Science.gov

Sample records for adipocyte number insulin

  1. Selective insulin resistance in adipocytes.

    PubMed

    Tan, Shi-Xiong; Fisher-Wellman, Kelsey H; Fazakerley, Daniel J; Ng, Yvonne; Pant, Himani; Li, Jia; Meoli, Christopher C; Coster, Adelle C F; Stöckli, Jacqueline; James, David E

    2015-05-01

    Aside from glucose metabolism, insulin regulates a variety of pathways in peripheral tissues. Under insulin-resistant conditions, it is well known that insulin-stimulated glucose uptake is impaired, and many studies attribute this to a defect in Akt signaling. Here we make use of several insulin resistance models, including insulin-resistant 3T3-L1 adipocytes and fat explants prepared from high fat-fed C57BL/6J and ob/ob mice, to comprehensively distinguish defective from unaffected aspects of insulin signaling and its downstream consequences in adipocytes. Defective regulation of glucose uptake was observed in all models of insulin resistance, whereas other major actions of insulin such as protein synthesis and anti-lipolysis were normal. This defect corresponded to a reduction in the maximum response to insulin. The pattern of change observed for phosphorylation in the Akt pathway was inconsistent with a simple defect at the level of Akt. The only Akt substrate that showed consistently reduced phosphorylation was the RabGAP AS160 that regulates GLUT4 translocation. We conclude that insulin resistance in adipose tissue is highly selective for glucose metabolism and likely involves a defect in one of the components regulating GLUT4 translocation to the cell surface in response to insulin. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Selective Insulin Resistance in Adipocytes*

    PubMed Central

    Tan, Shi-Xiong; Fisher-Wellman, Kelsey H.; Fazakerley, Daniel J.; Ng, Yvonne; Pant, Himani; Li, Jia; Meoli, Christopher C.; Coster, Adelle C. F.; Stöckli, Jacqueline; James, David E.

    2015-01-01

    Aside from glucose metabolism, insulin regulates a variety of pathways in peripheral tissues. Under insulin-resistant conditions, it is well known that insulin-stimulated glucose uptake is impaired, and many studies attribute this to a defect in Akt signaling. Here we make use of several insulin resistance models, including insulin-resistant 3T3-L1 adipocytes and fat explants prepared from high fat-fed C57BL/6J and ob/ob mice, to comprehensively distinguish defective from unaffected aspects of insulin signaling and its downstream consequences in adipocytes. Defective regulation of glucose uptake was observed in all models of insulin resistance, whereas other major actions of insulin such as protein synthesis and anti-lipolysis were normal. This defect corresponded to a reduction in the maximum response to insulin. The pattern of change observed for phosphorylation in the Akt pathway was inconsistent with a simple defect at the level of Akt. The only Akt substrate that showed consistently reduced phosphorylation was the RabGAP AS160 that regulates GLUT4 translocation. We conclude that insulin resistance in adipose tissue is highly selective for glucose metabolism and likely involves a defect in one of the components regulating GLUT4 translocation to the cell surface in response to insulin. PMID:25720492

  3. Adipocyte lipolysis and insulin resistance.

    PubMed

    Morigny, Pauline; Houssier, Marianne; Mouisel, Etienne; Langin, Dominique

    2016-06-01

    Obesity-induced insulin resistance is a major risk factor for the development of type 2 diabetes. Basal fat cell lipolysis (i.e., fat cell triacylglycerol breakdown into fatty acids and glycerol in the absence of stimulatory factors) is elevated during obesity and is closely associated with insulin resistance. Inhibition of adipocyte lipolysis may therefore be a promising therapeutic strategy for treating insulin resistance and preventing obesity-associated type 2 diabetes. In this review, we explore the relationship between adipose lipolysis and insulin sensitivity. After providing an overview of the components of fat cell lipolytic machinery, we describe the hypotheses that may support the causality between lipolysis and insulin resistance. Excessive circulating fatty acids may ectopically accumulate in insulin-sensitive tissues and impair insulin action. Increased basal lipolysis may also modify the secretory profile of adipose tissue, influencing whole body insulin sensitivity. Finally, excessive fatty acid release may also worsen adipose tissue inflammation, a well-known parameter contributing to insulin resistance. Partial genetic or pharmacologic inhibition of fat cell lipases in mice as well as short term clinical trials using antilipolytic drugs in humans support the benefit of fat cell lipolysis inhibition on systemic insulin sensitivity and glucose metabolism, which occurs without an increase of fat mass. Modulation of fatty acid fluxes and, putatively, of fat cell secretory pattern may explain the amelioration of insulin sensitivity whereas changes in adipose tissue immune response do not seem involved. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  4. Retroendocytosis of insulin in rat adipocytes

    SciTech Connect

    Levy, J.R.; Olefsky, J.M.

    1986-08-01

    A variety of ligands internalized by receptor-mediated endocytosis follow a short circuit pathway that does not lead to degradation but results in rapid exocytosis of intact ligand, a process termed retroendocytosis. We studied the time course of (/sup 125/I)iodoinsulin processing and retroendocytosis after internalization in isolated rat adipocytes. After steady state binding and internalization, surface receptor-bound insulin was removed by exposing cells to a low pH at low temperatures. The cells containing internalized (/sup 125/I)iodoinsulin were reincubated in fresh medium; subsequently, the radioactivity remaining within the cells and released into the medium were analyzed at various times by trichloroacetic acid (TCA) precipitation, Sephadex G-50 gel filtration, and reverse phase HPLC. Cell-associated radioactivity progressively decreased after reincubation in 37 C buffer, with 50% released in 9 min and 85% by 45 min. In the media, TCA-precipitable material appeared quickly, with a t1/2 of 2 min, and plateaued by 10 min. TCA-soluble material was released continually throughout the 45-min period. The release of both TCA-precipitable and TCA-soluble material was temperature and energy dependent. Sephadex G-50 chromatography demonstrated the loss of insulin from the intracellular pool and its appearance in the medium with a time course similar to that of TCA-precipitable material. Reverse phase HPLC demonstrated that the intracellular and medium radioactivity eluting in peak II (insulin peak) on Sephadex G-50 was composed of both intact insulin and intermediates. After the internalization of insulin, rat adipocytes release not only small mol wt degradation products of insulin, but also insulin intermediates and intact insulin. The rate of retroendocytosis reported here is almost identical to the rate of insulin receptor recycling in rat adipocytes.

  5. FAK signalling controls insulin sensitivity through regulation of adipocyte survival

    PubMed Central

    Luk, Cynthia T.; Shi, Sally Yu; Cai, Erica P.; Sivasubramaniyam, Tharini; Krishnamurthy, Mansa; Brunt, Jara J.; Schroer, Stephanie A.; Winer, Daniel A.; Woo, Minna

    2017-01-01

    Focal adhesion kinase (FAK) plays a central role in integrin signalling, which regulates growth and survival of tumours. Here we show that FAK protein levels are increased in adipose tissue of insulin-resistant obese mice and humans. Disruption of adipocyte FAK in mice or in 3T3 L1 cells decreases adipocyte survival. Adipocyte-specific FAK knockout mice display impaired adipose tissue expansion and insulin resistance on prolonged metabolic stress from a high-fat diet or when crossed on an obese db/db or ob/ob genetic background. Treatment of these mice with a PPARγ agonist does not restore adiposity or improve insulin sensitivity. In contrast, inhibition of apoptosis, either genetically or pharmacologically, attenuates adipocyte death, restores normal adiposity and improves insulin sensitivity. Together, these results demonstrate that FAK is required for adipocyte survival and maintenance of insulin sensitivity, particularly in the context of adipose tissue expansion as a result of caloric excess. PMID:28165007

  6. Autotaxin Is Regulated by Glucose and Insulin in Adipocytes.

    PubMed

    D'Souza, Kenneth; Kane, Daniel A; Touaibia, Mohamed; Kershaw, Erin E; Pulinilkunnil, Thomas; Kienesberger, Petra C

    2017-04-01

    Autotaxin (ATX) is an adipokine that generates the bioactive lipid, lysophosphatidic acid. Despite recent studies implicating adipose-derived ATX in metabolic disorders including obesity and insulin resistance, the nutritional and hormonal regulation of ATX in adipocytes remains unclear. The current study examined the regulation of ATX in adipocytes by glucose and insulin and the role of ATX in adipocyte metabolism. Induction of insulin resistance in adipocytes with high glucose and insulin concentrations increased ATX secretion, whereas coincubation with the insulin sensitizer, rosiglitazone, prevented this response. Moreover, glucose independently increased ATX messenger RNA (mRNA), protein, and activity in a time- and concentration-dependent manner. Glucose also acutely upregulated secreted ATX activity in subcutaneous adipose tissue explants. Insulin elicited a biphasic response. Acute insulin stimulation increased ATX activity in a PI3Kinase-dependent and mTORC1-independent manner, whereas chronic insulin stimulation decreased ATX mRNA, protein, and activity. To examine the metabolic role of ATX in 3T3-L1 adipocytes, we incubated cells with the ATX inhibitor, PF-8380, for 24 hours. Whereas ATX inhibition increased the expression of peroxisome proliferator-activated receptor-γ and its downstream targets, insulin signaling and mitochondrial respiration were unaffected. However, ATX inhibition enhanced mitochondrial H2O2 production. Taken together, this study suggests that ATX secretion from adipocytes is differentially regulated by glucose and insulin. This study also suggests that inhibition of autocrine/paracrine ATX-lysophosphatidic acid signaling does not influence insulin signaling or mitochondrial respiration, but increases reactive oxygen species production in adipocytes. Copyright © 2017 Endocrine Society.

  7. Action of insulin in rat adipocytes and membrane properties

    SciTech Connect

    Epand, R.M.; Stafford, A.R.; Debanne, M.T. )

    1991-02-26

    Several small peptides inhibit insulin-promoted glucose uptake in rat adipocytes. At 10 {mu}M peptide concentration, the extent of their inhibition of the insulin effect is related to the ability of these peptides to raise the bilayer- to hexagonal-phase transition temperature in model membranes. Hexane and DL-threo-dihydrosphingosine lower this phase transition temperature in model membranes, and they promote glucose uptake in adipocytes. There is thus an empirical relationship between the action of membrane additives on glucose uptake in adipocytes and their effect on the hexagonal-phase-forming tendency in model membranes. The most potent of the bilayer-stabilizing peptides tested in this work is carbobenzoxy-D-Phe-L-Phe-Gly. This peptide also inhibits insulin-stimulated protein synthesis in adipocytes. In contrast, DL-threo-dihydrosphingosine stimulates protein synthesis. The uptake of ({sup 125}I)iodinsulin by adipocytes is inhibited by carbobenzoxy-D-Phe-L-Phe-Gly. The mechanism of action of the bilayer-stabilizing peptides includes inhibition of insulin-dependent protein phosphorylation in adipocytes. The peptides are not specific inhibitors of a single function but are suggested to cause their effects by altering the physical properties of the membrane in a nonspecific manner. These results demonstrate that insulin-dependent functions of rat adipocytes can be modified by membrane additives in a manner predictable from the properties of these additives in model membranes.

  8. Interacting Effects of TSH and Insulin on Human Differentiated Adipocytes.

    PubMed

    Felske, D; Gagnon, A; Sorisky, A

    2015-08-01

    Subclinical hypothyroidism, characterized by an isolated rise in TSH serum levels with normal thyroid function, is a pro-inflammatory state associated with insulin resistance. Adipocytes express TSH receptors, but it is not known if TSH can directly inhibit insulin signaling. Using primary human differentiated adipocytes, we examined the effects of TSH on insulin-stimulated Akt phosphorylation, and whether conventional PKC (cPKC) were involved. The effect of insulin on TSH-stimulated lipolysis was also investigated. TSH inhibited insulin-stimulated Akt phosphorylation in adipocytes by 54%. TSH activated cPKC, and Gö6976, a PKCα and -β1 inhibitor, prevented the inhibitory effect of TSH on the insulin response. Insulin reduced the ability of TSH to activate cPKC and to stimulate lipolysis.Our data reveal novel interactions between TSH and insulin. TSH inhibits insulin-stimulated Akt signaling in a cPKC-dependent fashion, whereas insulin blocks TSH-stimulated cPKC activity and lipolysis. TSH and insulin act on differentiated human adipocytes to modulate their respective intracellular signals. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Macrophage-secreted factors induce adipocyte inflammation and insulin resistance

    SciTech Connect

    Permana, Paska A. . E-mail: Paska.Permana@med.va.gov; Menge, Christopher; Reaven, Peter D.

    2006-03-10

    Macrophage infiltration into adipose tissue increases with obesity, a condition associated with low-grade inflammation and insulin resistance. We investigated the direct effects of macrophage-secreted factors on adipocyte inflammation and insulin resistance. 3T3-L1 adipocytes incubated with media conditioned by RAW264.7 macrophages (RAW-CM) showed dramatically increased transcription of several inflammation-related genes, greater nuclear factor kappa B (NF-{kappa}B) activity, and enhanced binding of U937 monocytes. All of these effects were prevented by co-incubation with pyrrolidinedithiocarbamate, an NF-{kappa}B inhibitor. Adipocytes incubated with RAW-CM also released more non-esterified fatty acids and this increased lipolysis was not suppressed by insulin. In addition, RAW-CM treatment decreased insulin-stimulated glucose uptake in adipocytes. Taken together, these results indicate that macrophage-secreted factors induce inflammatory responses and reduce insulin responsiveness in adipocytes. These effects of macrophage-secreted factors on adipocytes may contribute significantly to the systemic inflammation and insulin resistance associated with obesity.

  10. Grape seed proanthocyanidin supplementation reduces adipocyte size and increases adipocyte number in obese rats.

    PubMed

    Pascual-Serrano, A; Arola-Arnal, A; Suárez-García, S; Bravo, F I; Suárez, M; Arola, L; Bladé, C

    2017-08-01

    White adipose tissue (WAT) expands through hypertrophy (increased adipocyte size) and/or hyperplasia (increased adipocyte number). Hypertrophy has been associated with insulin resistance and dyslipidemia independently of body composition and fat distribution. In contrast, hyperplasia protects against metabolic alterations. Proanthocyanidins, which are the most abundant flavonoids in the human diet, improve metabolic disturbances associated with diet-induced obesity without reducing body weight or adiposity. The aim of this study was to determine whether grape seed proanthocyanidin extract (GSPE) can modulate WAT expandability. Because GSPE also contains gallic acid, we also studied the capacity of gallic acid to remodel WAT. Male Wistar rats were fed a standard chow diet (n=6) or a cafeteria diet (CAF) for 11 weeks. After 8 weeks, the CAF-fed animals were supplemented with 25 mg GSPE/kg body weight (n=6), 7 mg gallic acid/kg body weight (n=6) or the vehicle (n=6) for 3 weeks. Histological analyses were performed in the retroperitoneal (rWAT) and inguinal (iWAT) WAT to determine adipocyte size and number. Specific markers for adipogenesis and WAT functionality were analysed in rWAT using quantitative RT-PCR. GSPE or gallic acid supplementation did not reduce weight gain or reverse and adiposity. However, GSPE reduced adipocyte size significantly in rWAT and moderately in iWAT and tripled the adipocyte number in rWAT. Gallic acid slightly reduced adipocyte size in rWAT and iWAT and doubled the adipocyte number in both WATs. In accordance with this adipogenic activity, Pref-1 and PPARγ tended to be overexpressed in rWAT of rats supplemented with GSPE. Moreover, GSPE supplementation increased Plin1 and Fabp4 expression and restored adiponectin expression completely, indicating a better functionality of visceral WAT. GSPE supplementation has anti-hypertrophic and hyperplasic activities in rats with established obesity, mainly in visceral WAT inducing a healthier

  11. Thioredoxin reductase 1 suppresses adipocyte differentiation and insulin responsiveness

    PubMed Central

    Peng, Xiaoxiao; Giménez-Cassina, Alfredo; Petrus, Paul; Conrad, Marcus; Rydén, Mikael; Arnér, Elias S. J.

    2016-01-01

    Recently thioredoxin reductase 1 (TrxR1), encoded by Txnrd1, was suggested to modulate glucose and lipid metabolism in mice. Here we discovered that TrxR1 suppresses insulin responsiveness, anabolic metabolism and adipocyte differentiation. Immortalized mouse embryonic fibroblasts (MEFs) lacking Txnrd1 (Txnrd1−/−) displayed increased metabolic flux, glycogen storage, lipogenesis and adipogenesis. This phenotype coincided with upregulated PPARγ expression, promotion of mitotic clonal expansion and downregulation of p27 and p53. Enhanced Akt activation also contributed to augmented adipogenesis and insulin sensitivity. Knockdown of TXNRD1 transcripts accelerated adipocyte differentiation also in human primary preadipocytes. Furthermore, TXNRD1 transcript levels in subcutaneous adipose tissue from 56 women were inversely associated with insulin sensitivity in vivo and lipogenesis in their isolated adipocytes. These results suggest that TrxR1 suppresses anabolic metabolism and adipogenesis by inhibition of intracellular signaling pathways downstream of insulin stimulation. PMID:27346647

  12. Neuropoietin attenuates adipogenesis and induces insulin resistance in adipocytes.

    PubMed

    White, Ursula A; Stewart, William C; Mynatt, Randall L; Stephens, Jacqueline M

    2008-08-15

    Recent findings have implicated gp130 receptor ligands, particularly ciliary neurotrophic factor (CNTF), as potential anti-obesity therapeutics. Neuropoietin (NP) is a recently discovered cytokine in the gp130 family that shares functional and structural features with CNTF and signals via the CNTF receptor tripartite complex comprised of CNTFRalpha, LIF receptor, and gp130. NP plays a role in the development of the nervous system, but the effects of NP on adipocytes have not been previously examined. Because CNTF exerts anti-obesogenic effects in adipocytes and NP shares the same receptor complex, we investigated the effects of NP on adipocyte development and insulin action. Using cultured 3T3-L1 adipocytes, we observed that NP has the ability to block adipogenesis in a dose- and time-dependent manner. We also observed that cultured adipocytes, as well as murine adipose tissue, are highly responsive to acute NP treatment. Rodents injected with NP had a substantial increase in STAT3 tyrosine phosphorylation and ERK 1 and 2 activation. We also observed the induction of SOCS-3 mRNA in 3T3-L1 adipocytes following NP treatment. Unlike CNTF, our studies have revealed that NP also substantially attenuates insulin-stimulated glucose uptake in 3T3-L1 adipocytes. In addition, NP blocks insulin action in adipose tissue in vivo. These observations are supported by data demonstrating that NP impairs insulin signaling via decreased activation of both IRS-1 and Akt. In summary, we have observed that both adipocytes in vitro and in vivo are highly responsive to NP, and this cytokine has the ability to affect insulin signaling in fat cells. These novel observations suggest that NP, unlike CNTF, may not be a viable obesity therapeutic.

  13. Neuropoietin Attenuates Adipogenesis and Induces Insulin Resistance in Adipocytes*

    PubMed Central

    White, Ursula A.; Stewart, William C.; Mynatt, Randall L.; Stephens, Jacqueline M.

    2008-01-01

    Recent findings have implicated gp130 receptor ligands, particularly ciliary neurotrophic factor (CNTF), as potential anti-obesity therapeutics. Neuropoietin (NP) is a recently discovered cytokine in the gp130 family that shares functional and structural features with CNTF and signals via the CNTF receptor tripartite complex comprised of CNTFRα, LIF receptor, and gp130. NP plays a role in the development of the nervous system, but the effects of NP on adipocytes have not been previously examined. Because CNTF exerts anti-obesogenic effects in adipocytes and NP shares the same receptor complex, we investigated the effects of NP on adipocyte development and insulin action. Using cultured 3T3-L1 adipocytes, we observed that NP has the ability to block adipogenesis in a dose- and time-dependent manner. We also observed that cultured adipocytes, as well as murine adipose tissue, are highly responsive to acute NP treatment. Rodents injected with NP had a substantial increase in STAT3 tyrosine phosphorylation and ERK 1 and 2 activation. We also observed the induction of SOCS-3 mRNA in 3T3-L1 adipocytes following NP treatment. Unlike CNTF, our studies have revealed that NP also substantially attenuates insulin-stimulated glucose uptake in 3T3-L1 adipocytes. In addition, NP blocks insulin action in adipose tissue in vivo. These observations are supported by data demonstrating that NP impairs insulin signaling via decreased activation of both IRS-1 and Akt. In summary, we have observed that both adipocytes in vitro and in vivo are highly responsive to NP, and this cytokine has the ability to affect insulin signaling in fat cells. These novel observations suggest that NP, unlike CNTF, may not be a viable obesity therapeutic. PMID:18562323

  14. Adipocyte SIRT1 controls systemic insulin sensitivity by modulating macrophages in adipose tissue.

    PubMed

    Hui, Xiaoyan; Zhang, Mingliang; Gu, Ping; Li, Kuai; Gao, Yuan; Wu, Donghai; Wang, Yu; Xu, Aimin

    2017-04-01

    Adipose tissue inflammation, characterized by augmented infiltration and altered polarization of macrophages, contributes to insulin resistance and its associated metabolic diseases. The NAD(+)-dependent deacetylase SIRT1 serves as a guardian against metabolic disorders in multiple tissues. To dissect the roles of SIRT1 in adipose tissues, metabolic phenotypes of mice with selective ablation of SIRT1 in adipocytes and myeloid cells were monitored. Compared to myeloid-specific SIRT1 depletion, mice with adipocyte-selective deletion of SIRT1 are more susceptible to diet-induced insulin resistance. The phenotypic changes in adipocyte-selective SIRT1 knockout mice are associated with an increased number of adipose-resident macrophages and their polarization toward the pro-inflammatory M1 subtype. Mechanistically, SIRT1 in adipocytes modulates expression and secretion of several adipokines, including adiponectin, MCP-1, and interleukin 4, which in turn alters recruitment and polarization of the macrophages in adipose tissues. In adipocytes, SIRT1 deacetylates the transcription factor NFATc1 and thereby enhances the binding of NFATc1 to the Il4 gene promoter. These findings suggest that adipocyte SIRT1 controls systemic glucose homeostasis and insulin sensitivity via the cross talk with adipose-resident macrophages. © 2017 The Authors.

  15. Insulin-mimetic effects of vanadate in isolated rat adipocytes

    SciTech Connect

    Dubyak, G.R.; Kleinzeller, A.

    1980-06-10

    The effects of vanadate on hexose transport and (Na/sup +/-K/sup +/)ATPase function in isolated rat adipocytes were characterized. Incubation of these cells with vanadate elicited an insulin-like stimulation of the rate of glucose oxidation and 2-deoxyglucose transport, the magnitude of which was dependent on both the extracellular vanadate concentration and the duration of the incubation. The maximal 6- to 12-fold stimulation of transport observed in vanadate-treated adipocytes was equivalent to that produced by a maximally activating concentration of insulin. Vanadate produced no additional activation of sugar transport in adipocytes pretreated with a maximally activating concentration of insulin. Incubation of adipocytes with concentrations of vanadate which significantly stimulated sugar transport produced no inhibition of (Na/sup +/-K/sup +/)ATPase function measured as the rate of /sup 86/Rb/sup +/ uptake. The uptake of (/sup 48/V)-vanadate by adipocytes was linear for at least 3 h and exceeded the calculated equilibrium space. Progressive stimulation of the 2-deoxyglucose transport rate was correlated with the apparent vanadate content of the cells during prolonged incubation with (/sup 48/V) vanadate. The effects of vanadate on sugar transport were reversed by washing the cells in vanadate-free medium; the degree of reversibility was dependent on the duration of the cells' exposure to vanadate. These findings suggest that adipocytes convert accumulated vanadate to a form (perhaps vanadyl) incapable of inhibiting the (Na/sup +/-K/sup +/)ATPase; in the course of this intracellular conversion, however, the insulin-sensitive hexose transport system is activated.

  16. The CB1 endocannabinoid system modulates adipocyte insulin sensitivity.

    PubMed

    Motaghedi, Roja; McGraw, Timothy E

    2008-08-01

    Mounting evidence suggests that the endocannabinoid system regulates energy metabolism through direct effects on peripheral tissues as well as central effects that regulate appetite. Here we examined the effect of cannabinoid receptor 1 (CB1) signaling on insulin action in fat cells. We examined effects of the natural CB1 agonist, 2-Arachidonoylglycerol (2-AG), and the synthetic CB1 antagonist, SR141716, on insulin action in cultured adipocytes. We used translocation of glucose transporter GLUT4 to plasma membrane (PM) as a measure of insulin action. 2-AG activation of the CB1 receptor promoted insulin sensitivity whereas antagonism by SR141716 reduced insulin sensitivity. Neither drug affected GLUT4 translocation in the absence of insulin or with high doses of insulin. Consistent with these results we found that insulin-stimulated phosphorylation of the protein kinase Akt was increased by 2-AG, attenuated by SR141716, and unaffected in the absence of insulin or by addition of high-dose insulin. These data provide a functional and molecular link between the CB1 receptor and insulin sensitivity, because insulin-stimulated phosphorylation of Akt is required for GLUT4 translocation to the PM. The sensitizing effects of 2-AG were abrogated by SR141716 and Pertussis toxin, indicating that the effects are mediated by CB1 receptor. Importantly, neither 2-AG nor SR141716 alone or in combination with maximal dose of insulin had effects on GLUT4 translocation and Akt phosphorylation. These data are consistent with a model in which the endocannabinoid system sets the sensitivity of the insulin response in adipocytes rather than directly regulating the redistribution of GLUT4 or Akt phosphorylation.

  17. Oestrogen alters adipocyte biology and protects female mice from adipocyte inflammation and insulin resistance.

    PubMed

    Stubbins, R E; Najjar, K; Holcomb, V B; Hong, J; Núñez, N P

    2012-01-01

    Obesity is associated with insulin resistance, liver steatosis and low-grade inflammation. The role of oestrogen in sex differences in the above co-morbidities is not fully understood. Our aim was to assess the role oestrogen has in modulating adipocyte size, adipose tissue oxidative stress, inflammation, insulin resistance and liver steatosis. To determine the role oestrogen has in the above co-morbidities related to obesity, we randomized C57BL/6J mice into four groups (15 mice per group): (i) male, (ii) non-ovariectomized female (novx), (iii) ovariectomized female (ovx) and (iv) ovariectomized female mice supplemented with 17β estradiol (ovx-E). Mice received either a low-fat (LF) or a high-fat (HF) diet for 10 weeks. Outcomes measured were bodyweight, body fat, adipocyte diameter, adipose tissue lipolysis markers, adipose tissue oxidative stress, inflammation, insulin resistance and liver steatosis. Male and ovx-female mice consuming the HF diet had a higher propensity of gaining weight, specifically in the form of body fat. Oestrogen protected female mice from adipocyte hypertrophy and from developing adipose tissue oxidative stress and inflammation. Moreover, novx-female and ovx-female+E mice had higher phosphorylated levels of protein kinase A and hormone sensitive lipase, markers associated with lipolysis. Additionally, male and ovx female mice had a higher propensity of developing liver steatosis and insulin resistance. In contrast, oestrogen protected female mice from developing liver steatosis and from becoming insulin resistant. We show that oestrogen protects female mice from adipocyte hypertrophy and adipose tissue oxidative stress and inflammation. Furthermore, oestrogen prevented female mice from developing liver steatosis and from becoming insulin resistant. © 2011 Blackwell Publishing Ltd.

  18. Insulin binding and glucose uptake of adipocytes in rats adapted to hypergravitational force

    NASA Technical Reports Server (NTRS)

    Kobayashi, M.; Mondon, C. E.; Oyama, J.

    1980-01-01

    Rats were exposed to 4.15 g for 1 yr and weight and age matched, and lean noncentrifuged rats were used as control groups. Rats exposed to chronic hypergravity (hypergravic rats) were found to show lower ambient insulin levels, greater food intake with smaller body weight gain, and decreased size of isolated adipocytes. The ability of adipocytes from the hypergravic rats to bind insulin was increased. With Scatchard analysis, both number and affinity of receptors were increased. In contrast to the increased binding, glucose transport was found to be decreased in adipocytes from these animals. However, when the data were expressed as a percentage of maximal effect, the half maximal insulin effect for both the hypergravic and lean control groups was produced at an insulin concentration of 0.23 + or - 0.02 ng/ml, which was lower than the insulin concentration of 0.31 + or - 0.02 ng/ml for the weight-matched control group (P less than 0.05). This increased insulin sensitivity in the hypergravic group was accounted for by an increased number of receptors.

  19. Insulin binding and glucose uptake of adipocytes in rats adapted to hypergravitational force

    NASA Technical Reports Server (NTRS)

    Kobayashi, M.; Mondon, C. E.; Oyama, J.

    1980-01-01

    Rats were exposed to 4.15 g for 1 yr and weight and age matched, and lean noncentrifuged rats were used as control groups. Rats exposed to chronic hypergravity (hypergravic rats) were found to show lower ambient insulin levels, greater food intake with smaller body weight gain, and decreased size of isolated adipocytes. The ability of adipocytes from the hypergravic rats to bind insulin was increased. With Scatchard analysis, both number and affinity of receptors were increased. In contrast to the increased binding, glucose transport was found to be decreased in adipocytes from these animals. However, when the data were expressed as a percentage of maximal effect, the half maximal insulin effect for both the hypergravic and lean control groups was produced at an insulin concentration of 0.23 + or - 0.02 ng/ml, which was lower than the insulin concentration of 0.31 + or - 0.02 ng/ml for the weight-matched control group (P less than 0.05). This increased insulin sensitivity in the hypergravic group was accounted for by an increased number of receptors.

  20. Body fat mass and the proportion of very large adipocytes in pregnant women are associated with gestational insulin resistance

    PubMed Central

    Svensson, H; Wetterling, L; Bosaeus, M; Odén, B; Odén, A; Jennische, E; Edén, S; Holmäng, A; Lönn, M

    2016-01-01

    Background/Objectives: Pregnancy is accompanied by fat gain and insulin resistance. Changes in adipose tissue morphology and function during pregnancy and factors contributing to gestational insulin resistance are incompletely known. We sought to characterize adipose tissue in trimesters 1 and 3 (T1/T3) in normal weight (NW) and obese pregnant women, and identify adipose tissue-related factors associated with gestational insulin resistance. Subjects/Methods: Twenty-two NW and 11 obese women were recruited early in pregnancy for the Pregnancy Obesity Nutrition and Child Health study. Examinations and sampling of blood and abdominal adipose tissue were performed longitudinally in T1/T3 to determine fat mass (air-displacement plethysmography); insulin resistance (homeostasis model assessment of insulin resistance, HOMA-IR); size, number and lipolytic activity of adipocytes; and adipokine release and density of immune cells and blood vessels in adipose tissue. Results: Fat mass and HOMA-IR increased similarly between T1 and T3 in the groups; all remained normoglycemic. Adipocyte size increased in NW women. Adipocyte number was not influenced, but proportions of small and large adipocytes changed oppositely in the groups. Lipolytic activity and circulating adipocyte fatty acid-binding protein increased in both groups. Adiponectin release was reduced in NW women. Fat mass and the proportion of very large adipocytes were most strongly associated with T3 HOMA-IR by multivariable linear regression (R2=0.751, P<0.001). Conclusions: During pregnancy, adipose tissue morphology and function change comprehensively. NW women accumulated fat in existing adipocytes, accompanied by reduced adiponectin release. In comparison with the NW group, obese women had signs of adipocyte recruitment and maintained adiponectin levels. Body fat and large adipocytes may contribute significantly to gestational insulin resistance. PMID:26563815

  1. Body fat mass and the proportion of very large adipocytes in pregnant women are associated with gestational insulin resistance.

    PubMed

    Svensson, H; Wetterling, L; Bosaeus, M; Odén, B; Odén, A; Jennische, E; Edén, S; Holmäng, A; Lönn, M

    2016-04-01

    Pregnancy is accompanied by fat gain and insulin resistance. Changes in adipose tissue morphology and function during pregnancy and factors contributing to gestational insulin resistance are incompletely known. We sought to characterize adipose tissue in trimesters 1 and 3 (T1/T3) in normal weight (NW) and obese pregnant women, and identify adipose tissue-related factors associated with gestational insulin resistance. Twenty-two NW and 11 obese women were recruited early in pregnancy for the Pregnancy Obesity Nutrition and Child Health study. Examinations and sampling of blood and abdominal adipose tissue were performed longitudinally in T1/T3 to determine fat mass (air-displacement plethysmography); insulin resistance (homeostasis model assessment of insulin resistance, HOMA-IR); size, number and lipolytic activity of adipocytes; and adipokine release and density of immune cells and blood vessels in adipose tissue. Fat mass and HOMA-IR increased similarly between T1 and T3 in the groups; all remained normoglycemic. Adipocyte size increased in NW women. Adipocyte number was not influenced, but proportions of small and large adipocytes changed oppositely in the groups. Lipolytic activity and circulating adipocyte fatty acid-binding protein increased in both groups. Adiponectin release was reduced in NW women. Fat mass and the proportion of very large adipocytes were most strongly associated with T3 HOMA-IR by multivariable linear regression (R(2)=0.751, P<0.001). During pregnancy, adipose tissue morphology and function change comprehensively. NW women accumulated fat in existing adipocytes, accompanied by reduced adiponectin release. In comparison with the NW group, obese women had signs of adipocyte recruitment and maintained adiponectin levels. Body fat and large adipocytes may contribute significantly to gestational insulin resistance.

  2. Adipocyte insulin receptor activity maintains adipose tissue mass and lifespan.

    PubMed

    Friesen, Max; Hudak, Carolyn S; Warren, Curtis R; Xia, Fang; Cowan, Chad A

    2016-08-05

    Type 2 diabetes follows a well-defined progressive pathogenesis, beginning with insulin resistance in metabolic tissues such as the adipose. Intracellular signaling downstream of insulin receptor activation regulates critical metabolic functions of adipose tissue, including glucose uptake, lipogenesis, lipolysis and adipokine secretion. Previous studies have used the aP2 promoter to drive Cre recombinase expression in adipose tissue. Insulin receptor (IR) knockout mice created using this aP2-Cre strategy (FIRKO mice) were protected from obesity and glucose intolerance. Later studies demonstrated the promiscuity of the aP2 promoter, casting doubts upon the tissue specificity of aP2-Cre models. It is our goal to use the increased precision of the Adipoq promoter to investigate adipocyte-specific IR function. Towards this end we generated an adipocyte-specific IR knockout (AIRKO) mouse using an Adipoq-driven Cre recombinase. Here we report AIRKO mice are less insulin sensitive throughout life, and less glucose tolerant than wild-type (WT) littermates at the age of 16 weeks. In contrast to WT littermates, the insulin sensitivity of AIRKO mice is unaffected by age or dietary regimen. At any age, AIRKO mice are comparably insulin resistant to old or obese WT mice and have a significantly reduced lifespan. Similar results were obtained when these phenotypes were re-examined in FIRKO mice. We also found that the AIRKO mouse is protected from high-fat diet-induced weight gain, corresponding with a 90% reduction in tissue weight of major adipose depots compared to WT littermates. Adipose tissue mass reduction is accompanied by hepatomegaly and increased hepatic steatosis. These data indicate that adipocyte IR function is crucial to systemic energy metabolism and has profound effects on adiposity, hepatic homeostasis and lifespan. Copyright © 2016. Published by Elsevier Inc.

  3. Insulin-dependent cytoplasmic distribution of Rab4a in mouse adipocytes is inhibited by interleukin-6, -8, and -15.

    PubMed

    Błaszczyk, Maciej; Gajewska, Małgorzata; Milewska, Marta; Grzelkowska-Kowalczyk, Katarzyna

    2017-04-01

    The purpose of the study was to examine the effect of interleukins, IL-6, IL-8, and IL-15, on insulin-mediated redistribution of Rab4a, an early endosome marker, in mouse 3T3-L1 adipocytes. The interleukins did not affect cell viability; however, cell number was slightly but significantly higher in cultures exposed to IL-8 and IL-15. IL-8 and IL-15 decreased lipid storage in adipocytes, whereas IL-6 had no effect. Rab4A showed cytoplasmic localization, and in control unstimulated adipocytes it was found primarily nearby nucleus, that was supported by cellular fluorescence distribution profile, and by calculated indices, that is, high percentage of near-nuclear area fluorescence and a low mean peripheral cytoplasmic fluorescence/mean near-nuclear fluorescence ratio. Insulin stimulation (100 nmol/l, 30 min) altered the cytoplasmic localization of Rab4a in control adipocytes, which was manifested by its redistribution towards plasma membrane. This effect of insulin was prevented in adipocytes exposed to IL-6, IL-8, or IL-15. We concluded that insulin-dependent Rab4a redistribution, probably reflecting stimulation of vesicle-mediated transport, is inhibited in adipocytes subjected to differentiation in the presence of IL-6, IL-8, or IL-15. Such alterations may be involved in the mechanisms contributing to development of insulin resistance associated with inflammation; however, further studies in this field are required. © 2017 International Federation for Cell Biology.

  4. CDK4 is an essential insulin effector in adipocytes.

    PubMed

    Lagarrigue, Sylviane; Lopez-Mejia, Isabel C; Denechaud, Pierre-Damien; Escoté, Xavier; Castillo-Armengol, Judit; Jimenez, Veronica; Chavey, Carine; Giralt, Albert; Lai, Qiuwen; Zhang, Lianjun; Martinez-Carreres, Laia; Delacuisine, Brigitte; Annicotte, Jean-Sébastien; Blanchet, Emilie; Huré, Sébastien; Abella, Anna; Tinahones, Francisco J; Vendrell, Joan; Dubus, Pierre; Bosch, Fatima; Kahn, C Ronald; Fajas, Lluis

    2016-01-01

    Insulin resistance is a fundamental pathogenic factor that characterizes various metabolic disorders, including obesity and type 2 diabetes. Adipose tissue contributes to the development of obesity-related insulin resistance through increased release of fatty acids, altered adipokine secretion, and/or macrophage infiltration and cytokine release. Here, we aimed to analyze the participation of the cyclin-dependent kinase 4 (CDK4) in adipose tissue biology. We determined that white adipose tissue (WAT) from CDK4-deficient mice exhibits impaired lipogenesis and increased lipolysis. Conversely, lipolysis was decreased and lipogenesis was increased in mice expressing a mutant hyperactive form of CDK4 (CDK4(R24C)). A global kinome analysis of CDK4-deficient mice following insulin stimulation revealed that insulin signaling is impaired in these animals. We determined that insulin activates the CCND3-CDK4 complex, which in turn phosphorylates insulin receptor substrate 2 (IRS2) at serine 388, thereby creating a positive feedback loop that maintains adipocyte insulin signaling. Furthermore, we found that CCND3 expression and IRS2 serine 388 phosphorylation are increased in human obese subjects. Together, our results demonstrate that CDK4 is a major regulator of insulin signaling in WAT.

  5. CDK4 is an essential insulin effector in adipocytes

    PubMed Central

    Lagarrigue, Sylviane; Lopez-Mejia, Isabel C.; Denechaud, Pierre-Damien; Escoté, Xavier; Castillo-Armengol, Judit; Jimenez, Veronica; Chavey, Carine; Giralt, Albert; Lai, Qiuwen; Zhang, Lianjun; Martinez-Carreres, Laia; Delacuisine, Brigitte; Annicotte, Jean-Sébastien; Blanchet, Emilie; Huré, Sébastien; Abella, Anna; Tinahones, Francisco J.; Vendrell, Joan; Dubus, Pierre; Bosch, Fatima; Kahn, C. Ronald; Fajas, Lluis

    2015-01-01

    Insulin resistance is a fundamental pathogenic factor that characterizes various metabolic disorders, including obesity and type 2 diabetes. Adipose tissue contributes to the development of obesity-related insulin resistance through increased release of fatty acids, altered adipokine secretion, and/or macrophage infiltration and cytokine release. Here, we aimed to analyze the participation of the cyclin-dependent kinase 4 (CDK4) in adipose tissue biology. We determined that white adipose tissue (WAT) from CDK4-deficient mice exhibits impaired lipogenesis and increased lipolysis. Conversely, lipolysis was decreased and lipogenesis was increased in mice expressing a mutant hyperactive form of CDK4 (CDK4R24C). A global kinome analysis of CDK4-deficient mice following insulin stimulation revealed that insulin signaling is impaired in these animals. We determined that insulin activates the CCND3-CDK4 complex, which in turn phosphorylates insulin receptor substrate 2 (IRS2) at serine 388, thereby creating a positive feedback loop that maintains adipocyte insulin signaling. Furthermore, we found that CCND3 expression and IRS2 serine 388 phosphorylation are increased in human obese subjects. Together, our results demonstrate that CDK4 is a major regulator of insulin signaling in WAT. PMID:26657864

  6. Effect of a high glucose diet on insulin binding and insulin action in rat adipocytes. A longitudinal study.

    PubMed

    Oka, Y; Akanuma, Y; Kasuga, M; Kosaka, K

    1980-11-01

    To elucidate the mechanisms whereby changes in dietary composition affect the action of insulin on glucose metabolism, insulin binding and glucose uptake and oxidation have been studied in epididymal fat pad adipocytes from rats fed high glucose diets for 5 and 10 days. After 5 days, insulin binding was increased, the mainly to an increased number of receptors (3.4 X 10(5) vs. 2.4 X 10(5) sites per cell) in spite of increased plasma insulin levels (3.0 +/- 0.2 vs. 2.1 +/- 0.1 microgram/l; P < 0.05). The maximal response of glucose oxidation to insulin was increased (925 +/- 55 vs. 510 +/- 58 n moles/2 X 10(5) cells/2h; P < 0.01) and the dose-response curve of glucose uptake was shifted to the left. After 10 days, receptor number decreased to the control level and the effect of insulin on glucose uptake and oxidation (% basal) were similar to controls. Thus, in the early stage of high glucose feeding, insulin receptor number, and insulin sensitivity of glucose uptake, and insulin responsiveness of glucose oxidation were increased.

  7. SORLA facilitates insulin receptor signaling in adipocytes and exacerbates obesity

    PubMed Central

    Schmidt, Vanessa; Schulz, Nadja; Yan, Xin; Schürmann, Annette; Kempa, Stefan; Kern, Matthias; Blüher, Matthias; Poy, Matthew N.

    2016-01-01

    In humans, genetic variation of sortilin-related receptor, L(DLR class) A repeats containing (SORL1), which encodes the intracellular sorting receptor SORLA, is a major genetic risk factor for familial and sporadic forms of Alzheimer’s disease. Recent GWAS analysis has also associated SORL1 with obesity in humans and in mouse models, suggesting that this receptor may play a role in regulating metabolism. Here, using mouse models with genetic loss or tissue-specific overexpression of SORLA as well as data from obese human subjects, we observed a gene-dosage effect that links SORLA expression to obesity and glucose tolerance. Overexpression of human SORLA in murine adipose tissue blocked hydrolysis of triacylglycerides and caused excessive adiposity. In contrast, Sorl1 gene inactivation in mice accelerated breakdown of triacylglycerides in adipocytes and protected animals from diet-induced obesity. We then identified the underlying molecular mechanism whereby SORLA promotes insulin-induced suppression of lipolysis in adipocytes. Specifically, we determined that SORLA acts as a sorting factor for the insulin receptor (IR) that redirects internalized receptor molecules from endosomes to the plasma membrane, thereby enhancing IR surface expression and strengthening insulin signal reception in target cells. Our findings provide a molecular mechanism for the association of SORL1 with human obesity and confirm a genetic link between neurodegeneration and metabolism that converges on the receptor SORLA. PMID:27322061

  8. SORLA facilitates insulin receptor signaling in adipocytes and exacerbates obesity.

    PubMed

    Schmidt, Vanessa; Schulz, Nadja; Yan, Xin; Schürmann, Annette; Kempa, Stefan; Kern, Matthias; Blüher, Matthias; Poy, Matthew N; Olivecrona, Gunilla; Willnow, Thomas E

    2016-07-01

    In humans, genetic variation of sortilin-related receptor, L(DLR class) A repeats containing (SORL1), which encodes the intracellular sorting receptor SORLA, is a major genetic risk factor for familial and sporadic forms of Alzheimer's disease. Recent GWAS analysis has also associated SORL1 with obesity in humans and in mouse models, suggesting that this receptor may play a role in regulating metabolism. Here, using mouse models with genetic loss or tissue-specific overexpression of SORLA as well as data from obese human subjects, we observed a gene-dosage effect that links SORLA expression to obesity and glucose tolerance. Overexpression of human SORLA in murine adipose tissue blocked hydrolysis of triacylglycerides and caused excessive adiposity. In contrast, Sorl1 gene inactivation in mice accelerated breakdown of triacylglycerides in adipocytes and protected animals from diet-induced obesity. We then identified the underlying molecular mechanism whereby SORLA promotes insulin-induced suppression of lipolysis in adipocytes. Specifically, we determined that SORLA acts as a sorting factor for the insulin receptor (IR) that redirects internalized receptor molecules from endosomes to the plasma membrane, thereby enhancing IR surface expression and strengthening insulin signal reception in target cells. Our findings provide a molecular mechanism for the association of SORL1 with human obesity and confirm a genetic link between neurodegeneration and metabolism that converges on the receptor SORLA.

  9. Transmembrane tumor necrosis factor-alpha sensitizes adipocytes to insulin.

    PubMed

    Zhou, Wenjing; Yang, Peng; Liu, Li; Zheng, Shan; Zeng, Qingling; Liang, Huifang; Zhu, Yazhen; Zhang, Zunyue; Wang, Jing; Yin, Bingjiao; Gong, Feili; Wu, Yiping; Li, Zhuoya

    2015-05-05

    Transmembrane TNF-α (tmTNF-α) acts both as a ligand, delivering 'forward signaling' via TNFR, and as a receptor, transducing 'reverse signaling'. The contradiction of available data regarding the effect of tmTNF-α on insulin resistance may be due to imbalance in both signals. Here, we demonstrated that high glucose-induced impairment of insulin-stimulated glucose uptake by 3T3-L1 adipocytes was concomitant with decreased tmTNF-α expression and increased soluble TNF-α (sTNF-α) secretion. However, when TACE was inhibited, preventing the conversion of tmTNF-α to sTNF-α, this insulin resistance was partially reversed, indicating a salutary role of tmTNF-α. Treatment of 3T3-L1 adipocytes with exogenous tmTNF-α promoted insulin-induced phosphorylation of IRS-1 and Akt, facilitated GLUT4 expression and membrane translocation, and increased glucose uptake while addition of sTNF-α resulted in the opposite effect. Furthermore, tmTNF-α downregulated the production of IL-6 and MCP-1 via NF-κB inactivation, as silencing of A20, an inhibitor for NF-κB, by siRNA, abolished this effect of tmTNF-α. However, tmTNF-α upregulated adiponectin expression through the PPAR-γ pathway, as inhibition of PPAR-γ by GW9662 abrogated both tmTNF-α-induced adiponectin transcription and glucose uptake. Our data suggest that tmTNF-α functions as an insulin sensitizer via forward signaling. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Effect of TNF-Alpha on Caveolin-1 Expression and Insulin Signaling During Adipocyte Differentiation and in Mature Adipocytes.

    PubMed

    Palacios-Ortega, Sara; Varela-Guruceaga, Maider; Algarabel, Miriam; Ignacio Milagro, Fermín; Alfredo Martínez, J; de Miguel, Carlos

    2015-01-01

    Tumor necrosis factor-α (TNF-α)-mediated chronic low-grade inflammation of adipose tissue is associated with obesity and insulin resistance. Caveolin-1 (Cav-1) is the central component of adipocyte caveolae and has an essential role in the regulation of insulin signaling. The effects of TNF-α on Cav-1 expression and insulin signaling during adipocyte differentiation and in mature adipocytes were studied. 3T3-L1 cells were differentiated (21 days) in the presence TNF-α (10 ng/mL) and mature adipocytes were also treated with TNF-α for 48 hours. Cav-1 and insulin receptor (IR) gene methylation were determined as well as Cav-1, IR, PKB/AKT-2 and Glut-4 expression and activation by real time RT-PCR and western blot. Baseline and insulin-induced glucose uptake was measured by the 2-[C14]-deoxyglucose uptake assay. TNF-α slowed down the differentiation program, hindering the expression of some insulin signaling intermediates without fully eliminating insulin-mediated glucose uptake. In mature adipocytes, TNF-α did not compromise lipid-storage capacity, but downregulated the expression of the insulin signaling intermediates, totally blocking insulin-mediated glucose uptake. Insulin sensitivity correlated with the level of activated phospho-Cav-1 in both situations, strongly suggesting the direct contribution of Cav-1 to the maintenance of this physiological response. Cav-1 activation by phosphorylation seems to be essential for the maintenance of an active and insulin-sensitive glucose uptake. © 2015 S. Karger AG, Basel.

  11. Lipid-Overloaded Enlarged Adipocytes Provoke Insulin Resistance Independent of Inflammation

    PubMed Central

    Kim, Jong In; Huh, Jin Young; Sohn, Jee Hyung; Choe, Sung Sik; Lee, Yun Sok; Lim, Chun Yan; Jo, Ala; Park, Seung Bum; Han, Weiping

    2015-01-01

    In obesity, adipocyte hypertrophy and proinflammatory responses are closely associated with the development of insulin resistance in adipose tissue. However, it is largely unknown whether adipocyte hypertrophy per se might be sufficient to provoke insulin resistance in obese adipose tissue. Here, we demonstrate that lipid-overloaded hypertrophic adipocytes are insulin resistant independent of adipocyte inflammation. Treatment with saturated or monounsaturated fatty acids resulted in adipocyte hypertrophy, but proinflammatory responses were observed only in adipocytes treated with saturated fatty acids. Regardless of adipocyte inflammation, hypertrophic adipocytes with large and unilocular lipid droplets exhibited impaired insulin-dependent glucose uptake, associated with defects in GLUT4 trafficking to the plasma membrane. Moreover, Toll-like receptor 4 mutant mice (C3H/HeJ) with high-fat-diet-induced obesity were not protected against insulin resistance, although they were resistant to adipose tissue inflammation. Together, our in vitro and in vivo data suggest that adipocyte hypertrophy alone may be crucial in causing insulin resistance in obesity. PMID:25733684

  12. Fat intake leads to differential response of rat adipocytes to glucose, insulin and ascorbic acid.

    PubMed

    Garcia-Diaz, Diego F; Campion, Javier; Arellano, Arianna V; Milagro, Fermin I; Moreno-Aliaga, Maria J; Martinez, J Alfredo

    2012-04-01

    Antioxidant-based treatments have emerged as novel and interesting approaches to counteract fat accumulation in obesity and associated metabolic disturbances. Adipocytes from rats that were fed on chow or high-fat diet (HFD) for 50 d were isolated (primary adipocytes) and incubated (72 h) on low (LG; 5.6 mmol/L) or high (HG; 25 mmol/L) glucose levels, in the presence or absence of 1.6 nmol/L insulin and 200 μmol/L vitamin C (VC). Adipocytes from HFD-fed animals presented lower insulin-induced glucose uptake, lower lactate and glycerol release, and lower insulin-induced secretion of some adipokines as compared with controls. HG treatment restored the blunted response to insulin regarding apelin secretion in adipocytes from HFD-fed rats. VC treatment inhibited the levels of nearly all variables, irrespective of the adipocytes' dietary origin. The HG treatment reduced adipocyte viability, and VC protected from this toxic effect, although more drastically in control adipocytes. Summing up, in vivo chow or HFD intake determines a differential response to insulin and glucose treatments that appears to be dependent on the insulin-resistance status of the adipocytes, while VC modifies some responses from adipocytes independently of the previous dietary intake of the animals.

  13. Up-regulation of the complement system in subcutaneous adipocytes from nonobese, hypertriglyceridemic subjects is associated with adipocyte insulin resistance.

    PubMed

    van Greevenbroek, M M J; Ghosh, S; van der Kallen, C J H; Brouwers, M C G J; Schalkwijk, C G; Stehouwer, C D A

    2012-12-01

    Dysfunctional adipose tissue plays an important role in the etiology of the metabolic syndrome, type 2 diabetes, and dyslipidemia. However, the molecular mechanisms underlying adipocyte dysfunction are incompletely understood. The aim of the study was to identify differentially regulated pathways in sc adipocytes of dyslipidemic subjects. Whole-genome expression profiling was conducted on sc adipocytes from a discovery group of nine marginally overweight subjects with familial combined hyperlipidemia (FCHL) and nine controls of comparable body sizes as well as two independent confirmation groups. In this study, FCHL served as a model of familial insulin resistance and dyslipidemia, in the absence of frank obesity. Functional analyses and gene set enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes or a custom pathway database identified the complement system and complement regulators as one of the top up-regulated pathways in FCHL [false discovery rate (FDR) < 1E-30]. Higher adipocyte complement expression in FCHL was confirmed in the appropriate confirmation group. Higher complement gene expression was associated with lower adipocyte insulin receptor substrate-1 expression as marker of adipocyte insulin resistance, independent of age, sex, or disease status, and this association was corroborated in the two confirmation groups. Additionally, complement gene expression was associated with triglycerides in the discovery set and with triglycerides and/or waist circumference in the confirmation groups. Complement pathway up-regulation did not appear to be driven by hypertriglyceridemia because a 40% pharmacological reduction in triglycerides did not affect complement expression. These findings point to an up-regulation of a complement-related transcriptome in sc adipocytes under metabolically stressed conditions, even in the absence of overt obesity. Such up-regulation may subsequently influence downstream processes, including macrophage infiltration

  14. Effect of a β-Hydroxyphosphonate Analogue of ʟ-Carnitine on Insulin-Sensitive and Insulin-Resistant 3T3-L1 Adipocytes.

    PubMed

    Avalos-Soriano, Anaguiven; De la Cruz-Cordero, Ricardo; López-Martínez, Francisco Josue; Rosado, Jorge L; Duarte-Vázquez, Miguel Ángel; Garcia-Gasca, Teresa

    2015-01-01

    This study investigated the effect of a β-x200B;hydroxyphosphonate analog of ʟ-carnitine (L-CA) (CAS number: 1220955-x200B;20-3, Component: 1221068-91-2, C12H29NO4PI), (3-Hexanaminium, 1-(dimethoxyphosphinyl)-2-hydroxy-N,N,N,5-x200B;tetramethy-iodide (1:1), (2R, 3S)) on parameters related with type-2 diabetes in an in vitro model. Nontoxic concentrations of L-CA were assayed and compared to commercial ʟ-carnitine effects. L-CA did not affect adipogenesis in normal cells, but an increment of TG accumulation was observed on insulin-resistant adipocytes (80%) when compared with resistant control. L-CA also stimulated glucose analog 2-NBDG uptakes on insulin-resistant adipocytes in a similar way as insulin when compared to insulin-resistant cells. Our results show that the L-CA promoted insulin-like responses on insulin-resistant adipocytes without appreciable pro-adipogenic effect in sensitive adipocytes. © 2015 S. Karger AG, Basel.

  15. Potential involvement of adipocyte insulin resistance in obesity-associated up-regulation of adipocyte lysophospholipase D/autotaxin expression

    PubMed Central

    Boucher, Jérémie; Quilliot, Didier; Pradère, Jean-Philippe; Simon, Marie-Françoise; Grès, Sandra; Guigné, Charlotte; Prévot, Danielle; Ferry, Gilles; Boutin, Jean A.; Carpéné, Christian; Valet, Philippe; Saulnier-Blache, Jean Sébastien

    2005-01-01

    Aims/hypothesis Autotaxin (ATX) is an adipocyte-secreted lysophospholipase D which expression is substantially up-regulated in obese-diabetic db/db-mice. The aim of the present study was to depict the physiopathological and cellular mechanisms involved in regulation of adipocyte-ATX expression. Methods ATX mRNAs were quantified in adipose tissue from db/db mice (obese and highly diabetic Type 2), gold-thioglucose-treated (GTG) mice (highly obese and moderately diabetic Type 2), high fat diet-fed (HFD) mice (obese and moderately diabetic Type 2), streptozotocin-treated (STREPTO) mice (thin and diabetic Type 1), and massively obese humans exhibiting glucose intolerance. Results When compared to non-obese controls, ATX expression was significantly increased in db/db mice, but not in GTG-, HFD-, or STREPTO-mice. During db/db-mice development, up-regulation of ATX occurred only 3 weeks after emergence of hyper-insulinemia, and was concomitant to emergence of hyperglycaemia. Adipocytes from db/db-mice exhibited strong impairment in insulin-stimulated glucose uptake when compared with non-obese and HFD-induced obese mice. ATX expression was up-regulated by treatment with TNFα (insulin resistance-promoting cytokine), and down-regulated by rosiglitazone treatment (insulin-sensitizing compound) in 3T3F442A adipocytes. Finally, adipose tissue-ATX expression was significantly up-regulated in patients exhibiting both insulin-resistance and impaired glucose tolerance. Conclusions/interpretation The present work demonstrates the existence of a db/db-specific up-regulation of adipocyte-ATX expression which could be related to severe Type 2 diabetes phenotype and adipocyte insulin-resistance, rather than excess adiposity per se. The present work also revealed that Type 2 diabetes in human is also associated with up-regulation of adipocyte-ATX expression. PMID:15700135

  16. Antagonistic effects of a covalently dimerized insulin derivative on insulin receptors in 3T3-L1 adipocytes

    SciTech Connect

    Weiland, M.; Joost, H.G. ); Brandenburg, C.; Brandenburg, D. )

    1990-02-01

    In the present study the authors describe the antagonistic effects of the covalently dimerized insulin derivative B29,B29{prime}-suberoyl-insulin on insulin receptors in 3T3-L1 mouse cells. In differentiated 3T3-L1 adipocytes, the derivative fully inhibits binding of {sup 125}I-labeled insulin to its receptor with about the same affinity as unlabeled insulin. In contrast, the dimerized derivative only partially (approximately 20%) mimics insulin's effects on glucose transport and DNA synthesis in the absence of insulin. In the presence of insulin, the agent competitively inhibits insulin-stimulated DNA synthesis (({sup 3}H)thymidine incorporation into total DNA), glucose transport activity (2-deoxyglucose uptake rate), and insulin receptor tyrosine kinase activity. In rat adipocytes, in contrast, the dimerized derivative stimulates glucose transport (initial 3-O-methylglucose as well as 2-deoxyglucose uptake rates) to the same extent as insulin does, and it fails to inhibit the effect of insulin. The data indicate that the dimerized insulin derivative B29,B29{prime}-suberoyl-insulin is an insulin receptor antagonist (partial agonist) which retains a moderate intrinsic activity. The effects of this agent reveal a striking difference in insulin receptor-mediated stimulation of glucose transport between 3T3-L1 fatty fibroblasts and the mature rat adipocyte.

  17. Differences in Organizational Structure of Insulin Receptor on Rat Adipocyte and Liver Plasma Membranes: Role of Disulfide Bonds

    NASA Astrophysics Data System (ADS)

    Schweitzer, John B.; Smith, Robert M.; Jarett, Leonard

    1980-08-01

    Binding of 125I-labeled insulin to rat liver and adipocyte plasma membranes has been investigated after treatment of the membranes with agents that modify disulfide bonds or sulfhydryl groups. Dithiothreitol, a disulfide-reducing agent, produced a bimodal response in adipocyte plasma membranes with dose-dependent increases in binding occurring over the range of 0-1 mM dithiothreitol; 5 mM dithiothreitol produced decreased binding. Insulin binding reached its maximal increase at 1 mM and was 3 times control values. Scatchard analysis of the 1 mM dithiothreitol effect revealed a straight line plot indicative of one class of sites with a Ka of 1.0× 108 M-1 which is intermediate between the two Kas obtained from the curvilinear Scatchard plot of control membranes. There was a 20-fold increase in the number of intermediate-affinity receptors compared to high-affinity receptors. The increased 125I-labeled insulin binding after dithiothreitol treatment was reversed by oxidized glutathione in a dose-dependent manner. Interposition of treatment with N-ethylmaleimide, an alkylating agent, prevented oxidized glutathione from reversing the dithiothreitol effect. Reduced glutathione produced the same effect as dithiothreitol. Liver plasma membranes treated with up to 1 mM dithiothreitol exhibited a maximum increase in insulin binding of 20% compared to control. Dithiothreitol at 5 mM decreased insulin binding below that of control membranes. The results indicate that the dithiothreitol effect on insulin binding to adipocyte plasma membranes is due to disruption of disulfide bonds, and that the structural organization of the insulin receptor on the plasma membranes is different for liver and for adipose tissue. The data imply that the insulin receptors on the plasma membrane of adipocytes possess at least two functionally distinct subclasses of disulfide bond but liver insulin receptors do not.

  18. Adipocyte Dynamics and Reversible Metabolic Syndrome in Mice with an Inducible Adipocyte-Specific Deletion of the Insulin Receptor.

    PubMed

    Sakaguchi, Masaji; Fujisaka, Shiho; Cai, Weikang; Winnay, Jonathon N; Konishi, Masahiro; O'Neill, Brian T; Li, Mengyao; García-Martín, Rubén; Takahashi, Hirokazu; Hu, Jiang; Kulkarni, Rohit N; Kahn, C Ronald

    2017-02-07

    Insulin and IGF1 signaling are important for adipose tissue development and function; however, their role in mature adipocytes is unclear. Mice with a tamoxifen-inducible knockout of insulin and/or IGF1 receptors (IR/IGF1R) demonstrate a rapid loss of white and brown fat due to increased lipolysis and adipocyte apoptosis. This results in insulin resistance, glucose intolerance, hepatosteatosis, islet hyperplasia with hyperinsulinemia, and cold intolerance. This phenotype, however, resolves over 10-30 days due to a proliferation of preadipocytes and rapid regeneration of both brown and white adipocytes as identified by mTmG lineage tracing. This cycle can be repeated with a second round of receptor inactivation. Leptin administration prior to tamoxifen treatment blocks development of the metabolic syndrome without affecting adipocyte loss or regeneration. Thus, IR is critical in adipocyte maintenance, and this loss of adipose tissue stimulates regeneration of brown/white fat and reversal of metabolic syndrome associated with fat loss. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. FFA-induced adipocyte inflammation and insulin resistance: involvement of ER stress and IKKβ pathways.

    PubMed

    Jiao, Ping; Ma, Jie; Feng, Bin; Zhang, Hao; Diehl, J Alan; Chin, Y Eugene; Yan, Weiqun; Xu, Haiyan

    2011-03-01

    Free-fatty acids (FFAs) are well-characterized factor for causing production of inflammatory factors and insulin resistance in adipocytes. Using cultured adipocytes, we demonstrate that FFAs can activate endoplasmic reticulum (ER) stress pathway by examination of ER stress sensor activation and marker gene expression. Chemical chaperone tauroursodeoxycholic acid (TUDCA) can reduce FFA-induced adipocyte inflammation and improve insulin signaling whereas overexpression of spliced X-box protein 1 (XBP-1s) only attenuates FFA-induced inflammation. PKR-like eukaryotic initiation factor 2α kinase (PERK) is one of the three major ER stress sensor proteins and deficiency of PERK alleviates FFA-induced inflammation and insulin resistance. The key downstream target of FFA-induced ER stress is IκB kinase β (IKKβ), a master kinase for regulating expression of inflammatory genes. Deficiency of PERK attenuates FFA-induced activation of IKKβ and deficiency of IKKβ alleviates FFA-induced inflammation and insulin resistance. Consistently, overexpression of IKKβ in 3T3-L1 CAR adipocytes causes inflammation and insulin resistance. In addition, IKKβ overexpression has profound effect on adipocyte lipid metabolism, including inhibition of lipogenesis and promotion of lipolysis. Furthermore, increased endogenous IKKβ expression and activation is also observed in isolated primary adipocytes from mice injected with lipids or fed on high-fat diet (HFD) acutely. These results indicate that ER stress pathway is a key mediator for FFA-induced inflammation and insulin resistance in adipocytes with PERK and IKKβ as the critical signaling components.

  20. Ultrastructural evidence for the accumulation of insulin in nuclei of intact 3T3-L1 adipocytes by an insulin-receptor mediated process

    SciTech Connect

    Smith, R.M.; Jarett, L.

    1987-01-01

    Monomeric ferritin-labeled insulin (F/sub m/-Ins), a biologically active, electron-dense marker of occupied insulin receptors, was used to characterize the internalization of insulin in 3T3-L1 adipocytes. F/sub m/-Ins bound specifically to insulin receptors and was internalized in a time- and temperature-dependent manner. In the nucleus, several F/sub m/-Ins particles usually were found in the same general location-near nuclear pores, associated with the periphery of the condensed chromatin. Addition of a 250-fold excess of unlabeled insulin or incubation at 15/sup 0/C reduced the number of F/sub m/-Ins particles found in nuclei after 90 min by 99% or 92%, respectively. Nuclear accumulation of unlabeled ferritin was only 2% of that found with F/sub m/-Ins after 90 min at 37/sup 0/C. Biochemical experiments utilizing /sup 125/I-labeled insulin and subcellular fractionation indicated that intact 3T3-L1 adipocytes internalized insulin rapidly and that approx. = 3% of the internalized ligand accumulated in nuclei after 1 hr. These data provide biochemical and high-resolution ultrastructural evidence that 3T3-L1 adipocytes accumulate potentially significant amounts of insulin in nuclei by an insulin receptor-mediated process. The transport of insulin or the insulin-receptor complex to nuclei in this cell or in others may be directly involved in the long-term biological effects of insulin - in particular, in the control of DNA and RNA synthesis.

  1. Chronic hyperinsulinemia reduces insulin sensitivity and metabolic functions of brown adipocyte.

    PubMed

    Rajan, Sujith; Shankar, Kripa; Beg, Muheeb; Varshney, Salil; Gupta, Abhishek; Srivastava, Ankita; Kumar, Durgesh; Mishra, Raj K; Hussain, Zakir; Gayen, Jiaur R; Gaikwad, Anil N

    2016-09-01

    The growing pandemics of diabetes have become a real threat to world economy. Hyperinsulinemia and insulin resistance are closely associated with the pathophysiology of type 2 diabetes. In pretext of brown adipocytes being considered as the therapeutic strategy for the treatment of obesity and insulin resistance, we have tried to understand the effect of hyperinsulinemia on brown adipocyte function. We here with for the first time report that hyperinsulinemia-induced insulin resistance in brown adipocyte is also accompanied with reduced insulin sensitivity and brown adipocyte characteristics. CI treatment decreased expression of brown adipocyte-specific markers (such as PRDM16, PGC1α, and UCP1) and mitochondrial content as well as activity. CI-treated brown adipocytes showed drastic decrease in oxygen consumption rate (OCR) and spare respiratory capacity. Morphological study indicates increased accumulation of lipid droplets in CI-treated brown adipocytes. We have further validated these findings in vivo in C57BL/6 mice implanted with mini-osmotic insulin pump for 8weeks. CI treatment in mice leads to increased body weight gain, fat mass and impaired glucose intolerance with reduced energy expenditure and insulin sensitivity. CI-treated mice showed decreased BAT characteristics and function. We also observed increased inflammation and ER stress markers in BAT of CI-treated animals. The above results conclude that hyperinsulinemia has deleterious effect on brown adipocyte function, making it susceptible to insulin resistance. Thus, the above findings have greater implication in designing approaches for the treatment of insulin resistance and diabetes via recruitment of brown adipocytes.

  2. Interleukin-1β mediates macrophage-induced impairment of insulin signaling in human primary adipocytes.

    PubMed

    Gao, Dan; Madi, Mohamed; Ding, Cherlyn; Fok, Matthew; Steele, Thomas; Ford, Christopher; Hunter, Leif; Bing, Chen

    2014-08-01

    Adipose tissue expansion during obesity is associated with increased macrophage infiltration. Macrophage-derived factors significantly alter adipocyte function, inducing inflammatory responses and decreasing insulin sensitivity. Identification of the major factors that mediate detrimental effects of macrophages on adipocytes may offer potential therapeutic targets. IL-1β, a proinflammatory cytokine, is suggested to be involved in the development of insulin resistance. This study investigated the role of IL-1β in macrophage-adipocyte cross-talk, which affects insulin signaling in human adipocytes. Using macrophage-conditioned (MC) medium and human primary adipocytes, we examined the effect of IL-1β antagonism on the insulin signaling pathway. Gene expression profile and protein abundance of insulin signaling molecules were determined, as was the production of proinflammatory cytokine/chemokines. We also examined whether IL-1β mediates MC medium-induced alteration in adipocyte lipid storage. MC medium and IL-1β significantly reduced gene expression and protein abundance of insulin signaling molecules, including insulin receptor substrate-1, phosphoinositide 3-kinase p85α, and glucose transporter 4 and phosphorylation of Akt. In contrast, the expression and release of the proinflammatory markers, including IL-6, IL-8, monocyte chemotactic protein-1, and chemokine (C-C motif) ligand 5 by adipocytes were markedly increased. These changes were significantly reduced by blocking IL-1β activity, its receptor binding, or its production by macrophages. MC medium-inhibited expression of the adipogenic factors and -stimulated lipolysis was also blunted with IL-1β neutralization. We conclude that IL-1β mediates, at least in part, the effect of macrophages on insulin signaling and proinflammatory response in human adipocytes. Blocking IL-1β could be beneficial for preventing obesity-associated insulin resistance and inflammation in human adipose tissue. Copyright

  3. Interleukin-1β mediates macrophage-induced impairment of insulin signaling in human primary adipocytes

    PubMed Central

    Gao, Dan; Madi, Mohamed; Ding, Cherlyn; Fok, Matthew; Steele, Thomas; Ford, Christopher; Hunter, Leif

    2014-01-01

    Adipose tissue expansion during obesity is associated with increased macrophage infiltration. Macrophage-derived factors significantly alter adipocyte function, inducing inflammatory responses and decreasing insulin sensitivity. Identification of the major factors that mediate detrimental effects of macrophages on adipocytes may offer potential therapeutic targets. IL-1β, a proinflammatory cytokine, is suggested to be involved in the development of insulin resistance. This study investigated the role of IL-1β in macrophage-adipocyte cross-talk, which affects insulin signaling in human adipocytes. Using macrophage-conditioned (MC) medium and human primary adipocytes, we examined the effect of IL-1β antagonism on the insulin signaling pathway. Gene expression profile and protein abundance of insulin signaling molecules were determined, as was the production of proinflammatory cytokine/chemokines. We also examined whether IL-1β mediates MC medium-induced alteration in adipocyte lipid storage. MC medium and IL-1β significantly reduced gene expression and protein abundance of insulin signaling molecules, including insulin receptor substrate-1, phosphoinositide 3-kinase p85α, and glucose transporter 4 and phosphorylation of Akt. In contrast, the expression and release of the proinflammatory markers, including IL-6, IL-8, monocyte chemotactic protein-1, and chemokine (C-C motif) ligand 5 by adipocytes were markedly increased. These changes were significantly reduced by blocking IL-1β activity, its receptor binding, or its production by macrophages. MC medium-inhibited expression of the adipogenic factors and -stimulated lipolysis was also blunted with IL-1β neutralization. We conclude that IL-1β mediates, at least in part, the effect of macrophages on insulin signaling and proinflammatory response in human adipocytes. Blocking IL-1β could be beneficial for preventing obesity-associated insulin resistance and inflammation in human adipose tissue. PMID:24918199

  4. Endurance exercise training increases insulin responsiveness in isolated adipocytes through IRS/PI3-kinase/Akt pathway.

    PubMed

    Peres, Sidney B; de Moraes, Solange M Franzói; Costa, Cecilia E M; Brito, Luciana C; Takada, Julie; Andreotti, Sandra; Machado, Magaly A; Alonso-Vale, Maria Isabel C; Borges-Silva, Cristina N; Lima, Fabio B

    2005-03-01

    Endurance exercise training promotes important metabolic adaptations, and the adipose tissue is particularly affected. The aim of this study was to investigate how endurance exercise training modulates some aspects of insulin action in isolated adipocytes and in intact adipose tissue. Male Wistar rats were submitted to daily treadmill running (1 h/day) for 7 wk. Sedentary age-matched rats were used as controls. Final body weight, body weight gain, and epididymal fat pad weight did not show any statistical differences between groups. Adipocytes from trained rats were smaller than those from sedentary rats (205 +/- 16.8 vs. 286 +/- 26.4 pl; P < 0.05). Trained rats showed decreased plasma glucose (4.9 +/- 0.13 vs. 5.3 +/- 0.07 mM; P < 0.05) and insulin levels (0.24 +/- 0.012 vs. 0.41 +/- 0.049 mM; P < 0.05) and increased insulin-stimulated glucose uptake (23.1 +/- 3.1 vs. 12.1 +/- 2.9 pmol/cm(2); P < 0.05) compared with sedentary rats. The number of insulin receptors and the insulin-induced tyrosine phosphorylation of insulin receptor-beta subunit did not change between groups. Insulin-induced tyrosine phosphorylation insulin receptor substrates (IRS)-1 and -2 increased significantly (1.57- and 2.38-fold, respectively) in trained rats. Insulin-induced IRS-1/phosphatidylinositol 3 (PI3)-kinase (but not IRS-2/PI3-kinase) association and serine Akt phosphorylation also increased (2.06- and 3.15-fold, respectively) after training. The protein content of insulin receptor-beta subunit, IRS-1 and -2, did not differ between groups. Taken together, these data support the hypothesis that the increased adipocyte responsiveness to insulin observed after endurance exercise training is modulated by IRS/PI3-kinase/Akt pathway.

  5. Differences in insulin action as a function of original anatomical site of newly differentiated adipocytes obtained in primary culture.

    PubMed Central

    Sztalryd, C; Azhar, S; Reaven, G M

    1991-01-01

    Stromal vascular cells were isolated from adipose tissue obtained from three different anatomical locations: epididymal (EPI), retroperitoneal (RP), and dorsal subcutaneous (SC), and allowed to differentiate in primary tissue culture. Cell number, protein concentration, glycerophosphate dehydrogenase, and lipoprotein lipase activity were similar in cells obtained from the EPI, RP, and SC regions, as were total insulin binding and the affinity of insulin for its receptor. However, both maximal insulin receptor tyrosine kinase activity and insulin-stimulated phosphorylation of the insulin receptor were significantly lower (P less than 0.05) in cells cultured from the SC region. In addition, newly differentiated adipocytes from the SC region were less sensitive to the ability of insulin to stimulate glucose uptake, and maximal insulin-stimulated glucose uptake by these cells was also significantly lower (P less than 0.05) when compared to cells obtained from the two other regions. Since these studies were performed on adipocyte precursor cells, allowed to differentiate to a similar degree in primary culture, the observed differences in insulin receptor phosphorylating activity, as well as the ability of insulin to stimulate glucose uptake appear to be intrinsic to adipose tissue from the three sites. Images PMID:1658046

  6. Atypical antipsychotic drugs directly impair insulin action in adipocytes: effects on glucose transport, lipogenesis, and antilipolysis.

    PubMed

    Vestri, Helliner S; Maianu, Lidia; Moellering, Douglas R; Garvey, W Timothy

    2007-04-01

    Treatment with second-generation antipsychotics (SGAs) has been associated with weight gain and the development of diabetes mellitus, although the mechanisms are unknown. We tested the hypothesis that SGAs exert direct cellular effects on insulin action and substrate metabolism in adipocytes. We utilized two cultured cell models including 3T3-L1 adipocytes and primary cultured rat adipocytes, and tested for effects of SGAs risperidone (RISP), clozapine (CLZ), olanzapine (OLZ), and quetiapine (QUE), together with conventional antipsychotic drugs butyrophenone (BUTY), and trifluoperazine (TFP), over a wide concentration range from 1 to 500 microM. The effects of antipsychotic drugs on basal and insulin-stimulated rates of glucose transport were studied at 3 h, 15 h, and 3 days. Both CLZ and OLZ (but not RISP) at doses as low as 5 microM were able to significantly decrease the maximal insulin-stimulated glucose transport rate by approximately 40% in 3T3-L1 cells, whereas CLZ and RISP reduced insulin-stimulated glucose transport rates in primary cultured rat adipocytes by approximately 50-70%. Conventional drugs (BUTY and TFP) did not affect glucose transport rates. Regarding intracellular glucose metabolism, both SGAs (OLZ, QUE, RISP) and conventional drugs (BUTY and TFP) increased basal and/or insulin-stimulated glucose oxidation rates, whereas rates of lipogenesis were increased by CLZ, OLZ, QUE, and BUTY. Finally, rates of lipolysis in response to isoproterenol were reduced by the SGAs (CLZ, OLZ, QUE, RISP), but not by BUTY or TFP. These experiments demonstrate that antipsychotic drugs can differentially affect insulin action and metabolism through direct cellular effects in adipocytes. However, only SGAs were able to impair the insulin-responsive glucose transport system and to impair lipolysis in adipocytes. Thus, SGAs directly induce insulin resistance and alter lipogenesis and lipolysis in favor of progressive lipid accumulation and adipocyte enlargement. These

  7. Overexpression of TFAM protects 3T3-L1 adipocytes from NYGGF4 (PID1) overexpression-induced insulin resistance and mitochondrial dysfunction.

    PubMed

    Shi, Chun-Mei; Xu, Guang-Feng; Yang, Lei; Fu, Zi-Yi; Chen, Ling; Fu, Hai-Long; Shen, Ya-Hui; Zhu, Lu; Ji, Chen-Bo; Guo, Xi-Rong

    2013-07-01

    NYGGF4, also known as phosphotyrosine interaction domain containing 1(PID1), is a recently discovered gene which is involved in obesity-related insulin resistance (IR) and mitochondrial dysfunction. We aimed to further elucidate the effects and mechanisms underlying NYGGF4-induced IR by investigating the effect of overexpressing mitochondrial transcription factor A (TFAM), which is essential for mitochondrial DNA transcription and replication, on NYGGF4-induced IR and mitochondrial abnormalities in 3T3-L1 adipocytes. Overexpression of TFAM increased the mitochondrial copy number and ATP content in both control 3T3-L1 adipocytes and NYGGF4-overexpressing adipocytes. Reactive oxygen species (ROS) production was enhanced in NYGGF4-overexpressing adipocytes and reduced in TFAM-overexpressing adipocytes; co-overexpression of TFAM significantly attenuated ROS production in NYGGF4-overexpressing adipocytes. However, overexpression of TFAM did not affect the mitochondrial transmembrane potential (ΔΨm) in control 3T3-L1 adipocytes or NYGGF4-overexpressing adipocytes. In addition, co-overexpression of TFAM-enhanced insulin-stimulated glucose uptake by increasing Glucose transporter type 4 (GLUT4) translocation to the PM in NYGGF4-overexpressing adipocytes. Overexpression of NYGGF4 significantly inhibited tyrosine phosphorylation of Insulin receptor substrate 1 (IRS-1) and serine phosphorylation of Akt, whereas overexpression of TFAM strongly induced phosphorylation of IRS-1 and Akt in NYGGF4-overexpressing adipocytes. This study demonstrates that NYGGF4 plays a role in IR by impairing mitochondrial function, and that overexpression of TFAM can restore mitochondrial function to normal levels in NYGGF4-overexpressing adipocytes via activation of the IRS-1/PI3K/Akt signaling pathway.

  8. Proteasome Dysfunction Associated to Oxidative Stress and Proteotoxicity in Adipocytes Compromises Insulin Sensitivity in Human Obesity

    PubMed Central

    Díaz-Ruiz, Alberto; Guzmán-Ruiz, Rocío; Moreno, Natalia R.; García-Rios, Antonio; Delgado-Casado, Nieves; Membrives, Antonio; Túnez, Isaac; El Bekay, Rajaa; Fernández-Real, José M.; Tovar, Sulay; Diéguez, Carlos; Tinahones, Francisco J.; Vázquez-Martínez, Rafael; López-Miranda, José

    2015-01-01

    Abstract Aims: Obesity is characterized by a low-grade systemic inflammatory state and adipose tissue (AT) dysfunction, which predispose individuals to the development of insulin resistance (IR) and metabolic disease. However, a subset of obese individuals, referred to as metabolically healthy obese (MHO) individuals, are protected from obesity-associated metabolic abnormalities. Here, we aim at identifying molecular factors and pathways in adipocytes that are responsible for the progression from the insulin-sensitive to the insulin-resistant, metabolically unhealthy obese (MUHO) phenotype. Results: Proteomic analysis of paired samples of adipocytes from subcutaneous (SC) and omental (OM) human AT revealed that both types of cells are altered in the MUHO state. Specifically, the glutathione redox cycle and other antioxidant defense systems as well as the protein-folding machinery were dysregulated and endoplasmic reticulum stress was increased in adipocytes from IR subjects. Moreover, proteasome activity was also compromised in adipocytes of MUHO individuals, which was associated with enhanced accumulation of oxidized and ubiquitinated proteins in these cells. Proteasome activity was also impaired in adipocytes of diet-induced obese mice and in 3T3-L1 adipocytes exposed to palmitate. In line with these data, proteasome inhibition significantly impaired insulin signaling in 3T3-L1 adipocytes. Innovation: This study provides the first evidence of the occurrence of protein homeostasis deregulation in adipocytes in human obesity, which, together with oxidative damage, interferes with insulin signaling in these cells. Conclusion: Our results suggest that proteasomal dysfunction and impaired proteostasis in adipocytes, resulting from protein oxidation and/or misfolding, constitute major pathogenic mechanisms in the development of IR in obesity. Antioxid. Redox Signal. 23, 597–612. PMID:25714483

  9. Proteasome Dysfunction Associated to Oxidative Stress and Proteotoxicity in Adipocytes Compromises Insulin Sensitivity in Human Obesity.

    PubMed

    Díaz-Ruiz, Alberto; Guzmán-Ruiz, Rocío; Moreno, Natalia R; García-Rios, Antonio; Delgado-Casado, Nieves; Membrives, Antonio; Túnez, Isaac; El Bekay, Rajaa; Fernández-Real, José M; Tovar, Sulay; Diéguez, Carlos; Tinahones, Francisco J; Vázquez-Martínez, Rafael; López-Miranda, José; Malagón, María M

    2015-09-01

    Obesity is characterized by a low-grade systemic inflammatory state and adipose tissue (AT) dysfunction, which predispose individuals to the development of insulin resistance (IR) and metabolic disease. However, a subset of obese individuals, referred to as metabolically healthy obese (MHO) individuals, are protected from obesity-associated metabolic abnormalities. Here, we aim at identifying molecular factors and pathways in adipocytes that are responsible for the progression from the insulin-sensitive to the insulin-resistant, metabolically unhealthy obese (MUHO) phenotype. Proteomic analysis of paired samples of adipocytes from subcutaneous (SC) and omental (OM) human AT revealed that both types of cells are altered in the MUHO state. Specifically, the glutathione redox cycle and other antioxidant defense systems as well as the protein-folding machinery were dysregulated and endoplasmic reticulum stress was increased in adipocytes from IR subjects. Moreover, proteasome activity was also compromised in adipocytes of MUHO individuals, which was associated with enhanced accumulation of oxidized and ubiquitinated proteins in these cells. Proteasome activity was also impaired in adipocytes of diet-induced obese mice and in 3T3-L1 adipocytes exposed to palmitate. In line with these data, proteasome inhibition significantly impaired insulin signaling in 3T3-L1 adipocytes. This study provides the first evidence of the occurrence of protein homeostasis deregulation in adipocytes in human obesity, which, together with oxidative damage, interferes with insulin signaling in these cells. Our results suggest that proteasomal dysfunction and impaired proteostasis in adipocytes, resulting from protein oxidation and/or misfolding, constitute major pathogenic mechanisms in the development of IR in obesity.

  10. PPAR gamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance.

    PubMed

    Kubota, N; Terauchi, Y; Miki, H; Tamemoto, H; Yamauchi, T; Komeda, K; Satoh, S; Nakano, R; Ishii, C; Sugiyama, T; Eto, K; Tsubamoto, Y; Okuno, A; Murakami, K; Sekihara, H; Hasegawa, G; Naito, M; Toyoshima, Y; Tanaka, S; Shiota, K; Kitamura, T; Fujita, T; Ezaki, O; Aizawa, S; Kadowaki, T

    1999-10-01

    Agonist-induced activation of peroxisome proliferator-activated receptor gamma (PPAR gamma) is known to cause adipocyte differentiation and insulin sensitivity. The biological role of PPAR gamma was investigated by gene targeting. Homozygous PPAR gamma-deficient embryos died at 10.5-11.5 dpc due to placental dysfunction. Quite unexpectedly, heterozygous PPAR gamma-deficient mice were protected from the development of insulin resistance due to adipocyte hypertrophy under a high-fat diet. These phenotypes were abrogated by PPAR gamma agonist treatment. Heterozygous PPAR gamma-deficient mice showed overexpression and hypersecretion of leptin despite the smaller size of adipocytes and decreased fat mass, which may explain these phenotypes at least in part. This study reveals a hitherto unpredicted role for PPAR gamma in high-fat diet-induced obesity due to adipocyte hypertrophy and insulin resistance, which requires both alleles of PPAR gamma.

  11. Expression of a mutant IRS inhibits metabolic and mitogenic signalling of insulin in human adipocytes.

    PubMed

    Stenkula, Karin G; Said, Lilian; Karlsson, Margareta; Thorn, Hans; Kjølhede, Preben; Gustavsson, Johanna; Söderström, Mats; Strålfors, Peter; Nystrom, Fredrik H

    2004-06-30

    Adipose tissue is a primary target of insulin, but knowledge about insulin signalling in human adipocytes is limited. We developed an electroporation technique for transfection of primary human adipocytes with a transfection efficiency of 15% +/- 5 (mean +/- S.D.). Human adipocytes were co-transfected with a mutant of IRS-3 (all four potential PI3-kinase binding motifs mutated: IRS-3F4) and HA-tagged protein kinase B (HA-PKB/Akt). HA-PKB/Akt was immunoprecipitated from cell lysates with anti-HA antibodies, resolved with SDS-PAGE, and immunoblotted with phospho-specific antibodies. We found that IRS-3F4 blocked insulin stimulation of HA-PKB/Akt phosphorylation and in further analyses also translocation of recombinant HA-tagged glucose transporter to the plasma membrane. IRS-3F4 also blocked insulin-induced activation of the transcription factor Elk-1. Our results demonstrate the critical importance of IRS for metabolic as well as mitogenic signalling by insulin. This method for transfection of primary human adipocytes will be useful for studying insulin signalling in human adipocytes with molecular biological techniques.

  12. Expression of Caveolin 1 is enhanced by DNA demethylation during adipocyte differentiation. status of insulin signaling.

    PubMed

    Palacios-Ortega, Sara; Varela-Guruceaga, Maider; Milagro, Fermín Ignacio; Martínez, José Alfredo; de Miguel, Carlos

    2014-01-01

    Caveolin 1 (Cav-1) is an essential constituent of adipocyte caveolae which binds the beta subunit of the insulin receptor (IR) and is implicated in the regulation of insulin signaling. We have found that, during adipocyte differentiation of 3T3-L1 cells the promoter, exon 1 and first intron of the Cav-1 gene undergo a demethylation process that is accompanied by a strong induction of Cav-1 expression, indicating that epigenetic mechanisms must have a pivotal role in this differentiation process. Furthermore, IR, PKB-Akt and Glut-4 expression are also increased during the differentiation process suggesting a coordinated regulation with Cav-1. Activation of Cav-1 protein by phosphorylation arises during the differentiation process, yet in fully mature adipocytes insulin is no longer able to significantly increase Cav-1 phosphorylation. However, these long-term differentiated cells are still able to respond adequately to insulin, increasing IR and PKB-Akt phosphorylation and glucose uptake. The activation of Cav-1 during the adipocyte differentiation process could facilitate the maintenance of insulin sensitivity by these fully mature adipocytes isolated from additional external stimuli. However, under the influence of physiological conditions associated to obesity, such as chronic inflammation and hypoxia, insulin sensitivity would finally be compromised.

  13. Expression of Caveolin 1 Is Enhanced by DNA Demethylation during Adipocyte Differentiation. Status of Insulin Signaling

    PubMed Central

    Palacios-Ortega, Sara; Varela-Guruceaga, Maider; Milagro, Fermín Ignacio; Martínez, José Alfredo; de Miguel, Carlos

    2014-01-01

    Caveolin 1 (Cav-1) is an essential constituent of adipocyte caveolae which binds the beta subunit of the insulin receptor (IR) and is implicated in the regulation of insulin signaling. We have found that, during adipocyte differentiation of 3T3-L1 cells the promoter, exon 1 and first intron of the Cav-1 gene undergo a demethylation process that is accompanied by a strong induction of Cav-1 expression, indicating that epigenetic mechanisms must have a pivotal role in this differentiation process. Furthermore, IR, PKB-Akt and Glut-4 expression are also increased during the differentiation process suggesting a coordinated regulation with Cav-1. Activation of Cav-1 protein by phosphorylation arises during the differentiation process, yet in fully mature adipocytes insulin is no longer able to significantly increase Cav-1 phosphorylation. However, these long-term differentiated cells are still able to respond adequately to insulin, increasing IR and PKB-Akt phosphorylation and glucose uptake. The activation of Cav-1 during the adipocyte differentiation process could facilitate the maintenance of insulin sensitivity by these fully mature adipocytes isolated from additional external stimuli. However, under the influence of physiological conditions associated to obesity, such as chronic inflammation and hypoxia, insulin sensitivity would finally be compromised. PMID:24751908

  14. Lipid droplets hypertrophy: a crucial determining factor in insulin regulation by adipocytes

    PubMed Central

    Sanjabi, Bahram; Dashty, Monireh; Özcan, Behiye; Akbarkhanzadeh, Vishtaseb; Rahimi, Mehran; Vinciguerra, Manlio; van Rooij, Felix; Al-Lahham, Saad; Sheedfar, Fareeba; van Kooten, Theo G.; Spek, C. Arnold; Rowshani, Ajda T.; van der Want, Johannes; Klaassen, Rene; Sijbrands, Eric; Peppelenbosch, Maikel P.; Rezaee, Farhad

    2015-01-01

    Lipid droplets (LDs) hypertrophy in adipocytes is the main cause of energy metabolic system dysfunction, obesity and its afflictions such as T2D. However, the role of adipocytes in linking energy metabolic disorders with insulin regulation is unknown in humans. Human adipocytes constitutively synthesize and secrete insulin, which is biologically functional. Insulin concentrations and release are fat mass- and LDs-dependent respectively. Fat reduction mediated by bariatric surgery repairs obesity-associated T2D. The expression of genes, like PCSK1 (proinsulin conversion enzyme), GCG (Glucagon), GPLD1, CD38 and NNAT, involved in insulin regulation/release were differentially expressed in pancreas and adipose tissue (AT). INS (insulin) and GCG expression reduced in human AT-T2D as compared to AT-control, but remained unchanged in pancreas in either state. Insulin levels (mRNA/protein) were higher in AT derived from prediabetes BB rats with destructed pancreatic β-cells and controls than pancreas derived from the same rats respectively. Insulin expression in 10 human primary cell types including adipocytes and macrophages is an evidence for extrapancreatic insulin-producing cells. The data suggest a crosstalk between AT and pancreas to fine-tune energy metabolic system or may minimize the metabolic damage during diabetes. This study opens new avenues towards T2D therapy with a great impact on public health. PMID:25743104

  15. Lipid droplets hypertrophy: a crucial determining factor in insulin regulation by adipocytes

    NASA Astrophysics Data System (ADS)

    Sanjabi, Bahram; Dashty, Monireh; Özcan, Behiye; Akbarkhanzadeh, Vishtaseb; Rahimi, Mehran; Vinciguerra, Manlio; van Rooij, Felix; Al-Lahham, Saad; Sheedfar, Fareeba; van Kooten, Theo G.; Spek, C. Arnold; Rowshani, Ajda T.; van der Want, Johannes; Klaassen, Rene; Sijbrands, Eric; Peppelenbosch, Maikel P.; Rezaee, Farhad

    2015-03-01

    Lipid droplets (LDs) hypertrophy in adipocytes is the main cause of energy metabolic system dysfunction, obesity and its afflictions such as T2D. However, the role of adipocytes in linking energy metabolic disorders with insulin regulation is unknown in humans. Human adipocytes constitutively synthesize and secrete insulin, which is biologically functional. Insulin concentrations and release are fat mass- and LDs-dependent respectively. Fat reduction mediated by bariatric surgery repairs obesity-associated T2D. The expression of genes, like PCSK1 (proinsulin conversion enzyme), GCG (Glucagon), GPLD1, CD38 and NNAT, involved in insulin regulation/release were differentially expressed in pancreas and adipose tissue (AT). INS (insulin) and GCG expression reduced in human AT-T2D as compared to AT-control, but remained unchanged in pancreas in either state. Insulin levels (mRNA/protein) were higher in AT derived from prediabetes BB rats with destructed pancreatic β-cells and controls than pancreas derived from the same rats respectively. Insulin expression in 10 human primary cell types including adipocytes and macrophages is an evidence for extrapancreatic insulin-producing cells. The data suggest a crosstalk between AT and pancreas to fine-tune energy metabolic system or may minimize the metabolic damage during diabetes. This study opens new avenues towards T2D therapy with a great impact on public health.

  16. Lipid droplets hypertrophy: a crucial determining factor in insulin regulation by adipocytes.

    PubMed

    Sanjabi, Bahram; Dashty, Monireh; Özcan, Behiye; Akbarkhanzadeh, Vishtaseb; Rahimi, Mehran; Vinciguerra, Manlio; van Rooij, Felix; Al-Lahham, Saad; Sheedfar, Fareeba; van Kooten, Theo G; Spek, C Arnold; Rowshani, Ajda T; van der Want, Johannes; Klaassen, Rene; Sijbrands, Eric; Peppelenbosch, Maikel P; Rezaee, Farhad

    2015-03-06

    Lipid droplets (LDs) hypertrophy in adipocytes is the main cause of energy metabolic system dysfunction, obesity and its afflictions such as T2D. However, the role of adipocytes in linking energy metabolic disorders with insulin regulation is unknown in humans. Human adipocytes constitutively synthesize and secrete insulin, which is biologically functional. Insulin concentrations and release are fat mass- and LDs-dependent respectively. Fat reduction mediated by bariatric surgery repairs obesity-associated T2D. The expression of genes, like PCSK1 (proinsulin conversion enzyme), GCG (Glucagon), GPLD1, CD38 and NNAT, involved in insulin regulation/release were differentially expressed in pancreas and adipose tissue (AT). INS (insulin) and GCG expression reduced in human AT-T2D as compared to AT-control, but remained unchanged in pancreas in either state. Insulin levels (mRNA/protein) were higher in AT derived from prediabetes BB rats with destructed pancreatic β-cells and controls than pancreas derived from the same rats respectively. Insulin expression in 10 human primary cell types including adipocytes and macrophages is an evidence for extrapancreatic insulin-producing cells. The data suggest a crosstalk between AT and pancreas to fine-tune energy metabolic system or may minimize the metabolic damage during diabetes. This study opens new avenues towards T2D therapy with a great impact on public health.

  17. The effect of prolactin and relaxin on insulin binding by adipocytes from pregnant women.

    PubMed

    Jarrett JC2nd; Ballejo, G; Saleem, T H; Tsibris, J C; Spellacy, W N

    1984-06-01

    The effects of prolactin and relaxin on insulin binding by isolated human adipocytes from women at term gestation were studied in vitro. It was found that prolactin decreases, and relaxin increases, insulin binding to the adipocytes. Both changes appear to be due to alterations in the affinity of the insulin receptors. These effects seem to be mediated through specific prolactin and relaxin receptors of the adipocyte and require the presence of an intact cellular cytoskeleton. This suggests that one hormone, for example, prolactin, can interact with its own specific receptor and thereby after the affinity of a heterologous receptor for its hormone (insulin). Heterologous hormone-receptor complex interactions ("cross-talk") may be widespread and could represent a fundamental mechanism in the functioning of the endocrine system.

  18. Honokiol enhances adipocyte differentiation by potentiating insulin signaling in 3T3-L1 preadipocytes.

    PubMed

    Choi, Sun-Sil; Cha, Byung-Yoon; Iida, Kagami; Sato, Masako; Lee, Young-Sil; Teruya, Toshiaki; Yonezawa, Takayuki; Nagai, Kazuo; Woo, Je-Tae

    2011-07-01

    Adipose tissue plays an essential role in energy homeostasis as a metabolic and endocrine organ. Accordingly, adipocytes are emerging as a major drug target for obesity and obesity-mediated metabolic syndrome. Dysfunction of enlarged adipocytes in obesity is involved in obesity-mediated metabolic syndrome. Adipocytokines, such as adiponectin released from small adipocytes, are able to prevent these disorders. In this study, we found that honokiol, an ingredient of Magnolia officinalis used in traditional Chinese and Japanese medicines, enhanced adipocyte differentiation in 3T3-L1 preadipocytes. Oil Red O staining showed that treatment with honokiol in the presence of insulin dose-dependently increased lipid accumulation in 3T3-L1 preadipoyctes although its activity was weak compared with rosiglitazone. During adipocyte differentiation, the expression of peroxisome proliferator-activated receptor γ2 (PPARγ2) mRNA and PPARγ target genes such as adipocyte protein 2 (aP2), adiponectin, and GLUT4 was induced by treatment with 10 μM honokiol. However, honokiol failed to show direct binding to the PPARγ ligand-binding domain in vitro. In preadipocytes, treatment with honokiol in the presence of insulin increased the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 protein and Akt protein, early insulin signaling pathways related to adipocyte differentiation, compared with insulin-only treatment. Taken together, our results suggest that honokiol promotes adipocyte differentiation through increased expression of PPARγ2 mRNA and potentiation of insulin signaling pathways such as the Ras/ERK1/2 and phosphoinositide-3-kinase (PI3K)/Akt signaling pathways.

  19. Insulin stimulates the tyrosine phosphorylation of a Mr = 160,000 glycoprotein in adipocyte plasma membranes

    SciTech Connect

    Yu, K.T.; Khalaf, N.; Czech, M.P.

    1986-05-01

    In an attempt to identify putative substrates for the insulin receptor kinase, adipocyte plasma membranes were incubated with (..gamma..-/sup 32/P)ATP in the presence and absence of insulin. Insulin stimulates the tyrosine phosphorylation of its receptor ..beta.. subunit but does not detectably alter the phosphorylation of other membrane proteins. In contrast, when plasma membranes from insulin-treated adipocytes are phosphorylated, the /sup 32/P-labeling of a Mr=160,000 species (p160) and insulin receptor ..beta.. subunit are markedly increased when compared to controls. p160 exhibits a rapid response (max. at 1 min) and high sensitivity (ED/sub 50/ = 2 x 10/sup -10/M) to insulin. The stimulatory effect of insulin on the phosphorylation of p160 is rapidly reversed following the addition of anti-insulin serum. Cold chase experiments indicate that insulin promotes the phosphorylation of p160 rather than inhibiting its dephosphorylation. p160 is a glycoprotein as evidenced by its adsorption to immobilized lectins and does not represent the insulin receptor precursor. The action of insulin on p160 tyrosine phosphorylation is mimicked by concanavalin A but not by EGF and other insulin-like agents such as hydrogen peroxide and vanadate. These results suggest that p160 tyrosine phosphorylation is an insulin receptor-mediated event and may participate in signalling by the insulin receptor.

  20. Adipocyte JAK2 mediates growth hormone–induced hepatic insulin resistance

    PubMed Central

    Corbit, Kevin C.; Camporez, João Paulo G.; Tran, Jennifer L.; Wilson, Camella G.; Lowe, Dylan A.; Nordstrom, Sarah M.; Ganeshan, Kirthana; Perry, Rachel J.; Weiss, Ethan J.

    2017-01-01

    For nearly 100 years, growth hormone (GH) has been known to affect insulin sensitivity and risk of diabetes. However, the tissue governing the effects of GH signaling on insulin and glucose homeostasis remains unknown. Excess GH reduces fat mass and insulin sensitivity. Conversely, GH insensitivity (GHI) is associated with increased adiposity, augmented insulin sensitivity, and protection from diabetes. Here, we induce adipocyte-specific GHI through conditional deletion of Jak2 (JAK2A), an obligate transducer of GH signaling. Similar to whole-body GHI, JAK2A mice had increased adiposity and extreme insulin sensitivity. Loss of adipocyte Jak2 augmented hepatic insulin sensitivity and conferred resistance to diet-induced metabolic stress without overt changes in circulating fatty acids. While GH injections induced hepatic insulin resistance in control mice, the diabetogenic action was absent in JAK2A mice. Adipocyte GH signaling directly impinged on both adipose and hepatic insulin signal transduction. Collectively, our results show that adipose tissue governs the effects of GH on insulin and glucose homeostasis. Further, we show that JAK2 mediates liver insulin sensitivity via an extrahepatic, adipose tissue–dependent mechanism. PMID:28194444

  1. Go-6976 Reverses Hyperglycemia-Induced Insulin Resistance Independently of cPKC Inhibition in Adipocytes

    PubMed Central

    Robinson, Katherine A.; Hegyi, Krisztina; Hannun, Yusuf A.; Buse, Maria G.; Sethi, Jaswinder K.

    2014-01-01

    Chronic hyperglycemia induces insulin resistance by mechanisms that are incompletely understood. One model of hyperglycemia-induced insulin resistance involves chronic preincubation of adipocytes in the presence of high glucose and low insulin concentrations. We have previously shown that the mTOR complex 1 (mTORC1) plays a partial role in the development of insulin resistance in this model. Here, we demonstrate that treatment with Go-6976, a widely used “specific” inhibitor of cPKCs, alleviates hyperglycemia-induced insulin resistance. However, the effects of mTOR inhibitor, rapamycin and Go-6976 were not additive and only rapamycin restored impaired insulin-stimulated AKT activation. Although, PKCα, (but not –β) was abundantly expressed in these adipocytes, our studies indicate cPKCs do not play a major role in causing insulin-resistance in this model. There was no evidence of changes in the expression or phosphorylation of PKCα, and PKCα knock-down did not prevent the reduction of insulin-stimulated glucose transport. This was also consistent with lack of IRS-1 phosphorylation on Ser-24 in hyperglycemia-induced insulin-resistant adipocytes. Treatment with Go-6976 did inhibit a component of the mTORC1 pathway, as evidenced by decreased phosphorylation of S6 ribosomal protein. Raptor knock-down enhanced the effect of insulin on glucose transport in insulin resistant adipocytes. Go-6976 had the same effect in control cells, but was ineffective in cells with Raptor knock-down. Taken together these findings suggest that Go-6976 exerts its effect in alleviating hyperglycemia-induced insulin-resistance independently of cPKC inhibition and may target components of the mTORC1 signaling pathway. PMID:25330241

  2. Rapamycin negatively impacts insulin signaling, glucose uptake and uncoupling protein-1 in brown adipocytes.

    PubMed

    García-Casarrubios, Ester; de Moura, Carlos; Arroba, Ana I; Pescador, Nuria; Calderon-Dominguez, María; Garcia, Laura; Herrero, Laura; Serra, Dolors; Cadenas, Susana; Reis, Flavio; Carvalho, Eugenia; Obregon, Maria Jesus; Valverde, Ángela M

    2016-12-01

    New onset diabetes after transplantation (NODAT) is a metabolic disorder that affects 40% of patients on immunosuppressive agent (IA) treatment, such as rapamycin (also known as sirolimus). IAs negatively modulate insulin action in peripheral tissues including skeletal muscle, liver and white fat. However, the effects of IAs on insulin sensitivity and thermogenesis in brown adipose tissue (BAT) have not been investigated. We have analyzed the impact of rapamycin on insulin signaling, thermogenic gene-expression and mitochondrial respiration in BAT. Treatment of brown adipocytes with rapamycin for 16h significantly decreased insulin receptor substrate 1 (IRS1) protein expression and insulin-mediated protein kinase B (Akt) phosphorylation. Consequently, both insulin-induced glucose transporter 4 (GLUT4) translocation to the plasma membrane and glucose uptake were decreased. Early activation of the N-terminal Janus activated kinase (JNK) was also observed, thereby increasing IRS1 Ser 307 phosphorylation. These effects of rapamycin on insulin signaling in brown adipocytes were partly prevented by a JNK inhibitor. In vivo treatment of rats with rapamycin for three weeks abolished insulin-mediated Akt phosphorylation in BAT. Rapamycin also inhibited norepinephrine (NE)-induced lipolysis, the expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and uncoupling protein (UCP)-1 in brown adipocytes. Importantly, basal mitochondrial respiration, proton leak and maximal respiratory capacity were significantly decreased in brown adipocytes treated with rapamycin. In conclusion, we demonstrate, for the first time the important role of brown adipocytes as target cells of rapamycin, suggesting that insulin resistance in BAT might play a major role in NODAT development.

  3. 11β-Hydroxysteroid Dehydrogenase Type 1(11β-HSD1) mediates insulin resistance through JNK activation in adipocytes

    PubMed Central

    Peng, Kesong; Pan, Yong; Li, Jieli; Khan, Zia; Fan, Mendi; Yin, Haimin; Tong, Chao; Zhao, Yunjie; Liang, Guang; Zheng, Chao

    2016-01-01

    Glucocorticoids are used to treat a number of human diseases but often lead to insulin resistance and metabolic syndrome. 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) is a key enzyme that catalyzes the intracellular conversion of cortisone to physiologically active cortisol. Despite the known role of 11β-HSD1 and active glucocorticoid in causing insulin resistance, the molecular mechanisms by which insulin resistance is induced remain elusive. The aim of this study is to identify these mechanisms in high fat diet (HFD) experimental models. Mice on a HFD were treated with 11β-HSD1 inhibitor as well as a JNK inhibitor. We then treated 3T3-L1-derived adipocytes with prednisone, a synthetic glucocorticoid, and cells with 11β-HSD1 overexpression to study insulin resistance. Our results show that 11β-HSD1 and JNK inhibition mitigated insulin resistance in HFD mice. Prednisone stimulation or overexpression of 11β-HSD1 also caused JNK activation in cultured adipocytes. Inhibition of 11β-HSD1 blocked the activation of JNK in adipose tissue of HFD mice as well as in cultured adipocytes. Furthermore, prednisone significantly impaired the insulin signaling pathway, and these effects were reversed by 11β-HSD1 and JNK inhibition. Our study demonstrates that glucocorticoid-induced insulin resistance was dependent on 11β-HSD1, resulting in the critical activation of JNK signaling in adipocytes. PMID:27841334

  4. St. John's Wort inhibits insulin signaling in murine and human adipocytes.

    PubMed

    Richard, Allison J; Amini, Zhaleh J; Ribnicky, David M; Stephens, Jacqueline M

    2012-04-01

    Adipocytes are insulin-sensitive cells that play a major role in energy homeostasis. Obesity is the primary disease of fat cells and a major risk factor for the development of Type 2 diabetes, cardiovascular disease, and metabolic syndrome. The use of botanicals in the treatment of metabolic diseases is an emerging area of research. In previous studies, we screened over 425 botanical extracts for their ability to modulate adipogenesis and insulin sensitivity. We identified St. John's Wort (SJW) extracts as inhibitors of adipogenesis of 3T3-L1 cells and demonstrated that these extracts also inhibited insulin-sensitive glucose uptake in mature fat cells. In these follow-up studies we have further characterized the effects of SJW on insulin action in both murine and human fat cells. We have shown that SJW also attenuates insulin-sensitive glucose uptake in human adipocytes. Moreover, SJW inhibits IRS-1 tyrosine phosphorylation in both murine and human fat cells. Botanical extracts are complex mixtures. Many bioactive compounds have been identified in SJW, including hypericin (HI) and hyperforin (HF). We have examined the ability of HI and HF, purified from SJW, to modulate adipocyte development and insulin action in mature adipocytes. Our novel studies indicate that the profound effects of SJW on adipogenesis, IRS-1 activation, and insulin-stimulated glucose uptake are not mediated by HI and/or HF. Nonetheless, we propose that extracts of SJW may contribute to adipocyte related diseases by limiting differentiation of preadipocytes and significantly inducing insulin resistance in mature fat cells.

  5. Differentiation of human adipose stromal cells in vitro into insulin-sensitive adipocytes.

    PubMed

    Huttala, Outi; Mysore, R; Sarkanen, J R; Heinonen, T; Olkkonen, V M; Ylikomi, T

    2016-10-01

    Adipose tissue-related diseases such as obesity and type 2 diabetes are worldwide epidemics. In order to develop adipose tissue cultures in vitro that mimic more faithfully the in vivo physiology, new well-characterized and publicly accepted differentiation methods of human adipose stem cells are needed. The aims of this study are (1) to improve the existing natural adipose tissue extract (ATE)-based induction method and (2) to study the effects of a differentiation method on insulin responsiveness of the resulting adipocytes. Different induction media were applied on human adipose stromal cell (hASC) monocultures to study the differentiation capacity of the induction media and the functionality of the differentiated adipocytes. Cells were differentiated for 14 days to assess triglyceride accumulation per cell and adipocyte-specific gene expression (PPARγ, adiponectin, AP2, leptin, Glut4, Prdm16, CIDEA, PGC1-α, RIP140, UCP and ADCY5). Insulin response was studied by measuring glucose uptake and inhibition of lipolysis after incubation with 100 or 500 nM insulin. The selected differentiation method included a 3-day induction with ATE, 6 days in serum-free medium supplemented with 1.15 μM insulin and 9.06 μM Troglitazone, followed by 4 days in a defined serum- and insulin-free stimulation medium. This protocol induced prominent general adipocyte gene expression, including markers for both brown and white adipocytes and triglyceride accumulation. Moreover, the cells were sensitive to insulin as observed from increased glucose uptake and inhibition of lipolysis. This differentiation protocol provides a promising approach for the induction of hASC adipogenesis to obtain functional and mature human adipocytes.

  6. [Establishment of a cell model of insulin-resistant 3T3-L1 adipocytes].

    PubMed

    Nie, Xu-Qiang; Yang, Jian-Wen; Shi, Hai-Xia; Zhang, Yu-Jin; Zhang, Jian-Yong; Bian, Ka

    2015-01-01

    To investigate the optimal conditions for establishing insulin-resistant 3T3-L1 adipocytes. Dexamethason (DEX), 3-isobutyl-methylxanthine (IBMX) and different concentrations of insulin (10(-8), 10(-7), and 10(-6) mol·L(-1)) were used to induce 3T3-L1 preadipocytes into mature adipocytes identified by oil red O staining. We established insulin- resistant 3T3-L1 adipocytes cell model (IR-3T3-L1) by exposing the cells to 1µmol·L(-1) DEX, and the changes of glucose concen- tration in the cell culture were determined by glucose oxidase-peroxidase (GOD-POD) assay. Treatment of 3T3-L1 cells with DEX, IBMX and 10(-6) mol·L(-1)) insulin for 9 days resulted in the differentiation of >90% of the cells into mature adipocytes. IR-3T3-L1 cells cultured for 96 h in the culture media containing 1 µmol·L(-1) DEX showed significantly increased glucose consumption (P=0.0003) as compared with the control group at 36 h (P<0.001). 3T3-L1 cells can be induced into mature adipocytes by exposure to 1 µmol·L(-1) DEX, 0.5 mmol·L(-1) IBMX and 10(-6) mol·L(-1)) insulin. A 96 h exposure to 1 µmol·L(-1) DEX can induce 3T3-L1 adipocytes to acquire insulin resistance that can be maintained for 36 h.

  7. The role of mouse Akt2 in insulin-dependent suppression of adipocyte lipolysis in vivo

    PubMed Central

    Koren, Shlomit; DiPilato, Lisa M.; Emmett, Matthew J.; Shearin, Abigail L.; Chu, Qingwei; Monks, Bob; Birnbaum, Morris J.

    2015-01-01

    Aim/hypothesis The release of fatty acids from adipocytes, i.e. lipolysis, is maintained under tight control, primarily by the opposing actions of catecholamines and insulin. A widely accepted model is that insulin antagonises catecholamine-dependent lipolysis through phosphorylation and activation of cAMP phosphodiesterase 3B (PDE3B) by the serine-threonine protein kinase Akt (protein kinase B). Recently, this hypothesis has been challenged, as in cultured adipocytes insulin appears, under some conditions, to suppress lipolysis independently of Akt. Methods To address the requirement for Akt2, the predominant isoform expressed in classic insulin target tissues, in the suppression of fatty acid release in vivo, we assessed lipolysis in mice lacking Akt2. Results In the fed state and following an oral glucose challenge, Akt2 null mice were glucose intolerant and hyperinsulinaemic, but nonetheless exhibited normal serum NEFA and glycerol levels, suggestive of normal suppression of lipolysis. Furthermore, insulin partially inhibited lipolysis in Akt2 null mice during an insulin tolerance test (ITT) and hyperinsulinaemic–euglycaemic clamp, respectively. In support of these in vivo observations, insulin antagonised catecholamine-induced lipolysis in primary brown fat adipocytes from Akt2-deficient nice. Conclusion These data suggest that suppression of lipolysis by insulin in hyperinsulinaemic states can take place in the absence of Akt2. PMID:25740694

  8. The role of mouse Akt2 in insulin-dependent suppression of adipocyte lipolysis in vivo.

    PubMed

    Koren, Shlomit; DiPilato, Lisa M; Emmett, Matthew J; Shearin, Abigail L; Chu, Qingwei; Monks, Bob; Birnbaum, Morris J

    2015-05-01

    The release of fatty acids from adipocytes, i.e. lipolysis, is maintained under tight control, primarily by the opposing actions of catecholamines and insulin. A widely accepted model is that insulin antagonises catecholamine-dependent lipolysis through phosphorylation and activation of cAMP phosphodiesterase 3B (PDE3B) by the serine-threonine protein kinase Akt (protein kinase B). Recently, this hypothesis has been challenged, as in cultured adipocytes insulin appears, under some conditions, to suppress lipolysis independently of Akt. To address the requirement for Akt2, the predominant isoform expressed in classic insulin target tissues, in the suppression of fatty acid release in vivo, we assessed lipolysis in mice lacking Akt2. In the fed state and following an oral glucose challenge, Akt2 null mice were glucose intolerant and hyperinsulinaemic, but nonetheless exhibited normal serum NEFA and glycerol levels, suggestive of normal suppression of lipolysis. Furthermore, insulin partially inhibited lipolysis in Akt2 null mice during an insulin tolerance test (ITT) and hyperinsulinaemic-euglycaemic clamp, respectively. In support of these in vivo observations, insulin antagonised catecholamine-induced lipolysis in primary brown fat adipocytes from Akt2-deficient mice. These data suggest that suppression of lipolysis by insulin in hyperinsulinaemic states can take place in the absence of Akt2.

  9. Insulin signaling in type 2 diabetes: experimental and modeling analyses reveal mechanisms of insulin resistance in human adipocytes.

    PubMed

    Brännmark, Cecilia; Nyman, Elin; Fagerholm, Siri; Bergenholm, Linnéa; Ekstrand, Eva-Maria; Cedersund, Gunnar; Strålfors, Peter

    2013-04-05

    Type 2 diabetes originates in an expanding adipose tissue that for unknown reasons becomes insulin resistant. Insulin resistance reflects impairments in insulin signaling, but mechanisms involved are unclear because current research is fragmented. We report a systems level mechanistic understanding of insulin resistance, using systems wide and internally consistent data from human adipocytes. Based on quantitative steady-state and dynamic time course data on signaling intermediaries, normally and in diabetes, we developed a dynamic mathematical model of insulin signaling. The model structure and parameters are identical in the normal and diabetic states of the model, except for three parameters that change in diabetes: (i) reduced concentration of insulin receptor, (ii) reduced concentration of insulin-regulated glucose transporter GLUT4, and (iii) changed feedback from mammalian target of rapamycin in complex with raptor (mTORC1). Modeling reveals that at the core of insulin resistance in human adipocytes is attenuation of a positive feedback from mTORC1 to the insulin receptor substrate-1, which explains reduced sensitivity and signal strength throughout the signaling network. Model simulations with inhibition of mTORC1 are comparable with experimental data on inhibition of mTORC1 using rapamycin in human adipocytes. We demonstrate the potential of the model for identification of drug targets, e.g. increasing the feedback restores insulin signaling, both at the cellular level and, using a multilevel model, at the whole body level. Our findings suggest that insulin resistance in an expanded adipose tissue results from cell growth restriction to prevent cell necrosis.

  10. Glucose-dependent insulinotropic polypeptide induces cytokine expression, lipolysis, and insulin resistance in human adipocytes.

    PubMed

    Timper, Katharina; Grisouard, Jean; Sauter, Nadine S; Herzog-Radimerski, Tanja; Dembinski, Kaethi; Peterli, Ralph; Frey, Daniel M; Zulewski, Henryk; Keller, Ulrich; Müller, Beat; Christ-Crain, Mirjam

    2013-01-01

    Obesity-related insulin resistance is linked to a chronic state of systemic and adipose tissue-derived inflammation. Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone also acting on adipocytes. We investigated whether GIP affects inflammation, lipolysis, and insulin resistance in human adipocytes. Human subcutaneous preadipocyte-derived adipocytes, differentiated in vitro, were treated with human GIP to analyze mRNA expression and protein secretion of cytokines, glycerol, and free fatty acid release and insulin-induced glucose uptake. GIP induced mRNA expression of IL-6, IL-1β, and the IL-1 receptor antagonist IL-1Ra, whereas TNFα, IL-8, and monocyte chemotactic protein (MCP)-1 remained unchanged. Cytokine induction involved PKA and the NF-κB pathway as well as an autocrine IL-1 effect. Furthermore, GIP potentiated IL-6 and IL-1Ra secretion in the presence of LPS, IL-1β, and TNFα. GIP induced lipolysis via activation of hormone-sensitive lipase and was linked to NF-κB activation. Finally, chronic GIP treatment impaired insulin-induced glucose uptake possibly due to the observed impaired translocation of glucose transporter GLUT4. In conclusion, GIP induces an inflammatory and prolipolytic response via the PKA -NF-κB-IL-1 pathway and impairs insulin sensitivity of glucose uptake in human adipocytes.

  11. Insulin-regulated aminopeptidase in adipocyte is Cys-specific and affected by obesity.

    PubMed

    Alponti, Rafaela Fadoni; Viana, Luciana Godoy; Yamanouye, Norma; Silveira, Paulo Flavio

    2015-08-01

    Insulin-regulated aminopeptidase (IRAP, EC 3.4.11.3) in adipocytes is well known to traffic between high (HDM) and low (LDM) density microsomal fractions toward the plasma membrane (MF) under stimulation by insulin. However, its catalytic preference for aminoacyl substrates with N-terminal Leu or Cys is controversial. Furthermore, possible changes in its traffic under metabolic challenges are unknown. The present study investigated the catalytic activity attributable to EC 3.4.11.3 in HDM, LDM and MF from isolated adipocytes of healthy (C), food deprived (FD) and monosodium glutamate (MSG) obese rats on aminoacyl substrates with N-terminal Cys or Leu, in absence or presence of insulin. Efficacy and reproducibility of subcellular adipocyte fractionation procedure were demonstrated. Comparison among HDM vs LDM vs MF intragroup revealed that hydrolytic activity trafficking from LDM to MF under influence of insulin in C, MSG and FD is only on N-terminal Cys. In MSG the same pattern of anterograde traffic and aminoacyl preference occurred independently of insulin stimulation. The pathophysiological significance of IRAP in adipocytes seems to be linked to comprehensive energy metabolism related roles of endogenous substrates with N-terminal cysteine pair such as vasopressin and oxytocin. © 2015 Society for Endocrinology.

  12. Interferon-gamma released from omental adipose tissue of insulin-resistant humans alters adipocyte phenotype and impairs response to insulin and adiponectin release.

    PubMed

    Wentworth, J M; Zhang, J-G; Bandala-Sanchez, E; Naselli, G; Liu, R; Ritchie, M; Smyth, G K; O'Brien, P E; Harrison, L C

    2017-08-03

    Inflammatory factors derived from adipose tissue have been implicated in mediating insulin resistance in obesity. We sought to identify these using explanted human adipose tissue exposed to innate and adaptive immune stimuli. Subcutaneous and omental adipose tissue from obese, insulin-resistant donors was cultured in the presence of macrophage and T-cell stimuli, and the conditioned medium tested for its ability to inhibit insulin-stimulated glucose uptake into human Simpson-Golabi-Behmel Syndrome (SGBS) adipocytes. The nature of the inhibitory factor in conditioned medium was characterized physicochemically, inferred by gene microarray analysis and confirmed by antibody neutralization. Conditioned medium from omental adipose tissue exposed to a combination of macrophage- and T-cell stimuli inhibited insulin action and adiponectin secretion in SGBS adipocytes. This effect was associated with a pronounced change in adipocyte morphology, characterized by a decreased number of lipid droplets of increased size. The bioactivity of conditioned medium was abolished by trypsin treatment and had a molecular weight of 46 kDa by gel filtration. SGBS adipocytes exposed to a bioactive medium expressed multiple gene transcripts regulated by interferon-gamma (IFN-γ). Recombinant human IFN-γ recapitulated the effects of the bioactive medium and neutralizing antibody against IFN-γ but not other candidate factors abrogated medium bioactivity. IFN-γ released from inflamed omental adipose tissue may contribute to the metabolic abnormalities seen in human obesity.International Journal of Obesity advance online publication, 22 August 2017; doi:10.1038/ijo.2017.180.

  13. Effect of insulin and glucocorticoids on glucose transporters in rat adipocytes

    SciTech Connect

    Carter-Su, C.; Okamoto, K.

    1987-04-01

    The ability of glucocorticoids to modify the effect of insulin on glucose (L-1-/sup 3/H(N))glucose and D-(/sup 14/C-U)glucose) transport was investigated in both intact isolated rat adipocytes and in membranes isolated from hormone-treated adipocytes. In intact adipocytes, dexamethasone, a potent synthetic glucocorticoid, inhibited insulin-stimulated 3-O-methylglucose transport at all concentrations of insulin tested. Insulin sensitivity, as well as the maximal response to insulin, was decreased by dexamethasone in the absence of a change in /sup 125/I insulin binding. The inhibition was observed regardless of which hormone acted first, was blocked by actinomycin D, and resulted from a decrease in V/sub max/ rather than an increase in K/sub t/ of transport. In plasma membranes isolated from insulin-treated adipocytes, glucose transport activity and the amount of glucose transporter covalently labeled with (/sup 3/H)cytochalasin B were increased in parallel in a dose-dependent fashion. The amount of labeled transporter in a low-density microsomal fraction (LDMF) was decreased in a reciprocal fashion. In contrast, addition of dexamethasone to insulin-stimulated cells caused decreases in both transport activity and amount of labeled transporter in the plasma membranes. This was accompanied by a small increase in the amount of (/sup 3/H)cytochalasin B incorporated into the glucose transporter in the LDMF. These results are consistent with both insulin and glucocorticoids altering the distribution of glucose transporters between the plasma membrane and LDMF, in opposite directions.

  14. Obestatin regulates adipocyte function and protects against diet-induced insulin resistance and inflammation.

    PubMed

    Granata, Riccarda; Gallo, Davide; Luque, Raul M; Baragli, Alessandra; Scarlatti, Francesca; Grande, Cristina; Gesmundo, Iacopo; Córdoba-Chacón, Jose; Bergandi, Loredana; Settanni, Fabio; Togliatto, Gabriele; Volante, Marco; Garetto, Stefano; Annunziata, Marta; Chanclón, Belén; Gargantini, Eleonora; Rocchietto, Stefano; Matera, Lina; Datta, Giacomo; Morino, Mario; Brizzi, Maria Felice; Ong, Huy; Camussi, Giovanni; Castaño, Justo P; Papotti, Mauro; Ghigo, Ezio

    2012-08-01

    The metabolic actions of the ghrelin gene-derived peptide obestatin are still unclear. We investigated obestatin effects in vitro, on adipocyte function, and in vivo, on insulin resistance and inflammation in mice fed a high-fat diet (HFD). Obestatin effects on apoptosis, differentiation, lipolysis, and glucose uptake were determined in vitro in mouse 3T3-L1 and in human subcutaneous (hSC) and omental (hOM) adipocytes. In vivo, the influence of obestatin on glucose metabolism was assessed in mice fed an HFD for 8 wk. 3T3-L1, hSC, and hOM preadipocytes and adipocytes secreted obestatin and showed specific binding for the hormone. Obestatin prevented apoptosis in 3T3-L1 preadipocytes by increasing phosphoinositide 3-kinase (PI3K)/Akt and extracellular signal-regulated kinase (ERK)1/2 signaling. In both mice and human adipocytes, obestatin inhibited isoproterenol-induced lipolysis, promoted AMP-activated protein kinase phosphorylation, induced adiponectin, and reduced leptin secretion. Obestatin also enhanced glucose uptake in either the absence or presence of insulin, promoted GLUT4 translocation, and increased Akt phosphorylation and sirtuin 1 (SIRT1) protein expression. Inhibition of SIRT1 by small interfering RNA reduced obestatin-induced glucose uptake. In HFD-fed mice, obestatin reduced insulin resistance, increased insulin secretion from pancreatic islets, and reduced adipocyte apoptosis and inflammation in metabolic tissues. These results provide evidence of a novel role for obestatin in adipocyte function and glucose metabolism and suggest potential therapeutic perspectives in insulin resistance and metabolic dysfunctions.

  15. Characterization of lipid metabolism in insulin-sensitive adipocytes differentiated from immortalized human mesenchymal stem cells

    SciTech Connect

    Prawitt, Janne; Niemeier, Andreas; Kassem, Moustapha; Beisiegel, Ulrike; Heeren, Joerg

    2008-02-15

    There is a great demand for cell models to study human adipocyte function. Here we describe the adipogenic differentiation of a telomerase-immortalized human mesenchymal stem cell line (hMSC-Tert) that maintains numerous features of terminally differentiated adipocytes even after prolonged withdrawal of the peroxisome proliferator activated receptor {gamma} (PPAR{gamma}) agonist rosiglitazone. Differentiated hMSC-Tert developed the characteristic monolocular phenotype of mature adipocytes. The expression of adipocyte specific markers was highly increased during differentiation. Most importantly, the presence of the PPAR{gamma} agonist rosiglitazone was not required for the stable expression of lipoprotein lipase, adipocyte fatty acid binding protein and perilipin on mRNA and protein levels. Adiponectin expression was post-transcriptionally down-regulated in the absence of rosiglitazone. Insulin sensitivity as measured by insulin-induced phosphorylation of Akt and S6 ribosomal protein was also independent of rosiglitazone. In addition to commonly used adipogenic markers, we investigated further PPAR{gamma}-stimulated proteins with a role in lipid metabolism. We observed an increase of lipoprotein receptor (VLDLR, LRP1) and apolipoprotein E expression during differentiation. Despite this increased expression, the receptor-mediated endocytosis of lipoproteins was decreased in differentiated adipocytes, suggesting that these proteins may have an additional function in adipose tissue beyond lipoprotein uptake.

  16. Characterization of lipid metabolism in insulin-sensitive adipocytes differentiated from immortalized human mesenchymal stem cells.

    PubMed

    Prawitt, Janne; Niemeier, Andreas; Kassem, Moustapha; Beisiegel, Ulrike; Heeren, Joerg

    2008-02-15

    There is a great demand for cell models to study human adipocyte function. Here we describe the adipogenic differentiation of a telomerase-immortalized human mesenchymal stem cell line (hMSC-Tert) that maintains numerous features of terminally differentiated adipocytes even after prolonged withdrawal of the peroxisome proliferator activated receptor gamma (PPARgamma) agonist rosiglitazone. Differentiated hMSC-Tert developed the characteristic monolocular phenotype of mature adipocytes. The expression of adipocyte specific markers was highly increased during differentiation. Most importantly, the presence of the PPARgamma agonist rosiglitazone was not required for the stable expression of lipoprotein lipase, adipocyte fatty acid binding protein and perilipin on mRNA and protein levels. Adiponectin expression was post-transcriptionally down-regulated in the absence of rosiglitazone. Insulin sensitivity as measured by insulin-induced phosphorylation of Akt and S6 ribosomal protein was also independent of rosiglitazone. In addition to commonly used adipogenic markers, we investigated further PPARgamma-stimulated proteins with a role in lipid metabolism. We observed an increase of lipoprotein receptor (VLDLR, LRP1) and apolipoprotein E expression during differentiation. Despite this increased expression, the receptor-mediated endocytosis of lipoproteins was decreased in differentiated adipocytes, suggesting that these proteins may have an additional function in adipose tissue beyond lipoprotein uptake.

  17. Postlipolytic insulin-dependent remodeling of micro lipid droplets in adipocytes

    PubMed Central

    Ariotti, Nicholas; Murphy, Samantha; Hamilton, Nicholas A.; Wu, Lizhen; Green, Kathryn; Schieber, Nicole L.; Li, Peng; Martin, Sally; Parton, Robert G.

    2012-01-01

    Despite the lipolysis–lipogenesis cycle being a fundamental process in adipocyte biology, very little is known about the morphological changes that occur during this process. The remodeling of lipid droplets to form micro lipid droplets (mLDs) is a striking feature of lipolysis in adipocytes, but once lipolysis ceases, the cell must regain its basal morphology. We characterized mLD formation in cultured adipocytes, and in primary adipocytes isolated from mouse epididymal fat pads, in response to acute activation of lipolysis. Using real-time quantitative imaging and electron tomography, we show that formation of mLDs in cultured adipocytes occurs throughout the cell to increase total LD surface area by ∼30% but does not involve detectable fission from large LDs. Peripheral mLDs are monolayered structures with a neutral lipid core and are sites of active lipolysis. Electron tomography reveals preferential association of mLDs with the endoplasmic reticulum. Treatment with insulin and fatty acids results in the reformation of macroLDs and return to the basal state. Insulin-dependent reformation of large LDs involves two distinct processes: microtubule-dependent homotypic fusion of mLDs and expansion of individual mLDs. We identify a physiologically important role for LD fusion that is involved in a reversible lipolytic cycle in adipocytes. PMID:22456503

  18. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes

    PubMed Central

    Guilherme, Adilson; Virbasius, Joseph V.; Puri, Vishwajeet; Czech, Michael P.

    2010-01-01

    Acquired resistance to the action of insulin to stimulate glucose transport in skeletal muscle is associated with obesity and promotes the development of type 2 diabetes. In skeletal muscle, insulin resistance can result from high levels of circulating fatty acids that disrupt insulin signalling pathways. However, the severity of insulin resistance varies greatly among obese people. Here we postulate that this variability might reflect differences in levels of lipid-droplet proteins that promote the sequestration of fatty acids within adipocytes in the form of triglycerides, thereby lowering exposure of skeletal muscle to the inhibitory effects of fatty acids. PMID:18401346

  19. Susceptibility to Apoptosis in Insulin-like Growth Factor-I Receptor-deficient Brown Adipocytes

    PubMed Central

    Valverde, Angela M.; Mur, Cecilia; Brownlee, Michael; Benito, Manuel

    2004-01-01

    Fetal brown adipocytes are insulin-like growth factor-I (IGF-I) target cells. To assess the importance of the IGF-I receptor (IGF-IR) in brown adipocytes during fetal life, we have generated immortalized brown adipocyte cell lines from the IGF-IR-/- mice. Using this experimental model, we demonstrate that the lack of IGF-IR in fetal brown adipocytes increased the susceptibility to apoptosis induced by serum withdrawal. Culture of cells in the absence of serum and growth factors produced rapid DNA fragmentation (4 h) in IGF-IR-/- brown adipocytes, compared with the wild type (16 h). Consequently, cell viability was decreased more rapidly in fetal brown adipocytes in the absence of IGF-IR. Furthermore, caspase-3 activity was induced much earlier in cells lacking IGF-IR. At the molecular level, IGF-IR deficiency in fetal brown adipocytes altered the balance of the expression of several proapoptotic (Bcl-xS and Bim) and antiapoptotic (Bcl-2 and Bcl-xL) members of the Bcl-2 family. This imbalance was irreversible even though in IGF-IR-reconstituted cells. Likewise, cytosolic cytochrome c levels increased rapidly in IGF-IR-deficient cells compared with the wild type. A rapid entry of Foxo1 into the nucleus accompanied by a rapid exit from the cytosol and an earlier activation of caspase-8 were observed in brown adipocytes lacking IGF-IR upon serum deprivation. Activation of caspase-8 was inhibited by 50% in both cell types by neutralizing anti-Fas-ligand antibody. Adenoviral infection of wild-type brown adipocytes with constitutively active Foxol (ADA) increased the expression of antiapoptotic genes, decreased Bcl-xL and induced caspase-8 and -3 activities, with the final outcome of DNA fragmentation. Up-regulation of uncoupling protein-1 (UCP-1) expression in IGF-IR-deficient cells by transduction with PGC-1α or UCP-1 ameliorated caspase-3 activation, thereby retarding apoptosis. Finally, insulin treatment prevented apoptosis in both cell types. However, the survival

  20. Contribution of lipase deficiency to mitochondrial dysfunction and insulin resistance in hMADS adipocytes.

    PubMed

    Jocken, J W E; Goossens, G H; Popeijus, H; Essers, Y; Hoebers, N; Blaak, E E

    2016-03-01

    Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) are key enzymes involved in intracellular lipid catabolism. We have previously shown decreased expression and activity of these lipases in adipose tissue of obese insulin resistant individuals. Here we hypothesized that lipase deficiency might impact on insulin sensitivity and metabolic homeostasis in adipocytes not just by enhancing lipid accumulation, but also by altering lipid and carbohydrate catabolism in a peroxisome proliferator-activated nuclear receptor (PPAR)-dependent manner. To address our hypothesis, we performed a series of in vitro experiments in a human white adipocyte model, the human multipotent adipose-derived stem (hMADS) cells, using genetic (siRNA) and pharmacological knockdown of ATGL and/or HSL. We show that ATGL and HSL knockdown in hMADS adipocytes disrupted mitochondrial respiration, which was accompanied by a decreased oxidative phosphorylation (OxPhos) protein content. This lead to a reduced exogenous and endogenous palmitate oxidation following ATGL knockdown, but not in HSL deficient adipocytes. ATGL deficiency was followed by excessive triacylglycerol accumulation, and HSL deficiency further increased diacylglycerol accumulation. Both single and double lipase knockdown reduced insulin-stimulated glucose uptake, which was attributable to impaired insulin signaling. These effects were accompanied by impaired activation of the nuclear receptor PPARα, and restored on PPARα agonist treatment. The present study indicates that lipase deficiency in human white adipocytes contributes to mitochondrial dysfunction and insulin resistance, in a PPARα-dependent manner. Therefore, modulation of adipose tissue lipases may provide a promising strategy to reverse insulin resistance in obese and type 2 diabetic patients.

  1. Loss of Oncostatin M Signaling in Adipocytes Induces Insulin Resistance and Adipose Tissue Inflammation in Vivo.

    PubMed

    Elks, Carrie M; Zhao, Peng; Grant, Ryan W; Hang, Hardy; Bailey, Jennifer L; Burk, David H; McNulty, Margaret A; Mynatt, Randall L; Stephens, Jacqueline M

    2016-08-12

    Oncostatin M (OSM) is a multifunctional gp130 cytokine. Although OSM is produced in adipose tissue, it is not produced by adipocytes. OSM expression is significantly induced in adipose tissue from obese mice and humans. The OSM-specific receptor, OSM receptor β (OSMR), is expressed in adipocytes, but its function remains largely unknown. To better understand the effects of OSM in adipose tissue, we knocked down Osmr expression in adipocytes in vitro using siRNA. In vivo, we generated a mouse line lacking Osmr in adiponectin-expressing cells (OSMR(FKO) mice). The effects of OSM on gene expression were also assessed in vitro and in vivo OSM exerts proinflammatory effects on cultured adipocytes that are partially rescued by Osmr knockdown. Osm expression is significantly increased in adipose tissue T cells of high fat-fed mice. In addition, adipocyte Osmr expression is increased following high fat feeding. OSMR(FKO) mice exhibit increased insulin resistance and adipose tissue inflammation and have increased lean mass, femoral length, and bone volume. Also, OSMR(FKO) mice exhibit increased expression of Osm, the T cell markers Cd4 and Cd8, and the macrophage markers F4/80 and Cd11c Interestingly, the same proinflammatory genes induced by OSM in adipocytes are induced in the adipose tissue of the OSMR(FKO) mouse, suggesting that increased expression of proinflammatory genes in adipose tissue arises both from adipocytes and other cell types. These findings suggest that adipocyte OSMR signaling is involved in the regulation of adipose tissue homeostasis and that, in obesity, OSMR ablation may exacerbate insulin resistance by promoting adipose tissue inflammation.

  2. Degradative processing of internalized insulin in isolated adipocytes

    SciTech Connect

    Marshall, S.

    1985-11-05

    Based on the distribution of SVI-insulin between the cell surface and the cell interior, it was found that insulin rapidly binds (t 1/2 = 0.4 min) to surface receptors at 37 degrees C, and after an initial lag period of about 1 min, accumulates intracellularly until steady state is reached (t 1/2 = 3.5 min). At this time about 40% of the total cell-associated SVI-insulin resides in the cell interior reflecting a dynamic equilibrium between the rate of insulin endocytosis and the rate at which internalized insulin is processed and extruded from cells. Since this percentage decreased to 15% at 16 degrees C, it appears that internalization is more temperative-sensitive than the intracellular processing of insulin. When SVI-insulin was preloaded into the cell interior, it was found that internalized insulin was rapidly released to the medium at 37 degrees C (t 1/2 = 6.5 min) and consisted of both degraded products and intact insulin (as assessed by trichloroacetic acid precipitability and column chromatography). Since 75% of internalized insulin was ultimately degraded, and 25% was released intact, this indicates that degradation is the predominant pathway. To determine when incoming insulin enters a degradative compartment, cells were continually exposed to SVI-insulin and the composition of insulin in the cell interior over time was assessed. After 2 min all endocytosed insulin was intact, between 2-3 min degradation products began accumulating intracellularly, and by 15 min equilibrium was reached with 20% of internalized insulin consisting of degraded products. Degraded insulin was then released from the cell interior within 4-5 min after endocytotic uptake, since this was the earliest time chloroquine was found to inhibit the release of degradation products.

  3. Insulin increases tristetraprolin and decreases VEGF gene expression in mouse 3T3-L1 adipocytes

    USDA-ARS?s Scientific Manuscript database

    Tristetraprolin (TTP/ZFP36) family proteins bind and destabilize AU-rich element-containing mRNAs encoding cytokines such as vascular endothelial growth factor (VEGF). Little is known about the expression and insulin-regulation of TTP family and related genes in adipocytes. We analyzed the relative ...

  4. Amino acid-sensing mTOR signaling is involved in modulation of lipolysis by chronic insulin treatment in adipocytes.

    PubMed

    Zhang, Chongben; Yoon, Mee-Sup; Chen, Jie

    2009-04-01

    Chronically high insulin levels and increased circulating free fatty acids released from adipose tissue through lipolysis are two features associated with insulin resistance. The relationship between chronic insulin exposure and adipocyte lipolysis has been unclear. In the present study we found that chronic insulin exposure in 3T3-L1 adipocytes, as well as in mouse primary adipocytes, increased basal lipolysis rates. This effect of insulin on lipolysis was only observed when the mammalian target of rapamycin (mTOR) pathway was inhibited by rapamycin in the adipocytes. In addition, amino acid deprivation in adipocytes phenocopied the effect of rapamycin in permitting the stimulation of lipolysis by chronic insulin exposure. The phosphatidylinositol 3-kinase-Akt pathway does not appear to be involved in this insulin effect. Furthermore, we found that triacylglycerol hydrolase (TGH) activity was required for the stimulation of lipolysis by combined exposure to insulin and rapamycin. Therefore, we propose that nutrient sufficiency, mediated by an mTOR pathway, suppresses TGH-dependent lipolysis stimulated by chronic insulin exposure in adipocytes.

  5. Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats.

    PubMed Central

    Okuno, A; Tamemoto, H; Tobe, K; Ueki, K; Mori, Y; Iwamoto, K; Umesono, K; Akanuma, Y; Fujiwara, T; Horikoshi, H; Yazaki, Y; Kadowaki, T

    1998-01-01

    Troglitazone (CS-045) is one of the thiazolidinediones that activate the peroxisome proliferator-activated receptor gamma (PPARgamma), which is expressed primarily in adipose tissues. To elucidate the mechanism by which troglitazone relieves insulin resistance in vivo, we studied its effects on the white adipose tissues of an obese animal model (obese Zucker rat). Administration of troglitazone for 15 d normalized mild hyperglycemia and marked hyperinsulinemia in these rats. Plasma triglyceride level was decreased by troglitazone in both obese and lean rats. Troglitazone did not change the total weight of white adipose tissues but increased the number of small adipocytes (< 2,500 micron2) approximately fourfold in both retroperitoneal and subcutaneous adipose tissues of obese rats. It also decreased the number of large adipocytes (> 5,000 micron2) by approximately 50%. In fact, the percentage of apoptotic nuclei was approximately 2.5-fold higher in the troglitazone-treated retroperitoneal white adipose tissue than control. Concomitantly, troglitazone normalized the expression levels of TNF-alpha which were elevated by 2- and 1.4-fold in the retroperitoneal and mesenteric white adipose tissues of the obese rats, respectively. Troglitazone also caused a dramatic decrease in the expression levels of leptin, which were increased by 4-10-fold in the white adipose tissues of obese rats. These results suggest that the primary action of troglitazone may be to increase the number of small adipocytes in white adipose tissues, presumably via PPARgamma. The increased number of small adipocytes and the decreased number of large adipocytes in white adipose tissues of troglitazone-treated obese rats appear to be an important mechanism by which increased expression levels of TNF-alpha and higher levels of plasma lipids are normalized, leading to alleviation of insulin resistance. PMID:9502777

  6. Modulation of the cellular content of metabolites in adipocytes by insulin.

    PubMed

    Qiao, Yuhang; Tomonaga, Shozo; Matsui, Tohru; Funaba, Masayuki

    2016-03-15

    Although the insulin-mediated cell signaling pathway has been extensively examined, changes in the cellular content of metabolites currently remain unclear. We herein examined metabolite contents in 3T3-L1 adipocytes treated with insulin using a metabolomic analysis. Fifty-four compounds were detected, and the contents of metabolites from the citric acid cycle increased in response to the insulin treatment for 4 h, which was sensitive to U0126 and LY294002, inhibitors for mitogen-activated protein kinase kinase-1 and phosphoinositide 3-kinase, respectively. The cellular contents of fumaric acid and malic acid were increased more by insulin than those of citric acid and succinic acid. Time-course changes in metabolites from the citric acid cycle exhibited oscillations with a 2-h cycle. A metabolic pathway analysis also indicated that insulin affected the metabolism of alanine, aspartate and glutamate, as well as that of arginine and proline. The contents of free amino acids were slightly decreased by the insulin treatment, while the co-treatment with U0126 and LY294002 abrogated these insulin-mediated decreases. The present study revealed the unexpected accumulation of citric acid cycle metabolites in adipocytes by insulin. Our results indicate the usefulness of metabolomic analyses for obtaining a more comprehensive understanding of the regulation of metabolic pathways in cell-culture systems. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Insulin regulates Rab3-Noc2 complex dissociation to promote GLUT4 translocation in rat adipocytes.

    PubMed

    Koumanov, Francoise; Pereira, Vinit J; Richardson, Judith D; Sargent, Samantha L; Fazakerley, Daniel J; Holman, Geoffrey D

    2015-08-01

    The glucose transporter GLUT4 is present mainly in insulin-responsive tissues of fat, heart and skeletal muscle and is translocated from intracellular membrane compartments to the plasma membrane (PM) upon insulin stimulation. The transit of GLUT4 to the PM is known to be dependent on a series of Rab proteins. However, the extent to which the activity of these Rabs is regulated by the action of insulin action is still unknown. We sought to identify insulin-activated Rab proteins and Rab effectors that facilitate GLUT4 translocation. We developed a new photoaffinity reagent (Bio-ATB-GTP) that allows GTP-binding proteomes to be explored. Using this approach we screened for insulin-responsive GTP loading of Rabs in primary rat adipocytes. We identified Rab3B as a new candidate insulin-stimulated G-protein in adipocytes. Using constitutively active and dominant negative mutants and Rab3 knockdown we provide evidence that Rab3 isoforms are key regulators of GLUT4 translocation in adipocytes. Insulin-stimulated Rab3 GTP binding is associated with disruption of the interaction between Rab3 and its negative effector Noc2. Disruption of the Rab3-Noc2 complex leads to displacement of Noc2 from the PM. This relieves the inhibitory effect of Noc2, facilitating GLUT4 translocation. The discovery of the involvement of Rab3 and Noc2 in an insulin-regulated step in GLUT4 translocation suggests that the control of this translocation process is unexpectedly similar to regulated secretion and particularly pancreatic insulin-vesicle release.

  8. (-)-Epigallocatechin gallate enhances the expression of genes related to insulin sensitivity and adipocyte differentiation in 3T3-L1 adipocytes at an early stage of differentiation.

    PubMed

    Sakurai, Naoko; Mochizuki, Kazuki; Kameji, Hiroyuki; Shimada, Masaya; Goda, Toshinao

    2009-10-01

    (-)-Epigallocatechin gallate (EGCG) is thought to enhance insulin sensitivity in adipocytes, although doses used in in vitro experiments have been shown to promote apoptosis. To explore the effects of EGCG on insulin sensitivity in adipocytes, the expression of genes related to insulin sensitivity and adipocyte differentiation in 3T3-L1 adipocytes were measured in response to low doses of EGCG. Increasing concentrations of low-dose EGCG were administered for 8 d to differentiating 3T3 adipocytes, either at days 0-8 (early stage) or at days 8-16 (late stage). Fat accumulation and cell activity were measured by Oil Red O staining and 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan assay, respectively. The expression of genes related to insulin sensitivity and adipocyte differentiation was measured by real-time reverse transcriptase-polymerase chain reaction. Fat accumulation and cell activity in 3T3-L1 cells at the early and late stages were reduced at EGCG concentrations > or = 50 microM. However, EGCG doses of 5-10 microM reduced fat accumulation and induced the expression of genes related to insulin sensitivity (including Fabp4, Cd36, Lpl, Pck1, Acox1, Lypla3, and Ucp2) and adipocyte differentiation (Pparg1, Pparg2, Cebps, and Ppargc1a). These increases were only seen at the early, and not late, stages of differentiation. These data indicate that low doses of EGCG, despite reducing triacylglycerol accumulation, induce the expression of genes related to insulin sensitivity in the early stage of differentiation.

  9. Insulin Regulates Adipocyte Lipolysis via an Akt-Independent Signaling Pathway ▿

    PubMed Central

    Choi, Sarah M.; Tucker, David F.; Gross, Danielle N.; Easton, Rachael M.; DiPilato, Lisa M.; Dean, Abigail S.; Monks, Bob R.; Birnbaum, Morris J.

    2010-01-01

    After a meal, insulin suppresses lipolysis through the activation of its downstream kinase, Akt, resulting in the inhibition of protein kinase A (PKA), the main positive effector of lipolysis. During insulin resistance, this process is ineffective, leading to a characteristic dyslipidemia and the worsening of impaired insulin action and obesity. Here, we describe a noncanonical Akt-independent, phosphoinositide-3 kinase (PI3K)-dependent pathway that regulates adipocyte lipolysis using restricted subcellular signaling. This pathway selectively alters the PKA phosphorylation of its major lipid droplet-associated substrate, perilipin. In contrast, the phosphorylation of another PKA substrate, hormone-sensitive lipase (HSL), remains Akt dependent. Furthermore, insulin regulates total PKA activity in an Akt-dependent manner. These findings indicate that localized changes in insulin action are responsible for the differential phosphorylation of PKA substrates. Thus, we identify a pathway by which insulin regulates lipolysis through the spatially compartmentalized modulation of PKA. PMID:20733001

  10. Insulin regulates adipocyte lipolysis via an Akt-independent signaling pathway.

    PubMed

    Choi, Sarah M; Tucker, David F; Gross, Danielle N; Easton, Rachael M; DiPilato, Lisa M; Dean, Abigail S; Monks, Bob R; Birnbaum, Morris J

    2010-11-01

    After a meal, insulin suppresses lipolysis through the activation of its downstream kinase, Akt, resulting in the inhibition of protein kinase A (PKA), the main positive effector of lipolysis. During insulin resistance, this process is ineffective, leading to a characteristic dyslipidemia and the worsening of impaired insulin action and obesity. Here, we describe a noncanonical Akt-independent, phosphoinositide-3 kinase (PI3K)-dependent pathway that regulates adipocyte lipolysis using restricted subcellular signaling. This pathway selectively alters the PKA phosphorylation of its major lipid droplet-associated substrate, perilipin. In contrast, the phosphorylation of another PKA substrate, hormone-sensitive lipase (HSL), remains Akt dependent. Furthermore, insulin regulates total PKA activity in an Akt-dependent manner. These findings indicate that localized changes in insulin action are responsible for the differential phosphorylation of PKA substrates. Thus, we identify a pathway by which insulin regulates lipolysis through the spatially compartmentalized modulation of PKA.

  11. Galanin antagonist increases insulin resistance by reducing glucose transporter 4 effect in adipocytes of rats.

    PubMed

    Guo, Lili; Shi, Mingyi; Zhang, Ling; Li, Guangzhi; Zhang, Lingxiang; Shao, Hu; Fang, Penghua; Ma, Yingping; Li, Jian; Shi, Qiaojia; Sui, Yumei

    2011-08-01

    Seeing that galanin increases animal body weight on the conditions of inhibiting insulin secretion and animals with metabolic disorder of galanin easily suffer from diabetes, we postulate that endogenous galanin is necessary to reduce insulin resistance in adipocytes. To test this hypothesis, we compared four groups of rats to examine whether an increase in galanin secretion stimulated by swimming may reduce insulin resistance. The rats from sedentary and trained drug groups were injected by M35, a galanin antagonist. The rats from trained control and trained drug groups swam after each injection for four weeks. We found that exercise significantly elevated plasma galanin contents and glucose transporter 4 (GLUT4) mRNA levels in adipocytes. Meanwhile, M35 treatment reduced GLUT4 and GLUT4 mRNA levels, and glucose infusing rates in euglycemic-hyperinsulinemic clamp tests. The ratios of GLUT4 concentrations at plasma membranes to total cell membranes in both drug groups were lower compared with each control group, respectively. These observations suggest that endogenous galanin reduces insulin resistance by increasing GLUT4 contents and promoting GLUT4 transportation from intracellular membranes to plasma membranes in adipocytes. Galanin is an important hormone to reduce insulin resistance in rats. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Knockdown of LYRM1 rescues insulin resistance and mitochondrial dysfunction induced by FCCP in 3T3-L1 adipocytes.

    PubMed

    Zhang, Min; Qin, Zhen-Ying; Dai, Yong-mei; Wang, Yu-Mei; Zhu, Guan-zhong; Zhao, Ya-Ping; Ji, Chen-Bo; Zhu, Jin-Gai; Shi, Chun-Mei; Qiu, Jie; Cao, Xin-Guo; Guo, Xi-Rong

    2014-09-01

    LYR motif-containing 1 (LYRM1) was recently discovered to be involved in adipose tissue homeostasis and obesity-associated insulin resistance. We previously demonstrated that LYRM1 overexpression might contribute to insulin resistance and mitochondrial dysfunction. Additionally, knockdown of LYRM1 enhanced insulin sensitivity and mitochondrial function in 3T3-L1 adipocytes. We investigated whether knockdown of LYRM1 in 3T3-L1 adipocytes could rescue insulin resistance and mitochondrial dysfunction induced by the cyanide p-trifluoromethoxyphenyl-hydrazone (FCCP), a mitochondrion uncoupler, to further ascertain the mechanism by which LYRM1 is involved in obesity-associated insulin resistance. Incubation of 3T3-L1 adipocytes with 1 µM FCCP for 12 h decreased insulin-stimulated glucose uptake, reduced intracellular ATP synthesis, increased intracellular reactive oxygen species (ROS) production, impaired insulin-stimulated Glucose transporter type 4 (GLUT4) translocation, and diminished insulin-stimulated tyrosine phosphorylation of Insulin receptor substrate-1 (IRS-1) and serine phosphorylation of Protein Kinase B (Akt). Knockdown of LYRM1 restored insulin-stimulated glucose uptake, rescued intracellular ATP synthesis, reduced intracellular ROS production, restored insulin-stimulated GLUT4 translocation, and rescued insulin-stimulated tyrosine phosphorylation of IRS-1 and serine phosphorylation of Akt in FCCP-treated 3T3-L1 adipocytes. This study indicates that FCCP-induced mitochondrial dysfunction and insulin resistance are ameliorated by knockdown of LYRM1.

  13. Effects of high glucose on caveolin-1 and insulin signaling in 3T3-L1 adipocytes.

    PubMed

    Palacios-Ortega, Sara; Varela-Guruceaga, Maider; Martínez, J Alfredo; de Miguel, Carlos; Milagro, Fermín I

    2016-01-01

    Adipocytes exposed to high glucose concentrations exhibit impaired metabolic function, including an increase of oxidative and proinflammatory factors that might favor the development of insulin resistance. Caveolin-1 (Cav-1) is a key mediator of the insulin transduction pathway whose expression is significantly enhanced during adipocyte differentiation. In this work, we studied the effects of high glucose concentration on the regulation of Cav-1 expression and activation and its relation to the insulin signaling pathway during the adipogenic process and in long-term differentiated adipocytes. Both, long-term high glucose exposure during adipogenesis and short-term glucose incubation of mature adipocytes, promoted triglyceride accumulation in 3T3-L1 cells. The short-term exposure of mature adipocytes to high glucose significantly reduced the sensitivity to insulin of Cav-1, insulin receptor (IR) and potein kinase B (AKT-2) phosphorylation, as well as insulin-induced deoxyglucose uptake. Adipocytes differentiated in the presence of high glucose lost Cav-1 and IR response to insulin-stimulated phosphorylation, but maintained the insulin sensitivity of AKT-2 phosphorylation and deoxyglucose uptake. Although long-term high glucose exposure increased DNA methylation in Cav-1 promoter, Cav-1 expression was not affected. Moreover, these cells showed an increase of Cav-1, IR and AKT-2 protein content, pointing to an adaptive response induced by the long-term high glucose exposure.

  14. Effects of high glucose on caveolin-1 and insulin signaling in 3T3-L1 adipocytes

    PubMed Central

    Palacios-Ortega, Sara; Varela-Guruceaga, Maider; Martínez, J. Alfredo; de Miguel, Carlos; Milagro, Fermín I.

    2016-01-01

    ABSTRACT Adipocytes exposed to high glucose concentrations exhibit impaired metabolic function, including an increase of oxidative and proinflammatory factors that might favor the development of insulin resistance. Caveolin-1 (Cav-1) is a key mediator of the insulin transduction pathway whose expression is significantly enhanced during adipocyte differentiation. In this work, we studied the effects of high glucose concentration on the regulation of Cav-1 expression and activation and its relation to the insulin signaling pathway during the adipogenic process and in long-term differentiated adipocytes. Both, long-term high glucose exposure during adipogenesis and short-term glucose incubation of mature adipocytes, promoted triglyceride accumulation in 3T3-L1 cells. The short-term exposure of mature adipocytes to high glucose significantly reduced the sensitivity to insulin of Cav-1, insulin receptor (IR) and potein kinase B (AKT-2) phosphorylation, as well as insulin-induced deoxyglucose uptake. Adipocytes differentiated in the presence of high glucose lost Cav-1 and IR response to insulin-stimulated phosphorylation, but maintained the insulin sensitivity of AKT-2 phosphorylation and deoxyglucose uptake. Although long-term high glucose exposure increased DNA methylation in Cav-1 promoter, Cav-1 expression was not affected. Moreover, these cells showed an increase of Cav-1, IR and AKT-2 protein content, pointing to an adaptive response induced by the long-term high glucose exposure. PMID:27144098

  15. Measuring phospholipase D activity in insulin-secreting pancreatic beta-cells and insulin-responsive muscle cells and adipocytes.

    PubMed

    Cazzolli, Rosanna; Huang, Ping; Teng, Shuzhi; Hughes, William E

    2009-01-01

    Phospholipase D (PLD) is an enzyme producing phosphatidic acid and choline through hydrolysis of phosphatidylcholine. The enzyme has been identified as a member of a variety of signal transduction cascades and as a key regulator of numerous intracellular vesicle trafficking processes. A role for PLD in regulating glucose homeostasis is emerging as the enzyme has recently been identified in events regulating exocytosis of insulin from pancreatic beta-cells and also in insulin-stimulated glucose uptake through controlling GLUT4 vesicle exocytosis in muscle and adipose tissue. We present methodologies for assessing cellular PLD activity in secretagogue-stimulated insulin-secreting pancreatic beta-cells and also insulin-stimulated adipocyte and muscle cells, two of the principal insulin-responsive cell types controlling blood glucose levels.

  16. Glucose and Insulin Stimulate Lipogenesis in Porcine Adipocytes: Dissimilar and Identical Regulation Pathway for Key Transcription Factors

    PubMed Central

    Hua, Zhang Guo; Xiong, Lu Jian; Yan, Chen; Wei, Dai Hong; YingPai, ZhaXi; Qing, Zhao Yong; Lin, Qiao Zi; Fei, Feng Ruo; Ling, Wang Ya; Ren, Ma Zhong

    2016-01-01

    Lipogenesis is under the concerted action of ChREBP, SREBP-1c and other transcription factors in response to glucose and insulin. The isolated porcine preadipocytes were differentiated into mature adipocytes to investigate the roles and interrelation of these transcription factors in the context of glucose- and insulin-induced lipogenesis in pigs. In ChREBP-silenced adipocytes, glucose-induced lipogenesis decreased by ~70%, however insulin-induced lipogenesis was unaffected. Moreover, insulin had no effect on ChREBP expression of unperturbed adipocytes irrespective of glucose concentration, suggesting ChREBP mediate glucose-induced lipogenesis. Insulin stimulated SREBP-1c expression and when SREBP-1c activation was blocked, and the insulin-induced lipogenesis decreased by ~55%, suggesting SREBP-1c is a key transcription factor mediating insulin-induced lipogenesis. LXRα activation promoted lipogenesis and lipogenic genes expression. In ChREBP-silenced or SREBP-1c activation blocked adipocytes, LXRα activation facilitated lipogenesis and SREBP-1c expression, but had no effect on ChREBP expression. Therefore, LXRα might mediate lipogenesis via SREBP-1c rather than ChREBP. When ChREBP expression was silenced and SREBP-1c activation blocked simultaneously, glucose and insulin were still able to stimulated lipogenesis and lipogenic genes expression, and LXRα activation enhanced these effects, suggesting LXRα mediated directly glucose- and insulin-induced lipogenesis. In summary, glucose and insulin stimulated lipogenesis through both dissimilar and identical regulation pathway in porcine adipocytes. PMID:27871177

  17. Interferon gamma attenuates insulin signaling, lipid storage, and differentiation in human adipocytes via activation of the JAK/STAT pathway.

    PubMed

    McGillicuddy, Fiona C; Chiquoine, Elise H; Hinkle, Christine C; Kim, Roy J; Shah, Rachana; Roche, Helen M; Smyth, Emer M; Reilly, Muredach P

    2009-11-13

    Recent reports demonstrate T-cell infiltration of adipose tissue in early obesity. We hypothesized that interferon (IFN) gamma, a major T-cell inflammatory cytokine, would attenuate human adipocyte functions and sought to establish signaling mechanisms. Differentiated human adipocytes were treated with IFNgamma +/- pharmacological inhibitors prior to insulin stimulation. [(3)H]Glucose uptake and AKT phosphorylation were assessed as markers of insulin sensitivity. IFNgamma induced sustained loss of insulin-stimulated glucose uptake in human adipocytes, coincident with reduced Akt phosphorylation and down-regulation of the insulin receptor, insulin receptor substrate-1, and GLUT4. Loss of adipocyte triglyceride storage was observed with IFNgamma co-incident with reduced expression of peroxisome proliferator-activated receptor gamma, adiponectin, perilipin, fatty acid synthase, and lipoprotein lipase. Treatment with IFNgamma also blocked differentiation of pre-adipocytes to the mature phenotype. IFNgamma-induced robust STAT1 phosphorylation and SOCS1 mRNA expression, with modest, transient STAT3 phosphorylation and SOCS3 induction. Preincubation with a non-selective JAK inhibitor restored glucose uptake and Akt phosphorylation while completely reversing IFNgamma suppression of adipogenic mRNAs and adipocyte differentiation. Specific inhibition of JAK2 or JAK3 failed to block IFNgamma effects suggesting a predominant role for JAK1-STAT1. We demonstrate that IFNgamma attenuates insulin sensitivity and suppresses differentiation in human adipocytes, an effect most likely mediated via sustained JAK-STAT1 pathway activation.

  18. Interferon γ Attenuates Insulin Signaling, Lipid Storage, and Differentiation in Human Adipocytes via Activation of the JAK/STAT Pathway*

    PubMed Central

    McGillicuddy, Fiona C.; Chiquoine, Elise H.; Hinkle, Christine C.; Kim, Roy J.; Shah, Rachana; Roche, Helen M.; Smyth, Emer M.; Reilly, Muredach P.

    2009-01-01

    Recent reports demonstrate T-cell infiltration of adipose tissue in early obesity. We hypothesized that interferon (IFN) γ, a major T-cell inflammatory cytokine, would attenuate human adipocyte functions and sought to establish signaling mechanisms. Differentiated human adipocytes were treated with IFNγ ± pharmacological inhibitors prior to insulin stimulation. [3H]Glucose uptake and AKT phosphorylation were assessed as markers of insulin sensitivity. IFNγ induced sustained loss of insulin-stimulated glucose uptake in human adipocytes, coincident with reduced Akt phosphorylation and down-regulation of the insulin receptor, insulin receptor substrate-1, and GLUT4. Loss of adipocyte triglyceride storage was observed with IFNγ co-incident with reduced expression of peroxisome proliferator-activated receptor γ, adiponectin, perilipin, fatty acid synthase, and lipoprotein lipase. Treatment with IFNγ also blocked differentiation of pre-adipocytes to the mature phenotype. IFNγ-induced robust STAT1 phosphorylation and SOCS1 mRNA expression, with modest, transient STAT3 phosphorylation and SOCS3 induction. Preincubation with a non-selective JAK inhibitor restored glucose uptake and Akt phosphorylation while completely reversing IFNγ suppression of adipogenic mRNAs and adipocyte differentiation. Specific inhibition of JAK2 or JAK3 failed to block IFNγ effects suggesting a predominant role for JAK1-STAT1. We demonstrate that IFNγ attenuates insulin sensitivity and suppresses differentiation in human adipocytes, an effect most likely mediated via sustained JAK-STAT1 pathway activation. PMID:19776010

  19. Insulin continues to induce plasminogen activator inhibitor 1 gene expression in insulin-resistant mice and adipocytes.

    PubMed Central

    Samad, F.; Pandey, M.; Bell, P. A.; Loskutoff, D. J.

    2000-01-01

    BACKGROUND: Although the association between insulin resistance and cardiovascular risk is well established, the underlying molecular mechanisms are poorly understood. The antifibrinolytic molecule plasminogen activator inhibitor 1 (PAI-1) is a cardiovascular risk factor that is consistently elevated in insulin-resistant states such as obesity and non-insulin-dependent diabetes mellitus (NIDDM). The strong positive correlation between this elevated PAI-1 and the degree of hyperinsulinemia not only implicates insulin itself in this increase, but also suggests that PAI-1 is regulated by a pathway that does not become insulin resistant. The data in this report supports this hypothesis. MATERIALS AND METHODS: We show that insulin stimulates PAI-1 gene expression in metabolically insulin-resistant ob/ob mice and in insulin-resistant 3T3-L1 adipocytes. Moreover, we provide evidence that glucose transport and PAI-1 gene expression are mediated by different insulin signaling pathways. These observations suggest that the compensatory hyperinsulinemia that is frequently associated with insulin-resistant states, directly contribute to the elevated PAI-1. CONCLUSIONS: These results provide a potential mechanism for the abnormal increases in cardiovascular risk genes in obesity, NIDDM, and polycystic ovary disease. PMID:11055587

  20. Basal lipolysis, not the degree of insulin resistance, differentiates large from small isolated adipocytes in high-fat fed mice.

    PubMed

    Wueest, S; Rapold, R A; Rytka, J M; Schoenle, E J; Konrad, D

    2009-03-01

    Adipocytes in obesity are characterised by increased cell size and insulin resistance compared with adipocytes isolated from lean patients. However, it is not clear at present whether hypertrophy actually does drive adipocyte insulin resistance. Thus, the aim of the present study was to metabolically characterise small and large adipocytes isolated from epididymal fat pads of mice fed a high-fat diet (HFD). C57BL/6J mice were fed normal chow or HFD for 8 weeks. Adipocytes from epididymal fat pads were isolated by collagenase digestion and, in HFD-fed mice, separated into two fractions according to their size by filtration through a nylon mesh. Viability was assessed by lactate dehydrogenase and 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium assays. Basal and insulin-stimulated D-[U-(14)C]glucose incorporation and lipolysis were measured. Protein levels and mRNA expression were determined by western blot and real-time RT-PCR, respectively. Insulin-stimulated D-[U-(14)C]glucose incorporation into adipocytes isolated from HFD-fed mice was reduced by 50% compared with adipocytes from chow-fed mice. However, it was similar between small (average diameter 60.9 +/- 3.1 microm) and large (average diameter 83.0 +/- 6.6 microm) adipocytes. Similarly, insulin-stimulated phosphorylation of protein kinase B and AS160 were reduced to the same extent in small and large adipocytes isolated from HFD-mice. In addition, insulin failed to inhibit lipolysis in both adipocyte fractions, whereas it decreased lipolysis by 30% in adipocytes of chow-fed mice. In contrast, large and small adipocytes differed in basal lipolysis rate, which was twofold higher in the larger cells. The latter finding was associated with higher mRNA expression levels of Atgl (also known as Pnpla2) and Hsl (also known as Lipe) in larger adipocytes. Viability was not different between small and large adipocytes. Rate of basal lipolysis but not insulin responsiveness is different between small and large

  1. Implication of the Tpl2 kinase in inflammatory changes and insulin resistance induced by the interaction between adipocytes and macrophages.

    PubMed

    Ceppo, Franck; Berthou, Flavien; Jager, Jennifer; Dumas, Karine; Cormont, Mireille; Tanti, Jean-François

    2014-03-01

    Adipose tissue inflammation is associated with the development of insulin resistance. In obese adipose tissue, lipopolysaccharides (LPSs) and saturated fatty acids trigger inflammatory factors that mediate a paracrine loop between adipocytes and macrophages. However, the inflammatory signaling proteins underlying this cross talk remain to be identified. The mitogen-activated protein kinase kinase kinase tumor progression locus 2 (Tpl2) is activated by inflammatory stimuli, including LPS, and its expression is up-regulated in obese adipose tissue, but its role in the interaction between adipocytes and macrophages remains ill-defined. To assess the implication of Tpl2 in the cross talk between these 2 cell types, we used coculture system and conditioned medium (CM) from macrophages. Pharmacological inhibition of Tpl2 in the coculture markedly reduced lipolysis and cytokine production and prevented the decrease in adipocyte insulin signaling. Tpl2 knockdown in cocultured adipocytes reduced lipolysis but had a weak effect on cytokine production and did not prevent the alteration of insulin signaling. By contrast, Tpl2 silencing in cocultured macrophages resulted in a marked inhibition of cytokine production and prevented the alteration of adipocyte insulin signaling. Further, when Tpl2 was inhibited in LPS-activated macrophages, the produced CM did not alter adipocyte insulin signaling and did not induce an inflammatory response in adipocytes. By contrast, Tpl2 silencing in adipocytes did not prevent the deleterious effects of a CM from LPS-activated macrophages. Together, these data establish that Tpl2, mainly in macrophages, is involved in the cross talk between adipocytes and macrophages that promotes inflammatory changes and alteration of insulin signaling in adipocytes.

  2. Enlarged subcutaneous abdominal adipocyte size, but not obesity itself, predicts type II diabetes independent of insulin resistance.

    PubMed

    Weyer, C; Foley, J E; Bogardus, C; Tataranni, P A; Pratley, R E

    2000-12-01

    Cross-sectional studies indicate that enlarged subcutaneous abdominal adipocyte size is associated with hyperinsulinaemia, insulin resistance and glucose intolerance. To further explore the pathophysiological significance of these associations, we examined prospectively whether enlarged subcutaneous abdominal adipocyte size predicts Type II (non-insulin-dependent) diabetes mellitus. Body composition (hydrodensitometry), mean subcutaneous abdominal adipocyte size (fat biopsy), insulin sensitivity (hyperinsulinaemic clamp) and the acute insulin secretory response (25-g i.v. GTT) were assessed in 280 Pima Indians with either normal (NGT), impaired (IGT) or diabetic glucose tolerance (75-g OGTT). Subjects with NGT were then followed prospectively. After adjusting for age, sex and per cent body fat, mean subcutaneous abdominal adipocyte size was 19% and 11% higher in subjects with diabetes and IGT, compared with those with NGT (p < 0.001). Insulin sensitivity was inversely correlated with mean subcutaneous abdominal adipocyte size (r = -0.53, p < 0.0001), even after adjusting for per cent body fat (r = -0.31, p < 0.001). In 108 NGT subjects followed over 9.3 +/- 4.1 years (33 of whom developed diabetes), enlarged mean subcutaneous abdominal adipocyte size but not high per cent body fat, was an independent predictor of diabetes, in addition to a low insulin sensitivity and acute insulin secretory response [relative hazard 10th vs 90th centile (95% CI): 5.8 (1.7-19.6), p < 0.005]. In 28 NGT subjects with a 9% weight gain over 2.7 +/- 1.3 years, changes in insulin sensitivity were inversely and independently related to changes in mean subcutaneous abdominal adipocyte size and per cent body fat. Although enlarged mean subcutaneous abdominal adipocyte size is associated with insulin resistance cross-sectionally, prospectively, both abnormalities are independent and additive predictors of Type II diabetes.

  3. Insulin regulation of protein biosynthesis in differentiated 3T3 adipocytes. Regulation of glyceraldehyde-3-phosphate dehydrogenase

    SciTech Connect

    Alexander, M.; Curtis, G.; Avruch, J.; Goodman, H.M.

    1985-10-05

    The effect of insulin on protein biosynthesis was examined in differentiated 3T3-L1 and 3T3-F442A adipocytes. Insulin altered the relative rate of synthesis of specific proteins independent of its ability to hasten conversion of the fibroblast (preadipocyte) phenotype to the adipocyte phenotype. Although more than one pattern of response to insulin was observed, the authors focused on the induction of a Mr 33,000 protein which was identified as the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Exposure of 3T3 adipocytes to insulin throughout differentiation specifically increased GAPDH activity and protein content by 2- to 3-fold as compared to 3T3 adipocytes differentiated in the absence of insulin. These changes in enzyme activity and content could be accounted for by a 4-fold increase in the relative rate of synthesis of GAPDH and a 9-fold increase in hybridizable mRNA levels. Within 2 h of insulin addition to 3T3 adipocytes differentiated in the absence of hormone, hybridizable GAPDH mRNA levels increased 3-fold, and within 24 h GAPDH mRNA levels increased 8-fold, and (TVS) methionine incorporation into GAPDH protein increased 5-fold. These studies demonstrate that insulin, as the sole hormonal perturbant, can increase the synthesis of certain 3T3 adipocyte proteins by altering the cellular content of a specific mRNA.

  4. Effects of decavanadate and insulin enhancing vanadium compounds on glucose uptake in isolated rat adipocytes.

    PubMed

    Pereira, Maria João; Carvalho, Eugénia; Eriksson, Jan W; Crans, Debbie C; Aureliano, Manuel

    2009-12-01

    The effects of different vanadium compounds namely pyridine-2,6-dicarboxylatedioxovanadium(V) (V5-dipic), bis(maltolato) oxovanadium(IV) (BMOV) and amavadine, and oligovanadates namely metavanadate and decavanadate were analysed on basal and insulin stimulated glucose uptake in rat adipocytes. Decavanadate (50 microM), manifest a higher increases (6-fold) on glucose uptake compared with basal, followed by BMOV (1 mM) and metavanadate (1 mM) solutions (3-fold) whereas V5 dipic and amavadine had no effect. Decavanadate (100 microM) also shows the highest insulin like activity when compared with the others compounds studied. In the presence of insulin (10 nM), only decavanadate increases (50%) the glucose uptake when compared with insulin stimulated glucose uptake whereas BMOV and metavanadate, had no effect and V5 dipic and amavadine prevent the stimulation to about half of the basal value. Decavanadate is also able to reduce or eradicate the suppressor effect caused by dexamethasone on glucose uptake at the level of the adipocytes. Altogether, vanadium compounds and oligovanadates with several structures and coordination spheres reveal different effects on glucose uptake in rat primary adipocytes.

  5. Artemisia scoparia enhances adipocyte development and endocrine function in vitro and enhances insulin action in vivo.

    PubMed

    Richard, Allison J; Fuller, Scott; Fedorcenco, Veaceslav; Beyl, Robbie; Burris, Thomas P; Mynatt, Randall; Ribnicky, David M; Stephens, Jacqueline M

    2014-01-01

    Failure of adipocytes to expand during periods of energy excess can result in undesirable metabolic consequences such as ectopic fat accumulation and insulin resistance. Blinded screening studies have indicated that Artemisia scoparia (SCO) extracts can enhance adipocyte differentiation and lipid accumulation in cultured adipocytes. The present study tested the hypothesis that SCO treatment modulates fat cell development and function in vitro and insulin sensitivity in adipose tissue in vivo. In vitro experiments utilized a Gal4-PPARγ ligand binding domain (LBD) fusion protein-luciferase reporter assay to examine PPARγ activation. To investigate the ability of SCO to modulate adipogenesis and mature fat cell function in 3T3-L1 cells, neutral lipid accumulation, gene expression, and protein secretion were measured by Oil Red O staining, qRT-PCR, and immunoblotting, respectively. For the in vivo experiments, diet-induced obese (DIO) C57BL/6J mice were fed a high-fat diet (HFD) or HFD containing 1% w/w SCO for four weeks. Body weight and composition, food intake, and fasting glucose and insulin levels were measured. Phospho-activation and expression of insulin-sensitizing proteins in epididymal adipose tissue (eWAT) were measured by immunoblotting. Ethanolic extracts of A. scoparia significantly activated the PPARγ LBD and enhanced lipid accumulation in differentiating 3T3-L1 cells. SCO increased the transcription of several PPARγ target genes in differentiating 3T3-L1 cells and rescued the negative effects of tumor necrosis factor α on production and secretion of adiponectin and monocyte chemoattractant protein-1 in fully differentiated fat cells. DIO mice treated with SCO had elevated adiponectin levels and increased phosphorylation of AMPKα in eWAT when compared to control mice. In SCO-treated mice, these changes were also associated with decreased fasting insulin and glucose levels. SCO has metabolically beneficial effects on adipocytes in vitro and adipose

  6. Trehalose prevents adipocyte hypertrophy and mitigates insulin resistance in mice with established obesity.

    PubMed

    Arai, Chikako; Miyake, Masaki; Matsumoto, Yohsuke; Mizote, Akiko; Yoshizane, Chiyo; Hanaya, Yohko; Koide, Kazuhiro; Yamada, Mika; Hanaya, Toshiharu; Arai, Shigeyuki; Fukuda, Shigeharu

    2013-01-01

    Our group recently demonstrated that simultaneous administration of trehalose with a high-fat diet (HFD) suppresses adipocyte hypertrophy and mitigates insulin resistance in mice. For the present study, we hypothesized that similar effects of trehalose would be observed in mice with previously-established obesity. Obese mice were fed a HFD and drinking water containing 0.3 or 2.5% (weight/volume) trehalose or distilled water (DW) ad libitum for 8 wk. After 7 wk intake of a HFD and trehalose, fasting serum insulin levels and homeostasis model assessment-insulin resistance (HOMA-IR) in the 0.3% Tre/HFD group were significantly lower than those in the DW/HFD group (p<0.05). After 8 wk of treatment, mesenteric adipocytes in the 0.3% Tre/HFD group showed significantly less hypertrophy than those in the DW/HFD group. Mechanistic analysis indicated that levels of high molecular weight (HMW) adiponectin in the serum of the 0.3% Tre/HFD group were significantly higher than those in the DW/HFD group. The expression levels of insulin receptor substrate-1 (IRS-1) and insulin receptor substrate-2 (IRS-2) messenger RNA (mRNA) in muscle were also significantly increased by trehalose intake. Our data therefore suggest that administration of trehalose to obese mice mitigates insulin resistance by suppressing adipocyte hypertrophy and increasing serum HMW adiponectin, resulting in upregulation of IRS-1, and IRS-2 expression in muscle. These results further suggest that trehalose is a functional saccharide that may be used to prevent the progression of insulin resistance.

  7. The importance of palmitoleic acid to adipocyte insulin resistance and whole-body insulin sensitivity in type 1 diabetes.

    PubMed

    Bergman, Bryan C; Howard, David; Schauer, Irene E; Maahs, David M; Snell-Bergeon, Janet K; Clement, Timothy W; Eckel, Robert H; Perreault, Leigh; Rewers, Marian

    2013-01-01

    Type 1 diabetes is an insulin-resistant state, but it is less clear which tissues are affected. Our previous report implicated skeletal muscle and liver insulin resistance in people with type 1 diabetes, but this occurred independently of generalized, visceral, or ectopic fat. The aim of the study was to measure adipose tissue insulin sensitivity and plasma triglyceride composition in individuals with type 1 diabetes after overnight insulin infusion to lower fasting glucose. Fifty subjects (25 individuals with type 1 diabetes and 25 controls without) were studied. After 3 d of dietary control and overnight insulin infusion, we performed a three-stage hyperinsulinemic/euglycemic clamp infusing insulin at 4, 8, and 40 mU/m(2) · min. Infusions of [1,1,2,3,3-(2)H(2)]glycerol and [1-(13)C]palmitate were used to quantify lipid metabolism. Basal glycerol and palmitate rates of appearance were similar between groups, decreased more in control subjects during the first two stages of the clamp, and similarly suppressed during the highest insulin dose. The concentration of insulin required for 50% inhibition of lipolysis was twice as high in individuals with type 1 diabetes. Plasma triglyceride saturation was similar between groups, but palmitoleic acid in plasma triglyceride was inversely related to adipocyte insulin sensitivity. Unesterified palmitoleic acid in plasma was positively related to insulin sensitivity in controls, but not in individuals with type 1 diabetes. Adipose tissue insulin resistance is a significant feature of type 1 diabetes. Palmitoleic acid is not related to insulin sensitivity in type 1 diabetes, as it was in controls, suggesting a novel mechanism for insulin resistance in this population.

  8. In preeclampsia, maternal third trimester subcutaneous adipocyte lipolysis is more resistant to suppression by insulin than in healthy pregnancy.

    PubMed

    Huda, Shahzya S; Forrest, Rachel; Paterson, Nicole; Jordan, Fiona; Sattar, Naveed; Freeman, Dilys J

    2014-05-01

    Obesity increases preeclampsia risk, and maternal dyslipidemia may result from exaggerated adipocyte lipolysis. We compared adipocyte function in preeclampsia with healthy pregnancy to establish whether there is increased lipolysis. Subcutaneous and visceral adipose tissue biopsies were collected at caesarean section from healthy (n=31) and preeclampsia (n=13) mothers. Lipolysis in response to isoproterenol (200 nmol/L) and insulin (10 nmol/L) was assessed. In healthy pregnancy, subcutaneous adipocytes had higher diameter than visceral adipocytes (P<0.001). Subcutaneous and visceral adipocyte mean diameter in preeclampsia was similar to that in healthy pregnant controls, but cell distribution was shifted toward smaller cell diameter in preeclampsia. Total lipolysis rates under all conditions were lower in healthy visceral than subcutaneous adipocytes but did not differ after normalization for cell diameter. Visceral adipocyte insulin sensitivity was lower than subcutaneous in healthy pregnancy and inversely correlated with plasma triglyceride (r=-0.50; P=0.004). Visceral adipose tissue had lower ADRB3, LPL, and leptin and higher insulin receptor messenger RNA expression than subcutaneous adipose tissue. There was no difference in subcutaneous adipocyte lipolysis rates between preeclampsia and healthy controls, but subcutaneous adipocytes had lower sensitivity to insulin in preeclampsia, independent of cell diameter (P<0.05). In preeclampsia, visceral adipose tissue had higher LPL messenger RNA expression than subcutaneous. In conclusion, in healthy pregnancy, the larger total mass of subcutaneous adipose tissue may release more fatty acids into the circulation than visceral adipose tissue. Reduced insulin suppression of subcutaneous adipocyte lipolysis may increase the burden of plasma fatty acids that the mother has to process in preeclampsia.

  9. Glucose and insulin modify thrombospondin 1 expression and secretion in primary adipocytes from diet-induced obese rats.

    PubMed

    Garcia-Diaz, Diego F; Arellano, Arianna V; Milagro, Fermin I; Moreno-Aliaga, Maria Jesus; Portillo, Maria Puy; Martinez, J Alfredo; Campion, Javier

    2011-09-01

    Thrombospondin 1 (TSP-1), an antiangiogenic factor and transforming growth factor (TGF)-β activity regulator, has been recently recognized as an adipokine that correlates with obesity, inflammation and insulin resistance processes. In the present study, epididymal adipocytes of rats that were fed a chow or a high-fat diet (HFD) for 50 days were isolated and incubated (24-72 h) in low (5.6 mM) or high (HG; 25 mM) glucose, in the presence or absence of 1.6 nM insulin. Rats fed the HF diet showed an established obesity state. Serum TSP-1 levels and TSP-1 mRNA basal expression of adipocytes from HFD rats were higher than those from controls. Adipocytes from HFD animals presented an insulin resistance state, as suggested by the lower insulin-stimulated glucose uptake as compared to controls. TSP-1 expression in culture was higher in adipocytes from obese animals at 24 h, but when the adipocytes were treated with HG, these expression levels dropped dramatically. Later at 72 h, TSP-1 expression was lower in adipocytes from HFD rats, and no effects of the other treatments were observed. Surprisingly, the secretion levels of this protein at 72 h were increased significantly by the HG treatment in both types of adipocytes, although they were even higher in adipocytes from obese animals. Finally, cell viability was significantly reduced by HG treatment in both types of adipocytes. In summary, TSP-1 expression/secretion was modulated in an in vitro model of insulin-resistant adipocytes. The difference between expression and secretion patterns suggests a posttranscriptional regulation. The present study confirms that TPS-1 is closely associated with obesity-related mechanisms.

  10. mRNA concentrations of MIF in subcutaneous abdominal adipose cells are associated with adipocyte size and insulin action

    PubMed Central

    Koska, Juraj; Stefan, Norbert; Dubois, Severine; Trinidad, Cathy; Considine, Robert V.; Funahashi, Tohru; Bunt, Joy C.; Ravussin, Eric; Permana, Paska A.

    2009-01-01

    Objective To determine whether the mRNA concentrations of inflammation response genes in isolated adipocytes and in cultured preadipocytes are related to adipocyte size and in vivo insulin action in obese individuals. Design Cross-sectional inpatient study. Subjects Obese Pima Indians with normal glucose tolerance. Measurements Adipocyte diameter (by microscope technique; n=29), expression of candidate genes (by quantitative real-time PCR) in freshly isolated adipocytes (monocyte chemoattractant protein [MCP] 1 and MCP2, macrophage inflammatory protein [MIP] 1α, MIP1β and MIP2, macrophage migration inhibitory factor [MIF], tumor necrosis factor alpha, interleukin [IL] 6 and IL8; n=22) and cultured preadipocytes (MCP1, MIP1α, MIF, IL6 and matrix metalloproteinase 2; n=33) from subcutaneous abdominal adipose tissue (by aspiration biopsy, n=34), body fat by dual-energy X-ray absorptiometry, glucose tolerance by 75-gram oral glucose tolerance test, and insulin action by euglycemic-hyperinsulinemic clamp (insulin infusion rate 40 mU/m2.min)(all n=34). Results MIF was the only gene whose expression in both freshly isolated adipocytes and cultured preadipocytes was positively associated with adipocytes diameter and negatively associated with peripheral and hepatic insulin action (all P<0.05). In multivariate analysis, the association between adipocyte MIF mRNA concentrations and adipocytes diameter was independent of percent body fat (P=0.03), whereas adipocyte MIF mRNA concentrations but not adipocytes diameter independently predicted peripheral insulin action. The mRNA expression concentrations of MIF gene in adipocytes were not associated with plasma concentrations of MIF, but were negatively associated with plasma adiponectin concentrations (P=0.004). In multivariate analysis, adipocyte MIF RNA concentrations (P=0.03) but not plasma adiponectin concentrations (P=0.4) remained a significant predictor of insulin action. Conclusions Increased expression of MIF gene in

  11. Chromium and vanadate combination increases insulin-induced glucose uptake by 3T3-L1 adipocytes.

    PubMed

    Brautigan, David L; Kruszewski, Allison; Wang, Hong

    2006-09-01

    Insulin activates signaling pathways in target tissues through the insulin receptor and Tyr phosphorylation of intracellular proteins. Vanadate mimics insulin and enhances its actions through inhibition of protein Tyr phosphatases. Chromium is a micronutrient that enhances insulin action to normalize blood glucose, but the mechanism is not understood. Here we show that either vanadate or chromium stimulates Tyr phosphorylation of insulin receptor in mouse 3T3-L1 adipocytes compared to insulin alone, but a combination of vanadate and chromium is not additive. Phosphorylation of MAPK or 4E-BP1 as markers for insulin signaling is stimulated by vanadate plus insulin, and chromium does not enhance the effects. Vanadate robustly activates glucose uptake by 3T3-L1 adipocytes even without added insulin and increases insulin-stimulated glucose uptake. Chromium pretreatment of adipocytes slightly enhances glucose uptake in response to insulin, but significantly increases glucose uptake above that induced by insulin plus vanadate. These data show that chromium enhances glucose uptake even when Tyr phosphorylation levels are elevated by vanadate plus insulin, suggesting separate mechanisms of action for vanadate and chromium.

  12. A systems biology analysis connects insulin receptor signaling with glucose transporter translocation in rat adipocytes.

    PubMed

    Bergqvist, Niclas; Nyman, Elin; Cedersund, Gunnar; Stenkula, Karin G

    2017-07-07

    Type 2 diabetes is characterized by insulin resistance, which arises from malfunctions in the intracellular insulin signaling network. Knowledge of the insulin signaling network is fragmented, and because of the complexity of this network, little consensus has emerged for the structure and importance of the different branches of the network. To help overcome this complexity, systems biology mathematical models have been generated for predicting both the activation of the insulin receptor (IR) and the redistribution of glucose transporter 4 (GLUT4) to the plasma membrane. Although the insulin signal transduction between IR and GLUT4 has been thoroughly studied with modeling and time-resolved data in human cells, comparable analyses in cells from commonly used model organisms such as rats and mice are lacking. Here, we combined existing data and models for rat adipocytes with new data collected for the signaling network between IR and GLUT4 to create a model also for their interconnections. To describe all data (>140 data points), the model needed three distinct pathways from IR to GLUT4: (i) via protein kinase B (PKB) and Akt substrate of 160 kDa (AS160), (ii) via an AS160-independent pathway from PKB, and (iii) via an additional pathway from IR, e.g. affecting the membrane constitution. The developed combined model could describe data not used for training the model and was used to generate predictions of the relative contributions of the pathways from IR to translocation of GLUT4. The combined model provides a systems-level understanding of insulin signaling in rat adipocytes, which, when combined with corresponding models for human adipocytes, may contribute to model-based drug development for diabetes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Fatty acid-induced mitochondrial uncoupling in adipocytes is not a promising target for treatment of insulin resistance unless adipocyte oxidative capacity is increased.

    PubMed

    Frayn, K N; Langin, D; Karpe, F

    2008-03-01

    The release of fatty acids from white adipose tissue is regulated at several levels. We have examined the suggestion that fatty acid release might be diminished by upregulation of mitochondrial fatty acid oxidation in the adipocyte, through increasing mitochondrial uncoupling. The intrinsic oxidative capacity of white adipose tissue is low, and older studies suggest that there is little fatty acid oxidation in white adipocytes, human or rodent. We have examined data on fatty acid metabolism and O(2) consumption in human white adipose tissue in vivo, and conclude that increasing fatty acid oxidation within the oxidative capacity of the tissue would produce only small changes (a few percent) in fatty acid release. The major locus of control of fatty acid release beyond the stimulation of lipolysis is the pathway of fatty acid esterification, already probably targeted by the thiazolidinedione insulin-sensitising agents. An alternative approach would be to upregulate the mitochondrial capacity of the adipocyte. We review proof-of-concept studies in which the phenotype of the white adipocyte has been changed to resemble that of the brown adipocyte by expression of peroxisome proliferator-activated receptor coactivator-1alpha. This increases oxidative capacity and also leads to fatty acid retention through upregulation of glycerol-3-phosphate production, and hence increased fatty acid re-esterification. We conclude that prevention or treatment of insulin resistance through alteration of adipocyte fatty acid handling will require more than a simple alteration of the activity of mitochondrial beta-oxidation within normal limits.

  14. Long-acting insulin analog detemir displays reduced effects on adipocyte differentiation of human subcutaneous and visceral adipose stem cells.

    PubMed

    Cignarelli, A; Perrini, S; Nigro, P; Ficarella, R; Barbaro, M; Peschechera, A; Porro, S; Natalicchio, A; Laviola, L; Puglisi, F; Giorgino, F

    2016-04-01

    Since treatment with insulin detemir results in a lower weight gain compared to human insulin, we investigated whether detemir is associated with lower ability to promote adipogenesis and/or lipogenesis in human adipose stem cells (ASC). Human ASC isolated from both the subcutaneous and visceral adipose tissues were differentiated for 30 days in the presence of human insulin or insulin detemir. Nile Red and Oil-Red-O staining were used to quantify the rate of ASC conversion to adipocytes and lipid accumulation, respectively. mRNA expression levels of early genes, including Fos and Cebpb, as well as of lipogenic and adipogenic genes, were measured at various phases of differentiation by qRT-PCR. Activation of insulin signaling was assessed by immunoblotting. ASC isolated from subcutaneous and visceral adipose tissue were less differentiated when exposed to insulin detemir compared to human insulin, showing lower rates of adipocyte conversion, reduced triglyceride accumulation, and impaired expression of late-phase adipocyte marker genes, such as Pparg2, Slc2a4, Adipoq, and Cidec. However, no differences in activation of insulin receptor, Akt and Erk and induction of the early genes Fos and Cebpb were observed between insulin detemir and human insulin. Insulin detemir displays reduced induction of the Pparg2 adipocyte master gene and diminished effects on adipocyte differentiation and lipogenesis in human subcutaneous and visceral ASC, in spite of normal activation of proximal insulin signaling reactions. These characteristics of insulin detemir may be of potential relevance to its weight-sparing effects observed in the clinical setting. Copyright © 2015 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.

  15. The Novel Endocrine Disruptor Tolylfluanid Impairs Insulin Signaling in Primary Rodent and Human Adipocytes through a Reduction in Insulin Receptor Substrate-1 Levels

    PubMed Central

    Sargis, Robert M.; Neel, Brian A.; Brock, Clifton O.; Lin, Yuxi; Hickey, Allison T.; Carlton, Daniel A.; Brady, Matthew J.

    2012-01-01

    Emerging data suggest that environmental endocrine disrupting chemicals (EDCs) may contribute to the pathophysiology of obesity and diabetes. In prior work, the phenylsulfamide fungicide tolylfluanid (TF) was shown to augment adipocyte differentiation, yet its effects on mature adipocyte metabolism remain unknown. Because of the central role of adipose tissue in global energy regulation, the present study tested the hypothesis that TF modulates insulin action in primary rodent and human adipocytes. Alterations in insulin signaling in primary mammalian adipocytes were determined by the phosphorylation of Akt, a critical insulin signaling intermediate. Treatment of primary murine adipose tissue in vitro with 100 nM TF for 48 h markedly attenuated acute insulin-stimulated Akt phosphorylation in a strain- and species-independent fashion. Perigonadal, perirenal, and mesenteric fat were all sensitive to TF-induced insulin resistance. A similar TF-induced reduction in insulin-stimulated Akt phosphorylation was observed in primary human subcutaneous adipose tissue. TF-treatment led to a potent and specific reduction in insulin receptor substrate-1 (IRS-1) mRNA and protein levels, a key upstream mediator of insulin’s diverse metabolic effects. In contrast, insulin receptor-β, phosphatidylinositol 3-kinase, and Akt expression were unchanged, indicating a specific abrogation of insulin signaling. Additionally, TF-treated adipocytes exhibited altered endocrine function with a reduction in both basal and insulin-stimulated leptin secretion. These studies demonstrate that TF induces cellular insulin resistance in primary murine and human adipocytes through a reduction of IRS-1 expression and protein stability, raising concern about the potential for this fungicide to disrupt metabolism and thereby contribute to the pathogenesis of diabetes. PMID:22387882

  16. Growth hormone, but not insulin, activates STAT5 proteins in adipocytes in vitro and in vivo.

    PubMed

    Zvonic, Sanjin; Story, David J; Stephens, Jacqueline M; Mynatt, Randall L

    2003-03-07

    STAT 5 proteins are latent transcription factors which have been shown to be activated by growth hormone (GH) in many cell types. However, some recent studies also suggest that STAT 5B is a physiological substrate of the insulin receptor. In our studies, we have shown that physiological levels of insulin do not induce STAT 5 tyrosine phosphorylation or affect the nuclear distribution of STATs 5A or 5B in 3T3-L1 adipocytes. Moreover, we did not observe the activation of STAT 5 in the adipose tissue or skeletal muscle of mice following an acute intraperitoneal injection of insulin. However, acute GH administration, both in vitro and in vivo, resulted in the activation of STAT 5 proteins. In summary, our results indicate that STAT 5 proteins are not activated by physiological levels of insulin in adipose tissue.

  17. Akt2-Dependent Beneficial Effect of Galanin on Insulin-Induced Glucose Uptake in Adipocytes of Diabetic Rats.

    PubMed

    Zhang, Zhenwen; Fang, Penghua; Guo, Lili; He, Biao; Shi, Mingyi; Zhu, Yan; Bo, Ping

    2017-01-01

    Glucose uptake occurs via the activation of an insulin-signaling cascade, resulting in the translocation of glucose transporter 4 (GLUT4) to the plasma membrane of adipocytes and myocytes. Recent research found that galanin could boost insulin-induced glucose uptake. This study aimed to explore whether activation of Akt2 mediates the beneficial effects of galanin on insulin-induced glucose uptake in the adipocytes of diabetic rats. In this experiment, insulin, galanin and MK-2206, an Akt inhibitor, were injected individually or in combination into diabetic rats once a day for ten days. Then, glucose uptake and pAkt2 and its downstream proteins were examined in adipocytes. Administration of galanin significantly enhanced insulin-induced 2-Deoxy-D-[3H]glucose uptake; GLUT4 and vesicle-associated membrane protein 2 contents in plasma membranes; and pAkt2Thr308/Ser473 and Akt2 mRNA expression levels in adipocytes. In addition, Akt2 downstream proteins including phosphorylated AS160 were increased, but the levels of phosphorylated forkhead box O1 and glycogen synthase kinase-3β were reduced. Treatment with MK-2206 may block the beneficial effects of galanin on these insulin-induced events. The results of this study suggest that phosphorylation of Akt2 mediates the beneficial effects of galanin on insulin-induced glucose uptake in the adipocytes of diabetic rats. © 2017 The Author(s)Published by S. Karger AG, Basel.

  18. Resistance to the antilipolytic effect of insulin in adipocytes of African-American compared to Caucasian postmenopausal women

    PubMed Central

    Fried, Susan K.; Tittelbach, Thomas; Blumenthal, Jacob; Sreenivasan, Urmila; Robey, Linda; Yi, Jamie; Khan, Sumbul; Hollender, Courtney; Ryan, Alice S.; Goldberg, Andrew P.

    2010-01-01

    High fatty acid (FA) flux is associated with systemic insulin resistance, and African-American (AA) women tend to be more insulin resistant. We assessed possible depot and race difference in the antilipolytic effect of insulin in adipocytes isolated from abdominal (Abd) and gluteal (Glt) subcutaneous (sc) adipose tissue of overweight, postmenopausal AA and Caucasian (C) women. Percent body fat, fasting insulin, visceral adiposity, and adipocyte size was higher in AA women. Disinhibited lipolysis (presence of adenosine deaminase) per unit adipocyte surface area was similar in Abd and Glt and in AA and C. However, rates of ‘basal’ [submaximal phenylisopropyl adenosine (PIA)-suppressed] and insulin-suppressed lipolysis were higher in Abd of AA compared with C women even after adjustment for percent fat and visceral fat area. The race difference in rates of PIA- and insulin-suppressed lipolysis in AA were correlated with their hyperinsulinemia, but AA race, independent of fasting insulin, was associated with lower responsiveness (percent suppression) to submaximal insulin concentrations, although sensitivity (ED50) was not affected. Overall, these data are consistent with the hypothesis that decreased responsiveness of Abd adipocytes to antilipolytic effectors may contribute to higher FA availability and thereby to racial differences in insulin resistance. PMID:19965580

  19. Resistance to the antilipolytic effect of insulin in adipocytes of African-American compared to Caucasian postmenopausal women.

    PubMed

    Fried, Susan K; Tittelbach, Thomas; Blumenthal, Jacob; Sreenivasan, Urmila; Robey, Linda; Yi, Jamie; Khan, Sumbul; Hollender, Courtney; Ryan, Alice S; Goldberg, Andrew P

    2010-05-01

    High fatty acid (FA) flux is associated with systemic insulin resistance, and African-American (AA) women tend to be more insulin resistant. We assessed possible depot and race difference in the antilipolytic effect of insulin in adipocytes isolated from abdominal (Abd) and gluteal (Glt) subcutaneous (sc) adipose tissue of overweight, postmenopausal AA and Caucasian (C) women. Percent body fat, fasting insulin, visceral adiposity, and adipocyte size was higher in AA women. Disinhibited lipolysis (presence of adenosine deaminase) per unit adipocyte surface area was similar in Abd and Glt and in AA and C. However, rates of 'basal' [submaximal phenylisopropyl adenosine (PIA)-suppressed] and insulin-suppressed lipolysis were higher in Abd of AA compared with C women even after adjustment for percent fat and visceral fat area. The race difference in rates of PIA- and insulin-suppressed lipolysis in AA were correlated with their hyperinsulinemia, but AA race, independent of fasting insulin, was associated with lower responsiveness (percent suppression) to submaximal insulin concentrations, although sensitivity (ED50) was not affected. Overall, these data are consistent with the hypothesis that decreased responsiveness of Abd adipocytes to antilipolytic effectors may contribute to higher FA availability and thereby to racial differences in insulin resistance.

  20. Coupling between insulin binding and activation of glucose transport in rat adipocytes

    SciTech Connect

    Ahn, N.G.; Lipkin, E.W.; Teller, D.C.; de Haeen, C.

    1986-05-01

    Previous studies have shown that the kinetics of binding of insulin (I) to its receptor (R) in isolated rat adipocytes at 15/sup 0/C, where insulin degradation was observed to be negligible, could best be described by the model: R+I in equilibrium RI in equilibrium R'I. According to this model, bound insulin is distributed between two kinetically distinct states of the occupied receptor, RI and R'I. The quantities of RI and R'I contributing to the observed total binding of insulin to cells can be obtained from the four rate constants describing the model. In order to examine the possible roles of RI and R'I in mediating hormone action, insulin stimulation of carrier-mediated 3-0-methyl-(U-/sup 14/C) glucose transport at 15/sup 0/C was studied. The results show that insulin activation of the rate of glucose transport was sigmoidal with time, and this was qualitatively similar to the formation of R'I with time. In contrast, formation of RI was described by an exponential approach to a plateau. This finding raises the possibility that R'I is the form of the insulin receptor directly mediating insulin activation of glucose transport.

  1. The amine oxidase inhibitor phenelzine limits lipogenesis in adipocytes without inhibiting insulin action on glucose uptake.

    PubMed

    Carpéné, Christian; Grès, Sandra; Rascalou, Simon

    2013-06-01

    The antidepressant phenelzine is a monoamine oxidase inhibitor known to inhibit various other enzymes, among them semicarbazide-sensitive amine oxidase (currently named primary amine oxidase: SSAO/PrAO), absent from neurones but abundant in adipocytes. It has been reported that phenelzine inhibits adipocyte differentiation of cultured preadipocytes. To further explore the involved mechanisms, our aim was to study in vitro the acute effects of phenelzine on de novo lipogenesis in mature fat cells. Therefore, glucose uptake and incorporation into lipid were measured in mouse adipocytes in response to phenelzine, other hydrazine-based SSAO/PrAO-inhibitors, and reference agents. None of the inhibitors was able to impair the sevenfold activation of 2-deoxyglucose uptake induced by insulin. Phenelzine did not hamper the effect of lower doses of insulin. However, insulin-stimulated glucose incorporation into lipids was dose-dependently inhibited by phenelzine and pentamidine, but not by semicarbazide or BTT2052. In contrast, all these SSAO/PrAO inhibitors abolished the transport and lipogenesis stimulation induced by benzylamine. These data indicate that phenelzine does not inhibit glucose transport, the first step of lipogenesis, but inhibits at 100 μM the intracellular triacylglycerol assembly, consistently with its long-term anti-adipogenic effect and such rapid action was not found with all the hydrazine derivatives tested. Therefore, the alterations of body weight control consecutive to the use of this antidepressant drug might be not only related to central effects on food intake/energy expenditure, but could also depend on its direct action in adipocytes. Nonetheless, phenelzine antilipogenic action is not merely dependent on SSAO/PrAO inhibition.

  2. Obesity-induced DNA released from adipocytes stimulates chronic adipose tissue inflammation and insulin resistance

    PubMed Central

    Nishimoto, Sachiko; Fukuda, Daiju; Higashikuni, Yasutomi; Tanaka, Kimie; Hirata, Yoichiro; Murata, Chie; Kim-Kaneyama, Joo-ri; Sato, Fukiko; Bando, Masahiro; Yagi, Shusuke; Soeki, Takeshi; Hayashi, Tetsuya; Imoto, Issei; Sakaue, Hiroshi; Shimabukuro, Michio; Sata, Masataka

    2016-01-01

    Obesity stimulates chronic inflammation in adipose tissue, which is associated with insulin resistance, although the underlying mechanism remains largely unknown. Here we showed that obesity-related adipocyte degeneration causes release of cell-free DNA (cfDNA), which promotes macrophage accumulation in adipose tissue via Toll-like receptor 9 (TLR9), originally known as a sensor of exogenous DNA fragments. Fat-fed obese wild-type mice showed increased release of cfDNA, as determined by the concentrations of single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) in plasma. cfDNA released from degenerated adipocytes promoted monocyte chemoattractant protein-1 (MCP-1) expression in wild-type macrophages, but not in TLR9-deficient (Tlr9−/−) macrophages. Fat-fed Tlr9−/− mice demonstrated reduced macrophage accumulation and inflammation in adipose tissue and better insulin sensitivity compared with wild-type mice, whereas bone marrow reconstitution with wild-type bone marrow restored the attenuation of insulin resistance observed in fat-fed Tlr9−/− mice. Administration of a TLR9 inhibitory oligonucleotide to fat-fed wild-type mice reduced the accumulation of macrophages in adipose tissue and improved insulin resistance. Furthermore, in humans, plasma ssDNA level was significantly higher in patients with computed tomography–determined visceral obesity and was associated with homeostasis model assessment of insulin resistance (HOMA-IR), which is the index of insulin resistance. Our study may provide a novel mechanism for the development of sterile inflammation in adipose tissue and a potential therapeutic target for insulin resistance. PMID:27051864

  3. Obesity-induced DNA released from adipocytes stimulates chronic adipose tissue inflammation and insulin resistance.

    PubMed

    Nishimoto, Sachiko; Fukuda, Daiju; Higashikuni, Yasutomi; Tanaka, Kimie; Hirata, Yoichiro; Murata, Chie; Kim-Kaneyama, Joo-Ri; Sato, Fukiko; Bando, Masahiro; Yagi, Shusuke; Soeki, Takeshi; Hayashi, Tetsuya; Imoto, Issei; Sakaue, Hiroshi; Shimabukuro, Michio; Sata, Masataka

    2016-03-01

    Obesity stimulates chronic inflammation in adipose tissue, which is associated with insulin resistance, although the underlying mechanism remains largely unknown. Here we showed that obesity-related adipocyte degeneration causes release of cell-free DNA (cfDNA), which promotes macrophage accumulation in adipose tissue via Toll-like receptor 9 (TLR9), originally known as a sensor of exogenous DNA fragments. Fat-fed obese wild-type mice showed increased release of cfDNA, as determined by the concentrations of single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) in plasma. cfDNA released from degenerated adipocytes promoted monocyte chemoattractant protein-1 (MCP-1) expression in wild-type macrophages, but not in TLR9-deficient (Tlr9 (-/-) ) macrophages. Fat-fed Tlr9 (-/-) mice demonstrated reduced macrophage accumulation and inflammation in adipose tissue and better insulin sensitivity compared with wild-type mice, whereas bone marrow reconstitution with wild-type bone marrow restored the attenuation of insulin resistance observed in fat-fed Tlr9 (-/-) mice. Administration of a TLR9 inhibitory oligonucleotide to fat-fed wild-type mice reduced the accumulation of macrophages in adipose tissue and improved insulin resistance. Furthermore, in humans, plasma ssDNA level was significantly higher in patients with computed tomography-determined visceral obesity and was associated with homeostasis model assessment of insulin resistance (HOMA-IR), which is the index of insulin resistance. Our study may provide a novel mechanism for the development of sterile inflammation in adipose tissue and a potential therapeutic target for insulin resistance.

  4. Linoleic acid decreases leptin and adiponectin secretion from primary rat adipocytes in the presence of insulin.

    PubMed

    Pérez-Matute, P; Martínez, J A; Marti, A; Moreno-Aliaga, M J

    2007-10-01

    Obesity rates have dramatically increased over the last few decades and, at the same time, major changes in the type of fatty acid intake have occurred. Linoleic acid, an n-6 polyunsaturated fatty acid, is an essential fatty acid occurring in high amounts in several western diets. A potential role of this fatty acid on obesity has been suggested. Controversial effects of linoleic acid on insulin sensitivity have also been reported. Thus, the aim of this study was to examine the direct effects of linoleic acid on leptin and adiponectin production, two adipokines known to influence weight gain and insulin sensitivity. Because insulin-stimulated glucose metabolism is an important regulator of leptin production, the effects of linoleic acid on adipocyte metabolism were also examined. For this purpose, isolated rat adipocytes were incubated with linoleic acid (1-200 microM) in the absence or presence of insulin. Linoleic acid (1-200 microM) significantly decreased insulin-stimulated leptin secretion and expression (P < 0.05), however, no changes in basal leptin production were observed. Linoleic acid also induced a significant decrease (approximately 20%) in adiponectin secretion (P < 0.05), but only in the presence of insulin and at the highest concentration tested (200 microM). This fatty acid did not modify either glucose uptake or lactate production and the percentage of glucose metabolized to lactate was not changed either. Together, these results suggest that linoleic acid seems to interfere with other insulin signalling pathway different from those controlling glucose uptake and metabolism, but involved in the regulation of leptin and adiponectin production.

  5. Insulin resistance in SHR/NDmc-cp rats correlates with enlarged perivascular adipocytes and endothelial cell dysfunction in skeletal muscle.

    PubMed

    Hariya, Natsuyo; Mochizuki, Kazuki; Inoue, Seiya; Morioka, Kosuke; Shimada, Masaya; Okuda, Tohru; Goda, Toshinao

    2014-01-01

    Ectopic adipose tissue in skeletal muscle is implicated in the development of insulin resistance, which is frequently induced by abnormal dietary habits such as excessive eating and a high-fat diet. However, the characteristics of ectopic adipocytes are unknown. In this study, we investigated the characteristics of ectopic adipocytes in the skeletal muscle of spontaneously hypertensive corpulent congenic (SHR/NDmc-cp) rats as a model of insulin resistance from excessive eating. SHR/NDmc-cp rats displayed overt insulin resistance with high plasma glucose, insulin, and triacylglycerol concentrations relative to control Wistar-Kyoto (WKY) rats. In contrast, streptozotocin (STZ)-treated WKY rats had high glucose but low insulin concentrations. Ectopic adipocytes were found around blood vessels in the gastrocnemius in SHR/NDmc-cp rats. Areas of perivascular adipocytes and protein expression of resistin were greater in SHR/NDmc-cp rats than in control and STZ-treated WKY rats. The level of the phosphorylated (active) form of endothelial nitric oxide synthase in the gastrocnemius was lower in SHR/NDmc-cp rats than in the other groups. Insulin-resistant SHR/NDmc-cp rats showed enlarged perivascular adipocytes and greater endothelial cell dysfunction in the gastrocnemius.

  6. Stevioside from Stevia rebaudiana Bertoni Increases Insulin Sensitivity in 3T3-L1 Adipocytes

    PubMed Central

    Mohd-Radzman, Nabilatul Hani; Ismail, Wan Iryani Wan; Jaapar, Siti Safura; Adam, Zainah; Adam, Aishah

    2013-01-01

    Stevioside from Stevia rebaudiana has been reported to exert antihyperglycemic effects in both rat and human subjects. There have been few studies on these effects in vitro. In this paper, radioactive glucose uptake assay was implemented in order to assess improvements in insulin sensitivity in 3T3-L1 cells by elevation of glucose uptake following treatment with stevioside. Oil Red-O staining and MTT assay were utilized to confirm adipocyte differentiation and cell viability, respectively. Findings from this research showed a significant increase in absorbance values in mature adipocytes following Oil Red-O staining, confirming the differentiation process. Stevioside was noncytotoxic to 3T3-L1 cells as cell viability was reduced by a maximum of 17%, making it impossible to determine its IC50. Stevioside increased glucose uptake activities by 2.1 times (p < 0.001) in normal conditions and up to 4.4 times (p < 0.001) in insulin-resistant states. At times, this increase was higher than that seen in positive control group treated with rosiglitazone maleate, an antidiabetic agent. Expressions of pY20 and p-IRS1 which were measured via Western blot were improved by stevioside treatment. In conclusion, stevioside has direct effects on 3T3-L1 insulin sensitivity via increase in glucose uptake and enhanced expression of proteins involved in insulin-signalling pathway. PMID:24391675

  7. Stevioside from Stevia rebaudiana Bertoni Increases Insulin Sensitivity in 3T3-L1 Adipocytes.

    PubMed

    Mohd-Radzman, Nabilatul Hani; Ismail, Wan Iryani Wan; Jaapar, Siti Safura; Adam, Zainah; Adam, Aishah

    2013-01-01

    Stevioside from Stevia rebaudiana has been reported to exert antihyperglycemic effects in both rat and human subjects. There have been few studies on these effects in vitro. In this paper, radioactive glucose uptake assay was implemented in order to assess improvements in insulin sensitivity in 3T3-L1 cells by elevation of glucose uptake following treatment with stevioside. Oil Red-O staining and MTT assay were utilized to confirm adipocyte differentiation and cell viability, respectively. Findings from this research showed a significant increase in absorbance values in mature adipocytes following Oil Red-O staining, confirming the differentiation process. Stevioside was noncytotoxic to 3T3-L1 cells as cell viability was reduced by a maximum of 17%, making it impossible to determine its IC50. Stevioside increased glucose uptake activities by 2.1 times (p < 0.001) in normal conditions and up to 4.4 times (p < 0.001) in insulin-resistant states. At times, this increase was higher than that seen in positive control group treated with rosiglitazone maleate, an antidiabetic agent. Expressions of pY20 and p-IRS1 which were measured via Western blot were improved by stevioside treatment. In conclusion, stevioside has direct effects on 3T3-L1 insulin sensitivity via increase in glucose uptake and enhanced expression of proteins involved in insulin-signalling pathway.

  8. A Triterpenoid Inhibited Hormone-Induced Adipocyte Differentiation and Alleviated Dexamethasone-Induced Insulin Resistance in 3T3-L1 adipocytes.

    PubMed

    Qin, Ji-Huan; Ma, Jun-Zeng; Yang, Xing-Wei; Hu, Ying-Jie; Zhou, Juan; Fu, Lin-Chun; Tian, Ru-Hua; Liu, Shan; Xu, Gang; Shen, Xiao-Ling

    2015-06-01

    6α-Hydroxylup-20(29)-en-3-on-28-oic acid (1), a natural triterpenoid, was found to possess the ability in a dose-dependent manner inhibiting hormone-induced adipocyte differentiation in 3T3-L1 preadipocytes, and restoring glucose consuming ability in dexamethasone (DXM)-induced insulin resistant 3T3-L1 adipocytes. Compound 1 was also found to ameliorate DXM-induced adipocyte dysfunction in lipolysis and adipokine secretion. Mechanistic studies revealed that 1 inhibited adipocyte differentiation in 3T3-L1 preadipocytes via down-regulating hormone-stimulated gene transcription of peroxisome proliferator-activated receptor γ and CCAAT-enhancer-binding protein alpha which are key factors in lipogenesis, and restored DXM-impaired glucose consuming ability in differentiated 3T3-L1 adipocytes via repairing insulin signaling pathway and activating down-stream signaling transduction by phosphorylation of signaling molecules PI3K/p85, Akt2 and AS160, thus leading to increased translocation of glucose transporter type 4 and transportation of glucose.

  9. Regulation of macrophage migration inhibitory factor (MIF) expression by glucose and insulin in adipocytes in vitro.

    PubMed Central

    Sakaue, S.; Nishihira, J.; Hirokawa, J.; Yoshimura, H.; Honda, T.; Aoki, K.; Tagami, S.; Kawakami, Y.

    1999-01-01

    BACKGROUND: It has been reported that macrophage migration inhibitory factor (MIF) stimulated insulin secretion from pancreatic islet beta-cells in an autocrine manner, which suggests its pivotal role in the glucose metabolism. According to this finding, we evaluated MIF expression in cultured adipocytes and epididymal fat pads of obese and diabetic rats to investigate its role in adipose tissue. MATERIALS AND METHODS: The murine adipocyte cell line 3T3-L1 was used to examine MIF mRNA expression and production of MIF protein in response to various concentrations of glucose and insulin. Epididymal fat pads of Otsuka Long-Evans Tokushima fatty (OLETF) and Wistar fatty rats, animal models of obesity and diabetes, were subjected to Northern blot analysis to determine MIF mRNA levels. RESULTS: MIF mRNA of 3T3-L1 adipocytes was up-regulated by costimulation with glucose and insulin. Intracellular MIF content was significantly increased by stimulation, whereas its content in the culture medium was decreased. When the cells were treated with cytochalasin B, MIF secretion in the medium was increased. Pioglitazone significantly increased MIF content in the culture medium of 3T3-L1 cells. However, MIF mRNA expression of both epididymal fat pads of OLETF and Wistar fatty rats was down-regulated despite a high plasma glucose level. The plasma MIF level of Wistar fatty rats was significantly increased by treatment with pioglitazone. CONCLUSION: We show here that the intracellular glucose level is critical to determining the MIF mRNA level as well as its protein content in adipose tissue. MIF is known to play an important role in glucose metabolism as a positive regulator of insulin secretion. In this context, it is conceivable that MIF may affect the pathophysiology of obesity and diabetes. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:10415161

  10. PPARβ/δ ameliorates fructose-induced insulin resistance in adipocytes by preventing Nrf2 activation.

    PubMed

    Barroso, Emma; Rodríguez-Rodríguez, Rosalía; Chacón, Matilde R; Maymó-Masip, Elsa; Ferrer, Laura; Salvadó, Laia; Salmerón, Emilio; Wabistch, Martin; Palomer, Xavier; Vendrell, Joan; Wahli, Walter; Vázquez-Carrera, Manuel

    2015-05-01

    We studied whether PPARβ/δ deficiency modifies the effects of high fructose intake (30% fructose in drinking water) on glucose tolerance and adipose tissue dysfunction, focusing on the CD36-dependent pathway that enhances adipose tissue inflammation and impairs insulin signaling. Fructose intake for 8 weeks significantly increased body and liver weight, and hepatic triglyceride accumulation in PPARβ/δ-deficient mice but not in wild-type mice. Feeding PPARβ/δ-deficient mice with fructose exacerbated glucose intolerance and led to macrophage infiltration, inflammation, enhanced mRNA and protein levels of CD36, and activation of the JNK pathway in white adipose tissue compared to those of water-fed PPARβ/δ-deficient mice. Cultured adipocytes exposed to fructose also exhibited increased CD36 protein levels and this increase was prevented by the PPARβ/δ activator GW501516. Interestingly, the levels of the nuclear factor E2-related factor 2 (Nrf2), a transcription factor reported to up-regulate Cd36 expression and to impair insulin signaling, were increased in fructose-exposed adipocytes whereas co-incubation with GW501516 abolished this increase. In agreement with Nrf2 playing a role in the fructose-induced CD36 protein level increases, the Nrf2 inhibitor trigonelline prevented the increase and the reduction in insulin-stimulated AKT phosphorylation caused by fructose in adipocytes. Protein levels of the well-known Nrf2 target gene quinone oxidoreductase 1 (Nqo1) were increased in water-fed PPARβ/δ-null mice, suggesting that PPARβ/δ deficiency increases Nrf2 activity; and this increase was exacerbated in fructose-fed PPARβ/δ-deficient mice. These findings indicate that the combination of high fructose intake and PPARβ/δ deficiency increases CD36 protein levels via Nrf2, a process that promotes chronic inflammation and insulin resistance in adipose tissue. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. PRDM16 sustains white fat gene expression profile in human adipocytes in direct relation with insulin action.

    PubMed

    Moreno-Navarrete, José María; Ortega, Francisco; Moreno, María; Xifra, Gemma; Ricart, Wifredo; Fernández-Real, José Manuel

    2015-04-15

    In the present study, we aimed to evaluate the possible role of PRDM16 in human adipocytes and in whole adipose tissue according to obesity and insulin sensitivity. PRDM16 knockdown (KD) had a dual behavior. While KD in preadipocytes led to enhanced gene expression markers of adipocyte differentiation, PRDM16 KD in fully differentiated adipocytes resulted in decreased adipogenic gene expression and insulin action. In line with KD in adipocytes, PRDM16 was positively associated with the expression of several genes involved in adipogenesis, insulin signaling, mitochondrial function and brown adipocyte-related markers in whole adipose tissue from two independent cohorts. PRDM16 was decreased in obese subjects in relation with the decrease of insulin sensitivity [HOM(AIR) (cohort 1) and M clamp value (cohort 2)]. Rosiglitazone (5 µmol/l) and metformin (5 mmol/l) led to increased PRDM16 mRNA and protein levels in isolated human adipocytes and in whole adipose tissue. In conclusion, PRDM16 might contribute to maintain adipose tissue "white fat" gene expression profile and systemic metabolic homeostasis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Long-term niacin treatment induces insulin resistance and adrenergic responsiveness in adipocytes by adaptive downregulation of phosphodiesterase 3B.

    PubMed

    Heemskerk, Mattijs M; van den Berg, Sjoerd A A; Pronk, Amanda C M; van Klinken, Jan-Bert; Boon, Mariëtte R; Havekes, Louis M; Rensen, Patrick C N; van Dijk, Ko Willems; van Harmelen, Vanessa

    2014-04-01

    The lipid-lowering effect of niacin has been attributed to the inhibition of cAMP production in adipocytes, thereby inhibiting intracellular lipolysis and release of nonesterified fatty acids (NEFA) to the circulation. However, long-term niacin treatment leads to a normalization of plasma NEFA levels and induces insulin resistance, for which the underlying mechanisms are poorly understood. The current study addressed the effects of long-term niacin treatment on insulin-mediated inhibition of adipocyte lipolysis and focused on the regulation of cAMP levels. APOE*3-Leiden.CETP transgenic mice treated with niacin for 15 wk were subjected to an insulin tolerance test and showed whole body insulin resistance. Similarly, adipocytes isolated from niacin-treated mice were insulin resistant and, interestingly, exhibited an increased response to cAMP stimulation by 8Br-cAMP, β1- and β2-adrenergic stimulation. Gene expression analysis of the insulin and β-adrenergic pathways in adipose tissue indicated that all genes were downregulated, including the gene encoding the cAMP-degrading enzyme phosphodiesterase 3B (PDE3B). In line with this, we showed that insulin induced a lower PDE3B response in adipocytes isolated from niacin-treated mice. Inhibiting PDE3B with cilostazol increased lipolytic responsiveness to cAMP stimulation in adipocytes. These data show that long-term niacin treatment leads to a downregulation of PDE3B in adipocytes, which could explain part of the observed insulin resistance and the increased responsiveness to cAMP stimulation.

  13. Insulin/glucose induces natriuretic peptide clearance receptor in human adipocytes: a metabolic link with the cardiac natriuretic pathway.

    PubMed

    Bordicchia, M; Ceresiani, M; Pavani, M; Minardi, D; Polito, M; Wabitsch, M; Cannone, V; Burnett, J C; Dessì-Fulgheri, P; Sarzani, R

    2016-07-01

    Cardiac natriuretic peptides (NP) are involved in cardiorenal regulation and in lipolysis. The NP activity is largely dependent on the ratio between the signaling receptor NPRA and the clearance receptor NPRC. Lipolysis increases when NPRC is reduced by starving or very-low-calorie diet. On the contrary, insulin is an antilipolytic hormone that increases sodium retention, suggesting a possible functional link with NP. We examined the insulin-mediated regulation of NP receptors in differentiated human adipocytes and tested the association of NP receptor expression in visceral adipose tissue (VAT) with metabolic profiles of patients undergoing renal surgery. Differentiated human adipocytes from VAT and Simpson-Golabi-Behmel Syndrome (SGBS) adipocyte cell line were treated with insulin in the presence of high-glucose or low-glucose media to study NP receptors and insulin/glucose-regulated pathways. Fasting blood samples and VAT samples were taken from patients on the day of renal surgery. We observed a potent insulin-mediated and glucose-dependent upregulation of NPRC, through the phosphatidylinositol 3-kinase pathway, associated with lower lipolysis in differentiated adipocytes. No effect was observed on NPRA. Low-glucose medium, used to simulate in vivo starving conditions, hampered the insulin effect on NPRC through modulation of insulin/glucose-regulated pathways, allowing atrial natriuretic peptide to induce lipolysis and thermogenic genes. An expression ratio in favor of NPRC in adipose tissue was associated with higher fasting insulinemia, HOMA-IR, and atherogenic lipid levels. Insulin/glucose-dependent NPRC induction in adipocytes might be a key factor linking hyperinsulinemia, metabolic syndrome, and higher blood pressure by reducing NP effects on adipocytes. Copyright © 2016 the American Physiological Society.

  14. Long-term niacin treatment induces insulin resistance and adrenergic responsiveness in adipocytes by adaptive downregulation of phosphodiesterase 3B

    PubMed Central

    Heemskerk, Mattijs M.; van den Berg, Sjoerd A. A.; Pronk, Amanda C. M.; van Klinken, Jan-Bert; Boon, Mariëtte R.; Havekes, Louis M.; Rensen, Patrick C. N.; van Dijk, Ko Willems

    2014-01-01

    The lipid-lowering effect of niacin has been attributed to the inhibition of cAMP production in adipocytes, thereby inhibiting intracellular lipolysis and release of nonesterified fatty acids (NEFA) to the circulation. However, long-term niacin treatment leads to a normalization of plasma NEFA levels and induces insulin resistance, for which the underlying mechanisms are poorly understood. The current study addressed the effects of long-term niacin treatment on insulin-mediated inhibition of adipocyte lipolysis and focused on the regulation of cAMP levels. APOE*3-Leiden.CETP transgenic mice treated with niacin for 15 wk were subjected to an insulin tolerance test and showed whole body insulin resistance. Similarly, adipocytes isolated from niacin-treated mice were insulin resistant and, interestingly, exhibited an increased response to cAMP stimulation by 8Br-cAMP, β1- and β2-adrenergic stimulation. Gene expression analysis of the insulin and β-adrenergic pathways in adipose tissue indicated that all genes were downregulated, including the gene encoding the cAMP-degrading enzyme phosphodiesterase 3B (PDE3B). In line with this, we showed that insulin induced a lower PDE3B response in adipocytes isolated from niacin-treated mice. Inhibiting PDE3B with cilostazol increased lipolytic responsiveness to cAMP stimulation in adipocytes. These data show that long-term niacin treatment leads to a downregulation of PDE3B in adipocytes, which could explain part of the observed insulin resistance and the increased responsiveness to cAMP stimulation. PMID:24473440

  15. Phytic acid and myo-inositol support adipocyte differentiation and improve insulin sensitivity in 3T3-L1 cells.

    PubMed

    Kim, Jin Nam; Han, Sung Nim; Kim, Hye-Kyeong

    2014-08-01

    Phytic acid, also known as myo-inositol hexaphosphate, has been shown to lower blood glucose levels and to improve insulin sensitivity in rodents. We investigated the effects of phytic acid and myo-inositol on differentiation, insulin-stimulated glucose uptake, and lipolysis of adipocytes to test the hypothesis that the antidiabetic properties of phytic acid and myo-inositol are mediated directly through adipocytes. 3T3-L1 cells were treated with 10, 50, or 200 μmol/L of phytic acid or myo-inositol. Oil Red O staining and an intracellular triacylglycerol assay were used to determine lipid accumulation during adipocyte differentiation. Immunoblotting and real-time polymerase chain reaction (PCR) were performed to evaluate expression of transcription factors, a target protein, and insulin signaling molecules. Phytic acid and myo-inositol exposures increased lipid accumulation in a dose-dependent manner (P < .01). The expression of key transcription factors associated with adipocyte differentiation, such as peroxisome proliferator-activated receptor γ (PPARγ) and sterol regulatory element-binding protein 1c, and the expression of fatty acid synthase increased upon treatments with phytic acid and myo-inositol (P < .05). Insulin-stimulated glucose uptake in mature adipocytes increased with phytic acid and myo-inositol treatments (P < .01). In addition, mRNA levels of insulin receptor substrate 1 (IRS1), mRNA levels of glucose transporter 4, and phosphorylation of tyrosine in IRS1 increased upon phytic acid and myo-inositol treatments. In fully differentiated adipocytes, phytic acid and myo-inositol reduced basal lipolysis dose dependently (P < .01). These results suggest that phytic acid and myo-inositol increase insulin sensitivity in adipocytes by increasing lipid storage capacity, improving glucose uptake, and inhibiting lipolysis. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Artemisia scoparia Enhances Adipocyte Development and Endocrine Function In Vitro and Enhances Insulin Action In Vivo

    PubMed Central

    Richard, Allison J.; Fuller, Scott; Fedorcenco, Veaceslav; Beyl, Robbie; Burris, Thomas P.; Mynatt, Randall; Ribnicky, David M.; Stephens, Jacqueline M.

    2014-01-01

    Background Failure of adipocytes to expand during periods of energy excess can result in undesirable metabolic consequences such as ectopic fat accumulation and insulin resistance. Blinded screening studies have indicated that Artemisia scoparia (SCO) extracts can enhance adipocyte differentiation and lipid accumulation in cultured adipocytes. The present study tested the hypothesis that SCO treatment modulates fat cell development and function in vitro and insulin sensitivity in adipose tissue in vivo. Methods In vitro experiments utilized a Gal4-PPARγ ligand binding domain (LBD) fusion protein-luciferase reporter assay to examine PPARγ activation. To investigate the ability of SCO to modulate adipogenesis and mature fat cell function in 3T3-L1 cells, neutral lipid accumulation, gene expression, and protein secretion were measured by Oil Red O staining, qRT-PCR, and immunoblotting, respectively. For the in vivo experiments, diet-induced obese (DIO) C57BL/6J mice were fed a high-fat diet (HFD) or HFD containing 1% w/w SCO for four weeks. Body weight and composition, food intake, and fasting glucose and insulin levels were measured. Phospho-activation and expression of insulin-sensitizing proteins in epididymal adipose tissue (eWAT) were measured by immunoblotting. Results Ethanolic extracts of A. scoparia significantly activated the PPARγ LBD and enhanced lipid accumulation in differentiating 3T3-L1 cells. SCO increased the transcription of several PPARγ target genes in differentiating 3T3-L1 cells and rescued the negative effects of tumor necrosis factor α on production and secretion of adiponectin and monocyte chemoattractant protein-1 in fully differentiated fat cells. DIO mice treated with SCO had elevated adiponectin levels and increased phosphorylation of AMPKα in eWAT when compared to control mice. In SCO-treated mice, these changes were also associated with decreased fasting insulin and glucose levels. Conclusion SCO has metabolically beneficial

  17. [Effects of NYGGF4 gene over-expression on the insulin sensitivity and secretory function of adipocytes].

    PubMed

    Zhang, Chun-Mei; Qiu, Jie; Chen, Xiao-Hui; Wang, Bin; Zhang, Min; Guo, Xi-Rong

    2009-10-01

    To study the effect of a new obesity-related gene NYGGF4 on the insulin sensitivity and secretory function of adipocytes. 3T3-L1 preadipocytes transfected with either an empty expression vector (pcDNA3.1; control group) or an NYGGF4 expression vector (NYGGF4-pcDNA3.1) were cultured in vitro and differentiated into the matured adipocytes with the standard insulin plus dexamethasone plus 3-isobutyl-methylxanthine (MDI) induction cocktail. 2-deoxy-D-[3H] glucose uptake was determined by liquid scintillation counting. Western blot was performed to detect the protein content and translocation of glucose transporter 4 (GLUT4). The supernatant concentrations of TNF-alpha, IL-6, adiponectin and resistin were measured using ELISA. NYGGF4 over-expression in 3T3-L1 adipocytes reduced insulin-stimulated glucose uptake. NYGGF4 over-expression impaired insulin-stimulated GLUT4 translocation without affecting the total protein content of GLUT4. The concentrations of TNF-alpha, IL-6, adiponectin and resistin in the culture medium of 3T3-L1 transfected with NYGGF4 were not significantly different from those in the control group. NYGGF4 over-expression impairs the insulin sensitivity of 3T3-L1 adipocytes through decreasing GLUT4 translocation and had no effects on the secretory function of adipocytes.

  18. Effect of triiodothyronine and insulin on glucose metabolism in tissue explants and isolated adipocytes from lean and obese Zucker rats

    SciTech Connect

    Bailey, J.W.

    1985-01-01

    Glucose metabolism in adipocytes from 6 week old lean and obese Zucker rats were sensitive to direct and chronic treatment with insulin and triidothyronine (T/sub 3/). Insulin had a large stimulatory effect on glucose metabolism in acutely isolated adipocytes. This effect was greater in the lean than in the obese. Fatty acid, CO/sub 2/, and glycerol-glyceride formation from radiolabeled glucose was elevated in the obese over the leans. Pretreatment of isolated adipocytes with pharmacological concentrations of T/sub 3/ for 30 minutes prior to the measurement of glucose metabolism had a greater effect on lean than obese adipocytes. The presence of insulin was required to observe the acute effects of T/sub 3/. A 2-hour exposure to physiological levels of T/sub 3/ in the presence of insulin in both lean and obese adipocytes decreased lipogenesis. In the absence of insulin, a 2 hour pretreatment with physiological levels of T/sub 3/ in tissue from a euthyroid animal produced increased lipogenesis.

  19. Blocking gp130 signaling suppresses autotaxin expression in adipocytes and improves insulin sensitivity in diet-induced obesity.

    PubMed

    Sun, Shuhong; Wang, Ran; Song, Jianwen; Guan, Ming; Li, Na; Zhang, Xiaotian; Zhao, Zhenwen; Zhang, Junjie

    2017-09-05

    Autotaxin (ATX), which is highly expressed and secreted by adipocytes, functions as the key enzyme to generate lysophosphatidic acid (LPA) from lysophosphatidylcholine (LPC). Adipose tissue is the main source of circulating ATX that modulates plasma LPA levels. Up-regulation of ATX expression in obese patients and mice is closely related with insulin resistance and impaired glucose tolerance. However, the mechanism of ATX expression in adipocytes remains largely unknown. In this study, we found that gp130-mediated JAK-STAT3 activation was required for abundant ATX expression in adipocytes. Through gp130, the interleukin 6 (IL-6) family cytokines, such as IL-6, LIF, CT-1, and CNTF, upregulated ATX expression in adipocytes. ATX contributes to the induction of insulin resistance and lipolysis in IL-6-stimulated adipocytes. Oral administration of gp130 inhibitor SC144 suppressed ATX expression in adipose tissue, decreased plasma ATX, LPA and free fatty acid (FFA) levels, and significantly improved insulin sensitivity and glucose tolerance in high fat diet (HFD)-fed obese mice. In summary, our results indicate that the activation of gp130-JAK-STAT3 pathway by IL-6 family cytokines has an important role in regulating ATX expression in adipocytes, and that gp130 is a promising target in the management of obesity-associated glucose metabolic diseases. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  20. CHANGES IN microRNA (miR) profile and effects of miR-320 in insulin-resistant 3T3-L1 adipocytes.

    PubMed

    Ling, Hong-Yan; Ou, He-Sheng; Feng, Shui-Dong; Zhang, Xiao-Ying; Tuo, Qin-Hui; Chen, Lin-Xi; Zhu, Bing-Yang; Gao, Zhi-Ping; Tang, Cao-Ke; Yin, Wei-Dong; Zhang, Liang; Liao, Duan-Fang

    2009-09-01

    1. MicroRNAs (miRNAs) play essential roles in many biological processes. It is known that aberrant miRNA expression contributes to some pathological conditions. However, it is not known whether miRNAs play any role in the development of insulin resistance in adipocytes, a key pathophysiological link between obesity and diabetes. 2. To investigate the function of miRNAs in the development of insulin resistance, using miRNA microarray analysis we compared miRNA expression profiles between normal insulinsensitive 3T3-L1 adipocytes and 3T3-L1 adipocytes rendered insulin resistant following treatment with high glucose (25mmol/L) and high insulin (1 mol/L). Furthermore, adipocytes were transfected with specific antisense oligonucleotides against miRNA-320 (anti-miR-320 oligo) and the effects on the development of insulin resistance were evaluated. 3. We identified 50 upregulated and 29 downregulated miRNAs in insulin-resistant (IR) adipocytes, including a 50-fold increase in miRNA-320 (miR-320) expression. Using bioinformatic techniques, the p85 subunit of phosphatidylinositol 3-kinase (PI3-K) was found to be a potential target of miR-320. In experiments with anti-miR-320 oligo, insulin sensitivity was increased in IR adipocytes, as evidenced by increases in p85 expression, phosphorylation of Akt and the protein expression of the glucose transporter GLUT-4, as well as insulin-stimulated glucose uptake. These beneficial effects of anti-miR-320 oligo were observed only in IR adipocytes and not in normal adipocytes. 4. In conclusion, the miRNA profile changes in IR adipocytes compared with normal 3T3-L1 adipocytes. Anti-miR-320 oligo was found to regulate insulin resistance in adipocytes by improving insulin–PI3-K signalling pathways. The findings provide information regarding a potentially new therapeutic strategy to control insulin resistance.

  1. Adrenomedullin 2 Improves Early Obesity-Induced Adipose Insulin Resistance by Inhibiting the Class II MHC in Adipocytes.

    PubMed

    Zhang, Song-Yang; Lv, Ying; Zhang, Heng; Gao, Song; Wang, Ting; Feng, Juan; Wang, Yuhui; Liu, George; Xu, Ming-Jiang; Wang, Xian; Jiang, Changtao

    2016-08-01

    MHC class II (MHCII) antigen presentation in adipocytes was reported to trigger early adipose inflammation and insulin resistance. However, the benefits of MHCII inhibition in adipocytes remain largely unknown. Here, we showed that human plasma polypeptide adrenomedullin 2 (ADM2) levels were negatively correlated with HOMA of insulin resistance in obese human. Adipose-specific human ADM2 transgenic (aADM2-tg) mice were generated. The aADM2-tg mice displayed improvements in high-fat diet-induced early adipose insulin resistance. This was associated with increased insulin signaling and decreased systemic inflammation. ADM2 dose-dependently inhibited CIITA-induced MHCII expression by increasing Blimp1 expression in a CRLR/RAMP1-cAMP-dependent manner in cultured adipocytes. Furthermore, ADM2 treatment restored the high-fat diet-induced early insulin resistance in adipose tissue, mainly via inhibition of adipocyte MHCII antigen presentation and CD4(+) T-cell activation. This study demonstrates that ADM2 is a promising candidate for the treatment of early obesity-induced insulin resistance. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  2. Isoproterenol stimulates phosphorylation of the insulin-regulatable glucose transporter in rat adipocytes.

    PubMed Central

    James, D E; Hiken, J; Lawrence, J C

    1989-01-01

    We have examined the acute effects of insulin and isoproterenol on the phosphorylation state of the insulin-regulatable glucose transporter (IRGT) in rat adipocytes. The IRGT was immunoprecipitated from either detergent-solubilized whole-cell homogenates or subcellular fractions of 32P-labeled fat cells and subjected to sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The 32P-labeled IRGT was detected by autoradiography as a species of apparent Mr 46,000. Insulin stimulated translocation of the IRGT from low-density microsomes to the plasma membrane but did not affect phosphorylation of the transporter in either fraction. Isoproterenol inhibited insulin-stimulated glucose transport by 40% but was without effect on the subcellular distribution of the transporter in either the presence or absence of insulin. Isoproterenol stimulated phosphorylation of the IRGT 2-fold. Incubating cells with dibutyryl-cAMP and 8-bromo-cAMP also stimulated phosphorylation 2-fold, and the transporter was phosphorylated in vitro when IRGT-enriched vesicles were incubated with cAMP-dependent protein kinase and [gamma-32P]ATP. These results suggest that isoproterenol stimulates phosphorylation of the IRGT via a cAMP-dependent pathway and that phosphorylation of the transporter may modulate its ability to transport glucose. Images PMID:2554313

  3. A polyphenol rescues lipid induced insulin resistance in skeletal muscle cells and adipocytes.

    PubMed

    Gogoi, Bhaskarjyoti; Chatterjee, Priyajit; Mukherjee, Sandip; Buragohain, Alak Kumar; Bhattacharya, Samir; Dasgupta, Suman

    2014-09-26

    Skeletal muscle and adipose tissues are known to be two important insulin target sites. Therefore, lipid induced insulin resistance in these tissues greatly contributes in the development of type 2 diabetes (T2D). Ferulic acid (FRL) purified from the leaves of Hibiscus mutabilis, showed impressive effects in preventing saturated fatty acid (SFA) induced defects in skeletal muscle cells. Impairment of insulin signaling molecules by SFA was significantly waived by FRL. SFA markedly reduced insulin receptor β (IRβ) in skeletal muscle cells, this was affected due to the defects in high mobility group A1 (HMGA1) protein obtruded by phospho-PKCε and that adversely affects IRβ mRNA expression. FRL blocked PKCε activation and thereby permitted HMGA1 to activate IRβ promoter which improved IR expression deficiency. In high fat diet (HFD) fed diabetic rats, FRL reduced blood glucose level and enhanced lipid uptake activity of adipocytes isolated from adipose tissue. Importantly, FRL suppressed fetuin-A (FetA) gene expression, that reduced circulatory FetA level and since FetA is involved in adipose tissue inflammation, a significant attenuation of proinflammatory cytokines occurred. Collectively, FRL exhibited certain unique features for preventing lipid induced insulin resistance and therefore promises a better therapeutic choice for T2D.

  4. Nigericin inhibits insulin-stimulated glucose transport in 3T3-L1 adipocytes.

    PubMed

    Chu, Chih-Ying; Kao, Ying-Shun; Fong, Jim C

    2002-01-01

    We used nigericin, a K+/H+ exchanger, to test whether glucose transport in 3T3-L1 adipocytes was modulated by changes in intracellular pH. Our results showed that nigericin increased basal but decreased insulin-stimulated glucose uptake in a time- and dose-dependent manner. Whereas the basal translocation of GLUT1 was enhanced, insulin-stimulated GLUT4 translocation was inhibited by nigericin. On the other hand, the total amount of neither transporter protein was altered. The finding that insulin-stimulated phosphoinositide 3-kinase (PI 3-kinase) activity was not affected by nigericin implies that nigericin exerted its inhibition at a step downstream of PI 3-kinase activation. At maximal dose, nigericin rapidly lowered cytosolic pH to 6.7; however, this effect was transient and cytosolic pH was back to normal in 20 min. Removal of nigericin from the incubation medium after 20 min abolished its enhancing effect on basal but had little influence on its inhibition of insulin-stimulated glucose transport. Moreover, lowering cytosolic pH to 6.7 with an exogenously added HCl solution had no effect on glucose transport. Taken together, it appears that nigericin may inhibit insulin-stimulated glucose transport mainly by interfering with GLUT4 translocation, probably by a mechanism not related to changes in cytosolic pH.

  5. Isolation of insulin-sensitive phosphatidylinositol-glycan from rat adipocytes. Its impaired breakdown in the streptozotocin-diabetic rat.

    PubMed Central

    Macaulay, S L; Larkins, R G

    1990-01-01

    In this study an insulin-sensitive glycophospholipid from rat adipocytes was isolated and partially characterized. A material that activated pyruvate dehydrogenase was extracted from rat adipocyte membrane supernatants. Its release was stimulated by insulin and phosphatidylinositol-specific-phospholipase C and its activity was destroyed by nitrous acid deamination. These findings suggested that insulin might stimulate breakdown of a glycophospholipid containing inositol and glucosamine, as previously reported for some other cell types [Low & Saltiel (1988) Science 239, 268-275]. A lipid that incorporated [3H]glucosamine, [3H]galactose, [3H]inositol, and [3H]myristate and whose turnover was stimulated by insulin was subsequently isolated from intact adipocytes by sequential t.l.c. using an acidic solvent system followed by a basic solvent system. The effects of insulin on turnover of the lipid in these cells were transient, with maximal effects at 1 min, and there was a typical concentration-response curve to insulin (0.07 nM-7 nM), with effects being detected over the physiological range of insulin concentrations. In contrast with studies in other cells, there was appreciable turnover of the sugar labels. The majority of the [3H]glucosamine and [3H]galactose labels were cycled through to triacylglycerol in the adipocyte. However, of that recovered in the glycophospholipid band, a major proportion (less than 40%) was recovered as the native label. Digestion of the purified molecule with phosphatidylinositol-specific phospholipase C generated a material that activated both pyruvate dehydrogenase and low-Km cyclic AMP phosphodiesterase. Impairment in insulin-stimulated breakdown of the molecule in adipocytes of streptozotocin-diabetic rats was found, consistent with the impaired insulin activation of pyruvate dehydrogenase and glucose utilization seen in this model. These findings suggest that insulin stimulates breakdown of this glycophospholipid by stimulating an

  6. Adipocyte expression of PU.1 transcription factor causes insulin resistance through upregulation of inflammatory cytokine gene expression and ROS production

    PubMed Central

    Lin, Ligen; Pang, Weijun; Chen, Keyun; Wang, Fei; Gengler, Jon; Sun, Yuxiang

    2012-01-01

    We have reported previously that ETS family transcription factor PU.1 is expressed in mature adipocytes of white adipose tissue. PU.1 expression is increased greatly in mouse models of genetic or diet-induced obesity. Here, we show that PU.1 expression is increased only in visceral but not subcutaneous adipose tissues of obese mice, and the adipocytes are responsible for this increase in PU.1 expression. To further address PU.1's physiological function in mature adipocytes, PU.1 was knocked down in 3T3-L1 cells using retroviral-mediated expression of PU.1-targeting shRNA. Consistent with previous findings that PU.1 regulates its target genes, such as NADPH oxidase subunits and proinflammatory cytokines in myeloid cells, the mRNA levels of proinflammatory cytokines (TNFα, IL-1β, and IL-6) and cytosolic components of NADPH oxidase (p47phox and p40phox) were downregulated significantly in PU.1-silenced adipocytes. NADPH oxidase is a main source for reactive oxygen species (ROS) generation. Indeed, silencing PU.1 suppressed NADPH oxidase activity and attenuated ROS in basal or hydrogen peroxide-treated adipocytes. Silencing PU.1 in adipocytes suppressed JNK1 activation and IRS-1 phosphorylation at Ser307. Consequently, PU.1 knockdown improved insulin signaling and increased glucose uptake in basal and insulin-stimulated conditions. Furthermore, knocking down PU.1 suppressed basal lipolysis but activated stimulated lipolysis. Collectively, these findings indicate that obesity induces PU.1 expression in adipocytes to upregulate the production of ROS and proinflammatory cytokines, both of which lead to JNK1 activation, insulin resistance, and dysregulation of lipolysis. Therefore, PU.1 might be a mediator for obesity-induced adipose inflammation and insulin resistance. PMID:22454293

  7. Adipocyte expression of PU.1 transcription factor causes insulin resistance through upregulation of inflammatory cytokine gene expression and ROS production.

    PubMed

    Lin, Ligen; Pang, Weijun; Chen, Keyun; Wang, Fei; Gengler, Jon; Sun, Yuxiang; Tong, Qiang

    2012-06-15

    We have reported previously that ETS family transcription factor PU.1 is expressed in mature adipocytes of white adipose tissue. PU.1 expression is increased greatly in mouse models of genetic or diet-induced obesity. Here, we show that PU.1 expression is increased only in visceral but not subcutaneous adipose tissues of obese mice, and the adipocytes are responsible for this increase in PU.1 expression. To further address PU.1's physiological function in mature adipocytes, PU.1 was knocked down in 3T3-L1 cells using retroviral-mediated expression of PU.1-targeting shRNA. Consistent with previous findings that PU.1 regulates its target genes, such as NADPH oxidase subunits and proinflammatory cytokines in myeloid cells, the mRNA levels of proinflammatory cytokines (TNFα, IL-1β, and IL-6) and cytosolic components of NADPH oxidase (p47phox and p40phox) were downregulated significantly in PU.1-silenced adipocytes. NADPH oxidase is a main source for reactive oxygen species (ROS) generation. Indeed, silencing PU.1 suppressed NADPH oxidase activity and attenuated ROS in basal or hydrogen peroxide-treated adipocytes. Silencing PU.1 in adipocytes suppressed JNK1 activation and IRS-1 phosphorylation at Ser(307). Consequently, PU.1 knockdown improved insulin signaling and increased glucose uptake in basal and insulin-stimulated conditions. Furthermore, knocking down PU.1 suppressed basal lipolysis but activated stimulated lipolysis. Collectively, these findings indicate that obesity induces PU.1 expression in adipocytes to upregulate the production of ROS and proinflammatory cytokines, both of which lead to JNK1 activation, insulin resistance, and dysregulation of lipolysis. Therefore, PU.1 might be a mediator for obesity-induced adipose inflammation and insulin resistance.

  8. Insulin affects the sodium affinity of the rat adipocyte (Na ,K )-ATPase

    SciTech Connect

    Lytton, J.

    1985-08-25

    The K0.5 for intracellular sodium of the two forms of (Na ,K )-ATPase which exist in rat adipocytes has been determined by incubating the cells in the absence of potassium in buffers of varying sodium concentration; these conditions shut off the Na pump and allow sodium to equilibrate into the cell. The activity of (Na ,K )-ATPase was then monitored with YWRb /K pumping which was initiated by adding isotope and KCl to 5 mM, followed by a 3-min uptake period. Atomic absorption and SSNa tracer equilibration were used to determine the actual intracellular (Na ) under the different conditions. The K0.5 values thus obtained were 17 mM for alpha and 52 mM for alpha(+). Insulin treatment of rat adipocytes had no effect on the intracellular (Na+) nor on the Vmax of YWRb /K pumping, but did produce a shift in the sodium ion K0.5 values to 14 mM for alpha and 33 mM for alpha(+). This change in affinity can explain the selective stimulation of alpha(+) by insulin under normal incubation conditions.

  9. Intracerebroventricular administration of galanin antagonist sustains insulin resistance in adipocytes of type 2 diabetic trained rats.

    PubMed

    Zhang, Zhenwen; Sheng, Shudong; Guo, Lili; Li, Guangzhi; Zhang, Ling; Zhang, Linxiang; Shi, Mingyi; Bo, Ping; Zhu, Yan

    2012-09-25

    The aim of this study is to investigate whether galanin (GAL) central receptors are involved in regulation of insulin resistance. To test it, a GAL antagonist, M35 was intracerebroventricularly administrated in trained type 2 diabetic rats. The euglycemic-hyperinsulinemic clamp test was conducted for an index of glucose infusion rates. The epididymal fat pads were processed for determination of glucose uptake and Glucose Transporter 4 (GLUT4) amounts. The Gal mRNA expression levels in hypothalamus were quantitatively assessed too. We found an inhibitory effect of M35 on glucose uptake into adipocytes, Gal mRNA expression levels in hypothalamus, glucose infusion rates in the clamp test and GLUT4 concentration in plasma membranes and total cell membranes of adipocytes. The ratios of GLUT4 contents of the former to the latter in M35 groups were lower. These results suggest a facilitating role for GAL on GLUT4 translocation and insulin sensitivity via its central receptors in rats. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Insulin resistance and increased lipolysis in bone marrow derived adipocytes stimulated with agonists of Toll-like receptors.

    PubMed

    Franchini, M; Monnais, E; Seboek, D; Radimerski, T; Zini, E; Kaufmann, K; Lutz, T; Reusch, C; Ackermann, M; Muller, B; Linscheid, P

    2010-09-01

    Our objectives were to identify Toll-like receptors (TLRs) in human bone marrow derived adipocytes, to test specific TLR agonists for their ability to induce a proinflammatory response, and to investigate possible metabolic effects after TLR activation, in particular, those associated with insulin resistance and lipolysis. Mesenchymal stem cells were isolated from human bone marrow and differentiated into adipocytes. Total RNA before or after stimulation with agonists specific for TLR was extracted for analysis of expression of TLRs proinflammatory signals and molecules involved in glucose metabolism (IRS-1 and GLUT4). Furthermore, cytokine protein expression was measured from cell lysates. Finally, insulin induced glucose uptake and lipolysis were measured. Human bone marrow-derived adipocytes express TLR1-10. They react to stimulation with specific ligands with expression of inflammatory markers (IL-1beta, IL-6, TNFalpha, IL-8, MCP-1) at the RNA and protein levels. IRS-1 and GLUT4 expression was downregulated after stimulation with the TLR4 and TLR3 specific ligands LPS and poly (I:C), respectively. Insulin-induced glucose uptake was decreased and lipolysis increased. We conclude that adipocytes express TLR 1-10 and react to agonists specific for TLR 1-6. As a consequence proinflammatory cytokine are induced, in particular, IL-6, IL-8, and MCP-1. Since stimulation is followed by decreased insulin-induced glucose uptake and increased lipolysis we conclude that TLRs may be important linking molecules in the generation of insulin resistance in fat tissue.

  11. Piromelatine decreases triglyceride accumulation in insulin resistant 3T3-L1 adipocytes: role of ATGL and HSL.

    PubMed

    Wang, Ping-Ping; She, Mei-Hua; He, Ping-Ping; Chen, Wu-Jun; Laudon, Moshe; Xu, Xuan-Xuan; Yin, Wei-Dong

    2013-08-01

    Piromelatine, a novel investigational multimodal sleep medicine, is developed for the treatment of patients with primary and co-morbid insomnia. Piromelatine has been shown to inhibit weight gain and improve insulin sensitivity in high-fat/high-sucrose-fed (HFHS) rats. Considering that piromelatine has also been implicated in lowering of triglyceride levels in HFHS rats, this work elucidated whether this effect involves in the regulation of adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) in triglyceride (TG) metabolism. In this study, we investigated the effects of piromelatine and MT2 receptors inhibition on TG content, insulin-stimulated glucose uptake, and the expressions of ATGL and HSL in 3T3-L1 adipocytes preincubated in high glucose and high insulin (HGI) conditions. Our results showed that culturing 3T3-L1 adipocytes under HGI conditions increased triglyceride accumulation with concomitant decrease of ATGL and HSL expression, inducing insulin resistance in 3T3-L1 adipocytes. We also found that triglyceride accumulation was significantly inhibited and the levels of ATGL/HSL increased after melatonin or piromelatine treatment. The effects of melatonin/piromelatine (10 nM) were counteracted by pretreatment with the relatively selective MT2 receptor antagonist luzindole (100 nM). In this study, our data demonstrate that piromelatine reverses high glucose and high insulin-induced triglyceride accumulation in 3T3-L1 adipocytes, possibly through up-regulating of ATGL and HSL expression via a melatonin-dependent manner.

  12. Effects of paeoniflorin on tumor necrosis factor-α-induced insulin resistance and changes of adipokines in 3T3-L1 adipocytes.

    PubMed

    Kong, Poren; Chi, Rongxiang; Zhang, Linlin; Wang, Ningjian; Lu, Yingli

    2013-12-01

    TNFα plays an important role in the adipocyte dysfunction, including lipolysis acceleration, insulin resistance and changes of adipokines. Recently, we showed that paeoniflorin attenuates adipocyte lipolysis and inhibits the phosphorylation of ERK, JNK, IKK stimulated by TNFα. However, the effects of paeoniflorin on adipocytes insulin resistance and changes of adipokines remain unknown. The aim of the current study was to investigate the role of paeoniflorin in preventing insulin resistance or inflammation in 3T3-L1 adipocytes treated with TNFα. Our results showed that paeoniflorin restored insulin-stimulated [(3)H]2-DOG uptake, which was reduced by TNFα, with concomitant restoration in serine phosphorylation of IRS-1 and insulin-stimulated phosphorylation of AKT in adipocytes. Paeoniflorin attenuated TNFα-mediated suppression of the expressions of PPARγ and PPARγ target genes, and the improvement of paeoniflorin on TNFα-induced insulin resistance was attenuated by GW9662, an antagonist of PPARγ activity. Moreover, paeoniflorin could inhibit the expressions and secretions of IL-6 and MCP-1 from adipocytes induced by TNFα. These results, together with our previous data, indicate that paeoniflorin exerts a beneficial effect on adipocytes to prevent TNFα-induced insulin resistance and inflammatory adipokine release. Our studies provide important evidence for an ability of paeoniflorin in amelioration of TNFα-induced adipocyte dysfunction, which would be helpful to clarify its potential role in the treatment of obesity. © 2013.

  13. Insulin Stimulates Membrane Fusion and GLUT4 Accumulation in Clathrin Coats on Adipocyte Plasma Membranes▿ †

    PubMed Central

    Huang, Shaohui; Lifshitz, Larry M.; Jones, Christine; Bellve, Karl D.; Standley, Clive; Fonseca, Sonya; Corvera, Silvia; Fogarty, Kevin E.; Czech, Michael P.

    2007-01-01

    Total internal reflection fluorescence (TIRF) microscopy reveals highly mobile structures containing enhanced green fluorescent protein-tagged glucose transporter 4 (GLUT4) within a zone about 100 nm beneath the plasma membrane of 3T3-L1 adipocytes. We developed a computer program (Fusion Assistant) that enables direct analysis of the docking/fusion kinetics of hundreds of exocytic fusion events. Insulin stimulation increases the fusion frequency of exocytic GLUT4 vesicles by ∼4-fold, increasing GLUT4 content in the plasma membrane. Remarkably, insulin signaling modulates the kinetics of the fusion process, decreasing the vesicle tethering/docking duration prior to membrane fusion. In contrast, the kinetics of GLUT4 molecules spreading out in the plasma membrane from exocytic fusion sites is unchanged by insulin. As GLUT4 accumulates in the plasma membrane, it is also immobilized in punctate structures on the cell surface. A previous report suggested these structures are exocytic fusion sites (Lizunov et al., J. Cell Biol. 169:481-489, 2005). However, two-color TIRF microscopy using fluorescent proteins fused to clathrin light chain or GLUT4 reveals these structures are clathrin-coated patches. Taken together, these data show that insulin signaling accelerates the transition from docking of GLUT4-containing vesicles to their fusion with the plasma membrane and promotes GLUT4 accumulation in clathrin-based endocytic structures on the plasma membrane. PMID:17339344

  14. Activation of AMPKα2 in adipocytes is essential for nicotine-induced insulin resistance in vivo

    PubMed Central

    Wu, Yue; Song, Ping; Zhang, Wencheng; Liu, Junhui; Dai, Xiaoyan; Liu, Zhaoyu; Lu, Qiulun; Ouyang, Changhan; Xie, Zhonglin; Zhao, Zhengxing; Zhuo, Xiaozhen; Viollet, Benoit; Foretz, Marc; Wu, Jiliang; Yuan, Zuyi; Zou, Ming-Hui

    2015-01-01

    Cigarette smoking promotes body weight reduction in humans while paradoxically also promoting insulin resistance (IR) and hyperinsulinemia. The mechanisms behind these effects of smoking are unclear. Here, we show that nicotine, a major constitute of cigarette smoke, selectively activates AMP-activated protein kinase α2 (AMPKα2) in adipocytes, which, in turn, phosphorylates MAP kinase phosphatase-1 (MKP1) at serine 334, initiating a proteasome-dependent degradation of this latter protein. The nicotine-dependent reduction in MKP1 induces the aberrant activation of p38 mitogen-activated protein kinase and c-Jun amino-terminal kinase leading to increased phosphorylation of insulin receptor substrate 1 (IRS1) at serine 307. This phosphorylation of IRS1 leads to its degradation, Akt inhibition, and the loss of insulin-mediated inhibition of lipolysis. Consequently, nicotine increases lipolysis, which results in body weight reduction, but this increase also elevates the levels of circulating free fatty acids and thus causes IR in insulin-sensitive tissues. These results newly place AMPKα2 as an essential mediator of nicotine-induced whole-body IR in spite of reductions in adiposity. PMID:25799226

  15. Central alarin ameliorated insulin resistance of adipocytes in type 2 diabetic rats.

    PubMed

    Guo, Lili; Fang, Penghua; Yu, Mei; Shi, Mingyi; Bo, Ping; Zhang, Zhenwen

    2014-12-01

    Alarin, a regulatory peptide, belongs to the galanin family and plays the same regulatory roles as galanin in orexigenic activity and energy metabolism. Our previous studies had found that galanin might facilitate insulin sensitivity via activation of its central receptors. To date, little is known about whether central alarin may exert similar effects on insulin sensitivity. In order to investigate this, alarin and its specific antagonist, alarin 6-25Cys, were administered into the cerebral ventricles of type 2 diabetic rats (T2DR) to evaluate the changes in insulin resistance. The results indicated that central treatment with alarin significantly increased the body weight of animals, the 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose uptake, the plasma adiponectin levels, the glucose infusion rates in hyperinsulinemic-euglycemic clamp tests, the vesicle-associated membrane protein 2 as well as glucose transporter 4 (GLUT4 (SLC2A4)) protein and mRNA levels, and the ratios of GLUT4 contents in plasma membranes to total cell membranes in adipocytes, but reduced blood glucose and plasma retinol-binding protein 4 levels. These effects of alarin may be inhibited by pretreatment with alarin 6-25Cys. The above-mentioned results suggest that the central alarin projective system may facilitate insulin sensitivity and glucose uptake via the increase in GLUT4 content and GLUT4 translocation from intracellular pools to plasma membranes in T2DR. © 2014 Society for Endocrinology.

  16. Impact of Reduced ATGL-Mediated Adipocyte Lipolysis on Obesity-Associated Insulin Resistance and Inflammation in Male Mice.

    PubMed

    Schoiswohl, Gabriele; Stefanovic-Racic, Maja; Menke, Marie N; Wills, Rachel C; Surlow, Beth A; Basantani, Mahesh K; Sitnick, Mitch T; Cai, Lingzhi; Yazbeck, Cynthia F; Stolz, Donna B; Pulinilkunnil, Thomas; O'Doherty, Robert M; Kershaw, Erin E

    2015-10-01

    Emerging evidence suggests that impaired regulation of adipocyte lipolysis contributes to the proinflammatory immune cell infiltration of metabolic tissues in obesity, a process that is proposed to contribute to the development and exacerbation of insulin resistance. To test this hypothesis in vivo, we generated mice with adipocyte-specific deletion of adipose triglyceride lipase (ATGL), the rate-limiting enzyme catalyzing triacylglycerol hydrolysis. In contrast to previous models, adiponectin-driven Cre expression was used for targeted ATGL deletion. The resulting adipocyte-specific ATGL knockout (AAKO) mice were then characterized for metabolic and immune phenotypes. Lean and diet-induced obese AAKO mice had reduced adipocyte lipolysis, serum lipids, systemic lipid oxidation, and expression of peroxisome proliferator-activated receptor alpha target genes in adipose tissue (AT) and liver. These changes did not increase overall body weight or fat mass in AAKO mice by 24 weeks of age, in part due to reduced expression of genes involved in lipid uptake, synthesis, and adipogenesis. Systemic glucose and insulin tolerance were improved in AAKO mice, primarily due to enhanced hepatic insulin signaling, which was accompanied by marked reduction in diet-induced hepatic steatosis as well as hepatic immune cell infiltration and activation. In contrast, although adipocyte ATGL deletion reduced AT immune cell infiltration in response to an acute lipolytic stimulus, it was not sufficient to ameliorate, and may even exacerbate, chronic inflammatory changes that occur in AT in response to diet-induced obesity.

  17. Impact of Reduced ATGL-Mediated Adipocyte Lipolysis on Obesity-Associated Insulin Resistance and Inflammation in Male Mice

    PubMed Central

    Schoiswohl, Gabriele; Stefanovic-Racic, Maja; Menke, Marie N.; Wills, Rachel C.; Surlow, Beth A.; Basantani, Mahesh K.; Sitnick, Mitch T.; Cai, Lingzhi; Yazbeck, Cynthia F.; Stolz, Donna B.; Pulinilkunnil, Thomas; O'Doherty, Robert M.

    2015-01-01

    Emerging evidence suggests that impaired regulation of adipocyte lipolysis contributes to the proinflammatory immune cell infiltration of metabolic tissues in obesity, a process that is proposed to contribute to the development and exacerbation of insulin resistance. To test this hypothesis in vivo, we generated mice with adipocyte-specific deletion of adipose triglyceride lipase (ATGL), the rate-limiting enzyme catalyzing triacylglycerol hydrolysis. In contrast to previous models, adiponectin-driven Cre expression was used for targeted ATGL deletion. The resulting adipocyte-specific ATGL knockout (AAKO) mice were then characterized for metabolic and immune phenotypes. Lean and diet-induced obese AAKO mice had reduced adipocyte lipolysis, serum lipids, systemic lipid oxidation, and expression of peroxisome proliferator-activated receptor alpha target genes in adipose tissue (AT) and liver. These changes did not increase overall body weight or fat mass in AAKO mice by 24 weeks of age, in part due to reduced expression of genes involved in lipid uptake, synthesis, and adipogenesis. Systemic glucose and insulin tolerance were improved in AAKO mice, primarily due to enhanced hepatic insulin signaling, which was accompanied by marked reduction in diet-induced hepatic steatosis as well as hepatic immune cell infiltration and activation. In contrast, although adipocyte ATGL deletion reduced AT immune cell infiltration in response to an acute lipolytic stimulus, it was not sufficient to ameliorate, and may even exacerbate, chronic inflammatory changes that occur in AT in response to diet-induced obesity. PMID:26196542

  18. Graphene quantum dots as universal fluorophores and their use in revealing regulated trafficking of insulin receptors in adipocytes.

    PubMed

    Zheng, Xin Ting; Than, Aung; Ananthanaraya, Arundithi; Kim, Dong-Hwan; Chen, Peng

    2013-07-23

    Graphene quantum dots (GQDs) hold great promise as a new class of fluorophores for bioimaging, owing to their remarkable physicochemical properties including tunable photoluminescence, excellent photostability, and biocompatibility. Despite their highly anticipated potentials, GQDs have yet to be used to specifically label and track molecular targets involved in dynamic cellular processes in live cells. Here, we demonstrate that GQDs can serve as universal fluorophores for bioimaging because they can be readily conjugated with a wide range of biomolecules while preserving their functionalities. As a proof-of-concept demonstration, insulin-conjugated GQDs have been synthesized and utilized for specific labeling and dynamic tracking of insulin receptors in 3T3-L1 adipocytes. Our experiments reveal, for the first time, that the internalization and recycling of insulin receptors in adipocytes are oppositely regulated by apelin and TNFα, which may contribute to the regulations of these two cytokines in insulin sensitivity.

  19. Adipocyte-Specific Deficiency of NADPH Oxidase 4 Delays the Onset of Insulin Resistance and Attenuates Adipose Tissue Inflammation in Obesity.

    PubMed

    Den Hartigh, Laura J; Omer, Mohamed; Goodspeed, Leela; Wang, Shari; Wietecha, Tomasz; O'Brien, Kevin D; Han, Chang Yeop

    2017-03-01

    Obesity is associated with insulin resistance and adipose tissue inflammation. Reactive oxygen species (ROS) increase in adipose tissue during the development of obesity. We previously showed that in response to excess nutrients like glucose and palmitate, adipocytes generated ROS via NADPH oxidase (NOX) 4, the major adipocyte isoform, instead of using mitochondrial oxidation. However, the role of NOX4-derived ROS in the development of whole body insulin resistance, adipocyte inflammation, and recruitment of macrophages to adipose tissue during the development of obesity is unknown. In this study, control C57BL/6 mice and mice in which NOX4 has been deleted specifically in adipocytes were fed a high-fat, high-sucrose diet. During the development of obesity in control mice, adipocyte NOX4 and pentose phosphate pathway activity were transiently increased. Primary adipocytes differentiated from mice with adipocytes deficient in NOX4 showed resistance against high glucose or palmitate-induced adipocyte inflammation. Mice with adipocytes deficient in NOX4 showed a delayed onset of insulin resistance during the development of obesity, with an initial reduction in adipose tissue inflammation that normalized with prolonged high-fat, high-sucrose feeding. These findings imply that NOX4-derived ROS may play a role in the onset of insulin resistance and adipose tissue inflammation. As such, therapeutics targeting NOX4-mediated ROS production could be effective in preventing obesity-associated conditions, such as insulin resistance. © 2016 American Heart Association, Inc.

  20. Effects of insulin, triiodothyronine and fat soluble vitamins on adipocyte differentiation and LPL gene expression in the stromal-vascular cells of red sea bream, Pagrus major.

    PubMed

    Oku, Hiromi; Tokuda, Masaharu; Okumura, Takuji; Umino, Tetsuya

    2006-07-01

    Various kinds of hormones including insulin, triiodothyronine (T(3)) and fat-soluble vitamins have been proposed as mediators of adipocyte differentiation in mammals. To investigate the factors which are responsible for fish adipocyte differentiation, we developed a serum-free culture system of stromal-vascular cells of red sea bream adipose tissue and examined the effects of bovine insulin, T(3), and fat-soluble vitamins (all-trans retinoic acid, retinyl acetate and 1,25-dihydroxyvitamin D(3)) on the differentiation-linked expression of the lipoprotein lipase (LPL) gene. As assessed by the increase in LPL gene expression after 3 day cultivation, like in mammalian adipocytes, insulin enhanced the adipocyte differentiation in a concentration-dependent manner. During 2 week cultivation, bovine insulin promoted lipid accumulation in differentiating adipocytes concentration-dependently until the terminal differentiation. These results indicate that the differentiation of fish adipocytes is inducible by insulin alone. T(3) alone had no effect but enhanced the differentiation-linked LPL gene expression in the presence of insulin. Fat-soluble vitamins, unlike in mammalian adipocytes, did not show any significant effects. The method developed in this study should be of interest for the characterization of factors involved in fish adipocyte differentiation.

  1. Fibroblast Growth Factor 21 Improves Insulin Sensitivity and Synergizes with Insulin in Human Adipose Stem Cell-Derived (hASC) Adipocytes

    PubMed Central

    Lee, Darwin V.; Li, Dongmei; Yan, Qingyun; Zhu, Yimin; Goodwin, Bryan; Calle, Roberto; Brenner, Martin B.; Talukdar, Saswata

    2014-01-01

    Fibroblast growth factor 21 (FGF21) has evolved as a major metabolic regulator, the pharmacological administration of which causes weight loss, insulin sensitivity and glucose control in rodents and humans. To understand the molecular mechanisms by which FGF21 exerts its metabolic effects, we developed a human in vitro model of adipocytes to examine crosstalk between FGF21 and insulin signaling. Human adipose stem cell-derived (hASC) adipocytes were acutely treated with FGF21 alone, insulin alone, or in combination. Insulin signaling under these conditions was assessed by measuring tyrosine phosphorylation of insulin receptor (InsR), insulin receptor substrate-1 (IRS-1), and serine 473 phosphorylation of Akt, followed by a functional assay using 14C-2-deoxyglucose [14C]-2DG to measure glucose uptake in these cells. FGF21 alone caused a modest increase of glucose uptake, but treatment with FGF21 in combination with insulin had a synergistic effect on glucose uptake in these cells. The presence of FGF21 also effectively lowered the insulin concentration required to achieve the same level of glucose uptake compared to the absence of FGF21 by 10-fold. This acute effect of FGF21 on insulin signaling was not due to IR, IGF-1R, or IRS-1 activation. Moreover, we observed a substantial increase in basal S473-Akt phosphorylation by FGF21 alone, in contrast to the minimal shift in basal glucose uptake. Taken together, our data demonstrate that acute co-treatment of hASC-adipocytes with FGF21 and insulin can result in a synergistic improvement in glucose uptake. These effects were shown to occur at or downstream of Akt, or separate from the canonical insulin signaling pathway. PMID:25365322

  2. Glucocorticoids antagonize tumor necrosis factor-α-stimulated lipolysis and resistance to the antilipolytic effect of insulin in human adipocytes

    PubMed Central

    Fried, Susan K.

    2012-01-01

    High concentrations of TNF within obese adipose tissue increase basal lipolysis and antagonize insulin signaling. Adipocytes of the obese are also exposed to elevated levels of glucocorticoids (GCs), which antagonize TNF actions in many cell types. We tested the hypothesis that TNF decreases sensitivity to the antilipolytic effect of insulin and that GCs antagonize this effect in differentiated human adipocytes. Lipolysis and expression levels of lipolytic proteins were measured after treating adipocytes with TNF, dexamethasone (DEX), or DEX + TNF for up to 48 h. TNF not only increased basal lipolysis, it caused resistance to the antilipolytic effects of insulin in human adipocytes. DEX alone did not significantly affect lipolysis. Cotreatment with DEX blocked TNF induction of basal lipolysis and insulin resistance by antagonizing TNF stimulation of PKA-mediated phosphorylation of hormone-sensitive lipase (HSL) at Ser563 and Ser660 and perilipin. TNF did not affect perilipin, HSL, or phosphodiesterase-3B mass but paradoxically suppressed adipose tissue triglyceride lipase expression, and this effect was blocked by DEX. The extent to which GCs can restrain the lipolytic actions of TNF may both diminish the potentially deleterious effects of excess lipolysis and contribute to fat accumulation in obesity. PMID:22949029

  3. Astragaloside IV attenuates lipolysis and improves insulin resistance induced by TNFalpha in 3T3-L1 adipocytes.

    PubMed

    Jiang, Boren; Yang, Ying; Jin, Hua; Shang, Wenbin; Zhou, Libin; Qian, Lei; Chen, Mingdao

    2008-11-01

    Increased circulating free fatty acid (FFA) concentrations have been demonstrated to potentially link obesity, insulin resistance and cardiovascular diseases. Astragaloside IV (AS-IV) is a saponin which is widely used in traditional Chinese medicine to treat type 2 diabetes and cardiovascular diseases. The purpose of the present study was to examine the effects of AS-IV on the lipolysis and insulin resistance induced by tumor necrosis factor-alpha (TNFalpha) in cultured 3T3-L1 adipocytes. TNFalpha promotes lipolysis in mammal adipocytes via the mitogen activated protein kinase (MAPK) family resulting in reduced expression/function of perilipin. Application of AS-IV inhibited TNFalpha-induced accelerated lipolysis in a dose-dependent manner, which was compatible with suppressed phosphorylation of ERK1/2 and reversed the downregulation of perilipin. Moreover, TNFalpha induced downregulation of key enzymes in lipogenesis, including LPL, FAS and GPAT, were also attenuated by AS-IV. Further studies showed that AS-IV improved TNFalpha-induced insulin resistance in 3T3-L1 adipocytes. This study provides the first direct evidence of the antilipolytic action of AS-IV in adipocytes, which may allow this agent to decrease the circulating FFA levels, thus increase insulin sensitivity and treat cardiovascular diseases.

  4. Glucocorticoids antagonize tumor necrosis factor-α-stimulated lipolysis and resistance to the antilipolytic effect of insulin in human adipocytes.

    PubMed

    Lee, Mi-Jeong; Fried, Susan K

    2012-11-01

    High concentrations of TNF within obese adipose tissue increase basal lipolysis and antagonize insulin signaling. Adipocytes of the obese are also exposed to elevated levels of glucocorticoids (GCs), which antagonize TNF actions in many cell types. We tested the hypothesis that TNF decreases sensitivity to the antilipolytic effect of insulin and that GCs antagonize this effect in differentiated human adipocytes. Lipolysis and expression levels of lipolytic proteins were measured after treating adipocytes with TNF, dexamethasone (DEX), or DEX + TNF for up to 48 h. TNF not only increased basal lipolysis, it caused resistance to the antilipolytic effects of insulin in human adipocytes. DEX alone did not significantly affect lipolysis. Cotreatment with DEX blocked TNF induction of basal lipolysis and insulin resistance by antagonizing TNF stimulation of PKA-mediated phosphorylation of hormone-sensitive lipase (HSL) at Ser⁵⁶³ and Ser⁶⁶⁰ and perilipin. TNF did not affect perilipin, HSL, or phosphodiesterase-3B mass but paradoxically suppressed adipose tissue triglyceride lipase expression, and this effect was blocked by DEX. The extent to which GCs can restrain the lipolytic actions of TNF may both diminish the potentially deleterious effects of excess lipolysis and contribute to fat accumulation in obesity.

  5. ApoA-IV improves insulin sensitivity and glucose uptake in mouse adipocytes via PI3K-Akt Signaling

    PubMed Central

    Li, Xiaoming; Wang, Fei; Xu, Min; Howles, Philip; Tso, Patrick

    2017-01-01

    Insulin resistance is a risk factor for type 2 diabetes mellitus. We investigated the effect of ApoA-IV on glucose uptake in the adipose and muscle tissues of mice and cultured 3T3-L1 adipocytes. We found that treatment with ApoA-IV lowered fasting blood glucose in both WT and diabetic KKAy mice by increasing glucose uptake in cardiac muscle, white adipose tissue, and brown adipose tissue through a mechanism that was partially insulin independent. Cell culture experiments showed that ApoA-IV improved glucose uptake in adipocytes in the absence of insulin by upregulating GLUT4 translocation by PI3K mediated activation of Akt signaling pathways. Considering our previous finding that ApoA-IV treatment enhanced pancreatic insulin secretion, these results suggests that ApoA-IV acts directly upon adipose tissue to improve glucose uptake and indirectly via insulin signaling. Our findings warrant future studies to identify the receptor for ApoA-IV and the downstream targets of PI3K-Akt signaling that regulate glucose uptake in adipocytes as potential therapeutic targets for treating insulin resistance. PMID:28117404

  6. Nandinine, a Derivative of Berberine, Inhibits Inflammation and Reduces Insulin Resistance in Adipocytes via Regulation of AMP-Kinase Activity.

    PubMed

    Zhao, Wenwen; Ge, Haixia; Liu, Kang; Chen, Xiuping; Zhang, Jian; Liu, Baolin

    2017-02-01

    Nandinine is a derivative of berberine that has high efficacy for treating cardiovascular diseases. This study investigated the effects of berberine and nandinine on the regulation of insulin sensitivity in adipocytes. Through treatment with macrophage-derived conditioned medium in 3T3-L1 adipocytes, dysregulation of adipokine production and activation of the IκB kinase β/nuclear factor-kappa B pathway was induced. However, these phenomena were effectively reversed by berberine, nandinine, and salicylate pretreatments. Furthermore, both berberine and nandinine inhibited serine phosphorylation of insulin receptor substrate-1 induced by IκB kinase β and increased tyrosine phosphorylation of insulin receptor substrate-1 to activate the PI3K/Akt pathway, which finally led to insulin-mediated glucose uptake. In addition, berberine and nandinine significantly increased AMP-activated protein kinase activity, thereby contributing to their anti-inflammatory effect by inhibiting IκB kinase β activation. Finally, in vivo studies demonstrated that both berberine (100 or 200 mg/kg) and nandinine (100 or 200 mg/kg) effectively ameliorated glucose intolerance and induced the insulin sensitivity index in mice. In conclusion, berberine and nandinine attenuated insulin resistance in adipocytes by inhibiting inflammation in an AMP-activated protein kinase-dependent manner. Berberine and nandinine may be used as dietary supplements and nandinine is a new candidate for obesity treatment.

  7. Bavachin from Psoralea corylifolia Improves Insulin-Dependent Glucose Uptake through Insulin Signaling and AMPK Activation in 3T3-L1 Adipocytes

    PubMed Central

    Lee, Hyejin; Li, Hua; Noh, Minsoo; Ryu, Jae-Ha

    2016-01-01

    The fruit of Psoralea corylifolia L. (Fabaceae) (PC), known as “Bo-Gol-Zhee” in Korea has been used as traditional medicine. Ethanol and aqueous extracts of PC have an anti-hyperglycemic effect by increasing plasma insulin levels and decreasing blood glucose and total plasma cholesterol levels in type 2 diabetic rats. In this study, we purified six compounds from PC and investigated their anti-diabetic effect. Among the purified compounds, bavachin most potently accumulated lipids during adipocyte differentiation. Intracellular lipid accumulation was measured by Oil Red-O (ORO) cell staining to investigate the effect of compounds on adipogenesis. Consistently, bavachin activated gene expression of adipogenic transcriptional factors, proliferator-activated receptorγ (PPARγ) and CCAAT/enhancer binding protein-α (C/EBPα). Bavachin also increased adiponectin expression and secretion in adipocytes. Moreover, bavachin increased insulin-induced glucose uptake by differentiated adipocytes and myoblasts. In differentiated adipocytes, we found that bavachin enhanced glucose uptake via glucose transporter 4 (GLUT4) translocation by activating the Akt and 5′AMP-activated protein kinase (AMPK) pathway in the presence or absence of insulin. These results suggest that bavachin from Psoralea corylifolia might have therapeutic potential for type 2 diabetes by activating insulin signaling pathways. PMID:27070585

  8. Bavachin from Psoralea corylifolia Improves Insulin-Dependent Glucose Uptake through Insulin Signaling and AMPK Activation in 3T3-L1 Adipocytes.

    PubMed

    Lee, Hyejin; Li, Hua; Noh, Minsoo; Ryu, Jae-Ha

    2016-04-08

    The fruit of Psoralea corylifolia L. (Fabaceae) (PC), known as "Bo-Gol-Zhee" in Korea has been used as traditional medicine. Ethanol and aqueous extracts of PC have an anti-hyperglycemic effect by increasing plasma insulin levels and decreasing blood glucose and total plasma cholesterol levels in type 2 diabetic rats. In this study, we purified six compounds from PC and investigated their anti-diabetic effect. Among the purified compounds, bavachin most potently accumulated lipids during adipocyte differentiation. Intracellular lipid accumulation was measured by Oil Red-O (ORO) cell staining to investigate the effect of compounds on adipogenesis. Consistently, bavachin activated gene expression of adipogenic transcriptional factors, proliferator-activated receptorγ (PPARγ) and CCAAT/enhancer binding protein-α (C/EBPα). Bavachin also increased adiponectin expression and secretion in adipocytes. Moreover, bavachin increased insulin-induced glucose uptake by differentiated adipocytes and myoblasts. In differentiated adipocytes, we found that bavachin enhanced glucose uptake via glucose transporter 4 (GLUT4) translocation by activating the Akt and 5'AMP-activated protein kinase (AMPK) pathway in the presence or absence of insulin. These results suggest that bavachin from Psoralea corylifolia might have therapeutic potential for type 2 diabetes by activating insulin signaling pathways.

  9. NYGGF4 (PID1) effects on insulin resistance are reversed by metformin in 3T3-L1 adipocytes.

    PubMed

    Qiu, Jie; Wang, Yu-Mei; Shi, Chun-Mei; Yue, Hong-Ni; Qin, Zhen-Ying; Zhu, Guan-Zhong; Cao, Xin-Guo; Ji, Chen-Bo; Cui, Yan; Guo, Xi-Rong

    2012-12-01

    NYGGF4 (also called PID1) is a recently discovered gene that is involved in obesity-related insulin resistance (IR). We aimed in the present study to further elucidate the effects of NYGGF4 on IR and the underlying mechanisms through using metformin treatment in 3T3-L1 adipocytes. Our data showed that the metformin pretreatment strikingly enhanced insulin-stimulated glucose uptake through increasing GLUT4 translocation to the PM in NYGGF4 overexpression adipocytes. NYGGF4 overexpression resulted in significant inhibition of tyrosine phosphorylation of IRS-1 and serine phosphorylation of Akt, whereas incubation with metformin strongly activated IRS-1 and Akt phosphorylation in NYGGF4 overexpression adipocytes. The reactive oxygen species (ROS) levels in NYGGF4 overexpression adipocytes were strikingly enhanced, which could be decreased by the metformin pretreatment. Our data also showed that metformin increased the expressions of PGC1-α, NRF-1, and TFAM, which were reduced in the NYGGF4 overexpression adipocytes. These results suggest that NYGGF4 plays a role in IR and its effects on IR could be reversed by metformin through activating IRS-1/PI3K/Akt and AMPK-PGC1-α pathways.

  10. Adipocyte-specific CD1d-deficiency mitigates diet-induced obesity and insulin resistance in mice

    PubMed Central

    Satoh, Masashi; Hoshino, Miyuki; Fujita, Koki; Iizuka, Misao; Fujii, Satoshi; Clingan, Christopher S.; Van Kaer, Luc; Iwabuchi, Kazuya

    2016-01-01

    It has been shown that CD1d expression and glycolipid-reactive, CD1d-restricted NKT cells exacerbate the development of obesity and insulin resistance in mice. However, the relevant CD1d-expressing cells that influence the effects of NKT cells on the progression of obesity remain incompletely defined. In this study, we have demonstrated that 3T3-L1 adipocytes can present endogenous ligands to NKT cells, leading to IFN-γ production, which in turn, stimulated 3T3-L1 adipocytes to enhance expression of CD1d and CCL2, and decrease expression of adiponectin. Furthermore, adipocyte-specific CD1d deletion decreased the size of the visceral adipose tissue mass and enhanced insulin sensitivity in mice fed a high-fat diet (HFD). Accordingly, NKT cells were less activated, IFN-γ production was significantly reduced, and levels of adiponectin were increased in these animals as compared with control mice on HFD. Importantly, macrophage recruitment into the adipose tissue of adipocyte-specific CD1d-deficient mice was significantly blunted. These findings indicate that interactions between NKT cells and CD1d-expressing adipocytes producing endogenous NKT cell ligands play a critical role in the induction of inflammation and functional modulation of adipose tissue that leads to obesity. PMID:27329323

  11. Betel nut extract and arecoline block insulin signaling and lipid storage in 3T3-L1 adipocytes.

    PubMed

    Hsieh, Tusty-Jiuan; Hsieh, Pei-Chen; Wu, Ming-Tsang; Chang, Wei-Chiao; Hsiao, Pi-Jung; Lin, Kun-Der; Chou, Pong-Chun; Shin, Shyi-Jang

    2011-12-01

    According to several population-based studies, betel nut chewing is associated with metabolic syndrome and diabetes in British South Asians and Taiwanese. However, the underlying molecular mechanism is not yet clear. Arecoline is an alkaloid-type natural product found in betel nuts. Our aim was to clarify the influence of betel nut extract and arecoline on lipid accumulation and insulin signaling in adipocytes. We found that betel nut extract and arecoline blocked lipid storage in 3T3-L1 adipocytes. The possible mechanism may function by inhibiting the expression of the insulin receptor, glucose transporter-4, fatty acid synthase, and the lipid droplet proteins perilipin and adipophilin. In addition, betel nut extract and arecoline increased the basal level of IRS-1 serine(307) phosphorylation and decreased insulin-stimulated IRS-1 tyrosine, Akt, and PI3 kinase phosphorylation. In conclusion, betel nut extract and arecoline have diabetogenic potential on adipocytes that may result in insulin resistance and diabetes at least in part via the obstruction of insulin signaling and the blockage of lipid storage.

  12. Plac8 is required for white adipocyte differentiation in vitro and cell number control in vivo.

    PubMed

    Jimenez-Preitner, Maria; Berney, Xavier; Thorens, Bernard

    2012-01-01

    Plac8 belongs to an evolutionary conserved family of proteins, mostly abundant in plants where they control fruit weight through regulation of cell number. In mice, Plac8 is expressed both in white and brown adipose tissues and we previously showed that Plac8(-/-) mice develop late-onset obesity, with abnormal brown fat differentiation and reduced thermogenic capacity. We also showed that in brown adipocytes, Plac8 is an upstream regulator of C/EBPβ expression. Here, we first assessed the role of Plac8 in white adipogenesis in vitro. We show that Plac8 is induced early after induction of 3T3-L1 adipocytes differentiation, a process that is prevented by Plac8 knockdown; similarly, embryonic fibroblasts obtained from Plac8 knockout mice failed to form adipocytes upon stimulation of differentiation. Knockdown of Plac8 in 3T3-L1 was associated with reduced expression of C/EBPβ, Krox20, and Klf4, early regulators of the white adipogenic program, and we show that Plac8 could transactivate the C/EBPβ promoter. In vivo, we show that absence of Plac8 led to increased white fat mass with enlarged adipocytes but reduced total number of adipocytes. Finally, even though Plac8(-/-) mice showed impaired thermogenesis due to brown fat dysfunction, this was not associated with changes in glycemia or plasma free fatty acid and triglyceride levels. Collectively, these data indicate that Plac8 is an upstream regulator of C/EBPβ required for adipogenesis in vitro. However, in vivo, Plac8 is dispensable for the differentiation of white adipocytes with preserved fat storage capacity but is required for normal fat cell number regulation.

  13. [Effects of insulin on pigment epithelium-derived factor expression in adipocytes of type 2 diabetic mellitus in rats].

    PubMed

    Xu, Fen; Lin, Beisi; Zhou, Yinli; Deng, Hongrong; Bi, Yan; Liang, Hua

    2014-10-21

    To explore the effects of insulin therapy on the expression of pigment epithelium-derived factor (PEDF) in adipocytes of type 2 diabetic mellitus (T2DM) in rats. A total of 22 newly diagnosed type 2 diabetics received a 2-week intensive insulin therapy. The levels of fasting plasma glucose (FPG), serum triglyceride and PEDF were measured before and after therapy. T2DM was induced by a high-fat diet and a low-dose streptozotocin (STZ). The Spraque-Dawley rats were divided randomly into diabetic, insulin treatment and gliclazide treatment groups. Another group with a chow diet was designated as normal controls. Differentiated 3T3-L1 adipocytes were then incubated with tumor necrosis factor-alpha (TNF-α) and (or) insulin for 24 h. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot were used to detect the expression of PEDF in adipose tissue or adipocytes. The PEDF levels in both sera and cell supernatant were measured by enzyme-linked immunosorbent assay (ELISA). Glucose uptake was detected after treatment of PEDF or anti-PEDF antibody simultaneously together with insulin in mature 3T3-L1 adipocytes. Insulin therapy decreased the serum levels of FPG and triglyceride of T2DM patients ((12.9 ± 2.8) vs (5.9 ± 1.4) mmol/L, (3.1 ± 1.8) vs (1.7 ± 0.8) mmol/L, P < 0.05) while the serum level of PEDF decreased significantly after therapy ((22.85 ± 5.73) vs (18.38 ± 5.28) µg/L, P < 0.05). Consistently the serum level of PEDF of diabetic rats was remarkably higher than that of normal controls and insulin-treated group ((28.6 ± 0.5) vs (25.4 ± 0.6) and (25.3 ± 0.6) µg/L, P < 0.05). And the elevated levels of PEDF, TNF-α mRNA and protein in adipose tissue (P < 0.05) could be reduced by insulin treatment (P < 0.05). However, no obvious change was detected in gliclazide treatment group. Further evidences suggested that TNF-α could induce more secretion and expression of PEDF in 3T3-L1 adipocyte while this effect became ameliorated

  14. A novel role for myosin II in insulin-stimulated glucose uptake in 3T3-L1 adipocytes

    SciTech Connect

    Steimle, Paul A.; Kent Fulcher, F.; Patel, Yashomati M. . E-mail: ympatel@uncg.edu

    2005-06-17

    Insulin-stimulated glucose uptake requires the activation of several signaling pathways to mediate the translocation and fusion of GLUT4 vesicles from an intracellular pool to the plasma membrane. The studies presented here show that inhibition of myosin II activity impairs GLUT4-mediated glucose uptake but not GLUT4 translocation to the plasma membrane. We also show that adipocytes express both myosin IIA and IIB isoforms, and that myosin IIA is recruited to the plasma membrane upon insulin stimulation. Taken together, the data presented here represent the first demonstration that GLUT4-mediated glucose uptake is a myosin II-dependent process in adipocytes. Based on our findings, we hypothesize that myosin II is activated upon insulin stimulation and recruited to the cell cortex to facilitate GLUT4 fusion with the plasma membrane. The identification of myosin II as a key component of GLUT4-mediated glucose uptake represents an important advance in our understanding of the mechanisms regulating glucose homeostasis.

  15. Inhibitory Effect of Piceatannol on TNF-α-Mediated Inflammation and Insulin Resistance in 3T3-L1 Adipocytes.

    PubMed

    Li, Yanfang; Yang, Puyu; Chang, Qimeng; Wang, Jing; Liu, Jie; Lv, Yuan; Wang, Thomas T Y; Gao, Boyan; Zhang, Yaqiong; Yu, Liangli Lucy

    2017-06-14

    Piceatannol, a bioactive component in grape and blueberry, was examined for its potential in decreasing the inflammatory activities in adipocytes using a cocultured adipocyte and macrophage system, and suppressing tumor necrosis factor-α (TNF-α)-mediated inflammation and the related insulin resistance using a 3T3-L1 adipocyte model. Piceatannol at 10 μM significantly reduced the release of inflammatory cytokines of TNF-α and monocyte chemoattractant protein-1 (MCP-1) by 19 and 31% in the cocultured system, respectively. Pretreatment with piceatannol also inhibited TNF-α-induced expression of interleukin-6 (IL-6) and MCP-1 at both mRNA and protein levels in the 3T3-L1 adipocytes. Piceatannol also partially improved the malfunction of insulin-stimulated glucose uptake, which was reduced by TNF-α in 3T3-L1 adipocytes. Furthermore, the inhibitions were mediated by significant blocking of IκBα phosphorylation and nuclear factor-κB (NF-κB) activation through suppressing nuclear translocation of NF-κB p65 along with c-Jun N-terminal kinase (JNK)-mitogen activated protein kinase (MAPK) activation. In addition, the Akt-dependent forkhead box O1 (FoxO1) signaling pathway was involved in the restoration of insulin-stimulated glucose uptake through suppressing the down-regulation of phosphorylation of Akt and FoxO1 expressions. These results suggested the potential of piceatannol in improving chronic inflammatory condition and insulin sensitivity in obese adipose tissues.

  16. Insulin-induced decrease in protein phosphorylation in rat adipocytes not explained by decreased A-kinase activity

    SciTech Connect

    Egan, J.J.; Greenberg, A.S.; Chang, M.K.; Londos, C.

    1987-05-01

    In isolated rat adipocytes, insulin inhibits lipolysis to a greater extent than would be predicted by the decrease in (-/+)cAMP activity ratio of cAMP-dependent protein kinase (A-kinase), from which it was speculated that insulin promotes the dephosphorylation of hormone-sensitive lipase. They have examined the phosphorylation state of cellular proteins under conditions of varying A-kinase activities in the presence and absence of insulin. Protein phosphorylation was determined by SDS-PAGE electrophoresis of extracts from /sup 32/P-loaded cells; glycerol and A-kinase activity ratios were measured in the cytosolic extracts from control, non-radioactive cells. Increased protein phosphorylation in general occurred over the same range of A-kinase activity ratios, 0.1-0.3, associated with increased glycerol release. The insulin-induced decrease in lipolysis was associated with a decrease in the /sup 32/P content of several proteins, an effect not explained by the modest reduction in A-kinase activity by insulin. This effect of insulin on protein phosphorylation was lost as the A-kinase activity ratios exceeded 0.5. The results suggest that insulin promotes the dephosphorylation of those adipocyte proteins which are subject to phosphorylation by A-kinase.

  17. ER stress in adipocytes inhibits insulin signaling, represses lipolysis, and alters the secretion of adipokines without inhibiting glucose transport.

    PubMed

    Xu, L; Spinas, G A; Niessen, M

    2010-08-01

    The endoplasmic reticulum (ER) is the intra-cellular site, where secreted and membrane proteins are synthesized. ER stress and activation of the unfolded protein response (UPR) contribute to insulin resistance and the development of diabetes in obesity. It was shown previously in hepatocytes that the UPR activates c-jun N-terminal kinase (JNK), which phosphorylates insulin receptor substrate (IRS) proteins on serine residues thereby inhibiting insulin signal transduction. Here we describe how ER stress affects insulin signaling and the biological function of adipocytes. In addition to inhibition of IRS we found that ER stress downregulates the expression of the insulin receptor. Concomitantly, insulin-induced activation of Akt/PKB and of ERK1/2 was strongly inhibited. Ectopic expression of IRS1 or IRS2 strongly counteracted the inhibitory effect of ER stress on insulin signaling while pharmacological inhibition of JNK with SP600125 resulted only in a mild improvement. ER stress decreased the secretion of the adipokines adiponectin and leptin, but strongly increased secretion of IL-6. ER stress inhibited expression and insulin-induced phosphorylation of AS160, reduced lipolysis but did not inhibit glucose transport. Finally, supernatants collected from 3T3-L1 adipocytes undergoing ER stress improved or impaired proliferation when used to condition the culture medium of INS-1E beta-cells dependent on the degree of ER stress. It appears that ER stress in adipocytes might initially lead to changes resembling early prediabetic stages, which at least in part support the regulation of systemic energy homeostasis. Copyright Georg Thieme Verlag KG Stuttgart New York.

  18. Regulation of insulin-like growth factor II receptors by growth hormone and insulin in rat adipocytes

    SciTech Connect

    Loennroth, P.; Assmundsson, K.; Eden, S.; Enberg, G.; Gause, I.; Hall, K.; Smith, U.

    1987-06-01

    The acute and long-term effects of growth hormone (GH) on the binding of insulin-like growth factor II (IGF-II) were evaluated in adipose cells from hypophysectomized rats given replacement therapy with thyroxine and hydrocortisone and in cells from their sham-operated littermates. After the cells were incubated with insulin and/or GH, the recycling of /sup 125/I-labeled IGF-II receptors was metabolically inhibited by treating the cells with KCN. IGF-II binding was 100 +/- 20% higher in cells from GH-deficient animals when compared with sham-operated controls. These GH-deficient cells also showed an increased sensitivity for insulin as compared with control cells (the EC/sub 50/ for insulin was 0.06 ng/ml in GH-deficient cells and 0.3 ng/ml in control cells.). However, the maximal incremental effect of insulin on IGH-II binding was reduced approx. = 27% by hypophysectomy. GH added to the incubation medium increased the number of IGF-II binding sites by 100 +/- 18% in cells from hypophysectomized animals. This increase was rapidly induced, but the time course was slower than that for the stimulatory effect of insulin. Half-maximal effect of GH on IGF-II binding was obtained at approx. = 30 ng/ml. Thus, GH added in vitro exerted a rapid insulin-like effect on the number of IGH-II receptors. GH also appears to play a regulating role for maintaining the cellular number of IGH-II receptors and, in addition, modulates the stimulatory effect of insulin on IGF-II binding.

  19. Knockdown of NYGGF4 (PID1) rescues insulin resistance and mitochondrial dysfunction induced by FCCP in 3T3-L1 adipocytes.

    PubMed

    Shi, Chun-Mei; Wang, Yu-Mei; Zhang, Chun-Mei; Qiu, Jie; Shen, Ya-Hui; Zhu, Jin-Gai; Chen, Lin; Xu, Guang-Feng; Zhao, Ya-Ping; Ji, Chen-Bo; Guo, Xi-Rong

    2012-11-01

    NYGGF4 is a recently identified gene that is involved in obesity-associated insulin resistance. Previous data from this laboratory have demonstrated that NYGGF4 overexpression might contribute to the development of insulin resistance (IR) and to mitochondrial dysfunction. Additionally, NYGGF4 knockdown enhanced insulin sensitivity and mitochondrial function in 3T3-L1 adipocytes. We designed this study to determine whether silencing of NYGGF4 in 3T3-L1 adipocytes could rescue the effect of insulin sensitivity and mitochondrial function induced by the cyanide p-trifluoromethoxyphenyl-hydrazone (FCCP), a mitochondrion uncoupler, to ascertain further the mechanism of NYGGF4 involvement in obesity-associated insulin resistance. We found that 3T3-L1 adipocytes, incubated with 5μM FCCP for 12h, had decreased levels of insulin-stimulated glucose uptake and had impaired insulin-stimulated GLUT4 translocation. Silencing also diminished insulin-stimulated tyrosinephosphorylation of IRS-1 and serine phosphorylation of Akt. This phenomenon contrasts with the effect of NYGGF4 knockdown on insulin sensitivity and describes the regulatory function of NYGGF4 in adipocytes insulin sensitivity. We next analyzed the mitochondrial function in NYGGF4-silenced adipocytes incubated with FCCP. NYGGF4 knockdown partly rescued the dissipation of mitochondrial mass, mitochondrial DNA, intracellular ATP synthesis, and intracellular reactive oxygen species (ROS) production occurred following the addition of FCCP, as well as inhibition of mitochondrial transmembrane potential (ΔΨm) in 3T3-L1 adipocytes incubated with FCCP. Collectively, our results suggested that addition of silencing NYGGF4 partly rescued the effect of insulin resistance and mitochondrial dysfunction in NYGGF4 silenced 3T3-L1 adipocytes incubated with FCCP, which might explain the involvement of NYGGF4-induced IR and the development of NYGGF4 in mitochondrial function.

  20. Inhibition of insulin-stimulated phosphorylation of the intracellular domain of phospholemman decreases insulin-dependent GLUT4 translocation in streptolysin-O-permeabilized adipocytes.

    PubMed Central

    Walaas, O; Horn, R S; Walaas, S I

    1999-01-01

    A variety of studies indicate that protein kinase C might be involved in the insulin signalling cascade leading to translocation of the insulin-regulated glucose transporter GLUT4 from intracellular pools to the plasma membrane. Phospholemman is a plasma-membrane protein kinase C substrate whose phosphorylation is increased by insulin in intact muscle [Walaas, Czernik, Olstad, Sletten and Walaas (1994) Biochem. J. 304, 635-640]. The present study examined whether the inhibition of phospholemman phosphorylation modulates the effects of insulin on GLUT4 translocation. For this purpose, a synthetic peptide derived from the intracellular domain of phospholemman with the phosphorylatable serine residues replaced with alanine residues was prepared. This peptide was found to decrease the protein kinase C-catalysed phosphorylation of a synthetic phospholemman peptide in vitro. When introduced into streptolysin-O-permeabilized adipocytes, the peptide decreased the effects of insulin on both the phosphorylation of phospholemman and the recruitment of GLUT4 to the plasma membrane. Similarly, the internalization of phospholemman antibodies, which also decreased the protein kinase C-mediated phosphorylation of the synthetic phospholemman peptide in vitro, decreased the effect of insulin on GLUT4 translocation in the adipocytes. The results suggest that phosphorylation of the intracellular domain of phospholemman might be involved in modulating the insulin-induced translocation of GLUT4 to the plasma membrane. PMID:10493924

  1. Dietary blueberry attenuates whole-body insulin resistance in high fat-fed mice by reducing adipocyte death and its inflammatory sequelae

    USDA-ARS?s Scientific Manuscript database

    Adipose tissue (AT) inflammation promotes insulin resistance (IR) and other obesity complications. AT inflammation and IR are associated with oxidative stress, adipocyte death, and the scavenging of dead adipocytes by proinflammatory CD11c+ AT macrophages (ATMF). We tested the hypothesis that supple...

  2. Insulin regulation of a novel WD-40 repeat protein in adipocytes.

    PubMed

    Rodgers, B D; Levine, M A; Bernier, M; Montrose-Rafizadeh, C

    2001-02-01

    A 400 bp PCR product generated with degenerate primers derived from the glucagon-like peptide-1 receptor was used to screen a rat skeletal muscle cDNA library. The predicted amino acid sequence of the 978 bp open reading frame has a predicted M(r) of 35 804, an estimated isoelectric point (pI) of 5.31 and contains seven WD-40 repeats, which are common to G-protein beta subunits (Gbeta). Although chemically and structurally similar to Gbeta subunits, the predicted amino acid sequence, when compared with the previously cloned Gbeta isoforms, was found to be only 31-41% similar and thus was named Gbeta-like (GbetaL, 'Gable'). Western blotting of whole-cell lysates and immunoprecipitates of membrane and cytosolic fractions of HEK 293 cells stably overexpressing a carboxy-terminal His-tagged GbetaL indicates that the protein is cytosolic and that it migrates at 42 kDa. A 4 kb transcript was detected in all tissues surveyed by northern blotting; however, an additional 2 kb transcript was detected in testis. Expression of GbetaL mRNA was highest in the brain and testis, followed by lung, heart, kidney, skeletal muscle, spleen and liver. In addition, reverse transcriptase/PCR showed that several other tissues and cell lines express GbetaL. The ubiquitous nature of the tissue expression pattern of GbetaL is similar to that of the insulin receptor, which suggests that insulin may influence GbetaL expression. Indeed, GbetaL protein and mRNA levels, in fully differentiated 3T3-L1 adipocytes, were upregulated by insulin in a concentration-dependent fashion. These changes were highly sensitive to insulin stimulation, being minimally affected by doses as low as 0.1 nM and maximally elevated by 1 nM doses. These data suggest that insulin regulates GbetaL production and imply that some of the actions of insulin may be mediated, in part, by this novel intracellular protein.

  3. Photoactivation of Dok1/ERK/PPARγ signaling axis inhibits excessive lipolysis in insulin-resistant adipocytes.

    PubMed

    Jiang, Xiaoxiao; Huang, Lei; Xing, Da

    2015-07-01

    Insulin resistance is a hallmark of the metabolic syndrome and type 2 diabetes. Increased plasma FFA level is an important cause of obesity-associated insulin resistance. Over-activated ERK is closely related with FFA release from adipose tissues in patients with type 2 diabetes. Nevertheless, there are no effective strategies to lower plasma FFA level. Low-power laser irradiation (LPLI) has been reported to regulate multiple biological processes. However, whether LPLI could ameliorate metabolic disorders and the molecular mechanisms involved remain unknown. In this study, we first demonstrated that LPLI suppresses excessive lipolysis of insulin-resistant adipocytes by activating tyrosine kinases-1(Dok1)/ERK/PPARγ pathway. Our data showed that LPLI inhibits ERK phosphorylation through the activation of Dok1, resulting in decreased phospho-PPARγ level. Non-phosphorylated PPARγ maintains in nucleus to promote the expression of adipogenic genes, reversing excessive lipolysis in insulin-resistant adipocytes. In summary, the present research highlights the important roles of Dok1/ERK/PPARγ pathway in lowering FFA release from adipocytes, and our research extends the knowledge of the biological effects induced by LPLI. Copyright © 2015. Published by Elsevier Inc.

  4. Insulin stimulates actin comet tails on intracellular GLUT4-containing compartments in differentiated 3T3L1 adipocytes.

    PubMed

    Kanzaki, M; Watson, R T; Khan, A H; Pessin, J E

    2001-12-28

    Incubation of isolated GLUT4-containing vesicles with Xenopus oocyte extracts resulted in a guanosine 5'-[gamma-thio]triphosphate (GTP gamma S) and sodium orthovanadate stimulation of actin comet tails. The in vitro actin-based GLUT4 vesicle motility was inhibited by both latrunculin B and a dominant-interfering N-WASP mutant, N-WASP/Delta VCA. Preparations of gently sheared (broken) 3T3L1 adipocytes also displayed GTP gamma S and sodium orthovanadate stimulation of actin comet tails on GLUT4 intracellular compartments. Furthermore, insulin pretreatment of intact adipocytes prior to gently shearing also resulted in a marked increase in actin polymerization and actin comet tailing on GLUT4 vesicles. In addition, the insulin stimulation of actin comet tails was completely inhibited by Clostridum difficile toxin B, demonstrating a specific role for a Rho family member small GTP-binding protein. Expression of N-WASP/Delta VCA in intact cells had little effect on adipocyte cortical actin but partially inhibited insulin-stimulated GLUT4 translocation. Taken together, these data demonstrate that insulin can induce GLUT4 vesicle actin comet tails that are necessary for the efficient translocation of GLUT4 from intracellular storage sites to the plasma membrane.

  5. Kazinol B from Broussonetia kazinoki improves insulin sensitivity via Akt and AMPK activation in 3T3-L1 adipocytes.

    PubMed

    Lee, Hyejin; Li, Hua; Jeong, Ji Hye; Noh, Minsoo; Ryu, Jae-Ha

    2016-07-01

    In this study, we evaluated the insulin-sensitizing effect of flavans purified from Broussonetia kazinoki Siebold (BK) on 3T3-L1 adipocytes. Among the tested compounds, kazinol B enhanced intracellular lipid accumulation, gene expression of proliferator-activated receptorγ (PPARγ) and CCAAT/enhancer binding protein-alpha (C/EBPα), and consistently induced PPARγ transcriptional activation. To further investigate the insulin-sensitizing effect of kazinol B, we measured glucose analogue uptake by fully differentiated adipocytes and myotubes. Kazinol B increased 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose (2-NBDG) uptake by cells by upregulating the gene expression and translocation of glucose transporter 4 (GLUT-4) into the plasma membrane in adipocytes. Kazinol B stimulated the gene expression and secretion of adiponectin, which is associated with a low risk of types 1 and 2 diabetes mellitus. We also suggested the mechanism of the antidiabetic effect of kazinol B by assaying Akt and AMP-activated protein kinase (AMPK) phosphorylation. In conclusion, kazinol B isolated from BK improved insulin sensitivity by enhancing glucose uptake via the insulin-Akt signaling pathway and AMPK activation. These results suggest that kazinol B might be a therapeutic candidate for diabetes mellitus. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Palmitate stimulates glucose transport in rat adipocytes by a mechanism involving translocation of the insulin sensitive glucose transporter (GLUT4)

    NASA Technical Reports Server (NTRS)

    Hardy, R. W.; Ladenson, J. H.; Henriksen, E. J.; Holloszy, J. O.; McDonald, J. M.

    1991-01-01

    In rat adipocytes, palmitate: a) increases basal 2-deoxyglucose transport 129 +/- 27% (p less than 0.02), b) decreases the insulin sensitive glucose transporter (GLUT4) in low density microsomes and increases GLUT4 in plasma membranes and c) increases the activity of the insulin receptor tyrosine kinase. Palmitate-stimulated glucose transport is not additive with the effect of insulin and is not inhibited by the protein kinase C inhibitors staurosporine and sphingosine. In rat muscle, palmitate: a) does not affect basal glucose transport in either the soleus or epitrochlearis and b) inhibits insulin-stimulated glucose transport by 28% (p less than 0.005) in soleus but not in epitrochlearis muscle. These studies demonstrate a potentially important differential role for fatty acids in the regulation of glucose transport in different insulin target tissues.

  7. S-resistin, a non secretable resistin isoform, impairs the insulin signalling pathway in 3T3-L1 adipocytes.

    PubMed

    Rodríguez, María; Moltó, Eduardo; Aguado, Lidia; Gallardo, Nilda; Andrés, Antonio; Arribas, Carmen

    2015-09-01

    S-resistin is a non-secretable resistin spliced variant, which is expressed mainly in the white adipose tissue from Wistar rats. Previous results confirmed that 3T3-L1 cells expressing s-resistin (3T3-L1-s-res) showed an inflammatory response and exhibited a decrease in glucose transport, both basal and insulin-stimulated. Here we present evidences demonstrating for the first time that s-resistin, like resistin, blocks insulin signalling pathway by inhibiting insulin receptor, insulin receptor substrate 1, protein kinase B/Akt and the mammalian target of rapamycin phosphorylation, and increasing the suppressor of cytokine signalling 3 levels being the later probably due to augmented of leptin expression. Thus, our data suggest that s-resistin could act by a still unknown intracrine pathway as an intracellular sensor, regulating the adipocyte insulin sensitivity.

  8. Palmitate stimulates glucose transport in rat adipocytes by a mechanism involving translocation of the insulin sensitive glucose transporter (GLUT4)

    NASA Technical Reports Server (NTRS)

    Hardy, R. W.; Ladenson, J. H.; Henriksen, E. J.; Holloszy, J. O.; McDonald, J. M.

    1991-01-01

    In rat adipocytes, palmitate: a) increases basal 2-deoxyglucose transport 129 +/- 27% (p less than 0.02), b) decreases the insulin sensitive glucose transporter (GLUT4) in low density microsomes and increases GLUT4 in plasma membranes and c) increases the activity of the insulin receptor tyrosine kinase. Palmitate-stimulated glucose transport is not additive with the effect of insulin and is not inhibited by the protein kinase C inhibitors staurosporine and sphingosine. In rat muscle, palmitate: a) does not affect basal glucose transport in either the soleus or epitrochlearis and b) inhibits insulin-stimulated glucose transport by 28% (p less than 0.005) in soleus but not in epitrochlearis muscle. These studies demonstrate a potentially important differential role for fatty acids in the regulation of glucose transport in different insulin target tissues.

  9. Fat-specific Protein 27 (FSP27) Interacts with Adipose Triglyceride Lipase (ATGL) to Regulate Lipolysis and Insulin Sensitivity in Human Adipocytes*

    PubMed Central

    Grahn, Tan Hooi Min; Kaur, Rajween; Yin, Jun; Schweiger, Martina; Sharma, Vishva Mitra; Lee, Mi-Jeong; Ido, Yasuo; Smas, Cynthia M.; Zechner, Rudolf; Lass, Achim; Puri, Vishwajeet

    2014-01-01

    In adipocytes, lipolysis is a highly regulated process involving hormonal signals, lipid droplet-associated proteins, and lipases. The discovery of new lipid droplet-associated proteins added complexity to the current model of lipolysis. In this study, we used cultured human adipocytes to demonstrate that fat-specific protein 27 (FSP27), an abundantly expressed protein in adipocytes, regulates both basal and stimulated lipolysis by interacting with adipose triglyceride lipase (ATGL, also called desnutrin or PNPLA2). We identified a core domain of FSP27, amino acids 120–220, that interacts with ATGL to inhibit its lipolytic function and promote triglyceride storage. We also defined the role of FSP27 in free fatty acid-induced insulin resistance in adipocytes. FSP27 depletion in human adipocytes increased lipolysis and inhibited insulin signaling by decreasing AKT phosphorylation. However, reducing lipolysis by either depletion of ATGL or expression of exogenous full-length FSP27 or amino acids 120–220 protected human adipocytes against the adverse effects of free fatty acids on insulin signaling. In embryonic fibroblasts derived from ATGL KO mice, exogenous free fatty acids did not affect insulin sensitivity. Our results demonstrate a crucial role for FSP27-ATGL interactions in regulating lipolysis, triglyceride accumulation, and insulin signaling in human adipocytes. PMID:24627478

  10. Fat-specific protein 27 (FSP27) interacts with adipose triglyceride lipase (ATGL) to regulate lipolysis and insulin sensitivity in human adipocytes.

    PubMed

    Grahn, Tan Hooi Min; Kaur, Rajween; Yin, Jun; Schweiger, Martina; Sharma, Vishva Mitra; Lee, Mi-Jeong; Ido, Yasuo; Smas, Cynthia M; Zechner, Rudolf; Lass, Achim; Puri, Vishwajeet

    2014-04-25

    In adipocytes, lipolysis is a highly regulated process involving hormonal signals, lipid droplet-associated proteins, and lipases. The discovery of new lipid droplet-associated proteins added complexity to the current model of lipolysis. In this study, we used cultured human adipocytes to demonstrate that fat-specific protein 27 (FSP27), an abundantly expressed protein in adipocytes, regulates both basal and stimulated lipolysis by interacting with adipose triglyceride lipase (ATGL, also called desnutrin or PNPLA2). We identified a core domain of FSP27, amino acids 120-220, that interacts with ATGL to inhibit its lipolytic function and promote triglyceride storage. We also defined the role of FSP27 in free fatty acid-induced insulin resistance in adipocytes. FSP27 depletion in human adipocytes increased lipolysis and inhibited insulin signaling by decreasing AKT phosphorylation. However, reducing lipolysis by either depletion of ATGL or expression of exogenous full-length FSP27 or amino acids 120-220 protected human adipocytes against the adverse effects of free fatty acids on insulin signaling. In embryonic fibroblasts derived from ATGL KO mice, exogenous free fatty acids did not affect insulin sensitivity. Our results demonstrate a crucial role for FSP27-ATGL interactions in regulating lipolysis, triglyceride accumulation, and insulin signaling in human adipocytes.

  11. Proteomic Analysis of GLUT4 Storage Vesicles Reveals Tumor Suppressor Candidate 5 (TUSC5) as a Novel Regulator of Insulin Action in Adipocytes.

    PubMed

    Fazakerley, Daniel J; Naghiloo, Sheyda; Chaudhuri, Rima; Koumanov, Françoise; Burchfield, James G; Thomas, Kristen C; Krycer, James R; Prior, Matthew J; Parker, Ben L; Murrow, Beverley A; Stöckli, Jacqueline; Meoli, Christopher C; Holman, Geoffrey D; James, David E

    2015-09-25

    Insulin signaling augments glucose transport by regulating glucose transporter 4 (GLUT4) trafficking from specialized intracellular compartments, termed GLUT4 storage vesicles (GSVs), to the plasma membrane. Proteomic analysis of GSVs by mass spectrometry revealed enrichment of 59 proteins in these vesicles. We measured reduced abundance of 23 of these proteins following insulin stimulation and assigned these as high confidence GSV proteins. These included established GSV proteins such as GLUT4 and insulin-responsive aminopeptidase, as well as six proteins not previously reported to be localized to GSVs. Tumor suppressor candidate 5 (TUSC5) was shown to be a novel GSV protein that underwent a 3.7-fold increase in abundance at the plasma membrane in response to insulin. siRNA-mediated knockdown of TUSC5 decreased insulin-stimulated glucose uptake, although overexpression of TUSC5 had the opposite effect, implicating TUSC5 as a positive regulator of insulin-stimulated glucose transport in adipocytes. Incubation of adipocytes with TNFα caused insulin resistance and a concomitant reduction in TUSC5. Consistent with previous studies, peroxisome proliferator-activated receptor (PPAR) γ agonism reversed TNFα-induced insulin resistance. TUSC5 expression was necessary but insufficient for PPARγ-mediated reversal of insulin resistance. These findings functionally link TUSC5 to GLUT4 trafficking, insulin action, insulin resistance, and PPARγ action in the adipocyte. Further studies are required to establish the exact role of TUSC5 in adipocytes.

  12. Proteomic Analysis of GLUT4 Storage Vesicles Reveals Tumor Suppressor Candidate 5 (TUSC5) as a Novel Regulator of Insulin Action in Adipocytes*

    PubMed Central

    Fazakerley, Daniel J.; Naghiloo, Sheyda; Chaudhuri, Rima; Koumanov, Françoise; Burchfield, James G.; Thomas, Kristen C.; Krycer, James R.; Prior, Matthew J.; Parker, Ben L.; Murrow, Beverley A.; Stöckli, Jacqueline; Meoli, Christopher C.; Holman, Geoffrey D.; James, David E.

    2015-01-01

    Insulin signaling augments glucose transport by regulating glucose transporter 4 (GLUT4) trafficking from specialized intracellular compartments, termed GLUT4 storage vesicles (GSVs), to the plasma membrane. Proteomic analysis of GSVs by mass spectrometry revealed enrichment of 59 proteins in these vesicles. We measured reduced abundance of 23 of these proteins following insulin stimulation and assigned these as high confidence GSV proteins. These included established GSV proteins such as GLUT4 and insulin-responsive aminopeptidase, as well as six proteins not previously reported to be localized to GSVs. Tumor suppressor candidate 5 (TUSC5) was shown to be a novel GSV protein that underwent a 3.7-fold increase in abundance at the plasma membrane in response to insulin. siRNA-mediated knockdown of TUSC5 decreased insulin-stimulated glucose uptake, although overexpression of TUSC5 had the opposite effect, implicating TUSC5 as a positive regulator of insulin-stimulated glucose transport in adipocytes. Incubation of adipocytes with TNFα caused insulin resistance and a concomitant reduction in TUSC5. Consistent with previous studies, peroxisome proliferator-activated receptor (PPAR) γ agonism reversed TNFα-induced insulin resistance. TUSC5 expression was necessary but insufficient for PPARγ-mediated reversal of insulin resistance. These findings functionally link TUSC5 to GLUT4 trafficking, insulin action, insulin resistance, and PPARγ action in the adipocyte. Further studies are required to establish the exact role of TUSC5 in adipocytes. PMID:26240143

  13. Increased adipocyte S-nitrosylation targets anti-lipolytic action of insulin: relevance to adipose tissue dysfunction in obesity.

    PubMed

    Ovadia, Hilla; Haim, Yulia; Nov, Ori; Almog, Orna; Kovsan, Julia; Bashan, Nava; Benhar, Moran; Rudich, Assaf

    2011-09-02

    Protein S-nitrosylation is a reversible protein modification implicated in both physiological and pathophysiological regulation of protein function. In obesity, skeletal muscle insulin resistance is associated with increased S-nitrosylation of insulin-signaling proteins. However, whether adipose tissue is similarly affected in obesity and, if so, what are the causes and functional consequences of increased S-nitrosylation in this tissue are unknown. Total protein S-nitrosylation was increased in intra-abdominal adipose tissue of obese humans and in high fat-fed or leptin-deficient ob/ob mice. Both the insulin receptor β-subunit and Akt were S-nitrosylated, correlating with body weight. Elevated protein and mRNA expression of inducible NO synthase and decreased protein levels of thioredoxin reductase were associated with increased adipose tissue S-nitrosylation. Cultured differentiated pre-adipocyte cell lines exposed to the NO donors S-nitrosoglutathione (GSNO) or S-nitroso-N-acetylpenicillamine exhibited diminished insulin-stimulated phosphorylation of Akt but not of GSK3 nor of insulin-stimulated glucose uptake. Yet the anti-lipolytic action of insulin was markedly impaired in both cultured adipocytes and in mice injected with GSNO prior to administration of insulin. In cells, impaired ability of insulin to diminish phosphorylated PKA substrates in response to isoproterenol suggested impaired insulin-induced activation of PDE3B. Consistently, increased S-nitrosylation of PDE3B was detected in adipose tissue of high fat-fed obese mice. Site-directed mutagenesis revealed that Cys-768 and Cys-1040, two putative sites for S-nitrosylation adjacent to the substrate-binding site of PDE3B, accounted for ∼50% of its GSNO-induced S-nitrosylation. Collectively, PDE3B and the anti-lipolytic action of insulin may constitute novel targets for increased S-nitrosylation of adipose tissue in obesity.

  14. Suppressed intrinsic catalytic activity of GLUT1 glucose transporters in insulin-sensitive 3T3-L1 adipocytes

    SciTech Connect

    Harrison, S.A.; Buxton, J.M.; Czech, M.P. )

    1991-09-01

    Previous studies indicated that the erythroid-type (GLUT1) glucose transporter isoform contributes to basal but not insulin-stimulated hexose transport in mouse 3T3-L1 adipocytes. In the present studies it was found that basal hexose uptake in 3T3-L1 adipocytes was about 50% lower than that in 3T3-L1 or CHO-K1 fibroblasts. Intrinsic catalytic activities of GLUT1 transporters in CHO-K1 and 3T3-L1 cells were compared by normalizing these hexose transport rates to GLUT1 content on the cell surface, as measured by two independent methods. Cell surface GLUT1 levels in 3T3-L1 fibroblasts and adipocytes were about 10- and 25-fold higher, respectively, than in CHO-K1 fibroblasts, as assessed with an anti-GLUT1 exofacial domain antiserum, delta. The large excess of cell surface GLUT1 transporters in 3T3-L1 adipocytes relative to CHO-K1 fibroblasts was confirmed by GLUT1 protein immunoblot analysis and by photoaffinity labeling (with 3-({sup 125}I)iodo-4-azidophenethylamido-7-O-succinyldeacetylforskolin) of glucose transporters in isolated plasma membranes. Thus, GLUT1 intrinsic activity is markedly reduced in 3T3-L1 fibroblasts compared with the CHO-K1 fibroblasts, and further reduction occurs upon differentiation to adipocytes. The authors conclude that a mechanism that markedly suppresses basal hexose transport catalyzed by GLUT1 is a major contributor to the dramatic insulin sensitivity of glucose uptake in 3T3-L1 adipocytes.

  15. Angiopoietin-like 2, a circadian gene, improves type 2 diabetes through potentiation of insulin sensitivity in mice adipocytes.

    PubMed

    Kitazawa, Masashi; Nagano, Mamoru; Masumoto, Koh-Hei; Shigeyoshi, Yasufumi; Natsume, Tohru; Hashimoto, Seiichi

    2011-07-01

    Angiopoietin-like (Angptl)2, a member of the Angptl protein family, is predominantly secreted from adipose tissue and the heart. Here, we demonstrate that the expression of Angptl2 in epididymal adipose tissue of C57BL/6J mice shows pulsatility and circadian rhythmicity and that the rhythmicity was disrupted in high-fat-fed and leptin receptor-deficient diabetic db/db mice with insulin resistance. To investigate whether the reduction in Angptl2 expression was related to the progression of diabetes, we treated db/db mice with recombinant Angptl2 for 4 wk during the peak period of Angptl2 expression in C57BL/6J mice. Angptl2-treated mice showed decreases in plasma glucose, insulin, triglyceride, and fatty acid levels and an increase in plasma adiponectin, a therapeutic regulator of insulin resistance, leading to improvements in glucose tolerance. In cultured adipocytes, recombinant Angptl2 increased adiponectin expression and stimulated insulin sensitivity partially by reducing the levels of tribbles homolog 3, a specific Akt kinase inhibitory protein. Conversely, Angptl2 small interfering RNA reduced adiponectin expression, resulting in insulin resistance. In preadipocytes, treatment with Angptl2 small interfering RNA inhibited differentiation to adipocytes and reduced adiponectin expression. Taken together, our results suggest that replenishment of Angptl2 stimulates insulin sensitivity and improves the type 2 diabetic state.

  16. Optogenetic activation reveals distinct roles of PIP3 and Akt in adipocyte insulin action.

    PubMed

    Xu, Yingke; Nan, Di; Fan, Jiannan; Bogan, Jonathan S; Toomre, Derek

    2016-05-15

    Glucose transporter 4 (GLUT4; also known as SLC2A4) resides on intracellular vesicles in muscle and adipose cells, and translocates to the plasma membrane in response to insulin. The phosphoinositide 3-kinase (PI3K)-Akt signaling pathway plays a major role in GLUT4 translocation; however, a challenge has been to unravel the potentially distinct contributions of PI3K and Akt (of which there are three isoforms, Akt1-Akt3) to overall insulin action. Here, we describe new optogenetic tools based on CRY2 and the N-terminus of CIB1 (CIBN). We used these 'Opto' modules to activate PI3K and Akt selectively in time and space in 3T3-L1 adipocytes. We validated these tools using biochemical assays and performed live-cell kinetic analyses of IRAP-pHluorin translocation (IRAP is also known as LNPEP and acts as a surrogate marker for GLUT4 here). Strikingly, Opto-PIP3 largely mimicked the maximal effects of insulin stimulation, whereas Opto-Akt only partially triggered translocation. Conversely, drug-mediated inhibition of Akt only partially dampened the translocation response of Opto-PIP3 In spatial optogenetic studies, focal targeting of Akt to a region of the cell marked the sites where IRAP-pHluorin vesicles fused, supporting the idea that local Akt-mediated signaling regulates exocytosis. Taken together, these results indicate that PI3K and Akt play distinct roles, and that PI3K stimulates Akt-independent pathways that are important for GLUT4 translocation.

  17. Isoflavones in Chickpeas Inhibit Adipocyte Differentiation and Prevent Insulin Resistance in 3T3-L1 Cells.

    PubMed

    Gao, Yue; Yao, Yang; Zhu, Yinging; Ren, Guixing

    2015-11-11

    Diabetes mellitus is a metabolic disease characterized by hyperglycemia arising from defects in insulin secretion. This study investigated the effects of isoflavones in chickpea sprouts germinated in light (IGL) and isoflavones in chickpea seeds (ICS) on insulin resistance through their role in suppression of 3T3-L1 adipocyte differentiation. Results showed that IGL and ICS inhibit the differentiation of 3T3-L1 pre-adipocytes induced by differentiation medium in a dose-dependent manner, and the suppressive effect of IGL was stronger (p < 0.05) than that of ICS, evidenced by a decrease of Oil Red O staining and intracellular triacylglycerol content in the mature adipocytes. IGL and ICS also stimulated glucose uptake significantly (p < 0.05). Besides, IGL and ICS treatment caused a significant decrease in mRNA and protein expression levels of adipogenesis-related transcription factors peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding protein α (C/EBPα). Furthermore, the mRNA and protein expression levels of adipocyte fatty acid-binding protein (ap2), lipoprotein lipase (LPL), uncoupling protein-2 (UCP-2), and glucose transporter 4 (Glut4) in 3T3-L1 cells were also markedly down-regulated (p < 0.05).

  18. MSC attenuate diabetes-induced functional impairment in adipocytes via secretion of insulin-like growth factor-1.

    PubMed

    Gao, Dongyun; Xie, Jiangfan; Zhang, Junhua; Feng, Changjiang; Yao, Bin; Ma, Kui; Li, Jiwei; Wu, Xu; Huang, Sha; Fu, Xiaobing

    2014-09-12

    The function of subcutaneous adipocytes in promoting wound healing is significantly suppressed in diabetic wounds. Recent studies have demonstrated the ability of mesenchymal stem cell (MSC) to ameliorate impaired diabetic wound healing. We hypothesized that MSC function may involve subcutaneous adipocytes. The abnormal function of subcutaneous adipocytes from STZ induced diabetic mice including glucose uptake and free fatty acid (FFA) secretion level were assessed. Then these cells were co-cultured with MSC via a transwell system to observe the changes of metabolic index and glucose transporter four (GLUT4) as well as phosphoinositide 3-kinase/protein kinase (PI3K/AKT) signaling pathway expression. The results of metabolic index suggest that MSC obviously attenuated the diabetes-induced functional impairment. Both mRNA and protein expression analyses showed that PI3K/AKT insulin signaling pathway and GLUT4 expression were up-regulated. These changes were substantially associated with a increased level of insulin-like growth factor-1 (IGF-1) secretion from MSC. These findings suggest that MSC could attenuate abnormal function of diabetic adipocytes by IGF-1secretion, which was more or less associated with the beneficial effects of MSC on improving diabetic wound healing. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Hyperglycemia Potentiates H2O2 Production in Adipocytes and Enhances Insulin Signal Transduction: Potential Role for Oxidative Inhibition of Thiol-Sensitive Protein-Tyrosine Phosphatases

    PubMed Central

    WU, XIANGDONG; ZHU, LI; ZILBERING, ASSAF; MAHADEV, KALYANKAR; MOTOSHIMA, HIROYUKI; YAO, JUNLI; GOLDSTEIN, BARRY J.

    2006-01-01

    Insulin signal transduction in adipocytes is accompanied by a burst of cellular hydrogen peroxide (H2O2 facilitates insulin signaling by inhibiting thiol-dependent protein-tyrosine phosphatases (PTPs)) that are negative regulators of insulin action. As hyperglycemia is associated with increased cellular reactive oxygen species, we postulated that high glucose conditions might potentiate the H2O2 generated by insulin and modulate insulin-stimulated protein phosphorylation. Basal H2O2 generation was increased threefold in differentiated 3T3-L1 adipocytes by growth in 25 mM glucose versus 5 mM glucose. High glucose increased the sensitivity of the insulin-stimulated H2O2 signal to lower concentrations of insulin. Basal endogenous total PTP activity and the activity of PTP1B, a PTP implicated in the negative regulation of insulin signaling, were reduced in high glucose conditions, and their further reduction by insulin stimulation was more enhanced in high versus low glucose medium. Phosphorylation of the insulin receptor, IRS-1, and Akt in response to insulin was also significantly enhanced in high glucose conditions, especially at submaximal insulin concentrations. In primary rat adipocytes, high glucose increased insulin-stimulated H2O2 the oxidative inhibition of total PTP production and potentiated and PTP1B activity; however, insulin signaling was not enhanced in the primary cells in high glucose apparently due to cross-regulation of insulin-stimulated protein phosphorylation by activation of protein kinase C (PKC). These studies indicate that high glucose can enhance insulin-stimulated H2O2 generation and augment oxidative PTP inhibition in cultured and primary adipocytes, but the overall balance of insulin signal transduction is determined by additional signal effects in high glucose, including the activation of PKC. PMID:15889998

  20. Adipocyte SIRT1 knockout promotes PPARγ activity, adipogenesis and insulin sensitivity in chronic-HFD and obesity

    PubMed Central

    Mayoral, Rafael; Osborn, Olivia; McNelis, Joanne; Johnson, Andrew M.; Oh, Da Young; Izquierdo, Cristina Llorente; Chung, Heekyung; Li, Pingping; Traves, Paqui G.; Bandyopadhyay, Gautam; Pessentheiner, Ariane R.; Ofrecio, Jachelle M.; Cook, Joshua R.; Qiang, Li; Accili, Domenico; Olefsky, Jerrold M.

    2015-01-01

    Objective Adipose tissue is the primary site for lipid deposition that protects the organisms in cases of nutrient excess during obesogenic diets. The histone deacetylase Sirtuin 1 (SIRT1) inhibits adipocyte differentiation by targeting the transcription factor peroxisome proliferator activated-receptor gamma (PPARγ). Methods To assess the specific role of SIRT1 in adipocytes, we generated Sirt1 adipocyte-specific knockout mice (ATKO) driven by aP2 promoter onto C57BL/6 background. Sirt1flx/flxaP2Cre+ (ATKO) and Sirt1flx/flxaP2Cre- (WT) mice were fed high-fat diet for 5 weeks (short-term) or 15 weeks (chronic-term). Metabolic studies were combined with gene expression analysis and phosphorylation/acetylation patterns in adipose tissue. Results On standard chow, ATKO mice exhibit low-grade chronic inflammation in adipose tissue, along with glucose intolerance and insulin resistance compared with control fed mice. On short-term HFD, ATKO mice become more glucose intolerant, hyperinsulinemic, insulin resistant and display increased inflammation. During chronic HFD, WT mice developed a metabolic dysfunction, higher than ATKO mice, and thereby, knockout mice are more glucose tolerant, insulin sensitive and less inflamed relative to control mice. SIRT1 attenuates adipogenesis through PPARγ repressive acetylation and, in the ATKO mice adipocyte PPARγ was hyperacetylated. This high acetylation was associated with a decrease in Ser273-PPARγ phosphorylation. Dephosphorylated PPARγ is constitutively active and results in higher expression of genes associated with increased insulin sensitivity. Conclusion Together, these data establish that SIRT1 downregulation in adipose tissue plays a previously unknown role in long-term inflammation resolution mediated by PPARγ activation. Therefore, in the context of obesity, the development of new therapeutics that activate PPARγ by targeting SIRT1 may provide novel approaches to the treatment of T2DM. PMID:25973386

  1. Metabolism of covalent receptor-insulin complexes by 3T3-L1 adipocytes. Synthesis and use of photosensitive insulin analogs to study insulin receptor metabolism in cell culture.

    PubMed

    Reed, B C

    1983-04-10

    To facilitate labeling cell surface insulin receptors and analyzing their metabolism by 3T3-L1 adipocytes, a characterization of both the interaction of photosensitive insulin analogs with 3T3-L1 adipocytes and the conditions for photocross-linking these derivatives to the insulin receptor are described. The synthesis and purification of two photoaffinity analogs of insulin are presented. Both B29-lysine- and A1-glycine-substituted N-(2-nitro-4-azidophenyl)glycyl insulin compete with 125I-insulin for binding to 3T3-L1 adipocytes, and the B29-derivative retains a biological activity similar to that for native insulin. An apparatus developed for these studies permits photolysis of cells in monolayer culture using the visible region of the lamp emission spectrum. Activation of the photoderivative by this apparatus occurs with a half-life of approximately 15 s and permits rapid photolabeling of a single species of receptor of 300,000 Da. The conditions for photolabeling permit a measurement of the turnover of covalent receptor-insulin complexes by 3T3-L1 adipocytes in monolayer culture. Degradation of this complex occurs as an apparent first order process with a half-life of 7 h. A comparison with previous studies (Reed, B. C., Ronnett, G. V., Clements, P. R., and Lane, M. D. (1981) J. Biol. Chem 256, 3917-3925; Ronnett, G. V., Knutson, V. P., and Lane, M. D. (1982) J. Biol. Chem. 257, 4285-4291) indicates that in a "down-regulated" state, 3T3-L1 adipocytes degrade covalent receptor-hormone complexes with kinetics similar to those for the degradation of dissociable receptor-hormone complexes.

  2. Cyanidin-3-glucoside derived from black soybeans ameliorate type 2 diabetes through the induction of differentiation of preadipocytes into smaller and insulin-sensitive adipocytes.

    PubMed

    Matsukawa, Toshiya; Inaguma, Tetsuya; Han, Junkyu; Villareal, Myra O; Isoda, Hiroko

    2015-08-01

    Black soybean is a health food has been reported to have antidiabetes effect. The onset of diabetes is closely associated with adipocyte differentiation, and at present, the effect of black soybean on adipocyte differentiation is unknown. Here, we investigated the antidiabetes effect of black soybean, and its anthocyanin cyanidin-3-glucoside (Cy3G), on adipocyte differentiation. Orally administered black soybean seed coat extract (BSSCE) reduced the body and white adipose tissue (WAT) weight of db/db mice accompanied by a decrease in the size of adipocytes in WAT. Furthermore, 3T3-Ll cells treated with BSSCE and Cy3G were observed to differentiate into smaller adipocytes which correlated with increased PPARγ and C/EBPα gene expressions, increased adiponectin secretion, decreased tumor necrosis factor-α secretion, activation of insulin signalling and increased glucose uptake. C2C12 myotubes cultured with conditioned medium, obtained from 3T3-L1 adipocyte cultures treated with Cy3G, also showed significantly increased expression of PGC-1α, SIRT1 and UCP-3 genes. Here we report that BSSCE, as well as its active compound Cy3G, has antidiabetes effects on db/db mice by promoting adipocyte differentiation. This notion is supported by BSSCE and Cy3G inducing the differentiation of 3T3-L1 preadipocytes into smaller, insulin-sensitive adipocytes, and it induced the activation of skeletal muscle metabolism. This is the first report on the modulation effect of Cy3G on adipocyte differentiation.

  3. Bixin regulates mRNA expression involved in adipogenesis and enhances insulin sensitivity in 3T3-L1 adipocytes through PPAR{gamma} activation

    SciTech Connect

    Takahashi, Nobuyuki; Goto, Tsuyoshi; Taimatsu, Aki; Egawa, Kahori; Katoh, Sota; Kusudo, Tatsuya; Sakamoto, Tomoya; Ohyane, Chie; Lee, Joo-Young; Kim, Young-il; Uemura, Taku; Hirai, Shizuka; Kawada, Teruo

    2009-12-25

    Insulin resistance is partly due to suppression of insulin-induced glucose uptake into adipocytes. The uptake is dependent on adipocyte differentiation, which is controlled at mRNA transcription level. The peroxisome proliferator-activated receptor (PPAR), a ligand-regulated nuclear receptor, is involved in the differentiation. Many food-derived compounds serve as ligands to activate or inactivate PPAR. In this study, we demonstrated that bixin and norbixin (annatto extracts) activate PPAR{gamma} by luciferase reporter assay using GAL4-PPAR chimera proteins. To examine the effects of bixin on adipocytes, 3T3-L1 adipocytes were treated with bixin or norbixin. The treatment induced mRNA expression of PPAR{gamma} target genes such as adipocyte-specific fatty acid-binding protein (aP2), lipoprotein lipase (LPL), and adiponectin in differentiated 3T3-L1 adipocytes and enhanced insulin-dependent glucose uptake. The observations indicate that bixin acts as an agonist of PPAR{gamma} and enhances insulin sensitivity in 3T3-L1 adipocytes, suggesting that bixin is a valuable food-derived compound as a PPAR ligand to regulate lipid metabolism and to ameliorate metabolic syndrome.

  4. The control of insulin secretion by adipokines: current evidence for adipocyte-beta cell endocrine signalling in metabolic homeostasis.

    PubMed

    Cantley, James

    2014-10-01

    Metabolic homeostasis is maintained by the coordinated action of multiple organ systems. Insulin secretion is often enhanced during obesity or insulin resistance to maintain glucose and lipid homeostasis, whereas a loss of insulin secretion is associated with type 2 diabetes. Adipocytes secrete hormones known as adipokines which act on multiple cell types to regulate metabolism. Many adipokines have been shown to influence beta cell function by enhancing or inhibiting insulin release or by influencing beta cell survival. Insulin, in turn, regulates lipolysis and promotes glucose uptake and lipid storage in adipocytes. As adipokine secretion and action is strongly influenced by obesity, this provides a potential route by which beta cell function is coordinated with adiposity, independently of alterations in blood glucose or lipid levels. In this review, I assess the evidence for the direct regulation of beta cell function by the adipokines leptin, adiponectin, extracellular nicotinamide phosphoribosyltransferase, apelin, resistin, retinol binding protein 4, fibroblast growth factor 21, nesfatin-1 and fatty acid binding protein 4. I summarise in vitro and in vivo data and discuss the influence of obesity and diabetes on circulating adipokine concentrations, along with the potential for influencing beta cell function in human physiology. Finally, I highlight future research questions that are likely to yield new insights into the exciting field of insulinotropic adipokines.

  5. Phenethyl isothiocyanate protects against H2O2-induced insulin resistance in 3T3-L1 adipocytes.

    PubMed

    Nagami, Moe; Ito, Yoshiaki; Nagasawa, Takashi

    2017-09-13

    Obesity is associated with systemic oxidative stress and leads to insulin resistance. Phenethyl isothiocyanate (PEITC), a natural dietary isothiocyanate, has been shown to have beneficial effects in improving cellular defense activities against oxidative stress through activation of nuclear factor erythroid-2 related factor 2 (Nrf2) pathway. However, little evidence exists if the antioxidative activity has beneficial effects on glucose metabolism. Here, we tested the preventive potential of PEITC for impaired insulin-induced glucose uptake by oxidative stress in 3T3-L1 adipocytes. Treatment with PEITC increased the expression of antioxidative enzymes regulated by Nrf2 such as γ-glutamylcysteine-synthetase, heme oxygenase 1, NAD(P)H:quinone oxidoreductase 1 and glutathione S-transferase, and reduced oxidative stress induced by H2O2. Furthermore, PEITC restored impaired insulin-stimulated glucose uptake, translocation of glucose transporter 4 and insulin signaling by H2O2. These results indicate that PEITC protected insulin-regulated glucose metabolism impaired by oxidative stress through the antioxidative activity in 3T3-L1 adipocytes.

  6. Recycling of photoaffinity-labeled insulin receptors in rat adipocytes. Dissociation of insulin-receptor complexes is not required for receptor recycling

    SciTech Connect

    Huecksteadt, T.; Olefsky, J.M.; Brandenberg, D.; Heidenreich, K.A.

    1986-07-05

    We have used an iodinated, photoreactive analog of insulin, /sup 125/I-B2(2-nitro-4-azidophenylacetyl)-des-PheB1-insulin, to covalently label insulin receptors on the cell surface of isolated rat adipocytes. Following internalization of the labeled insulin-receptor complexes at 37/sup 0/C, we measured the rate and extent of recycling of these complexes using trypsin to distinguish receptors on the cell surface from those inside the cell. The return of internalized photoaffinity-labeled receptors to the cell surface was very rapid at 37/sup 0/C proceeding with an apparent t 1/2 of 6 min. About 95% of the labeled receptors present in the cell 20 min after the initiation of endocytosis returned to the cell surface by 40 min. Recycling was slower at 25 and 16/sup 0/C compared to 37/sup 0/C and essentially negligible at 12/sup 0/C or in the presence of energy depleters. Addition of excess unlabeled insulin had no effect on the recycling of photoaffinity-labeled insulin receptor complexes, whereas monensin, chloroquine, and Tris partially inhibited this process. These data indicate that dissociation of insulin from internalized receptors is not necessary for insulin receptor recycling. Furthermore, agents which have been shown to prevent vesicular acidification inhibit the recycling of insulin receptors by a mechanism other than prevention of ligand dissociation.

  7. Cell-permeable ceramides increase basal glucose incorporation into triacylglycerols but decrease the stimulation by insulin in 3T3-L1 adipocytes.

    PubMed

    Mei, J; Wang, C-N; O'Brien, L; Brindley, D N

    2003-01-01

    To investigate mechanisms for the regulation of glucose incorporation into triacylgycerols in adipocytes by ceramides, which mediate some actions of tumour necrosis factor-alpha (TNFalpha). The effects of C(2)- and C(6)-ceramides (N-acetyl- and N-hexanoyl-sphingosines, respectively) on glucose uptake and incorporation into triacylglycerols and pathways of signal tansduction were measured in 3T3-L1 adipocytes. C(6)-ceramide increased basal 2-deooxyglucose uptake but decreased insulin-stimulated uptake without changing the EC(50) for insulin. Incubating 3T3-L1 adipocytes from 2 to 24 h with C(2)-ceramide progressively increased glucose incorporation into the fatty acid and especially the glycerol moieties of triacylglycerol. These effects were accompanied by increased GLUT1 synthesis resulting from ceramide-induced activation phosphatidylinositol 3-kinase, ribosomal S6 kinase and mitogen-activated protein kinase. C(2)-ceramide also increased p21-activated kinase and protein kinase B activities. However, C(2)-ceramide decreased the insulin-stimulated component of these signalling pathways and also glucose incorporation into triacylglycerol after 2 h. Cell-permeable ceramides can mimic some effects of TNFalpha in producing insulin resistance. However, ceramides also mediate long-term effects that enable 3T3 L1 adipocytes to take up glucose and store triacylglycerols in the absence of insulin. These observations help to explain part of the nature and consequence of TNFalpha-induced insulin resistance and the control of fat accumulation in adipocytes in insulin resistance and obesity.

  8. Green tea epigallocatechin gallate inhibits insulin stimulation of adipocyte glucose uptake via the 67-kilodalton laminin receptor and AMP-activated protein kinase pathways.

    PubMed

    Hsieh, Chi-Fen; Tsuei, Yi-Wei; Liu, Chi-Wei; Kao, Chung-Cheng; Shih, Li-Jane; Ho, Low-Tone; Wu, Liang-Yi; Wu, Chi-Peng; Tsai, Pei-Hua; Chang, Hsin-Huei; Ku, Hui-Chen; Kao, Yung-Hsi

    2010-10-01

    Insulin and (-)-epigallocatechin gallate (EGCG) are reported to regulate obesity and fat accumulation, respectively. This study investigated the pathways involved in EGCG modulation of insulin-stimulated glucose uptake in 3T3-L1 and C3H10T1/2 adipocytes. EGCG inhibited insulin stimulation of adipocyte glucose uptake in a dose- and time-dependent manner. The concentration of EGCG that decreased insulin-stimulated glucose uptake by 50-60% was approximately 5-10 µM for a period of 2 h. At 10 µM, EGCG and gallic acid were more effective than (-)-epicatechin, (-)-epigallocatechin, and (-)-epicatechin 3-gallate. We identified the EGCG receptor [also known as the 67-kDa laminin receptor (67LR)] in fat cells and extended the findings for this study to clarify whether EGCG-induced changes in insulin-stimulated glucose uptake in adipocytes could be mediated through the 67LR. Pretreatment of adipocytes with a 67LR antibody, but not normal rabbit immunoglobulin, prevented the effects of EGCG on insulin-increased glucose uptake. This suggests that the 67LR mediates the effect of EGCG on insulin-stimulated glucose uptake in adipocytes. Moreover, pretreatment with an AMP-activated protein kinase (AMPK) inhibitor, such as compound C, but not with a glutathione (GSH) activator, such as N-acetyl-L-cysteine (NAC), blocked the antiinsulin effect of EGCG on adipocyte glucose uptake. These data suggest that EGCG exerts its anti-insulin action on adipocyte glucose uptake via the AMPK, but not the GSH, pathway. The results of this study possibly support that EGCG mediates fat content. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Synthesis of cytochrome c oxidase 1 (SCO1) inhibits insulin sensitivity by decreasing copper levels in adipocytes.

    PubMed

    Wei, Xiang-Bo; Guo, Liang; Liu, Yang; Zhou, Shui-Rong; Liu, Yuan; Dou, Xin; Du, Shao-Yue; Ding, Meng; Peng, Wan-Qiu; Qian, Shu-Wen; Huang, Hai-Yan; Tang, Qi-Qun

    2017-09-23

    Dysregulation of insulin signaling leads to type 2 diabetes mellitus (T2DM) and other metabolic disorders. Obesity is an important contributor to insulin resistance, and although the understanding of this relationship has improved in recent years, the mechanism of obesity-induced insulin resistance is not completely understood. Disorders of copper metabolism tend to accompany the development of obesity, which increases the risk of insulin resistance. Synthesis of cytochrome c oxidase 1 (SCO1) functions in the assembly of cytochrome c oxidase (COX) and cellular copper homeostasis. However, the role of SCO1 in the regulation of metabolism remains unknown. Here, we found that obese mice had higher expression of SCO1 and lower levels of copper in white adipose tissue (WAT) than did the control mice. Overexpression of SCO1 in adipocytes was associated with copper deficiency. Copper increased insulin sensitivity by decreasing the level of phosphatase and tensin homolog (PTEN) protein. Ectopic expression of SCO1 led to insulin resistance and was accompanied by a decrease in intracellular copper level, and addition of copper abolished the inhibitory effect of SCO1 on insulin sensitivity. Our results demonstrated a novel role of SCO1 in modulating insulin sensitivity via the regulation of copper concentration in WAT and suggested a potential therapeutic target for T2DM. Copyright © 2017. Published by Elsevier Inc.

  10. Egr-1 decreases adipocyte insulin sensitivity by tilting PI3K/Akt and MAPK signal balance in mice

    PubMed Central

    Yu, Xiao; Shen, Ning; Zhang, Ming-Liang; Pan, Fei-Yan; Wang, Chen; Jia, Wei-Ping; Liu, Chang; Gao, Qian; Gao, Xiang; Xue, Bin; Li, Chao-Jun

    2011-01-01

    It is well known that insulin can activate both PI3K/Akt pathway, which is responsible for glucose uptake, and MAPK pathway, which is crucial for insulin resistance formation. But, it is unclear exactly how the two pathways coordinate to regulate insulin sensitivity upon hyperinsulinism stress of type 2 diabetes mellitus (T2DM). Here, we show that an early response transcription factor Egr-1 could tilt the signalling balance by blocking PI3K/Akt signalling through PTEN and augmenting Erk/MAPK signalling through GGPPS, resulting in insulin resistance in adipocytes. Egr-1, PTEN and GGPPS are upregulated in the fat tissue of T2DM patients and db/db mice. Egr-1 overexpression in epididymal fat induced systematic insulin resistance in wild-type mice, and loss of Egr-1 function improved whole-body insulin sensitivity in diabetic mice, which is mediated by Egr-1 controlled PI3K/Akt and Erk/MAPK signalling balance. Therefore, we have revealed, for the first time, the mechanism by which Egr-1 induces insulin resistance under hyperinsulinism stress, which provides an ideal pharmacological target since inhibiting Egr-1 can simultaneously block MAPK and augment PI3K/Akt activation during insulin stimulation. PMID:21829168

  11. Cholesterol depletion blocks redistribution of lipid raft components and insulin-mimetic signaling by glimepiride and phosphoinositolglycans in rat adipocytes.

    PubMed Central

    Müller, Gunter; Hanekop, Nils; Wied, Susanne; Frick, Wendelin

    2002-01-01

    Glycosylphosphatidylinositol-anchored plasma membrane (GPI) proteins, such as Gce1, the dually acylated nonreceptor tyrosine kinases (NRTKs), such as pp59(Lyn), and the membrane protein, caveolin, together with cholesterol are typical components of detergent/carbonate-insoluble glycolipid-enriched raft domains (DIGs) in the plasma membrane of most eucaryotes. Previous studies demonstrated the dissociation from caveolin and concomitant redistribution from DIGs of Gce1 and pp59(Lyn) in rat adipocytes in response to four different insulin-mimetic stimuli, glimepiride, phosphoinositolglycans, caveolin-binding domain peptide, and trypsin/NaCl-treatment. We now characterized the structural basis for this dynamic of DIG components. MATERIALS AND METHODS: Carbonate extracts from purified plasma membranes of basal and stimulated adipocytes were analyzed by high-resolution sucrose gradient centrifugation. RESULTS: This process revealed the existence of two distinct species of detergent/carbonate-insoluble complexes floating at higher buoyant density and harboring lower amounts of cholesterol, caveolin, GPI proteins, and NRTKs (lcDIGs) compared to typical DIGs of high cholesterol content (hcDIGs). The four insulin-mimetic stimuli decreased by 40-70% and increased by 2.5- to 5-fold the amounts of GPI proteins and NRTKs at hcDIGs and lcDIGs, respectively. Cholesterol depletion of adipocytes per se by incubation with methyl-beta-cyclodextrin or cholesterol oxidase also caused translocation of GPI proteins and NRTKs from hcDIGs to lcDIGs and their release from caveolin in reversible fashion without concomitant induction of insulin-mimetic signaling. Cholesterol depletion, however, reduced by 50-60% the stimulus-induced translocation as well as dissociation from hcDIGs-associated caveolin of GPI proteins and NRTKs, activation of NRTKs as well as insulin-mimetic signaling and metabolic action. In contrast, insulin-mimetic signaling induced by vanadium compounds was not

  12. Insulin-stimulated conversion of D-(5-/sup 3/H) glucose to /sup 3/HOH in the perifused isolated rat adipocyte

    SciTech Connect

    Duckworth, W.C.; Peavy, D.E.; Frechette, P.; Solomon, S.S.

    1986-10-01

    Characteristics of basal and insulin-stimulated glucose utilization by perifused adipocytes have been investigated by measuring the formation of /sup 3/HOH from D-(5-/sup 3/H) glucose. At a glucose concentration of 0.55 mmol/L, basal glucose utilization ranged from 0.5 to 1.0 nmol/min/10(6) cells. Perifused adipocytes showed a maximal response to insulin of a threefold to fourfold increase in the conversion of (5-/sup 3/H) glucose to /sup 3/HOH with a half-maximal response at an insulin concentration of 20 microU/mL. The response to insulin was blocked by phlorizin and cytochalasin B, competitive inhibitors of glucose transport, consistent with an effect of insulin on glucose transport. Insulin increased the Vmax for glucose metabolism but had no effect on the apparent affinity for glucose utilization. The characteristics of glucose utilization and the stimulation of glucose metabolism by insulin in the perifused adipocyte are therefore similar to characteristics previously observed with incubated adipocytes. Because insulin can readily be removed from the system, perifused adipocytes are especially suited for studying the termination of insulin action. The termination of insulin-stimulated glucose metabolism occurred at the same rate in the presence of tracer (1 nmol/L) (5-/sup 3/H)-glucose alone as when 0.55 mmol/L glucose or 2 mmol/L pyruvate were added to the perifusion buffer. The halftime for this process in both cases was approximately 40 minutes. These data suggest that the presence of metabolizable substrate is not required for the termination of the insulin response, but the time course suggests that termination requires more than simply insulin-receptor dissociation.

  13. Vitamin B2 deficiency enhances the pro-inflammatory activity of adipocyte, consequences for insulin resistance and metabolic syndrome development.

    PubMed

    Mazur-Bialy, Agnieszka Irena; Pocheć, Ewa

    2017-06-01

    Adipose tissue is an endocrine organ important for regulation of such physiological processes as energy metabolism or lipids homeostasis. In an obesity state, it participates in the induction of chronic systemic inflammation accompanied by pro-inflammatory cytokines and fatty acid elevation. For this reasons, adipose tissue is involved in, e.g., insulin resistance, type 2 diabetes or hyperlipidemia development. In our previous study, we have shown that riboflavin deficiency induces a pathological pro-inflammatory response of macrophages, the main component of adipose tissue. Therefore, in the current study, we investigated the alteration of the pro-inflammatory activity of adipocytes. The study was conducted on mouse 3T3 L1 preadipocytes differentiated to adipocyte and culture in the state of riboflavin deficiency (3.1nM) or control condition (10.4nM). The cell viability, adiposity and glucose uptake was assessed. Moreover, mRNA expression, as well as crucial pro-inflammatory cytokines (TNFα, IL-6) and adipokines (adiponectin, leptin, resistin) release and NFκB activation, were evaluated. Results showed that riboflavin deprivation induced a significant elevation in adipocyte lipolysis and enhance obesity-related apoptosis of adipocytes. The generation of reactive oxygen species was enhanced in riboflavin-deficient adipocytes by 43%. Moreover, NFκB phosphorylation and the expression and release of both TNFα, IL-6 as well as leptin were elevated in a deficient group what was accompanied by a reduction of adiponectin level. Our study shows that riboflavin deficiency can promote the intensification of pro-inflammatory activity of adipocyte cells, leading consequently to the severity of chronic inflammation that accompanies obesity state. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Differentiation with elaidate tends to impair insulin-dependent glucose uptake and GLUT4 translocation in 3T3-L1 adipocytes.

    PubMed

    Ishibashi, Kenichi; Nehashi, Kana; Oshima, Toshiyuki; Ohkura, Naoki; Atsumi, Gen-Ichi

    2016-01-01

    Development of type 2 diabetes mellitus and insulin resistance is associated with a quality of dietary fatty acids such as saturated and unsaturated fatty acids. Dietary fatty acids also include transform of unsaturated fatty acids and intake of transform of oleate (elaidate) is associated with cardiovascular disease. However, little is known about the roles of elaidate in insulin responsiveness. We show here that elaidate impairs insulin-dependent glucose uptake in adipocytes. Differentiation with 10 μM elaidate, which is close to physiological plasma concentration, reduces insulin-dependent glucose uptake. Furthermore, insulin-dependent GLUT4 translocation is disturbed in adipocytes differentiated with elaidate. In addition, analysis of lipolysis and gene expression shows that deteriorative effects of elaidate on insulin responsiveness are limited but not general. Thus, our findings reveal that differentiation with elaidate tends to affect insulin-dependent glucose uptake through alternation of GLUT4 translocation from cytosol to the plasma membrane.

  15. Regulation of myosin IIA and filamentous actin during insulin-stimulated glucose uptake in 3T3-L1 adipocytes

    SciTech Connect

    Stall, Richard; Ramos, Joseph; Kent Fulcher, F.; Patel, Yashomati M.

    2014-03-10

    Insulin stimulated glucose uptake requires the colocalization of myosin IIA (MyoIIA) and the insulin-responsive glucose transporter 4 (GLUT4) at the plasma membrane for proper GLUT4 fusion. MyoIIA facilitates filamentous actin (F-actin) reorganization in various cell types. In adipocytes F-actin reorganization is required for insulin-stimulated glucose uptake. What is not known is whether MyoIIA interacts with F-actin to regulate insulin-induced GLUT4 fusion at the plasma membrane. To elucidate the relationship between MyoIIA and F-actin, we examined the colocalization of MyoIIA and F-actin at the plasma membrane upon insulin stimulation as well as the regulation of this interaction. Our findings demonstrated that MyoIIA and F-actin colocalized at the site of GLUT4 fusion with the plasma membrane upon insulin stimulation. Furthermore, inhibition of MyoII with blebbistatin impaired F-actin localization at the plasma membrane. Next we examined the regulatory role of calcium in MyoIIA-F-actin colocalization. Reduced calcium or calmodulin levels decreased colocalization of MyoIIA and F-actin at the plasma membrane. While calcium alone can translocate MyoIIA it did not stimulate F-actin accumulation at the plasma membrane. Taken together, we established that while MyoIIA activity is required for F-actin localization at the plasma membrane, it alone is insufficient to localize F-actin to the plasma membrane. - Highlights: • Insulin induces colocalization of MyoIIA and F-actin at the cortex in adipocytes. • MyoIIA is necessary but not sufficient to localize F-actin at the cell cortex. • MyoIIA-F-actin colocalization is regulated by calcium and calmodulin.

  16. Insulin alters cAMP-activated lipolysis but not cAMP-inhibited glycogen synthase in permeabilized adipocytes

    SciTech Connect

    Mooney, R.A.; Wisniewski, J.L.

    1986-05-01

    Lipolysis and, to a lesser extent, glycogen synthase activity are regulated in adipocytes by cellular cAMP and counter-regulated by insulin. These activities were measured in situ in digitonin (20 ..mu..g/ml) permeabilized rat adipocytes. Incorporation of /sup 3/H UDP-glucose into endogenous glycogen in the presence of KF, EDTA and 10mM glucose-6-phosphate was the basis of the G.S. assay. Cellular GS activity determined by this technique was 1.4 +/- 0.2 fold greater than that of matched homogenates. Insulin treatment of intact cells prior to permeabilization increased GS activity ratio (-/+ G-6-P) 2.5 fold when subsequently measured by the in situ assay. Following digitonin permeabilization, addition of cAMP to the suspension medium increased lipolysis 7 fold and decreased GS activity ratio to 0.38 +/- 0.01 from a basal value of 0.44 +/- 0.06. ATP had a negligible effect on lipolysis but decreased GS to 0.16 +/- 0.04. ATP plus cAMP was only slightly more effective on GS than ATP alone. Insulin at 10/sup -9/M inhibited cAMP-dependent lipolysis by 27% but had no effect on the cAMP- or ATP-dependent decrease in GS. These results suggest that insulin's counter-regulatory mechanisms on these two cAMP-dependent processes may be different.

  17. Biological effects of THC and a lipophilic cannabis extract on normal and insulin resistant 3T3-L1 adipocytes.

    PubMed

    Gallant, M; Odei-Addo, F; Frost, C L; Levendal, R-A

    2009-10-01

    Type 2 diabetes, a chronic disease, affects about 150 million people world wide. It is characterized by insulin resistance of peripheral tissues such as liver, skeletal muscle, and fat. Insulin resistance is associated with elevated levels of tumor necrosis factor alpha (TNF-alpha), which in turn inhibits insulin receptor tyrosine kinase autophosphorylation. It has been reported that cannabis is used in the treatment of diabetes. A few reports indicate that smoking cannabis can lower blood glucose in diabetics. Delta(9)-tetrahydrocannabinol (THC) is the primary psychoactive component of cannabis. This study aimed to determine the effect of a lipophilic cannabis extract on adipogenesis, using 3T3-L1 cells, and to measure its effect on insulin sensitivity in insulin resistant adipocytes. Cells were cultured in Dulbecco's modified eagle medium (DMEM) with 10% fetal bovine serum (FBS) and differentiated over a 3 day period for all studies. In the adipogenesis studies, differentiated cells were exposed to the extract in the presence and absence of insulin. Lipid content and glucose uptake was subsequently measured. Insulin-induced glucose uptake increased, while the rate of adipogenesis decreased with increasing THC concentration. Insulin-resistance was induced using TNF-alpha, exposed to the extract and insulin-induced glucose uptake measured. Insulin-induced glucose was increased in these cells after exposure to the extract. Semiquantitative real time polymerase chain reaction (RT-PCR) was performed after ribonucleic acid (RNA) extraction to evaluate the effects of the extract on glucose transporter isotype 4 (GLUT-4), insulin receptor substrate-1 (IRS-1) and IRS-2 gene expression.

  18. Ablation of a galectin preferentially expressed in adipocytes increases lipolysis, reduces adiposity, and improves insulin sensitivity in mice.

    PubMed

    Yang, Ri-Yao; Yu, Lan; Graham, James L; Hsu, Daniel K; Lloyd, K C Kent; Havel, Peter J; Liu, Fu-Tong

    2011-11-15

    The breakdown of triglycerides, or lipolysis, is a tightly controlled process that regulates fat mobilization in accord with an animal's energy needs. It is well established that lipolysis is stimulated by hormones that signal energy demand and is suppressed by the antilipolytic hormone insulin. However, much still remains to be learned about regulation of lipolysis by intracellular signaling pathways in adipocytes. Here we show that galectin-12, a member of a β-galactoside-binding lectin family preferentially expressed by adipocytes, functions as an intrinsic negative regulator of lipolysis. Galectin-12 is primarily localized on lipid droplets and regulates lipolytic protein kinase A signaling by acting upstream of phosphodiesterase activity to control cAMP levels. Ablation of galectin-12 in mice results in increased adipocyte mitochondrial respiration, reduced adiposity, and ameliorated insulin resistance/glucose intolerance. This study identifies unique properties of this intracellular galectin that is localized to an organelle and performs a critical function in lipid metabolism. These findings add to the significant functions exhibited by intracellular galectins, and have important therapeutic implications for human metabolic disorders.

  19. Adipocyte-specific deletion of mTOR inhibits adipose tissue development and causes insulin resistance in mice.

    PubMed

    Shan, Tizhong; Zhang, Pengpeng; Jiang, Qinyang; Xiong, Yan; Wang, Yizhen; Kuang, Shihuan

    2016-09-01

    The in vivo role of mechanistic target of rapamycin (mTOR) in the development and function of adipose tissue, especially brown adipose tissue (BAT), is not well understood. Here, we aimed to assess the effect of mTOR (also known as Mtor) knockout on adipose tissues and systemic energy metabolism. We generated adipocyte-specific mTOR-knockout mice (Adipoq-mTOR) by crossing adiponectin-Cre (Adipoq-Cre) mice with mTOR (flox/flox) mice. The mice were then subjected to morphological, physiological (indirect calorimetry, glucose and insulin tolerance tests) and gene expression analyses to determine the role of mTOR in adipose tissues. We provide in vivo evidence that mTOR is essential for adipose tissue development and growth. Deletion of mTOR decreased the mass of both BAT and white adipose tissues (WAT) and induced browning of WAT. In addition, ablation of mTOR in adipose tissues caused insulin resistance and fatty liver in the Adipoq-mTOR mice. Furthermore, mTOR was required for adipocyte differentiation in vivo and activation of PPARγ ameliorated the differentiation deficiency of the mTOR-null adipocytes. Our findings demonstrate that mTOR is a critical regulator of adipogenesis and systemic energy metabolism. Our study provides key insights into the role of mTOR in adipose tissues; such knowledge may facilitate the development of novel strategies with which to treat obesity and related metabolic diseases.

  20. Ablation of a galectin preferentially expressed in adipocytes increases lipolysis, reduces adiposity, and improves insulin sensitivity in mice

    PubMed Central

    Yang, Ri-Yao; Yu, Lan; Graham, James L.; Hsu, Daniel K.; Lloyd, K. C. Kent; Havel, Peter J.; Liu, Fu-Tong

    2011-01-01

    The breakdown of triglycerides, or lipolysis, is a tightly controlled process that regulates fat mobilization in accord with an animal's energy needs. It is well established that lipolysis is stimulated by hormones that signal energy demand and is suppressed by the antilipolytic hormone insulin. However, much still remains to be learned about regulation of lipolysis by intracellular signaling pathways in adipocytes. Here we show that galectin-12, a member of a β-galactoside–binding lectin family preferentially expressed by adipocytes, functions as an intrinsic negative regulator of lipolysis. Galectin-12 is primarily localized on lipid droplets and regulates lipolytic protein kinase A signaling by acting upstream of phosphodiesterase activity to control cAMP levels. Ablation of galectin-12 in mice results in increased adipocyte mitochondrial respiration, reduced adiposity, and ameliorated insulin resistance/glucose intolerance. This study identifies unique properties of this intracellular galectin that is localized to an organelle and performs a critical function in lipid metabolism. These findings add to the significant functions exhibited by intracellular galectins, and have important therapeutic implications for human metabolic disorders. PMID:21969596

  1. SEC16A is a RAB10 effector required for insulin-stimulated GLUT4 trafficking in adipocytes

    PubMed Central

    Bruno, Joanne; Chaudhary, Natasha; Iaea, David

    2016-01-01

    RAB10 is a regulator of insulin-stimulated translocation of the GLUT4 glucose transporter to the plasma membrane (PM) of adipocytes, which is essential for whole-body glucose homeostasis. We establish SEC16A as a novel RAB10 effector in this process. Colocalization of SEC16A with RAB10 is augmented by insulin stimulation, and SEC16A knockdown attenuates insulin-induced GLUT4 translocation, phenocopying RAB10 knockdown. We show that SEC16A and RAB10 promote insulin-stimulated mobilization of GLUT4 from a perinuclear recycling endosome/TGN compartment. We propose RAB10–SEC16A functions to accelerate formation of the vesicles that ferry GLUT4 to the PM during insulin stimulation. Because GLUT4 continually cycles between the PM and intracellular compartments, the maintenance of elevated cell-surface GLUT4 in the presence of insulin requires accelerated biogenesis of the specialized GLUT4 transport vesicles. The function of SEC16A in GLUT4 trafficking is independent of its previously characterized activity in ER exit site formation and therefore independent of canonical COPII-coated vesicle function. However, our data support a role for SEC23A, but not the other COPII components SEC13, SEC23B, and SEC31, in the insulin stimulation of GLUT4 trafficking, suggesting that vesicles derived from subcomplexes of COPII coat proteins have a role in the specialized trafficking of GLUT4. PMID:27354378

  2. SEC16A is a RAB10 effector required for insulin-stimulated GLUT4 trafficking in adipocytes.

    PubMed

    Bruno, Joanne; Brumfield, Alexandria; Chaudhary, Natasha; Iaea, David; McGraw, Timothy E

    2016-07-04

    RAB10 is a regulator of insulin-stimulated translocation of the GLUT4 glucose transporter to the plasma membrane (PM) of adipocytes, which is essential for whole-body glucose homeostasis. We establish SEC16A as a novel RAB10 effector in this process. Colocalization of SEC16A with RAB10 is augmented by insulin stimulation, and SEC16A knockdown attenuates insulin-induced GLUT4 translocation, phenocopying RAB10 knockdown. We show that SEC16A and RAB10 promote insulin-stimulated mobilization of GLUT4 from a perinuclear recycling endosome/TGN compartment. We propose RAB10-SEC16A functions to accelerate formation of the vesicles that ferry GLUT4 to the PM during insulin stimulation. Because GLUT4 continually cycles between the PM and intracellular compartments, the maintenance of elevated cell-surface GLUT4 in the presence of insulin requires accelerated biogenesis of the specialized GLUT4 transport vesicles. The function of SEC16A in GLUT4 trafficking is independent of its previously characterized activity in ER exit site formation and therefore independent of canonical COPII-coated vesicle function. However, our data support a role for SEC23A, but not the other COPII components SEC13, SEC23B, and SEC31, in the insulin stimulation of GLUT4 trafficking, suggesting that vesicles derived from subcomplexes of COPII coat proteins have a role in the specialized trafficking of GLUT4.

  3. Systems-wide Experimental and Modeling Analysis of Insulin Signaling through Forkhead Box Protein O1 (FOXO1) in Human Adipocytes, Normally and in Type 2 Diabetes*

    PubMed Central

    Rajan, Meenu Rohini; Nyman, Elin; Kjølhede, Preben; Cedersund, Gunnar

    2016-01-01

    Insulin resistance is a major aspect of type 2 diabetes (T2D), which results from impaired insulin signaling in target cells. Signaling to regulate forkhead box protein O1 (FOXO1) may be the most important mechanism for insulin to control transcription. Despite this, little is known about how insulin regulates FOXO1 and how FOXO1 may contribute to insulin resistance in adipocytes, which are the most critical cell type in the development of insulin resistance. We report a detailed mechanistic analysis of insulin control of FOXO1 in human adipocytes obtained from non-diabetic subjects and from patients with T2D. We show that FOXO1 is mainly phosphorylated through mTORC2-mediated phosphorylation of protein kinase B at Ser473 and that this mechanism is unperturbed in T2D. We also demonstrate a cross-talk from the MAPK branch of insulin signaling to stimulate phosphorylation of FOXO1. The cellular abundance and consequently activity of FOXO1 are halved in T2D. Interestingly, inhibition of mTORC1 with rapamycin reduces the abundance of FOXO1 to the levels in T2D. This suggests that the reduction of the concentration of FOXO1 is a consequence of attenuation of mTORC1, which defines much of the diabetic state in human adipocytes. We integrate insulin control of FOXO1 in a network-wide mathematical model of insulin signaling dynamics based on compatible data from human adipocytes. The diabetic state is network-wide explained by attenuation of an mTORC1-to-insulin receptor substrate-1 (IRS1) feedback and reduced abundances of insulin receptor, GLUT4, AS160, ribosomal protein S6, and FOXO1. The model demonstrates that attenuation of the mTORC1-to-IRS1 feedback is a major mechanism of insulin resistance in the diabetic state. PMID:27226562

  4. Systems-wide Experimental and Modeling Analysis of Insulin Signaling through Forkhead Box Protein O1 (FOXO1) in Human Adipocytes, Normally and in Type 2 Diabetes.

    PubMed

    Rajan, Meenu Rohini; Nyman, Elin; Kjølhede, Preben; Cedersund, Gunnar; Strålfors, Peter

    2016-07-22

    Insulin resistance is a major aspect of type 2 diabetes (T2D), which results from impaired insulin signaling in target cells. Signaling to regulate forkhead box protein O1 (FOXO1) may be the most important mechanism for insulin to control transcription. Despite this, little is known about how insulin regulates FOXO1 and how FOXO1 may contribute to insulin resistance in adipocytes, which are the most critical cell type in the development of insulin resistance. We report a detailed mechanistic analysis of insulin control of FOXO1 in human adipocytes obtained from non-diabetic subjects and from patients with T2D. We show that FOXO1 is mainly phosphorylated through mTORC2-mediated phosphorylation of protein kinase B at Ser(473) and that this mechanism is unperturbed in T2D. We also demonstrate a cross-talk from the MAPK branch of insulin signaling to stimulate phosphorylation of FOXO1. The cellular abundance and consequently activity of FOXO1 are halved in T2D. Interestingly, inhibition of mTORC1 with rapamycin reduces the abundance of FOXO1 to the levels in T2D. This suggests that the reduction of the concentration of FOXO1 is a consequence of attenuation of mTORC1, which defines much of the diabetic state in human adipocytes. We integrate insulin control of FOXO1 in a network-wide mathematical model of insulin signaling dynamics based on compatible data from human adipocytes. The diabetic state is network-wide explained by attenuation of an mTORC1-to-insulin receptor substrate-1 (IRS1) feedback and reduced abundances of insulin receptor, GLUT4, AS160, ribosomal protein S6, and FOXO1. The model demonstrates that attenuation of the mTORC1-to-IRS1 feedback is a major mechanism of insulin resistance in the diabetic state.

  5. Evodiamine Inhibits Insulin-Stimulated mTOR-S6K Activation and IRS1 Serine Phosphorylation in Adipocytes and Improves Glucose Tolerance in Obese/Diabetic Mice

    PubMed Central

    Wang, Ting; Kusudo, Tatsuya; Takeuchi, Tamaki; Yamashita, Yukari; Kontani, Yasuhide; Okamatsu, Yuko; Saito, Masayuki; Mori, Nozomu; Yamashita, Hitoshi

    2013-01-01

    Evodiamine, an alkaloid extracted from the dried unripe fruit of the tree Evodia rutaecarpa Bentham (Rutaceae), reduces obesity and insulin resistance in obese/diabetic mice; however, the mechanism underlying the effect of evodiamine on insulin resistance is unknown. This study investigated the effect of evodiamine on signal transduction relating to insulin resistance using obese/diabetic KK-Ay mice and an in vitro adipocyte culture. There is a significant decrease in the mammalian target of rapamycin (mTOR) and ribosomal S6 protein kinase (S6K) signaling in white adipose tissue (WAT) in KK-Ay mice treated with evodiamine, in which glucose tolerance is improved. In addition, reduction of insulin receptor substrate 1 (IRS1) serine phosphorylation, an indicator of insulin resistance, was detected in their WAT, suggesting suppression of the negative feedback loop from S6K to IRS1. As well as the stimulation of IRS1 and Akt serine phosphorylation, insulin-stimulated phosphorylation of mTOR and S6K is time-dependent in 3T3-L1 adipocytes, whereas evodiamine does not affect their phosphorylation except for an inhibitory effect on mTOR phosphorylation. Moreover, evodiamine inhibits the insulin-stimulated phosphorylation of mTOR and S6K, leading to down-regulation of IRS1 serine phosphorylation in the adipocytes. Evodiamine also stimulates phosphorylation of AMP-activated protein kinase (AMPK), an important regulator of energy metabolism, which may cause down-regulation of mTOR signaling in adipocytes. A similar effect on AMPK, mTOR and IRS1 phosphorylation was found in adipocytes treated with rosiglitazone. These results suggest evodiamine improves glucose tolerance and prevents the progress of insulin resistance associated with obese/diabetic states, at least in part, through inhibition of mTOR-S6K signaling and IRS1 serine phosphorylation in adipocytes. PMID:24391749

  6. Short- and long-term insulin-like effects of monoamine oxidases and semicarbazide-sensitive amine oxidase substrates in cultured adipocytes.

    PubMed

    Carpéné, Christian; Daviaud, Danièle; Boucher, Jeremie; Bour, Sandy; Visentin, Virgile; Grès, Sandra; Duffaut, Carine; Fontana, Emi; Testar, Xavier; Saulnier-Blache, Jean-Sébastien; Valet, Philippe

    2006-10-01

    Semicarbazide-sensitive amine oxidase (SSAO) is known to increase during in vitro adipogenesis and to be one of the most highly expressed membrane proteins of white adipocytes. Although less well documented, mitochondrial monoamine oxidases (MAOs) are also present in adipocytes and share with SSAO the capacity to generate hydrogen peroxide. This work therefore aimed to compare several biologic effects of MAO and SSAO substrates in 3T3-F442A adipocytes. In differentiated cells, tyramine oxidation was predominantly MAO dependent, whereas benzylamine oxidation was SSAO dependent. Both amines partially mimicked insulin actions, including stimulation of Akt phosphorylation and glucose uptake. In addition, tyramine and benzylamine impaired tumor necrosis factor alpha-dependent nitric oxide formation in a pargyline- and semicarbazide-sensitive manner, respectively. Various biogenic amines were tested in competition for tyramine or benzylamine oxidation and classified as MAO-preferring (methoxytyramine, tryptamine) or SSAO-preferring substrates (methylamine, octopamine). Short-term incubation with 1 mmol/L of all amines except histamine stimulated glucose uptake up to 20% to 50% of maximal insulin activation. One-week treatment with either MAO or SSAO substrates alone allowed postconfluent cells to differentiate into adipocytes, reproducing 60% of insulin-promoted lipid accumulation. All amines also exerted a slight improvement in the adipogenic action of insulin. Therefore, like SSAO, substrate activation of MAO can interact with adipocyte metabolism by mimicking diverse effects of insulin in addition to preventing tumor necrosis factor alpha-dependent responses.

  7. [8-hydroxy-dihydroberberine ameliorated insulin resistance induced by high FFA and high glucose in 3T3-L1 adipocytes].

    PubMed

    Xu, Li-jun; Lu, Fu-er; Yi, Ping; Wang, Zeng-si; Wei, Shi-chao; Chen, Guang; Dong, Hui; Zou, Xin

    2009-11-01

    The purpose of the study is to investigate the effect of 8-hydroxy-dihydroberberine on insulin resistance induced by high free fatty acid (FFA) and high glucose in 3T3-L1 adipocytes and its possible molecular mechanism. Palmic acid or glucose in combination with insulin was used to induce insulin resistance in 3T3-L1 adipocytes. 8-Hydroxy-dihydroberberine and berberine were added to the cultured medium separately, which were considered as treated group and positive control group. The rate of glucose uptake was determined by 2-deoxy-[3H]-D-glucose method. The amount of glucose consumption in the medium was measured by glucose oxidase method. Cell growth and proliferation of 3T3-L1 adipocytes were detected with Cell Counting Kit-8 (CCK-8) assay. After incubated with palmic acid for 24 hours or glucose with insulin for 18 hours, the rate of glucose transport in 3T3-L1 adipocytes was inhibited by 67% and 58%, respectively. The amount of glucose consumption in 3T3-L1 adipose cells was decreased by 41% after cells were incubated with palmic acid for 24 h. However, the above changes were reversed by pretreatment with 8-hydroxy-dihydroberberine for 24 and 48 h. Significant difference existed between groups. Insulin resistance in 3T3-L1 adipocytes, which is induced by high FFA and high glucose, could be ameliorated by 8-hydroxy-dihydroberberine.

  8. Intracellular Localization of Phosphatidylinositide 3-kinase and Insulin Receptor Substrate-1 in Adipocytes: Potential Involvement of a Membrane Skeleton

    PubMed Central

    Clark, Sharon F.; Martin, Sally; Carozzi, Amanda J.; Hill, Michelle M.; James, David E.

    1998-01-01

    Phosphatidylinositide (PI) 3-kinase binds to tyrosyl-phosphorylated insulin receptor substrate-1 (IRS-1) in insulin-treated adipocytes, and this step plays a central role in the regulated movement of the glucose transporter, GLUT4, from intracellular vesicles to the cell surface. PDGF, which also activates PI 3-kinase in adipocytes, has no significant effect on GLUT4 trafficking in these cells. We propose that this specificity may be mediated by differential localization of PI 3-kinase in response to insulin versus PDGF activation. Using subcellular fractionation in 3T3-L1 adipocytes, we show that insulin- and PDGF-stimulated PI 3-kinase activities are located in an intracellular high speed pellet (HSP) and in the plasma membrane (PM), respectively. The HSP is also enriched in IRS-1, insulin-stimulated tyrosyl-phosphorylated IRS-1 and intracellular GLUT4-containing vesicles. Using sucrose density gradient sedimentation, we have been able to segregate the HSP into two separate subfractions: one enriched in IRS-1, tyrosyl-phosphorylated IRS-1, PI 3-kinase as well as cytoskeletal elements, and another enriched in membranes, including intracellular GLUT4 vesicles. Treatment of the HSP with nonionic detergent, liberates all membrane constituents, whereas IRS-1 and PI 3-kinase remain insoluble. Conversely, at high ionic strength, membranes remain intact, whereas IRS-1 and PI 3-kinase become freely soluble. We further show that this IRS-1–PI 3-kinase complex exists in CHO cells overexpressing IRS-1 and, in these cells, the cytosolic pool of IRS-1 and PI 3-kinase is released subsequent to permeabilization with Streptolysin-O, whereas the particulate fraction of these proteins is retained. These data suggest that IRS-1, PI 3-kinase, as well as other signaling intermediates, may form preassembled complexes that may be associated with the actin cytoskeleton. This complex must be in close apposition to the cell surface, enabling access to the insulin receptor and presumably

  9. Resveratrol regulates human adipocyte number and function in a Sirt1-dependent manner.

    PubMed

    Fischer-Posovszky, Pamela; Kukulus, Vera; Tews, Daniel; Unterkircher, Thomas; Debatin, Klaus-Michael; Fulda, Simone; Wabitsch, Martin

    2010-07-01

    Caloric restriction leads to retardation of the aging processes and to longer life in many organisms. This effect of caloric restriction can be mimicked by resveratrol, a natural plant product present in grapes and red wine, which is known as a potent activator of sirtuin 1 [silent mating type information regulation 2 homolog 1 (Sirt1)]. One main effect of caloric restriction in mammals is a reduction of body fat from white adipose tissue. We sought to identify the effects of resveratrol on fat cell biology and to elucidate whether Sirt1 is involved in resveratrol-mediated changes. Human Simpson-Golabi-Behmel syndrome preadipocytes and adipocytes were used to study proliferation, adipogenic differentiation, glucose uptake, de novo lipogenesis, and adipokine secretion. Sirt1-deficient human preadipocytes were generated by using a lentiviral small hairpin RNA system to study the role of Sirt1 in resveratrol-mediated changes. Resveratrol inhibited preadipocyte proliferation and adipogenic differentiation in a Sirt1-dependent manner. In human adipocytes, resveratrol stimulated basal and insulin-stimulated glucose uptake. De novo lipogenesis was inhibited in parallel with a down-regulation of lipogenic gene expression. Furthermore, resveratrol down-regulated the expression and secretion of interleukin-6 and interleukin-8. Sirt1 was only partially responsible for the regulation of resveratrol-mediated changes in adipokine secretion. Taken together, our data suggest that resveratrol influences adipose tissue mass and function in a way that may positively interfere with the development of obesity-related comorbidities. Thus, our findings open up the new perspective that resveratrol-induced intracellular pathways could be a target for prevention or treatment of obesity-associated endocrine and metabolic adverse effects.

  10. MiR-26b modulates insulin sensitivity in adipocytes by interrupting the PTEN/PI3K/AKT pathway.

    PubMed

    Xu, G; Ji, C; Song, G; Zhao, C; Shi, C; Song, L; Chen, L; Yang, L; Huang, F; Pang, L; Zhang, N; Zhao, Y; Guo, X

    2015-10-01

    MicroRNAs (miRNAs) have emerged as epigenetic regulators of metabolism and energy homeostasis. There is a growing body of evidence pointing to miRNAs that have important regulatory roles in insulin sensitivity. The aim of this work was to explore the expression and mechanism of action of miR-26b in obesity-related insulin resistance (IR) in adipocytes. Quantitative real-time PCR was performed to determine miR-26b expression in obese rodent models, human obesity subjects and insulin-resistant adipocytes. We analysed the roles of miR-26b overexpression and inhibition on glucose uptake in adipocytes. Western blotting was used to detect the levels of protein molecules involved in the phosphoinositide-3-kinase (PI3K) pathway. Bioinformatics and the Dual Luciferase Assay were used to identify the target gene of miR-26b. We assessed the regulatory roles of miR-26b on the phosphatase and tensin homologue (PTEN)/PI3K/AKT pathway and the relationship between miR-26b and the metabolism of human obese subjects. Levels of miR-26b are reduced in visceral adipose tissue (VAT) in obese rodent models, human obesity and insulin-resistant adipocytes. MiR-26b promotes insulin-stimulated glucose uptake and increases insulin-stimulated glucose transporter type 4 translocation to the plasma membrane in human mature adipocytes. MiR-26b modulates insulin-stimulated AKT activation via inhibition of its target gene, PTEN, and significantly increases insulin sensitivity via the PTEN/PI3K/AKT pathway. The expression level of miR-26b negatively correlates with increasing body mass index and homeostasis model assessment for IR in human obese subjects. Decreased miR-26b expression in VAT may be involved in obesity-related IR by interrupting the PTEN/PI3K/AKT pathway.

  11. Isoliquiritigenin impairs insulin signaling and adipocyte differentiation through the inhibition of protein-tyrosine phosphatase 1B oxidation in 3T3-L1 preadipocytes.

    PubMed

    Park, Sun-Ji; Choe, Young-Geun; Kim, Jung-Hak; Chang, Kyu-Tae; Lee, Hyun-Shik; Lee, Dong-Seok

    2016-07-01

    Isoliquritigenin (ISL) is an abundant dietary flavonoid with a chalcone structure, which is an important constituent in Glycyrrhizae Radix (GR). ISL exhibits anti-oxidant activity, and this activity has been shown to play a beneficial role in various health conditions. However, it is unclear whether the anti-oxidant activity of ISL affects insulin signaling pathway and lipid accumulation of adipocytes. We sought to investigate the effects and molecular mechanisms of ISL on insulin-stimulated adipogenesis in 3T3-L1 cells. We investigated whether ISL attenuates insulin-induced Reactive Oxygen Species (ROS) generation, and whether ISL inhibits the lipid accumulation and the expression of adipogenic-genes during the differentiation of 3T3-L1 cells. ISL blocked the ROS generation, suppressed the lipid accumulation and the expression of adipocyte-specific proteins, which are increased in response to insulin stimulation during adipocyte differentiation of 3T3-L1 cells. We also investigated whether the anti-oxidant capacity of ISL is involved in regulating the molecular events of insulin-signaling cascade in 3T3-L1 adipocytes. ISL restores PTP1B activity by inhibiting PTP1B oxidation and IR/PI3K/AKT phosphorylation during the early stages of insulin-induced adipogenesis. Our findings show that the anti-oxidant capacity of ISL attenuated insulin IR/PI3K/AKT signaling through inhibition of PTP1B oxidation, and ultimately attenuated insulin-induced adipocyte differentiation of 3T3-L1 cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Melatonin rescues 3T3-L1 adipocytes from FFA-induced insulin resistance by inhibiting phosphorylation of IRS-1 on Ser307.

    PubMed

    She, Meihua; Hou, Hongjie; Wang, Zongbao; Zhang, Chi; Laudon, Moshe; Yin, Weidong

    2014-08-01

    Melatonin is biosynthesized in the pineal gland and secreted into the bloodstream. Evidences indicate a role of melatonin in the regulation of glucose metabolism. The objective of this study was to investigate the effect of melatonin on insulin sensitivity in insulin resistant adipocytes. Following a preincubation with melatonin or vehicle for 30 min, insulin resistant cells of 3T3-L1 adipocytes were induced by palmitic acids (300 μM, 6 h). Our results showed that palmitic acids inhibited both the basal and insulin-stimulated uptake of [(3)H]-2-Deoxyglucose, down-regulated the levels of IRS-1 and GLUT-4. However, compared to the vehicle group, melatonin pre-treatment increased significantly the uptake of [(3)H]-2-Deoxyglucose as well as the level of GLUT-4, and decreased phosphorylated IRS-1 (Ser307) although total IRS-1 did not change significantly. These data suggest that palmitic acids impair insulin signal via down-regulating the expressions of IRS-1 and GLUT-4; whereas melatonin can ameliorate insulin sensitivity by inhibiting Ser307 phosphorylation in IRS-1 and increasing GLUT-4 expressions in insulin resistant 3T3-L1 adipocytes. We conclude that melatonin regulates the insulin sensitivity and glucose homeostasis via inhibiting Ser-phosphorylation and improving function of IRS-1.

  13. Adipocyte and adipogenesis.

    PubMed

    Ali, Aus Tariq; Hochfeld, Warren E; Myburgh, Renier; Pepper, Michael S

    2013-01-01

    Adipocytes are the main constituent of adipose tissue and are considered to be a corner stone in the homeostatic control of whole body metabolism. Their primary function is to control energy balance by storing triacylglycerol in periods of energy excess and mobilizing it during energy deprivation. Besides the classical function of storing fat, adipocytes secrete numerous lipid and protein factors. Collectively they are considered to constitute a major endocrine organ which has a profound impact on the metabolism of other tissues, the regulation of appetite, insulin sensitivity, immunological responses and vascular disease. Adipogenesis is the process during which fibroblast like preadipocytes developed into mature adipocytes. Adipogenesis is a well-orchestrated multistep process that requires the sequential activation of numerous transcription factors, including the CCAAT/enhancer-binding protein (C/EBP) gene family and peroxisome proliferator activated receptor-γ (PPAR-γ). In order to reach maturity, these cells must go through two vital steps: adipocyte determination and adipocyte differentiation. Although many of the molecular details of adipogenesis are still unknown, several factors involved in this processes have been identified. Some stimulators include peroxisome proliferator-activated receptor γ (PPAR γ), insulin-like growth factor I (IGF-l), macrophage colony stimulating factor, fatty acids, prostaglandins and glucocorticoids. Inhibitors include glycoproteins, transforming growth factor-β (TGF-β), inflammatory cytokines and growth hormone. Beside these factors, there are others for example age, gender and life style that may affect this process in one way or another. An increase in the number and size of adipocytes causes white adipose tissue (WAT) to expand and this can lead to obesity. Adipogenesis can lead to central obesity if it occurs in the abdominal fat depot and peripheral obesity if it occurs in subcutaneous tissue.

  14. Anthocyanins from Purple Corn Ameliorated TNF-α-Induced Inflammation and Insulin Resistance in 3T3-L1 Adipocytes via Activation of Insulin Signaling and Enhanced GLUT4 Translocation.

    PubMed

    Luna-Vital, Diego; Weiss, Matthew; de Mejia, Elvira Gonzalez

    2017-07-31

    The aim was to compare the effect of an anthocyanin-rich extract from purple corn pericarp (PCW) and pure anthocyanins on adipogenesis, inflammation and insulin resistance in 3T3-L1 adipocytes on basal and inflammatory conditions. Preadipocytes (3T3-L1) were treated during differentiation with or without PCW. Differentiated adipocytes were treated either individually or in combination with tumor necrosis factor TNF-α and PCW, or pure C3G, Pg3G, P3G. PCW reduced preadipocyte differentiation (IC50 = 0.4 mg/mL). PCW and pure anthocyanins including C3G reduced fatty acid synthase enzymatic activity. PCW reduced TNF-α-dependent inflammatory status increasing adiponectin (39%), and decreasing leptin (-79%). PCW and C3G increased glucose uptake and reduced reactive oxygen species generation in insulin resistant adipocytes. An increase in phosphorylation was observed in AKT, IKK, and MEK, and a decrease in IRS and mTOR activating the insulin receptor-associated pathway. PCW (7.5-fold) and C3G (6.3-fold) enhanced GLUT4 membrane translocation compared to insulin resistant adipocytes. Anthocyanins from colored corn prevented adipocyte differentiation, lipid accumulation and reduced PPAR-γ transcriptional activity on adipocytes in basal conditions. Ameliorated TNF-α-induced inflammation and insulin resistance in adipocytes via activation of insulin signaling and enhanced GLUT4 translocation suggesting a reduce hyperglycemia associated with the metabolic syndrome. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Cinnamon extract exhibits insulin-like and independent effects on gene expression in adipocytes

    USDA-ARS?s Scientific Manuscript database

    Cinnamon is beneficial to people with insulin resistance due in part to the insulin-like activity of the cinnamon extract (CE). Molecular effects of CE are limited. This study tested the hypothesis that CE has insulin-like and insulin-independent effects at the molecular level. Quantitative real-tim...

  16. β-Catenin Directly Sequesters Adipocytic and Insulin Sensitizing Activities but Not Osteoblastic Activity of PPARγ2 in Marrow Mesenchymal Stem Cells

    PubMed Central

    Rahman, Sima; Czernik, Piotr J.; Lu, Yalin; Lecka-Czernik, Beata

    2012-01-01

    Lineage allocation of the marrow mesenchymal stem cells (MSCs) to osteoblasts and adipocytes is dependent on both Wnt signaling and PPARγ2 activity. Activation of PPARγ2, an essential regulator of energy metabolism and insulin sensitivity, stimulates adipocyte and suppresses osteoblast differentiation and bone formation, and correlates with decreased bone mass and increased fracture rate. In contrast, activation of Wnt signaling promotes osteoblast differentiation, augments bone accrual and reduces total body fat. This study examined the cross-talk between PPARγ2 and β-catenin, a key mediator of canonical Wnt signaling, on MSC lineage determination. Rosiglitazone-activated PPARγ2 induced rapid proteolytic degradation of β-catenin, which was prevented by either inhibiting glycogen synthase kinase 3 beta (GSK3β) activity, or blocking pro-adipocytic activity of PPARγ2 using selective antagonist GW9662 or mutation within PPARγ2 protein. Stabilization of β-catenin suppressed PPARγ2 pro-adipocytic but not anti-osteoblastic activity. Moreover, β-catenin stabilization decreased PPARγ2-mediated insulin signaling as measured by insulin receptor and FoxO1 gene expression, and protein levels of phosphorylated Akt (pAkt). Cellular knockdown of β-catenin with siRNA increased expression of adipocyte but did not affect osteoblast gene markers. Interestingly, the expression of Wnt10b was suppressed by anti-osteoblastic, but not by pro-adipocytic activity of PPARγ2. Moreover, β-catenin stabilization in the presence of activated PPARγ2 did not restore Wnt10b expression indicating a dominant role of PPARγ2 in negative regulation of pro-osteoblastic activity of Wnt signaling. In conclusion, β-catenin and PPARγ2 are in cross-talk which results in sequestration of pro-adipocytic and insulin sensitizing activity. The anti-osteoblastic activity of PPARγ2 is independent of this interaction. PMID:23272157

  17. Lack of Adipocyte AMPK Exacerbates Insulin Resistance and Hepatic Steatosis through Brown and Beige Adipose Tissue Function.

    PubMed

    Mottillo, Emilio P; Desjardins, Eric M; Crane, Justin D; Smith, Brennan K; Green, Alex E; Ducommun, Serge; Henriksen, Tora I; Rebalka, Irena A; Razi, Aida; Sakamoto, Kei; Scheele, Camilla; Kemp, Bruce E; Hawke, Thomas J; Ortega, Joaquin; Granneman, James G; Steinberg, Gregory R

    2016-07-12

    Brown (BAT) and white (WAT) adipose tissues play distinct roles in maintaining whole-body energy homeostasis, and their dysfunction can contribute to non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes. The AMP-activated protein kinase (AMPK) is a cellular energy sensor, but its role in regulating BAT and WAT metabolism is unclear. We generated an inducible model for deletion of the two AMPK β subunits in adipocytes (iβ1β2AKO) and found that iβ1β2AKO mice were cold intolerant and resistant to β-adrenergic activation of BAT and beiging of WAT. BAT from iβ1β2AKO mice had impairments in mitochondrial structure, function, and markers of mitophagy. In response to a high-fat diet, iβ1β2AKO mice more rapidly developed liver steatosis as well as glucose and insulin intolerance. Thus, AMPK in adipocytes is vital for maintaining mitochondrial integrity, responding to pharmacological agents and thermal stress, and protecting against nutrient-overload-induced NAFLD and insulin resistance. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Curcumin prevents high fat diet induced insulin resistance and obesity via attenuating lipogenesis in liver and inflammatory pathway in adipocytes.

    PubMed

    Shao, Weijuan; Yu, Zhiwen; Chiang, Yuting; Yang, Yi; Chai, Tuanyao; Foltz, Warren; Lu, Huogen; Fantus, I George; Jin, Tianru

    2012-01-01

    Mechanisms underlying the attenuation of body weight gain and insulin resistance in response to high fat diet (HFD) by the curry compound curcumin need to be further explored. Although the attenuation of the inflammatory pathway is an accepted mechanism, a recent study suggested that curcumin stimulates Wnt signaling pathway and hence suppresses adipogenic differentiation. This is in contrast with the known repressive effect of curcumin on Wnt signaling in other cell lineages. We conducted the examination on low fat diet, or HFD fed C57BL/6J mice with or without curcumin intervention for 28 weeks. Curcumin significantly attenuated the effect of HFD on glucose disposal, body weight/fat gain, as well as the development of insulin resistance. No stimulatory effect on Wnt activation was observed in the mature fat tissue. In addition, curcumin did not stimulate Wnt signaling in vitro in primary rat adipocytes. Furthermore, curcumin inhibited lipogenic gene expression in the liver and blocked the effects of HFD on macrophage infiltration and the inflammatory pathway in the adipose tissue. We conclude that the beneficial effect of curcumin during HFD consumption is mediated by attenuating lipogenic gene expression in the liver and the inflammatory response in the adipose tissue, in the absence of stimulation of Wnt signaling in mature adipocytes.

  19. Terminal Galactosylation and Sialylation Switching on Membrane Glycoproteins upon TNF-Alpha-Induced Insulin Resistance in Adipocytes*

    PubMed Central

    Parker, Benjamin L.; Thaysen-Andersen, Morten; Fazakerley, Daniel J.; Holliday, Mira; Packer, Nicolle H.; James, David E.

    2016-01-01

    Insulin resistance (IR) is a complex pathophysiological state that arises from both environmental and genetic perturbations and leads to a variety of diseases, including type-2 diabetes (T2D). Obesity is associated with enhanced adipose tissue inflammation, which may play a role in disease progression. Inflammation modulates protein glycosylation in a variety of cell types, and this has been associated with biological dysregulation. Here, we have examined the effects of an inflammatory insult on protein glycosylation in adipocytes. We performed quantitative N-glycome profiling of membrane proteins derived from mouse 3T3-L1 adipocytes that had been incubated with or without the proinflammatory cytokine TNF-alpha to induce IR. We identified the regulation of specific terminal N-glycan epitopes, including an increase in terminal di-galactose- and a decrease in biantennary alpha-2,3-sialoglycans. The altered N-glycosylation of TNF-alpha-treated adipocytes correlated with the regulation of specific glycosyltransferases, including the up-regulation of B4GalT5 and Ggta1 galactosyltransferases and down-regulation of ST3Gal6 sialyltransferase. Knockdown of B4GalT5 down-regulated the terminal di-galactose N-glycans, confirming the involvement of this enzyme in the TNF-alpha-regulated N-glycome. SILAC-based quantitative glycoproteomics of enriched N-glycopeptides with and without deglycosylation were used to identify the protein and glycosylation sites modified with these regulated N-glycans. The combined proteome and glycoproteome workflow provided a relative quantification of changes in protein abundance versus N-glycosylation occupancy versus site-specific N-glycans on a proteome-wide level. This revealed the modulation of N-glycosylation on specific proteins in IR, including those previously associated with insulin-stimulated GLUT4 trafficking to the plasma membrane. PMID:26537798

  20. Regulation of lipid raft proteins by glimepiride- and insulin-induced glycosylphosphatidylinositol-specific phospholipase C in rat adipocytes.

    PubMed

    Müller, Günter; Schulz, Andrea; Wied, Susanne; Frick, Wendelin

    2005-03-01

    The insulin receptor-independent insulin-mimetic signalling provoked by the antidiabetic sulfonylurea drug, glimepiride, is accompanied by the redistribution and concomitant activation of lipid raft-associated signalling components, such as the acylated tyrosine kinase, pp59(Lyn), and some glycosylphosphatidylinositol-anchored proteins (GPI-proteins). We now found that impairment of glimepiride-induced lipolytic cleavage of GPI-proteins in rat adipocytes by the novel inhibitor of glycosylphosphatidylinositol-specific phospholipase C (GPI-PLC), GPI-2350, caused almost complete blockade of (i) dissociation from caveolin-1 of pp59(Lyn) and GPI-proteins, (ii) their redistribution from high cholesterol- (hcDIGs) to low cholesterol-containing (lcDIGs) lipid rafts, (iii) tyrosine phosphorylation of pp59(Lyn) and insulin receptor substrate-1 protein (IRS-1) and (iv) stimulation of glucose transport as well as (v) inhibition of isoproterenol-induced lipolysis in response to glimepiride. In contrast, blockade of the moderate insulin activation of the GPI-PLC and of lipid raft protein redistribution by GPI-2350 slightly reduced insulin signalling and metabolic action, only. Importantly, in response to both insulin and glimepiride, lipolytically cleaved hydrophilic GPI-proteins remain associated with hcDIGs rather than redistribute to lcDIGs as do their uncleaved amphiphilic versions. In conclusion, GPI-PLC controls the localization within lipid rafts and thereby the activity of certain GPI-anchored and acylated signalling proteins. Its stimulation is required and may even be sufficient for insulin-mimetic cross-talking to IRS-1 in response to glimepiride via redistributed and activated pp59(Lyn).

  1. Bisphenol-A impairs insulin action and up-regulates inflammatory pathways in human subcutaneous adipocytes and 3T3-L1 cells.

    PubMed

    Valentino, Rossella; D'Esposito, Vittoria; Passaretti, Federica; Liotti, Antonietta; Cabaro, Serena; Longo, Michele; Perruolo, Giuseppe; Oriente, Francesco; Beguinot, Francesco; Formisano, Pietro

    2013-01-01

    Current evidence indicates that chemical pollutants may interfere with the homeostatic control of nutrient metabolism, thereby contributing to the increased prevalence of metabolic disorders. Bisphenol-A (BPA) is a lipophilic compound contained in plastic which is considered a candidate for impairing energy and glucose metabolism. We have investigated the impact of low doses of BPA on adipocyte metabolic functions. Human adipocytes derived from subcutaneous adipose tissue and differentiated 3T3-L1 cells were incubated with BPA, in order to evaluate the effect on glucose utilization, insulin sensitivity and cytokine secretion. Treatment with 1 nM BPA significantly inhibited insulin-stimulated glucose utilization, without grossly interfering with adipocyte differentiation. Accordingly, mRNA levels of the adipogenic markers PPARγ and GLUT4 were unchanged upon BPA exposure. BPA treatment also impaired insulin-activated receptor phosphorylation and signaling. Moreover, adipocyte incubation with BPA was accompanied by increased release of IL-6 and IFN-γ, as assessed by multiplex ELISA assays, and by activation of JNK, STAT3 and NFkB pathways. Treatment of the cells with the JNK inhibitor SP600125 almost fully reverted BPA effect on insulin signaling and glucose utilization. In conclusion, low doses of BPA interfere with inflammatory/insulin signaling pathways, leading to impairment of adipose cell function.

  2. C(2)-ceramide influences the expression and insulin-mediated regulation of cyclic nucleotide phosphodiesterase 3B and lipolysis in 3T3-L1 adipocytes.

    PubMed

    Mei, Jie; Holst, Lena Stenson; Landström, Tova Rahn; Holm, Cecilia; Brindley, David; Manganiello, Vincent; Degerman, Eva

    2002-03-01

    Cyclic nucleotide phosphodiesterase (PDE) 3B plays an important role in the antilipolytic action of insulin and, thereby, the release of fatty acids from adipocytes. Increased concentrations of circulating fatty acids as a result of elevated or unrestrained lipolysis cause insulin resistance. The lipolytic action of tumor necrosis factor (TNF)-alpha is thought to be one of the mechanisms by which TNF-alpha induces insulin resistance. Ceramide is the suggested second messenger of TNF-alpha action, and in this study, we used 3T3-L1 adipocytes to investigate the effects of C(2)-ceramide (a short-chain ceramide analog) on the expression and regulation of PDE3B and lipolysis. Incubation of adipocytes with 100 micromol/l C(2)-ceramide (N-acetyl-sphingosine) resulted in a time-dependent decrease of PDE3B activity, accompanied by decreased PDE3B protein expression. C(2)-ceramide, in a time- and dose-dependent manner, stimulated lipolysis, an effect that was blocked by H-89, an inhibitor of protein kinase A. These ceramide effects were prevented by 20 micromol/l troglitazone, an antidiabetic drug. In addition to downregulation of PDE3B, the antilipolytic action of insulin was decreased by ceramide treatment. These results, together with data from other studies on PDE3B and lipolysis in diabetic humans and animals, suggest a novel pathway by which ceramide induces insulin resistance. Furthermore, PDE3B is demonstrated to be a target for troglitazone action in adipocytes.

  3. Salt-inducible kinase 2 and -3 are downregulated in adipose tissue from obese or insulin-resistant individuals: implications for insulin signalling and glucose uptake in human adipocytes.

    PubMed

    Säll, Johanna; Pettersson, Annie M L; Björk, Christel; Henriksson, Emma; Wasserstrom, Sebastian; Linder, Wilhelm; Zhou, Yuedan; Hansson, Ola; Andersson, Daniel P; Ekelund, Mikael; Degerman, Eva; Stenkula, Karin G; Laurencikiene, Jurga; Göransson, Olga

    2017-02-01

    Salt-inducible kinases (SIKs) are related to the metabolic regulator AMP-activated protein kinase (AMPK). SIK2 is abundant in adipose tissue. The aims of this study were to investigate the expression of SIKs in relation to human obesity and insulin resistance, and to evaluate whether changes in the expression of SIKs might play a causal role in the development of disturbed glucose uptake in human adipocytes. SIK mRNA and protein was determined in human adipose tissue or adipocytes, and correlated to clinical variables. SIK2 and SIK3 expression and phosphorylation were analysed in adipocytes treated with TNF-α. Glucose uptake, GLUT protein levels and localisation, phosphorylation of protein kinase B (PKB/Akt) and the SIK substrate histone deacetylase 4 (HDAC4) were analysed after the SIKs had been silenced using small interfering RNA (siRNA) or inhibited using a pan-SIK-inhibitor (HG-9-91-01). We demonstrate that SIK2 and SIK3 mRNA are downregulated in adipose tissue from obese individuals and that the expression is regulated by weight change. SIK2 is also negatively associated with in vivo insulin resistance (HOMA-IR), independently of BMI and age. Moreover, SIK2 protein levels and specific kinase activity display a negative correlation to BMI in human adipocytes. Furthermore, SIK2 and SIK3 are downregulated by TNF-α in adipocytes. Silencing or inhibiting SIK1-3 in adipocytes results in reduced phosphorylation of HDAC4 and PKB/Akt, less GLUT4 at the plasma membrane, and lower basal and insulin-stimulated glucose uptake in adipocytes. This is the first study to describe the expression and function of SIKs in human adipocytes. Our data suggest that SIKs might be protective in the development of obesity-induced insulin resistance, with implications for future treatment strategies.

  4. Inhibiting insulin resistance mechanisms by DTS phytocompound: an experimental study on metabolic syndrome-prone adipocytes.

    PubMed

    Catanzaro, Roberto; Lorenzetti, Aldo; Allegri, Flavio; Yadav, Hariom; Solimene, Umberto; Kumaraju, Ajit K; Minelli, Emilio; Tomella, Claudio; Polimeni, Ascanio; Marotta, Francesco

    2012-08-01

    The present study was designed to determine whether DTS a phytocompound endowed with antioxidant properties, could beneficially modulate nitric oxide (NO) production stimulated by lipopolysaccharide (LPS) and tumor necrosis factor-alpha (TNF-alpha) in adipocytes. Combined stimulation (CS-treatment) exerted by using 5 microg/ml of LPS together with 100 ng/ml of TNF-alpha significantly enhanced NO production in 3T3-L1 adipocytes. Preincubation of the adipocytes with DTS (10-30 mM) inhibited such phenomenon in a dose-dependent fashion. The production of NO was decreased by 52% at the concentration of 30mM of DTS. The decrease in NO production by DTS was associated also with a decrease in inducible nitric oxide synthase (iNOS) protein and iNOS mRNA expression. Nuclear factor-kappa B (NF-kappaB) was significantly enhanced by CS-treatment, while the pretreatment with 30 mM of DTS prevented the activity by 27%. IL-6 production in 3T3-L1 adipocytes was markedly increased by CS stimulus, and the enhanced secretion of IL-6 was suppressed in a dose-dependent manner by DTS. These results suggest that DTS regulates iNOS expression and NO production in adipocytes through the modulating activation of NF-kappaB and may have a potential clinical application within protocols designed for treating metabolic syndrome. (www.actabiomedica.it).

  5. ROCK1 reduces mitochondrial content and irisin production in muscle suppressing adipocyte browning and impairing insulin sensitivity.

    PubMed

    Zhou, Xiaoshuang; Li, Rongshan; Liu, Xinyan; Wang, Lihua; Hui, Peng; Chan, Lawrence; Saha, Pradip K; Hu, Zhaoyong

    2016-07-14

    Irisin reportedly promotes the conversion of preadipocytes into "brown-like" adipocytes within subcutaneous white adipose tissue (WAT) via a mechanism that stimulates UCP-1 expression. An increase in plasma irisin has been associated with improved obesity and insulin resistance in mice with type 2 diabetes. But whether a low level of irisin stimulates the development of obesity has not been determined. In studying mice with muscle-specific constitutive ROCK1 activation (mCaROCK1), we found that irisin production was down-regulated and the mice developed obesity and insulin resistance. Therefore, we studied the effects of irisin deficiency on energy metabolism in mCaROCK1 mice. Constitutively activation of ROCK1 in muscle suppressed irisin expression in muscle resulting in a low level of irisin in circulation. Irisin deficiency reduced heat production and decreased the expression of uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) and subcutaneous WAT. Moreover, mCaROCK1 mice also displayed impaired glucose tolerance. Notably, irisin replenishment in mCaROCK1 mice partially reversed insulin resistance and obesity and these changes were associated with increased expression of UCP1 and Pref-1 in subcutaneous WAT. These results demonstrate that irisin mediates muscle-adipose tissue communication and regulates energy and glucose homeostasis. Irisin administration can correct obesity and insulin resistance in mice.

  6. ROCK1 reduces mitochondrial content and irisin production in muscle suppressing adipocyte browning and impairing insulin sensitivity

    PubMed Central

    Zhou, Xiaoshuang; Li, Rongshan; Liu, Xinyan; Wang, Lihua; Hui, Peng; Chan, Lawrence; Saha, Pradip K.; Hu, Zhaoyong

    2016-01-01

    Irisin reportedly promotes the conversion of preadipocytes into “brown-like” adipocytes within subcutaneous white adipose tissue (WAT) via a mechanism that stimulates UCP-1 expression. An increase in plasma irisin has been associated with improved obesity and insulin resistance in mice with type 2 diabetes. But whether a low level of irisin stimulates the development of obesity has not been determined. In studying mice with muscle-specific constitutive ROCK1 activation (mCaROCK1), we found that irisin production was down-regulated and the mice developed obesity and insulin resistance. Therefore, we studied the effects of irisin deficiency on energy metabolism in mCaROCK1 mice. Constitutively activation of ROCK1 in muscle suppressed irisin expression in muscle resulting in a low level of irisin in circulation. Irisin deficiency reduced heat production and decreased the expression of uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) and subcutaneous WAT. Moreover, mCaROCK1 mice also displayed impaired glucose tolerance. Notably, irisin replenishment in mCaROCK1 mice partially reversed insulin resistance and obesity and these changes were associated with increased expression of UCP1 and Pref-1 in subcutaneous WAT. These results demonstrate that irisin mediates muscle-adipose tissue communication and regulates energy and glucose homeostasis. Irisin administration can correct obesity and insulin resistance in mice. PMID:27411515

  7. Verification of the antidiabetic effects of cinnamon (Cinnamomum zeylanicum) using insulin-uncontrolled type 1 diabetic rats and cultured adipocytes.

    PubMed

    Shen, Yan; Fukushima, Misato; Ito, Yoshimasa; Muraki, Etsuko; Hosono, Takashi; Seki, Taiichiro; Ariga, Toyohiko

    2010-01-01

    It has long been believed that an intake of cinnamon (Cinnamomum zeylanicum) alleviates diabetic pathological conditions. However, it is still controversial whether the beneficial effect is insulin-dependent or insulin-mimetic. This study was aimed at determining the insulin-independent effect of cinnamon. Streptozotocin-induced diabetic rats were divided into four groups and orally administered with an aqueous cinnamon extract (CE) for 22 d. The diabetic rats that had taken CE at a dose of more than 30 mg/kg/d were rescued from their hyperglycemia and nephropathy, and these rats were found to have upregulation of uncoupling protein-1 (UCP-1) and glucose transporter 4 (GLUT4) in their brown adipose tissues as well as in their muscles. This was verified by using 3T3-L1 adipocytes in which CE upregulates GLUT4 translocation and increases the glucose uptake. CE exhibited its anti-diabetic effect independently from insulin by at least two mechanisms: i) upregulation of mitochondrial UCP-1, and ii) enhanced translocation of GLUT4 in the muscle and adipose tissues.

  8. Factor for adipocyte differentiation 158 gene disruption prevents the body weight gain and insulin resistance induced by a high-fat diet.

    PubMed

    Hayashi, Takahiro; Nozaki, Yuriko; Nishizuka, Makoto; Ikawa, Masahito; Osada, Shigehiro; Imagawa, Masayoshi

    2011-01-01

    To clarify the molecular mechanism of adipocyte differentiation, we previously isolated a novel gene, factor for adipocyte differentiation (fad) 158, whose expression was induced during the earliest stages of adipogenesis, and its product was localized to the endoplasmic reticulum. We found that the knockdown of fad158 expression prevented the differentiation of 3T3-L1 cells into adipocytes. In addition, over-expression of fad158 promoted the differentiation of NIH-3T3 cells, which do not usually differentiate into adipocytes. Although these findings strongly suggest that fad158 has a crucial role in regulating adipocyte differentiation, the physiological role of the gene is still unclear. In this study, we generated mice in which fad158 expression was deleted. The fad158-deficient mice did not show remarkable changes in body weight or the weight of white adipose tissue on a chow diet, but had significantly lower body weights and fat mass than wild-type mice when fed a high-fat diet. Furthermore, although the disruption of fad158 did not influence insulin sensitivity on the chow diet, it improved insulin resistance induced by the high-fat diet. These results indicate that fad158 is a key factor in the development of obesity and insulin resistance caused by a high-fat diet.

  9. l-Cysteine supplementation increases insulin sensitivity mediated by upregulation of GSH and adiponectin in high glucose treated 3T3-L1 adipocytes.

    PubMed

    Achari, Arunkumar E; Jain, Sushil K

    2017-09-15

    Diabetic patients have lower blood levels of l-cysteine (LC) and glutathione (GSH). This study examined the hypothesis that LC supplementation positively up regulates the effects of insulin on GSH and glucose metabolism in 3T3-L1 adipocyte model. 3T3L1 adipocytes were treated with LC (250 μM, 2 h) and/or insulin (15 or 30 nM, 2 h), and high glucose (HG, 25 mM, 20 h). Results showed that HG caused significant increase (95%) in ROS and reduction in the protein levels of DsbA-L (43%), adiponectin (64%), GCLC (20%), GCLM (21%), GSH (50%), and GLUT-4 (23%) in adipocytes. Furthermore, HG caused a reduction in total (35%) and HMW adiponectin (30%) secretion. Treatment with insulin alone significantly (p < 0.05) reduced ROS levels as well as increased DsbA-L, adiponectin, GCLC, GCLM, GSH, and GLUT-4 protein levels, glucose utilization, and improved total and HMW adiponectin secretion in HG treated adipocytes compared to HG alone. Interestingly, LC supplementation along with insulin caused greater reduction in ROS levels and significantly (p < 0.05) boosted the DsbA-L (41% vs LC, 29% vs Insulin), adiponectin (92% Vs LC, 84% Vs insulin) protein levels and total (32% Vs LC, 22% Vs insulin) and HMW adiponectin (75% Vs LC, 39% Vs insulin) secretion compared with the either insulin or LC alone in HG-treated cells. In addition, LC supplementation along with insulin increased GCLC (21% Vs LC, 14% insulin), GCLM (28% Vs LC, 16% insulin) and GSH (25% Vs LC and insulin) levels compared with the either insulin or LC alone in HG-treated cells. Furthermore, LC and insulin increases GLUT-4 protein expression (65% Vs LC, 18% Vs Insulin), glucose utilization (57% Vs LC, 27% Vs insulin) compared with the either insulin or LC alone in HG-treated cells. Similarly, LC supplementation increased insulin action significantly in cells maintained in medium contained control glucose. To explore the beneficial effect of LC is mediated by the upregulation of GCLC, we knocked down GCLC using

  10. PPARγ activation alters fatty acid composition in adipose triglyceride, in addition to proliferation of small adipocytes, in insulin resistant high-fat fed rats.

    PubMed

    Sato, Daisuke; Oda, Kanako; Kusunoki, Masataka; Nishina, Atsuyoshi; Takahashi, Kazuaki; Feng, Zhonggang; Tsutsumi, Kazuhiko; Nakamura, Takao

    2016-02-15

    It was reported that adipocyte size is potentially correlated in part to amount of long chain polyunsaturated fatty acids (PUFAs) and insulin resistance because several long chain PUFAs can be ligands of peroxisome proliferator-activated receptors (PPARs). In our previous study, marked reduction of PUFAs was observed in insulin-resistant high-fat fed rats, which may indicate that PUFAs are consumed to improve insulin resistance. Although PPARγ agonist, well known as an insulin sensitizer, proliferates small adipocytes, the effects of PPARγ agonist on FA composition in adipose tissue have not been clarified yet. In the present study, we administered pioglitazone, a PPARγ agonist, to high-fat fed rats, and measured their FA composition of triglyceride fraction in adipose tissue and adipocyte diameters in pioglitazone-treated (PIO) and non-treated (control) rats. Insulin sensitivity was obtained with hyperinsulinemic euglycemic clamp. Average adipocyte diameter in the PIO group were smaller than that in the control one without change in tissue weight. In monounsaturated FAs (MUFAs), 14:1n-5, 16:1n-7, and 18:1n-9 contents in the PIO group were lower than those, respectively, in the control group. In contrast, 22:6n-3, 20:3n-6, 20:4n-6, and 22:4n-6 contents in the PIO group were higher than those, respectively, in the control group. Insulin sensitivity was higher in the PIO group than in the control one. These findings suggest that PPARγ activation lowered MUFAs whereas suppressed most of C20 or C22 PUFAs reduction, and that the change of fatty acid composition may be relevant with increase in small adipocytes. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Direct demonstration of rapid insulin-like growth factor II receptor internalization and recycling in rat adipocytes. Insulin stimulates SVI-insulin-like growth factor II degradation by modulating the IGF-II receptor recycling process

    SciTech Connect

    Oka, Y.; Rozek, L.M.; Czech, M.P.

    1985-08-05

    The photoactive insulin-like growth factor (IGF)-II analogue 4-azidobenzoyl- SVI-IGF-II was synthesized and used to label specifically and covalently the Mr = 250,000 Type II IGF receptor. When rat adipocytes are irradiated after a 10-min incubation with 4-azidobenzoyl- SVI-IGF-II at 10 degrees C and immediately homogenized, most of the labeled IGF-II receptors are associated with the plasma membrane fraction, indicating that receptors accessible to the labeling reagent at low temperature are on the cell surface. However, when the photolabeled cells are incubated at 37 degrees C for various times before homogenization, labeled IGF-II receptors are rapidly internalized with a half-time of 3.5 min as evidenced by a loss from the plasma membrane fraction and a concomitant appearance in the low density microsome fraction. The steady state level of cell surface IGF-II receptors in the presence or absence of IGF-II remains constant under these conditions, demonstrating that IGF-II receptors rapidly recycle back to the cell surface at the same rate as receptor internalization. Using the above methodology, it is shown that acute insulin action: 1) increases the steady state number of cell surface IGF-II receptors; 2) increases the number of ligand-bound IGF-II receptors that are internalized per unit of time; and 3) increases the rate of cellular SVI-IGF-II degradation by a process that is blocked by anti-IGF-II receptor antibody.

  12. The v-SNARE Vti1a regulates insulin-stimulated glucose transport and Acrp30 secretion in 3T3-L1 adipocytes.

    PubMed

    Bose, Avirup; Guilherme, Adilson; Huang, Shaohui; Hubbard, Andrea C; Lane, Charles R; Soriano, Neil A; Czech, Michael P

    2005-11-04

    Regulated exocytosis in adipocytes mediates key functions, exemplified by insulin-stimulated secretion of peptides such as adiponectin and recycling of intracellular membranes containing GLUT4 glucose transporters to the cell surface. Using a proteomics approach, the v-SNARE Vti1a (vps10p tail interacting 1a) was identified by mass spectrometry in purified GLUT4-containing membranes. Insulin treatment of 3T3-L1 adipocytes decreased the amounts of both Vti1a and GLUT4 in these membranes, confirming that Vti1a is a component of insulin-sensitive GLUT4-containing vesicles. In the basal state, endogenous Vti1a colocalizes exclusively with perinuclear GLUT4. Although Vti1a has previously been reported to be a v-SNARE localized in the trans-Golgi network, treatment with brefeldin A failed to significantly modify Vti1a or GLUT4 localization while completely dispersing Golgi and trans-Golgi network marker proteins. Furthermore, depletion of Vti1a protein in cultured adipocytes through small interfering RNA-based gene silencing significantly inhibited both adiponectin secretion and insulin-stimulated deoxyglucose uptake. Taken together, these results suggest that the v-SNARE Vti1a may regulate a step common to both GLUT4 and Acrp30 trafficking in 3T3-L1 adipocytes.

  13. The phosphatidylinositol 3-kinase inhibitor, wortmannin, inhibits insulin-induced activation of phosphatidylcholine hydrolysis and associated protein kinase C translocation in rat adipocytes.

    PubMed Central

    Standaert, M L; Avignon, A; Yamada, K; Bandyopadhyay, G; Farese, R V

    1996-01-01

    We questioned whether phosphatidylinositol 3-kinase (PI 3-kinase) and protein kinase C (PKC) function as interrelated signalling mechanisms during insulin action in rat adipocytes. Insulin rapidly activated a phospholipase D that hydrolyses phosphatidylcholine (PC), and this activation was accompanied by increases in diacylglycerol and translocative activation of PKC-alpha and PKC-beta in the plasma membrane. Wortmannin, an apparently specific PI 3-kinase inhibitor, inhibited insulin-stimulated, phospholipase D-dependent PC hydrolysis and subsequent translocation of PKC-alpha and PKC-beta to the plasma membrane. Wortmannin did not inhibit PKC directly in vitro, or the PKC-dependent effects of phorbol esters on glucose transport in intact adipocytes. The PKC inhibitor RO 31-8220 did not inhibit PI 3-kinase directly or its activation in situ by insulin, but inhibited both insulin-stimulated and phorbol ester-stimulated glucose transport. Our findings suggest that insulin acts through PI 3-kinase to activate a PC-specific phospholipase D and causes the translocative activation of PKC-alpha and PKC-beta in plasma membranes of rat adipocytes. PMID:8611143

  14. Actin filaments play a critical role in insulin-induced exocytotic recruitment but not in endocytosis of GLUT4 in isolated rat adipocytes.

    PubMed Central

    Omata, W; Shibata, H; Li, L; Takata, K; Kojima, I

    2000-01-01

    Actin-based cytoskeletons have been implicated in insulin-stimulated glucose transport and translocation of the insulin-regulated glucose transporter, GLUT4, from the intracellular pool to the plasma membrane. However, most previous studies were done using adherent cell systems such as L6 myotubes and 3T3-L1 adipocytes, and very little information is available on the significance of the actin filaments to the insulin action in isolated adipocytes, a widely used experimental system. In the present study, we investigated the physiological role of actin filaments in the subcellular trafficking of GLUT4 in isolated rat adipocytes. We first compared the effects of two actin-disrupting reagents, latrunculin A and cytochalasin D, on the organization of the actin filaments as well as on the insulin action on glucose transport by laser confocal microscopy combined with biochemical analysis of the insulin action. Treatment of the cells with latrunculin A induced dose- and time-dependent disappearance of the filamentous actin, which correlated very well with inhibition of the insulin effect on glucose transport. Although cytochalasin D at 50 microM significantly inhibited insulin-stimulated glucose transport, it was not effective in disassembly of the actin filaments; rather, many intense punctate signals were observed in cytochalasin D-treated cells. In the actin-disrupted adipocytes treated with latrunculin A, insulin-induced GLUT4 translocation was inhibited completely. In addition, latrunculin A remarkably inhibited both insulin-induced glucose transport and GLUT4 translocation in the presense of D(k)-(62-85), a potent inhibitor of GLUT4 endocytosis, suggesting that intactness of the actin filaments was necessary for insulin-induced exocytosis of the GLUT4-containing vesicles. On the other hand, latrunculin A showed little inhibitory effect on either endocytosis of the trypsin-cleaved 35-kDa fragment of GLUT4 or decay of the glucose transport activity after addition of

  15. Prolonged inorganic arsenite exposure suppresses insulin-stimulated AKT S473 phosphorylation and glucose uptake in 3T3-L1 adipocytes: Involvement of the adaptive antioxidant response

    SciTech Connect

    Xue, Peng; Hou, Yongyong; Zhang, Qiang; Woods, Courtney G.; Yarborough, Kathy; Liu, Huiyu; Sun, Guifan; Andersen, Melvin E.; Pi, Jingbo

    2011-04-08

    Highlights: {yields} In 3T3-L1 adipocytes iAs{sup 3+} decreases insulin-stimulated glucose uptake. {yields} iAs{sup 3+} attenuates insulin-induced phosphorylation of AKT S473. {yields} iAs{sup 3+} activates the cellular adaptive oxidative stress response. {yields} iAs{sup 3+} impairs insulin-stimulated ROS signaling. {yields} iAs{sup 3+} decreases expression of adipogenic genes and GLUT4. -- Abstract: There is growing evidence that chronic exposure of humans to inorganic arsenic, a potent environmental oxidative stressor, is associated with the incidence of type 2 diabetes (T2D). One critical feature of T2D is insulin resistance in peripheral tissues, especially in mature adipocytes, the hallmark of which is decreased insulin-stimulated glucose uptake (ISGU). Despite the deleterious effects of reactive oxygen species (ROS), they have been recognized as a second messenger serving an intracellular signaling role for insulin action. Nuclear factor erythroid 2-related factor 2 (NRF2) is a central transcription factor regulating cellular adaptive response to oxidative stress. This study proposes that in response to arsenic exposure, the NRF2-mediated adaptive induction of endogenous antioxidant enzymes blunts insulin-stimulated ROS signaling and thus impairs ISGU. Exposure of differentiated 3T3-L1 cells to low-level (up to 2 {mu}M) inorganic arsenite (iAs{sup 3+}) led to decreased ISGU in a dose- and time-dependent manner. Concomitant to the impairment of ISGU, iAs{sup 3+} exposure significantly attenuated insulin-stimulated intracellular ROS accumulation and AKT S473 phosphorylation, which could be attributed to the activation of NRF2 and induction of a battery of endogenous antioxidant enzymes. In addition, prolonged iAs{sup 3+} exposure of 3T3-L1 adipocytes resulted in significant induction of inflammatory response genes and decreased expression of adipogenic genes and glucose transporter type 4 (GLUT4), suggesting chronic inflammation and reduction in GLUT4

  16. Involvement of vesicular H+-ATPase in insulin-stimulated glucose transport in 3T3-F442A adipocytes.

    PubMed

    Choi, Young Ok; Park, Jong-Ha; Song, Young Sook; Lee, Wan; Moriyama, Yoshinori; Choe, Han; Leem, Chae Hun; Jang, Yeon Jin

    2007-12-01

    In secretory cells, osmotic swelling of secretory granules is proposed to be an intermediate step in exocytic fusion of the granules with the plasma membrane. For osmotic swelling of the granule, a H (+) gradient generated by vacuolar-type H (+) -ATPase (V-ATPase) may be a driving force for accumulation of K (+) via its exchange with H (+) , concurrent with accumulation of Cl (-) and H(2)O. Here, we investigated whether a similar chemiosmotic mechanism is involved in the insulin-stimulated recruitment of GLUT4 to the plasma membrane in 3T3-F442A adipocytes. Incubating cells in a hypo-osmotic medium significantly increased 2-deoxy glucose (2-DG) uptake and the plasma membrane GLUT4 content (possibly via induction of osmotic swelling of GLUT4-containing vesicles (G4V)) and also potentiated the insulin-stimulated 2-DG uptake. Promotion of the G4V membrane ionic permeability using nigericin, an electroneutral K (+) /H (+) exchange ionophore, increased 2-DG uptake and the plasma membrane GLUT4 content. However, co-treatment with nigericin and insulin did not show an additive effect. Bafilomycin A(1), a diagnostically specific inhibitor of V-ATPase, inhibited insulin- and nigericin-stimulated 2-DG uptake. Immunoadsorption plus immunoblotting demonstrated that GLUT4 and V-ATPase co-localize in the same intracellular membranes. Together, these results indicate that V-ATPases in the G4V membrane may play an important role in the insulin-stimulated exocytic fusion of G4V with the plasma membrane via its participation in osmotic swelling of the vesicle.

  17. Identification of RIFL, a novel adipocyte-enriched insulin target gene with a role in lipid metabolism

    PubMed Central

    Ren, Gang; Kim, Ji Young

    2012-01-01

    To identify new genes that are important in fat metabolism, we utilized the Lexicon-Genentech knockout database of genes encoding transmembrane and secreted factors and whole murine genome transcriptional profiling data that we generated for 3T3-L1 in vitro adipogenesis. Cross-referencing null models evidencing metabolic phenotypes with genes induced in adipogenesis led to identification of a new gene, which we named RIFL (refeeding induced fat and liver). RIFL-null mice have serum triglyceride levels approximately one-third of wild type. RIFL transcript is induced >100-fold during 3T3-L1 adipogenesis and is also increased markedly during adipogenesis of murine and human primary preadipocytes. siRNA-mediated knockdown of RIFL during 3T3-L1 adipogenesis results in an ∼35% decrease in adipocyte triglyceride content. Murine RIFL transcript is highly enriched in white and brown adipose tissue and liver. Fractionation of WAT reveals that RIFL transcript is exclusive to adipocytes with a lack of expression in stromal-vascular cells. Nutritional and hormonal studies are consistent with a prolipogenic function for RIFL. There is evidence of an approximately eightfold increase in RIFL transcript level in WAT in ob/ob mice compared with wild-type mice. RIFL transcript level in WAT and liver is increased ∼80- and 12-fold, respectively, following refeeding of fasted mice. Treatment of 3T3-L1 adipocytes with insulin increases RIFL transcript ≤35-fold, whereas agents that stimulate lipolysis downregulate RIFL. Interestingly, the 198-amino acid RIFL protein is predicted to be secreted and shows ∼30% overall conservation with the NH2-terminal half of angiopoietin-like 3, a liver-secreted protein that impacts lipid metabolism. In summary, our data suggest that RIFL is an important new regulator of lipid metabolism. PMID:22569073

  18. Therapeutic potential of the dual peroxisome proliferator activated receptor (PPAR)α/γ agonist aleglitazar in attenuating TNF-α-mediated inflammation and insulin resistance in human adipocytes.

    PubMed

    Massaro, Marika; Scoditti, Egeria; Pellegrino, Mariangela; Carluccio, Maria Annunziata; Calabriso, Nadia; Wabitsch, Martin; Storelli, Carlo; Wright, Matthew; De Caterina, Raffaele

    2016-05-01

    Adipose tissue inflammation is a mechanistic link between obesity and its related sequelae, including insulin resistance and type 2 diabetes. Dual ligands of peroxisome proliferator activated receptor (PPAR)α and γ, combining in a single molecule the metabolic and inflammatory-regulatory properties of α and γ agonists, have been proposed as a promising therapeutic strategy to antagonize adipose tissue inflammation. Here we investigated the effects of the dual PPARα/γ agonist aleglitazar on human adipocytes challenged with inflammatory stimuli. Human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes were treated with aleglitazar or - for comparison - the selective agonists for PPARα or γ fenofibrate or rosiglitazone, respectively, for 24h before stimulation with TNF-α. Aleglitazar, at concentrations as low as 10nmol/L, providing the half-maximal transcriptional activation of both PPARα and PPARγ, reduced the stimulated expression of several pro-inflammatory mediators including interleukin (IL)-6, the chemokine CXC-L10, and monocyte chemoattractant protein (MCP)-1. Correspondingly, media from adipocytes treated with aleglitazar reduced monocyte migration, consistent with suppression of MCP-1 secretion. Under the same conditions, aleglitazar also reversed the TNF-α-mediated suppression of insulin-stimulated ser473 Akt phosphorylation and decreased the TNF-α-induced ser312 IRS1 phosphorylation, two major switches in insulin-mediated metabolic activities, restoring glucose uptake in insulin-resistant adipocytes. Such effects were similar to those obtainable with a combination of single PPARα and γ agonists. In conclusion, aleglitazar reduces inflammatory activation and dysfunction in insulin signaling in activated adipocytes, properties that may benefit diabetic and obese patients. The effect of aleglitazar was consistent with dual PPARα and γ agonism, but with no evidence of synergism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Insulin-like growth factor II receptor is phosphorylated by a tyrosine kinase in adipocyte plasma membranes

    SciTech Connect

    Corvera, S.; Whitehead, R.E.; Mottola, C.; Czech, M.P.

    1986-06-15

    Incorporation of /sup 32/P from (gamma-32P)ATP into tyrosine residues of the insulin-like growth factor (IGF)-II receptor was observed in a Triton X-100-insoluble fraction of rat adipocyte plasma membranes. IGF-II receptor phosphorylation proceeded to a stoichiometry of approximately 0.5 mol of phosphate/IGF-II binding site after 10 min of incubation at 4 degrees C. A Km for ATP of 6 microM was calculated for this phosphorylation reaction. Addition of IGF-II caused an approximately 2-fold increase in tyrosine phosphorylation of the IGF-II receptor in this preparation. In contrast, phosphorylation of angiotensin II by the Triton X-100 washed membranes was not stimulated by IGF-II. Incubation of purified receptor immobilized on IGF-II agarose or of receptor-enriched low density microsomal membranes with (gamma-32P)ATP did not result in appreciable incorporation of (/sup 32/P)phosphate into the IGF-II receptor nor into exogenous substrates. These data suggest that the IGF-II receptor is not a tyrosine protein kinase capable of autophosphorylation but that it is a substrate for a tyrosine protein kinase endogenous to the adipocyte plasma membrane. The stimulatory effect of IGF-II on the tyrosine phosphorylation of its receptor may be due to a conformational change which converts the receptor to a better substrate for this tyrosine kinase.

  20. Amelioration of Mitochondrial Dysfunction-Induced Insulin Resistance in Differentiated 3T3-L1 Adipocytes via Inhibition of NF-κB Pathways

    PubMed Central

    Hafizi Abu Bakar, Mohamad; Sarmidi, Mohamad Roji; Kai, Cheng Kian; Huri, Hasniza Zaman; Yaakob, Harisun

    2014-01-01

    A growing body of evidence suggests that activation of nuclear factor kappa B (NF-κB) signaling pathways is among the inflammatory mechanism involved in the development of insulin resistance and chronic low-grade inflammation in adipose tissues derived from obese animal and human subjects. Nevertheless, little is known about the roles of NF-κB pathways in regulating mitochondrial function of the adipose tissues. In the present study, we sought to investigate the direct effects of celastrol (potent NF-κB inhibitor) upon mitochondrial dysfunction-induced insulin resistance in 3T3-L1 adipocytes. Celastrol ameliorates mitochondrial dysfunction by altering mitochondrial fusion and fission in adipocytes. The levels of oxidative DNA damage, protein carbonylation and lipid peroxidation were down-regulated. Further, the morphology and quantification of intracellular lipid droplets revealed the decrease of intracellular lipid accumulation with reduced lipolysis. Moreover, massive production of the pro-inflammatory mediators tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were markedly depleted. Insulin-stimulated glucose uptake activity was restored with the enhancement of insulin signaling pathways. This study signified that the treatments modulated towards knockdown of NF-κB transcription factor may counteract these metabolic insults exacerbated in our model of synergy between mitochondrial dysfunction and inflammation. These results demonstrate for the first time that NF-κB inhibition modulates mitochondrial dysfunction induced insulin resistance in 3T3-L1 adipocytes. PMID:25474091

  1. Amelioration of mitochondrial dysfunction-induced insulin resistance in differentiated 3T3-L1 adipocytes via inhibition of NF-κB pathways.

    PubMed

    Bakar, Mohamad Hafizi Abu; Sarmidi, Mohamad Roji; Kai, Cheng Kian; Huri, Hasniza Zaman; Yaakob, Harisun

    2014-12-02

    A growing body of evidence suggests that activation of nuclear factor kappa B (NF-κB) signaling pathways is among the inflammatory mechanism involved in the development of insulin resistance and chronic low-grade inflammation in adipose tissues derived from obese animal and human subjects. Nevertheless, little is known about the roles of NF-κB pathways in regulating mitochondrial function of the adipose tissues. In the present study, we sought to investigate the direct effects of celastrol (potent NF-κB inhibitor) upon mitochondrial dysfunction-induced insulin resistance in 3T3-L1 adipocytes. Celastrol ameliorates mitochondrial dysfunction by altering mitochondrial fusion and fission in adipocytes. The levels of oxidative DNA damage, protein carbonylation and lipid peroxidation were down-regulated. Further, the morphology and quantification of intracellular lipid droplets revealed the decrease of intracellular lipid accumulation with reduced lipolysis. Moreover, massive production of the pro-inflammatory mediators tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were markedly depleted. Insulin-stimulated glucose uptake activity was restored with the enhancement of insulin signaling pathways. This study signified that the treatments modulated towards knockdown of NF-κB transcription factor may counteract these metabolic insults exacerbated in our model of synergy between mitochondrial dysfunction and inflammation. These results demonstrate for the first time that NF-κB inhibition modulates mitochondrial dysfunction induced insulin resistance in 3T3-L1 adipocytes.

  2. FDP-E induces adipocyte inflammation and suppresses insulin-stimulated glucose disposal: effect of inflammation and obesity on fibrinogen Bβ mRNA.

    PubMed

    Kang, Minsung; Vaughan, Roger A; Paton, Chad M

    2015-12-01

    Obesity is associated with increased fibrinogen production and fibrin formation, which produces fibrin degradation products (FDP-E and FDP-D). Fibrin and FDPs both contribute to inflammation, which would be expected to suppress glucose uptake and insulin signaling in adipose tissue, yet the effect of FDP-E and FDP-D on adipocyte function and glucose disposal is completely unknown. We tested the effects of FDPs on inflammation in 3T3-L1 adipocytes and primary macrophages and adipocyte glucose uptake in vitro. High-fat-fed mice increased hepatic fibrinogen mRNA expression ninefold over chow-fed mice, with concomitant increases in plasma fibrinogen protein levels. Obese mice also displayed increased fibrinogen content of epididymal fat pads. We treated cultured 3T3-L1 adipocytes and primary macrophages with FDP-E, FDP-D, or fibrinogen degradation products (FgnDP-E). FDP-D and FgnDP-E had no effect on inflammation or glucose uptake. Cytokine mRNA expression in RAW264.7 macrophage-like cells and 3T3-L1 adipocytes treated with FDP-E induced inflammation with maximal effects at 100 nM and 6 h. Insulin-stimulated 2-deoxy-d-[(3)H]glucose uptake was reduced by 71% in adipocytes treated with FDP-E. FDP-E, but not FDP-D or FgnDP-E, induces inflammation in macrophages and adipocytes and decreases glucose uptake in vitro. FDP-E may contribute toward obesity-associated acute inflammation and glucose intolerance, although its chronic role in obesity remains to be elucidated. Copyright © 2015 the American Physiological Society.

  3. Transcriptional Regulation of an Insulin-Sensitizing Adipokine Adipolin/CTRP12 in Adipocytes by Krüppel-Like Factor 15

    PubMed Central

    Enomoto, Takashi; Ohashi, Koji; Shibata, Rei; Kambara, Takahiro; Uemura, Yusuke; Yuasa, Daisuke; Kataoka, Yoshiyuki; Miyabe, Megumi; Matsuo, Kazuhiro; Joki, Yusuke; Hayakawa, Satoko; Hiramatsu-Ito, Mizuho; Ito, Masanori; Murohara, Toyoaki; Ouchi, Noriyuki

    2013-01-01

    Obese states characterized by chronic inflammation are closely linked to the development of metabolic dysfunction. We identified adipolin/CTRP12 as an insulin-sensitizing and anti-inflammatory adipokine. Although obese conditions down-regulate adipolin expression, its molecular mechanism is largely unknown. Here we show that the transcriptional regulator Krüppel-like factor (KLF) 15 is involved in the regulation of adipolin expression in adipocytes. White adipose tissue from diet-induced obese (DIO) mice showed decreased expression of KLF9 and KLF15 among several KLFs, which was accompanied by reduced expression of adipolin. In cultured 3T3L1 adipocytes, treatment with TNFα significantly reduced the mRNA levels of KLF9, KLF15 and adipolin. Adenovirus-mediated overexpression of KLF15 but not KLF9 reversed TNFα-induced reduction of adipolin expression in adipocytes. Conversely, gene targeting ablation of KLF15 attenuated adipolin expression in adipocytes. Expression of KLF15 but not KLF9 enhanced the promoter activity of adipolin in HEK293 cells. Pretreatment of 3T3L1 adipocytes with the JNK inhibitor SP600125, but not p38 MAPK inhibitor SB203580 blocked the inhibitory effects of TNFα on adipolin and KLF15 expression. These data suggest that adipose inflammation under conditions of obesity suppresses adipolin expression via JNK-dependent down-regulation of KLF15 in adipocytes. PMID:24358263

  4. Protective Effect of Phosphatidylinositol 4,5-Bisphosphate against Cortical Filamentous Actin Loss and Insulin Resistance Induced by Sustained Exposure of 3T3-L1 Adipocytes to Insulin*

    PubMed Central

    Chen, Guoli; Raman, Priya; Bhonagiri, Padma; Strawbridge, Andrew B.; Pattar, Guruprasad R.; Elmendorf, Jeffrey S.

    2008-01-01

    Muscle and fat cells develop insulin resistance when cultured under hyperinsulinemic conditions for sustained periods. Recent data indicate that early insulin signaling defects do not fully account for the loss of insulin action. Given that cortical filamentous actin (F-actin) represents an essential aspect of insulin regulated glucose transport, we tested to see whether cortical F-actin structure was compromised during chronic insulin treatment. The acute effect of insulin on GLUT4 translocation and glucose uptake was diminished in 3T3-L1 adipocytes exposed to a physiological level of insulin (5 nM) for 12 h. This insulin-induced loss of insulin responsiveness was apparent under both low (5.5 mM) and high (25 mM) glucose concentrations. Microscopic and biochemical analyses revealed that the hyperinsulinemic state caused a marked loss of cortical F-actin. Since recent data link phosphatidylinositol 4,5-bisphosphate (PIP2) to actin cytoskeletal mechanics, we tested to see whether the insulin-resistant condition affected PIP2 and found a noticeable loss of this lipid from the plasma membrane. Using a PIP2 delivery system, we replenished plasma membrane PIP2 in cells following the sustained insulin treatment and observed a restoration in cortical F-actin and insulin responsiveness. These data reveal a novel molecular aspect of insulin-induced insulin resistance involving defects in PIP2/actin regulation. PMID:15277534

  5. Protective effect of phosphatidylinositol 4,5-bisphosphate against cortical filamentous actin loss and insulin resistance induced by sustained exposure of 3T3-L1 adipocytes to insulin.

    PubMed

    Chen, Guoli; Raman, Priya; Bhonagiri, Padma; Strawbridge, Andrew B; Pattar, Guruprasad R; Elmendorf, Jeffrey S

    2004-09-17

    Muscle and fat cells develop insulin resistance when cultured under hyperinsulinemic conditions for sustained periods. Recent data indicate that early insulin signaling defects do not fully account for the loss of insulin action. Given that cortical filamentous actin (F-actin) represents an essential aspect of insulin regulated glucose transport, we tested to see whether cortical F-actin structure was compromised during chronic insulin treatment. The acute effect of insulin on GLUT4 translocation and glucose uptake was diminished in 3T3-L1 adipocytes exposed to a physiological level of insulin (5 nm) for 12 h. This insulin-induced loss of insulin responsiveness was apparent under both low (5.5 mm) and high (25 mm) glucose concentrations. Microscopic and biochemical analyses revealed that the hyperinsulinemic state caused a marked loss of cortical F-actin. Since recent data link phosphatidylinositol 4,5-bisphosphate (PIP(2)) to actin cytoskeletal mechanics, we tested to see whether the insulin-resistant condition affected PIP(2) and found a noticeable loss of this lipid from the plasma membrane. Using a PIP(2) delivery system, we replenished plasma membrane PIP(2) in cells following the sustained insulin treatment and observed a restoration in cortical F-actin and insulin responsiveness. These data reveal a novel molecular aspect of insulin-induced insulin resistance involving defects in PIP(2)/actin regulation.

  6. Tribbles 3 inhibits brown adipocyte differentiation and function by suppressing insulin signaling

    SciTech Connect

    Jeong, Ha-Won; Choi, Ran Hee; McClellan, Jamie L.; Piroli, Gerardo G.; Frizzell, Norma; Tseng, Yu-Hua; Goodyear, Laurie J.; Koh, Ho-Jin

    2016-02-19

    Recent studies have demonstrated that adult humans have substantial amounts of functioning brown adipose tissue (BAT). Since BAT has been implicated as an anti-obese and anti-diabetic tissue, it is important to understand the signaling molecules that regulate BAT function. There has been a link between insulin signaling and BAT metabolism as deletion or pharmaceutical inhibition of insulin signaling impairs BAT differentiation and function. Tribbles 3 (TRB3) is a pseudo kinase that has been shown to regulate metabolism and insulin signaling in multiple tissues but the role of TRB3 in BAT has not been studied. In this study, we found that TRB3 expression was present in BAT and overexpression of TRB3 in brown preadipocytes impaired differentiation and decreased expression of BAT markers. Furthermore, TRB3 overexpression resulted in significantly lower oxygen consumption rates for basal and proton leakage, indicating decreased BAT activity. Based on previous studies showing that deletion or pharmaceutical inhibition of insulin signaling impairs BAT differentiation and function, we assessed insulin signaling in brown preadipocytes and BAT in vivo. Overexpression of TRB3 in cells impaired insulin-stimulated IRS1 and Akt phosphorylation, whereas TRB3KO mice displayed improved IRS1 and Akt phosphorylation. Finally, deletion of IRS1 abolished the function of TRB3 to regulate BAT differentiation and metabolism. These data demonstrate that TRB3 inhibits insulin signaling in BAT, resulting in impaired differentiation and function. - Highlights: • TRB3 is expressed in brown adipose tissue and its expression is increased during differentiation. • Overexpression of TRB3 inhibits differentiation and its activity. • Overexpression of TRB3 in brown preadipocytes inhibits insulin signaling. • TRB3KO mice displays improved insulin signaling in brown adipose tissue. • Insulin signaling is required for the effects of TRB3 to regulate brown adipose tissue differentiation and

  7. Differential effects of pertussis toxin on insulin-stimulated phosphatidylcholine hydrolysis and glycerolipid synthesis de novo. Studies in BC3H-1 myocytes and rat adipocytes

    SciTech Connect

    Hoffman, J.M.; Standaert, M.L.; Nair, G.P.; Farese, R.V. )

    1991-04-02

    Insulin-induced increases in diacylglycerol (DAG) have been suggested to result from stimulation of de novo phosphatidic acid (PA) synthesis and phosphatidylcholine (PC) hydrolysis. Presently, the authors found that insulin decreased PC levels of BC3H-1 myocytes and rat adipocytes by approximately 10-25% within 30 s. These decreases were rapidly reversed in both cell types, apparently because of increased PC synthesis de novo. In BC3H-1 myocytes, pertussis toxin inhibited PC resynthesis and insulin effects on the pathway of de novo PA-DAG-PC synthesis, as evidenced by changes in ({sup 3}H)glycerol incorporation, but did not inhibit insulin-stimulated PC hydrolysis. Pertussis toxin also blocked the later, but not the initial, increase in DAG production in the myocytes. Phorbol esters activated PC hydrolysis in both myocytes and adipocytes, but insulin-induced stimulation of PC hydrolysis was not dependent upon activation of PKC, since this hydrolysis was not inhibited by 500 {mu}M sangivamycin, an effective PKC inhibitor. The results indicate that insulin increases DAG by pertussis toxin sensitive and insensitive (PC hydrolysis) mechanisms, which are mechanistically separate, but functionally interdependent and integrated. PC hydrolysis may contribute importantly to initial increases in DAG, but later sustained increases are apparently largely dependent on insulin-induced stimulation of the pathway of de novo phospholipid synthesis.

  8. Importance of adipocyte cyclooxygenase-2 and prostaglandin E2-prostaglandin E receptor 3 signaling in the development of obesity-induced adipose tissue inflammation and insulin resistance.

    PubMed

    Chan, Pei-Chi; Hsiao, Fone-Ching; Chang, Hao-Ming; Wabitsch, Martin; Hsieh, Po Shiuan

    2016-06-01

    We examined the involvement of adipocyte cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2)-prostaglandin E receptor (EP)3-mediated signaling during hypertrophy and hypoxia in the development of obesity-associated adipose tissue (AT) inflammation and insulin resistance. The experiments were conducted with high-fat diet (HFD)-induced obese rats, db/db mice, human subjects, and 3T3-L1 and the human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes; the groups were treated with selective inhibitors of COX-2 [celecoxib 30 mg/kg, half maximal inhibitory concentration (IC50) ≈ 0.04 µM] and EP3 (L-798106 100 µg/kg, IC50 ≈ 0.5 µM) or a short interfering RNA. There were strong, positive correlations between adipocyte COX-2 and EP3 gene expressions and the AT TNF-α and monocyte chemotactic protein-1 contents and the homeostatic model assessment for insulin resistance in HFD-induced obese rats, as well as body mass index in human subjects. Treatment with COX-2 and EP3 inhibitors significantly reversed AT inflammatory gene and protein expressions (-50%) and impaired glucose and insulin tolerance in db/db mice. COX-2 inhibition diminished the chemotaxis of adipocytes isolated from HFD rats to macrophages and T cells. Targeting inhibition of adipocyte COX-2 and EP3 during hypertrophy and hypoxia reversed the release of the augmented proinflammatory adipokines and the diminished adiponectin and also suppressed NF-κB and hypoxia-inducible factor-1α transcription activation. These findings suggest that adipocyte COX-2 PGE2-EP3-mediated signaling is crucially involved in the development of obesity-associated AT inflammation and insulin resistance.-Chan, P.-C., Hsiao, F.-C., Chang, H.-M., Wabitsch, M., Hsieh, P. S. Importance of adipocyte cyclooxygenase-2 and prostaglandin E2-prostaglandin E receptor 3 signaling in the development of obesity-induced adipose tissue inflammation and insulin resistance. © FASEB.

  9. Phillyrin, a natural lignan, attenuates tumor necrosis factor α-mediated insulin resistance and lipolytic acceleration in 3T3-L1 adipocytes.

    PubMed

    Kong, Poren; Zhang, Linlin; Guo, Yuyu; Lu, Yingli; Lin, Dongping

    2014-07-01

    In obese adipose tissue, tumor necrosis factor-α secreted from macrophages plays an important role in the adipocyte dysfunctions, including insulin resistance, lipolytic acceleration, and changes of adipokines, which promote the development of obesity-related complications. Phillyrin, an active ingredient found in many medicinal plants and certain functional foods, elicits anti-obesity and anti-inflammatory properties in vivo. The aim of the current study was to investigate the role of phillyrin in preventing tumor necrosis factor α-induced insulin resistance or lipolytic acceleration in 3T3-L1 adipocytes. Our results showed that phillyrin partially restored insulin-stimulated 2-DOG uptake, which was reduced by tumor necrosis factor-α, with concomitant restoration in serine phosphorylation of insulin receptor substrate-1 and insulin-stimulated Glut4 translocation to plasma membrane. Phillyrin also dose-dependently prevented tumor necrosis factor α-stimulated adipocyte lipolysis with preserved downregulation of perilipin. The mitogen-activated protein kinases and I kappaB kinase activation was promoted in tumor necrosis factor α-stimulated adipocytes, but pretreatment with 40 µM phillyrin inhibited the phosphorylation of extracellular signal-regulated kinases1/2, stress-activated protein kinase/Jun N-terminal kinase and I kappaB kinase (p<0.05). Moreover, phillyrin could inhibit the expressions of interleukin-6 and monocyte chemoattractant protein-1 induced by tumor necrosis factor-α. Using transwell coculture method with 3T3-L1 adipocytes and RAW 264.7 macrophages, the enhanced productions of tumor necrosis factor-α and free fatty acids in the medium were significantly reduced by phillyrin (p<0.05). These results indicate that phillyrin exerts a beneficial effect on adipocyte dysfunctions induced by tumor necrosis factor-α through suppression of the activation of I kappaB kinase and N-terminal kinase. Phillyrin may have the potential to ameliorate the

  10. Lack of CUL4B in Adipocytes Promotes PPARγ-Mediated Adipose Tissue Expansion and Insulin Sensitivity.

    PubMed

    Li, Peishan; Song, Yu; Zan, Wenying; Qin, Liping; Han, Shuang; Jiang, Baichun; Dou, Hao; Shao, Changshun; Gong, Yaoqin

    2017-02-01

    Obesity and obesity-associated diseases are linked to dysregulation of the peroxisome proliferator-activated receptor γ (PPARγ) signaling pathway. Identification of the factors that regulate PPARγ expression and activity is crucial for combating obesity. However, the ubiquitin E3 ligases that target PPARγ for proteasomal degradation have been rarely identified, and their functions in vivo have not been characterized. Here we report that CUL4B-RING E3 ligase (CRL4B) negatively regulates PPARγ by promoting its polyubiquitination and proteasomal degradation. Depletion of CUL4B led to upregulation of PPARγ-regulated genes and facilitated adipogenesis. Adipocyte-specific Cul4b knockout (AKO) mice being fed a high-fat diet exhibited increased body fat accumulation that was mediated by increased adipogenesis. However, AKO mice showed improved metabolic phenotypes, including increased insulin sensitivity and glucose tolerance. Correspondingly, there was a decreased inflammatory response in adipose tissues of AKO mice. Genetic inhibition of CUL4B thus appears to phenocopy the beneficial effects of PPARγ agonists. Collectively, this study establishes a critical role of CRL4B in the regulation of PPARγ stability and insulin sensitivity and suggests that CUL4B could be a potential therapeutic target for combating obesity and metabolic syndromes. © 2017 by the American Diabetes Association.

  11. Inhibition of insulin/PI3K/AKT signaling decreases adipose Sortilin 1 in mice and 3T3-L1 adipocytes.

    PubMed

    Li, Jibiao; Chen, Cheng; Li, Yuan; Matye, David J; Wang, Yifeng; Ding, Wen-Xing; Li, Tiangang

    2017-08-24

    Sortilin 1(Sort1) is a vesicle trafficking receptor that mediates protein sorting in the endocytic and exocytic pathways. Sort1 is a component of the GLUT4 storage vesicles in adipocytes and is also involved in the regulation of adipogenesis. Sort1 protein is reduced in adipose of obese mice and humans, but the underlying cause is not fully understood. Here we report that insulin/PI3K/AKT signaling cascade critically regulates adipose Sort1 protein abundance. Administration of a PI3K inhibitor rapidly decreased Sort1 protein but not mRNA in adipose of chow-fed mice. In 3T3-L1 adipocytes, serum-starvation or inhibition of the PI3K/AKT signaling also decreased Sort1 protein without affecting Sort1 mRNA expression. Sort1 protein downregulation upon PI3K inhibition was blocked by pretreatment of MG132 but not Bafilomycin A1, suggesting that PI3K inhibition caused Sort1 degradation via the proteasome pathway. Using a phospho-specific Sort1 antibody, we showed that endogenous Sort1 was phosphorylated at S825 adjacent to the DXXLL sorting motif on the cytoplasmic tail. We demonstrated that mutagenesis that abolished Sort1 S825 phosphorylation decreased insulin-stimulated Sort1 localization on the plasma membrane and Sort1 protein stability in 3T3-L1 adipocytes. However, endogenous Sort1 phosphorylation at S825 was not affected by insulin stimulation or by inhibition of PI3K. In conclusion, this study revealed an important role of insulin signaling in regulating adipose Sort1 protein stability, and further suggests that impaired insulin signaling may underlie reduced adipose Sort1 in obesity. The cellular events downstream of insulin/PI3K/AKT signaling that mediates insulin regulation of Sort1 stability requires further investigation. Copyright © 2017. Published by Elsevier B.V.

  12. Design, synthesis and characterization of novel binary V(V)-Schiff base materials linked with insulin-mimetic vanadium-induced differentiation of 3T3-L1 fibroblasts to adipocytes. Structure-function correlations at the molecular level.

    PubMed

    Halevas, E; Tsave, O; Yavropoulou, M P; Hatzidimitriou, A; Yovos, J G; Psycharis, V; Gabriel, C; Salifoglou, A

    2015-06-01

    Among the various roles of vanadium in the regulation of intracellular signaling, energy metabolism and insulin mimesis, its exogenous activity stands as a contemporary challenge currently under investigation and a goal to pursue as a metallodrug against Diabetes mellitus II. In this regard, the lipogenic activity of vanadium linked to the development of well-defined anti-diabetic vanadodrugs has been investigated through: a) specifically designing and synthesizing Schiff base organic ligands L, bearing a variable number of terminal alcohols, b) a series of well-defined soluble binary V(V)-L compounds synthesized and physicochemically characterized, c) a study of their cytotoxic effect and establishment of adipogenic activity in 3T3-L1 fibroblasts toward mature adipocytes, and d) biomarker examination of a closely-linked molecular target involving or influenced by the specific V(V) forms, cumulatively delineating factors involved in potential pathways linked to V(V)-induced insulin-like activity. Collectively, the results a) project the importance of specific structural features in Schiff ligands bound to V(V), thereby influencing the emergence of its (a)toxicity and for the first time its insulin-like activity in pre-adipocyte differentiation, b) contribute to the discovery of molecular targets influenced by the specific vanadoforms seeking to induce glucose uptake, and c) indicate an interplay of V(V) structural speciation and cell-differentiation biological activity, thereby gaining insight into vanadium's potential as a future metallodrug in Diabetes mellitus.

  13. Targeting AMP-activated protein kinase in adipocytes to modulate obesity-related adipokine production associated with insulin resistance and breast cancer cell proliferation

    PubMed Central

    2011-01-01

    Background Adipokines, e.g. TNFα, IL-6 and leptin increase insulin resistance, and consequent hyperinsulinaemia influences breast cancer progression. Beside its mitogenic effects, insulin may influence adipokine production from adipocyte stromal cells and paracrine enhancement of breast cancer cell growth. In contrast, adiponectin, another adipokine is protective against breast cancer cell proliferation and insulin resistance. AMP-activated protein kinase (AMPK) activity has been found decreased in visceral adipose tissue of insulin-resistant patients. Lipopolysaccharides (LPS) link systemic inflammation to high fat diet-induced insulin resistance. Modulation of LPS-induced adipokine production by metformin and AMPK activation might represent an alternative way to treat both, insulin resistance and breast cancer. Methods Human preadipocytes obtained from surgical biopsies were expanded and differentiated in vitro into adipocytes, and incubated with siRNA targeting AMPKalpha1 (72 h), LPS (24 h, 100 μg/ml) and/or metformin (24 h, 1 mM) followed by mRNA extraction and analyses. Additionally, the supernatant of preadipocytes or derived-adipocytes in culture for 24 h was used as conditioned media to evaluate MCF-7 breast cancer cell proliferation. Results Conditioned media from preadipocyte-derived adipocytes, but not from undifferentiated preadipocytes, increased MCF-7 cell proliferation (p < 0.01). Induction of IL-6 mRNA by LPS was reduced by metformin (p < 0.01), while the LPS-induced mRNA expression of the naturally occurring anti-inflammatory cytokine interleukin 1 receptor antagonist was increased (p < 0.01). Silencing of AMPKalpha1 enhanced LPS-induced IL-6 and IL-8 mRNA expression (p < 0.05). Conclusions Adipocyte-secreted factors enhance breast cancer cell proliferation, while AMPK and metformin improve the LPS-induced adipokine imbalance. Possibly, AMPK activation may provide a new way not only to improve the obesity-related adipokine profile and insulin

  14. Effect of insulin, the glutathione system, and superoxide anion radical in modulation of lipolysis in adipocytes of rats with experimental diabetes.

    PubMed

    Ivanov, V V; Shakhristova, E V; Stepovaya, E A; Nosareva, O L; Fedorova, T S; Ryazantseva, N V; Novitsky, V V

    2015-01-01

    Spontaneous lipolysis was found to be increased in adipocytes of rats with alloxan-induced diabetes. In addition, isoproterenol-stimulated hydrolysis of triacylglycerols was inhibited against the background of oxidative stress and decreased redox-status of cells. A decrease in the ability of insulin to inhibit isoproterenol-stimulated lipolysis in adipocytes that were isolated from adipose tissue of rats with experimental diabetes was found, which shows a disorder in regulation of lipolysis in adipocytes by the hormone in alloxan-induced diabetes. Based on these findings, we concluded that there is an influence of reactive oxygen species, superoxide anion radical in particular, and redox potential of the glutathione system on molecular mechanisms of change in lipolysis intensity in rat adipocytes in alloxan-induced oxidative stress. Activation of spontaneous lipolysis under conditions of oxidative stress might be a reason for the high concentration of free fatty acids in blood plasma in experimental diabetes, and this may play a significant role in development of insulin resistance and appearance of complications of diabetes.

  15. Acute regulation of 5′-AMP-activated protein kinase by long-chain fatty acid, glucose and insulin in rat primary adipocytes

    PubMed Central

    Hebbachi, Abdel; Saggerson, David

    2012-01-01

    Palmitate increased AMPK (5′-AMP-activated protein kinase) activity, glucose utilization and 2-DOG (2-deoxyglucose) transport in rat adipocytes. All three effects were blocked by the AMPK inhibitor Compound C, leading to the conclusion that in response to an increase in long-chain NEFA (non-esterified fatty acid) concentration AMPK mediated an enhancement of adipocyte glucose transport, thereby providing increased glycerol 3-phosphate for FA (fatty acid) esterification to TAG (triacylglycerol). Activation of AMPK in response to palmitate was not due to an increase in the adipocyte AMP:ATP ratio. Glucose decreased AMPK activity and effects of palmitate and glucose on AMPK activity were antagonistic. While insulin had no effect on basal AMPK activity insulin did decrease AMPK activity in the presence of palmitate and also decreased the percentage effectiveness of palmitate to increase the transport of 2-DOG. It is suggested that activation of adipocyte AMPK by NEFA, as well as decreasing the activity of hormone-sensitive lipase, could modulate adipose tissue dynamics by increasing FA esterification and, under certain circumstances, FA synthesis. PMID:23095119

  16. Adipocyte-specific deficiency of Janus kinase (JAK) 2 in mice impairs lipolysis and increases body weight, and leads to insulin resistance with ageing.

    PubMed

    Shi, Sally Yu; Luk, Cynthia T; Brunt, Jara J; Sivasubramaniyam, Tharini; Lu, Shun-Yan; Schroer, Stephanie A; Woo, Minna

    2014-05-01

    The growing obesity epidemic necessitates a better understanding of adipocyte biology and its role in metabolism. The Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway mediates signalling by numerous cytokines and hormones that regulate adipocyte function, illustrating the physiological importance of adipose JAK-STAT. The aim of this study was to investigate potential roles of adipocyte JAK2, an essential player in the JAK-STAT pathway, in adipocyte biology and metabolism. We generated adipocyte-specific Jak2 knockout (A-Jak2 KO) mice using the Cre-loxP system with Cre expression driven by the Ap2 (also known as Fabp4) promoter. Starting at 2-3 months of age, male and female A-Jak2 KO mice gradually gained more body weight than control littermates primarily due to increased adiposity. This was associated with reduced energy expenditure in A-Jak2 KO mice. In perigonadal adipose tissue, the expression of numerous genes involved in lipid metabolism was differentially regulated. In addition, adipose tissue from A-Jak2 KO mice displayed impaired lipolysis in response to isoprenaline, growth hormone and leptin stimulation, suggesting that adipose JAK2 directly modulates the lipolytic program. Impaired lipid homeostasis was also associated with disrupted adipokine secretion. Accordingly, while glucose metabolism was normal at 2 months of age, by 5-6 months of age, A-Jak2 KO mice had whole-body insulin resistance. Our results suggest that adipocyte JAK2 plays a critical role in the regulation of adipocyte biology and whole-body metabolism. Targeting of the JAK-STAT pathway could be a novel therapeutic option for the treatment of obesity and type 2 diabetes.

  17. Specific collagen XVIII isoforms promote adipose tissue accrual via mechanisms determining adipocyte number and affect fat deposition.

    PubMed

    Aikio, Mari; Elamaa, Harri; Vicente, David; Izzi, Valerio; Kaur, Inderjeet; Seppinen, Lotta; Speedy, Helen E; Kaminska, Dorota; Kuusisto, Sanna; Sormunen, Raija; Heljasvaara, Ritva; Jones, Emma L; Muilu, Mikko; Jauhiainen, Matti; Pihlajamäki, Jussi; Savolainen, Markku J; Shoulders, Carol C; Pihlajaniemi, Taina

    2014-07-29

    Collagen XVIII is an evolutionary conserved ubiquitously expressed basement membrane proteoglycan produced in three isoforms via two promoters (P). Here, we assess the function of the N-terminal, domain of unknown function/frizzled-like sequences unique to medium/long collagen XVIII by creating P-specific null mice. P2-null mice, which only produce short collagen XVIII, developed reduced bulk-adiposity, hepatic steatosis, and hypertriglyceridemia. These abnormalities did not develop in P1-null mice, which produce medium/long collagen XVIII. White adipose tissue samples from P2-null mice contain larger reserves of a cell population enriched in early adipocyte progenitors; however, their embryonic fibroblasts had ∼ 50% lower adipocyte differentiation potential. Differentiating 3T3-L1 fibroblasts into mature adipocytes produced striking increases in P2 gene-products and dramatic falls in P1-transcribed mRNA, whereas Wnt3a-induced dedifferentiation of mature adipocytes produced reciprocal changes in P1 and P2 transcript levels. P2-derived gene-products containing frizzled-like sequences bound the potent adipogenic inhibitor, Wnt10b, in vitro. Previously, we have shown that these same sequences bind Wnt3a, inhibiting Wnt3a-mediated signaling. P2-transcript levels in visceral fat were positively correlated with serum free fatty acid levels, suggesting that collagen α1 (XVIII) expression contributes to regulation of adipose tissue metabolism in visceral obesity. Medium/long collagen XVIII is deposited in the Space of Disse, and interaction between hepatic apolipoprotein E and this proteoglycan is lost in P2-null mice. These results describe a previously unidentified extracellular matrix-directed mechanism contributing to the control of the multistep adipogenic program that determines the number of precursors committing to adipocyte differentiation, the maintenance of the differentiated state, and the physiological consequences of its impairment on ectopic fat

  18. Oleylethanolamide impairs glucose tolerance and inhibits insulin-stimulated glucose uptake in rat adipocytes through p38 and JNK MAPK pathways.

    PubMed

    González-Yanes, Carmen; Serrano, Antonia; Bermúdez-Silva, Francisco Javier; Hernández-Dominguez, María; Páez-Ochoa, María Angeles; Rodríguez de Fonseca, Fernando; Sánchez-Margalet, Víctor

    2005-11-01

    Oleylethanolamide (OEA) is a lipid mediator that inhibits food intake and body weight gain and also exhibits hypolipemiant actions. OEA exerts its anorectic effects peripherally through the stimulation of C-fibers. OEA is synthesized in the intestine in response to feeding, increasing its levels in portal blood after the meal. Moreover, OEA is produced by adipose tissue, and a lipolytic effect has been found. In this work, we have examined the effect of OEA on glucose metabolism in rats in vivo and in isolated adipocytes. In vivo studies showed that acute administration (30 min and 6 h) of OEA produced glucose intolerance without decreasing insulin levels. Ex vivo, we found that 10 min of preincubation with OEA inhibited 30% insulin-stimulated glucose uptake in isolated adipocytes. Maximal effect was achieved at 1 microM OEA. The related compounds palmitylethanolamide and oleic acid had no effect, suggesting a specific mechanism. Insulin-stimulated GLUT4 translocation was not affected, but OEA promoted Ser/Thr phosphorylation of GLUT4, which may impair transport activity. This phosphorylation may be partly mediated by p38 and JNK kinases, since specific inhibitors (SB-203580 and SP-600125) partly reverted the inhibitory effect of OEA on insulin-stimulated glucose uptake. These results suggest that the lipid mediator OEA inhibits insulin action in the adipocyte, impairing glucose uptake via p38 and JNK kinases, and these effects may at least in part explain the glucose intolerance produced in rats in vivo. These effects of OEA may contribute to the anorectic effects induced by this mediator, and they might be also relevant for insulin resistance in adipose tissue.

  19. Effect of short hairpin RNA-mediated adiponectin/Acrp30 down-regulation on insulin signaling and glucose uptake in the 3T3-L1 adipocytes.

    PubMed

    Li, K; Li, L; Yang, G Y; Liu, H; Li, S B; Boden, G

    2010-02-01

    Adiponectin is a polypeptide hormone that is secreted by adipocytes with insulin-sensitizing and anti-inflammatory properties. The current study was to further investigate the role of adiponectin on glucose uptake and its underlying mechanism by down-regulation of adiponectin in 3T3-L1 adipocytes. Transfection of short hairpin RNA (shRNA)-vector significantly decreased adiponectin mRNA expression and its protein level in the cells. The down-regulation of adiponectin markedly reduced the cellular glucose uptake rate and increased intracellular triglyceride content. To study the mechanism of the physiologic action of adiponectin, several key regulatory factors in insulin signaling pathway were examined. The mRNA expression of insulin receptor substrate (IRS)-1 in both basal and insulin-stimulated states were down-regulated in the transfected cells (72% and 52% of controls, respectively), and the insulin-stimulated IRS-1 tyrosine phosphorylation was also significantly decreased. Adiponectin-deficient cells showed marked down-regulations of peroxisome proliferator-activated receptor alpha, glucose transporter (GLUT)-1, GLUT-4, hormone-sensitive lipase (HSL), and adipose triglyceride lipase. These results thus demonstrated that transfection of shRNA-vector effectively reduced the expression of adiponectin in 3T3-L1 adipocytes accompanied with a significant decrease in cellular glucose uptake rate and an increase in intracellular triglyceride content. Our data also suggested that adiponectin deficiency impair insulin action in vitro probably through the IRS-1 pathway, and increase intracellular fat accumulation partially through HSL down-regulation.

  20. Isomeric C12-alkamides from the roots of Echinacea purpurea improve basal and insulin-dependent glucose uptake in 3T3-L1 adipocytes.

    PubMed

    Kotowska, Dorota; El-Houri, Rime B; Borkowski, Kamil; Petersen, Rasmus K; Fretté, Xavier C; Wolber, Gerhard; Grevsen, Kai; Christensen, Kathrine B; Christensen, Lars P; Kristiansen, Karsten

    2014-12-01

    Echinacea purpurea has been used in traditional medicine as a remedy for the treatment and prevention of upper respiratory tract infections and the common cold. Recent investigations have indicated that E. purpurea also has an effect on insulin resistance. A dichloromethane extract of E. purpurea roots was found to enhance glucose uptake in adipocytes and to activate peroxisome proliferator-activated receptor γ. The purpose of the present study was to identify the bioactive compounds responsible for the potential antidiabetic effect of the dichloromethane extract using a bioassay-guided fractionation approach. Basal and insulin-dependent glucose uptake in 3T3-L1 adipocytes were used to assess the bioactivity of extract, fractions and isolated metabolites. A peroxisome proliferator-activated receptor γ transactivation assay was used to determine the peroxisome proliferator-activated receptor γ activating properties of the extract, active fractions and isolated metabolites. Two novel isomeric dodeca-2E,4E,8Z,10E/Z-tetraenoic acid 2-methylbutylamides together with two known C12-alkamides and α-linolenic acid were isolated from the active fractions. The isomeric C12-alkamides were found to activate peroxisome proliferator-activated receptor γ, to increase basal and insulin-dependent glucose uptake in adipocytes in a dose-dependent manner, and to exhibit characteristics of a peroxisome proliferator-activated receptor γ partial agonist. Georg Thieme Verlag KG Stuttgart · New York.

  1. Identification of plant extracts with potential antidiabetic properties: effect on human peroxisome proliferator-activated receptor (PPAR), adipocyte differentiation and insulin-stimulated glucose uptake.

    PubMed

    Christensen, Kathrine B; Minet, Ariane; Svenstrup, Henrik; Grevsen, Kai; Zhang, Hongbin; Schrader, Eva; Rimbach, Gerald; Wein, Silvia; Wolffram, Siegfried; Kristiansen, Karsten; Christensen, Lars P

    2009-09-01

    Thiazolidinediones (TZDs) are insulin sensitizing drugs used to treat type 2 diabetes. The primary target of the TZDs is the peroxisome proliferator-activated receptor (PPAR) gamma, a key regulator of adipogenesis and glucose homeostasis. Currently prescribed TZDs are full PPARgamma agonists, and their use is associated with several side effects. Partial PPARgamma agonists appear to be associated with fewer side effects but may still confer the desired insulin sensitizing action. Extracts from common medicinal/food plants were tested in a screening platform comprising a series of bioassays, including tests for PPARgamma, alpha and delta transactivation, adipocyte differentiation and insulin-stimulated glucose uptake, allowing identification of plants containing potentially interesting PPAR agonists. Twenty-two plant extracts out of 133 were found to increase insulin-stimulated glucose uptake and 18 extracts were found to activate PPARgamma, 3 to activate PPARalpha and gamma, 6 to activate PPARdelta and gamma, and 9 to activate PPARgamma, alpha and delta. Among the 24 different plant species tested in the platform, 50% were shown to contain compounds capable of activating PPARgamma and stimulating insulin-dependent glucose uptake with no or little effect on adipocyte differentiation warranting further studies and characterization.

  2. Development of insulin resistance through sprouting of inflammatory markers during hypoxia in 3T3-L1 adipocytes and amelioration with curcumin.

    PubMed

    Priyanka, A; Shyni, G L; Anupama, Nair; Raj, P Salin; Anusree, S S; Raghu, K G

    2017-07-04

    The role of phytochemicals in general well-being has been recognized. Curcumin is an ideal example. Hypoxia in adipose tissue is a major cause of inflammation and insulin resistance in obesity. Herein we mainly explored inflammation, insulin resistance and angiogenesis in 3T3-L1 adipocytes and possible reversal with the curcumin during hypoxia. Hypoxia for 24h significantly increased (P ≤ 0.05) the secretion of monocyte chemotactic protein-1 (4.59 fold), leptin (2.96 fold) and reduced adiponectin (2.93 fold). mRNA level of resistin (6.8 fold) and toll-like receptor-4 (TLR-4) (8.8 fold) was upregulated. Increased serine phosphorylation of insulin receptor substrate 1 (IRS-1) (1.9 fold) and decreased expression of insulin receptor substrate 2 (IRS-2) (0.53 fold) in hypoxic group were observed. Hypoxia significantly increased (P ≤ 0.05) basal glucose uptake (3.3 fold), GLUT-1 expression and angiogenic factors but down regulated GLUT-4. Curcumin protected adipocytes from hypoxia induced inflammation and insulin resistance via reducing inflammatory adipokine, nuclear factor-κB (NF-κB)/c-jun N-terminal kinase (JNK) and serine phosphorylation of IRS-1 receptors and improving adiponectin secretion. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Effects of chromium picolinate on glucose uptake in insulin-resistant 3T3-L1 adipocytes involve activation of p38 MAPK.

    PubMed

    Wang, Yi-qun; Yao, Ming-hui

    2009-12-01

    Chromium picolinate (CrPic) has been discovered as a supplemental or alternative medication for type 2 diabetes, but its mechanism of action is not well understood. The purpose of this study was to explore the possible anti-diabetic mechanisms of CrPic in insulin-resistant 3T3-L1 adipocytes; the insulin resistance was induced by treatment with high glucose and insulin for 24 h. The effects of CrPic on glucose metabolism and the glucose uptake-inducing activity of CrPic were investigated. Meanwhile, the effects of CrPic on glucose transporter 4 (GLUT4) translocation were visualized by immonofluorescence microscopy. In addition, its effects on insulin signaling pathways and mitogen-activated protein kinase (MAPK) signaling cascades were assessed by immunoblotting analysis and real-time PCR. The results showed that CrPic induced glucose metabolism and uptake, as well as GLUT4 translocation to plasma membrane (PM) in both control and insulin-resistant 3T3-L1 adipocytes without any changes in insulin receptor beta (IR-beta), protein kinase B (AKt), c-Cbl, extracellular signal-regulated kinase (ERK), c-Jun phosphorylation and c-Cbl-associated protein (CAP) mRNA levels. Interestingly, CrPic was able to increase the basal and insulin-stimulated levels of p38 MAPK activation in the control and insulin-resistant cells. Pretreatment with the specific p38 MAPK inhibitor SB203580 partially inhibited the CrPic-induced glucose transport, but CrPic-activated translocation of GLUT4 was not inhibited by SB203580. This study provides an experimental evidence of the effects of CrPic on glucose uptake through the activation of p38 MAPK and it is independent of the effect on GLUT4 translocation. The findings also suggest exciting new insights into the role of p38 MAPK in glucose uptake and GLUT4 translocation.

  4. Effect of insulin on the rates of synthesis and degradation of GLUT1 and GLUT4 glucose transporters in 3T3-L1 adipocytes.

    PubMed Central

    Sargeant, R J; Pâquet, M R

    1993-01-01

    The effect of continuous insulin stimulation on the rates of turnover and on the total cellular contents of the glucose-transporter proteins GLUT1 and GLUT4 in 3T3-L1 adipocytes was investigated. Pulse-and-chase studies with [35S]methionine followed by immunoprecipitation of GLUT1 and GLUT4 with isoform-specific antibodies revealed the half-lives of these proteins to be 19 h and 50 h respectively. Inclusion of 100 nM insulin in the chase medium resulted in a decrease in the half-lives of both proteins to about 15.5 h. This effect of insulin was specific for the glucose-transporter proteins, as the average half-life of all proteins was found to be 55 h both with and without insulin stimulation. The effect of insulin on the rate of synthesis of the glucose transporters was determined by the rate of incorporation of [35S]methionine. After 24 h of insulin treatment, the rate of synthesis of GLUT1 and GLUT4 were elevated over control levels by 3.5-fold and 2-fold respectively. After 72 h of treatment under the same conditions, the rate of synthesis of GLUT1 remained elevated by 2.5-fold, whereas the GLUT4 synthesis rate was not different from control levels. Western-blot analysis of total cellular membranes revealed a 4.5-fold increase in total cellular GLUT1 content and a 50% decrease in total cellular GLUT4 after 72 h of insulin treatment. These observations suggest that the rates of synthesis and degradation of GLUT1 and GLUT4 in 3T3-L1 adipocytes are regulated independently and that these cells respond to prolonged insulin treatment by altering the metabolism of GLUT1 and GLUT4 proteins in a specific manner. Images Figure 1 Figure 3 Figure 4 Figure 5 PMID:8457217

  5. Adipocyte amino acid sensing controls adult germline stem cell number via the amino acid response pathway and independently of Target of Rapamycin signaling in Drosophila.

    PubMed

    Armstrong, Alissa R; Laws, Kaitlin M; Drummond-Barbosa, Daniela

    2014-12-01

    How adipocytes contribute to the physiological control of stem cells is a critical question towards understanding the link between obesity and multiple diseases, including cancers. Previous studies have revealed that adult stem cells are influenced by whole-body physiology through multiple diet-dependent factors. For example, nutrient-dependent pathways acting within the Drosophila ovary control the number and proliferation of germline stem cells (GSCs). The potential role of nutrient sensing by adipocytes in modulating stem cells in other organs, however, remains largely unexplored. Here, we report that amino acid sensing by adult adipocytes specifically modulates the maintenance of GSCs through a Target of Rapamycin-independent mechanism. Instead, reduced amino acid levels and the consequent increase in uncoupled tRNAs trigger activation of the GCN2-dependent amino acid response pathway within adipocytes, causing increased rates of GSC loss. These studies reveal a new step in adipocyte-stem cell crosstalk.

  6. 4-Hydroxyisoleucine ameliorates an insulin resistant-like state in 3T3-L1 adipocytes by regulating TACE/TIMP3 expression

    PubMed Central

    Gao, Feng; Du, Wen; Zafar, Mohammad Ishraq; Shafqat, Raja Adeel; Jian, Liumeng; Cai, Qin; Lu, Furong

    2015-01-01

    Background Obesity-associated insulin resistance (IR) is highly correlated with soluble tumor necrosis factor-α (sTNF-α), which is released from transmembranous TNF-α by TNF-α converting enzyme (TACE). In vivo, TACE activity is suppressed by tissue inhibitor of metalloproteinase 3 (TIMP3). Agents that can interact with TACE/TIMP3 to improve obesity-related IR would be highly valuable. In the current study, we assessed whether (2S,3R,4S)-4-hydroxyisoleucine (4-HIL) could modulate TACE/TIMP3 and ameliorate an obesity-induced IR-like state in 3T3-L1 adipocytes. Materials and methods 3T3-L1 adipocytes were incubated in the presence of 25 mM glucose and 0.6 nM insulin to induce an IR-like state, and were then treated with different concentrations of 4-HIL or 10 µM pioglitazone (positive control). The glucose uptake rate was determined using the 2-deoxy-[3H]-d-glucose method, and the levels of sTNF-α in the cell supernatant were determined using ELISA. The protein expression of TACE, TIMP3, and insulin signaling-related molecules was measured using western blotting. Results Exposure to high glucose and insulin for 18 hours increased the levels of sTNF-α in the cell supernatant. The phosphorylation of insulin receptor substrate-1 (IRS-1) Ser307 and Akt Ser473 was increased, whereas the protein expression of IRS-1, Akt, and glucose transporter-4 was decreased. The insulin-induced glucose uptake was reduced by 67% in 3T3-L1 adipocytes, which indicated the presence of an IR-like state. The above indexes, which demonstrated the successful induction of an IR-like state, were reversed by 4-HIL in a dose-dependent manner by downregulating and upregulating the protein expression of TACE and TIMP3 proteins, respectively. Conclusion 4-HIL improved an obesity-associated IR-like state in 3T3-L1 adipocytes by targeting TACE/TIMP3 and the insulin signaling pathway. PMID:26527864

  7. Chromium picolinate inhibits resistin secretion in insulin-resistant 3T3-L1 adipocytes via activation of amp-activated protein kinase.

    PubMed

    Wang, Yi-Qun; Dong, Yi; Yao, Ming-Hui

    2009-08-01

    1. Chromium picolinate (CrPic) has been recommended as an alternative therapeutic regimen for Type 2 diabetes mellitus (T2DM). However, the molecular mechanism underlying the action of CrPic is poorly understood. 2. Using normal and insulin-resistant 3T3-L1 adipocytes, we examined the effects of CrPic on the gene transcription and secretion of adiponectin and resistin. In addition, using immunoblotting, ELISA and real-time reverse transcription-polymerase chain reaction (RT-PCR), we investigated the effects of 10 nmol/L CrPic for 24 h on AMP-activated protein kinase (AMPK) to determine whether this pathway contributed to the regulation of adiponectin and resistin expression and secretion. 3. Chromium picolinate did not modulate the expression of adiponectin and resistin; however, it did significantly inhibit the secretion of resistin, but not adiponectin, by normal and insulin-resistant 3T3-L1 adipocytes in vitro. Furthermore, although CrPic markedly elevated levels of phosphorylated AMPK and acetyl CoA carboxylase in 3T3-L1 adipocytes, it had no effect on the levels of AMPK alpha-1 and alpha-2 mRNA transcripts. Importantly, inhibition of AMPK by 2 h pretreatment of cells with 20 micromol/L compound C completely abolished the CrPic-induced suppression of resistin secretion. 4. In conclusion, the data suggest that CrPic inhibits resistin secretion via activation of AMPK in normal and insulin-resistant 3T3-L1 adipocytes.

  8. Genetic ablation of calcium-independent phospholipase A2gamma prevents obesity and insulin resistance during high fat feeding by mitochondrial uncoupling and increased adipocyte fatty acid oxidation.

    PubMed

    Mancuso, David J; Sims, Harold F; Yang, Kui; Kiebish, Michael A; Su, Xiong; Jenkins, Christopher M; Guan, Shaoping; Moon, Sung Ho; Pietka, Terri; Nassir, Fatiha; Schappe, Timothy; Moore, Kristin; Han, Xianlin; Abumrad, Nada A; Gross, Richard W

    2010-11-19

    Phospholipases are critical enzyme mediators participating in many aspects of cellular function through modulating the generation of lipid 2nd messengers, membrane physical properties, and cellular bioenergetics. Here, we demonstrate that mice null for calcium-independent phospholipase A(2)γ (iPLA(2)γ(-/-)) are completely resistant to high fat diet-induced weight gain, adipocyte hypertrophy, hyperinsulinemia, and insulin resistance, which occur in iPLA(2)γ(+/+) mice after high fat feeding. Notably, iPLA(2)γ(-/-) mice were lean, demonstrated abdominal lipodystrophy, and remained insulin-sensitive despite having a marked impairment in glucose-stimulated insulin secretion after high fat feeding. Respirometry of adipocyte explants from iPLA(2)γ(-/-) mice identified increased rates of oxidation of multiple different substrates in comparison with adipocyte explants from wild-type littermates. Shotgun lipidomics of adipose tissue from wild-type mice demonstrated the anticipated 2-fold increase in triglyceride content after high fat feeding. In sharp contrast, the adipocyte triglyceride content was identical in iPLA(2)γ(-/-) mice fed either a standard diet or a high fat diet. Respirometry of skeletal muscle mitochondria from iPLA(2)γ(-/-) mice demonstrated marked decreases in state 3 respiration using multiple substrates whose metabolism was uncoupled from ATP production. Shotgun lipidomics of skeletal muscle revealed a decreased content of cardiolipin with an altered molecular species composition thereby identifying the mechanism underlying mitochondrial uncoupling in the iPLA(2)γ(-/-) mouse. Collectively, these results identify iPLA(2)γ as an obligatory upstream enzyme that is necessary for efficient electron transport chain coupling and energy production through its participation in the alterations of cellular bioenergetics that promote the development of the metabolic syndrome.

  9. Increased insulin binding to adipocytes and monocytes and increased insulin sensitivity of glucose transport and metabolism in adipocytes from non-insulin-dependent diabetics after a low-fat/high-starch/high-fiber diet.

    PubMed

    Hjøllund, E; Pedersen, O; Richelsen, B; Beck-Nielsen, H; Sørensen, N S

    1983-11-01

    Nine non-insulin-dependent diabetics were studied before and after 3 weeks on an isoenergetic high-fiber/high-starch/low-fat diet (alternative diet), and nine non-insulin-dependent diabetics were studied on their usual diet. In the group that ate the alternative diet, the intake of fiber and starch increased 120% and 53%, whereas fat intake decreased 31%. Diabetes control improved as demonstrated by decreased fasting plasma glucose (P less than 0.05) and 24-hour urinary glucose excretion (P less than 0.05). The in vivo insulin action increased (KIVITT increased, P less than 0.05) with no change in fasting serum insulin levels. In fat cells obtained from patients in the alternative-diet group, insulin receptor binding increased (P less than 0.05) after the change of diet. Insulin binding to purified monocytes (more than 95% monocytes) also increased (P less than 0.05), whereas no change was found in insulin binding to erythrocytes. When lipogenesis was studied at a tracer glucose concentration at which glucose transport seems to be rate limiting, insulin sensitivity increased (P less than 0.02). This is the predicted consequence of increased receptor binding. Moreover, when CO2 production and lipogenesis were studied at a higher glucose concentration, where steps beyond transport seem to be rate limiting for glucose metabolism, increased insulin sensitivity was also observed. In contrast, no change was found in maximal insulin responsiveness. Fat and blood cells from the patients who continued on their usual diet showed no changes of the mentioned quantities.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Activation of AMP-activated protein kinase signaling pathway by adiponectin and insulin in mouse adipocytes: requirement of acyl-CoA synthetases FATP1 and Acsl1 and association with an elevation in AMP/ATP ratio.

    PubMed

    Liu, Qingqing; Gauthier, Marie-Soleil; Sun, Lei; Ruderman, Neil; Lodish, Harvey

    2010-11-01

    Adiponectin activates AMP-activated protein kinase (AMPK) in adipocytes, but the underlying mechanism remains unclear. Here we tested the hypothesis that AMP, generated in activating fatty acids to their CoA derivatives, catalyzed by acyl-CoA synthetases, is involved in AMPK activation by adiponectin. Moreover, in adipocytes, insulin affects the subcellular localization of acyl-CoA synthetase FATP1. Thus, we also tested whether insulin activates AMPK in these cells and, if so, whether it activates through a similar mechanism. We examined these hypotheses by measuring the AMP/ATP ratio and AMPK activation on adiponectin and insulin stimulation and after knocking down acyl-CoA synthetases in adipocytes. We show that adiponectin activation of AMPK is accompanied by an ∼2-fold increase in the cellular AMP/ATP ratio. Moreover, FATP1 and Acsl1, the 2 major acyl-CoA synthetase isoforms in adipocytes, are essential for AMPK activation by adiponectin. We also show that after 40 min. insulin activated AMPK in adipocytes, which was coupled with a 5-fold increase in the cellular AMP/ATP ratio. Knockdown studies show that FATP1 and Acsl1 are required for these processes, as well as for stimulation of long-chain fatty acid uptake by adiponection and insulin. These studies demonstrate that a change in cellular energy state is associated with AMPK activation by both adiponectin and insulin, which requires the activity of FATP1 and Acsl1.

  11. IL-6 induces lipolysis and mitochondrial dysfunction, but does not affect insulin-mediated glucose transport in 3T3-L1 adipocytes.

    PubMed

    Ji, Chenbo; Chen, Xiaohui; Gao, Chunlin; Jiao, Liuhong; Wang, Jianguo; Xu, Guangfeng; Fu, Hailong; Guo, Xirong; Zhao, Yaping

    2011-08-01

    Interleukin-6 (IL-6) has emerged as an important cytokine involved in the regulation of metabolism. However, the role of IL-6 in the etiology of obesity and insulin resistance is not fully understood. Mitochondria are key organelles of energy metabolism, and there is growing evidence that mitochondrial dysfunction plays a crucial role in the pathogenesis of obesity-associated insulin resistance. In this study, we determined the direct effect of IL-6 on lipolysis in adipocytes, and the effects of IL-6 on mitochondrial function were investigated. We found that cells treated with IL-6 displayed fewer lipids and an elevated glycerol release rate. Further, IL-6 treatment led to decreased mitochondrial membrane potential, decreased cellular ATP production, and increased intracellular ROS levels. The mitochondria in IL-6-treated cells became swollen and hollow with reduced or missing cristae. However, insulin-stimulated glucose transport was unaltered. PGC-1α, NRF1, and mtTFA mRNA levels were markedly increased, and the mitochondrial contents were also increased. Our results demonstrate that IL-6 can exert a direct lipolytic effect and induce mitochondrial dysfunction. However, IL-6 did not affect insulin sensitivity in adipocytes in vitro. We deduce that in these cells, enhanced mitochondrial biogenesis might play a compensatory role in glucose transport.

  12. Insulin- and leptin-mediated control of aquaglyceroporins in human adipocytes and hepatocytes is mediated via the PI3K/Akt/mTOR signaling cascade.

    PubMed

    Rodríguez, Amaia; Catalán, Victoria; Gómez-Ambrosi, Javier; García-Navarro, Socorro; Rotellar, Fernando; Valentí, Víctor; Silva, Camilo; Gil, María J; Salvador, Javier; Burrell, María A; Calamita, Giuseppe; Malagón, María M; Frühbeck, Gema

    2011-04-01

    Glycerol constitutes an important metabolite for the control of lipid accumulation and glucose homeostasis. The impact of obesity and obesity-associated type 2 diabetes as well as the potential regulatory role of insulin and leptin on aquaglyceroporins (AQP) 3, 7, and 9 were analyzed. The tissue distribution and expression of AQP in biopsies of omental and sc adipose tissue as well as liver were analyzed in lean and obese Caucasian volunteers (n = 63). The effect of insulin (1, 10, and 100 nmol/liter) and leptin (0.1, 1, and 10 nmol/liter) on the expression of the glycerol channels was determined in vitro in human omental adipocytes and HepG2 hepatocytes. The translocation of AQP in response to insulin and isoproterenol was analyzed by immunocytochemistry. In addition to the well-known expression of AQP7 in adipose tissue, AQP3 and AQP9 were also expressed in both omental and sc adipose tissue. Obese type 2 diabetes patients showed higher expression of AQP in visceral adipose tissue and lower expression of AQP7 in sc adipose tissue and hepatic AQP9. The staining of AQP9 in the plasma membrane of adipocytes was reinforced by insulin, whereas isoproterenol induced the translocation of AQP3 and AQP7 from the lipid droplets to the plasma membrane. Insulin up-regulated all AQP, whereas leptin up-regulated AQP3 and down-regulated AQP7 and AQP9 in adipocytes and hepatocytes. These effects were abrogated by both the phosphatidylinositol 3-kinase inhibitor wortmannin and the mammalian target of rapamycin inhibitor rapamycin. Our findings show, for the first time, that insulin and leptin regulate the AQP through the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin pathway in human visceral adipocytes and hepatocytes. AQP3 and AQP7 may facilitate glycerol efflux from adipose tissue while reducing the glycerol influx into hepatocytes via AQP9 to prevent the excessive lipid accumulation and the subsequent aggravation of hyperglycemia in human obesity.

  13. Uncoupling of Obesity from Insulin Resistance Through a Targeted Mutation in aP2, the Adipocyte Fatty Acid Binding Protein

    NASA Astrophysics Data System (ADS)

    Hotamisligil, Gokhan S.; Johnson, Randall S.; Distel, Robert J.; Ellis, Ramsey; Papaioannou, Virginia E.; Spiegelman, Bruce M.

    1996-11-01

    Fatty acid binding proteins (FABPs) are small cytoplasmic proteins that are expressed in a highly tissue-specific manner and bind to fatty acids such as oleic and retinoic acid. Mice with a null mutation in aP2, the gene encoding the adipocyte FABP, were developmentally and metabolically normal. The aP2-deficient mice developed dietary obesity but, unlike control mice, they did not develop insulin resistance or diabetes. Also unlike their obese wild-type counterparts, obese aP2-/- animals failed to express in adipose tissue tumor necrosis factor-α (TNF-α), a molecule implicated in obesity-related insulin resistance. These results indicate that aP2 is central to the pathway that links obesity to insulin resistance, possibly by linking fatty acid metabolism to expression of TNF-α.

  14. Insulin and chromium picolinate induce translocation of CD36 to the plasma membrane through different signaling pathways in 3T3-L1 adipocytes, and with a differential functionality of the CD36.

    PubMed

    Wang, Yiqun; Van Oort, Masja M; Yao, Minghui; Van der Horst, Dick J; Rodenburg, Kees W

    2011-09-01

    Chromium picolinate (CrPic) has been indicated to activate glucose transporter 4 (GLUT4) trafficking to the plasma membrane (PM) to enhance glucose uptake in 3T3-L1 adipocytes. In skeletal and heart muscle cells, insulin directs the intracellular trafficking of the fatty acid translocase/CD36 to induce the uptake of cellular long-chain fatty acid (LCFA). The current study describes the effects of CrPic and insulin on the translocation of CD36 from intracellular storage pools to the PM in 3T3-L1 adipocytes in comparison with that of GLUT4. Immunofluorescence microscopy and immunoblotting revealed that both CD36 and GLUT4 were expressed and primarily located intracellularly in 3T3-L1 adipocytes. Upon insulin or CrPic stimulation, PM expression of CD36 increased in a similar manner as that for GLUT4; the CrPic-stimulated PM expression was less strong than that of insulin. The increase in PM localization for these two proteins by insulin paralleled LCFA ([1-(14)C]palmitate) or [(3)H]deoxyglucose uptake in 3T3-L1 adipocytes. The induction of the PM expression of GLUT4, but not CD36, or substrate uptake by insulin and CrPic appears to be additive in adipocytes. Furthermore, wortmannin completely inhibited the insulin-stimulated translocation of GLUT4 or CD36 and prevented the increased uptake of glucose or LCFA in these cells. Taken together, for the first time, these findings suggest that both insulin and CrPic induce CD36 translocation to the PM in 3T3-L1 adipocytes and that their translocation-inducing effects are not additive. The signaling pathway inducing the translocations is different, apparently resulting in a differential activity of CD36.

  15. Arrest of endosome acidification by bafilomycin A1 mimics insulin action on GLUT4 translocation in 3T3-L1 adipocytes.

    PubMed Central

    Chinni, S R; Shisheva, A

    1999-01-01

    In insulin-sensitive fat and muscle cells, the major glucose transporter GLUT4 is constitutively sequestered in endosomal tubulovesicular membranes, and moves to the cell surface in response to insulin. While sequence information within GLUT4 appears to be responsible for its constitutive intracellular sequestration, the regulatory elements and mechanisms that enable this protein to achieve its unique sorting pattern under basal and insulin-stimulated conditions are poorly understood. We show here that arrest of endosome acidification in insulin-sensitive 3T3-L1 adipocytes by bafilomycin A1, a specific inhibitor of the vacuolar proton pump, results in the rapid and dose-dependent translocation of GLUT4 from the cell interior to the membrane surface; the effects of maximally stimulatory concentrations of bafilomycin A1 (400-800 nM) were equivalent to 50-65% of the effects of acute insulin treatment. Like insulin, bafilomycin A1 induced the redistribution of GLUT1 and Rab4, but not that of other proteins whose membrane localization has been shown to be insulin-insensitive. Studies to address the mechanism of this effect demonstrated that neither autophosphorylation nor internalization of the insulin receptor was altered by bafilomycin A1 treatment. Bafilomycin-induced GLUT4 translocation was not blocked by cell pretreatment with wortmannin. Taken together, these data indicate that arrest of endosome acidification mimics insulin action on GLUT4 and GLUT1 translocation by a mechanism distal to insulin receptor and phosphatidylinositol 3-kinase activation, and suggest an important role for endosomal pH in the membrane dynamics of the glucose transporters. PMID:10215598

  16. Hypaphorine, an Indole Alkaloid Isolated from Caragana korshinskii Kom., Inhibites 3T3-L1 Adipocyte Differentiation and Improves Insulin Sensitivity in Vitro.

    PubMed

    Luan, Guangxiang; Tie, Fangfang; Yuan, Zhenzhen; Li, Gang; He, Jie; Wang, Zhenhua; Wang, Honglun

    2017-07-01

    Obesity, a major health problem worldwide, is a complex multifactorial chronic disease that increases the risk for insulin resistance, type 2 diabetes, coronary heart disease, and hypertension. In this study, we assessed methods to isolate hypaphorine, a potent drug candidate for obesity and insulin resistance. Semi-preparative reversed-phase liquid chromatography (semi-preparative RPLC) was established as a method to separate three compounds, adenosine, l-tryptophan, and hypaphorine, from the crude extracts of Caragana korshinskii Kom. Due to its specific chemical structure, the effect of hypaphorine on differentiation and dexamethasone (DXM) induced insulin resistance of 3T3-L1 cells was investigated. The structures of the three compounds were confirmed by UV, (1) H-NMR, and (13) C-NMR analysis and compared with published data. The activity results indicated that hypaphorine prevented the differentiation of 3T3-L1 preadipocytes into adipocytes by down-regulating hormone-stimulated protein expression of peroxisome proliferator activated receptor γ (PPARγ) and CCAAT/enhancer binding protein (C/EBPα), and their downstream targets, sterol regulatory element binding protein 1 c (SREBP1c) and fatty acid synthase (FAS). Hypaphorine also alleviated DXM-induced insulin resistance in differentiated 3T3-L1 adipocytes via increasing the phosphorylation level of Akt2, a key protein in the insulin signaling pathway. Taken together, we suggest that the method can be applied to large-scale extraction and large-quantity preparation of hypaphorine for treatment of obesity and insulin resistance. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  17. Corticosterone-induced insulin resistance is not associated with alterations of insulin receptor number and kinase activity in chicken kidney.

    PubMed

    Bisbis, S; Taouis, M; Derouet, M; Chevalier, B; Simon, J

    1994-12-01

    Chicken renal insulin receptors have been recently characterized; their number and kinase activities vary in response to altered nutritional status. In the present study, the effect of chronic corticosterone treatment was examined in 5-week-old chickens. The development of an insulin resistance following corticosterone was suggested after 1 and 2 weeks of treatment by a significant increases in plasma insulin levels (1.63 +/- 0.13 vs 0.56 +/- 0.14 ng insulin/ml in controls) and in renal cytosolic phosphoenolpyruvate carboxykinase activity (17.2 +/- 0.8 vs 13.7 +/- 0.7 nm/mn/mg tissue in controls). No significant changes were present at the level of insulin receptor number and kinase activity. Therefore, in kidney and, as previously observed, in muscles, corticosterone can induce insulin resistance at postreceptor steps in the cascade of events leading to insulin action.

  18. Adipocyte-specific Hypoxia-inducible gene 2 promotes fat deposition and diet-induced insulin resistance.

    PubMed

    DiStefano, Marina T; Roth Flach, Rachel J; Senol-Cosar, Ozlem; Danai, Laura V; Virbasius, Joseph V; Nicoloro, Sarah M; Straubhaar, Juerg; Dagdeviren, Sezin; Wabitsch, Martin; Gupta, Olga T; Kim, Jason K; Czech, Michael P

    2016-12-01

    Adipose tissue relies on lipid droplet (LD) proteins in its role as a lipid-storing endocrine organ that controls whole body metabolism. Hypoxia-inducible Gene 2 (Hig2) is a recently identified LD-associated protein in hepatocytes that promotes hepatic lipid storage, but its role in the adipocyte had not been investigated. Here we tested the hypothesis that Hig2 localization to LDs in adipocytes promotes adipose tissue lipid deposition and systemic glucose homeostasis. White and brown adipocyte-deficient (Hig2(fl/fl) × Adiponection cre+) and selective brown/beige adipocyte-deficient (Hig2(fl/fl) × Ucp1 cre+) mice were generated to investigate the role of Hig2 in adipose depots. Additionally, we used multiple housing temperatures to investigate the role of active brown/beige adipocytes in this process. Hig2 localized to LDs in SGBS cells, a human adipocyte cell strain. Mice with adipocyte-specific Hig2 deficiency in all adipose depots demonstrated reduced visceral adipose tissue weight and increased glucose tolerance. This metabolic effect could be attributed to brown/beige adipocyte-specific Hig2 deficiency since Hig2(fl/fl) × Ucp1 cre+ mice displayed the same phenotype. Furthermore, when adipocyte-deficient Hig2 mice were moved to thermoneutral conditions in which non-shivering thermogenesis is deactivated, these improvements were abrogated and glucose intolerance ensued. Adipocyte-specific Hig2 deficient animals displayed no detectable changes in adipocyte lipolysis or energy expenditure, suggesting that Hig2 may not mediate these metabolic effects by restraining lipolysis in adipocytes. We conclude that Hig2 localizes to LDs in adipocytes, promoting adipose tissue lipid deposition and that its selective deficiency in active brown/beige adipose tissue mediates improved glucose tolerance at 23 °C. Reversal of this phenotype at thermoneutrality in the absence of detectable changes in energy expenditure, adipose mass, or liver triglyceride suggests that

  19. Optimized mixture of hops rho iso-alpha acids-rich extract and acacia proanthocyanidins-rich extract reduces insulin resistance in 3T3-L1 adipocytes and improves glucose and insulin control in db/db mice

    PubMed Central

    Darland, Gary; Konda, Veera Reddy; Pacioretty, Linda M.; Chang, Jyh-Lurn; Bland, Jeffrey S.; Babish, John G.

    2012-01-01

    Rho iso-alpha acids-rich extract (RIAA) from Humulus lupulus (hops) and proanthocyanidins-rich extracts (PAC) from Acacia nilotica exert anti-inflammatory and anti-diabetic activity in vitro and in vivo. We hypothesized that a combination of these two extracts would exert enhanced effects in vitro on inflammatory markers and insulin signaling, and on nonfasting glucose and insulin in db/db mice. Over 49 tested combinations, RIAA:PAC at 5:1 (6.25 µg/mL) exhibited the greatest reductions in TNFα-stimulated lipolysis and IL-6 release in 3T3-L1 adipocytes, comparable to 5 µg/mL troglitazone. Pretreatment of 3T3-L1 adipocytes with this combination (5 µg/mL) also led to a 3-fold increase in insulin-stimulated glucose uptake that was comparable to 5 µg/mL pioglitazone or 901 µg/mL aspirin. Finally, db/db mice fed with RIAA:PAC at 5:1 (100 mg/kg) for 7 days resulted in 22% decrease in nonfasting glucose and 19% decrease in insulin that was comparable to 0.5 mg/kg rosiglitazone and better than 100 mg/kg metformin. RIAA:PAC mixture may have the potential to be an alternative when conventional therapy is undesirable or ineffective, and future research exploring its long-term clinical application is warranted. PMID:23198019

  20. Chromium activates glucose transporter 4 trafficking and enhances insulin-stimulated glucose transport in 3T3-L1 adipocytes via a cholesterol-dependent mechanism.

    PubMed

    Chen, Guoli; Liu, Ping; Pattar, Guruprasad R; Tackett, Lixuan; Bhonagiri, Padma; Strawbridge, Andrew B; Elmendorf, Jeffrey S

    2006-04-01

    Evidence suggests that chromium supplementation may alleviate symptoms associated with diabetes, such as high blood glucose and lipid abnormalities, yet a molecular mechanism remains unclear. Here, we report that trivalent chromium in the chloride (CrCl3) or picolinate (CrPic) salt forms mobilize the glucose transporter, GLUT4, to the plasma membrane in 3T3-L1 adipocytes. Concomitant with an increase in GLUT4 at the plasma membrane, insulin-stimulated glucose transport was enhanced by chromium treatment. In contrast, the chromium-mobilized pool of transporters was not active in the absence of insulin. Microscopic analysis of an exofacially Myc-tagged enhanced green fluorescent protein-GLUT4 construct revealed that the chromium-induced accumulation of GLUT4-containing vesicles occurred adjacent to the inner cell surface membrane. With insulin these transporters physically incorporated into the plasma membrane. Regulation of GLUT4 translocation by chromium did not involve known insulin signaling proteins such as the insulin receptor, insulin receptor substrate-1, phosphatidylinositol 3-kinase, and Akt. Consistent with a reported effect of chromium on increasing membrane fluidity, we found that chromium treatment decreased plasma membrane cholesterol. Interestingly, cholesterol add-back to the plasma membrane prevented the beneficial effect of chromium on both GLUT4 mobilization and insulin-stimulated glucose transport. Furthermore, chromium action was absent in methyl-beta-cyclodextrin-pretreated cells already displaying reduced plasma membrane cholesterol and increased GLUT4 translocation. Together, these data reveal a novel mechanism by which chromium may enhance GLUT4 trafficking and insulin-stimulated glucose transport. Moreover, these findings at the level of the cell are consistent with in vivo observations of improved glucose tolerance and decreased circulating cholesterol levels after chromium supplementation.

  1. [The content of individual fatty acids and numbers of double bonds, insulin, C-peptide and unesterified fatty acids in blood plasma in testing tolerance to glucose].

    PubMed

    Titov, V N; Sazhina, N N; Aripovskiĭ, A V; Evteeva, N M; Tkhagalizhokova, É M; Parkhimovich, R M

    2014-10-01

    The glucose tolerance test demonstrates that content of unesterified fatty acids in blood plasma decreases up to three times and the content of oleic and linoleic acids is more decreased in the pool of fatty acids lipids. Out of resistance to insulin, hormone secretion increases up to three times. The decreasing of level of individual fatty acids occurs in a larger extent. Under resistance to insulin secretion of insulin is increasing up to eight times. The decreasing of level of each fatty acid is less expressed. The effect of insulin reflects decreasing of content of double bonds in blood plasma. The number of double bonds characterizes the degree of unsaturation of fatty acids in lipids of blood plasma. The higher number of double bonds is in the pool of unesterified fatty acids the more active is the effect of insulin. The hyper-secretion of insulin is directly proportional to content of palmitic fatty acid in lipids of blood plasma on fasting. According the phylogenetic theory of general pathology, the effect of insulin on metabolism of glucose is mediated by fatty acids. The insulin is blocking lipolysis in insulin-depended subcutaneous adipocytes and decreases content of unesterified fatty acids in blood plasma. The insulin is depriving all cells of possibility to absorb unesterified fatty acids and "forces" them to absorb glucose increasing hereby number of GLUT4 on cell membrane. The resistance to insulin is manifested in high concentration of unesterfied fatty acids, hyperinsulinemia, hyperalbuminemia and increasing of concentration of C-reactive protein-monomer. The resistance to insulin is groundlessly referred to as a symptom of diabetes mellitus type II. The resistance to insulin is only a functional disorder lasting for years. It can be successfully arrested. The diabetes mellitus is developed against the background of resistance to insulin only after long-term hyper-secretion of insulin and under emaciation and death of β-cells. The diabetes

  2. Prolonged insulin stimulation down-regulates GLUT4 through oxidative stress-mediated retromer inhibition by a protein kinase CK2-dependent mechanism in 3T3-L1 adipocytes.

    PubMed

    Ma, Jinhui; Nakagawa, Yuko; Kojima, Itaru; Shibata, Hiroshi

    2014-01-03

    Although insulin acutely stimulates glucose uptake by promotion of GLUT4 translocation from intracellular compartments to the plasma membrane in adipocytes and muscles, long term insulin stimulation causes GLUT4 depletion that is particularly prominent in the insulin-responsive GLUT4 storage compartment. This effect is caused mainly by accelerated lysosomal degradation of GLUT4, although the mechanism is not fully defined. Here we show that insulin acutely induced dissociation of retromer components from the low density microsomal membranes of 3T3-L1 adipocytes that was accompanied by disruption of the interaction of Vps35 with sortilin. This insulin effect was dependent on the activity of protein kinase CK2 but not phosphatidylinositol 3-kinase or extracellular signal-regulated kinase 1/2. Knockdown of Vps26 decreased GLUT4 to a level comparable with that with insulin stimulation for 4 h. Vps35 with a mutation in the CK2 phosphorylation motif (Vps35-S7A) was resistant to insulin-induced dissociation from the low density microsomal membrane, and its overexpression attenuated GLUT4 down-regulation with insulin. Furthermore, insulin-generated hydrogen peroxide was an upstream mediator of the insulin action on retromer and GLUT4. These results suggested that insulin-generated oxidative stress switches the GLUT4 sorting direction to lysosomes through inhibition of the retromer function in a CK2-dependent manner.

  3. Astragalus polysaccharides attenuates TNF-α-induced insulin resistance via suppression of miR-721 and activation of PPAR-γ and PI3K/AKT in 3T3-L1 adipocytes

    PubMed Central

    Ke, Bin; Ke, Xiao; Wan, Xuesi; Yang, Yubin; Huang, Yingjuan; Qin, Jian; Hu, Chengheng; Shi, Lin

    2017-01-01

    Insulin resistance is associated with obesity and type 2 diabetes. The aim of this study was to explore the mechanism of how Astragalus Polysaccharides (APS) improves insulin resistance in 3T3-L1 adipocytes. A cell culture model of insulin resistance was established in mature 3T3-L1 adipocytes by treating them with TNF-α, high glucose and insulin. Glucose uptake levels were detected in each group. To determine the mechanism by which APS improves insulin resistance in 3T3-L1 adipocytes, qRT-PCR was used to detect the expression of miR-721, and Western blots were used to detect the expression or activity of PPAR-γ, PAKT, PI3K, AKT, and GLUT4. Immunostaining was used to detect the expression of GLUT4. We successfully madea model of insulin resistance in mature 3T3-L1 adipocytes. APS increased glucose uptake levels in insulin-resistant adipocytes in a dose- and time-dependent manner, and also increased insulin sensitivity. APS suppressed miR-721 with its target gene PPAR-γ in a dose-dependent manner. miR-721 or PPAR inhibitor T0070907 inhibited the expressions of PPAR-γ, pAKT, and GLUT4 and also reduced glucose accumulation. APS attenuated these miR-721- and PPAR-γ-induced changes. APS increased insulin sensitivity by attenuating the effects of miR-721. The PI3K inhibitor wortmannin reduced the APS-increased pAKT, glucose uptake, and GLUT4 levels, and also reduced those levels in the presence of insulin with or without APS. Taken together, our findings suggest that APS promotes glucose uptake and increases insulin sensitivity in 3T3-L1 adipocytes and may involve the miR-721-PPAR-γ-PI3K/AKT-GLUT4 signaling pathway. These might be new therapeutic targets for treating insulin resistance in obesity and diabetes. PMID:28559971

  4. Astragalus polysaccharides attenuates TNF-α-induced insulin resistance via suppression of miR-721 and activation of PPAR-γ and PI3K/AKT in 3T3-L1 adipocytes.

    PubMed

    Ke, Bin; Ke, Xiao; Wan, Xuesi; Yang, Yubin; Huang, Yingjuan; Qin, Jian; Hu, Chengheng; Shi, Lin

    2017-01-01

    Insulin resistance is associated with obesity and type 2 diabetes. The aim of this study was to explore the mechanism of how Astragalus Polysaccharides (APS) improves insulin resistance in 3T3-L1 adipocytes. A cell culture model of insulin resistance was established in mature 3T3-L1 adipocytes by treating them with TNF-α, high glucose and insulin. Glucose uptake levels were detected in each group. To determine the mechanism by which APS improves insulin resistance in 3T3-L1 adipocytes, qRT-PCR was used to detect the expression of miR-721, and Western blots were used to detect the expression or activity of PPAR-γ, PAKT, PI3K, AKT, and GLUT4. Immunostaining was used to detect the expression of GLUT4. We successfully madea model of insulin resistance in mature 3T3-L1 adipocytes. APS increased glucose uptake levels in insulin-resistant adipocytes in a dose- and time-dependent manner, and also increased insulin sensitivity. APS suppressed miR-721 with its target gene PPAR-γ in a dose-dependent manner. miR-721 or PPAR inhibitor T0070907 inhibited the expressions of PPAR-γ, pAKT, and GLUT4 and also reduced glucose accumulation. APS attenuated these miR-721- and PPAR-γ-induced changes. APS increased insulin sensitivity by attenuating the effects of miR-721. The PI3K inhibitor wortmannin reduced the APS-increased pAKT, glucose uptake, and GLUT4 levels, and also reduced those levels in the presence of insulin with or without APS. Taken together, our findings suggest that APS promotes glucose uptake and increases insulin sensitivity in 3T3-L1 adipocytes and may involve the miR-721-PPAR-γ-PI3K/AKT-GLUT4 signaling pathway. These might be new therapeutic targets for treating insulin resistance in obesity and diabetes.

  5. Insulin up-regulates heme oxygenase-1 expression in 3T3-L1 adipocytes via PI3-kinase- and PKC-dependent pathways and heme oxygenase-1-associated microRNA downregulation.

    PubMed

    Chang, Chih-Ling; Au, Lo-Chun; Huang, Seng-Wong; Fai Kwok, Ching; Ho, Low-Tone; Juan, Chi-Chang

    2011-02-01

    Heme oxygenase-1 (HO-1), the rate-limiting enzyme in heme catabolism, has antioxidant, antiinflammatory, and antiapoptotic effects in many physiological systems. HO-1 activity in obese mice is lower than in controls, and a sustained increase in HO-1 protein levels ameliorates insulin resistance and compensatory hyperinsulinemia. In the present study, we explored the regulatory effect of insulin on HO-1 expression in 3T3-L1 adipocytes and the underlying mechanism. We investigated the time- and dose-effect of insulin on HO-1 expression in 3T3-L1 adipocytes. Using specific inhibitors acting on insulin signaling pathways, we clarified the involvement of insulin downstream signaling molecules in insulin-regulated HO-1 expression. We also investigated the involvement of microRNAs (miRNAs) in insulin-regulated HO-1 expression using microarray and real-time RT-PCR assays. In an in vivo study, we performed insulin/glucose coinfusion in rats to increase circulating insulin levels for 8 h, then measured adipocyte HO-1 expression. Insulin caused a significant increase in HO-1 expression that was time- and dose-dependent, and this effect was blocked by inhibition of phosphatidylinositol 3 (PI3)-kinase activation using LY294002 (50 μM) or of protein kinase C activation using Ro-318220 (2 μM), but not by an Akt inhibitor, triciribine (10 μM). Furthermore, incubation of 3T3-L1 adipocytes with 100 nm insulin resulted in a significant decrease in levels of the miRNAs mir-155, mir-183, and mir-872, and this effect was also blocked by pretreatment with LY294002 or Ro-318220, but not triciribine. An in vivo study in rats showed that 8 h of a hyperinsulinemic euglycemic state resulted in a significant increase in adipocyte HO-1 expression. In conclusion, insulin increases HO-1 protein expression in 3T3-L1 adipocytes via PI3-kinase and protein kinase C-dependent pathways and miRNAs down-regulation.

  6. miR-146a-5p inhibits TNF-α-induced adipogenesis via targeting insulin receptor in primary porcine adipocytes[S

    PubMed Central

    Wu, Di; Xi, Qian-Yun; Cheng, Xiao; Dong, Tao; Zhu, Xiao-Tong; Shu, Gang; Wang, Li-Na; Jiang, Qing-Yan; Zhang, Yong-Liang

    2016-01-01

    TNF-α is a multifunctional cytokine participating in immune disorders, inflammation, and tumor development with regulatory effects on energy metabolism. Our work focused on the function of TNF-α in adipogenesis of primary porcine adipocytes. TNF-α could suppress the insulin receptor (IR) at the mRNA and protein levels. Microarray analysis of TNF-α-treated porcine adipocytes was used to screen out 29 differentially expressed microRNAs (miRNAs), 13 of which were remarkably upregulated and 16 were intensely downregulated. These 29 differentially expressed miRNAs were predicted to mainly participate in the insulin signaling pathway, adipocytokine signaling pathway, and type 2 diabetes mellitus pathway by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. miR-146a-5p, reportedly involved in immunity and cancer relevant processes, was one of the most highly differentially expressed miRNAs after TNF-α treatment. Red Oil O staining and TG assay revealed that miR-146a-5p suppressed adipogenesis. A dual-luciferase reporter and siRNA assay verified that miR-146a-5p targeted IR and could inhibit its protein expression. miR-146a-5p was also validated to be involved in the insulin signaling pathway by reducing tyrosine phosphorylation of insulin receptor substrate-1. Our study provides the first evidence of miR-146a-5p targeting IR, which facilitates future studies related to obesity and diabetes using pig models. PMID:27324794

  7. miR-146a-5p inhibits TNF-α-induced adipogenesis via targeting insulin receptor in primary porcine adipocytes.

    PubMed

    Wu, Di; Xi, Qian-Yun; Cheng, Xiao; Dong, Tao; Zhu, Xiao-Tong; Shu, Gang; Wang, Li-Na; Jiang, Qing-Yan; Zhang, Yong-Liang

    2016-08-01

    TNF-α is a multifunctional cytokine participating in immune disorders, inflammation, and tumor development with regulatory effects on energy metabolism. Our work focused on the function of TNF-α in adipogenesis of primary porcine adipocytes. TNF-α could suppress the insulin receptor (IR) at the mRNA and protein levels. Microarray analysis of TNF-α-treated porcine adipocytes was used to screen out 29 differentially expressed microRNAs (miRNAs), 13 of which were remarkably upregulated and 16 were intensely downregulated. These 29 differentially expressed miRNAs were predicted to mainly participate in the insulin signaling pathway, adipocytokine signaling pathway, and type 2 diabetes mellitus pathway by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. miR-146a-5p, reportedly involved in immunity and cancer relevant processes, was one of the most highly differentially expressed miRNAs after TNF-α treatment. Red Oil O staining and TG assay revealed that miR-146a-5p suppressed adipogenesis. A dual-luciferase reporter and siRNA assay verified that miR-146a-5p targeted IR and could inhibit its protein expression. miR-146a-5p was also validated to be involved in the insulin signaling pathway by reducing tyrosine phosphorylation of insulin receptor substrate-1. Our study provides the first evidence of miR-146a-5p targeting IR, which facilitates future studies related to obesity and diabetes using pig models. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  8. Glut4 Is Sorted from a Rab10 GTPase-independent Constitutive Recycling Pathway into a Highly Insulin-responsive Rab10 GTPase-dependent Sequestration Pathway after Adipocyte Differentiation.

    PubMed

    Brewer, Paul Duffield; Habtemichael, Estifanos N; Romenskaia, Irina; Mastick, Cynthia Corley; Coster, Adelle C F

    2016-01-08

    The RabGAP AS160/TBC1D4 controls exocytosis of the insulin-sensitive glucose transporter Glut4 in adipocytes. Glut4 is internalized and recycled through a highly regulated secretory pathway in these cells. Glut4 also cycles through a slow constitutive endosomal pathway distinct from the fast transferrin (Tf) receptor recycling pathway. This slow constitutive pathway is the only Glut4 cycling pathway in undifferentiated fibroblasts. The α2-macroglobulin receptor LRP1 cycles with Glut4 and the Tf receptor through all three exocytic pathways. To further characterize these pathways, the effects of knockdown of AS160 substrates on the trafficking kinetics of Glut4, LRP1, and the Tf receptor were measured in adipocytes and fibroblasts. Rab10 knockdown decreased cell surface Glut4 in insulin-stimulated adipocytes by 65%, but not in basal adipocytes or in fibroblasts. This decrease was due primarily to a 62% decrease in the rate constant of Glut4 exocytosis (kex), although Rab10 knockdown also caused a 1.4-fold increase in the rate constant of Glut4 endocytosis (ken). Rab10 knockdown in adipocytes also decreased cell surface LRP1 by 30% by decreasing kex 30-40%. There was no effect on LRP1 trafficking in fibroblasts or on Tf receptor trafficking in either cell type. These data confirm that Rab10 is an AS160 substrate that limits exocytosis through the highly insulin-responsive specialized secretory pathway in adipocytes. They further show that the slow constitutive endosomal (fibroblast) recycling pathway is Rab10-independent. Thus, Rab10 is a marker for the specialized pathway in adipocytes. Interestingly, mathematical modeling shows that Glut4 traffics predominantly through the specialized Rab10-dependent pathway both before and after insulin stimulation.

  9. Glutamine, insulin and glucocorticoids regulate glutamine synthetase expression in C2C12 myotubes, Hep G2 hepatoma cells and 3T3 L1 adipocytes.

    PubMed

    Wang, Yanxin; Watford, Malcolm

    2007-04-01

    The cell-specific regulation of glutamine synthetase expression was studied in three cell lines. In C2C12 myotubes, glucocorticoids increased the abundance of both glutamine synthetase protein and mRNA. Culture in the absence of glutamine also resulted in very high glutamine synthetase protein abundance but mRNA levels were unchanged. Glucocorticoids also increased the abundance of glutamine synthetase mRNA in Hep G2 hepatoma cells but this was not reflected in changes in protein abundance. Culture of Hep G2 cells without glutamine resulted in very high levels of protein, again with no change in mRNA abundance. Insulin was without effect in both C2C12 and Hep G2 cells. In 3T3 L1 adipocytes glucocorticoids increased the abundance of both glutamine synthetase mRNA and protein, insulin added alone had no effect but in the presence of glucocorticoids resulted in lower mRNA levels than seen with glucocorticoids alone, although protein levels remained high under such conditions. In contrast to the other cell lines glutamine synthetase protein levels were relatively unchanged by culture in the absence of glutamine. The results support the hypothesis that in myocytes, and hepatomas, but not in adipocytes, glutamine acts to moderate glutamine synthetase induction by glucocorticoids.

  10. Fermented Canadian lowbush blueberry juice stimulates glucose uptake and AMP-activated protein kinase in insulin-sensitive cultured muscle cells and adipocytes.

    PubMed

    Vuong, Tri; Martineau, Louis C; Ramassamy, Charles; Matar, Chantal; Haddad, Pierre S

    2007-09-01

    Extracts of the Canadian lowbush blueberry (Vaccinium angustifolium Ait.) have recently been demonstrated to possess significant antidiabetic potential, in accordance with the traditional use of this plant as an antidiabetic natural health product. Fermentation of blueberry juice with the Serratia vaccinii bacterium is known to modify the phenolic content and increase antioxidant activity. The present study evaluated the effects of fermented blueberry juice on glucose uptake, adipogenesis, and the signaling pathways that regulate glucose transport in muscle cells and adipocytes. A 6-hour treatment with fermented juice potentiated glucose uptake by 48% in C2C12 myotubes and by 142% in 3T3-L1 adipocytes, in the presence or absence of insulin, whereas nonfermented juice had no effect on transport. Fermented juice dramatically inhibited triglyceride content during adipogenesis of 3T3-L1 cells. Chlorogenic acid and gallic acid, both major phenolic components of fermented juice, had no effect on glucose uptake. Western blot analysis of the insulin-independent AMP-activated protein kinase revealed increased phosphorylation resulting from a 6-hour treatment. This activation or the increase in glucose uptake could not be explained by increased cytosolic calcium. Fermentation with S. vaccinii is concluded to confer antidiabetic activities to blueberry juice. Although the active principles and their mechanisms of action remain to be identified, transformed blueberry juice may nevertheless represent a novel complementary therapy and a source of novel therapeutic agents against diabetes mellitus.

  11. Effect of a high fat diet on rat adipocyte lipolysis: responses to epinephrine, forskolin, methylisobutylxanthine, dibutyryl cyclic AMP, insulin and nicotinic acid.

    PubMed

    Tepperman, H M; Dewitt, J; Tepperman, J

    1986-10-01

    An earlier report from this laboratory showed that feeding rats a high fat diet decreased epinephrine-stimulated lipolysis in their adipose tissue. Experiments were designed to explore further the effects of such diets on adipocyte response to epinephrine and to several other lipolytic and antilipolytic agents. Rats were fed diets with 67% of energy consisting of glucose or lard for 5 to 7 d. Adipocytes were prepared from epididymal fat pads and lipolysis measured by the release of glycerol into the medium during 1-h incubations. The cells from the rats fed the high fat diet showed lower lipolytic responses to stimulation by epinephrine, forskolin and dibutyryl cyclic AMP than those from rats fed the high glucose diet. The lard diet effect on the lipolytic response to isobutylmethylxanthine varied among experiments, but it also decreased it in some of them. However, the high fat diet did not induce decreased sensitivity or responsiveness to the antilipolytic effect of insulin, although previous reports have demonstrated resistance to other actions of insulin in rats fed a high fat diet. The antilipolytic effect of nicotinic acid was also similar in cells from rats fed a high fat diet to that found for cells from rats fed the high glucose diet.

  12. Influence of adipocyte size and adipose depot on the in vitro lipolytic activity and insulin sensitivity of adipose tissue in dairy cows at the end of the dry period.

    PubMed

    De Koster, J; Van den Broeck, W; Hulpio, L; Claeys, E; Van Eetvelde, M; Hermans, K; Hostens, M; Fievez, V; Opsomer, G

    2016-03-01

    The aim of the present research was to describe characteristics of adipose tissue lipolysis in dairy cows with a variable body condition score (BCS). Ten clinically healthy Holstein Friesian cows were selected based on BCS and euthanized 10 to 13 d before the expected parturition date. Immediately after euthanasia, adipose tissue samples were collected from subcutaneous and omental fat depots. In both depots, we observed an increase in adipocyte size with increasing BCS. Using an in vitro explant culture of subcutaneous and omental adipose tissue, we aimed to determine the influence of adipocyte size and localization of adipose depot on the lipolytic activity in basal conditions and after addition of isoproterenol (nonselective β-agonist) and insulin in different concentrations. Glycerol release in the medium was used as a measure for lipolytic activity. We observed that the basal lipolytic activity of subcutaneous and omental adipose tissue increased with adipocyte volume, meaning that larger fat cells have higher basal lipolytic activity independent of the location of the adipose depot. Dose-response curves were created between the concentration of isoproterenol or insulin and the amount of glycerol released. The shape of the dose-response curves is determined by the concentration of isoproterenol and insulin needed to elicit the half-maximal effect and the maximal amount of stimulated glycerol release or the maximal inhibitory effect of insulin. We observed that larger fat cells released more glycerol upon maximal stimulation with isoproterenol and this was more pronounced in subcutaneous adipose tissue. Additionally, larger fat cells had a higher sensitivity toward lipolytic signals. We observed a trend for larger adipocytes to be more resistant to the maximal antilipolytic effect of insulin. The insulin concentration needed to elicit the half-maximal inhibitory effect of insulin was within the physiological range of insulin and was not influenced by adipocyte

  13. Synergism in insulin-like effects of molybdate plus H2O2 or tungstate plus H2O2 on glucose transport by isolated rat adipocytes.

    PubMed

    Goto, Y; Kida, K; Ikeuchi, M; Kaino, Y; Matsuda, H

    1992-07-07

    The effect of molybdate, tungstate, molybdate plus H2O2 or tungstate plus H2O2 on 3-O-methylglucose (3-O-MG) uptake was studied in isolated rat adipocytes to investigate whether these agents possess an insulin-like action. High concentrations (10-30 mM) of molybdate or tungstate significantly stimulated the uptake of 3-O-MG while 1 mM of the metaloxides did not. The combination of 1 mM molybdate and 1 mM H2O2, or 1 mM tungstate and 1 mM H2O2 induced striking stimulation of the uptake of 3-O-MG in a synergistic manner, whereas 1 mM H2O2 alone showed only a small effect. The effect of metaloxides plus H2O2 (1 mM) and the effect of insulin (20 nM) were not additive, and both effects were ATP or energy dependent based on experiments using KCN. These results indicate that a weak insulin-like effect of molybdate or tungstate is potentiated synergistically with H2O2, presumably by producing peroxocompounds. Based on the present findings, these new agents may be useful for investigating the mechanism of insulin action and may indicate a new class of drugs for diabetes mellitus.

  14. Novel genes on rat chromosome 10 are linked to body fat mass, preadipocyte number and adipocyte size.

    PubMed

    Weingarten, A; Turchetti, L; Krohn, K; Klöting, I; Kern, M; Kovacs, P; Stumvoll, M; Blüher, M; Klöting, N

    2016-12-01

    The genetic architecture of obesity is multifactorial. We have previously identified a quantitative trait locus (QTL) on rat chromosome 10 in a F2 cross of Wistar Ottawa Karlsburg (WOKW) and Dark Agouti (DA) rats responsible for obesity-related traits. The QTL was confirmed in congenic DA.WOKW10 rats. To pinpoint the region carrying causal genes, we established two new subcongenic lines, L1 and L2, with smaller refined segments of chromosome 10 to identify novel candidate genes. All lines were extensively characterized under different diet conditions. We employed transcriptome analysis in visceral adipose tissue (VAT) by RNA-Seq technology to identify potential underlying genes in the segregating regions. Three candidate genes were measured in human paired samples of VAT and subcutaneous (SC) AT (SAT) (N=304) individuals with a wide range of body weight and glucose homeostasis parameters. DA.WOKW and L1 subcongenic lines were protected against body fat gain under high-fat diet (HFD), whereas L2 and DA had significantly more body fat after high-fat feeding. Interestingly, adipocyte size distribution in SAT and epigonadal AT of L1 subcongenic rats did not undergo typical ballooning under HFD and the number of preadipocytes in AT was significantly elevated in L2 compared with L1 and parental rats. Transcriptome analysis identified three candidate genes in VAT on rat chromosome 10. In humans, these candidate genes were differentially expressed between SAT and VAT. Moreover, HID1 mRNA significantly correlates with parameters of obesity and glucose metabolism. Our data suggest novel candidate genes for obesity that map on rat chromosome 10 in an interval 102.2-104.7 Mb and are strongly associated with body fat mass regulation, preadipocyte number and adipocyte size in rats. Among those genes, AT head involution defective (HID1) mRNA expression may be relevant for human fat distribution and glucose homeostasis.

  15. Bilobalide abates inflammation, insulin resistance and secretion of angiogenic factors induced by hypoxia in 3T3-L1 adipocytes by controlling NF-κB and JNK activation.

    PubMed

    Priyanka, A; Sindhu, G; Shyni, G L; Preetha Rani, M R; Nisha, V M; Raghu, K G

    2017-01-01

    Obesity leads to inflammation and insulin resistance in adipose tissue. Hypoxia, observed in obese adipose tissue is suggested as a major cause of inflammation and insulin resistance in obesity. However, the role of hypoxia in adipose tissue during obesity and insulin resistance was not well established. Here we mainly explored the crosstalk between hypoxia induced inflammation, and insulin resistance and also secretion of angiogenic factors in 3T3-L1 adipocytes and possible reversal with bilobalide. Hypoxia for 24h significantly (P≤0.05) increased the secretion of MCP-1 (4.59 fold), leptin (2.96 fold) and reduced adiponectin secretion (2.93 fold). In addition, the mRNA level of resistin (6.8 fold) and TLR4 receptors (8.8 fold) was upregulated in hypoxic adipocytes. The release of inflammatory cytokines and expression of TLR4 receptors led to activation of JNK and NF-κB signalling. We further investigated the effects of JNK and NF-κB activation on insulin signalling receptors. The present study showed increased (P≤0.05) serine 307 phosphorylation of IRS-1 (1.9 fold) and decreased expression of IRS-2 (0.53 fold) in hypoxic group showing hypoxia induced impairment in insulin signalling. Hypoxia significantly (P≤0.05) increased basal glucose uptake (3.3 fold) as well as GLUT-1 expression in adipocytes indicating GLUT-1 mediated glucose uptake. Hypoxia for 24h significantly increased (P≤0.05) the expression of angiogenic factors. Bilobalide protected adipocytes from hypoxia induced inflammation and insulin resistance mainly by reducing inflammatory adipokine secretion, improving adiponectin secretion, reducing NF-κB/JNK activation, and inhibiting serine phosphorylation of IRS-1 receptors of insulin signalling pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Arsenic Induces Insulin Resistance in Mouse Adipocytes and Myotubes Via Oxidative Stress-Regulated Mitochondrial Sirt3-FOXO3a Signaling Pathway.

    PubMed

    Padmaja Divya, Sasidharan; Pratheeshkumar, Poyil; Son, Young-Ok; Vinod Roy, Ram; Andrew Hitron, John; Kim, Donghern; Dai, Jin; Wang, Lei; Asha, Padmaja; Huang, Bin; Xu, Mei; Luo, Jia; Zhang, Zhuo

    2015-08-01

    Chronic exposure to arsenic via drinking water is associated with an increased risk for development of type 2 diabetes mellitus (T2DM). This study investigates the role of mitochondrial oxidative stress protein Sirtuin 3 (Sirt3) and its targeting proteins in chronic arsenic-induced T2DM in mouse adipocytes and myotubes. The results show that chronic arsenic exposure significantly decreased insulin-stimulated glucose uptake (ISGU) in correlation with reduced expression of insulin-regulated glucose transporter type 4 (Glut4). Expression of Sirt3, a mitochondrial deacetylase, was dramatically decreased along with its associated transcription factor, forkhead box O3 (FOXO3a) upon arsenic exposure. A decrease in mitochondrial membrane potential (Δψm) was observed in both 3T3L1 adipocytes and C2C12 myotubes treated by arsenic. Reduced FOXO3a activity by arsenic exhibited a decreased binding affinity to the promoters of both manganese superoxide dismutase (MnSOD) and peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1α, a broad and powerful regulator of reactive oxygen species (ROS) metabolism. Forced expression of Sirt3 or MnSOD in mouse myotubes elevated Δψm and restored ISGU inhibited by arsenic exposure. Our results suggest that Sirt3/FOXO3a/MnSOD signaling plays a significant role in the inhibition of ISGU induced by chronic arsenic exposure. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Chronic hyperprolactinemia evoked by disruption of lactotrope dopamine D2 receptors impacts on liver and adipocyte genes related to glucose and insulin balance.

    PubMed

    Luque, Guillermina María; Lopez-Vicchi, Felicitas; Ornstein, Ana María; Brie, Belén; De Winne, Catalina; Fiore, Esteban; Perez-Millan, Maria Inés; Mazzolini, Guillermo; Rubinstein, Marcelo; Becu-Villalobos, Damasia

    2016-12-01

    We studied the impact of high prolactin titers on liver and adipocyte gene expression related to glucose and insulin homeostasis in correlation with obesity onset. To that end we used mutant female mice that selectively lack dopamine type 2 receptors (D2Rs) from pituitary lactotropes (lacDrd2KO), which have chronic high prolactin levels associated with increased body weight, marked increments in fat depots, adipocyte size, and serum lipids, and a metabolic phenotype that intensifies with age. LacDrd2KO mice of two developmental ages, 5 and 10 mo, were used. In the first time point, obesity and increased body weight are marginal, although mice are hyperprolactinemic, whereas at 10 mo there is marked adiposity with a 136% increase in gonadal fat and a 36% increase in liver weight due to lipid accumulation. LacDrd2KO mice had glucose intolerance, hyperinsulinemia, and impaired insulin response to glucose already in the early stages of obesity, but changes in liver and adipose tissue transcription factors were time and tissue dependent. In chronic hyperprolactinemic mice liver Prlr were upregulated, there was liver steatosis, altered expression of the lipogenic transcription factor Chrebp, and blunted response of Srebp-1c to refeeding at 5 mo of age, whereas no effect was observed in the glycogenesis pathway. On the other hand, in adipose tissue a marked decrease in lipogenic transcription factor expression was observed when morbid obesity was already settled. These adaptive changes underscore the role of prolactin signaling in different tissues to promote energy storage. Copyright © 2016 the American Physiological Society.

  18. Overexpression of protein-tyrosine phosphatase-1B in adipocytes inhibits insulin-stimulated phosphoinositide 3-kinase activity without altering glucose transport or Akt/Protein kinase B activation.

    PubMed

    Venable, C L; Frevert, E U; Kim, Y B; Fischer, B M; Kamatkar, S; Neel, B G; Kahn, B B

    2000-06-16

    Previous studies suggested that protein-tyrosine phosphatase 1B (PTP1B) antagonizes insulin action by catalyzing dephosphorylation of the insulin receptor (IR) and/or other key proteins in the insulin signaling pathway. In adipose tissue and muscle of obese humans and rodents, PTP1B expression is increased, which led to the hypothesis that PTP1B plays a role in the pathogenesis of insulin resistance. Consistent with this, mice in which the PTP1B gene was disrupted exhibit increased insulin sensitivity. To test whether increased expression of PTP1B in an insulin-sensitive cell type could contribute to insulin resistance, we overexpressed wild-type PTP1B in 3T3L1 adipocytes using adenovirus-mediated gene delivery. PTP1B expression was increased approximately 3-5-fold above endogenous levels at 16 h, approximately 14-fold at 40 h, and approximately 20-fold at 72 h post-transduction. Total protein-tyrosine phosphatase activity was increased by 50% at 16 h, 3-4-fold at 40 h, and 5-6-fold at 72 h post-transduction. Compared with control cells, cells expressing high levels of PTP1B showed a 50-60% decrease in maximally insulin-stimulated tyrosyl phosphorylation of IR and insulin receptor substrate-1 (IRS-1) and phosphoinositide 3-kinase (PI3K) activity associated with IRS-1 or with phosphotyrosine. Akt phosphorylation and activity were unchanged. Phosphorylation of p42 and p44 MAP kinase (MAPK) was reduced approximately 32%. Overexpression of PTP1B had no effect on basal, submaximally or maximally (100 nm) insulin-stimulated glucose transport or on the EC(50) for transport. Our results suggest that: 1) insulin stimulation of glucose transport in adipocytes requires insulin-induced glucose transport in adipocytes, and 3) overexpression of PTP1B alone in adipocytes does not impair glucose transport.

  19. The Effects of Propionate and Valerate on Insulin Responsiveness for Glucose Uptake in 3T3-L1 Adipocytes and C2C12 Myotubes via G Protein-Coupled Receptor 41

    PubMed Central

    Han, Joo-Hui; Kim, In-Su; Jung, Sang-Hyuk; Lee, Sang-Gil; Son, Hwa-Young; Myung, Chang-Seon

    2014-01-01

    Since insulin resistance can lead to hyperglycemia, improving glucose uptake into target tissues is critical for regulating blood glucose levels. Among the free fatty acid receptor (FFAR) family of G protein-coupled receptors, GPR41 is known to be the Gαi/o-coupled receptor for short-chain fatty acids (SCFAs) such as propionic acid (C3) and valeric acid (C5). This study aimed to investigate the role of GPR41 in modulating basal and insulin-stimulated glucose uptake in insulin-sensitive cells including adipocytes and skeletal muscle cells. Expression of GPR41 mRNA and protein was increased with maximal expression at differentiation day 8 for 3T3-L1 adipocytes and day 6 for C2C12 myotubes. GPR41 protein was also expressed in adipose tissues and skeletal muscle. After analyzing dose-response relationship, 300 µM propionic acid or 500 µM valeric acid for 30 min incubation was used for the measurement of glucose uptake. Both propionic acid and valeric acid increased insulin-stimulated glucose uptake in 3T3-L1 adipocyte, which did not occur in cells transfected with siRNA for GPR41 (siGPR41). In C2C12 myotubes, these SCFAs increased basal glucose uptake, but did not potentiate insulin-stimulated glucose uptake, and siGPR41 treatment reduced valerate-stimulated basal glucose uptake. Therefore, these findings indicate that GPR41 plays a role in insulin responsiveness enhanced by both propionic and valeric acids on glucose uptake in 3T3-L1 adipocytes and C2C12 myotubes, and in valerate-induced increase in basal glucose uptake in C2C12 myotubes. PMID:24748202

  20. Indian culinary plants enhance glucose-induced insulin secretion and glucose consumption in INS-1 β-cells and 3T3-L1 adipocytes.

    PubMed

    Kaur, Lovedeep; Han, Kyoung-Sik; Bains, Kiran; Singh, Harjinder

    2011-12-01

    Six Indian plants, commonly used as culinary plants, herbs or spices (kikar; jamun; neem; harad; fenugreek; bitter gourd), were screened and compared for their antidiabetic potential in vitro. Aqueous plant extracts were prepared and assessed for their effect on the insulin secretion activity of rat pancreatic INS-1 β-cells and glucose consumption in mouse 3T3-L1 adipocytes in order to study their specific mechanisms of action. The effect of the plant extract concentration (25-1000μg/ml) on insulin release and glucose consumption was also studied. All the extracts had a significant stimulatory effect on the insulin secretion of INS-1 cells. In the presence of kikar extract (100μg/ml), an increase of 228% in insulin release was recorded compared to the control (5.6mM glucose) whereas that was 270% and 367% in the presence of kikar and jamun extracts (500μg/ml), respectively. 3T3-L1 cells treated with jamun extract (100μg/ml) exhibited the highest increase in glucose consumption by the cells (94%, compared with the control) followed by harad (53%) and fenugreek (50%) extracts. A significant inhibitory effect of the fenugreek, kikar and jamun extracts on glucose diffusion across a dialysis membrane suggested that these extracts could partly act by decreasing glucose absorption in the small intestine. The results showed that a combination of these plants in diet could help in the management of both type 1 and type 2 diabetes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Downregulation of STRA6 in Adipocytes and Adipose Stromovascular Fraction in Obesity and Effects of Adipocyte-Specific STRA6 Knockdown In Vivo

    PubMed Central

    Zemany, Laura; Kraus, Bettina J.; Norseen, Julie; Saito, Tsugumichi; Peroni, Odile D.; Johnson, Randy L.

    2014-01-01

    To investigate the mechanisms by which elevated retinol-binding protein 4 (RBP4) causes insulin resistance, we studied the role of the high-affinity receptor for RBP4, STRA6 (stimulated by retinoic acid), in insulin resistance and obesity. In high-fat-diet-fed and ob/ob mice, STRA6 expression was decreased 70 to 95% in perigonadal adipocytes and both perigonadal and subcutaneous adipose stromovascular cells. To determine whether downregulation of STRA6 in adipocytes contributes to insulin resistance, we generated adipose-Stra6−/− mice. Adipose-Stra6−/− mice fed chow had decreased body weight, fat mass, leptin levels, insulin levels, and adipocyte number and increased expression of brown fat-selective markers in white adipose tissue. When fed a high-fat diet, these mice had a mild improvement in insulin sensitivity at an age when adiposity was unchanged. STRA6 has been implicated in retinol uptake, but retinol uptake and the expression of retinoid homeostatic genes (encoding retinoic acid receptor β [RARβ], CYP26A1, and lecithin retinol acyltransferase) were not altered in adipocytes from adipose-Stra6−/− mice, indicating that retinoid homeostasis was maintained with STRA6 knockdown. Thus, STRA6 reduction in adipocytes in adipose-Stra6−/− mice fed chow resulted in leanness, which may contribute to their increased insulin sensitivity. However, in wild-type mice with high-fat-diet-induced obesity and in ob/ob mice, the marked downregulation of STRA6 in adipocytes and adipose stromovascular cells does not compensate for obesity-associated insulin resistance. PMID:24421389

  2. Downregulation of STRA6 in adipocytes and adipose stromovascular fraction in obesity and effects of adipocyte-specific STRA6 knockdown in vivo.

    PubMed

    Zemany, Laura; Kraus, Bettina J; Norseen, Julie; Saito, Tsugumichi; Peroni, Odile D; Johnson, Randy L; Kahn, Barbara B

    2014-03-01

    To investigate the mechanisms by which elevated retinol-binding protein 4 (RBP4) causes insulin resistance, we studied the role of the high-affinity receptor for RBP4, STRA6 (stimulated by retinoic acid), in insulin resistance and obesity. In high-fat-diet-fed and ob/ob mice, STRA6 expression was decreased 70 to 95% in perigonadal adipocytes and both perigonadal and subcutaneous adipose stromovascular cells. To determine whether downregulation of STRA6 in adipocytes contributes to insulin resistance, we generated adipose-Stra6(-/-) mice. Adipose-Stra6(-/-) mice fed chow had decreased body weight, fat mass, leptin levels, insulin levels, and adipocyte number and increased expression of brown fat-selective markers in white adipose tissue. When fed a high-fat diet, these mice had a mild improvement in insulin sensitivity at an age when adiposity was unchanged. STRA6 has been implicated in retinol uptake, but retinol uptake and the expression of retinoid homeostatic genes (encoding retinoic acid receptor β [RARβ], CYP26A1, and lecithin retinol acyltransferase) were not altered in adipocytes from adipose-Stra6(-/-) mice, indicating that retinoid homeostasis was maintained with STRA6 knockdown. Thus, STRA6 reduction in adipocytes in adipose-Stra6(-/-) mice fed chow resulted in leanness, which may contribute to their increased insulin sensitivity. However, in wild-type mice with high-fat-diet-induced obesity and in ob/ob mice, the marked downregulation of STRA6 in adipocytes and adipose stromovascular cells does not compensate for obesity-associated insulin resistance.

  3. Adipocytes Secrete Leukotrienes

    PubMed Central

    Mothe-Satney, Isabelle; Filloux, Chantal; Amghar, Hind; Pons, Catherine; Bourlier, Virginie; Galitzky, Jean; Grimaldi, Paul A.; Féral, Chloé C.; Bouloumié, Anne; Van Obberghen, Emmanuel; Neels, Jaap G.

    2012-01-01

    Leukotrienes (LTs) are potent proinflammatory mediators, and many important aspects of innate and adaptive immune responses are regulated by LTs. Key members of the LT synthesis pathway are overexpressed in adipose tissue (AT) during obesity, resulting in increased LT levels in this tissue. We observed that several mouse adipocyte cell lines and primary adipocytes from mice and humans both can secrete large amounts of LTs. Furthermore, this production increases with a high-fat diet (HFD) and positively correlates with adipocyte size. LTs produced by adipocytes play an important role in attracting macrophages and T cells in in vitro chemotaxis assays. Mice that are deficient for the enzyme 5-lipoxygenase (5-LO), and therefore lack LTs, exhibit a decrease in HFD-induced AT macrophage and T-cell infiltration and are partially protected from HFD-induced insulin resistance. Similarly, treatment of HFD-fed wild-type mice with the 5-LO inhibitor Zileuton also results in a reduction of AT macrophages and T cells, accompanied by a decrease in insulin resistance. Together, these findings suggest that LTs represent a novel target in the prevention or treatment of obesity-associated inflammation and insulin resistance. PMID:22688342

  4. Novel roles for insulin receptor (IR) in adipocytes and skeletal muscle cells via new and unexpected substrates.

    PubMed

    Ramalingam, Latha; Oh, Eunjin; Thurmond, Debbie C

    2013-08-01

    The insulin signaling pathway regulates whole-body glucose homeostasis by transducing extracellular signals from the insulin receptor (IR) to downstream intracellular targets, thus coordinating a multitude of biological functions. Dysregulation of IR or its signal transduction is associated with insulin resistance, which may culminate in type 2 diabetes. Following initial stimulation of IR, insulin signaling diverges into different pathways, activating multiple substrates that have roles in various metabolic and cellular processes. The integration of multiple pathways arising from IR activation continues to expand as new IR substrates are identified and characterized. Accordingly, our review will focus on roles for IR substrates as they pertain to three primary areas: metabolism/glucose uptake, mitogenesis/growth, and aging/longevity. While IR functions in a seemingly pleiotropic manner in many cell types, through these three main roles in fat and skeletal muscle cells, IR multi-tasks to regulate whole-body glucose homeostasis to impact healthspan and lifespan.

  5. Molecular mechanisms for the regulation of insulin-stimulated glucose uptake by small guanosine triphosphatases in skeletal muscle and adipocytes.

    PubMed

    Satoh, Takaya

    2014-10-16

    Insulin is a hormone that regulates the blood glucose level by stimulating various physiological responses in its target tissues. In skeletal muscle and adipose tissue, insulin promotes membrane trafficking of the glucose transporter GLUT4 from GLUT4 storage vesicles to the plasma membrane, thereby facilitating the uptake of glucose from the circulation. Detailed mechanisms underlying insulin-dependent intracellular signal transduction for glucose uptake remain largely unknown. In this article, I give an overview on the recently identified signaling network involving Rab, Ras, and Rho family small guanosine triphosphatases (GTPases) that regulates glucose uptake in insulin-responsive tissues. In particular, the regulatory mechanisms for these small GTPases and the cross-talk between protein kinase and small GTPase cascades are highlighted.

  6. (-)-Epicatechin prevents TNFα-induced activation of signaling cascades involved in inflammation and insulin sensitivity in 3T3-L1 adipocytes

    PubMed Central

    Vazquez-Prieto, Marcela A.; Bettaieb, A.; Haj, Fawaz G.; Fraga, César G.; Oteiza, Patricia I.

    2012-01-01

    Obesity is major public health concern worldwide and obese individuals exhibit a higher risk of chronic diseases such as type 2 diabetes. Inflammation plays a significant role in metabolic regulation and mounting evidence highlight the contribution of adipose tissue to systemic inflammatory state. Food extracts with a high content of (-)-epicatechin have been found to exert systemic anti-inflammatory actions, however the anti-inflammatory actions of (-)-epicatechin on adipose tissue remain to be determined. The aim of this study was to investigate the capacity of (-)-epicatechin to prevent tumor necrosis alpha (TNFα)-induced activation of cell signals involved in inflammation and insulin resistance (NF-κB, mitogen-activated protein kinases (MAPKs), AP-1, and peroxisome proliferator activated receptor γ (PPARγ)) in differentiated white adipocytes (3T3-L1). TNFα triggered the activation of transcription factors NF-κB and AP-1, and MAPKs ERK1/2, JNK, and p38. (-)-Epicatechin caused a dose (0.5-10 μM)-dependent decrease in TNFα-mediated JNK, ERK1/2, and p-38 phosphorylation, and nuclear AP-1-DNA binding. (-)-Epicatechin also inhibited TNFα-triggered activation of the NF-κB signaling cascade, preventing TNFα-mediated p65 nuclear transport and nuclear NF-κB-DNA binding. (-)-Epicatechin also attenuated the TNFα-mediated downregulation of PPARγ expression and decreased nuclear DNA binding. Accordingly, (-)-epicatechin inhibited TNFα-mediated altered transcription of genes (MCP-1, interleukin-6, TNFα, resistin, and protein-tyrosine phosphatase 1B) involved in inflammation and insulin signaling. In conclusion, (-)-epicatechin can attenuate TNFα-mediated triggering of signaling cascades involved in inflammation and insulin resistance. These findings could be of relevance in the dietary management of obesity and metabolic syndrome. PMID:22425757

  7. Adrenoceptors promote glucose uptake into adipocytes and muscle by an insulin-independent signaling pathway involving mechanistic target of rapamycin complex 2.

    PubMed

    Mukaida, Saori; Evans, Bronwyn A; Bengtsson, Tore; Hutchinson, Dana S; Sato, Masaaki

    2017-02-01

    Uptake of glucose into skeletal muscle and adipose tissue plays a vital role in metabolism and energy balance. Insulin released from β-islet cells of the pancreas promotes glucose uptake in these target tissues by stimulating translocation of GLUT4 transporters to the cell surface. This process is complex, involving signaling proteins including the mechanistic (or mammalian) target of rapamycin (mTOR) and Akt that intersect with multiple pathways controlling cell survival, growth and proliferation. mTOR exists in two forms, mTOR complex 1 (mTORC1), and mTOR complex 2 (mTORC2). mTORC1 has been intensively studied, acting as a key regulator of protein and lipid synthesis that integrates cellular nutrient availability and energy balance. Studies on mTORC2 have focused largely on its capacity to activate Akt by phosphorylation at Ser473, however recent findings demonstrate a novel role for mTORC2 in cellular glucose uptake. For example, agonists acting at β2-adrenoceptors (ARs) in skeletal muscle or β3-ARs in brown adipose tissue increase glucose uptake in vitro and in vivo via mechanisms dependent on mTORC2 but not Akt. In this review, we will focus on the signaling pathways downstream of β-ARs that promote glucose uptake in skeletal muscle and brown adipocytes, and will highlight how the insulin and adrenergic pathways converge and interact in these cells. The identification of insulin-independent mechanisms that promote glucose uptake should facilitate novel treatment strategies for metabolic disease.

  8. Acipimox stimulates leptin production from isolated rat adipocytes.

    PubMed

    Wang-Fisher, Y-L; Han, J; Guo, W

    2002-08-01

    Acipimox is a nicotinic acid-derived antilipolytic drug devoid of major side effects, and has been used in a number of human trials. This work reports the effects of Acipimox on leptin production from isolated rat adipocytes, in comparison with nicotinic acid and insulin. For cells isolated from normal animals, all these three reagents stimulated leptin release to a similar extent. Acipimox and nicotinic acid were more potent than insulin in stimulating leptin release from cells isolated from diabetic animals, probably because of impaired insulin sensitivity in cells from these diseased animals. Co-incubation of Acipimox with norepinephrine or dibutyryl cAMP diminished its stimulatory effects on leptin release, in parallel with increased lipolysis, suggesting that intracellular free fatty acids play an important role in mediating leptin production in adipocytes.

  9. B Lymphocyte Stimulator (BLyS) is expressed in human adipocytes in vivo and is related to obesity but not to insulin resistance.

    PubMed

    Müller, Nike; Schulte, Dominik M; Hillebrand, Susann; Türk, Kathrin; Hampe, Jochen; Schafmayer, Clemens; Brosch, Mario; von Schönfels, Witigo; Ahrens, Markus; Zeuner, Rainald; Schröder, Johann O; Blüher, Matthias; Gutschow, Christian; Freitag-Wolf, Sandra; Stelmach-Mardas, Marta; Saggau, Carina; Schreiber, Stefan; Laudes, Matthias

    2014-01-01

    Inflammation and metabolism have been shown to be evolutionary linked and increasing evidence exists that pro-inflammatory factors are involved in the pathogenesis of obesity and type 2 diabetes. Until now, most data suggest that within adipose tissue these factors are secreted by cells of the innate immune system, e. g. macrophages. In the present study we demonstrate that B lymphocyte stimulator (BLyS) is increased in human obesity. In contrast to several pro-inflammatory factors, we found the source of BLyS in human adipose tissue to be the adipocytes rather than immune cells. In grade 3 obese human subjects, expression of BLyS in vivo in adipose tissue is significantly increased (p<0.001). Furthermore, BLyS serum levels are elevated in grade 3 human obesity (862.5+222.0 pg/ml vs. 543.7+60.7 pg/ml in lean controls, p<0.001) and are positively correlated to the BMI (r = 0.43, p<0.0002). In the present study, bariatric surgery significantly altered serum BLyS concentrations. In contrast, weight loss due to a very-low-calorie-formula-diet (800 kcal/d) had no such effect. To examine metabolic activity of BLyS, in a translational research approach, insulin sensitivity was measured in human subjects in vivo before and after treatment with the human recombinant anti-BLyS antibody belimumab. Since BLyS is known to promote B-cell proliferation and immunoglobulin secretion, the present data suggest that adipocytes of grade 3 obese human subjects are able to activate the adaptive immune system, suggesting that in metabolic inflammation in humans both, innate and adaptive immunity, are of pathophysiological relevance.

  10. B Lymphocyte Stimulator (BLyS) Is Expressed in Human Adipocytes In Vivo and Is Related to Obesity but Not to Insulin Resistance

    PubMed Central

    Müller, Nike; Schulte, Dominik M.; Hillebrand, Susann; Türk, Kathrin; Hampe, Jochen; Schafmayer, Clemens; Brosch, Mario; von Schönfels, Witigo; Ahrens, Markus; Zeuner, Rainald; Schröder, Johann O.; Blüher, Matthias; Gutschow, Christian; Freitag-Wolf, Sandra; Stelmach-Mardas, Marta; Saggau, Carina; Schreiber, Stefan; Laudes, Matthias

    2014-01-01

    Inflammation and metabolism have been shown to be evolutionary linked and increasing evidence exists that pro-inflammatory factors are involved in the pathogenesis of obesity and type 2 diabetes. Until now, most data suggest that within adipose tissue these factors are secreted by cells of the innate immune system, e. g. macrophages. In the present study we demonstrate that B lymphocyte stimulator (BLyS) is increased in human obesity. In contrast to several pro-inflammatory factors, we found the source of BLyS in human adipose tissue to be the adipocytes rather than immune cells. In grade 3 obese human subjects, expression of BLyS in vivo in adipose tissue is significantly increased (p<0.001). Furthermore, BLyS serum levels are elevated in grade 3 human obesity (862.5+222.0 pg/ml vs. 543.7+60.7 pg/ml in lean controls, p<0.001) and are positively correlated to the BMI (r = 0.43, p<0.0002). In the present study, bariatric surgery significantly altered serum BLyS concentrations. In contrast, weight loss due to a very-low-calorie-formula-diet (800 kcal/d) had no such effect. To examine metabolic activity of BLyS, in a translational research approach, insulin sensitivity was measured in human subjects in vivo before and after treatment with the human recombinant anti-BLyS antibody belimumab. Since BLyS is known to promote B-cell proliferation and immunoglobulin secretion, the present data suggest that adipocytes of grade 3 obese human subjects are able to activate the adaptive immune system, suggesting that in metabolic inflammation in humans both, innate and adaptive immunity, are of pathophysiological relevance. PMID:24728308

  11. Rab14 limits the sorting of Glut4 from endosomes into insulin-sensitive regulated secretory compartments in adipocytes.

    PubMed

    Brewer, Paul Duffield; Habtemichael, Estifanos N; Romenskaia, Irina; Coster, Adelle C F; Mastick, Cynthia Corley

    2016-05-15

    Insulin increases glucose uptake by increasing the rate of exocytosis of the facilitative glucose transporter isoform 4 (Glut4) relative to its endocytosis. Insulin also releases Glut4 from highly insulin-regulated secretory compartments (GSVs or Glut4 storage vesicles) into constitutively cycling endosomes. Previously it was shown that both overexpression and knockdown of the small GTP-binding protein Rab14 decreased Glut4 translocation to the plasma membrane (PM). To determine the mechanism of this perturbation, we measured the effects of Rab14 knockdown on the trafficking kinetics of Glut4 relative to two proteins that partially co-localize with Glut4, the transferrin (Tf) receptor and low-density-lipoprotein-receptor-related protein 1 (LRP1). Our data support the hypothesis that Rab14 limits sorting of proteins from sorting (or 'early') endosomes into the specialized GSV pathway, possibly through regulation of endosomal maturation. This hypothesis is consistent with known Rab14 effectors. Interestingly, the insulin-sensitive Rab GTPase-activating protein Akt substrate of 160 kDa (AS160) affects both sorting into and exocytosis from GSVs. It has previously been shown that exocytosis of GSVs is rate-limited by Rab10, and both Rab10 and Rab14 are in vitro substrates of AS160. Regulation of both entry into and exit from GSVs by AS160 through sequential Rab substrates would provide a mechanism for the finely tuned 'quantal' increases in cycling Glut4 observed in response to increasing concentrations of insulin.

  12. α-Lipoic acid protects 3T3-L1 adipocytes from NYGGF4 (PID1) overexpression-induced insulin resistance through increasing phosphorylation of IRS-1 and Akt.

    PubMed

    Wang, Yu-mei; Lin, Xiao-fei; Shi, Chun-mei; Lu, Lan; Qin, Zhen-Ying; Zhu, Guan-zhong; Cao, Xin-guo; Ji, Chen-bo; Qiu, Jie; Guo, Xi-rong

    2012-06-01

    NYGGF4 (also called PID1) was demonstrated that it may be related to the development of obesity-related IR. We aimed in the present study to further elucidate the effects of NYGGF4 on IR and the underlying mechanisms through using α-Lipoic acid (LA) treatment, which could facilitate glucose transport and utilization in fully differentiated adipocytes. Our data showed that the LA pretreatment strikingly enhanced insulin-stimulated glucose uptake through increasing GLUT4 translocation to the PM in NYGGF4 overexpression adipocytes. The reactive oxygen species (ROS) levels in NYGGF4 overexpression adipocytes were strikingly enhanced, which could be decreased by the LA pretreatment. NYGGF4 overexpression resulted in significant inhibition of tyrosine phosphorylation of IRS-1 and serine phosphorylation of Akt, whereas incubation with LA strongly activated IRS-1 and Akt phosphorylation in NYGGF4 overexpression adipocytes. These results suggest that LA protects 3T3-L1 adipocytes from NYGGF4-induced IR partially through increasing phosphorylation of IRS-1 and Akt and provide evidence that NYGGF4 may be a potential target for the treatment of obesity and obesity-related IR.

  13. The cytoskeletal protein septin 11 is associated with human obesity and is involved in adipocyte lipid storage and metabolism.

    PubMed

    Moreno-Castellanos, Natalia; Rodríguez, Amaia; Rabanal-Ruiz, Yoana; Fernández-Vega, Alejandro; López-Miranda, José; Vázquez-Martínez, Rafael; Frühbeck, Gema; Malagón, María M

    2017-02-01

    Septins are newly identified members of the cytoskeleton that have been proposed as biomarkers of a number of diseases. However, septins have not been characterised in adipose tissue and their relationship with obesity and insulin resistance remains unknown. Herein, we characterised a member of this family, septin 11 (SEPT11), in human adipose tissue and analysed its potential involvement in the regulation of adipocyte metabolism. Gene and protein expression levels of SEPT11 were analysed in human adipose tissue. SEPT11 distribution was evaluated by immunocytochemistry, electron microscopy and subcellular fractionation techniques. Glutathione S-transferase (GST) pull-down, immunoprecipitation and yeast two-hybrid screening were used to identify the SEPT11 interactome. Gene silencing was used to assess the role of SEPT11 in the regulation of insulin signalling and lipid metabolism in adipocytes. We demonstrate the expression of SEPT11 in human adipocytes and its upregulation in obese individuals, with SEPT11 mRNA content positively correlating with variables of insulin resistance in subcutaneous adipose tissue. SEPT11 content was regulated by lipogenic, lipolytic and proinflammatory stimuli in human adipocytes. SEPT11 associated with caveolae in mature adipocytes and interacted with both caveolin-1 and the intracellular fatty acid chaperone, fatty acid binding protein 5 (FABP5). Lipid loading of adipocytes caused the association of the three proteins with the surface of lipid droplets. SEPT11 silencing impaired insulin signalling and insulin-induced lipid accumulation in adipocytes. Our findings support a role for SEPT11 in lipid traffic and metabolism in adipocytes and open new avenues for research on the control of lipid storage in obesity and insulin resistance.

  14. Zinc transporter 7 deficiency affects lipid synthesis in adipocytes by inhibiting insulin-dependent Akt activity and glucose uptake

    USDA-ARS?s Scientific Manuscript database

    Mice deficient for zinc transporter 7 (Znt7) are mildly zinc deficient, accompanied with low body weight gain and body fat accumulation. To investigate the underlying mechanism of Znt7 deficiency in body adiposity, we investigated fatty acid composition and insulin sensitivity in visceral (epididyma...

  15. NOVEL ROLES FOR INSULIN RECEPTOR (IR) IN ADIPOCYTES AND SKELETAL MUSCLE CELLS VIA NEW AND UNEXPECTED SUBSTRATES

    PubMed Central

    Ramalingam, Latha; Oh, Eunjin; Thurmond, Debbie C.

    2012-01-01

    The insulin signaling pathway regulates whole-body glucose homeostasis by transducing extracellular signals from the insulin receptor (IR) to downstream intracellular targets, thus coordinating a multitude of biological functions. Dysregulation of IR or its signal transduction is associated with insulin resistance, which may culminate in type 2 diabetes (T2D). Following initial stimulation of IR, insulin signaling diverges into different pathways, activating multiple substrates which have roles in various metabolic and cellular processes. The integration of multiple pathways arising from IR activation continues to expand as new IR substrates are identified and characterized. Accordingly, our review will focus on roles for IR substrates as they pertain to three primary areas: Metabolism/glucose uptake, Mitogenesis/growth, and Aging/Longevity. While IR functions in a seemingly pleotropic manner in many cell types, through these three main roles in fat and skeletal muscle cells, IR multi-tasks to regulate whole-body glucose homeostasis to impact healthspan and lifespan. PMID:23052216

  16. NOD1 activation induces proinflammatory gene expression and insulin resistance in 3T3-L1 adipocytes

    USDA-ARS?s Scientific Manuscript database

    Chronic inflammation is associated with obesity and insulin resistance. However, the underlying mechanisms are not fully understood. Pattern recognition receptors Toll-like receptors and Nucleotide-oligomerization domain containing proteins play critical roles in innate immune response. Here we repo...

  17. Control of endogenous phosphorylation of the major cAMP-dependent protein kinase substrate in adipocytes by insulin and beta-adrenergic stimulation

    SciTech Connect

    Egan, J.J.; Greenberg, A.S.; Chang, M.K.; Londos, C. )

    1990-11-05

    In isolated, 32Pi-loaded, rat adipocytes, we have examined phosphorylation of the major cAMP-dependent protein kinase (A-kinase) substrate, a protein that appears to be associated with the lipid storage droplet and migrates in sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a 65-67-kDa doublet. In control cells, a strong phosphorylation signal is detected as the (+/- cAMP) A-kinase activity ratio ranges from approximately 0.1 to approximately 0.3-0.4 with increasing isoproterenol concentrations. By contrast, insulin-treated cells exhibiting A-kinase activity ratios over the range of 0.1-0.25 contain less 32P in the 65-67-kDa protein than control cells exhibiting identical A-kinase activity ratios. At higher activity ratios (greater than 0.3), this reduction in phosphorylation of the 65-67-kDa protein by insulin disappears. It is concluded that insulin stimulates a phosphatase activity that acts on the 65-67-kDa protein. Insulin actions aside, these studies reveal two interesting phenomena. (1) Whereas elevated, steady-state A-kinase activities are established rapidly (1-2 min) upon isoproterenol stimulation, phosphorylation of the 65-67-kDa substrate proceeds through a burst, followed by a decline to a steady-state level by 10-12 min. An adaptation mechanism, providing for a constant response to a constant stimulus, may underlie this lack of parallelism between the time course of phosphorylation and A-kinase activity. (2) Removal of (32Pi) orthophosphate immediately before isoproterenol stimulation leads to a rapid (t approximately 10 min) loss in labeling of the 65-67-kDa protein, whereas the phosphorylation state of other phosphoproteins are not changed. These data suggest that elevation of A-kinase activity leads to a rapid exchange of external Pi with an ATP pool that is used by A-kinase.

  18. Nymphaea nouchali Burm. f. hydroalcoholic seed extract increases glucose consumption in 3T3-L1 adipocytes through activation of peroxisome proliferator-activated receptor gamma and insulin sensitization.

    PubMed

    Parimala, Mabel; Debjani, M; Vasanthi, Hannah Rachel; Shoba, Francis Gricilda

    2015-01-01

    Nymphaea nouchali Burm. f. (Family - Nymphaeaceae) is a well-known medicinal plant used in the Indian ayurvedic system of medicine for treating diabetes. The seeds especially have been prescribed for diabetes. The hydroalcoholic extract of N. nouchali seeds has been demonstrated to possess anti-hyperglycemic effects in diabetic rats, but the functional mechanism remains unknown. The nuclear receptor, peroxisome proliferator-activated receptor gamma (PPARγ) is noted to play an important role in glucose and lipid homeostasis. This study was hence focused in evaluating the effect of the extract on PPARγ activation, adipocyte differentiation, and glucose consumption in 3T3-L1 cells. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), followed by adipogenesis assay using Oil Red O technique. Glucose consumption of preadipocytes and adipocytes in the presence of the extract was also determined. Real-time polymerase chain reaction was performed to identify the expression of genes involved in glucose consumption in the adipocytes. MTT assay confirmed the extract to be nontoxic, and Oil Red O staining confirmed enhanced adipocyte differentiation of 3T3-L1 cells in a dose-dependent manner. The extract also increased the expression of PPARγ target gene, which in turn enhanced the expression of GLUT-4. The data, therefore, suggests that N. nouchali seed extract promotes adipocyte differentiation and glucose consumption by inducing PPARγ activation, which in turn increases mRNA GLUT-4 expression and subsequently enhances insulin-responsiveness in insulin target tissues.

  19. Nymphaea nouchali Burm. f. hydroalcoholic seed extract increases glucose consumption in 3T3-L1 adipocytes through activation of peroxisome proliferator-activated receptor gamma and insulin sensitization

    PubMed Central

    Parimala, Mabel; Debjani, M.; Vasanthi, Hannah Rachel; Shoba, Francis Gricilda

    2015-01-01

    Nymphaea nouchali Burm. f. (Family – Nymphaeaceae) is a well-known medicinal plant used in the Indian ayurvedic system of medicine for treating diabetes. The seeds especially have been prescribed for diabetes. The hydroalcoholic extract of N. nouchali seeds has been demonstrated to possess anti-hyperglycemic effects in diabetic rats, but the functional mechanism remains unknown. The nuclear receptor, peroxisome proliferator-activated receptor gamma (PPARγ) is noted to play an important role in glucose and lipid homeostasis. This study was hence focused in evaluating the effect of the extract on PPARγ activation, adipocyte differentiation, and glucose consumption in 3T3-L1 cells. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), followed by adipogenesis assay using Oil Red O technique. Glucose consumption of preadipocytes and adipocytes in the presence of the extract was also determined. Real-time polymerase chain reaction was performed to identify the expression of genes involved in glucose consumption in the adipocytes. MTT assay confirmed the extract to be nontoxic, and Oil Red O staining confirmed enhanced adipocyte differentiation of 3T3-L1 cells in a dose-dependent manner. The extract also increased the expression of PPARγ target gene, which in turn enhanced the expression of GLUT-4. The data, therefore, suggests that N. nouchali seed extract promotes adipocyte differentiation and glucose consumption by inducing PPARγ activation, which in turn increases mRNA GLUT-4 expression and subsequently enhances insulin-responsiveness in insulin target tissues. PMID:26605160

  20. Metabolic disruption in male mice due to fetal exposure to low but not high doses of bisphenol A (BPA): Evidence for effects on body weight, food intake, adipocytes, leptin, adiponectin, insulin and glucose regulation

    PubMed Central

    Angle, Brittany M.; Do, Rylee Phuong; Ponzi, Davide; Stahlhut, Richard W.; Drury, Bertram E.; Nagel, Susan C.; Welshons, Wade V.; Besch-Williford, Cynthia L; Palanza, Paola; Parmigiani, Stefano; vom Saal, Frederick S.; Taylor, Julia A.

    2013-01-01

    Exposure to bisphenol A (BPA) is implicated in many aspects of metabolic disease in humans and experimental animals. We fed pregnant CD-1 mice BPA at doses ranging from 5 to 50,000 μg/kg/day, spanning 10-fold below the reference dose to 10-fold above the currently predicted no adverse effect level (NOAEL). At BPA doses below the NOAEL that resulted in average unconjugated BPA between 2 and 200pg/ml in fetal serum (AUC0–24h),we observed significant effects in adult male offspring: an age-related change in food intake, an increase in body weight and liver weight, abdominal adipocyte mass, number and volume, and in serum leptin and insulin, but a decrease in serum adiponectin and in glucose tolerance. For most of these outcomes non-monotonic dose–response relationships were observed; the highest BPA dose did not produce a significant effect for any outcome. A 0.1-μg/kg/day dose of DES resulted in some but not all low-dose BPA outcomes. PMID:23892310

  1. Temporal separation of insulin-stimulated GLUT4/IRAP vesicle plasma membrane docking and fusion in 3T3L1 adipocytes.

    PubMed

    Elmendorf, J S; Boeglin, D J; Pessin, J E

    1999-12-24

    Examination of the time and temperature dependence of insulin-stimulated GLUT4/IRAP-containing vesicle trafficking demonstrated an approximate 7-fold increase in the half-time for plasma membrane translocation at 23 degrees C (t((1)/(2)) = approximately 30 min) compared with 37 degrees C (t((1)/(2)) = approximately 4 min) without a significant change in the extent of either GLUT4 or IRAP translocation. Localization of the endogenous GLUT4 and expressed GLUT4-enhanced green fluorescent protein fusion protein in intact 3T3L1 adipocytes demonstrated that at 23 degrees C there was a time-dependent accumulation of discrete GLUT4-containing vesicles adjacent to the inner face of the cell surface membrane but that was not contiguous and/or physically incorporated into the plasma membrane. Together, these data demonstrate that the temperature-dependent decrease in the rate of GLUT4 and IRAP translocation results from a reduction in GLUT4/IRAP-containing vesicle fusion and not trafficking or docking to the plasma membrane.

  2. Impact of lipid phosphatases SHIP2 and PTEN on the time- and Akt-isoform-specific amelioration of TNF-alpha-induced insulin resistance in 3T3-L1 adipocytes.

    PubMed

    Ikubo, Mariko; Wada, Tsutomu; Fukui, Kazuhito; Ishiki, Manabu; Ishihara, Hajime; Asano, Tomoichiro; Tsuneki, Hiroshi; Sasaoka, Toshiyasu

    2009-01-01

    TNF-alpha is a major contributor to the pathogenesis of insulin resistance associated with obesity and inflammation by serine phosphorylating and degrading insulin receptor substrate-1. Presently, we further found that pretreatment with TNF-alpha inhibited insulin-induced phosphorylation of Akt2 greater than Akt1. Since lipid phosphatases SH2-containing inositol 5'-phoshatase 2 (SHIP2) and phosphatase and tensin homologs deleted on chromosome 10 (PTEN) are negative regulators of insulin's metabolic signaling at the step downstream of phosphatidylinositol 3-kinase, we investigated the Akt isoform-specific properties of these phosphatases in the negative regulation after short- and long-term insulin treatment and examined the influence of inhibition on the amelioration of insulin resistance caused by TNF-alpha in 3T3-L1 adipocytes. Adenovirus-mediated overexpression of WT-SHIP2 decreased the phosphorylation of Akt2 greater than Akt1 after insulin stimulation up to 15 min. Expression of a dominant-negative DeltaIP-SHIP2 enhanced the phosphorylation of Akt2 up to 120 min. On the other hand, overexpression of WT-PTEN inhibited the phosphorylation of both Akt1 and Akt2 after short- but not long-term insulin treatment. The expression of DeltaIP-PTEN enhanced the phosphorylation of Akt1 at 120 min and that of Akt2 at 2 min. Interestingly, the expression of DeltaIP-SHIP2, but not DeltaIP-PTEN, protected against the TNF-alpha inhibition of insulin-induced phosphorylation of Akt2, GSK3, and AS160, whereas both improved the TNF-alpha inhibition of insulin-induced 2-deoxyglucose uptake. The results indicate that these lipid phosphatases possess different characteristics according to the time and preference of Akt isoform-dependent signaling in the negative regulation of the metabolic actions of insulin, whereas both inhibitions are effective in the amelioration of insulin resistance caused by TNF-alpha.

  3. Natural killer T cells in adipose tissue prevent insulin resistance

    PubMed Central

    Schipper, Henk S.; Rakhshandehroo, Maryam; van de Graaf, Stan F.J.; Venken, Koen; Koppen, Arjen; Stienstra, Rinke; Prop, Serge; Meerding, Jenny; Hamers, Nicole; Besra, Gurdyal; Boon, Louis; Nieuwenhuis, Edward E.S.; Elewaut, Dirk; Prakken, Berent; Kersten, Sander; Boes, Marianne; Kalkhoven, Eric

    2012-01-01

    Lipid overload and adipocyte dysfunction are key to the development of insulin resistance and can be induced by a high-fat diet. CD1d-restricted invariant natural killer T (iNKT) cells have been proposed as mediators between lipid overload and insulin resistance, but recent studies found decreased iNKT cell numbers and marginal effects of iNKT cell depletion on insulin resistance under high-fat diet conditions. Here, we focused on the role of iNKT cells under normal conditions. We showed that iNKT cell–deficient mice on a low-fat diet, considered a normal diet for mice, displayed a distinctive insulin resistance phenotype without overt adipose tissue inflammation. Insulin resistance was characterized by adipocyte dysfunction, including adipocyte hypertrophy, increased leptin, and decreased adiponectin levels. The lack of liver abnormalities in CD1d-null mice together with the enrichment of CD1d-restricted iNKT cells in both mouse and human adipose tissue indicated a specific role for adipose tissue–resident iNKT cells in the development of insulin resistance. Strikingly, iNKT cell function was directly modulated by adipocytes, which acted as lipid antigen-presenting cells in a CD1d-mediated fashion. Based on these findings, we propose that, especially under low-fat diet conditions, adipose tissue–resident iNKT cells maintain healthy adipose tissue through direct interplay with adipocytes and prevent insulin resistance. PMID:22863618

  4. Natural killer T cells in adipose tissue prevent insulin resistance.

    PubMed

    Schipper, Henk S; Rakhshandehroo, Maryam; van de Graaf, Stan F J; Venken, Koen; Koppen, Arjen; Stienstra, Rinke; Prop, Serge; Meerding, Jenny; Hamers, Nicole; Besra, Gurdyal; Boon, Louis; Nieuwenhuis, Edward E S; Elewaut, Dirk; Prakken, Berent; Kersten, Sander; Boes, Marianne; Kalkhoven, Eric

    2012-09-01

    Lipid overload and adipocyte dysfunction are key to the development of insulin resistance and can be induced by a high-fat diet. CD1d-restricted invariant natural killer T (iNKT) cells have been proposed as mediators between lipid overload and insulin resistance, but recent studies found decreased iNKT cell numbers and marginal effects of iNKT cell depletion on insulin resistance under high-fat diet conditions. Here, we focused on the role of iNKT cells under normal conditions. We showed that iNKT cell-deficient mice on a low-fat diet, considered a normal diet for mice, displayed a distinctive insulin resistance phenotype without overt adipose tissue inflammation. Insulin resistance was characterized by adipocyte dysfunction, including adipocyte hypertrophy, increased leptin, and decreased adiponectin levels. The lack of liver abnormalities in CD1d-null mice together with the enrichment of CD1d-restricted iNKT cells in both mouse and human adipose tissue indicated a specific role for adipose tissue-resident iNKT cells in the development of insulin resistance. Strikingly, iNKT cell function was directly modulated by adipocytes, which acted as lipid antigen-presenting cells in a CD1d-mediated fashion. Based on these findings, we propose that, especially under low-fat diet conditions, adipose tissue-resident iNKT cells maintain healthy adipose tissue through direct interplay with adipocytes and prevent insulin resistance.

  5. Constitutive adipocyte mTORC1 activation enhances mitochondrial activity and reduces visceral adiposity in mice.

    PubMed

    Magdalon, Juliana; Chimin, Patricia; Belchior, Thiago; Neves, Rodrigo X; Vieira-Lara, Marcel A; Andrade, Maynara L; Farias, Talita S; Bolsoni-Lopes, Andressa; Paschoal, Vivian A; Yamashita, Alex S; Kowaltowski, Alicia J; Festuccia, William T

    2016-05-01

    Mechanistic target of rapamycin complex 1 (mTORC1) loss of function reduces adiposity whereas partial mTORC1 inhibition enhances fat deposition. Herein we evaluated how constitutive mTORC1 activation in adipocytes modulates adiposity in vivo. Mice with constitutive mTORC1 activation in adipocytes induced by tuberous sclerosis complex (Tsc)1 deletion and littermate controls were evaluated for body mass, energy expenditure, glucose and fatty acid metabolism, mitochondrial function, mRNA and protein contents. Adipocyte-specific Tsc1 deletion reduced visceral, but not subcutaneous, fat mass, as well as adipocyte number and diameter, phenotypes that were associated with increased lipolysis, UCP-1 content (browning) and mRNA levels of pro-browning transcriptional factors C/EBPβ and ERRα. Adipocyte Tsc1 deletion enhanced mitochondrial oxidative activity, fatty acid oxidation and the expression of PGC-1α and PPARα in both visceral and subcutaneous fat. In brown adipocytes, however, Tsc1 deletion did not affect UCP-1 content and basal respiration. Adipocyte Tsc1 deletion also reduced visceral adiposity and enhanced glucose tolerance, liver and muscle insulin signaling and adiponectin secretion in mice fed with purified low- or high-fat diet. In conclusion, adipocyte-specific Tsc1 deletion enhances mitochondrial activity, induces browning and reduces visceral adiposity in mice.

  6. Effects of cardiotrophin on adipocytes.

    PubMed

    Zvonic, Sanjin; Hogan, Jessica C; Arbour-Reily, Patricia; Mynatt, Randall L; Stephens, Jacqueline M

    2004-11-12

    Cardiotrophin (CT-1) is a naturally occurring protein member of the interleukin (IL)-6 cytokine family and signals through the gp130/leukemia inhibitory factor receptor (LIFR) heterodimer. The formation of gp130/LIFR complex triggers the auto/trans-phosphorylation of associated Janus kinases, leading to the activation of Janus kinase/STAT and MAPK (ERK1 and -2) signaling pathways. Since adipocytes express both gp130 and LIFR proteins and are responsive to other IL-6 family cytokines, we examined the effects of CT-1 on 3T3-L1 adipocytes. Our studies have shown that CT-1 administration results in a dose- and time-dependent activation and nuclear translocation of STAT1, -3, -5A, and -5B as well as ERK1 and -2. We also confirmed the ability of CT-1 to induce signaling in fat cells in vivo. Our studies revealed that neither CT-1 nor ciliary neurotrophic factor treatment affected adipocyte differentiation. However, acute CT-1 treatment caused an increase in SOCS-3 mRNA in adipocytes and a transient decrease in peroxisome proliferator-activated receptor gamma (PPARgamma) mRNA that was regulated by the binding of STAT1 to the PPARgamma2 promoter. The effects of CT-1 on SOCS-3 and PPARgamma mRNA were independent of MAPK activation. Chronic administration of CT-1 to 3T3-L1 adipocytes resulted in a decrease of both fatty acid synthase and insulin receptor substrate-1 protein expression yet did not effect the expression of a variety of other adipocyte proteins. Moreover, chronic CT-1 treatment resulted in the development of insulin resistance as judged by a decrease in insulin-stimulated glucose uptake. In summary, CT-1 is a potent regulator of signaling in adipocytes in vitro and in vivo, and our current efforts are focused on determining the role of this cardioprotective cytokine on adipocyte physiology.

  7. Retinol-Binding Protein 4 Inhibits Insulin Signaling in Adipocytes by Inducing Proinflammatory Cytokines in Macrophages through a c-Jun N-Terminal Kinase- and Toll-Like Receptor 4-Dependent and Retinol-Independent Mechanism

    PubMed Central

    Norseen, Julie; Hosooka, Tetsuya; Hammarstedt, Ann; Yore, Mark M.; Kant, Shashi; Aryal, Pratik; Kiernan, Urban A.; Phillips, David A.; Maruyama, Hiroshi; Kraus, Bettina J.; Usheva, Anny; Davis, Roger J.; Smith, Ulf

    2012-01-01

    Retinol-binding protein 4 (RBP4), the sole retinol transporter in blood, is secreted from adipocytes and liver. Serum RBP4 levels correlate highly with insulin resistance, other metabolic syndrome factors, and cardiovascular disease. Elevated serum RBP4 causes insulin resistance, but the molecular mechanisms are unknown. Here we show that RBP4 induces expression of proinflammatory cytokines in mouse and human macrophages and thereby indirectly inhibits insulin signaling in cocultured adipocytes. This occurs through activation of c-Jun N-terminal protein kinase (JNK) and Toll-like receptor 4 (TLR4) pathways independent of the RBP4 receptor, STRA6. RBP4 effects are markedly attenuated in JNK1−/− JNK2−/− macrophages and TLR4−/− macrophages. Because RBP4 is a retinol-binding protein, we investigated whether these effects are retinol dependent. Unexpectedly, retinol-free RBP4 (apo-RBP4) is as potent as retinol-bound RBP4 (holo-RBP4) in inducing proinflammatory cytokines in macrophages. Apo-RBP4 is likely to be physiologically significant since RBP4/retinol ratios are increased in serum of lean and obese insulin-resistant humans compared to ratios in insulin-sensitive humans, indicating that higher apo-RBP4 is associated with insulin resistance independent of obesity. Thus, RBP4 may cause insulin resistance by contributing to the development of an inflammatory state in adipose tissue through activation of proinflammatory cytokines in macrophages. This process reveals a novel JNK- and TLR4-dependent and retinol- and STRA6-independent mechanism of action for RBP4. PMID:22431523

  8. Estrogen receptor 1 agonist PPT stimulates Slc2a4 gene expression and improves insulin-induced glucose uptake in adipocytes.

    PubMed

    Campello, R S; Alves-Wagner, A B; Lucas, T F; Mori, R C; Furuya, D T; Porto, C S; Machado, U F

    2012-01-01

    Type 2 diabetes mellitus is characterized by disruption in glycemic homeostasis, involving impaired insulin-induced glucose disposal. For that, reduced glucose transporter GLUT4, encoded by Slc2a4 gene, plays a fundamental role. Conversely, increase in Slc2a4/GLUT4 expression improves glycemic homeostasis. Recent studies have proposed that estradiol is able to modulate Slc2a4 expression, according to distinct effects upon estrogen receptors ESR1/ESR2. We hypothesize that ESR1-agonist effect could stimulate Slc2a4 expression; thus, increasing cellular glucose disposal, which could be beneficial to glycemic control. Differentiated 3T3-L1 adipocytes were treated (24 hours) with selective ESR1- agonist PPT 1,3,5-tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole, selective ESR1-antagonist MPP 1,3-Bis(4- hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazole dihydrochloride, and selective ESR2 agonist DPN 2,3-bis(4-Hydroxyphenyl)-propionitrile, with/without 17β-estradiol (E2). We analyzed Slc2a4 mRNA (real time PCR) and GLUT4 protein (Western blotting) expression, transcriptional activity of the Slc2a4 repressor Nuclear Factor- κB (NF-κB) (electrophoretic mobility shift assay), and cellular glucose disposal (2-deoxi-D-[(3)H]glucose uptake, 2-DG). ESR1-agonist PPT enhanced Slc2a4/GLUT4 expression (~30%) in the absence or presence of 0.1 and 10 nmol/L E2, and decreased the NF-κB binding activity (~50%). Conversely, ESR1-antagonist MPP, together with E2, decreased Slc2a4/GLUT4 expression (20-40%) and increased NF-κB binding activity (~30%). Furthermore, treatment with ESR2- agonist DPN decreased Slc2a4/GLUT4 expression (20-50%). 2-DG uptake was modulated in parallel to that observed in GLUT4 protein. The present results reveal that ESR1 activity enhances, whereas ESR2 activity represses, Slc2a4/GLUT4 expression. These effects are partially mediated by NF-κB, and allow parallel changes in adipocyte glucose disposal. Furthermore, the data provide evidences that

  9. Insulin

    MedlinePlus

    ... Information by Audience For Women Women's Health Topics Insulin Share Tweet Linkedin Pin it More sharing options ... medicines. You can do it. Back to Top Insulin Safety Tips Never drink insulin. Do not share ...

  10. [Adipocytic tumors].

    PubMed

    Stock, Nathalie

    2015-01-01

    Adipocytic tumors are the most common mesenchymal neoplasms, liposarcoma accounting for approximately 20% of soft tissue sarcomas. The differential diagnosis between benign and malignant tumors is often problematic and represents a significant proportion of consultation cases. The goal of this article is to review liposarcoma subtypes, the main benign adipocytic neoplasms: lipoblastoma, hibernoma, spindle/pleomorphic cell lipoma, chondroid lipoma, as well as non adipocytic neoplasms with a lipomatous component such as lipomatous solitary fibrous tumor, emphasizing on practical differential diagnosis issues, and immunohistochemical and molecular tools allowing their resolution.

  11. Changes of insulin effect on lipogenesis and insulin binding receptors during hypokinesia

    NASA Astrophysics Data System (ADS)

    Macho, L.; Fickova, M.; Zorad, S.

    The effect of hypokinesia on insulin action and insulin binding to specific receptors in fat cells was studied. Male Wistar rats were exposed to hypokinesia in special adjustable plastic cages for 1, 7, 21 and 60 days, and the stimulatory effect of insulin (10 and 100 mU) on the incorporation of radiocarbon labelled glucose into lipids of fat tissue and the binding of insulin to receptors of isolated adipocytes was estimated. The stimulation of lipogenesis by insulin was slightly diminished after hypokinesia for 1 day, however, an important increase of insulin action was found in rats exposed to hypokinesia for 60 days. The decrease of insulin binding capacity of the number of binding sites per cell and of the insulin receptor density was found after 1 day of hypokinesia. In rats exposed to hypokinesia for 60 days, in agreement with the higher stimulatory affect of insulin, an increase of insulin receptor density was observed. These results showed that hypokinesia has an important influence on stimulatory action of insulin and on insulin receptors in adipocytes.

  12. Adipose progenitor cells reside among the mature adipocytes: morphological research using an organotypic culture system.

    PubMed

    Anayama, Hisashi; Fukuda, Ryo; Yamate, Jyoji

    2015-11-01

    The precise localization and biological characteristics of the adipose progenitor cells are still a focus of debate. In this study, the localization of the adipose progenitor cells was determined using an organotypic culture system of adipose tissue slices. The tissue slices of subcutaneous white adipose tissue from rats were placed on a porous membrane and cultured at the interface between air and the culture medium for up to 5 days with or without adipogenic stimulation. The structure of adipose tissue components was sufficiently preserved during the culture and, following adipogenic stimulation with insulin, dexamethasone, and 3-isobutyl-1-methylxanthine, numerous multilocular adipocytes appeared in the interstitium among the mature adipocytes. Histomorphological 3-D observation using confocal laser microscopy revealed the presence of small mesenchymal cells containing little or no fat residing in the perivascular region and on the mature adipocytes and differentiation from the pre-existing mesenchymal cells to multilocular adipocytes. Immunohistochemistry demonstrated that these cells were initially present within the fibronectin-positive extracellular matrix (ECM). The adipose differentiation of the mesenchymal cells was confirmed by the enhanced expression of C/EBP-β suggesting adipose differentiation and the concurrent advent of CD105-expressing mesenchymal cells within the interstitium of the mature adipocytes. Based on the above, the mesenchymal cells embedded in the ECM around the mature adipocytes were confirmed to be responsible for adipogenesis because the transition of the mesenchymal cells to the stem state contributed to the increase in the number of adipocytes in rat adipose tissue.

  13. Protein Carbonylation and Adipocyte Mitochondrial Function*

    PubMed Central

    Curtis, Jessica M.; Hahn, Wendy S.; Stone, Matthew D.; Inda, Jacob J.; Droullard, David J.; Kuzmicic, Jovan P.; Donoghue, Margaret A.; Long, Eric K.; Armien, Anibal G.; Lavandero, Sergio; Arriaga, Edgar; Griffin, Timothy J.; Bernlohr, David A.

    2012-01-01

    Carbonylation is the covalent, non-reversible modification of the side chains of cysteine, histidine, and lysine residues by lipid peroxidation end products such as 4-hydroxy- and 4-oxononenal. In adipose tissue the effects of such modifications are associated with increased oxidative stress and metabolic dysregulation centered on mitochondrial energy metabolism. To address the role of protein carbonylation in the pathogenesis of mitochondrial dysfunction, quantitative proteomics was employed to identify specific targets of carbonylation in GSTA4-silenced or overexpressing 3T3-L1 adipocytes. GSTA4-silenced adipocytes displayed elevated carbonylation of several key mitochondrial proteins including the phosphate carrier protein, NADH dehydrogenase 1α subcomplexes 2 and 3, translocase of inner mitochondrial membrane 50, and valyl-tRNA synthetase. Elevated protein carbonylation is accompanied by diminished complex I activity, impaired respiration, increased superoxide production, and a reduction in membrane potential without changes in mitochondrial number, area, or density. Silencing of the phosphate carrier or NADH dehydrogenase 1α subcomplexes 2 or 3 in 3T3-L1 cells results in decreased basal and maximal respiration. These results suggest that protein carbonylation plays a major instigating role in cytokine-dependent mitochondrial dysfunction and may be linked to the development of insulin resistance in the adipocyte. PMID:22822087

  14. Control of cell number by Drosophila FOXO: downstream and feedback regulation of the insulin receptor pathway

    PubMed Central

    Puig, Oscar; Marr, Michael T.; Ruhf, M. Laure; Tjian, Robert

    2003-01-01

    The Drosophila insulin receptor (dInR) regulates cell growth and proliferation through the dPI3K/dAkt pathway, which is conserved in metazoan organisms. Here we report the identification and functional characterization of the Drosophila forkhead-related transcription factor dFOXO, a key component of the insulin signaling cascade. dFOXO is phosphorylated by dAkt upon insulin treatment, leading to cytoplasmic retention and inhibition of its transcriptional activity. Mutant dFOXO lacking dAkt phosphorylation sites no longer responds to insulin inhibition, remains in the nucleus, and is constitutively active. dFOXO activation in S2 cells induces growth arrest and activates two key players of the dInR/dPI3K/dAkt pathway: the translational regulator d4EBP and the dInR itself. Induction of d4EBP likely leads to growth inhibition by dFOXO, whereas activation of dInR provides a novel transcriptionally induced feedback control mechanism. Targeted expression of dFOXO in fly tissues regulates organ size by specifying cell number with no effect on cell size. Our results establish dFOXO as a key transcriptional regulator of the insulin pathway that modulates growth and proliferation. PMID:12893776

  15. Adiponectin Inhibits Lipolysis in Mouse Adipocytes

    PubMed Central

    Qiao, Liping; Kinney, Brice; Schaack, Jerome; Shao, Jianhua

    2011-01-01

    OBJECTIVE Adiponectin is an adipocyte-derived hormone that sensitizes insulin and improves energy metabolism in tissues. This study was designed to investigate the direct regulatory effects of adiponectin on lipid metabolism in adipocytes. RESEARCH DESIGN AND METHODS Basal and hormone-stimulated lipolysis were comparatively analyzed using white adipose tissues or primary adipocytes from adiponectin gene knockout and control mice. To further study the underlying mechanisms through which adiponectin suppresses lipolysis, cultured 3T3-L1 adipocytes and adenovirus-mediated gene transduction were used. RESULTS Significantly increased lipolysis was observed in both adiponectin gene knockout mice and primary adipocytes from these mice. Hormone-stimulated glycerol release was inhibited in adiponectin-treated adipocytes. Adiponectin suppressed hormone-sensitive lipase activation without altering adipose triglyceride lipase and CGI-58 expression in adipocytes. Moreover, adiponectin reduced protein levels of the type 2 regulatory subunit RIIα of protein kinase A by reducing its protein stability. Ectopic expression of RIIα abolished the inhibitory effects of adiponectin on lipolysis in adipocytes. CONCLUSIONS This study demonstrates that adiponectin inhibits lipolysis in adipocytes and reveals a novel function of adiponectin in lipid metabolism in adipocytes. PMID:21430087

  16. Insulin demand regulates β cell number via the unfolded protein response.

    PubMed

    Sharma, Rohit B; O'Donnell, Amy C; Stamateris, Rachel E; Ha, Binh; McCloskey, Karen M; Reynolds, Paul R; Arvan, Peter; Alonso, Laura C

    2015-10-01

    Although stem cell populations mediate regeneration of rapid turnover tissues, such as skin, blood, and gut, a stem cell reservoir has not been identified for some slower turnover tissues, such as the pancreatic islet. Despite lacking identifiable stem cells, murine pancreatic β cell number expands in response to an increase in insulin demand. Lineage tracing shows that new β cells are generated from proliferation of mature, differentiated β cells; however, the mechanism by which these mature cells sense systemic insulin demand and initiate a proliferative response remains unknown. Here, we identified the β cell unfolded protein response (UPR), which senses insulin production, as a regulator of β cell proliferation. Using genetic and physiologic models, we determined that among the population of β cells, those with an active UPR are more likely to proliferate. Moreover, subthreshold endoplasmic reticulum stress (ER stress) drove insulin demand-induced β cell proliferation, through activation of ATF6. We also confirmed that the UPR regulates proliferation of human β cells, suggesting that therapeutic UPR modulation has potential to expand β cell mass in people at risk for diabetes. Together, this work defines a stem cell-independent model of tissue homeostasis, in which differentiated secretory cells use the UPR sensor to adapt organ size to meet demand.

  17. Adipocyte Ceramides Regulate Subcutaneous Adipose Browning, Inflammation, and Metabolism.

    PubMed

    Chaurasia, Bhagirath; Kaddai, Vincent Andre; Lancaster, Graeme Iain; Henstridge, Darren C; Sriram, Sandhya; Galam, Dwight Lark Anolin; Gopalan, Venkatesh; Prakash, K N Bhanu; Velan, S Sendhil; Bulchand, Sarada; Tsong, Teh Jing; Wang, Mei; Siddique, Monowarul Mobin; Yuguang, Guan; Sigmundsson, Kristmundur; Mellet, Natalie A; Weir, Jacquelyn M; Meikle, Peter J; Bin M Yassin, M Shabeer; Shabbir, Asim; Shayman, James A; Hirabayashi, Yoshio; Shiow, Sue-Anne Toh Ee; Sugii, Shigeki; Summers, Scott A

    2016-12-13

    Adipocytes package incoming fatty acids into triglycerides and other glycerolipids, with only a fraction spilling into a parallel biosynthetic pathway that produces sphingolipids. Herein, we demonstrate that subcutaneous adipose tissue of type 2 diabetics contains considerably more sphingolipids than non-diabetic, BMI-matched counterparts. Whole-body and adipose tissue-specific inhibition/deletion of serine palmitoyltransferase (Sptlc), the first enzyme in the sphingolipid biosynthesis cascade, in mice markedly altered adipose morphology and metabolism, particularly in subcutaneous adipose tissue. The reduction in adipose sphingolipids increased brown and beige/brite adipocyte numbers, mitochondrial activity, and insulin sensitivity. The manipulation also increased numbers of anti-inflammatory M2 macrophages in the adipose bed and induced secretion of insulin-sensitizing adipokines. By comparison, deletion of serine palmitoyltransferase from macrophages had no discernible effects on metabolic homeostasis or adipose function. These data indicate that newly synthesized adipocyte sphingolipids are nutrient signals that drive changes in the adipose phenotype to influence whole-body energy expenditure and nutrient metabolism. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Superantigen activates the gp130 receptor on adipocytes resulting in altered adipocyte metabolism.

    PubMed

    Banke, Elin; Rödström, Karin; Ekelund, Mikael; Dalla-Riva, Jonathan; Lagerstedt, Jens O; Nilsson, Staffan; Degerman, Eva; Lindkvist-Petersson, Karin; Nilson, Bo

    2014-06-01

    The bacteria Staphylococcus aureus is part of the normal bacterial flora and produces a repertoire of enterotoxins which can cause food poisoning and toxic shock and might contribute to the pathogenesis of inflammatory diseases. These enterotoxins directly cross-link the T cell receptor with MHC class II, activating large amounts of T cells and are therefore called superantigens. It was recently discovered that the superantigen SEA binds to the cytokine receptor gp130. As obesity and type 2 diabetes are highly associated with inflammation of the adipose tissue and gp130 has been shown to play an important role in adipocytes, we wanted to investigate the effect of SEA on adipocyte signaling and function. Binding of SEA to gp130 was examined using surface plasmon resonance in a cell free system. Effects of SEA on adipocyte signaling, insulin sensitivity and function were studied using western blotting and biological assays for lipolysis, lipogenesis and glucose uptake. We demonstrate that SEA binds to gp130 with a medium affinity. Furthermore, SEA induces phosphorylation of a key downstream target, STAT3, in adipocytes. SEA also inhibits insulin-induced activation of PKB and PKB downstream signaling which was associated with reduced basal and insulin induced glucose uptake, reduced lipogenesis as well as reduced ability of insulin to inhibit lipolysis. SEA inhibits insulin signaling as well as insulin biological responses in adipocytes supporting that bacterial infection might contribute to the development of insulin resistance and type 2 diabetes. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Concomitant beige adipocyte differentiation upon induction of mesenchymal stem cells into brown adipocytes.

    PubMed

    Wang, Yung-Li; Lin, Shih-Pei; Hsieh, Patrick C H; Hung, Shih-Chieh

    2016-09-16

    The accumulation of fat, which results in obesity, is related to many metabolic disorders. Besides white and brown adipose tissue, beige adipose tissue has recently been recognized as a new type of accumulated fat. Mesenchymal stem cells (MSCs) have been shown to differentiate into brown adipocytes. Through analyzing levels of mRNA and protein markers associated with beige adipocyte, we found concomitant beige adipocyte differentiation upon induction of MSCs into brown adipocytes in a defined medium containing triiodothyronine, insulin, dexamethasone, and indomethacin. Moreover, we found that protein kinase A (PKA) modulators regulated MSC differentiation into brown or beige adipocytes. Activation of PKA by isobutylmethylxanthine or forskolin increased brown adipocyte differentiation and reduced beige adipocyte differentiation, while inactivation of PKA by KT-5720 or SC-3010 or the knockdown of PKA downstream cAMP response element-binding protein (CREB) decreased brown adipocyte differentiation and increased beige adipocyte differentiation. We also showed that increased brown adipocyte differentiation was accompanied by an increase in mitochondrial mass. In conclusion, we propose a model of beige/brown co-differentiation in MSCs and develop a method for controlling this differentiation via PKA modulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Postreceptor defects causing insulin resistance in normoinsulinemic non-insulin-dependent diabetes mellitus

    SciTech Connect

    Bolinder, J.; Ostman, J.; Arner, P.

    1982-10-01

    The mechanisms of the diminished hypoglycemic response to insulin in non-insulin-dependent diabetes mellitus (NIDDM) with normal levels of circulating plasma insulin were investigated. Specific binding of mono-/sup 125/I (Tyr A14)-insulin to isolated adipocytes and effects of insulin (5--10,000 microunits/ml) on glucose oxidation and lipolysis were determined simultaneously in subcutaneous adipose tissue of seven healthy subjects of normal weight and seven untreated NIDDM patients with normal plasma insulin levels. The two groups were matched for age, sex, and body weight. Insulin binding, measured in terms of receptor number and affinity, was normal in NIDDM, the total number of receptors averaging 350,000 per cell. Neither sensitivity nor the maximum antilipolytic effect of insulin was altered in NIDDM patients as compared with control subjects; the insulin concentration producing half the maximum effect (ED50) was 10 microunits/ml. As regards the effect of insulin on glucose oxidation, for the control subjects ED50 was 30 microunits/ml, whereas in NIDDM patients, insulin exerted no stimulatory effect. The results obtained suggest that the effect of insulin on glucose utilization in normoinsulinemic NIDDM may be diminished in spite of normal insulin binding to receptors. The resistance may be due solely to postreceptor defects, and does not involve antilipolysis.

  1. Adipocyte biology in polycystic ovary syndrome.

    PubMed

    Barber, T M; Franks, S

    2013-07-05

    Polycystic Ovary Syndrome (PCOS) is a common endocrinopathy that is associated with an adverse metabolic profile including insulin resistance. There is a clear association between obesity, the development of PCOS and the severity of its phenotypic, biochemical and metabolic features. Evidence to support this link includes data from epidemiological, pathophysiological and genetic studies. Given the importance of obesity in the development and manifestation of PCOS, ongoing research into the many facets of adipocyte biology in women with the condition is important and should continue to be a priority. In this review article, we discuss the existing literature on fat distribution, adipokines, adipocyte hypertrophy and adipocyte steroid metabolism in women with PCOS.

  2. Riboflavin Reduces Pro-Inflammatory Activation of Adipocyte-Macrophage Co-culture. Potential Application of Vitamin B2 Enrichment for Attenuation of Insulin Resistance and Metabolic Syndrome Development.

    PubMed

    Mazur-Bialy, Agnieszka Irena; Pocheć, Ewa

    2016-12-15

    Due to the progressive increase in the incidence of obese and overweight individuals, cardiometabolic syndrome has become a worldwide pandemic in recent years. Given the immunomodulatory properties of riboflavin, the current study was performed to investigate the potency of riboflavin in reducing obesity-related inflammation, which is the main cause of insulin resistance, diabetes mellitus 2 or arteriosclerosis. We determined whether pretreatment with a low dose of riboflavin (10.4-1000 nM) affected the pro-inflammatory activity of adipocyte-macrophage co-culture (3T3 L1-RAW 264.7) following lipopolysaccharide stimulation (LPS; 100 ng/mL) which mimics obesity-related inflammation. The apoptosis of adipocytes and macrophages as well as tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), interleukin 1beta (IL-1β), monocyte chemotactic protein 1 (MCP-1), high-mobility group box 1 (HMGB1), transforming growth factor-beta 1 (TGFβ), interleukin 10 (IL-10), inducible nitric oxide synthase (iNOS), nitric oxide (NO), matrix metalloproteinase 9 (MMP-9), tissue inhibitor of metalloproteinases-1 (TIMP-1) expression and release, macrophage migration and adipokines (adiponectin and leptin) were determined. Our results indicated an efficient reduction in pro-inflammatory factors (TNFα, IL-6, MCP-1, HMGB1) upon culture with riboflavin supplementation (500-1000 nM), accompanied by elevation in anti-inflammatory adiponectin and IL-10. Moreover, macrophage migration was reduced by the attenuation of chemotactic MCP-1 release and degradation of the extracellular matrix by MMP-9. In conclusion, riboflavin effectively inhibits the pro-inflammatory activity of adipocyte and macrophage co-cultures, and therefore we can assume that its supplementation may reduce the likelihood of conditions associated with the mild inflammation linked to obesity.

  3. Engineering of pseudoislets: effect on insulin secretion activity by cell number, cell population, and microchannel networks.

    PubMed

    Kojima, N; Takeuchi, S; Sakai, Y

    2014-05-01

    Engineered pseudoislets reconstituted from a suspension of pancreatic α and β cells have the potential to relieve the shortage of donor islets for transplantation in the treatment of type 1 diabetes. However, the methods to fabricate pseudoislets are not well developed. In this study, we attempted to generate pseudoislets, which show a higher potential for glucose-induced insulin secretion, by altering total cell number, adjusting the cell ratio of pancreatic α and β cells, and fabricating microchannel networks with the use of alginate hydrogel beads. To effectively aggregate α and β cells and hydrogel beads, we used a previously established rapid aggregation method. When pseudoislets were reconstituted with 8,000 cells in a 1:8 α/β-cell ratio, we observed that the glucose-induced insulin secretion was enhanced by 3.1 times compared with the pseudoislets formed with β cells only. In addition, embedding of microchannel networks increased the insulin secretion rate by 4.4 times compared with the pseudoislets without the microstructures. These findings demonstrated that active modification was effective in reconstituting higher functional pseudoislets, which may be useful for islet transplantation.

  4. Agouti regulates adipocyte transcription factors.

    PubMed

    Mynatt, R L; Stephens, J M

    2001-04-01

    Agouti is a secreted paracrine factor that regulates pigmentation in hair follicle melanocytes. Several dominant mutations cause ectopic expression of agouti, resulting in a phenotype characterized by yellow fur, adult-onset obesity and diabetes, increased linear growth and skeletal mass, and increased susceptibility to tumors. Humans also produce agouti protein, but the highest levels of agouti in humans are found in adipose tissue. To mimic the human agouti expression pattern in mice, transgenic mice (aP2-agouti) that express agouti in adipose tissue were generated. The transgenic mice develop a mild form of obesity, and they are sensitized to the action of insulin. We correlated the levels of specific regulators of insulin signaling and adipocyte differentiation with these phenotypic changes in adipose tissue. Signal transducers and activators of transcription (STAT)1, STAT3, and peroxisome proliferator-activated receptor (PPAR)-gamma protein levels were elevated in the transgenic mice. Treatment of mature 3T3-L1 adipocytes recapitulated these effects. These data demonstrate that agouti has potent effects on adipose tissue. We hypothesize that agouti increases adiposity and promotes insulin sensitivity by acting directly on adipocytes via PPAR-gamma.

  5. Radiation inactivation target size of rat adipocyte glucose transporters in the plasma membrane and intracellular pools

    SciTech Connect

    Jacobs, D.B.; Berenski, C.J.; Spangler, R.A.; Jung, C.Y.

    1987-06-15

    The in situ assembly states of the glucose transport carrier protein in the plasma membrane and in the intracellular (microsomal) storage pool of rat adipocytes were assessed by studying radiation-induced inactivation of the D-glucose-sensitive cytochalasin B binding activities. High energy radiation inactivated the glucose-sensitive cytochalasin B binding of each of these membrane preparations by reducing the total number of the binding sites without affecting the dissociation constant. The reduction in total number of binding sites was analyzed as a function of radiation dose based on target theory, from which a radiation-sensitive mass (target size) was calculated. When the plasma membranes of insulin-treated adipocytes were used, a target size of approximately 58,000 daltons was obtained. For adipocyte microsomal membranes, we obtained target sizes of approximately 112,000 and 109,000 daltons prior to and after insulin treatment, respectively. In the case of microsomal membranes, however, inactivation data showed anomalously low radiation sensitivities at low radiation doses, which may be interpreted as indicating the presence of a radiation-sensitive inhibitor. These results suggest that the adipocyte glucose transporter occurs as a monomer in the plasma membrane while existing in the intracellular reserve pool either as a homodimer or as a stoichiometric complex with a protein of an approximately equal size.

  6. Insulin

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The manipulation of organic materials--cells, tissues, and even living organisms--offers many exciting possibilities for the future from organic computers to improved aquaculture. Commercial researchers are using the microgravity environment to produce large near perfect protein crystals Research on insulin has yielded crystals that far surpass the quality of insulin crystals grown on the ground. Using these crystals industry partners are working to develop new and improved treatments for diabetes. Other researchers are exploring the possibility of producing antibiotics using plant cell cultures which could lead to both orbital production and the improvement of ground-based antibiotic production.

  7. Palmitate Antagonizes Wnt/Beta-catenin Signaling in 3T3-L1 Pre-adipocytes

    USDA-ARS?s Scientific Manuscript database

    Long chain saturated free fatty acids such as palmitate (PA) produce insulin resistance, endoplasmic reticulum stress, and apoptosis in mature adipocytes and pre-adipocytes. In pre-adipocytes, saturated free fatty acids also promote adipogenic induction in the presence of adipogenic hormones. Wnt/be...

  8. Adipocytes, myofibers, and cytokine biology: new horizons in the regulation of growth and body composition.

    PubMed

    Jacobi, S K; Gabler, N K; Ajuwon, K M; Davis, J E; Spurlock, M E

    2006-04-01

    Muscle growth in meat animals is a complex process governed by integrated signals emanating from multiple endocrine and immune cells. A generalized phenomenon among meat animal industries is that animals commonly fail to meet their genetic potential for growth in commercial production settings. Therefore, understanding the impact of stress and disease on muscle growth is essential to improving production efficiency. The adipocyte in particular seems to be well positioned as an interface between energy status and immune function, and may thus influence nutrient partitioning and growth through a combination of signals that influence fat metabolism, glucose uptake, and insulin sensitivity. Adipocytes and myofibers are active participants in the innate immune response, and as such, produce a number of metabolic regulators, including leptin, adiponectin, and proinflammatory cytokines. Specifically, adipocytes and muscle cells respond directly to bacterial lipopolysaccharide (LPS) by producing interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNFalpha). However, adipocytes are also the predominant source of the antiinflammatory hormone adiponectin, which regulates the nuclear factor kappa-B transcription factor. The ability to recognize antigens and produce regulatory molecules strategically positions adipocytes and myofibers to regulate growth locally, and to reciprocally regulate metabolism peripherally.

  9. RNA-binding protein PSPC1 promotes the differentiation-dependent nuclear export of adipocyte RNAs.

    PubMed

    Wang, Jiexin; Rajbhandari, Prashant; Damianov, Andrey; Han, Areum; Sallam, Tamer; Waki, Hironori; Villanueva, Claudio J; Lee, Stephen D; Nielsen, Ronni; Mandrup, Susanne; Reue, Karen; Young, Stephen G; Whitelegge, Julian; Saez, Enrique; Black, Douglas L; Tontonoz, Peter

    2017-03-01

    A highly orchestrated gene expression program establishes the properties that define mature adipocytes, but the contribution of posttranscriptional factors to the adipocyte phenotype is poorly understood. Here we have shown that the RNA-binding protein PSPC1, a component of the paraspeckle complex, promotes adipogenesis in vitro and is important for mature adipocyte function in vivo. Cross-linking and immunoprecipitation followed by RNA sequencing revealed that PSPC1 binds to intronic and 3'-untranslated regions of a number of adipocyte RNAs, including the RNA encoding the transcriptional regulator EBF1. Purification of the paraspeckle complex from adipocytes further showed that PSPC1 associates with the RNA export factor DDX3X in a differentiation-dependent manner. Remarkably, PSPC1 relocates from the nucleus to the cytoplasm during differentiation, coinciding with enhanced export of adipogenic RNAs. Mice lacking PSPC1 in fat displayed reduced lipid storage and adipose tissue mass and were resistant to diet-induced obesity and insulin resistance due to a compensatory increase in energy expenditure. These findings highlight a role for PSPC1-dependent RNA maturation in the posttranscriptional control of adipose development and function.

  10. Convergence and divergence of the signaling pathways for insulin and phosphoinositolglycans.

    PubMed

    Müller, G; Wied, S; Piossek, C; Bauer, A; Bauer, J; Frick, W

    1998-05-01

    Phosphoinositolglycan molecules isolated from insulin-sensitive mammalian tissues have been demonstrated in numerous in vitro studies to exert partial insulin-mimetic activity on glucose and lipid metabolism in insulin-sensitive cells. However, their ill-defined structures, heterogeneous nature, and limited availability have prohibited the analysis of the underlying molecular mechanism. Phosphoinositolglycan-peptide (PIG-P) of defined and homogeneous structure prepared in large scale from the core glycan of a glycosyl-phosphatidylinositol-anchored membrane protein from Saccharomyces cerevisiae has recently been shown to stimulate glucose transport as well as a number of glucose-metabolizing enzymes and pathways to up to 90% (at 2 to 10 microns) of the maximal insulin effect in isolated rat adipocytes, cardiomyocytes, and diaphragms (G. Müller et al., 1997, Endocrinology 138: 3459-3476). Consequently, we used this PIG-P for the present study in which we compare its intracellular signaling with that of insulin. The activation of glucose transport by both PIG-P and insulin in isolated rat adipocytes and diaphragms was found to require stimulation of phosphatidylinositol (PI) 3-kinase but to be independent of functional p70S6kinase and mitogen-activated protein kinase. The increase in glycerol-3-phosphate acyltransferase activity in rat adipocytes in response to PIG-P and insulin was dependent on both PI 3-kinase and p70S6kinase. This suggest that the signaling pathways for PIG-P and insulin to glucose transport and metabolism converage at the level of PI 3-kinase. A component of the PIG-P signaling pathway located up-stream of PI 3-kinase was identified by desensitization of isolated rat adipocytes for PIG-P action by combined treatment with trypsin and NaCl under conditions that preserved cell viability and the insulin-mimetic activity of sodium vanadate but completely blunted the insulin response. Incubation of the cells with either trypsin or NaCl alone was

  11. Convergence and divergence of the signaling pathways for insulin and phosphoinositolglycans.

    PubMed Central

    Müller, G.; Wied, S.; Piossek, C.; Bauer, A.; Bauer, J.; Frick, W.

    1998-01-01

    Phosphoinositolglycan molecules isolated from insulin-sensitive mammalian tissues have been demonstrated in numerous in vitro studies to exert partial insulin-mimetic activity on glucose and lipid metabolism in insulin-sensitive cells. However, their ill-defined structures, heterogeneous nature, and limited availability have prohibited the analysis of the underlying molecular mechanism. Phosphoinositolglycan-peptide (PIG-P) of defined and homogeneous structure prepared in large scale from the core glycan of a glycosyl-phosphatidylinositol-anchored membrane protein from Saccharomyces cerevisiae has recently been shown to stimulate glucose transport as well as a number of glucose-metabolizing enzymes and pathways to up to 90% (at 2 to 10 microns) of the maximal insulin effect in isolated rat adipocytes, cardiomyocytes, and diaphragms (G. Müller et al., 1997, Endocrinology 138: 3459-3476). Consequently, we used this PIG-P for the present study in which we compare its intracellular signaling with that of insulin. The activation of glucose transport by both PIG-P and insulin in isolated rat adipocytes and diaphragms was found to require stimulation of phosphatidylinositol (PI) 3-kinase but to be independent of functional p70S6kinase and mitogen-activated protein kinase. The increase in glycerol-3-phosphate acyltransferase activity in rat adipocytes in response to PIG-P and insulin was dependent on both PI 3-kinase and p70S6kinase. This suggest that the signaling pathways for PIG-P and insulin to glucose transport and metabolism converage at the level of PI 3-kinase. A component of the PIG-P signaling pathway located up-stream of PI 3-kinase was identified by desensitization of isolated rat adipocytes for PIG-P action by combined treatment with trypsin and NaCl under conditions that preserved cell viability and the insulin-mimetic activity of sodium vanadate but completely blunted the insulin response. Incubation of the cells with either trypsin or NaCl alone was

  12. Direct and Indirect Effects of Leptin on Adipocyte Metabolism

    PubMed Central

    Harris, Ruth B.S.

    2013-01-01

    Leptin is hypothesized to function as a negative feedback signal in the regulation of energy balance. It is produced primarily by adipose tissue and circulating concentrations correlate with the size of body fat stores. Administration of exogenous leptin to normal weight, leptin responsive animals inhibits food intake and reduces the size of body fat stores whereas mice that are deficient in either leptin or functional leptin receptors are hyperphagic and obese, consistent with a role for leptin in the control of body weight. This review discusses the effect of leptin on adipocyte metabolism. Because adipocytes express leptin receptors there is the potential for leptin to influence adipocyte metabolism directly. Adipocytes also are insulin responsive and receive sympathetic innervation, therefore leptin can also modify adipocyte metabolism indirectly. Studies published to date suggest that direct activation of adipocyte leptin receptors has little effect on cell metabolism in vivo, but that leptin modifies adipocyte sensitivity to insulin to inhibit lipid accumulation. In vivo administration of leptin leads to a suppression of lipogenesis, an increase in triglyceride hydrolysis and an increase in fatty acid and glucose oxidation. Activation of central leptin receptors also contributes to the development of a catabolic state in adipocytes, but this may vary between different fat depots. Leptin reduces the size of white fat depots by inhibiting cell proliferation both through induction of inhibitory circulating factors and by contributing to sympathetic tone which suppresses adipocyte proliferation. PMID:23685313

  13. Modelling adipocytes size distribution.

    PubMed

    Soula, H A; Julienne, H; Soulage, C O; Géloën, A

    2013-09-07

    Adipocytes are cells whose task is to store excess energy as lipid droplets in their cytoplasm. Adipocytes can adapt their size according to the lipid amount to be stored. Adipocyte size variation can reach one order of magnitude inside the same organism which is unique among cells. A striking feature in adipocytes size distribution is the lack of characteristic size since typical size distributions are bimodal. Since energy can be stored and retrieved and adipocytes are responsible for these lipid fluxes, we propose a simple model of size-dependent lipid fluxes that is able to predict typical adipocytes size distribution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Functional Human Beige Adipocytes from Induced Pluripotent Stem Cells.

    PubMed

    Guénantin, Anne-Claire; Briand, Nolwenn; Capel, Emilie; Dumont, Florent; Morichon, Romain; Provost, Claire; Stillitano, Francesca; Jeziorowska, Dorota; Siffroi, Jean-Pierre; Hajjar, Roger J; Fève, Bruno; Hulot, Jean-Sébastien; Collas, Philippe; Capeau, Jacqueline; Vigouroux, Corinne

    2017-03-07

    Activation of thermogenic beige adipocytes has recently emerged as a promising therapeutic target in obesity and diabetes. Relevant human models for beige adipocyte differentiation are essential to implement such therapeutic strategies. We report a straightforward and efficient protocol to generate functional human beige adipocytes from induced pluripotent stem cells (hiPSCs). Without overexpression of exogenous adipogenic genes, our method recapitulates an adipogenic developmental pathway through successive mesodermal and adipogenic progenitor stages. hiPSC-derived adipocytes are insulin-sensitive and display beige-specific markers and functional properties including upregulation of thermogenic genes, increased mitochondrial content and increased oxygen consumption upon activation with cAMP analogues. Engraftment of hiPSC-derived adipocytes in mice produces well-organized and vascularized adipose tissue, capable of β-adrenergic-responsive glucose uptake. Our model of human beige adipocyte development provides a new and scalable tool for disease modeling and therapeutic screening.

  15. Effect of Sutherlandia frutescens on the lipid metabolism in an insulin resistant rat model and 3T3-L1 adipocytes.

    PubMed

    MacKenzie, Janine; Koekemoer, Trevor C; Roux, Saartjie; van de Venter, Maryna; Dealtry, Gill B

    2012-12-01

    High fat diet induced insulin resistance correlates with dyslipidaemia and ectopic fat deposits in skeletal muscle and liver. The effects of Sutherlandia frutescens, an antidiabetic medicinal plant, on lipid metabolism were evaluated in an insulin resistant (IR) rat model and in 3 T3-preadipocytes. Wistar rats received normal diet (ND) or high fat diet (HFD). After the onset of IR in the HFD group, the rats were subdivided into two subgroups, which either continued with HFD or were treated with 50 mg S. frutescens/kg BW/day and HFD (HFD + SF). After 4 weeks, the HFD + SF rats had a significantly lower body weight than the HFD rats (p < 0.05). Blood plasma analysis showed a decrease in insulin, free fatty acids and triglycerides. Related changes in lipid parameters were observed in the liver, skeletal muscle and adipose tissue. To investigate the effects of S. frutescens on adipose tissue, 3 T3-L1 cells were used as a model. Treatment with S. frutescens led to a decrease in triglyceride accumulation, whilst glucose consumption and lactate production were increased (p < 0.05). These results indicate that S. frutescens directly affects mitochondrial activity and lipid biosynthesis in adipose tissue and provide a mechanism by which S. frutescens can restore insulin sensitivity by modulating fatty acid biosynthesis. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Syntaxin 4, VAMP2, and/or VAMP3/cellubrevin are functional target membrane and vesicle SNAP receptors for insulin-stimulated GLUT4 translocation in adipocytes.

    PubMed Central

    Olson, A L; Knight, J B; Pessin, J E

    1997-01-01

    Introduction of the cytoplasmic domain of syntaxin 4, using either recombinant vaccinia virus or single-cell microinjection, resulted in an inhibition of insulin-stimulated GLUT4 but not GLUT1 translocation to the plasma membrane. This was specific for syntaxin 4, since neither the expression of syntaxin 3 nor the expression of a syntaxin 4 mutant in which the vesicle-associated membrane protein (VAMP) binding site was deleted had any significant effect. Consistent with the requirement for a functional VAMP binding site, expression of the cytoplasmic domains of VAMP2 or VAMP3/cellubrevin also resulted in an inhibition of insulin-stimulated GLUT4 translocation. In addition, immunoprecipitation of the expressed syntaxin 4 cytoplasmic domain resulted in an insulin-stimulated increase in the coimmunoprecipitation of GLUT4-containing vesicles. Together, these data demonstrate that syntaxin 4, VAMP2, and/or VAMP3/cellubrevin can function as target membrane and vesicle SNAP receptors, respectively, for insulin-responsive GLUT4 translocation to the plasma membrane. PMID:9111311

  17. Lilly lecture 1995. Glucose transport: pivotal step in insulin action.

    PubMed

    Kahn, B B

    1996-11-01

    The effect of insulin to acutely stimulate glucose uptake into muscle and adipose tissue is essential for normal glucose homeostasis. The GLUT4 glucose transporter is a major mediator of this action, and insulin recruits GLUT4 from an intracellular pool to the plasma membrane. An important pathologic feature of obesity, NIDDM, and to a lesser extent IDDM is resistance to insulin-stimulated glucose uptake. Investigations of the mechanisms have revealed tissue-specific regulation of GLUT4 with decreased gene expression in adipose cells but not in skeletal muscle. This has led to the hypothesis that alterations in the trafficking of the GLUT4 vesicle or in the exposure or activation of the GLUT4 transporter may cause insulin resistance in skeletal muscle in obesity and diabetes. Exercise training increases GLUT4 expression in muscle in association with enhanced glucose tolerance in vivo. Transgenic mice have been created to investigate other approaches to improve insulin action on glucose transport. Overexpression of GLUT4 in adipocytes of transgenic mice increases the proportion of GLUT4 on the plasma membrane and enhances insulin sensitivity in vivo. Altering insulin signaling by overexpressing p21ras in adipocytes of transgenic mice results in increased GLUT4 on the plasma membrane in the absence of insulin and increases insulin sensitivity in vitro and in vivo. Thus, glucose transport is a pivotal step in whole-body insulin action. Strategies to increase the number of GLUT4 transporters that are functionally inserted in the plasma membrane in muscle and adipocytes may lead to new therapies to treat or prevent NIDDM.

  18. Ceiling culture of mature human adipocytes: use in studies of adipocyte functions.

    PubMed

    Zhang, H H; Kumar, S; Barnett, A H; Eggo, M C

    2000-02-01

    Adipocytes contain large lipid droplets in their cytoplasm. When cultured, they float on top of the medium, clump together, and do not gain equal and sufficient access to the medium. Morphological changes cannot be observed and the majority of adipocytes undergo cell lysis within 72 h of isolation. We have used a ceiling culture method for human mature adipocytes which uses their buoyant property to allow them to adhere to a floating glass surface, where they remain viable for several weeks. Using confocal immunofluorescence microscopy we showed the cellular expression and subcellular localization of leptin in ceiling-cultured adipocytes. The secretion of leptin was increased from ceiling cultures following tumour necrosis factor-alpha treatment. Proliferation of mature human adipocytes in serum-containing medium was demonstrated by incorporation of bromodeoxyuridine, 2% of adipocytes showing positive incorporation after 4 h labelling. Proliferation was also evident from the budding of daughter cells. Apoptosis in the ceiling cultures was increased by 48 h serum deprivation (30-35 vs 10-15% in the control) and was assayed by propidium iodide staining and terminal deoxynucleotidyl transferase-mediated dUTP-fluorescein nick-end labelling. Lipolysis, analysed by liquid scintillation counting, was increased by forskolin (10 microM for 90 min) and lipogenesis, shown by autoradiography, was stimulated by insulin (10 and 100 nM for 4 h). These findings indicate that ceiling-cultured adipocytes maintain adipocyte-specific functions and that ceiling culture, which overcomes the shortcomings of adipocyte suspension culture, can be used to study adipocyte cell biology.

  19. ADMET: ADipocyte METabolism mathematical model.

    PubMed

    Micheloni, Alessio; Orsi, Gianni; De Maria, Carmelo; Vozzi, Giovanni

    2015-01-01

    White fat cells have an important physiological role in maintaining triglyceride and free fatty acid levels due to their fundamental storage property, as well as determining insulin resistance. ADipocyte METabolism is a mathematical model that mimics the main metabolic pathways of human white fat cell, connecting inputs (composition of culture medium) to outputs (glycerol and free fatty acid release). It is based on a set of nonlinear differential equations, implemented in Simulink® and controlled by cellular energetic state. The validation of this model is based on a comparison between the simulation results and a set of experimental data collected from the literature.

  20. Chronological changes in metabolism and functions of cultured adipocytes: a hypothesis for cell aging in mature adipocytes.

    PubMed

    Yu, Yi-Hao; Zhu, Huaijie

    2004-03-01

    The growth and aging of 3T3-L1 adipocytes were investigated in a synchronized tissue-culture system. We systematically characterized several major aspects of adipocyte metabolism and functions as variables of cell age. We found that terminal differentiation of 3T3-L1 cells is followed by a near-linear hypertrophic growth (increase in triglyceride content) of the cultured adipocytes throughout a 20-day study period. However, three metabolically and functionally distinct stages are recognized. The first stage overlaps with differentiation and is represented by small immature adipocytes. The second stage is characterized by fully mature adipocytes that show peaked overall metabolic activities. The third stage is marked by cell aging, with deterioration in every major aspect of the cell's functionality except for the function of net energy storage, which is preserved even in aged adipocytes. Compared with young mature adipocytes, older cells are increasingly insulin resistant, have decreased glucose uptake and fuel consumption, and show impaired glycerokinase-mediated fatty acid reesterification. Moreover, aged adipocytes show reduced gene expression for adiponectin and leptin, each of which is important in systemic regulation of energy metabolism. The characterization of these cell age-dependent changes in adipocyte functionality provides a model for understanding dynamic changes at the tissue level and suggests that adipose tissue is modifiable via adipocyte aging.

  1. Characterization of glucose-insulin responsiveness and impact of fetal number and sex difference on insulin response in the sheep fetus.

    PubMed

    Green, Alice S; Macko, Antoni R; Rozance, Paul J; Yates, Dustin T; Chen, Xiaochuan; Hay, William W; Limesand, Sean W

    2011-05-01

    GSIS is often measured in the sheep fetus by a square-wave hyperglycemic clamp, but maximal β-cell responsiveness and effects of fetal number and sex difference have not been fully evaluated. We determined the dose-response curve for GSIS in fetal sheep (0.9 of gestation) by increasing plasma glucose from euglycemia in a stepwise fashion. The glucose-insulin response was best fit by curvilinear third-order polynomial equations for singletons (y = 0.018x(3) - 0.26x(2) + 1.2x - 0.64) and twins (y = -0.012x(3) + 0.043x(2) + 0.40x - 0.16). In singles, maximal insulin secretion was achieved at 3.4 ± 0.2 mmol/l glucose but began to plateau after 2.4 ± 0.2 mmol/l glucose (90% of maximum), whereas the maximum for twins was reached at 4.8 ± 0.4 mmol/l glucose. In twin (n = 18) and singleton (n = 49) fetuses, GSIS was determined with a square-wave hyperglycemic clamp >2.4 mmol/l glucose. Twins had a lower basal glucose concentration, and plasma insulin concentrations were 59 (P < 0.01) and 43% (P < 0.05) lower in twins than singletons during the euglycemic and hyperglycemic periods, respectively. The basal glucose/insulin ratio was approximately doubled in twins vs. singles (P < 0.001), indicating greater insulin sensitivity. In a separate cohort of fetuses, twins (n = 8) had lower body weight (P < 0.05) and β-cell mass (P < 0.01) than singleton fetuses (n = 7) as a result of smaller pancreata (P < 0.01) and a positive correlation (P < 0.05) between insulin immunopositive area and fetal weight (P < 0.05). No effects of sex difference on GSIS or β-cell mass were observed. These findings indicate that insulin secretion is less responsive to physiological glucose concentrations in twins, due in part to less β-cell mass.

  2. Characterization of glucose-insulin responsiveness and impact of fetal number and sex difference on insulin response in the sheep fetus

    PubMed Central

    Green, Alice S.; Macko, Antoni R.; Rozance, Paul J.; Yates, Dustin T.; Chen, Xiaochuan; Hay, William W.

    2011-01-01

    GSIS is often measured in the sheep fetus by a square-wave hyperglycemic clamp, but maximal β-cell responsiveness and effects of fetal number and sex difference have not been fully evaluated. We determined the dose-response curve for GSIS in fetal sheep (0.9 of gestation) by increasing plasma glucose from euglycemia in a stepwise fashion. The glucose-insulin response was best fit by curvilinear third-order polynomial equations for singletons (y = 0.018x3 − 0.26x2 + 1.2x − 0.64) and twins (y = −0.012x3 + 0.043x2 + 0.40x − 0.16). In singles, maximal insulin secretion was achieved at 3.4 ± 0.2 mmol/l glucose but began to plateau after 2.4 ± 0.2 mmol/l glucose (90% of maximum), whereas the maximum for twins was reached at 4.8 ± 0.4 mmol/l glucose. In twin (n = 18) and singleton (n = 49) fetuses, GSIS was determined with a square-wave hyperglycemic clamp >2.4 mmol/l glucose. Twins had a lower basal glucose concentration, and plasma insulin concentrations were 59 (P < 0.01) and 43% (P < 0.05) lower in twins than singletons during the euglycemic and hyperglycemic periods, respectively. The basal glucose/insulin ratio was approximately doubled in twins vs. singles (P < 0.001), indicating greater insulin sensitivity. In a separate cohort of fetuses, twins (n = 8) had lower body weight (P < 0.05) and β-cell mass (P < 0.01) than singleton fetuses (n = 7) as a result of smaller pancreata (P < 0.01) and a positive correlation (P < 0.05) between insulin immunopositive area and fetal weight (P < 0.05). No effects of sex difference on GSIS or β-cell mass were observed. These findings indicate that insulin secretion is less responsive to physiological glucose concentrations in twins, due in part to less β-cell mass. PMID:21343544

  3. Regional differences in adipocyte lactate production from glucose

    SciTech Connect

    Newby, F.D.; Sykes, M.N.; DiGirolamo, M. )

    1988-11-01

    Having shown that lactate is an important product of glucose metabolism by rat epididymal adipocytes, the authors investigated possible regional differences in adipocyte lactate production and the role of the animals' nutritional state and stage of development. (U-{sup 14}C)glucose metabolism, lactate production, and response to insulin were measured in fat cells isolated from four adipose regions from young lean and older fatter rats, killed either in the fed state or after fasting for 48 h. In the absence of insulin, mesenteric fat cells from either age group metabolized significantly more glucose per cell and converted more glucose to lactate than cells from other depots, regardless of nutritional state. Adipocytes from fasted lean rats showed a significant increase in the relative glucose conversion to lactate in all depots when compared with cells from fed lean rats. Fasting of older fatter rats, however, had limited effects on the relative adipocyte glucose conversion to lactate since lactate production was already high. Mesenteric fat cells had the lowest relative response to insulin, possibly due to the high basal rate of glucose metabolism. These findings indicate that differences exist among adipose regions in the rates of glucose metabolism, lactate production and response to insulin. The anatomical location of the mesenteric adipose depot, coupled with a high metabolic rate and blood perfusion, suggests that mesenteric adipocytes may provide a unique and more direct contribution of metabolic substrates for hepatic metabolism than adipocytes from other depots.

  4. Adipocyte Heme Oxygenase-1 Induction Attenuates Metabolic Syndrome In Both Male And Female Obese Mice

    PubMed Central

    Burgess, Angela; Li, Ming; Vanella, Luca; Kim, Dong Hyun; Rezzani, Rita; Rodella, Luigi; Sodhi, Komal; Canestraro, Martina; Martasek, Pavel; Peterson, Stephen J.; Kappas, Attallah; Abraham, Nader G.

    2010-01-01

    Increases in visceral fat are associated with increased inflammation, dyslipidemia, insulin resistance, glucose intolerance and vascular dysfunction. We examined the effect of the potent heme oxygenase (HO)-1 inducer, cobalt protoporphyrin (CoPP), on regulation of adiposity and glucose levels in both female and male obese mice. Both lean and obese mice were administered CoPP intraperitoneally, (3mg/kg/once a week) for 6 weeks. Serum levels of adiponectin, TNFα, IL-1β and IL-6, and HO-1, PPARγ, pAKT, and pAMPK protein expression in adipocytes and vascular tissue were measured. While female obese mice continued to gain weight at a rate similar to controls, induction of HO-1 slowed the rate of weight gain in male obese mice. HO-1 induction led to lowered blood pressure levels in obese males and females mice similar to that of lean male and female mice. HO-1 induction also produced a significant decrease in the plasma levels of IL-6, TNF-α, IL-1β and fasting glucose of obese females compared to untreated female obese mice. HO-1 induction increased the number and decreased the size of adipocytes of obese animals. HO-1 induction increased adiponectin, pAKT, pAMPK, and PPARγ levels in adipocyte of obese animals. Induction of HO-1, in adipocytes was associated with an increase in adiponectin and a reduction in inflammatory cytokines. These findings offer the possibility of treating not only hypertension, but also other detrimental metabolic consequences of obesity including insulin resistance and dyslipidemia in obese populations by induction of HO-1 in adipocytes. PMID:21041703

  5. Metformin induces glucose uptake in human preadipocyte-derived adipocytes from various fat depots.

    PubMed

    Fischer, M; Timper, K; Radimerski, T; Dembinski, K; Frey, D M; Zulewski, H; Keller, U; Müller, B; Christ-Crain, M; Grisouard, J

    2010-04-01

    To evaluate the effect of metformin on basal and insulin-induced glucose uptake in subcutaneous and visceral preadipocyte-derived adipocytes from obese and non-obese patients, preadipocytes were obtained from subcutaneous and visceral fat depots during abdominal surgery. Differentiation efficiency was evaluated by measurement of intracellular triglyceride accumulation. Preadipocyte-derived adipocytes were treated with metformin (1 mM) for 24 h with or without the addition of insulin (100 nM) for 20 min and glucose uptake was measured. In cells from each donor, intracellular triglyceride accumulation was more abundant in subcutaneous preadipocyte-derived adipocytes than in visceral preadipocyte-derived adipocytes (p < 0.001). Insulin stimulated glucose uptake in subcutaneous preadipocyte-derived adipocytes from both non-obese and obese patients (p < 0.001 vs. basal). In visceral preadipocyte-derived adipocytes, insulin did not increase basal glucose uptake. In subcutaneous preadipocyte-derived adipocytes from non-obese and obese patients, metformin alone increased glucose uptake to 2.7 +/- 0.2 (p < 0.001) and 2.1 +/- 0.1 fold (p < 0.001) respectively. Metformin increased glucose uptake in visceral preadipocyte-derived adipocytes from non-obese (1.7 +/- 0.1 fold vs. basal, p < 0.001) and obese (2.0 +/- 0.2 fold vs. basal, p < 0.001) patients. Combined treatment with metformin and insulin increased glucose uptake in subcutaneous preadipocyte-derived adipocytes from both non-obese and obese patients (p < 0.001 vs. insulin alone). In preadipocyte-derived adipocytes glucose uptake is induced by metformin independent of the fat depot origin of the preadipocytes (subcutaneous or visceral) and the obesity state of the patients (non-obese or obese). In adipocytes, metformin seems to induce glucose uptake independent of insulin suggesting an alternative mechanism of action of this drug.

  6. Short-term regulation of adiponectin secretion in rat adipocytes.

    PubMed

    Szkudelski, T; Nogowski, L; Szkudelska, K

    2011-01-01

    Adiponectin belongs to the group of biologically active substances secreted by adipocytes and referred to as adipokines. Disturbances in its secretion and/or action are thought to be involved in the pathogenesis of some metabolic diseases. However, regulation of adiponectin secretion is poorly elucidated. In the present study, short-term regulation of adiponectin secretion in primary rat adipocytes was investigated. Isolated rat adipocytes were incubated in Krebs-Ringer buffer containing 5 mM glucose and insulin alone or in the combination with epinephrine, dibutyryl-cAMP, adenosine A(1) receptor antagonist (DPCPX), palmitate, 2-bromopalmitate or inhibitor of mitochondrial electron transport (rotenone). Adipocyte exposure for 2 h to insulin (1-100 nM) significantly increased secretion of adiponectin compared with secretion observed without insulin. Furthermore, secretion of adiponectin from adipocytes incubated with glucose and insulin was reduced by 1 and 2 microM epinephrine, but not by 0.25 and 0.5 microM epinephrine. Under similar conditions, 1 and 2 mM dibutyryl-cAMP substantially diminished secretion of adiponectin, whereas 0.5 mM dibutyryl-cAMP was ineffective. Secretion of adiponectin was found to be effectively decreased by DPCPX. Moreover, adipocyte exposure to rotenone also resulted in a substantial diminution of secretory response of adipocytes incubated for 2 h with glucose and insulin. It was also demonstrated that palmitate and 2-bromopalmitate (0.06-0.5 mM) failed to affect secretion of leptin. The obtained results indicated that in short-term regulation of adiponectin secretion, insulin and epinephrine exert the opposite effects. These effects appeared as early as after 2 h of exposure. Moreover, deprivation of energy or blockade of adenosine action substantially decreased secretion of adiponectin.

  7. Ablation of TSC2 Enhances Insulin Secretion by Increasing the Number of Mitochondria through Activation of mTORC1

    PubMed Central

    Koyanagi, Maki; Asahara, Shun-ichiro; Matsuda, Tomokazu; Hashimoto, Naoko; Shigeyama, Yutaka; Shibutani, Yuki; Kanno, Ayumi; Fuchita, Megumi; Mikami, Tomoko; Hosooka, Tetsutya; Inoue, Hiroshi; Matsumoto, Michihiro; Koike, Masato; Uchiyama, Yasuo; Noda, Tetsuo; Seino, Susumu; Kasuga, Masato; Kido, Yoshiaki

    2011-01-01

    Aim We previously found that chronic tuberous sclerosis protein 2 (TSC2) deletion induces activation of mammalian target of rapamycin Complex 1 (mTORC1) and leads to hypertrophy of pancreatic beta cells from pancreatic beta cell-specific TSC2 knockout (βTSC2−/−) mice. The present study examines the effects of TSC2 ablation on insulin secretion from pancreatic beta cells. Methods Isolated islets from βTSC2−/− mice and TSC2 knockdown insulin 1 (INS-1) insulinoma cells treated with small interfering ribonucleic acid were used to investigate insulin secretion, ATP content and the expression of mitochondrial genes. Results Activation of mTORC1 increased mitochondrial DNA expression, mitochondrial density and ATP production in pancreatic beta cells of βTSC2−/− mice. In TSC2 knockdown INS-1 cells, mitochondrial DNA expression, mitochondrial density and ATP production were increased compared with those in control INS-1 cells, consistent with the phenotype of βTSC2−/− mice. TSC2 knockdown INS-1 cells also exhibited augmented insulin secretory response to glucose. Rapamycin inhibited mitochondrial DNA expression and ATP production as well as insulin secretion in response to glucose. Thus, βTSC2−/− mice exhibit hyperinsulinemia due to an increase in the number of mitochondria as well as enlargement of individual beta cells via activation of mTORC1. Conclusion Activation of mTORC1 by TSC2 ablation increases mitochondrial biogenesis and enhances insulin secretion from pancreatic beta cells. PMID:21886784

  8. Cadmium modulates adipocyte functions in metallothionein-null mice

    SciTech Connect

    Kawakami, Takashige; Nishiyama, Kaori; Kadota, Yoshito; Sato, Masao; Inoue, Masahisa; Suzuki, Shinya

    2013-11-01

    Our previous study has demonstrated that exposure to cadmium (Cd), a toxic heavy metal, causes a reduction of adipocyte size and the modulation of adipokine expression. To further investigate the significance of the Cd action, we studied the effect of Cd on the white adipose tissue (WAT) of metallothionein null (MT{sup −/−}) mice, which cannot form atoxic Cd–MT complexes and are used for evaluating Cd as free ions, and wild type (MT{sup +/+}) mice. Cd administration more significantly reduced the adipocyte size of MT{sup −/−} mice than that of MT{sup +/+} mice. Cd exposure also induced macrophage recruitment to WAT with an increase in the expression level of Ccl2 (MCP-1) in the MT{sup −/−} mice. The in vitro exposure of Cd to adipocytes induce triglyceride release into culture medium, decrease in the expression levels of genes involved in fatty acid synthesis and lipid hydrolysis at 24 h, and at 48 h increase in phosphorylation of the lipid-droplet-associated protein perilipin, which facilitates the degradation of stored lipids in adipocytes. Therefore, the reduction in adipocyte size by Cd may arise from an imbalance between lipid synthesis and lipolysis. In addition, the expression levels of leptin, adiponectin and resistin decreased in adipocytes. Taken together, exposure to Cd may induce unusually small adipocytes and modulate the expression of adipokines differently from the case of physiologically small adipocytes, and may accelerate the risk of developing insulin resistance and type 2 diabetes. - Highlights: • Cd causes a marked reduction in adipocyte size in MT-null mice. • Cd enhances macrophage migration into adipose tissue and disrupt adipokine secretion. • MT gene alleviates Cd-induced adipocyte dysfunctions. • Cd enhances the degradation of stored lipids in adipocytes, mediated by perilipin. • Cd induces unusually small adipocytes and the abnormal expression of adipokines.

  9. Rosiglitazone regulates IL-6-stimulated lipolysis in porcine adipocytes.

    PubMed

    Yang, Yongqing; Yang, Gongshe

    2010-10-01

    Interleukin (IL)-6, a proinflammatory cytokine, stimulates adipocyte lipolysis and induces insulin resistance in obese and diabetic subjects. However, the effects of the anti-diabetic drug rosiglitazone on IL-6-stimulated lipolysis and the underlying molecular mechanism are largely unknown. In this study, we demonstrated that rosiglitazone suppressed IL-6-stimulated lipolysis in differentiated porcine adipocytes by inactivation of extracellular signal-related kinase (ERK). Meanwhile, rosiglitazone enhanced the lipolysis response of adipocytes to isoprenaline. In addition, rosiglitazone significantly reversed IL-6-induced down-regulation of several genes such as perilipin A, peroxisome proliferators activated receptor gamma (PPARγ), and fatty acid synthetase, as well as the up-regulation of IL-6 mRNA. However, mRNA expression of PPARγ coactivator-1 alpha (PCG-1α) was enhanced by rosiglitazone in IL-6-stimulated adipocytes. These results indicate that rosiglitazone suppresses IL-6-stimulated lipolysis in porcine adipocytes through multiple molecular mechanisms.

  10. Dynamics of Adipocyte Turnover in Humans

    SciTech Connect

    Spalding, K; Arner, E; Westermark, P; Bernard, S; Buchholz, B; Bergmann, O; Blomqvist, L; Hoffstedt, J; Naslund, E; Britton, T; Concha, H; Hassan, M; Ryden, M; Frisen, J; Arner, P

    2007-07-16

    Obesity is increasing in an epidemic fashion in most countries and constitutes a public health problem by enhancing the risk for cardiovascular disease and metabolic disorders such as type 2 diabetes. Owing to the increase in obesity, life expectancy may start to decrease in developed countries for the first time in recent history. The factors determining fat mass in adult humans are not fully understood, but increased lipid storage in already developed fat cells is thought to be most important. We show that adipocyte number is a major determinant for the fat mass in adults. However, the number of fat cells stays constant in adulthood in lean and obese and even under extreme conditions, indicating that the number of adipocytes is set during childhood and adolescence. To establish the dynamics within the stable population of adipocytes in adults, we have measured adipocyte turnover by analyzing the integration of {sup 14}C derived from nuclear bomb tests in genomic DNA. Approximately 10% of fat cells are renewed annually at all adult ages and levels of body mass index. Neither adipocyte death nor generation rate is altered in obesity, suggesting a tight regulation of fat cell number that is independent of metabolic profile in adulthood. The high turnover of adipocytes establishes a new therapeutic target for pharmacological intervention in obesity.

  11. Super-resolution microscopy reveals the insulin-resistance-regulated reorganization of GLUT4 on plasma membranes.

    PubMed

    Gao, Lan; Chen, Junling; Gao, Jing; Wang, Hongda; Xiong, Wenyong

    2017-01-15

    GLUT4 (also known as SLC2A4) is essential for glucose uptake in skeletal muscles and adipocytes, which play central roles in whole-body glucose metabolism. Here, using direct stochastic optical reconstruction microscopy (dSTORM) to investigate the characteristics of plasma-membrane-fused GLUT4 at the single-molecule level, we have demonstrated that insulin and insulin resistance regulate the spatial organization of GLUT4 in adipocytes. Stimulation with insulin shifted the balance of GLUT4 on the plasma membrane toward a more dispersed configuration. In contrast, insulin resistance induced a more clustered distribution of GLUT4 and increased the mean number of molecules per cluster. Furthermore, our data demonstrate that the F(5)QQI motif and lipid rafts mediate the maintenance of GLUT4 clusters on the plasma membrane. Mutation of F(5)QQI (F(5)QQA-GLUT4) induced a more clustered distribution of GLUT4; moreover, destruction of lipid rafts in adipocytes expressing F(5)QQA-GLUT4 dramatically decreased the percentage of large clusters and the mean number of molecules per cluster. In conclusion, our data clarify the effects of insulin stimulation or insulin resistance on GLUT4 reorganization on the plasma membrane and reveal new pathogenic mechanisms of insulin resistance.

  12. Insulin-like growth factor 1 gene (CA)n repeats and a variable number of tandem repeats of the insulin gene in Brazilian children born small for gestational age

    PubMed Central

    Coletta, Rocio R D; Jorge, Alexander A L; D' Alva, Catarina Brasil; Pinto, Emília M; Billerbeck, Ana Elisa C; Pachi, Paulo R; Longui, Carlos A; Garcia, Ricardo M; Boguszewski, Margaret; Arnhold, Ivo J P; Mendonca, Berenice B; Costa, Elaine M F

    2013-01-01

    OBJECTIVE: To investigate the influence of (CA)n repeats in the insulin-like growth factor 1 gene and a variable number of tandem repeats of the insulin gene on birth size in children who are small or adequate-sized for gestational age and to correlate these polymorphisms with serum insulin-like growth factor 1 levels and insulin sensitivity in children who are small for gestational age, with and without catch-up growth. PATIENTS AND METHODS: We evaluated 439 infants: 297 that were adequate-sized for gestational age and 142 that were small for gestational age (66 with and 76 without catch-up). The number of (CA)n repeat in the insulin-like growth factor 1 gene and a variable number of tandem repeats in the insulin gene were analyzed using GENESCAN software and polymerase chain reaction followed by enzymatic digestion, respectively. Clinical and laboratory data were obtained from all patients. RESULTS: The height, body mass index, paternal height, target height and insulin-like growth factor 1 serum levels were higher in children who were small for gestational age with catch-up. There was no difference in the allelic and genotypic distributions of both polymorphisms between the adequate-sized and small infants or among small infants with and without catch-up. Similarly, the polymorphisms were not associated with clinical or laboratory variables. CONCLUSION: Polymorphisms of the (CA)n repeats of the insulin-like growth factor 1 gene and a variable number of tandem repeats of the insulin gene, separately or in combination, did not influence pre- or postnatal growth, insulin-like growth factor 1 serum levels or insulin resistance. PMID:23778474

  13. Differential adipogenic and inflammatory properties of small adipocytes in Zucker Obese and Lean rats.

    PubMed

    Liu, Alice; Sonmez, Alper; Yee, Gail; Bazuine, Merlijn; Arroyo, Matilde; Sherman, Arthur; McLaughlin, Tracey; Reaven, Gerald; Cushman, Samuel; Tsao, Philip

    2010-10-01

    We recently reported that a preponderance of small adipose cells, decreased expression of cell differentiation markers, and enhanced inflammatory activity in human subcutaneous whole adipose tissue were associated with insulin resistance. To test the hypothesis that small adipocytes exhibited these differential properties, we characterised small adipocytes from epididymal adipose tissue of Zucker Obese (ZO) and Lean (ZL) rats. Rat epididymal fat pads were removed and adipocytes isolated by collagenase digestion. Small adipocytes were separated by sequential filtration through nylon meshes. Adipocytes were fixed in osmium tetroxide for cell size distribution analysis via Beckman Coulter Multisizer. Quantitative real-time PCR for cell differentiation and inflammatory genes was performed. Small adipocytes represented a markedly greater percentage of the total adipocyte population in ZO than ZL rats (58±4% vs. 12±3%, p<0.001). In ZO rats, small as compared with total adipocytes had 4-fold decreased adiponectin, and 4-fold increased visfatin and IL-6 levels. Comparison of small adipocytes in ZO versus ZL rats revealed 3-fold decreased adiponectin and PPARγ levels, and 2.5-fold increased IL-6. In conclusion, ZO rat adipose tissue harbours a large proportion of small adipocytes that manifest impaired cell differentiation and pro-inflammatory activity, two mechanisms by which small adipocytes may contribute to insulin resistance.

  14. Differential adipogenic and inflammatory properties of small adipocytes in Zucker Obese and Lean rats

    PubMed Central

    Liu, Alice; Sonmez, Alper; Yee, Gail; Bazuine, Merlijn; Arroyo, Matilde; Sherman, Arthur; McLaughlin, Tracey; Reaven, Gerald; Cushman, Samuel; Tsao, Philip

    2012-01-01

    We recently reported that a preponderance of small adipose cells, decreased expression of cell differentiation markers, and enhanced inflammatory activity in human subcutaneous whole adipose tissue were associated with insulin resistance. To test the hypothesis that small adipocytes exhibited these differential properties, we characterized small adipocytes from epididymal adipose tissue of Zucker Obese (ZO) and Lean (ZL) rats. Rat epididymal fat pads were removed and adipocytes isolated by collagenase digestion. Small adipocytes were separated by sequential filtration through nylon meshes. Adipocytes were fixed in osmium tetroxide for cell size distribution analysis via Beckman Coulter Multisizer. Quantitative real-time PCR for cell differentiation and inflammatory genes was performed. Small adipocytes represented a markedly greater percentage of the total adipocyte population in ZO than ZL rats (58±4% vs 12±3%, p<0.001). In ZO rats, small as compared to total adipocytes had 4-fold decreased adiponectin, and 4-fold increased visfatin and IL-6 levels. Comparison of small adipocytes in ZO versus ZL rats revealed 3-fold decreased adiponectin and PPARγ levels, and 2.5-fold increased IL-6. In conclusion, ZO rat adipose tissue harbors a large proportion of small adipocytes that manifest impaired cell differentiation and pro-inflammatory activity, two mechanisms by which small adipocytes may contribute to insulin resistance. PMID:20961992

  15. Cadmium stimulates glucose metabolism in rat adipocytes

    SciTech Connect

    Yamamoto, A.; Wada, O.; Ono, T.; Ono, H.

    1986-07-01

    Cd/sup 2 +/ caused an increase in CO/sub 2/ formation from glucose in rat adipocytes. The apparent Km value for glucose was 2.02 mM for control condition, with Cd/sup 2 +/, and with insulin. Cd/sup 2 +/ stimulates glucose metabolism even though specific diffusion of glucose is blocked. A possible site effected by Cd/sup 2 +/ is discussed.

  16. Decreased beige adipocyte number and mitochondrial respiration coincide with reduced FGF21 gene expression in Sprague Dawley rats fed prenatal low protein and postnatal high fat diets

    USDA-ARS?s Scientific Manuscript database

    We have shown that protein malnutrition during fetal growth followed by postnatal high-fat diets results in a rapid increase in subcutaneous adipose tissue mass in the offspring contributing to development of obesity and insulin resistance. Recent studies have shown that the absence of a key transcr...

  17. Transdifferentiation properties of adipocytes in the adipose organ.

    PubMed

    Cinti, Saverio

    2009-11-01

    Mammals have two types of adipocytes, white and brown, but their anatomy and physiology is different. White adipocytes store lipids, and brown adipocytes burn them to produce heat. Previous descriptions implied their localization in distinct sites, but we demonstrated that they are mixed in many depots, raising the concept of adipose organ. We explain the reason for their cohabitation with the hypothesis of reversible physiological transdifferentiation; they are able to convert one into each other. If needed, the brown component of the organ could increase at the expense of the white component and vice versa. This plasticity is important because the brown phenotype of the organ associates with resistance to obesity and related disorders. Another example of physiological transdifferetiation of adipocytes is offered by the mammary gland; the pregnancy hormonal stimuli seems to trigger a reversible transdifferentiation of adipocytes into milk-secreting epithelial glands. The obese adipose organ is infiltrated by macrophages inducing chronic inflamation that is widely considered as a causative factor for insulin resistance. We showed that the vast majority of macrophages infiltrating the obese organ are arranged around dead adipocytes, forming characteristic crown-like structures. We recently found that visceral fat is more infiltrated than the subcutaneous fat despite a smaller size of visceral adipocytes. This suggests a different susceptibility of visceral and subcutaneous adipocytes to death, raising the concept of smaller critical death size that could be important to explain the key role of visceral fat for the metabolic disorders associated with obesity.

  18. Skeletal muscle insulin resistance in zebrafish induces alterations in β-cell number and glucose tolerance in an age- and diet-dependent manner.

    PubMed

    Maddison, Lisette A; Joest, Kaitlin E; Kammeyer, Ryan M; Chen, Wenbiao

    2015-04-15

    Insulin resistance creates an environment that promotes β-cell failure and development of diabetes. Understanding the events that lead from insulin resistance to diabetes is necessary for development of effective preventional and interventional strategies, and model systems that reflect the pathophysiology of disease progression are an important component toward this end. We have confirmed that insulin enhances glucose uptake in zebrafish skeletal muscle and have developed a zebrafish model of skeletal muscle insulin resistance using a dominant-negative IGF-IR. These zebrafish exhibit blunted insulin signaling and glucose uptake in the skeletal muscle, confirming insulin resistance. In young animals, we observed an increase in the number of β-cells and normal glucose tolerance that was indicative of compensation for insulin resistance. In older animals, the β-cell mass was reduced to that of control with the appearance of impaired glucose clearance but no elevation in fasting blood glucose. Combined with overnutrition, the insulin-resistant animals have an increased fasting blood glucose compared with the control animals, demonstrating that the β-cells in the insulin-resistant fish are in a vulnerable state. The relatively slow progression from insulin resistance to glucose intolerance in this model system has the potential in the future to test cooperating genes or metabolic conditions that may accelerate the development of diabetes and provide new therapeutic targets.

  19. Oleic acid enhances G protein coupled receptor 43 expression in bovine intramuscular adipocytes but not in subcutaneous adipocytes.

    PubMed

    Chung, K Y; Smith, S B; Choi, S H; Johnson, B J

    2016-05-01

    We hypothesized that fatty acids would differentially affect G protein coupled receptor (GPR) 43 mRNA expression and GPR43 protein concentrations in bovine intramuscular (IM) and subcutaneous (SC) adipocytes. The GPR43 protein was detected in bovine liver, pancreas, and semimembranosus (MUS) muscle in samples taken at slaughter. Similarly, GPR43 protein levels were similar in IM adipose tissue and SM muscle but was barely detectable in SC adipose tissue. Primary cultures of IM and SC stromal vascular cells were isolated from bovine adipose tissues. Oleic acid (100 μ) stimulated PPARγ gene expression and decreased stearoyl-CoA desaturase (SCD) gene expression but had no effect on GPR43 gene expression, which was readily detectable in both IM and SC adipocytes. Differentiation cocktail (Diff; 10 μ insulin, 4 μ dexamethasone, and 10 μ ciglitizone) stimulated CCAAT/enhancer-binding protein β (C/EBPβ) and PPARγ gene expression in SC but not IM adipocytes, but Diff increased SCD gene expression in both cell types. Linoleic acid (10 µ) increased PPARγ gene expression relative to Diff cocktail in SC adipocytes, whereas linoleic acid and α-linolenic decreased SCD gene expression relative to control adipocytes and adipocytes incubated with Diff ( < 0.05). Increasing concentrations of oleic acid (1, 10, 100, and 500 μM) increased GPR43 protein and mRNA expression in IM but not SC adipocytes. These data indicated that oleic acid alters mRNA and protein concentrations of G