ATGL activity. In contrast to mice, the functional role of G0S2 in human adipocyte lipolysis is poorly characterized. Here we show that overexpression or silencing of G0S2 in human SGBS adipocytes decreases and increases lipolysis, respectively. Human G0S2 is upregulated during adipocyte differentiation and inhibits ATGL activity in a dose-dependent manner. Interestingly, C-terminally truncated ATGL mutants, which fail to localize to lipid droplets, translocate to the lipid droplet upon coexpression with G0S2, suggesting that G0S2 anchors ATGL to lipid droplets independent of ATGL's C-terminal lipid binding domain. Taken together, our results indicate that G0S2 also regulates human lipolysis by affecting enzyme activity and intracellular localization of ATGL. Increased lipolysis is known to contribute to the pathogenesis of insulin resistance, and G0S2 expression has been shown to be reduced in poorly controlled type 2 diabetic patients. Our data indicate that downregulation of G0S2 in adipose tissue could represent one of the underlying causes leading to increased lipolysis in the insulin-resistant state.

  16. Quantitative PCR for glucose transporter and tristetraprolin family gene expression in cultured mouse adipocytes and macrophages.

    PubMed

    Cao, Heping; Cao, Fangping; Roussel, Anne-Marie; Anderson, Richard A

    2013-12-01

    Quantitative real-time PCR (qPCR) such as TaqMan and SYBR Green qPCR are widely used for gene expression analysis. The drawbacks of SYBR Green assay are that the dye binds to any double-stranded DNA which can generate false-positive signals and that the length of the amplicon affects the intensity of the amplification. Previous results demonstrate that TaqMan assay is more sensitive but generates lower calculated expression levels than SYBR Green assay in quantifying seven mRNAs in tung tree tissues. The objective of this study is to expand the analysis using animal cells. We compared both qPCR assays for quantifying 24 mRNAs including those coding for glucose transporter (Glut) and mRNA-binding protein tristetraprolin (TTP) in mouse 3T3-L1 adipocytes and RAW264.7 macrophages. The results showed that SYBR Green and TaqMan qPCR were reliable for quantitative gene expression in animal cells. This result was supported by validation analysis of Glut and TTP family gene expression. However, SYBR Green qPCR overestimated the expression levels in most of the genes tested. Finally, both qPCR instruments (Bio-Rad's CFX96 real-time system and Applied Biosystems' Prism 7700 real-time PCR instrument) generated similar gene expression profiles in the mouse cells. These results support the conclusion that both qPCR assays (TaqMan and SYBR Green qPCR) and both qPCR instruments (Bio-Rad's CFX96 real-time system and Applied Biosystems' Prism 7700 real-time PCR instrument) are reliable for quantitative gene expression analyses in animal cells but SYBR Green qPCR generally overestimates gene expression levels than TaqMan qPCR.

  17. Perils of gene mapping with microsatellite markers

    SciTech Connect

    Knowles, J.A.; Gilliam, T.C. ); Vieland, V.J. )

    1992-10-01

    The discovery of microsatellite polymorphisms has revitalized the genetic mapping of the human genome and promises to have a dramatic effect on human disease gene mapping. The high polymorphicity, relative abundance, and amenability of these markers to assay by PCR amplification gives them a significant advantage over previous markers, which explains their general acceptance and widespread use (Litt and Luty 1989; Weber and May 1989). Preliminary chromosome maps have been constructed using microsatellites exclusively (Weber et al. 1991; Hazen et al. 1992; Kwiatkowski et al. 1992), and disease loci have been mapped by linkage to these markers (Wijmenga et al. 1991). The markers provide new optimism for the mapping of disease genes, particularly for the mapping of complex genetic disorders. The authors present evidence that the very qualities that render these markers so efficient for chromosome mapping in large reference pedigrees can lead to dramatic lod score bias when applied to the typical pedigrees used to study genetic disorders, particularly when the disorder under study is complex. 11 refs., 2 figs., 1 tab.

  18. SNP marker discovery in koala TLR genes.

    PubMed

    Cui, Jian; Frankham, Greta J; Johnson, Rebecca N; Polkinghorne, Adam; Timms, Peter; O'Meally, Denis; Cheng, Yuanyuan; Belov, Katherine

    2015-01-01

    Toll-like receptors (TLRs) play a crucial role in the early defence against invading pathogens, yet our understanding of TLRs in marsupial immunity is limited. Here, we describe the characterisation of nine TLRs from a koala immune tissue transcriptome and one TLR from a draft sequence of the koala genome and the subsequent development of an assay to study genetic diversity in these genes. We surveyed genetic diversity in 20 koalas from New South Wales, Australia and showed that one gene, TLR10 is monomorphic, while the other nine TLR genes have between two and 12 alleles. 40 SNPs (16 non-synonymous) were identified across the ten TLR genes. These markers provide a springboard to future studies on innate immunity in the koala, a species under threat from two major infectious diseases.

  19. Comparison of Markers and Functional Attributes of Human Adipose-Derived Stem Cells and Dedifferentiated Adipocyte Cells from Subcutaneous Fat of an Obese Diabetic Donor

    PubMed Central

    Watson, James E.; Patel, Niketa A.; Carter, Gay; Moor, Andrea; Patel, Rekha; Ghansah, Tomar; Mathur, Abhishek; Murr, Michel M.; Bickford, Paula; Gould, Lisa J.; Cooper, Denise R.

    2014-01-01

    Objective: Adipose tissue is a robust source of adipose-derived stem cells (ADSCs) that may be able to provide secreted factors that promote the ability of wounded tissue to heal. However, adipocytes also have the potential to dedifferentiate in culture to cells with stem cell-like properties that may improve their behavior and functionality for certain applications. Approach: ADSCs are adult mesenchymal stem cells that are cultured from the stromal vascular fraction of adipose tissue. However, adipocytes are capable of dedifferentiating into cells with stem cell properties. In this case study, we compare ADSC and dedifferentiated fat (DFAT) cells from the same patient and fat depot for mesenchymal cell markers, embryonic stem cell markers, ability to differentiate to adipocytes and osteoblasts, senescence and telomerase levels, and ability of conditioned media (CM) to stimulate migration of human dermal fibroblasts (HDFs). Innovation and Conclusions: ADSCs and DFAT cells displayed identical levels of CD90, CD44, CD105, and were CD34- and CD45-negative. They also expressed similar levels of Oct4, BMI1, KLF4, and SALL4. DFAT cells, however, showed higher efficiency in adipogenic and osteogenic capacity. Telomerase levels of DFAT cells were double those of ADSCs, and senescence declined in DFAT cells. CM from both cell types altered the migration of fibroblasts. Despite reports of ADSCs from a number of human depots, there have been no comparisons of the ability of dedifferentiated DFAT cells from the same donor and depot to differentiate or modulate migration of HDFs. Since ADSCs were from an obese diabetic donor, reprogramming of DFAT cells may help improve a patient's cells for regenerative medicine applications. PMID:24669358

  20. Comparison of Markers and Functional Attributes of Human Adipose-Derived Stem Cells and Dedifferentiated Adipocyte Cells from Subcutaneous Fat of an Obese Diabetic Donor.

    PubMed

    Watson, James E; Patel, Niketa A; Carter, Gay; Moor, Andrea; Patel, Rekha; Ghansah, Tomar; Mathur, Abhishek; Murr, Michel M; Bickford, Paula; Gould, Lisa J; Cooper, Denise R

    2014-03-01

    Objective: Adipose tissue is a robust source of adipose-derived stem cells (ADSCs) that may be able to provide secreted factors that promote the ability of wounded tissue to heal. However, adipocytes also have the potential to dedifferentiate in culture to cells with stem cell-like properties that may improve their behavior and functionality for certain applications. Approach: ADSCs are adult mesenchymal stem cells that are cultured from the stromal vascular fraction of adipose tissue. However, adipocytes are capable of dedifferentiating into cells with stem cell properties. In this case study, we compare ADSC and dedifferentiated fat (DFAT) cells from the same patient and fat depot for mesenchymal cell markers, embryonic stem cell markers, ability to differentiate to adipocytes and osteoblasts, senescence and telomerase levels, and ability of conditioned media (CM) to stimulate migration of human dermal fibroblasts (HDFs). Innovation and Conclusions: ADSCs and DFAT cells displayed identical levels of CD90, CD44, CD105, and were CD34- and CD45-negative. They also expressed similar levels of Oct4, BMI1, KLF4, and SALL4. DFAT cells, however, showed higher efficiency in adipogenic and osteogenic capacity. Telomerase levels of DFAT cells were double those of ADSCs, and senescence declined in DFAT cells. CM from both cell types altered the migration of fibroblasts. Despite reports of ADSCs from a number of human depots, there have been no comparisons of the ability of dedifferentiated DFAT cells from the same donor and depot to differentiate or modulate migration of HDFs. Since ADSCs were from an obese diabetic donor, reprogramming of DFAT cells may help improve a patient's cells for regenerative medicine applications.

  1. Identification of suitable reference genes for quantitative RT-PCR during 3T3-L1 adipocyte differentiation.

    PubMed

    Zhang, Juan; Tang, Hongju; Zhang, Yuqing; Deng, Ruyuan; Shao, Li; Liu, Yun; Li, Fengying; Wang, Xiao; Zhou, Libin

    2014-05-01

    Quantitative reverse transcription PCR (qRT-PCR) is becoming increasingly important in the effort to gain insight into the molecular mechanisms underlying adipogenesis. However, the expression profile of a target gene may be misinterpreted due to the unstable expression of the reference genes under different experimental conditions. Therefore, in this study, we investigated the expression stability of 10 commonly used reference genes during 3T3-L1 adipocyte differentiation. The mRNA expression levels of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and transferrin receptor (TFRC) significantly increased during the course of 3T3-L1 adipocyte differentiation, which was decreased by berberine, an inhibitor of adipogenesis. Three popular algorithms, GeNorm, NormFinder and BestKeeper, identified 18 ribosomal RNA and hydroxymethylbilane synthase (HMBS) as the most stable reference genes, while GAPDH and TFRC were the least stable ones. Peptidylprolyl isomerase A [PIPA (cyclophilin A)], ribosomal protein, large, P0 (36-B4), beta-2-microglobulin (B2M), α1-tubulin, hypoxanthine-guanine phosphoribosyltransferase (HPRT) and β-actin showed relatively stable expression levels. The choice of reference genes with various expression stabilities exerted a profound influence on the expression profiles of 2 target genes, peroxisome proliferator-activated receptor (PPAR)γ2 and C/EBPα. In addition, western blot analysis revealed that the increased protein expression of GAPDH was markedly inhibited by berberine during adipocyte differentiation. This study highlights the importance of selecting suitable reference genes for qRT-PCR studies of gene expression during the process of adipogenesis.

  2. MicroRNAs Are Required for the Feature Maintenance and Differentiation of Brown Adipocytes

    PubMed Central

    Kim, Hye-Jin; Cho, Hyunjii; Alexander, Ryan; Patterson, Heide Christine; Gu, Minxia; Lo, Kinyui Alice; Xu, Dan; Goh, Vera J.; Nguyen, Long N.; Chai, Xiaoran; Huang, Cher X.; Kovalik, Jean-Paul; Ghosh, Sujoy; Trajkovski, Mirko; Silver, David L.; Lodish, Harvey

    2014-01-01

    Brown adipose tissue (BAT) is specialized to burn lipids for heat generation as a natural defense against cold and obesity. Previous studies established microRNAs (miRNAs) as essential regulators of brown adipocyte differentiation, but whether miRNAs are required for the feature maintenance of mature brown adipocytes remains unknown. To address this question, we ablated Dgcr8, a key regulator of the miRNA biogenesis pathway, in mature brown as well as in white adipocytes. Adipose tissue–specific Dgcr8 knockout mice displayed enlarged but pale interscapular brown fat with decreased expression of genes characteristic of brown fat and were intolerant to cold exposure. Primary brown adipocyte cultures in vitro confirmed that miRNAs are required for marker gene expression in mature brown adipocytes. We also demonstrated that miRNAs are essential for the browning of subcutaneous white adipocytes in vitro and in vivo. Using this animal model, we performed miRNA expression profiling analysis and identified a set of BAT-specific miRNAs that are upregulated during brown adipocyte differentiation and enriched in brown fat compared with other organs. We identified miR-182 and miR-203 as new regulators of brown adipocyte development. Taken together, our study demonstrates an essential role of miRNAs in the maintenance as well as in the differentiation of brown adipocytes. PMID:25008181

  3. CGMD: An integrated database of cancer genes and markers.

    PubMed

    Pradeepkiran, Jangampalli Adi; Sainath, Sri Bhashyam; Kumar, Konidala Kramthi; Balasubramanyam, Lokanada; Prabhakar, Kodali Vidya; Bhaskar, Matcha

    2015-07-10

    Integrating cancer genes and markers with experimental evidence might provide valuable information for the further investigation of crosstalk between tumor genes and markers in cancer biology. To achieve this objective, we developed a database known as the Cancer Gene Marker Database (CGMD), which integrates data on tumor genes and markers based on experimental evidence. The major goal of CGMD is to provide the following: 1) current systematic treatment approaches and recent advances in different cancer treatments; 2) the aggregation of different genes and markers by their molecular characteristics and pathway associations; and 3) free access to the data compiled by CGMD at http://cgmd.in/. The database consists of 309 genes and 206 markers, as well as a list of 40 different human cancers, with detailed descriptions of all characterized markers. CGMD provides complete cancer annotations and molecular descriptions of cancer genes and markers such as CpG islands, promoters, exons, PDB structures, active sites and domains.

  4. CGMD: An integrated database of cancer genes and markers

    PubMed Central

    Pradeepkiran, Jangampalli Adi; Sainath, Sri Bhashyam; Kramthi Kumar, Konidala; Balasubramanyam, Lokanada; Vidya Prabhakar, Kodali; Bhaskar, Matcha

    2015-01-01

    Integrating cancer genes and markers with experimental evidence might provide valuable information for the further investigation of crosstalk between tumor genes and markers in cancer biology. To achieve this objective, we developed a database known as the Cancer Gene Marker Database (CGMD), which integrates data on tumor genes and markers based on experimental evidence. The major goal of CGMD is to provide the following: 1) current systematic treatment approaches and recent advances in different cancer treatments; 2) the aggregation of different genes and markers by their molecular characteristics and pathway associations; and 3) free access to the data compiled by CGMD at http://cgmd.in/. The database consists of 309 genes and 206 markers, as well as a list of 40 different human cancers, with detailed descriptions of all characterized markers. CGMD provides complete cancer annotations and molecular descriptions of cancer genes and markers such as CpG islands, promoters, exons, PDB structures, active sites and domains. PMID:26160459

  5. Study of the proinflammatory role of human differentiated omental adipocytes.

    PubMed

    Bassols, Judit; Ortega, Francisco J; Moreno-Navarrete, José M; Peral, Belén; Ricart, Wifredo; Fernández-Real, Jose-Manuel

    2009-08-15

    Infiltration of monocyte-derived macrophages into adipose tissue has been associated with tissue and systemic inflammation. It has been suggested that macrophage infiltration affects fat expansion through a paracrine action on adipocyte differentiation. Our working hypothesis is that factors released by monocytes/macrophages may also affect mature adipocyte biology. Human differentiated omental adipocytes were incubated with LPS and conditioned media obtained from human macrophage-like cell line THP-1, previously activated or not with LPS. We show that LPS greatly increased the secretion levels of pro-inflammatory adipokines including IL-6, IL-8, GRO, and MCP-1. Macrophage-conditioned medium also upregulated IL-6, IL-8, GRO, and MCP-1 mRNA expression and protein levels and led to the novo secretion of ICAM-1, IL-1 beta, IP-10, MIP-1 alpha, MIP-1 beta, VEGF, and TNFalpha. Human differentiated adipocytes treated by macrophage-conditioned medium displayed marked reduction of adipocyte function as assessed by decreased phosphorylation levels of ERK1, ERK2, and p38 alpha and reduced gene expression of lipogenic markers including PPAR-gamma and fatty acid synthase. These data show that macrophage-secreted factors not only inhibit the formation of mature adipocytes but alter their function, suggesting that human differentiated omental adipocytes might also contribute to systemic chronic low-grade inflammation associated with human obesity.

  6. Downregulation of Runx2 by 1,25-Dihydroxyvitamin D₃ Induces the Transdifferentiation of Osteoblasts to Adipocytes.

    PubMed

    Kim, Jung Ha; Seong, Semun; Kim, Kabsun; Kim, Inyoung; Jeong, Byung-Chul; Kim, Nacksung

    2016-05-19

    1,25-Dihydroxyvitamin D₃ (1,25(OH)₂D₃) indirectly stimulates bone formation, but little is known about its direct effect on bone formation. In this study, we observed that 1,25(OH)₂D₃ enhances adipocyte differentiation, but inhibits osteoblast differentiation during osteogenesis. The positive role of 1,25(OH)₂D₃ in adipocyte differentiation was confirmed when murine osteoblasts were cultured in adipogenic medium. Additionally, 1,25(OH)₂D₃ enhanced the expression of adipocyte marker genes, but inhibited the expression of osteoblast marker genes in osteoblasts. The inhibition of osteoblast differentiation and promotion of adipocyte differentiation mediated by 1,25(OH)₂D₃ were compensated by Runx2 overexpression. Our results suggest that 1,25(OH)₂D₃ induces the transdifferentiation of osteoblasts to adipocytes via Runx2 downregulation in osteoblasts.

  7. Downregulation of Runx2 by 1,25-Dihydroxyvitamin D3 Induces the Transdifferentiation of Osteoblasts to Adipocytes

    PubMed Central

    Kim, Jung Ha; Seong, Semun; Kim, Kabsun; Kim, Inyoung; Jeong, Byung-Chul; Kim, Nacksung

    2016-01-01

    1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) indirectly stimulates bone formation, but little is known about its direct effect on bone formation. In this study, we observed that 1,25(OH)2D3 enhances adipocyte differentiation, but inhibits osteoblast differentiation during osteogenesis. The positive role of 1,25(OH)2D3 in adipocyte differentiation was confirmed when murine osteoblasts were cultured in adipogenic medium. Additionally, 1,25(OH)2D3 enhanced the expression of adipocyte marker genes, but inhibited the expression of osteoblast marker genes in osteoblasts. The inhibition of osteoblast differentiation and promotion of adipocyte differentiation mediated by 1,25(OH)2D3 were compensated by Runx2 overexpression. Our results suggest that 1,25(OH)2D3 induces the transdifferentiation of osteoblasts to adipocytes via Runx2 downregulation in osteoblasts. PMID:27213351

  8. Regulation of white and brown adipocyte differentiation by RhoGAP DLC1

    PubMed Central

    Brunmeir, Reinhard; Zhang, Qiongyi; Li, Hongyu; Dharmasegaran, Dharmini; Leong, Carol; Lim, Ying Yan; Han, Weiping

    2017-01-01

    Adipose tissues constitute an important component of metabolism, the dysfunction of which can cause obesity and type II diabetes. Here we show that differentiation of white and brown adipocytes requires Deleted in Liver Cancer 1 (DLC1), a Rho GTPase Activating Protein (RhoGAP) previously studied for its function in liver cancer. We identified Dlc1 as a super-enhancer associated gene in both white and brown adipocytes through analyzing the genome-wide binding profiles of PPARγ, the master regulator of adipogenesis. We further observed that Dlc1 expression increases during differentiation, and knockdown of Dlc1 by siRNA in white adipocytes reduces the formation of lipid droplets and the expression of fat marker genes. Moreover, knockdown of Dlc1 in brown adipocytes reduces expression of brown fat-specific genes and diminishes mitochondrial respiration. Dlc1-/- knockout mouse embryonic fibroblasts show a complete inability to differentiate into adipocytes, but this phenotype can be rescued by inhibitors of Rho-associated kinase (ROCK) and filamentous actin (F-actin), suggesting the involvement of Rho pathway in DLC1-regulated adipocyte differentiation. Furthermore, PPARγ binds to the promoter of Dlc1 gene to regulate its expression during both white and brown adipocyte differentiation. These results identify DLC1 as an activator of white and brown adipocyte differentiation, and provide a molecular link between PPARγ and Rho pathways. PMID:28358928

  9. Regulation of white and brown adipocyte differentiation by RhoGAP DLC1.

    PubMed

    Sim, Choon Kiat; Kim, Sun-Yee; Brunmeir, Reinhard; Zhang, Qiongyi; Li, Hongyu; Dharmasegaran, Dharmini; Leong, Carol; Lim, Ying Yan; Han, Weiping; Xu, Feng

    2017-01-01

    Adipose tissues constitute an important component of metabolism, the dysfunction of which can cause obesity and type II diabetes. Here we show that differentiation of white and brown adipocytes requires Deleted in Liver Cancer 1 (DLC1), a Rho GTPase Activating Protein (RhoGAP) previously studied for its function in liver cancer. We identified Dlc1 as a super-enhancer associated gene in both white and brown adipocytes through analyzing the genome-wide binding profiles of PPARγ, the master regulator of adipogenesis. We further observed that Dlc1 expression increases during differentiation, and knockdown of Dlc1 by siRNA in white adipocytes reduces the formation of lipid droplets and the expression of fat marker genes. Moreover, knockdown of Dlc1 in brown adipocytes reduces expression of brown fat-specific genes and diminishes mitochondrial respiration. Dlc1-/- knockout mouse embryonic fibroblasts show a complete inability to differentiate into adipocytes, but this phenotype can be rescued by inhibitors of Rho-associated kinase (ROCK) and filamentous actin (F-actin), suggesting the involvement of Rho pathway in DLC1-regulated adipocyte differentiation. Furthermore, PPARγ binds to the promoter of Dlc1 gene to regulate its expression during both white and brown adipocyte differentiation. These results identify DLC1 as an activator of white and brown adipocyte differentiation, and provide a molecular link between PPARγ and Rho pathways.

  10. Cannabidiol promotes browning in 3T3-L1 adipocytes.

    PubMed

    Parray, Hilal Ahmad; Yun, Jong Won

    2016-05-01

    Recruitment of the brown-like phenotype in white adipocytes (browning) and activation of existing brown adipocytes are currently being investigated as a means to combat obesity. Thus, a wide variety of dietary agents that contribute to browning of white adipocytes have been identified. The present study was designed to investigate the effects of cannabidiol (CBD), a major nonpsychotropic phytocannabinoid of Cannabis sativa, on induction of browning in 3T3-L1 adipocytes. CBD enhanced expression of a core set of brown fat-specific marker genes (Ucp1, Cited1, Tmem26, Prdm16, Cidea, Tbx1, Fgf21, and Pgc-1α) and proteins (UCP1, PRDM16, and PGC-1α). Increased expression of UCP1 and other brown fat-specific markers contributed to the browning of 3T3-L1 adipocytes possibly via activation of PPARγ and PI3K. In addition, CBD increased protein expression levels of CPT1, ACSL, SIRT1, and PLIN while down-regulating JNK2, SREBP1, and LPL. These data suggest possible roles for CBD in browning of white adipocytes, augmentation of lipolysis, thermogenesis, and reduction of lipogenesis. In conclusion, the current data suggest that CBD plays dual modulatory roles in the form of inducing the brown-like phenotype as well as promoting lipid metabolism. Thus, CBD may be explored as a potentially promising therapeutic agent for the prevention of obesity.

  11. 10e12z CLA alters adipocyte differentiation and adipocyte cytokine expression and induces macrophage proliferation.

    PubMed

    Belda, Benjamin J; Thompson, Jerry T; Eser, Pinar O; Vanden Heuvel, John P

    2012-05-01

    The trans-10, cis-12 (10e12z) conjugated linoleic acid (CLA) isomer of CLA is responsible for loss of lipid storage or adipose tissue in vitro or in vivo. This isomer also induces inflammatory signaling in both mouse and human adipocytes in vitro. However, when these events occur and whether they are significant enough to affect other cell types are unclear. In these experiments, the 3T3-L1 cell line has been used to examine the interaction between inflammatory signaling and decreased differentiation or lipid storage induced by 10e12z CLA. In assays measuring both lipid accumulation and gene expression, differentiating 3T3-L1 cells exhibit concurrent induction of inflammatory signaling, as measured by cyclooxygenase-2 expression, and a decrease in adipocyte marker gene expression. Furthermore, in fully differentiated adipocytes, as identified in microarray assays and confirmed with real-time polymerase chain reaction, 10e12z CLA also significantly affected expression of both matrix metalloprotein-3 (MMP-3), collagen VI α 3 ColVI alpha 3 (VIα3) and the cytokine epiregulin, demonstrating that the effects of 10e12z broadly impact adipocyte function. In agreement with other experimental systems, 10e12z CLA inhibited RAW 264.7 cell proliferation; however, in response to adipocyte-conditioned media, 10e12z-CLA-treated adipocytes induced proliferation of this cell line, suggesting that the effect of 10e12z CLA is context dependent. These results are largely consistent with the known activation of the inflammatory mediator nuclear factor-κB in adipocytes in vitro and in vivo by 10e12z CLA treatment and demonstrate that adipose is an important target tissue of this isomer that impacts other cell types.

  12. Activation of peroxisome proliferator-activated receptor-{alpha} enhances fatty acid oxidation in human adipocytes

    SciTech Connect

    Lee, Joo-Young; Hashizaki, Hikari; Goto, Tsuyoshi; Sakamoto, Tomoya; Takahashi, Nobuyuki; Kawada, Teruo

    2011-04-22

    Highlights: {yields} PPAR{alpha} activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. {yields} PPAR{alpha} activation also increased insulin-dependent glucose uptake in human adipocytes. {yields} PPAR{alpha} activation did not affect lipid accumulation in human adipocytes. {yields} PPAR{alpha} activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPAR{alpha} in adipocytes have been unclarified. We examined the functions of PPAR{alpha} using human multipotent adipose tissue-derived stem cells as a human adipocyte model. Activation of PPAR{alpha} by GW7647, a potent PPAR{alpha} agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPAR{gamma}, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPAR{alpha} activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPAR{gamma} is activated. On the other hand, PPAR{alpha} activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPAR{alpha}-dependent manner. Moreover, PPAR{alpha} activation increased the production of CO{sub 2} and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPAR{alpha} stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPAR{alpha} agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected

  13. Effects of Vitamin A Status on Expression of Ucp1 and Brown/Beige Adipocyte-Related Genes in White Adipose Tissues of Beef Cattle

    PubMed Central

    KANAMORI, Yohei; YAMADA, Tomoya; ASANO, Hiroki; KIDA, Ryosuke; QIAO, Yuhang; ABD ELDAIM, Mabrouk A.; TOMONAGA, Shozo; MATSUI, Tohru; FUNABA, Masayuki

    2014-01-01

    ABSTRACT We previously reported the presence of brown/beige adipocytes in the white fat depots of mature cattle. The present study examined the effects of dietary vitamin A on the expression of brown/beige adipocyte-related genes in the white fat depots of fattening cattle. No significant differences were observed in the expression of Ucp1 between vitamin A-deficient cattle and control cattle. However, the expression of the other brown/beige adipocyte-related genes was slightly higher in the mesenteric fat depots of vitamin A-deficient cattle. The present results suggest that a vitamin A deficiency does not markedly affect the expression of Ucp1 in white fat depots, but imply that it may stimulate the emergence of beige adipocytes in the mesenteric fat depots of fattening cattle. PMID:24859730

  14. Effects of MicroRNA-23a on Differentiation and Gene Expression Profiles in 3T3-L1 Adipocytes

    PubMed Central

    Huang, Yong; Huang, Jinxiu; Qi, Renli; Wang, Qi; Wu, Yongjiang; Wang, Jing

    2016-01-01

    MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate growth, development, and programmed death of cells. A newly-published study has shown that miRNA-23a could regulate 3T3-L1 adipocyte differentiation. Here, we identified miRNA-23a as a negative regulator of 3T3-L1 adipocyte differentiation again. Over-expression of miRNA-23a inhibited differentiation and decreased lipogenesis as well as down-regulated mRNA and protein expression of both peroxisome proliferator-activated receptor (PPAR) γ and fatty acid binding protein (FABP) 4, whereas knock down of miRNA-23a showed the opposite effects on differentiation as well as increasing the number of apoptotic cells. Additionally, digital gene expression profiling sequencing (DGE-Seq) was used to assay changes in gene expression profiles following alterations in the level of miR-23a. In total, over-expression or knock down of miRNA-23a significantly changed the expression of 313 and 425 genes, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that these genes were mainly involved in the stress response, immune system, metabolism, cell cycle, among other pathways. Additionally, the signal transducer and activator of transcription 1 (Stat1) was shown to be a target of miRNA-23a by computational and dual-luciferase reporter assays that indicated Janus Kinase (Jak)-Stat signal pathway was implicated in regulating adipogenesis mediated by miRNA-23a in adipocytes. PMID:27783036

  15. Microarray profiling of isolated abdominal subcutaneous adipocytes from obese vs non-obese Pima Indians: increased expression of inflammation-related genes

    PubMed Central

    Lee, Y. H.; Nair, S.; Rousseau, E.; Tataranni, P. A.; Bogardus, C.; Allison, D. B.; Page, G. P.

    2006-01-01

    Aims/hypothesis: Obesity increases the risk of developing major diseases such as diabetes and cardiovascular disease. Adipose tissue, particularly adipocytes, may play a major role in the development of obesity and its comorbidities. The aim of this study was to characterise, in adipocytes from obese people, the most differentially expressed genes that might be relevant to the development of obesity. Methods: We carried out microarray gene profiling of isolated abdominal subcutaneous adipocytes from 20 non-obese (BMI 25±3 kg/m2) and 19 obese (BMI 55± 8 kg/m2) non-diabetic Pima Indians using Affymetrix HG-U95 GeneChip arrays. After data analyses, we measured the transcript levels of selected genes based on their biological functions and chromosomal positions using quantitative real-time PCR. Results: The most differentially expressed genes in adipocytes of obese individuals consisted of 433 upregulated and 244 downregulated genes. Of these, 410 genes could be classified into 20 functional Gene Ontology categories. The analyses indicated that the inflammation/immune response category was over-represented, and that most inflammation-related genes were upregulated in adipocytes of obese subjects. Quantitative real-time PCR confirmed the transcriptional upregulation of representative inflammation-related genes (CCL2 and CCL3) encoding the chemokines monocyte chemoattractant protein-1 and macrophage inflammatory protein 1α. The differential expression levels of eight positional candidate genes, including inflammation-related THY1 and C1QTNF5, were also confirmed. These genes are located on chromosome 11q22-q24, a region with linkage to obesity in the Pima Indians. Conclusions/interpretation: This study provides evidence supporting the active role of mature adipocytes in obesity-related inflammation. It also provides potential candidate genes for susceptibility to obesity. PMID:16059715

  16. Adipocytes WNT5a mediated dedifferentiation: a possible target in pancreatic cancer microenvironment

    PubMed Central

    Zoico, Elena; Darra, Elena; Rizzatti, Vanni; Budui, Simona; Franceschetti, Guido; Mazzali, Gloria; Rossi, Andrea P; Fantin, Francesco; Menegazzi, Marta; Cinti, Saverio; Zamboni, Mauro

    2016-01-01

    A significant epidemiological association between obesity and pancreatic ductal adenocarcinoma (PDAC) has previously been described, as well as a correlation between the degree of pancreatic steatosis, PDAC risk and prognosis. The underlying mechanisms are still not completely known. After co-culture of 3T3-L1 adipocytes and MiaPaCa2 with an in vitro transwell system we observed the appearance of fibroblast-like cells, along with a decrease in number and size of remaining adipocytes. RT-PCR analyses of 3T3-L1 adipocytes in co-culture showed a decrease in gene expression of typical markers of mature adipocytes, in parallel with an increased expression of fibroblast-specific and reprogramming genes. We found an increased WNT5a gene and protein expression early in MiaPaCa2 cells in co-culture. Additionally, EMSA of c-Jun and AP1 in 3T3-L1 demonstrated an increased activation in adipocytes after co-culture. Treatment with WNT5a neutralizing antibody completely reverted the activation of c-Jun and AP1 observed in co-cultured adipocytes. Increasing doses of recombinant SFRP-5, a competitive inhibitor for WNT5a receptor, added to the co-culture medium, were able to block the dedifferentiation of adipocytes in co-culture. These data support a WNT5a-mediated dedifferentiation process with adipocytes reprogramming toward fibroblast-like cells that might profoundly influence cancer microenvironment. PMID:26958939

  17. Sp1 mediates repression of the resistin gene by PPAR{gamma} agonists in 3T3-L1 adipocytes

    SciTech Connect

    Chung, S.S.; Choi, H.H.; Cho, Y.M.; Lee, H.K.; Park, K.S. . E-mail: kspark@snu.ac.kr

    2006-09-15

    Resistin is an adipokine related to obesity and insulin resistance. Expression of the resistin gene is repressed by the treatment of peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) agonists, thiazolidinediones (TZDs). In this study, we investigated the mechanism by which TZDs inhibit the resistin gene expression. Resistin gene expression was decreased by TZD in fully differentiated 3T3-L1 adipocytes, which was abolished after treatment of cycloheximide (a protein synthesis inhibitor). TZD could not repress the expression of the resistin gene in the presence of mithramycin A (an Sp1 binding inhibitor). Sp1 binding site of the resistin promoter (-122/-114 bp) was necessary for the repression. Further investigation of the effect of TZDs on the modification of Sp1 showed that the level of O-glycosylation of Sp1 was decreased in this process. These results suggest that PPAR{gamma} activation represses the expression of the resistin gene by modulating Sp1 activity.

  18. Exercise before or after refeeding prevents refeeding-induced recovery of cell size after fasting with a different pattern of metabolic gene expressions in rat epididymal adipocytes.

    PubMed

    Sakurai, Takuya; Takei, Megumi; Ogasawara, Junetsu; Ueda, Hiroshi; Kizaki, Takako; Ohno, Hideki; Izawa, Tetsuya

    2007-09-01

    We investigated the effect of exercise before or after refeeding on cell size and on the expression of several messenger RNAs (mRNAs) involved in lipolysis and lipogenesis in fasted rat epididymal adipocytes. Fasting for 65 hours reduced the diameter of adipocytes to 72.0 microm from 78.4 microm in fed control rats, whereas refeeding for 1 or 2 days restored adipocyte size to 74.0 or 75.8 microm, respectively. Exercise before or after refeeding blocked refeeding-induced restoration of adipocyte size and led to adipocyte size similar to that observed after fasting. Fasting dramatically reduced expression of the fatty acid synthase mRNA, although expression of this gene returned to the control level after refeeding. However, exercise after but not before refeeding inhibited recovery of the expression of fatty acid synthase mRNA resulting from refeeding. In contrast, exercise before but not after refeeding led to enhanced expression of mRNAs encoding the hormone-sensitive lipase and beta(3)-aderenoceptor. Thus, exercise before or after refeeding prevents refeeding-induced restoration of adipocyte size after fasting via different pathways. Exercise before and after refeeding enhanced the expression of lipolytic mRNAs or inhibited the expression of lipogenic mRNAs, respectively.

  19. Evaluation of the synuclein-γ (SNCG) gene as a PPARγ target in murine adipocytes, dorsal root ganglia somatosensory neurons, and human adipose tissue.

    PubMed

    Dunn, Tamara N; Akiyama, Tasuku; Lee, Hyun Woo; Kim, Jae Bum; Knotts, Trina A; Smith, Steven R; Sears, Dorothy D; Carstens, Earl; Adams, Sean H

    2015-01-01

    Recent evidence in adipocytes points to a role for synuclein-γ in metabolism and lipid droplet dynamics, but interestingly this factor is also robustly expressed in peripheral neurons. Specific regulation of the synuclein-γ gene (Sncg) by PPARγ requires further evaluation, especially in peripheral neurons, prompting us to test if Sncg is a bona fide PPARγ target in murine adipocytes and peripheral somatosensory neurons derived from the dorsal root ganglia (DRG). Sncg mRNA was decreased in 3T3-L1 adipocytes (~68%) by rosiglitazone, and this effect was diminished by the PPARγ antagonist T0070907. Chromatin immunoprecipitation experiments confirmed PPARγ protein binding at two promoter sequences of Sncg during 3T3-L1 adipogenesis. Rosiglitazone did not affect Sncg mRNA expression in murine cultured DRG neurons. In subcutaneous human WAT samples from two cohorts treated with pioglitazone (>11 wks), SNCG mRNA expression was reduced, albeit highly variable and most evident in type 2 diabetes. Leptin (Lep) expression, thought to be coordinately-regulated with Sncg based on correlations in human adipose tissue, was also reduced in 3T3-L1 adipocytes by rosiglitazone. However, Lep was unaffected by PPARγ antagonist, and the LXR agonist T0901317 significantly reduced Lep expression (~64%) while not impacting Sncg. The results support the concept that synuclein-γ shares some, but not all, gene regulators with leptin and is a PPARγ target in adipocytes but not DRG neurons. Regulation of synuclein-γ by cues such as PPARγ agonism in adipocytes is logical based on recent evidence for an important role for synuclein-γ in the maintenance and dynamics of adipocyte lipid droplets.

  20. Evaluation of the Synuclein-γ (SNCG) Gene as a PPARγ Target in Murine Adipocytes, Dorsal Root Ganglia Somatosensory Neurons, and Human Adipose Tissue

    PubMed Central

    Dunn, Tamara N.; Akiyama, Tasuku; Lee, Hyun Woo; Kim, Jae Bum; Knotts, Trina A.; Smith, Steven R.; Sears, Dorothy D.; Carstens, Earl; Adams, Sean H.

    2015-01-01

    Recent evidence in adipocytes points to a role for synuclein-γ in metabolism and lipid droplet dynamics, but interestingly this factor is also robustly expressed in peripheral neurons. Specific regulation of the synuclein-γ gene (Sncg) by PPARγ requires further evaluation, especially in peripheral neurons, prompting us to test if Sncg is a bona fide PPARγ target in murine adipocytes and peripheral somatosensory neurons derived from the dorsal root ganglia (DRG). Sncg mRNA was decreased in 3T3-L1 adipocytes (~68%) by rosiglitazone, and this effect was diminished by the PPARγ antagonist T0070907. Chromatin immunoprecipitation experiments confirmed PPARγ protein binding at two promoter sequences of Sncg during 3T3-L1 adipogenesis. Rosiglitazone did not affect Sncg mRNA expression in murine cultured DRG neurons. In subcutaneous human WAT samples from two cohorts treated with pioglitazone (>11 wks), SNCG mRNA expression was reduced, albeit highly variable and most evident in type 2 diabetes. Leptin (Lep) expression, thought to be coordinately-regulated with Sncg based on correlations in human adipose tissue, was also reduced in 3T3-L1 adipocytes by rosiglitazone. However, Lep was unaffected by PPARγ antagonist, and the LXR agonist T0901317 significantly reduced Lep expression (~64%) while not impacting Sncg. The results support the concept that synuclein-γ shares some, but not all, gene regulators with leptin and is a PPARγ target in adipocytes but not DRG neurons. Regulation of synuclein-γ by cues such as PPARγ agonism in adipocytes is logical based on recent evidence for an important role for synuclein-γ in the maintenance and dynamics of adipocyte lipid droplets. PMID:25756178

  1. Clozapine modifies the differentiation program of human adipocytes inducing browning

    PubMed Central

    Kristóf, E; Doan-Xuan, Q-M; Sárvári, A K; Klusóczki, Á; Fischer-Posovszky, P; Wabitsch, M; Bacso, Z; Bai, P; Balajthy, Z; Fésüs, L

    2016-01-01

    Administration of second-generation antipsychotic drugs (SGAs) often leads to weight gain and consequent cardio-metabolic side effects. We observed that clozapine but not six other antipsychotic drugs reprogrammed the gene expression pattern of differentiating human adipocytes ex vivo, leading to an elevated expression of the browning marker gene UCP1, more and smaller lipid droplets and more mitochondrial DNA than in the untreated white adipocytes. Laser scanning cytometry showed that up to 40% of the differentiating single primary and Simpson–Golabi–Behmel syndrome (SGBS) adipocytes had the characteristic morphological features of browning cells. Furthermore, clozapine significantly upregulated ELOVL3, CIDEA, CYC1, PGC1A and TBX1 genes but not ZIC1 suggesting induction of the beige-like and not the classical brown phenotype. When we tested whether browning induced by clozapine can be explained by its known pharmacological effect of antagonizing serotonin (5HT) receptors, it was found that browning cells expressed 5HT receptors 2A, 1D, 7 and the upregulation of browning markers was diminished in the presence of exogenous 5HT. Undifferentiated progenitors or completely differentiated beige or white adipocytes did not respond to clozapine administration. The clozapine-induced beige cells displayed increased basal and oligomycin-inhibited (proton leak) oxygen consumption, but these cells showed a lower response to cAMP stimulus as compared with control beige adipocytes indicating that they are less capable to respond to natural thermogenic anti-obesity cues. Our data altogether suggest that novel pharmacological stimulation of these masked beige adipocytes can be a future therapeutic target for the treatment of SGA-induced weight gain. PMID:27898069

  2. The Dietary Isoflavone Daidzein Reduces Expression of Pro-Inflammatory Genes through PPARα/γ and JNK Pathways in Adipocyte and Macrophage Co-Cultures

    PubMed Central

    Sakamoto, Yuri; Kanatsu, Junko; Toh, Mariko; Naka, Ayano; Kondo, Kazuo; Iida, Kaoruko

    2016-01-01

    Obesity-induced inflammation caused by adipocyte-macrophage interactions plays a critical role in developing insulin resistance, and peroxisome proliferator-activated receptors (PPARs) regulate inflammatory gene expression in these cells. Recently, the soy isoflavone daidzein was reported to act as a PPAR activator. We examined whether daidzein affected adipocyte-macrophage crosstalk via the regulation of PPARs. Co-cultures of 3T3-L1 adipocytes and RAW264 macrophages, or palmitate-stimulated RAW264 macrophages were treated with daidzein in the presence or absence of specific inhibitors for PPARs: GW6471 (a PPARα antagonist), and GW9662 (a PPARγ antagonist). Inflammatory gene expression was then determined. Daidzein significantly decreased chemokine (C-C motif) ligand 2 (Ccl2, known in humans as monocyte chemo-attractant protein 1 (MCP1)) and interleukin 6 (Il6) mRNA levels induced by co-culture. In 3T3-L1 adipocytes, daidzein inversed the attenuation of adiponectin gene expression by co-culture, and these effects were inhibited by the PPAR-γ specific inhibitor. Daidzein also decreased Ccl2 and Il6 mRNA levels in RAW264 macrophages stimulated with palmitate or conditioned medium (CM) from hypertrophied 3T3-L1 adipocytes. This inhibitory effect on Il6 expression was abrogated by a PPAR-α inhibitor. Additionally, we examined the activation of nuclear factor-kappa B (NF-κB) and c-Jun N-terminal kinase (JNK) pathways and found that daidzein significantly inhibited palmitate-induced phosphorylation of JNK. Our data suggest that daidzein regulates pro-inflammatory gene expression by activating PPAR-α and -γ and inhibiting the JNK pathway in adipocyte and macrophage co-cultures. These effects might be favorable in improving adipose inflammation, thus, treatment of daidzein may be a therapeutic strategy for chronic inflammation in obese adipose tissue. PMID:26901838

  3. Oleic acid attenuates trans-10,cis-12 conjugated linoleic acid-mediated inflammatory gene expression in human adipocytes.

    PubMed

    Reardon, Meaghan; Gobern, Semone; Martinez, Kristina; Shen, Wan; Reid, Tanya; McIntosh, Michael

    2012-11-01

    The weight loss supplement conjugated linoleic acid (CLA) consists of an equal mixture of trans-10,cis-12 (10,12) and cis-9,trans-11 (9,11) isomers. However, high levels of mixed CLA isomers, or the 10,12 isomer, causes chronic inflammation, lipodystrophy, or insulin resistance. We previously demonstrated that 10,12 CLA decreases de novo lipid synthesis along with the abundance and activity of stearoyl-CoA desaturase (SCD)-1, a δ-9 desaturase essential for the synthesis of monounsaturated fatty acids (MUFA). Thus, we hypothesized that the 10,12 CLA-mediated decrease in SCD-1, with the subsequent decrease in MUFA, was responsible for the observed effects. To test this hypothesis, 10,12 CLA-treated human adipocytes were supplemented with oleic acid for 12 h to 7 days, and inflammatory gene expression, insulin-stimulated glucose uptake, and lipid content were measured. Oleic acid reduced inflammatory gene expression in a dose-dependent manner, and restored the lipid content of 10,12 CLA-treated adipocytes without improving insulin-stimulated glucose uptake. In contrast, supplementation with stearic acid, a substrate for SCD-1, or 9,11 CLA did not prevent inflammatory gene expression by 10,12 CLA. Notably, 10,12 CLA impacted the expression of several G-protein coupled receptors that was attenuated by oleic acid. Collectively, these data show that oleic acid attenuates 10,12 CLA-induced inflammatory gene expression and lipid content, possibly by alleviating cell stress caused by the inhibition of MUFA needed for phospholipid and neutral lipid synthesis.

  4. Egg yolks inhibit activation of NF-κB and expression of its target genes in adipocytes after partial delipidation

    PubMed Central

    Shen, Qiwen; Riedl, Ken M.; Cole, Rachel M.; Lehman, Christopher; Xu, Lu; Alder, Hansjuerg; Belury, Martha A.; Schwartz, Steven J.; Ziouzenkova, Ouliana

    2015-01-01

    How composition of egg yolk (EY) influences NF-κB, a key transcription pathway in inflammation, remains unclear. We performed partial delipidation of EY that removed 20–30% of cholesterol and triglycerides. The resulting polar and non-polar fractions were termed EY-P and EY-NP. NF-κB activation in response to EY from different suppliers and their fractions was examined in 3T3-L1 adipocytes using a NF-κB response element reporter assay and by analyzing expression of 248 inflammatory genes. Although EY-P and EY contained similar level of vitamins, carotenoids, and fatty acids, only delipidated EY-P fraction suppressed NF-κB via down-regulation of toll like receptor-2 and up-regulation of inhibitory toll interacting protein (Tollip) and lymphocyte antigen 96 (Ly96). Our data suggest that anti-inflammatory activity of lutein and retinol were blunted by non-polar lipids in EY likely via crosstalk between SREBP and NF-κB pathways in adipocytes. Thus, moderate delipidation may improve their beneficial properties of regular eggs. PMID:25620076

  5. PPARγ partial agonist GQ-16 strongly represses a subset of genes in 3T3-L1 adipocytes

    SciTech Connect

    Milton, Flora Aparecida; Cvoro, Aleksandra; Amato, Angelica A.; Sieglaff, Douglas H.; Filgueira, Carly S.; Arumanayagam, Anithachristy Sigamani; Caro Alves de Lima, Maria do; Rocha Pitta, Ivan; Assis Rocha Neves, Francisco de; Webb, Paul

    2015-08-28

    Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor gamma (PPARγ) agonists that improve insulin resistance but trigger side effects such as weight gain, edema, congestive heart failure and bone loss. GQ-16 is a PPARγ partial agonist that improves glucose tolerance and insulin sensitivity in mouse models of obesity and diabetes without inducing weight gain or edema. It is not clear whether GQ-16 acts as a partial agonist at all PPARγ target genes, or whether it displays gene-selective actions. To determine how GQ-16 influences PPARγ activity on a gene by gene basis, we compared effects of rosiglitazone (Rosi) and GQ-16 in mature 3T3-L1 adipocytes using microarray and qRT-PCR. Rosi changed expression of 1156 genes in 3T3-L1, but GQ-16 only changed 89 genes. GQ-16 generally showed weak effects upon Rosi induced genes, consistent with partial agonist actions, but a subset of modestly Rosi induced and strongly repressed genes displayed disproportionately strong GQ-16 responses. PPARγ partial agonists MLR24 and SR1664 also exhibit disproportionately strong effects on transcriptional repression. We conclude that GQ-16 displays a continuum of weak partial agonist effects but efficiently represses some negatively regulated PPARγ responsive genes. Strong repressive effects could contribute to physiologic actions of GQ-16. - Highlights: • GQ-16 is an insulin sensitizing PPARγ ligand with reduced harmful side effects. • GQ-16 displays a continuum of weak partial agonist activities at PPARγ-induced genes. • GQ-16 exerts strong repressive effects at a subset of genes. • These inhibitor actions should be evaluated in models of adipose tissue inflammation.

  6. Selectable marker genes and unintended changes to the plant transcriptome.

    PubMed

    Miki, Brian; Abdeen, Ashraf; Manabe, Yuzuki; MacDonald, Phil

    2009-04-01

    The intended effect of a selectable marker gene is to confer a novel trait that allows for the selection and recovery of transgenic plants. Unintended effects may also occur as a result of interactions between the selectable marker gene or its regulatory elements and genetic elements at the site of insertion. These are called position effects. Other unintended effects may occur if the selectable marker gene has a range of pleiotropic effects related to the functional and regulatory domains within the coding region or the regulatory elements used to drive expression. Both pleiotropic and position effects may generate unpredictable events depending on the process used for transgenesis and the state of knowledge associated with the selectable marker gene. Although some selectable marker genes, such as the neomycin phosphotransferase type II gene (nptII), have no pleiotropic effects on the transcriptomes of transgenic plants, others, such as the bialaphos resistance gene (bar), have pleiotropic effects. These must be clearly understood and accounted for when evaluating the expression patterns conferred by other co-transforming transgenes under study. The number and kinds of selectable marker genes are large. A detailed understanding of their unintended effects is needed to develop transgenic strategies that will minimize or eliminate unintended and unpredictable changes to plants with newly inserted genes.

  7. Germinated brown rice extract inhibits adipogenesis through the down-regulation of adipogenic genes in 3T3-L1 adipocytes.

    PubMed

    Ho, Jin-Nyoung; Son, Mi-Eun; Lim, Won-Chul; Lim, Seung-Taik; Cho, Hong-Yon

    2013-09-01

    The aim of this study was to examine the anti-adipogenic effect of germinated brown rice methanol extract (GBR) in 3T3-L1 adipocytes. The GBR inhibited adipocyte differentiation was measured by Oil Red O staining and glycerol-3-phosphate dehydrogenase (GPDH) activity in a dose-dependent manner without initiating any cytotoxicity. The mRNA levels of adipogenic transcription factors such as CCAAT/enhancer binding protein (C/EBPα), proliferator-activated receptorγ (PPARγ), and sterol regulatory element-binding protein-1c (SREBP-1c), and adipogenic genes, such as fatty acid synthase (FAS), adipocyte fatty acid-binding protein (aP2), and lipoprotein lipase (LPL), were significantly down-regulated by treatment with GBR when compared to that of untreated control cells. Moreover, tumor necrosis factor-α (TNF-α) and interlukin-6 (IL-6) mRNA expressions were attenuated by GBR in mature adipocytes. These data suggest that GBR exhibits an anti-adipogenic effect through the suppression of adipogenesis in 3T3-L1 adipocytes.

  8. Prevention of diet-induced obesity by apple polyphenols in Wistar rats through regulation of adipocyte gene expression and DNA methylation patterns.

    PubMed

    Boqué, Noemi; de la Iglesia, Rocío; de la Garza, Ana L; Milagro, Fermín I; Olivares, Mónica; Bañuelos, Oscar; Soria, Ana Cristina; Rodríguez-Sánchez, Sonia; Martínez, José Alfredo; Campión, Javier

    2013-08-01

    This study was conducted to determine the mechanisms implicated in the beneficial effects of apple polyphenols (APs) against diet-induced obesity in Wistar rats, described in a previous study from our group. Supplementation of high-fat sucrose diet with AP prevented adiposity increase by inhibition of adipocyte hypertrophy. Rats supplemented with AP exhibited improved glucose tolerance while adipocytes isolated from these rats showed an enhanced lipolytic response to isoproterenol. AP intake led to reduced Lep, Plin, and sterol regulatory element binding transcription factor 1 (Srebf1) mRNA levels and increased aquaporin 7 (Aqp7), adipocyte enhancer binding protein 1 (Aebp1), and peroxisome proliferator-activated receptor gamma co-activator 1 alpha (Ppargc1a) mRNA levels in epididymal adipocytes. In addition, we found different methylation patterns of Aqp7, Lep, Ppargc1a, and Srebf1 promoters in adipocytes from apple-supplemented rats compared to high-fat sucrose fed rats. The administration of AP protects against body weight gain and fat deposition and improves glucose tolerance in rats. We propose that AP exerts the antiobesity effects through the regulation of genes involved in adipogenesis, lipolysis, and fatty acid oxidation, in a process that could be mediated in part by epigenetic mechanisms.

  9. Mature adipocyte-derived dedifferentiated fat cells exhibit multilineage potential.

    PubMed

    Matsumoto, Taro; Kano, Koichiro; Kondo, Daisuke; Fukuda, Noboru; Iribe, Yuji; Tanaka, Nobuaki; Matsubara, Yoshiyuki; Sakuma, Takahiro; Satomi, Aya; Otaki, Munenori; Ryu, Jyunnosuke; Mugishima, Hideo

    2008-04-01

    When mature adipocytes are subjected to an in vitro dedifferentiation strategy referred to as ceiling culture, these mature adipocytes can revert to a more primitive phenotype and gain cell proliferative ability. We refer to these cells as dedifferentiated fat (DFAT) cells. In the present study, we examined the multilineage differentiation potential of DFAT cells. DFAT cells obtained from adipose tissues of 18 donors exhibited a fibroblast-like morphology and sustained high proliferative activity. Flow cytometric analysis revealed that DFAT cells comprised a highly homogeneous cell population compared with that of adipose-derived stem/stromal cells (ASCs), although the cell-surface antigen profile of DFAT cells was very similar to that of ASCs. DFAT cells lost expression of mature adipocytes marker genes but retained or gained expression of mesenchymal lineage-committed marker genes such as peroxisome proliferator-activated receptor gamma (PPARgamma), RUNX2, and SOX9. In vitro differentiation analysis revealed that DFAT cells could differentiate into adipocytes, chondrocytes, and osteoblasts under appropriate culture conditions. DFAT cells also formed osteoid matrix when implanted subcutaneously into nude mice. In addition, clonally expanded porcine DFAT cells showed the ability to differentiate into multiple mesenchymal cell lineages. These results indicate that DFAT cells represent a type of multipotent progenitor cell. The accessibility and ease of culture of DFAT cells support their potential application for cell-based therapies.

  10. Identification of Potential Key lncRNAs and Genes Associated with Aging Based on Microarray Data of Adipocytes from Mice

    PubMed Central

    Teng, Zongyan; Meng, Songyan; Yu, Weigang

    2016-01-01

    Objective. This study aimed to screen potential crucial lncRNAs and genes involved in aging. Methods. The data of 9 peripheral white adipocytes, respectively, taken from male C57BL/6J mice (6 months, 14 months, and 18 months of age) in GSE25905 were used in this study. Differentially time series expressed lncRNA genes (DE-lncRNAs) and mRNA genes (DEGs) were identified. After cluster analysis of lncRNAs expression pattern, target genes of DE-lncRNAs were predicted from the DEGs, and functional analysis for target genes was conducted. Results. A total of 8301 time series-related DEGs and 43 time series-related DE-lncRNAs were identified. Among them, 41 DE-lncRNAs targeted 1880 DEGs. The DEGs positively regulated by DE-lncRNAs were mainly related to the development of blood vessel and the pathways of cholesterol biosynthesis and elastic fibre formation. Furthermore, the DEGs negatively regulated by DE-lncRNAs were correlated with protein metabolism. Conclusion. These DE-lncRNAs and DEGs are potentially involved in the process of aging. PMID:28097151

  11. Loss of Oncostatin M Signaling in Adipocytes Induces Insulin Resistance and Adipose Tissue Inflammation in Vivo.

    PubMed

    Elks, Carrie M; Zhao, Peng; Grant, Ryan W; Hang, Hardy; Bailey, Jennifer L; Burk, David H; McNulty, Margaret A; Mynatt, Randall L; Stephens, Jacqueline M

    2016-08-12

    Oncostatin M (OSM) is a multifunctional gp130 cytokine. Although OSM is produced in adipose tissue, it is not produced by adipocytes. OSM expression is significantly induced in adipose tissue from obese mice and humans. The OSM-specific receptor, OSM receptor β (OSMR), is expressed in adipocytes, but its function remains largely unknown. To better understand the effects of OSM in adipose tissue, we knocked down Osmr expression in adipocytes in vitro using siRNA. In vivo, we generated a mouse line lacking Osmr in adiponectin-expressing cells (OSMR(FKO) mice). The effects of OSM on gene expression were also assessed in vitro and in vivo OSM exerts proinflammatory effects on cultured adipocytes that are partially rescued by Osmr knockdown. Osm expression is significantly increased in adipose tissue T cells of high fat-fed mice. In addition, adipocyte Osmr expression is increased following high fat feeding. OSMR(FKO) mice exhibit increased insulin resistance and adipose tissue inflammation and have increased lean mass, femoral length, and bone volume. Also, OSMR(FKO) mice exhibit increased expression of Osm, the T cell markers Cd4 and Cd8, and the macrophage markers F4/80 and Cd11c Interestingly, the same proinflammatory genes induced by OSM in adipocytes are induced in the adipose tissue of the OSMR(FKO) mouse, suggesting that increased expression of proinflammatory genes in adipose tissue arises both from adipocytes and other cell types. These findings suggest that adipocyte OSMR signaling is involved in the regulation of adipose tissue homeostasis and that, in obesity, OSMR ablation may exacerbate insulin resistance by promoting adipose tissue inflammation.

  12. Adipocyte and adipogenesis.

    PubMed

    Ali, Aus Tariq; Hochfeld, Warren E; Myburgh, Renier; Pepper, Michael S

    2013-01-01

    Adipocytes are the main constituent of adipose tissue and are considered to be a corner stone in the homeostatic control of whole body metabolism. Their primary function is to control energy balance by storing triacylglycerol in periods of energy excess and mobilizing it during energy deprivation. Besides the classical function of storing fat, adipocytes secrete numerous lipid and protein factors. Collectively they are considered to constitute a major endocrine organ which has a profound impact on the metabolism of other tissues, the regulation of appetite, insulin sensitivity, immunological responses and vascular disease. Adipogenesis is the process during which fibroblast like preadipocytes developed into mature adipocytes. Adipogenesis is a well-orchestrated multistep process that requires the sequential activation of numerous transcription factors, including the CCAAT/enhancer-binding protein (C/EBP) gene family and peroxisome proliferator activated receptor-γ (PPAR-γ). In order to reach maturity, these cells must go through two vital steps: adipocyte determination and adipocyte differentiation. Although many of the molecular details of adipogenesis are still unknown, several factors involved in this processes have been identified. Some stimulators include peroxisome proliferator-activated receptor γ (PPAR γ), insulin-like growth factor I (IGF-l), macrophage colony stimulating factor, fatty acids, prostaglandins and glucocorticoids. Inhibitors include glycoproteins, transforming growth factor-β (TGF-β), inflammatory cytokines and growth hormone. Beside these factors, there are others for example age, gender and life style that may affect this process in one way or another. An increase in the number and size of adipocytes causes white adipose tissue (WAT) to expand and this can lead to obesity. Adipogenesis can lead to central obesity if it occurs in the abdominal fat depot and peripheral obesity if it occurs in subcutaneous tissue.

  13. Progeny from dedifferentiated adipocytes display protracted adipogenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Progeny of adipofibroblast cells, derived from mature bovine adipocytes, were used to determine their ability to redifferentiate into lipid-assimilating adipocytes. Traditional cell biology methods were used, including the expression of adipogenic markers such as PPAR'. When exposed to medium supple...

  14. Human white adipocytes convert into "rainbow" adipocytes in vitro.

    PubMed

    Maurizi, Giulia; Poloni, Antonella; Mattiucci, Domenico; Santi, Spartaco; Maurizi, Angela; Izzi, Valerio; Giuliani, Angelica; Mancini, Stefania; Zingaretti, Maria Cristina; Perugini, Jessica; Severi, Ilenia; Falconi, Massimo; Vivarelli, Marco; Rippo, Maria Rita; Corvera, Silvia; Giordano, Antonio; Leoni, Pietro; Cinti, Saverio

    2016-12-17

    White adipocytes are plastic cells able to reversibly transdifferentiate into brown adipocytes and into epithelial glandular cells under physiologic stimuli in vivo. These plastic properties could be used in future for regenerative medicine, but are incompletely explored in their details. Here, we focused on plastic properties of human mature adipocytes (MA) combining gene expression profile through microarray analysis with morphologic data obtained by electron and time lapse microscopy. Primary MA showed the classic morphology and gene expression profile of functional mature adipocytes. Notably, despite their committed status, MA expressed high levels of reprogramming genes. MA from ceiling cultures underwent transdifferentiation towards fibroblast-like cells with a well-differentiated morphology and maintaining stem cell gene signatures. The main morphologic aspect of the transdifferentiation process was the secretion of large lipid droplets and the development of organelles necessary for exocrine secretion further supported the liposecretion process. Of note, electron microscope findings suggesting liposecretion phenomena were found also in explants of human fat and rarely in vivo in fat biopsies from obese patients. In conclusion, both MA and post-liposecretion adipocytes show a well-differentiated phenotype with stem cell properties in line with the extraordinary plasticity of adipocytes in vivo. This article is protected by copyright. All rights reserved.

  15. Soyasaponins Aa and Ab exert an anti-obesity effect in 3T3-L1 adipocytes through downregulation of PPARγ.

    PubMed

    Yang, Seung Hwan; Ahn, Eun-Kyung; Lee, Jung A; Shin, Tai-Sun; Tsukamoto, Chigen; Suh, Joo-won; Mei, Itabashi; Chung, Gyuhwa

    2015-02-01

    Saponins are a diverse group of biologically functional products in plants. Soyasaponins are usually glycosylated, which give rise to a wide diversity of structures and functions. In this study, we investigated the effects and molecular mechanism of soyasaponins Aa and Ab in regulating adipocyte differentiation and expression of adipogenic marker genes in 3T3-L1 adipocytes. Soyasaponins Aa and Ab dose-dependently inhibited the accumulation of lipids and the expression of adiponectin, adipocyte determination and differentiation factor 1/sterol regulatory element binding protein 1c, adipocyte fatty acid-binding protein 2, fatty acid synthase, and resistin in 3T3-L1 adipocytes. In addition, soyasaponins Aa and Ab suppressed the transcriptional activity of peroxisome proliferator-activated receptor γ (PPARγ) in HEK 293T cells. Furthermore, we confirmed that the expression of PPARγ and of CCAAT-enhancer-binding protein α (C/EBPα) was suppressed at both the mRNA and protein levels in 3T3-L1 adipocytes by treatment with soyasaponins Aa and Ab. Taken together, these findings indicate that soyasaponin Aa and Ab markedly inhibit adipocyte differentiation and expression of various adipogenic marker genes through the downregulation of the adipogenesis-related transcription factors PPARγ and C/EBPα in 3T3-L1 adipocytes.

  16. Insulin continues to induce plasminogen activator inhibitor 1 gene expression in insulin-resistant mice and adipocytes.

    PubMed Central

    Samad, F.; Pandey, M.; Bell, P. A.; Loskutoff, D. J.

    2000-01-01

    BACKGROUND: Although the association between insulin resistance and cardiovascular risk is well established, the underlying molecular mechanisms are poorly understood. The antifibrinolytic molecule plasminogen activator inhibitor 1 (PAI-1) is a cardiovascular risk factor that is consistently elevated in insulin-resistant states such as obesity and non-insulin-dependent diabetes mellitus (NIDDM). The strong positive correlation between this elevated PAI-1 and the degree of hyperinsulinemia not only implicates insulin itself in this increase, but also suggests that PAI-1 is regulated by a pathway that does not become insulin resistant. The data in this report supports this hypothesis. MATERIALS AND METHODS: We show that insulin stimulates PAI-1 gene expression in metabolically insulin-resistant ob/ob mice and in insulin-resistant 3T3-L1 adipocytes. Moreover, we provide evidence that glucose transport and PAI-1 gene expression are mediated by different insulin signaling pathways. These observations suggest that the compensatory hyperinsulinemia that is frequently associated with insulin-resistant states, directly contribute to the elevated PAI-1. CONCLUSIONS: These results provide a potential mechanism for the abnormal increases in cardiovascular risk genes in obesity, NIDDM, and polycystic ovary disease. PMID:11055587

  17. PCR arrays indicate that the expression of extracellular matrix and cell adhesion genes in human adipocytes is regulated by IL-1β (interleukin-1β).

    PubMed

    Kępczyńska, Malgorzata A; Zaibi, Mohamed S; Alomar, Suliman Y; Trayhurn, Paul

    2017-02-01

    The role of IL-1β in regulating the expression of extracellular matrix (ECM) and cell adhesion genes in human adipocytes has been examined. Adipocytes differentiated in culture were incubated with IL-1β for 4 or 24 h and RNA probed with PCR arrays for 84 ECM and cell adhesion genes. Treatment with IL-1β resulted in changes in the expression at one or both time points of ∼50% of the genes probed by the arrays, the majority being down-regulated. Genes whose expression was down-regulated by IL-1β included those encoding several collagen chains and integrin subunits. In contrast, IL-1β induced substantial increases (>10-fold) in the expression of ICAM1, VCAM1, MMP1 and MMP3; the secretion of the encoded proteins was also markedly stimulated. IL-1β has a pervasive effect on the expression of ECM and cell adhesion genes in human adipocytes, consistent with the derangement of tissue structure during inflammation in white fat.

  18. Reverse Differentiation as a Gene Filtering Tool in Genome Expression Profiling of Adipogenesis for Fat Marker Gene Selection and Their Analysis

    PubMed Central

    Ullah, Mujib; Stich, Stefan; Häupl, Thomas; Eucker, Jan; Sittinger, Michael; Ringe, Jochen

    2013-01-01

    Background During mesenchymal stem cell (MSC) conversion into adipocytes, the adipogenic cocktail consisting of insulin, dexamethasone, indomethacin and 3-isobutyl-1-methylxanthine not only induces adipogenic-specific but also genes for non-adipogenic processes. Therefore, not all significantly expressed genes represent adipogenic-specific marker genes. So, our aim was to filter only adipogenic-specific out of all expressed genes. We hypothesize that exclusively adipogenic-specific genes change their expression during adipogenesis, and reverse during dedifferentiation. Thus, MSC were adipogenic differentiated and dedifferentiated. Results Adipogenesis and reverse adipogenesis was verified by Oil Red O staining and expression of PPARG and FABP4. Based on GeneChips, 991 genes were differentially expressed during adipogenesis and grouped in 4 clusters. According to bioinformatic analysis the relevance of genes with adipogenic-linked biological annotations, expression sites, molecular functions, signaling pathways and transcription factor binding sites was high in cluster 1, including all prominent adipogenic genes like ADIPOQ, C/EBPA, LPL, PPARG and FABP4, moderate in clusters 2–3, and negligible in cluster 4. During reversed adipogenesis, only 782 expressed genes (clusters 1–3) were reverted, including 597 genes not reported for adipogenesis before. We identified APCDD1, CHI3L1, RARRES1 and SEMA3G as potential adipogenic-specific genes. Conclusion The model system of adipogenesis linked to reverse adipogenesis allowed the filtration of 782 adipogenic-specific genes out of total 991 significantly expressed genes. Database analysis of adipogenic-specific biological annotations, transcription factors and signaling pathways further validated and valued our concept, because most of the filtered 782 genes showed affiliation to adipogenesis. Based on this approach, the selected and filtered genes would be potentially important for characterization of adipogenesis and

  19. Exercise Decreases Lipogenic Gene Expression in Adipose Tissue and Alters Adipocyte Cellularity during Weight Regain After Weight Loss

    PubMed Central

    Giles, Erin D.; Steig, Amy J.; Jackman, Matthew R.; Higgins, Janine A.; Johnson, Ginger C.; Lindstrom, Rachel C.; MacLean, Paul S.

    2016-01-01

    Exercise is a potent strategy to facilitate long-term weight maintenance. In addition to increasing energy expenditure and reducing appetite, exercise also favors the oxidation of dietary fat, which likely helps prevent weight re-gain. It is unclear whether this exercise-induced metabolic shift is due to changes in energy balance, or whether exercise imparts additional adaptations in the periphery that limit the storage and favor the oxidation of dietary fat. To answer this question, adipose tissue lipid metabolism and related gene expression were studied in obese rats following weight loss and during the first day of relapse to obesity. Mature, obese rats were weight-reduced for 2 weeks with or without daily treadmill exercise (EX). Rats were weight maintained for 6 weeks, followed by relapse on: (a) ad libitum low fat diet (LFD), (b) ad libitum LFD plus EX, or (c) a provision of LFD to match the positive energy imbalance of exercised, relapsing animals. 24 h retention of dietary- and de novo-derived fat were assessed directly using 14C palmitate/oleate and 3H20, respectively. Exercise decreased the size, but increased the number of adipocytes in both retroperitoneal (RP) and subcutaneous (SC) adipose depots, and prevented the relapse-induced increase in adipocyte size. Further, exercise decreased the expression of genes involved in lipid uptake (CD36 and LPL), de novo lipogenesis (FAS, ACC1), and triacylglycerol synthesis (MGAT and DGAT) in RP adipose during relapse following weight loss. This was consistent with the metabolic data, whereby exercise reduced retention of de novo-derived fat even when controlling for the positive energy imbalance. The decreased trafficking of dietary fat to adipose tissue with exercise was explained by reduced energy intake which attenuated energy imbalance during refeeding. Despite having decreased expression of lipogenic genes, the net retention of de novo-derived lipid was higher in both the RP and SC adipose of exercising

  20. The Kampo medicines Orengedokuto, Bofutsushosan and Boiogito have different activities to regulate gene expressions in differentiated rat white adipocytes: comprehensive analysis of genetic profiles.

    PubMed

    Yamakawa, Jun-ichi; Ishigaki, Yasuhito; Takano, Fumihide; Takahashi, Takashi; Yoshida, Junko; Moriya, Junji; Takata, Takanobu; Tatsuno, Takanori; Sasaki, Kenroh; Ohta, Tomihisa; Takegami, Tsutomu; Yoshizaki, Fumihiko

    2008-11-01

    Three Kampo medicines, Boiogito (BOT), Bofutsushosan (BTS) and Orengedokuto (OGT), used for obese patients were investigated for their effects on adipogenesis in cultured rat white adipocytes. Administration of the three extracts suppressed adipogenesis in concentration-dependent manners (1-100 microg/ml) without any cytotoxicity. Changes in mRNA expression levels were analyzed using a Rat 230 2.0 Affymetrix GeneChip microarray system. DNA microarray analysis (total probe set: 31099) using cDNAs prepared from adipocytes revealed that BOT, BTS and OGT increased the expression of 133-150 genes and decreased the expression of 42-110 genes by > or =2-fold. We identified 329 downregulated genes and 189 upregulated genes among a total set of 514 probes (overlap: 4). Overall, genes related to cellular movement, cell death, cell growth/differentiation and immune responses were the most downregulated, while those related to lipid metabolism and cell signaling were the most upregulated. Semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR) assays were conducted to confirm the microarray results. Analysis of the clustering profiles of the microarray results revealed that BOT and BTS changed the expression levels of similar genes mainly involved in small molecule biochemistry and cell differentiation, while OGT altered 10 genes related to lipid metabolism, in contrast to the effects of BOT and BTS. We also measured mRNA expression levels of seven selected genes highly contributing to the lipid metabolism by using semiquantitative RT-PCR assay, that were acetyl-Coenzyme A carboxylase alpha (ACACA), AE binding protein 1 (AEBP1), patatin-like phospholipase domain containing 8 (PNPLA8), secretoglobin (SCGB1A1), adrenergic (ADRB3), adiponectin (ADIPOQ), monoglyceride lipase (MGLL). Beta-actin (ACTB) gene was used as an endogenous internal standard. The present findings indicate that these three herbal extracts have the potential to prevent adipogenesis in rat

  1. Cell type-specific functions of period genes revealed by novel adipocyte and hepatocyte circadian clock models.

    PubMed

    Ramanathan, Chidambaram; Xu, Haiyan; Khan, Sanjoy K; Shen, Yang; Gitis, Paula J; Welsh, David K; Hogenesch, John B; Liu, Andrew C

    2014-04-01

    In animals, circadian rhythms in physiology and behavior result from coherent rhythmic interactions between clocks in the brain and those throughout the body. Despite the many tissue specific clocks, most understanding of the molecular core clock mechanism comes from studies of the suprachiasmatic nuclei (SCN) of the hypothalamus and a few other cell types. Here we report establishment and genetic characterization of three cell-autonomous mouse clock models: 3T3 fibroblasts, 3T3-L1 adipocytes, and MMH-D3 hepatocytes. Each model is genetically tractable and has an integrated luciferase reporter that allows for longitudinal luminescence recording of rhythmic clock gene expression using an inexpensive off-the-shelf microplate reader. To test these cellular models, we generated a library of short hairpin RNAs (shRNAs) against a panel of known clock genes and evaluated their impact on circadian rhythms. Knockdown of Bmal1, Clock, Cry1, and Cry2 each resulted in similar phenotypes in all three models, consistent with previous studies. However, we observed cell type-specific knockdown phenotypes for the Period and Rev-Erb families of clock genes. In particular, Per1 and Per2, which have strong behavioral effects in knockout mice, appear to play different roles in regulating period length and amplitude in these peripheral systems. Per3, which has relatively modest behavioral effects in knockout mice, substantially affects period length in the three cellular models and in dissociated SCN neurons. In summary, this study establishes new cell-autonomous clock models that are of particular relevance to metabolism and suitable for screening for clock modifiers, and reveals previously under-appreciated cell type-specific functions of clock genes.

  2. Diabetic human adipose tissue-derived mesenchymal stem cells fail to differentiate in functional adipocytes.

    PubMed

    Barbagallo, Ignazio; Li Volti, Giovanni; Galvano, Fabio; Tettamanti, Guido; Pluchinotta, Francesca R; Bergante, Sonia; Vanella, Luca

    2016-11-30

    Adipose tissue dysfunction represents a hallmark of diabetic patients and is a consequence of the altered homeostasis of this tissue. Mesenchymal stem cells (MSCs) and their differentiation into adipocytes contribute significantly in maintaining the mass and function of adult adipose tissue. The aim of this study was to evaluate the differentiation of MSCs from patients suffering type 2 diabetes (dASC) and how such process results in hyperplasia or rather a stop of adipocyte turnover resulting in hypertrophy of mature adipocytes. Our results showed that gene profile of all adipogenic markers is not expressed in diabetic cells after differentiation indicating that diabetic cells fail to differentiate into adipocytes. Interestingly, delta like 1, peroxisome proliferator-activated receptor alpha, and interleukin 1β were upregulated whereas Sirtuin 1 and insulin receptor substrate 1 gene expression were found downregulated in dASC compared to cells obtained from healthy subjects. Taken together our data indicate that dASC lose their ability to differentiate into mature and functional adipocytes. In conclusion, our in vitro study is the first to suggest that diabetic patients might develop obesity through a hypertrophy of existing mature adipocytes due to failure turnover of adipose tissue.

  3. Stress of endoplasmic reticulum modulates differentiation and lipogenesis of human adipocytes

    SciTech Connect

    Koc, Michal; Mayerová, Veronika; Kračmerová, Jana; Mairal, Aline; Mališová, Lucia; Štich, Vladimír; Langin, Dominique; Rossmeislová, Lenka

    2015-05-08

    Background: Adipocytes are cells specialized for storage of neutral lipids. This storage capacity is dependent on lipogenesis and is diminished in obesity. The reason for the decline in lipogenic activity of adipocytes in obesity remains unknown. Recent data show that lipogenesis in liver is regulated by pathways initiated by endoplasmic reticulum stress (ERS). Thus, we aimed at investigating the effect of ERS on lipogenesis in adipose cells. Methods: Preadipocytes were isolated from subcutaneous abdominal adipose tissue from obese volunteers and in vitro differentiated into adipocytes. ERS was induced pharmacologically by thapsigargin (TG) or tunicamycin (TM). Activation of Unfolded Protein Response pathway (UPR) was monitored on the level of eIF2α phosphorylation and mRNA expression of downstream targets of UPR sensors. Adipogenic and lipogenic capacity was evaluated by Oil Red O staining, measurement of incorporation of radio-labelled glucose or acetic acid into lipids and mRNA analysis of adipogenic/lipogenic markers. Results: Exposition of adipocytes to high doses of TG (100 nM) and TM (1 μg/ml) for 1–24 h enhanced expression of several UPR markers (HSPA5, EDEM1, ATF4, XBP1s) and phosphorylation of eIF2α. This acute ERS substantially inhibited expression of lipogenic genes (DGAT2, FASN, SCD1) and glucose incorporation into lipids. Moreover, chronic exposure of preadipocytes to low dose of TG (2.5 nM) during the early phases of adipogenic conversion of preadipocytes impaired both, lipogenesis and adipogenesis. On the other hand, chronic low ERS had no apparent effect on lipogenesis in mature adipocytes. Conclusions: Acute ERS weakened a capacity of mature adipocytes to store lipids and chronic ERS diminished adipogenic potential of preadipocytes. - Highlights: • High intensity ERS inhibits lipogenic capacity of adipocytes. • ERS impairs adipogenesis when present in early stages of adipogenesis. • Lipogenesis in mature adipocytes is not

  4. Differentiation and characterization of human facial subcutaneous adipocytes

    PubMed Central

    Chon, Su-Hyoun; Pappas, Apostolos

    2014-01-01

    Aging is associated with the loss of facial subcutaneous fat and with increased abdominal subcutaneous fat. Site specific differences in adipocyte phenotype and/or gene expression may play a role in these age-related changes. In this study, we isolated and characterized human facial preadipocytes and investigated distinct metabolic properties such as a differentiation pattern in relation to abdominal preadipocytes. Subcutaneous preadipocytes were isolated from human facial and abdominal skin and cultured in the presence of differentiation factors including rosiglitazone, a known peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist, isobutyl-methyl xanthine (IBMX) and insulin. Differentiation was characterized microscopically and by quantitative real-time PCR. Unexpected superior adipogenic capacity of facial preadipocytes was observed; more facial preadipocytes differentiated in response to rosiglitazone than abdominal preadipocytes and facial preadipocytes retained their ability to differentiate through passage 11 compared with passage 5 for abdominal preadipocytes. Experiments confirmed a reduced lipolysis response in facial versus abdominal adipocytes after exposure to isoproterenol, which was consistent with the reduced β2-adrenergic receptor expression by 60% in the facial cells. The expression of other lipid metabolic gene markers was similar in both facial and abdominal adipocytes with the exception of β3-adrenergic receptor which was only found in abdominal adipose tissue. Gene profiling, by microarray analysis, identified that several HOX genes are robustly reduced in facial adipocytes compared to abdominal adipocytes, suggesting different characteristics between the 2 fat depots. These differences may have implications for development of treatments for facial fat loss during aging. PMID:26167398

  5. Adipocyte induced arterial calcification is prevented with sodium thiosulfate

    SciTech Connect

    Chen, Neal X.; O’Neill, Kalisha; Akl, Nader Kassis; Moe, Sharon M.

    2014-06-20

    Highlights: • High phosphorus can induce calcification of adipocytes, even when fully differentiated. • Adipocytes can induce vascular calcification in an autocrine manner. • Sodium thiosulfate inhibits adipocyte calcification. - Abstract: Background: Calcification can occur in fat in multiple clinical conditions including in the dermis, breasts and in the abdomen in calciphylaxis. All of these are more common in patients with advanced kidney disease. Clinically, hyperphosphatemia and obesity are risk factors. Thus we tested the hypothesis that adipocytes can calcify in the presence of elevated phosphorus and/or that adipocytes exposed to phosphorus can induce vascular smooth muscle cell (VSMC) calcification. Methods: 3T3-L1 preadipocytes were induced into mature adipocytes and then treated with media containing high phosphorus. Calcification was assessed biochemically and PCR performed to determine the expression of genes for osteoblast and adipocyte differentiation. Adipocytes were also co-cultured with bovine VSMC to determine paracrine effects, and the efficacy of sodium thiosulfate was determined. Results: The results demonstrated that high phosphorus induced the calcification of differentiated adipocytes with increased expression of osteopontin, the osteoblast transcription factor Runx2 and decreased expression of adipocyte transcription factors peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding protein α (CEBPα), indicating that high phosphorus led to a phenotypic switch of adipocytes to an osteoblast like phenotype. Sodium thiosulfate, dose dependently decreased adipocyte calcification and inhibited adipocyte induced increase of VSMC calcification. Co-culture studies demonstrated that adipocytes facilitated VSMC calcification partially mediated by changes of secretion of leptin and vascular endothelial growth factor (VEGF) from adipocytes. Conclusion: High phosphorus induced calcification of mature adipocytes, and

  6. QUANTIFICATION OF TRANSGENIC PLANT MARKER GENE PERSISTENCE IN THE FIELD

    EPA Science Inventory

    Methods were developed to monitor persistence of genomic DNA in decaying plants in the field. As a model, we used recombinant neomycin phosphotransferase II (rNPT-II) marker genes present in genetically engineered plants. Polymerase chain reaction (PCR) primers were designed, com...

  7. Intermediate filament genes as differentiation markers in the leech Helobdella.

    PubMed

    Kuo, Dian-Han; Weisblat, David A

    2011-10-01

    The intermediate filament (IF) cytoskeleton is a general feature of differentiated cells. Its molecular components, IF proteins, constitute a large family including the evolutionarily conserved nuclear lamins and the more diverse collection of cytoplasmic intermediate filament (CIF) proteins. In vertebrates, genes encoding CIFs exhibit cell/tissue type-specific expression profiles and are thus useful as differentiation markers. The expression of invertebrate CIFs, however, is not well documented. Here, we report a whole-genome survey of IF genes and their developmental expression patterns in the leech Helobdella, a lophotrochozoan model for developmental biology research. We found that, as in vertebrates, each of the leech CIF genes is expressed in a specific set of cell/tissue types. This allows us to detect earliest points of differentiation for multiple cell types in leech development and to use CIFs as molecular markers for studying cell fate specification in leech embryos. In addition, to determine the feasibility of using CIFs as universal metazoan differentiation markers, we examined phylogenetic relationships of IF genes from various species. Our results suggest that CIFs, and thus their cell/tissue-specific expression patterns, have expanded several times independently during metazoan evolution. Moreover, comparing the expression patterns of CIF orthologs between two leech species suggests that rapid evolutionary changes in the cell or tissue specificity of CIFs have occurred among leeches. Hence, CIFs are not suitable for identifying cell or tissue homology except among very closely related species, but they are nevertheless useful species-specific differentiation markers.

  8. FIZZ1-induced myofibroblast transdifferentiation from adipocytes and its potential role in dermal fibrosis and lipoatrophy.

    PubMed

    Martins, Vanessa; Gonzalez De Los Santos, Francina; Wu, Zhe; Capelozzi, Vera; Phan, Sem H; Liu, Tianju

    2015-10-01

    Subcutaneous lipoatrophy characteristically accompanies dermal fibrosis with de novo emergence of myofibroblasts such as in systemic sclerosis or scleroderma. Recently dermal adipocytes were shown to have the capacity to differentiate to myofibroblasts in an animal model. Transforming growth factor β can induce this phenomenon in vitro; however its in vivo significance is unclear. Because found in inflammatory zone 1 (FIZZ1) is an inducer of myofibroblast differentiation but an inhibitor of adipocyte differentiation, we investigated its potential role in adipocyte transdifferentiation to myofibroblast in dermal fibrosis. FIZZ1 caused significant and rapid suppression of the expression of fatty acid binding protein 4 and peroxisome proliferator-activated receptor-γ in adipocytes, consistent with dedifferentiation with loss of lipid and Oil Red O staining. The suppression was accompanied subsequently with stimulation of α-smooth muscle actin and type I collagen expression, indicative of myofibroblast differentiation. In vivo FIZZ1 expression was significantly elevated in the murine bleomycin-induced dermal fibrosis model, which was associated with significant reduction in adipocyte marker gene expression and subcutaneous lipoatrophy. Finally, FIZZ1 knockout mice exhibited significantly reduced bleomycin-induced dermal fibrosis with greater preservation of the subcutaneous fat than wild-type mice. These findings suggested that the FIZZ1 induction of adipocyte transdifferentiation to myofibroblast might be a key pathogenic mechanism for the accumulation of myofibroblasts in dermal fibrosis.

  9. From genes to markers: exploiting gene sequence information to develop tools for plant breeding.

    PubMed

    Garcia, Melissa; Mather, Diane E

    2014-01-01

    Once the sequence is known for a gene of interest, it is usually possible to design markers to detect polymorphisms within the gene. Such markers can be particularly useful in plant breeding, especially if they detect the causal polymorphism within the gene and are diagnostic of the phenotype. In this chapter, we (1) discuss how gene sequences are obtained and aligned and how polymorphic sites can be identified or predicted; (2) explain the principles of PCR primer design and PCR amplification and provide guidelines for their application in the design and testing of markers; (3) discuss detection methods for presence/absence (dominant) polymorphisms, length polymorphisms and single nucleotide polymorphisms (SNPs); and (4) outline some of the factors that affect the utility of markers in plant breeding and explain how markers can be evaluated (validated) for use in plant breeding.

  10. Quantitative PCR for glucose transporter and tristetraprolin family gene expression in cultured mouse adipocytes and macrophages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantitative real-time PCR (qPCR) such as TaqMan and SYBR Green qPCR are widely used for gene expression analysis. The drawbacks of SYBR Green assay are that the dye binds to any double-stranded DNA which can generate falsepositive signals and that the length of the amplicon affects the intensity of...

  11. Cooperation between HMGA1 and HIF-1 Contributes to Hypoxia-Induced VEGF and Visfatin Gene Expression in 3T3-L1 Adipocytes

    PubMed Central

    Messineo, Sebastiano; Laria, Anna Elisa; Arcidiacono, Biagio; Chiefari, Eusebio; Luque Huertas, Raúl M.; Foti, Daniela P.; Brunetti, Antonio

    2016-01-01

    The architectural transcription factor high-mobility group AT-hook 1 (HMGA1) is a chromatin regulator with implications in several biological processes, including tumorigenesis, inflammation, and metabolism. Previous studies have indicated a role for this factor in promoting the early stages of adipogenesis, while inhibiting adipocyte terminal differentiation, and decreasing fat mass. It has been demonstrated that hypoxia – through the hypoxia-inducible factor 1 (HIF-1) – plays a major role in triggering changes in the adipose tissue of the obese, leading to inhibition of adipocyte differentiation, adipose cell dysfunction, inflammation, insulin resistance, and type 2 diabetes. To examine the possible cooperation between HMGA1 and HIF-1, herein, we investigated the role of HMGA1 in the regulation of Visfatin and VEGF, two genes normally expressed in adipose cells, which are both responsive to hypoxia. We demonstrated that HMGA1 enhanced Visfatin and VEGF gene expression in human embryonic kidney (HEK) 293 cells in hypoxic conditions, whereas HMGA1 knockdown in differentiated 3T3-L1 adipocytes reduced these effects. Reporter gene analysis showed that Visfatin and VEGF transcriptional activity was increased by the addition of either HMGA1 or HIF-1 and even further by the combination of both factors. As demonstrated by chromatin immunoprecipitation in intact cells, HMGA1 directly interacted with the VEGF gene, and this interaction was enhanced in hypoxic conditions. Furthermore, as indicated by co-immunoprecipitation studies, HMGA1 and HIF-1 physically interacted with each other, supporting the notion that this association may corroborate a functional link between these factors. Therefore, our findings provide evidence for molecular cross-talk between HMGA1 and HIF-1, and this may be important for elucidating protein and gene networks relevant to obesity. PMID:27445976

  12. Monitoring aromatic hydrocarbon biodegradation by functional marker genes.

    PubMed

    Nyyssönen, Mari; Piskonen, Reetta; Itävaara, Merja

    2008-07-01

    The development of biological treatment technologies for contaminated environments requires tools for obtaining direct information about the biodegradation of specific contaminants. The potential of functional gene array analysis to monitor changes in the amount of functional marker genes as indicators of contaminant biodegradation was investigated. A prototype functional gene array was developed for targeting key functions in the biodegradation of naphthalene, toluene and xylenes. Internal standard probe based normalization was introduced to facilitate comparison across multiple samples. Coupled with one-colour hybridization, the signal normalization improved the consistency among replicate hybridizations resulting in better discrimination for the differences in the amount of target DNA. During the naphthalene biodegradation in a PAH-contaminated soil slurry microcosm, the normalized hybridization signals in naphthalene catabolic gene probes were in good agreement with the amount of naphthalene-degradation genes and the production of 14CO2. Gene arrays provide efficient means for monitoring of contaminant biodegradation in the environment.

  13. Identification and Characterization of Renal Cell Carcinoma Gene Markers

    PubMed Central

    Dalgin, Gul S.; Holloway, Dustin T.; Liou, Louis S.; DeLisi, Charles

    2007-01-01

    Microarray gene expression profiling has been used to distinguish histological subtypes of renal cell carcinoma (RCC), and consequently to identify specific tumor markers. The analytical procedures currently in use find sets of genes whose average differential expression across the two categories differ significantly. In general each of the markers thus identified does not distinguish tumor from normal with 100% accuracy, although the group as a whole might be able to do so. For the purpose of developing a widely used economically viable diagnostic signature, however, large groups of genes are not likely to be useful. Here we use two different methods, one a support vector machine variant, and the other an exhaustive search, to reanalyze data previously generated in our Lab (Lenburg et al. 2003). We identify 158 genes, each having an expression level that is higher (lower) in every tumor sample than in any normal sample, and each having a minimum differential expression across the two categories at a significance of 0.01. The set is highly enriched in cancer related genes (p = 1.6 × 10−12), containing 43 genes previously associated with either RCC or other types of cancer. Many of the biomarkers appear to be associated with the central alterations known to be required for cancer transformation. These include the oncogenes JAZF1, AXL, ABL2; tumor suppressors RASD1, PTPRO, TFAP2A, CDKN1C; and genes involved in proteolysis or cell-adhesion such as WASF2, and PAPPA. PMID:19455236

  14. Betaine reduces the expression of inflammatory adipokines caused by hypoxia in human adipocytes.

    PubMed

    Olli, K; Lahtinen, S; Rautonen, N; Tiihonen, K

    2013-01-14

    Obesity is characterised by a state of chronic low-grade inflammation and the elevated circulating and tissue levels of inflammatory markers, including inflammation-related adipokines, released from white adipose tissue. The expression and release of these adipokines generally rises as the adipose tissue expands and hypoxic conditions start to develop within the tissue. Here, the effect of betaine, a trimethylglycine having a biological role as an osmolyte and a methyl donor, on the expression of inflammation-related markers was tested in human adipocytes under hypoxia. Differentiated adipocytes were cultivated under low (1 %) oxygen tension for 8-20 h. The expression of different adipokines, including IL-6, leptin, PPARγ, TNF-α and adiponectin, was measured by quantitative PCR by determining the relative mRNA level from the adipocytes. Hypoxia, in general, led to a decrease in the expression of PPARγ mRNA in human adipocytes, whereas the expression levels of leptin and IL-6 mRNA were substantially increased by hypoxia. The cultivation of adipocytes under hypoxia also led to a reduction in the expression of TNF-α mRNA. The results showed that hypoxia increased the relative quantification of leptin gene transcription, and that betaine (250 μmol/l) reduced this effect, caused by low oxygen conditions. Under hypoxia, betaine also reduced the mRNA level of the pro-inflammatory markers IL-6 and TNF-α. These results demonstrate that the extensive changes in the expression of inflammation-related adipokines in human adipocytes caused by hypoxia can be diminished by the presence of physiologically relevant concentrations of betaine.

  15. Marker gene tethering by nucleoporins affects gene expression in plants.

    PubMed

    Smith, Sarah; Galinha, Carla; Desset, Sophie; Tolmie, Frances; Evans, David; Tatout, Christophe; Graumann, Katja

    2015-01-01

    In non-plant systems, chromatin association with the nuclear periphery affects gene expression, where interactions with nuclear envelope proteins can repress and interactions with nucleoporins can enhance transcription. In plants, both hetero- and euchromatin can localize at the nuclear periphery, but the effect of proximity to the nuclear periphery on gene expression remains largely unknown. This study explores the putative function of Seh1 and Nup50a nucleoporins on gene expression by using the Lac Operator / Lac Repressor (LacI-LacO) system adapted to Arabidopsis thaliana. We used LacO fused to the luciferase reporter gene (LacO:Luc) to investigate whether binding of the LacO:Luc transgene to nucleoporin:LacI protein fusions alters luciferase expression. Two separate nucleoporin-LacI-YFP fusions were introduced into single insert, homozygous LacO:Luc Arabidopsis plants. Homozygous plants carrying LacO:Luc and a single insert of either Seh1-LacI-YFP or Nup50a-LacI-YFP were tested for luciferase activity and compared to plants containing LacO:Luc only. Seh1-LacI-YFP increased, while Nup50a-LacI-YFP decreased luciferase activity. Seh1-LacI-YFP accumulated at the nuclear periphery as expected, while Nup50a-LacI-YFP was nucleoplasmic and was not selected for further study. Protein and RNA levels of luciferase were quantified by western blotting and RT-qPCR, respectively. Increased luciferase activity in LacO:Luc+Seh1-LacI-YFP plants was correlated with increased luciferase protein and RNA levels. This change of luciferase expression was abolished by disruption of LacI-LacO binding by treating with IPTG in young seedlings, rosette leaves and inflorescences. This study suggests that association with the nuclear periphery is involved in the regulation of gene expression in plants.

  16. Production of marker-free disease-resistant potato using isopentenyl transferase gene as a positive selection marker.

    PubMed

    Khan, Raham Sher; Ntui, Valentine Otang; Chin, Dong Poh; Nakamura, Ikuo; Mii, Masahiro

    2011-04-01

    The use of antibiotic or herbicide resistant genes as selection markers for production of transgenic plants and their continuous presence in the final transgenics has been a serious problem for their public acceptance and commercialization. MAT (multi-auto-transformation) vector system has been one of the different strategies to excise the selection marker gene and produce marker-free transgenic plants. In the present study, ipt (isopentenyl transferase) gene was used as a selection marker gene. A chitinase gene, ChiC (isolated from Streptomyces griseus strain HUT 6037) was used as a gene of interest. ChiC gene was cloned from the binary vector, pEKH1 to an ipt-type MAT vector, pMAT21 by gateway cloning and transferred to Agrobacterium tumefaciens strain EHA105. The infected tuber discs of potato were cultured on hormone- and antibiotic-free MS medium. Seven of the 35 explants infected with the pMAT21/ChiC produced shoots. The same antibiotic- and hormones-free MS medium was used in subcultures of the shoots (ipt like and normal shoots). Molecular analyses of genomic DNA from transgenic plants confirmed the integration of gene of interest and excision of the selection marker in 3 of the 7 clones. Expression of ChiC gene was confirmed by Northern blot and western blot analyses. Disease-resistant assay of the marker-free transgenic, in vitro and greenhouse-grown plants exhibited enhanced resistance against Alternaria solani (early blight), Botrytis cinerea (gray mold) and Fusarium oxysporum (Fusarium wilt). From these results it could be concluded that ipt gene can be used as a selection marker to produce marker-free disease-resistant transgenic potato plants on PGR- and antibiotic-free MS medium.

  17. Prevention of diet-induced obesity by safflower oil: insights at the levels of PPARalpha, orexin, and ghrelin gene expression of adipocytes in mice.

    PubMed

    Zhang, Zhong; Li, Qiang; Liu, Fengchen; Sun, Yuqian; Zhang, Jinchao

    2010-03-15

    The aim of this study was to investigate the prevention of diet-induced obesity by a high safflower oil diet and adipocytic gene expression in mice. Forty 3-week-old C57BL/6 mice were randomly divided into three groups: control group (CON, 5% lard + 5% safflower oil), high lard group (LAR, 45% lard + 5% safflower oil), and high safflower oil group (SAF, 45% safflower oil + 5% lard). After 10 weeks, 10 mice of the LAR group were switched to high safflower oil diet (LAR-SAF). Ten weeks later, glucose tolerance tests were performed by intraperitoneal injection of glucose. Circulating levels of lipid and insulin were measured and white adipose tissues were taken for gene chip and reverse transcriptase-polymerase chain reaction analysis. The LAR group showed higher body weight, adiposity index, insulin, and lipids than the CON group (P<0.05). The body weight in the LAR-SAF group decreased after dietary reversal. The plasma biochemical profiles decreased in the LAR-SAF and SAF groups (P<0.05) compared with those of the LAR group. The blood glucose level of the LAR-SAF group was reduced during intraperitoneal glucose tolerance test compared with that of the LAR group. The LAR-SAF group had lower levels of Orexin and Ghrelin gene expression, whereas the level of PPARalpha gene expression was significantly enhanced compared with that of the LAR group. So, the SAF diet can alter adipocytic adiposity-related gene expression and result in effective amelioration of diet-induced obesity.

  18. Sida rhomboidea. Roxb leaf extract down-regulates expression of PPARγ2 and leptin genes in high fat diet fed C57BL/6J Mice and retards in vitro 3T3L1 pre-adipocyte differentiation.

    PubMed

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Ramani, Umed V; Devkar, Ranjitsinh V; Ramachandran, A V

    2011-01-01

    Sida rhomboidea. Roxb leaf extract (SRLE) is being used by the populace of North-East India to alleviate symptoms of diabetes and obesity. We have previously reported its hypolipidemic and anti-diabetic properties. In this study, we report the effect of SRLE on (i) in vivo modulation of genes controlling high fat diet (HFD) induced obesity and (ii) in vitro 3T3L1 pre-adipocyte differentiation and leptin release. Supplementation with SRLE significantly prevented HFD induced increment in bodyweight, plasma lipids and leptin, visceral adiposity and adipocyte hypertrophy. Also, SRLE supplementation reduced food intake, down regulated PPARγ2, SREBP1c, FAS and LEP expressions and up-regulated CPT-1 in epididymal adipose tissue compared to obese mice. In vitro adipogenesis of 3T3L1 pre-adipocytes was significantly retarded in the presence of SRLE extract. Also decreased triglyceride accumulation, leptin release and glyceraldehyde-3-Phosphate dehydrogenase activity along with higher glycerol release without significant alteration of viability of 3T3L1 pre-adipocytes, was recorded. Our findings suggest that prevention of HFD induced visceral adiposity is primarily by down regulation of PPARγ2 and leptin gene expression coupled with attenuation of food intake in C57BL/6J mice. SRLE induced prevention of pre-adipocytes differentiation, and leptin release further substantiated these findings and scientifically validates the potential application of SRLE as a therapeutic agent against obesity.

  19. Inhibition of mitotic clonal expansion mediates fisetin-exerted prevention of adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Lee, Youngyi; Bae, Eun Ju

    2013-11-01

    Adipocytes are the key player in adipose tissue inflammation and subsequent systemic insulin resistance and its development involves complex process of proliferation and differentiation of preadipocytes. Fistein, a polyphenol flavonoid, is known to exert anti-inflammatory, anti-carcinogenic and anti-diabetic effects. In this study, we aimed to investigate the effect of fisetin on adipocyte proliferation and differentiation in 3T3-L1 preadipocyte cell line and its mechanism of action. We found that fisetin inhibits adipocyte differentiation in a concentration dependent manner, which were evidenced by Oil Red O staining and the protein expression of mature adipocyte marker genes fatty acid synthase and peroxisome proliferator-activated receptor γ. Moreover, the proliferation of preadipocytes was also markedly suppressed by treatment of fisetin for 24 and 48 h in the differentiation medium. We also found that fisetin inhibition of adipocyte differentiation was largely due to the effect on mitotic clonal expansion. Fisetin suppression of preadipocyte proliferation at early stage of differentiation was accompanied by the changes of expression of a series of cell cycle regulatory proteins. Altogether, our results suggest that the inhibition of adipocyte differentiation by fisetin may be at least in part mediated by cell cycle arrest during adipogenesis.

  20. User-friendly markers linked to Fusarium wilt race 1 resistance Fw gene for marker-assisted selection in pea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt is one of the most widespread diseases of pea. Resistance to Fusarium wilt race 1 was reported as a single gene, Fw, located on linkage group III. The previously reported AFLP and RAPD markers linked to Fw have limited usage in marker-assisted selection due to their map distance and l...

  1. Gene markers in brain tumors: what the epileptologist should know.

    PubMed

    Ostrom, Quinn; Cohen, Mark L; Ondracek, Annie; Sloan, Andrew; Barnholtz-Sloan, Jill

    2013-12-01

    Gene markers or biomarkers can be used for diagnostic or prognostic purposes for all different types of complex disease, including brain tumors. Prognostic markers can be useful to explain differences not only in overall survival but also in response to treatment and for development of targeted therapies. Multiple genes with specific types of alterations have now been identified that are associated with improved response to chemotherapy and radiotherapy, such as O(6)-methylguanine methyltranferase (MGMT) or loss of chromosomes 1p and/or 19q. Other alterations have been identified that are associated with improved overall survival, such as mutations in isocitrate dehydrogenase 1 (IDH1) and/or isocitrate dehydrogenase 2 (IDH2) or having the glioma CpG island DNA methylator phenotype (G-CIMP). There are many biomarkers that may have relevance in brain tumor-associated epilepsy that do not respond to treatment. Given the rapidly changing landscape of high throughput "omics" technologies, there is significant potential for gaining further knowledge via integration of multiple different types of high genome-wide data. This knowledge can be translated into improved therapies and clinical outcomes for patients with brain tumors.

  2. Hypertension genes are genetic markers for insulin sensitivity and resistance.

    PubMed

    Guo, Xiuqing; Cheng, Suzanne; Taylor, Kent D; Cui, Jinrui; Hughes, Randall; Quiñones, Manuel J; Bulnes-Enriquez, Isabel; De la Rosa, Roxana; Aurea, George; Yang, Huiying; Hsueh, Willa; Rotter, Jerome I

    2005-04-01

    Insulin resistance is a determinant of blood pressure variation and risk factor for hypertension. Because insulin resistance and blood pressure cosegregate in Mexican American families, we thus investigated the association between variations in 9 previously reported hypertension genes (ACE, AGT, AGTRI, ADDI, NPPA, ADDRB2, SCNN1A, GNB3, and NOS3) and insulin resistance. Families were ascertained via a coronary artery disease proband in the Mexican American Coronary Artery Disease Project. Individuals from 100 Mexican American families (n=656) were genotyped for 14 polymorphisms in the 9 genes and all adult offspring and offspring spouses were phenotyped for insulin sensitivity by hyperinsulinemic euglycemic clamp (n=449). AGT M235T and NOS3 A(-922)G and E298D polymorphisms were significantly associated with insulin sensitivity (P=0.018, 0.036, 0.039) but were not significant after adjusting for body mass index. ADD1 G460W was associated with insulin sensitivity only after adjusting for body mass index. The NPPA T2238C and SCNN1A A663T were associated with decreased fasting insulin levels after adjusting for body mass index (P=0.015 and 0.028). In conclusion, AGT, NOS3, NPPA, ADRB2, ADD1, and SCNN1A may well be genetic markers for insulin resistance, and adiposity was a potential modifier for only some gene/trait combinations. Our data support the hypothesis that genes in the blood pressure pathway may play a role in insulin resistance in Mexican Americans.

  3. Angiopoietin-like 2, a circadian gene, improves type 2 diabetes through potentiation of insulin sensitivity in mice adipocytes.

    PubMed

    Kitazawa, Masashi; Nagano, Mamoru; Masumoto, Koh-Hei; Shigeyoshi, Yasufumi; Natsume, Tohru; Hashimoto, Seiichi

    2011-07-01

    Angiopoietin-like (Angptl)2, a member of the Angptl protein family, is predominantly secreted from adipose tissue and the heart. Here, we demonstrate that the expression of Angptl2 in epididymal adipose tissue of C57BL/6J mice shows pulsatility and circadian rhythmicity and that the rhythmicity was disrupted in high-fat-fed and leptin receptor-deficient diabetic db/db mice with insulin resistance. To investigate whether the reduction in Angptl2 expression was related to the progression of diabetes, we treated db/db mice with recombinant Angptl2 for 4 wk during the peak period of Angptl2 expression in C57BL/6J mice. Angptl2-treated mice showed decreases in plasma glucose, insulin, triglyceride, and fatty acid levels and an increase in plasma adiponectin, a therapeutic regulator of insulin resistance, leading to improvements in glucose tolerance. In cultured adipocytes, recombinant Angptl2 increased adiponectin expression and stimulated insulin sensitivity partially by reducing the levels of tribbles homolog 3, a specific Akt kinase inhibitory protein. Conversely, Angptl2 small interfering RNA reduced adiponectin expression, resulting in insulin resistance. In preadipocytes, treatment with Angptl2 small interfering RNA inhibited differentiation to adipocytes and reduced adiponectin expression. Taken together, our results suggest that replenishment of Angptl2 stimulates insulin sensitivity and improves the type 2 diabetic state.

  4. RIP140 Represses the “Brown-in-White” Adipocyte Program Including a Futile Cycle of Triacyclglycerol Breakdown and Synthesis

    PubMed Central

    Kiskinis, Evangelos; Chatzeli, Lemonia; Curry, Edward; Kaforou, Myrsini; Frontini, Andrea; Cinti, Saverio; Montana, Giovanni; Parker, Malcolm G.

    2014-01-01

    Receptor-interacting protein 140 (RIP140) is a corepressor of nuclear receptors that is highly expressed in adipose tissues. We investigated the role of RIP140 in conditionally immortal preadipocyte cell lines prepared from white or brown fat depots. In white adipocytes, a large set of brown fat-associated genes was up-regulated in the absence of RIP140. In contrast, a relatively minor role can be ascribed to RIP140 in the control of basal gene expression in differentiated brown adipocytes because significant changes were observed only in Ptgds and Fabp3. The minor role of RIP140 in brown adipocytes correlates with the similar histology and uncoupling protein 1 and CIDEA staining in knockout compared with wild-type brown adipose tissue (BAT). In contrast, RIP140 knockout sc white adipose tissue (WAT) shows increased numbers of multilocular adipocytes with elevated staining for uncoupling protein 1 and CIDEA. Furthermore in a white adipocyte cell line, the markers of BRITE adipocytes, Tbx1, CD137, Tmem26, Cited1, and Epsti1 were repressed in the presence of RIP140 as was Prdm16. Microarray analysis of wild-type and RIP140-knockout white fat revealed elevated expression of genes associated with cold-induced expression or high expression in BAT. A set of genes associated with a futile cycle of triacylglycerol breakdown and resynthesis and functional assays revealed that glycerol kinase and glycerol-3-phosphate dehydrogenase activity as well as [3H]glycerol incorporation were elevated in the absence of RIP140. Thus, RIP140 blocks the BRITE program in WAT, preventing the expression of brown fat genes and inhibiting a triacylglycerol futile cycle, with important implications for energy homeostasis. PMID:24479876

  5. RIP140 represses the "brown-in-white" adipocyte program including a futile cycle of triacylglycerol breakdown and synthesis.

    PubMed

    Kiskinis, Evangelos; Chatzeli, Lemonia; Curry, Edward; Kaforou, Myrsini; Frontini, Andrea; Cinti, Saverio; Montana, Giovanni; Parker, Malcolm G; Christian, Mark

    2014-03-01

    Receptor-interacting protein 140 (RIP140) is a corepressor of nuclear receptors that is highly expressed in adipose tissues. We investigated the role of RIP140 in conditionally immortal preadipocyte cell lines prepared from white or brown fat depots. In white adipocytes, a large set of brown fat-associated genes was up-regulated in the absence of RIP140. In contrast, a relatively minor role can be ascribed to RIP140 in the control of basal gene expression in differentiated brown adipocytes because significant changes were observed only in Ptgds and Fabp3. The minor role of RIP140 in brown adipocytes correlates with the similar histology and uncoupling protein 1 and CIDEA staining in knockout compared with wild-type brown adipose tissue (BAT). In contrast, RIP140 knockout sc white adipose tissue (WAT) shows increased numbers of multilocular adipocytes with elevated staining for uncoupling protein 1 and CIDEA. Furthermore in a white adipocyte cell line, the markers of BRITE adipocytes, Tbx1, CD137, Tmem26, Cited1, and Epsti1 were repressed in the presence of RIP140 as was Prdm16. Microarray analysis of wild-type and RIP140-knockout white fat revealed elevated expression of genes associated with cold-induced expression or high expression in BAT. A set of genes associated with a futile cycle of triacylglycerol breakdown and resynthesis and functional assays revealed that glycerol kinase and glycerol-3-phosphate dehydrogenase activity as well as [(3)H]glycerol incorporation were elevated in the absence of RIP140. Thus, RIP140 blocks the BRITE program in WAT, preventing the expression of brown fat genes and inhibiting a triacylglycerol futile cycle, with important implications for energy homeostasis.

  6. Functional clustering and lineage markers: insights into cellular differentiation and gene function from large-scale microarray studies of purified primary cell populations.

    PubMed

    Hume, David A; Summers, Kim M; Raza, Sobia; Baillie, J Kenneth; Freeman, Thomas C

    2010-06-01

    Very large microarray datasets showing gene expression across multiple tissues and cell populations provide a window on the transcriptional networks that underpin the differences in functional activity between biological systems. Clusters of co-expressed genes provide lineage markers, candidate regulators of cell function and, by applying the principle of guilt by association, candidate functions for genes of currently unknown function. We have analysed a dataset comprising pure cell populations from hemopoietic and non-hemopoietic cell types (http://biogps.gnf.org). Using a novel network visualisation and clustering approach, we demonstrate that it is possible to identify very tight expression signatures associated specifically with embryonic stem cells, mesenchymal cells and hematopoietic lineages. Selected examples validate the prediction that gene function can be inferred by co-expression. One expression cluster was enriched in phagocytes, which, alongside endosome-lysosome constituents, contains genes that may make up a 'pathway' for phagocyte differentiation. Promoters of these genes are enriched for binding sites for the ETS/PU.1 and MITF families. Another cluster was associated with the production of a specific extracellular matrix, with high levels of gene expression shared by cells of mesenchymal origin (fibroblasts, adipocytes, osteoblasts and myoblasts). We discuss the limitations placed upon such data by the presence of alternative promoters with distinct tissue specificity within many protein-coding genes.

  7. Isolation and Culture of Pig Spermatogonial Stem Cells and Their in Vitro Differentiation into Neuron-Like Cells and Adipocytes.

    PubMed

    Wang, Xiaoyan; Chen, Tingfeng; Zhang, Yani; Li, Bichun; Xu, Qi; Song, Chengyi

    2015-11-04

    Spermatogonial stem cells (SSCs) renew themselves throughout the life of an organism and also differentiate into sperm in the adult. They are multipopent and therefore, can be induced to differentiate into many cells types in vitro. SSCs from pigs, considered an ideal animal model, are used in studies of male infertility, regenerative medicine, and preparation of transgenic animals. Here, we report on a culture system for porcine SSCs and the differentiation of these cells into neuron-like cells and adipocytes. SSCs and Sertoli cells were isolated from neonatal piglet testis by differential adhesion and SSCs were cultured on a feeder layer of Sertoli cells. Third-generation SSCs were induced to differentiate into neuron-like cells by addition of retinoic acid, β-mercaptoethanol, and 3-isobutyl-1-methylxanthine (IBMX) to the induction media and into adipocytes by the addition of hexadecadrol, insulin, and IBMX to the induction media. The differentiated cells were characterized by biochemical staining, qRT-PCR, and immunocytochemistry. The cells were positive for SSC markers, including alkaline phosphatase and SSC-specific genes, consistent with the cells being undifferentiated. The isolated SSCs survived on the Sertoli cells for 15 generations. Karyotyping confirmed that the chromosomal number of the SSCs were normal for pig (2n = 38, n = 19). Pig SSCs were successfully induced into neuron-like cells eight days after induction and into adipocytes 22 days after induction as determined by biochemical and immunocytochemical staining. qPCR results also support this conclusion. The nervous tissue markers genes, Nestin and β-tubulin, were expressed in the neuron-like cells and the adipocyte marker genes, PPARγ and C/EBPα, were expressed in the adipocytes.

  8. Considerations For Optimizing Microbiome Analysis Using a Marker Gene

    PubMed Central

    de la Cuesta-Zuluaga, Jacobo; Escobar, Juan S.

    2016-01-01

    Next-generation sequencing technologies have found a widespread use in the study of host–microbe interactions due to the increase in their throughput and their ever-decreasing costs. The analysis of human-associated microbial communities using a marker gene, particularly the 16S rRNA, has been greatly benefited from these technologies – the human gut microbiome research being a remarkable example of such analysis that has greatly expanded our understanding of microbe-mediated human health and disease, metabolism, and food absorption. 16S studies go through a series of in vitro and in silico steps that can greatly influence their outcomes. However, the lack of a standardized workflow has led to uncertainties regarding the transparency and reproducibility of gut microbiome studies. We, here, discuss the most common challenges in the archetypical 16S rRNA workflow, including the extraction of total DNA, its use as template in PCR with primers that amplify specific hypervariable regions of the gene, amplicon sequencing, the denoising and removal of low-quality reads, the detection and removal of chimeric sequences, the clustering of high-quality sequences into operational taxonomic units, and their taxonomic classification. We recommend the essential technical information that should be conveyed in publications for reproducibility of results and encourage non-experts to include procedures and available tools that mitigate most of the problems encountered in microbiome analysis. PMID:27551678

  9. Considerations For Optimizing Microbiome Analysis Using a Marker Gene.

    PubMed

    de la Cuesta-Zuluaga, Jacobo; Escobar, Juan S

    2016-01-01

    Next-generation sequencing technologies have found a widespread use in the study of host-microbe interactions due to the increase in their throughput and their ever-decreasing costs. The analysis of human-associated microbial communities using a marker gene, particularly the 16S rRNA, has been greatly benefited from these technologies - the human gut microbiome research being a remarkable example of such analysis that has greatly expanded our understanding of microbe-mediated human health and disease, metabolism, and food absorption. 16S studies go through a series of in vitro and in silico steps that can greatly influence their outcomes. However, the lack of a standardized workflow has led to uncertainties regarding the transparency and reproducibility of gut microbiome studies. We, here, discuss the most common challenges in the archetypical 16S rRNA workflow, including the extraction of total DNA, its use as template in PCR with primers that amplify specific hypervariable regions of the gene, amplicon sequencing, the denoising and removal of low-quality reads, the detection and removal of chimeric sequences, the clustering of high-quality sequences into operational taxonomic units, and their taxonomic classification. We recommend the essential technical information that should be conveyed in publications for reproducibility of results and encourage non-experts to include procedures and available tools that mitigate most of the problems encountered in microbiome analysis.

  10. Chronic hyperprolactinemia evoked by disruption of lactotrope dopamine D2 receptors impacts on liver and adipocyte genes related to glucose and insulin balance.

    PubMed

    Luque, Guillermina María; Lopez-Vicchi, Felicitas; Ornstein, Ana María; Brie, Belén; De Winne, Catalina; Fiore, Esteban; Perez-Millan, Maria Inés; Mazzolini, Guillermo; Rubinstein, Marcelo; Becu-Villalobos, Damasia

    2016-12-01

    We studied the impact of high prolactin titers on liver and adipocyte gene expression related to glucose and insulin homeostasis in correlation with obesity onset. To that end we used mutant female mice that selectively lack dopamine type 2 receptors (D2Rs) from pituitary lactotropes (lacDrd2KO), which have chronic high prolactin levels associated with increased body weight, marked increments in fat depots, adipocyte size, and serum lipids, and a metabolic phenotype that intensifies with age. LacDrd2KO mice of two developmental ages, 5 and 10 mo, were used. In the first time point, obesity and increased body weight are marginal, although mice are hyperprolactinemic, whereas at 10 mo there is marked adiposity with a 136% increase in gonadal fat and a 36% increase in liver weight due to lipid accumulation. LacDrd2KO mice had glucose intolerance, hyperinsulinemia, and impaired insulin response to glucose already in the early stages of obesity, but changes in liver and adipose tissue transcription factors were time and tissue dependent. In chronic hyperprolactinemic mice liver Prlr were upregulated, there was liver steatosis, altered expression of the lipogenic transcription factor Chrebp, and blunted response of Srebp-1c to refeeding at 5 mo of age, whereas no effect was observed in the glycogenesis pathway. On the other hand, in adipose tissue a marked decrease in lipogenic transcription factor expression was observed when morbid obesity was already settled. These adaptive changes underscore the role of prolactin signaling in different tissues to promote energy storage.

  11. Application of resistance gene analog markers to analyses of genetic structure and diversity in rice.

    PubMed

    Ren, Juansheng; Yu, Yuchao; Gao, Fangyuan; Zeng, Lihua; Lu, Xianjun; Wu, Xianting; Yan, Wengui; Ren, Guangjun

    2013-07-01

    Plant disease resistance gene analog (RGA) markers were designed according to the conserved sequence of known RGAs and used to map resistance genes. We used genome-wide RGA markers for genetic analyses of structure and diversity in a global rice germplasm collection. Of the 472 RGA markers, 138 were polymorphic and these were applied to 178 entries selected from the USDA rice core collection. Results from the RGA markers were similar between two methods, UPGMA and STRUCTURE. Additionally, the results from RGA markers in our study were agreeable with those previously reported from SSR markers, including cluster of ancestral classification, genetic diversity estimates, genetic relatedness, and cluster of geographic origins. These results suggest that RGA markers are applicable for analyses of genetic structure and diversity in rice. However, unlike SSR markers, the RGA markers failed to differentiate temperate japonica, tropical japonica, and aromatic subgroups. The restricted way for developing RGA markers from the cDNA sequence might limit the polymorphism of RGA markers in the genome, thus limiting the discriminatory power in comparison with SSR markers. Genetic differentiation obtained using RGA markers may be useful for defining genetic diversity of a suite of random R genes in plants, as many studies show a differentiation of resistance to a wide array of pathogens. They could also help to characterize the genetic structure and geographic distribution in crops, including rice, wheat, barley, and banana.

  12. Curcumin induces brown fat-like phenotype in 3T3-L1 and primary white adipocytes.

    PubMed

    Lone, Jameel; Choi, Jae Heon; Kim, Sang Woo; Yun, Jong Won

    2016-01-01

    Recent advances have been made in the understanding of pharmacological and dietary agents that contribute to browning of white adipose tissue in order to combat obesity by promoting energy expenditure. Here, we show that curcumin induces browning of 3T3-L1 and primary white adipocytes via enhanced expression of brown fat-specific genes. Curcumin-induced browning in white adipocytes was investigated by determining expression levels of brown adipocyte-specific genes/proteins by real-time reverse transcriptase polymerase chain reaction, immunoblot analysis and immunocytochemical staining. Curcumin increased mitochondrial biogenesis, as evidenced by transmission electronic microscopic detection and enhanced expression of proteins involved in fat oxidation. Cucurmin also increased protein levels of hormone-sensitive lipase and p-acyl-CoA carboxylase, suggesting its possible role in augmentation of lipolysis and suppression of lipogenesis. Increased expression of UCP1 and other brown adipocyte-specific markers was possibly mediated by curcumin-induced activation of AMP-activated protein kinase (AMPK) based on the fact that inhibition of AMPK by dorsomorphin abolished expression of PRDM16, UCP1 and peroxisome proliferator-activated receptor gamma co-activator 1-alpha while the activator 5-Aminoimidazole-4-carboxamide ribonucleotide elevated expression of these brown marker proteins. Our findings suggest that curcumin plays a dual modulatory role in inhibition of adipogenesis as well as induction of the brown fat-like phenotype and thus may have potential therapeutic implications for treatment of obesity.

  13. Markers

    ERIC Educational Resources Information Center

    Healthy Schools Network, Inc., 2011

    2011-01-01

    Dry erase whiteboards come with toxic dry erase markers and toxic cleaning products. Dry erase markers labeled "nontoxic" are not free of toxic chemicals and can cause health problems. Children are especially vulnerable to environmental health hazards; moreover, schools commonly have problems with indoor air pollution, as they are more densely…

  14. Recent patents on biosafety strategies of selectable marker genes in genetically modified crops.

    PubMed

    Jiang, Yiming; Hu, Xiaoning; Huang, Haiying

    2014-01-01

    Genetically modified crops (GMCs) have been planted world wide since 1990s, but the potential insecurity of selectable marker genes raises the questions about GMC safety. Therefore, several researches have been conducted on marker gene safety issues and recently several patents have been issued on this subject. There are two main approaches to achieve this goal: seeking the biosafety selectable marker and eliminating these insecure marker genes after transformation. Results show that these two systems are quite effective. Recent patents on the two ways are discussed in this review.

  15. Identification of Single Nucleotide Polymorphism Markers in the Laccase Gene of Shiitake Mushrooms (Lentinula edodes)

    PubMed Central

    Kim, Ki-Hwan; Ka, Kang-Hyeon; Kang, Ji Hyoun; Kim, Sangil; Lee, Jung Won; Jeon, Bong-Kyun; Yun, Jung-Kuk

    2015-01-01

    We identified single nucleotide polymorphism (SNP) markers in the laccase gene to establish a line-diagnostic system for shiitake mushrooms. A total of 89 fungal isolates representing four lines, including Korean registered, Korean wild type, Chinese, and Japanese lines, were analyzed. The results suggest that SNP markers in the laccase gene can be useful for line typing in shiitake mushrooms. PMID:25892919

  16. Identification of novel stem cell markers using gap analysis of gene expression data

    PubMed Central

    Krzyzanowski, Paul M; Andrade-Navarro, Miguel A

    2007-01-01

    We describe a method for detecting marker genes in large heterogeneous collections of gene expression data. Markers are identified and characterized by the existence of demarcations in their expression values across the whole dataset, which suggest the presence of groupings of samples. We apply this method to DNA microarray data generated from 83 mouse stem cell related samples and describe 426 selected markers associated with differentiation to establish principles of stem cell evolution. PMID:17875203

  17. Trans, trans-farnesol as a mevalonate-derived inducer of murine 3T3-F442A pre-adipocyte differentiation

    PubMed Central

    Torabi, Sheida

    2015-01-01

    Based on our finding that depletion of mevalonate-derived metabolites inhibits adipocyte differentiation, we hypothesize that trans, trans-farnesol (farnesol), a mevalonate-derived sesquiterpene, induces adipocyte differentiation. Farnesol dose-dependently (25–75 μmol/L) increased intracellular triglyceride content of murine 3T3-F442A pre-adipocytes measured by AdipoRed™ Assay and Oil Red-O staining. Concomitantly, farnesol dose-dependently increased glucose uptake and glucose transport protein 4 (GLUT4) expression without affecting cell viability. Furthermore, quantitative real-time polymerase chain reaction and Western blot showed that farnesol increased the mRNA and protein levels of peroxisome proliferator-activated receptor γ (PPARγ), a key regulator of adipocyte differentiation, and the mRNA levels of PPARγ-regulated fatty acid-binding protein 4 and adiponectin; in contrast, farnesol downregulated Pref-1 gene, a marker of pre-adipocytes. GW9662 (10 µmol/L), an antagonist of PPARγ, reversed the effects of farnesol on cellular lipid content, suggesting that PPARγ signaling pathway may mediate the farnesol effect. Farnesol (25–75 μmol/L) did not affect the mRNA level of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the rate-limiting enzyme in the mevalonate pathway. Farnesol may be the mevalonate-derived inducer of adipocyte differentiation and potentially an insulin sensitizer via activation of PPARγ and upregulation of glucose uptake. PMID:26660152

  18. Cadmium modulates adipocyte functions in metallothionein-null mice

    SciTech Connect

    Kawakami, Takashige; Nishiyama, Kaori; Kadota, Yoshito; Sato, Masao; Inoue, Masahisa; Suzuki, Shinya

    2013-11-01

    Our previous study has demonstrated that exposure to cadmium (Cd), a toxic heavy metal, causes a reduction of adipocyte size and the modulation of adipokine expression. To further investigate the significance of the Cd action, we studied the effect of Cd on the white adipose tissue (WAT) of metallothionein null (MT{sup −/−}) mice, which cannot form atoxic Cd–MT complexes and are used for evaluating Cd as free ions, and wild type (MT{sup +/+}) mice. Cd administration more significantly reduced the adipocyte size of MT{sup −/−} mice than that of MT{sup +/+} mice. Cd exposure also induced macrophage recruitment to WAT with an increase in the expression level of Ccl2 (MCP-1) in the MT{sup −/−} mice. The in vitro exposure of Cd to adipocytes induce triglyceride release into culture medium, decrease in the expression levels of genes involved in fatty acid synthesis and lipid hydrolysis at 24 h, and at 48 h increase in phosphorylation of the lipid-droplet-associated protein perilipin, which facilitates the degradation of stored lipids in adipocytes. Therefore, the reduction in adipocyte size by Cd may arise from an imbalance between lipid synthesis and lipolysis. In addition, the expression levels of leptin, adiponectin and resistin decreased in adipocytes. Taken together, exposure to Cd may induce unusually small adipocytes and modulate the expression of adipokines differently from the case of physiologically small adipocytes, and may accelerate the risk of developing insulin resistance and type 2 diabetes. - Highlights: • Cd causes a marked reduction in adipocyte size in MT-null mice. • Cd enhances macrophage migration into adipose tissue and disrupt adipokine secretion. • MT gene alleviates Cd-induced adipocyte dysfunctions. • Cd enhances the degradation of stored lipids in adipocytes, mediated by perilipin. • Cd induces unusually small adipocytes and the abnormal expression of adipokines.

  19. Novel flow cytometric approach for the detection of adipocyte subpopulations during adipogenesis[S

    PubMed Central

    Durandt, Chrisna; van Vollenstee, Fiona A.; Dessels, Carla; Kallmeyer, Karlien; de Villiers, Danielle; Murdoch, Candice; Potgieter, Marnie; Pepper, Michael S.

    2016-01-01

    The ability of mesenchymal stromal cells (MSCs) to differentiate into adipocytes provides a cellular model of human origin to study adipogenesis in vitro. One of the major challenges in studying adipogenesis is the lack of tools to identify and monitor the differentiation of various subpopulations within the heterogeneous pool of MSCs. Cluster of differentiation (CD)36 plays an important role in the formation of intracellular lipid droplets, a key characteristic of adipocyte differentiation/maturation. The objective of this study was to develop a reproducible quantitative method to study adipocyte differentiation by comparing two lipophilic dyes [Nile Red (NR) and Bodipy 493/503] in combination with CD36 surface marker staining. We identified a subpopulation of adipose-derived stromal cells that express CD36 at intermediate/high levels and show that combining CD36 cell surface staining with neutral lipid-specific staining allows us to monitor differentiation of adipose-derived stromal cells that express CD36intermediate/high during adipocyte differentiation in vitro. The gradual increase of CD36intermediate/high/NRpositive cells during the 21 day adipogenesis induction period correlated with upregulation of adipogenesis-associated gene expression. PMID:26830859

  20. Candidate genes and molecular markers associated with heat tolerance in colonial Bentgrass.

    PubMed

    Jespersen, David; Belanger, Faith C; Huang, Bingru

    2017-01-01

    Elevated temperature is a major abiotic stress limiting the growth of cool-season grasses during the summer months. The objectives of this study were to determine the genetic variation in the expression patterns of selected genes involved in several major metabolic pathways regulating heat tolerance for two genotypes contrasting in heat tolerance to confirm their status as potential candidate genes, and to identify PCR-based markers associated with candidate genes related to heat tolerance in a colonial (Agrostis capillaris L.) x creeping bentgrass (Agrostis stolonifera L.) hybrid backcross population. Plants were subjected to heat stress in controlled-environmental growth chambers for phenotypic evaluation and determination of genetic variation in candidate gene expression. Molecular markers were developed for genes involved in protein degradation (cysteine protease), antioxidant defense (catalase and glutathione-S-transferase), energy metabolism (glyceraldehyde-3-phosphate dehydrogenase), cell expansion (expansin), and stress protection (heat shock proteins HSP26, HSP70, and HSP101). Kruskal-Wallis analysis, a commonly used non-parametric test used to compare population individuals with or without the gene marker, found the physiological traits of chlorophyll content, electrolyte leakage, normalized difference vegetative index, and turf quality were associated with all candidate gene markers with the exception of HSP101. Differential gene expression was frequently found for the tested candidate genes. The development of candidate gene markers for important heat tolerance genes may allow for the development of new cultivars with increased abiotic stress tolerance using marker-assisted selection.

  1. Candidate genes and molecular markers associated with heat tolerance in colonial Bentgrass

    PubMed Central

    Jespersen, David; Belanger, Faith C.; Huang, Bingru

    2017-01-01

    Elevated temperature is a major abiotic stress limiting the growth of cool-season grasses during the summer months. The objectives of this study were to determine the genetic variation in the expression patterns of selected genes involved in several major metabolic pathways regulating heat tolerance for two genotypes contrasting in heat tolerance to confirm their status as potential candidate genes, and to identify PCR-based markers associated with candidate genes related to heat tolerance in a colonial (Agrostis capillaris L.) x creeping bentgrass (Agrostis stolonifera L.) hybrid backcross population. Plants were subjected to heat stress in controlled-environmental growth chambers for phenotypic evaluation and determination of genetic variation in candidate gene expression. Molecular markers were developed for genes involved in protein degradation (cysteine protease), antioxidant defense (catalase and glutathione-S-transferase), energy metabolism (glyceraldehyde-3-phosphate dehydrogenase), cell expansion (expansin), and stress protection (heat shock proteins HSP26, HSP70, and HSP101). Kruskal-Wallis analysis, a commonly used non-parametric test used to compare population individuals with or without the gene marker, found the physiological traits of chlorophyll content, electrolyte leakage, normalized difference vegetative index, and turf quality were associated with all candidate gene markers with the exception of HSP101. Differential gene expression was frequently found for the tested candidate genes. The development of candidate gene markers for important heat tolerance genes may allow for the development of new cultivars with increased abiotic stress tolerance using marker-assisted selection. PMID:28187136

  2. Marker-trait association analysis of functional gene markers for provitamin A levels across diverse tropical yellow maize inbred lines

    PubMed Central

    2013-01-01

    Background Biofortification of staple crops is a cost effective and sustainable approach that can help combat vitamin A and other micronutrient deficiencies in developing countries. PCR -based DNA markers distinguishing alleles of three key genes of maize endosperm carotenoid biosynthesis (PSY1, lcyE and crtRB1) have been developed to facilitate maize provitamin A biofortification via marker assisted selection. Previous studies of these functional DNA markers revealed inconsistent effects. The germplasm previously employed for discovering and validating these functional markers was mainly of temperate origin containing low frequencies of the favourable allele of the most significant polymorphism, crtRB1-5′TE. Here, we investigate the vitamin A biofortification potential of these DNA markers in a germplasm panel of diverse tropical yellow maize inbred lines, with mixed genetic backgrounds of temperate and tropical germplasm to identify the most effective diagnostic markers for vitamin A biofortification. Results The functional DNA markers crtRB1-5′TE and crtRB1-3′TE were consistently and strongly associated with provitamin A content across the tropical maize inbred lines tested. The alleles detected by these two functional markers were in high linkage disequilibrium (R2 = 0.75) and occurred in relatively high frequency (18%). Genotypes combining the favourable alleles at the two loci (N = 20) displayed a 3.22 fold average increase in β-carotene content compared to those genotypes lacking the favourable alleles (N = 106). The PSY1 markers were monomorphic across all of the inbred lines. The functional DNA markers for lcyE were associated with lutein, and with the ratio of carotenoids in the alpha and beta branches, but not with provitamin A levels. However, the combined effects of the two genes were stronger than their individual effects on all carotenoids. Conclusions Tropical maize inbred lines harbouring the favourable alleles of the crtRB1-5

  3. Molecular markers linked to the apple scab resistance gene Vbj derived from Malus baccata jackii.

    PubMed

    Gygax, M; Gianfranceschi, L; Liebhard, R; Kellerhals, M; Gessler, C; Patocchi, A

    2004-11-01

    Breeding for scab-resistant apple cultivars by pyramiding several resistance genes in the same genetic background is a promising way to control apple scab caused by the fungus Venturia inaequalis. To achieve this goal, DNA markers linked to the genes of interest are required in order to select seedlings with the desired resistance allele combinations. For several apple scab resistance genes, molecular markers are already available; but until now, none existed for the apple scab resistance gene Vbj originating from the crab apple Malus baccata jackii. Using bulk segregant analysis, three RAPD markers linked to Vbj were first identified. These markers were transformed into more reliable sequence-characterised amplified region (SCAR) markers that proved to be co-dominant. In addition, three SSR markers and one SCAR were identified by comparing homologous linkage groups of existing genetic maps. Discarding plants showing genotype-phenotype incongruence (GPI plants) plants, a linkage map was calculated. Vbj mapped between the markers CH05e03 (SSR) and T6-SCAR, at 0.6 cM from CH05e03 and at 3.9 cM from T6-SCAR. Without the removal of the GPI plants, Vbj was placed 15 cM away from the closest markers. Problems and pitfalls due to GPI plants and the consequences for mapping the resistance gene accurately are discussed. Finally, the usefulness of co-dominant markers for pedigree analysis is also demonstrated.

  4. [Progress on biosafety assessment of marker genes in genetically modified foods].

    PubMed

    Yang, Lichen; Yang, Xiaoguang

    2003-05-01

    Marker genes are useful in facilitating the detection of genetically modified organisms(GMO). These genes play an important role during the early identification stage of GMO development, but they exist in the mature genetically modified crops. So the safety assessment of these genes could not be neglected. In this paper, all the study on the biosafety assessment of marker genes were reviewed, their possible hazards and risks were appraised, and the marker genes proved safe were list too. GMO Labeling the is one important regulations for the development of genetically modified foods in the market. The accurate detecting techniques for GMO are the basis for setting up labeling regulation. In addition, some methods used to remove marker genes in genetically modified foods were introduced in the paper, which can eliminate their biosafety concern thoroughly.

  5. Improved antibiotic resistance gene cassette for marker exchange mutagenesis in Ralstonia solanacearum and Burkholderia species.

    PubMed

    Um, Hae Young; Chung, Eunsook; Lee, Jai-Heon; Lee, Seon-Woo

    2011-04-01

    Marker exchange mutagenesis is a fundamental approach to understanding gene function at a molecular level in bacteria. New plasmids carrying a kanamycin resistance gene or a trimethoprim resistance gene were constructed to provide antibiotic resistance cassettes for marker exchange mutagenesis in Ralstonia solanacearum and many antibiotic-resistant Burkholderia spp. Insertion sequences present in the flanking sequences of the antibiotic resistance cassette were removed to prevent aberrant gene replacement and polar mutation during mutagenesis in wild-type bacteria. Plasmids provided in this study would be convenient for use in gene cassettes for gene replacement in other Gram-negative bacteria.

  6. Differential gene expressions in subcutaneous adipose tissue pointed to a delayed adipocytic differentiation in small pig fetuses compared to their heavier siblings.

    PubMed

    Gondret, F; Perruchot, M H; Tacher, S; Bérard, J; Bee, G

    2011-04-01

    Intra-uterine growth retardation in piglets is associated to neonatal losses and a greater susceptibility to fat deposition in the long term. Dietary l-arginine supplementation to gilts during early gestation has been proposed as a way to enhance fetal survival. This study aims to investigate the effects of variation in fetal growth within litters and dietary l-arginine treatment during early gestation in pregnant sows on expression levels of several genes involved in early adipose tissue development and lipid deposition in the fetuses. At day 75 of pregnancy, sows fed a standard gestation diet throughout pregnancy and sows fed 26g L-arginine daily from days 14 to 28 of gestation in supplement to the standard diet were sacrificed. Six pairs of littermates in each dietary group with the smallest or the heaviest fetal weights within each litter were collected (total: 24 fetuses). Expression levels of DLK1/PREF1 and FZD7 were significantly greater in subcutaneous backfat of the smallest fetuses. Conversely, transcriptional adipogenic regulators PPARG, SREBP1, and CEBPA, and genes involved in terminal adipocytic differentiation LPL, ME1, and FABP4 were less expressed in those piglets. Fetal weight has no effect on expression levels of genes involved in cell cycle progression and DNA content in subcutaneous adipose tissue. Maternal dietary L-arginine treatment did not affect subcutaneous adipose tissue features in 75-day old fetuses. The gene expression changes observed in the smallest fetuses are likely associated to a lower body fat content at birth, and could predispose to catch-up fat growth during the postnatal period.

  7. The Molecular Signature of HIV-1-Associated Lipomatosis Reveals Differential Involvement of Brown and Beige/Brite Adipocyte Cell Lineages.

    PubMed

    Cereijo, Rubén; Gallego-Escuredo, José Miguel; Moure, Ricardo; Villarroya, Joan; Domingo, Joan Carles; Fontdevila, Joan; Martínez, Esteban; Gutiérrez, Maria del Mar; Mateo, María Gracia; Giralt, Marta; Domingo, Pere; Villarroya, Francesc

    2015-01-01

    Highly active antiretroviral therapy has remarkably improved quality of life of HIV-1-infected patients. However, this treatment has been associated with the so-called lipodystrophic syndrome, which conveys a number of adverse metabolic effects and morphological alterations. Among them, lipoatrophy of subcutaneous fat in certain anatomical areas and hypertrophy of visceral depots are the most common. Less frequently, lipomatous enlargements of subcutaneous fat at distinct anatomic areas occur. Lipomatous adipose tissue in the dorso-cervical area ("buffalo hump") has been associated with a partial white-to-brown phenotype transition and with increased cell proliferation, but, to date, lipomatous enlargements arising in other parts of the body have not been characterized. In order to establish the main molecular events associated with the appearance of lipomatosis in HIV-1 patients, we analyzed biopsies of lipomatous tissue from "buffalo hump" and from other anatomical areas in patients, in comparison with healthy subcutaneous adipose tissue, using a marker gene expression approach. Both buffalo-hump and non-buffalo-hump lipomatous adipose tissues exhibited similar patterns of non-compromised adipogenesis, unaltered inflammation, non-fibrotic phenotype and proliferative activity. Shorter telomere length, prelamin A accumulation and SA-β-Gal induction, reminiscent of adipocyte senescence, were also common to both types of lipomatous tissues. Buffalo hump biopsies showed expression of marker genes of brown adipose tissue (e.g. UCP1) and, specifically, of "classical" brown adipocytes (e.g. ZIC1) but not of beige/brite adipocytes. No such brown fat-related gene expression occurred in lipomatous tissues at other anatomical sites. In conclusion, buffalo hump and other subcutaneous adipose tissue enlargements from HIV-1-infected patients share a similar lipomatous character. However, a distorted induction of white-to-"classical brown adipocyte" phenotype appears unique of

  8. Development of New Candidate Gene and EST-Based Molecular Markers for Gossypium Species.

    PubMed

    Buyyarapu, Ramesh; Kantety, Ramesh V; Yu, John Z; Saha, Sukumar; Sharma, Govind C

    2011-01-01

    New source of molecular markers accelerate the efforts in improving cotton fiber traits and aid in developing high-density integrated genetic maps. We developed new markers based on candidate genes and G. arboreum EST sequences that were used for polymorphism detection followed by genetic and physical mapping. Nineteen gene-based markers were surveyed for polymorphism detection in 26 Gossypium species. Cluster analysis generated a phylogenetic tree with four major sub-clusters for 23 species while three species branched out individually. CAP method enhanced the rate of polymorphism of candidate gene-based markers between G. hirsutum and G. barbadense. Two hundred A-genome based SSR markers were designed after datamining of G. arboreum EST sequences (Mississippi Gossypium arboreum  EST-SSR: MGAES). Over 70% of MGAES markers successfully produced amplicons while 65 of them demonstrated polymorphism between the parents of G. hirsutum and G. barbadense RIL population and formed 14 linkage groups. Chromosomal localization of both candidate gene-based and MGAES markers was assisted by euploid and hypoaneuploid CS-B analysis. Gene-based and MGAES markers were highly informative as they were designed from candidate genes and fiber transcriptome with a potential to be integrated into the existing cotton genetic and physical maps.

  9. Real-time monitoring of inflammation status in 3T3-L1 adipocytes possessing a secretory Gaussia luciferase gene under the control of nuclear factor-kappa B response element

    SciTech Connect

    Nagasaki, Haruka; Yoshimura, Takeshi; Aoki, Naohito

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer Inflammation status in adipocytes can be monitored by the new assay system. Black-Right-Pointing-Pointer Only an aliquot of conditioned medium is required without cell lysis. Black-Right-Pointing-Pointer Inflammation-attenuating compounds can be screened more conveniently. -- Abstract: We have established 3T3-L1 cells possessing a secretory Gaussia luciferase (GLuc) gene under the control of nuclear factor-kappa B (NF-{kappa}B) response element. The 3T3-L1 cells named 3T3-L1-NF-{kappa}B-RE-GLuc could differentiate into adipocyte as comparably as parental 3T3-L1 cells. Inflammatory cytokines such as tumor necrosis factor (TNF)-{alpha} and interleukin (IL)-1{beta} induced GLuc secretion of 3T3-L1-NF-{kappa}B-RE-GLuc adipocytes in a concentration- and time-dependent manner. GLuc secretion of 3T3-L1-NF-{kappa}B-RE-GLuc adipocytes was also induced when cultured with RAW264.7 macrophages and was dramatically enhanced by lipopolysaccharide (LPS)-activated macrophages. An NF-{kappa}B activation inhibitor BAY-11-7085 and an antioxidant N-acetyl cysteine significantly suppressed GLuc secretion induced by macrophages. Finally, we found that rosemary-derived carnosic acid strongly suppressed GLuc secretion induced by macrophages and on the contrary up-regulated adiponectin secretion. Collectively, by using 3T3-L1-NF-{kappa}B-RE-GLuc adipocytes, inflammation status can be monitored in real time and inflammation-attenuating compounds can be screened more conveniently.

  10. Targeted insertion of foreign genes into the tobacco plastid genome without physical linkage to the selectable marker gene

    SciTech Connect

    Carrer, H.; Maliga, P.

    1995-08-01

    To determine whether targeted DNA insertion into the tobacco plastid genome can be obtained without physical linkage to a selectable marker gene, we carried out biolistic transformation of chloroplasts in tobacco leaf segments with a 1:1 mix of two independently targeted antibiotic resistance genes. Plastid transformants were selected by spectinomycin resistance due to expression of an integrated aadA gene. Integration of the unselected kanamycin resistance (kan) gene into the same plastid genome was established by Southern probing in {approx}20% of the spectinomycin-selected clones. Efficient cotransformation will facilitate targeted plastid genome modification without physical linkage to a marker gene. 26 refs., 5 figs., 1 tab.

  11. Identification of uterine leiomyoma-specific marker genes based on DNA methylation and their clinical application

    PubMed Central

    Sato, Shun; Maekawa, Ryo; Yamagata, Yoshiaki; Tamura, Isao; Lee, Lifa; Okada, Maki; Jozaki, Kosuke; Asada, Hiromi; Tamura, Hiroshi; Sugino, Norihiro

    2016-01-01

    Differential diagnosis of uterine leiomyomas and leiomyosarcomas is needed to determine whether the uterus can be retained. Therefore, biomarkers for uterine leiomyomas, and reliable and objective diagnostic methods have been desired besides the pathological diagnosis. In the present study, we identified 12 genes specific to uterine leiomyomas based on DNA methylation. Using these marker genes specific to uterine leiomyomas, we established a hierarchical clustering system based on the DNA methylation level of the marker genes, which could completely differentiate between uterine leiomyomas and normal myometrium. Furthermore, our hierarchical clustering system completely discriminated uterine cancers and differentiated between uterine leiomyosarcomas and leiomyomas with more than 70% accuracy. In conclusion, this study identified DNA methylation-based marker genes specific to uterine leiomyomas, and our hierarchical clustering system using these marker genes was useful for differential diagnosis of uterine leiomyomas and leiomyosarcomas. PMID:27498619

  12. RPL13A and EEF1A1 Are Suitable Reference Genes for qPCR during Adipocyte Differentiation of Vascular Stromal Cells from Patients with Different BMI and HOMA-IR

    PubMed Central

    Gentile, Adriana-Mariel; Lhamyani, Said; Coín-Aragüez, Leticia; Oliva-Olivera, Wilfredo; Zayed, Hatem; Vega-Rioja, Antonio; Monteseirin, Javier; Romero-Zerbo, Silvana-Yanina; Tinahones, Francisco-José; Bermúdez-Silva, Francisco-Javier; El Bekay, Rajaa

    2016-01-01

    Real-time or quantitative PCR (qPCR) is a useful technique that requires reliable reference genes for data normalization in gene expression analysis. Adipogenesis is among the biological processes suitable for this technique. The selection of adequate reference genes is essential for qPCR gene expression analysis of human Vascular Stromal Cells (hVSCs) during their differentiation into adipocytes. To the best of our knowledge, there are no studies validating reference genes for the analyses of visceral and subcutaneous adipose tissue hVSCs from subjects with different Body Mass Index (BMI) and Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) index. The present study was undertaken to analyze this question. We first analyzed the stability of expression of five potential reference genes: CYC, GAPDH, RPL13A, EEF1A1, and 18S ribosomal RNA, during in vitro adipogenic differentiation, in samples from these types of patients. The expression of RPL13A and EEF1A1 was not affected by differentiation, thus being these genes the most stable candidates, while CYC, GAPDH, and 18S were not suitable for this sort of analysis. This work highlights that RPL13A and EEF1A1 are good candidates as reference genes for qPCR analysis of hVSCs differentiation into adipocytes from subjects with different BMI and HOMA-IR. PMID:27304673

  13. Rapid pyramiding major resistance genes into parental lines in tomato hybrid breeding employing marker-assisted backcrossing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The success of marker-assisted pyramiding major resistance genes depends upon several factors, including the closeness between the markers and the target gene, the number of target genes to be pyramided, the kind of molecular markers to be used, and available technical facilities. This talk will dis...

  14. Apramycin resistance as a selective marker for gene transfer in mycobacteria.

    PubMed Central

    Paget, E; Davies, J

    1996-01-01

    We have explored the potential of using the apramycin resistance gene as a marker in mycobacterial gene transfer studies. Shuttle plasmids available for both electroporation and conjugation studies have been constructed, and we have successfully validated the use of the apramycin resistance gene as a component of cloning vectors for Mycobacterium smegmatis, M. bovis BCG, and M. tuberculosis. PMID:8892841

  15. SCAR markers linked to the common bean rust resistance gene Ur-13.

    PubMed

    Mienie, C M S; Liebenberg, M M; Pretorius, Z A; Miklas, P N

    2005-09-01

    Rust in common bean (Phaseolus vulgaris L.) is caused by Uromyces appendiculatus Pers.:Pers. (Unger) which exhibits a high level of pathogenic diversity. Resistance to this disease is conditioned by a considerable number of genes. Pyramiding resistance genes is desirable and could be simplified by the use of molecular markers closely linked to the genes. The resistance gene Ur-13, present in the South African large seeded cultivar Kranskop, has been used extensively in the local breeding program. The purpose of this study was the development of a molecular marker linked to Ur-13. An F(2) population derived from a cross between Kranskop and a susceptible (South African) cultivar Bonus was used in combination with bulked segregant analysis utilizing the amplified fragment length polymorphism (AFLP) technique. Seven AFLP fragments linked significantly to the rust resistance and five were successfully converted to sequence characterized amplified region (SCAR) markers. The co-dominant SCAR markers derived from a 405 bp EAACMACC fragment, KB 126, was located 1.6 cM from the gene. Two additional SCAR markers and one cleaved amplified polymorphic sequence marker were located further from the gene. The gene was mapped to linkage group B8 on the BAT 93/Jalo EEP 558 core map (chromosome 3).

  16. Doses of Quercetin in the Range of Serum Concentrations Exert Delipidating Effects in 3T3-L1 Preadipocytes by Acting on Different Stages of Adipogenesis, but Not in Mature Adipocytes

    PubMed Central

    Eseberri, Itziar; Miranda, Jonatan; Lasa, Arrate; Churruca, Itziar; Portillo, María P.

    2015-01-01

    Scope. To determine whether doses of quercetin in the range of serum concentrations exert any effect on triacylglycerol accumulation in maturing preadipocytes and mature adipocytes. The influence on the expression of adipogenic markers as well as on gene expression and activity of enzymes involved in triacylglycerol metabolism were assessed. Methods and Results. 3T3-L1 preadipocytes were treated during differentiation and mature adipocytes for 24 hours with low doses (0.1–10 µM) of quercetin. Triacylglycerol content in both cell types and free fatty acid and glycerol in the incubation medium of mature adipocytes were measured spectrophotometrically. Gene and protein expression were assessed by RT-PCR and Western blot. LPL and FAS activities were quantified. During differentiation quercetin reduced triacylglycerol content at doses from 0.5 to 10 µM. 1 µM of quercetin reduced C/EBPβ gene expression, SREBP1 mature protein levels, and PPARγ gene expression. 10 µM of quercetin reduced LPL gene expression and PPARγ and SREBP1c expression. In mature adipocytes, only 10 µM of quercetin reduced triacylglycerol content. Lipogenic FAS expression and activity were reduced at this dose. Conclusion. Quercetin, in the range of serum concentrations, is able to inhibit adipogenesis, but higher doses, at least 10 µM, are needed to reduce fat accumulation in mature adipocytes. PMID:26180590

  17. β-Catenin Directly Sequesters Adipocytic and Insulin Sensitizing Activities but Not Osteoblastic Activity of PPARγ2 in Marrow Mesenchymal Stem Cells

    PubMed Central

    Rahman, Sima; Czernik, Piotr J.; Lu, Yalin; Lecka-Czernik, Beata

    2012-01-01

    Lineage allocation of the marrow mesenchymal stem cells (MSCs) to osteoblasts and adipocytes is dependent on both Wnt signaling and PPARγ2 activity. Activation of PPARγ2, an essential regulator of energy metabolism and insulin sensitivity, stimulates adipocyte and suppresses osteoblast differentiation and bone formation, and correlates with decreased bone mass and increased fracture rate. In contrast, activation of Wnt signaling promotes osteoblast differentiation, augments bone accrual and reduces total body fat. This study examined the cross-talk between PPARγ2 and β-catenin, a key mediator of canonical Wnt signaling, on MSC lineage determination. Rosiglitazone-activated PPARγ2 induced rapid proteolytic degradation of β-catenin, which was prevented by either inhibiting glycogen synthase kinase 3 beta (GSK3β) activity, or blocking pro-adipocytic activity of PPARγ2 using selective antagonist GW9662 or mutation within PPARγ2 protein. Stabilization of β-catenin suppressed PPARγ2 pro-adipocytic but not anti-osteoblastic activity. Moreover, β-catenin stabilization decreased PPARγ2-mediated insulin signaling as measured by insulin receptor and FoxO1 gene expression, and protein levels of phosphorylated Akt (pAkt). Cellular knockdown of β-catenin with siRNA increased expression of adipocyte but did not affect osteoblast gene markers. Interestingly, the expression of Wnt10b was suppressed by anti-osteoblastic, but not by pro-adipocytic activity of PPARγ2. Moreover, β-catenin stabilization in the presence of activated PPARγ2 did not restore Wnt10b expression indicating a dominant role of PPARγ2 in negative regulation of pro-osteoblastic activity of Wnt signaling. In conclusion, β-catenin and PPARγ2 are in cross-talk which results in sequestration of pro-adipocytic and insulin sensitizing activity. The anti-osteoblastic activity of PPARγ2 is independent of this interaction. PMID:23272157

  18. Effect of lipopolysaccharides on adipogenic potential and premature senescence of adipocyte progenitors.

    PubMed

    Zhao, Ming; Chen, Xiaoli

    2015-08-15

    The elevation of circulating LPS has been associated with obesity and aging. However, whether and how LPS contributes to adipose tissue dysfunction is unclear. In this study, we investigated the effect of LPS on the adipogenic capacity and cellular senescence of adipocyte progenitors. Stromal-vascular cells were isolated from inguinal adipose tissue of C57BL/6 mice and treated with LPS during the different time periods of adipocyte differentiation. We found that LPS treatment for 24 h prior to the induction of differentiation led to the most profound effect on the inhibition of adipogenesis, as evidenced by the morphological changes and the decreased mRNA expression of adipocyte marker genes. In addition, LPS induced features of premature senescence of SV cells, including the activation of p53, the elevation of SA-β-gal activity, and increased hydrogen peroxide production, but not telomere length. Upon LPS treatment, SV cells also developed senescence-associated secretory phenotype (SASP), as demonstrated by the increased expression of TNFα, IL-1β, IL-6, MCP-1, and VEGFα. Blocking LPS-induced NF-κB activation and cytokine production by Bay 11-7082 failed to rescue the impaired adipogenesis and the reduction in PPARγ and Zfp423 expression. On the contrary, rosiglitazone had little effect on cytokine production but corrected the defective adipogenic potential. In conclusion, we demonstrate that LPS inhibits adipogenesis by disrupting the differentiation of adipocyte progenitors in a NF-κB-independent manner; LPS also induces premature senescence of adipocyte progenitors. Our data suggest that LPS could be a potential contributor to the defective adipogenesis and the development of cellular senescence in adipose tissue during obesity and aging.

  19. Insights into an adipocyte whitening program

    PubMed Central

    Hill, Bradford G

    2015-01-01

    White adipose tissue plays a critical role in regulating systemic metabolism and can remodel rapidly in response to changes in nutrient availability. Nevertheless, little is known regarding the metabolic changes occurring in adipocytes during obesity. Our laboratory recently addressed this issue in a commonly used, high-fat-diet mouse model of obesity. We found remarkable changes in adipocyte metabolism that occur prior to infiltration of macrophages in expanding adipose tissue. Results of metabolomic analyses, adipose tissue respirometry, electron microscopy, and expression analyses of key genes and proteins revealed dysregulation of several metabolic pathways, loss of mitochondrial biogenetic capacity, and apparent activation of mitochondrial autophagy which were followed in time by downregulation of numerous mitochondrial proteins important for maintaining oxidative capacity. These findings demonstrate the presence of an adipocyte whitening program that may be critical for regulating adipose tissue remodeling under conditions of chronic nutrient excess. PMID:26167407

  20. Spontaneously beating cardiomyocytes derived from white mature adipocytes

    PubMed Central

    Jumabay, Medet; Zhang, Rui; Yao, Yucheng; Goldhaber, Joshua I.; Boström, Kristina I.

    2010-01-01

    Aims Adipose stromal cells and dissociated brown adipose tissue have been shown to generate cardiomyocyte-like cells. However, it is not clear whether white mature adipocytes have the same potential, even though a close relationship has been found between adipocytes and vascular endothelial cells, another cardiovascular cell type. The objective of this study was to examine if white adipocytes would be able to supply cardiomyocytes. Methods and results We prepared a highly purified population of lipid-filled adipocytes from mice, 6–7 weeks of age. When allowed to lose lipids, the adipocytes assumed a fibroblast-like morphology, so-called dedifferentiated fat (DFAT) cells. Subsequently, 10–15% of the DFAT cells spontaneously differentiated into cardiomyocyte-like cells, in which the cardiomyocyte phenotype was identified by morphological observations, expression of cardiomyocyte-specific markers, and immunocytochemical staining. In addition, electrophysiological studies revealed pacemaker activity in these cells, and functional studies showed that a β-adrenergic agonist stimulated the beating rate, whereas a β-antagonist reduced it. In vitro treatment of newly isolated adipocytes or DFAT cells with inhibitors of bone morphogenetic proteins (BMP) and Wnt signalling promoted the development of the cardiomyocyte phenotype as determined by the number or beating colonies of cardiomyocyte-like cells and expression of troponin I, a cardiomyocyte-specific marker. Inhibition of BMP was most effective in promoting the cardiomyocyte phenotype in adipocytes, whereas Wnt-inhibition was most effective in DFAT cells. Conclusion White mature adipocytes can differentiate into cardiomyocyte-like cells, suggesting a link between adipocyte and cardiomyocyte differentiation. PMID:19643806

  1. Actions of β-apo-carotenoids in differentiating cells: differential effects in P19 cells and 3T3-L1 adipocytes.

    PubMed

    Wang, Cynthia X; Jiang, Hongfeng; Yuen, Jason J; Lee, Seung-Ah; Narayanasamy, Sureshbabu; Curley, Robert W; Harrison, Earl H; Blaner, William S

    2015-04-15

    β-Apo-carotenoids, including β-apo-13-carotenone and β-apo-14'-carotenal, are potent retinoic acid receptor (RAR) antagonists in transactivation assays. We asked how these influence RAR-dependent processes in living cells. Initially, we explored the effects of β-apo-13-carotenone and β-apo-14'-carotenal on P19 cells, a mouse embryonal carcinoma cell line that differentiates into neurons when treated with all-trans-retinoic acid. Treatment of P19 cells with either compound failed to block all-trans-retinoic acid induced differentiation. Liquid chromatography tandem mass spectrometry studies, however, established that neither of these β-apo-carotenoids accumulates in P19 cells. All-trans-retinoic acid accumulated to high levels in P19 cells. This suggests that the uptake and metabolism of β-apo-carotenoids by some cells does not involve the same processes used for retinoids and that these may be cell type specific. We also investigated the effects of two β-apo-carotenoids on 3T3-L1 adipocyte marker gene expression during adipocyte differentiation. Treatment of 3T3-L1 adipocytes with either β-apo-13-carotenone or β-apo-10'-carotenoic acid, which lacks RAR antagonist activity, stimulated adipocyte marker gene expression. Neither blocked the inhibitory effects of a relatively large dose of exogenous all-trans-retinoic acid on adipocyte differentiation. Our data suggest that in addition to acting as transcriptional antagonists, some β-apo-carotenoids act through other mechanisms to influence 3T3-L1 adipocyte differentiation.

  2. Development of PCR-based codominant markers flanking the Alt3 gene in rye.

    PubMed

    Miftahudin; Scoles, G J; Gustafson, J P

    2004-04-01

    Aluminum (Al) toxicity is considered to be a major problem for crop growth and production on acid soils. The ability of crops to overcome Al toxicity varies among crop species and cultivars. Rye (Secale cereale L.) is the most Al-tolerant species among the Triticeae. Our previous study showed that Al tolerance in a rye F6 recombinant inbred line (RIL) population was controlled by a single gene designated as the aluminum tolerance (Alt3) gene on chromosome 4RL. Based on the DNA sequence of a rice (Oryza sativa L.) BAC clone suspected to be syntenic to the Alt3 gene region, we developed two PCR-based codominant markers flanking the gene. These two markers, a sequence-tagged site (STS) marker and a cleaved amplified polymorphic sequence (CAPS) marker, each flanked the Alt3 gene at an approximate distance of 0.4 cM and can be used to facilitate high-resolution mapping of the gene. The markers might also be used for marker-assisted selection in rye or wheat (Triticum aestivum L.) breeding programs to obtain Al-tolerant lines and (or) cultivars.

  3. Genomic distribution of AFLP markers relative to gene locations for different eukaryotic species

    PubMed Central

    2013-01-01

    Background Amplified fragment length polymorphism (AFLP) markers are frequently used for a wide range of studies, such as genome-wide mapping, population genetic diversity estimation, hybridization and introgression studies, phylogenetic analyses, and detection of signatures of selection. An important issue to be addressed for some of these fields is the distribution of the markers across the genome, particularly in relation to gene sequences. Results Using in-silico restriction fragment analysis of the genomes of nine eukaryotic species we characterise the distribution of AFLP fragments across the genome and, particularly, in relation to gene locations. First, we identify the physical position of markers across the chromosomes of all species. An observed accumulation of fragments around (peri) centromeric regions in some species is produced by repeated sequences, and this accumulation disappears when AFLP bands rather than fragments are considered. Second, we calculate the percentage of AFLP markers positioned within gene sequences. For the typical EcoRI/MseI enzyme pair, this ranges between 28 and 87% and is usually larger than that expected by chance because of the higher GC content of gene sequences relative to intergenic ones. In agreement with this, the use of enzyme pairs with GC-rich restriction sites substantially increases the above percentages. For example, using the enzyme system SacI/HpaII, 86% of AFLP markers are located within gene sequences in A. thaliana, and 100% of markers in Plasmodium falciparun. We further find that for a typical trait controlled by 50 genes of average size, if 1000 AFLPs are used in a study, the number of those within 1 kb distance from any of the genes would be only about 1–2, and only about 50% of the genes would have markers within that distance. Conclusions The high coverage of AFLP markers across the genomes and the high proportion of markers within or close to gene sequences make them suitable for genome scans and

  4. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes

    PubMed Central

    Bordicchia, Marica; Liu, Dianxin; Amri, Ez-Zoubir; Ailhaud, Gerard; Dessì-Fulgheri, Paolo; Zhang, Chaoying; Takahashi, Nobuyuki; Sarzani, Riccardo; Collins, Sheila

    2012-01-01

    The ability of mammals to resist body fat accumulation is linked to their ability to expand the number and activity of “brown adipocytes” within white fat depots. Activation of β-adrenergic receptors (β-ARs) can induce a functional “brown-like” adipocyte phenotype. As cardiac natriuretic peptides (NPs) and β-AR agonists are similarly potent at stimulating lipolysis in human adipocytes, we investigated whether NPs could induce human and mouse adipocytes to acquire brown adipocyte features, including a capacity for thermogenic energy expenditure mediated by uncoupling protein 1 (UCP1). In human adipocytes, atrial NP (ANP) and ventricular NP (BNP) activated PPARγ coactivator-1α (PGC-1α) and UCP1 expression, induced mitochondriogenesis, and increased uncoupled and total respiration. At low concentrations, ANP and β-AR agonists additively enhanced expression of brown fat and mitochondrial markers in a p38 MAPK–dependent manner. Mice exposed to cold temperatures had increased levels of circulating NPs as well as higher expression of NP signaling receptor and lower expression of the NP clearance receptor (Nprc) in brown adipose tissue (BAT) and white adipose tissue (WAT). NPR-C–/– mice had markedly smaller WAT and BAT depots but higher expression of thermogenic genes such as Ucp1. Infusion of BNP into mice robustly increased Ucp1 and Pgc-1α expression in WAT and BAT, with corresponding elevation of respiration and energy expenditure. These results suggest that NPs promote “browning” of white adipocytes to increase energy expenditure, defining the heart as a central regulator of adipose tissue biology. PMID:22307324

  5. De Novo Synthesis of Steroids and Oxysterols in Adipocytes*

    PubMed Central

    Li, Jiehan; Daly, Edward; Campioli, Enrico; Wabitsch, Martin; Papadopoulos, Vassilios

    2014-01-01

    Local production and action of cholesterol metabolites such as steroids or oxysterols within endocrine tissues are currently recognized as an important principle in the cell type- and tissue-specific regulation of hormone effects. In adipocytes, one of the most abundant endocrine cells in the human body, the de novo production of steroids or oxysterols from cholesterol has not been examined. Here, we demonstrate that essential components of cholesterol transport and metabolism machinery in the initial steps of steroid and/or oxysterol biosynthesis pathways are present and active in adipocytes. The ability of adipocyte CYP11A1 in producing pregnenolone is demonstrated for the first time, rendering adipocyte a steroidogenic cell. The oxysterol 27-hydroxycholesterol (27HC), synthesized by the mitochondrial enzyme CYP27A1, was identified as one of the major de novo adipocyte products from cholesterol and its precursor mevalonate. Inhibition of CYP27A1 activity or knockdown and deletion of the Cyp27a1 gene induced adipocyte differentiation, suggesting a paracrine or autocrine biological significance for the adipocyte-derived 27HC. These findings suggest that the presence of the 27HC biosynthesis pathway in adipocytes may represent a defense mechanism to prevent the formation of new fat cells upon overfeeding with dietary cholesterol. PMID:24280213

  6. Sulforaphane induces adipocyte browning and promotes glucose and lipid utilization

    PubMed Central

    Zhang, Hui Q.; Chen, Shi Y.; Wang, An S.; Yao, An J.; Fu, Jian F.; Zhao, Jin S.; Chen, Fen; Zou, Zu Q.; Shan, Yu J.; Bao, Yong P.

    2016-01-01

    1 Scope Obesity is closely related to the imbalance of white adipose tissue storing excess calories, and brown adipose tissue dissipating energy to produce heat in mammals. Recent studies revealed that acquisition of brown characteristics by white adipocytes, termed “browning,” may positively contribute to cellular bioenergetics and metabolism homeostasis. The goal was to investigate the putative effects of natural antioxidant sulforaphane (1‐isothiocyanate‐4‐methyl‐sulfonyl butane; SFN) on browning of white adipocytes. 2 Methods and results 3T3‐L1 mature white adipocytes were treated with SFN for 48 h, and then the mitochondrial content, function, and energy utilization were assessed. SFN was found to induce 3T3‐L1 adipocytes browning based on the increased mitochondrial content and activity of respiratory chain enzymes, whereas the mechanism involved the upregulation of nuclear factor E2‐related factor 2/sirtuin1/peroxisome proliferator activated receptor gamma coactivator 1 alpha signaling. SFN enhanced uncoupling protein 1 expression, a marker for brown adipocyte, leading to the decrease in cellular ATP. SFN also enhanced glucose uptake and oxidative utilization, lipolysis, and fatty acid oxidation in 3T3‐L1 adipocytes. 3 Conclusion SFN‐induced browning of white adipocytes enhanced the utilization of cellular fuel, and application of SFN is a promising strategy to combat obesity and obesity‐related metabolic disorder. PMID:27218607

  7. Quercetin, a functional compound of onion peel, remodels white adipocytes to brown-like adipocytes.

    PubMed

    Lee, Sang Gil; Parks, John S; Kang, Hye Won

    2017-04-01

    Adipocyte browning is a promising strategy for obesity prevention. Using onion-peel-derived extracts and their bioactive compounds, we demonstrate that onion peel, a by-product of onion, can change the characteristics of white adipocytes to those of brown-like adipocytes in the white adipose tissue of mice and 3T3-L1 cells. The expression of the following brown adipose tissue-specific genes was increased in the retroperitoneal and subcutaneous adipose tissues of 0.5% onion-peel-extract-fed mice: PR domain-containing 16, peroxisome proliferator-activated receptor gamma coactivator 1α, uncoupling protein 1, fibroblast growth factor 21 and cell death-inducing DFFA-like effector. In 3T3-L1 adipocytes, onion peel extract induced the expression of brown adipose tissue-specific genes and increased the expression of carnitine palmitoyltransferase 1α. This effect was supported by decreased lipid levels and multiple small-sized lipid droplets. The ethyl acetate fraction of the onion peel extract that contained the highest proportion of hydrophobic molecules showed the same browning effect in 3T3-L1 adipocytes. A high-performance liquid chromatography analysis further identified quercetin as a functional compound in the browning effect of onion peel. The quercetin-associated browning effect was mediated in part by the activation of AMP-activated protein kinase. In summary, our study provides the first demonstration of the browning effects of onion peel and quercetin using both animal and cell models. This result indicates that onion peel has the potential to remodel the characteristics of white adipocytes to those of brown-like adipocytes.

  8. Comparison of the adipogenesis in intramuscular and subcutaneous adipocytes from Bamei and Landrace pigs.

    PubMed

    Zhang, Guo Hua; Lu, Jian Xiong; Chen, Yan; Zhao, Yong Qing; Guo, Peng Hui; Yang, Ju Tian; Zang, Rong Xin

    2014-08-01

    Fat deposition is a complex process involving proliferation, differentiation, and lipogenesis of adipocytes. Bamei and Landrace are considered to represent fat- and lean-type pig breeds. Subcutaneous (SC) and intramuscular (IM) pre-adipocytes were cultured to compare the proliferation and lipogenesis in these breeds. The differentiated adipocytes were exposed to glucose or insulin to evaluate their effects on lipogenesis and lipogenic gene expression. Pre-adipocytes proliferated dramatically faster in SC vs. IM cells, and in Bamei vs. Landrace breeds. Lipogenesis and lipogenic gene expression had a greater increase in Bamei than in Landrace, and in SC vs. IM in the process of differentiation. Glucose markedly promoted lipogenesis and lipogenic gene expression in differentiated adipocytes. The stimulation of high-glucose levels on lipogenesis and ChREBP and lipogenic gene expression was higher in SC than IM adipocytes, and in Bamei vs. Landrace. Insulin largely increased SREBP-1c expression, however it modestly stimulated lipogenesis and lipogenic gene expression, and there was no difference between cell populationsor between breeds. These data demonstrated that regional and varietal differences obviously existed in the development of porcine adipocytes. The proliferation and differentiation capacity of pre-adipocytes, and the adipocyte lipogenesis stimulated by glucose, are stronger in Bamei than Landrace, and in SC vs. IM adipocytes independent of breed.

  9. Gene-specific disruption in the filamentous fungus Cercospora nicotianae using a split-marker approach.

    PubMed

    You, Bang-Jau; Lee, Miin-Huey; Chung, Kuang-Ren

    2009-07-01

    To determine if DNA configuration, gene locus, and flanking sequences will affect homologous recombination in the phytopathogenic fungus Cercospora nicotianae, we evaluated and compared disruption efficiency targeting four cercosporin toxin biosynthetic genes encoding a polyketide synthase (CTB1), a monooxygenase/O-methyltransferase (CTB3), a NADPH-dependent oxidoreductase (CTB5), and a FAD/FMN-dependent oxidoreductase (CTB7). Transformation of C. nicotianae using a circular plasmid resulted in low disruption frequency. The use of endonucleases or a selectable marker DNA fragment flanked by homologous sequence either at one end or at both ends in the transformation procedures, increased disruption efficiency in some but not all CTB genes. A split-marker approach, using two DNA fragments overlapping within the selectable marker, increased the frequency of targeted gene disruption and homologous integration as high as 50%, depending on the target gene and on the length of homologous DNA sequence flanking the selectable marker. The results indicate that the split-marker approach favorably decreased ectopic integration and thus, greatly facilitated targeted gene disruption in this important fungal pathogen.

  10. A Transgenic Durum Wheat Line that is Free of Marker Genes and Expresses 1dy10

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We used a combination of “clean gene” technology and positive selection to generate transgenic durum wheat lines free of herbicide and antibiotic resistance marker genes. Biolistic transformation experiments were carried out using three “minimal gene cassettes” consisting of linear DNA fragments exc...

  11. New Marker Development for the Rice Blast Resistance Gene Pi-km

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The blast resistance (R) gene Pi-km protects rice against specific races of the fungal pathogen Magnaporthe oryzae. The use of blast R genes remains the most cost-effective method of disease control. To facilitate the breeding process, we developed a Pi-km specific molecular marker. For this purp...

  12. Fucoidan from the sporophyll of Undaria pinnatifida suppresses adipocyte differentiation by inhibition of inflammation-related cytokines in 3T3-L1 cells.

    PubMed

    Kim, Kui-Jin; Lee, Boo-Yong

    2012-06-01

    Obesity is a metabolic disorder, associated with cardiovascular disease and type 2 diabetes mellitus. Recent studies suggest that seaweed extracts are a significant source of bioactive compounds that are similar to dietary phytochemicals. Fucoidan, which is extracted from brown seaweeds, has a number of physiological functions. However, it is still unclear whether fucoidan would be beneficial in adipogenesis. In this study, we hypothesized that fucoidan extracted from the sporophyll of U pinnatifida exerts anti-obesity effects via inhibition of inflammatory-related cytokines. Thus, to test our hypothesis, we determined the obesity-specific therapeutic action of fucoidan in 3T3-L1 adipocytes. Herein, we showed that proliferator-activated receptor γ, CCAAR/enhancer-binding protein α, and adipocyte protein 2 were significantly suppressed in the presence of fucoidan, which decreased expression of the inflammation-related genes during adipogenesis in 3T3-L1 adipocytes. Moreover, fucoidan also reduced the accumulation of lipids and reactive oxygen species production in adipocytes. In conclusion, these results demonstrate that fucoidan from the sporophyll of U pinnatifida suppresses adipogenesis through the inhibition of major markers and inflammation-related cytokines in adipocytes. Hence, these findings indicate that fucoidan may afford some potential to control or reduce obesity.

  13. Generation of marker-free plastid transformants using a transiently cointegrated selection gene.

    PubMed

    Klaus, Sebastian M J; Huang, Fong-Chin; Golds, Timothy J; Koop, Hans-Ulrich

    2004-02-01

    Genetic engineering of higher plant plastids typically involves stable introduction of antibiotic resistance genes as selection markers. Even though chloroplast genes are maternally inherited in most crops, the possibility of marker transfer to wild relatives or microorganisms cannot be completely excluded. Furthermore, marker expression can be a substantial metabolic drain. Therefore, efficient methods for complete marker removal from plastid transformants are necessary. One method to remove the selection gene from higher plant plastids is based on loop-out recombination, a process difficult to control because selection of homoplastomic transformants is unpredictable. Another method uses the CRE/lox system, but requires additional retransformation and sexual crossing for introduction and subsequent removal of the CRE recombinase. Here we describe the generation of marker-free chloroplast transformants in tobacco using the reconstitution of wild-type pigmentation in combination with plastid transformation vectors, which prevent stable integration of the kanamycin selection marker. One benefit of a procedure using mutants is that marker-free plastid transformants can be produced directly in the first generation (T0) without retransformation or crossing.

  14. Fenretinide mediated retinoic acid receptor signalling and inhibition of ceramide biosynthesis regulates adipogenesis, lipid accumulation, mitochondrial function and nutrient stress signalling in adipocytes and adipose tissue

    PubMed Central

    Mcilroy, George D.; Tammireddy, Seshu R.; Maskrey, Benjamin H.; Grant, Louise; Doherty, Mary K.; Watson, David G.; Delibegović, Mirela; Whitfield, Phillip D.; Mody, Nimesh

    2016-01-01

    Fenretinide (FEN) is a synthetic retinoid that inhibits obesity and insulin resistance in high-fat diet (HFD)-fed mice and completely prevents 3T3-L1 pre-adipocyte differentiation. The aim of this study was to determine the mechanism(s) of FEN action in 3T3-L1 adipocytes and in mice. We used the 3T3-L1 model of adipogenesis, fully differentiated 3T3-L1 adipocytes and adipose tissue from HFD-induced obese mice to investigate the mechanisms of FEN action. We measured expression of adipogenic and retinoid genes by qPCR and activation of nutrient-signalling pathways by western blotting. Global lipid and metabolite analysis was performed and specific ceramide lipid species measured by liquid chromatography-mass spectrometry. We provide direct evidence that FEN inhibits 3T3-L1 adipogenesis via RA-receptor (RAR)-dependent signaling. However, RARα antagonism did not prevent FEN-induced decreases in lipid levels in mature 3T3-L1 adipocytes, suggesting an RAR-independent mechanism. Lipidomics analysis revealed that FEN increased dihydroceramide lipid species 5- to 16-fold in adipocytes, indicating an inhibition of the final step of ceramide biosynthesis. A similar blockade in adipose tissue from FEN-treated obese mice was associated with a complete normalisation of impaired mitochondrial β-oxidation and tricarboxylic acid cycle flux. The FEN catabolite, 4-oxo-N-(4-hydroxyphenyl)retinamide (4-OXO), also decreased lipid accumulation without affecting adipogenesis. FEN and 4-OXO (but not RA) treatment additionally led to the activation of p38-MAPK, peIF2α and autophagy markers in adipocytes. Overall our data reveals FEN utilises both RAR-dependent and -independent pathways to regulate adipocyte biology, both of which may be required for FEN to prevent obesity and insulin resistance in vivo. PMID:26592777

  15. With current gene markers, presymptomatic diagnosis of heritable disease is still a family affair

    SciTech Connect

    Not Available

    1987-09-04

    In the last four years, genes or genetic markers have been identified for a host of disorders including Huntington's disease, cystic fibrosis, Duchenne muscular dystrophy, polycystic kidney disease, bipolar depressive disorder, retinoblastoma, Alzheimer's disease, and schizophrenia. Such discoveries have made it possible to diagnose in utero some 30 genetic diseases during the first trimester of pregnancy. Yet, while these newly discovered gene markers may be revolutionizing prenatal and presymptomatic diagnosis, they are in many respects halfway technology. Such was the opinion of several speakers at a conference sponsored by the American Medical Association in Washington, DC. At the conference, entitled DNA Probes in the Practice of Medicine, geneticists emphasized that gene markers - stretches of DNA that are usually inherited in tandem with a disease gene - are usually not sufficient for presymptomatic diagnosis of genetic disease in an individual.

  16. Chronic activation of pattern recognition receptors suppresses brown adipogenesis of multipotent mesodermal stem cells and brown pre-adipocytes.

    PubMed

    Bae, Jiyoung; Chen, Jiangang; Zhao, Ling

    2015-06-01

    Brown adipose tissue (BAT) holds promise to combat obesity through energy-spending, non-shivering thermogenesis. Understanding of regulation of BAT development can lead to novel strategies to increase BAT mass and function for obesity treatment and prevention. Here, we report the effects of chronic activation of PRR on brown adipogenesis of multipotent mesodermal stem C3H10T1/2 cells and immortalized brown pre-adipocytes from the classical interscapular BAT of mice. Activation of NOD1, TLR4, or TLR2 by their respective synthetic ligand suppressed brown marker gene expression and lipid accumulation during differentiation of brown-like adipocytes of C3H10T1/2. Activation of the PRR only during the commitment was sufficient to suppress the differentiation. PRR activation suppressed PGC-1α mRNA, but induced PRDM16 mRNA at the commitment. Consistently, PRR activation suppressed the differentiation of immortalized brown pre-adipocytes. Activation of PRR induced NF-κB activation in both cells, which correlated with their abilities to suppress PPARγ transactivation, a critical event for brown adipogenesis. Taken together, our results demonstrate that chronic PRR activation suppressed brown adipogenesis of multipotent mesodermal stem cells and brown pre-adipocytes, possibly through suppression of PPARγ transactivation. The results suggest that anti- inflammatory therapies targeting PRRs may be beneficial for the BAT development.

  17. Impaired response of mature adipocytes of diabetic mice to hypoxia

    SciTech Connect

    Hong, Seok Jong Jin, Da P.; Buck, Donald W.; Galiano, Robert D.; Mustoe, Thomas A.

    2011-10-01

    Adipose tissue contains various cells such as infiltrated monocytes/macrophages, endothelial cells, preadipocytes, and adipocytes. Adipocytes have an endocrine function by secreting adipokines such as interleukin (IL)-6, tumor necrosis factor (TNF)-{alpha}, leptin, and adiponectin. Dysregulation of adipokines in adipose tissues leads to a chronic low-grade inflammation which could result in atherosclerosis, hypertension, and type 2 diabetes. A sustained inflammatory state, which is characterized by prolonged persistence of macrophages and neutrophils, is found in diabetic wounds. In addition, subcutaneous adipocytes are enormously increased in amount clinically in type 2 diabetes. However, the function of subcutaneous adipocytes, which play an important role in injured tissue subjected to hypoxia, has not been well characterized in vitro due to the difficulty of maintaining mature adipocytes in culture using conventional methods because of their buoyancy. In this study, we established a novel in vitro culture method of mature adipocytes by enclosing them in a hyaluronan (HA) based hydrogel to study their role in response to stress such as hypoxia. BrdU labeling and Ki67 immunostaining experiments showed that hydrogel enclosed mature adipocytes proliferate in vitro. Both mRNA and protein expression analyses for hypoxia regulated genes, such as vascular endothelial growth factor (VEGF) and heme oxygenase 1 (HO1), showed that mature adipocytes of wild type mice respond to hypoxia. In contrast, mature adipocytes of diabetic db/db and TallyHo mice did not efficiently respond to hypoxia. Our studies suggest that mature adipocytes are functionally active cells, and their abnormal function to hypoxia can be one of underlining mechanisms in type 2 diabetes.

  18. C/EBPα gene as a genetic marker for beef quality improvement.

    PubMed

    Adoligbe, C; Huangfu, Y F; Zan, L S; Wang, H

    2015-08-14

    Intramuscular fat (IMF) or intramuscular triglycerides are interspersed throughout the skeletal muscles. The IMF, also called marbling, imparts meat with flavor and juiciness and is one of the core criteria for judging carcass value. The quantity of IMF is influenced entirely by genetics. Recently, understanding the underlying genetic bases of IMF has been a focus particularly in the beef industry. In this study, with the deep insights of ameliorating the beef quality by genetic means, the role of the CCAAT/enhancer binding protein alpha (C/EBPα) gene was investigated by over-expressing C/EBPα in bovine muscle stem cells (MSCs) to initiate the adipogenic program. Prior to this, bovine MSCs were isolated and induced to differentiate into adipocytes from cells that were exposed to dexamethasone isobutylmethylxanthine and indomethacin; the presence of insulin and fetal bovine serum was examined. Either ectopic expression of C/EBPα or treatment with dexamethasone and insulin induced the accumulation of fat droplets and the expression of adipogenic induction genes (LPL, PPARγ, C/EBPβ, and C/EBPδ). The expression levels of myoblast-related genes (MyoD, Myf5, and Pax7) were also measured to assess the accuracy of the differentiation process. This study provides evidence that the C/EBPα gene is essential for cattle adipose tissue growth and development. Hence, this finding can contribute to improving beef carcass quality.

  19. Chilean native fruit extracts inhibit inflammation linked to the pathogenic interaction between adipocytes and macrophages.

    PubMed

    Reyes-Farias, Marjorie; Vasquez, Karla; Ovalle-Marin, Angelica; Fuentes, Francisco; Parra, Claudia; Quitral, Vilma; Jimenez, Paula; Garcia-Diaz, Diego F

    2015-05-01

    Obesity is characterized by an increase in the infiltration of monocytes into the adipose tissue, causing an inflammatory condition associated with, for example, the development of insulin resistance. Thus, anti-inflammatory-based treatments could emerge as a novel and interesting approach. It has been reported that Chilean native fruits maqui (Aristotelia chilensis) and calafate (Berberis microphylla) present high contents of polyphenols, which are known for their antioxidant and anti-inflammatory properties. The aim of this study was to evaluate the ability of extracts of these fruits to block the pathogenic interaction between adipocytes and macrophages in vitro and to compare its effect with blueberry (Vaccinium corymbosum) extract treatment, which has been already described to possess several biomedical benefits. RAW264.7 macrophages were treated with 5 μg/mL lipopolysaccharides (LPS), with conditioned media (CM) from fully differentiated 3T3-L1 adipocytes, or in a coculture (CC) with 3T3-L1 adipocytes, in the presence or absence of 100 μM [total polyphenolic content] of each extract for 24 h. The gene expression and secretion profile of several inflammatory markers were evaluated. Nitric oxide secretion induced by LPS, CM, and CC was reduced by the presence of maqui (-12.2%, -45.6%, and -14.7%, respectively) and calafate (-27.6%, -43.9%, and -11.8%, respectively) extracts. Gene expression of inducible nitric oxide synthase and TNF-α was inhibited and of IL-10 was induced by maqui and calafate extract incubation. In conclusion, the extracts of these fruits present important inhibitory-like features over the inflammatory response of the interaction between adipocytes and macrophages, comprising a potential therapeutic tool against comorbidities associated with obesity development.

  20. Chilean Native Fruit Extracts Inhibit Inflammation Linked to the Pathogenic Interaction Between Adipocytes and Macrophages

    PubMed Central

    Reyes-Farias, Marjorie; Vasquez, Karla; Ovalle-Marin, Angelica; Fuentes, Francisco; Parra, Claudia; Quitral, Vilma; Jimenez, Paula

    2015-01-01

    Abstract Obesity is characterized by an increase in the infiltration of monocytes into the adipose tissue, causing an inflammatory condition associated with, for example, the development of insulin resistance. Thus, anti-inflammatory-based treatments could emerge as a novel and interesting approach. It has been reported that Chilean native fruits maqui (Aristotelia chilensis) and calafate (Berberis microphylla) present high contents of polyphenols, which are known for their antioxidant and anti-inflammatory properties. The aim of this study was to evaluate the ability of extracts of these fruits to block the pathogenic interaction between adipocytes and macrophages in vitro and to compare its effect with blueberry (Vaccinium corymbosum) extract treatment, which has been already described to possess several biomedical benefits. RAW264.7 macrophages were treated with 5 μg/mL lipopolysaccharides (LPS), with conditioned media (CM) from fully differentiated 3T3-L1 adipocytes, or in a coculture (CC) with 3T3-L1 adipocytes, in the presence or absence of 100 μM [total polyphenolic content] of each extract for 24 h. The gene expression and secretion profile of several inflammatory markers were evaluated. Nitric oxide secretion induced by LPS, CM, and CC was reduced by the presence of maqui (−12.2%, −45.6%, and −14.7%, respectively) and calafate (−27.6%, −43.9%, and −11.8%, respectively) extracts. Gene expression of inducible nitric oxide synthase and TNF-α was inhibited and of IL-10 was induced by maqui and calafate extract incubation. In conclusion, the extracts of these fruits present important inhibitory-like features over the inflammatory response of the interaction between adipocytes and macrophages, comprising a potential therapeutic tool against comorbidities associated with obesity development. PMID:25302660

  1. Evaluation of the synuclein-y (SNCG) gene as a PPARy target in murine adipocytes, dorsal root ganglia somatosensory neurons, and human adipose tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synuclein-gamma is highly expressed in both adipocytes and peripheral nervous system (PNS) somatosensory neurons. Its mRNA is induced during adipogenesis, increased in obese human white adipose tissue (WAT), may be coordinately regulated with leptin, and is decreased following treatment of murine 3T...

  2. Rapid identification of Streptococcus intermedius by PCR with the ily gene as a species marker gene.

    PubMed

    Goto, Takatsugu; Nagamune, Hideaki; Miyazaki, Aiko; Kawamura, Yoshiaki; Ohnishi, Ooki; Hattori, Kanako; Ohkura, Kazuto; Miyamoto, Kazuaki; Akimoto, Shigeru; Ezaki, Takayuki; Hirota, Katsuhiko; Miyake, Yoichiro; Maeda, Takuya; Kourai, Hiroki

    2002-02-01

    Streptococcus intermedius belongs to the anginosus group of streptococci (AGS) and is associated with endogenous infections leading to abscesses in the oral cavity and at deepseated sites, such as the brain and liver. Two other species, S. anginosus and S. constellatus, and some presently unnamed taxa, are also classified as AGS. Recently, S. constellatus subsp. pharyngis, a new subspecies with biochemical characteristics similar to S. intermedius, was described with the potential for causing confusion when trying to identify isolates of these two species routinely with commercial identification kits, such as Rapid ID32 Strep and Fluo-Card Milleri. To correctly identify S. intermedius, this study attempted to develop an accurate PCR identification system with the ily gene as a species marker. This approach relies on amplification of an 819-bp fragment of the ily gene and its 3'-flanking region and is shown here to be specific for S. intermedius strains among all other streptococcal species. Moreover, this PCR system was applicable in direct rapid PCR with whole bacterial cells and TaKaRa Z-Taq (TaKaRa), a highly efficient DNA polymerase, as the template and DNA amplification enzyme, respectively.

  3. [Use of genes of carbon metabolism enzymes as molecular markers of Chlorobi Phylum representatives].

    PubMed

    Turova, T P; Kovaleva, O L; Gorlenko, V M; Ivanovskiĭ, R N

    2014-01-01

    This work examined the feasibility of using certain genes of carbon metabolism enzymes as molecular markers adequate for studying phylogeny and ecology of green sulfur bacteria (GSB) of the Chlorobi phylum. Primers designed to amplify the genes of ATP citrate lyase (aclB) and citrate synthase (gltA) revealed the respective genes in the genomes of all of the newly studied GSB strains. The phylogenetic trees constructed based on nucleotide sequences of these genes and amino acid sequences of the conceptually translated proteins were on the whole congruent with the 16S rRNA gene tree, with the single exception of GltA of Chloroherpeton thalassium, which formed a separate branch beyond the cluster comprised by other representatives of the Chlorobi phylum. Thus, the aclB genes but not gltA genes proved to be suitable for the design of primers specific to all Chlorobi representatives. Therefore, it was the aclB gene that was further used asa molecular marker to detect GSB in enrichment cultures and environmental samples. AclB phylotypes of GSB were revealed in all of the samples studied, with the exception of environmental samples from soda lakes. The identification of the revealed phylotypes was in agreement with the identification based on the FMO protein gene (fmo), is a well-known Chlorobi-specific molecular marker.

  4. Green Fluorescent Protein as a Marker for Gene Expression

    NASA Astrophysics Data System (ADS)

    Chalfie, Martin; Tu, Yuan; Euskirchen, Ghia; Ward, William W.; Prasher, Douglas C.

    1994-02-01

    A complementary DNA for the Aequorea victoria green fluorescent protein (GFP) produces a fluorescent product when expressed in prokaryotic (Escherichia coli) or eukaryotic (Caenorhabditis elegans) cells. Because exogenous substrates and cofactors are not required for this fluorescence, GFP expression can be used to monitor gene expression and protein localization in living organisms.

  5. Effect of outlier removal on gene marker selection using support vector machines.

    PubMed

    Moffitt, Richard; Phan, John; Hemby, Scott; Wang, May

    2005-01-01

    Biological markers are useful tools for the diagnosis and prognosis of disease. Many different methods are currently used to extract markers from multiple data sources, including gene expression microarrays. This paper investigates the effect of outlier removal on the performance of one such biomarker selection method, Support Vector Machines (SVM). A simple method of outlier removal is employed as a preprocessing step before the data is used for SVM analysis. Both linear and radial basis kernels are used as well as four different normalization techniques. Results show that outlier removal increases the number of highly predictive genes as well as the number of poorly predicting genes. This result thus supports the use of outlier removal prior to biological marker identification via SVM analysis.

  6. An accurate DNA marker assay for stem rust resistance gene Sr2 in wheat.

    PubMed

    Mago, R; Simkova, H; Brown-Guedira, G; Dreisigacker, S; Breen, J; Jin, Y; Singh, R; Appels, R; Lagudah, E S; Ellis, J; Dolezel, J; Spielmeyer, W

    2011-03-01

    The stem rust resistance gene Sr2 has provided broad-spectrum protection against stem rust (Puccinia graminis Pers. f. sp. tritici) since its wide spread deployment in wheat from the 1940s. Because Sr2 confers partial resistance which is difficult to select under field conditions, a DNA marker is desirable that accurately predicts Sr2 in diverse wheat germplasm. Using DNA sequence derived from the vicinity of the Sr2 locus, we developed a cleaved amplified polymorphic sequence (CAPS) marker that is associated with the presence or absence of the gene in 115 of 122 (95%) diverse wheat lines. The marker genotype predicted the absence of the gene in 100% of lines which were considered to lack Sr2. Discrepancies were observed in lines that were predicted to carry Sr2 but failed to show the CAPS marker. Given the high level of accuracy observed, the marker provides breeders with a selection tool for one of the most important disease resistance genes of wheat.

  7. Adipocyte telomere length associates negatively with adipocyte size, whereas adipose tissue telomere length associates negatively with the extent of fibrosis in severely obese women.

    PubMed

    el Bouazzaoui, F; Henneman, P; Thijssen, P; Visser, A; Koning, F; Lips, M A; Janssen, I; Pijl, H; Willems van Dijk, K; van Harmelen, V

    2014-05-01

    Telomere length can be considered as a biological marker for cell proliferation and aging. Obesity is associated with adipocyte hypertrophy and proliferation as well as with shorter telomeres in adipose tissue. As adipose tissue is a mixture of different cell types and the cellular composition of adipose tissue changes with obesity, it is unclear what determines telomere length of whole adipose tissue. We aimed to investigate telomere length in whole adipose tissue and isolated adipocytes in relation to adiposity, adipocyte hypertrophy and adipose tissue inflammation and fibrosis. Telomere length was measured by real-time PCR in visceral adipose tissue, and isolated adipocytes of 21 obese women with a waist ranging from 110 to 147 cm and age from 31 to 61 years. Telomere length in adipocytes was shorter than in whole adipose tissue. Telomere length of adipocytes but not whole adipose tissue correlated negatively with waist and adipocyte size, which was still significant after correction for age. Telomere length of whole adipose tissue associated negatively with fibrosis as determined by collagen content. Thus, in extremely obese individuals, adipocyte telomere length is a marker of adiposity, whereas whole adipose tissue telomere length reflects the extent of fibrosis and may indicate adipose tissue dysfunction.

  8. Adipocytes as immune regulatory cells

    PubMed Central

    Vielma, Silvana A.; Klein, Richard L.; Levingston, Corinne A.; Young, M. Rita I.

    2013-01-01

    Obesity is a chronic inflammatory state and adipocytes are capable of contributing to this inflammation by their production of inflammatory mediators. The present study used fibroblast-derived adipocytes and normal spleen cells as a model to determine if adipocytes can also serve as immune regulatory cells by modulating the functions of conventional immune cells. Media conditioned by the adipocytes stimulated release of the Th1-type cytokines IL-2, IFN-γ and GM-CSF from cultures of normal spleen cells. The adipocytes also stimulated spleen cell release of inhibitory cytokines, although to varying degrees. This included IL-10, IL-13 and, to a lesser extent, IL-4. Spleen cell production of the inflammatory cytokines IL-6, TNF-α and IL-9 was stimulated by adipocytes, although production of the Th17-derived cytokine, IL-17, was not stimulated. The adipocyte-conditioned medium did not stimulate production of predominantly monocytes-derived chemokines CXCL9, CCL2, CCL3, CCL4, but stimulated production of the predominantly T-cell-derived chemokine CCL5. In all cases where cytokine/chemokine production from spleen cells was stimulated by adipocytes, it was to a far greater level than was produced by the adipocytes themselves. Studies initiated to determine the identity of the adipocyte-derived mediators showed that the spleen cell modulation could not be attributed to solely adiponectin or leptin. Studies to determine the source of some of the cytokines whose production was stimulated by adipocytes showed that expression of the inflammatory cytokine IL-6 was not increased in either CD4+ or CD8+ T-cell. When the splenic T-cells were examined for IFN-γ, the adipocyte stimulation of IFN-γ was within CD8+ T-cells, not CD4+ T-cells. These studies show that adipocytes may be able to serve as immune regulatory cells to stimulate conventional immune cells to release a spectrum of immune mediators. PMID:23587489

  9. Viromes, Not Gene Markers, for Studying Double-Stranded DNA Virus Communities

    PubMed Central

    2014-01-01

    Microbes have recently been recognized as dominant forces in nature, with studies benefiting from gene markers that can be quickly, informatively, and universally surveyed. Viruses, where explored, have proven to be powerful modulators of locally and globally important microbes through mortality, horizontal gene transfer, and metabolic reprogramming. However, community-wide virus studies have been challenged by the lack of a universal marker. Here, I propose that viral metagenomics has advanced to largely take over study of double-stranded DNA viruses. PMID:25540374

  10. Identification of molecular markers linked to the mildew resistance gene Pl-d in apple.

    PubMed

    James, C M; Clarke, J B; Evans, K M

    2004-12-01

    Powdery mildew poses a serious problem for apple growers, and resistance to the disease is a major objective in breeding programmes for cultivar improvement. As selective pressure allows pathogens to overcome previously reliable resistances, there is a need for the introduction of novel resistance genes into new breeding lines. This investigation is concerned with the identification of the first set of molecular markers linked to the gene for mildew resistance, Pl-d, from the accession 'D12'. As no prior information on the map position or markers for Pl-d were available, a bulked-segregant approach was used to test 49 microsatellite primers, 176 amplified fragment length polymorphism (AFLP) primers and 80 random amplified polymorphic DNA (RAPD) primers in a progeny segregating for Pl-d resistance, 'Fiesta' (susceptible) x A871-14 ('Worcester Pearmain' x 'D12'). The segregations of the markers identified in the resistant and susceptible bulks were scored in the progeny, then the recombination fractions between Pl-d and the most tightly linked markers were calculated and a map prepared. Three AFLP, one RAPD and two microsatellite markers were identified. One AFLP was developed into a sequence-characterised amplified region marker, while the microsatellites CH03C02 and CH01D03 were flanking markers, 7 and 11 recombination units, respectively, from Pl-d. Two more distant microsatellites on the same linkage group, CH01D09 and CH01G12, confirmed the orientation of the markers on the linkage group. These microsatellites place Pl-d on the bottom of linkage group 12 in published apple maps, a region where a number of other disease resistance genes have been identified.

  11. Advances in plant gene-targeted and functional markers: a review

    PubMed Central

    2013-01-01

    Public genomic databases have provided new directions for molecular marker development and initiated a shift in the types of PCR-based techniques commonly used in plant science. Alongside commonly used arbitrarily amplified DNA markers, other methods have been developed. Targeted fingerprinting marker techniques are based on the well-established practices of arbitrarily amplified DNA methods, but employ novel methodological innovations such as the incorporation of gene or promoter elements in the primers. These markers provide good reproducibility and increased resolution by the concurrent incidence of dominant and co-dominant bands. Despite their promising features, these semi-random markers suffer from possible problems of collision and non-homology analogous to those found with randomly generated fingerprints. Transposable elements, present in abundance in plant genomes, may also be used to generate fingerprints. These markers provide increased genomic coverage by utilizing specific targeted sites and produce bands that mostly seem to be homologous. The biggest drawback with most of these techniques is that prior genomic information about retrotransposons is needed for primer design, prohibiting universal applications. Another class of recently developed methods exploits length polymorphism present in arrays of multi-copy gene families such as cytochrome P450 and β-tubulin genes to provide cross-species amplification and transferability. A specific class of marker makes use of common features of plant resistance genes to generate bands linked to a given phenotype, or to reveal genetic diversity. Conserved DNA-based strategies have limited genome coverage and may fail to reveal genetic diversity, while resistance genes may be under specific evolutionary selection. Markers may also be generated from functional and/or transcribed regions of the genome using different gene-targeting approaches coupled with the use of RNA information. Such techniques have the

  12. Identification of a major gene and RAPD markers for yellow seed coat colour in Brassica napus.

    PubMed

    Somers, D J; Rakow, G; Prabhu, V K; Friesen, K R

    2001-12-01

    The development of yellow-seeded Brassica napus for improving the canola-meal quality characteristics of lower fibre content and higher protein content has been restricted because no yellow-seeded forms of B. napus exist, and their conventional development requires interspecific introgression of yellow seed coat colour genes from related species. A doubled-haploid (DH) population derived from the F1 generation of the cross 'Apollo' (black-seeded) x YN90-1016 (yellow-seeded) B. napus was analysed via bulked segregant analysis to identify molecular markers associated with the yellow-seed trait in B. napus for future implementation in marker-assisted breeding. A single major gene (pigment 1) flanked by eight RAPD markers was identified co-segregating with the yellow seed coat colour trait in the population. This gene explained over 72% of the phenotypic variation in seed coat colour. Further analysis of the yellow-seeded portion of this DH population revealed two additional genes favouring 'Apollo' alleles, explaining 11 and 8.5%, respectively, of the yellow seed coat colour variation. The data suggested that there is a dominant, epistatic interaction between the pigment I locus and the two additional genes. The potential of the markers to be implemented in plant breeding for the yellow-seed trait in B. napus is discussed.

  13. Identification of Single- and Multiple-Class Specific Signature Genes from Gene Expression Profiles by Group Marker Index

    PubMed Central

    Tsai, Yu-Shuen; Aguan, Kripamoy; Pal, Nikhil R.; Chung, I-Fang

    2011-01-01

    Informative genes from microarray data can be used to construct prediction model and investigate biological mechanisms. Differentially expressed genes, the main targets of most gene selection methods, can be classified as single- and multiple-class specific signature genes. Here, we present a novel gene selection algorithm based on a Group Marker Index (GMI), which is intuitive, of low-computational complexity, and efficient in identification of both types of genes. Most gene selection methods identify only single-class specific signature genes and cannot identify multiple-class specific signature genes easily. Our algorithm can detect de novo certain conditions of multiple-class specificity of a gene and makes use of a novel non-parametric indicator to assess the discrimination ability between classes. Our method is effective even when the sample size is small as well as when the class sizes are significantly different. To compare the effectiveness and robustness we formulate an intuitive template-based method and use four well-known datasets. We demonstrate that our algorithm outperforms the template-based method in difficult cases with unbalanced distribution. Moreover, the multiple-class specific genes are good biomarkers and play important roles in biological pathways. Our literature survey supports that the proposed method identifies unique multiple-class specific marker genes (not reported earlier to be related to cancer) in the Central Nervous System data. It also discovers unique biomarkers indicating the intrinsic difference between subtypes of lung cancer. We also associate the pathway information with the multiple-class specific signature genes and cross-reference to published studies. We find that the identified genes participate in the pathways directly involved in cancer development in leukemia data. Our method gives a promising way to find genes that can involve in pathways of multiple diseases and hence opens up the possibility of using an existing

  14. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences

    PubMed Central

    Langille, Morgan G. I.; Zaneveld, Jesse; Caporaso, J. Gregory; McDonald, Daniel; Knights, Dan; Reyes, Joshua A.; Clemente, Jose C.; Burkepile, Deron E.; Vega Thurber, Rebecca L.; Knight, Rob; Beiko, Robert G.; Huttenhower, Curtis

    2013-01-01

    Profiling phylogenetic marker genes, such as the 16S rRNA gene, is a key tool for studies of microbial communities but does not provide direct evidence of a community’s functional capabilities. Here we describe PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States), a computational approach to predict the functional composition of a metagenome using marker gene data and a database of reference genomes. PICRUSt uses an extended ancestral-state reconstruction algorithm to predict which gene families are present and then combines gene families to estimate the composite metagenome. Using 16S information, PICRUSt recaptures key findings from the Human Microbiome Project and accurately predicts the abundance of gene families in host-associated and environmental communities, with quantifiable uncertainty. Our results demonstrate that phylogeny and function are sufficiently linked that this ‘predictive metagenomic’ approach should provide useful insights into the thousands of uncultivated microbial communities for which only marker gene surveys are currently available. PMID:23975157

  15. CP2 gene as a useful viability marker for Cryptosporidium parvum.

    PubMed

    Lee, Soo-Ung; Joung, Migyo; Ahn, Myoung-Hee; Huh, Sun; Song, Hyunje; Park, Woo-Yoon; Yu, Jae-Ran

    2008-02-01

    The validity of the CP2 gene of Cryptosporidium parvum as a viability marker was evaluated using absolute quantitative real-time polymerase chain reaction (qPCR) assays. Total ribonucleic acid (RNA) was isolated from live and heat-killed C. parvum oocysts, and complementary deoxyribonucleic acid was synthesized and used as a template. The most accurate number of viable C. parvum oocysts was predicted when the CP2 gene was used as a target gene. The lower detection limit of the CP2 gene was ten oocysts, which was the most sensitive among examined target genes. With heat shock induction, only hsp70 messenger RNA (mRNA) was induced, and the predicted viable oocyst number was increased by heat shock for this marker. The CP2, hsp70, Cryptosporidium oocyst wall protein, and beta-tubulin mRNAs were not detected in heat-killed oocysts, but the 18S ribosomal ribonucleic acid (rRNA) showed heat stability until 48 h after heat killing. Although the 18S rRNA demonstrated the fastest response in crossing point (CP) value among the examined primer sets in qPCR, overestimation of viable oocysts was noted in the analysis with this gene. In conclusion, the CP2 gene was identified as the most sensitive, reliable, and accurate candidate of a viability marker of C. parvum by qPCR evaluation.

  16. Relationship between Psidium species (Myrtaceae) by resistance gene analog markers: focus on nematode resistance.

    PubMed

    Noia, L R; Tuler, A C; Ferreira, A; Ferreira, M F S

    2017-03-16

    Guava (Psidium guajava L.) crop is severely affected by the nematode Meloidogyne enterolobii. Native Psidium species have been reported as sources of resistance against this nematode. Knowledge on the molecular relationship between Psidium species based on plant resistance gene analogs (RGA) can be useful in the genetic breeding of guava for resistance to M. enterolobii. In this study, RGA markers from conserved domains, and structural features of plant R genes, were employed to characterize Psidium species and establish genetic proximity, with a focus on nematode resistance. SSR markers were also applied owing to their neutral nature, thus differing from RGA markers. For this, species reported as sources of resistance to M. enterolobii, such as P. cattleianum and P. friedrichsthalianum, as well as species occurring in the Atlantic Rainforest and susceptible genotypes, were investigated. In 10 evaluated Psidium species, high interspecific genetic variability was verified through RGA and SSR markers, with intraspecific variation in P. guajava higher with SSR, as was expected. Resistant species were clustered by RGA markers, and differential amplicons among genotypes resistant and susceptible to M. enterolobii were identified. Knowledge on the molecular relationships between Psidium species constitutes useful information for breeding of the guava tree, providing direction for hybridization and material for rootstocks. Additionally, the genetic relationship between native species, which have been little studied, and P. guajava were estimated by RGAs, which were confirmed as important markers for genetic diversity related to pathogen resistance.

  17. Inhibition of adipocyte inflammation and macrophage chemotaxis by butein.

    PubMed

    Wang, Zheng; Lee, Youngyi; Eun, Jae Soon; Bae, Eun Ju

    2014-09-05

    Adipose tissue inflammation has been proposed as a therapeutic target for the treatment of obesity and metabolic disorders such as insulin resistance and type 2 diabetes. Butein, a polyphenol of vegetal origin, exhibits anti-inflammatory effects in macrophages but it was not reported whether butein prevents adipocyte inflammation. Here, we investigated the effects of butein on adipocyte inflammation in 3T3-L1 cells and performed functional macrophage migration assays. Butein opposed the stimulation of inducible nitric oxide synthase (iNOS) protein expression and of nitric oxide production by simultaneous treatment of adipocytes with tumor necrosis factor alpha (TNFα), lipopolysaccharide (LPS), and interferon gamma (TLI). In addition, butein inhibited mRNA expression of pro-inflammatory genes and chemokines in adipocytes stimulated with TLI or conditioned medium from RAW 264.7 macrophages treated with LPS. These effects were associated with suppression of inhibitor of kappa B alpha degradation induced by TNFα and with nuclear factor-kappa B (NF-κB) p65 phosphorylation and acetylation. Moreover, butein prevented phosphorylation of extracellular signal-regulated kinases, c-Jun N-terminal kinase, and the mitogen-activated protein kinase (MAPK) p38. These results suggest that butein suppresses adipocyte inflammation by inhibiting NF-κB/MAPK-dependent transcriptional activity. Furthermore, conditioned media from adipocytes stimulated macrophage chemotaxis, whereas media from adipocytes treated with butein blocked macrophage migration, an effect that was consistent with suppression of MCP-1 secretion by adipocytes treated with butein. In addition, macrophages treated with butein exhibited a reduced ability to migrate toward adipocyte CM. In conclusion, butein may represent a therapeutic agent to prevent adipose tissue inflammation and the obesity-linked insulin resistance.

  18. Phlorotannins isolated from the edible brown alga Ecklonia stolonifera exert anti-adipogenic activity on 3T3-L1 adipocytes by downregulating C/EBPα and PPARγ.

    PubMed

    Jung, Hyun Ah; Jung, Hee Jin; Jeong, Hyun Young; Kwon, Hyun Ju; Ali, Md Yousof; Choi, Jae Sue

    2014-01-01

    The dramatic increase in obesity-related diseases emphasizes the need to elucidate the cellular and molecular mechanisms underlying fat metabolism. Inhibition of adipocyte differentiation has been suggested to be an important strategy for preventing or treating obesity. In our previous study, we characterized an Ecklonia stolonifera extract and non-polar fractions thereof, including dichloromethane and ethyl acetate fractions. We showed that these fractions inhibited adipocyte differentiation and lipid formation/accumulation in 3T3-L1 preadipocytes, as assessed by Oil Red O staining. As part of our ongoing search for anti-obesity agents derived from E. stolonifera, in this work, we characterized five known phlorotannins, including phloroglucinol, eckol, dieckol, dioxinodehydroeckol, and phlorofucofuroeckol A, all of which were isolated from the active ethyl acetate fraction of E. stolonifera. We determined the chemical structures of these phlorotannins through comparisons of published nuclear magnetic resonance (NMR) spectral data. Furthermore, we screened these phlorotannins for their abilities to inhibit adipogenesis over a range of concentrations (12.5-100 μM). Of these five phlorotannins, phloroglucinol, eckol, and phlorofucofuroeckol A significantly concentration-dependently inhibited lipid accumulation in 3T3-L1 cells without affecting cell viability. In addition, the five isolated phlorotannins also significantly reduced the expression levels of several adipocyte marker genes, including proliferator activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), although they did so to different extents. These results suggest that the molecular weight of a phlorotannin is an important factor affecting its ability to inhibit adipocyte differentiation and modulate the expression levels of adipocyte marker genes.

  19. Endoplasmic Reticulum Stress Regulates Adipocyte Resistin Expression

    PubMed Central

    Lefterova, Martina I.; Mullican, Shannon E.; Tomaru, Takuya; Qatanani, Mohammed; Schupp, Michael; Lazar, Mitchell A.

    2009-01-01

    OBJECTIVE Resistin is a secreted polypeptide that impairs glucose metabolism and, in rodents, is derived exclusively from adipocytes. In murine obesity, resistin circulates at elevated levels but its gene expression in adipose tissue is paradoxically reduced. The mechanism behind the downregulation of resistin mRNA is poorly understood. We investigated whether endoplasmic reticulum (ER) stress, which is characteristic of obese adipose tissue, regulates resistin expression in cultured mouse adipocytes. RESEARCH DESIGN AND METHODS The effects of endoplasmic stress inducers on resistin mRNA and secreted protein levels were examined in differentiated 3T3-L1 adipocytes, focusing on the expression and genomic binding of transcriptional regulators of resistin. The association between downregulated resistin mRNA and induction of ER stress was also investigated in the adipose tissue of mice fed a high-fat diet. RESULTS ER stress reduced resistin mRNA in 3T3-L1 adipocytes in a time- and dose-dependent manner. The effects of ER stress were transcriptional because of downregulation of CAAT/enhancer binding protein-α and peroxisome proliferator–activated receptor-γ transcriptional activators and upregulation of the transcriptional repressor CAAT/enhancer binding protein homologous protein-10 (CHOP10). Resistin protein was also substantially downregulated, showing a close correspondence with mRNA levels in 3T3-L1 adipocytes as well as in the fat pads of obese mice. CONCLUSIONS ER stress is a potent regulator of resistin, suggesting that ER stress may underlie the local downregulation of resistin mRNA and protein in fat in murine obesity. The paradoxical increase in plasma may be because of various systemic abnormalities associated with obesity and insulin resistance. PMID:19491212

  20. Evaluating gene flow using selected markers: a case study.

    PubMed Central

    Lenormand, T; Guillemaud, T; Bourguet, D; Raymond, M

    1998-01-01

    The extent to which an organism is locally adapted in an environmental pocket depends on the selection intensities inside and outside the pocket, on migration, and on the size of the pocket. When two or more loci are involved in this local adaptation, measuring their frequency gradients and their linkage disequilbria allows one to disentangle the forces-migration and selection-acting on the system. We apply this method to the case of a local adaptation to organophosphate insecticides in the mosquito Culex pipiens pipiens in southern France. The study of two different resistance loci allowed us to estimate with support limits gene flow as well as selection pressure on insecticide resistance and the fitness costs associated with each locus. These estimates permit us to pinpoint the conditions for the maintenance of this pocket of adaptation as well as the effect of the interaction between the two resistance loci. PMID:9649528

  1. Physiological evaluation of the filamentous fungus Trichoderma reesei in production processes by marker gene expression analysis

    PubMed Central

    Rautio, Jari J; Bailey, Michael; Kivioja, Teemu; Söderlund, Hans; Penttilä, Merja; Saloheimo, Markku

    2007-01-01

    Background Biologically relevant molecular markers can be used in evaluation of the physiological state of an organism in biotechnical processes. We monitored at high frequency the expression of 34 marker genes in batch, fed-batch and continuous cultures of the filamentous fungus Trichoderma reesei by the transcriptional analysis method TRAC (TRanscript analysis with the aid of Affinity Capture). Expression of specific genes was normalised either with respect to biomass or to overall polyA RNA concentration. Expressional variation of the genes involved in various process relevant cellular functions, such as protein production, growth and stress responses, was related to process parameters such as specific growth and production rates and substrate and dissolved oxygen concentrations. Results Gene expression of secreted cellulases and recombinant Melanocarpus albomyces laccase predicted the trends in the corresponding extracellular enzyme production rates and was highest in a narrow "physiological window" in the specific growth rate (μ) range of 0.03 – 0.05 h-1. Expression of ribosomal protein mRNAs was consistent with the changes in μ. Nine starvation-related genes were found as potential markers for detection of insufficient substrate feed for maintaining optimal protein production. For two genes induced in anaerobic conditions, increasing transcript levels were measured as dissolved oxygen decreased. Conclusion The data obtained by TRAC supported the usefulness of focused and intensive transcriptional analysis in monitoring of biotechnical processes providing thus tools for process optimisation purposes. PMID:17537269

  2. Molecular beacon imaging of tumor marker gene expression in pancreatic cancer cells.

    PubMed

    Yang, Lily; Cao, Zehong; Lin, Yiming; Wood, William C; Staley, Charles A

    2005-05-01

    We have developed a fluorescence imaging-based approach to detect expression of tumor marker genes in pancreatic cancer cells using molecular beacons (MBs). MBs are short hairpin oligonucleotide probes that bind to specific oligonucleotide sequences and produce fluorescent signals. MBs targeting transcripts of two tumor marker genes, mutant K-ras and survivin, were synthesized and their specificity in detection of the expression of those genes in pancreatic cancer cells was examined. We found that K-ras MBs differentially bind to mutant K-ras mRNAs, resulting in strong fluorescent signals in pancreatic cancer cells with specific mutant K-ras genes but not in normal cells or cancer cells expressing either wild type or a different mutation of the K-ras gene. Additionally, MBs targeting survivin mRNA produced a bright fluorescent signal specifically in pancreatic cancer cells. We also demonstrated that MBs labeled with different fluorophores could detect survivin and mutant K-ras mRNAs simultaneously in single cancer cells. Furthermore, we showed that survivin and K-ras MBs have a high specificity in identifying cancer cells on frozen sections of pancreatic cancer tissues. In conclusion, molecular beacon-based imaging of expression of tumor marker genes has potential for the development of novel approaches for the detection of pancreatic cancer cells.

  3. Identification of Gene-Expression Signatures and Protein Markers for Breast Cancer Grading and Staging

    PubMed Central

    Yao, Fang; Zhang, Chi; Du, Wei; Liu, Chao; Xu, Ying

    2015-01-01

    The grade of a cancer is a measure of the cancer's malignancy level, and the stage of a cancer refers to the size and the extent that the cancer has spread. Here we present a computational method for prediction of gene signatures and blood/urine protein markers for breast cancer grades and stages based on RNA-seq data, which are retrieved from the TCGA breast cancer dataset and cover 111 pairs of disease and matching adjacent noncancerous tissues with pathologists-assigned stages and grades. By applying a differential expression and an SVM-based classification approach, we found that 324 and 227 genes in cancer have their expression levels consistently up-regulated vs. their matching controls in a grade- and stage-dependent manner, respectively. By using these genes, we predicted a 9-gene panel as a gene signature for distinguishing poorly differentiated from moderately and well differentiated breast cancers, and a 19-gene panel as a gene signature for discriminating between the moderately and well differentiated breast cancers. Similarly, a 30-gene panel and a 21-gene panel are predicted as gene signatures for distinguishing advanced stage (stages III-IV) from early stage (stages I-II) cancer samples and for distinguishing stage II from stage I samples, respectively. We expect these gene panels can be used as gene-expression signatures for cancer grade and stage classification. In addition, of the 324 grade-dependent genes, 188 and 66 encode proteins that are predicted to be blood-secretory and urine-excretory, respectively; and of the 227 stage-dependent genes, 123 and 51 encode proteins predicted to be blood-secretory and urine-excretory, respectively. We anticipate that some combinations of these blood and urine proteins could serve as markers for monitoring breast cancer at specific grades and stages through blood and urine tests. PMID:26375396

  4. The bacterial paromomycin resistance gene, aphH, as a dominant selectable marker in Volvox carteri.

    PubMed

    Jakobiak, Thomas; Mages, Wolfgang; Scharf, Birgit; Babinger, Patrick; Stark, Klaus; Schmitt, Rüdiger

    2004-12-01

    The aminoglycoside antibiotic paromomycin that is highly toxic to the green alga Volvox carteri is efficiently inactivated by aminoglycoside 3'-phosphotransferase from Streptomyces rimosus. Therefore, we made constructs in which the bacterial aphH gene encoding this enzyme was combined with Volvox cis-regulatory elements in an attempt to develop a new dominant selectable marker--paromomycin resistance (PmR)--for use in Volvox nuclear transformation. The construct that provided the most efficient transformation was one in which aphH was placed between a chimeric promoter that was generated by fusing the Volvox hsp70 and rbcS3 promoters and the 3' UTR of the Volvox rbcS3 gene. When this plasmid was used in combination with a high-impact biolistic device, the frequency of stable PmR transformants ranged about 15 per 106 target cells. Due to rapid and sharp selection, PmR transformants were readily isolated after six days, which is half the time required for previously used markers. Co-transformation of an unselected marker ranged about 30%. The chimeric aphH gene was stably integrated into the Volvox genome, frequently as tandem multiple copies, and was expressed at a level that made selection of PmR transformants simple and unambiguous. This makes the engineered bacterial aphH gene an efficient dominant selection marker for the transformation and co-transformation of a broad range of V. carteri strains without the recurring need for using auxotrophic recipient strains.

  5. Systems Biology in Animal Breeding: Identifying relationships among markers, genes, and phenotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Breeding and Genetics Symposium titled “Systems Biology in Animal Breeding: Identifying relationships among markers, genes, and phenotypes” was held at the Joint Annual Meeting of the American Dairy Science Association and the American Society of Animal Science in Phoenix, AZ, July 15 to 19, 201...

  6. Identification and Utility of Markers Linked to the Zucchini Yellow Mosaic Virus Resistance Gene in Watermelon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zucchini yellow mosaic virus Florida stain (ZYMV-FL) is one of the most economically important viruses affecting watermelon in the United States. Inheritance of resistance to ZYMV-FL is conferred by a single recessive gene. Described here is single-reaction, polymerase chain reaction-based marker l...

  7. An accurate DNA marker assay for stem rust resistance gene Sr2 in wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The stem rust resistance gene Sr2 has provided broad-spectrum protection against stem rust (Puccinia graminis) since its wide spread deployment in wheat from the 1940s. Because Sr2 confers partial resistance which is difficult to select under field conditions, a DNA marker is desirable that accurate...

  8. Analysis of gene-derived SNP marker polymorphism in wheat (Triticum aestivum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, we analyzed 359 single nucleotide polymorphisms (SNPs) previously discovered in intron sequences of wheat genes to evaluate SNP marker polymorphism in common wheat (Triticum aestivum L.). These SNPs showed an average polymorphism information content (PIC) of 0.181 among 20 US wheat c...

  9. Cell line models for differentiation: preadipocytes and adipocytes.

    PubMed

    Poulos, Sylvia P; Dodson, Michael V; Hausman, Gary J

    2010-10-01

    In vitro models have been invaluable in determining the mechanisms involved in adipocyte proliferation, differentiation, adipokine secretion and gene/protein expression. The cells presently available for research purposes all have unique advantages and disadvantages that one should be aware of when selecting cells. Established cell lines, such as 3T3-L1 cells, are easier and less costly to use than freshly isolated cells, even though freshly isolated cells allow for various comparisons such as the in vitro evaluation of different in vivo conditions that may not be possible using cell lines. Moreover, stem cells, transdifferentiated cells or dedifferentiated cells are relatively new cell models being evaluated for the study of adipocyte regulation and physiology. The focus of this brief review is to highlight similarities and differences in adipocyte models to aid in appropriate model selection and data interpretation for successful advancement of our understanding of adipocyte biology.

  10. Transition into inflammatory cancer-associated adipocytes in breast cancer microenvironment requires microRNA regulatory mechanism

    PubMed Central

    Ryu, Han Suk; Lee, Han-Byoel; Lee, Minju; Park, In Ae; Kim, Jisun; Han, Wonshik; Noh, Dong-Young

    2017-01-01

    The role of adipocytes in cancer microenvironment has gained focus during the recent years. However, the characteristics of the cancer-associated adipocytes (CAA) in human breast cancer tissues and the underlying regulatory mechanism are not clearly understood. We reviewed pathology specimens of breast cancer patients to understand the morphologic characteristics of CAA, and profiled the mRNA and miRNA expression of CAA by using indirect co-culture system in vitro. The CAAs in human breast cancers showed heterogeneous topographic relationship with breast cancer cells within the breast microenvironment. The CAAs exhibited the characteristics of de-differentiation determined by their microscopic appearance and the expression levels of adipogenic markers. Additionally, the 3T3-L1 adipocytes indirectly co-cultured with breast cancer cells showed up-regulation of inflammation-related genes including Il6 and Ptx3. The up-regulation of IL6 in CAA was further observed in human breast cancer tissues. miRNA array of indirectly co-cultured 3T3-L1 cells showed increased expression of mmu-miR-5112 which may target Cpeb1. Cpeb1 is a negative regulator of Il6. The suppressive role of mmu-miR-5112 was confirmed by dual luciferase reporter assay, and mmu-miR-5112-treated adipocytes showed up-regulation of Il6. The transition of adipocytes into more inflammatory CAA resulted in proliferation-promoting effect in ER positive breast cancer cells such as MCF7 and ZR-75-1 but not in ER negative cells. In this study, we have determined the de-differentiated and inflammatory natures of CAA in breast cancer microenvironment. Additionally, we propose a miRNA-based regulatory mechanism underlying the process of acquiring inflammatory phenotypes in CAA. PMID:28333977

  11. Effects of parabens on adipocyte differentiation.

    PubMed

    Hu, Pan; Chen, Xin; Whitener, Rick J; Boder, Eric T; Jones, Jeremy O; Porollo, Aleksey; Chen, Jiangang; Zhao, Ling

    2013-01-01

    Parabens are a group of alkyl esters of p-hydroxybenzoic acid that include methylparaben, ethylparaben, propylparaben, butylparaben, and benzylparaben. Paraben esters and their salts are widely used as preservatives in cosmetics, toiletries, food, and pharmaceuticals. Humans are exposed to parabens through the use of such products from dermal contact, ingestion, and inhalation. However, research on the effects of parabens on health is limited, and the effects of parabens on adipogenesis have not been systematically studied. Here, we report that (1) parabens promote adipogenesis (or adipocyte differentiation) in murine 3T3-L1 cells, as revealed by adipocyte morphology, lipid accumulation, and mRNA expression of adipocyte-specific markers; (2) the adipogenic potency of parabens is increased with increasing length of the linear alkyl chain in the following potency ranking order: methyl- < ethyl- < propyl- < butylparaben. The extension of the linear alkyl chain with an aromatic ring in benzylparaben further augments the adipogenic ability, whereas 4-hydroxybenzoic acid, the common metabolite of all parabens, and the structurally related benzoic acid (without the OH group) are inactive in promoting 3T3-L1 adipocyte differentiation; (3) parabens activate glucocorticoid receptor and/or peroxisome proliferator-activated receptor γ in 3T3-L1 preadipocytes; however, no direct binding to, or modulation of, the ligand binding domain of the glucocorticoid receptor by parabens was detected by glucocorticoid receptor competitor assays; and lastly, (4) parabens, butyl- and benzylparaben in particular, also promote adipose conversion of human adipose-derived multipotent stromal cells. Our results suggest that parabens may contribute to obesity epidemic, and the role of parabens in adipogenesis in vivo needs to be examined further.

  12. Fine Mapping for Identification of Citrus Alternaria Brown Spot Candidate Resistance Genes and Development of New SNP Markers for Marker-Assisted Selection

    PubMed Central

    Cuenca, Jose; Aleza, Pablo; Garcia-Lor, Andres; Ollitrault, Patrick; Navarro, Luis

    2016-01-01

    Alternaria brown spot (ABS) is a serious disease affecting susceptible citrus genotypes, which is a strong concern regarding citrus breeding programs. Resistance is conferred by a recessive locus (ABSr) previously located by our group within a 3.3 Mb genome region near the centromere in chromosome III. This work addresses fine-linkage mapping of this region for identifying candidate resistance genes and develops new molecular markers for ABS-resistance effective marker-assisted selection (MAS). Markers closely linked to ABSr locus were used for fine mapping using a 268-segregating diploid progeny derived from a heterozygous susceptible × resistant cross. Fine mapping limited the genomic region containing the ABSr resistance gene to 366 kb, flanked by markers at 0.4 and 0.7 cM. This region contains nine genes related to pathogen resistance. Among them, eight are resistance (R) gene homologs, with two of them harboring a serine/threonine protein kinase domain. These two genes along with a gene encoding a S-adenosyl-L-methionine-dependent-methyltransferase protein, should be considered as strong candidates for ABS-resistance. Moreover, the closest SNP was genotyped in 40 citrus varieties, revealing very high association with the resistant/susceptible phenotype. This new marker is currently used in our citrus breeding program for ABS-resistant parent and cultivar selection, at diploid, triploid and tetraploid level. PMID:28066498

  13. A PSO-Based Approach for Pathway Marker Identification From Gene Expression Data.

    PubMed

    Mandal, Monalisa; Mondal, Jyotirmay; Mukhopadhyay, Anirban

    2015-09-01

    In this article, a new and robust pathway activity inference scheme is proposed from gene expression data using Particle Swarm Optimization (PSO). From microarray gene expression data, the corresponding pathway information of the genes are collected from a public database. For identifying the pathway markers, the expression values of each pathway consisting of genes, termed as pathway activity, are summarized. To measure the goodness of a pathway activity vector, t-score is widely used in the existing literature. The weakness of existing techniques for inferring pathway activity is that they intend to consider all the member genes of a pathway. But in reality, all the member genes may not be significant to the corresponding pathway. Therefore, those genes, which are responsible in the corresponding pathway, should be included only. Motivated by this, in the proposed method, using PSO, important genes with respect to each pathway are identified. The objective is to maximize the average t-score. For the pathway activities inferred from different percentage of significant pathways, the average absolute t -scores are plotted. In addition, the top 50% pathway markers are evaluated using 10-fold cross validation and its performance is compared with that of other existing techniques. Biological relevance of the results is also studied.

  14. Database of cattle candidate genes and genetic markers for milk production and mastitis

    PubMed Central

    Ogorevc, J; Kunej, T; Razpet, A; Dovc, P

    2009-01-01

    A cattle database of candidate genes and genetic markers for milk production and mastitis has been developed to provide an integrated research tool incorporating different types of information supporting a genomic approach to study lactation, udder development and health. The database contains 943 genes and genetic markers involved in mammary gland development and function, representing candidates for further functional studies. The candidate loci were drawn on a genetic map to reveal positional overlaps. For identification of candidate loci, data from seven different research approaches were exploited: (i) gene knockouts or transgenes in mice that result in specific phenotypes associated with mammary gland (143 loci); (ii) cattle QTL for milk production (344) and mastitis related traits (71); (iii) loci with sequence variations that show specific allele-phenotype interactions associated with milk production (24) or mastitis (10) in cattle; (iv) genes with expression profiles associated with milk production (207) or mastitis (107) in cattle or mouse; (v) cattle milk protein genes that exist in different genetic variants (9); (vi) miRNAs expressed in bovine mammary gland (32) and (vii) epigenetically regulated cattle genes associated with mammary gland function (1). Fourty-four genes found by multiple independent analyses were suggested as the most promising candidates and were further in silico analysed for expression levels in lactating mammary gland, genetic variability and top biological functions in functional networks. A miRNA target search for mammary gland expressed miRNAs identified 359 putative binding sites in 3′UTRs of candidate genes. PMID:19508288

  15. Development of candidate gene markers associated to common bacterial blight resistance in common bean.

    PubMed

    Shi, Chun; Yu, Kangfu; Xie, Weilong; Perry, Gregory; Navabi, Alireza; Pauls, K Peter; Miklas, Phillip N; Fourie, Deidré

    2012-11-01

    Common bacterial blight (CBB), caused by Xanthomonas axonopodis pv. phaseoli (Xap), is a major yield-limiting factor of common bean (Phaseolus vulgaris L.) production around the world. Two major CBB-resistant quantitative trait loci (QTL), linked to the sequence characterized amplified region markers BC420 and SU91, are located at chromosomes 6 and 8, respectively. Using map-based cloning approach, four bacterial artificial chromosome (BAC) clones from the BC420-QTL locus and one BAC clone containing SU91 were sequenced by Roche 454 technique and subsequently assembled using merged assemblies from three different programs. Based on the quality of the assembly, only the sequences of BAC 32H6 and 4K7 were used for candidate gene marker (CGM) development and candidate gene (CG) selection. For the BC420-QTL locus, 21 novel genes were predicted in silico by FGENESH using Medicago gene model, whereas 16 genes were identified in the SU91-QTL locus. For each putative gene, one or more primer pairs were designed and tested in the contrasting near isogenic lines. Overall, six and nine polymorphic markers were found in the SU91- and BC420-QTL loci, respectively. Afterwards, association mapping was conducted in a breeding population of 395 dry bean lines to discover marker-trait associations. Two CGMs per each locus showed better association with CBB resistance than the BC420 and SU91 markers, which include BC420-CG10B and BC420-CG14 for BC420_QTL locus, and SU91-CG10 and SU91-CG11 for SU91_QTL locus. The strong associations between CBB resistance and the CGs 10 and 14 from BC420_QTL locus and the CGs 10 and 11 from SU91_QTL locus indicate that the genes 10 and 14 from the BC420 locus are potential CGs underlying the BC420_QTL locus, whereas the genes 10 and 11 from the SU91 locus are potential CGs underlying the SU91_QTL locus. The superiority of SU91-CG11 was further validated in a recombinant inbred line population Sanilac × OAC 09-3. Thus, co-dominant CGMs, BC420-CG14 and

  16. Candidate Gene Identification with SNP Marker-Based Fine Mapping of Anthracnose Resistance Gene Co-4 in Common Bean

    PubMed Central

    Burt, Andrew J.; William, H. Manilal; Perry, Gregory; Khanal, Raja; Pauls, K. Peter; Kelly, James D.; Navabi, Alireza

    2015-01-01

    Anthracnose, caused by Colletotrichum lindemuthianum, is an important fungal disease of common bean (Phaseolus vulgaris). Alleles at the Co–4 locus confer resistance to a number of races of C. lindemuthianum. A population of 94 F4:5 recombinant inbred lines of a cross between resistant black bean genotype B09197 and susceptible navy bean cultivar Nautica was used to identify markers associated with resistance in bean chromosome 8 (Pv08) where Co–4 is localized. Three SCAR markers with known linkage to Co–4 and a panel of single nucleotide markers were used for genotyping. A refined physical region on Pv08 with significant association with anthracnose resistance identified by markers was used in BLAST searches with the genomic sequence of common bean accession G19833. Thirty two unique annotated candidate genes were identified that spanned a physical region of 936.46 kb. A majority of the annotated genes identified had functional similarity to leucine rich repeats/receptor like kinase domains. Three annotated genes had similarity to 1, 3-β-glucanase domains. There were sequence similarities between some of the annotated genes found in the study and the genes associated with phosphoinositide-specific phosphilipases C associated with Co-x and the COK–4 loci found in previous studies. It is possible that the Co–4 locus is structured as a group of genes with functional domains dominated by protein tyrosine kinase along with leucine rich repeats/nucleotide binding site, phosphilipases C as well as β-glucanases. PMID:26431031

  17. Gene markers of cellular aging in human multipotent stromal cells in culture

    PubMed Central

    2014-01-01

    Introduction Human multipotent stromal cells (MSCs) isolated from bone marrow or other tissue sources have great potential to treat a wide range of injuries and disorders in the field of regenerative medicine and tissue engineering. In particular, MSCs have inherent characteristics to suppress the immune system and are being studied in clinical studies to prevent graft-versus-host disease. MSCs can be expanded in vitro and have potential for differentiation into multiple cell lineages. However, the impact of cell passaging on gene expression and function of the cells has not been determined. Methods Commercially available human MSCs derived from bone marrow from six different donors, grown under identical culture conditions and harvested at cell passages 3, 5, and 7, were analyzed with gene-expression profiling by using microarray technology. Results The phenotype of these cells did not change as reported previously; however, a statistical analysis revealed a set of 78 significant genes that were distinguishable in expression between passages 3 and 7. None of these significant genes corresponded to the markers established by the International Society for Cellular Therapy (ISCT) for MSC identification. When the significant gene lists were analyzed through pathway analysis, these genes were involved in the top-scoring networks of cellular growth and proliferation and cellular development. A meta-analysis of the literature for significant genes revealed that the MSCs seem to be undergoing differentiation into a senescent cell type when cultured extensively. Consistent with the differences in gene expression at passage 3 and 7, MSCs exhibited a significantly greater potential for cell division at passage 3 in comparison to passage 7. Conclusions Our results identified specific gene markers that distinguish aging MSCs grown in cell culture. Confirmatory studies are needed to correlate these molecular markers with biologic attributes that may facilitate the development

  18. Development of genotyping by sequencing (GBS) and array derived SNP markers for stem rust resistance gene Sr42

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The stem rust fungus, particularly race TTKSK (Ug99), poses a serious threat to world wheat production. Gene Sr42 or SrCad (which could be the same gene or an allele of Sr42) is effective against race TTKSK. However, known genetic markers for Sr42 are mostly SSR markers which are generally labor i...

  19. Marker development for rice blast resistance gene Pi66(t) and application in USDA rice mini-core collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molecular markers are useful for the identification of critical genes controlling agricultural traits of interest in crop germplasm and for the utilization of these genes in crop improvement using marker assisted selection (MAS). The improvement of blast disease resistance of rice varieties is one o...

  20. Molecular Screening of Blast Resistance Genes in Rice using SSR Markers.

    PubMed

    Singh, A K; Singh, P K; Arya, Madhuri; Singh, N K; Singh, U S

    2015-03-01

    Rice Blast is the most devastating disease causing major yield losses in every year worldwide. It had been proved that using resistant rice varieties would be the most effective way to control this disease. Molecular screening and genetic diversities of major rice blast resistance genes were determined in 192 rice germplasm accessions using simple sequence repeat (SSR) markers. The genetic frequencies of the 10 major rice blast resistance genes varied from 19.79% to 54.69%. Seven accessions IC337593, IC346002, IC346004, IC346813, IC356117, IC356422 and IC383441 had maximum eight blast resistance gene, while FR13B, Hourakani, Kala Rata 1-24, Lemont, Brown Gora, IR87756-20-2-2-3, IC282418, IC356419, PKSLGR-1 and PKSLGR-39 had seven blast resistance genes. Twenty accessions possessed six genes, 36 accessions had five genes, 41 accessions had four genes, 38 accessions had three genes, 26 accessions had two genes, 13 accessions had single R gene and only one accession IC438644 does not possess any one blast resistant gene. Out of 192 accessions only 17 accessions harboured 7 to 8 blast resistance genes.

  1. Efficient transformation of wheat by using a mutated rice acetolactate synthase gene as a selectable marker.

    PubMed

    Ogawa, Taiichi; Kawahigashi, Hiroyuki; Toki, Seiichi; Handa, Hirokazu

    2008-08-01

    Acetolactate synthase (ALS) is a target enzyme for many herbicides, including sulfonylurea and imidazolinone. We investigated the usefulness of a mutated ALS gene of rice, which had double point mutations and encoded an herbicide-resistant form of the enzyme, as a selectable marker for wheat transformation. After the genomic DNA fragment from rice containing the mutated ALS gene was introduced into immature embryos by means of particle bombardment, transgenic plants were efficiently selected with the herbicide bispyribac sodium (BS). Southern blot analysis confirmed that transgenic plants had one to more than ten copies of the transgene in their chromosomes. Adjustment of the BS concentration combined with repeated selection effectively prevented nontransgenic plants from escaping herbicide selection. Measurement of ALS activity indicated that transgenic plants produced an herbicide-resistant form of ALS and therefore had acquired the resistance to BS. This report is the first to describe a selection system for wheat transformation that uses a selectable marker gene of plant origin.

  2. Gene Marker Loss Induced by the Transposable Element, En, in Maize

    PubMed Central

    Cormack, J.; Peterson, P. A.

    1994-01-01

    The En/Spm transposable element system in maize includes the functional element, En/Spm and the receptor element I/dSpm. An En receptor has been found that shows En-induced breakage. This En-responsive receptor (designated 1836518) is located on the short arm of chromosome 9, proximal to Wx. In the presence of En, markers distal to the receptor show a loss of gene expression. Kernels heterozygous for aleurone and endosperm marker genes have a variegated appearance. The hypothesis is advanced that this variegation represents a physical loss of the chromosome segments carrying the genes distal to the receptor position. It is the first case of an En-controlled breakage event. PMID:8005421

  3. The Drosophila melanogaster cinnabar gene is a cell autonomous genetic marker in Aedes aegypti (Diptera: Culicidae).

    PubMed

    Sethuraman, Nagaraja; O'Brochta, David A

    2005-07-01

    The cinnabar gene of Drosophila melanogaster (Meigen) encodes for kynurenine hydroxylase, an enzyme involved in ommochrome biosynthesis. This gene is commonly included as a visible genetic marker in gene vectors used to create transgenic Aedes aegypti (L.) that are homozygous for the khw allele, the mosquito homolog of cinnabar. Unexpectedly, the phenotype of cells expressing kynurenine hydroxylase in transgenic Ae. aegypti is cell autonomous as demonstrated by the recovery of insects heterozygous for the kynurenine hydroxylase transgene with mosaic eye color patterns. In addition, a transgenic gynandromorph was recovered in which one-half of the insect was expressing the kynurenine hydroxylase transgene, including one eye with red pigmentation, whereas the other half of the insect was homozygous khw and included a white eye. The cell autonomous behavior of cinnabar in transgenic Ae. aegypti is unexpected and increases the utility of this genetic marker.

  4. Haploid Origin of Cork Oak Anther Embryos Detected by Enzyme and RAPD Gene Markers.

    PubMed

    Bueno; Agundez; Gomez; Carrascosa; Manzanera

    2000-05-01

    In vitro-induced cork oak (Quercus suber L.) embryos from anther cultures proved to be of haploid origin both by enzyme and RAPD gene marker analysis. The problem considered was to ascertain if embryo cultures originated either from a single haploid cell, from a microspore, or from multiple haploid cells. Therefore, a heterozygotic gene was searched for in the parent tree. The gene coding for shikimate dehydrogenase (SKDH1) proved to be heterozygous in the parental tree, and subsequently, these allozymes were screened for the embryos induced in anther cultures from the same tree. Only haploid embryos were found, confirming the microspore origin. Different genotypes were not identified inside each anther by isozyme analysis, probably because of selective pressure for one embryo early in development, but both parental SKDH1 alleles were found in the embryos of different anthers. The banding patterns detected by RAPD markers permitted the identification of multiple microspore origins inside each anther.

  5. Distribution System Water Quality Affects Responses of Opportunistic Pathogen Gene Markers in Household Water Heaters.

    PubMed

    Wang, Hong; Masters, Sheldon; Falkinham, Joseph O; Edwards, Marc A; Pruden, Amy

    2015-07-21

    Illustrative distribution system operation and management practices shaped the occurrence and persistence of Legionella spp., nontuberculous mycobacteria (NTM), Pseudomonas aeruginosa, and two amoebae host (Acanthamoeba spp., Vermamoeba vermiformis) gene markers in the effluent of standardized simulated household water heaters (SWHs). The interplay between disinfectant type (chlorine or chloramine), water age (2.3-5.7 days) and materials (polyvinyl chloride (PVC), cement or iron) in upstream simulated distribution systems (SDSs) profoundly influenced levels of pathogen gene markers in corresponding SWH bulk waters. For example, Legionella spp. were 3-4 log higher in SWHs receiving water from chloraminated vs chlorinated SDSs, because of disinfectant decay from nitrification. By contrast, SWHs fed with chlorinated PVC SDS water not only harbored the lowest levels of all pathogen markers, but effluent from the chlorinated SWHs were even lower than influent levels in several instances (e.g., 2 log less Legionella spp. and NTM for PVC and 3-5 log less P. aeruginosa for cement). However, pathogen gene marker influent levels correlated positively to effluent levels in the SWHs (P < 0.05). Likewise, microbial community structures were similar between SWHs and the corresponding SDS feed waters. This study highlights the importance and challenges of distribution system management/operation to help control opportunistic pathogens.

  6. DArT Markers Effectively Target Gene Space in the Rye Genome

    PubMed Central

    Gawroński, Piotr; Pawełkowicz, Magdalena; Tofil, Katarzyna; Uszyński, Grzegorz; Sharifova, Saida; Ahluwalia, Shivaksh; Tyrka, Mirosław; Wędzony, Maria; Kilian, Andrzej; Bolibok-Brągoszewska, Hanna

    2016-01-01

    Large genome size and complexity hamper considerably the genomics research in relevant species. Rye (Secale cereale L.) has one of the largest genomes among cereal crops and repetitive sequences account for over 90% of its length. Diversity Arrays Technology is a high-throughput genotyping method, in which a preferential sampling of gene-rich regions is achieved through the use of methylation sensitive restriction enzymes. We obtained sequences of 6,177 rye DArT markers and following a redundancy analysis assembled them into 3,737 non-redundant sequences, which were then used in homology searches against five Pooideae sequence sets. In total 515 DArT sequences could be incorporated into publicly available rye genome zippers providing a starting point for the integration of DArT- and transcript-based genomics resources in rye. Using Blast2Go pipeline we attributed putative gene functions to 1101 (29.4%) of the non-redundant DArT marker sequences, including 132 sequences with putative disease resistance-related functions, which were found to be preferentially located in the 4RL and 6RL chromosomes. Comparative analysis based on the DArT sequences revealed obvious inconsistencies between two recently published high density consensus maps of rye. Furthermore we demonstrated that DArT marker sequences can be a source of SSR polymorphisms. Obtained data demonstrate that DArT markers effectively target gene space in the large, complex, and repetitive rye genome. Through the annotation of putative gene functions and the alignment of DArT sequences relative to reference genomes we obtained information, that will complement the results of the studies, where DArT genotyping was deployed, by simplifying the gene ontology and microcolinearity based identification of candidate genes. PMID:27833625

  7. Association mapping and marker-assisted selection of the lettuce dieback resistance gene Tvr1

    PubMed Central

    2009-01-01

    Background Lettuce (Lactuca saliva L.) is susceptible to dieback, a soilborne disease caused by two viruses from the family Tombusviridae. Susceptibility to dieback is widespread in romaine and leaf-type lettuce, while modern iceberg cultivars are resistant to this disease. Resistance in iceberg cultivars is conferred by Tvr1 - a single, dominant gene that provides durable resistance. This study describes fine mapping of the resistance gene, analysis of nucleotide polymorphism and linkage disequilibrium in the Tvr1 region, and development of molecular markers for marker-assisted selection. Results A combination of classical linkage mapping and association mapping allowed us to pinpoint the location of the Tvr1 resistance gene on chromosomal linkage group 2. Nine molecular markers, based on expressed sequence tags (EST), were closely linked to Tvr1 in the mapping population, developed from crosses between resistant (Salinas and Salinas 88) and susceptible (Valmaine) cultivars. Sequencing of these markers from a set of 68 cultivars revealed a relatively high level of nucleotide polymorphism (θ = 6.7 × 10-3) and extensive linkage disequilibrium (r2 = 0.124 at 8 cM) in this region. However, the extent of linkage disequilibrium was affected by population structure and the values were substantially larger when the analysis was performed only for romaine (r2 = 0.247) and crisphead (r2 = 0.345) accessions. The association mapping approach revealed that one of the nine markers (Cntg10192) in the Tvr1 region matched exactly with resistant and susceptible phenotypes when tested on a set of 200 L. sativa accessions from all horticultural types of lettuce. The marker-trait association was also confirmed on two accessions of Lactuca serriola - a wild relative of cultivated lettuce. The combination of three single-nucleotide polymorphisms (SNPs) at the Cntg10192 marker identified four haplotypes. Three of the haplotypes were associated with resistance and one of them was always

  8. Gene Classification and Mining of Molecular Markers Useful in Red Clover (Trifolium pratense) Breeding

    PubMed Central

    Ištvánek, Jan; Dluhošová, Jana; Dluhoš, Petr; Pátková, Lenka; Nedělník, Jan; Řepková, Jana

    2017-01-01

    Red clover (Trifolium pratense) is an important forage plant worldwide. This study was directed to broadening current knowledge of red clover's coding regions and enhancing its utilization in practice by specific reanalysis of previously published assembly. A total of 42,996 genes were characterized using Illumina paired-end sequencing after manual revision of Blast2GO annotation. Genes were classified into metabolic and biosynthetic pathways in response to biological processes, with 7,517 genes being assigned to specific pathways. Moreover, 17,727 enzymatic nodes in all pathways were described. We identified 6,749 potential microsatellite loci in red clover coding sequences, and we characterized 4,005 potential simple sequence repeat (SSR) markers as generating polymerase chain reaction products preferentially within 100–350 bp. Marker density of 1 SSR marker per 12.39 kbp was achieved. Aligning reads against predicted coding sequences resulted in the identification of 343,027 single nucleotide polymorphism (SNP) markers, providing marker density of one SNP marker per 144.6 bp. Altogether, 95 SSRs in coding sequences were analyzed for 50 red clover varieties and a collection of 22 highly polymorphic SSRs with pooled polymorphism information content >0.9 was generated, thus obtaining primer pairs for application to diversity studies in T. pratense. A set of 8,623 genome-wide distributed SNPs was developed and used for polymorphism evaluation in individual plants. The polymorphic information content ranged from 0 to 0.375. Temperature switch PCR was successfully used in single-marker SNP genotyping for targeted coding sequences and for heterozygosity or homozygosity confirmation in validated five loci. Predicted large sets of SSRs and SNPs throughout the genome are key to rapidly implementing genome-based breeding approaches, for identifying genes underlying key traits, and for genome-wide association studies. Detailed knowledge of genetic relationships among

  9. Haplotype structure enables prioritization of common markers and candidate genes in autism spectrum disorder

    PubMed Central

    Vardarajan, B N; Eran, A; Jung, J-Y; Kunkel, L M; Wall, D P

    2013-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental condition that results in behavioral, social and communication impairments. ASD has a substantial genetic component, with 88–95% trait concordance among monozygotic twins. Efforts to elucidate the causes of ASD have uncovered hundreds of susceptibility loci and candidate genes. However, owing to its polygenic nature and clinical heterogeneity, only a few of these markers represent clear targets for further analyses. In the present study, we used the linkage structure associated with published genetic markers of ASD to simultaneously improve candidate gene detection while providing a means of prioritizing markers of common genetic variation in ASD. We first mined the literature for linkage and association studies of single-nucleotide polymorphisms, copy-number variations and multi-allelic markers in Autism Genetic Resource Exchange (AGRE) families. From markers that reached genome-wide significance, we calculated male-specific genetic distances, in light of the observed strong male bias in ASD. Four of 67 autism-implicated regions, 3p26.1, 3p26.3, 3q25-27 and 5p15, were enriched with differentially expressed genes in blood and brain from individuals with ASD. Of 30 genes differentially expressed across multiple expression data sets, 21 were within 10 cM of an autism-implicated locus. Among them, CNTN4, CADPS2, SUMF1, SLC9A9, NTRK3 have been previously implicated in autism, whereas others have been implicated in neurological disorders comorbid with ASD. This work leverages the rich multimodal genomic information collected on AGRE families to present an efficient integrative strategy for prioritizing autism candidates and improving our understanding of the relationships among the vast collection of past genetic studies. PMID:23715297

  10. Berberine inhibits 3T3-L1 adipocyte differentiation through the PPARgamma pathway.

    PubMed

    Huang, Cheng; Zhang, Yuebo; Gong, Zhenwei; Sheng, Xiaoyan; Li, Zongmeng; Zhang, Wei; Qin, Ying

    2006-09-22

    Berberine (BBR), a compound purified from Cortidis rhizoma, reduces serum cholesterol, triglycerides, and LDL-cholesterol of hypercholesterolemic patients and high fat diet fed animals, and increases hepatic LDLR mRNA and protein levels through a post-transcriptional mechanism. BBR also enhances the hypoglycemic action of insulin in diabetic animal models. Here, we show that BBR inhibits the differentiation of 3T3-L1 preadipocytes induced by DM and suppresses the mitotic clonal expansion of 3T3-L1 preadipocytes in a time- and dose-dependent manner. Gene expression analysis and Western blot analysis reveal that the BBR inhibits the mRNA and protein levels of adipogenesis related transcription factors PPARgamma and C/EBPalpha and their upstream regulator, C/EBPbeta. Reporter gene assays demonstrate that the full-length PPARgamma and alpha transcription activities are inhibited by BBR. Using real-time PCR, we have also found that the PPAR target genes that are involved in adipocyte differentiation, such as aP2, CD36, ACO, LPL, and other adipocyte markers, are suppressed by BBR. These studies suggest that BBR works on multiple molecular targets as an inhibitor of PPARgamma and alpha, and is a potential weight reducing, hypolipidemic, and hypoglycemic drug.

  11. Incorporation of Bacterial Blight Resistance Genes Into Lowland Rice Cultivar Through Marker-Assisted Backcross Breeding.

    PubMed

    Pradhan, Sharat Kumar; Nayak, Deepak Kumar; Pandit, Elssa; Behera, Lambodar; Anandan, Annamalai; Mukherjee, Arup Kumar; Lenka, Srikanta; Barik, Durga Prasad

    2016-07-01

    Bacterial blight (BB) of rice caused by Xanthomonas oryzae pv. oryzae is a major disease of rice in many rice growing countries. Pyramided lines carrying two BB resistance gene combinations (Xa21+xa13 and Xa21+xa5) were developed in a lowland cultivar Jalmagna background through backcross breeding by integrating molecular markers. In each backcross generation, markers closely linked to the disease resistance genes were used to select plants possessing the target genes. Background selection was continued in those plants carrying resistant genes until BC(3) generation. Plants having the maximum contribution from the recurrent parent genome were selected in each generation and hybridized with the recipient parent. The BB-pyramided line having the maximum recipient parent genome recovery of 95% was selected among BC3F1 plants and selfed to isolate homozygous BC(3)F(2) plants with different combinations of BB resistance genes. Twenty pyramided lines with two resistance gene combinations exhibited high levels of tolerance against the BB pathogen. In order to confirm the resistance, the pyramided lines were inoculated with different X. oryzae pv. oryzae strains of Odisha for bioassay. The genotypes with combination of two BB resistance genes conferred high levels of resistance to the predominant X. oryzae pv. oryzae isolates prevalent in the region. The pyramided lines showed similarity with the recipient parent with respect to major agro-morphologic traits.

  12. Molecular marker assisted gene stacking for biotic and abiotic stress resistance genes in an elite rice cultivar

    PubMed Central

    Das, Gitishree; Rao, G. J. N.

    2015-01-01

    Severe yield loss due to various biotic stresses like bacterial blight (BB), gall midge (insect) and Blast (disease) and abiotic stresses like submergence and salinity are a serious constraint to the rice productivity throughout the world. The most effective and reliable method of management of the stresses is the enhancement of host resistance, through an economical and environmentally friendly approach. Through the application of marker assisted selection (MAS) technique, the present study reports a successful pyramidization of genes/QTLs to confer resistance/tolerance to blast (Pi2, Pi9), gall Midge (Gm1, Gm4), submergence (Sub1), and salinity (Saltol) in a released rice variety CRMAS2621-7-1 as Improved Lalat which had already incorporated with three BB resistance genes xa5, xa13, and Xa21 to supplement the Xa4 gene present in Improved Lalat. The molecular analysis revealed clear polymorphism between the donor and recipient parents for all the markers that are tagged to the target traits. The conventional backcross breeding approach was followed till BC3F1 generation and starting from BC1F1 onwards, marker assisted selection was employed at each step to monitor the transfer of the target alleles with molecular markers. The different BC3F1s having the target genes/QTLs were inter crossed to generate hybrids with all 10 stress resistance/tolerance genes/QTLs into a single plant/line. Homozygous plants for resistance/tolerance genes in different combinations were recovered. The BC3F3 lines were characterized for their agronomic and quality traits and promising progeny lines were selected. The SSR based background selection was done. Most of the gene pyramid lines showed a high degree of similarity to the recurrent parent for both morphological, grain quality traits and in SSR based background selection. Out of all the gene pyramids tested, two lines had all the 10 resistance/tolerance genes and showed adequate levels of resistance/tolerance against the five target

  13. A single-nucleotide polymorphism in the 3'-UTR region of the adipocyte fatty acid binding protein 4 gene is associated with prognosis of triple-negative breast cancer.

    PubMed

    Wang, Wenmiao; Yuan, Peng; Yu, Dianke; Du, Feng; Zhu, Anjie; Li, Qing; Zhang, Pin; Lin, Dongxin; Xu, Binghe

    2016-04-05

    Triple-negative breast cancer (TNBC) is a subtype of breast cancer with poor prognosis and high heterogeneity. The aim of this study was to screen patients for single-nucleotide polymorphisms (SNPs) associated with the prognosis of TNBC. Database-derived SNPs (NextBio, Ensembl, NCBI and MirSNP) located in the 3'-untranslated regions (3'-UTRs) of genes that are differentially expressed in breast cancer were selected. The possible associations between 111 SNPs and progression risk among 323 TNBC patients were investigated using a two-step case-control study with a discovery cohort (n=162) and a validation cohort (n=161). We identified the rs1054135 SNP in the adipocyte fatty acid binding protein 4 (FABP4) gene as a predictor of TNBC recurrence. The G allele of rs1054135 was associated with a reduced risk of disease progression as well as a prolonged disease-free survival time (DFS), with a hazard ratio (HR) for recurrence in the combined sample of 0.269 [95%CI: 0.098-0.735;P=0.001]. Notably, for individuals having the rs1054135 SNP with the AA/AG genotype, the magnitude of increased tumour recurrence risk for overweight patients (BMI≥25kg/m2) was significantly elevated (HR2.53; 95%CI: 1.06-6.03). Immunohistochemical staining of adipocytes adjacent to TNBC tissues showed that the expression level of FABP4 was statistically significantly lower in patients with the rs1054135-GG genotype and those in the disease-free group (P=0.0004 and P=0.0091, respectively). These results suggested that the expression of a lipid metabolism-related gene and an important SNP in the 3'-UTR of FABP4 are associated with TNBC prognosis, which may aid in the screening of high-risk patients with TNBC recurrence and the development of novel chemotherapeutic agents.

  14. Glyphosate-tolerant CP4 and GOX genes as a selectable marker in wheat transformation.

    PubMed

    Zhou, H; Arrowsmith, J W; Fromm, M E; Hironaka, C M; Taylor, M L; Rodriguez, D; Pajeau, M E; Brown, S M; Santino, C G; Fry, J E

    1995-12-01

    The lack of alternative selectable markers in crop transformation has been a substantial barrier for commercial application of agricultural biotechnology. We have developed an efficient selection system for wheat transformation using glyphosate-tolerant CP4 and GOX genes as a selectable marker. Immature embryos of the wheat cultivar Bobwhite were bombarded with two separate plasmids harboring the CP4/GOX and GUS genes. After a 1 week delay, the bombarded embryos were transferred to a selection medium containing 2 mM glyphosate. Embryo-derived calli were subcultured onto the same selection medium every 3 weeks consecutively for 9-12 weeks, and were then regenerated and rooted on selection media with lower glyphosate concentrations. Transgenic plants tolerant to glyphosate were recovered. ELISA assay confirmed expression of the CP4 and GOX genes in R0 plants. Southern blot analysis demonstrated that the transgenes were integrated into the wheat genomes and transmitted to the following generation. The use of CP4 and GOX genes as a selectable marker provides an efficient, effective, and alternative transformation selection system for wheat.

  15. Notch activation drives adipocyte dedifferentiation and tumorigenic transformation in mice

    PubMed Central

    Yue, Feng; Karki, Anju; Castro, Beatriz; Wirbisky, Sara E.; Bidwell, Christopher A.; Freeman, Jennifer L.

    2016-01-01

    Liposarcomas (LPSs) are the most common soft-tissue cancer. Because of the lack of animal models, the cellular origin and molecular regulation of LPS remain unclear. Here, we report that mice with adipocyte-specific activation of Notch signaling (Ad/N1ICD) develop LPS with complete penetrance. Lineage tracing confirms the adipocyte origin of Ad/N1ICD LPS. The Ad/N1ICD LPS resembles human dedifferentiated LPS in histological appearance, anatomical localization, and gene expression signature. Before transformation, Ad/N1ICD adipocytes undergo dedifferentiation that leads to lipodystrophy and metabolic dysfunction. Although concomitant Pten deletion normalizes the glucose metabolism of Ad/N1ICD mice, it dramatically accelerates the LPS prognosis and malignancy. Transcriptomes and lipidomics analyses indicate that Notch activation suppresses lipid metabolism pathways that supply ligands to Pparγ, the master regulator of adipocyte homeostasis. Accordingly, synthetic Pparγ ligand supplementation induces redifferentiation of Ad/N1ICD adipocytes and tumor cells, and prevents LPS development in Ad/N1ICD mice. Importantly, the Notch target HES1 is abundantly expressed in human LPS, and Notch inhibition suppresses the growth of human dedifferentiated LPS xenografts. Collectively, ectopic Notch activation is sufficient to induce dedifferentiation and tumorigenic transformation of mature adipocytes in mouse. PMID:27573812

  16. Macrophage-secreted factors induce adipocyte inflammation and insulin resistance

    SciTech Connect

    Permana, Paska A. . E-mail: Paska.Permana@med.va.gov; Menge, Christopher; Reaven, Peter D.

    2006-03-10

    Macrophage infiltration into adipose tissue increases with obesity, a condition associated with low-grade inflammation and insulin resistance. We investigated the direct effects of macrophage-secreted factors on adipocyte inflammation and insulin resistance. 3T3-L1 adipocytes incubated with media conditioned by RAW264.7 macrophages (RAW-CM) showed dramatically increased transcription of several inflammation-related genes, greater nuclear factor kappa B (NF-{kappa}B) activity, and enhanced binding of U937 monocytes. All of these effects were prevented by co-incubation with pyrrolidinedithiocarbamate, an NF-{kappa}B inhibitor. Adipocytes incubated with RAW-CM also released more non-esterified fatty acids and this increased lipolysis was not suppressed by insulin. In addition, RAW-CM treatment decreased insulin-stimulated glucose uptake in adipocytes. Taken together, these results indicate that macrophage-secreted factors induce inflammatory responses and reduce insulin responsiveness in adipocytes. These effects of macrophage-secreted factors on adipocytes may contribute significantly to the systemic inflammation and insulin resistance associated with obesity.

  17. Programming human pluripotent stem cells into white and brown adipocytes

    PubMed Central

    Ahfeldt, Tim; Schinzel, Robert T.; Lee, Youn-Kyoung; Hendrickson, David; Kaplan, Adam; Lum, David H.; Camahort, Raymond; Xia, Fang; Shay, Jennifer; Rhee, Eugene P.; Clish, Clary B.; Deo, Rahul C.; Shen, Tony; Lau, Frank H.; Cowley, Alicia; Mowrer, Greg; Al-Siddiqi, Heba; Nahrendorf, Matthias; Musunuru, Kiran; Gerszten, Robert E.; Rinn, John L.; Cowan, Chad A.

    2012-01-01

    The utility of human pluripotent stem cells is dependent on efficient differentiation protocols that convert these cells into relevant adult cell types. Here we report the robust and efficient differentiation of human pluripotent stem cells into white or brown adipocytes. We found that inducible expression of PPARG2 alone or combined with CEBPB and/or PRDM16 in mesenchymal progenitor cells derived from pluripotent stem cells programmed their development towards a white or brown adipocyte cell fate with efficiencies of 85%–90%. These adipocytes retained their identity independent of transgene expression, could be maintained in culture for several weeks, expressed mature markers and had mature functional properties such as lipid catabolism and insulin-responsiveness. When transplanted into mice, the programmed cells gave rise to ectopic fat pads with the morphological and functional characteristics of white or brown adipose tissue. These results indicate that the cells could be used to faithfully model human disease. PMID:22246346

  18. Identification and characterization of gene-based SSR markers in date palm (Phoenix dactylifera L.)

    PubMed Central

    2012-01-01

    Background Date palm (Phoenix dactylifera L.) is an important tree in the Middle East and North Africa due to the nutritional value of its fruit. Molecular Breeding would accelerate genetic improvement of fruit tree through marker assisted selection. However, the lack of molecular markers in date palm restricts the application of molecular breeding. Results In this study, we analyzed 28,889 EST sequences from the date palm genome database to identify simple-sequence repeats (SSRs) and to develop gene-based markers, i.e. expressed sequence tag-SSRs (EST-SSRs). We identified 4,609 ESTs as containing SSRs, among which, trinucleotide motifs (69.7%) were the most common, followed by tetranucleotide (10.4%) and dinucleotide motifs (9.6%). The motif AG (85.7%) was most abundant in dinucleotides, while motifs AGG (26.8%), AAG (19.3%), and AGC (16.1%) were most common among trinucleotides. A total of 4,967 primer pairs were designed for EST-SSR markers from the computational data. In a follow up laboratory study, we tested a sample of 20 random selected primer pairs for amplification and polymorphism detection using genomic DNA from date palm cultivars. Nearly one-third of these primer pairs detected DNA polymorphism to differentiate the twelve date palm cultivars used. Functional categorization of EST sequences containing SSRs revealed that 3,108 (67.4%) of such ESTs had homology with known proteins. Conclusion Date palm EST sequences exhibits a good resource for developing gene-based markers. These genic markers identified in our study may provide a valuable genetic and genomic tool for further genetic research and varietal development in date palm, such as diversity study, QTL mapping, and molecular breeding. PMID:23241238

  19. SCAR, RAPD and RFLP markers linked to a dominant gene (Are) conferring resistance to anthracnose in common bean.

    PubMed

    Adam-Blondon, A F; Sévignac, M; Bannerot, H; Dron, M

    1994-08-01

    Anthracnose, caused by the fungusColletotrichum lindemuthianum, is a severe disease of common bean (Phaseolus vulgaris L.) controlled, in Europe, by a single dominant gene,Are. Four pairs of near-isogenic lines (NILs) were constructed, in which theAre gene was introgressed into different genetic backgrounds. These pairs of NILs were used to search for DNA markers linked to the resistance gene. Nine molecular markers, five RAPDs and four RFLPs, were found to discriminate between the resistant and the susceptible members of these NILs. A backcross progeny of 120 individuals was analysed to map these markers in relation to theAre locus. Five out of the nine markers were shown to be linked to theAre gene within a distance of 12.0 cM. The most tightly linked, a RAPD marker, was used to generate a pair of primers that specifically amplify this RAPD (sequence characterized amplified region, SCAR).

  20. Follistatin promotes adipocyte differentiation, browning, and energy metabolism.

    PubMed

    Braga, Melissa; Reddy, Srinivasa T; Vergnes, Laurent; Pervin, Shehla; Grijalva, Victor; Stout, David; David, John; Li, Xinmin; Tomasian, Venina; Reid, Christopher B; Norris, Keith C; Devaskar, Sherin U; Reue, Karen; Singh, Rajan

    2014-03-01

    Follistatin (Fst) functions to bind and neutralize the activity of members of the transforming growth factor-β superfamily. Fst has a well-established role in skeletal muscle, but we detected significant Fst expression levels in interscapular brown and subcutaneous white adipose tissue, and further investigated its role in adipocyte biology. Fst expression was induced during adipogenic differentiation of mouse brown preadipocytes and mouse embryonic fibroblasts (MEFs) as well as in cold-induced brown adipose tissue from mice. In differentiated MEFs from Fst KO mice, the induction of brown adipocyte proteins including uncoupling protein 1, PR domain containing 16, and PPAR gamma coactivator-1α was attenuated, but could be rescued by treatment with recombinant FST. Furthermore, Fst enhanced thermogenic gene expression in differentiated mouse brown adipocytes and MEF cultures from both WT and Fst KO groups, suggesting that Fst produced by adipocytes may act in a paracrine manner. Our microarray gene expression profiling of WT and Fst KO MEFs during adipogenic differentiation identified several genes implicated in lipid and energy metabolism that were significantly downregulated in Fst KO MEFs. Furthermore, Fst treatment significantly increases cellular respiration in Fst-deficient cells. Our results implicate a novel role of Fst in the induction of brown adipocyte character and regulation of energy metabolism.

  1. The v-SNARE Vti1a regulates insulin-stimulated glucose transport and Acrp30 secretion in 3T3-L1 adipocytes.

    PubMed

    Bose, Avirup; Guilherme, Adilson; Huang, Shaohui; Hubbard, Andrea C; Lane, Charles R; Soriano, Neil A; Czech, Michael P

    2005-11-04

    Regulated exocytosis in adipocytes mediates key functions, exemplified by insulin-stimulated secretion of peptides such as adiponectin and recycling of intracellular membranes containing GLUT4 glucose transporters to the cell surface. Using a proteomics approach, the v-SNARE Vti1a (vps10p tail interacting 1a) was identified by mass spectrometry in purified GLUT4-containing membranes. Insulin treatment of 3T3-L1 adipocytes decreased the amounts of both Vti1a and GLUT4 in these membranes, confirming that Vti1a is a component of insulin-sensitive GLUT4-containing vesicles. In the basal state, endogenous Vti1a colocalizes exclusively with perinuclear GLUT4. Although Vti1a has previously been reported to be a v-SNARE localized in the trans-Golgi network, treatment with brefeldin A failed to significantly modify Vti1a or GLUT4 localization while completely dispersing Golgi and trans-Golgi network marker proteins. Furthermore, depletion of Vti1a protein in cultured adipocytes through small interfering RNA-based gene silencing significantly inhibited both adiponectin secretion and insulin-stimulated deoxyglucose uptake. Taken together, these results suggest that the v-SNARE Vti1a may regulate a step common to both GLUT4 and Acrp30 trafficking in 3T3-L1 adipocytes.

  2. [Production of marker-free plants expressing the gene of the hepatitis B virus surface antigen].

    PubMed

    Rukavtsova, E B; Gaiazova, A R; Chebotareva, E N; Bur'ianova, Ia I

    2009-08-01

    The pBM plasmid, carrying the gene of hepatitis B virus surface antigen (HBsAg) and free of any selection markers of antibiotic or herbicide resistance, was constructed for genetic transformation of plants. A method for screening transformed plant seedlings on nonselective media was developed. Enzyme immunoassay was used for selecting transgenic plants with HBsAg gene among the produced regenerants; this method provides for a high sensitivity detection of HBsAg in plant extracts. Tobacco and tomato transgenic lines synthesizing this antigen at a level of 0.01-0.05% of the total soluble protein were obtained. The achieved level of HBsAg synthesis is sufficient for preclinical trials of the produced plants as a new generation safe edible vaccine. The developed method for selecting transformants can be used for producing safe plants free of selection markers.

  3. The expression profile for the tumour suppressor gene PTEN and associated polymorphic markers

    PubMed Central

    Hamilton, J A; Stewart, L M D; Ajayi, L; Gray, I C; Gray, N E; Roberts, K G; Watson, G J; Kaisary, A V; Snary, D

    2000-01-01

    PTEN, a putative tumour suppressor gene associated with prostate and other cancers, is known to be located within the chromosomal region 10q23.3. Transcription of the PTEN gives rise to multiple mRNA species. Analyses by Northern blots, using cell lines which express PTEN together with cell lines which have lost the PTEN or carry a truncated version of the gene, has allowed us to demonstrate that the pseudogene is not transcribed. In addition, 3′ RACE studies confirmed that the multiple mRNA species arising from the gene probably result from the use of alternative polyadenylation sites. No evidence for tissue- or cell-specific patterns of transcription was found. Analysis by 5′ RACE placed the putative site for the start of transcription around 830 bp upstream of the start codon. A map of the location of the PTEN gene with a series of overlapping YAC, BAC and PACs has been constructed and the relative position of eight microsatellite markers sited. Two known and one novel marker have been positioned within the gene, the others are in flanking regions. The more accurate location of these markers should help in future studies of the extent of gene loss. Several polymorphisms were also identified, all were within introns. Four of the common polymorphisms appear to be linked. In blood, DNA from 200 individuals, including normal, BPH and prostate cancer patients, confirmed this link. Only two samples of 200 did not carry the linked haplotype, both were patients with advanced prostate cancer. It is possible that such rearrangements within PTEN could be evidence of predisposition to prostate cancer in this small number of cases. © 2000 Cancer Research Campaign PMID:10817502

  4. Highly conserved low-copy nuclear genes as effective markers for phylogenetic analyses in angiosperms.

    PubMed

    Zhang, Ning; Zeng, Liping; Shan, Hongyan; Ma, Hong

    2012-09-01

    Organismal phylogeny provides a crucial evolutionary framework for many studies and the angiosperm phylogeny has been greatly improved recently, largely using organellar and rDNA genes. However, low-copy protein-coding nuclear genes have not been widely used on a large scale in spite of the advantages of their biparental inheritance and vast number of choices. Here, we identified 1083 highly conserved low-copy nuclear genes by genome comparison. Furthermore, we demonstrated the use of five nuclear genes in 91 angiosperms representing 46 orders (73% of orders) and three gymnosperms as outgroups for a highly resolved phylogeny. These nuclear genes are easy to clone and align, and more phylogenetically informative than widely used organellar genes. The angiosperm phylogeny reconstructed using these genes was largely congruent with previous ones mainly inferred from organellar genes. Intriguingly, several new placements were uncovered for some groups, including those among the rosids, the asterids, and between the eudicots and several basal angiosperm groups. These conserved universal nuclear genes have several inherent qualities enabling them to be good markers for reconstructing angiosperm phylogeny, even eukaryotic relationships, further providing new insights into the evolutionary history of angiosperms.

  5. A unique mosaic Turner syndrome patient with androgen receptor gene derived marker chromosome.

    PubMed

    Kalkan, Rasime; Özdağ, Nermin; Bundak, Rüveyde; Çirakoğlu, Ayşe; Serakinci, Nedime

    2016-01-01

    Patients with Turner syndrome are generally characterized by having short stature with no secondary sexual characteristics. Some abnormalities, such as webbed neck, renal malformations (>50%) and cardiac defects (10%) are less common. The intelligence of these patients is considered normal. Non-mosaic monosomy X is observed in approximately 45% of postnatal patients with Turner syndrome and the rest of the patients have structural abnormalities or mosaicism involving 46,X,i(Xq), 45,X/46,XX, 45,X and other variants. The phenotype of 45,X/46,X,+mar individuals varies by the genetic continent and degree of the mosaicism. The gene content of the marker chromosome is the most important when correlating the phenotype with the genotype. Here we present an 11-year-old female who was referred for evaluation of her short stature and learning disabilities. Conventional cytogenetic investigation showed a mosaic 45,X/46,X,+mar karyotype. Fluorescence in situ hybridization showed that the marker chromosome originated from the X chromosome within the androgen receptor (AR) and X-inactive specific transcript (XIST) genes. Therefore, it is possible that aberrant activation of the marker chromosome, compromising the AR and XIST genes, may modify the Turner syndrome phenotype.

  6. Marker-assisted combination of major genes for pathogen resistance in potato.

    PubMed

    Gebhardt, C; Bellin, D; Henselewski, H; Lehmann, W; Schwarzfischer, J; Valkonen, J P T

    2006-05-01

    Closely linked PCR-based markers facilitate the tracing and combining of resistance factors that have been introgressed previously into cultivated potato from different sources. Crosses were performed to combine the Ry ( adg ) gene for extreme resistance to Potato virus Y (PVY) with the Gro1 gene for resistance to the root cyst nematode Globodera rostochiensis and the Rx1 gene for extreme resistance to Potato virus X (PVX), or with resistance to potato wart (Synchytrium endobioticum). Marker-assisted selection (MAS) using four PCR-based diagnostic assays was applied to 110 F1 hybrids resulting from four 2x by 4x cross-combinations. Thirty tetraploid plants having the appropriate marker combinations were selected and tested for presence of the corresponding resistance traits. All plants tested showed the expected resistant phenotype. Unexpectedly, the plants segregated for additional resistance to pathotypes 1, 2 and 6 of S. endobioticum, which was subsequently shown to be inherited from the PVY resistant parents of the crosses. The selected plants can be used as sources of multiple resistance traits in pedigree breeding and are available from a potato germplasm bank.

  7. Chronic vortioxetine treatment in rodents modulates gene expression of neurodevelopmental and plasticity markers.

    PubMed

    Waller, Jessica A; Tamm, Joseph A; Abdourahman, Aicha; Pehrson, Alan L; Li, Yan; Cajina, Manuel; Sánchez, Connie

    2017-02-01

    The multimodal antidepressant vortioxetine displays an antidepressant profile distinct from those of conventional selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs) and possesses cognitive-enhancing properties in preclinical and clinical studies. Recent studies have begun to investigate molecular mechanisms that may differentiate vortioxetine from other antidepressants. Acute studies in adult rats and chronic studies in a middle-aged mouse model reveal upregulation of several markers that play a central role in synaptic plasticity. However, the effect of chronic vortioxetine treatment on expression of neuroplasticity and neurodevelopmental biomarkers in naïve rats has not been evaluated. In the present study, we demonstrate that vortioxetine at a range of doses regulates expression of genes associated with plasticity in the frontal cortex, hippocampus, region encompassing the amygdala, as well as in blood, and displays similar effects relative to the SSRI fluoxetine in adult naïve rats. These genes encode immediate early genes (IEGs), translational regulators, and the neurodevelopmental marker Sema4g. Similar findings detected in brain regions and in blood provide a potential translational impact, and vortioxetine appears to consistently regulate signaling in these networks of neuroplasticity and developmental markers.

  8. RFLP markers linked to scald (Rhynchosporium secalis) resistance gene Rh2 in barley.

    PubMed

    Schweizer, G F; Baumer, M; Daniel, G; Rugel, H; Röder, M S

    1995-06-01

    Rhynchosporium secalis is the causal organism of barley scald disease. A number of resistance genes against the fungus are well known; one of them, the single dominant Rh2 resistance gene, has been mapped on the linkage map of barley using RFLP (restriction fragment length polymorphism) markers. The Rh2 gene was located on the distal part of chromosome arm 1S co-segregating with the RFLP marker CDO545 in 85 doubled-haploid progeny plants. The spring barley test population used was a cross between the 6-rowed American spring barley cv Atlas, C.I. 4118, carrying the Rh2 resistance gene, and a Bavarian 2-rowed malting barley cv Steffi, susceptible for R. secalis. The assessment of resistance versus susceptibility was based on artificial infections with a one-spore inoculum in greenhouse tests and with pathotype mixtures in field tests. By testing a pathotype mixture of German origin good resistance was found for the Rh2 gene in the field.

  9. The fur Gene as a New Phylogenetic Marker for Vibrionaceae Species Identification

    PubMed Central

    Gram, Lone

    2015-01-01

    Microbial taxonomy is essential in all areas of microbial science. The 16S rRNA gene sequence is one of the main phylogenetic species markers; however, it does not provide discrimination in the family Vibrionaceae, where other molecular techniques allow better interspecies resolution. Although multilocus sequence analysis (MLSA) has been used successfully in the identification of Vibrio species, the technique has several limitations. They include the fact that several locus amplifications and sequencing have to be performed, which still sometimes lead to doubtful identifications. Using an in silico approach based on genomes from 103 Vibrionaceae strains, we demonstrate here the high resolution of the fur gene in the identification of Vibrionaceae species and its usefulness as a phylogenetic marker. The fur gene showed within-species similarity higher than 95%, and the relationships inferred from its use were in agreement with those observed for 16S rRNA analysis and MLSA. Furthermore, we developed a fur PCR sequencing-based method that allowed identification of Vibrio species. The discovery of the phylogenetic power of the fur gene and the development of a PCR method that can be used in amplification and sequencing of the gene are of general interest whether for use alone or together with the previously suggested loci in an MLSA. PMID:25662978

  10. Vcsa1 Acts as a Marker of Erectile Function Recovery After Gene Therapeutic and Pharmacological Interventions

    PubMed Central

    Calenda, Giulia; Tong, Yuehong; Tar, Moses; Lowe, Daniel; Siragusa, Joseph; Melman, Arnold; Davies, Kelvin P.

    2010-01-01

    Purpose We identified molecular markers of erectile function, particularly those responding to erectile dysfunction treatment. Materials and Methods Sprague-Dawley retired breeder rats were intracorporeally injected with pVAX-hSlo, pSMAA-hSlo or the control plasmid pVAX. One week later the intracorporeal pressure-to-blood pressure ratio and gene expression were determined by microarray analysis and quantitative reverse transcriptase-polymerase chain reaction. Rat corporeal cells were transfected in vitro with pVAX-hSlo, pSMAA-hSlo or pVAX and the change in gene expression was determined. We also determined whether Vcsa1 expression was changed after pharmacotherapy using tadalafil. Results Animals treated with vectors expressing hSlo had significantly improved erectile function compared to that in controls, accompanied by changed expression of a subset of genes. Vcsa1 was one of the genes that was most changed in expression (the third of approximately 31,000 with greater than 10-fold up-regulation). Changes in gene expression were different than those observed in corporeal cells transfected in vitro, distinguishing gene expression changes that were a direct effect of hSlo over expression. When tadalafil was administered in retired breeder rats, the Vcsa1 transcript increased 4-fold in corporeal tissue compared to that in untreated controls. Conclusions Our study identifies a set of genes that are changed in response to improved erectile function, rather than as a direct effect of treatment. We noted Vcsa1 may act as marker of the restoration of erectile function after gene transfer and pharmacotherapy. PMID:19375734

  11. Vestigial-like 3 is an inhibitor of adipocyte differentiation.

    PubMed

    Halperin, Daniel S; Pan, Calvin; Lusis, Aldons J; Tontonoz, Peter

    2013-02-01

    Adipose differentiation is a complex process controlled by a network of transcription factors and co-regulators. We compared the global gene expression patterns of adipogenic and nonadipogenic clones of 3T3-F442A preadipocytes and identified the transcriptional cofactor, vestigial-like 3 (Vgll3), as an inhibitor of adipogenesis. Vgll3 expression is down-regulated during terminal adipocyte differentiation in vitro and negatively correlates with weight and total fat mass in vivo. Furthermore, enforced Vgll3 expression inhibits the differentiation of preadipocytes in vitro, whereas shRNA-mediated knockdown of Vgll3 expression promotes differentiation. Expression of Vgll3 promoted the expression of genes associated with bone and chondrocyte formation, suggesting that Vgll3 participates in the decision of mesenchymal cells to proceed down the adipocyte, bone, or cartilage lineages. The elucidation of factors involved in specification of the adipocyte phenotype may aid in the identification of new strategies for the treatment of metabolic disease.

  12. Ubc9 Impairs Activation of the Brown Fat Energy Metabolism Program in Human White Adipocytes.

    PubMed

    Hartig, Sean M; Bader, David A; Abadie, Kathleen V; Motamed, Massoud; Hamilton, Mark P; Long, Weiwen; York, Brian; Mueller, Michaela; Wagner, Martin; Trauner, Michael; Chan, Lawrence; Bajaj, Mandeep; Moore, David D; Mancini, Michael A; McGuire, Sean E

    2015-09-01

    Insulin resistance and type 2 diabetes mellitus (T2DM) result from an inability to efficiently store and catabolize surplus energy in adipose tissue. Subcutaneous adipocytes protect against insulin resistance and T2DM by coupling differentiation with the induction of brown fat gene programs for efficient energy metabolism. Mechanisms that disrupt these programs in adipocytes are currently poorly defined, but represent therapeutic targets for the treatment of T2DM. To gain insight into these mechanisms, we performed a high-throughput microscopy screen that identified ubiquitin carrier protein 9 (Ubc9) as a negative regulator of energy storage in human sc adipocytes. Ubc9 depletion enhanced energy storage and induced the brown fat gene program in human sc adipocytes. Induction of adipocyte differentiation resulted in decreased Ubc9 expression commensurate with increased brown fat gene expression. Thiazolidinedione treatment reduced the interaction between Ubc9 and peroxisome proliferator-activated receptor (PPAR)γ, suggesting a mechanism by which Ubc9 represses PPARγ activity. In support of this hypothesis, Ubc9 overexpression remodeled energy metabolism in human sc adipocytes by selectively inhibiting brown adipocyte-specific function. Further, Ubc9 overexpression decreased uncoupling protein 1 expression by disrupting PPARγ binding at a critical uncoupling protein 1 enhancer region. Last, Ubc9 is significantly elevated in sc adipose tissue isolated from mouse models of insulin resistance as well as diabetic and insulin-resistant humans. Taken together, our findings demonstrate a critical role for Ubc9 in the regulation of sc adipocyte energy homeostasis.

  13. Conjugated Linoleic Acid Induces Human Adipocyte Delipidation

    PubMed Central

    Brown, J. Mark; Boysen, Maria Sandberg; Chung, Soonkyu; Fabiyi, Olowatoyin; Morrison, Ron F.; Mandrup, Susanne; McIntosh, Michael K.

    2005-01-01

    Dietary conjugated linoleic acid (CLA) reduces body fat in animals and some humans. Here we show that trans-10, cis-12 CLA, but not cis-9, trans-11 CLA, when added to cultures of stromal vascular cells containing newly differentiated human adipocytes, caused a time-dependent decrease in triglyceride content, insulin-stimulated glucose and fatty acid uptake, incorporation into lipid, and oxidation compared with controls. In parallel, gene expression of peroxisome proliferator-activated receptor-γ and many of its downstream targets were diminished by trans-10, cis-12 CLA, whereas leptin gene expression was increased. Prior to changes in gene expression and metabolism, trans-10, cis-12 CLA caused a robust and sustained activation of mitogen-activated protein kinase kinase/extracellular signal-related kinase (MEK/ERK) signaling. Furthermore, the trans-10, cis-12 CLA-mediated activation of MEK/ERK could be attenuated by pretreatment with U0126 and pertussis toxin. In parallel, pretreatment with U0126 blocked the ability of trans-10, cis-12 CLA to alter gene expression and attenuate glucose and fatty acid uptake of the cultures. Intriguingly, the induction by CLA of MEK/ERK signaling was linked to hypersecretion of adipocytokines interleukin-6 and interleukin-8. Collectively, these data demonstrate for the first time that trans-10, cis-12 CLA decreases the triglyceride content of newly differentiated human adipocytes by inducing MEK/ERK signaling through the autocrine/paracrine actions of interleukins-6 and 8. PMID:15067015

  14. A bacterial gene codA encoding cytosine deaminase is an effective conditional negative selectable marker in Glycine max

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background Conditional negative selection is a powerful technique whereby the absence of a gene product allows survival in otherwise lethal conditions. In plants, the Escherichia coli gene codA has been employed as a negative selection marker. CodA is a conditionally lethal dominant gene encoding cy...

  15. Coexpression of osteogenic and adipogenic differentiation markers in selected subpopulations of primary human mesenchymal progenitor cells.

    PubMed

    Ponce, M L; Koelling, S; Kluever, A; Heinemann, D E H; Miosge, N; Wulf, G; Frosch, K-H; Schütze, N; Hufner, M; Siggelkow, H

    2008-07-01

    Knowledge of the basic mechanisms controlling osteogenesis and adipogenesis might provide new insights into the prevention of osteoporosis and age-related osteopenia. With the help of magnetic cell sorting and fluorescence activated cell sorting (FACS), osteoblastic subpopulations of mesenchymal progenitor cells were characterized. Alkaline phosphatase (AP) negative cells expressed low levels of osteoblastic and adipocytic markers. AP positive cells expressed adipocytic markers more strongly than the AP negative cell populations, thus suggesting that committed osteoblasts exhibit a greater adipogenic potential. AP negative cells differentiated to the mature osteoblastic phenotype, as demonstrated by increased AP-activity and osteocalcin secretion under standard osteogenic culture conditions. Surprisingly, this was accompanied by increased expression of adipocytic gene markers such as peroxisome proliferator-activated receptor-gamma2, lipoprotein lipase and fatty acid binding protein. The induction of adipogenic markers was suppressed by transforming growth factor-beta1 (TGF-beta1) and promoted by bone morphogenetic protein 2 (BMP-2). Osteogenic culture conditions including BMP-2 induced both the formation of mineralized nodules and cytoplasmic lipid vacuoles. Upon immunogold electron microscopic analysis, osteoblastic and adipogenic marker proteins were detectable in the same cell. Our results suggest that osteogenic and adipogenic differentiation in human mesenchymal progenitor cells might not be exclusively reciprocal, but rather, a parallel event until late during osteoblast development.

  16. Expression pattern of drought stress marker genes in soybean roots under two water deficit systems

    PubMed Central

    Neves-Borges, Anna Cristina; Guimarães-Dias, Fábia; Cruz, Fernanda; Mesquita, Rosilene Oliveira; Nepomuceno, Alexandre Lima; Romano, Eduardo; Loureiro, Marcelo Ehlers; de Fátima Grossi-de-Sá, Maria; Alves-Ferreira, Márcio

    2012-01-01

    The study of tolerance mechanisms for drought stress in soybean is fundamental to the understanding and development of tolerant varieties. Using in silico analysis, four marker genes involved in the classical ABA-dependent and ABA-independent pathways of drought response were identified in the Glycine max genome in the present work. The expression profiles of the marker genes ERD1-like, GmaxRD20A-like, GmaxRD22-like and GmaxRD29B-like were investigated by qPCR in root samples of drought sensitive and tolerant soybean cultivars (BR 16 and Embrapa 48, respectively), submitted to water deficit conditions in hydroponic and pot-based systems. Among the four putative soybean homologs to Arabidopsis genes investigated herein, only GmaxRD29B-like was not regulated by water deficit stress. Distinct expression profiles and different induction levels were observed among the genes, as well as between the two drought-inducing systems. Our results showed contrasting gene expression responses for the GmaxRD20A-like and GmaxRD22-like genes. GmaxRD20A-like was highly induced by continuous drought acclimating conditions, whereas GmaxRD22-like responses decreased after abrupt water deprivation. GmaxERD1-like showed a different expression profile for the cultivars in each system. Conversely, GmaxRD20A-like and GmaxRD22-like genes exhibited similar expression levels in tolerant plants in both systems. PMID:22802707

  17. Comparative analysis of antibiotic resistance gene markers in Mycoplasma genitalium: application to studies of the minimal gene complement.

    PubMed

    Pich, Oscar Q; Burgos, Raul; Planell, Raquel; Querol, Enrique; Piñol, Jaume

    2006-02-01

    Mycoplasma genitalium has been proposed as a suitable model for an in-depth understanding of the biology of a free-living organism. This paper reports that the expression of the aminoglycoside resistance gene aac(6')-aph(2''), the only selectable marker hitherto available for M. genitalium genetic studies, correlates with a growth impairment of the resistant strains. In light of this finding, a tetM438 construction based on the tetracycline resistance gene tetM was developed; it can be used efficiently in M. genitalium and confers multiple advantages when compared to aac(6')-aph(2''). The use of tetM438 significantly improves transformation efficiency and generates visible colonies faster. Finally, the improvements in the pMTnTetM438 construction made it possible to obtain insertions in genes which have not been previously considered to be dispensable under laboratory growth conditions.

  18. Effects of cardiotrophin on adipocytes.

    PubMed

    Zvonic, Sanjin; Hogan, Jessica C; Arbour-Reily, Patricia; Mynatt, Randall L; Stephens, Jacqueline M

    2004-11-12

    Cardiotrophin (CT-1) is a naturally occurring protein member of the interleukin (IL)-6 cytokine family and signals through the gp130/leukemia inhibitory factor receptor (LIFR) heterodimer. The formation of gp130/LIFR complex triggers the auto/trans-phosphorylation of associated Janus kinases, leading to the activation of Janus kinase/STAT and MAPK (ERK1 and -2) signaling pathways. Since adipocytes express both gp130 and LIFR proteins and are responsive to other IL-6 family cytokines, we examined the effects of CT-1 on 3T3-L1 adipocytes. Our studies have shown that CT-1 administration results in a dose- and time-dependent activation and nuclear translocation of STAT1, -3, -5A, and -5B as well as ERK1 and -2. We also confirmed the ability of CT-1 to induce signaling in fat cells in vivo. Our studies revealed that neither CT-1 nor ciliary neurotrophic factor treatment affected adipocyte differentiation. However, acute CT-1 treatment caused an increase in SOCS-3 mRNA in adipocytes and a transient decrease in peroxisome proliferator-activated receptor gamma (PPARgamma) mRNA that was regulated by the binding of STAT1 to the PPARgamma2 promoter. The effects of CT-1 on SOCS-3 and PPARgamma mRNA were independent of MAPK activation. Chronic administration of CT-1 to 3T3-L1 adipocytes resulted in a decrease of both fatty acid synthase and insulin receptor substrate-1 protein expression yet did not effect the expression of a variety of other adipocyte proteins. Moreover, chronic CT-1 treatment resulted in the development of insulin resistance as judged by a decrease in insulin-stimulated glucose uptake. In summary, CT-1 is a potent regulator of signaling in adipocytes in vitro and in vivo, and our current efforts are focused on determining the role of this cardioprotective cytokine on adipocyte physiology.

  19. High Throughput Gene Expression Analysis Identifies Reliable Expression Markers of Human Corneal Endothelial Cells

    PubMed Central

    Chng, Zhenzhi; Peh, Gary S. L.; Herath, Wishva B.; Cheng, Terence Y. D.; Ang, Heng-Pei; Toh, Kah-Peng; Robson, Paul; Mehta, Jodhbir S.; Colman, Alan

    2013-01-01

    Considerable interest has been generated for the development of suitable corneal endothelial graft alternatives through cell-tissue engineering, which can potentially alleviate the shortage of corneal transplant material. The advent of less invasive suture-less key-hole surgery options such as Descemet’s Stripping Endothelial Keratoplasty (DSEK) and Descemet’s Membrane Endothelial Keratoplasty (DMEK), which involve transplantation of solely the endothelial layer instead of full thickness cornea, provide further impetus for the development of alternative endothelial grafts for clinical applications. A major challenge for this endeavor is the lack of specific markers for this cell type. To identify genes that reliably mark corneal endothelial cells (CECs) in vivo and in vitro, we performed RNA-sequencing on freshly isolated human CECs (from both young and old donors), CEC cultures, and corneal stroma. Gene expression of these corneal cell types was also compared to that of other human tissue types. Based on high throughput comparative gene expression analysis, we identified a panel of markers that are: i) highly expressed in CECs from both young donors and old donors; ii) expressed in CECs in vivo and in vitro; and iii) not expressed in corneal stroma keratocytes and the activated corneal stroma fibroblasts. These were SLC4A11, COL8A2 and CYYR1. The use of this panel of genes in combination reliably ascertains the identity of the CEC cell type. PMID:23844023

  20. Dynamic Regulation of Genes Involved in Mitochondrial DNA Replication and Transcription during Mouse Brown Fat Cell Differentiation and Recruitment

    PubMed Central

    Murholm, Maria; Dixen, Karen; Qvortrup, Klaus; Hansen, Lillian H. L.; Amri, Ez-Zoubir; Madsen, Lise; Barbatelli, Giorgio; Quistorff, Bjørn; Hansen, Jacob B.

    2009-01-01

    Background Brown adipocytes are specialised in dissipating energy through adaptive thermogenesis, whereas white adipocytes are specialised in energy storage. These essentially opposite functions are possible for two reasons relating to mitochondria, namely expression of uncoupling protein 1 (UCP1) and a remarkably higher mitochondrial abundance in brown adipocytes. Methodology/Principal Findings Here we report a comprehensive characterisation of gene expression linked to mitochondrial DNA replication, transcription and function during white and brown fat cell differentiation in vitro as well as in white and brown fat, brown adipose tissue fractions and in selected adipose tissues during cold exposure. We find a massive induction of the majority of such genes during brown adipocyte differentiation and recruitment, e.g. of the mitochondrial transcription factors A (Tfam) and B2 (Tfb2m), whereas only a subset of the same genes were induced during white adipose conversion. In addition, PR domain containing 16 (PRDM16) was found to be expressed at substantially higher levels in brown compared to white pre-adipocytes and adipocytes. We demonstrate that forced expression of Tfam but not Tfb2m in brown adipocyte precursor cells promotes mitochondrial DNA replication, and that silencing of PRDM16 expression during brown fat cell differentiation blunts mitochondrial biogenesis and expression of brown fat cell markers. Conclusions/Significance Using both in vitro and in vivo model systems of white and brown fat cell differentiation, we report a detailed characterisation of gene expression linked to mitochondrial biogenesis and function. We find significant differences in differentiating white and brown adipocytes, which might explain the notable increase in mitochondrial content observed during brown adipose conversion. In addition, our data support a key role of PRDM16 in triggering brown adipocyte differentiation, including mitochondrial biogenesis and expression of UCP1

  1. Genetic and functional characterization of clonally derived adult human brown adipocytes

    PubMed Central

    Shinoda, Kosaku; Luijten, Ineke H N; Hasegawa, Yutaka; Hong, Haemin; Sonne, Si B; Kim, Miae; Xue, Ruidan; Chondronikola, Maria; Cypess, Aaron M; Tseng, Yu-Hua; Nedergaard, Jan; Sidossis, Labros S; Kajimura, Shingo

    2015-01-01

    Brown adipose tissue (BAT) acts in mammals as a natural defense system against hypothermia, and its activation to a state of increased energy expenditure is believed to protect against the development of obesity. Even though the existence of BAT in adult humans has been widely appreciated1–8, its cellular origin and molecular identity remain elusive largely because of high cellular heterogeneity within various adipose tissue depots. To understand the nature of adult human brown adipocytes at single cell resolution, we isolated clonally derived adipocytes from stromal vascular fractions of adult human BAT from two individuals and globally analyzed their molecular signatures. We used RNA sequencing followed by unbiased genome-wide expression analyses and found that a population of uncoupling protein 1 (UCP1)-positive human adipocytes possessed molecular signatures resembling those of a recruitable form of thermogenic adipocytes (that is, beige adipocytes). In addition, we identified molecular markers that were highly enriched in UCP1-positive human adipocytes, a set that included potassium channel K3 (KCNK3) and mitochondrial tumor suppressor 1 (MTUS1). Further, we functionally characterized these two markers using a loss-of-function approach and found that KCNK3 and MTUS1 were required for beige adipocyte differentiation and thermogenic function. The results of this study present new opportunities for human BAT research, such as facilitating cell-based disease modeling and unbiased screens for thermogenic regulators. PMID:25774848

  2. Identification of cold-responsive genes in energycane for their use in genetic diversity analysis and future functional marker development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Breeding for cold tolerance in sugarcane will allow its cultivation as a dedicated biomass crop in cold environments. Development of functional markers to facilitate marker-assisted breeding requires identification of cold stress tolerance genes. Using suppression subtractive hybridization, 465 cold...

  3. The life of the gay gene: from hypothetical genetic marker to social reality.

    PubMed

    O'Riordan, Kate

    2012-01-01

    The gay gene was first identified in 1993 as a correlation between the genetic marker Xq28 and gay male sexuality. The results of this original study were never replicated, and the biological reality of such an entity remains hypothetical. However, despite such tenuous provenance, the gay gene has persisted as a reference in science news, popular science writings, and in press releases and editorials about biomedical research. An examination of the life of the gay gene in U.K. news media demonstrates that the gay gene has become an assumed back-story to genetic sexuality research over time, and that the critique of its very existence has been diminished. Latterly, the gay gene has entered into the online biomedical databases of the 21st century with the same pattern of persistence and diminishing critique. This article draws on an analysis of the U.K. press and online databases to represent the process through which the address of the gay gene has shifted and become an index of biomedicalization. The consequent unmooring of the gay gene from accountability and accuracy demonstrates that the organization of biomedical databases could benefit from greater cross-disciplinary attention.

  4. Use of the pyrG gene as a food-grade selection marker in Monascus.

    PubMed

    Wang, Bo-hua; Xu, Yang; Li, Yan-ping

    2010-11-01

    Ma-pyrG was cloned from Monascus aurantiacus AS3.4384 using degenerate PCR with primers designed with an algorithm called CODEHOP, and its complete sequence was obtained by a PCR-based strategy for screening a Monascus fosmid library. Ma-pyrG encodes orotidine-5'-phosphate decarboxylase (OMPdecase), a 283-aminoacid protein with 81% sequence identity to that from Aspergillus flavus NRRL 3357. A pyrG mutant strain from M. aurantiacus AS3.4384, named UM28, was isolated by resistance to 5-fluoroorotic acid after UV mutagenesis. Sequence analysis of this mutated gene revealed that it contained a point mutation at nucleotide position +220. Plasmid pGFP-pyrG, bearing the green fluorescent protein gene (GFP) as a model gene and Ma-pyrG as a selection marker, were constructed. pGFP-pyrG were successfully transformed into UM28 by using the PEG method.

  5. Effect of coculturing on the myogenic and adipogenic marker gene expression.

    PubMed

    Muthuraman, Pandurangan

    2014-05-01

    The present experiment was carried out to evaluate the effect of coculturing on myogenic and adipogenic marker gene expressions with the use of C2C12 and 3 T3-L1 preadipocyte cells under the coculture system. C2C12 and 3 T3-L1 cells were cocultured using transwell inserts with a 0.4-μm porous membrane to separate C2C12 and 3 T3-L1 cells. Each cell type was grown independently on the transwell plates. Following cell differentiation, inserts containing 3 T3-L1 cells were transferred to C2C12 plates, and inserts containing C2C12 cells were transferred to 3 T3-L1 plates. After coculture of the C2C12 and 3 T3-L1 cells for 48 and 72 h, the cells in the lower well were harvested for analysis, and this process was carried out for both cells. Myogenic markers such as myogenin, MyoD, Myf5, PAX3, and PAX7 mRNA expressions were analyzed in the cocultured C2C12 cells. Adipogenic markers such as fatty acid-binding protein 4 (FABP4), peroxisome proliferator-activating receptor (PPARγ), CCAAT/enhancer-binding protein (CEBPA), adiponectin, lipoprotein lipase, and fatty acid synthase mRNA expressions were analyzed in the cocultured 3 T3-L1 cells. Myogenic and adipogenic marker gene mRNA expressions were significantly altered in the cocultured C2C12 and 3 T3-L1 cells when compared with the monocultured C2C12 and 3 T3-L1 cells.

  6. SNP identification and SNAP marker development for a GmNARK gene controlling supernodulation in soybean.

    PubMed

    Kim, M Y; Van, K; Lestari, P; Moon, J-K; Lee, S-H

    2005-04-01

    Supernodulation in soybean (Glycine max L. Merr.) is an important source of nitrogen supply to subterranean ecological systems. Single nucleotide-amplified polymorphism (SNAP) markers for supernodulation should allow rapid screening of the trait in early growth stages, without the need for inoculation and phenotyping. The gene GmNARK (Glycine max nodule autoregulation receptor kinase), controlling autoregulation of nodulation, was found to have a single nucleotide polymorphism (SNP) between the wild-type cultivar Sinpaldalkong 2 and its supernodulating mutant, SS2-2. Transversion of A to T at the 959-bp position of the GmNARK sequence results in a change of lysine (AAG) to a stop codon (TAG), thus terminating its translation in SS2-2. Based on the identified SNP in GmNARK, five primer pairs specific to each allele were designed using the WebSnaper program to develop a SNAP marker for supernodulation. One A-specific primer pair produced a band present in only Sinpaldalkong 2, while two T-specific pairs showed a band in only SS2-2. Both complementary PCRs, using each allele-specific primer pair were performed to genotype supernodulation against F2 progeny of Sinpaldalkong 2 x SS2-2. Among 28 individuals with the normal phenotype, eight individuals having only the A-allele-specific band were homozygous and normal, while 20 individuals were found to be heterozygous at the SNP having both A and T bands. Twelve supernodulating individuals showed only the band specific to the T allele. This SNAP marker for supernodulation could easily be analyzed through simple PCR and agarose gel electrophoresis. Therefore, use of this SNAP marker might be faster, cheaper, and more reproducible than using other genotyping methods, such as a cleaved amplified polymorphic sequence marker, which demand of restriction enzymes.

  7. Gene expression profiling of craniofacial fibrous dysplasia reveals ADAMTS2 overexpression as a potential marker.

    PubMed

    Zhou, Shang-Hui; Yang, Wen-Jun; Liu, Sheng-Wen; Li, Jiang; Zhang, Chun-Ye; Zhu, Yun; Zhang, Chen-Ping

    2014-01-01

    Fibrous dysplasia (FD) as an abnormal bone growth is one of the common fibro-osseous leasions (FOL) in oral and maxillofacial region, however, its etiology still remains unclear. Here, we performed gene expression profiling of FD using microarray analysis to explore the key molecule events in FD development, and develop potential diagnostic markers or therapeutic targets for FD. We found that 1,881 genes exhibited differential expression with more than two-fold changes in FD compared to normal bone tissues, including 1,200 upregulated genes and 681 downregulated genes. Pathway analysis indicated that obviously activated pathways are Ribosome and ECM-receptor interaction pathways; downregulated pathways are "Hepatitis C" and "cancer" signaling pathways. We further validated the expression of ADAMTS2, one of most differentiated expressed genes, by Immunohistochemistry (IHC) in 40 of FD cases. Results showed that ADAMTS2 was significantly overexpressed in FD tissues, but rarely expressed in normal bone tissues, suggesting that ADAMTS2 could be a potential biomarker for FD. Thus, this study uncovered differentially expressed candidate genes in FD, which provides pilot data for understanding FD pathogenesis, and developing novel biomarkers for diagnosis and targeting of FD.

  8. Molecular detection of virulence genes as markers in Pseudomonas aeruginosa isolated from urinary tract infections.

    PubMed

    Sabharwal, Neha; Dhall, Shriya; Chhibber, Sanjay; Harjai, Kusum

    2014-01-01

    Catheter associated urinary tract infections by P. aeruginosa are related to variety of complications. Quorum sensing and related circuitry guard its virulence potential. Though P. aeruginosa accounts for an appreciable amount of virulence factors, this organism is highly unstable phenotypically. Thus, genotyping of clinical isolates of P. aeruginosa is of utmost importance for understanding the epidemiology of infection. This may contribute towards development of immunotherapeutic approaches against this multi drug resistant pathogen. Moreover, no epidemiological study has been reported yet on uroisolates of P. aeruginosa. Thus this study was planned to obtain information regarding presence, distribution and rate of occurrence of quorum sensing and some associated virulence genes at genetic level. The profiling of quorum sensing genes lasI, lasR, rhlI, rhlR and virulence genes like toxA, aprA, rhlAB, plcH, lasB and fliC of twelve strains of P. aeruginosa isolated from patients with UTIs was done by direct PCR. The results showed variable distribution of quorum sensing genes and virulence genes. Their percentage occurrence may be specifically associated with different levels of intrinsic virulence and pathogenicity in urinary tract. Such information can help in identifying these virulence genes as useful diagnostic markers for clinical P. aeruginosa strains isolated from UTIs.

  9. Pluripotent stem cells derived from mouse and human white mature adipocytes.

    PubMed

    Jumabay, Medet; Abdmaulen, Raushan; Ly, Albert; Cubberly, Mark R; Shahmirian, Laurine J; Heydarkhan-Hagvall, Sepideh; Dumesic, Daniel A; Yao, Yucheng; Boström, Kristina I

    2014-02-01

    White mature adipocytes give rise to so-called dedifferentiated fat (DFAT) cells that spontaneously undergo multilineage differentiation. In this study, we defined stem cell characteristics of DFAT cells as they are generated from adipocytes and the relationship between these characteristics and lineage differentiation. Both mouse and human DFAT cells, prepared from adipose tissue and lipoaspirate, respectively, showed evidence of pluripotency, with a maximum 5-7 days after adipocyte isolation. The DFAT cells spontaneously formed clusters in culture, which transiently expressed multiple stem cell markers, including stage-specific embryonic antigens, and Sca-1 (mouse) and CD105 (human), as determined by real-time polymerase chain reaction, fluorescence-activated cell sorting, and immunostaining. As the stem cell markers decreased, markers characteristic of the three germ layers and specific lineage differentiation, such as α-fetoprotein (endoderm, hepatic), Neurofilament-66 (ectoderm, neurogenic), and Troponin I (mesoderm, cardiomyogenic), increased. However, no teratoma formation was detected after injection in immunodeficient mice. A novel modification of the adipocyte isolation aimed at ensuring the initial purity of the adipocytes and avoiding ceiling culture allowed isolation of DFAT cells with pluripotent characteristics. Thus, the adipocyte-derived DFAT cells represent a plastic stem cell population that is highly responsive to changes in culture conditions and may benefit cell-based therapies.

  10. Pluripotent Stem Cells Derived From Mouse and Human White Mature Adipocytes

    PubMed Central

    Abdmaulen, Raushan; Ly, Albert; Cubberly, Mark R.; Shahmirian, Laurine J.; Heydarkhan-Hagvall, Sepideh; Dumesic, Daniel A.; Yao, Yucheng

    2014-01-01

    White mature adipocytes give rise to so-called dedifferentiated fat (DFAT) cells that spontaneously undergo multilineage differentiation. In this study, we defined stem cell characteristics of DFAT cells as they are generated from adipocytes and the relationship between these characteristics and lineage differentiation. Both mouse and human DFAT cells, prepared from adipose tissue and lipoaspirate, respectively, showed evidence of pluripotency, with a maximum 5–7 days after adipocyte isolation. The DFAT cells spontaneously formed clusters in culture, which transiently expressed multiple stem cell markers, including stage-specific embryonic antigens, and Sca-1 (mouse) and CD105 (human), as determined by real-time polymerase chain reaction, fluorescence-activated cell sorting, and immunostaining. As the stem cell markers decreased, markers characteristic of the three germ layers and specific lineage differentiation, such as α-fetoprotein (endoderm, hepatic), Neurofilament-66 (ectoderm, neurogenic), and Troponin I (mesoderm, cardiomyogenic), increased. However, no teratoma formation was detected after injection in immunodeficient mice. A novel modification of the adipocyte isolation aimed at ensuring the initial purity of the adipocytes and avoiding ceiling culture allowed isolation of DFAT cells with pluripotent characteristics. Thus, the adipocyte-derived DFAT cells represent a plastic stem cell population that is highly responsive to changes in culture conditions and may benefit cell-based therapies. PMID:24396033

  11. Establishment of Relational Model of Congenital Heart Disease Markers and GO Functional Analysis of the Association between Its Serum Markers and Susceptibility Genes

    PubMed Central

    Liu, Min; Zhao, Luosha; Yuan, Jiaying

    2016-01-01

    Purpose. The purpose of present study was to construct the best screening model of congenital heart disease serum markers and to provide reference for further prevention and treatment of the disease. Methods. Documents from 2006 to 2014 were collected and meta-analysis was used for screening susceptibility genes and serum markers closely related to the diagnosis of congenital heart disease. Data of serum markers were extracted from 80 congenital heart disease patients and 80 healthy controls, respectively, and then logistic regression analysis and support vector machine were utilized to establish prediction models of serum markers and Gene Ontology (GO) functional annotation. Results. Results showed that NKX2.5, GATA4, and FOG2 were susceptibility genes of congenital heart disease. CRP, BNP, and cTnI were risk factors of congenital heart disease (p < 0.05); cTnI, hs-CRP, BNP, and Lp(a) were significantly close to congenital heart disease (p < 0.01). ROC curve indicated that the accuracy rate of Lp(a) and cTnI, Lp(a) and BNP, and BNP and cTnI joint prediction was 93.4%, 87.1%, and 97.2%, respectively. But the detection accuracy rate of the markers' relational model established by support vector machine was only 85%. GO analysis suggested that NKX2.5, GATA4, and FOG2 were functionally related to Lp(a) and BNP. Conclusions. The combined markers model of BNP and cTnI had the highest accuracy rate, providing a theoretical basis for the diagnosis of congenital heart disease. PMID:27118988

  12. Linkage analysis of the Fanconi anemia gene FACC with chromosome 9q markers

    SciTech Connect

    Auerbach, A.D.; Shin, H.T.; Kaporis, A.G.

    1994-09-01

    Fanconi anemia (FA) is a genetically heterogeneous syndrome, with at least four different complementation groups as determined by cell fusion studies. The gene for complementation group C, FACC, has been cloned and mapped to chromosome 9q22.3 by in situ hybridization, while linkage analysis has supported the placement of another gene on chromosome 20q. We have analyzed five microsatellite markers and one RFLP on chromosome 9q in a panel of FA families from the International Fanconi Anemia Registry (IFAR) in order to place FACC on the genetic map. Polymorphisms were typed in 308 individuals from 51 families. FACC is tightly linked to both D9S151 [{Theta}{sub max}=0.025, Z{sub max}=7.75] and to D9S196 [{Theta}{sub max}=0.041, Z{sub max}=7.89]; multipoint analysis is in progress. We are currently screening a YAC clone that contains the entire FACC gene for additional microsatellite markers suitable for haplotype analysis of FA families.

  13. Identification of ecotype-specific marker genes for categorization of beer-spoiling Lactobacillus brevis.

    PubMed

    Behr, Jürgen; Geissler, Andreas J; Preissler, Patrick; Ehrenreich, Armin; Angelov, Angel; Vogel, Rudi F

    2015-10-01

    The tolerance to hop compounds, which is mainly associated with inhibition of bacterial growth in beer, is a multi-factorial trait. Any approaches to predict the physiological differences between beer-spoiling and non-spoiling strains on the basis of a single marker gene are limited. We identified ecotype-specific genes related to the ability to grow in Pilsner beer via comparative genome sequencing. The genome sequences of four different strains of Lactobacillus brevis were compared, including newly established genomes of two highly hop tolerant beer isolates, one strain isolated from faeces and one published genome of a silage isolate. Gene fragments exclusively occurring in beer-spoiling strains as well as sequences only occurring in non-spoiling strains were identified. Comparative genomic arrays were established and hybridized with a set of L. brevis strains, which are characterized by their ability to spoil beer. As result, a set of 33 and 4 oligonucleotide probes could be established specifically detecting beer-spoilers and non-spoilers, respectively. The detection of more than one of these marker sequences according to a genetic barcode enables scoring of L. brevis for their beer-spoiling potential and can thus assist in risk evaluation in brewing industry.

  14. Red yeast rice extracts suppress adipogenesis by down-regulating adipogenic transcription factors and gene expression in 3T3-L1 cells.

    PubMed

    Jeon, Taeil; Hwang, Seong Gu; Hirai, Shizuka; Matsui, Tohru; Yano, Hideo; Kawada, Teruo; Lim, Beoung Ou; Park, Dong Ki

    2004-11-12

    The effects of red yeast rice extracts (RE) on adipocyte differentiation of 3T3-L1 cells were studied. RE were extracted from embryonic rice fermented with red yeast (Monascus ruber). These extracts significantly decreased glycerol-3-phosphate dehydrogenase (GPDH) activity and lipid accumulation, a marker of adipogenesis, in a dose-dependent manner. Moreover, mRNA expression levels of both CCAAT/enhancer-binding protein (C/EBP) alpha and peroxisome proliferator-activated receptor (PPAR) gamma, the key adipogenic transcription factors, were markedly decreased by RE. RE also inhibited the expression of PPARgamma at protein levels. RE decreased significantly gene expression of adipocyte fatty acid binding protein (aP2) and leptin, which are adipogenic marker proteins and C/EBPalpha and PPARgamma target genes. These results suggest that the inhibitory effect of RE on adipocyte differentiation might be mediated through the down-regulated expression of adipogenic transcription factors and other specific genes.

  15. Liver X Receptor (LXR) Regulates Human Adipocyte Lipolysis*

    PubMed Central

    Stenson, Britta M.; Rydén, Mikael; Venteclef, Nicolas; Dahlman, Ingrid; Pettersson, Annie M. L.; Mairal, Aline; Åström, Gaby; Blomqvist, Lennart; Wang, Victoria; Jocken, Johan W. E.; Clément, Karine; Langin, Dominique; Arner, Peter; Laurencikiene, Jurga

    2011-01-01

    The Liver X receptor (LXR) is an important regulator of carbohydrate and lipid metabolism in humans and mice. We have recently shown that activation of LXR regulates cellular fuel utilization in adipocytes. In contrast, the role of LXR in human adipocyte lipolysis, the major function of human white fat cells, is not clear. In the present study, we stimulated in vitro differentiated human and murine adipocytes with the LXR agonist GW3965 and observed an increase in basal lipolysis. Microarray analysis of human adipocyte mRNA following LXR activation revealed an altered gene expression of several lipolysis-regulating proteins, which was also confirmed by quantitative real-time PCR. We show that expression and intracellular localization of perilipin1 (PLIN1) and hormone-sensitive lipase (HSL) are affected by GW3965. Although LXR activation does not influence phosphorylation status of HSL, HSL activity is required for the lipolytic effect of GW3965. This effect is abolished by PLIN1 knockdown. In addition, we demonstrate that upon activation, LXR binds to the proximal regions of the PLIN1 and HSL promoters. By selective knock-down of either LXR isoform, we show that LXRα is the major isoform mediating the lipolysis-related effects of LXR. In conclusion, the present study demonstrates that activation of LXRα up-regulates basal human adipocyte lipolysis. This is at least partially mediated through LXR binding to the PLIN1 promoter and down-regulation of PLIN1 expression. PMID:21030586

  16. Chronic hyperinsulinemia reduces insulin sensitivity and metabolic functions of brown adipocyte.

    PubMed

    Rajan, Sujith; Shankar, Kripa; Beg, Muheeb; Varshney, Salil; Gupta, Abhishek; Srivastava, Ankita; Kumar, Durgesh; Mishra, Raj K; Hussain, Zakir; Gayen, Jiaur R; Gaikwad, Anil N

    2016-09-01

    The growing pandemics of diabetes have become a real threat to world economy. Hyperinsulinemia and insulin resistance are closely associated with the pathophysiology of type 2 diabetes. In pretext of brown adipocytes being considered as the therapeutic strategy for the treatment of obesity and insulin resistance, we have tried to understand the effect of hyperinsulinemia on brown adipocyte function. We here with for the first time report that hyperinsulinemia-induced insulin resistance in brown adipocyte is also accompanied with reduced insulin sensitivity and brown adipocyte characteristics. CI treatment decreased expression of brown adipocyte-specific markers (such as PRDM16, PGC1α, and UCP1) and mitochondrial content as well as activity. CI-treated brown adipocytes showed drastic decrease in oxygen consumption rate (OCR) and spare respiratory capacity. Morphological study indicates increased accumulation of lipid droplets in CI-treated brown adipocytes. We have further validated these findings in vivo in C57BL/6 mice implanted with mini-osmotic insulin pump for 8weeks. CI treatment in mice leads to increased body weight gain, fat mass and impaired glucose intolerance with reduced energy expenditure and insulin sensitivity. CI-treated mice showed decreased BAT characteristics and function. We also observed increased inflammation and ER stress markers in BAT of CI-treated animals. The above results conclude that hyperinsulinemia has deleterious effect on brown adipocyte function, making it susceptible to insulin resistance. Thus, the above findings have greater implication in designing approaches for the treatment of insulin resistance and diabetes via recruitment of brown adipocytes.

  17. Participation of TNF-α in Inhibitory Effects of Adipocytes on Osteoblast Differentiation.

    PubMed

    Abuna, Robrigo P F; De Oliveira, Fabiola S; Santos, Thiago De S; Guerra, Thais R; Rosa, Adalberto L; Beloti, Marcio M

    2016-01-01

    Mesenchymal stem cells from bone marrow (BM-MSCs) and adipose tissue (AT-MSCs) are attractive tools for cell-based therapies to repair bone tissue. In this study, we investigated the osteogenic and adipogenic potential of BM-MSCs and AT-MSCs as well as the effect of crosstalk between osteoblasts and adipocytes on cell phenotype expression. Rat BM-MSCs and AT-MSCs were cultured either in growth, osteogenic, or adipogenic medium to evaluate osteoblast and adipocyte differentiation. Additionally, osteoblasts and adipocytes were indirectly co-cultured to investigate the effect of adipocytes on osteoblast differentiation and vice versa. BM-MSCs and AT-MSCs exhibit osteogenic and adipogenic potential under non-differentiation-inducing conditions. When exposed to osteogenic medium, BM-MSCs exhibited higher expression of bone markers compared with AT-MSCs. Conversely, under adipogenic conditions, AT-MSCs displayed higher expression of adipose tissue markers compared with BM-MSCs. The presence of adipocytes as indirect co-culture repressed the expression of the osteoblast phenotype, whereas osteoblasts did not exert remarkable effect on adipocytes. The inhibitory effect of adipocytes on osteoblasts was due to the release of tumor necrosis factor alpha (TNF-α) in culture medium by adipocytes. Indeed, the addition of exogenous TNF-α in culture medium repressed the differentiation of BM-MSCs into osteoblasts mimicking the indirect co-culture effect. In conclusion, our study showed that BM-MSCs are more osteogenic while AT-MSCs are more adipogenic. Additionally, we demonstrated the key role of TNF-α secreted by adipocytes on the inhibition of osteoblast differentiation. Thus, we postulate that the higher osteogenic potential of BM-MSCs makes them the first choice for inducing bone repair in cell-based therapies.

  18. Bisindoylmaleimide I suppresses adipocyte differentiation through stabilization of intracellular {beta}-catenin protein

    SciTech Connect

    Cho, Munju; Park, Seoyoung; Gwak, Jungsug; Kim, Dong-Eun; Yea, Sung Su; Shin, Jae-Gook; Oh, Sangtaek

    2008-02-29

    The Wnt/{beta}-catenin signaling pathway plays important roles in cell differentiation. Activation of this pathway, likely by Wnt-10b, has been shown to inhibit adipogenesis in cultured 3T3-L1 preadipocytes and mice. Here we revealed that bisindoylmaleimide I (BIM), which is widely used as a specific inhibitor of protein kinase C (PKC), inhibits adipocyte differentiation through activation of the Wnt/{beta}-catenin signaling pathway. BIM increased {beta}-catenin responsive transcription (CRT) and up-regulated intracellular {beta}-catenin levels in HEK293 cells and 3T3-L1 preadipocytes. BIM significantly decreased intracellular lipid accumulation and reduced expression of important adipocyte marker genes including peroxisome-proliferator-activated receptor {gamma} (PPAR{gamma}) and CAATT enhancer-binding protein {alpha} (C/EBP{alpha}) in 3T3-L1 preadipocytes. Taken together, our findings indicate that BIM inhibits adipogenesis by increasing the stability of {beta}-catenin protein in 3T3-L1 preadipocyte cells.

  19. Codon-based phylogenetics introduces novel flagellar gene markers to oomycete systematics.

    PubMed

    Robideau, Gregg P; Rodrigue, Nicolas; André Lévesque, C

    2014-10-01

    Oomycete systematics has traditionally been reliant on ribosomal RNA and mitochondrial cytochrome oxidase sequences. Here we report the use of two single-copy protein-coding flagellar genes, PF16 and OCM1, in oomycete systematics, showing their utility in phylogenetic reconstruction and species identification. Applying a recently proposed mutation-selection model of codon substitution, the phylogenetic relationships inferred by flagellar genes are largely in agreement with the current views of oomycete evolution, whereas nucleotide- and amino acid-level models produce biologically implausible reconstructions. Interesting parallels exist between the phylogeny inferred from the flagellar genes and zoospore ontology, providing external support for the tree obtained using the codon model. The resolution achieved for species identification is ample using PF16, and quite robust using OCM1, and the described PCR primers are able to amplify both genes for a range of oomycete genera. Altogether, when analyzed with a rich codon substitution model, these flagellar genes provide useful markers for the oomycete molecular toolbox.

  20. Genetic polymorphism in the NRF2 gene as a prognosis marker for cancer chemotherapy.

    PubMed

    Ishikawa, Toshihisa

    2014-01-01

    NF-E2-related factor 2 (NRF2) is a transcription factor that controls the expression of a variety of antioxidant and detoxification genes. Accumulating evidence strongly suggests that NRF2 mediates cancer cell proliferation and drug resistance, as well. Single nucleotide polymorphism (SNP) -617C > A in the anti-oxidant response element-like loci of the human NRF2 gene play a pivotal role in the positive feedback loop of transcriptional activation of the NRF2 gene. Since the SNP (-617A) reportedly decreases the binding affinity to the transcription factors of NRF2/small multiple alignment format (MafK), the homozygous -617A/A allele may attenuate the positive feedback loop of transcriptional activation of the NRF2 gene and reduce the NRF2 protein level. As the consequence, cancer cells are considered to become more sensitive to therapy and less aggressive than cancer cells harboring the -617C (WT) allele. Indeed, Japanese lung cancer patients carrying SNP homozygous alleles (c. -617A/A) exhibited remarkable survival over 1,700 days after surgical operation (log-rank p = 0.021). The genetic polymorphism in the human NRF2 gene is considered as one of prognosis markers for cancer therapy.

  1. Integrative mixture of experts to combine clinical factors and gene markers

    PubMed Central

    Lê Cao, Kim-Anh; Meugnier, Emmanuelle; McLachlan, Geoffrey J.

    2010-01-01

    Motivation: Microarrays are being increasingly used in cancer research to better characterize and classify tumors by selecting marker genes. However, as very few of these genes have been validated as predictive biomarkers so far, it is mostly conventional clinical and pathological factors that are being used as prognostic indicators of clinical course. Combining clinical data with gene expression data may add valuable information, but it is a challenging task due to their categorical versus continuous characteristics. We have further developed the mixture of experts (ME) methodology, a promising approach to tackle complex non-linear problems. Several variants are proposed in integrative ME as well as the inclusion of various gene selection methods to select a hybrid signature. Results: We show on three cancer studies that prediction accuracy can be improved when combining both types of variables. Furthermore, the selected genes were found to be of high relevance and can be considered as potential biomarkers for the prognostic selection of cancer therapy. Availability: Integrative ME is implemented in the R package integrativeME (http://cran.r-project.org/). Contact: k.lecao@uq.edu.au Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20223834

  2. Mining and gene ontology based annotation of SSR markers from expressed sequence tags of Humulus lupulus.

    PubMed

    Singh, Swati; Gupta, Sanchita; Mani, Ashutosh; Chaturvedi, Anoop

    2012-01-01

    Humulus lupulus is commonly known as hops, a member of the family moraceae. Currently many projects are underway leading to the accumulation of voluminous genomic and expressed sequence tag sequences in public databases. The genetically characterized domains in these databases are limited due to non-availability of reliable molecular markers. The large data of EST sequences are available in hops. The simple sequence repeat markers extracted from EST data are used as molecular markers for genetic characterization, in the present study. 25,495 EST sequences were examined and assembled to get full-length sequences. Maximum frequency distribution was shown by mononucleotide SSR motifs i.e. 60.44% in contig and 62.16% in singleton where as minimum frequency are observed for hexanucleotide SSR in contig (0.09%) and pentanucleotide SSR in singletons (0.12%). Maximum trinucleotide motifs code for Glutamic acid (GAA) while AT/TA were the most frequent repeat of dinucleotide SSRs. Flanking primer pairs were designed in-silico for the SSR containing sequences. Functional categorization of SSRs containing sequences was done through gene ontology terms like biological process, cellular component and molecular function.

  3. Genetic transformation of Nannochloropsis oculata with a bacterial phleomycin resistance gene as dominant selective marker

    NASA Astrophysics Data System (ADS)

    Ma, Xiaolei; Pan, Kehou; Zhang, Lin; Zhu, Baohua; Yang, Guanpin; Zhang, Xiangyang

    2016-04-01

    The gene ble from Streptoalloteichus hindustanus is widely used as a selective antibiotic marker. It can control the phleomycin resistance, and significantly increase the tolerance of hosts to zeocin. The unicellular marine microalga Nannochloropsis oculata is extremely sensitive to zeocin. We selected ble as the selective marker for the genetic transformation of N. oculata. After the algal cells at a density of 2×107 cells mL-1 was digested with 4% hemicellulase and 2% driselase for 1 h, the protoplasts accounted for 90% of the total. The ble was placed at the downstream of promoter HSP70A-RUBS2 isolated from Chlamydomonas reinhardtii, yielding a recombinant expression construct pMS188. The construct was transferred into the protoplasts through electroporation (1 kV, 15 μS). The transformed protoplasts were cultured in fresh f/2 liquid medium, and selected on solid f/2 medium supplemented with 500 ng mL-1 zeocin. The PCR result proved that ble existed in the transformants. Three transformants had been cultured for at least 5 generations without losing ble. Southern blotting analysis showed that the ble has been integrated into the genome of N. oculata. The ble will serve as a new dominant selective marker in genetic engineering N. oculata.

  4. Massively parallel sequencing of single cells by epicPCR links functional genes with phylogenetic markers.

    PubMed

    Spencer, Sarah J; Tamminen, Manu V; Preheim, Sarah P; Guo, Mira T; Briggs, Adrian W; Brito, Ilana L; A Weitz, David; Pitkänen, Leena K; Vigneault, Francois; Juhani Virta, Marko P; Alm, Eric J

    2016-02-01

    Many microbial communities are characterized by high genetic diversity. 16S ribosomal RNA sequencing can determine community members, and metagenomics can determine the functional diversity, but resolving the functional role of individual cells in high throughput remains an unsolved challenge. Here, we describe epicPCR (Emulsion, Paired Isolation and Concatenation PCR), a new technique that links functional genes and phylogenetic markers in uncultured single cells, providing a throughput of hundreds of thousands of cells with costs comparable to one genomic library preparation. We demonstrate the utility of our technique in a natural environment by profiling a sulfate-reducing community in a freshwater lake, revealing both known sulfate reducers and discovering new putative sulfate reducers. Our method is adaptable to any conserved genetic trait and translates genetic associations from diverse microbial samples into a sequencing library that answers targeted ecological questions. Potential applications include identifying functional community members, tracing horizontal gene transfer networks and mapping ecological interactions between microbial cells.

  5. Silica nanoparticles inhibit brown adipocyte differentiation via regulation of p38 phosphorylation

    NASA Astrophysics Data System (ADS)

    Son, Min Jeong; Kim, Won Kon; Kwak, Minjeong; Oh, Kyoung-Jin; Chang, Won Seok; Min, Jeong-Ki; Lee, Sang Chul; Song, Nam Woong; Bae, Kwang-Hee

    2015-10-01

    Nanoparticles are of great interest due to their wide variety of biomedical and bioengineering applications. However, they affect cellular differentiation and/or intracellular signaling when applied and exposed to target organisms or cells. The brown adipocyte is a cell type important in energy homeostasis and thus closely related to obesity. In this study, we assessed the effects of silica nanoparticles (SNPs) on brown adipocyte differentiation. The results clearly showed that brown adipocyte differentiation was significantly repressed by exposure to SNPs. The brown adipocyte-specific genes as well as mitochondrial content were also markedly reduced. Additionally, SNPs led to suppressed p38 phosphorylation during brown adipocyte differentiation. These effects depend on the size of SNPs. Taken together, these results lead us to suggest that SNP has anti-brown adipogenic effect in a size-dependent manner via regulation of p38 phosphorylation.

  6. Inflammation markers predict zinc transporter gene expression in women with type 2 diabetes mellitus.

    PubMed

    Foster, Meika; Petocz, Peter; Samman, Samir

    2013-09-01

    The pathology of type 2 diabetes mellitus (DM) often is associated with underlying states of conditioned zinc deficiency and chronic inflammation. Zinc and omega-3 polyunsaturated fatty acids each exhibit anti-inflammatory effects and may be of therapeutic benefit in the disease. The present randomized, double-blind, placebo-controlled, 12-week trial was designed to investigate the effects of zinc (40 mg/day) and α-linolenic acid (ALA; 2 g/day flaxseed oil) supplementation on markers of inflammation [interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, C-reactive protein (CRP)] and zinc transporter and metallothionein gene expression in 48 postmenopausal women with type 2 DM. No significant effects of zinc or ALA supplementation were observed on inflammatory marker concentrations or fold change in zinc transporter and metallothionein gene expression. Significant increases in plasma zinc concentrations were observed over time in the groups supplemented with zinc alone or combined with ALA (P=.007 and P=.009, respectively). An impact of zinc treatment on zinc transporter gene expression was found; ZnT5 was positively correlated with Zip3 mRNA (P<.001) only in participants receiving zinc, while zinc supplementation abolished the relationship between ZnT5 and Zip10. IL-6 predicted the expression levels and CRP predicted the fold change of the ZnT5, ZnT7, Zip1, Zip7 and Zip10 mRNA cluster (P<.001 and P=.031, respectively). Fold change in the expression of metallothionein mRNA was predicted by TNF-α (P=.022). Associations among inflammatory cytokines and zinc transporter and metallothionein gene expression support an interrelationship between zinc homeostasis and inflammation in type 2 DM.

  7. [Melanoma: surface markers as the first point of targeted delivery of therapeutic genes in multilevel gene therapy].

    PubMed

    Pleshkan, V V; Zinov'eva, M V; Sverdlov, E D

    2011-01-01

    Melanoma is one of the most malignant tumors, aggressively metastasizing by lymphatic and hematogenous routes. Due to the resistance of melanoma cells to many types of chemotherapy, this disease causes high mortality rate. High hopes are pinned on gene therapeutic approaches to melanoma treatment. At present, one of the main problems of the efficient use of the post-genomic generation therapeutic means is the lack of optimal techniques of delivery of foreign genetic material to the patient's target cells. Surface specific markers of melanoma cells can be considered as promising therapeutic targets. This review describes currently known melanoma specific receptors and its stem cells, as well as contains data on melanoma antigens presented on the cell surface by major histocompatibility complex proteins. The ability of surface proteins to internalize might be successfully used for the development of methods of targeted delivery of gene therapeutic constructs. In conclusion, a concept of multilevel gene therapy and the possible role therein of surface determinants as targets of gene systems delivery to the tumor are discussed.

  8. Inactivation of the olfactory marker protein (OMP) gene in river dolphins and other odontocete cetaceans.

    PubMed

    Springer, Mark S; Gatesy, John

    2017-04-01

    Various toothed whales (Odontoceti) are unique among mammals in lacking olfactory bulbs as adults and are thought to be anosmic (lacking the olfactory sense). At the molecular level, toothed whales have high percentages of pseudogenic olfactory receptor genes, but species that have been investigated to date retain an intact copy of the olfactory marker protein gene (OMP), which is highly expressed in olfactory receptor neurons and may regulate the temporal resolution of olfactory responses. One hypothesis for the retention of intact OMP in diverse odontocete lineages is that this gene is pleiotropic with additional functions that are unrelated to olfaction. Recent expression studies provide some support for this hypothesis. Here, we report OMP sequences for representatives of all extant cetacean families and provide the first molecular evidence for inactivation of this gene in vertebrates. Specifically, OMP exhibits independent inactivating mutations in six different odontocete lineages: four river dolphin genera (Platanista, Lipotes, Pontoporia, Inia), sperm whale (Physeter), and harbor porpoise (Phocoena). These results suggest that the only essential role of OMP that is maintained by natural selection is in olfaction, although a non-olfactory role for OMP cannot be ruled out for lineages that retain an intact copy of this gene. Available genome sequences from cetaceans and close outgroups provide evidence of inactivating mutations in two additional genes (CNGA2, CNGA4), which imply further pseudogenization events in the olfactory cascade of odontocetes. Selection analyses demonstrate that evolutionary constraints on all three genes (OMP, CNGA2, CNGA4) have been greatly reduced in Odontoceti, but retain a signature of purifying selection on the stem Cetacea branch and in Mysticeti (baleen whales). This pattern is compatible with the 'echolocation-priority' hypothesis for the evolution of OMP, which posits that negative selection was maintained in the common

  9. Gene Expression markers of Age-Related Inflammation in Two Human Cohorts

    PubMed Central

    Pilling, Luke C.; Joehanes, Roby; Melzer, David; Harries, Lorna W.; Henley, William; Dupuis, Josée; Lin, Honghuang; Mitchell, Marcus; Hernandez, Dena; Ying, Sai-Xia; Lunetta, Kathryn L.; Benjamin, Emelia J.; Singleton, Andrew; Levy, Daniel; Munson, Peter; Murabito, Joanne M.; Ferrucci, Luigi

    2015-01-01

    Introduction Chronically elevated circulating inflammatory markers are common in older persons but mechanisms are unclear. Many blood transcripts (>800 genes) are associated with interleukin-6 protein levels (IL6) independent of age. We aimed to identify gene transcripts statistically mediating, as drivers or responders, the increasing levels of IL6 protein in blood at older ages. Methods Blood derived in-vivo RNA from the Framingham Heart Study (FHS, n=2422, ages 40–92 yrs) and InCHIANTI study (n=694, ages 30–104 yrs), with Affymetrix and Illumina expression arrays respectively (>17,000 genes tested), were tested for statistical mediation of the age-IL6 association using resampling techniques, adjusted for confounders and multiple testing. Results In FHS, IL6 expression was not associated with IL6 protein levels in blood. 102 genes (0.6% of 17,324 expressed) statistically mediated the age-IL6 association of which 25 replicated in InCHIANTI (including 5 of the 10 largest effect genes). The largest effect gene (SLC4A10, coding for NCBE, a sodium bicarbonate transporter) mediated 19% (adjusted CI 8.9 to 34.1%) and replicated by PCR in InCHIANTI (n=194, 35.6% mediated, p=0.01). Other replicated mediators included PRF1 (perforin, a cytolytic protein in cytotoxic T lymphocytes and NK cells) and IL1B (Interleukin 1 beta): few other cytokines were significant mediators. Conclusions This transcriptome-wide study on human blood identified a small distinct set of genes that statistically mediate the age-IL6 association. Findings are robust across two cohorts and different expression technologies. Raised IL6 levels may not derive from circulating white cells in age related inflammation. PMID:26087330

  10. A physical map of important QTLs, functional markers and genes available for sesame breeding programs.

    PubMed

    Dossa, Komivi

    2016-10-01

    Sesame is one of the oldest oilseed crops grown mainly in Africa and Asia. Although genetic and genomic studies on sesame have started late, the past 5 years have witnessed extensive progresses in these areas on this crop. Important genomic sequence resources such as functional markers, genes and QTLs linked to agronomically important traits, have been generated through linkage mapping and association analysis to assist sesame improvement programs. However, most of these data are scattered in different maps making them hard to be exploited efficiently in breeding programs. In this study, we report a comprehensive physical map gathering 151 published genomic sequence resources which highlighted some hotspot functional regions in the sesame genome. Moreover, 83,135 non-redundant SSRs have been supplied along with their physical position and motif composition. This will assist future research in fine mapping or pinpointing more functional genes based on the already published QTLs and functional markers. This physical map represents a good landmark for further non-overlapping genetic and genomic studies working towards sesame improvement.

  11. Effect of cell culture using chitosan membranes on stemness marker genes in mesenchymal stem cells.

    PubMed

    Li, Zhiqiang; Tian, Xiaojun; Yuan, Yan; Song, Zhixiu; Zhang, Lili; Wang, Xia; Li, Tong

    2013-06-01

    Mesenchymal stem cell (MSC) therapy is a promising treatment for diseases of the nervous system. However, MSCs often lose their stemness and homing abilities when cultured in conventional two‑dimensional (2D) systems. Consequently, it is important to explore novel culture methods for MSC-based therapies in clinical practice. To investigate the effect of a cell culture using chitosan membranes on MSCs, the morphology of MSCs cultured using chitosan membranes was observed and the expression of stemness marker genes was analyzed. We demonstrated that MSCs cultured using chitosan membranes form spheroids. Additionally, the expression of stemness marker genes, including Oct4, Sox2 and Nanog, increased significantly when MSCs were cultured using chitosan membranes compared with 2D culture systems. Finally, MSCs cultured using chitosan membranes were found to have an increased potential to differentiate into nerve cells and chrondrocytes. In conclusion, we demonstrated that MSCs cultured on chitosan membranes maintain their stemness and homing abilities. This finding may be further investigated for the development of novel cell-based therapies for diseases involving neuron-like cells and chondrogenesis.

  12. ESTs from a wild Arachis species for gene discovery and marker development

    PubMed Central

    Proite, Karina; Leal-Bertioli, Soraya CM; Bertioli, David J; Moretzsohn, Márcio C; da Silva, Felipe R; Martins, Natalia F; Guimarães, Patrícia M

    2007-01-01

    Background Due to its origin, peanut has a very narrow genetic background. Wild relatives can be a source of genetic variability for cultivated peanut. In this study, the transcriptome of the wild species Arachis stenosperma accession V10309 was analyzed. Results ESTs were produced from four cDNA libraries of RNAs extracted from leaves and roots of A. stenosperma. Randomly selected cDNA clones were sequenced to generate 8,785 ESTs, of which 6,264 (71.3%) had high quality, with 3,500 clusters: 963 contigs and 2537 singlets. Only 55.9% matched homologous sequences of known genes. ESTs were classified into 23 different categories according to putative protein functions. Numerous sequences related to disease resistance, drought tolerance and human health were identified. Two hundred and six microsatellites were found and markers have been developed for 188 of these. The microsatellite profile was analyzed and compared to other transcribed and genomic sequence data. Conclusion This is, to date, the first report on the analysis of transcriptome of a wild relative of peanut. The ESTs produced in this study are a valuable resource for gene discovery, the characterization of new wild alleles, and for marker development. The ESTs were released in the [GenBank:EH041934 to EH048197]. PMID:17302987

  13. The alteration of zinc transporter gene expression is associated with inflammatory markers in obese women.

    PubMed

    Noh, Hwayoung; Paik, Hee Young; Kim, Jihye; Chung, Jayong

    2014-04-01

    Obesity, a chronic inflammatory state, is associated with altered zinc metabolism. ZnT and Zip transporters are involved in the regulation of zinc metabolism. This study examined the relationships among obesity, zinc transporter gene expression, and inflammatory markers in young Korean women. The messenger RNA (mRNA) levels of leukocyte zinc transporters between obese (BMI = 28.3 ± 0.5 kg/m(2), n = 35) and nonobese (BMI = 20.7 ± 0.2 kg/m(2), n = 20) women aged 18-28 years were examined using quantitative real-time polymerase chain reaction. Inflammatory markers, such as C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α), and interleukin (IL)-6, were measured in serum by enzyme immunoassay. ZnT1 and Zip1 were the most abundantly expressed zinc transporters in leukocytes. The mRNA levels of many zinc transporters (ZnT4, ZnT5, ZnT9, Zip1, Zip4, and Zip6) were significantly lower in obese women, and expression of these genes was inversely correlated with BMI and body fat percentage. In addition, inflammatory markers (CRP and TNF-α) were significantly higher in obese women. The mRNA levels of ZnT4, Zip1, and Zip6 were inversely correlated with CRP (P < 0.05), and mRNA levels of ZnT4 and ZnT5 were inversely correlated with TNF-α (P < 0.05). In standardized simple regression models, levels of TNF-α and CRP were negatively associated with mRNA levels of zinc transporters such as ZnT4, ZnT5, Zip1, and Zip6 (P < 0.05). These results suggest that the expression of zinc transporters may be altered in obese individuals. Changes in zinc transporters may also be related to the inflammatory state associated with obesity.

  14. Development and validation of functional CAPS markers for the FAE genes in Brassica juncea and their use in marker-assisted selection

    PubMed Central

    Saini, Navinder; Singh, Naveen; Kumar, Anil; Vihan, Nitika; Yadav, Sangita; Vasudev, Sujata; Yadava, D.K.

    2016-01-01

    Low erucic acid is a major breeding target to improve the edible oil quality in Brassica juncea. The single nucleotide polymorphism (SNP) in fatty acid elongase 1 (FAE1.1 and FAE1.2) gene was exploited to expedite the breeding program. The paralogs of FAE1 gene were sequenced from low erucic acid genotype Pusa Mustard 30 and SNPs were identified through homologous alignment with sequence downloaded from NCBI GenBank. Two SNPs in FAE1.1 at position 591 and 1265 and one in FAE1.2 at 237 were found polymorphic among low and high erucic acid genotypes. These SNPs either create or change the recognition site of restriction enzymes. Transition of a single nucleotide at position 591 and 1265 in FAE1.1, and at position 237 in FAE1.2, leads to a change in the recognition site of Hpy99I, BglII and MnlI restriction enzymes, respectively. Two CAPS markers for FAE1.1 and one for FAE1.2 were developed to differentiate low and high erucic acid genotypes. The efficiency of these CAPS markers was found 100 per cent when validated in Brassica juncea, and B. nigra genotypes and used in back-cross breeding. These CAPS markers will facilitate in marker-assisted selection for improvement of oil quality in Brassica juncea. PMID:28163599

  15. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations.

    PubMed Central

    Michelmore, R W; Paran, I; Kesseli, R V

    1991-01-01

    We developed bulked segregant analysis as a method for rapidly identifying markers linked to any specific gene or genomic region. Two bulked DNA samples are generated from a segregating population from a single cross. Each pool, or bulk, contains individuals that are identical for a particular trait or genomic region but arbitrary at all unlinked regions. The two bulks are therefore genetically dissimilar in the selected region but seemingly heterozygous at all other regions. The two bulks can be made for any genomic region and from any segregating population. The bulks are screened for differences using restriction fragment length polymorphism probes or random amplified polymorphic DNA primers. We have used bulked segregant analysis to identify three random amplified polymorphic DNA markers in lettuce linked to a gene for resistance to downy mildew. We showed that markers can be reliably identified in a 25-centimorgan window on either side of the targeted locus. Bulked segregant analysis has several advantages over the use of near-isogenic lines to identify markers in specific regions of the genome. Genetic walking will be possible by multiple rounds of bulked segregation analysis; each new pair of bulks will differ at a locus identified in the previous round of analysis. This approach will have widespread application both in those species where selfing is possible and in those that are obligatorily outbreeding. Images PMID:1682921

  16. The Unique hmuY Gene Sequence as a Specific Marker of Porphyromonas gingivalis

    PubMed Central

    Mackiewicz, Paweł; Radwan-Oczko, Małgorzata; Kantorowicz, Małgorzata; Chomyszyn-Gajewska, Maria; Frąszczak, Magdalena; Bielecki, Marcin; Olczak, Mariusz; Olczak, Teresa

    2013-01-01

    Porphyromonas gingivalis, a major etiological agent of chronic periodontitis, acquires heme from host hemoproteins using the HmuY hemophore. The aim of this study was to develop a specific P. gingivalis marker based on a hmuY gene sequence. Subgingival samples were collected from 66 patients with chronic periodontitis and 40 healthy subjects and the entire hmuY gene was analyzed in positive samples. Phylogenetic analyses demonstrated that both the amino acid sequence of the HmuY protein and the nucleotide sequence of the hmuY gene are unique among P. gingivalis strains/isolates and show low identity to sequences found in other species (below 50 and 56%, respectively). In agreement with these findings, a set of hmuY gene-based primers and standard/real-time PCR with SYBR Green chemistry allowed us to specifically detect P. gingivalis in patients with chronic periodontitis (77.3%) and healthy subjects (20%), the latter possessing lower number of P. gingivalis cells and total bacterial cells. Isolates from healthy subjects possess the hmuY gene-based nucleotide sequence pattern occurring in W83/W50/A7436 (n = 4), 381/ATCC 33277 (n = 3) or TDC60 (n = 1) strains, whereas those from patients typically have TDC60 (n = 21), W83/W50/A7436 (n = 17) and 381/ATCC 33277 (n = 13) strains. We observed a significant correlation between periodontal index of risk of infectiousness (PIRI) and the presence/absence of P. gingivalis (regardless of the hmuY gene-based sequence pattern of the isolate identified [r = 0.43; P = 0.0002] and considering particular isolate pattern [r = 0.38; P = 0.0012]). In conclusion, we demonstrated that the hmuY gene sequence or its fragments may be used as one of the molecular markers of P. gingivalis. PMID:23844074

  17. Ebf1-Dependent Control of the Osteoblast and Adipocyte Lineages

    PubMed Central

    Hesslein, David G. T.; Fretz, Jackie A.; Xi, Yougen; Nelson, Tracy; Zhou, Shoaming; Lorenzo, Joseph A.; Schatz, David G.; Horowitz, Mark C.

    2008-01-01

    Ebf1 is a transcription factor essential for B cell fate specification and function and important for the development of olfactory sensory neurons. We show here that Ebf1 also plays an important role in regulating osteoblast and adipocyte development in vivo. Ebf1 mRNA and protein is expressed in MSCs, in OBs at most stages of differentiation, and in adipocytes. Tibiae and femora from Ebf1−/− mice had a striking increase in all bone formation parameters examined including the number of OBs, osteoid volume, and bone formation rate. Serum osteocalcin, a marker of bone formation, was significantly elevated in mutant mice. The numbers of osteoclasts in bone were normal in younger (4 week-old) Ebf1−/− mice but increased in older (12 week-old) Ebf1−/− mice. This correlated well with in vitro osteoclast development from bone marrow cells. In addition to the increased osteoblastogenesis, there was a dramatic increase in adipocyte numbers in the bone marrow of Ebf1−/− mice. Increased adiposity was also seen histologically in the liver but not in the spleen of these mice, and accompanied by decreased deposition of adipose to subcutaneous sites. Thus Ebf1-deficient mice appear to be a new model of lipodystrophy. Ebf1 is a rare example of a transcription factor that regulates both the osteoblast and adipocyte lineages similarly. PMID:19130908

  18. Analysis of some polymorphic markers of the CFTR gene in cystic fibrosis patients and healthy donors from the Moscow region

    SciTech Connect

    Amosenko, F.A.; Sazonova, M.A.; Kapranov, N.I.; Trubnikova, I.S.; Kalinin, V.N.

    1995-04-01

    Allelic frequencies of three polymorphic markers in the CFTR gene were estimated on chromosomes derived from cystic fibrosis (CF) patients and healthy donors from Moscow and the Moscow region. These polymorphic markers are tetranucleotide tandem repeats GATT in intron 6B, M470V in exon 10, and T854T in exon 14 (fragment A). Frequencies at allele 1 of the M470V marker, along with allele 2 of GATT and T854T, are two times higher for CF patients without {Delta}F508 mutation than for healthy donors, and there is linkage disequilibrium of these alleles of the polymorphic markers analyzed with the CF gene. Allele 1 of M470V and T854T markers, as well as allele 2 of the GATT marker (six repeats), are absolutely linked to mutation F508 of the CFTR gene. Using the polymorphic markers studied, family analysis of CF was carried out in two families. 10 refs., 1 fig., 1 tab.

  19. De novo generation of adipocytes from circulating progenitor cells in mouse and human adipose tissue.

    PubMed

    Gavin, Kathleen M; Gutman, Jonathan A; Kohrt, Wendy M; Wei, Qi; Shea, Karen L; Miller, Heidi L; Sullivan, Timothy M; Erickson, Paul F; Helm, Karen M; Acosta, Alistaire S; Childs, Christine R; Musselwhite, Evelyn; Varella-Garcia, Marileila; Kelly, Kimberly; Majka, Susan M; Klemm, Dwight J

    2016-03-01

    White adipocytes in adults are typically derived from tissue resident mesenchymal progenitors. The recent identification of de novo production of adipocytes from bone marrow progenitor-derived cells in mice challenges this paradigm and indicates an alternative lineage specification that adipocytes exist. We hypothesized that alternative lineage specification of white adipocytes is also present in human adipose tissue. Bone marrow from transgenic mice in which luciferase expression is governed by the adipocyte-restricted adiponectin gene promoter was adoptively transferred to wild-type recipient mice. Light emission was quantitated in recipients by in vivo imaging and direct enzyme assay. Adipocytes were also obtained from human recipients of hematopoietic stem cell transplantation. DNA was isolated, and microsatellite polymorphisms were exploited to quantify donor/recipient chimerism. Luciferase emission was detected from major fat depots of transplanted mice. No light emission was observed from intestines, liver, or lungs. Up to 35% of adipocytes in humans were generated from donor marrow cells in the absence of cell fusion. Nontransplanted mice and stromal-vascular fraction samples were used as negative and positive controls for the mouse and human experiments, respectively. This study provides evidence for a nontissue resident origin of an adipocyte subpopulation in both mice and humans.

  20. Interactions between Mesenchymal Stem Cells, Adipocytes, and Osteoblasts in a 3D Tri-Culture Model of Hyperglycemic Conditions in the Bone Marrow Microenvironment

    PubMed Central

    Rinker, Torri E.; Hammoudi, Taymour M.; Kemp, Melissa L.; Lu, Hang; Temenoff, Johnna S.

    2014-01-01

    Recent studies have found that uncontrolled diabetes and consequential hyperglycemic conditions can lead to increased incidence of osteoporosis. Osteoblasts, adipocytes, and mesenchymal stem cells (MSCs) are all components of the bone marrow microenvironment and thus may have an effect on diabetes-related osteoporosis. However, few studies have investigated the influence of these three cell types on each other, especially in the context of hyperglycemia. Thus, we developed a hydrogel-based 3D culture platform engineered to allow live-cell retrieval in order to investigate the interactions between MSCs, osteoblasts, and adipocytes in mono-, co-, and tri-culture configurations under hyperglycemic conditions for 7 days of culture. Gene expression, histochemical analysis of differentiation markers, and cell viability were measured for all cell types, and MSC-laden hydrogels were degraded to retrieve cells to assess colony-forming capacity. Multivariate models of gene expression data indicated that primary discrimination was dependent on neighboring cell type, validating the need for co-culture configurations to study conditions modeling this disease state. MSC viability and clonogenicity were reduced when mono- and co-cultured with osteoblasts in high glucose levels. In contrast, MSCs had no reduction of viability or clonogenicity when cultured with adipocytes in high glucose conditions and adipogenic gene expression indicated that cross-talk between MSCs and adipocytes may occur. Thus, our unique culture platform combined with post-culture multivariate analysis provided novel insight into cellular interactions within the MSC microenvironment and highlights the necessity of multi-cellular culture systems for further investigation of complex pathologies such as diabetes and osteoporosis. PMID:24463781

  1. The Molecular Signature of HIV-1-Associated Lipomatosis Reveals Differential Involvement of Brown and Beige/Brite Adipocyte Cell Lineages

    PubMed Central

    Cereijo, Rubén; Gallego-Escuredo, José Miguel; Moure, Ricardo; Villarroya, Joan; Domingo, Joan Carles; Fontdevila, Joan; Martínez, Esteban; Gutiérrez, Maria del Mar; Mateo, María Gracia; Giralt, Marta; Domingo, Pere; Villarroya, Francesc

    2015-01-01

    Highly active antiretroviral therapy has remarkably improved quality of life of HIV-1-infected patients. However, this treatment has been associated with the so-called lipodystrophic syndrome, which conveys a number of adverse metabolic effects and morphological alterations. Among them, lipoatrophy of subcutaneous fat in certain anatomical areas and hypertrophy of visceral depots are the most common. Less frequently, lipomatous enlargements of subcutaneous fat at distinct anatomic areas occur. Lipomatous adipose tissue in the dorso-cervical area (“buffalo hump”) has been associated with a partial white-to-brown phenotype transition and with increased cell proliferation, but, to date, lipomatous enlargements arising in other parts of the body have not been characterized. In order to establish the main molecular events associated with the appearance of lipomatosis in HIV-1 patients, we analyzed biopsies of lipomatous tissue from “buffalo hump” and from other anatomical areas in patients, in comparison with healthy subcutaneous adipose tissue, using a marker gene expression approach. Both buffalo-hump and non-buffalo-hump lipomatous adipose tissues exhibited similar patterns of non-compromised adipogenesis, unaltered inflammation, non-fibrotic phenotype and proliferative activity. Shorter telomere length, prelamin A accumulation and SA-β-Gal induction, reminiscent of adipocyte senescence, were also common to both types of lipomatous tissues. Buffalo hump biopsies showed expression of marker genes of brown adipose tissue (e.g. UCP1) and, specifically, of “classical” brown adipocytes (e.g. ZIC1) but not of beige/brite adipocytes. No such brown fat-related gene expression occurred in lipomatous tissues at other anatomical sites. In conclusion, buffalo hump and other subcutaneous adipose tissue enlargements from HIV-1-infected patients share a similar lipomatous character. However, a distorted induction of white-to-“classical brown adipocyte” phenotype

  2. A mutated cytosine deaminase gene, codA (D314A), as an efficient negative selection marker for gene targeting in rice.

    PubMed

    Osakabe, Keishi; Nishizawa-Yokoi, Ayako; Ohtsuki, Namie; Osakabe, Yuriko; Toki, Seiichi

    2014-03-01

    Gene targeting (GT) is a powerful tool manipulating a gene of interest in a given genome specifically and precisely. To achieve efficient GT in higher plants, both positive and negative selection markers are required. In particular, a strong negative selection system is needed for enrichment of cells to eliminate those cells in which random integration of the introduced DNA has occurred in GT experiments. Currently, non-conditional negative selection marker genes are used for GT experiments in rice plants, and no conditional negative selection system is available. In this study, we describe the development of an efficient conditional negative selection system in rice plants using Escherichia coli cytosine deaminase (codA). We found that a mutant codA gene, codA(D314A), acts more efficiently than the wild-type codA for negative selection in rice plants. The codA(D314A) marker was further used as a negative selection marker for GT experiments in rice. Our conditional negative selection system effectively eliminated the cells in which random integration event(s) occurred; the enrichment factor was approximately 100-fold. This enrichment factor was similar to that found when Corynebacterium diphtheriae toxin fragment A was used. Our results suggest the codA(D314A) marker gene as a promising negative selection marker for GT of rice.

  3. Sexually dimorphic gene expressions in eels: useful markers for early sex assessment in a conservation context

    PubMed Central

    Geffroy, Benjamin; Guilbaud, Florian; Amilhat, Elsa; Beaulaton, Laurent; Vignon, Matthias; Huchet, Emmanuel; Rives, Jacques; Bobe, Julien; Fostier, Alexis; Guiguen, Yann; Bardonnet, Agnès

    2016-01-01

    Environmental sex determination (ESD) has been detected in a range of vertebrate reptile and fish species. Eels are characterized by an ESD that occurs relatively late, since sex cannot be histologically determined before individuals reach 28 cm. Because several eel species are at risk of extinction, assessing sex at the earliest stage is a crucial management issue. Based on preliminary results of RNA sequencing, we targeted genes susceptible to be differentially expressed between ovaries and testis at different stages of development. Using qPCR, we detected testis-specific expressions of dmrt1, amh, gsdf and pre-miR202 and ovary-specific expressions were obtained for zar1, zp3 and foxn5. We showed that gene expressions in the gonad of intersexual eels were quite similar to those of males, supporting the idea that intersexual eels represent a transitional stage towards testicular differentiation. To assess whether these genes would be effective early molecular markers, we sampled juvenile eels in two locations with highly skewed sex ratios. The combined expression of six of these genes allowed the discrimination of groups according to their potential future sex and thus this appears to be a useful tool to estimate sex ratios of undifferentiated juvenile eels. PMID:27658729

  4. Measuring gene flow from two birdsfoot trefoil (Lotus corniculatus) field trials using transgenes as tracer markers.

    PubMed

    De Marchis, F; Bellucci, M; Arcioni, S

    2003-06-01

    Genetic engineering is becoming a useful tool in the improvement of plants but concern has been expressed about the potential environmental risks of releasing genetically modified (GM) organisms into the environment. Attention has focused on pollen dispersal as a major issue in the risk assessment of transgenic crop plants. In this study, pollen-mediated dispersal of transgenes via cross-fertilization was examined. Plants of Lotus corniculatus L. transformed with either the Escherichia coli asparagine synthetase gene asnA or the beta-glucuronidase gene uidA, were used as the pollen donor. Nontransgenic plants belonging to the species L. corniculatus L., L. tenuis Waldst. and Kit. ex Willd, and L. pedunculatus Cav., were utilized as recipients. Two experimental fields were established in two areas of central Italy. Plants carrying the uidA gene were partially sterile, therefore only the asnA gene was used as a tracer marker. No transgene flow between L. corniculatus transformants and the nontransgenic L. tenuis and L. pedunculatus plants was detected. As regards nontransgenic L. corniculatus plants, in one location flow of asnA transgene was detected up to 18 m from the 1.8 m2 donor plot. In the other location, pollen dispersal occurred up to 120 m from the 14 m2 pollinating plot.

  5. [Relationship Between Molecular Marker of Western Main Pig H-FABP Gene and IMF Content.].

    PubMed

    Pang, Wei-Jun; Sun, Shi-Duo; Li, Ying; Chen, Guo-Dong; Yang, Gong-She

    2005-05-01

    By using 265 pigs from eight breeds including Duroc,Landrace,Large White,Neijiang,Rongchang,Hanjiang Black,Hanzhong White,Bamei and wild ones, the genetic variations of 5'-upstream region from and the second intron in porcine H-FABP gene were checked by PCR-RFLP molecular marker with HinfI, Hae III and MspI,and effect of H-FABP gene on IMF content was then analyzed by least square analysis.The results showed as follows:(1) 8 pig breeds and wild pig had polymorphism at Hinf I-RFLP site. In above detected breeds,large white,Bamei pig, Hanjiang Black,Hanzhong White pig breeds and wild pig presented low polymorphism while other breeds have mediate polymorphism;(2)Among the tested breeds only 4 Chinese local pig breeds had no polymorphism at the Hae III-RFLP and Msp I-RFLP sites,but Duroc,Landrace,Largewhite, Hanzhong White pig breeds and wild pig had polymorphism. Wild pig at the Hae III-RFLP , Landrace,Largewhite and wild pig at the Hae III-RFLP and Msp I-RFLP sites were low polymorphism,others were mediate polymorphism;(3) H-FABP gene increased IMF content significantly(p0.05). Genetic effect of H-FABP gene on IMF content were HH>Hh>hh,DD.

  6. Sexually dimorphic gene expressions in eels: useful markers for early sex assessment in a conservation context

    NASA Astrophysics Data System (ADS)

    Geffroy, Benjamin; Guilbaud, Florian; Amilhat, Elsa; Beaulaton, Laurent; Vignon, Matthias; Huchet, Emmanuel; Rives, Jacques; Bobe, Julien; Fostier, Alexis; Guiguen, Yann; Bardonnet, Agnès

    2016-09-01

    Environmental sex determination (ESD) has been detected in a range of vertebrate reptile and fish species. Eels are characterized by an ESD that occurs relatively late, since sex cannot be histologically determined before individuals reach 28 cm. Because several eel species are at risk of extinction, assessing sex at the earliest stage is a crucial management issue. Based on preliminary results of RNA sequencing, we targeted genes susceptible to be differentially expressed between ovaries and testis at different stages of development. Using qPCR, we detected testis-specific expressions of dmrt1, amh, gsdf and pre-miR202 and ovary-specific expressions were obtained for zar1, zp3 and foxn5. We showed that gene expressions in the gonad of intersexual eels were quite similar to those of males, supporting the idea that intersexual eels represent a transitional stage towards testicular differentiation. To assess whether these genes would be effective early molecular markers, we sampled juvenile eels in two locations with highly skewed sex ratios. The combined expression of six of these genes allowed the discrimination of groups according to their potential future sex and thus this appears to be a useful tool to estimate sex ratios of undifferentiated juvenile eels.

  7. Carbamazepine directly inhibits adipocyte differentiation through activation of the ERK 1/2 pathway

    PubMed Central

    Turpin, E; Muscat, A; Vatier, C; Chetrite, G; Corruble, E; Moldes, M; Fève, B

    2013-01-01

    Background and Purpose Carbamazepine (CBZ), known for its anti-epileptic, analgesic and mood-stabilizing properties, is also known to induce weight gain but the pathophysiology of this adverse effect is still largely unknown. We tested the hypothesis that CBZ could have a direct effect on adipocyte development and metabolism. Experimental Research We studied the effects of CBZ on morphological biochemical and molecular markers of adipogenesis, using several pre-adipocyte murine cell lines (3T3-L1, 3T3-F442A and T37i cells) and primary cultures of human pre-adipocytes. To delineate the mechanisms underlying the effect of CBZ, clonal expansion of pre-adipocytes, pro-adipogenic transcription factors, glucose uptake and lipolysis were also examined. Key Results CBZ strongly inhibited pre-adipocyte differentiation and triglyceride accumulation in a time- and dose-dependent manner in all models. Pleiotropic mechanisms were at the basis of the inhibitory effects of CBZ on adipogenesis and cell lipid accumulation. They included suppression of both clonal expansion and major adipogenic transcription factors such as PPAR-γ and CCAAT/enhancer binding protein-α, activation of basal lipolysis and decrease in insulin-stimulated glucose transport. Conclusions and Implications The effect of CBZ on adipogenesis involves activation of the ERK1/2 pathway. Our results show that CBZ acts directly on pre-adipocytes and adipocytes to alter adipose tissue development and metabolism. PMID:22889231

  8. Myostatin signals through miR-34a to regulate Fndc5 expression and browning of white adipocytes

    PubMed Central

    Ge, X; Sathiakumar, D; Lua, B J G; Kukreti, H; Lee, M; McFarlane, C

    2017-01-01

    Background/Objectives: Myostatin (Mstn) has a pivotal role in glucose and lipid metabolism. Mstn deficiency leads to the increased browning of white adipose tissue (WAT), which results in the increased energy expenditure and protection against diet-induced obesity and insulin resistance. In this study, we investigated the molecular mechanism(s) through which Mstn regulates browning of white adipocytes. Methods: Quantitative molecular analyses were performed to assess Mstn regulation of miR-34a and Fndc5 expression. miR-34a was overexpressed and repressed to investigate miR-34a regulation of Fndc5. Luciferase reporter analysis verified direct binding between miR-34a and the Fndc5 3′-untranslated region (UTR). The browning phenotype of Mstn−/− adipocytes was assessed through the analysis of brown fat marker gene expression, mitochondrial function and infrared thermography. The role of miR-34a and Fndc5 in this browning phenotype was verified through antibody-mediated neutralization of FNDC5, knockdown of Fndc5 by small interfering RNA and through miR-34a gain-of-function and loss-of-function experiments. Results: Mstn treatment of myoblasts inhibited Fndc5 expression, whereas the loss of Mstn increased Fndc5 levels in muscles and in circulation. Mstn inhibition of Fndc5 is miR-34a dependent. Mstn treatment of C2C12 myoblasts upregulated miR-34a expression, whereas reduced miR-34a expression was noted in Mstn−/− muscle and WAT. Subsequent overexpression of miR-34a inhibited Fndc5 expression, whereas blockade of miR-34a increased Fndc5 expression in myoblasts. Reporter analysis revealed that miR-34a directly suppresses Fndc5 expression through a miR-34a-specific binding site within the Fndc5 3′UTR. Importantly, Mstn-mediated inhibition of Fndc5 was blocked upon miR-34a inhibition. Mstn−/− adipocytes showed reduced miR-34a, enhanced Fndc5 expression and increased thermogenic gene expression, which was reversed upon either neutralization of Fndc5 or Fndc5

  9. NINJA-OPS: Fast Accurate Marker Gene Alignment Using Concatenated Ribosomes

    PubMed Central

    Al-Ghalith, Gabriel A.; Montassier, Emmanuel; Ward, Henry N.; Knights, Dan

    2016-01-01

    The explosion of bioinformatics technologies in the form of next generation sequencing (NGS) has facilitated a massive influx of genomics data in the form of short reads. Short read mapping is therefore a fundamental component of next generation sequencing pipelines which routinely match these short reads against reference genomes for contig assembly. However, such techniques have seldom been applied to microbial marker gene sequencing studies, which have mostly relied on novel heuristic approaches. We propose NINJA Is Not Just Another OTU-Picking Solution (NINJA-OPS, or NINJA for short), a fast and highly accurate novel method enabling reference-based marker gene matching (picking Operational Taxonomic Units, or OTUs). NINJA takes advantage of the Burrows-Wheeler (BW) alignment using an artificial reference chromosome composed of concatenated reference sequences, the “concatesome,” as the BW input. Other features include automatic support for paired-end reads with arbitrary insert sizes. NINJA is also free and open source and implements several pre-filtering methods that elicit substantial speedup when coupled with existing tools. We applied NINJA to several published microbiome studies, obtaining accuracy similar to or better than previous reference-based OTU-picking methods while achieving an order of magnitude or more speedup and using a fraction of the memory footprint. NINJA is a complete pipeline that takes a FASTA-formatted input file and outputs a QIIME-formatted taxonomy-annotated BIOM file for an entire MiSeq run of human gut microbiome 16S genes in under 10 minutes on a dual-core laptop. PMID:26820746

  10. Characterization of lipid metabolism in insulin-sensitive adipocytes differentiated from immortalized human mesenchymal stem cells

    SciTech Connect

    Prawitt, Janne; Niemeier, Andreas; Kassem, Moustapha; Beisiegel, Ulrike; Heeren, Joerg

    2008-02-15

    There is a great demand for cell models to study human adipocyte function. Here we describe the adipogenic differentiation of a telomerase-immortalized human mesenchymal stem cell line (hMSC-Tert) that maintains numerous features of terminally differentiated adipocytes even after prolonged withdrawal of the peroxisome proliferator activated receptor {gamma} (PPAR{gamma}) agonist rosiglitazone. Differentiated hMSC-Tert developed the characteristic monolocular phenotype of mature adipocytes. The expression of adipocyte specific markers was highly increased during differentiation. Most importantly, the presence of the PPAR{gamma} agonist rosiglitazone was not required for the stable expression of lipoprotein lipase, adipocyte fatty acid binding protein and perilipin on mRNA and protein levels. Adiponectin expression was post-transcriptionally down-regulated in the absence of rosiglitazone. Insulin sensitivity as measured by insulin-induced phosphorylation of Akt and S6 ribosomal protein was also independent of rosiglitazone. In addition to commonly used adipogenic markers, we investigated further PPAR{gamma}-stimulated proteins with a role in lipid metabolism. We observed an increase of lipoprotein receptor (VLDLR, LRP1) and apolipoprotein E expression during differentiation. Despite this increased expression, the receptor-mediated endocytosis of lipoproteins was decreased in differentiated adipocytes, suggesting that these proteins may have an additional function in adipose tissue beyond lipoprotein uptake.

  11. Characterization of lipid metabolism in insulin-sensitive adipocytes differentiated from immortalized human mesenchymal stem cells.

    PubMed

    Prawitt, Janne; Niemeier, Andreas; Kassem, Moustapha; Beisiegel, Ulrike; Heeren, Joerg

    2008-02-15

    There is a great demand for cell models to study human adipocyte function. Here we describe the adipogenic differentiation of a telomerase-immortalized human mesenchymal stem cell line (hMSC-Tert) that maintains numerous features of terminally differentiated adipocytes even after prolonged withdrawal of the peroxisome proliferator activated receptor gamma (PPARgamma) agonist rosiglitazone. Differentiated hMSC-Tert developed the characteristic monolocular phenotype of mature adipocytes. The expression of adipocyte specific markers was highly increased during differentiation. Most importantly, the presence of the PPARgamma agonist rosiglitazone was not required for the stable expression of lipoprotein lipase, adipocyte fatty acid binding protein and perilipin on mRNA and protein levels. Adiponectin expression was post-transcriptionally down-regulated in the absence of rosiglitazone. Insulin sensitivity as measured by insulin-induced phosphorylation of Akt and S6 ribosomal protein was also independent of rosiglitazone. In addition to commonly used adipogenic markers, we investigated further PPARgamma-stimulated proteins with a role in lipid metabolism. We observed an increase of lipoprotein receptor (VLDLR, LRP1) and apolipoprotein E expression during differentiation. Despite this increased expression, the receptor-mediated endocytosis of lipoproteins was decreased in differentiated adipocytes, suggesting that these proteins may have an additional function in adipose tissue beyond lipoprotein uptake.

  12. Development of molecular markers tightly linked to Pvr4 gene in pepper using next-generation sequencing.

    PubMed

    Devran, Zübeyir; Kahveci, Erdem; Özkaynak, Ercan; Studholme, David J; Tör, Mahmut

    It is imperative to identify highly polymorphic and tightly linked markers of a known trait for molecular marker-assisted selection. Potyvirus resistance 4 (Pvr4) locus in pepper confers resistance to three pathotypes of potato virus Y and to pepper mottle virus. We describe the use of next-generation sequencing technology to generate molecular markers tightly linked to Pvr4. Initially, comparative genomics was carried out, and a syntenic region of tomato on chromosome ten was used to generate PCR-based markers and map Pvr4. Subsequently, the genomic sequence of pepper was used, and more than 5000 single-nucleotide variants (SNVs) were identified within the interval. In addition, we identified nucleotide binding site-leucine-rich repeat-type disease resistance genes within the interval. Several of these SNVs were converted to molecular markers desirable for large-scale molecular breeding programmes.

  13. Fatty acid binding protein 4 expression marks a population of adipocyte progenitors in white and brown adipose tissues.

    PubMed

    Shan, Tizhong; Liu, Weiyi; Kuang, Shihuan

    2013-01-01

    Adipose tissues regulate metabolism, reproduction, and life span. The development and growth of adipose tissue are due to increases of both adipocyte cell size and cell number; the latter is mediated by adipocyte progenitors. Various markers have been used to identify either adipocyte progenitors or mature adipocytes. The fatty acid binding protein 4 (FABP4), commonly known as adipocyte protein 2 (aP2), has been extensively used as a marker for differentiated adipocytes. However, whether aP2 is expressed in adipogenic progenitors is controversial. Using Cre/LoxP-based cell lineage tracing in mice, we have identified a population of aP2-expressing progenitors in the stromal vascular fraction (SVF) of both white and brown adipose tissues. The aP2-lineage progenitors reside in the adipose stem cell niche and express adipocyte progenitor markers, including CD34, Sca1, Dlk1, and PDGFRα. When isolated and grown in culture, the aP2-expressing SVF cells proliferate and differentiate into adipocytes upon induction. Conversely, ablation of the aP2 lineage greatly reduces the adipogenic potential of SVF cells. When grafted into wild-type mice, the aP2-lineage progenitors give rise to adipose depots in recipient mice. Therefore, the expression of aP2 is not limited to mature adipocytes, but also marks a pool of undifferentiated progenitors associated with the vasculature of adipose tissues. Our finding adds to the repertoire of adipose progenitor markers and points to a new regulator of adipose plasticity.

  14. [Construction and Function Verification of a Novel Shuttle Vector Containing a Marker Gene Self-deletion System].

    PubMed

    Li, Lili; Wang, Zhan; Zhou, Yubai; Zhang, Fang; Shen, Sisi; Li, Zelin; Zeng, Yi

    2015-09-01

    For rapid and accurate screening of recombinant modified vaccinia virus Ankara (rMVA) that satisfied the quality standards of clinical trials, a novel shuttle vector that can delete the marker gene automatically during virus propagation was construted: pZL-EGFP. To construct the pZL-EGFP, the original shuttle vector pSC11 was modified by replacing the LacZ marker gene with enhanced green fluorescent protein (EGFP) and then inserting homologous sequences of TKL into the flank regions of EGFP. Baby hamster kidney (BHK)-21 cells were cotransfected with pZL-EGFP and MVA, and underwent ten passages and one plaque screening to obtain the EGFP-free rMVA carrying the exogenous gene. Resulting rMVA was tested by polymerase chain reaction and western blotting to verify pZL-EGFP function. A novel shuttle vector pZL-EGFP containing an EGFP marker gene which could be deleted automatically was constructed. This gene deletion had no effect on the activities of rMVA, and the exogenous gene could be expressed stably. These results suggest that rMVA can be packaged efficiently by homologous recombination between pZL-EGFP and MVA in BHK-21 cells, and that the carried EGFP gene can be removed automatically by intramolecular homologous recombination during virus passage. Meanwhile, the gene deletion had no influence on the activities of rMVA and the expression of exogenous target gene. This study lays a solid foundation for the future research.

  15. Ethanol extracts of chickpeas alter the total lipid content and expression levels of genes related to fatty acid metabolism in mouse 3T3-L1 adipocytes.

    PubMed

    Shinohara, Shigeo; Gu, Yuanjun; Yang, Ying; Furuta, Yasuo; Tanaka, Masahiko; Yue, Xiaohua; Wang, Weiqing; Kitano, Masaru; Kimura, Hiroshi

    2016-08-01

    Desi-type chickpeas, which have long been used as a natural treatment for diabetes, have been reported to lower visceral adiposity, dyslipidemia and insulin resistance induced by a chronic high-fat diet in rats. In this study, in order to examine the effects of chickpeas of this type in an in vitro system, we used the 3T3-L1 mouse cell line, a subclone of Swiss 3T3 cells, which can differentiate into cells with an adipocyte-like phenotype, and we used ethanol extracts of chickpeas (ECP) instead of chickpeas. Treatment of the 3T3-L1 cells with ECP led to a decrease in the lipid content in the cells. The desaturation index, defined as monounsaturated fatty acids (MUFAs)/saturated fatty acids (SFAs), was also decreased by ECP due to an increase in the cellular content of SFAs and a decrease in the content of MUFAs. The decrease in this index may reflect a decreased reaction from SFA to MUFA, which is essential for fat storage. To confirm this hypothesis, we conducted a western blot analysis, which revealed a reduction in the amount of stearoyl-CoA desaturase 1 (SCD1), a key enzyme catalyzing the reaction from SFA to MUFA. We observed simultaneous inactivations of enzymes participating in lipogenesis, i.e., liver kinase B1 (LKB1), acetyl-CoA carboxylase (ACC) and AMPK, by phosphorylation, which may lead to the suppression of reactions from acetyl-CoA to SFA via malonyl-CoA in lipogenesis. We also investigated whether lipolysis is affected by ECP. The amount of carnitine palmitoyltransferase 1 (CPT1), an enzyme important for the oxidation of fatty acids, was increased by ECP treatment. ECP also led to an increase in uncoupling protein 2 (UCP2), reported as a key protein for the oxidation of fatty acids. All of these results obtained regarding lipogenesis and fatty acid metabolism in our in vitro system are consistent with the results previously shown in rats. We also examined the effects on SCD1 and lipid contents of ethanol extracts of Kabuli

  16. Ethanol extracts of chickpeas alter the total lipid content and expression levels of genes related to fatty acid metabolism in mouse 3T3-L1 adipocytes

    PubMed Central

    Shinohara, Shigeo; Gu, Yuanjun; Yang, Ying; Furuta, Yasuo; Tanaka, Masahiko; Yue, Xiaohua; Wang, Weiqing; Kitano, Masaru; Kimura, Hiroshi

    2016-01-01

    Desi-type chickpeas, which have long been used as a natural treatment for diabetes, have been reported to lower visceral adiposity, dyslipidemia and insulin resistance induced by a chronic high-fat diet in rats. In this study, in order to examine the effects of chickpeas of this type in an in vitro system, we used the 3T3-L1 mouse cell line, a subclone of Swiss 3T3 cells, which can differentiate into cells with an adipocyte-like phenotype, and we used ethanol extracts of chickpeas (ECP) instead of chickpeas. Treatment of the 3T3-L1 cells with ECP led to a decrease in the lipid content in the cells. The desaturation index, defined as monounsaturated fatty acids (MUFAs)/saturated fatty acids (SFAs), was also decreased by ECP due to an increase in the cellular content of SFAs and a decrease in the content of MUFAs. The decrease in this index may reflect a decreased reaction from SFA to MUFA, which is essential for fat storage. To confirm this hypothesis, we conducted a western blot analysis, which revealed a reduction in the amount of stearoyl-CoA desaturase 1 (SCD1), a key enzyme catalyzing the reaction from SFA to MUFA. We observed simultaneous inactivations of enzymes participating in lipogenesis, i.e., liver kinase B1 (LKB1), acetyl-CoA carboxylase (ACC) and AMPK, by phosphorylation, which may lead to the suppression of reactions from acetyl-CoA to SFA via malonyl-CoA in lipogenesis. We also investigated whether lipolysis is affected by ECP. The amount of carnitine palmitoyltransferase 1 (CPT1), an enzyme important for the oxidation of fatty acids, was increased by ECP treatment. ECP also led to an increase in uncoupling protein 2 (UCP2), reported as a key protein for the oxidation of fatty acids. All of these results obtained regarding lipogenesis and fatty acid metabolism in our in vitro system are consistent with the results previously shown in rats. We also examined the effects on SCD1 and lipid contents of ethanol extracts of Kabuli-type chickpeas, which are

  17. Development of gene-based markers and construction of an integrated linkage map in eggplant by using Solanum orthologous (SOL) gene sets.

    PubMed

    Fukuoka, Hiroyuki; Miyatake, Koji; Nunome, Tsukasa; Negoro, Satomi; Shirasawa, Kenta; Isobe, Sachiko; Asamizu, Erika; Yamaguchi, Hirotaka; Ohyama, Akio

    2012-06-01

    We constructed an integrated DNA marker linkage map of eggplant (Solanum melongena L.) using DNA marker segregation data sets obtained from two independent intraspecific F(2) populations. The linkage map consisted of 12 linkage groups and encompassed 1,285.5 cM in total. We mapped 952 DNA markers, including 313 genomic SSR markers developed by random sequencing of simple sequence repeat (SSR)-enriched genomic libraries, and 623 single-nucleotide polymorphisms (SNP) and insertion/deletion polymorphisms (InDels) found in eggplant-expressed sequence tags (ESTs) and related genomic sequences [introns and untranslated regions (UTRs)]. Because of their co-dominant inheritance and their highly polymorphic and multi-allelic nature, the SSR markers may be more versatile than the SNP and InDel markers for map-based genetic analysis of any traits of interest using segregating populations derived from any intraspecific crosses of practical breeding materials. However, we found that the distribution of microsatellites in the genome was biased to some extent, and therefore a considerable part of the eggplant genome was first detected when gene-derived SNP and InDel markers were mapped. Of the 623 SNP and InDel markers mapped onto the eggplant integrated map, 469 were derived from eggplant unigenes contained within Solanum orthologous (SOL) gene sets (i.e., sets of orthologous unigenes from eggplant, tomato, and potato). Out of the 469 markers, 326 could also be mapped onto the tomato map. These common markers will be informative landmarks for the transfer of tomato's more saturated genomic information to eggplant and will also provide comparative information on the genome organization of the two solanaceous species. The data are available from the DNA marker database of vegetables, VegMarks (http://vegmarks.nivot.affrc.go.jp).

  18. Low-Dose Bisphenol-A Impairs Adipogenesis and Generates Dysfunctional 3T3-L1 Adipocytes.

    PubMed

    Ariemma, Fabiana; D'Esposito, Vittoria; Liguoro, Domenico; Oriente, Francesco; Cabaro, Serena; Liotti, Antonietta; Cimmino, Ilaria; Longo, Michele; Beguinot, Francesco; Formisano, Pietro; Valentino, Rossella

    2016-01-01

    Environmental endocrine disruptors (EDCs), including bisphenol-A (BPA), have been recently involved in obesity and diabetes by dysregulating adipose tissue function. Our aim was to examine whether prolonged exposure to low doses of BPA could affect adipogenesis and adipocyte metabolic functions. Therefore, 3T3-L1 pre-adipocytes were cultured for three weeks with BPA 1 nM to mimic human environmental exposure. We evaluated BPA effect on cell proliferation, differentiation, gene expression and adipocyte metabolic function. BPA significantly increased pre-adipocyte proliferation (p<0.01). In 3T3-L1 adipocytes differentiated in the presence of BPA, the expression of Peroxisome proliferator-activated receptor gamma (PPARγ), Fatty Acid Binding Protein 4/Adipocyte Protein 2 (FABP4/AP2) and CCAAT/enhancer binding protein (C/EBPα) was increased by 3.5, 1.5 and 3 folds, respectively. Mature adipocytes also showed a significant increase in lipid accumulation (p<0.05) and alterations of insulin action, with significant reduction in insulin-stimulated glucose utilization (p<0.001). Moreover, in mature adipocytes, mRNA levels of Leptin, interleukin-6 (IL6) and interferon-γ (IFNγ) were significantly increased (p<0.05). In conclusion, BPA prolonged exposure at low doses, consistent with those found in the environment, may affect adipocyte differentiation program, enhancing pre-adipocyte proliferation and anticipating the expression of the master genes involved in lipid/glucose metabolism. The resulting adipocytes are hypertrophic, with impaired insulin signaling, reduced glucose utilization and increased pro-inflammatory cytokine expression. Thus, these data supported the hypothesis that BPA exposure, during critical stages of adipose tissue development, may cause adipocyte metabolic dysfunction and inflammation, thereby increasing the risk of developing obesity-related diseases.

  19. Low-Dose Bisphenol-A Impairs Adipogenesis and Generates Dysfunctional 3T3-L1 Adipocytes

    PubMed Central

    Ariemma, Fabiana; D’Esposito, Vittoria; Liguoro, Domenico; Oriente, Francesco; Cabaro, Serena; Liotti, Antonietta; Cimmino, Ilaria; Longo, Michele; Beguinot, Francesco; Formisano, Pietro; Valentino, Rossella

    2016-01-01

    Environmental endocrine disruptors (EDCs), including bisphenol-A (BPA), have been recently involved in obesity and diabetes by dysregulating adipose tissue function. Our aim was to examine whether prolonged exposure to low doses of BPA could affect adipogenesis and adipocyte metabolic functions. Therefore, 3T3-L1 pre-adipocytes were cultured for three weeks with BPA 1nM to mimic human environmental exposure. We evaluated BPA effect on cell proliferation, differentiation, gene expression and adipocyte metabolic function. BPA significantly increased pre-adipocyte proliferation (p<0.01). In 3T3-L1 adipocytes differentiated in the presence of BPA, the expression of Peroxisome proliferator-activated receptor gamma (PPARγ), Fatty Acid Binding Protein 4/Adipocyte Protein 2 (FABP4/AP2) and CCAAT/enhancer binding protein (C/EBPα) was increased by 3.5, 1.5 and 3 folds, respectively. Mature adipocytes also showed a significant increase in lipid accumulation (p<0.05) and alterations of insulin action, with significant reduction in insulin-stimulated glucose utilization (p<0.001). Moreover, in mature adipocytes, mRNA levels of Leptin, interleukin-6 (IL6) and interferon-γ (IFNγ) were significantly increased (p<0.05). In conclusion, BPA prolonged exposure at low doses, consistent with those found in the environment, may affect adipocyte differentiation program, enhancing pre-adipocyte proliferation and anticipating the expression of the master genes involved in lipid/glucose metabolism. The resulting adipocytes are hypertrophic, with impaired insulin signaling, reduced glucose utilization and increased pro-inflammatory cytokine expression. Thus, these data supported the hypothesis that BPA exposure, during critical stages of adipose tissue development, may cause adipocyte metabolic dysfunction and inflammation, thereby increasing the risk of developing obesity-related diseases. PMID:26942597

  20. Markers Are Shared Between Adipogenic and Osteogenic Differentiated Mesenchymal Stem Cells.

    PubMed

    Köllmer, Melanie; Buhrman, Jason S; Zhang, Yu; Gemeinhart, Richard A

    2013-05-01

    The stem cell differentiation paradigm is based on the progression of cells through generations of daughter cells that eventually become restricted and committed to one lineage resulting in fully differentiated cells. Herein, we report on the differentiation of adult human mesenchymal stem cells (hMSCs) towards adipogenic and osteogenic lineages using established protocols. Lineage specific geneswere evaluated by quantitative real-time PCR relative to two reference genes. The expression of osteoblast-associated genes (alkaline phosphatase, osteopontin, and osteocalcin)was detected in hMSCs that underwent adipogenesis. When normalized, the expression of adipocyte marker genes (adiponectin, fatty acid binding protein P4, and leptin) increasedin a time-dependent manner during adipogenic induction. Adiponectin and leptin were also detected in osteoblast-induced cells. Lipid vacuoles that represent the adipocyte phenotype were only present in the adipogenic induction group. Conforming to the heterogeneous nature of hMSCs and the known plasticity between osteogenic and adipogenic lineages, these data indicatea marker overlap between MSC-derived adipocytes and osteoblasts. Weproposea careful consideration of experimental conditions such as investigated timepoints, selected housekeeping genesand the evidence indicating lack of differentiation into other lineageswhen evaluating hMSC differentiation.

  1. Analysis of simple sequence repeat markers linked with blast disease resistance genes in a segregating population of rice (Oryza sativa).

    PubMed

    Ashkani, S; Rafii, M Y; Sariah, M; Siti Nor Akmar, A; Rusli, I; Abdul Rahim, H; Latif, M A

    2011-07-06

    Among 120 simple sequence repeat (SSR) markers, 23 polymorphic markers were used to identify the segregation ratio in 320 individuals of an F(2) rice population derived from Pongsu Seribu 2, a resistant variety, and Mahsuri, a susceptible rice cultivar. For phenotypic study, the most virulent blast (Magnaporthe oryzae) pathotype, P7.2, was used in screening of F(2) population in order to understand the inheritance of blast resistance as well as linkage with SSR markers. Only 11 markers showed a good fit to the expected segregation ratio (1:2:1) for the single gene model (d.f. = 1.0, P < 0.05) in chi-square (χ(2)) analyses. In the phenotypic data analysis, the F(2) population segregated in a 3:1 (R:S) ratio for resistant and susceptible plants, respectively. Therefore, resistance to blast pathotype P7.2 in Pongsu Seribu 2 is most likely controlled by a single nuclear gene. The plants from F(2) lines that showed resistance to blast pathotype P7.2 were linked to six alleles of SSR markers, RM168 (116 bp), RM8225 (221 bp), RM1233 (175 bp), RM6836 (240 bp), RM5961 (129 bp), and RM413 (79 bp). These diagnostic markers could be used in marker assisted selection programs to develop a durable blast resistant variety.

  2. A Rapid Molecular Test for Determining Yersinia pestis Susceptibility to Ciprofloxacin by the Quantification of Differentially Expressed Marker Genes

    PubMed Central

    Steinberger-Levy, Ida; Shifman, Ohad; Zvi, Anat; Ariel, Naomi; Beth-Din, Adi; Israeli, Ofir; Gur, David; Aftalion, Moshe; Maoz, Sharon; Ber, Raphael

    2016-01-01

    Standard antimicrobial susceptibility tests used to determine bacterial susceptibility to antibiotics are growth dependent and time consuming. The long incubation time required for standard tests may render susceptibility results irrelevant, particularly for patients infected with lethal bacteria that are slow growing on agar but progress rapidly in vivo, such as Yersinia pestis. Here, we present an alternative approach for the rapid determination of antimicrobial susceptibility, based on the quantification of the changes in the expression levels of specific marker genes following exposure to growth-inhibiting concentrations of the antibiotic, using Y. pestis and ciprofloxacin as a model. The marker genes were identified by transcriptomic DNA microarray analysis of the virulent Y. pestis Kimberley53 strain after exposure to specific concentrations of ciprofloxacin for various time periods. We identified several marker genes that were induced following exposure to growth-inhibitory concentrations of ciprofloxacin, and we confirmed the marker expression profiles at additional ciprofloxacin concentrations using quantitative RT-PCR. Eleven candidate marker transcripts were identified, of which four mRNA markers were selected for a rapid quantitative RT-PCR susceptibility test that correctly determined the Minimal Inhibitory Concentration (MIC) values and the categories of susceptibility of several Y. pestis strains and isolates harboring various ciprofloxacin MIC values. The novel molecular susceptibility test requires just 2 h of antibiotic exposure in a 7-h overall test time, in contrast to the 24 h of antibiotic exposure required for a standard microdilution test. PMID:27242774

  3. The anti-obesity effects of a tuna peptide on 3T3-L1 adipocytes are mediated by the inhibition of the expression of lipogenic and adipogenic genes and by the activation of the Wnt/β-catenin signaling pathway.

    PubMed

    Kim, Young-Min; Kim, In-Hye; Choi, Jeong-Wook; Lee, Min-Kyeong; Nam, Taek-Jeong

    2015-08-01

    The differentiation of 3T3-L1 cells into adipocytes involves the activation of an organized system of obesity-related genes, of which those encoding CCAAT/enhancer-binding proteins (C/EBPs) and the Wnt-10b protein may play integral roles. In a previous study of ours, we found that a specific peptide found in tuna (sequence D-I-V-D-K-I-E-I; termed TP-D) inhibited 3T3-L1 cell differentiation. In the present study, we observed that the expression of expression of C/EBPs and Wnt-10b was associated with obesity. The initial step of 3T3-L1 cell differentiation involved the upregulation of C/EBP-α expression, which in turn activated various subfactors. An upstream effector of glycogen synthase kinase-3β (GSK-3β) inhibited Wnt-10b expression in 3T3-L1 adipocytes. In a previous study of ours, we sequenced the tuna peptide via sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and quadrupole time-of-flight mass spectrometry (Q-TOF MS/MS) and confirmed the anti-obesity effects thereof in 3T3-L1 adipocytes. In the present study, we demonstrate that TP-D inhibits C/EBP and promotes Wnt-10b mRNA expression, thus activating the Wnt pathway. The inhibition of lipid accumulation was measured using a glucose and triglyceride (TG) assay. Our results confirmed that TP-D altered the expression levels of C/EBP-related genes in a dose-dependent manner and activated the Wnt signaling pathway. In addition, we confirmed that total adiponectin and high-molecular weight (HMW) adiponectin levels were reduced by treatment with TP-D. These data indicate that TP-D inhibits adipocyte differentiation through the inhibition of C/EBP genes and the subsequent activation of the Wnt/β-catenin signaling pathway.

  4. Genomewide gene-associated microsatellite markers for the model invasive ascidian, Ciona intestinalis species complex.

    PubMed

    Lin, Yaping; Chen, Yiyong; Xiong, Wei; Zhan, Aibin

    2016-05-01

    The vase tunicate, Ciona intestinalis species complex, has become a good model for ecological and evolutionary studies, especially those focusing on microevolution associated with rapidly changing environments. However, genomewide genetic markers are still lacking. Here, we characterized a large set of genomewide gene-associated microsatellite markers for C. intestinalis spA (=C. robusta). Bioinformatic analysis identified 4654 microsatellites from expressed sequence tags (ESTs), 2126 of which successfully assigned to chromosomes were selected for further analysis. Based on the distribution evenness on chromosomes, function annotation and suitability for primer design, we chose 545 candidate microsatellites for further characterization. After amplification validation and variation assessment, 218 loci were polymorphic in at least one of the two populations collected from the coast of Arenys de Mar, Spain (N = 24-48), and Cape Town, South Africa (N = 24-33). The number of alleles, observed heterozygosity and expected heterozygosity ranged from 2 to 11, 0 to 0.833 and 0.021 to 0.818, and from 2 to 10, 0 to 0.879 and 0.031 to 0.845 for the Spanish and African populations, respectively. When all microsatellites were tested for cross-species utility, only 60 loci (25.8%) could be successfully amplified and all loci were polymorphic in C. intestinalis spB. A high level of genomewide polymorphism is likely responsible for the low transferability. The large set of microsatellite markers characterized here is expected to provide a useful genomewide resource for ecological and evolutionary studies using C. intestinalis as a model.

  5. Spectroscopic detection of fluorescent protein marker gene activity in genetically modified plants

    NASA Astrophysics Data System (ADS)

    Liew, O. W.; Chong, Jenny P. C.; Asundi, Anand K.

    2005-04-01

    This work focuses on developing a portable fibre optic fluorescence analyser for rapid identification of genetically modified plants tagged with a fluorescent marker gene. Independent transgenic tobacco plant lines expressing the enhanced green fluorescence protein (EGFP) gene were regenerated following Agrobacterium-mediated gene transfer. Molecular characterisation of these plant lines was carried out at the DNA level by PCR screening to confirm their transgenic status. Conventional transgene expression analysis was then carried out at the RNA level by RT-PCR and at the protein level by Western blotting using anti-GFP rabbit antiserum. The amount of plant-expressed EGFP on a Western blot was quantified against known amounts of purified EGFP by scanning densitometry. The expression level of EGFP in transformed plants was found to range from 0.1 - 0.6% of total extractable protein. A comparison between conventional western analysis of transformants and direct spectroscopic quantification using the fibre optic fluorescence analyser was made. The results showed that spectroscopic measurements of fluorescence emission from strong EGFP expressors correlated positively with Western blot data. However, the fluorescence analyser was also able to identify weakly expressing plant transformants below the detection limit of colorimetric Western blotting.

  6. Glial cell derived neurotrophic factor induces spermatogonial stem cell marker genes in chicken mesenchymal stem cells.

    PubMed

    Boozarpour, Sohrab; Matin, Maryam M; Momeni-Moghaddam, Madjid; Dehghani, Hesam; Mahdavi-Shahri, Naser; Sisakhtnezhad, Sajjad; Heirani-Tabasi, Asieh; Irfan-Maqsood, Muhammad; Bahrami, Ahmad Reza

    2016-06-01

    Mesenchymal stem cells (MSCs) are known with the potential of multi-lineage differentiation. Advances in differentiation technology have also resulted in the conversion of MSCs to other kinds of stem cells. MSCs are considered as a suitable source of cells for biotechnology purposes because they are abundant, easily accessible and well characterized cells. Nowadays small molecules are introduced as novel and efficient factors to differentiate stem cells. In this work, we examined the potential of glial cell derived neurotrophic factor (GDNF) for differentiating chicken MSCs toward spermatogonial stem cells. MSCs were isolated and characterized from chicken and cultured under treatment with all-trans retinoic acid (RA) or glial cell derived neurotrophic factor. Expression analysis of specific genes after 7days of RA treatment, as examined by RT-PCR, proved positive for some germ cell markers such as CVH, STRA8, PLZF and some genes involved in spermatogonial stem cell maintenance like BCL6b and c-KIT. On the other hand, GDNF could additionally induce expression of POU5F1, and NANOG as well as other genes which were induced after RA treatment. These data illustrated that GDNF is relatively more effective in diverting chicken MSCs towards Spermatogonial stem cell -like cells in chickens and suggests GDNF as a new agent to obtain transgenic poultry, nevertheless, exploitability of these cells should be verified by more experiments.

  7. Microbiological characterization of aquatic microbiomes targeting taxonomical marker genes and antibiotic resistance genes of opportunistic bacteria.

    PubMed

    Alexander, Johannes; Bollmann, Anna; Seitz, Wolfram; Schwartz, Thomas

    2015-04-15

    The dissemination of medically relevant antibiotic resistance genes (ARGs) (blaVIM-1, vanA, ampC, ermB, and mecA) and opportunistic bacteria (Enterococcus faecium/faecalis, Pseudomonas aeruginosa, Enterobacteriaceae, Staphylococcus aureus, and CNS) was determined in different anthropogenically influenced aquatic habitats in a selected region of Germany. Over a period of two years, four differently sized wastewater treatment plants (WWTPs) with and without clinical influence, three surface waters, four rain overflow basins, and three groundwater sites were analyzed by quantitative Polymerase Chain Reaction (qPCR). Results were calculated in cell equivalents per 100 ng of total DNA extracted from water samples and per 100 mL sample volume, which seems to underestimate the abundance of antibiotic resistance and opportunistic bacteria. High abundances of opportunistic bacteria and ARG were quantified in clinical wastewaters and influents of the adjacent WWTP. The removal capacities of WWTP were up to 99% for some, but not all investigated bacteria. The abundances of most ARG targets were found to be increased in the bacterial population after conventional wastewater treatment. As a consequence, downstream surface water and also some groundwater compartments displayed high abundances of all four ARGs. It became obvious that the dynamics of the ARG differed from the fate of the opportunistic bacteria. This underlines the necessity of an advanced microbial characterization of anthropogenically influenced environments.

  8. Racing pigeon identification using STR and chromo-helicase DNA binding gene markers.

    PubMed

    Lee, James Chun-I; Tsai, Li-Chin; Kuan, Yuan-Yang; Chien, Wen-Hsien; Chang, Kai-Tai; Wu, Cheng-Hsien; Linacre, Adrian; Hsieh, Hsing-Mei

    2007-12-01

    Pigeon racing appeals to many in Taiwan, due in part to the potential large financial gains based on illegal betting. The races are unregulated with frequent examples of fraud, such as substitution of one bird for a substandard one. There is no test available to reliably verify the bloodline of pigeons and thus help to resolve such disputes. In this study, we describe a multiplex PCR amplification system combining 7 STR loci and a chromo-helicase DNA binding gene (CHD) marker for the identification of individual pigeons. The cumulative power of discrimination (CPd) of the 7 STR loci was 0.99999234 based upon our population study. The cumulative probability of paternity (CPP) when used in paternity testing of 17 pigeon families ranged from 97.36 to 99.99% and the combined probability of exclusion (CPE) was 0.9325 for these seven STR markers. The statistical data illustrates the potential of this system to be used in pigeon individualization and paternity testing. Furthermore, the established STR system could be also used in the other areas, such as ecology, population genetics, and avian breeding programs.

  9. Marker genes identify three somatic cell types in the fetal mouse ovary.

    PubMed

    Rastetter, Raphael H; Bernard, Pascal; Palmer, James S; Chassot, Anne-Amandine; Chen, Huijun; Western, Patrick S; Ramsay, Robert G; Chaboissier, Marie-Christine; Wilhelm, Dagmar

    2014-10-15

    The two main functions of the ovary are the production of oocytes, which allows the continuation of the species, and secretion of female sex hormones, which control many aspects of female development and physiology. Normal development of the ovaries during embryogenesis is critical for their function and the health of the individual in later life. Although the adult ovary has been investigated in great detail, we are only starting to understand the cellular and molecular biology of early ovarian development. Here we show that the adult stem cell marker Lgr5 is expressed in the cortical region of the fetal ovary and this expression is mutually exclusive to FOXL2. Strikingly, a third somatic cell population can be identified, marked by the expression of NR2F2, which is expressed in LGR5- and FOXL2 double-negative ovarian somatic cells. Together, these three marker genes label distinct ovarian somatic cell types. Using lineage tracing in mice, we show that Lgr5-positive cells give rise to adult cortical granulosa cells, which form the follicles of the definitive reserve. Moreover, LGR5 is required for correct timing of germ cell differentiation as evidenced by a delay of entry into meiosis in Lgr5 loss-of-function mutants, demonstrating a key role for LGR5 in the differentiation of pre-granulosa cells, which ensure the differentiation of oogonia, the formation of the definitive follicle reserve, and long-term female fertility.

  10. Evaluation of genetically modified sugarcane lines carrying Cry 1AC gene using molecular marker techniques.

    PubMed

    Ismail, Roba M

    2013-01-01

    Five genetically modified insect resistant sugarcane lines harboring the Bt Cry 1AC gene to produce insecticidal proteins were compared with non-transgenic control by using three types of molecular marker techniques namely, RAPD, ISSR and AFLP. These techniques were applied on transgenic and non-transgenic plants to investigate the genetic variations, which may appear in sugarcane clones. This variation might demonstrate the genomic changes associated with the transformation process, which could change important molecular basis of various biological phenomena. Genetic variations were screened using 22 different RAPD primers, 10 ISSR primers and 13 AFLP primer combinations. Analysis of RAPD and ISSR banding patterns gave no exclusive evidence for genetic variations. Meanwhile, the percentage of polymorphic bands was 0.45% in each of RAPD and ISSR, while the polymorphism generated by AFLP analysis was 1.8%. The maximum percentage of polymorphic bands was 1.4%, 1.1% and 5.5% in RAPD, ISSR and AFLP, respectively. These results demonstrate that most transgenic lines showed genomic homogeneity and verified minor genomic changes. Dendrograms revealing the relationships among the transgenic and control plants were developed from the data of each of the three marker types.

  11. [Detection of an NA gene molecular marker in H7N9 subtype avian influenza viruses by pyrosequencing].

    PubMed

    Zhao, Yong-Gang; Liu, Hua-Lei; Wang, Jing-Jing; Zheng, Dong-Xia; Zhao, Yun-Ling; Ge, Sheng-Qiang; Wang, Zhi-Liang

    2014-07-01

    This study aimed to establish a method for the detection and identification of H7N9 avian influenza viruses based on the NA gene by pyrosequencing. According to the published NA gene sequences of the avian influenza A (H7N9) virus, a 15-nt deletion was found in the NA gene of H7N9 avian influenza viruses. The 15-nt deletion of the NA gene was targeted as the molecular marker for the rapid detection and identification of H7N9 avian influenza viruses by pyrosequencing. Three H7N9 avian influenza virus isolates underwent pyrosequencing using the same assay, and were proven to have the same 15-nt deletion. Pyrosequencing technology based on the NA gene molecular marker can be used to identify H7N9 avian influenza viruses.

  12. Gene expression markers in circulating tumor cells may predict bone metastasis and response to hormonal treatment in breast cancer.

    PubMed

    Wang, Haiying; Molina, Julian; Jiang, John; Ferber, Matthew; Pruthi, Sandhya; Jatkoe, Timothy; Derecho, Carlo; Rajpurohit, Yashoda; Zheng, Jian; Wang, Yixin

    2013-11-01

    Circulating tumor cells (CTCs) have recently attracted attention due to their potential as prognostic and predictive markers for the clinical management of metastatic breast cancer patients. The isolation of CTCs from patients may enable the molecular characterization of these cells, which may help establish a minimally invasive assay for the prediction of metastasis and further optimization of treatment. Molecular markers of proven clinical value may therefore be useful in predicting disease aggressiveness and response to treatment. In our earlier study, we identified a gene signature in breast cancer that appears to be significantly associated with bone metastasis. Among the genes that constitute this signature, trefoil factor 1 (TFF1) was identified as the most differentially expressed gene associated with bone metastasis. In this study, we investigated 25 candidate gene markers in the CTCs of metastatic breast cancer patients with different metastatic sites. The panel of the 25 markers was investigated in 80 baseline samples (first blood draw of CTCs) and 30 follow-up samples. In addition, 40 healthy blood donors (HBDs) were analyzed as controls. The assay was performed using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) with RNA extracted from CTCs captured by the CellSearch system. Our study indicated that 12 of the genes were uniquely expressed in CTCs and 10 were highly expressed in the CTCs obtained from patients compared to those obtained from HBDs. Among these genes, the expression of keratin 19 was highly correlated with the CTC count. The TFF1 expression in CTCs was a strong predictor of bone metastasis and the patients with a high expression of estrogen receptor β in CTCs exhibited a better response to hormonal treatment. Molecular characterization of these genes in CTCs may provide a better understanding of the mechanism underlying tumor metastasis and identify gene markers in CTCs for predicting disease progression and

  13. Gene expression markers in circulating tumor cells may predict bone metastasis and response to hormonal treatment in breast cancer

    PubMed Central

    WANG, HAIYING; MOLINA, JULIAN; JIANG, JOHN; FERBER, MATTHEW; PRUTHI, SANDHYA; JATKOE, TIMOTHY; DERECHO, CARLO; RAJPUROHIT, YASHODA; ZHENG, JIAN; WANG, YIXIN

    2013-01-01

    Circulating tumor cells (CTCs) have recently attracted attention due to their potential as prognostic and predictive markers for the clinical management of metastatic breast cancer patients. The isolation of CTCs from patients may enable the molecular characterization of these cells, which may help establish a minimally invasive assay for the prediction of metastasis and further optimization of treatment. Molecular markers of proven clinical value may therefore be useful in predicting disease aggressiveness and response to treatment. In our earlier study, we identified a gene signature in breast cancer that appears to be significantly associated with bone metastasis. Among the genes that constitute this signature, trefoil factor 1 (TFF1) was identified as the most differentially expressed gene associated with bone metastasis. In this study, we investigated 25 candidate gene markers in the CTCs of metastatic breast cancer patients with different metastatic sites. The panel of the 25 markers was investigated in 80 baseline samples (first blood draw of CTCs) and 30 follow-up samples. In addition, 40 healthy blood donors (HBDs) were analyzed as controls. The assay was performed using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) with RNA extracted from CTCs captured by the CellSearch system. Our study indicated that 12 of the genes were uniquely expressed in CTCs and 10 were highly expressed in the CTCs obtained from patients compared to those obtained from HBDs. Among these genes, the expression of keratin 19 was highly correlated with the CTC count. The TFF1 expression in CTCs was a strong predictor of bone metastasis and the patients with a high expression of estrogen receptor β in CTCs exhibited a better response to hormonal treatment. Molecular characterization of these genes in CTCs may provide a better understanding of the mechanism underlying tumor metastasis and identify gene markers in CTCs for predicting disease progression and

  14. Molecular cloning and characterisation of the RESA gene, a marker of genetic diversity of Plasmodium falciparum.

    PubMed

    Moyano, Eva M; González, Luis Miguel; Cuevas, Laureano; Perez-Pastrana, Esperanza; Santa-Maria, Ysmael; Benito, Agustín

    2010-07-01

    To identity immunodiagnostic antigen genes, a Plasmodium falciparum (Dd2 clone) expression library was screened using human immune sera. The ring-infected erythrocyte surface antigen (RESA) was isolated: this antigen of the resistant clone presents repeat tandem sequences like the 3D7 clone, albeit in different numbers. RESA has been studied as a marker of genetic diversity, with different sizes being observed in different isolates and clones of Plasmodium falciparum. The native protein was localised in cultures by western-blot and immuno-transmission electron microscopy. The antigenicity of RESA was evaluated by ELISA, using the carboxy-terminal repeat region as antigen. The assay's sensitivity and specificity were 78.2 and 94% respectively.

  15. MTHFR Gene Mutations: A Potential Marker of Late-Onset Alzheimer's Disease?

    PubMed

    Román, Gustavo C

    2015-01-01

    Recent epigenome-wide association studies have confirmed the importance of epigenetic effects mediated by DNA methylation in late-onset Alzheimer's disease (LOAD). Metabolic folate pathways and methyl donor reactions facilitated by B-group vitamins may be critical in the pathogenesis of LOAD. Methylenetetrahydrofolate reductase (MTHFR) gene mutations were studied in consecutive Alzheimer's Disease & Memory Clinic patients up to December 2014. DNA analyses of MTHFR-C667T and - A1298C homozygous and heterozygous polymorphisms in 93 consecutive elderly patients revealed high prevalence of MTHFR mutations (92.5%). Findings require confirmation in a larger series, but MTHFR mutations may become a LOAD marker, opening novel possibilities for prevention and treatment.

  16. LAPTM4B Gene Expression and Polymorphism as Diagnostic Markers of Breast Cancer in Egyptian Patients

    PubMed Central

    Shaker, Olfat; Taha, Fatma; Salah, Maha; El-Marzouky, Mohamed

    2015-01-01

    Summary Background The aim of this study was to investigate the association between LAPTM4B gene polymorphism and the risk of breast cancer among Egyptian female patients. Also, measurement was done of its serum level to evaluate its significance as a diagnostic marker for breast cancer. Methods This case control study was done on 88 breast cancer patients, 40 with fibroadenoma and 80 healthy subjects. Genotyping of the LAPTM4B polymorphism was determined by PCR. Serum LAPTM4B level was measured using ELISA. Results There was a significant difference in the (*1/2+ *2/2) genotypes in breast cancer patients (59.1) compared to the control subjects (43.8%) (P=0.047; OR=1.86; 95% CI =1.01–3.43). The frequency of the allele 2* of the LAPTM4B gene was significantly higher in breast cancer patients (36.4%) than in the control (25.6%) (p=0.034; OR=1.66; 95% CI =1.04–2.65). Genotypes (*1/2+*2/2) were significantly associated with the differential classification of TNM. Serum level of LAPTM4B was significantly higher in breast cancer patients than in control and fibroadenoma and in fibroadenoma patients than in control. In breast cancer patients, serum LAPTM4B was significantly higher in stage III and in large tumor size. Serum LAPTM4B was significantly higher in the cancer patients’ genotypes (*1/2+*2/2). Conclusions Genetic polymorphism of LAPTM4B is a potential risk factor for the development of breast cancer. Serum LAPTM4B may be used as a diagnostic and prognostic marker for breast cancer. PMID:28356847

  17. C/EBPα and the Corepressors CtBP1 and CtBP2 Regulate Repression of Select Visceral White Adipose Genes during Induction of the Brown Phenotype in White Adipocytes by Peroxisome Proliferator-Activated Receptor γ Agonists▿ †

    PubMed Central

    Vernochet, Cecile; Peres, Sidney B.; Davis, Kathryn E.; McDonald, Meghan E.; Qiang, Li; Wang, Hong; Scherer, Philipp E.; Farmer, Stephen R.

    2009-01-01

    White adipose tissue (WAT) stores energy in the form of triglycerides, whereas brown tissue (BAT) expends energy, primarily by oxidizing lipids. WAT also secretes many cytokines and acute-phase proteins that contribute to insulin resistance in obese subjects. In this study, we have investigated the mechanisms by which activation of peroxisome proliferator-activated receptor γ (PPARγ) with synthetic agonists induces a brown phenotype in white adipocytes in vivo and in vitro. We demonstrate that this phenotypic conversion is characterized by repression of a set of white fat genes (“visceral white”), including the resistin, angiotensinogen, and chemerin genes, in addition to induction of brown-specific genes, such as Ucp-1. Importantly, the level of expression of the “visceral white” genes is high in mesenteric and gonadal WAT depots but low in the subcutaneous WAT depot and in BAT. Mutation of critical amino acids within helix 7 of the ligand-binding domain of PPARγ prevents inhibition of visceral white gene expression by the synthetic agonists and therefore shows a direct role for PPARγ in the repression process. Inhibition of the white adipocyte genes also depends on the expression of C/EBPα and the corepressors, carboxy-terminal binding proteins 1 and 2 (CtBP1/2). The data further show that repression of resistin and angiotensinogen expression involves recruitment of CtBP1/2, directed by C/EBPα, to the minimal promoter of the corresponding genes in response to the PPARγ ligand. Developing strategies to enhance the brown phenotype in white adipocytes while reducing secretion of stress-related cytokines from visceral WAT is a means to combat obesity-associated disorders. PMID:19564408

  18. Combining a regeneration-promoting ipt gene and site-specific recombination allows a more efficient apricot transformation and the elimination of marker genes.

    PubMed

    López-Noguera, Sonia; Petri, César; Burgos, Lorenzo

    2009-12-01

    The presence of marker genes conferring antibiotic resistance in transgenic plants represents a serious obstacle for their public acceptance and future commercialization. In addition, their elimination may allow gene stacking by the same selection strategy. In apricot, selection using the selectable marker gene nptII, that confers resistance to aminoglycoside antibiotics, is relatively effective. An attractive alternative is offered by the MAT system (multi-auto-transformation), which combines the ipt gene for positive selection with the recombinase system R/RS for removal of marker genes from transgenic cells after transformation. Transformation with an MAT vector has been attempted in the apricot cultivar 'Helena'. Regeneration from infected leaves with Agrobacterium harboring a plasmid containing the ipt gene was significantly higher than that from non-transformed controls in a non-selective medium. In addition, transformation efficiencies were much higher than those previously reported using antibiotic selection, probably due to the integration of the regeneration-promoting ipt gene. However, the lack of an ipt expression-induced differential phenotype in apricot made difficult in detecting the marker genes excision and plants had to be evaluated at different times. PCR analysis showed that cassette excision start occurring after 6 months approximately and 1 year in culture was necessary for complete elimination of the cassette in all the transgenic lines. Excision was confirmed by Southern blot analysis. We report here for the first time in a temperate fruit tree that the MAT vector system improves regeneration and transformation efficiency and would allow complete elimination of marker genes from transgenic apricot plants by site-specific recombination.

  19. Expression of "brown-in-white" adipocyte biomarkers shows gender differences and the influence of early dietary exposure.

    PubMed

    Servera, María; López, Nora; Serra, Francisca; Palou, Andreu

    2014-01-01

    Induction of brown-like adipocytes (brite) in white adipose tissues may allow the conversion of lipid storage cells in fat-burning cells. Little is known concerning browning potential in males compared with females. In this study, we aimed to analyse whether gender differences were present in gene expression of "brite" markers as well as the impact of dietary manipulation at both early stages and adulthood in rats. We have determined the expression of brite markers and genes associated with lipid and energy metabolism in inguinal adipose tissue in adult male and female rats. We have analysed the impact of high-fat (HF) diet in adult life and of early leucine supplementation (2 %) during lactation. Results show that although both genders have the potential to induce brite genes in inguinal adipose tissue, males expressed higher levels (CIDEA, HOXC9 and SHOX2), which would imply a higher browning capacity in comparison with females. Minor impact of HF diet in adult life was observed in most of the genes studied. Interestingly, results showed that early Leu was able to compromise the metabolic fate of white and brite adipocytes later in adult life. Leucine supplementation programmed higher expression of cell death-inducing DFFA-like effector, accompanied with induction of sterol regulatory element binding transcription 1c factor and lower UPC2 expression, particularly in females. In addition, Leucine supplementation was associated with higher expression of leptin and PPARγ and decreased carnitine palmitoyl transferase in both genders. Although the exact role of these adaptations needs further comprehensive analysis, dietary Leu supplementation at early age programmed inguinal adipose tissue in a gender specific manner.

  20. Distinction between wild and cultivated enset (Ensete ventricosum) gene pools in Ethiopia using RAPD markers.

    PubMed

    Birmeta, Genet; Nybom, Hilde; Bekele, Endashaw

    2004-01-01

    In southwest Ethiopia, the cultivation area of Ensete ventricosum (enset) overlaps with the natural distribution area of this species. Analyses of genetic diversity were undertaken using RAPD to provide information for conservation strategies as well as evidence of possible gene flow between the different gene pools, which can be of interest for future improvement of cultivated enset. The extent of RAPD variation in wild enset was investigated in 5 populations in the Bonga area (Kefficho administrative region) and 9 cultivated clones. Comparisons were also made with some Musa samples of potential relevance for crop improvement. Nine oligonucleotide primers amplified 72 polymorphic loci. Population differentiation was estimated with the Shannon index (G'(ST)=0.10), Nei's G(ST) (0.12) and AMOVA (Phi(ST)=0.12), and appears to be relatively low when compared with outbreeding, perennial species in general. Cluster analysis (UPGMA) and principal component analysis (PCA) similarly indicated low population differentiation, and also demonstrated that cultivated clones essentially clustered distinctly from wild enset samples, suggesting that the present-day cultivated enset clones have been introduced to domestication from a limited number of wild progenitors. In addition, subsequent gene flow between wild and cultivated enset may have been prohibited by differences between modes of propagation and harvesting time; cultivated enset is propagated vegetatively through sucker production and the plant is generally harvested before maturity or flower set, thereby hindering pollination by wild enset or vice versa. A significant correlation was not found between genetic and geographical distances. The relatively high total RAPD diversity suggests that wild enset populations in the Bonga area harbour genetic variability which could potentially act as a source for useful or rare genes in the improvement of cultivated enset. As expected, E. ventricosum was clearly differentiated from

  1. Curcumin and resveratrol inhibit nuclear factor-kappaB-mediated cytokine expression in adipocytes

    PubMed Central

    Gonzales, Amanda M; Orlando, Robert A

    2008-01-01

    Background Adipocytes express inflammatory mediators that contribute to the low-level, chronic inflammation found in obese subjects and have been linked to the onset of cardiovascular disorders and insulin resistance associated with type 2 diabetes mellitus. A reduction in inflammatory gene expression in adipocytes would be expected to reverse this low-level, inflammatory state and improve cardiovascular function and insulin sensitivity. The natural products, curcumin and resveratrol, are established anti-inflammatory compounds that mediate their effects by inhibiting activation of NF-κB signaling. In the present study, we examined if these natural products can inhibit NF-κB activation in adipocytes and in doing so reduce cytokine expression. Methods Cytokine (TNF-α, IL-1β, IL-6) and COX-2 gene expression in 3T3-L1-derived adipocytes was measured by quantitative real-time PCR (qRT-PCR) with or without TNFα-stimulation. Cytokine protein and prostaglandin E2 (PGE2) expression were measured by ELISA. Effects of curcumin and resveratrol were evaluated by treating TNFα-stimulated adipocytes with each compound and 1) assessing the activation state of the NF-κB signaling pathway and 2) measuring inflammatory gene expression by qRT-PCR and ELISA. Results Both preadipocytes and differentiated adipocytes express the genes for TNF-α, IL-6, and COX-2, key mediators of the inflammatory response. Preadipocytes were also found to express IL-1β; however, IL-1β expression was absent in differentiated adipocytes. TNF-α treatment activated NF-κB signaling in differentiated adipocytes by inducing IκB degradation and NF-κB translocation to the nucleus, and as a result increased IL-6 (6-fold) and COX-2 (2.5-fold) mRNA levels. TNF-α also activated IL-1β gene expression in differentiated adipocytes, but had no effect on endogenous TNF-α mRNA levels. No detectable TNFα or IL-1β was secreted by adipocytes. Curcumin and resveratrol treatment inhibited NF-κB activation and

  2. Polymorphic markers suggest a gene flow of CFTR gene from Sub-Saharan/Arabian and Mediterranean to Brazilian Population.

    PubMed

    Cabello, Giselda M K; Cabello, Pedro H; Llerena, Juan C; Fernandes, Octavio

    2006-01-01

    The analysis of 2 diallelic loci (M470V and T854T) and a microsatellite IVS8(T)n of the cystic fibrosis transmembrane conductance regulator (CFTR) gene has shown different haplotype distribution in Brazilian cystic fibrosis (CF) chromosomes carrying different CF mutations. The DeltaF508 mutation was in absolute linkage disequilibrium with 1-1 haplotype (M470V-T854T). Most of DeltaF508 chromosomes (84%) were found to carry the IVS8-9T. The most frequent haplotypes IVS8-7T and 2-1 (M470V-T854T) were found associated with Non-DeltaF508 mutations. Although there is a remarkable linkage disequilibrium between these markers with CFTR locus, the mutations R334W (7T-1-2 and 7T-2-1) and the 3120 + 1G --> A (7T-1-2 and 9T-1-2) are associated with two different haplotypes probably introduced in the Brazilian population by migration. These findings suggest that recombination events from the original haplotype and gene flow among different ethnic groups (sub-Saharan and Mediterranean) might have resulted in CF mutations associated with different haplotypes by independent introductions.

  3. Screening somatic cell nuclear transfer parameters for generation of transgenic cloned cattle with intragenomic integration of additional gene copies that encode bovine adipocyte-type fatty acid-binding protein (A-FABP).

    PubMed

    Guo, Yong; Li, Hejuan; Wang, Ying; Yan, Xingrong; Sheng, Xihui; Chang, Di; Qi, Xiaolong; Wang, Xiangguo; Liu, Yunhai; Li, Junya; Ni, Hemin

    2017-02-01

    Somatic cell nuclear transfer (SCNT) is frequently used to produce transgenic cloned livestock, but it is still associated with low success rates. To our knowledge, we are the first to report successful production of transgenic cattle that overexpress bovine adipocyte-type fatty acid binding proteins (A-FABPs) with the aid of SCNT. Intragenomic integration of additional A-FABP gene copies has been found to be positively correlated with the intramuscular fat content in different farm livestock species. First, we optimized the cloning parameters to produce bovine embryos integrated with A-FABP by SCNT, such as applied voltage field strength and pulse duration for electrofusion, morphology and size of donor cells, and number of donor cells passages. Then, bovine fibroblast cells from Qinchuan cattle were transfected with A-FABP and used as donor cells for SCNT. Hybrids of Simmental and Luxi local cattle were selected as the recipient females for A-FABP transgenic SCNT-derived embryos. The results showed that a field strength of 2.5 kV/cm with two 10-μs duration electrical pulses was ideal for electrofusion, and 4-6th generation circular smooth type donor cells with diameters of 15-25 μm were optimal for producing transgenic bovine embryos by SCNT, and resulted in higher fusion (80%), cleavage (73%), and blastocyst (27%) rates. In addition, we obtained two transgenic cloned calves that expressed additional bovine A-FABP gene copies, as detected by PCR-amplified cDNA sequencing. We proposed a set of optimal protocols to produce transgenic SCNT-derived cattle with intragenomic integration of ectopic A-FABP-inherited exon sequences.

  4. A new marker based on the avian spindlin gene that is able to sex most birds, including species problematic to sex with CHD markers.

    PubMed

    Dawson, Deborah A; Dos Remedios, Natalie; Horsburgh, Gavin J

    2016-11-01

    We have developed a new marker (Z43B) that can be successfully used to identify the sex of most birds (69%), including species difficult or impossible to sex with other markers. We utilized the zebra finch Taeniopygia guttata EST microsatellite sequence (CK309496) which displays sequence homology to the 5' untranslated region (UTR) of the avian spindlin gene. This gene is known to be present on the Z and W chromosomes. To maximize cross-species utility, the primer set was designed from a consensus sequence created from homologs of CK309496 that were isolated from multiple distantly related species. Both the forward and reverse primer sequences were 100% identical to 14 avian species, including the Z chromosome of eight species and the chicken Gallus gallus W chromosome, as well as the saltwater crocodile Crocodylus porosus. The Z43B primer set was assessed by genotyping individuals of known sex belonging to 61 non-ratite species and a single ratite. The Z and W amplicons differed in size making it possible to distinguish between males (ZZ) and females (ZW) for the majority (69%) of non-ratite species tested, comprising 10 orders of birds. We predict that this marker will be useful for obtaining sex-typing data for ca 6,869 species of birds (69% of non-ratites but not galliforms). A wide range of species could be sex-typed including passerines, shorebirds, eagles, falcons, bee-eaters, cranes, shags, parrots, penguins, ducks, and a ratite species, the brown kiwi, Apteryx australis. Those species sexed include species impossible or problematic to sex-type with other markers (magpie, albatross, petrel, eagle, falcon, crane, and penguin species). Zoo Biol. 35:533-545, 2016. © 2016 The Authors. Zoo Biology published by Wiley Periodicals, Inc.

  5. Pulicaria jaubertii E. Gamal-Eldin reduces triacylglyceride content and modifies cellular antioxidant pathways in 3T3-L1 adipocytes.

    PubMed

    Al-Naqeb, Ghanya; Rousová, Jana; Kubátová, Alena; Picklo, Matthew J

    2016-06-25

    Levels of obesity in Middle Eastern countries are increasing. Phytochemicals have anti-obesogenic properties as evidenced by prevention of adipocyte differentiation and blocking triacylglyceride (TG) accumulation. In Yemen, Pulicaria jaubertii E. Gamal-Eldin (PJ) is a food additive and a traditional medicine. We tested the hypothesis that phytochemicals present in PJ inhibit adipocytic responses during differentiation of 3T3-L1 preadipocytes to adipocytes. Methanolic extracts of PJ did not block expression of fatty acid binding protein 4 (FABP4) a marker of differentiation but did inhibit TG accumulation. Treatment of 3T3-L1 preadipocytes increased NADPH:quinone oxidoreductase 1 (NQO1), a suppressor of TG accumulation. Further fractionation of the methanolic PJ extract with hexane and dichloromethane (DCM) demonstrated that bioactivity towards TG reduction and elevated expression of NQO1 and other antioxidant genes (glutamate cysteine ligase catalytic unit, glutathione disulfide reductase, glutathione peroxidase (GPx) 4 resided in the DCM fraction. Activity towards depleting GSH and elevating the expression of catalase and GPx3 were found in the DCM and hexane fractions. Analysis by gas chromatography and liquid chromatography coupled with mass spectrometry demonstrated the presence of catechin-like moieties in the DCM and methanolic fractions and suggest that these components were partially responsible for the bioactivity of these fractions. In summary, our data indicate that fractions derived PJ exhibit anti-adipogenic properties in part through the presence of catechin-like compounds.

  6. Allelic variation of polyphenol oxidase (PPO) genes located on chromosomes 2A and 2D and development of functional markers for the PPO genes in common wheat.

    PubMed

    He, X Y; He, Z H; Zhang, L P; Sun, D J; Morris, C F; Fuerst, E P; Xia, X C

    2007-06-01

    Polyphenol oxidase (PPO) activity is highly related to the undesirable browning of wheat-based end products, especially Asian noodles. Characterization of PPO genes and the development of their functional markers are of great importance for marker-assisted selection in wheat breeding. In the present study, complete genomic DNA sequences of two PPO genes, one each located on chromosomes 2A and 2D and their allelic variants were characterized by means of in silico cloning and experimental validation. Sequences were aligned at both DNA and protein levels. Two haplotypes on chromosome 2D showed 95.2% sequence identity at the DNA level, indicating much more sequence diversity than those on chromosome 2A with 99.6% sequence identity. Both of the PPO genes on chromosomes 2A and 2D contain an open reading frame (ORF) of 1,731 bp, encoding a PPO precursor peptide of 577 amino acids with a predicted molecular mass of approximately 64 kD. Two complementary dominant STS markers, PPO16 and PPO29, were developed based on the PPO gene haplotypes located on chromosome 2D; they amplify a 713-bp fragment in cultivars with low PPO activity and a 490-bp fragment in those with high PPO activity, respectively. The two markers were mapped on chromosome 2DL using a doubled haploid population derived from the cross Zhongyou 9507/CA9632, and a set of nullisomic-tetrasomic lines and ditelosomic line 2DS of Chinese Spring. QTL analysis indicated that the PPO gene co-segregated with the two STS markers and was closely linked to SSR marker Xwmc41 on chromosome 2DL, explaining from 9.6 to 24.4% of the phenotypic variance for PPO activity across three environments. In order to simultaneously detect PPO loci on chromosomes 2A and 2D, a multiplexed marker combination PPO33/PPO16 was developed and yielded distinguishable DNA patterns in a number of cultivars. The STS marker PPO33 for the PPO gene on chromosome 2A was developed from the same gene sequences as PPO18 that we reported previously, and

  7. Antibiotic resistance marker genes as environmental pollutants in GMO-pristine agricultural soils in Austria.

    PubMed

    Woegerbauer, Markus; Zeinzinger, Josef; Gottsberger, Richard Alexander; Pascher, Kathrin; Hufnagl, Peter; Indra, Alexander; Fuchs, Reinhard; Hofrichter, Johannes; Kopacka, Ian; Korschineck, Irina; Schleicher, Corina; Schwarz, Michael; Steinwider, Johann; Springer, Burkhard; Allerberger, Franz; Nielsen, Kaare M; Fuchs, Klemens

    2015-11-01

    Antibiotic resistance genes may be considered as environmental pollutants if anthropogenic emission and manipulations increase their prevalence above usually occurring background levels. The prevalence of aph(3')-IIa/nptII and aph(3')-IIIa/nptIII - frequent marker genes in plant biotechnology conferring resistance to certain aminoglycosides - was determined in Austrian soils from 100 maize and potato fields not yet exposed to but eligible for GMO crop cultivation. Total soil DNA extracts were analysed by nptII/nptIII-specific TaqMan real time PCR. Of all fields 6% were positive for nptII (median: 150 copies/g soil; range: 31-856) and 85% for nptIII (1190 copies/g soil; 13-61600). The copy-number deduced prevalence of nptIII carriers was 14-fold higher compared to nptII. Of the cultivable kanamycin-resistant soil bacteria 1.8% (95% confidence interval: 0-3.3%) were positive for nptIII, none for nptII (0-0.8%). The nptII-load of the studied soils was low rendering nptII a typical candidate as environmental pollutant upon anthropogenic release into these ecosystems.

  8. Less is more: strategies to remove marker genes from transgenic plants

    PubMed Central

    2013-01-01

    Selectable marker genes (SMGs) and selection agents are useful tools in the production of transgenic plants by selecting transformed cells from a matrix consisting of mostly untransformed cells. Most SMGs express protein products that confer antibiotic- or herbicide resistance traits, and typically reside in the end product of genetically-modified (GM) plants. The presence of these genes in GM plants, and subsequently in food, feed and the environment, are of concern and subject to special government regulation in many countries. The presence of SMGs in GM plants might also, in some cases, result in a metabolic burden for the host plants. Their use also prevents the re-use of the same SMG when a second transformation scheme is needed to be performed on the transgenic host. In recent years, several strategies have been developed to remove SMGs from GM products while retaining the transgenes of interest. This review describes the existing strategies for SMG removal, including the implementation of site specific recombination systems, TALENs and ZFNs. This review discusses the advantages and disadvantages of existing SMG-removal strategies and explores possible future research directions for SMG removal including emerging technologies for increased precision for genome modification. PMID:23617583

  9. Chromosome 18 DNA markers and manic-depressive illness: evidence for a susceptibility gene.

    PubMed Central

    Berrettini, W H; Ferraro, T N; Goldin, L R; Weeks, D E; Detera-Wadleigh, S; Nurnberger, J I; Gershon, E S

    1994-01-01

    In the course of a systematic genomic survey, 22 manic-depressive (bipolar) families were examined for linkage to 11 chromosome 18 pericentromeric marker loci, under dominant and recessive models. Overall logarithm of odds score analysis for the pedigree series was not significant under either model, but several families yielded logarithm of odds scores consistent with linkage under dominant or recessive models. Affected sibling pair analysis of these data yielded evidence for linkage (P < 0.001) at D18S21. Affected pedigree member analysis also suggests linkage, with multilocus results for five loci giving P < 0.0001 and P = 0.0007 for weighting functions f(p) = 1 and 1/square root p, respectively, where p is the allele frequency. These results imply a susceptibility gene in the pericentromeric region of chromosome 18, with a complex mode of inheritance. Two plausible candidate genes, a corticotropin receptor and the alpha subunit of a GTP binding protein, have been localized to this region. PMID:8016089

  10. Markers Linked to the ZYMV-FL Resistance Gene and Their Use in Marker-assisted Selection in Watermelon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zucchini yellow mosaic virus (ZYMV) is a major pathogen that reduces yield in cucurbits. The best studied strains include ZYMV-FL and ZYMV-CH of which resistance is conferred by a single recessive gene. Bulk segregate analysis was used for watermelon populations derived from PI 595203, a line with...

  11. The okra (Abelmoschus esculentus) transcriptome as a source for gene sequence information and molecular markers for diversity analysis.

    PubMed

    Schafleitner, Roland; Kumar, Sanjeet; Lin, Chen-Yu; Hegde, Satish Gajanana; Ebert, Andreas

    2013-03-15

    A combined leaf and pod transcriptome of okra (Abelmoschus esculentus (L.) Moench) has been produced by RNA sequencing and short read assembly. More than 150,000 unigenes were obtained, comprising some 46 million base pairs of sequence information. More than 55% of the unigenes were annotated through sequence comparison with databases. The okra transcriptome sequences were mined for simple sequence repeat (SSR) markers. From 935 non-redundant SSR motifs identified in the unigene set, 199 were chosen for testing in a germplasm set, resulting in 161 polymorphic SSR markers. From this set, 19 markers were selected for a diversity analysis on 65 okra accessions comprising three different species, revealing 58 different genotypes and resulted in clustering of the accessions according to species and geographic origin. The okra gene sequence information and the marker resource are made available to the research community for functional genomics and breeding research.

  12. Codominant PCR-based markers and candidate genes for powdery mildew resistance in melon (Cucumis melo L.).

    PubMed

    Yuste-Lisbona, Fernando J; Capel, Carmen; Gómez-Guillamón, María L; Capel, Juan; López-Sesé, Ana I; Lozano, Rafael

    2011-03-01

    Powdery mildew caused by Podosphaera xanthii is a major disease in melon crops, and races 1, 2, and 5 of this fungus are those that occur most frequently in southern Europe. The genotype TGR-1551 bears a dominant gene that provides resistance to these three races of P. xanthii. By combining bulked segregant analysis and amplified fragment length polymorphisms (AFLP), we identified eight markers linked to this dominant gene. Cloning and sequencing of the selected AFLP fragments allowed the development of six codominant PCR-based markers which mapped on the linkage group (LG) V. Sequence analysis of these markers led to the identification of two resistance-like genes, MRGH5 and MRGH63, belonging to the nucleotide binding site (NBS)-leucine-rich repeat (LRR) gene family. Quantitative trait loci (QTL) analysis detected two QTLs, Pm-R1-2 and Pm-R5, the former significantly associated with the resistance to races 1 and 2 (LOD score of 26.5 and 33.3; 53.6 and 61.9% of phenotypic variation, respectively), and the latter with resistance to race 5 (LOD score of 36.8; 65.5% of phenotypic variation), which have been found to be colocalized with the MRGH5 and MRGH63 genes, respectively. The results suggest that the cluster of NBS-LRR genes identified in LG V harbours candidate genes for resistance to races 1, 2, and 5 of P. xanthii. The evaluation of other resistant germplasm showed that the codominant markers here reported are also linked to the Pm-w resistance gene carried by the accession 'WMR-29' proving their usefulness as genotyping tools in melon breeding programmes.

  13. A bayesian mixed regression based prediction of quantitative traits from molecular marker and gene expression data.

    PubMed

    Bhattacharjee, Madhuchhanda; Sillanpää, Mikko J

    2011-01-01

    Both molecular marker and gene expression data were considered alone as well as jointly to serve as additive predictors for two pathogen-activity-phenotypes in real recombinant inbred lines of soybean. For unobserved phenotype prediction, we used a bayesian hierarchical regression modeling, where the number of possible predictors in the model was controlled by different selection strategies tested. Our initial findings were submitted for DREAM5 (the 5th Dialogue on Reverse Engineering Assessment and Methods challenge) and were judged to be the best in sub-challenge B3 wherein both functional genomic and genetic data were used to predict the phenotypes. In this work we further improve upon this previous work by considering various predictor selection strategies and cross-validation was used to measure accuracy of in-data and out-data predictions. The results from various model choices indicate that for this data use of both data types (namely functional genomic and genetic) simultaneously improves out-data prediction accuracy. Adequate goodness-of-fit can be easily achieved with more complex models for both phenotypes, since the number of potential predictors is large and the sample size is not small. We also further studied gene-set enrichment (for continuous phenotype) in the biological process in question and chromosomal enrichment of the gene set. The methodological contribution of this paper is in exploration of variable selection techniques to alleviate the problem of over-fitting. Different strategies based on the nature of covariates were explored and all methods were implemented under the bayesian hierarchical modeling framework with indicator-based covariate selection. All the models based in careful variable selection procedure were found to produce significant results based on permutation test.

  14. Transcriptome sequencing of sea cucumber (Apostichopus japonicus) and the identification of gene-associated markers.

    PubMed

    Zhou, Z C; Dong, Y; Sun, H J; Yang, A F; Chen, Z; Gao, S; Jiang, J W; Guan, X Y; Jiang, B; Wang, B

    2014-01-01

    Sea cucumber (Apostichopus japonicus) is an ecologically and economically important species in East and South-East Asia. This project aimed to identify large numbers of gene-associated markers and differentially expressed genes (DEGs) after lipopolysaccharides (LPS) challenge in A. japonicus using high-throughput transcriptome sequencing. A total of 162 million high-quality reads of 174 million raw reads were obtained by deep sequencing using Illumina HiSeq™ 2000 platform. Assembly of these reads generated 94 704 unigenes, with read length ranging from 200 to 16 153 bp (average length of 810 bp). A total of 36 005 were identified as coding sequences (CDSs), 32 479 of which were successfully annotated. Based on the assembly transcriptome, we identified 142 511 high-quality single nucleotide polymorphisms (SNPs). Among them, 33 775, 63 120 and 45 616 were located in sequences without predicted CDS (non-CDSs), CDSs and untranslated regions (UTRs), respectively. These putative SNPs included 82 664 transitions and 59 847 transversions. Totally, 89 375 (59.1%) were distributed in 15 473 known genes. A total of 6417 microsatellites were detected in 5970 unigenes, 3216 of which were annotated and 2481 were successfully subjected for primer design. The numbers of simple sequence repeats (SSRs) identified in non-CDSs, CDSs and UTRs were 2367, 2316 and 1734. These potential SNPs and SSRs are expected to provide abundant resources for genetic, evolutionary and ecological studies in sea cucumber. Transcriptome comparison revealed 1330, 1347 and 1291 DEGs in the coelomocytes of A. japonicus at 4 h, 24 h and 72 h after LPS challenge, respectively. Approximately 58.4% (1802) of total DEGs have been successfully annotated.

  15. Microglial CD206 Gene Has Potential as a State Marker of Bipolar Disorder

    PubMed Central

    Ohgidani, Masahiro; Kato, Takahiro A.; Haraguchi, Yoshinori; Matsushima, Toshio; Mizoguchi, Yoshito; Murakawa-Hirachi, Toru; Sagata, Noriaki; Monji, Akira; Kanba, Shigenobu

    2017-01-01

    The pathophysiology of bipolar disorder, especially the underlying mechanisms of the bipolarity between manic and depressive states, has yet to be clarified. Microglia, immune cells in the brain, play important roles in the process of brain inflammation, and recent positron emission tomography studies have indicated microglial overactivation in the brain of patients with bipolar disorder. We have recently developed a technique to induced microglia-like (iMG) cells from peripheral blood (monocytes). We introduce a novel translational approach focusing on bipolar disorder using this iMG technique. We hypothesize that immunological conditional changes in microglia may contribute to the shift between manic and depressive states, and thus we herein analyzed gene profiling patterns of iMG cells from three patients with rapid cycling bipolar disorder during both manic and depressive states, respectively. We revealed that the gene profiling patterns are different between manic and depressive states. The profiling pattern of case 1 showed that M1 microglia is dominant in the manic state compared to the depressive state. However, the patterns of cases 2 and 3 were not consistent with the pattern of case 1. CD206, a mannose receptor known as a typical M2 marker, was significantly downregulated in the manic state among all three patients. This is the first report to indicate the importance of shifting microglial M1/M2 characteristics, especially the CD206 gene expression pattern between depressive and manic states. Further translational studies are needed to dig up the microglial roles in the underlying biological mechanisms of bipolar disorder. PMID:28119691

  16. Metformin limits the adipocyte tumor-promoting effect on ovarian cancer.

    PubMed

    Tebbe, Calvin; Chhina, Jasdeep; Dar, Sajad A; Sarigiannis, Kalli; Giri, Shailendra; Munkarah, Adnan R; Rattan, Ramandeep

    2014-07-15

    Omental adipocytes promote ovarian cancer by secretion of adipokines, cytokines and growth factors, and acting as fuel depots. We investigated if metformin modulates the ovarian cancer promoting effects of adipocytes. Effect of conditioned media obtained from differentiated mouse 3T3L1 preadipoctes on the proliferation and migration of a mouse ovarian surface epithelium cancer cell line (ID8) was estimated. Conditioned media from differentiated adipocytes increased the proliferation and migration of ID8 cells, which was attenuated by metformin. Metformin inhibited adipogenesis by inhibition of key adipogenesis regulating transcription factors (CEBPα, CEBPß, and SREBP1), and induced AMPK. A targeted Cancer Pathway Finder RT-PCR (real-time polymerase chain reaction) based gene array revealed 20 up-regulated and 2 down-regulated genes in ID8 cells exposed to adipocyte conditioned media, which were altered by metformin. Adipocyte conditioned media also induced bio-energetic changes in the ID8 cells by pushing them into a highly metabolically active state; these effects were reversed by metformin. Collectively, metformin treatment inhibited the adipocyte mediated ovarian cancer cell proliferation, migration, expression of cancer associated genes and bio-energetic changes. Suggesting, that metformin could be a therapeutic option for ovarian cancer at an early stage, as it not only targets ovarian cancer, but also modulates the environmental milieu.

  17. Direct action of capsaicin in brown adipogenesis and activation of brown adipocytes.

    PubMed

    Kida, Ryosuke; Yoshida, Hirofumi; Murakami, Masaru; Shirai, Mitsuyuki; Hashimoto, Osamu; Kawada, Teruo; Matsui, Tohru; Funaba, Masayuki

    2016-01-01

    The ingestion of capsaicin, the principle pungent component of red and chili peppers, induces thermogenesis, in part, through the activation of brown adipocytes expressing genes related to mitochondrial biogenesis and uncoupling such as peroxisome proliferator-activated receptor (Ppar) γ coactivator-1α (Pgc-1α) and uncoupling protein 1 (Ucp1). Capsaicin has been suggested to induce the activation of brown adipocytes, which is mediated by the stimulation of sympathetic nerves. However, capsaicin may directly affect the differentiation of brown preadipocytes, brown adipocyte function, or both, through its significant absorption. We herein demonstrated that Trpv1, a capsaicin receptor, is expressed in brown adipose tissue, and that its expression level is increased during the differentiation of HB2 brown preadipocytes. Furthermore, capsaicin induced calcium influx in brown preadipocytes. A treatment with capsaicin in the early stage of brown adipogenesis did not affect lipid accumulation or the expression levels of Fabp4 (a gene expressed in mature adipocytes), Pparγ2 (a master regulator of adipogenesis) or brown adipocyte-selective genes. In contrast, a treatment with capsaicin in the late stage of brown adipogenesis slightly increased the expression levels of Fabp4, Pparγ2 and Pgc-1α. Although capsaicin did not affect the basal expression level of Ucp1, Ucp1 induction by forskolin was partially inhibited by capsaicin, irrespective of the dose of capsaicin. The results of the present study suggest the direct effects of capsaicin on brown adipocytes or in the late stage of brown adipogenesis.

  18. Identification of markers linked to genes for sprouting tolerance (independent of grain color) in hard white winter wheat (HWWW)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identification of markers linked to genes for sprouting tolerance (independent of grain color) in hard white winter wheat (HWWW) ABSTRACT Pre-harvest sprouting (PHS) of wheat (Triticum aestivum L.) can negatively impact end-use quality and seed viability at planting. Due to preferences for white ...

  19. Tissue-specifically regulated site-specific excision of selectable marker genes in bivalent insecticidal, genetically-modified rice.

    PubMed

    Hu, Zhan; Ding, Xuezhi; Hu, Shengbiao; Sun, Yunjun; Xia, Liqiu

    2013-12-01

    Marker-free, genetically-modified rice was created by the tissue-specifically regulated Cre/loxP system, in which the Cre recombinase gene and hygromycin phosphotransferase gene (hpt) were flanked by two directly oriented loxP sites. Cre expression was activated by the tissue-specific promoter OsMADS45 in flower or napin in seed, resulting in simultaneous excision of the recombinase and marker genes. Segregation of T1 progeny was performed to select recombined plants. The excision was confirmed by PCR, Southern blot and sequence analyses indicating that efficiency varied from 10 to 53 % for OsMADS45 and from 12 to 36 % for napin. The expression of cry1Ac and vip3A was detected by RT-PCR analysis in marker-free transgenic rice. These results suggested that our tissue-specifically regulated Cre/loxP system could auto-excise marker genes from transgenic rice and alleviate public concerns about the security of GM crops.

  20. Exploring the Transcriptome Landscape of Pomegranate Fruit Peel for Natural Product Biosynthetic Gene and SSR Marker Discovery(F).

    PubMed

    Ono, Nadia Nicole; Britton, Monica Therese; Fass, Joseph Nathaniel; Nicolet, Charles Meyer; Lin, Dawei; Tian, Li

    2011-10-01

    Pomegranate fruit peel is rich in bioactive plant natural products, such as hydrolyzable tannins and anthocyanins. Despite their documented roles in human nutrition and fruit quality, genes involved in natural product biosynthesis have not been cloned from pomegranate and very little sequence information is available on pomegranate in the public domain. Shotgun transcriptome sequencing of pomegranate fruit peel cDNA was performed using RNA-Seq on the Illumina Genome Analyzer platform. Over 100 million raw sequence reads were obtained and assembled into 9,839 transcriptome assemblies (TAs) (>200 bp). Candidate genes for hydrolyzable tannin, anthocyanin, flavonoid, terpenoid and fatty acid biosynthesis and/or regulation were identified. Three lipid transfer proteins were obtained that may contribute to the previously reported IgE reactivity of pomegranate fruit extracts. In addition, 115 SSR markers were identified from the pomegranate fruit peel transcriptome and primers were designed for 77 SSR markers. The pomegranate fruit peel transcriptome set provides a valuable platform for natural product biosynthetic gene and SSR marker discovery in pomegranate. This work also demonstrates that next-generation transcriptome sequencing is an economical and effective approach for investigating natural product biosynthesis, identifying genes controlling important agronomic traits, and discovering molecular markers in non-model specialty crop species.

  1. Linkage study of nonsyndromic cleft lip with or without cleft palate using candidate genes and mapped polymorphic markers

    SciTech Connect

    Stein, J.D.; Nelson, L.D.; Conner, B.J.

    1994-09-01

    Nonsyndromic cleft lip with or without cleft palate (CL(P)) involves fusion or growth failure of facial primordia during development. Complex segregation analysis of clefting populations suggest that an autosomal dominant gene may play a role in this common craniofacial disorder. We have ascertained 16 multigenerational families with CL(P) and tested linkage to 29 candidate genes and 139 mapped short tandem repeat markers. The candidate genes were selected based on their expression in craniofacial development or were identified through murine models. These include: TGF{alpha}, TGF{beta}1, TGF{beta}2, TGF{beta}3, EGF, EGFR, GRAS, cMyc, FGFR, Jun, JunB, PDFG{alpha}, PDGF{beta}, IGF2R, GCR Hox7, Hox8, Hox2B, twirler, 5 collagen and 3 extracellular matrix genes. Linkage was tested assuming an autosomal dominant model with sex-specific decreased penetrance. Linkage to all of the candidate loci was excluded in 11 families. RARA was tested and was not informative. However, haplotype analysis of markers flanking RARA on 17q allowed exclusion of this candidate locus. We have previously excluded linkage to 61 STR markers in 11 families. Seventy-eight mapped short tandem repeat markers have recently been tested in 16 families and 30 have been excluded. The remaining are being analyzed and an exclusion map is being developed based on the entire study results.

  2. Analysis of rice blast resistance gene Pi-z in rice germplasm using pathogenicity assays and DNA markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Pi-z(t) gene in rice confers resistance to a wide range of races of the rice blast fungus, Magnaporthe oryzae. The objective of this study was to characterize Pi-z(t) in 117 rice germplasm accessions using DNA markers and pathogenicity assays. The existence of Pi-z(t) in rice germplasm was detec...

  3. Agouti regulates adipocyte transcription factors.

    PubMed

    Mynatt, R L; Stephens, J M

    2001-04-01

    Agouti is a secreted paracrine factor that regulates pigmentation in hair follicle melanocytes. Several dominant mutations cause ectopic expression of agouti, resulting in a phenotype characterized by yellow fur, adult-onset obesity and diabetes, increased linear growth and skeletal mass, and increased susceptibility to tumors. Humans also produce agouti protein, but the highest levels of agouti in humans are found in adipose tissue. To mimic the human agouti expression pattern in mice, transgenic mice (aP2-agouti) that express agouti in adipose tissue were generated. The transgenic mice develop a mild form of obesity, and they are sensitized to the action of insulin. We correlated the levels of specific regulators of insulin signaling and adipocyte differentiation with these phenotypic changes in adipose tissue. Signal transducers and activators of transcription (STAT)1, STAT3, and peroxisome proliferator-activated receptor (PPAR)-gamma protein levels were elevated in the transgenic mice. Treatment of mature 3T3-L1 adipocytes recapitulated these effects. These data demonstrate that agouti has potent effects on adipose tissue. We hypothesize that agouti increases adiposity and promotes insulin sensitivity by acting directly on adipocytes via PPAR-gamma.

  4. Tagging and mapping of SSR marker for rust resistance gene in lentil (Lens culinaris Medikus subsp. culinaris).

    PubMed

    Dikshit, H K; Singh, Akanksha; Singh, D; Aski, M; Jain, Neelu; Hegde, V S; Basandrai, A K; Basandrai, D; Sharma, T R

    2016-06-01

    Lentil, as an economical source of protein, minerals and vitamins, plays important role in nutritional security of the common man. Grown mainly in West Asia, North Africa (WANA) region and South Asia, it suffers from several biotic stresses such as wilt, rust, blight and broomrape. Lentil rust caused by autoecious fungus Uromyces viciae fabae (Pers.) Schroet is a serious lentil disease in Algeria, Bangladesh, Ethiopia, India, Italy, Morocco, Pakistan and Nepal. The disease symptoms are observed during flowering and early podding stages. Rust causes severe yield losses in lentil. It can only be effectively controlled by identifying the resistant source, understanding its inheritance and breeding for host resistance. The obligate parasitic nature of pathogen makes it difficult to maintain the pathogen in culture and to apply it to screen segregating progenies under controlled growth conditions. Hence, the use of molecular markers will compliment in identification of resistant types in different breeding programs. Here, we studied the inheritance of resistance to rust in lentil using F₁, F₂ and F₂:₃ from cross PL 8 (susceptible) x L 4149 (resistant) varieties. The phenotyping of lentil population was carried out at Sirmour, India. The result of genetic analysis revealed that a single dominant gene controls rust resistance in lentil genotype L 4149. The F2 population from this cross was used to tag and map the rust resistance gene using SSR and SRAP markers. Markers such as 270 SRAP and 162 SSR were studied for polymorphism and 101 SRAP and 33 SSRs were found to be polymorphic between the parents. Two SRAP and two SSR markers differentiated the resistant and susceptible bulks. SSR marker Gllc 527 was estimated to be linked to rust resistant locus at a distance of 5.9 cM. The Gllc 527 marker can be used for marker assisted selection for rust resistance; however, additional markers closer to rust resistant locus are required. The markers linked to the rust

  5. Detection of proneural/mesenchymal marker expression in glioblastoma: temporospatial dynamics and association with chromatin-modifying gene expression.

    PubMed

    Murata, Hideki; Yoshimoto, Koji; Hatae, Ryusuke; Akagi, Yojiro; Mizoguchi, Masahiro; Hata, Nobuhiro; Kuga, Daisuke; Nakamizo, Akira; Amano, Toshiyuki; Sayama, Tetsuro; Iihara, Koji

    2015-10-01

    Proneural and mesenchymal are two subtypes of glioblastoma identified by gene expression profiling. In this study, the primary aim was to detect markers to develop a clinically applicable method for distinguishing proneural and mesenchymal glioblastoma. The secondary aims were to investigate the temporospatial dynamics of these markers and to explore the association between these markers and the expression of chromatin-modifying genes. One hundred thirty-three glioma samples (grade II: 14 samples, grade III: 18, grade IV: 101) were analyzed. We quantified the expression of 6 signature genes associated with proneural and mesenchymal glioblastoma by quantitative reverse transcription-polymerase chain reaction. We assigned proneural (PN) and mesenchymal (MES) scores based on the average of the 6 markers and calculated a predominant metagene (P-M) score by subtracting the MES from the PN score. We used these scores to analyze correlations with malignant transformation, tumor recurrence, tumor heterogeneity, chromatin-modifying gene expression, and HDAC7 expression. The MES score positively correlated with tumor grade, whereas the PN score did not. The P-M score was able to distinguish the proneural and mesenchymal subtypes. It was decreased in cases of tumor recurrence and malignant transformation and showed variability within a tumor, suggesting intratumoral heterogeneity. The PN score correlated with the expression of multiple histone-modifying genes, whereas the MES score was associated only with HDAC7 expression. Thus, we demonstrated a simple and straightforward method of quantifying proneural/mesenchymal markers in glioblastoma. Of note, HDAC7 expression might be a novel therapeutic target in glioblastoma treatment.

  6. De novo generation of adipocytes from circulating progenitor cells in mouse and human adipose tissue

    PubMed Central

    Gavin, Kathleen M.; Gutman, Jonathan A.; Kohrt, Wendy M.; Wei, Qi; Shea, Karen L.; Miller, Heidi L.; Sullivan, Timothy M.; Erickson, Paul F.; Helm, Karen M.; Acosta, Alistaire S.; Childs, Christine R.; Musselwhite, Evelyn; Varella-Garcia, Marileila; Kelly, Kimberly; Majka, Susan M.; Klemm, Dwight J.

    2016-01-01

    White adipocytes in adults are typically derived from tissue resident mesenchymal progenitors. The recent identification of de novo production of adipocytes from bone marrow progenitor-derived cells in mice challenges this paradigm and indicates an alternative lineage specification that adipocytes exist. We hypothesized that alternative lineage specification of white adipocytes is also present in human adipose tissue. Bone marrow from transgenic mice in which luciferase expression is governed by the adipocyte-restricted adiponectin gene promoter was adoptively transferred to wild-type recipient mice. Light emission was quantitated in recipients by in vivo imaging and direct enzyme assay. Adipocytes were also obtained from human recipients of hematopoietic stem cell transplantation. DNA was isolated, and microsatellite polymorphisms were exploited to quantify donor/recipient chimerism. Luciferase emission was detected from major fat depots of transplanted mice. No light emission was observed from intestines, liver, or lungs. Up to 35% of adipocytes in humans were generated from donor marrow cells in the absence of cell fusion. Nontransplanted mice and stromal-vascular fraction samples were used as negative and positive controls for the mouse and human experiments, respectively. This study provides evidence for a nontissue resident origin of an adipocyte subpopulation in both mice and humans.—Gavin, K. M., Gutman, J. A., Kohrt, W. M., Wei, Q., Shea, K. L., Miller, H. L., Sullivan, T. M., Erickson, P. F., Helm, K. M., Acosta, A. S., Childs, C. R., Musselwhite, E., Varella-Garcia, M., Kelly, K., Majka, S. M., Klemm, D. J. De novo generation of adipocytes from circulating progenitor cells in mouse and human adipose tissue. PMID:26581599

  7. Anti-adipogenic activity of the edible brown alga Ecklonia stolonifera and its constituent fucosterol in 3T3-L1 adipocytes.

    PubMed

    Jung, Hyun Ah; Jung, Hee Jin; Jeong, Hyun Young; Kwon, Hyun Ju; Kim, Min-Sun; Choi, Jae Sue

    2014-06-01

    Fucosterol is a sterol metabolite of brown algae and regulates genes involved with cholesterol homeostasis. As a part of our continuous search for anti-obesity agents from natural marine sources, the anti-adipogenic activities of Ecklonia stolonifera and its sterol, fucosterol, were evaluated for the inhibition of adipocyte differentiation and lipid formation. Oil Red O staining was used to evaluate triglyceride contents in 3T3-L1 pre-adipocytes primed by differentiation medium (DM) I and DM II. The methanolic extract of E. stolonifera showed strong anti-adipogenic activity, and was thus fractionated with several solvents. Among the tested fractions, the dichloromethane (CH2Cl2) fraction was found to be the most active fraction, with significant inhibition (40.5 %) of intracellular lipid accumulation at a non-toxic concentration, followed by the ethyl acetate fraction (30.2 %) at the same concentration, while the n-butanol and water fractions did not show inhibitory activity within the tested concentrations. The strong anti-adipogenic CH2Cl2-soluble fraction was further purified by a repeated chromatography to yield fucosterol. Fucosterol reduced lipid contents in a concentration-dependent manner without showing any cytotoxicity. Fucosterol treatment also yielded a decrease in the expression of the adipocyte marker proteins peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα) in a concentration-dependent manner. Taken together, these results suggest that fucosterol inhibits expression of PPARγ and C/EBPα, resulting in a decrease of lipid accumulation in 3T3-L1 pre-adipocytes, indicating that the potential use of E. stolonifera and its bioactive fucosterol as an anti-obesity agent.

  8. A Cross-Species Gene Expression Marker-Based Genetic Map and QTL Analysis in Bambara Groundnut.

    PubMed

    Chai, Hui Hui; Ho, Wai Kuan; Graham, Neil; May, Sean; Massawe, Festo; Mayes, Sean

    2017-02-22

    Bambara groundnut (Vigna subterranea (L.) Verdc.) is an underutilised legume crop, which has long been recognised as a protein-rich and drought-tolerant crop, used extensively in Sub-Saharan Africa. The aim of the study was to identify quantitative trait loci (QTL) involved in agronomic and drought-related traits using an expression marker-based genetic map based on major crop resources developed in soybean. The gene expression markers (GEMs) were generated at the (unmasked) probe-pair level after cross-hybridisation of bambara groundnut leaf RNA to the Affymetrix Soybean Genome GeneChip. A total of 753 markers grouped at an LOD (Logarithm of odds) of three, with 527 markers mapped into linkage groups. From this initial map, a spaced expression marker-based genetic map consisting of 13 linkage groups containing 218 GEMs, spanning 982.7 cM (centimorgan) of the bambara groundnut genome, was developed. Of the QTL detected, 46% were detected in both control and drought treatment populations, suggesting that they are the result of intrinsic trait differences between the parental lines used to construct the cross, with 31% detected in only one of the conditions. The present GEM map in bambara groundnut provides one technically feasible route for the translation of information and resources from major and model plant species to underutilised and resource-poor crops.

  9. A Cross-Species Gene Expression Marker-Based Genetic Map and QTL Analysis in Bambara Groundnut

    PubMed Central

    Chai, Hui Hui; Ho, Wai Kuan; Graham, Neil; May, Sean; Massawe, Festo; Mayes, Sean

    2017-01-01

    Bambara groundnut (Vigna subterranea (L.) Verdc.) is an underutilised legume crop, which has long been recognised as a protein-rich and drought-tolerant crop, used extensively in Sub-Saharan Africa. The aim of the study was to identify quantitative trait loci (QTL) involved in agronomic and drought-related traits using an expression marker-based genetic map based on major crop resources developed in soybean. The gene expression markers (GEMs) were generated at the (unmasked) probe-pair level after cross-hybridisation of bambara groundnut leaf RNA to the Affymetrix Soybean Genome GeneChip. A total of 753 markers grouped at an LOD (Logarithm of odds) of three, with 527 markers mapped into linkage groups. From this initial map, a spaced expression marker-based genetic map consisting of 13 linkage groups containing 218 GEMs, spanning 982.7 cM (centimorgan) of the bambara groundnut genome, was developed. Of the QTL detected, 46% were detected in both control and drought treatment populations, suggesting that they are the result of intrinsic trait differences between the parental lines used to construct the cross, with 31% detected in only one of the conditions. The present GEM map in bambara groundnut provides one technically feasible route for the translation of information and resources from major and model plant species to underutilised and resource-poor crops. PMID:28241413

  10. Sex determination in 58 bird species and evaluation of CHD gene as a universal molecular marker in bird sexing.

    PubMed

    Vucicevic, Milos; Stevanov-Pavlovic, Marija; Stevanovic, Jevrosima; Bosnjak, Jasna; Gajic, Bojan; Aleksic, Nevenka; Stanimirovic, Zoran

    2013-01-01

    The aim of this research was to test the CHD gene (Chromo Helicase DNA-binding gene) as a universal molecular marker for sexing birds of relatively distant species. The CHD gene corresponds to the aim because of its high degree of conservation and different lengths in Z and W chromosomes due to different intron sizes. DNA was isolated from feathers and the amplification of the CHD gene was performed with the following sets of polymerase chain reaction (PCR) primers: 2550F/2718R and P2/P8. Sex determination was attempted in 284 samples of 58 bird species. It was successful in 50 bird species; in 16 of those (Alopochen aegyptiacus, Ara severus, Aratinga acuticaudata, Bucorvus leadbeateri, Cereopsis novaehollandiae, Columba arquatrix, Corvus corax, C. frugilegus, Cyanoliseus patagonus, Guttera plumifera, Lamprotornis superbus, Milvus milvus, Neophron percnopterus, Ocyphaps lophotes, Podiceps cristatus, and Poicephalus senegalus), it was carried out for the first time using molecular markers and PCR. It is reasonable to assume that extensive research is necessary to define the CHD gene as a universal molecular marker for successful sex determination in all bird species (with exception of ratites). The results of this study may largely contribute to the aim.

  11. Anti-Inflammatory Effect of Spirulina platensis in Macrophages Is Beneficial for Adipocyte Differentiation and Maturation by Inhibiting Nuclear Factor-κB Pathway in 3T3-L1 Adipocytes.

    PubMed

    Pham, Tho X; Lee, Ji-Young

    2016-06-01

    We previously showed that the organic extract of a blue-green alga, Spirulina platensis (SPE), had potent anti-inflammatory effects in macrophages. As the interplay between macrophages and adipocytes is critical for adipocyte functions, we investigated the contribution of the anti-inflammatory effects of SPE in macrophages to adipogenesis/lipogenesis in 3T3-L1 adipocytes. 3T3-L1 preadipocytes were treated with 10% conditioned medium from lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages (CMC) or LPS-stimulated, but SPE-pretreated, macrophages (CMS) at different stages of adipocyte differentiation. The expression of adipocyte differentiation markers, such as CCAAT/enhancer-binding protein α, peroxisome proliferator-activated receptor γ, and perilipin, was significantly repressed by CMC when added on day 3, while the repression was attenuated by CMS. Oil Red O staining confirmed that adipocyte maturation in CMS-treated cells, but not in CMC-treated cells, was equivalent to that of control cells. Nuclear translocation of nuclear factor κB (NF-κB) p65 was decreased by CMS compared to CMC. In lipid-laden adipocytes, CMC promoted the loss of lipid droplets, while CMS had minimal effects. Histone deacetylase 9 mRNA and protein levels were increased during adipocyte maturation, which were decreased by CMC. In conclusion, by cross-talking with adipocytes, the anti-inflammatory effects of SPE in macrophages promoted adipocyte differentiation/maturation, at least in part, by repressing the activation of NF-κB inflammatory pathways, which otherwise can be compromised in inflammatory conditions.

  12. Development of crop-specific transposable element (SINE) markers for studying gene flow from oilseed rape to wild radish.

    PubMed

    Prieto, J L; Pouilly, N; Jenczewski, E; Deragon, J M; Chèvre, A M

    2005-08-01

    The screening of wild populations for evidence of gene flow from a crop to a wild related species requires the unambiguous detection of crop genes within the genome of the wild species, taking into account the intraspecific variability of each species. If the crop and wild relatives share a common ancestor, as is the case for the Brassica crops and their wild relatives (subtribe Brassiceae), the species-specific markers needed to make this unambiguous detection are difficult to identify. In the model oilseed rape (Brassica napus, AACC, 2n = 38)-wild radish (Raphanus raphanistrum, RrRr, 2n = 18) system, we utilized the presence or absence of a short-interspersed element (SINE) at a given locus to develop oilseed rape-specific markers, as SINE insertions are irreversible. By means of sequence-specific amplified polymorphism (SINE-SSAP) reactions, we identified and cloned 67 bands specific to the oilseed rape genome and absent from that of wild radish. Forty-seven PCR-specific markers were developed from three combinations of primers anchored either in (1) the 5'- and 3'-genomic sequences flanking the SINE, (2) the 5'-flanking and SINE internal sequences or (3) the SINE internal and flanking 3'-sequences. Seventeen markers were monomorphic whatever the oilseed rape varieties tested, whereas 30 revealed polymorphism and behaved either as dominant (17) or co-dominant (13) markers. Polymorphic markers were mapped on 19 genomic regions assigned to ten linkage groups. The markers developed will be efficient tools to trace the occurrence and frequency of introgressions of oilseed rape genomic region within wild radish populations.

  13. Fine mapping and marker development for the crossability gene SKr on chromosome 5BS of hexaploid wheat (Triticum aestivum L.).

    PubMed

    Alfares, Walid; Bouguennec, Annaig; Balfourier, François; Gay, Georges; Bergès, Hélène; Vautrin, Sonia; Sourdille, Pierre; Bernard, Michel; Feuillet, Catherine

    2009-10-01

    Most elite wheat varieties cannot be crossed with related species thereby restricting greatly the germplasm that can be used for alien introgression in breeding programs. Inhibition to crossability is controlled genetically and a number of QTL have been identified to date, including the major gene Kr1 on 5BL and SKr, a strong QTL affecting crossability between wheat and rye on chromosome 5BS. In this study, we used a recombinant SSD population originating from a cross between the poorly crossable cultivar Courtot (Ct) and the crossable line MP98 to characterize the major dominant effect of SKr and map the gene at the distal end of the chromosome near the 5B homeologous GSP locus. Colinearity with barley and rice was used to saturate the SKr region with new markers and establish orthologous relationships with a 54-kb region on rice chromosome 12. In total, five markers were mapped within a genetic interval of 0.3 cM and 400 kb of BAC contigs were established on both sides of the gene to lay the foundation for map-based cloning of SKr. Two SSR markers completely linked to SKr were used to evaluate a collection of crossable wheat progenies originating from primary triticale breeding programs. The results confirm the major effect of SKr on crossability and the usefulness of the two markers for the efficient introgression of crossability in elite wheat varieties.

  14. Methylation of serum SST gene is an independent prognostic marker in colorectal cancer

    PubMed Central

    Liu, Yanqun; Chew, Min Hoe; Tham, Chee Kian; Tang, Choong Leong; Ong, Simon YK; Zhao, Yi

    2016-01-01

    There is an increasing demand for accurate prognostication for colorectal cancer (CRC). This study sought to assess prognostic potentials of methylation targets in the serum of CRC patients. A total of 165 CRC patients were enrolled in this prospective study. Promoter methylation levels of seven genes in pre-operative sera and matched tumor tissues were evaluated by quantitative methylation-specific PCR. Kaplan-Meier test, and univariate and multivariate Cox proportional hazards regression models were used for survival analyses. After a median follow-up of 56 months, 43 patients (28.7%) experienced tumor recurrence. In univariate survival analyses, serum methylation levels of SST and MAL were significantly predictive of cancer-specific death (P<0.005 for both). The former was also a significant predictor for tumor recurrence (P=0.007). Independent prognostic effects of serum methylation levels of SST were revealed by multivariate Cox regression model (P=0.031 and P=0.003 for cancer death and recurrence, respectively). When focusing on stage II and III patients, prognostication with serum methylated SST remained significant. Methylated SST detected in all serum samples can be traced back to the matched primary tumor tissues. We believe that methylated SST detected in the pre-operative sera of CRC patients appear to be a novel promising prognostic marker and probably can be auxiliary to tumor staging system and serum carcinoembryonic antigen towards better risk stratification. PMID:27725914

  15. Spectinomycin resistance mutations in the rrn16 gene are new plastid markers in Medicago sativa.

    PubMed

    Dudas, Brigitta; Jenes, Barnabas; Kiss, Gyorgy Botond; Maliga, Pal

    2012-11-01

    We report here the isolation of spectinomycin-resistant mutants in cultured cells of Medicago sativa line RegenSY-T2. Spectinomycin induces bleaching of cultured alfalfa cells due to inhibition of protein synthesis on the prokaryotic type 70S plastid ribosomes. Spontaneous mutants resistant to spectinomycin bleaching were identified by their ability to form green shoots on plant regeneration medium containing selective spectinomycin concentrations in the range of 25-50 mg/l. Sequencing of the plastid rrn16 gene revealed that spectinomycin resistance is due to mutations in a conserved stem structure of the 16S rRNA. Resistant plants transferred to the greenhouse developed normally and produced spectinomycin-resistant seed progeny. In light of their absence in soybean, a related leguminous plant, the isolation of spectinomycin-resistant mutants in M. sativa was unexpected. The new mutations are useful for the study of plastid inheritance, as demonstrated by detection of predominantly paternal plastid inheritance in the RegenSY-T2 × Szapko57 cross, and can be used as selective markers in plastid transformation vectors to obtain cisgenic plants.

  16. Adiposity dependent apelin gene expression: relationships with oxidative and inflammation markers.

    PubMed

    García-Díaz, Diego; Campión, Javier; Milagro, Fermín I; Martínez, Jose A

    2007-11-01

    It has been reported that apelin functions as an adipokine, which has been associated to obesity and insulin resistance. The objective of this study was to analyze the apelin mRNA expression in white adipose tissue (WAT) from high-fat (Cafeteria) fed rats, in order to examine potential relationships with obesity markers and other related risk factors. Animals fed on the high-fat diet during 56 days increased their body weight, total body fat and WAT depots weights when compared to controls. Apelin subcutaneous mRNA expression was higher in the Cafeteria than in the Control fed group and this increase was partially reversed by dietary vitamin C supplementation. Statistically significant associations between subcutaneous apelin gene expression and almost all the studied variables were identified, being of special interest the correlations found with serum leptin (r=0.517), liver malondialdehyde (MDA) levels (r=0.477), and leptin, IRS-3 and IL-1ra retroperitoneal mRNA expression (r=0.701; r=0.692 and r=0.561, respectively). These associations evidence a possible role for apelin in the excessive weight gain induced by high-fat feeding and increased adiposity, insulin-resistance, liver oxidative stress and inflammation.

  17. Using a 3D Culture System to Differentiate Visceral Adipocytes In Vitro.

    PubMed

    Emont, Margo P; Yu, Hui; Jun, Heejin; Hong, Xiaowei; Maganti, Nenita; Stegemann, Jan P; Wu, Jun

    2015-12-01

    It has long been recognized that body fat distribution and regional adiposity play a major role in the control of metabolic homeostasis. However, the ability to study and compare the cell autonomous regulation and response of adipocytes from different fat depots has been hampered by the difficulty of inducing preadipocytes isolated from the visceral depot to differentiate into mature adipocytes in culture. Here, we present an easily created 3-dimensional (3D) culture system that can be used to differentiate preadipocytes from the visceral depot as robustly as those from the sc depot. The cells differentiated in these 3D collagen gels are mature adipocytes that retain depot-specific characteristics, as determined by imaging, gene expression, and functional assays. This 3D culture system therefore allows for study of the development and function of adipocytes from both depots in vitro and may ultimately lead to a greater understanding of site-specific functional differences of adipose tissues to metabolic dysregulation.

  18. PPAR gamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance.

    PubMed

    Kubota, N; Terauchi, Y; Miki, H; Tamemoto, H; Yamauchi, T; Komeda, K; Satoh, S; Nakano, R; Ishii, C; Sugiyama, T; Eto, K; Tsubamoto, Y; Okuno, A; Murakami, K; Sekihara, H; Hasegawa, G; Naito, M; Toyoshima, Y; Tanaka, S; Shiota, K; Kitamura, T; Fujita, T; Ezaki, O; Aizawa, S; Kadowaki, T

    1999-10-01

    Agonist-induced activation of peroxisome proliferator-activated receptor gamma (PPAR gamma) is known to cause adipocyte differentiation and insulin sensitivity. The biological role of PPAR gamma was investigated by gene targeting. Homozygous PPAR gamma-deficient embryos died at 10.5-11.5 dpc due to placental dysfunction. Quite unexpectedly, heterozygous PPAR gamma-deficient mice were protected from the development of insulin resistance due to adipocyte hypertrophy under a high-fat diet. These phenotypes were abrogated by PPAR gamma agonist treatment. Heterozygous PPAR gamma-deficient mice showed overexpression and hypersecretion of leptin despite the smaller size of adipocytes and decreased fat mass, which may explain these phenotypes at least in part. This study reveals a hitherto unpredicted role for PPAR gamma in high-fat diet-induced obesity due to adipocyte hypertrophy and insulin resistance, which requires both alleles of PPAR gamma.

  19. Molecular Linkage Mapping and Marker-Trait Associations with NlRPT, a Downy Mildew Resistance Gene in Nicotiana langsdorffii

    PubMed Central

    Zhang, Shouan; Gao, Muqiang; Zaitlin, David

    2012-01-01

    Nicotiana langsdorffii is one of two species of Nicotiana known to express an incompatible interaction with the oomycete Peronospora tabacina, the causal agent of tobacco blue mold disease. We previously showed that incompatibility is due to the hypersensitive response (HR), and plants expressing the HR are resistant to P. tabacina at all stages of growth. Resistance is due to a single dominant gene in N. langsdorffii accession S-4-4 that we have named NlRPT. In further characterizing this unique host-pathogen interaction, NlRPT has been placed on a preliminary genetic map of the N. langsdorffii genome. Allelic scores for five classes of DNA markers were determined for 90 progeny of a “modified backcross” involving two N. langsdorffii inbred lines and the related species N. forgetiana. All markers had an expected segregation ratio of 1:1, and were scored in a common format. The map was constructed with JoinMap 3.0, and loci showing excessive transmission distortion were removed. The linkage map consists of 266 molecular marker loci defined by 217 amplified fragment length polymorphisms (AFLPs), 26 simple-sequence repeats (SSRs), 10 conserved orthologous sequence markers, nine inter-simple sequence repeat markers, and four target region amplification polymorphism markers arranged in 12 linkage groups with a combined length of 1062 cM. NlRPT is located on linkage group three, flanked by four AFLP markers and one SSR. Regions of skewed segregation were detected on LGs 1, 5, and 9. Markers developed for N. langsdorffii are potentially useful genetic tools for other species in Nicotiana section Alatae, as well as in N. benthamiana. We also investigated whether AFLPs could be used to infer genetic relationships within N. langsdorffii and related species from section Alatae. A phenetic analysis of the AFLP data showed that there are two main lineages within N. langsdorffii, and that both contain populations expressing dominant resistance to P. tabacina. PMID

  20. The use of small interfering RNAs to inhibit adipocyte differentiation in human preadipocytes and fetal-femur-derived mesenchymal cells

    SciTech Connect

    Xu, Y.; Mirmalek-Sani, S.-H.; Yang, X.; Zhang, J.; Oreffo, R.O.C. . E-mail: roco@soton.ac.uk

    2006-06-10

    RNA interference (RNAi) has been used in functional genomics and offers innovative approaches in the development of novel therapeutics. Human mesenchymal stem cells offer a unique cell source for tissue engineering/regeneration strategies. The current study examined the potential of small interfering RNAs (siRNA) against human peroxisome proliferator activated receptor gamma (PPAR{gamma}) to suppress adipocyte differentiation (adipogenesis) in human preadipocytes and fetal-femur-derived mesenchymal cells. Adipogenesis was investigated using cellular and biochemical analysis. Transient transfection with PPAR{gamma}-siRNA using a liposomal-based strategy resulted in a significant inhibition of adipogenesis in human preadipocytes and fetal-femur-derived mesenchymal cells, compared to controls (cell, liposomal and negative siRNA). The inhibitory effect of PPAR{gamma}-siRNA was supported by testing human PPAR{gamma} mRNA and adipogenic associated genes using reverse transcription polymerase chain reaction (RT-PCR) to adiponectin receptor 1 and 2 as well as examination of fatty acid binding protein 3 (FABP{sub 3}) expression, an adipocyte-specific marker. The current studies indicate that PPAR{gamma}-siRNA is a useful tool to study adipogenesis in human cells, with potential applications both therapeutic and in the elucidation of mesenchymal cell differentiation in the modulation of cell differentiation in human mesenchymal cells.

  1. mRNA concentrations of MIF in subcutaneous abdominal adipose cells are associated with adipocyte size and insulin action

    PubMed Central

    Koska, Juraj; Stefan, Norbert; Dubois, Severine; Trinidad, Cathy; Considine, Robert V.; Funahashi, Tohru; Bunt, Joy C.; Ravussin, Eric; Permana, Paska A.

    2009-01-01

    Objective To determine whether the mRNA concentrations of inflammation response genes in isolated adipocytes and in cultured preadipocytes are related to adipocyte size and in vivo insulin action in obese individuals. Design Cross-sectional inpatient study. Subjects Obese Pima Indians with normal glucose tolerance. Measurements Adipocyte diameter (by microscope technique; n=29), expression of candidate genes (by quantitative real-time PCR) in freshly isolated adipocytes (monocyte chemoattractant protein [MCP] 1 and MCP2, macrophage inflammatory protein [MIP] 1α, MIP1β and MIP2, macrophage migration inhibitory factor [MIF], tumor necrosis factor alpha, interleukin [IL] 6 and IL8; n=22) and cultured preadipocytes (MCP1, MIP1α, MIF, IL6 and matrix metalloproteinase 2; n=33) from subcutaneous abdominal adipose tissue (by aspiration biopsy, n=34), body fat by dual-energy X-ray absorptiometry, glucose tolerance by 75-gram oral glucose tolerance test, and insulin action by euglycemic-hyperinsulinemic clamp (insulin infusion rate 40 mU/m2.min)(all n=34). Results MIF was the only gene whose expression in both freshly isolated adipocytes and cultured preadipocytes was positively associated with adipocytes diameter and negatively associated with peripheral and hepatic insulin action (all P<0.05). In multivariate analysis, the association between adipocyte MIF mRNA concentrations and adipocytes diameter was independent of percent body fat (P=0.03), whereas adipocyte MIF mRNA concentrations but not adipocytes diameter independently predicted peripheral insulin action. The mRNA expression concentrations of MIF gene in adipocytes were not associated with plasma concentrations of MIF, but were negatively associated with plasma adiponectin concentrations (P=0.004). In multivariate analysis, adipocyte MIF RNA concentrations (P=0.03) but not plasma adiponectin concentrations (P=0.4) remained a significant predictor of insulin action. Conclusions Increased expression of MIF gene in

  2. Chemerin Regulates Crosstalk Between Adipocytes and Vascular Cells Through Nox.

    PubMed

    Neves, Karla Bianca; Nguyen Dinh Cat, Aurelie; Lopes, Rheure Alves Moreira; Rios, Francisco Jose; Anagnostopoulou, Aikaterini; Lobato, Nubia Souza; de Oliveira, Ana Maria; Tostes, Rita C; Montezano, Augusto C; Touyz, Rhian M

    2015-09-01

    Adipocytes produce adipokines, including chemerin, a chemoattractant that mediates effects through its ChemR23 receptor. Chemerin has been linked to endothelial dysfunction and vascular injury in pathological conditions, such as obesity, diabetes mellitus, and hypertension. Molecular mechanisms underlying this are elusive. Here we assessed whether chemerin through redox-sensitive signaling influences molecular processes associated with vascular growth, apoptosis, and inflammation. Human microvascular endothelial cells and vascular smooth muscle cells were stimulated with chemerin (50 ng/mL). Chemerin increased generation of reactive oxygen species and phosphorylation of mitogen-activated protein kinases, effects that were inhibited by ML171, GKT137831 (Nox inhibitors), and N-acetylcysteine (reactive oxygen species scavenger). Chemerin increased mRNA expression of proinflammatory mediators in vascular cells and increased monocyte-to-endothelial cell attachment. In human vascular smooth muscle cells, chemerin induced phosphorylation of mitogen-activated protein kinases and stimulated proliferation (increased proliferating cell nuclear antigen expression [proliferation marker] and BrdU incorporation [proliferation assay]). Chemerin decreased phosphatidylinositol 3-kinase/protein kinase B activation and increased TUNEL-positive human vascular smooth muscle cells. In human microvascular endothelial cells, chemerin reduced endothelial nitric oxide synthase activity and nitric oxide production. Adipocyte-conditioned medium from obese/diabetic mice (db/db), which have elevated chemerin levels, increased reactive oxygen species generation in vascular smooth muscle cells, whereas adipocyte-conditioned medium from control mice had no effect. Chemerin actions were blocked by CCX 832, a ChemR23 inhibitor. Our data demonstrate that chemerin, through Nox activation and redox-sensitive mitogen-activated protein kinases signaling, exerts proapoptotic, proinflammatory, and

  3. Autism and genetics: Clinical approach and association study with two markers of HRAS gene

    SciTech Connect

    Herault, J.; Petit, E.; Cherpi, C.

    1995-08-14

    Twin studies and familial aggregation studies indicate that genetic factors could play a role in infantile autism. In an earlier study, we identified a possible positive association between autism and a c-Harvey-ras (HRAS) oncogene marker at the 3{prime} end of the coding region. In an attempt to confirm this finding, we studied a larger population, well-characterized clinically and genetically. We report a positive association between autism and two HRAS markers, the 3{prime} marker used in the initial study and an additional marker in exon 1. 46 refs., 1 fig., 2 tabs.

  4. Characterization of the Miiuy Croaker (Miichthys miiuy) Transcriptome and Development of Immune-Relevant Genes and Molecular Markers

    PubMed Central

    Che, Rongbo; Sun, Yueyan; Sun, Dianqiao; Xu, Tianjun

    2014-01-01

    Background The miiuy croaker (Miichthys miiuy) is an important species of marine fish that supports capture fisheries and aquaculture. At present commercial scale aquaculture of this species is limited due to diseases caused by pathogens and parasites which restrict production and limit commercial value. The lack of transcriptomic and genomic information for the miiuy croaker limits the ability of researchers to study the pathogenesis and immune system of this species. In this study we constructed a cDNA library from liver, spleen and kidney which was sequenced using Illumina paired-end sequencing to enable gene discovery and molecular marker development. Principal Findings In our study, a total of 69,071 unigenes with an average length of 572 bp were obtained. Of these, 45,676 (66.13%) were successfully annotated in public databases. The unigenes were also annotated with Gene Ontology, Clusters of Orthologous Groups and KEGG pathways. Additionally, 498 immune-relevant genes were identified and classified. Furthermore, 14,885 putative simple sequence repeats (cSSRs) and 8,510 putative single nucleotide polymorphisms (SNPs) were identified from the 69,071 unigenes. Conclusion The miiuy croaker (Miichthys miiuy) transcriptome data provides a large resource to identify new genes involved in many processes including those involved in the response to pathogens and diseases. Furthermore, the thousands of potential cSSR and SNP markers found in this study are important resources with respect to future development of molecular marker assisted breeding programs for the miiuy croaker. PMID:24714210

  5. De novo characterization of Larimichthys crocea transcriptome for growth-/immune-related gene identification and massive microsatellite (SSR) marker development

    NASA Astrophysics Data System (ADS)

    Han, Zhaofang; Xiao, Shijun; Liu, Xiande; Liu, Yang; Li, Jiakai; Xie, Yangjie; Wang, Zhi Yong

    2016-04-01

    The large yellow croaker, Larimichthys crocea is an important marine fish in China with a high economic value. In the last decade, the stock conservation and aquaculture industry of this species have been facing severe challenges because of wild population collapse and degeneration of important economic traits. However, genes contributing to growth and immunity in L. crocea have not been thoroughly analyzed, and available molecular markers are still not sufficient for genetic resource management and molecular selection. In this work, we sequenced the transcriptome in L. crocea liver tissue with a Roche 454 sequencing platform and assembled the transcriptome into 93 801 transcripts. Of them, 38 856 transcripts were successfully annotated in nt, nr, Swiss-Prot, InterPro, COG, GO and KEGG databases. Based on the annotation information, 3 165 unigenes related to growth and immunity were identified. Additionally, a total of 6 391 simple sequence repeats (SSRs) were identified from the transcriptome, among which 4 498 SSRs had enough flanking regions to design primers for polymerase chain reactions (PCR). To access the polymorphism of these markers, 30 primer pairs were randomly selected for PCR amplification and validation in 30 individuals, and 12 primer pairs (40.0%) exhibited obvious length polymorphisms. This work applied RNA-Seq to assemble and analyze a live transcriptome in L. crocea. With gene annotation and sequence information, genes related to growth and immunity were identified and massive SSR markers were developed, providing valuable genetic resources for future gene functional analysis and selective breeding of L. crocea.

  6. De novo characterization of Larimichthys crocea transcriptome for growth-/immune-related gene identification and massive microsatellite (SSR) marker development

    NASA Astrophysics Data System (ADS)

    Han, Zhaofang; Xiao, Shijun; Liu, Xiande; Liu, Yang; Li, Jiakai; Xie, Yangjie; Wang, Zhiyong

    2017-03-01

    The large yellow croaker, Larimichthys crocea is an important marine fish in China with a high economic value. In the last decade, the stock conservation and aquaculture industry of this species have been facing severe challenges because of wild population collapse and degeneration of important economic traits. However, genes contributing to growth and immunity in L. crocea have not been thoroughly analyzed, and available molecular markers are still not sufficient for genetic resource management and molecular selection. In this work, we sequenced the transcriptome in L. crocea liver tissue with a Roche 454 sequencing platform and assembled the transcriptome into 93 801 transcripts. Of them, 38 856 transcripts were successfully annotated in nt, nr, Swiss-Prot, InterPro, COG, GO and KEGG databases. Based on the annotation information, 3 165 unigenes related to growth and immunity were identified. Additionally, a total of 6 391 simple sequence repeats (SSRs) were identified from the transcriptome, among which 4 498 SSRs had enough flanking regions to design primers for polymerase chain reactions (PCR). To access the polymorphism of these markers, 30 primer pairs were randomly selected for PCR amplification and validation in 30 individuals, and 12 primer pairs (40.0%) exhibited obvious length polymorphisms. This work applied RNA-Seq to assemble and analyze a live transcriptome in L. crocea. With gene annotation and sequence information, genes related to growth and immunity were identified and massive SSR markers were developed, providing valuable genetic resources for future gene functional analysis and selective breeding of L. crocea.

  7. A Self-deleting Cre-lox-ermAM Cassette, CHESHIRE, for marker-less gene deletion in Streptococcus pneumoniae

    PubMed Central

    Weng, Liming; Biswas, Indranil; Morrison, Donald A.

    2009-01-01

    Although targeted mutagenesis of Streptococcus pneumoniae is readily accomplished with the aid of natural genetic transformation and chimeric donor DNA constructs assembled in vitro, the drug resistance markers often employed for selection of recombinant products can themselves be undesirable by-products of the genetic manipulation. A new cassette carrying the erythromycin-resistance marker ermAM is described that can be used as a temporary marker for selection of desired recombinants. The cassette may subsequently be removed at will by virtue of an embedded fucose-regulated Cre recombinase gene and terminal lox66 and lox71 Cre recognition sites, with retention of 34 bp from the cassette as an inert residual double-mutant lox72 site. PMID:19850089

  8. Transcriptome sequencing of different narrow-leafed lupin tissue types provides a comprehensive uni-gene assembly and extensive gene-based molecular markers

    PubMed Central

    Kamphuis, Lars G; Hane, James K; Nelson, Matthew N; Gao, Lingling; Atkins, Craig A; Singh, Karam B

    2015-01-01

    Narrow-leafed lupin (NLL; Lupinus angustifolius L.) is an important grain legume crop that is valuable for sustainable farming and is becoming recognized as a human health food. NLL breeding is directed at improving grain production, disease resistance, drought tolerance and health benefits. However, genetic and genomic studies have been hindered by a lack of extensive genomic resources for the species. Here, the generation, de novo assembly and annotation of transcriptome datasets derived from five different NLL tissue types of the reference accession cv. Tanjil are described. The Tanjil transcriptome was compared to transcriptomes of an early domesticated cv. Unicrop, a wild accession P27255, as well as accession 83A:476, together being the founding parents of two recombinant inbred line (RIL) populations. In silico predictions for transcriptome-derived gene-based length and SNP polymorphic markers were conducted and corroborated using a survey assembly sequence for NLL cv. Tanjil. This yielded extensive indel and SNP polymorphic markers for the two RIL populations. A total of 335 transcriptome-derived markers and 66 BAC-end sequence-derived markers were evaluated, and 275 polymorphic markers were selected to genotype the reference NLL 83A:476 × P27255 RIL population. This significantly improved the completeness, marker density and quality of the reference NLL genetic map. PMID:25060816

  9. Transcriptome sequencing of different narrow-leafed lupin tissue types provides a comprehensive uni-gene assembly and extensive gene-based molecular markers.

    PubMed

    Kamphuis, Lars G; Hane, James K; Nelson, Matthew N; Gao, Lingling; Atkins, Craig A; Singh, Karam B

    2015-01-01

    Narrow-leafed lupin (NLL; Lupinus angustifolius L.) is an important grain legume crop that is valuable for sustainable farming and is becoming recognized as a human health food. NLL breeding is directed at improving grain production, disease resistance, drought tolerance and health benefits. However, genetic and genomic studies have been hindered by a lack of extensive genomic resources for the species. Here, the generation, de novo assembly and annotation of transcriptome datasets derived from five different NLL tissue types of the reference accession cv. Tanjil are described. The Tanjil transcriptome was compared to transcriptomes of an early domesticated cv. Unicrop, a wild accession P27255, as well as accession 83A:476, together being the founding parents of two recombinant inbred line (RIL) populations. In silico predictions for transcriptome-derived gene-based length and SNP polymorphic markers were conducted and corroborated using a survey assembly sequence for NLL cv. Tanjil. This yielded extensive indel and SNP polymorphic markers for the two RIL populations. A total of 335 transcriptome-derived markers and 66 BAC-end sequence-derived markers were evaluated, and 275 polymorphic markers were selected to genotype the reference NLL 83A:476 × P27255 RIL population. This significantly improved the completeness, marker density and quality of the reference NLL genetic map.

  10. Heat-shock-mediated elimination of the nptII marker gene in transgenic apple (Malus×domestica Borkh.).

    PubMed

    Herzog, Katja; Flachowsky, Henryk; Deising, Holger B; Hanke, Magda-Viola

    2012-04-25

    Production of marker-free genetically modified (GM) plants is one of the major challenges of molecular fruit breeding. Employing clean vector technologies, allowing the removal of undesired DNA sequences from GM plants, this goal can be achieved. The present study describes the establishment of a clean vector system in apple Malus×domestica Borkh., which is based on the use of the neomycin phosphotransferase II gene (nptII) as selectable marker gene and kanamycin/paramomycin as selective agent. The nptII gene can be removed after selection of GM shoots via site-specific excision mediated by heat-shock-inducible expression of the budding yeast FLP recombinase driven by the soybean Gmhsp17.5-E promoter. We created a monitoring vector containing the nptII and the flp gene as a box flanked by two direct repeats of the flp recognition target (FRT) sites. The FRT-flanked box separates the gusA reporter gene from the Cauliflower Mosaic Virus 35S (CaMV 35S) promoter. Consequently, GUS expression does only occur after elimination of the FRT-flanked box. Transformation experiments using the monitoring vector resulted in a total of nine transgenic lines. These lines were investigated for transgenicity by PCR, RT-PCR and Southern hybridization. Among different temperature regimes tested, exposure to 42 °C for 3.5 to 4h led to efficient induction of FLP-mediated recombination and removal of the nptII marker gene. A second round of shoot regeneration from leaf explants led to GM apple plants completely free of the nptII gene.

  11. A high efficiency gene disruption strategy using a positive-negative split selection marker and electroporation for Fusarium oxysporum.

    PubMed

    Liang, Liqin; Li, Jianqiang; Cheng, Lin; Ling, Jian; Luo, Zhongqin; Bai, Miao; Xie, Bingyan

    2014-11-01

    The Fusarium oxysporum species complex consists of fungal pathogens that cause serial vascular wilt disease on more than 100 cultivated species throughout the world. Gene function analysis is rapidly becoming more and more important as the whole-genome sequences of various F. oxysporum strains are being completed. Gene-disruption techniques are a common molecular tool for studying gene function, yet are often a limiting step in gene function identification. In this study we have developed a F. oxysporum high-efficiency gene-disruption strategy based on split-marker homologous recombination cassettes with dual selection and electroporation transformation. The method was efficiently used to delete three RNA-dependent RNA polymerase (RdRP) genes. The gene-disruption cassettes of three genes can be constructed simultaneously within a short time using this technique. The optimal condition for electroporation is 10μF capacitance, 300Ω resistance, 4kV/cm field strength, with 1μg of DNA (gene-disruption cassettes). Under these optimal conditions, we were able to obtain 95 transformants per μg DNA. And after positive-negative selection, the transformants were efficiently screened by PCR, screening efficiency averaged 85%: 90% (RdRP1), 85% (RdRP2) and 77% (RdRP3). This gene-disruption strategy should pave the way for high throughout genetic analysis in F. oxysporum.

  12. ATF3 inhibits PPARγ-stimulated transactivation in adipocyte cells

    SciTech Connect

    Jang, Min-Kyung; Jung, Myeong Ho

    2015-01-02

    Highlights: • ATF3 inhibits PPARγ-stimulated transcriptional activation. • ATF3 interacts with PPARγ. • ATF3 suppresses p300-mediated transcriptional coactivation. • ATF3 decreases the binding of PPARγ and recruitment of p300 to PPRE. - Abstract: Previously, we reported that activating transcription factor 3 (ATF3) downregulates peroxisome proliferator activated receptor (PPARγ) gene expression and inhibits adipocyte differentiation in 3T3-L1 cells. Here, we investigated another role of ATF3 on the regulation of PPARγ activity. ATF3 inhibited PPARγ-stimulated transactivation of PPARγ responsive element (PPRE)-containing reporter or GAL4/PPARγ chimeric reporter. Thus, ATF3 effectively repressed rosiglitazone-stimulated expression of adipocyte fatty acid binding protein (aP2), PPARγ target gene, in 3T3-L1 cells. Coimmunoprecipitation and GST pulldown assay demonstrated that ATF3 interacted with PPARγ. Accordingly, ATF3 prevented PPARγ from binding to PPRE on the aP2 promoter. Furthermore, ATF3 suppressed p300-mediated transcriptional coactivation of PPRE-containing reporter. Chromatin immunoprecipitation assay showed that overexpression of ATF3 blocked both binding of PPARγ and recruitment of p300 to PPRE on aP2 promoter induced by rosiglitazone treatment in 3T3-L1 cells. Taken together, these results suggest that ATF3 interacts with PPARγ and represses PPARγ-mediated transactivation through suppression of p300-stimulated coactivation in 3T3-L1 cells, which may play a role in inhibition of adipocyte differentiation.

  13. ADMET: ADipocyte METabolism mathematical model.

    PubMed

    Micheloni, Alessio; Orsi, Gianni; De Maria, Carmelo; Vozzi, Giovanni

    2015-01-01

    White fat cells have an important physiological role in maintaining triglyceride and free fatty acid levels due to their fundamental storage property, as well as determining insulin resistance. ADipocyte METabolism is a mathematical model that mimics the main metabolic pathways of human white fat cell, connecting inputs (composition of culture medium) to outputs (glycerol and free fatty acid release). It is based on a set of nonlinear differential equations, implemented in Simulink® and controlled by cellular energetic state. The validation of this model is based on a comparison between the simulation results and a set of experimental data collected from the literature.

  14. Absence of linkage of obesity and energy metabolism to markers flanking homologues of rodent obesity genes in Pima Indians.

    PubMed

    Norman, R A; Leibel, R L; Chung, W K; Power-Kehoe, L; Chua, S C; Knowler, W C; Thompson, D B; Bogardus, C; Ravussin, E

    1996-09-01

    The homologues of single genes that cause obesity in rodents are suggested as candidate genes for modulation of body composition in humans. Among these genes are the four mouse mutations-diabetes (db), obesity (ob), tubby (tub), and yellow agouti (Ay). Variation in the human counterparts to these genes (OB, DB, TUB, and ASP, respectively) may contribute to human obesity, which is thought to have a substantial genetic component. To initially assess the potential contribution of these genes to human obesity, we examined polymorphic DNA markers that, by virtue of syntenic relationships to appropriate regions of the mouse genome, should be closely linked to the human counterparts of these genes. Using combined data from 716 Pima Indians comprising 217 nuclear families, we have tested a number of polymorphic microsatellite markers (three at DB, two at OB, five at TUB, and three at ASP) for sib-pair linkage to BMI, percentage body fat, resting metabolic rate, 24-h energy expenditure, and 24-h respiratory quotient. No significant linkages were found in an analysis of all sibships or in an analysis restricted to discordant sib pairs.

  15. Development of molecular markers linked to disease resistance genes in common bean based on whole genome sequence.

    PubMed

    Meziadi, Chouaïb; Richard, Manon M S; Derquennes, Amandine; Thareau, Vincent; Blanchet, Sophie; Gratias, Ariane; Pflieger, Stéphanie; Geffroy, Valérie

    2016-01-01

    Common bean (Phaseolus vulgaris) is the most important grain legume for direct human consumption in the world, particularly in developing countries where it constitutes the main source of protein. Unfortunately, common bean yield stability is constrained by a number of pests and diseases. As use of resistant genotypes is the most economic and ecologically safe means for controlling plant diseases, efforts have been made to genetically characterize resistance genes (R genes) in common bean. Despite its agronomic importance, genomic resources available in common bean were limited until the recent sequencing of common bean genome (Andean genotype G19833). Besides allowing the annotation of Nucleotide Binding-Leucine Rich Repeat (NB-LRR) encoding gene family, which is the prevalent class of disease R genes in plants, access to the whole genome sequence of common bean can be of great help for intense selection to increase the overall efficiency of crop improvement programs using marker-assisted selection (MAS). This review presents the state of the art of common bean NB-LRR gene clusters, their peculiar location in subtelomeres and correlation with genetically characterized monogenic R genes, as well as how the availability of the whole genome sequence can boost the development of molecular markers for MAS.

  16. Cytochemical localization of malate synthase in amphibian fat body adipocytes: possible glyoxylate cycle in a vertebrate.

    PubMed

    Davis, W L; Jones, R G; Goodman, D B

    1986-05-01

    The adipocytes of amphibian abdominal fat bodies contain typical microperoxisomes, as indicated by their fine structure. Electron microscopic cytochemistry showed that these organelles contain the enzymes catalase, typical for peroxisomes, and malate synthase. The latter is an enzymatic component characteristic of the glyoxylate cycle, a biochemical pathway known to exist in plant glyoxysomes (peroxisomes). This metabolic pathway makes possible the net conversion of lipid to carbohydrate. Toad adipocytes may represent yet another example of vertebrate peroxisomes which contain one of the marker enzymes (malate synthase) characteristic of the glyoxylate shunt.

  17. Ebf2 is a selective marker of brown and beige adipogenic precursor cells.

    PubMed

    Wang, Wenshan; Kissig, Megan; Rajakumari, Sona; Huang, Li; Lim, Hee-Woong; Won, Kyoung-Jae; Seale, Patrick

    2014-10-07

    Brown adipocytes and muscle and dorsal dermis descend from precursor cells in the dermomyotome, but the factors that regulate commitment to the brown adipose lineage are unknown. Here, we prospectively isolated and determined the molecular profile of embryonic brown preadipose cells. Brown adipogenic precursor activity in embryos was confined to platelet-derived growth factor α(+), myogenic factor 5(Cre)-lineage-marked cells. RNA-sequence analysis identified early B-cell factor 2 (Ebf2) as one of the most selectively expressed genes in this cell fraction. Importantly, Ebf2-expressing cells purified from Ebf2(GFP) embryos or brown fat tissue did not express myoblast or dermal cell markers and uniformly differentiated into brown adipocytes. Interestingly, Ebf2-expressing cells from white fat tissue in adult animals differentiated into brown-like (or beige) adipocytes. Loss of Ebf2 in brown preadipose cells reduced the expression levels of brown preadipose-signature genes, whereas ectopic Ebf2 expression in myoblasts activated brown preadipose-specific genes. Altogether, these results indicate that Ebf2 specifically marks and regulates the molecular profile of brown preadipose cells.

  18. Expression analysis of human pterygium shows a predominance of conjunctival and limbal markers and genes associated with cell migration

    PubMed Central

    Aryankalayil-John, M.; Campos, M.M.; Fariss, R.N.; Rowsey, J.; Agarwalla, N.; Reid, T.W.; Dushku, N.; Cox, C.A.; Carper, D.; Wistow, G.

    2009-01-01

    Purpose Pterygium is a vision-impairing fibrovascular lesion that grows across the corneal surface and is associated with sunlight exposure. To increase our understanding of the cells types involved in pterygium, we have used expressed sequence tag analysis to examine the transcriptional repertoire of isolated pterygium and to identify marker genes for tissue origin and cell migration. Methods An unnormalized unamplified cDNA library was prepared from 15 pooled specimens of surgically removed pterygia as part of the NEIBank project. Gene expression patterns were compared with existing data for human cornea, limbus, and conjunctiva, and expression of selected genes was verified by immunofluorescence localization in normal eye ocular surface and in pterygium. Results Sequence analysis of 2,976 randomly selected clones produced over 1,800 unique clusters, potentially representing single genes. The most abundant complementary DNAs from pterygium include clusterin, keratins 13 (Krt13) and 4 (Krt4), S100A9/calgranulin B, and spermidine/spermine N1-acetyltransferase (SAT1). Markers for both conjunctiva (such as keratin 13/4 and AQP3) and corneal epithelium (such as keratin 12/3 and AQP5) were present. Immunofluorescence of Krt12 and 13 in the normal ocular surface showed specificity of Krt12 in cornea and Krt13 in conjunctival and limbal epithelia, with a fairly sharp boundary at the limbal–corneal border. In the pterygium there was a patchy distribution of both Krt12 and 13 up to a normal corneal epithelial region specific for Krt12. Immunoglobulins were also among the prominently expressed transcripts. Several of the genes expressed most abundantly in excised pterygium, particularly S100A9 and SAT1, have roles in cell migration. SAT1 exerts its effects through control of polyamine levels. IPENSpm, a polyamine analogue, showed a significant ability to reduce migration in primary cultures of pterygium. A number of genes highly expressed in cornea were not found in

  19. Development of genomic SSR markers for fingerprinting lettuce (Lactuca sativa L.) cultivars and mapping genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Lettuce (Lactuca sativa L.) is the major vegetable from the group of leafy vegetables. Several types of molecular markers were developed that are effictively used in lettuce breeding and genetic studies. However only a very limited number of microsattelite-based markers are publicly avai...

  20. The endocrine disruptor diethylstilbestrol induces adipocyte differentiation and promotes obesity in mice

    SciTech Connect

    Hao, Chan-Juan; Cheng, Xue-Jia; Xia, Hong-Fei Ma, Xu

    2012-08-15

    Epidemiology studies indicate that exposure to endocrine disruptors during developmental “window” contributes to adipogenesis and the development of obesity. Implication of endocrine disruptor such as diethylstilbestrol (DES) on adipose tissue development has been poorly investigated. Here we evaluated the effects of DES on adipocyte differentiation in vitro and in vivo, and explored potential mechanism involved in its action. DES induced 3T3-L1 preadipocyte differentiation in a dose-dependent manner, and activated the expression of estrogen receptor (ER) and peroxisome proliferator-acivated receptor (PPAR) γ as well as its target genes required for adipogenesis in vitro. ER mediated the enhancement of DES-induced PPARγ activity. Moreover, DES perturbed key regulators of adipogenesis and lipogenic pathway in vivo. In utero exposure to low dose of DES significantly increased body weight, liver weight and fat mass in female offspring at postnatal day (PND) 60. In addition, serum triglyceride and glucose levels were also significantly elevated. These results suggest that perinatal exposure to DES may be expected to increase the incidence of obesity in a sex-dependent manner and can act as a potential chemical stressor for obesity and obesity-related disorders. -- Highlights: ► DES induced adipocyte differentiation in a dose-dependent manner in 3T3-L1 cells. ► DES activated adipogenic critical regulators and markers in vitro and in vivo. ► Perinatal exposure to DES led to the obese phenotype in female offspring. ► DES might be a potential chemical stressor for obesity and obesity-related disorders.

  1. Heteroduplex analysis can increase the informativeness of PCR-amplified VNTR markers: Application using a marker tightly linked to the COL2A1 gene

    SciTech Connect

    Wilkin, D.J.; Cohn, D.H. UCLA School of Medicine, Los Angeles, CA ); Koprivnikar, K.E. )

    1993-02-01

    Variable number of tandem repeat (VNTR) polymorphism provide a high degree of informativeness in linkage studies. Whether performed by standard methods or by polymerase chain reaction (PCR), analysis of these markers involves assessment of the length of each allele. VNTR alleles usually differ in the number of tandem repeats. During PCR amplification of a VNTR closely linked to the type II collagen gene (COL2A1), we identified allelic microheterogeneity through the analysis of unique heteroduplexes between amplified strands of the two alleles. In one large pedigree, heteroduplex analysis identified only three distinct alleles. The identification of these heteroduplexes allowed the determination of the COL2A1 inheritance pattern in the family, which otherwise would have been noninformative. 26 refs., 3 figs.

  2. Skin aging: are adipocytes the next target?

    PubMed Central

    Kruglikov, Ilja L.; Scherer, Philipp E.

    2016-01-01

    Dermal white adipose tissue (dWAT) is increasingly appreciated as a special fat depot. The adipocytes in this depot exert a variety of unique effects on their surrounding cells and can undergo massive phenotypic changes. Significant modulation of dWAT content can be observed both in intrinsically and extrinsically aged skin. Specifically, skin that has been chronically photo-damaged displays a reduction of the dWAT volume, caused by the replacement of adipocytes by fibrotic structures. This is likely to be caused by the recently uncovered process described as “adipocyte-myofibroblast transition” (AMT). In addition, contributions of dermal adipocytes to the skin aging processes are also indirectly supported by spatial correlations between the prevalence of hypertrophic scarring and the appearance of signs of skin aging in different ethnic groups. These observations could elevate dermal adipocytes to prime targets in strategies aimed at counteracting skin aging. PMID:27434510

  3. Mitochondria in White, Brown, and Beige Adipocytes

    PubMed Central

    Cedikova, Miroslava; Kripnerová, Michaela; Dvorakova, Jana; Pitule, Pavel; Grundmanova, Martina; Babuska, Vaclav; Mullerova, Dana; Kuncova, Jitka

    2016-01-01

    Mitochondria play a key role in energy metabolism in many tissues, including cardiac and skeletal muscle, brain, liver, and adipose tissue. Three types of adipose depots can be identified in mammals, commonly classified according to their colour appearance: the white (WAT), the brown (BAT), and the beige/brite/brown-like (bAT) adipose tissues. WAT is mainly involved in the storage and mobilization of energy and BAT is predominantly responsible for nonshivering thermogenesis. Recent data suggest that adipocyte mitochondria might play an important role in the development of obesity through defects in mitochondrial lipogenesis and lipolysis, regulation of adipocyte differentiation, apoptosis, production of oxygen radicals, efficiency of oxidative phosphorylation, and regulation of conversion of white adipocytes into brown-like adipocytes. This review summarizes the main characteristics of each adipose tissue subtype and describes morphological and functional modifications focusing on mitochondria and their activity in healthy and unhealthy adipocytes. PMID:27073398

  4. Interferon γ Attenuates Insulin Signaling, Lipid Storage, and Differentiation in Human Adipocytes via Activation of the JAK/STAT Pathway*

    PubMed Central

    McGillicuddy, Fiona C.; Chiquoine, Elise H.; Hinkle, Christine C.; Kim, Roy J.; Shah, Rachana; Roche, Helen M.; Smyth, Emer M.; Reilly, Muredach P.

    2009-01-01

    Recent reports demonstrate T-cell infiltration of adipose tissue in early obesity. We hypothesized that interferon (IFN) γ, a major T-cell inflammatory cytokine, would attenuate human adipocyte functions and sought to establish signaling mechanisms. Differentiated human adipocytes were treated with IFNγ ± pharmacological inhibitors prior to insulin stimulation. [3H]Glucose uptake and AKT phosphorylation were assessed as markers of insulin sensitivity. IFNγ induced sustained loss of insulin-stimulated glucose uptake in human adipocytes, coincident with reduced Akt phosphorylation and down-regulation of the insulin receptor, insulin receptor substrate-1, and GLUT4. Loss of adipocyte triglyceride storage was observed with IFNγ co-incident with reduced expression of peroxisome proliferator-activated receptor γ, adiponectin, perilipin, fatty acid synthase, and lipoprotein lipase. Treatment with IFNγ also blocked differentiation of pre-adipocytes to the mature phenotype. IFNγ-induced robust STAT1 phosphorylation and SOCS1 mRNA expression, with modest, transient STAT3 phosphorylation and SOCS3 induction. Preincubation with a non-selective JAK inhibitor restored glucose uptake and Akt phosphorylation while completely reversing IFNγ suppression of adipogenic mRNAs and adipocyte differentiation. Specific inhibition of JAK2 or JAK3 failed to block IFNγ effects suggesting a predominant role for JAK1-STAT1. We demonstrate that IFNγ attenuates insulin sensitivity and suppresses differentiation in human adipocytes, an effect most likely mediated via sustained JAK-STAT1 pathway activation. PMID:19776010

  5. Identifying diagnostic endocrine markers and changes in endometrial gene expressions during pyometra in cats.

    PubMed

    Jursza-Piotrowska, Ewelina; Siemieniuch, Marta J

    2016-06-01

    Pyometra is a significant reproductive problem in cats. The aims of this study were to evaluate (i) the immunological profile of queens by studying plasma concentrations of metabolites of prostacyclin I2 (6-keto-PGF1α), leukotriene B4 (LTB4) and leukotriene C4 (LTC4); and (ii) the gene transcription profiles of Toll-like receptors (TLRs) 2 and 4 (TLR2/4), PGE2-synthase (PGES), PGF2α-synthase (PGFS) and prostaglandin-endoperoxide synthase 2 (PTGS2) in the feline endometrium throughout the estrous cycle, after medroxyprogesterone acetate (MPA) treatment and during pyometra. The concentration of plasma 6-keto-PGF1α in pyometra was increased in comparison to other groups studied (p<0.01). Endometrial mRNA coding for TLR2 was up-regulated in cats suffering from pyometra compared to other groups (p<0.001). Expression of mRNA for TLR4 was up-regulated in endometria originating from MPA-treated cats, pyometra and late diestrus cats, compared with tissues from cats during estrus and anestrus (p<0.05). As expected, endometrial mRNA for PTGS2 was up-regulated only in pyometra, compared with other groups (p<0.001). Similarly, endometrial mRNA for PGFS was up-regulated in pyometra, compared with endometria from anestrus, late diestrus and from MPA-treated cats (p<0.05), or from cats during estrus (p<0.01). Overall, these results indicate that plasma concentrations of LTB4 and LTC4 are not useful diagnostic markers since they were not increased in queens with pyometra, in contrast to 6-keto-PGF1α. In addition, treatment with MPA evoked neither endocrine nor molecular changes in endometria of cats.

  6. Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications

    PubMed Central

    Yilmaz, Pelin; Kottmann, Renzo; Field, Dawn; Knight, Rob; Cole, James R; Amaral-Zettler, Linda; Gilbert, Jack A; Karsch-Mizrachi, Ilene; Johnston, Anjanette; Cochrane, Guy; Vaughan, Robert; Hunter, Christopher; Park, Joonhong; Morrison, Norman; Rocca-Serra, Philippe; Sterk, Peter; Arumugam, Manimozhiyan; Bailey, Mark; Baumgartner, Laura; Birren, Bruce W; Blaser, Martin J; Bonazzi, Vivien; Booth, Tim; Bork, Peer; Bushman, Frederic D; Buttigieg, Pier Luigi; Chain, Patrick S G; Charlson, Emily; Costello, Elizabeth K; Huot-Creasy, Heather; Dawyndt, Peter; DeSantis, Todd; Fierer, Noah; Fuhrman, Jed A; Gallery, Rachel E; Gevers, Dirk; Gibbs, Richard A; Gil, Inigo San; Gonzalez, Antonio; Gordon, Jeffrey I; Guralnick, Robert; Hankeln, Wolfgang; Highlander, Sarah; Hugenholtz, Philip; Jansson, Janet; Kau, Andrew L; Kelley, Scott T; Kennedy, Jerry; Knights, Dan; Koren, Omry; Kuczynski, Justin; Kyrpides, Nikos; Larsen, Robert; Lauber, Christian L; Legg, Teresa; Ley, Ruth E; Lozupone, Catherine A; Ludwig, Wolfgang; Lyons, Donna; Maguire, Eamonn; Methé, Barbara A; Meyer, Folker; Muegge, Brian; Nakielny, Sara; Nelson, Karen E; Nemergut, Diana; Neufeld, Josh D; Newbold, Lindsay K; Oliver, Anna E; Pace, Norman R; Palanisamy, Giriprakash; Peplies, Jörg; Petrosino, Joseph; Proctor, Lita; Pruesse, Elmar; Quast, Christian; Raes, Jeroen; Ratnasingham, Sujeevan; Ravel, Jacques; Relman, David A; Assunta-Sansone, Susanna; Schloss, Patrick D; Schriml, Lynn; Sinha, Rohini; Smith, Michelle I; Sodergren, Erica; Spor, Aymé; Stombaugh, Jesse; Tiedje, James M; Ward, Doyle V; Weinstock, George M; Wendel, Doug; White, Owen; Whiteley, Andrew; Wilke, Andreas; Wortman, Jennifer R; Yatsunenko, Tanya; Glöckner, Frank Oliver

    2012-01-01

    Here we present a standard developed by the Genomic Standards Consortium (GSC) for reporting marker gene sequences—the minimum information about a marker gene sequence (MIMARKS). We also introduce a system for describing the environment from which a biological sample originates. The ‘environmental packages’ apply to any genome sequence of known origin and can be used in combination with MIMARKS and other GSC checklists. Finally, to establish a unified standard for describing sequence data and to provide a single point of entry for the scientific community to access and learn about GSC checklists, we present the minimum information about any (x) sequence (MIxS). Adoption of MIxS will enhance our ability to analyze natural genetic diversity documented by massive DNA sequencing efforts from myriad ecosystems in our ever-changing biosphere. PMID:21552244

  7. Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications.

    PubMed

    Yilmaz, Pelin; Kottmann, Renzo; Field, Dawn; Knight, Rob; Cole, James R; Amaral-Zettler, Linda; Gilbert, Jack A; Karsch-Mizrachi, Ilene; Johnston, Anjanette; Cochrane, Guy; Vaughan, Robert; Hunter, Christopher; Park, Joonhong; Morrison, Norman; Rocca-Serra, Philippe; Sterk, Peter; Arumugam, Manimozhiyan; Bailey, Mark; Baumgartner, Laura; Birren, Bruce W; Blaser, Martin J; Bonazzi, Vivien; Booth, Tim; Bork, Peer; Bushman, Frederic D; Buttigieg, Pier Luigi; Chain, Patrick S G; Charlson, Emily; Costello, Elizabeth K; Huot-Creasy, Heather; Dawyndt, Peter; DeSantis, Todd; Fierer, Noah; Fuhrman, Jed A; Gallery, Rachel E; Gevers, Dirk; Gibbs, Richard A; San Gil, Inigo; Gonzalez, Antonio; Gordon, Jeffrey I; Guralnick, Robert; Hankeln, Wolfgang; Highlander, Sarah; Hugenholtz, Philip; Jansson, Janet; Kau, Andrew L; Kelley, Scott T; Kennedy, Jerry; Knights, Dan; Koren, Omry; Kuczynski, Justin; Kyrpides, Nikos; Larsen, Robert; Lauber, Christian L; Legg, Teresa; Ley, Ruth E; Lozupone, Catherine A; Ludwig, Wolfgang; Lyons, Donna; Maguire, Eamonn; Methé, Barbara A; Meyer, Folker; Muegge, Brian; Nakielny, Sara; Nelson, Karen E; Nemergut, Diana; Neufeld, Josh D; Newbold, Lindsay K; Oliver, Anna E; Pace, Norman R; Palanisamy, Giriprakash; Peplies, Jörg; Petrosino, Joseph; Proctor, Lita; Pruesse, Elmar; Quast, Christian; Raes, Jeroen; Ratnasingham, Sujeevan; Ravel, Jacques; Relman, David A; Assunta-Sansone, Susanna; Schloss, Patrick D; Schriml, Lynn; Sinha, Rohini; Smith, Michelle I; Sodergren, Erica; Spo, Aymé; Stombaugh, Jesse; Tiedje, James M; Ward, Doyle V; Weinstock, George M; Wendel, Doug; White, Owen; Whiteley, Andrew; Wilke, Andreas; Wortman, Jennifer R; Yatsunenko, Tanya; Glöckner, Frank Oliver

    2011-05-01

    Here we present a standard developed by the Genomic Standards Consortium (GSC) for reporting marker gene sequences--the minimum information about a marker gene sequence (MIMARKS). We also introduce a system for describing the environment from which a biological sample originates. The 'environmental packages' apply to any genome sequence of known origin and can be used in combination with MIMARKS and other GSC checklists. Finally, to establish a unified standard for describing sequence data and to provide a single point of entry for the scientific community to access and learn about GSC checklists, we present the minimum information about any (x) sequence (MIxS). Adoption of MIxS will enhance our ability to analyze natural genetic diversity documented by massive DNA sequencing efforts from myriad ecosystems in our ever-changing biosphere.

  8. Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications.

    SciTech Connect

    Yilmaz, P.; Kottmann, R.; Field, D.; Knight, R.; Cole, J. R.; Amaral-Zettler, L.; Gilbert, J. A.

    2011-05-01

    Here we present a standard developed by the Genomic Standards Consortium (GSC) for reporting marker gene sequences - the minimum information about a marker gene sequence (MIMARKS). We also introduce a system for describing the environment from which a biological sample originates. The 'environmental packages' apply to any genome sequence of known origin and can be used in combination with MIMARKS and other GSC checklists. Finally, to establish a unified standard for describing sequence data and to provide a single point of entry for the scientific community to access and learn about GSC checklists, we present the minimum information about any (x) sequence (MIxS). Adoption of MIxS will enhance our ability to analyze natural genetic diversity documented by massive DNA sequencing efforts from myriad ecosystems in our ever-changing biosphere.

  9. A conservative region of the mercuric reductase gene (mera) as a molecular marker of bacterial mercury resistance

    PubMed Central

    Sotero-Martins, Adriana; de Jesus, Michele Silva; Lacerda, Michele; Moreira, Josino Costa; Filgueiras, Ana Luzia Lauria; Barrocas, Paulo Rubens Guimarães

    2008-01-01

    The most common bacterial mercury resistance mechanism is based on the reduction of Hg(II) to Hg0, which is dependent of the mercuric reductase enzyme (MerA) activity. The use of a 431 bp fragment of a conservative region of the mercuric reductase (merA) gene was applied as a molecular marker of this mechanism, allowing the identification of mercury resistant bacterial strains. PMID:24031221

  10. Dairy Foods in a Moderate Energy Restricted Diet Do Not Enhance Central Fat, Weight, and Intra-Abdominal Adipose Tissue Losses nor Reduce Adipocyte Size or Inflammatory Markers in Overweight and Obese Adults: A Controlled Feeding Study

    PubMed Central

    Van Loan, Marta D.; Keim, Nancy L.; Adams, Sean H.; Souza, Elaine; Woodhouse, Leslie R.; Thomas, Anthony; Witbracht, Megan; Gertz, Erik R.; Piccolo, Brian; Bremer, Andrew A.; Spurlock, Michael

    2011-01-01

    Background. Research on dairy foods to enhance weight and fat loss when incorporated into a modest weight loss diet has had mixed results. Objective. A 15-week controlled feeding study to determine if dairy foods enhance central fat and weight loss when incorporated in a modest energy restricted diet of overweight and obese adults. Design. A 3-week run-in to establish energy needs; a 12-week 500 kcal/d energy reduction with 71 low-dairy-consuming overweight and obese adults randomly assigned to diets: ≤1 serving dairy/d (low dairy, LD) or ≤4 servings dairy/d (adequate dairy, AD). All foods were weighed and provided by the metabolic kitchen. Weight, fat, intra-abdominal adipose tissue (IAAT), subcutaneous adipose tissue (SAT) macrophage number, SAT inflammatory gene expression, and circulating cytokines were measured. Results. No diet differences were observed in weight, fat, or IAAT loss; nor SAT mRNA expression of inflammation, circulating cytokines, fasting lipids, glucose, or insulin. There was a significant increase (P = 0.02) in serum 25-hydroxyvitamin D in the AD group. Conclusion. Whether increased dairy intake during weight loss results in greater weight and fat loss for individuals with metabolic syndrome deserves investigation. Assessment of appetite, hunger, and satiety with followup on weight regain should be considered. PMID:21941636

  11. Dairy Foods in a Moderate Energy Restricted Diet Do Not Enhance Central Fat, Weight, and Intra-Abdominal Adipose Tissue Losses nor Reduce Adipocyte Size or Inflammatory Markers in Overweight and Obese Adults: A Controlled Feeding Study.

    PubMed

    Van Loan, Marta D; Keim, Nancy L; Adams, Sean H; Souza, Elaine; Woodhouse, Leslie R; Thomas, Anthony; Witbracht, Megan; Gertz, Erik R; Piccolo, Brian; Bremer, Andrew A; Spurlock, Michael

    2011-01-01

    Background. Research on dairy foods to enhance weight and fat loss when incorporated into a modest weight loss diet has had mixed results. Objective. A 15-week controlled feeding study to determine if dairy foods enhance central fat and weight loss when incorporated in a modest energy restricted diet of overweight and obese adults. Design. A 3-week run-in to establish energy needs; a 12-week 500 kcal/d energy reduction with 71 low-dairy-consuming overweight and obese adults randomly assigned to diets: ≤1 serving dairy/d (low dairy, LD) or ≤4 servings dairy/d (adequate dairy, AD). All foods were weighed and provided by the metabolic kitchen. Weight, fat, intra-abdominal adipose tissue (IAAT), subcutaneous adipose tissue (SAT) macrophage number, SAT inflammatory gene expression, and circulating cytokines were measured. Results. No diet differences were observed in weight, fat, or IAAT loss; nor SAT mRNA expression of inflammation, circulating cytokines, fasting lipids, glucose, or insulin. There was a significant increase (P = 0.02) in serum 25-hydroxyvitamin D in the AD group. Conclusion. Whether increased dairy intake during weight loss results in greater weight and fat loss for individuals with metabolic syndrome deserves investigation. Assessment of appetite, hunger, and satiety with followup on weight regain should be considered.

  12. Coptis chinensis alkaloids exert anti-adipogenic activity on 3T3-L1 adipocytes by downregulating C/EBP-α and PPAR-γ.

    PubMed

    Choi, Jae Sue; Kim, Ji-Hye; Ali, Md Yousof; Min, Byung-Sun; Kim, Gun-Do; Jung, Hyun Ah

    2014-10-01

    Obesity is a complex, multifactorial, and chronic disease that increases the risk for type 2 diabetes, coronary heart disease and hypertension, and has become a major worldwide health problem. Developing novel anti-obesity drugs from natural products is a promising solution to the global health problem of obesity. While screening anti-obesity potentials of natural products, the methanol extract of the rhizome of Coptis chinensis (Coptidis Rhizoma) was found to significantly inhibit adipocyte differentiation and lipid contents in 3T3-L1 cells, as assessed by Oil-Red O staining. Five known alkaloids, berberine, epiberberine, coptisine, palmatine, and magnoflorine, were isolated from the n-BuOH fraction of the methanol extract of Coptidis Rhizoma. We determined the chemical structure of these alkaloids through comparisons of published nuclear magnetic resonance (NMR) spectral data. Furthermore, we screened these alkaloids for their ability to inhibit adipogenesis over a range of concentrations (12.5-50 μM). All five Coptidis Rhizoma alkaloids significantly inhibited lipid accumulation in 3T3-L1 cells without affecting cell viability in a concentration dependent manner. In addition, the five alkaloids significantly reduced the expression levels of several adipocyte marker genes including proliferator activated receptor-γ (PPAR-γ) and CCAAT/enhancer-binding protein-α (C/EBP-α). In the present study, we found that the isolated alkaloids inhibited adipogenesis in a dose-dependent manner in 3T3-L1 cells; this inhibition was attributed to their abilities to downregulate the protein levels of the adipocyte marker proteins PPAR-γ and C/EBP-α. Thus, these results suggest that Coptidis Rhizoma extract and its isolated alkaloids may be of therapeutic interest with respect to the treatment of obesity.

  13. A new species of Docosia Winnertz from Central Europe, with DNA barcoding based on four gene markers (Diptera, Mycetophilidae)

    PubMed Central

    Ševčík, Jan; Kaspřák, David; Rulik, Björn

    2016-01-01

    Abstract A new species of Docosia Winnertz, Docosia dentata sp. n., is described and illustrated, based on a single male specimen collected in Muránska planina National Park in Central Slovakia. DNA sequences (COI, COII, CytB, and ITS2) are included and compared for 13 species of Docosia. There was found only little congruence between the molecular results and previous scarce data about interspecific relationships based on morphology. The COI and CytB gene markers showed the highest interspecific gene distances while ITS2 showed the lowest ones. An updated key to the 23 Central European species of Docosia is also presented. PMID:26843833

  14. Aloe-emodin inhibits adipocyte differentiation and maturation during in vitro human mesenchymal stem cell adipogenesis.

    PubMed

    Subash-Babu, Pandurangan; Alshatwi, Ali A

    2012-08-01

    In this study, we examined the effects of Aloe-emodin (AE) on the inhibition of adipocyte differentiation during 3-isobutyl-1-methylxanthine (IBMX)-induced adipocyte differentiation in human mesenchymal stem cells (hMSCs). AE treatment (5, 10, and 20 µM) of preadipocyte cells resulted in a significant (p < 0.05) decrease in glycerol phosphate dehydrogenase and triglyceride levels as well as an increase in lactate dehydrogenase activity and attenuated lipid accumulation compared with untreated differentiated adipocytes. Using quantitative reverse transcription polymerase chain reaction, we studied the mRNA expression levels of resistin, adiponectin, aP(2), lipoprotein lipase, PPARγ, and tumor necrosis factor-α in hMSCs undergoing adipocyte differentiation; treatment with AE decreased the expression of these adipogenic genes and decreased adipocyte differentiation. In addition, AE suppresses the differentiation of hMSCs into adipocytes by downregulating PPARγ and C/EBPα expressions. AE significantly inhibited hMSCs proliferation and preadipocyte differentiation within the first 2 days of treatment, indicating that the antiadipogenic effect.

  15. Adipocyte SIRT1 controls systemic insulin sensitivity by modulating macrophages in adipose tissue.

    PubMed

    Hui, Xiaoyan; Zhang, Mingliang; Gu, Ping; Li, Kuai; Gao, Yuan; Wu, Donghai; Wang, Yu; Xu, Aimin

    2017-03-07

    Adipose tissue inflammation, characterized by augmented infiltration and altered polarization of macrophages, contributes to insulin resistance and its associated metabolic diseases. The NAD(+)-dependent deacetylase SIRT1 serves as a guardian against metabolic disorders in multiple tissues. To dissect the roles of SIRT1 in adipose tissues, metabolic phenotypes of mice with selective ablation of SIRT1 in adipocytes and myeloid cells were monitored. Compared to myeloid-specific SIRT1 depletion, mice with adipocyte-selective deletion of SIRT1 are more susceptible to diet-induced insulin resistance. The phenotypic changes in adipocyte-selective SIRT1 knockout mice are associated with an increased number of adipose-resident macrophages and their polarization toward the pro-inflammatory M1 subtype. Mechanistically, SIRT1 in adipocytes modulates expression and secretion of several adipokines, including adiponectin, MCP-1, and interleukin 4, which in turn alters recruitment and polarization of the macrophages in adipose tissues. In adipocytes, SIRT1 deacetylates the transcription factor NFATc1 and thereby enhances the binding of NFATc1 to the Il4 gene promoter. These findings suggest that adipocyte SIRT1 controls systemic glucose homeostasis and insulin sensitivity via the cross talk with adipose-resident macrophages.

  16. Identification of resistance to new virulent races of rust in sunflowers and validation of DNA markers in the gene pool.

    PubMed

    Qi, Lili; Gulya, Tom; Seiler, Gerald J; Hulke, Brent S; Vick, Brady A

    2011-02-01

    Sunflower rust, caused by Puccinia helianthi, is a prevalent disease in many countries throughout the world. The U.S. Department of Agriculture (USDA)-Agricultural Research Service, Sunflower Research Unit has released rust resistant breeding materials for several decades. However, constantly coevolving rust populations have formed new virulent races to which current hybrids have little resistance. The objectives of this study were to identify resistance to race 336, the predominant race in North America, and to race 777, the most virulent race currently known, and to validate molecular markers known to be linked to rust resistance genes in the sunflower gene pool. A total of 104 entries, including 66 released USDA inbred lines, 14 USDA interspecific germplasm lines, and 24 foreign germplasms, all developed specifically for rust resistance, were tested for their reaction to races 336 and 777. Only 13 of the 104 entries tested were resistant to both races, whereas another six were resistant only to race 336. The interspecific germplasm line, Rf ANN-1742, was resistant to both races and was identified as a new rust resistance source. A selection of 24 lines including 19 lines resistant to races 777 and/or 336 was screened with DNA markers linked to rust resistance genes R(1), R(2), R(4u), and R(5). The results indicated that the existing resistant lines are diverse in rust resistance genes. Durable genetic resistance through gene pyramiding will be effective for the control of rust.

  17. Honokiol enhances adipocyte differentiation by potentiating insulin signaling in 3T3-L1 preadipocytes.

    PubMed

    Choi, Sun-Sil; Cha, Byung-Yoon; Iida, Kagami; Sato, Masako; Lee, Young-Sil; Teruya, Toshiaki; Yonezawa, Takayuki; Nagai, Kazuo; Woo, Je-Tae

    2011-07-01

    Adipose tissue plays an essential role in energy homeostasis as a metabolic and endocrine organ. Accordingly, adipocytes are emerging as a major drug target for obesity and obesity-mediated metabolic syndrome. Dysfunction of enlarged adipocytes in obesity is involved in obesity-mediated metabolic syndrome. Adipocytokines, such as adiponectin released from small adipocytes, are able to prevent these disorders. In this study, we found that honokiol, an ingredient of Magnolia officinalis used in traditional Chinese and Japanese medicines, enhanced adipocyte differentiation in 3T3-L1 preadipocytes. Oil Red O staining showed that treatment with honokiol in the presence of insulin dose-dependently increased lipid accumulation in 3T3-L1 preadipoyctes although its activity was weak compared with rosiglitazone. During adipocyte differentiation, the expression of peroxisome proliferator-activated receptor γ2 (PPARγ2) mRNA and PPARγ target genes such as adipocyte protein 2 (aP2), adiponectin, and GLUT4 was induced by treatment with 10 μM honokiol. However, honokiol failed to show direct binding to the PPARγ ligand-binding domain in vitro. In preadipocytes, treatment with honokiol in the presence of insulin increased the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 protein and Akt protein, early insulin signaling pathways related to adipocyte differentiation, compared with insulin-only treatment. Taken together, our results suggest that honokiol promotes adipocyte differentiation through increased expression of PPARγ2 mRNA and potentiation of insulin signaling pathways such as the Ras/ERK1/2 and phosphoinositide-3-kinase (PI3K)/Akt signaling pathways.

  18. Functional markers for gene mapping and genetic diversity studies in sugarcane

    PubMed Central

    2011-01-01

    Background The database of sugarcane expressed sequence tags (EST) offers a great opportunity for developing molecular markers that are directly associated with important agronomic traits. The development of new EST-SSR markers represents an important tool for genetic analysis. In sugarcane breeding programs, functional markers can be used to accelerate the process and select important agronomic traits, especially in the mapping of quantitative traits loci (QTL) and plant resistant pathogens or qualitative resistance loci (QRL). The aim of this work was to develop new simple sequence repeat (SSR) markers in sugarcane using the sugarcane expressed sequence tag (SUCEST database). Findings A total of 365 EST-SSR molecular markers with trinucleotide motifs were developed and evaluated in a collection of 18 genotypes of sugarcane (15 varieties and 3 species). In total, 287 of the EST-SSRs markers amplified fragments of the expected size and were polymorphic in the analyzed sugarcane varieties. The number of alleles ranged from 2-18, with an average of 6 alleles per locus, while polymorphism information content values ranged from 0.21-0.92, with an average of 0.69. The discrimination power was high for the majority of the EST-SSRs, with an average value of 0.80. Among the markers characterized in this study some have particular interest, those that are related to bacterial defense responses, generation of precursor metabolites and energy and those involved in carbohydrate metabolic process. Conclusions These EST-SSR markers presented in this work can be efficiently used for genetic mapping studies of segregating sugarcane populations. The high Polymorphism Information Content (PIC) and Discriminant Power (DP) presented facilitate the QTL identification and marker-assisted selection due the association with functional regions of the genome became an important tool for the sugarcane breeding program. PMID:21798036

  19. A high-resolution map of the regulator of the complement activation gene cluster on 1q32 that integrates new genes and markers.

    PubMed

    Heine-Suñer, D; Díaz-Guillén, M A; de Villena, F P; Robledo, M; Benítez, J; Rodríguez de Córdoba, S

    1997-01-01

    Sixteen microsatellite markers, including two described here, were used to construct a high-resolution map of the 1q32 region encompassing the regulator of the complement activation (RCA) gene cluster. The RCA genes are a group of related genes coding for plasma and membrane associated proteins that collectively control activation of the complement component C3. We provide here the location of two new genes within the RCA gene cluster. These genes are PFKFB2 that maps 15 kilobases (kb) upstream of the C4BPB gene, and a gene located 4 kb downstream of C4BPA, which seems to code for the 72 000 Mr component of the signal recognition particle (SRP72). Neither of these two genes is related structurally or functionally to the RCA genes. In addition, our map shows the centromere-telomere orientation of the C4BPB/MCP linkage group, which is: centromere-PFKFB2-C4BPB-C4BPA-SRP72-C4BPAL1++ +-C4BPAL2-telomere, and outlines an interval with a significant female-male recombination difference which suggests the presence of a female-specific hotspot(s) of recombination.

  20. Polymorphisms of the lipoprotein lipase gene as genetic markers for stroke in colombian population: a case control study

    PubMed Central

    Vargas Castellanos, Clara Inés; Silva Sieger, Federico Arturo

    2016-01-01

    Abstract Objective: To analyze if there is an association between the presence of polymorphisms in the LPL gene (rs320, rs285 and rs328) with development of acute ischemic stroke in Colombian population. Methods: In a case control design, 133 acute ischemic stroke patients (clinical diagnosis and x-ray CT) and 269 subjects without stroke as controls were studied. PCR -RFLP technique was used to detect rs320, rs285 and rs328 polymorphisms in the LPL gene. Results: In the present research was not found any association between any of the LPL gene polymorphism and acute ischemic stroke in the population studied; the allele and genotypic frequencies of the studied polymorphisms were similar in cases and controls and followed the Hardy-Weinberg equilibrium. The study was approved by the IRB and each subject signed the informed consent. Conclusion: LPL gene polymorphisms are not genetic markers for the development of stroke in the Colombian sample used. PMID:28293042

  1. Cyanidin-3-glucoside derived from black soybeans ameliorate type 2 diabetes through the induction of differentiation of preadipocytes into smaller and insulin-sensitive adipocytes.

    PubMed

    Matsukawa, Toshiya; Inaguma, Tetsuya; Han, Junkyu; Villareal, Myra O; Isoda, Hiroko

    2015-08-01

    Black soybean is a health food has been reported to have antidiabetes effect. The onset of diabetes is closely associated with adipocyte differentiation, and at present, the effect of black soybean on adipocyte differentiation is unknown. Here, we investigated the antidiabetes effect of black soybean, and its anthocyanin cyanidin-3-glucoside (Cy3G), on adipocyte differentiation. Orally administered black soybean seed coat extract (BSSCE) reduced the body and white adipose tissue (WAT) weight of db/db mice accompanied by a decrease in the size of adipocytes in WAT. Furthermore, 3T3-Ll cells treated with BSSCE and Cy3G were observed to differentiate into smaller adipocytes which correlated with increased PPARγ and C/EBPα gene expressions, increased adiponectin secretion, decreased tumor necrosis factor-α secretion, activation of insulin signalling and increased glucose uptake. C2C12 myotubes cultured with conditioned medium, obtained from 3T3-L1 adipocyte cultures treated with Cy3G, also showed significantly increased expression of PGC-1α, SIRT1 and UCP-3 genes. Here we report that BSSCE, as well as its active compound Cy3G, has antidiabetes effects on db/db mice by promoting adipocyte differentiation. This notion is supported by BSSCE and Cy3G inducing the differentiation of 3T3-L1 preadipocytes into smaller, insulin-sensitive adipocytes, and it induced the activation of skeletal muscle metabolism. This is the first report on the modulation effect of Cy3G on adipocyte differentiation.

  2. Mini-blaster-mediated targeted gene disruption and marker complementation in C. albicans

    PubMed Central

    Ganguly, Shantanu; Mitchell, Aaron P

    2014-01-01

    Summary Several gene disruption strategies have been described in Candida albicans to create homozygous mutants. We describe here a recyclable mini-blaster cassette containing C. albicans URA3 gene and 200 bp flanking repeats that is useful for disruption of C. albicans genes. The cassette can be used to create unmarked homozygous mutants which can be complemented at the HIS1 gene locus. This strategy of creating gene disruptions and subsequent complementation can be used to study gene function. PMID:22328365

  3. Heat shock induced excision of selectable marker genes in transgenic banana by the Cre-lox site-specific recombination system.

    PubMed

    Chong-Pérez, Borys; Kosky, Rafael G; Reyes, Maritza; Rojas, Luis; Ocaña, Bárbara; Tejeda, Marisol; Pérez, Blanca; Angenon, Geert

    2012-06-30

    Selectable marker genes are indispensable for efficient production of transgenic events, but are no longer needed after the selection process and may cause public concern and technological problems. Although several gene excision systems exist, few have been optimized for vegetatively propagated crops. Using a Cre-loxP auto-excision strategy, we obtained transgenic banana plants cv. Grande Naine (Musa AAA) devoid of the marker gene used for selection. We used T-DNA vectors with the cre recombinase gene under control of a heat shock promoter and selectable marker gene cassettes placed between two loxP sites in direct orientation, and a gene of interest inserted outside of the loxP sites. Heat shock promoters pGmHSP17.6-L and pHSP18.2, from soybean and Arabidopsis respectively, were tested. A transient heat shock treatment of primary transgenic embryos was sufficient for inducing cre and excising cre and the marker genes. Excision efficiency, as determined by PCR and Southern hybridization was 59.7 and 40.0% for the GmHSP17.6-L and HSP18.2 promoters, respectively. Spontaneous excision was not observed in 50 plants derived from untreated transgenic embryos. To our knowledge this is the first report describing an efficient marker gene removal system for banana. The method described is simple and might be generally applicable for the production of marker-free transgenic plants of many crop species.

  4. Susceptibility to Apoptosis in Insulin-like Growth Factor-I Receptor-deficient Brown Adipocytes

    PubMed Central

    Valverde, Angela M.; Mur, Cecilia; Brownlee, Michael; Benito, Manuel

    2004-01-01

    Fetal brown adipocytes are insulin-like growth factor-I (IGF-I) target cells. To assess the importance of the IGF-I receptor (IGF-IR) in brown adipocytes during fetal life, we have generated immortalized brown adipocyte cell lines from the IGF-IR-/- mice. Using this experimental model, we demonstrate that the lack of IGF-IR in fetal brown adipocytes increased the susceptibility to apoptosis induced by serum withdrawal. Culture of cells in the absence of serum and growth factors produced rapid DNA fragmentation (4 h) in IGF-IR-/- brown adipocytes, compared with the wild type (16 h). Consequently, cell viability was decreased more rapidly in fetal brown adipocytes in the absence of IGF-IR. Furthermore, caspase-3 activity was induced much earlier in cells lacking IGF-IR. At the molecular level, IGF-IR deficiency in fetal brown adipocytes altered the balance of the expression of several proapoptotic (Bcl-xS and Bim) and antiapoptotic (Bcl-2 and Bcl-xL) members of the Bcl-2 family. This imbalance was irreversible even though in IGF-IR-reconstituted cells. Likewise, cytosolic cytochrome c levels increased rapidly in IGF-IR-deficient cells compared with the wild type. A rapid entry of Foxo1 into the nucleus accompanied by a rapid exit from the cytosol and an earlier activation of caspase-8 were observed in brown adipocytes lacking IGF-IR upon serum deprivation. Activation of caspase-8 was inhibited by 50% in both cell types by neutralizing anti-Fas-ligand antibody. Adenoviral infection of wild-type brown adipocytes with constitutively active Foxol (ADA) increased the expression of antiapoptotic genes, decreased Bcl-xL and induced caspase-8 and -3 activities, with the final outcome of DNA fragmentation. Up-regulation of uncoupling protein-1 (UCP-1) expression in IGF-IR-deficient cells by transduction with PGC-1α or UCP-1 ameliorated caspase-3 activation, thereby retarding apoptosis. Finally, insulin treatment prevented apoptosis in both cell types. However, the survival

  5. ATF3 represses PPARγ expression and inhibits adipocyte differentiation

    SciTech Connect

    Jang, Min-Kyung; Jung, Myeong Ho

    2014-11-07

    Highlights: • ATF3 decrease the expression of PPARγ and its target gene in 3T3-L1 adipocytes. • ATF3 represses the promoter activity of PPARγ2 gene. • ATF/CRE (−1537/−1530) is critical for ATF3-mediated downregulation of PPARγ. • ATF3 binds to the promoter region containing the ATF/CRE. • ER stress inhibits adipocyte differentiation through downregulation of PPARγ by ATF3. - Abstract: Activating transcription factor 3 (ATF3) is a stress-adaptive transcription factor that mediates cellular stress response signaling. We previously reported that ATF3 represses CCAAT/enhancer binding protein α (C/EBPα) expression and inhibits 3T3-L1 adipocyte differentiation. In this study, we explored potential role of ATF3 in negatively regulating peroxisome proliferator activated receptor-γ (PPARγ). ATF3 decreased the expression of PPARγ and its target gene in 3T3-L1 adipocytes. ATF3 also repressed the activity of −2.6 Kb promoter of mouse PPARγ2. Overexpression of PPARγ significantly prevented the ATF3-mediated inhibition of 3T3-L1 differentiation. Transfection studies with 5′ deleted-reporters showed that ATF3 repressed the activity of −2037 bp promoter, whereas it did not affect the activity of −1458 bp promoter, suggesting that ATF3 responsive element is located between the −2037 and −1458. An electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that ATF3 binds to ATF/CRE site (5′-TGACGTTT-3′) between −1537 and −1530. Mutation of the ATF/CRE site abrogated ATF3-mediated transrepression of the PPARγ2 promoter. Treatment with thapsigargin, endoplasmic reticulum (ER) stress inducer, increased ATF3 expression, whereas it decreased PPARγ expression. ATF3 knockdown significantly blocked the thapsigargin-mediated downregulation of PPARγ expression. Furthermore, overexpression of PPARγ prevented inhibition of 3T3-L1 differentiation by thapsigargin. Collectively, these results suggest that ATF3-mediated

  6. Bone Marrow Adipocytes Facilitate Fatty Acid Oxidation Activating AMPK and a Transcriptional Network Supporting Survival of Acute Monocytic Leukemia Cells.

    PubMed

    Tabe, Yoko; Yamamoto, Shinichi; Saitoh, Kaori; Sekihara, Kazumasa; Monma, Norikazu; Ikeo, Kazuho; Mogushi, Kaoru; Shikami, Masato; Ruvolo, Vivian; Ishizawa, Jo; Hail, Numsen; Kazuno, Saiko; Igarashi, Mamoru; Matsushita, Hiromichi; Yamanaka, Yasunari; Arai, Hajime; Nagaoka, Isao; Miida, Takashi; Hayashizaki, Yoshihide; Konopleva, Marina; Andreeff, Michael

    2017-03-15

    Leukemia cells in the bone marrow must meet the biochemical demands of increased cell proliferation and also survive by continually adapting to fluctuations in nutrient and oxygen availability. Thus, targeting metabolic abnormalities in leukemia cells located in the bone marrow is a novel therapeutic approach. In this study, we investigated the metabolic role of bone marrow adipocytes in supporting the growth of leukemic blasts. Prevention of nutrient starvation-induced apoptosis of leukemic cells by bone marrow adipocytes, as well as the metabolic and molecular mechanisms involved in this process, was investigated using various analytic techniques. In acute monocytic leukemia (AMoL) cells, the prevention of spontaneous apoptosis by bone marrow adipocytes was associated with an increase in fatty acid β-oxidation (FAO) along with the upregulation of PPARγ, FABP4, CD36, and BCL2 genes. In AMoL cells, bone marrow adipocyte coculture increased adiponectin receptor gene expression and its downstream target stress response kinase AMPK, p38 MAPK with autophagy activation, and upregulated antiapoptotic chaperone HSPs. Inhibition of FAO disrupted metabolic homeostasis, increased reactive oxygen species production, and induced the integrated stress response mediator ATF4 and apoptosis in AMoL cells cocultured with bone marrow adipocytes. Our results suggest that bone marrow adipocytes support AMoL cell survival by regulating their metabolic energy balance and that the disruption of FAO in bone marrow adipocytes may be an alternative, novel therapeutic strategy for AMoL therapy. Cancer Res; 77(6); 1453-64. ©2017 AACR.

  7. Transcriptional Pathways in cPGI2-Induced Adipocyte Progenitor Activation for Browning

    PubMed Central

    Bayindir, Irem; Babaeikelishomi, Rohollah; Kocanova, Silvia; Sousa, Isabel Sofia; Lerch, Sarah; Hardt, Olaf; Wild, Stefan; Bosio, Andreas; Bystricky, Kerstin; Herzig, Stephan; Vegiopoulos, Alexandros

    2015-01-01

    De novo formation of beige/brite adipocytes from progenitor cells contributes to the thermogenic adaptation of adipose tissue and holds great potential for the therapeutic remodeling of fat as a treatment for obesity. Despite the recent identification of several factors regulating browning of white fat, there is a lack of physiological cell models for the mechanistic investigation of progenitor-mediated beige/brite differentiation. We have previously revealed prostacyclin (PGI2) as one of the few known endogenous extracellular mediators promoting de novo beige/brite formation by relaying β-adrenergic stimulation to the progenitor level. Here, we present a cell model based on murine primary progenitor cells defined by markers previously shown to be relevant for in vivo browning, including a simplified isolation procedure. We demonstrate the specific and broad induction of thermogenic gene expression by PGI2 signaling in the absence of lineage conversion, and reveal the previously unidentified nuclear relocalization of the Ucp1 gene locus in association with transcriptional activation. By profiling the time course of the progenitor response, we show that PGI2 signaling promoted progenitor cell activation through cell cycle and adhesion pathways prior to metabolic maturation toward an oxidative cell phenotype. Our results highlight the importance of core progenitor activation pathways for the recruitment of thermogenic cells and provide a resource for further mechanistic investigation. PMID:26347713

  8. Cold Exposure Induces Proliferation of Mature Brown Adipocyte in a ß3-Adrenergic Receptor-Mediated Pathway

    PubMed Central

    Fukano, Keigo; Okamatsu-Ogura, Yuko; Tsubota, Ayumi; Nio-Kobayashi, Junko; Kimura, Kazuhiro

    2016-01-01

    Hyperplasia of brown adipose tissue (BAT) is a fundamental mechanism for adaptation to survive in the cold environment in rodents. To determine which cell types comprising BAT contribute to tissue hyperplasia, immunohistochemical analysis using a proliferative marker Ki67 was performed on the BAT from 6-week-old C57BL/6J mice housed at 23°C (control) or 10°C (cold) for 5 days. Interestingly, in the control group, the cell proliferative marker Ki67 was detected in the nuclei of uncoupling protein 1-positive mature brown adipocytes (7.2% ± 0.4% of brown adipocyte), as well as in the non-adipocyte stromal-vascular (SV) cells (19.6% ± 2.3% of SV cells), which include preadiopocytes. The percentage of Ki67-positive brown adipocytes increased to 25.6% ± 1.8% at Day 1 after cold exposure and was significantly higher than the non-cold acclimated control until Day 5 (21.8% ± 1.7%). On the other hand, the percentage of Ki67-positive SV cells gradually increased by a cold exposure and peaked to 42.1% ± 8.3% at Day 5. Injection of a ß3-adrenergic receptor (ß3-AR) agonist for continuous 5 days increased the number of Ki67-positive brown adipocytes even at Day 1 but not that of SV cells. In addition, the ß3-AR antagonist, but not ß1-AR antagonist, attenuated the cold exposure-induced increase in the number of Ki67-positive brown adipocytes. These results suggest that mature brown adipocytes proliferate immediately after cold exposure in a ß3-AR-mediated pathway. Thus, proliferation of mature brown adipocytes as well as preadipocytes in SV cells may contribute to cold exposure-induced BAT hyperplasia. PMID:27846311

  9. Race structure within the Mesoamerican gene pool of common bean (Phaseolus vulgaris L.) as determined by microsatellite markers.

    PubMed

    Díaz, L M; Blair, M W

    2006-12-01

    Common bean (Phaseolus vulgaris L.) cultivars are distinguished morphologically, agronomically and ecologically into specific races within each of the two gene pools found for the species (Andean and Mesoamerican). The objective of this study was to describe the race structure of the Mesoamerican gene pool using microsatellite markers. A total of 60 genotypes previously described as pertaining to specific Mesoamerican races as well as two Andean control genotypes were analyzed with 52 markers. A total of 267 bands were generated with an average of 5.1 alleles per marker and 0.297 heterozygosity across all microsatellites. Correspondence analysis identified two major groups equivalent to the Mesoamerica race and a group containing both Durango and Jalisco race genotypes. Two outlying individuals were classified as potentially of the Guatemala race although this race does not have a defined structure and previously classified members of this race were classified with other races. Population structure analysis with K = 1-4 agreed with this classification. The genetic diversity based on Nei's index for the entire set of genotypes was 0.468 while this was highest for the Durango-Jalisco group (0.414), intermediate for race Mesoamerica (0.340) and low for race Guatemala (0.262). Genetic differentiation (G (ST)) between the Mesoamerican races was 0.27 while genetic distance and identity showed race Durango and Jalisco individuals to be closely related with high gene flow (N (m)) both between these two races (1.67) and between races Durango and Mesoamerica (1.58). Observed heterozygosity was low in all the races as would be expected for an inbreeding species. The analysis with microsatellite markers identified subgroups, which agreed well with commercial class divisions, and seed size was the main distinguishing factor between the two major groups identified.

  10. Adipocyte membrane glycerol permeability is involved in the anti-adipogenic effect of conjugated linoleic acid.

    PubMed

    Martins, Susana V; Madeira, Ana; Lopes, Paula A; Pires, Virgínia M R; Alfaia, Cristina M; Prates, José A M; Moura, Teresa; Soveral, Graça

    2015-03-06

    Conjugated linoleic acid (CLA), a group of minor fatty acids from ruminant origin, has long been recognized as a body fat lowering agent. Given the trans(t)10,cis(c)12-CLA well documented interference on lipolysis, we hypothesized for adipocytes altered permeation to glycerol when supplemented with this isomer. 3T3-L1 murine differentiated adipocytes were medium supplemented with linoleic acid (LA) and individual or combined c9,t11 and t10,c12-CLA isomers. Adipocytes tr