Science.gov

Sample records for adipogenic gene expression

  1. Acute exercise regulates adipogenic gene expression in white adipose tissue.

    PubMed

    Shen, Y; Zhou, H; Jin, W; Lee, H J

    2016-12-01

    White adipose tissue expansion is associated with both hypertrophy and hyperplasia of adipocytes. Exercise training results in adipocyte hypotrophy by activating lipolysis, but it is poorly understood whether exercise regulates adipogenesis by altering adipogenic gene expression. The purpose of this study was to evaluate the effect of a single bout of swimming exercise on adipogenic gene expression in white adipose tissue (WAT). Male C57BL/6J mice were divided into two groups: a sedentary control group and a 120-minute swimming exercise group. Immediately after acute exercise, adipogenic gene expression in WAT was analysed by RT-PCR, and tdTomato positive cells in WAT from UCP1-cre-tdTomato mice were observed under a confocal microscope. In epididymal white adipose tissue (eWAT), PPARγ2 and C/EBPα expression at the mRNA level was significantly decreased with high induction of Wnt10b and KLFs (KLF2, KLF3, KLF7, KLF6, KLF9 and KLF15), whereas PPARγ2, not C/EBPα, was decreased with high induction of Wnt6 and KLFs (KLF2, KLF3, KLF7, KLF6 and KLF9) in inguinal white adipose tissue (iWAT) after acute exercise. The expression of C/EBPβ and C/EBPδ was upregulated in both WATs with a high level of PGC-1α expression. Expression level of UCP1 was increased only in adipocytes of eWAT, while beige cell specific gene expression was comparable between groups and tdTomato positive cells were not found in WAT of UCP1-cre-tdTomato reporter mouse immediately after acute exercise. These results suggest that acute exercise suppresses adipogenic gene expression and may regulate thermogenesis by activating C/EBPβ, PGC-1α and UCP1 in WAT.

  2. Protein inhibitor of activated STAT3 inhibits adipogenic gene expression

    SciTech Connect

    Deng Jianbei; Hua Kunjie; Caveney, Erica J.; Takahashi, Nobuyuki; Harp, Joyce B. . E-mail: jharp@unc.edu

    2006-01-20

    Protein inhibitor of activated STAT3 (PIAS3), a cytokine-induced repressor of signal transducer and activator of transcription 3 (STAT3) and a modulator of a broad array of nuclear proteins, is expressed in white adipose tissue, but its role in adipogenesis is not known. Here, we determined that PIAS3 was constitutively expressed in 3T3-L1 cells at all stages of adipogenesis. However, it translocated from the nucleus to the cytoplasm 4 days after induction of differentiation by isobutylmethylxanthine, dexamethasone, and insulin (MDI). In ob/ob mice, PIAS3 expression was increased in white adipose tissue depots compared to lean mice and was found in the cytoplasm of adipocytes. Overexpression of PIAS3 in differentiating preadipocytes, which localized primarily to the nucleus, inhibited mRNA level gene expression of adipogenic transcription factors C/EBP{alpha} and PPAR{gamma}, as well as their downstream target genes aP2 and adiponectin. PIAS3 also inhibited C/EBP{alpha} promoter activation mediated specifically by insulin, but not dexamethasone or isobutylmethylxanthine. Taken together, these data suggest that PIAS3 may play an inhibitory role in adipogenesis by modulating insulin-activated transcriptional activation events. Increased PIAS3 expression in adipose tissue may play a role in the metabolic disturbances of obesity.

  3. Temporal heterogeneity in single-cell gene expression and mechanical properties during adipogenic differentiation.

    PubMed

    Labriola, Nicholas R; Darling, Eric M

    2015-04-13

    Adipose-derived stem/stromal cells (ASCs) respond heterogeneously when exposed to lineage-specific induction medium. Variable responses at the single-cell level can be observed in the production of lineage-specific metabolites, expression of mRNA transcripts, and adoption of mechanical phenotypes. Understanding the relationship between the biological and mechanical characteristics for individual ASCs is crucial for interpreting how cellular heterogeneity affects the differentiation process. The goal of the current study was to monitor the gene expression of peroxisome proliferator receptor gamma (PPARG) in adipogenically differentiating ASC populations over two weeks, while also characterizing the expression-associated mechanical properties of individual cells using atomic force microscopy (AFM). Results showed that ASC mechanical properties did not change significantly over time in either adipogenic or control medium; however, cells expressing PPARG exhibited significantly greater compliance and fluidity compared to those lacking expression in both adipogenic and control media environments. The percent of PPARG+ cells in adipogenic samples increased over time but stayed relatively constant in controls. Previous reports of a slow, gradual change in cellular mechanical properties are explained by the increase in the number of positively differentiating cells in a sample rather than being reflective of actual, single-cell mechanical property changes. Cytoskeletal remodeling was more prevalent in adipogenic samples than controls, likely driving the adoption of a more compliant mechanical phenotype and upregulation of PPARG. The combined results reinforce the importance of understanding single-cell characteristics, in the context of heterogeneity, to provide more accurate interpretations of biological phenomena such as stem cell differentiation.

  4. Adipogenic differentiation state-specific gene expression as related to bovine carcass adiposity.

    PubMed

    Pickworth, C L; Loerch, S C; Velleman, S G; Pate, J L; Poole, D H; Fluharty, F L

    2011-02-01

    Genetic regulation of the site of fat deposition is not well defined. The objective of this study was to investigate adipogenic differentiation state-specific gene expression in feedlot cattle (>75% Angus; <25% Simmental parentage) of varying adipose accretion patterns. Four groups of 4 steers were selected via ultrasound for the following adipose tissue characteristics: low subcutaneous-low intramuscular (LSQ-LIM), low subcutaneous-high intramuscular (LSQ-HIM), high subcutaneous-low intramuscular (HSQ-LIM), and high subcutaneous-high intramuscular (HSQ-HIM). Adipose tissue from the subcutaneous (SQ) and intramuscular (IM) depots was collected at slaughter. The relative expression of adipogenic genes was evaluated using quantitative PCR. Data were analyzed using the mixed model of SAS, and gene expression data were analyzed using covariate analysis with ribosomal protein L19 as the covariate. No interactions (P > 0.10) were observed between IM and SQ adipose tissue depots for any of the variables measured. Therefore, only the main effects of high and low accretion within a depot and the effects of depot are reported. Steers with LIM had smaller mean diameter IM adipocytes (P < 0.001) than HIM steers. Steers with HSQ had larger mean diameter SQ adipocytes (P < 0.001) than LSQ. However, there were no differences (P > 0.10) in any of the genes measured due to high or low adipose accretion. Preadipogenic delta-like kinase1 mRNA was greater in the IM than the SQ adipose tissue; conversely, differentiating and adipogenic genes, lipoprotein lipase, PPARγ, fatty acid synthetase, and fatty acid binding protein 4 were greater (P < 0.001) in the SQ than the IM depot. Intramuscular adipocytes were smaller than SQ adipocytes and had greater expression of the preadipogenic gene, indicating that more hyperplasia was occurring. Meanwhile, SQ adipose tissue contained much larger (P < 0.001) adipocytes that had a greater expression (P < 0.001) of differentiating and adipogenic

  5. Exogenous polyamines promote osteogenic differentiation by reciprocally regulating osteogenic and adipogenic gene expression.

    PubMed

    Lee, Mon-Juan; Chen, Yuhsin; Huang, Yuan-Pin; Hsu, Yi-Chiang; Chiang, Lan-Hsin; Chen, Tzu-Yu; Wang, Gwo-Jaw

    2013-12-01

    Polyamines are naturally occurring organic polycations that are ubiquitous in all organisms, and are essential for cell proliferation and differentiation. Although polyamines are involved in various cellular processes, their roles in stem cell differentiation are relatively unexplored. In this study, we found that exogenous polyamines, putrescine, spermidine, and spermine, promoted osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs) without inducing cell death or apoptosis. Alkaline phosphatase (ALP) activity and the mRNA level of osteogenic genes, including Runx2, ALP, osteopontin, and osteocalcin, were up-regulated by exogenous polyamines. When hBMSCs were cultured at high cell density favoring adipocyte formation, exogenous polyamines resulted in down-regulation of adipogenic genes such as PPARγ, aP2, and adipsin. Extracellular matrix mineralization, a marker for osteoblast maturation, was enhanced in the presence of exogenous polyamines, while lipid accumulation, an indication of adipogenic differentiation, was attenuated. Exogenous polyamines increased the mRNA expression of polyamine-modulated factor 1 (PMF-1) and its downstream effector, spermidine/spermine N(1)-acetyltransferase (SSAT), while that of ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis, was suppressed. These results lead to possible connections between polyamine metabolism and osteogenic differentiation pathways. To summarize, this study provides evidence for the involvement of polyamines in osteogenic differentiation of hBMSCs, and is the first to demonstrate that osteogenic and adipogenic differentiation are reciprocally regulated by exogenous polyamines.

  6. Effect of coculturing on the myogenic and adipogenic marker gene expression.

    PubMed

    Muthuraman, Pandurangan

    2014-05-01

    The present experiment was carried out to evaluate the effect of coculturing on myogenic and adipogenic marker gene expressions with the use of C2C12 and 3 T3-L1 preadipocyte cells under the coculture system. C2C12 and 3 T3-L1 cells were cocultured using transwell inserts with a 0.4-μm porous membrane to separate C2C12 and 3 T3-L1 cells. Each cell type was grown independently on the transwell plates. Following cell differentiation, inserts containing 3 T3-L1 cells were transferred to C2C12 plates, and inserts containing C2C12 cells were transferred to 3 T3-L1 plates. After coculture of the C2C12 and 3 T3-L1 cells for 48 and 72 h, the cells in the lower well were harvested for analysis, and this process was carried out for both cells. Myogenic markers such as myogenin, MyoD, Myf5, PAX3, and PAX7 mRNA expressions were analyzed in the cocultured C2C12 cells. Adipogenic markers such as fatty acid-binding protein 4 (FABP4), peroxisome proliferator-activating receptor (PPARγ), CCAAT/enhancer-binding protein (CEBPA), adiponectin, lipoprotein lipase, and fatty acid synthase mRNA expressions were analyzed in the cocultured 3 T3-L1 cells. Myogenic and adipogenic marker gene mRNA expressions were significantly altered in the cocultured C2C12 and 3 T3-L1 cells when compared with the monocultured C2C12 and 3 T3-L1 cells.

  7. Regulation of Adipogenesis and Key Adipogenic Gene Expression by 1, 25-Dihydroxyvitamin D in 3T3-L1 Cells.

    PubMed

    Ji, Shuhan; Doumit, Matthew E; Hill, Rodney A

    2015-01-01

    The functions of 1, 25-dihydroxyvitamin D (1, 25-(OH)2D3) in regulating adipogenesis, adipocyte differentiation and key adipogenic gene expression were studied in 3T3-L1 preadipocytes. Five concentrations (0.01, 0.1, 1, 10, 100 nM) of 1, 25-(OH)2D3 were studied and lipid accumulation measured by Oil Red O staining and expression of adipogenic genes quantified using quantitative real-time PCR. Adipogenic responses to 1, 25-(OH)2D3 were determined on 6, and 12 h, and days 1-10 after induction of adipogenesis by a hormonal cocktail with or without 1, 25-(OH)2D3. In response to 1, 25-(OH)2D3 (1, 10, and 100 nM), lipid accumulation and the expression of PPARγ, C/EBPα, FABP4 and SCD-1 were inhibited through day 10, and vitamin D receptor expression was inhibited in the early time points. The greatest inhibitory effect was upon expression of FABP4. Expression of SREBP-1c was only affected on day 2. The lowest concentrations of 1, 25-(OH)2D3 tested did not affect adipocyte differentiation or adipogenic gene expression. The C/EBPα promoter activity response to 1, 25-(OH)2D3 was also tested, with no effect detected. These results indicate that 1, 25-(OH)2D3 inhibited adipogenesis via suppressing adipogenic-specific genes, and is invoked either during PPARγ activation or immediately up-stream thereof. Gene expression down-stream of PPARγ especially FABP4 was strongly inhibited, and we suggest that the role of 1, 25-(OH)2D3 in regulating adipogenesis will be informed by further studies of adipogenic-specific gene promoter activity.

  8. Increased lipid accumulation and adipogenic gene expression of adipocytes in 3D bioprinted nanocellulose scaffolds.

    PubMed

    Henriksson, I; Gatenholm, P; Hägg, D A

    2017-02-21

    Compared to standard 2D culture systems, new methods for 3D cell culture of adipocytes could provide more physiologically accurate data and a deeper understanding of metabolic diseases such as diabetes. By resuspending living cells in a bioink of nanocellulose and hyaluronic acid, we were able to print 3D scaffolds with uniform cell distribution. After one week in culture, cell viability was 95%, and after two weeks the cells displayed a more mature phenotype with larger lipid droplets than standard 2D cultured cells. Unlike cells in 2D culture, the 3D bioprinted cells did not detach upon lipid accumulation. After two weeks, the gene expression of the adipogenic marker genes PPARγ and FABP4 was increased 2.0- and 2.2-fold, respectively, for cells in 3D bioprinted constructs compared with 2D cultured cells. Our 3D bioprinted culture system produces better adipogenic differentiation of mesenchymal stem cells and a more mature cell phenotype than conventional 2D culture systems.

  9. Atypical antipsychotics induce both proinflammatory and adipogenic gene expression in human adipocytes in vitro

    SciTech Connect

    Sárvári, Anitta K.; Veréb, Zoltán; Uray, Iván P.; Fésüs, László; Balajthy, Zoltán

    2014-08-08

    Highlights: • Antipsychotics modulate the expression of adipogenic genes in human adipocytes. • Secretion of proinflammatory cytokine IL8 and MCP-1 is induced by antipsychotics. • Adipocyte-dependent inflammatory abnormality could develop during chronic treatment. • Infiltrated macrophages would further enhance proinflammatory cytokine production. - Abstract: Schizophrenia requires lifelong treatment, potentially causing systemic changes in metabolic homeostasis. In the clinical setting, antipsychotic treatment may differentially lead to weight gain among individual patients, although the molecular determinants of such adverse effects are currently unknown. In this study, we investigated changes in the expression levels of critical regulatory genes of adipogenesis, lipid metabolism and proinflammatory genes during the differentiation of primary human adipose-derived stem cells (ADSCs). These cells were isolated from patients with body mass indices <25 and treated with the second-generation antipsychotics olanzapine, ziprasidone, clozapine, quetiapine, aripiprazole and risperidone and the first-generation antipsychotic haloperidol. We found that antipsychotics exhibited a marked effect on key genes involved in the regulation of cell cycle, signal transduction, transcription factors, nuclear receptors, differentiation markers and metabolic enzymes. In particular, we observed an induction of the transcription factor NF-KB1 and NF-KB1 target genes in adipocytes in response to these drugs, including the proinflammatory cytokines TNF-α, IL-1β, IL-8 and MCP-1. In addition, enhanced secretion of both IL8 and MCP-1 was observed in the supernatant of these cell cultures. In addition to their remarkable stimulatory effects on proinflammatory gene transcription, three of the most frequently prescribed antipsychotic drugs, clozapine, quetiapine and aripiprazole, also induced the expression of essential adipocyte differentiation genes and the adipocyte hormones leptin

  10. Poly(ADP-ribose)polymerase-1 (PARP1) controls adipogenic gene expression and adipocyte function.

    PubMed

    Erener, Süheda; Hesse, Mareike; Kostadinova, Radina; Hottiger, Michael O

    2012-01-01

    Poly(ADP-ribose)polymerase-1 (PARP1) is a chromatin-associated enzyme that was described to affect chromatin compaction. Previous reports suggested a dynamic modulation of the chromatin landscape during adipocyte differentiation. We thus hypothesized that PARP1 plays an important transcriptional role in adipogenesis and metabolism and therefore used adipocyte development and function as a model to elucidate the molecular action of PARP1 in obesity-related diseases. Our results show that PARP1-dependent ADP-ribose polymer (PAR) formation increases during adipocyte development and, at late time points of adipogenesis, is involved in the sustained expression of PPARγ2 and of PPARγ2 target genes. During adipogenesis, PARP1 was recruited to PPARγ2 target genes such as CD36 or aP2 in a PAR-dependent manner. Our results also reveal a PAR-dependent decrease in repressory histone marks (e.g. H3K9me3) and an increase in stimulatory marks (e.g. H3K4me3) at the PPARγ2 promoter, suggesting that PARP1 may exert its regulatory function during adipogenesis by altering histone marks. Interestingly, activation of PARP1 enzymatic activity was prevented with a topoisomerase II inhibitor. These data hint at topoisomerase II-dependent, transient, site-specific double-strand DNA breaks as the cause for poly(ADP)-ribose formation, adipogenic gene expression, and adipocyte function. Together, our study identifies PARP1 as a critical regulator of PPARγ2-dependent gene expression with implications in adipocyte function and obesity-related disease models.

  11. Adipogenic Gene Expression in Gilthead Sea Bream Mesenchymal Stem Cells from Different Origin.

    PubMed

    Salmerón, Cristina; Riera-Heredia, Natàlia; Gutiérrez, Joaquim; Navarro, Isabel; Capilla, Encarnación

    2016-01-01

    During the last decades, adipogenesis has become an emerging field of study in aquaculture due to the relevance of the adipose tissue in many physiological processes and its connection with the endocrine system. In this sense, recent studies have translated into the establishment of preadipocyte culture models from several fish species, sometimes lacking information on the mRNA levels of adipogenic genes. Thus, the aim of this study was to determine the gene expression profile of gilthead sea bream (Sparus aurata) primary cultured mesenchymal stem cells (MSCs) from different origin (adipose tissue and vertebra bone) during adipogenesis. Both cell types differentiated into adipocyte-like cells, accumulating lipids inside their cytoplasm. Adipocyte differentiation of MSCs from adipose tissue resulted in downregulation of several adipocyte-related genes (such as lpl, hsl, pparα, pparγ and gapdh2) at day 4, gapdh1 at day 8, and fas and pparβ at day 12. In contrast, differences in lxrα mRNA expression were not observed, while g6pdh levels increased during adipocyte maturation. Gapdh and Pparγ protein levels were also detected in preadipocyte cultures; however, only the former increased its expression during adipogenesis. Moreover, differentiation of bone-derived cells into adipocytes also resulted in the downregulation of several adipocyte gene markers, such as fas and g6pdh at day 10 and hsl, pparβ, and lxrα at day 15. On the other hand, the osteogenic genes fib1a, mgp, and op remained stable, but an increase in runx2 expression at day 20 was observed. In summary, the present study demonstrates that gilthead sea bream MSCs, from both adipose tissue and bone, differentiate into adipocyte-like cells, although revealed some kind of species- and cell lineage-specific regulation with regards to gene expression. Present data also provide novel insights into some of the potential key genes controlling adipogenesis in gilthead sea bream that can help to better

  12. Adipogenic Gene Expression in Gilthead Sea Bream Mesenchymal Stem Cells from Different Origin

    PubMed Central

    Salmerón, Cristina; Riera-Heredia, Natàlia; Gutiérrez, Joaquim; Navarro, Isabel; Capilla, Encarnación

    2016-01-01

    During the last decades, adipogenesis has become an emerging field of study in aquaculture due to the relevance of the adipose tissue in many physiological processes and its connection with the endocrine system. In this sense, recent studies have translated into the establishment of preadipocyte culture models from several fish species, sometimes lacking information on the mRNA levels of adipogenic genes. Thus, the aim of this study was to determine the gene expression profile of gilthead sea bream (Sparus aurata) primary cultured mesenchymal stem cells (MSCs) from different origin (adipose tissue and vertebra bone) during adipogenesis. Both cell types differentiated into adipocyte-like cells, accumulating lipids inside their cytoplasm. Adipocyte differentiation of MSCs from adipose tissue resulted in downregulation of several adipocyte-related genes (such as lpl, hsl, pparα, pparγ and gapdh2) at day 4, gapdh1 at day 8, and fas and pparβ at day 12. In contrast, differences in lxrα mRNA expression were not observed, while g6pdh levels increased during adipocyte maturation. Gapdh and Pparγ protein levels were also detected in preadipocyte cultures; however, only the former increased its expression during adipogenesis. Moreover, differentiation of bone-derived cells into adipocytes also resulted in the downregulation of several adipocyte gene markers, such as fas and g6pdh at day 10 and hsl, pparβ, and lxrα at day 15. On the other hand, the osteogenic genes fib1a, mgp, and op remained stable, but an increase in runx2 expression at day 20 was observed. In summary, the present study demonstrates that gilthead sea bream MSCs, from both adipose tissue and bone, differentiate into adipocyte-like cells, although revealed some kind of species- and cell lineage-specific regulation with regards to gene expression. Present data also provide novel insights into some of the potential key genes controlling adipogenesis in gilthead sea bream that can help to better

  13. Anabolic payout of terminal implant alters adipogenic gene expression of the longissimus muscle in beef steers.

    PubMed

    Smith, Z K; Chung, K Y; Parr, S L; Johnson, B J

    2017-03-01

    This experiment evaluated the dose and payout pattern of trenbolone acetate (TBA) and estradiol-17β (E) on LM mRNA expression of adenosine monophosphate-activated protein kinase-ɑ (-ɑ), β, G protein-coupled receptor 41(), G protein-coupled receptor 43 (), γ, and stearoyl CoA desaturase () in finishing feedlot steers as indicators of adipogenesis and marbling development. British × Continental steers (n = 168; 14 pens/treatment; initial BW = 362 kg) were used in a randomized complete block design. Treatments included: no implant (NI), Revalor-S (REV-S; 120 mg TBA + 24 mg E), or Revalor-XS (REV-X; delayed release implant: 80 mg TBA + 16 mg E [uncoated], 120 mg TBA + 24 mg E [coated], 200 mg TBA + 40 mg E [total]). Steers were fed 1 time daily for an average of 164 d. The LM biopsies were collected (1 steer/pen) on d -1, 27, 55, and 111 relative to timing of implant. Total RNA was isolated from each sample and real-time quantitative PCR was used to measure quantity of -ɑ, β, , ,it, γ, and mRNA. No implant × day interactions were detected ( ≥ 0.19) in this experiment. Day impacted the mRNA expression of all adipogenic genes ( ≤ 0.02). The main effect of implant tended ( = 0.09) to influence expression of -ɑ, REV-X had an 8.8% increase over NI and an 18.7% increase over REV-S. Implant influenced ( = 0.03) mRNA expression of , expression of for the REV-X treatment was not different ( > 0.10) from NI, and both were greater ( ≤ 0.05) than REV-S (1.13, 1.00, and 0.67 ± 0.224 arbitrary units) for REV-X, NI, and REV-S, respectively. Implant also influenced ( = 0.02) expression of , expression of for REV-X was not different ( > 0.10) from NI, and both were greater ( ≤ 0.05) than REV-S (1.27, 1.07, and 0.72 ± 0.234 arbitrary units) for REV-X, NI, and REV-S, respectively. Implant influenced ( = 0.02) mRNA expression of γ in LM tissue, expression of γ for REV-X was not different ( > 0.10) from NI, and both were greater ( ≤ 0.05) than REV-S (1.09, 1

  14. The effect of mechanical stress on the proliferation, adipogenic differentiation and gene expression of human adipose-derived stem cells.

    PubMed

    Paul, Nora E; Denecke, Bernd; Kim, Bong-Sung; Dreser, Alice; Bernhagen, Jürgen; Pallua, Norbert

    2017-01-17

    To allow for a better implementation of external volume expansion to clinical applications for soft tissue regeneration, it is necessary to comprehensively understand the underlying mechanisms. Since human adipose-derived stem cells (hASCs) play a crucial role in soft tissue enlargement, we investigated the impact of cyclic stretch on gene expression, proliferation rate, and adipogenic differentiation of these cells. After cyclic stretching, RNA was extracted and subjected to DNA microarray analysis and RT-qPCR. Also, the expression of FABP4 mRNA was analysed by RT-qPCR to test whether mechanical stretch affected adipogenic differentiation of hASCs. Proliferation rate was assessed by alamarBlue assay and Ki-67 staining. Cell cycle analysis was performed with flow cytometry and Western blot. We found that cyclic stretch significantly induced the expression of CYP1B1 mRNA. Further, the adipogenic differentiation of hASCs was impaired as was the proliferation. This was partly due to a decrease in extracellular signal-regulated kinase (ERK) 1/2 and histone H3 phosphorylation, suggesting a growth arrest in the G2 /M phase of the cell cycle. Enrichment analyses demonstrated that stretch-regulated genes were over-represented in pathways and biological processes involved in extracellular matrix organisation, vascular remodelling, and responses to cell stress. Taken together, mechanical stress impaired both the proliferation and adipogenic differentiation, but led to a tissue-remodelling phenotype of hASCs. These data suggest that extracellular matrix remodelling and neoangiogenesis may play a more important role in external volume expansion than proliferation and adipogenesis of hASCs.

  15. Red yeast rice extracts suppress adipogenesis by down-regulating adipogenic transcription factors and gene expression in 3T3-L1 cells.

    PubMed

    Jeon, Taeil; Hwang, Seong Gu; Hirai, Shizuka; Matsui, Tohru; Yano, Hideo; Kawada, Teruo; Lim, Beoung Ou; Park, Dong Ki

    2004-11-12

    The effects of red yeast rice extracts (RE) on adipocyte differentiation of 3T3-L1 cells were studied. RE were extracted from embryonic rice fermented with red yeast (Monascus ruber). These extracts significantly decreased glycerol-3-phosphate dehydrogenase (GPDH) activity and lipid accumulation, a marker of adipogenesis, in a dose-dependent manner. Moreover, mRNA expression levels of both CCAAT/enhancer-binding protein (C/EBP) alpha and peroxisome proliferator-activated receptor (PPAR) gamma, the key adipogenic transcription factors, were markedly decreased by RE. RE also inhibited the expression of PPARgamma at protein levels. RE decreased significantly gene expression of adipocyte fatty acid binding protein (aP2) and leptin, which are adipogenic marker proteins and C/EBPalpha and PPARgamma target genes. These results suggest that the inhibitory effect of RE on adipocyte differentiation might be mediated through the down-regulated expression of adipogenic transcription factors and other specific genes.

  16. The Expression of Adipogenic Genes in Adipose Tissues of Feedlot Steers Fed Supplementary Palm Oil or Soybean Oil

    PubMed Central

    Choi, Seong Ho; Park, Sung Kwon; Choi, Chang Weon; Li, Xiang Zi; Kim, Kyoung Hoon; Kim, Won Young; Jeong, Joon; Johnson, Bradley J.; Zan, Linsen; Smith, Stephen B.

    2016-01-01

    We hypothesized that supplementing finishing diets with palm oil would promote adipogenic gene expression and stearoyl-CoA desaturase (SCD) gene expression in subcutaneous (s.c.) and intramuscular (i.m.) adipose tissues of feedlot steers. Eighteen Angus and Angus crossbred steers were assigned to three groups of 6 steers and fed a basal diet (control), with 3% palm oil, or with 3% soybean oil, for 70 d, top-dressed daily. Tailhead s.c. adipose tissue was obtained by biopsy at 14 d before the initiation of dietary treatments and at 35 d of dietary treatments. At slaughter, after 70 d of dietary treatment, tailhead s.c. adipose tissue and i.m. adipose tissue were obtained from the longissimus thoracis muscle. Palm oil increased plasma palmitic acid and soybean oil increased plasma linoleic acid and α-linolenic acid relative to the initial sampling time. Expression of AMP-activated protein kinase alpha (AMPKα) and peroxisome proliferator-activated receptor gamma (PPARγ) increased between the initial and intermediate biopsies and declined thereafter (p<0.03). SCD gene expression did not change between the initial and intermediate biopsies but declined by over 75% by the final period (p = 0.04), and G-coupled protein receptor 43 (GPR43) gene expression was unaffected by diet or time on trial. Soybean oil decreased (p = 0.01) PPARγ gene expression at the intermediate sample time. At the terminal sample time, PPARγ and SCD gene expression was less in i.m. adipose tissue than in s.c. adipose tissue (p<0.05). AMPKα gene expression was less in s.c. adipose tissue of palm oil-fed steers than in control steers (p = 0.04) and CCAAT enhancer binding protein-beta (CEBPβ) gene expression was less in s.c. and i.m. adipose tissues of palm oil-fed steers than in soybean oil-fed steers (p<0.03). Soybean oil decreased SCD gene expression in s.c. adipose tissue (p = 0.05); SCD gene expression in palm oil-fed steers was intermediate between control and soybean oil-fed steers

  17. The Expression of Adipogenic Genes in Adipose Tissues of Feedlot Steers Fed Supplementary Palm Oil or Soybean Oil.

    PubMed

    Choi, Seong Ho; Park, Sung Kwon; Choi, Chang Weon; Li, Xiang Zi; Kim, Kyoung Hoon; Kim, Won Young; Jeong, Joon; Johnson, Bradley J; Zan, Linsen; Smith, Stephen B

    2016-03-01

    We hypothesized that supplementing finishing diets with palm oil would promote adipogenic gene expression and stearoyl-CoA desaturase (SCD) gene expression in subcutaneous (s.c.) and intramuscular (i.m.) adipose tissues of feedlot steers. Eighteen Angus and Angus crossbred steers were assigned to three groups of 6 steers and fed a basal diet (control), with 3% palm oil, or with 3% soybean oil, for 70 d, top-dressed daily. Tailhead s.c. adipose tissue was obtained by biopsy at 14 d before the initiation of dietary treatments and at 35 d of dietary treatments. At slaughter, after 70 d of dietary treatment, tailhead s.c. adipose tissue and i.m. adipose tissue were obtained from the longissimus thoracis muscle. Palm oil increased plasma palmitic acid and soybean oil increased plasma linoleic acid and α-linolenic acid relative to the initial sampling time. Expression of AMP-activated protein kinase alpha (AMPKα) and peroxisome proliferator-activated receptor gamma (PPARγ) increased between the initial and intermediate biopsies and declined thereafter (p<0.03). SCD gene expression did not change between the initial and intermediate biopsies but declined by over 75% by the final period (p = 0.04), and G-coupled protein receptor 43 (GPR43) gene expression was unaffected by diet or time on trial. Soybean oil decreased (p = 0.01) PPARγ gene expression at the intermediate sample time. At the terminal sample time, PPARγ and SCD gene expression was less in i.m. adipose tissue than in s.c. adipose tissue (p<0.05). AMPKα gene expression was less in s.c. adipose tissue of palm oil-fed steers than in control steers (p = 0.04) and CCAAT enhancer binding protein-beta (CEBPβ) gene expression was less in s.c. and i.m. adipose tissues of palm oil-fed steers than in soybean oil-fed steers (p<0.03). Soybean oil decreased SCD gene expression in s.c. adipose tissue (p = 0.05); SCD gene expression in palm oil-fed steers was intermediate between control and soybean oil-fed steers

  18. Adipogenic and myogenic gene expression in rotator cuff muscle of the sheep after tendon tear.

    PubMed

    Frey, Eric; Regenfelder, Felix; Sussmann, Patrick; Zumstein, Matthias; Gerber, Christian; Born, Walter; Fuchs, Bruno

    2009-04-01

    Chronic rotator cuff tendon tears lead to fatty infiltration and muscle atrophy with impaired physiological functions of the affected muscles. However, the cellular and molecular mechanisms of corresponding pathophysiological processes remain unknown. The purpose of this study was to characterize the expression pattern of adipogenic (PPARgamma, C/EBPbeta) and myogenic (myostatin, myogenin, Myf-5) transcription factors in infraspinatus muscle of sheep after tenotomy, implantation of a tension device, refixation of the tendon, and rehabilitation, reflecting a model of chronic rotator cuff tears. In contrast to human patients, the presented sheep model allows a temporal evaluation of the expression of a given marker in the same individual over time. Semiquantitative RT/PCR analysis of PPARgammaã, myostatin, myogenin, Myf-5, and C/EBPbeta transcript levels was carried out with sheep muscle biopsy-derived total RNA. We found a significantly increased expression of Myf-5 and PPARgamma after tenotomy and a significant change for Myf-5 and C/EBPbeta after continuous traction and refixation. This experimental sheep model allows the molecular analysis of pathomechanisms of muscular changes after rotator cuff tear. The results point to a crucial role of the transcription factors PPARgamma, C/EBPbeta, and Myf-5 in impairment and regeneration of rotator cuff muscles after tendon tears in sheep.

  19. Yin yang 1 and adipogenic gene network expression in longissimus muscle of beef cattle in response to nutritional management.

    PubMed

    Moisá, Sonia J; Shike, Daniel W; Meteer, William T; Keisler, Duane; Faulkner, Dan B; Loor, Juan J

    2013-01-01

    Among 36 differentially-expressed genes during growth in longissimus muscle (LM) of Angus steers, Yin Yang 1 (YY1) had the most relationships with other genes including some associated with adipocyte differentiation. The objective of this study was to examine the effect of nutritional management on mRNA expression of YY1 along with its targets genes PPARG, GTF2B, KAT2B, IGFBP5 and STAT5B. Longissimus from Angus and Angus × Simmental steers (7 total/treatment) on early weaning plus high-starch (EWS), normal weaning plus starch creep feeding (NWS), or normal weaning without starch creep feeding (NWN) was biopsied at 0, 96, and 240 days on treatments. Results suggest that YY1 does not exert control of adipogenesis in LM, and its expression is not sensitive to weaning age. Among the YY1-related genes, EWS led to greater IGFBP5 during growing and finishing phases. Pro-adipogenic transcriptional regulation was detected in EWS due to greater PPARG and VDR at 96 and 240 d vs. 0 d. GTF2B and KAT2B expression was lower in response to NWS and EWS than NWN, and was most pronounced at 240 d. The increase in PPARG and GTF2B expression between 96 and 240 d underscored the existence of a molecular programming mechanism that was sensitive to age and dietary starch. Such response partly explains the greater carcass fat deposition observed in response to NWS.

  20. Plasma 8-isoprostane concentrations and adipogenic and adipokine gene expression patterns in subcutaneous and mesenteric adipose tissues of fattening Wagyu cattle.

    PubMed

    Yamada, Tomoya; Higuchi, Mikito; Nakanishi, Naoto

    2013-01-01

    We hypothesized that fattening Wagyu cattle fed conventional low-vitamin fattening diets are exposed to oxidative stress. In this experiment, we studied the plasma concentrations of 8-isoprostane and the fat depot-specific effects of the diet-induced adipogenic (C/EBPβ, C/EBPδ, C/EBPα and PPARγ2) and adipokine (VEGF, FGF-2, leptin and adiponectin) gene expressions in fattening Wagyu steers. Animals were fed a high-vitamin (α-tocopherol and β-carotene) diet (HV) or a control diet (CT) during the fattening period (from 10 to 30 months of age). The plasma concentrations of 8-isoprostane, a marker of oxidative stress, were significantly lower in the HV group than in the CT group. In mesenteric adipose tissue, the expressions of the adipogenic and adipokine genes in the HV group were significantly lower than those in the CT group. In contrast, there were no differences in the expression of the adipogenic and adipokine genes in subcutaneous adipose tissue between groups. These results suggest that higher intake of dietary α-tocopherol and β-carotene affects the expression patterns of adipogenic and adipokine genes in a fat depot-specific manner with the reduction of plasma 8-isoprostane concentrations.

  1. Nuclear Factor-Y is an adipogenic factor that regulates leptin gene expression

    PubMed Central

    Lu, Yi-Hsueh; Dallner, Olof Stefan; Birsoy, Kivanc; Fayzikhodjaeva, Gulya; Friedman, Jeffrey M.

    2015-01-01

    Objective Leptin gene expression is highly correlated with cellular lipid content in adipocytes but the transcriptional mechanisms controlling leptin expression in vivo are poorly understood. In this report, we set out to identify cis- and trans-regulatory elements controlling leptin expression. Methods Leptin-BAC luciferase transgenic mice combining with other computational and molecular techniques were used to identify transcription regulatory elements including a CCAAT-binding protein Nuclear Factor Y (NF-Y). The function of NF-Y in adipocyte was studied in vitro with 3T3-L1 cells and in vivo with adipocyte-specific knockout of NF-Y. Results Using Leptin-BAC luciferase mice, we showed that DNA sequences between −22 kb and +8.8 kb can confer quantitative expression of a leptin reporter. Computational analysis of sequences and gel shift assays identified a 32 bp sequence (chr6: 28993820–2899385) consisting a CCAAT binding site for Nuclear Factor Y (NF-Y) and this was confirmed by a ChIP assay in vivo. A deletion of this 32 bp sequence in the −22 kb to +8.8 kb leptin-luciferase BAC reporter completely abrogates luciferase reporter activity in vivo. RNAi mediated knockdown of NF-Y interfered with adipogenesis in vitro and adipocyte-specific knockout of NF-Y in mice reduced expression of leptin and other fat specific genes in vivo. Further analyses of the fat specific NF-Y knockout revealed that these animals develop a moderately severe lipodystrophy that is remediable with leptin therapy. Conclusions These studies advance our understanding of leptin gene expression and show that NF-Y controls the expression of leptin and other adipocyte genes and identifies a new form of lipodystrophy. PMID:25973387

  2. Atypical antipsychotics induce both proinflammatory and adipogenic gene expression in human adipocytes in vitro.

    PubMed

    Sárvári, Anitta K; Veréb, Zoltán; Uray, Iván P; Fésüs, László; Balajthy, Zoltán

    2014-08-08

    Schizophrenia requires lifelong treatment, potentially causing systemic changes in metabolic homeostasis. In the clinical setting, antipsychotic treatment may differentially lead to weight gain among individual patients, although the molecular determinants of such adverse effects are currently unknown. In this study, we investigated changes in the expression levels of critical regulatory genes of adipogenesis, lipid metabolism and proinflammatory genes during the differentiation of primary human adipose-derived stem cells (ADSCs). These cells were isolated from patients with body mass indices <25 and treated with the second-generation antipsychotics olanzapine, ziprasidone, clozapine, quetiapine, aripiprazole and risperidone and the first-generation antipsychotic haloperidol. We found that antipsychotics exhibited a marked effect on key genes involved in the regulation of cell cycle, signal transduction, transcription factors, nuclear receptors, differentiation markers and metabolic enzymes. In particular, we observed an induction of the transcription factor NF-KB1 and NF-KB1 target genes in adipocytes in response to these drugs, including the proinflammatory cytokines TNF-α, IL-1β, IL-8 and MCP-1. In addition, enhanced secretion of both IL8 and MCP-1 was observed in the supernatant of these cell cultures. In addition to their remarkable stimulatory effects on proinflammatory gene transcription, three of the most frequently prescribed antipsychotic drugs, clozapine, quetiapine and aripiprazole, also induced the expression of essential adipocyte differentiation genes and the adipocyte hormones leptin and adiponectin, suggesting that both glucose and fat metabolism may be affected by these drugs. These data further suggest that antipsychotic treatments in patients alter the gene expression patterns in adipocytes in a coordinated fashion and priming them for a low-level inflammatory state.

  3. Phorbaketal A inhibits adipogenic differentiation through the suppression of PPARγ-mediated gene transcription by TAZ.

    PubMed

    Byun, Mi Ran; Lee, Cham Han; Hwang, Jun-Ha; Kim, A Rum; Moon, Sung Ah; Sung, Mi Kyung; Roh, Jung-Rae; Hwang, Eun Sook; Hong, Jeong-Ho

    2013-10-15

    Obesity causes several metabolic diseases, including diabetes. Adipogenic differentiation is an important event for fat formation in obesity. Natural compounds that inhibit adipogenic differentiation are frequently screened to develop therapeutic drugs for treating obesity. Here we investigated the effects of phorbaketal A, a natural marine compound, on adipogenic differentiation of mesenchymal stem cells. Phorbaketal A significantly inhibited adipogenic differentiation as indicated by less fat droplets and decreased expression of adipogenic marker genes. The expression of TAZ (transcriptional coactivator with PDZ-binding motif), an inhibitor of adipogenic differentiation, significantly increased during adipogenic differentiation in the presence of phorbaketal A. Phorbaketal A increased the interaction of TAZ and PPARγ to suppress PPARγ (peroxisome proliferator-activated receptor γ) target gene expression. TAZ-depleted cells showed higher adipogenic potential than that of control cells even in the presence of phorbaketal A. During cellular signaling induced by phorbaketal A, ERK (extracellular signal-regulated kinase) played an important role in adipogenic suppression; an inhibitor of ERK blocked phorbaketal A-induced adipogenic suppression. Thus, the results show that phorbaketal A inhibits adipocyte differentiation through TAZ.

  4. Diminished satellite cells and elevated adipogenic gene expression in muscle as caused by ovariectomy are averted by low-magnitude mechanical signals.

    PubMed

    Frechette, Danielle M; Krishnamoorthy, Divya; Adler, Benjamin J; Chan, M Ete; Rubin, Clinton T

    2015-07-01

    Age-related degeneration of the musculoskeletal system, accelerated by menopause, is further complicated by increased systemic and muscular adiposity. The purpose of this study was to identify at the molecular, cellular, and tissue levels the impact of ovariectomy on adiposity and satellite cell populations in mice and whether mechanical signals could influence any outcomes. Eight-week-old C57BL/6 mice were ovariectomized, with one half subjected to low-intensity vibration (LIV; 0.3 g/90 Hz, 15 min/day, 5 day/wk; n = 10) for 6 wk and the others sham vibrated (OVX; n = 10). Data are compared with age-matched, intact controls (AC; n = 10). In vivo μCT analysis showed that OVX mice gained 43% total (P < 0.001) and 125% visceral adiposity (P < 0.001) compared with their baseline after 6 wk, whereas LIV gained only 21% total (P = 0.01) and 70% visceral adiposity (P < 0.01). Relative to AC, expression of adipogenic genes (PPARγ, FABP4, PPARδ, and FoxO1) was upregulated in OVX muscle (P < 0.05), whereas LIV reduced these levels (P < 0.05). Adipogenic gene expression was inversely related to the percentage of total and reserve satellite cell populations in the muscle, with both declining in OVX compared with AC (-21 and -28%, respectively, P < 0.01). LIV mitigated these declines (-11 and -17%, respectively). These results provide further evidence of the negative consequences of estrogen depletion and demonstrate that mechanical signals have the potential to interrupt subsequent adipogenic gene expression and satellite cell suppression, emphasizing the importance of physical signals in protecting musculoskeletal integrity and slowing the fat phenotype.

  5. Molecular cloning, expression pattern analysis of porcine Rb1 gene and its regulatory roles during primary dedifferentiated fat cells adipogenic differentiation.

    PubMed

    Hu, Xiaoming; Luo, Pei; Peng, Xuewu; Song, Tongxing; Zhou, Yuanfei; Wei, Hongkui; Peng, Jian; Jiang, Siwen

    2015-04-01

    Adipocytes are the main constituent of adipose tissue and are considered to be a corner stone in the homeostatic control of whole body metabolism. Recent reports evidenced that retinoblastoma 1 (Rb1) gene plays an important role in fat development and adipogenesis in mice. Here, we cloned the partial cDNA sequences of the porcine Rb1 gene which contains the complete coding sequences (CDS) of 2820bp encoding a protein of 939 amino acids. Bioinformatic analysis revealed that the CDS of porcine Rb1 was highly identical with those of cattle, human and mice. The porcine Rb1 has three typical conserved structural domains, including Rb-A pocket domain, CYCLIN domain and C-terminus domain, and the phylogenetic tree indicates a closer genetic relationship with cattle and human. Tissue distribution analysis showed that Rb1 expression appeared to be ubiquitously in various tissues, being higher in heart, liver, muscle, and stomach. Furthermore, significant downregulation of Rb1 was found at the initial stage of dedifferentiated fat (DFAT) cells adipogenic differentiation. With the knockdown of the Rb1 expression by siRNA, the number of DFAT cells recruited to white rather than brown adipogenesis was promoted, and mRNA levels of adipogenic markers, such as PPARγ, aP2, LPL and adiponectin and protein expression of PPARγ and adiponectin were increased after hormone stimulation. The underlying mechanisms may be that knockdown of Rb1 promotes the mitotic clonal expansion and PPARγ expression by derepressing the transcriptional activity of E2F so as to facilitate the first steps of adipogenesis. In summary, we cloned and characterized an important negative regulator in adipogenic commitment of porcine DFAT cells.

  6. Association of DNA Methylation Levels with Tissue-specific Expression of Adipogenic and Lipogenic Genes in Longissimus dorsi Muscle of Korean Cattle.

    PubMed

    Baik, M; Vu, T T T; Piao, M Y; Kang, H J

    2014-10-01

    Epigenetic factors, such as DNA methylation status, may regulate adipogenesis and lipogenesis, thus affecting intramuscular fat (IMF) deposition in longissimus dorsi muscle (LM) of beef cattle. In Korean cattle steers, the LM consists mainly of muscle tissue. However, the LM tissue also contains IMF. We compared the gene expression levels between the IMF and muscle portions of the LM after tissue separation. Real-time polymerase chain reaction analysis showed that the mRNA levels of both adipogenic peroxisome proliferator-activated receptor gamma isoform 1 (PPARG1) and lipogenic fatty acid binding protein 4 (FABP4) were higher (p<0.01) in the IMF than in the muscle portion of the LM. We determined DNA methylation levels of regulatory regions of the PPARG1 and FABP4 genes by pyrosequencing of genomic DNA. DNA methylation levels of two of three CpG sites in the PPARG1 gene promoter region were lower (p<0.05) in the IMF than in the muscle portion of the LM. DNA methylation levels of all five CpG sites from the FABP4 gene promoter region were also lower (p<0.001) in the IMF than in the muscle portion. Thus, mRNA levels of both PPARG1 and FABP4 genes were inversely correlated with DNA methylation levels in regulatory regions of CpG sites of the corresponding gene. Our findings suggest that DNA methylation status regulates tissue-specific expression of adipogenic and lipogenic genes in the IMF and muscle portions of LM tissue in Korean cattle.

  7. Association of DNA Methylation Levels with Tissue-specific Expression of Adipogenic and Lipogenic Genes in Longissimus dorsi Muscle of Korean Cattle

    PubMed Central

    Baik, M.; Vu, T. T. T.; Piao, M. Y.; Kang, H. J.

    2014-01-01

    Epigenetic factors, such as DNA methylation status, may regulate adipogenesis and lipogenesis, thus affecting intramuscular fat (IMF) deposition in longissimus dorsi muscle (LM) of beef cattle. In Korean cattle steers, the LM consists mainly of muscle tissue. However, the LM tissue also contains IMF. We compared the gene expression levels between the IMF and muscle portions of the LM after tissue separation. Real-time polymerase chain reaction analysis showed that the mRNA levels of both adipogenic peroxisome proliferator-activated receptor gamma isoform 1 (PPARG1) and lipogenic fatty acid binding protein 4 (FABP4) were higher (p<0.01) in the IMF than in the muscle portion of the LM. We determined DNA methylation levels of regulatory regions of the PPARG1 and FABP4 genes by pyrosequencing of genomic DNA. DNA methylation levels of two of three CpG sites in the PPARG1 gene promoter region were lower (p<0.05) in the IMF than in the muscle portion of the LM. DNA methylation levels of all five CpG sites from the FABP4 gene promoter region were also lower (p<0.001) in the IMF than in the muscle portion. Thus, mRNA levels of both PPARG1 and FABP4 genes were inversely correlated with DNA methylation levels in regulatory regions of CpG sites of the corresponding gene. Our findings suggest that DNA methylation status regulates tissue-specific expression of adipogenic and lipogenic genes in the IMF and muscle portions of LM tissue in Korean cattle. PMID:25178302

  8. Study of lactoferrin gene expression in human and mouse adipose tissue, human preadipocytes and mouse 3T3-L1 fibroblasts. Association with adipogenic and inflammatory markers.

    PubMed

    Moreno-Navarrete, José María; Serrano, Marta; Sabater, Mònica; Ortega, Francisco; Serino, Matteo; Pueyo, Neus; Luche, Elodie; Waget, Aurelie; Rodriguez-Hermosa, José Ignacio; Ricart, Wifredo; Burcelin, Remy; Fernández-Real, José Manuel

    2013-07-01

    Lactoferrin is considered an epithelial protein present in different gland secretions. Administration of exogenous lactoferrin is also known to modulate adipogenesis and insulin action in human adipocytes. Here, we aimed to investigate lactoferrin gene expression (real-time polymerase chain reaction) and protein (enzyme-linked immunosorbent assay) levels in human (n=143) and mice adipose tissue samples, in adipose tissue fractions and during human preadipocyte and 3T3-L1 cell line differentiation, evaluating the effects of inducers (rosiglitazone) and disruptors (inflammatory factors) of adipocyte differentiation. Lactoferrin (LTF) gene and protein were detectable at relatively high levels in whole adipose tissue and isolated adipocytes in direct association with low-density lipoprotein-related protein 1 (LRP1, its putative receptor). Obese subjects with type 2 diabetes and increased triglycerides had the lowest levels of LTF gene expression in subcutaneous adipose tissue. Specifically, LTF gene expression was significantly increased in adipocytes, mainly from lean subjects, increasing during differentiation in parallel to adipogenic genes and gene markers of lipid droplets. The induction or disruption of adipogenesis led to concomitant changes (increase and decrease, respectively) of lactoferrin levels during adipocyte differentiation also in parallel to gene markers of adipogenesis and lipid droplet development. The administration of lactoferrin led to autopotentiated increased expression of the LTF gene. The decreased lactoferrin mRNA levels in association with obesity and diabetes were replicated in mice adipose tissue. In conclusion, this is the first observation, to our knowledge, of lactoferrin gene expression in whole adipose tissue and isolated adipocytes, increasing during adipogenesis and suggesting a possible contribution in adipose tissue physiology through LRP1.

  9. 27-Hydroxycholesterol suppresses lipid accumulation by down-regulating lipogenic and adipogenic gene expression in 3T3-L1 cells.

    PubMed

    Shirouchi, Bungo; Kashima, Kentaro; Horiuchi, Yasutaka; Nakamura, Yuki; Fujimoto, Yumiko; Tong, Li-Tao; Sato, Masao

    2016-03-17

    Cholesterol oxidation products (oxycholesterols) are produced from cholesterol by automatic and/or enzymatic oxidation of the steroidal backbone and side-chain. Oxycholesterols are present in plasma and serum, suggesting that oxycholesterols are related to the development and progression of various diseases. However, limited information is available about the absolute amounts of oxycholesterols in organs and tissues, and the physiological significance of oxycholesterols in the body. In the present study, we quantified the levels of 13 oxycholesterols in white adipose tissue (WAT) of mice and then evaluated correlations between each oxycholesterol level and WAT weight. The sum of the levels of 13 oxycholesterols in WAT (white adipose tissue) was 15.9 ± 3.4 μg/g of WAT weight and approximately 1 % of cholesterol level. Among oxycholesterols, the levels of 27-hydroxycholesterol (27-OH), an endogenous oxycholesterol produced by enzymatic oxidation, and the relative WAT weights were significantly negatively correlated. Next, we evaluated the effects of 27-OH on lipogenesis and adipogenesis in 3T3-L1 cells. TO901317 (TO), a potent and selective agonist for LXRα, significantly increased intracellular TAG contents, while 27-OH significantly reduced the contents to half when compared with control (DMSO) and completely abolished the effect of TO. In addition, 27-OH significantly reduced the mRNA levels of lipogenic (LXRα and FAS) and adipogenic genes (PPARγ and aP2) during adipocyte maturation of 3T3-L1 cells. In conclusion, our results indicate that 27-OH suppresses lipid accumulation by down-regulating lipogenic and adipogenic gene expression in 3T3-L1 cells.

  10. Maternal Plane of Nutrition During Late-Gestation and Weaning Age Alter Steer Calf Longissimus Muscle Adipogenic MicroRNA and Target Gene Expression.

    PubMed

    Moisá, Sonia J; Shike, Daniel W; Shoup, Lindsay; Loor, Juan J

    2016-01-01

    The main objective was to evaluate if different planes of maternal nutrition during late gestation and weaning age alter microRNA (miRNA) and target gene expression in offspring longissimus muscle (LM). Early (EW) and normal weaned (NW) Angus × Simmental calves (n = 30) born to cows that were grazing endophyte-infected tall fescue and red clover pastures with no supplement [low plane of nutrition (LPN)], or supplemented with 2.3 and 9.1 kg of dried distiller's grains with solubles and soy hulls [medium and high plane of nutrition (MPN, HPN), respectively] during the last 105 ± 11 days of gestation were used. Biopsies of LM were harvested at 78 (early weaning), 187 (normal weaning) and 354 days of age. Results indicate a role of pro-adipogenic miRNA in the control of adipogenesis in LM of NW-MPN steers between 78 and 187 days of age through upregulation of (1) miR-103 which inhibits CAV1, a protein that destabilizes INSR and leads to insulin resistance; (2) miR-143 which inhibits DLK1, a protein that inhibits adipocyte differentiation; and (3) miR-21 which impairs TGFBR2-induced inhibition of adipocyte differentiation. Among the studied anti-adipogenic miRNA, cow plane of nutrition resulted in downregulation of miR-34a expression in MPN steers compared with HPN and LPN at 78 days of age. Data for miR-34a provided a potential sign of epigenetic regulation of LM in beef offspring due to the cow plane of nutrition during late gestation.

  11. The effect of combined regulation of the expression of peroxisome proliferator-activated receptor-γ and calcitonin gene-related peptide on alcohol-induced adipogenic differentiation of bone marrow mesenchymal stem cells.

    PubMed

    Li, Jinfeng; Wang, Yisheng; Li, Yuebai; Sun, Junkui; Zhao, Guoqiang

    2014-07-01

    Studies have shown that alcohol can upregulate the expression of peroxisome proliferator-activated receptor-γ (PPARγ) gene in bone marrow mesenchymal stem cells (BMSCs). High expression of PPARγ can promote adipogenic differentiation of BMSCs, and reduce their osteogenic differentiation. Abnormal proliferation of adipocytes and fatty accumulation in osteocytes can result in high intraosseous pressure and disturbance of blood circulation in the femoral head, which induces osteonecrosis of the femoral head (ONFH). Downregulation of PPARγ is efficient in inhibiting adipogenesis and maintaining osteogenesis of BMSCs, which might potentially reduce the incidence of ONFH. Calcitonin gene-related peptide (CGRP) is a neuropeptide gene which has been closely associated with bone regeneration. In this study, we aimed to observe the effect of combined regulation of the expression of PPARγ and CGRP genes on alcohol-induced adipogenic differentiation of BMSCs. Our results demonstrated that simultaneous downregulation of PPARγ and upregulation of CGRP was efficient in suppressing adipogenic differentiation of BMSCs and promoting their osteogenic differentiation. These findings might enlighten a novel approach for the prevention of ONFH.

  12. Genes that integrate multiple adipogenic signaling pathways in human mesenchymal stem cells.

    PubMed

    Ito, Tomoya; Tsuruta, So; Tomita, Koki; Kikuchi, Kunio; Yokoi, Takahide; Aizawa, Yasunori

    2011-06-17

    Adipogenesis is a well-characterized cell differentiation process. A large body of evidence has revealed the core transcription factors and signaling pathways that govern adipogenesis, but cross-talks between these cellular signals and its functional consequences have not been thoroughly investigated. We, therefore, sought to identify genes that are regulated by multiple signaling pathways during adipogenesis of human mesenchymal stem cells. Focusing on the early stage of adipogenesis, microarray analysis and quantitative RT-PCR identified 12 genes whose transcription levels were dramatically affected by the complete adipogenic induction cocktail but not by the cocktail's individual components. Expression kinetics of these genes indicate diverse mechanisms of transcriptional regulation during adipogenesis. Functional relationships between these genes and adipogenic differentiation were frequently unknown. This study thus provided novel adipogenic gene candidates that likely mediate communications among multiple signaling pathways within human mesenchymal stem cells.

  13. Arsenic trioxide regulates adipogenic and osteogenic differentiation in bone marrow MSCs of aplastic anemia patients through BMP4 gene.

    PubMed

    Cheng, Huan Chen; Liu, Sheng Wei; Li, Wei; Zhao, Xue Fei; Zhao, Xu; Cheng, Mei; Qiu, Lin; Ma, Jun

    2015-09-01

    The typical pathological feature of aplastic anemia (AA) is the rise in the number of fat cells and the reduction of osteoblasts in bone marrow. However, both fat cells and osteobalsts in bone marrow are derived from the mesenchymal stem cells (MSCs). Generally, the adipogenic and osteogenic differentiation is a dynamic and balanceable process. The imbalance of the adipogenic and osteogenic differentiation may participate in the occurrence and progress of many diseases. Arsenic trioxide (ATO) could induce differentiation and apoptosis in tumor cells. In this study, Oil Red-O and Alizarin red were used to detect the adipogenic and osteogenic differentiation. The ability of adipogenic differentiation is much higher, whereas the osteogenic differentiation is much lower in the MSCs of AA patients compared with healthy controls. ATO inhibits adipogenic differentiation and promotes osteogenic differentiation in the MSC of AA patients. The expression of BMP4 is increased with ATO treatment. The ability of adipogenic differentiation is decreased, whereas the osteogenic differentiation is increased after transfection of BMP4 gene into the MSCs of AA patients. This study shows that ATO regulates the adipogenic and osteogenic differentiation balance of MSCs in AA, which provides a theoretical basis for the adjunctive therapy of ATO on AA. The BMP4 gene is involved in the ATO regulation of adipogenic and osteogenic differentiation balance, which provides a new target for the treatment of AA.

  14. p130/p107 expression distinguishes adipogenic potential in primary myoblasts based on age.

    PubMed

    Guan, Yu; Taylor-Jones, Jane M; Peterson, Charlotte A; McGehee, Robert E

    2002-09-06

    Recent investigations have provided significant evidence that many mesodermally derived tissues contain stem cell-like precursors capable of being stimulated to undergo differentiation into a variety of cellular lineages. We have recently reported that primary myoblasts isolated from 23-month-old mice have an increased adipogenic potential when compared to their 8-month-old counterparts. To further characterize the degree of adipocyte differentiation in these myoblasts, we examined early and late markers of adipocyte differentiation. Within the first 24h of adipocyte differentiation, expression of p130 and p107, two members of the retinoblastoma tumor suppressor gene family, are regulated and this event is an important one early in adipogenesis. Consistent with the increased adipogenic potential of the older myoblasts and in contrast to the younger cells, the p130:p107 pattern of expression is very similar to that observed in adipogenesis where there is a transient increase in p107 expression accompanied by a decrease in p130 expression. Interestingly, while these older cells accumulated lipid and expressed genes associated with lipid metabolism, they failed to express adipsin and leptin, two well-established markers of terminal adipocyte differentiation. These results suggest that older myoblasts are capable of initiating and progressing through the adipogenic program to a point where they express genes associated with lipid metabolism, but do not reach a terminally differentiated state. This finding may have important metabolic implications in the aging population.

  15. Ceiling culture-derived proliferative adipocytes retain high adipogenic potential suitable for use as a vehicle for gene transduction therapy.

    PubMed

    Asada, Sakiyo; Kuroda, Masayuki; Aoyagi, Yasuyuki; Fukaya, Yoshitaka; Tanaka, Shigeaki; Konno, Shunichi; Tanio, Masami; Aso, Masayuki; Satoh, Kaneshige; Okamoto, Yoshitaka; Nakayama, Toshinori; Saito, Yasushi; Bujo, Hideaki

    2011-07-01

    Adipose tissue is expected to provide a source of proliferative cells for regenerative medicine and cell-transplantation therapies using gene transfer manipulation. We have recently identified ceiling culture-derived proliferative adipocytes (ccdPAs) from the mature adipocyte fraction as cells suitable as a therapeutic gene vehicle because of their stable proliferative capacity. In this study, we examined the capability of adipogenic differentiation of the ccdPAs compared with stromal vascular fraction (SVF)-derived progenitor cells (adipose-derived stem cells, ASCs) with regard to their multipotential ability to be converted to another lineage and therefore their potential to be used for regenerative medicine research. After in vitro passaging, the surface antigen profile and the basal levels of adipogenic marker genes of the ccdPAs were not obviously different from those of the ASCs. However, the ccdPAs showed increased lipid-droplet accumulation accompanied with higher adipogenic marker gene expression after stimulation of differentiation compared with the ASCs. The higher adipogenic potential of the ccdPAs than the ASCs from the SVF was maintained for 42 days in culture. Furthermore, the difference in the adipogenic response was enhanced after partial stimulation without indomethacin. These results indicate that the ccdPAs retain a high adipogenic potential even after in vitro passaging, thus suggesting the commitment of ccdPAs to stable mature adipocytes after autotransplantation, indicating that they may have potential for use in regenerative and gene-manipulated medicine.

  16. Distal-less homeobox 5 inhibits adipogenic differentiation through the down-regulation of peroxisome proliferator-activated receptor γ expression.

    PubMed

    Lee, Hye-Lim; Woo, Kyung Mi; Ryoo, Hyun-Mo; Baek, Jeong-Hwa

    2013-01-01

    Distal-less homeobox 5 (Dlx5) is a positive regulator of osteoblast differentiation that contains a homeobox domain. Because there are possible reciprocal relationships between osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cells (MSCs), we examined the regulatory role of Dlx5 in adipogenic differentiation in this study. Adipogenic stimuli suppressed the expression levels of Dlx5 mRNA in mouse bone marrow stromal cells. Over-expression of Dlx5 inhibited adipogenic differentiation in human bone marrow MSCs and 3T3-L1 preadipocytic cells whereas knockdown of Dlx5 enhanced adipogenic differentiation in 3T3-L1 cells. Over-expression of Dlx5 suppressed the expression of adipogenic marker genes, including CCAAT/enhancer-binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ). Dlx5-mediated suppression of adipogenic differentiation was overcome by over-expression of PPARγ but not by that of cAMP response element binding protein (CREB) or C/EBPα. Dlx5 decreased the transcriptional activity of CREB and C/EBPα in a dose-dependent manner. Dlx5 directly bound to CREB and C/EBPα and prevented them from binding to and subsequently transactivating the PPARγ promoter. These results suggest that Dlx5 plays an important regulatory role in fate determination of bone marrow MSCs toward the osteoblast lineage through the inhibition of adipocyte differentiation as well as the direct stimulation of osteoblast differentiation.

  17. Identification of the transcription factor ZEB1 as a central component of the adipogenic gene regulatory network.

    PubMed

    Gubelmann, Carine; Schwalie, Petra C; Raghav, Sunil K; Röder, Eva; Delessa, Tenagne; Kiehlmann, Elke; Waszak, Sebastian M; Corsinotti, Andrea; Udin, Gilles; Holcombe, Wiebke; Rudofsky, Gottfried; Trono, Didier; Wolfrum, Christian; Deplancke, Bart

    2014-08-27

    Adipose tissue is a key determinant of whole body metabolism and energy homeostasis. Unraveling the regulatory mechanisms underlying adipogenesis is therefore highly relevant from a biomedical perspective. Our current understanding of fat cell differentiation is centered on the transcriptional cascades driven by the C/EBP protein family and the master regulator PPARγ. To elucidate further components of the adipogenic gene regulatory network, we performed a large-scale transcription factor (TF) screen overexpressing 734 TFs in mouse pre-adipocytes and probed their effect on differentiation. We identified 22 novel pro-adipogenic TFs and characterized the top ranking TF, ZEB1, as being essential for adipogenesis both in vitro and in vivo. Moreover, its expression levels correlate with fat cell differentiation potential in humans. Genomic profiling further revealed that this TF directly targets and controls the expression of most early and late adipogenic regulators, identifying ZEB1 as a central transcriptional component of fat cell differentiation.

  18. Myeloid Elf-1-like factor stimulates adipogenic differentiation through the induction of peroxisome proliferator-activated receptor γ expression in bone marrow.

    PubMed

    Baek, Kyunghwa; Cho, Je-Yoel; Hwang, Hyo Rin; Kwon, Arang; Lee, Hye-Lim; Park, Hyun-Jung; Qadir, Abdul S; Ryoo, Hyun-Mo; Woo, Kyung Mi; Baek, Jeong-Hwa

    2012-11-01

    Myeloid Elf-1 like factor (MEF) is one of the Ets transcription factors known to regulate cell proliferation and differentiation. A previous report has shown that osteoblast-specific MEF transgenic mice (Col1a1-MEF TG mice) have low bone mass but high bone marrow adiposity. In the present study, we explored a previously unappreciated mechanism whereby MEF promotes adipogenesis in bone marrow. An adipogenic colony-forming unit assay showed that bone marrow cells derived from Col1a1-MEF TG mice had a higher adipogenic differentiation potential compared to those from wild-type. The levels of adipogenic marker genes expression in 3T3L1 cells were higher when co-cultured with Col1a1-MEF TG bone marrow cells than with wild-type cells. MC3T3-E1 preosteoblasts transfected with MEF secreted higher levels of 15-deoxy-delta (12, 14)-prostaglandin J(2), a potent endogenous ligand of peroxisome proliferator-activated receptor γ (PPARγ), under adipogenic conditions. MEF overexpression increased the adipogenic marker genes expression including PPARγ and lipid droplet accumulation in MC3T3-E1 preosteoblasts and 3T3L1 preadipocytes. Endogenous MEF expression levels increased as adipocyte differentiation proceeded. Knockdown of MEF by siRNA suppressed expression levels of adipogenic marker genes including PPARγ. MEF directly bound to the MEF binding element on the mouse PPARγ promoter, transactivating promoter activity. Immunohistochemical staining of tibia sections demonstrated that bone lining cells and bone marrow cells express higher levels of PPARγ protein in Col1a1-MEF TG mice than in wild-type mice. These results suggest that MEF transactivates PPARγ expression, which, in turn, enhances adipogenic differentiation. Furthermore, MEF overexpressing osteoblasts secrete higher levels of adipogenic factors, creating a marrow microenvironment that favors adipogenesis.

  19. Deletion of Alox5 gene decreases osteogenic differentiation but increases adipogenic differentiation of mouse induced pluripotent stem cells.

    PubMed

    Wu, Yanru; Sun, Hualing; Song, Fangfang; Huang, Cui; Wang, Jiawei

    2014-10-01

    Induced pluripotent stem cells (iPSCs) have great potential in bone tissue engineering to repair large bone defects. Before their clinical application, investigations are needed to discover the genes and osteoconductive scaffolds that influence their differentiation toward an osteogenic lineage. Alox5 plays controversial and complex roles in the regulation of bone and fat metabolism. To detect the effect of Alox5 on osteogenic and adipogenic differentiation of iPSCs, both Alox5 knockout mouse iPSCs (Alox5-KO-iPSCs) and wild-type mouse iPSCs (Wild-iPSCs) were developed. The mRNA levels of many osteogenic markers in Alox5-KO-iPSCs were significantly reduced, while many adipogenic markers were enhanced. Furthermore, when implanted in rat cranial critical-sized defects with collagen/chitosan/hydroxyapatite scaffolds (CCHS), Alox5-KO-iPSCs produced significantly less new bone than Wild-iPSCs and both cell-scaffold groups had no tumor formation. There was a significant difference in the expression of Cox2 during the osteogenic and adipogenic differentiation between the two kinds of iPSCs in vitro. In conclusion, firstly, Alox5 knockout reduced the osteogenic but increased the adipogenic differentiation potential of mouse iPSCs. These disorders might be related to the change of Cox2 expression. Secondly, combined with iPSCs, CCHS can serve as a potential substrate to repair critical-sized bony defects. However, more studies are required to confirm the mechanisms through which Alox5 affects the osteogenic and adipogenic abilities of iPSCs in vivo and the effect of Cox2 inhibition in this system.

  20. Hypoxia increases Sca-1/CD44 co-expression in murine mesenchymal stem cells and enhances their adipogenic differentiation potential.

    PubMed

    Valorani, M G; Germani, A; Otto, W R; Harper, L; Biddle, A; Khoo, C P; Lin, W R; Hawa, M I; Tropel, P; Patrizi, M P; Pozzilli, P; Alison, M R

    2010-07-01

    Mesenchymal stem cells (MSCs) are usually cultured under normoxic conditions (21% oxygen). However, in vivo, the physiological "niches" for MSCs have a much lower oxygen tension. Because of their plasticity, stem cells are particularly sensitive to their environments, and oxygen tension is one developmentally important stimulus in stem cell biology and plays a role in the intricate balance between cellular proliferation and commitment towards differentiation. Therefore, we investigated here the effect of hypoxia (2% oxygen) on murine adipose tissue (AT) MSC proliferation and adipogenic differentiation. AT cells were obtained from the omental fat and AT-MSCs were selected for their ability to attach to the plastic dishes, and were grown under normoxic and hypoxic conditions. Prior exposure of MSCs to hypoxia led to a significant reduction of ex vivo expansion time, with significantly increased numbers of Sca-1(+) as well as Sca-1(+)/CD44(+)double-positive cells. Under low oxygen culture conditions, the AT-MSC number markedly increased and their adipogenic differentiation potential was reduced. Notably, the hypoxia-mediated inhibition of adipogenic differentiation was reversible: AT-MSCs pre-exposed to hypoxia when switched to normoxic conditions exhibited significantly higher adipogenic differentiation capacity compared to their pre-exposed normoxic-cultured counterparts. Accordingly, the expression of adipocyte-specific genes, peroxisome proliferator activated receptor gamma (Ppargamma), lipoprotein lipase (Lpl) and fatty acid binding protein 4 (Fabp4) were significantly enhanced in hypoxia pre-exposed AT-MSCs. In conclusion, pre-culturing MSCs under hypoxic culture conditions may represent a strategy to enhance MSC production, enrichment and adipogenic differentiation.

  1. Sequence analysis of bovine C/EBPδ gene and its adipogenic effects on fibroblasts.

    PubMed

    Wang, Hong; Cheng, Gong; Fu, Changzhen; Wang, Hongbao; Yang, Wucai; Wang, Hongcheng; Zan, Linsen

    2014-01-01

    CCAAT/enhancer binding protein delta (C/EBPδ), an important transcriptional factor, regulates cell growth, differentiation and adipogenesis in humans and mice. However, we lack of directive information on the effects of C/EBPδ gene in bovine cells. In the present study, we cloned the CDS areas of bovine C/EBPδ gene and predicted its sequence characteristics. Moreover, we constructed the recombinant adenovirus plasmids of bovine C/EBPδ gene and harvested the subsequent adenoviruses to infect bovine primary fibroblasts. Oil Red O staining results showed lipid droplets accumulated gradually in the adenoviruses treated fibroblasts. Time course real-time PCR results indicated that over-expression of exogenous C/EBPδ regulated the mRNA expression levels of some key adipogenic genes, herein, activated the C/EBPα expression, increased lipoprotein lipase and fatty acid binding protein 4 mRNA expression levels, whereas inhibited leptin receptor gene. In conclusion, the present study demonstrates that the elevated C/EBPδ can induce the adipogenesis in the fibroblasts of cattle.

  2. Human osteoblasts derived from mesenchymal stem cells express adipogenic markers upon coculture with bone marrow adipocytes.

    PubMed

    Clabaut, Aline; Delplace, Séverine; Chauveau, Christophe; Hardouin, Pierre; Broux, Odile

    2010-07-01

    In osteoporosis, bone loss is accompanied by greater adiposity in the marrow. Given the cellular proximity within the bone marrow, we wondered whether adipocytes might have a paracrine impact on osteoblast differentiation. To test this hypothesis, we cocultured adipocytes with osteoblasts derived from mesenchymal stem cells (MSCs) in the absence of direct cell contact and then analyzed gene expression changes in the osteoblastic population by using real-time reverse transcription polymerase chain reaction. We found that, upon coculture, MSC-derived osteoblasts showed appearance of adipogenic (lipoprotein lipase, leptin) and decrease of osteogenic (osteocalcin) mRNA markers. Our results indicate that in vitro, MSC-derived adipocytes are capable of inducing MSC-derived osteoblasts to differentiate to an adipocyte phenotype. These new data suggest that (i) transdifferentiation of committed osteoblasts into adipocytes may contribute to the increase in marrow fat content at the expense of bone-forming cells and (ii) this switch might be initiated by the adipocytes themselves.

  3. Syzygium aromaticum ethanol extract reduces high-fat diet-induced obesity in mice through downregulation of adipogenic and lipogenic gene expression.

    PubMed

    Jung, Chang Hwa; Ahn, Jiyun; Jeon, Tae-Il; Kim, Tae Wan; Ha, Tae Youl

    2012-09-01

    Numerous medicinal plants and their derivatives have been reported to prevent obesity and related diseases. Although Syzygium aromaticum has traditionally been used as an anodyne, carminative and anthelmintic in Asian countries, its potential in the prevention and treatment of obesity has not yet been explored. Therefore, the present study investigated the anti-obesity effect of S. aromaticum ethanol extract (SAE) both in vitro and in vivo. To evaluate the anti-obesity potential of SAE in vitro, the effect of SAE treatment on adipocyte differentiation in 3T3-L1 cells was investigated. To evaluate its potential in vivo, mice were assigned to three groups: a group fed the American Institute of Nutrition AIN-76A diet (normal group), an experimental group fed a high-fat diet (HFD group) and an experimental group fed an HFD supplemented with 0.5% (w/w) SAE (HFD + SAE group). After 9 weeks of feeding, the body weight; white adipose tissue (WAT) mass; serum triglyceride (TG), total cholesterol (TC), high-density lipoprotein (HDL) cholesterol, glucose, insulin and leptin; hepatic lipid accumulation; and levels of lipid metabolism-related genes in the liver and WAT were measured. In vitro investigation of the effect of SAE treatment on 3T3-L1 cells revealed that it had efficiently inhibited the conversion of cells into adipocytes in a dose-dependent manner. In vivo investigation revealed that SAE supplementation had significantly decreased HFD-induced increases in the body weight, liver weight, WAT mass, and serum TG, TC, lipid, glucose, insulin and leptin levels. Consistent with its effects on liver weight and WAT mass, SAE supplementation was found to have suppressed the expression of lipid metabolism-related proteins, including SREBP-1, FAS, CD36 and PPARγ in the liver and WAT, in addition to downregulating mRNA levels of transcription factors including Srebp and Pparg. SAE inhibits fat accumulation in HFD-fed mice via the suppression of transcription factors integral

  4. Platelet lysate suppresses the expression of lipocalin-type prostaglandin D2 synthase that positively controls adipogenic differentiation of human mesenchymal stromal cells.

    PubMed

    Lange, Claudia; Brunswig-Spickenheier, Bärbel; Eissing, Leah; Scheja, Ludger

    2012-11-01

    Mesenchymal stromal cells (MSCs) have been shown to display a considerable therapeutic potential in cellular therapies. However, harmful adipogenic maldifferentiation of transplanted MSCs may seriously threaten the success of this therapeutic approach. We have previously demonstrated that using platelet lysate (PL) instead of widely used fetal calf serum (FCS) diminished lipid accumulation in adipogenically stimulated human MSCs and identified, among others, lipocalin-type prostaglandin D2 synthase (L-PGDS) as a gene suppressed in PL-supplemented MSCs. Here, we investigated the role of PL and putatively pro-adipogenic L-PGDS in human MSC adipogenesis. Next to strongly reduced levels of L-PGDS we show that PL-supplemented MSCs display markedly decreased expression of adipogenic master regulators and differentiation markers, both before and after induction of adipocyte differentiation. The low adipogenic differentiation capability of PL-supplemented MSCs could be partially restored by exogenous addition of L-PGDS protein. Conversely, siRNA-mediated downregulation of L-PGDS in FCS-supplemented MSCs profoundly reduced adipocyte differentiation. In contrast, inhibiting endogenous prostaglandin synthesis by aspirin did not reduce differentiation, suggesting that a mechanism such as lipid shuttling but not the prostaglandin D2 synthase activity of L-PGDS is critical for adipogenesis. Our data demonstrate that L-PGDS is a novel pro-adipogenic factor in human MSCs which might be of relevance in adipocyte metabolism and disease. L-PGDS gene expression is a potential quality marker for human MSCs, as it might predict unwanted adipogenic differentiation after MSC transplantation.

  5. Association of adipogenic genes with SC-35 domains during porcine adipogenesis.

    PubMed

    Szczerbal, Izabela; Bridger, Joanna M

    2010-12-01

    Spatial organization of the genome within interphase nuclei is non-random. It has been shown that not only whole chromosomes but also individual genes occupy specific nuclear locations and these locations can be changed during different processes like differentiation or disease. Using a porcine in vitro adipogenesis stem cell differentiation system as a model to study nuclear organization, it was demonstrated that nuclear position of selected genes involved in porcine adipogenesis was altered with the up-regulation of gene expression, correlating with these genes becoming more internally located within nuclei, without whole territory relocation. Here, we investigated whether the gene relocation observed during porcine adipogenesis is related to spatial co-association with SC-35 domains. These domains are nuclear speckles enriched in numerous splicing and RNA metabolic factors. Using a DNA immuno-FISH approach we investigated the localisation of three adipogenic genes (PPARG, SREBF1, and FABP4) with SC-35 domains in porcine mesenchymal stem cells and after they were differentiated into adipocytes. We found that the location of these genes relative to SC-35 domains was non-random and correlated with the up-regulation of gene expression. In addition, we observed more frequent clustering of the studied genes located on different chromosomes around the same nuclear speckle in differentiated adipocytes than in mesenchymal stem cells. However, the choice of the domain was more random. This study adds to the evidence that SC-35 domains are hubs of gene activity and gene-domain association may be considered as a common mechanism to enhance gene expression.

  6. Suppression of adipogenic differentiation by muscle cell-induced decrease in genes related to lipogenesis in muscle and fat co-culture system.

    PubMed

    Park, Sungkwon; Baek, Kyunghoon; Choi, Changbon

    2013-09-01

    Intercellular signalling communication between adipose and muscle tissue has been investigated. To test the effect of muscle cells on adipogenic gene expression, we utilised an in vitro co-culture system, in which fat (3T3-L1) and muscle (L-6) cells were physically separated but chemically exposed each other via insert with 0.4 µm porous membrane. When 3T3-L1 and L-6 cells reached at 80 and 40% confluence, respectively in separate wells, L-6 cells grown in insert were transferred onto 6-well plates where 3T3-L1 cells were being grown. When both cells were fully differentiated in co-culture plates, morphology of 3T3-L1 was examined by staining with Oil-red-O. Activity of glycerol-3-phosphate dehydrogenase (GPDH) and adipogenic gene expression including lipoprotein lipase (LPL), adipsin, GPDH, peroxisome proliferator-activated receptor-γ (PPARγ) and CCAAT/enhancer binding protein (C/EBPα) were analysed. The presence of muscle cells during preadipocyte differentiation inhibited (P < 0.05) lipogenesis by suppressing lipogenic gene expression including LPL, adipsin and GPDH. Furthermore, GPDH activity was also decreased (P < 0.05) in 3T3-L1 cells by the presence of L-6 cells. These results suggest that presence of muscle cells suppresses adipogenic differentiation by inhibiting the adipogenic gene expression and GPDH activity in the muscle and fat cell co-culture system.

  7. The Influence of Tetracycline Inducible Targeting Rat PPARγ Gene Silencing on the Osteogenic and Adipogenic Differentiation of Bone Marrow Stromal Cells.

    PubMed

    Feng, Xiaobo; Liu, Xianzhe; Cai, Xianyi; Lin, Tao; Xu, Weihua; Yang, Cao; Liu, Yongwei; Yang, Shuhua; Fu, Dehao

    2016-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) has been considered as the master regulator for adipogenesis of bone marrow stromal cells (BMSCs). However, there are few reports regarding the effect of PPARγ gene silencing on osteogenic and adipogenic differentiation in rat BMSCs, and no reports about tissue targeting and conditional knockdown of PPARγ gene. In this study, we construct rat PPARγ gene shRNA Tet-on lentiviral vector, the lentiviral vector facilitated tetracycline (which has the characteristics of bone targeting)-inducible knockdown specific to PPARγ gene, and transfect it into BMSCs, the silencing effects induced by tetracycline is significant. The expression of the adipogenic factors adipocyte determination and differentiation-dependent factor 1 (ADD1) and recombinant CCAAT/enhancer binding protein alpha (C/EBPα) were decreased as measured by RT-PCR and Western blot assay following PPARγ silencing. In contrast, expression of the osteogenic genes encoding collagen I and Cbfa1/Runx2 were increased. In adipogenic medium, PPARγ-shRNA transfection reduced the lipid droplet count as measured by Oil red O staining when compared to the control groups. In osteogenic medium, PPARγ-shRNA increased the activity of alkaline phosphatase and the amount of calcium deposition as measured by Alizarin red S staining. These results suggest that the rat PPARγ gene shRNA Teton lentiviral vector decreases adipogenic differentiation and promotes osteogenic differentiation in BMSCs induced by tetracycline.

  8. Identification of the transcription factor ZEB1 as a central component of the adipogenic gene regulatory network

    PubMed Central

    Gubelmann, Carine; Schwalie, Petra C; Raghav, Sunil K; Röder, Eva; Delessa, Tenagne; Kiehlmann, Elke; Waszak, Sebastian M; Corsinotti, Andrea; Udin, Gilles; Holcombe, Wiebke; Rudofsky, Gottfried; Trono, Didier; Wolfrum, Christian; Deplancke, Bart

    2014-01-01

    Adipose tissue is a key determinant of whole body metabolism and energy homeostasis. Unraveling the regulatory mechanisms underlying adipogenesis is therefore highly relevant from a biomedical perspective. Our current understanding of fat cell differentiation is centered on the transcriptional cascades driven by the C/EBP protein family and the master regulator PPARγ. To elucidate further components of the adipogenic gene regulatory network, we performed a large-scale transcription factor (TF) screen overexpressing 734 TFs in mouse pre-adipocytes and probed their effect on differentiation. We identified 22 novel pro-adipogenic TFs and characterized the top ranking TF, ZEB1, as being essential for adipogenesis both in vitro and in vivo. Moreover, its expression levels correlate with fat cell differentiation potential in humans. Genomic profiling further revealed that this TF directly targets and controls the expression of most early and late adipogenic regulators, identifying ZEB1 as a central transcriptional component of fat cell differentiation. DOI: http://dx.doi.org/10.7554/eLife.03346.001 PMID:25163748

  9. Upregulation of miR-22 promotes osteogenic differentiation and inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells by repressing HDAC6 protein expression.

    PubMed

    Huang, Shan; Wang, Shihua; Bian, Chunjing; Yang, Zhuo; Zhou, Hong; Zeng, Yang; Li, Hongling; Han, Qin; Zhao, Robert Chunhua

    2012-09-01

    Mesenchmal stem cells (MSCs) can be differentiated into either adipocytes or osteoblasts, and a reciprocal relationship exists between adipogenesis and osteogenesis. Multiple transcription factors and signaling pathways have been reported to regulate adipogenic or osteogenic differentiation, respectively, yet the molecular mechanism underlying the cell fate alteration between adipogenesis and osteogenesis still remains to be illustrated. MicroRNAs are important regulators in diverse biological processes by repressing protein expression of their targets. Here, miR-22 was found to regulate adipogenic and osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells (hADMSCs) in opposite directions. Our data showed that miR-22 decreased during the process of adipogenic differentiation but increased during osteogenic differentiation. On one hand, overexpression of miR-22 in hADMSCs could inhibit lipid droplets accumulation and repress the expression of adipogenic transcription factors and adipogenic-specific genes. On the other hand, enhanced alkaline phosphatase activity and matrix mineralization, as well as increased expression of osteo-specific genes, indicated a positive role of miR-22 in regulating osteogenic differentiation. Target databases prediction and validation by Dual Luciferase Reporter Assay, western blot, and real-time polymerase chain reaction identified histone deacetylase 6 (HDAC6) as a direct downstream target of miR-22 in hADMSCs. Inhibition of endogenous HDAC6 by small-interfering RNAs suppressed adipogenesis and stimulated osteogenesis, consistent with the effect of miR-22 overexpression in hADMSCs. Together, our results suggested that miR-22 acted as a critical regulator of balance between adipogenic and osteogenic differentiation of hADMSCs by repressing its target HDAC6.

  10. Mouse Mesenchymal Progenitor Cells Expressing Adipogenic and Osteogenic Transcription Factors Suppress the Macrophage Inflammatory Response.

    PubMed

    Fernandez, Natalie; Renna, Heather; McHugh, Lauren; Mazolkova, Katie; Crugnola, William; Evans, Jodi F

    2017-01-01

    Mesenchymal progenitor cell characteristics that can identify progenitor populations with specific functions in immunity are actively being investigated. Progenitors from bone marrow and adipose tissue regulate the macrophage (MΦ) inflammatory response by promoting the switch from an inflammatory to an anti-inflammatory phenotype. Conversely, mesenchymal progenitors from the mouse aorta (mAo) support and contribute to the MΦ response under inflammatory conditions. We used cell lines with purported opposing immune-regulatory function, a bone marrow derived mesenchymal progenitor cell line (D1) and a mouse aorta derived mesenchymal progenitor cell line (mAo). Their interaction and regulation of the MΦ cell response to the inflammatory mediator, lipopolysaccharide (LPS), was examined by coculture. As expected, D1 cells suppressed NO, TNF-α, and IL-12p70 production but MΦ phagocytic activity remained unchanged. The mAo cells enhanced NO and TNF-α production in coculture and enhanced MΦ phagocytic activity. Using flow cytometry and PCR array, we then sought to identify sets of MSC-associated genes and markers that are expressed by these progenitor populations. We have determined that immune-supportive mesenchymal progenitors highly express chondrogenic and tenogenic transcription factors while immunosuppressive mesenchymal progenitors highly express adipogenic and osteogenic transcription factors. These data will be useful for the isolation, purification, and modification of mesenchymal progenitors to be used in the treatment of inflammatory diseases.

  11. Mouse Mesenchymal Progenitor Cells Expressing Adipogenic and Osteogenic Transcription Factors Suppress the Macrophage Inflammatory Response

    PubMed Central

    Fernandez, Natalie; Renna, Heather; McHugh, Lauren; Mazolkova, Katie; Crugnola, William

    2017-01-01

    Mesenchymal progenitor cell characteristics that can identify progenitor populations with specific functions in immunity are actively being investigated. Progenitors from bone marrow and adipose tissue regulate the macrophage (MΦ) inflammatory response by promoting the switch from an inflammatory to an anti-inflammatory phenotype. Conversely, mesenchymal progenitors from the mouse aorta (mAo) support and contribute to the MΦ response under inflammatory conditions. We used cell lines with purported opposing immune-regulatory function, a bone marrow derived mesenchymal progenitor cell line (D1) and a mouse aorta derived mesenchymal progenitor cell line (mAo). Their interaction and regulation of the MΦ cell response to the inflammatory mediator, lipopolysaccharide (LPS), was examined by coculture. As expected, D1 cells suppressed NO, TNF-α, and IL-12p70 production but MΦ phagocytic activity remained unchanged. The mAo cells enhanced NO and TNF-α production in coculture and enhanced MΦ phagocytic activity. Using flow cytometry and PCR array, we then sought to identify sets of MSC-associated genes and markers that are expressed by these progenitor populations. We have determined that immune-supportive mesenchymal progenitors highly express chondrogenic and tenogenic transcription factors while immunosuppressive mesenchymal progenitors highly express adipogenic and osteogenic transcription factors. These data will be useful for the isolation, purification, and modification of mesenchymal progenitors to be used in the treatment of inflammatory diseases. PMID:28191017

  12. Berberine reduces the expression of adipogenic enzymes and inflammatory molecules of 3T3-L1 adipocyte.

    PubMed

    Choi, Bong-Hyuk; Ahn, In-Sook; Kim, Yu-Hee; Park, Ji-Won; Lee, So-Young; Hyun, Chang-Kee; Do, Myoung-Sool

    2006-12-31

    Berberine (BBR), an isoquinoline alkaloid, has a wide range of pharmacological effects, yet its exact mechanism is unknown. In order to understand the anti-adipogenic effect of BBR, we studied the change of expression of several adipogenic enzymes of 3T3-L1 cells by BBR treatment. First, we measured the change of leptin and glycerol in the medium of 3T3-L1 cells treated with 1 micrometer, 5 micrometer and 10 micrometer concentrations of BBR. We also measured the changes of adipogenic and lipolytic factors of 3T3-L1. In 3T3-L1 cells, both leptin and adipogenic factors (SREBP-1c, C/EBP-alpha, PPAR-gamma, fatty acid synthase, acetyl-CoA carboxylase, acyl-CoA synthase and lipoprotein lipase) were reduced by BBR treatment. Glycerol secretion was increased, whereas expression of lipolytic enzymes (hormone-sensitive lipase and perilipin) mRNA was slightly decreased. Next, we measured the change of inflammation markers of 3T3-L1 cells by BBR treatment. This resulted in the down-regulation of mRNA level of inflammation markers such as TNF-alpha, IL-6, C- reactive protein and haptoglobin. Taken together, our data shows that BBR has both anti-adipogenic and anti-inflammatory effects on 3T3-L1 adipocytes, and the anti-adipogenic effect seems to be due to the down-regulation of adipogenic enzymes and transcription factors.

  13. Reverse Differentiation as a Gene Filtering Tool in Genome Expression Profiling of Adipogenesis for Fat Marker Gene Selection and Their Analysis

    PubMed Central

    Ullah, Mujib; Stich, Stefan; Häupl, Thomas; Eucker, Jan; Sittinger, Michael; Ringe, Jochen

    2013-01-01

    Background During mesenchymal stem cell (MSC) conversion into adipocytes, the adipogenic cocktail consisting of insulin, dexamethasone, indomethacin and 3-isobutyl-1-methylxanthine not only induces adipogenic-specific but also genes for non-adipogenic processes. Therefore, not all significantly expressed genes represent adipogenic-specific marker genes. So, our aim was to filter only adipogenic-specific out of all expressed genes. We hypothesize that exclusively adipogenic-specific genes change their expression during adipogenesis, and reverse during dedifferentiation. Thus, MSC were adipogenic differentiated and dedifferentiated. Results Adipogenesis and reverse adipogenesis was verified by Oil Red O staining and expression of PPARG and FABP4. Based on GeneChips, 991 genes were differentially expressed during adipogenesis and grouped in 4 clusters. According to bioinformatic analysis the relevance of genes with adipogenic-linked biological annotations, expression sites, molecular functions, signaling pathways and transcription factor binding sites was high in cluster 1, including all prominent adipogenic genes like ADIPOQ, C/EBPA, LPL, PPARG and FABP4, moderate in clusters 2–3, and negligible in cluster 4. During reversed adipogenesis, only 782 expressed genes (clusters 1–3) were reverted, including 597 genes not reported for adipogenesis before. We identified APCDD1, CHI3L1, RARRES1 and SEMA3G as potential adipogenic-specific genes. Conclusion The model system of adipogenesis linked to reverse adipogenesis allowed the filtration of 782 adipogenic-specific genes out of total 991 significantly expressed genes. Database analysis of adipogenic-specific biological annotations, transcription factors and signaling pathways further validated and valued our concept, because most of the filtered 782 genes showed affiliation to adipogenesis. Based on this approach, the selected and filtered genes would be potentially important for characterization of adipogenesis and

  14. Role of PRDM16 and its PR domain in the epigenetic regulation of myogenic and adipogenic genes during transdifferentiation of C2C12 cells.

    PubMed

    Li, Xiao; Wang, Jinquan; Jiang, Zheng; Guo, Feng; Soloway, Paul D; Zhao, Ruqian

    2015-10-10

    The positive regulatory domain containing 16 (PRDM16) is commonly regarded as a "switch" controlling the transdifferentiation of myoblasts to brown adipocytes. The N-positive regulatory (PR) domain, which is highly homologous to SET domain, is a characteristic structure for the PRDM family. Many SET domain containing proteins and several PRDM members have been found to possess histone methyltransferase activity, yet the role of PRDM16 and its PR domain in the epigenetic regulation of myogenic and adipogenic genes during myoblasts/adipocytes transdifferentiation remains unexplored. In this study, we transfected C2C12 myoblasts to stably express PRDM16 and observed the repression of myogenic genes and activation of adipogenic genes at both proliferation and differentiation stages. Ectopic PRDM16-induced reprogramming of myogenic and adipogenic genes was associated with the hypermethylation on some CpG sites in the enhancer or promoter of MyoD and myogenin, but the methylation status of PPARγ promoter was not affected. C2C12 cells expressing truncated PRDM16 lacking PR domain (ΔPR-PRDM16) demonstrated attenuation of both adipogenic and myogenic potentials, indicated by PPARγ inactivation and decreased triglyceride deposition, as well as a downregulation of MyoD, MyHC and MCK genes, as compared with C2C12 cells expressing intact PRDM16. Furthermore, C2C12 cells expressing ΔPR-PRDM16 exhibited significant differences in histone modifications on the promoters of MyoD and PPARγ genes. Taken together, PRDM16-induced C2C12 transdifferentiation is associated with alterations in CpG methylation of myogenic factors, and PR domain affects both myogenesis and adipogenesis with modified histone methylation marks on MyoD and PPARγ promoters.

  15. Spot14/Spot14R expression may be involved in MSC adipogenic differentiation in patients with adolescent idiopathic scoliosis

    PubMed Central

    WANG, QIFEI; YANG, JUNLIN; LIN, XIANG; HUANG, ZIFANG; XIE, CHAOFAN; FAN, HENGWEI

    2016-01-01

    The aim of the present study was to evaluate the different expression levels of thyroid hormone responsive (THRSP; Spot14)/S14 related, Mig12 (S14R) during bone marrow mesenchymal stem cell (BM-MSC) adipogenesis in adolescent idiopathic scoliosis (AIS) patients. MSCs were retrospectively isolated from AIS patients and controls, and adipogenic differentiation was induced. Total RNA was extracted for Affymetrix 3′-IVT expression profiling microarrays and compared with the results from healthy controls. The results were confirmed by semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) validation and the protein expression levels of Spot14 and its paralogous gene S14R by western blotting and immunohistochemistry. A total of 300 significantly altered mRNAs were detected (111 upregulated and 189 downregulated) and confirmed by RT-qPCR. The mRNA expression levels of seven genes, including Spot14, were altered by >2-fold in AIS patients. Spot14/S14R was selected for further investigation. The results of the western blotting demonstrated that mRNA and protein expression levels of Spot14/S14R were significantly higher in AIS patients than the controls (P<0.05). Immunohistochemistry demonstrated Spot14 was expressed in 85% (17/20 cases) in adipose tissue samples from AIS patients and 23.1% (3/13 cases) of adipose tissue samples from controls. The positive ratio of Spot14 in adipose tissue samples from AIS was significantly higher than the controls (P<0.001). The results of the present study indicated that Spot14/S14R were differently expressed in MSC adipogenesis in AIS patients, and they may be important in the abnormal adipogenic differentiation in AIS. PMID:27082501

  16. Maternal obesity induces epigenetic modifications to facilitate Zfp423 expression and enhance adipogenic differentiation in fetal mice.

    PubMed

    Yang, Qi-Yuan; Liang, Jun-Fang; Rogers, Carl J; Zhao, Jun-Xing; Zhu, Mei-Jun; Du, Min

    2013-11-01

    Maternal obesity (MO) predisposes offspring to obesity and type 2 diabetes despite poorly defined mechanisms. Zfp423 is the key transcription factor committing cells to the adipogenic lineage, with exceptionally dense CpG sites in its promoter. We hypothesized that MO enhances adipogenic differentiation during fetal development through inducing epigenetic changes in the Zfp423 promoter and elevating its expression. Female mice were subjected to a control (Con) or obesogenic (OB) diet for 2 months, mated, and maintained on their diets during pregnancy. Fetal tissue was harvested at embryonic day 14.5 (E14.5), when the early adipogenic commitment is initiated. The Zfp423 expression was 3.6-fold higher and DNA methylation in the Zfp423 promoter was lower in OB compared with Con. Correspondingly, repressive histone methylation (H3K27me3) was lower in the Zfp423 promoter of OB fetal tissue, accompanied by reduced binding of enhancer of zeste 2 (EZH2). Gain- and loss-of-function analysis showed that Zfp423 regulates early adipogenic differentiation in fetal progenitor cells. In summary, MO enhanced Zfp423 expression and adipogenic differentiation during fetal development, at least partially through reducing DNA methylation in the Zfp423 promoter, which is expected to durably elevate adipogenic differentiation of progenitor cells in adult tissue, programming adiposity and metabolic dysfunction later in life.

  17. The Wnt-target gene Dlk-1 is regulated by the Prmt5-associated factor Copr5 during adipogenic conversion

    PubMed Central

    Paul, Conception; Sardet, Claude; Fabbrizio, Eric

    2015-01-01

    ABSTRACT Protein arginine methyl transferase 5 (Prmt5) regulates various differentiation processes, including adipogenesis. Here, we investigated adipogenic conversion in cells and mice in which Copr5, a Prmt5- and histone-binding protein, was genetically invalidated. Compared to control littermates, the retroperitoneal white adipose tissue (WAT) of Copr5 KO mice was slightly but significantly reduced between 8 and 16 week/old and contained fewer and larger adipocytes. Moreover, the adipogenic conversion of Copr5 KO embryoid bodies (EB) and of primary embryo fibroblasts (Mefs) was markedly delayed. Differential transcriptomic analysis identified Copr5 as a negative regulator of the Dlk-1 gene, a Wnt target gene involved in the control of adipocyte progenitors cell fate. Dlk-1 expression was upregulated in Copr5 KO Mefs and the Vascular Stromal Fraction (VSF) of Copr5 KO WAT. Chromatin immunoprecipitation (ChIP) show that the ablation of Copr5 has impaired both the recruitment of Prmt5 and β-catenin at the Dlk-1 promoter. Overall, our data suggest that Copr5 is involved in the transcriptional control exerted by the Wnt pathway on early steps of adipogenesis. PMID:25681392

  18. Germinated brown rice extract inhibits adipogenesis through the down-regulation of adipogenic genes in 3T3-L1 adipocytes.

    PubMed

    Ho, Jin-Nyoung; Son, Mi-Eun; Lim, Won-Chul; Lim, Seung-Taik; Cho, Hong-Yon

    2013-09-01

    The aim of this study was to examine the anti-adipogenic effect of germinated brown rice methanol extract (GBR) in 3T3-L1 adipocytes. The GBR inhibited adipocyte differentiation was measured by Oil Red O staining and glycerol-3-phosphate dehydrogenase (GPDH) activity in a dose-dependent manner without initiating any cytotoxicity. The mRNA levels of adipogenic transcription factors such as CCAAT/enhancer binding protein (C/EBPα), proliferator-activated receptorγ (PPARγ), and sterol regulatory element-binding protein-1c (SREBP-1c), and adipogenic genes, such as fatty acid synthase (FAS), adipocyte fatty acid-binding protein (aP2), and lipoprotein lipase (LPL), were significantly down-regulated by treatment with GBR when compared to that of untreated control cells. Moreover, tumor necrosis factor-α (TNF-α) and interlukin-6 (IL-6) mRNA expressions were attenuated by GBR in mature adipocytes. These data suggest that GBR exhibits an anti-adipogenic effect through the suppression of adipogenesis in 3T3-L1 adipocytes.

  19. Human mesenchymal stem cells express neuronal markers after osteogenic and adipogenic differentiation.

    PubMed

    Foudah, Dana; Redondo, Juliana; Caldara, Cristina; Carini, Fabrizio; Tredici, Giovanni; Miloso, Mariarosaria

    2013-06-01

    Mesenchymal stem cells (MSCs) are multipotent cells that are able to differentiate into mesodermal lineages (osteogenic, adipogenic, chondrogenic), but also towards non-mesodermal derivatives (e.g. neural cells). Recent in vitro studies revealed that, in the absence of any kind of differentiation stimuli, undifferentiated MSCs express neural differentiation markers, but the literature data do not all concur. Considering their promising therapeutic potential for neurodegenerative diseases, it is very important to expand our knowledge about this particular biological property of MSCs. In this study, we confirmed the spontaneous expression of neural markers (neuronal, glial and progenitor markers) by undifferentiated human MSCs (hMSCs) and in particular, we demonstrated that the neuronal markers βIII-tubulin and NeuN are expressed by a very high percentage of hMSCs, regardless of the number of culture passages and the culture conditions. Moreover, the neuronal markers βIII-tubulin and NeuN are still expressed by hMSCs after in vitro osteogenic and adipogenic differentiation. On the other hand, chondrogenically differentiated hMSCs are negative for these markers. Our findings suggest that the expression of neuronal markers could be common to a wide range of cellular types and not exclusive for neuronal lineages. Therefore, the expression of neuronal markers alone is not sufficient to demonstrate the differentiation of MSCs towards the neuronal phenotype. Functional properties analysis is also required.

  20. Effects of dietary roughage levels on the expression of adipogenic transcription factors in Wagyu steers.

    PubMed

    Yamada, T; Kawakami, S-I; Nakanishi, N

    2009-12-01

    We hypothesized that dietary roughage level would alter the expression levels of adipogenic transcription factors in adipose tissue of Japanese black (Wagyu) steers. Steers were fed whole crop rice silage at three levels: (1) high-roughage feeding group, fed 8kg silage and 5kg concentrate (HR); (2) middle roughage feeding group, fed 5kg silage and 6kg concentrate (MR); and (3) low roughage feeding group, fed 2kg silage and 7kg concentrate (LR) from 22 to 30months of age. In subcutaneous adipose tissue, there were no significant differences in the expression of the adipogenic transcription factors and adipocyte size among feeding groups. In mesenteric adipose tissue, the expression of C/EBPα in the LR and MR groups was significantly higher than that in the HR group. Adipocyte size in the mesenteric adipose tissue of the LR group was significantly larger than that of the HR group. In intermuscular adipose tissue, the expression of C/EBPβ-LAP in the LR group was significantly higher than that in the HR group, and the expression of C/EBPβ-LIP in the LR and MR groups was significantly higher than that in the HR group. Adipocyte size in the intermuscular adipose tissue of the LR and MR groups was significantly smaller than that of the HR group. These results suggest that dietary roughage revel affects the adipose tissue depot-specific differences in C/EBP family expression pattern and adipocyte cellularity in Wagyu steers.

  1. Expression of adipogenic transcription factors in adipose tissue of fattening Wagyu and Holstein steers.

    PubMed

    Yamada, T; Kawakami, S-I; Nakanishi, N

    2009-01-01

    In this experiment, we studied the effects of breed differences on the protein expression of adipogenic transcription factors, the C/EBP family (C/EBPα, C/EBPβ-LAP, C/EBPβ-LIP and C/EBPδ) and PPARγ, in the adipose tissues of Japanese Black (Wagyu) and Holstein steers from various anatomical sites (subcutaneous, intermuscular, and mesenteric) at different fattening periods (19 and 24 months of age). The expression of C/EBPβ-LAP and C/EBPα in the mesenteric fat tissue of Wagyu at 19 months of age was significantly higher than that of Holstein. The expression of C/EBPδ in the subcutaneous, intermuscular and mesenteric fat tissue of Wagyu at 19 months of age was significantly higher than that of Holstein. The plasma insulin concentrations of Wagyu steers at 19 months of age tended to be higher than those of Holstein. No significant differences in the expression of the adipogenic transcription factors and plasma insulin concentration were observed between the breeds at 24 months of age. These results suggest the existence of breed difference on the expression of the C/EBP family between fattening Wagyu and Holstein steers at 19 months of age, whereas breed difference might have disappeared before 24 months of age.

  2. Mechanism of Butyrate Stimulation of Triglyceride Storage and Adipokine Expression during Adipogenic Differentiation of Porcine Stromovascular Cells

    PubMed Central

    Yan, Hui; Ajuwon, Kolapo M.

    2015-01-01

    Short chain fatty acids (SCFA), products of microbial fermentation of dietary fiber, exert multiple metabolic effects in cells. Previously, we had demonstrated that soluble fiber influenced fat mass accumulation, gut microbial community structure and SCFA production in pigs. The current study was designed to identify effects of SCFA treatment during adipogenic differentiation of porcine stromovascular cells on lipid metabolism and adipokine expression. Differentiating cells were treated with varying concentrations of butyrate. Results show that butyrate treatment enhanced adipogenesis and lipid accumulation, perhaps through upregulation of glucose uptake and de novo lipogenesis and other mechanisms that include induction of SREBP-1c, C/EBPα/β, GLUT4, LPL, PPARγ, GPAT4, DGAT1 and DGAT2 expression. In addition, butyrate induced adiponectin expression, resulting in activation of downstream target genes, such as AMPK and AKT. Activation of AMPK by butyrate led to phosphorylation of ACC. Although increased ACO gene expression was seen with butyrate treatment, experiments with the peroxisomal fatty acid inhibitor, thioridazine, suggest that butyrate may have an inhibitory effect on peroxisomal fatty acid oxidation. Our studies also provide evidence that butyrate may inhibit lipolysis, perhaps in an FFAR3-dependent manner. Therefore, this study presents a novel paradigm for butyrate action in adipocytes and shows that adipocytes are capable of utilizing butyrate, leading to increased expression of adiponectin for enhanced glucose uptake and improved insulin sensitivity. PMID:26713737

  3. Molecular Characterization of Equine APRIL and its Expression Analysis During the Adipogenic Differentiation of Equine Adipose-Derived Stem Cell In Vitro.

    PubMed

    Wu, Haitao; Bi, Xiaolin; Cao, Fang; Zhu, Cuicui; Liu, Hongzhen; Song, Jinyun; Ma, Lei; Ma, Li; Zhang, Yi; Zhao, Dongwei; Liu, Hongyan; Xu, Xinzhou; Zhang, Shuangquan

    2016-10-01

    A proliferation inducing ligand (APRIL) is a member of the TNF superfamily. It shares two receptors with B-cell activating factor (BAFF), B-cell maturation antigen (BCMA), and transmembrane activator and CAML interactor (TACI). Herein, the equine APRIL was identified from equine adipose-derived stem cell (ASC), and the protein expression of APRIL and its related molecules were detected during the adipogenic differentiation of equine ASC in vitro. The equine APRIL gene was located on chromosome 11, spans 1852 base pairs (bp). Its open reading frame covers 753 bp, encoding a 250-amino acid protein with the typical TNF structure domain. During the two weeks' adipogenic differentiation of equine ASC, although the protein expression of APRIL and TACI had an insignificant change, that of BCMA increased significantly. Moreover, with the addition of recombinant protein His6-sAPRIL, a reduced differentiation of equine ASC toward adipocyte was detected. These results may provide the basis for investigating the role of APRIL in ASC adipogenic differentiation.

  4. Interferon-stimulated gene ISG12b1 inhibits adipogenic differentiation and mitochondrial biogenesis in 3T3-L1 cells.

    PubMed

    Li, Bing; Shin, Jonghyun; Lee, Kichoon

    2009-03-01

    Microarray analysis was performed to find a new group of genes or pathways that might be important in adipocyte development and metabolism. Among them, a mouse interferon-stimulated gene 12b1 (ISG12b1) is expressed at a 400-fold higher level in adipocytes compared with stromal-vascular cells. It is predominantly expressed in adipose tissue among other tissues we tested. Developmentally, ISG12b1 mRNA expression was initially inhibited followed by a dramatic induction during both in vivo and in vitro adipogenic differentiation. Adenovirus-mediated overexpression of ISG12b1 inhibited adipogenic differentiation in 3T3-L1 cells as shown by decreased lipid staining with Oil-Red-O and reduction in adipogenic marker proteins including peroxisome proliferator-activated receptor-gamma (PPARgamma), and CCAAT/enhancer-binding protein-alpha (C/EBPalpha). Our bioinformatics analysis for the predicted localization of ISG12b1 protein suggested the mitochondrial localization, which was confirmed by the colocalization of hemagglutinin-tagged ISG12b1 protein with mitochondrial marker MitoTracker. In addition, ISG12b1 protein was exclusively detected in protein extract from the fractionated mitochondria by Western blot analysis. Furthermore, overexpression of ISG12b1 in adipocytes reduced mitochondrial DNA content and gene expression of mitochondrial transcription factor A (mtTFA), nuclear respiratory factor 1 (NRF1), and cytochrome oxidase II, suggesting an inhibitory role of ISG12b1 in mitochondrial biogenesis and function. Activation of mitochondrial biogenesis and function by treatment with PPARgamma and PPARalpha agonists in 3T3-L1 cells and cold exposure in mice induced mitochondrial transcription factors and reduced ISG12 expression. These data demonstrated that mitochondrial-localized ISG12b1 protein inhibits adipocyte differentiation and mitochondrial biogenesis and function, implying the important role of mitochondrial function in adipocyte development and associated

  5. Adipogenic cascade can be induced without adipogenic media by a human adenovirus.

    PubMed

    Rathod, Miloni A; Rogers, Pamela M; Vangipuram, Sharada D; McAllister, Emily J; Dhurandhar, Nikhil V

    2009-04-01

    Several metabolic abnormalities are associated with relative excess or deficiency of adipose tissue. Identifying the regulators of adipogenic differentiation is critical for its successful manipulation. Ad36, a human adenovirus, is a novel factor that promotes adipogenesis. We exploited the adipogenic potential of Ad36 to reveal exogenous modifiers of adipogenesis in rodent preadipocyte cell line in the presence or absence of differentiation inducers methyl-isobutyl-xanthine, dexamethasone, and insulin (M, D, and I; MDI). A nonadipogenic human adenovirus Ad2 was used as a negative control for viral infection. First, we confirmed that, Ad36, but not Ad2, increases lipid accumulation in the presence or absence of MDI. Time-course studies for expression of key genes of adipogenic cascade showed that it is Ad36, but not Ad2, which downregulated preadipocyte marker gene Wnt10b, and upregulated expression of early (C/EBPDelta and C/EBPbeta), intermediate (PPARgamma2), and late genes (aP2 and G3PDH) of adipogenic cascade even in the absence of MDI. In the presence of MDI, onset of expression of adipogenic genes coincided for Ad36 and control groups, but the expressions were significantly greater for the Ad36 group. Next, we observed that attenuation of Ad36 mRNA expression by an antiadenoviral agent reduced 3T3-L1 differentiation, indicating that viral mRNA expression is required for the process. Furthermore, with or without MDI or its components, Ad36 significantly increased lipid accumulation in 3T3-L1 cells. Cell confluency at the time of Ad36 infection positively influenced lipid accumulation. The results reveal that Ad36 is an MDI-independent exogenous regulator of the adipogenic process. Elucidating the molecular pathways involved may reveal novel regulatory controls of adipogenesis.

  6. Novel genes of visceral adiposity: identification of mouse and human mesenteric estrogen-dependent adipose (MEDA)-4 gene and its adipogenic function.

    PubMed

    Zhang, H; Chen, X; Sairam, M R

    2012-06-01

    Visceral adiposity represents a high risk factor for type 2 diabetes, metabolic syndrome, and cardiovascular disease as well as various cancers. While studying sex hormone imbalance-induced early obesity and late onset of insulin resistance in FSH receptor knock out female mice, we identified a novel mesenteric estrogen-dependent adipose gene (MEDA-4) selectively up-regulated in a depot-specific manner in mesenteric adipose tissue. Meda-4 cloned from both mouse and human adipose tissue codes for a 34-kDa cytosolic protein with 91% homology. Mouse Meda-4 mRNA is expressed highest in visceral adipose tissue and localizes predominantly in the adipocyte fraction. Human MEDA-4 is also more abundant in omental fat than sc depot in obese patients. In 3T3-L1 cells endogenous Meda-4 expression increases early during differentiation, and its overexpression promotes differentiation of preadipocytes into adipocytes and enhances glucose uptake. Conversely, short hairpin RNA-mediated knockdown of Meda-4 reduces both adipogenic and glucose uptake potential. In promoting adipogenesis, Meda-4 up-regulates transcription factor peroxisome proliferator-activated receptor-γ2. Meda-4 promotes lipid accumulation in adipocytes, regulating adipocyte fatty acid-binding protein 2, CD36, lipoprotein lipase, hormone-sensitive lipase, acyl-Coenzyme A oxidase-1, perilipin-1, and fatty acid synthase expression. 17β-Estradiol reduced Meda-4 expression in mesenteric adipose tissue of ovariectomized mice and in 3T3-L1 adipocytes. Thus our study identifies Meda-4 as a novel adipogenic gene, capable of promoting differentiation of preadipocytes into adipocytes, increasing lipid content and glucose uptake in adipocytes. Therefore it might play an important role in adipose tissue expansion in normal and aberrant hormonal conditions and pathophysiological states.

  7. Effects of fattening periods on the expression of adipogenic transcription factors in Wagyu beef cattle.

    PubMed

    Yamada, T; Kawakami, S-I; Nakanishi, N

    2007-06-01

    In this experiment, we studied the effects of fattening periods (at 19, 24, and 29 months of age) on the expression of the C/EBP family (C/EBPα, C/EBPβ, and C/EBPδ) and PPARγ protein levels by Western blot analysis from different fat depots (subcutaneous, intermuscular, and mesenteric fat tissue) of Japanese Black steers. The expressions of C/EBPβ-liver-enriched activator protein (LAP), which activates preadipocyte differentiation, in subcutaneous, intermuscular, and mesenteric fat tissue at 29 months of age were significantly lower than those at 19 months. On the other hand, the expressions of C/EBPβ-liver-enriched inhibitory protein (LIP), which represses preadipocyte differentiation, in subcutaneous and intermuscular fat tissue in 29 months of age were significantly higher than those at 19 months. The expressions of C/EBPα, which activates adipocyte terminal differentiation, in intermuscular fat tissue at 29 months of age were significantly higher than those at 19 months. No significant differences in the C/EBPδ and PPAR γ levels were observed in the fattening periods for any fat depots. These results suggest that adipogenic transcription factors, especially C/EBPβ and C/EBPα, play an important role in regulating adipogenesis during the fattening periods of Japanese Black cattle.

  8. Inhibition of Viability, Proliferation, Cytokines Secretion, Surface Antigen Expression, and Adipogenic and Osteogenic Differentiation of Adipose-Derived Stem Cells by Seven-Day Exposure to 0.5 T Static Magnetic Fields.

    PubMed

    Wang, Jian; Xiang, Bo; Deng, Jixian; Freed, Darren H; Arora, Rakesh C; Tian, Ganghong

    2016-01-01

    After seven-day exposure to 0.5-Tesla Static Magnetic Field (SMF), Adipose-derived Stem Cells (ASCs) and those labeled by superparamagnetic iron oxide (SPIO) nanoparticles were examined for viability by methyl thiazol tetrazolium (MTT) assay, proliferation by cell counting and bromodeoxyuridine (BrdU) incorporation, DNA integrity by single cell gel electrophoresis, surface antigen by flow cytometry analysis, and the expression of cytokines and genetic markers by reverse transcription-PCR and underwent adipogenic and osteogenic differentiation assessed by quantifying related specific genes expression. The SMF slightly reduced cell viability and proliferation and inhibited the expression of CD49d, CD54, and CD73 but did not damage DNA integrity. The SMF slightly downregulated the expression of cytokines including Vascular Endothelial Growth Factor (VEGF), Insulin-like Growth Factor-1 (IGF-1), Transforming Growth Factor Beta 1 (TGF-β1), genetic markers comprising Stem Cell Antigen-1 (Sca1), Octamer-4 (Oct-4), ATP-binding Cassette Subfamily B Member 1 (ABCB1), adipogenic marker genes containing Lipoprotein Lipase (LPL), Peroxisome Proliferator-Activated Receptor Gamma (PPAR-γ), and osteogenic marker genes including Secreted Phosphor-protein 1 (SPP1) and Osterix (OSX). Exposure to 0.5 T SMF for seven days inhibited viability, proliferation, surface antigen expression, cytokine secretion, stem cell genetic marker expression, and adipogenic and osteogenic differentiation but did not affect the DNA integrity in ASCs with or without SPIO labeling.

  9. Inhibition of Viability, Proliferation, Cytokines Secretion, Surface Antigen Expression, and Adipogenic and Osteogenic Differentiation of Adipose-Derived Stem Cells by Seven-Day Exposure to 0.5 T Static Magnetic Fields

    PubMed Central

    Wang, Jian; Xiang, Bo; Deng, Jixian; Freed, Darren H.; Arora, Rakesh C.; Tian, Ganghong

    2016-01-01

    After seven-day exposure to 0.5-Tesla Static Magnetic Field (SMF), Adipose-derived Stem Cells (ASCs) and those labeled by superparamagnetic iron oxide (SPIO) nanoparticles were examined for viability by methyl thiazol tetrazolium (MTT) assay, proliferation by cell counting and bromodeoxyuridine (BrdU) incorporation, DNA integrity by single cell gel electrophoresis, surface antigen by flow cytometry analysis, and the expression of cytokines and genetic markers by reverse transcription-PCR and underwent adipogenic and osteogenic differentiation assessed by quantifying related specific genes expression. The SMF slightly reduced cell viability and proliferation and inhibited the expression of CD49d, CD54, and CD73 but did not damage DNA integrity. The SMF slightly downregulated the expression of cytokines including Vascular Endothelial Growth Factor (VEGF), Insulin-like Growth Factor-1 (IGF-1), Transforming Growth Factor Beta 1 (TGF-β1), genetic markers comprising Stem Cell Antigen-1 (Sca1), Octamer-4 (Oct-4), ATP-binding Cassette Subfamily B Member 1 (ABCB1), adipogenic marker genes containing Lipoprotein Lipase (LPL), Peroxisome Proliferator-Activated Receptor Gamma (PPAR-γ), and osteogenic marker genes including Secreted Phosphor-protein 1 (SPP1) and Osterix (OSX). Exposure to 0.5 T SMF for seven days inhibited viability, proliferation, surface antigen expression, cytokine secretion, stem cell genetic marker expression, and adipogenic and osteogenic differentiation but did not affect the DNA integrity in ASCs with or without SPIO labeling. PMID:26880984

  10. Wnt/β-catenin signaling and adipogenic genes are associated with intramuscular fat content in the longissimus dorsi muscle of Korean cattle.

    PubMed

    Jeong, J Y; Kim, J S; Nguyen, T H; Lee, H-J; Baik, M

    2013-12-01

    Intramuscular fat (IMF) is an important trait that influences beef quality. In two studies, we examined the possible involvement of the Wnt/β-catenin signaling pathway in IMF deposition in Korean cattle. In study 1, using a group of bulls and steers, we found that castration, a non-genetic factor, decreased (P < 0.01) the expression of both the WNT10B and CTNNB1 genes, whereas it increased the expression of the Wnt antagonist secreted frizzled-related proteins 4 (SFRP4, P < 0.001) and the adipogenic CCAAT/enhancer binding protein (C/EPB), alpha (CEBPA, P < 0.001) and peroxisome proliferator-activated receptor gamma (PPARG, P < 0.05) genes in longissimus dorsi muscle (LM) tissue. The WNT10B and CTNNB1 mRNA levels showed strong (P < 0.001) negative correlations (r = -0.68 and r = -0.73 respectively) with the IMF content, whereas the SFRP4, CEBPA and PPARG mRNA levels showed strong (P < 0.01) positive correlations (r = 0.70, 0.70 and 0.64 respectively) with the IMF content. Large variation still exists in the IMF content of steers, implying that genetic factors affect IMF deposition. Using a different group of steers, a correlation analysis in study 2 also showed that the expression of the WNT10B and CTNNB1 genes, and SFRP4 and adipogenic genes was negatively and positively associated with the IMF content respectively. Our findings suggest that downregulation of the Wnt/β-catenin signaling pathway genes, but upregulation of Wnt antagonist SFRP4 and adipogenic gene expression following castration, contributes to increased IMF deposition in the LM. Our results demonstrate that both non-genetic factors (castration) and genetic variation within the steer group affect the gene expression pattern of the Wnt/β-catenin signaling pathway.

  11. Nuclear receptor profile in calvarial bone cells undergoing osteogenic versus adipogenic differentiation.

    PubMed

    Pirih, Flavia Q; Abayahoudian, Rosette; Elashoff, David; Parhami, Farhad; Nervina, Jeanne M; Tetradis, Sotirios

    2008-12-01

    Nuclear receptors (NRs) are key regulators of cell function and differentiation. We examined NR expression during osteogenic versus adipogenic differentiation of primary mouse calvarial osteoblasts (MOBs). MOBs were cultured for 21 days in osteogenic or adipogenic differentiation media. von Kossa and Oil Red O staining, and qRT-PCR of marker genes and 49 NRs were performed. PCR amplicons were subcloned to establish correct sequences and absolute standard curves. Forty-three NRs were detected at days 0-21. Uncentered average linkage hierarchical clustering identified four expression clusters: NRs (1) upregulated during osteogenic, but not adipogenic, differentiation, (2) upregulated in both conditions, with greater upregulation during adipogenic differentiation, (3) upregulated equally in both conditions, (4) downregulated during adipogenic, but not osteogenic, differentiation. One-way ANOVA with contrast revealed 20 NRs upregulated during osteogenic differentiation and 12 NRs upregulated during adipogenic differentiation. Two-way ANOVA demonstrated that 18 NRs were higher in osteogenic media, while 9 NRs were higher in adipogenic media. The time effect revealed 16 upregulated NRs. The interaction of condition with time revealed 6 NRs with higher expression rate during adipogenic differentiation and 3 NRs with higher expression rate during osteogenic differentiation. Relative NR abundance at days 0 and 21 were ranked. Basal ranking changed at least 5 positions for 13 NRs in osteogenic media and 9 NRs in adipogenic media. Osteogenic and adipogenic differentiation significantly altered NR expression in MOBs. These differences offer a fingerprint of cellular commitment and may provide clues to the underlying mechanisms of osteogenic versus adipogenic differentiation.

  12. Nuclear Receptor Profile in Calvarial Bone Cells Undergoing Osteogenic Versus Adipogenic Differentiation

    PubMed Central

    Pirih, Flavia Q.; Abayahoudian, Rosette; Elashoff, David; Parhami, Farhad; Nervina, Jeanne M.; Tetradis, Sotirios

    2017-01-01

    Nuclear receptors (NRs) are key regulators of cell function and differentiation. We examined NR expression during osteogenic versus adipogenic differentiation of primary mouse calvarial osteoblasts (MOBs). MOBs were cultured for 21 days in osteogenic or adipogenic differentiation media. von Kossa and Oil Red O staining, and qRT-PCR of marker genes and 49 NRs were performed. PCR amplicons were subcloned to establish correct sequences and absolute standard curves. Forty-three NRs were detected at days 0–21. Uncentered average linkage hierarchical clustering identified four expression clusters: NRs (1) upregulated during osteogenic, but not adipogenic, differentiation, (2) upregulated in both conditions, with greater upregulation during adipogenic differentiation, (3) upregulated equally in both conditions, (4) downregulated during adipogenic, but not osteogenic, differentiation. One-way ANOVA with contrast revealed 20 NRs upregulated during osteogenic differentiation and 12 NRs upregulated during adipogenic differentiation. Two-way ANOVA demonstrated that 18 NRs were higher in osteogenic media, while 9 NRs were higher in adipogenic media. The time effect revealed 16 upregulated NRs. The interaction of condition with time revealed 6 NRs with higher expression rate during adipogenic differentiation and 3 NRs with higher expression rate during osteogenic differentiation. Relative NR abundance at days 0 and 21 were ranked. Basal ranking changed at least 5 positions for 13 NRs in osteogenic media and 9 NRs in adipogenic media. Osteogenic and adipogenic differentiation significantly altered NR expression in MOBs. These differences offer a fingerprint of cellular commitment and may provide clues to the underlying mechanisms of osteogenic versus adipogenic differentiation. PMID:18810760

  13. Histone deacetylase 9 is a negative regulator of adipogenic differentiation.

    PubMed

    Chatterjee, Tapan K; Idelman, Gila; Blanco, Victor; Blomkalns, Andra L; Piegore, Mark G; Weintraub, Daniel S; Kumar, Santosh; Rajsheker, Srinivas; Manka, David; Rudich, Steven M; Tang, Yaoliang; Hui, David Y; Bassel-Duby, Rhonda; Olson, Eric N; Lingrel, Jerry B; Ho, Shuk-Mei; Weintraub, Neal L

    2011-08-05

    Differentiation of preadipocytes into mature adipocytes capable of efficiently storing lipids is an important regulatory mechanism in obesity. Here, we examined the involvement of histone deacetylases (HDACs) and histone acetyltransferases (HATs) in the regulation of adipogenesis. We find that among the various members of the HDAC and HAT families, only HDAC9 exhibited dramatic down-regulation preceding adipogenic differentiation. Preadipocytes from HDAC9 gene knock-out mice exhibited accelerated adipogenic differentiation, whereas HDAC9 overexpression in 3T3-L1 preadipocytes suppressed adipogenic differentiation, demonstrating its direct role as a negative regulator of adipogenesis. HDAC9 expression was higher in visceral as compared with subcutaneous preadipocytes, negatively correlating with their potential to undergo adipogenic differentiation in vitro. HDAC9 localized in the nucleus, and its negative regulation of adipogenesis segregates with the N-terminal nuclear targeting domain, whereas the C-terminal deacetylase domain is dispensable for this function. HDAC9 co-precipitates with USF1 and is recruited with USF1 at the E-box region of the C/EBPα gene promoter in preadipocytes. Upon induction of adipogenic differentiation, HDAC9 is down-regulated, leading to its dissociation from the USF1 complex, whereas p300 HAT is up-regulated to allow its association with USF1 and accumulation at the E-box site of the C/EBPα promoter in differentiated adipocytes. This reciprocal regulation of HDAC9 and p300 HAT in the USF1 complex is associated with increased C/EBPα expression, a master regulator of adipogenic differentiation. These findings provide new insights into mechanisms of adipogenic differentiation and document a critical regulatory role for HDAC9 in adipogenic differentiation through a deacetylase-independent mechanism.

  14. Notch signalling inhibits the adipogenic differentiation of single-cell-derived mesenchymal stem cell clones isolated from human adipose tissue.

    PubMed

    Osathanon, Thanaphum; Subbalekha, Keskanya; Sastravaha, Panunn; Pavasant, Prasit

    2012-01-01

    ADSCs (adipose-derived mesenchymal stem cells) are candidate adult stem cells for regenerative medicine. Notch signalling participates in the differentiation of a heterogeneous ADSC population. We have isolated, human adipose tissue-derived single-cell clones using a cloning ring technique and characterized for their stem cell characteristics. The role of Notch signalling in the differentiation capacity of these adipose-derived single-cell-clones has also been investigated. All 14 clones expressed embryonic and mesenchymal stem cell marker genes. These clones could differentiate into both osteogenic and adipogenic lineages. However, the differentiation potential of each clone was different. Low adipogenic clones had significantly higher mRNA expression levels of Notch 2, 3 and 4, Jagged1, as well as Delta1, compared with those of high adipogenic clones. In contrast, no changes in expression of Notch signalling component mRNA between low and high osteogenic clones was found. Notch receptor mRNA expression decreased with the adipogenic differentiation of both low and high adipogenic clones. The γ-secretase inhibitor, DAPT (N-[N-(3,5-difluorophenacetyl)-l-alanyl]-(S)-phenylglycine t-butyl ester), enhanced adipogenic differentiation. Correspondingly, cells seeded on a Notch ligand (Jagged1) bound surface showed lower intracellular lipid accumulation. These results were noted in both low and high adipogenic clones, indicating that Notch signalling inhibited the adipogenic differentiation of adipose ADSC clones, and could be used to identify an adipogenic susceptible subpopulation for soft-tissue augmentation application.

  15. Differential expression of CCN-family members in primary human bone marrow-derived mesenchymal stem cells during osteogenic, chondrogenic and adipogenic differentiation

    PubMed Central

    Schutze, Norbert; Noth, Ulrich; Schneidereit, Jutta; Hendrich, Christian; Jakob, Franz

    2005-01-01

    Background The human cysteine rich protein 61 (CYR61, CCN1) as well as the other members of the CCN family of genes play important roles in cellular processes such as proliferation, adhesion, migration and survival. These cellular events are of special importance within the complex cellular interactions ongoing in bone remodeling. Previously, we analyzed the role of CYR61/CCN1 as an extracellular signaling molecule in human osteoblasts. Since mesenchymal stem cells of bone marrow are important progenitors for various differentiation pathways in bone and possess increasing potential for regenerative medicine, here we aimed to analyze the expression of CCN family members in bone marrow-derived human mesenchymal stem cells and along the osteogenic, the adipogenic and the chondrogenic differentiation. Results Primary cultures of human mesenchymal stem cells were obtained from the femoral head of patients undergoing total hip arthroplasty. Differentiation into adipocytes and osteoblasts was done in monolayer culture, differentiation into chondrocytes was induced in high density cell pellet cultures. For either pathway, established differentiation markers and CCN-members were analyzed at the mRNA level by RT-PCR and the CYR61/CCN1 protein was analyzed by immunocytochemistry. RT-PCR and histochemical analysis revealed the appropriate phenotype of differentiated cells (Alizarin-red S, Oil Red O, Alcian blue, alkaline phosphatase; osteocalcin, collagen types I, II, IX, X, cbfa1, PPARγ, aggrecan). Mesenchymal stem cells expressed CYR61/CCN1, CTGF/CCN2, CTGF-L/WISP2/CCN5 and WISP3/CCN6. The CYR61/CCN1 expression decreased markedly during osteogenic differentiation, adipogenic differentiation and chondrogenic differentiation. These results were confirmed by immuncytochemical analyses. WISP2/CCN5 RNA expression declined during adipogenic differentiation and WISP3/CCN6 RNA expression was markedly reduced in chondrogenic differentiation. Conclusion The decrease in CYR61/CCN1

  16. Repressor transcription factor 7-like 1 promotes adipogenic competency in precursor cells.

    PubMed

    Cristancho, Ana G; Schupp, Michael; Lefterova, Martina I; Cao, Shengya; Cohen, Daniel M; Chen, Christopher S; Steger, David J; Lazar, Mitchell A

    2011-09-27

    The identification of factors that define adipocyte precursor potential has important implications for obesity. Preadipocytes are fibroblastoid cells committed to becoming round lipid-laden adipocytes. In vitro, this differentiation process is facilitated by confluency, followed by adipogenic stimuli. During adipogenesis, a large number of cytostructural genes are repressed before adipocyte gene induction. Here we report that the transcriptional repressor transcription factor 7-like 1 (TCF7L1) binds and directly regulates the expression of cell structure genes. Depletion of TCF7L1 inhibits differentiation, because TCF7L1 indirectly induces the adipogenic transcription factor peroxisome proliferator-activated receptor γ in a manner that can be replaced by inhibition of myosin II activity. TCF7L1 is induced by cell contact in adipogenic cell lines, and ectopic expression of TCF7L1 alleviates the confluency requirement for adipocytic differentiation of precursor cells. In contrast, TCF7L1 is not induced during confluency of non-adipogenic fibroblasts, and, remarkably, forced expression of TCF7L1 is sufficient to commit non-adipogenic fibroblasts to an adipogenic fate. These results establish TCF7L1 as a transcriptional hub coordinating cell-cell contact with the transcriptional repression required for adipogenic competency.

  17. The effect of conjugating RGD into 3D alginate hydrogels on adipogenic differentiation of human adipose-derived stromal cells.

    PubMed

    Kang, Sun-Woong; Cha, Byung-Hyun; Park, Honghyun; Park, Kwang-Sook; Lee, Kuen Yong; Lee, Soo-Hong

    2011-05-12

    The effects of RGD peptide conjugation to alginate hydrogel on the adipogenic differentiation of ASCs was investigated. After 3 d of culture, RGD-modified alginate hydrogels significantly stimulated FAK and integrin α1 gene expressions and vinculin expression in ASCs. In addition, RGD-modified alginate hydrogels significantly enhanced the adipogenic differentiation of human ASCs to exhibit higher expression levels of oil red O staining and adipogenic genes compared to those of the control group (unmodified gels). These results suggest potential applications of RGD-modified alginate gels for adipose tissue regeneration.

  18. CXCL3 positively regulates adipogenic differentiation.

    PubMed

    Kusuyama, Joji; Komorizono, Anna; Bandow, Kenjiro; Ohnishi, Tomokazu; Matsuguchi, Tetsuya

    2016-10-01

    Chemokines are a family of cytokines inducing cell migration and inflammation. Recent reports have implicated the roles of chemokines in cell differentiation. However, little is known about the functional roles of chemokines in adipocytes. Here, we explored gene expression levels of chemokines and chemokine receptors during adipogenic differentiation. We have found that two chemokines, chemokine (C-X-C motif) ligand 3 (CXCL3) and CXCL13, as well as CXC chemokine receptor 2 (CXCR2), a CXCL3 receptor, are highly expressed in mature adipocytes. When 3T3-L1 cells and ST2 cells were induced to differentiate, both the number of lipid droplets and the expression levels of adipogenic markers were significantly promoted by the addition of CXCL3, but not CXCL13. Conversely, gene knockdown of either CXCL3 or CXCR2 by specific siRNA effectively inhibited the course of adipogenic differentiation. CXCL3 treatment of 3T3-L1 cells significantly induced the phosphorylation of ERK and c-jun N-terminal kinase (JNK). Furthermore, CXCL3-induced CCAAT-enhancer binding protein (C/EBP)β and δ expression was suppressed by both ERK and JNK-specific inhibitors. Furthermore, chromatin immunoprecipitation assay revealed functional binding of PPARγ2 within the cxcl3 promoter region. Taken together, these results have indicated that CXCL3 is a novel adipokine that facilitates adipogenesis in an autocrine and/or a paracrine manner through induction of c/ebpb and c/ebpd.

  19. Improved adipogenic in vitro differentiation: comparison of different adipogenic cell culture media on human fat and bone stroma cells for fat tissue engineering.

    PubMed

    Ghoniem, Amir-Alexander; Açil, Yahya; Wiltfang, Jörg; Gierloff, Matthias

    2015-06-01

    To date there is no sufficient in vitro fat tissue engineering and a protocol has not been well established for this purpose. Therefore, we evaluated the in vitro influence of two different adipogenic growth media for their stimulation potential on different cell lineages to clearly define the most potent adipogenic growth media for future in vitro tissue engineering approaches. The samples for differentiation were composed of human adipogenic-derived stroma cells (hADSCs) and human bone marrow mesenchymal stroma cells (hMSCs). A normal adipogenic medium (NAM) and a specific adipogenic medium (SAM) were tested for their adipogenic stimulation potential. After 10 days and 21 days the relative gene expression was measured for the adipogenic marker genes PPARγ2, C/EBPα, FABP4, LPL, and GLUT4 detected through real time reverse transcriptase polymease chain reaction (RT-PCR). Other study variables were the comparison between NAM and SAM and between the used cells hADSCs and hMSCs. Additionally an Oil-Red staining was performed after 21 days. Our results revealed that only SAM was significantly (P<0.05) superior in the differentiation process in contrast to NAM for 10 days and 21 days. As well was SAM superior to differentiate the used cell lineages. This was evaluated by the detected marker genes PPARγ2, C/EBPα, FABP4, LPL, and GLUT4 through real time RT-PCR and by Oil-Red staining. In addition, the hMSCs proofed to be equal donor cells for adipogenic differentiation especially when stimulated by SAM. The results suggest that the SAM should be established as a new standard medium for a more promising in vitro adipogenic differentiation.

  20. Efficient delivery of C/EBP beta gene into human mesenchymal stem cells via polyethylenimine-coated gold nanoparticles enhances adipogenic differentiation.

    PubMed

    Joydeep, Das; Choi, Yun-Jung; Yasuda, Hideyo; Han, Jae Woong; Park, Chankyu; Song, Hyuk; Bae, Hojae; Kim, Jin-Hoi

    2016-09-28

    The controlled differentiation of stem cells via the delivery of specific genes encoding appropriate differentiation factors may provide useful models for regenerative medicine and aid in developing therapies for human patients. However, the majority of non-viral vectors are not efficient enough to manipulate difficult-to-transfect adult human stem cells in vitro. Herein, we report the first use of 25 kDa branched polyethylenimine-entrapped gold nanoparticles (AuPEINPs) and covalently bound polyethylenimine-gold nanoparticles (AuMUAPEINPs) as carriers for efficient gene delivery into human mesenchymal stem cells (hMSCs). We determined a functional application of these nanoparticles by transfecting hMSCs with the C/EBP beta gene, fused to EGFP, to induce adipogenic differentiation. Transfection efficacy with AuPEINPs and AuMUAPEINPs was 52.3% and 40.7%, respectively, which was 2.48 and 1.93 times higher than that by using Lipofectamine 2000. Luciferase assay results also demonstrated improved gene transfection efficiency of AuPEINPs/AuMUAPEINPs over Lipofectamine 2000 and polyethylenimine. Overexpression of exogenous C/EBP beta significantly enhanced adipogenesis in hMSCs as indicated by both of Oil Red O staining and mRNA expression analyses. Nanoparticle/DNA complexes exhibited favorable cytocompatibility in hMSCs. Taken together, AuPEINPs and AuMUAPEINPs potentially represent safe and highly efficient vehicles for gene delivery to control hMSC differentiation and for therapeutic gene delivery applications.

  1. Efficient delivery of C/EBP beta gene into human mesenchymal stem cells via polyethylenimine-coated gold nanoparticles enhances adipogenic differentiation

    PubMed Central

    Joydeep, Das; Choi, Yun-Jung; Yasuda, Hideyo; Han, Jae Woong; Park, Chankyu; Song, Hyuk; Bae, Hojae; Kim, Jin-Hoi

    2016-01-01

    The controlled differentiation of stem cells via the delivery of specific genes encoding appropriate differentiation factors may provide useful models for regenerative medicine and aid in developing therapies for human patients. However, the majority of non-viral vectors are not efficient enough to manipulate difficult-to-transfect adult human stem cells in vitro. Herein, we report the first use of 25 kDa branched polyethylenimine-entrapped gold nanoparticles (AuPEINPs) and covalently bound polyethylenimine-gold nanoparticles (AuMUAPEINPs) as carriers for efficient gene delivery into human mesenchymal stem cells (hMSCs). We determined a functional application of these nanoparticles by transfecting hMSCs with the C/EBP beta gene, fused to EGFP, to induce adipogenic differentiation. Transfection efficacy with AuPEINPs and AuMUAPEINPs was 52.3% and 40.7%, respectively, which was 2.48 and 1.93 times higher than that by using Lipofectamine 2000. Luciferase assay results also demonstrated improved gene transfection efficiency of AuPEINPs/AuMUAPEINPs over Lipofectamine 2000 and polyethylenimine. Overexpression of exogenous C/EBP beta significantly enhanced adipogenesis in hMSCs as indicated by both of Oil Red O staining and mRNA expression analyses. Nanoparticle/DNA complexes exhibited favorable cytocompatibility in hMSCs. Taken together, AuPEINPs and AuMUAPEINPs potentially represent safe and highly efficient vehicles for gene delivery to control hMSC differentiation and for therapeutic gene delivery applications. PMID:27677463

  2. Maraviroc reduces cytokine expression and secretion in human adipose cells without altering adipogenic differentiation.

    PubMed

    Díaz-Delfín, Julieta; Domingo, Pere; Giralt, Marta; Villarroya, Francesc

    2013-03-01

    Maraviroc (MVC) is a drug approved for use as part of HAART in treatment-experienced HIV-1 patients with CCR5-tropic virus. Despite the current concerns on the alterations in adipose tissue that frequently appear in HIV-infected patients under HAART, there is no information available on the effects of MVC on adipose tissue. Here we studied the effects of MVC during and after the differentiation of human adipocytes in culture, and compared the results with the effects of efavirenz (EFV). We measured the acquisition of adipocyte morphology; the gene expression levels of markers for mitochondrial toxicity, adipogenesis and inflammation; and the release of adipokines and cytokines to the medium. Additionally, we determined the effects of MVC on lipopolysaccharide (LPS)-induced pro-inflammatory cytokine expression in adipocytes. Unlike EFV-treated pre-adipocytes, MVC-treated pre-adipocytes showed no alterations in the capacity to differentiate into adipocytes and accumulated lipids normally. Consistent with this, there were no changes in the mRNA levels of PPARγ or SREBP-1c, two master regulators of adipogenesis. In addition, MVC caused a significant decrease in the gene expression and release of pro-inflammatory cytokines, whereas EFV had the opposite effect. Moreover, MVC lowered inflammation-related gene expression and inhibited the LPS-induced expression of pro-inflammatory genes in differentiated adipocytes. We conclude that MVC does not alter adipocyte differentiation but rather shows anti-inflammatory properties by inhibiting the expression and secretion of pro-inflammatory cytokines. Collectively, our results suggest that MVC may minimize adverse effects on adipose tissue development, metabolism, and inflammation, and thus could be a potentially beneficial component of antiretroviral therapy.

  3. The E3 ubiquitin ligase TRIM23 regulates adipocyte differentiation via stabilization of the adipogenic activator PPARγ.

    PubMed

    Watanabe, Masashi; Takahashi, Hidehisa; Saeki, Yasushi; Ozaki, Takashi; Itoh, Shihori; Suzuki, Masanobu; Mizushima, Wataru; Tanaka, Keiji; Hatakeyama, Shigetsugu

    2015-04-23

    Adipocyte differentiation is a strictly controlled process regulated by a series of transcriptional activators. Adipogenic signals activate early adipogenic activators and facilitate the transient formation of early enhanceosomes at target genes. These enhancer regions are subsequently inherited by late enhanceosomes. PPARγ is one of the late adipogenic activators and is known as a master regulator of adipogenesis. However, the factors that regulate PPARγ expression remain to be elucidated. Here, we show that a novel ubiquitin E3 ligase, tripartite motif protein 23 (TRIM23), stabilizes PPARγ protein and mediates atypical polyubiquitin conjugation. TRIM23 knockdown caused a marked decrease in PPARγ protein abundance during preadipocyte differentiation, resulting in a severe defect in late adipogenic differentiation, whereas it did not affect the formation of early enhanceosomes. Our results suggest that TRIM23 plays a critical role in the switching from early to late adipogenic enhanceosomes by stabilizing PPARγ protein possibly via atypical polyubiquitin conjugation.

  4. Disruption of the Fgf2 Gene Activates the Adipogenic and Suppresses the Osteogenic Program in Mesenchymal Marrow Stromal Stem Cells

    PubMed Central

    Xiao, Liping; Sobue, Takanori; Eisliger, Alycia; Kronenberg, Mark. S; Coffin, J. Douglas; Doetschman, Thomas; Hurley, Marja M.

    2010-01-01

    Here we determine the Fibroblast Growth Factor-2 (FGF2) dependency of the time course of changes in bone mass in female mice. This study extends our earlier reports that knockout of the FGF2 gene (Fgf2) caused low turnover bone loss in Fgf2−/− male mice by examining bone loss with age in Fgf2−/− female mice, and by assessing whether reduced bone formation is associated with differentiation of bone marrow stromal cells (BMSCs) towards the adipocyte lineage. Bone mineral density (BMD) was similar in 3 month old female Fgf2+/+ and Fgf2−/− mice but was significantly reduced as early as 5 months of age in Fgf2−/− mice. In vivo studies showed that there was a greater accumulation of marrow fat in long bones of 14 and 20 month old Fgf2−/− mice compared with Fgf2+/+ littermates. To study the effect of disruption of FGF2 on osteoblastogenesis and adipogenesis, BMSCs from both genotypes were cultured in osteogenic or adipogenic media. Reduced alkaline phosphatase positive (ALP), mineralized colonies and a marked increase in adipocytes were observed in Fgf2−/− BMSC cultures. These cultures also showed an increase in the mRNA of the adipogenic transcription factor PPARγ2 as well as the downstream target genes aP2 and adiponectin. Treatment with exogenous FGF2 blocked adipocyte formation and increased ALP colony formation and ALP activity in BMSC cultures of both genotypes. These results support an important role for endogenous FGF2 in osteoblast (OB) lineage determination. Alteration in FGF2 signaling may contribute to impaired OB bone formation capacity and to increased bone marrow fat accumulation both of which are characteristics of aged bone. PMID:20510392

  5. Idesolide inhibits the adipogenic differentiation of mesenchymal cells through the suppression of nitric oxide production.

    PubMed

    Hwang, Jun-Ha; Moon, Sung Ah; Lee, Cham Han; Byun, Mi Ran; Kim, A Rum; Sung, Mi Kyung; Park, Hyun-Jin; Hwang, Eun Sook; Sung, Sang Hyun; Hong, Jeong-Ho

    2012-06-15

    Obesity is a major health problem worldwide and can increase the risk for several chronic diseases, including diabetes and cardiovascular disease. In this study, we screened small compounds isolated from natural products for the development of an anti-obesity drug. Among them, idesolide, a spiro compound isolated from the fruits of Idesia polycarpa Maxim, showed a significant suppression of the adipogenic differentiation in mesenchymal cells, as indicated by the decrease in fat droplets and expression of adipogenic marker genes such as aP2 and adiponectin. Idesolide inhibits the PPARγ-mediated gene transcription in a dose-dependent manner, revealed by luciferase reporter gene assay. During adipogenic differentiation, idesolide inhibits nitric oxide production through the suppression of iNOS expression, and the increased adipogenic differentiation by arginine, the substrate for NOS, is significantly inhibited by idesolide, suggesting that the inhibition of nitric oxide production plays a major role in idesolide-induced adipogenic suppression. Taken together, the results reveal that idesolide has anti-adipogenic activity and highlight its potential in the prevention and treatment of obesity.

  6. A potential regulatory network underlying distinct fate commitment of myogenic and adipogenic cells in skeletal muscle

    PubMed Central

    Sun, Wenjuan; He, Ting; Qin, Chunfu; Qiu, Kai; Zhang, Xin; Luo, Yanhong; Li, Defa; Yin, Jingdong

    2017-01-01

    Mechanism controlling myo-adipogenic balance in skeletal muscle is of great significance for human skeletal muscle dysfunction and myopathies as well as livestock meat quality. In the present study, two cell subpopulations with particular potency of adipogenic or myogenic differentiation were isolated from neonatal porcine longissimus dorsi using the preplate method to detect mechanisms underlying distinct fate commitment of myogenic and adipogenic cells in skeletal muscle. Both cells share a common surface expression profile of CD29+CD31−CD34−CD90+CD105+, verifying their mesenchymal origin. A total of 448 differentially expressed genes (DEGs) (FDR < 0.05 and |log2 FC| ≥ 1) between two distinct cells were identified via RNA-seq, including 358 up-regulated and 90 down-regulated genes in myogenic cells compared with adipogenic cells. The results of functional annotation and enrichment showed that 42 DEGs were implicated in cell differentiation, among them PDGFRα, ITGA3, ITGB6, MLCK and MLC acted as hubs between environment information processing and cellular process, indicating that the interaction of the two categories exerts an important role in distinct fate commitment of myogenic and adipogenic cells. Particularly, we are first to show that up-regulation of intracellular Ca2+-MLCK and Rho-DMPK, and subsequently elevated MLC, may contribute to the distinct commitment of myogenic and adipogenic lineages via mediating cytoskeleton dynamics. PMID:28276486

  7. The Effects of High Glucose on Adipogenic and Osteogenic Differentiation of Gestational Tissue-Derived MSCs.

    PubMed

    Hankamolsiri, Weerawan; Manochantr, Sirikul; Tantrawatpan, Chairat; Tantikanlayaporn, Duangrat; Tapanadechopone, Pairath; Kheolamai, Pakpoom

    2016-01-01

    Most type 2 diabetic patients are obese who have increased number of visceral adipocytes. Those visceral adipocytes release several factors that enhance insulin resistance making diabetic treatment ineffective. It is known that significant percentages of visceral adipocytes are derived from mesenchymal stem cells and high glucose enhances adipogenic differentiation of mouse bone marrow-derived MSCs (BM-MSCs). However, the effect of high glucose on adipogenic differentiation of human bone marrow and gestational tissue-derived MSCs is still poorly characterized. This study aims to investigate the effects of high glucose on proliferation as well as adipogenic and osteogenic differentiation of human MSCs derived from bone marrow and several gestational tissues including chorion, placenta, and umbilical cord. We found that high glucose reduced proliferation but enhanced adipogenic differentiation of all MSCs examined. The expression levels of some adipogenic genes were also upregulated when MSCs were cultured in high glucose. Although high glucose transiently downregulated the expression levels of some osteogenic genes examined, its effect on the osteogenic differentiation levels of the MSCs is not clearly demonstrated. The knowledge gained from this study will increase our understanding about the effect of high glucose on adipogenic differentiation of MSCs and might lead to an improvement in the diabetic treatment in the future.

  8. A potential regulatory network underlying distinct fate commitment of myogenic and adipogenic cells in skeletal muscle.

    PubMed

    Sun, Wenjuan; He, Ting; Qin, Chunfu; Qiu, Kai; Zhang, Xin; Luo, Yanhong; Li, Defa; Yin, Jingdong

    2017-03-09

    Mechanism controlling myo-adipogenic balance in skeletal muscle is of great significance for human skeletal muscle dysfunction and myopathies as well as livestock meat quality. In the present study, two cell subpopulations with particular potency of adipogenic or myogenic differentiation were isolated from neonatal porcine longissimus dorsi using the preplate method to detect mechanisms underlying distinct fate commitment of myogenic and adipogenic cells in skeletal muscle. Both cells share a common surface expression profile of CD29(+)CD31(-)CD34(-)CD90(+)CD105(+), verifying their mesenchymal origin. A total of 448 differentially expressed genes (DEGs) (FDR < 0.05 and |log2 FC| ≥ 1) between two distinct cells were identified via RNA-seq, including 358 up-regulated and 90 down-regulated genes in myogenic cells compared with adipogenic cells. The results of functional annotation and enrichment showed that 42 DEGs were implicated in cell differentiation, among them PDGFRα, ITGA3, ITGB6, MLCK and MLC acted as hubs between environment information processing and cellular process, indicating that the interaction of the two categories exerts an important role in distinct fate commitment of myogenic and adipogenic cells. Particularly, we are first to show that up-regulation of intracellular Ca(2+)-MLCK and Rho-DMPK, and subsequently elevated MLC, may contribute to the distinct commitment of myogenic and adipogenic lineages via mediating cytoskeleton dynamics.

  9. Protein arginine methyltransferase 5 (Prmt5) promotes gene expression of peroxisome proliferator-activated receptor γ2 (PPARγ2) and its target genes during adipogenesis.

    PubMed

    LeBlanc, Scott E; Konda, Silvana; Wu, Qiong; Hu, Yu-Jie; Oslowski, Christine M; Sif, Saïd; Imbalzano, Anthony N

    2012-04-01

    Regulation of adipose tissue formation by adipogenic-regulatory proteins has long been a topic of interest given the ever-increasing health concerns of obesity and type 2 diabetes in the general population. Differentiation of precursor cells into adipocytes involves a complex network of cofactors that facilitate the functions of transcriptional regulators from the CCATT/enhancer binding protein, and the peroxisome proliferator-activated receptor (PPAR) families. Many of these cofactors are enzymes that modulate the structure of chromatin by altering histone-DNA contacts in an ATP-dependent manner or by posttranslationally modifying the histone proteins. Here we report that inhibition of protein arginine methyltransferase 5 (Prmt5) expression in multiple cell culture models for adipogenesis prevented the activation of adipogenic genes. In contrast, overexpression of Prmt5 enhanced adipogenic gene expression and differentiation. Chromatin immunoprecipitation experiments indicated that Prmt5 binds to and dimethylates histones at adipogenic promoters. Furthermore, the presence of Prmt5 promoted the binding of ATP-dependent chromatin-remodeling enzymes and was required for the binding of PPARγ2 at PPARγ2-regulated promoters. The data indicate that Prmt5 acts as a coactivator for the activation of adipogenic gene expression and promotes adipogenic differentiation.

  10. A new function of Nell-1 protein in repressing adipogenic differentiation.

    PubMed

    James, Aaron W; Pan, Angel; Chiang, Michael; Zara, Janette N; Zhang, Xinli; Ting, Kang; Soo, Chia

    2011-07-22

    A theoretical inverse relationship has long been postulated for osteogenic and adipogenic differentiation (bone versus adipose tissue differentiation). This inverse relationship in theory at least partially underlies the clinical entity of osteoporosis, in which marrow mesenchymal stem cells (MSCs) have a predilection for adipose differentiation that increases with age. In the present study, we assayed the potential anti-adipogenic effects of Nell-1 protein (an osteoinductive molecule). Using 3T3-L1 (a human preadipocyte cell line) cells and human adipose-derived stromal cells (ASCs), we observed that adenoviral delivered (Ad)-Nell-1 or recombinant NELL-1 protein significantly reduced adipose differentiation across all markers examined (Oil red O staining, adipogenic gene expression [Pparg, Lpl, Ap2]). In a prospective fashion, Hedgehog signaling was assayed as potentially downstream of Nell-1 signaling in regulating osteogenic over adipogenic differentiation. In comparison to Ad-LacZ control, Ad-Nell-1 increased expression of hedgehog signaling markers (Ihh, Gli1, Ptc1). These studies suggest that Nell-1 is a potent anti-adipogenic agent. Moreover, Nell-1 signaling may inhibit adipogenic differentiation via a Hedgehog dependent mechanism.

  11. Activation of an adipogenic program in adult myoblasts with age.

    PubMed

    Taylor-Jones, Jane M; McGehee, Robert E; Rando, Thomas A; Lecka-Czernik, Beata; Lipschitz, David A; Peterson, Charlotte A

    2002-03-31

    Myoblasts isolated from mouse hindlimb skeletal muscle demonstrated increased adipogenic potential as a function of age. Whereas myoblasts from 8-month-old adult mice did not significantly accumulate terminal markers of adipogenesis regardless of culture conditions, myoblasts from 23-month-old mice accumulated fat and expressed genes characteristic of differentiated adipocytes, such as the fatty acid binding protein aP2. This change in differentiation potential was associated with a change in the abundance of the mRNA encoding the transcription factor C/EBPalpha, and in the relative abundance of PPARgamma2 to PPARgamma1 mRNAs. Furthermore, PPARgamma activity appeared to be regulated at the level of phosphorylation, being more highly phosphorylated in myoblasts isolated from younger animals. Although adipogenic gene expression in myoblasts from aged animals was activated, presumably in response to PPARgamma and C/EBPalpha, unexpectedly, myogenic gene expression was not effectively repressed. The Wnt signaling pathway may also alter differentiation potential in muscle with age. Wnt-10b mRNA was more abundantly expressed in muscle tissue and cultured myoblasts from adult compared with aged mice, resulting in stabilization of cytosolic beta-catenin, that may potentially contribute to inhibition of adipogenic gene expression in adult myoblasts. The changes reported here, together with those reported in bone marrow stroma with age, suggest that a default program may be activated in mesenchymal cells with increasing age resulting in a more adipogenic-like phenotype. Whether this change in differentiation potential contributes to the increased adiposity in muscle with age remains to be determined.

  12. Endocrine disrupting chemicals affect the adipogenic differentiation of mesenchymal stem cells in distinct ontogenetic windows.

    PubMed

    Biemann, Ronald; Navarrete Santos, Anne; Navarrete Santos, Alexander; Riemann, Dagmar; Knelangen, Julia; Blüher, Matthias; Koch, Holger; Fischer, Bernd

    2012-01-13

    Endocrine disrupting chemicals (EDC) like bisphenol A (BPA), bis(2-ethylhexyl)phthalate (DEHP) and tributyltin (TBT) are ubiquitously present in the environment and in human tissues. They bind to nuclear hormone receptors and affect cellular and developmental processes. In this study, we show that BPA, DEHP and TBT affect the adipogenic differentiation of murine mesenchymal stem cells (MSC, C3H/10T1/2) in a concentration-, stage- and compound-specific manner. C3H/10T1/2 cells and embryonic stem cells (CGR8) were exposed to BPA, DEHP or TBT at different stages of cell determination and differentiation (undifferentiated growth, adipogenic induction and terminal adipogenic differentiation). The final amount of differentiated adipocytes, cellular triglyceride content and mRNA expression of adipogenic marker genes (adiponectin, FABP4, PPARγ2, LPL) were quantified and compared with corresponding unexposed cells. BPA (10 μM) decreased subsequent adipogenic differentiation of MSC, when cells were exposed during undifferentiated growth. In contrast, DEHP (100 μM) during the hormonal induction period, and TBT (100 nM) in all investigated stages, enhanced adipogenesis. Importantly, exposure of undifferentiated murine embryonic stem cells did not show any effect of the investigated EDC on subsequent adipogenic differentiation.

  13. Endocrine disrupting chemicals affect the adipogenic differentiation of mesenchymal stem cells in distinct ontogenetic windows

    SciTech Connect

    Biemann, Ronald; Navarrete Santos, Anne; Navarrete Santos, Alexander; Riemann, Dagmar; Knelangen, Julia; Blueher, Matthias; Koch, Holger; Fischer, Bernd

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Endocrine disrupting chemicals affect adipogenesis in mesenchymal stem cells (MSC). Black-Right-Pointing-Pointer The adipogenic impact depends strongly on the window of exposure. Black-Right-Pointing-Pointer Bisphenol A reduces the potential of MSC to differentiate into adipocytes. Black-Right-Pointing-Pointer DEHP and TBT trigger the adipogenic differentiation of mesenchymal stem cells. Black-Right-Pointing-Pointer BPA, DEHP and TBT did not affect adipogenesis in embryonic stem cells. -- Abstract: Endocrine disrupting chemicals (EDC) like bisphenol A (BPA), bis(2-ethylhexyl)phthalate (DEHP) and tributyltin (TBT) are ubiquitously present in the environment and in human tissues. They bind to nuclear hormone receptors and affect cellular and developmental processes. In this study, we show that BPA, DEHP and TBT affect the adipogenic differentiation of murine mesenchymal stem cells (MSC, C3H/10T1/2) in a concentration-, stage- and compound-specific manner. C3H/10T1/2 cells and embryonic stem cells (CGR8) were exposed to BPA, DEHP or TBT at different stages of cell determination and differentiation (undifferentiated growth, adipogenic induction and terminal adipogenic differentiation). The final amount of differentiated adipocytes, cellular triglyceride content and mRNA expression of adipogenic marker genes (adiponectin, FABP4, PPAR{gamma}2, LPL) were quantified and compared with corresponding unexposed cells. BPA (10 {mu}M) decreased subsequent adipogenic differentiation of MSC, when cells were exposed during undifferentiated growth. In contrast, DEHP (100 {mu}M) during the hormonal induction period, and TBT (100 nM) in all investigated stages, enhanced adipogenesis. Importantly, exposure of undifferentiated murine embryonic stem cells did not show any effect of the investigated EDC on subsequent adipogenic differentiation.

  14. Diverse effects of cyclic AMP variants on osteogenic and adipogenic differentiation of human mesenchymal stromal cells.

    PubMed

    Doorn, Joyce; Leusink, Maarten; Groen, Nathalie; van de Peppel, Jeroen; van Leeuwen, Johannes P T M; van Blitterswijk, Clemens A; de Boer, Jan

    2012-07-01

    Osteogenic differentiation of human mesenchymal stromal cells (hMSCs) may potentially be used in cell-based bone tissue-engineering applications to enhance the bone-forming potential of these cells. Osteogenic differentiation and adipogenic differentiation are thought to be mutually exclusive, and although several signaling pathways and cues that induce osteogenic or adipogenic differentiation, respectively, have been identified, there is no general consensus on how to optimally differentiate hMSCs into the osteogenic lineage. Some pathways have also been reported to be involved in both adipogenic and osteogenic differentiation, as for example, the protein kinase A (PKA) pathway, and the aim of this study was to investigate the role of cAMP/PKA signaling in differentiation of hMSCs in more detail. We show that activation of this pathway with dibutyryl-cAMP results in enhanced alkaline phosphatase expression, whereas another cAMP analog induces adipogenesis in long-term mineralization cultures. Adipogenic differentiation, induced by 8-bromo-cAMP, was accompanied by stronger PKA activity and higher expression of cAMP-responsive genes, suggesting that stronger activation correlates with adipogenic differentiation. In addition, a whole-genome expression analysis showed an increase in expression of adipogenic genes in 8-br-cAMP-treated cells. Furthermore, by means of quantitative polymerase chain reaction, we show differences in peroxisome proliferator-activated receptor-γ activation, either alone or in combination with dexamethasone, thus demonstrating differential effects of the PKA pathway, most likely depending on its mode of activation.

  15. Adipogenic differentiation of mesenchymal stem cells on micropatterned polyelectrolyte surfaces.

    PubMed

    Kawazoe, Naoki; Guo, Likun; Wozniak, Michal J; Imaizumi, Yumie; Tateishi, Tetsuya; Zhang, Xingdong; Chen, Guoping

    2009-01-01

    Three kinds of photoreactive polyelectrolytes of polyallylamine (PAAm), poly(acrylic acid) (PAAc), and poly(vinyl alcohol) (PVA) were synthesized by the introduction of azidophenyl groups in the respective polymers. The photoreactive PAAm, PAAc, and PVA were micropatterned on polystyrene surfaces by photolithography. Observation with optical microscopy and scanning probe microscopy demonstrated the formation of a striped pattern of polyelectrolytes with a width of 200 microm. The micropatterned polyelectrolytes swelled in water. The micropatterned surfaces were used for cell culture of mesenchymal stem cells (MSCs) and their effects on adipogenic differentiation were investigated. The MSCs adhered to and proliferated evenly on the PAAm- and PAAc-patterned surfaces while they formed a cell pattern on the PVA-patterned surface. The PAAm-, PAAc-grafted, and polystyrene surfaces supported cell adhesion while the PVA-grafted surface did not. When cultured in adipogenic differentiation medium, the adipogenic differentiation of MSCs on the polyelectrolyte-patterned surfaces was demonstrated by the formation of lipid vacuoles and gene expression analysis. Oil Red-O-positive cells showed an even distribution on the PAAm- and PAAc-patterned surfaces, while they showed a pattern on the PVA-patterned surface. The fraction of Oil RedO-positive cells increased with culture time. The MSCs cultured on the PAAm-, PAAc-grafted, and polystyrene surfaces in adipogenic differentiation medium expressed the adipogenesis marker genes of peroxisome proliferator-activated receptor gamma2 (PPARgamma2), lipoprotein lipase (LPL), and fatty acid binding protein 4 (FABP4). These results indicate that the PAAm-, and PAAc-grafted, and polystyrene surfaces supported the adipogenesis of MSCs while a PVA-grafted surface did not.

  16. Molecular Regulation of Adipogenesis and Potential Anti-Adipogenic Bioactive Molecules

    PubMed Central

    Moseti, Dorothy; Regassa, Alemu; Kim, Woo-Kyun

    2016-01-01

    Adipogenesis is the process by which precursor stem cells differentiate into lipid laden adipocytes. Adipogenesis is regulated by a complex and highly orchestrated gene expression program. In mammalian cells, the peroxisome proliferator-activated receptor γ (PPARγ), and the CCAAT/enhancer binding proteins (C/EBPs) such as C/EBPα, β and δ are considered the key early regulators of adipogenesis, while fatty acid binding protein 4 (FABP4), adiponectin, and fatty acid synthase (FAS) are responsible for the formation of mature adipocytes. Excess accumulation of lipids in the adipose tissue leads to obesity, which is associated with cardiovascular diseases, type II diabetes and other pathologies. Thus, investigating adipose tissue development and the underlying molecular mechanisms is vital to develop therapeutic agents capable of curbing the increasing incidence of obesity and related pathologies. In this review, we address the process of adipogenic differentiation, key transcription factors and proteins involved, adipogenic regulators and potential anti-adipogenic bioactive molecules. PMID:26797605

  17. The anti-obesity effects of a tuna peptide on 3T3-L1 adipocytes are mediated by the inhibition of the expression of lipogenic and adipogenic genes and by the activation of the Wnt/β-catenin signaling pathway.

    PubMed

    Kim, Young-Min; Kim, In-Hye; Choi, Jeong-Wook; Lee, Min-Kyeong; Nam, Taek-Jeong

    2015-08-01

    The differentiation of 3T3-L1 cells into adipocytes involves the activation of an organized system of obesity-related genes, of which those encoding CCAAT/enhancer-binding proteins (C/EBPs) and the Wnt-10b protein may play integral roles. In a previous study of ours, we found that a specific peptide found in tuna (sequence D-I-V-D-K-I-E-I; termed TP-D) inhibited 3T3-L1 cell differentiation. In the present study, we observed that the expression of expression of C/EBPs and Wnt-10b was associated with obesity. The initial step of 3T3-L1 cell differentiation involved the upregulation of C/EBP-α expression, which in turn activated various subfactors. An upstream effector of glycogen synthase kinase-3β (GSK-3β) inhibited Wnt-10b expression in 3T3-L1 adipocytes. In a previous study of ours, we sequenced the tuna peptide via sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and quadrupole time-of-flight mass spectrometry (Q-TOF MS/MS) and confirmed the anti-obesity effects thereof in 3T3-L1 adipocytes. In the present study, we demonstrate that TP-D inhibits C/EBP and promotes Wnt-10b mRNA expression, thus activating the Wnt pathway. The inhibition of lipid accumulation was measured using a glucose and triglyceride (TG) assay. Our results confirmed that TP-D altered the expression levels of C/EBP-related genes in a dose-dependent manner and activated the Wnt signaling pathway. In addition, we confirmed that total adiponectin and high-molecular weight (HMW) adiponectin levels were reduced by treatment with TP-D. These data indicate that TP-D inhibits adipocyte differentiation through the inhibition of C/EBP genes and the subsequent activation of the Wnt/β-catenin signaling pathway.

  18. Modulation of Adipogenic Conditions for Prospective Use of hADSCs in Adipose Tissue Engineering

    PubMed Central

    Galateanu, Bianca; Dinescu, Sorina; Cimpean, Anisoara; Dinischiotu, Anca; Costache, Marieta

    2012-01-01

    Modern strategies in adipose tissue engineering (ATE) take advantage of the easy harvest, abundance and differentiation potential towards mesenchymal lineages of hADSCs. The controlled conversion of hADSCs to committed adipogenic precursors and further mature adipocytes formation is important for good long-term results in soft tissue regeneration. Thus, in this study, we report: (i) the isolation of the processed lipoaspirate (PLA) cells from adipose tissue and sanguine fractions; (ii) the phenotypic characterization of the PLA descendants; (iii) the design of a novel protocol for the modulation of adipogenic conditions in the perspectives of ATE applications. To modulate the differentiation rate through our protocol, we propose to selectively modify the formulation of the adipogenic media in accordance with the evolution of the process. Therefore, we aimed to ensure the long-term proliferation of the precursor cells and to delay the late adipogenic events. The status of differentiation was characterized in terms of intracellular lipid accumulation and reorganization of the cytoskeleton simultaneously with perilipin protein expression. Moreover, we studied the sequential activation of PPARγ2, FAS, aP2 and perilipin genes which influence the kinetics of the adipogenic process. The strategies developed in this work are the prerequisites for prospective 3D regenerative systems. PMID:23443100

  19. Markers Are Shared Between Adipogenic and Osteogenic Differentiated Mesenchymal Stem Cells.

    PubMed

    Köllmer, Melanie; Buhrman, Jason S; Zhang, Yu; Gemeinhart, Richard A

    2013-05-01

    The stem cell differentiation paradigm is based on the progression of cells through generations of daughter cells that eventually become restricted and committed to one lineage resulting in fully differentiated cells. Herein, we report on the differentiation of adult human mesenchymal stem cells (hMSCs) towards adipogenic and osteogenic lineages using established protocols. Lineage specific geneswere evaluated by quantitative real-time PCR relative to two reference genes. The expression of osteoblast-associated genes (alkaline phosphatase, osteopontin, and osteocalcin)was detected in hMSCs that underwent adipogenesis. When normalized, the expression of adipocyte marker genes (adiponectin, fatty acid binding protein P4, and leptin) increasedin a time-dependent manner during adipogenic induction. Adiponectin and leptin were also detected in osteoblast-induced cells. Lipid vacuoles that represent the adipocyte phenotype were only present in the adipogenic induction group. Conforming to the heterogeneous nature of hMSCs and the known plasticity between osteogenic and adipogenic lineages, these data indicatea marker overlap between MSC-derived adipocytes and osteoblasts. Weproposea careful consideration of experimental conditions such as investigated timepoints, selected housekeeping genesand the evidence indicating lack of differentiation into other lineageswhen evaluating hMSC differentiation.

  20. Effect of nanogroove geometry on adipogenic differentiation

    NASA Astrophysics Data System (ADS)

    Kim, M. S.; Kim, A. Y.; Jang, K. J.; Kim, J. H.; Kim, J. B.; Suh, K. Y.

    2011-12-01

    We present the effect of nanotopographically defined surfaces on adipocyte differentiation using various nanogroove patterns. Parallel nanogroove arrays with equal inter-groove distance (400, 550, 800 nm width) and varying distances (550 nm width with three different spacings of 550, 1100, and 2750 nm) were fabricated by UV-assisted capillary force lithography (CFL) on 18 mm diameter glass coverslips using biocompatible polyurethane (PU)-based material. After coating with fibronectin and subsequent culture of 3T3-L1 preadipocytes, the degree of adipocyte differentiation was determined by Oil Red O staining and adipogenic gene expression. We observed that adipocyte differentiation was slightly but substantially affected by culture on various nanogrooved surfaces. In particular, the cell crawling into nanogrooves contributed substantially to an enhanced level of differentiation with higher contact guidance, suggesting that cell-to-surface interactions would play a role for the adipocyte differentiation.

  1. Selenium promotes adipogenic determination and differentiation of chicken embryonic fibroblasts with regulation of genes involved in fatty acid uptake, triacylglycerol synthesis and lipolysis.

    PubMed

    Hassan, Aishlin; Ahn, Jinsoo; Suh, Yeunsu; Choi, Young Min; Chen, Paula; Lee, Kichoon

    2014-08-01

    Selenium (Se) has been utilized in the differentiation of primary pig and rat preadipocytes, indicating that it may have proadipogenic potential; however, some studies have also demonstrated that Se has antiadipogenic activity. In this study, chicken embryonic fibroblasts (CEFs) were used to investigate the role of Se in adipogenesis in vitro and in ovo. Se supplementation increased lipid droplet accumulation and inhibited proliferation of cultured CEFs isolated from 6-day-old embryos dose-dependently. This suggests that Se may play a role in cell cycle inhibition, thereby promoting the differentiation of fibroblasts to adipocytes. Se did not stimulate adipogenic differentiation of CEFs isolated from 9- to 12-day-old embryos, implying a permissive stage of adipogenic determination by Se at earlier embryonic ages. Microarray analysis comparing control and Se treatments on CEFs from 6-day-old embryos and confirmatory analysis by quantitative real-time polymerase chain reaction revealed that genes involved in adipocyte determination and differentiation, fatty acid uptake and triacylglycerol synthesis were up-regulated. In addition, up-regulation of an anti-lipolytic G0/G1 switch gene 2 and down-regulation of a prolipolytic monoglyceride lipase may lead to inhibition of lipolysis by Se. Both osteogenic and myogenic genes were down-regulated, and several genes related to oxidative stress response during adipogenesis were up-regulated. In ovo injection of Se at embryonic day 8 increased adipose tissue mass by 30% and caused adipocyte hypertrophy in 17-day-old chicken embryos, further supporting the proadipogenic role of Se during the embryonic development of chickens. These results suggest that Se plays a significant role in several mechanisms related to adipogenesis.

  2. Transdifferentiation of mesenchymal stem cells-derived adipogenic-differentiated cells into osteogenic- or chondrogenic-differentiated cells proceeds via dedifferentiation and have a correlation with cell cycle arresting and driving genes.

    PubMed

    Ullah, Mujib; Stich, Stefan; Notter, Michael; Eucker, Jan; Sittinger, Michael; Ringe, Jochen

    2013-02-01

    It is generally accepted that after differentiation bone marrow mesenchymal stem cells (MSC) become lineage restricted and unipotent in an irreversible manner. However, current results imply that even terminally differentiated cells transdifferentiate across lineage boundaries and therefore act as a progenitor cells for other lineages. This leads to the questions that whether transdifferentiation occurs via direct cell-to-cell conversion or dedifferentiation to a progenitor cells and subsequent differentiation, and whether MSC potency decreases or increases during differentiation. To address these questions, MSC were differentiated into adipogenic lineage cells, followed by dedifferentiation. The process of dedifferentiation was also confirmed by single cell clonal analysis. Finally the dedifferentiated cells were used for adipogenesis, osteogenesis and chondrogenesis. Histology, FACS, qPCR and GeneChip analyses of undifferentiated MSC, adipogenic-differentiated and dedifferentiated cells were performed. Interestingly, gene profiling and bioinformatics demonstrated that upregulation (DHCR24, G0S2, MAP2K6, SESN3) and downregulation (DST, KAT2, MLL5, RB1, SMAD3, ZAK) of distinct genes have an association with cell cycle arrest in adipogenic-differentiated cells and perhaps narrow down the lineage potency. However, the upregulation (CCND1, CHEK, HGF, HMGA2, SMAD3) and downregulation (CCPG1, RASSF4, RGS2) of these genes have an association with cell cycle progression and maybe motivate dedifferentiation of adipogenic-differentiated cells. We found that dedifferentiated cells have a multilineage potency comparable to MSC, and also observed the associative role of proliferation genes with cell cycle arrest and progression. Concluded, our results indicate that transdifferentiation of adipogenic-differentiated cells into osteogenic- or chondrogenic-differentiated cells proceeds via dedifferentiation and correlates with cell cycle arresting and deriving genes. Regarding

  3. Histone H3 K27 acetylation marks a potent enhancer element on the adipogenic master regulator gene Pparg2.

    PubMed

    Ramlee, Muhammad Khairul; Zhang, Qiongyi; Idris, Muhammad; Peng, Xu; Sim, Choon Kiat; Han, Weiping; Xu, Feng

    2014-01-01

    PPARγ2 is expressed almost exclusively in adipose tissue and plays a central role in adipogenesis. Despite intensive studies over the last 2 decades, the mechanism regulating the expression of the Pparg2 gene, especially the role of cis-regulatory elements, is still not completely understood. Here, we report a comprehensive investigation of the enhancer elements within the murine Pparg2 gene. Utilizing the combined techniques of sequence conservation analysis and chromatin marker examination, we identified a potent enhancer element that augmented the expression of a reporter gene under the control of the Pparg2 promoter by 20-fold. This enhancer element was first identified as highly conserved non-coding sequence 10 (CNS10) and was later shown to be enriched with the enhancer marker H3 K27 acetylation. Further studies identified a binding site for p300 as the essential enhancer element in CNS10. Moreover, p300 physically binds to CNS10 and is required for the enhancer activity of CNS10. The depletion of p300 by siRNA resulted in significantly impaired activation of Pparg2 at the early stages of 3T3-L1 adipogenesis. In summary, our study identified a novel enhancer element on the murine Pparg2 gene and suggested a novel mechanism for the regulation of Pparg2 expression by p300 in 3T3-L1 adipogenesis.

  4. Histone H3 K27 acetylation marks a potent enhancer element on the adipogenic master regulator gene Pparg2

    PubMed Central

    Ramlee, Muhammad Khairul; Zhang, Qiongyi; Idris, Muhammad; Peng, Xu; Sim, Choon Kiat; Han, Weiping; Xu, Feng

    2014-01-01

    PPARγ2 is expressed almost exclusively in adipose tissue and plays a central role in adipogenesis. Despite intensive studies over the last 2 decades, the mechanism regulating the expression of the Pparg2 gene, especially the role of cis-regulatory elements, is still not completely understood. Here, we report a comprehensive investigation of the enhancer elements within the murine Pparg2 gene. Utilizing the combined techniques of sequence conservation analysis and chromatin marker examination, we identified a potent enhancer element that augmented the expression of a reporter gene under the control of the Pparg2 promoter by 20-fold. This enhancer element was first identified as highly conserved non-coding sequence 10 (CNS10) and was later shown to be enriched with the enhancer marker H3 K27 acetylation. Further studies identified a binding site for p300 as the essential enhancer element in CNS10. Moreover, p300 physically binds to CNS10 and is required for the enhancer activity of CNS10. The depletion of p300 by siRNA resulted in significantly impaired activation of Pparg2 at the early stages of 3T3-L1 adipogenesis. In summary, our study identified a novel enhancer element on the murine Pparg2 gene and suggested a novel mechanism for the regulation of Pparg2 expression by p300 in 3T3-L1 adipogenesis. PMID:25485585

  5. Nutritional milieu of isolated stromal vascular cells determines their proliferative, adipogenic, and lipogenic capacity in vitro

    PubMed Central

    Kadegowda, Anil K G; Wright, Asher; Duckett, Susan K

    2014-01-01

    The objective was to determine the effect of nutritional milieu of isolated stromal vascular (SV) cells on proliferative capacity of preadipocytes, and adipogenic and lipogenic capacity in adipocytes in vitro. Proliferation of the preadipocytes increased over time with 48 and 72 h being greater than 24 h; however, preadipocytes from steers supplemented with corn (LC) had lower proliferation rates compared with those without corn grain supplementation (L) at 72 h. Adipocyte cultures isolated from LC group had higher mean diameter on d 4 and 6, and higher mean volume on d 0, 4, 6, and 12 of culture. Adipocytes from steers supplemented with corn grain (LC) had lower expression of key adipogenic genes during extended days in culture. The results show that prior nutritional treatment of the donor animal used to isolate SV cultures alters their proliferative, adipogenic, and lipogenic capacity in culture. These differences may be related to lower induction/expression of AP2 gene in the adipose cultures from corn supplemented group. Corn grain supplementation to steers grazing legumes could have stimulated more active adipogenic progenitor cells to differentiate, which would leave fewer behind in the SV pool for subsequent isolation. PMID:26317055

  6. Coexpression of osteogenic and adipogenic differentiation markers in selected subpopulations of primary human mesenchymal progenitor cells.

    PubMed

    Ponce, M L; Koelling, S; Kluever, A; Heinemann, D E H; Miosge, N; Wulf, G; Frosch, K-H; Schütze, N; Hufner, M; Siggelkow, H

    2008-07-01

    Knowledge of the basic mechanisms controlling osteogenesis and adipogenesis might provide new insights into the prevention of osteoporosis and age-related osteopenia. With the help of magnetic cell sorting and fluorescence activated cell sorting (FACS), osteoblastic subpopulations of mesenchymal progenitor cells were characterized. Alkaline phosphatase (AP) negative cells expressed low levels of osteoblastic and adipocytic markers. AP positive cells expressed adipocytic markers more strongly than the AP negative cell populations, thus suggesting that committed osteoblasts exhibit a greater adipogenic potential. AP negative cells differentiated to the mature osteoblastic phenotype, as demonstrated by increased AP-activity and osteocalcin secretion under standard osteogenic culture conditions. Surprisingly, this was accompanied by increased expression of adipocytic gene markers such as peroxisome proliferator-activated receptor-gamma2, lipoprotein lipase and fatty acid binding protein. The induction of adipogenic markers was suppressed by transforming growth factor-beta1 (TGF-beta1) and promoted by bone morphogenetic protein 2 (BMP-2). Osteogenic culture conditions including BMP-2 induced both the formation of mineralized nodules and cytoplasmic lipid vacuoles. Upon immunogold electron microscopic analysis, osteoblastic and adipogenic marker proteins were detectable in the same cell. Our results suggest that osteogenic and adipogenic differentiation in human mesenchymal progenitor cells might not be exclusively reciprocal, but rather, a parallel event until late during osteoblast development.

  7. Cytoglobin: a potential marker for adipogenic differentiation in preadipocytes in vitro.

    PubMed

    Doğan, Ayşegül; Demirci, Selami; Kıratlı, Binnur; Şahin, Fikrettin

    2017-02-01

    Obesity, mainly characterized by the excess fat storage, is a global health problem resulting in serious morbidity and mortality. Identification of molecular mechanisms in adipogenic differentiation pathway might lead to development of new strategies for diagnosis, prevention and therapy of obesity and associated diseases. Discovery of new genes and proteins in the differentiation pathway could help to understand the key specific regulators of the adipogenesis. Cytoglobin (Cygb), identified as a new globin family member protein, is expressed in various tissues. Although its interaction with oxygen and nitric oxide indicates the potential role in antioxidant pathways, the exact role remains unclear. In the current study, expression level of Cygb was determined in proliferating and differentiating 3T3-F442A cells by gene expression and protein expression analysis. Results revealed that Cygb expression up-regulated in differentiated cells in parallel with adipogenic differentiation markers; PPARγ, CEBPα and FABP4 expressions. Besides, Cygb overexpression in preadipocytes contributed to the adipogenic differentiation as verified by detection of higher lipid droplets and increased PPARγ, CEBPα and FABP4 expressions with respect to control cells. These findings will shed light on the unknown roles of Cygb in adipogenesis and obesity.

  8. Overfeeding energy upregulates peroxisome proliferator-activated receptor (PPAR)γ-controlled adipogenic and lipolytic gene networks but does not affect proinflammatory markers in visceral and subcutaneous adipose depots of Holstein cows.

    PubMed

    Ji, P; Drackley, J K; Khan, M J; Loor, J J

    2014-01-01

    Our objective was to determine the effects of overfeeding energy on gene expression in mesenteric (MAT), omental (OAT), and subcutaneous (SAT) adipose tissue (AT) from nonpregnant and nonlactating Holstein cows. Eighteen cows were randomly assigned to either a low energy [LE, net energy for lactation (NE(L)) = 1.35 Mcal/kg of dry matter (DM)] or high energy (HE, NE(L) = 1.62 Mcal/kg of DM) diets for 8 wk. Cows were then euthanized and subsamples of MAT, OAT, and SAT were harvested for transcript profiling via quantitative PCR of 34 genes involved in lipogenesis, triacylglycerol (TAG) synthesis, lipolysis, lactate signaling, transcription regulation, and inflammation. The interaction of dietary energy and AT depot was only significant for LPL, which indicated a consistent response among the 3 sites. The expression of key genes related to de novo fatty acid synthesis (FASN) and desaturation (SCD) was upregulated by HE compared with LE. Other genes associated with those processes, such as ACLY, ACACA, ELOVL6, FABP4, GPAM, and LPIN1, were numerically upregulated by HE. The expression of lipolytic (PNPLA2 and ABHD5) genes was upregulated and the antilypolytic lactate receptor HCAR1 was downregulated with HE compared with LE. The putative transcription regulator THRSP was upregulated and the transcription regulator PPARG tended to be upregulated by HE, whereas SREBF1 was downregulated. Among adipocytokines, HE tended to upregulate the expression of CCL2, whereas IL6R was downregulated. Overall, results indicated that overfeeding energy may increase AT mass at least in part by stimulating transcription of the network encompassing key genes associated with de novo synthesis. In response to energy overfeeding, the expression of PPARG rather than SREBF1 was closely associated with most adipogenic or lipogenic genes. However, the transcriptional activity of these regulators needs to be verified to confirm their role in the regulation of adipogenesis or lipogenesis in bovine

  9. Cytosolic aconitase activity sustains adipogenic capacity of adipose tissue connecting iron metabolism and adipogenesis.

    PubMed

    Moreno, María; Ortega, Francisco; Xifra, Gemma; Ricart, Wifredo; Fernández-Real, José Manuel; Moreno-Navarrete, José María

    2015-04-01

    To gain insight into the regulation of intracellular iron homeostasis in adipose tissue, we investigated the role of iron regulatory protein 1/cytosolic aconitase 1 (ACO1). ACO1 gene expression and activity increased in parallel to expression of adipogenic genes during differentiation of both murine 3T3-L1 cells and human preadipocytes. Lentiviral knockdown (KD) of Aco1 in 3T3-L1 preadipocytes led to diminished cytosolic aconitase activity and isocitrate dehydrogenase 1 (NADP(+)), soluble (Idh1) mRNA levels, decreased intracellular NADPH:NADP ratio, and impaired adipogenesis during adipocyte differentiation. In addition, Aco1 KD in fully differentiated 3T3-L1 adipocytes decreased lipogenic, Idh1, Adipoq, and Glut4 gene expression. A bidirectional cross-talk was found between intracellular iron levels and ACO1 gene expression and protein activity. Although iron in excess, known to increase reactive oxygen species production, and iron depletion both resulted in decreased ACO1 mRNA levels and activity, Aco1 KD led to reduced gene expression of transferrin receptor (Tfrc) and transferrin, disrupting intracellular iron uptake. In agreement with these findings, in 2 human independent cohorts (n = 85 and n = 38), ACO1 gene expression was positively associated with adipogenic markers in subcutaneous and visceral adipose tissue. ACO1 gene expression was also positively associated with the gene expression of TFRC while negatively linked to ferroportin (solute carrier family 40 (iron-regulated transporter), member 1) mRNA levels. Altogether, these results suggest that ACO1 activity is required for the normal adipogenic capacity of adipose tissue by connecting iron, energy metabolism, and adipogenesis.

  10. Effects of serial passaging on the adipogenic and osteogenic differentiation potential of adipose-derived human mesenchymal stem cells.

    PubMed

    Wall, Michelle E; Bernacki, Susan H; Loboa, Elizabeth G

    2007-06-01

    Adipose-derived human mesenchymal stem cells (hMSCs) will be more valuable for tissue engineering applications if they can be extensively subcultured without loss of phenotype and multilineage differentiation ability. This study examined the effects of serial passaging on growth rate, gene expression, and differentiation potential of adipose-derived hMSCs. Differentiation was assessed by analyzing changes in messenger RNA (mRNA) expression of osteogenic and adipogenic marker genes and by determining production of calcium deposits and lipid vacuoles. Cells cultured in osteogenic medium for 2 weeks upregulated expression of alkaline phosphatase mRNA relative to cells in growth medium, and deposited calcium. Calcium deposition decreased in cells from passages 4 to 6 but returned to levels near or above those of primary cells by passage 10. Cells cultured in adipogenic medium upregulated expression of lipoprotein lipase and peroxisome proliferator activated receptor-gamma mRNA relative to cells in growth medium, and formed lipid vacuoles at all passages. By passage 8, however, cells in adipogenic medium also deposited calcium. Growth rate was stable through passage 5, then decreased. The results of this study indicate that adipose-derived hMSCs are capable of both adipogenic and osteogenic differentiation through 10 passages (34 population doublings) but that osteogenic differentiation may start to dominate at later passages.

  11. Extracellular matrix of adipogenically differentiated mesenchymal stem cells reveals a network of collagen filaments, mostly interwoven by hexagonal structural units.

    PubMed

    Ullah, Mujib; Sittinger, Michael; Ringe, Jochen

    2013-01-01

    Extracellular matrix (ECM) is the non-cellular component of tissues, which not only provides biological shelter but also takes part in the cellular decisions for diverse functions. Every tissue has an ECM with unique composition and topology that governs the process of determination, differentiation, proliferation, migration and regeneration of cells. Little is known about the structural organization of matrix especially of MSC-derived adipogenic ECM. Here, we particularly focus on the composition and architecture of the fat ECM to understand the cellular behavior on functional bases. Thus, mesenchymal stem cells (MSC) were adipogenically differentiated, then, were transferred to adipogenic propagation medium, whereas they started the release of lipid droplets leaving bare network of ECM. Microarray analysis was performed, to indentify the molecular machinery of matrix. Adipogenesis was verified by Oil Red O staining of lipid droplets and by qPCR of adipogenic marker genes PPARG and FABP4. Antibody staining demonstrated the presence of collagen type I, II and IV filaments, while alkaline phosphatase activity verified the ossified nature of these filaments. In the adipogenic matrix, the hexagonal structures were abundant followed by octagonal structures, whereas they interwoven in a crisscross manner. Regarding molecular machinery of adipogenic ECM, the bioinformatics analysis revealed the upregulated expression of COL4A1, ITGA7, ITGA7, SDC2, ICAM3, ADAMTS9, TIMP4, GPC1, GPC4 and downregulated expression of COL14A1, ADAMTS5, TIMP2, TIMP3, BGN, LAMA3, ITGA2, ITGA4, ITGB1, ITGB8, CLDN11. Moreover, genes associated with integrins, glycoproteins, laminins, fibronectins, cadherins, selectins and linked signaling pathways were found. Knowledge of the interactive-language between cells and matrix could be beneficial for the artificial designing of biomaterials and bioscaffolds.

  12. Effects of substrate stiffness on adipogenic and osteogenic differentiation of human mesenchymal stem cells.

    PubMed

    Zhao, Wen; Li, Xiaowei; Liu, Xiaoyan; Zhang, Ning; Wen, Xuejun

    2014-07-01

    Substrate mechanical properties, in addition to biochemical signals, have been shown to modulate cell phenotype. In this study, we inspected the effects of substrate stiffness on human mesenchymal stem cells (hMSCs) derived from adult human bone marrow differentiation into adipogenic and osteogenic cells. A chemically modified extracellular matrix derived and highly biocompatible hydrogel, based on thiol functionalized hyaluronic acid (HA-SH) and thiol functionalized recombinant human gelatin (Gtn-SH), which can be crosslinked by poly (ethylene glycol) tetra-acrylate (PEGTA), was used as a model system. The stiffness of the hydrogel was controlled by adjusting the crosslinking density. Human bone marrow MSCs were cultured on the hydrogels with different stiffness under adipogenic and osteogenic conditions. Oil Red O staining and F-actin staining were applied to assess the change of cell morphologies under adipogenic and osteogenic differentiation, respectively. Gene expression of cells was determined with reverse transcription polymerase chain reaction (RT-PCR) as a function of hydrogel stiffness. Results support the hypothesis that adipogenic and osteogenic differentiation of hMSCs are inclined to occur on substrate with stiffness similar to their in vivo microenvironments.

  13. Triphenyl phosphate enhances adipogenic differentiation, glucose uptake and lipolysis via endocrine and noradrenergic mechanisms.

    PubMed

    Cano-Sancho, German; Smith, Anna; La Merrill, Michele A

    2017-04-01

    The use of triphenyl phosphate (TPhP) as a flame retardant or plasticizer has increased during the last decade, resulting in widespread human exposure without commensurate toxicity assessment. The main objectives of this study were to assess the in vitro effect of TPhP and its metabolite diphenyl phosphate (DPhP) on the adipogenic differentiation of 3T3-L1 cells, as well as glucose uptake and lipolysis in differentiated 3T3-L1 adipocytes. TPhP increased pre-adipocyte proliferation and subsequent adipogenic differentiation of 3T3-L1 cells, coinciding with increased transcription in the CEBP and PPARG pathway. Treatment of mature adipocytes with TPhP increased the basal- and insulin stimulated- uptake of the glucose analog 2-[N (-7-nitrobenz-2-oxa1, 3-diazol-4-yl) amino]-2-deoxy-d-glucose (2-NBDG). This effect was ablated by inhibition of PI3K, a member of the insulin signaling pathway. DPhP had no significant effect on cell proliferation and, compared to TPhP, a weaker effect on adipogenic differentiation and on 2-NBDG uptake. Both TPhP and DPhT significantly enhanced the isoproterenol-induced lipolysis, most likely by increasing the expression of lipolytic genes during and after differentiation. This study suggests that TPhP increases adipogenic differentiation, glucose uptake, and lipolysis in 3T3-L1 cells through endocrine and noradrenergic mechanisms.

  14. Identification of Mouse Mesenteric and Subcutaneous in vitro Adipogenic Cells.

    PubMed

    Miyata, Yugo; Otsuki, Michio; Kita, Shunbun; Shimomura, Iichiro

    2016-02-17

    Fat accumulation and the dysfunction of visceral white adipose tissue (WAT), but not subcutaneous WAT, cause abnormalities in whole body metabolic homeostasis. However, no current drugs specifically target visceral WAT. The primary reason for this is that a practical in vitro culture system for mesenteric adipocytes has not been established. To resolve this issue, we sought to identify in vitro adipogenic cells in mesenteric and subcutaneous WATs. First, we examined the expression pattern of surface antigens in stromal-vascular fraction (SVF) cells from mouse mesenteric and subcutaneous WATs, and found the expression of 30 stem cell-related surface antigens. Then, to evaluate the adipogenic ability of each fraction, we performed in vitro screening, and identified five candidate markers for mesenteric adipogenic cells and one candidate marker for subcutaneous adipogenic cells. To investigate whether in vitro adipogenic ability accurately reflects the conditions in vivo, we performed transplantation experiments, and identified CD9(-) CD201(+) Sca-1(-) cells and CD90(+) cells as mesenteric and subcutaneous in vitro adipogenic cells, respectively. Furthermore, mature adipocytes derived from mesenteric and subcutaneous adipogenic cells maintained each characteristic phenotype in vitro. Thus, our study should contribute to the development of a useful culture system for visceral adipocytes.

  15. Identification of Mouse Mesenteric and Subcutaneous in vitro Adipogenic Cells

    PubMed Central

    Miyata, Yugo; Otsuki, Michio; Kita, Shunbun; Shimomura, Iichiro

    2016-01-01

    Fat accumulation and the dysfunction of visceral white adipose tissue (WAT), but not subcutaneous WAT, cause abnormalities in whole body metabolic homeostasis. However, no current drugs specifically target visceral WAT. The primary reason for this is that a practical in vitro culture system for mesenteric adipocytes has not been established. To resolve this issue, we sought to identify in vitro adipogenic cells in mesenteric and subcutaneous WATs. First, we examined the expression pattern of surface antigens in stromal-vascular fraction (SVF) cells from mouse mesenteric and subcutaneous WATs, and found the expression of 30 stem cell-related surface antigens. Then, to evaluate the adipogenic ability of each fraction, we performed in vitro screening, and identified five candidate markers for mesenteric adipogenic cells and one candidate marker for subcutaneous adipogenic cells. To investigate whether in vitro adipogenic ability accurately reflects the conditions in vivo, we performed transplantation experiments, and identified CD9− CD201+ Sca-1− cells and CD90+ cells as mesenteric and subcutaneous in vitro adipogenic cells, respectively. Furthermore, mature adipocytes derived from mesenteric and subcutaneous adipogenic cells maintained each characteristic phenotype in vitro. Thus, our study should contribute to the development of a useful culture system for visceral adipocytes. PMID:26884347

  16. Zfp423 promotes adipogenic differentiation of bovine stromal vascular cells.

    PubMed

    Huang, Yan; Das, Arun Kr; Yang, Qi-Yuan; Zhu, Mei-Jun; Du, Min

    2012-01-01

    Intramuscular fat or marbling is critical for the palatability of beef. In mice, very recent studies show that adipocytes and fibroblasts share a common pool of progenitor cells, with Zinc finger protein 423 (Zfp423) as a key initiator of adipogenic differentiation. To evaluate the role of Zfp423 in intramuscular adipogenesis and marbling in beef cattle, we sampled beef muscle for separation of stromal vascular cells. These cells were immortalized with pCI neo-hEST2 and individual clones were selected by G418. A total of 288 clones (3×96 well plates) were isolated and induced to adipogenesis. The presence of adipocytes was assessed by Oil-Red-O staining. Three clones with high and low adipogenic potential respectively were selected for further analyses. In addition, fibro/adipogenic progenitor cells were selected using a surface marker, platelet derived growth factor receptor (PDGFR) α. The expression of Zfp423 was much higher (307.4±61.9%, P<0.05) in high adipogenic cells, while transforming growth factor (TGF)-β was higher (156.1±48.7%, P<0.05) in low adipogenic cells. Following adipogenic differentiation, the expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα) were much higher (239.4±84.1% and 310.7±138.4%, respectively, P<0.05) in high adipogenic cells. Over-expression of Zfp423 in stromal vascular cells and cloned low adipogenic cells dramatically increased their adipogenic differentiation, accompanied with the inhibition of TGF-β expression. Zfp423 knockdown by shRNA in high adipogenic cells largely prevented their adipogenic differentiation. The differential regulation of Zfp423 and TGF-β between low and high adipogenic cells is associated with the DNA methylation in their promoters. In conclusion, data show that Zfp423 is a critical regulator of adipogenesis in stromal vascular cells of bovine muscle, and Zfp423 may provide a molecular target for enhancing intramuscular adipogenesis

  17. Hypoxia induces adipogenic differentitation of myoblastic cell lines

    SciTech Connect

    Itoigawa, Yoshiaki; Kishimoto, Koshi N.; Okuno, Hiroshi; Sano, Hirotaka; Kaneko, Kazuo; Itoi, Eiji

    2010-09-03

    Research highlights: {yields} C2C12 and G8 myogenic cell lines treated by hypoxia differentiate into adipocytes. {yields} The expression of C/EBP{beta}, {alpha} and PPAR{gamma} were increased under hypoxia. {yields} Myogenic differentiation of C2C12 was inhibited under hypoxia. -- Abstract: Muscle atrophy usually accompanies fat accumulation in the muscle. In such atrophic conditions as back muscles of kyphotic spine and the rotator cuff muscles with torn tendons, blood flow might be diminished. It is known that hypoxia causes trans-differentiation of mesenchymal stem cells derived from bone marrow into adipocytes. However, it has not been elucidated yet if hypoxia turned myoblasts into adipocytes. We investigated adipogenesis in C2C12 and G8 murine myogenic cell line treated by hypoxia. Cells were also treated with the cocktail of insulin, dexamethasone and IBMX (MDI), which has been known to inhibit Wnt signaling and promote adipogenesis. Adipogenic differentiation was seen in both hypoxia and MDI. Adipogenic marker gene expression was assessed in C2C12. CCAAT/enhancer-binding protein (C/EBP) {beta}, {alpha} and peroxisome proliferator activating receptor (PPAR) {gamma} were increased by both hypoxia and MDI. The expression profile of Wnt10b was different between hypoxia and MDI. The mechanism for adipogenesis of myoblasts in hypoxia might be regulated by different mechanism than the modification of Wnt signaling.

  18. Basic fibroblast growth factor is pro-adipogenic in rat skeletal muscle progenitor clone, 2G11 cells.

    PubMed

    Nakano, Shin-ichi; Nakamura, Katsuyuki; Teramoto, Naomi; Yamanouchi, Keitaro; Nishihara, Masugi

    2016-01-01

    Intramuscular adipose tissue (IMAT) formation is a hallmark of marbling in cattle. IMAT is considered to originate from skeletal muscle progenitor cells with adipogenic potential. However, the mechanism involved in IMAT formation from these progenitor cells in vivo remains unclear. In the present study, among the growth factors tested, which were known to be expressed in skeletal muscle, we found only basic fibroblast growth factor (bFGF) has a pro-adipogenic effect on skeletal muscle derived adipogenic progenitor clone, 2G11 cells. Pre-exposure of 2G11 cells to bFGF did not affect initial gene expressions of CCAAT/enhancer-binding protein (C/EBP)β and C/EBPδ, while resulting in an enhancement of subsequent expressions of C/EBPα and proliferator-activated receptor gamma (PPARγ) during adipogenesis, indicating that bFGF is acting on the transcriptional regulation of C/EBPα and PPARγ. In addition, the effect of bFGF is mediated via two types of FGF receptor (FGFR) isoforms: FGFR1 and FGFR2 IIIc, and both receptors are prerequisite for bFGF to express its pro-adipogenic effect. These results suggest that bFGF plays an important role as a key trigger of IMAT formation in vivo.

  19. Muscle Gene Expression Patterns in Human Rotator Cuff Pathology

    PubMed Central

    Choo, Alexander; McCarthy, Meagan; Pichika, Rajeswari; Sato, Eugene J.; Lieber, Richard L.; Schenk, Simon; Lane, John G.; Ward, Samuel R.

    2014-01-01

    Background: Rotator cuff pathology is a common source of shoulder pain with variable etiology and pathoanatomical characteristics. Pathological processes of fatty infiltration, muscle atrophy, and fibrosis have all been invoked as causes for poor outcomes after rotator cuff tear repair. The aims of this study were to measure the expression of key genes associated with adipogenesis, myogenesis, and fibrosis in human rotator cuff muscle after injury and to compare the expression among groups of patients with varied severities of rotator cuff pathology. Methods: Biopsies of the supraspinatus muscle were obtained arthroscopically from twenty-seven patients in the following operative groups: bursitis (n = 10), tendinopathy (n = 7), full-thickness rotator cuff tear (n = 8), and massive rotator cuff tear (n = 2). Quantitative polymerase chain reaction (qPCR) was performed to characterize gene expression pathways involved in myogenesis, adipogenesis, and fibrosis. Results: Patients with a massive tear demonstrated downregulation of the fibrogenic, adipogenic, and myogenic genes, indicating that the muscle was not in a state of active change and may have difficulty responding to stimuli. Patients with a full-thickness tear showed upregulation of fibrotic and adipogenic genes; at the tissue level, these correspond to the pathologies most detrimental to outcomes of surgical repair. Patients with bursitis or tendinopathy still expressed myogenic genes, indicating that the muscle may be attempting to accommodate the mechanical deficiencies induced by the tendon tear. Conclusions: Gene expression in human rotator cuff muscles varied according to tendon injury severity. Patients with bursitis and tendinopathy appeared to be expressing pro-myogenic genes, whereas patients with a full-thickness tear were expressing genes associated with fatty atrophy and fibrosis. In contrast, patients with a massive tear appeared to have downregulation of all gene programs except inhibition of

  20. Effects of hTERT immortalization on osteogenic and adipogenic differentiation of dental pulp stem cells.

    PubMed

    Ikbale, El-Ayachi; Goorha, Sarita; Reiter, Lawrence T; Miranda-Carboni, Gustavo A

    2016-03-01

    These data relate to the differentiation of human dental pulp stem cells (DPSC) and DPSC immortalized by constitutively expressing human telomerase reverse transcriptase (hTERT) through both osteogenic and adipogenic lineages (i.e. to make bone producing and fat producing cells from these dental pulp stem cells). The data augment another study to characterize immortalized DPSC for the study of neurogenetic "Characterization of neurons from immortalized dental pulp stem cells for the study of neurogenetic disorders" [1]. Two copies of one typical control cell line (technical replicates) were used in this study. The data represent the differentiation of primary DPSC into osteoblast cells approximately 60% more effectively than hTERT immortalized DPSC. Conversely, both primary and immortalized DPSC are poorly differentiated into adipocytes. The mRNA expression levels for both early and late adipogenic and osteogenic gene markers are shown.

  1. The scaffold protein Tks4 is required for the differentiation of mesenchymal stromal cells (MSCs) into adipogenic and osteogenic lineages

    PubMed Central

    Dülk, Metta; Kudlik, Gyöngyi; Fekete, Anna; Ernszt, Dávid; Kvell, Krisztián; Pongrácz, Judit E.; Merő, Balázs L.; Szeder, Bálint; Radnai, László; Geiszt, Miklós; Csécsy, Dalma E.; Kovács, Tamás; Uher, Ferenc; Lányi, Árpád; Vas, Virag; Buday, László

    2016-01-01

    The commitment steps of mesenchymal stromal cells (MSCs) to adipogenic and other lineages have been widely studied but not fully understood. Therefore, it is critical to understand which molecules contribute to the conversion of stem cells into differentiated cells. The scaffold protein Tks4 plays a role in podosome formation, EGFR signaling and ROS production. Dysfunction of Tks4 causes a hereditary disease called Frank-ter Haar syndrome with a variety of defects concerning certain mesenchymal tissues (bone, fat and cartilage) throughout embryogenic and postnatal development. In this study, we aimed to analyze how the mutation of Tks4 affects the differentiation potential of multipotent bone marrow MSCs (BM-MSCs). We generated a Tks4 knock-out mouse strain on C57Bl/6 background, and characterized BM-MSCs isolated from wild type and Tks4−/− mice to evaluate their differentiation. Tks4−/− BM-MSCs had reduced ability to differentiate into osteogenic and adipogenic lineages compared to wild type. Studying the expression profile of a panel of lipid-regulated genes during adipogenic induction revealed that the expression of adipogenic transcription factors, genes responsible for lipid droplet formation, sterol and fatty acid metabolism was delayed or reduced in Tks4−/− BM-MSCs. Taken together, these results establish a novel function for Tks4 in the regulation of MSC differentiation. PMID:27711054

  2. Connective tissue cells expressing fibro/adipogenic progenitor markers increase under chronic damage: relevance in fibroblast-myofibroblast differentiation and skeletal muscle fibrosis.

    PubMed

    Contreras, Osvaldo; Rebolledo, Daniela L; Oyarzún, Juan Esteban; Olguín, Hugo C; Brandan, Enrique

    2016-06-01

    Fibrosis occurs in skeletal muscle under various pathophysiological conditions such as Duchenne muscular dystrophy (DMD), a devastating disease characterized by fiber degeneration that results in progressive loss of muscle mass, weakness and increased extracellular matrix (ECM) accumulation. Fibrosis is also observed after skeletal muscle denervation and repeated cycles of damage followed by regeneration. The ECM is synthesized largely by fibroblasts in the muscle connective tissue under normal conditions. Myofibroblasts, cells that express α-smooth muscle actin (α-SMA), play a role in many tissues affected by fibrosis. In skeletal muscle, fibro/adipogenic progenitors (FAPs) that express cell-surface platelet-derived growth factor receptor-α (PDGFR-α) and the transcription factor Tcf4 seem to be responsible for connective tissue synthesis and are good candidates for the origin of myofibroblasts. We show that cells positive for Tcf4 and PDGFR-α are expressed in skeletal muscle under normal conditions and are increased in various skeletal muscles of mdx mice, a murine model for DMD, wild type muscle after sciatic denervation and muscle subjected to chronic damage. These cells co-label with the myofibroblast marker α-SMA in dystrophic muscle but not in normal tissue. The Tcf4-positive cells lie near macrophages mainly concentrated in dystrophic necrotic-regenerating foci. The close proximity of Tcf4-positive cells to inflammatory cells and their previously described role in muscle regeneration might reflect an active interaction between these cell types and growth factors, possibly resulting in a muscular regenerative or fibrotic condition.

  3. Exchange protein activated by cyclic AMP is involved in the regulation of adipogenic genes during 3T3-L1 fibroblasts differentiation.

    PubMed

    Gabrielli, Matías; Martini, Claudia N; Brandani, Javier N; Iustman, Laura J R; Romero, Damián G; del C Vila, María

    2014-02-01

    Adipogenesis is stimulated in 3T3-L1 fibroblasts by a combination of insulin, dexamethasone and isobutylmethylxanthine, IBMX, (I+D+M). Two transcription factors are important for the acquisition of the adipocyte phenotype, C/EBP beta (CCAT enhancer-binding protein beta) and PPAR gamma (peroxisome proliferator-activated receptor gamma). IBMX increases cAMP content, which can activate protein kinase A (PKA) and/or EPAC (exchange protein activated by cAMP). To investigate the importance of IBMX in the differentiation mixture, we first evaluated the effect of the addition of IBMX on the increase of C/EBP beta and PPAR gamma and found an enhancement of the amount of both proteins. IBMX addition (I+D+M) or its replacement with a cAMP analogue, dibutyryl-cAMP or 8-(4-chlorophenylthio)-2-O'-methyl-cAMP (8CPT-2-Me-cAMP), the latter activates EPAC and not PKA, remarkably increased PPAR gamma mRNA. However, neither I+D nor any of the inducers alone, increased PPAR gamma mRNA to a similar extent, suggesting the importance of the presence of both IBMX and I+D. It was also found that the addition of IBMX or 8CPT-2-Me-cAMP was able to increase the content of C/EBP beta with respect to I+D. In agreement with these findings, a microarray analysis showed that the presence of either 8CPT-2-Me-cAMP or IBMX in the differentiation mixture was able to upregulate PPAR gamma and PPAR gamma-activated genes as well as other genes involved in lipid metabolism. Our results prove the involvement of IBMX-cAMP-EPAC in the regulation of adipogenic genes during differentiation of 3T3-L1 fibroblasts and therfore contributes to elucidate the role of cyclic AMP in this process.

  4. Sox9 modulates cell survival and adipogenic differentiation of multipotent adult rat mesenchymal stem cells.

    PubMed

    Stöckl, Sabine; Bauer, Richard J; Bosserhoff, Anja K; Göttl, Claudia; Grifka, Joachim; Grässel, Susanne

    2013-07-01

    Sox9 is a key transcription factor in early chondrogenesis with distinct roles in differentiation processes and during embryonic development. Here, we report that Sox9 modulates cell survival and contributes to the commitment of mesenchymal stem cells (MSC) to adipogenic or osteogenic differentiation lineages. We found that the Sox9 activity level affects the expression of the key transcription factor in adipogenic differentiation, C/EBPβ, and that cyclin D1 mediates the expression of the osteogenic marker osteocalcin in undifferentiated adult bone-marrow-derived rat MSC. Introducing a stable Sox9 knockdown into undifferentiated rat MSC resulted in a marked decrease in proliferation rate and an increase in apoptotic activity. This was linked to a profound upregulation of p21 and cyclin D1 gene and protein expression accompanied by an induction of caspase 3/7 activity and an inhibition of Bcl-2. We observed that Sox9 silencing provoked a delayed S-phase progression and an increased nuclear localization of p21. The protein stability of cyclin D1 was induced in the absence of Sox9 presumably as a function of altered p38 signalling. In addition, the major transcription factor for adipogenic differentiation, C/EBPβ, was repressed after silencing Sox9. The nearly complete absence of C/EBPβ protein as a result of increased destabilization of the C/EBPβ mRNA and the impact on osteocalcin gene expression and protein synthesis, suggests that a delicate balance of Sox9 level is not only imperative for proper chondrogenic differentiation of progenitor cells, but also affects the adipogenic and probably osteogenic differentiation pathways of MSC. Our results identified Sox9 as an important link between differentiation, proliferation and apoptosis in undifferentiated adult rat mesenchymal stem cells, emphasizing the importance of the delicate balance of a precisely regulated Sox9 activity in MSC not only for proper skeletal development during embryogenesis but probably also

  5. NCoR negatively regulates adipogenic differentiation of mesenchymal stem cells.

    PubMed

    Hong-Wei, Gao; Lan, Liu; De-Guo, Xing; Zhong-Hao, Liu; Peng, Ren; Zhi-Qiang, Li; Guo-Qiang, Shan; Ming-Zhi, Gong

    2015-08-01

    The nuclear receptor corepressor (NCoR) regulates the activities of gene transcription. Mesenchymal stem cells (MSCs) derived from bone marrow are multipotent cells which can differentiate into osteoblasts and adipocytes. This study was conducted to investigate the effects of NCoR on adipogenic differentiation of MSCs isolated from the rats. The results suggested that rat MSCs could differentiate into adipocytes successfully after cultured in adipogenic medium. NCoR protein determined by Western blot showed a lower expression in MSC-derived adipocytes, indicating that NCoR was involved in adipocyte differentiation of rat MSCs. It further proved that small interfering RNA (siRNA)-mediated knockdown of NCoR could promote cell viability and differentiation and enhance messenger RNA (mRNA) expression of lipoprotein lipase (LPL) and protein expression of CCAAT/enhancer binding protein-α (C/EBPα) and peroxisome proliferator-activated receptor-γ (PPARγ). However, over-expression of NCoR exerted its functions in contrary to NCoR knockdown. It indicated that NCoR could negatively regulate adipogenic differentiation of rat MSCs.

  6. SFRP2 enhanced the adipogenic and neuronal differentiation potentials of stem cells from apical papilla.

    PubMed

    Lin, Xiao; Dong, Rui; Diao, Shu; Yu, Guoxia; Wang, Liping; Li, Jun; Fan, Zhipeng

    2017-02-28

    Dental tissue-derived mesenchymal stem cells (MSCs) are easily obtained and considered as a favorable cell source for tissue engineering, but the regulation of direct differentiation is unknown, which restricts their application. The present study investigated the effect of SFRP2, a Wnt signaling modulator, on MSC differentiation using stem cells from apical papilla (SCAPs). The cells were cultured in specific inducing medium for adipogenic, neurogenic, or chondrogenic differentiation. Over-expression of SFRP2 via retroviral infection enhanced the adipogenic and neurogenic differentiation of SCAPs. While inhibit of Wnt pathway by IWR1-endo could enhance the neurogenic differentiation potentials of SCAPs, similar with the function of SFRP2. In addition, over-expression of SFRP2 up-regulated the expression of stemness-related genes SOX2 and OCT4. Furthermore, SOX2 and OCT4 expression was significantly inhibited after lentiviral silencing of SFRP2 in SCAPs. Therefore, our results suggest that SFRP2 enhances the adipogenic and neurogenic differentiation potentials of SCAPs by up-regulating SOX2 and OCT4. Moreover, the effect of SFRP2 in neurogenic differentiation of SCAPs maybe also associated with Wnt inhibition. Our results provided useful information about the molecular mechanism underlying directed differentiation in dental tissue-derived MSCs.

  7. Heparin affects human bone marrow stromal cell fate: Promoting osteogenic and reducing adipogenic differentiation and conversion.

    PubMed

    Simann, Meike; Schneider, Verena; Le Blanc, Solange; Dotterweich, Julia; Zehe, Viola; Krug, Melanie; Jakob, Franz; Schilling, Tatjana; Schütze, Norbert

    2015-09-01

    Heparins are broadly used for the prevention and treatment of thrombosis and embolism. Yet, osteoporosis is considered to be a severe side effect in up to one third of all patients on long-term treatment. However, the mechanisms underlying this clinical problem are only partially understood. To investigate if heparin affects differentiation of skeletal precursors, we examined the effects of heparin on the osteogenic and adipogenic lineage commitment and differentiation of primary human bone marrow stromal cells (hBMSCs). Due to the known inverse relationship between adipogenesis and osteogenesis and the capacity of pre-differentiated cells to convert into the respective other lineage, we also determined heparin effects on osteogenic conversion and adipogenic differentiation/conversion. Interestingly, heparin did not only significantly increase mRNA expression and enzyme activity of the osteogenic marker alkaline phosphatase (ALP), but it also promoted mineralization during osteogenic differentiation and conversion. Furthermore, the mRNA expression of the osteogenic marker bone morphogenic protein 4 (BMP4) was enhanced. In addition, heparin administration partly prevented adipogenic differentiation and conversion demonstrated by reduced lipid droplet formation along with a decreased expression of adipogenic markers. Moreover, luciferase reporter assays, inhibitor experiments and gene expression analyses revealed that heparin had putative permissive effects on osteogenic signaling via the BMP pathway and reduced the mRNA expression of the Wnt pathway inhibitors dickkopf 1 (DKK1) and sclerostin (SOST). Taken together, our data show a rather supportive than inhibitory effect of heparin on osteogenic hBMSC differentiation and conversion in vitro. Further studies will have to investigate the net effects of heparin administration on bone formation versus bone resorption in vivo to unravel the molecular mechanisms of heparin-associated osteoporosis and reconcile

  8. The phytoestrogen genistein enhances osteogenesis and represses adipogenic differentiation of human primary bone marrow stromal cells.

    PubMed

    Heim, M; Frank, O; Kampmann, G; Sochocky, N; Pennimpede, T; Fuchs, P; Hunziker, W; Weber, P; Martin, I; Bendik, I

    2004-02-01

    In the present study, we investigated the role of the phytoestrogen genistein and 17beta-estradiol in human bone marrow stromal cells, undergoing induced osteogenic or adipogenic differentiation. Profiling of estrogen receptors (ERs)-alpha, -beta1, -beta2, -beta3, -beta4, -beta5, and aromatase mRNAs revealed lineage-dependent expression patterns. During osteogenic differentiation, the osteoblast-determining core binding factor-alpha1 showed a progressive increase, whereas the adipogenic regulator peroxisome proliferator-activated receptor gamma (PPARgamma) was sequentially decreased. This temporal regulation of lineage-determining marker genes was strongly enhanced by genistein during the early osteogenic phase. Moreover, genistein increased alkaline phosphatase mRNA levels and activity, the osteoprotegerin:receptor activator of nuclear factor-kappaB ligand gene expression ratio, and the expression of TGFbeta1. During adipogenic differentiation, down-regulation in the mRNA levels of PPARgamma and CCAAT/enhancer-binding protein-alpha at d 3 and decreased lipoprotein lipase and adipsin mRNA levels at d 21 were observed after genistein treatment. This led to a lower number of adipocytes and a reduction in the size of their lipid droplets. At d 3 of adipogenesis, TGFbeta1 was strongly up-regulated by genistein in an ER-dependent manner. Blocking the TGFbeta1 pathway abolished the effects of genistein on PPARgamma protein levels and led to a reduction in the proliferation rate of precursor cells. Overall, genistein enhanced the commitment and differentiation of bone marrow stromal cells to the osteoblast lineage but did not influence the late osteogenic maturation markers. Adipogenic differentiation and maturation, on the other hand, were reduced by genistein (and 17beta-estradiol) via an ER-dependent mechanism involving autocrine or paracrine TGFbeta1 signaling.

  9. Butein is a novel anti-adipogenic compound.

    PubMed

    Song, No-Joon; Yoon, Hyang-Jin; Kim, Ki Hyun; Jung, So-Ra; Jang, Woo-Seok; Seo, Cho-Rong; Lee, Young Min; Kweon, Dae-Hyuk; Hong, Joung-Woo; Lee, Jeong-Soo; Park, Ki-Moon; Lee, Kang Ro; Park, Kye Won

    2013-05-01

    Rhus verniciflua Stokes (RVS) has been used as a traditional herbal medicine for its various biological activities including anti-adipogenic effects. Activity-guided separation led to the identification of the anti-adipogenic functions of butein. Butein, a novel anti-adipogenic compound, robustly suppressed lipid accumulation and inhibited expression of adipogenic markers. Molecular studies showed that activated transforming growth factor-β (TGF-β) and suppressed signal transducer and activator of transcription 3 (STAT3) signaling pathways were mediated by butein. Analysis of the temporal expression profiles suggests that TGF-β signaling precedes the STAT3 in the butein-mediated anti-adipogenic cascade. Small interfering RNA-mediated silencing of STAT3 or SMAD2/3 blunted the inhibitory effects of butein on adipogenesis indicating that an interaction between two signaling pathways is required for the action of butein. Upon butein treatments, stimulation of TGF-β signaling was still preserved in STAT3 silenced cells, whereas regulation of STAT3 signaling by butein was significantly impaired in SMAD2/3 silenced cells, further showing that TGF-β acts upstream of STAT3 in the butein-mediated anti-adipogenesis. Taken together, the present study shows that butein, a novel anti-adipogenic compound from RVS, inhibits adipocyte differentiation through the TGF-β pathway followed by STAT3 and peroxisome proliferator-activated receptor γ signaling, further implicating potential roles of butein in TGF-β- and STAT3-dysregulated diseases.

  10. Anti-adipogenic effect of Artemisia annua in diet-induced-obesity mice model

    PubMed Central

    Baek, Hye Kyung; Shim, Hyeji; Lim, Hyunmook; Shim, Minju; Kim, Chul-Kyu; Park, Sang-Kyu; Lee, Yong Seok; Song, Ki-Duk; Kim, Sung-Jo

    2015-01-01

    Obesity has increased continuously in western countries during the last several decades and recently become a problem in developing countries. Currently, anti-obesity drugs originating from natural products are being investigated for their potential to overcome adverse effects associated with chemical drugs. Artemisinic acid, which was isolated from the well-known anti-malaria herb Artemisia annua (AA) L., was recently shown to possess anti-adipogenic effects in vitro. However, the anti-adipogenic effects of AA in animal models have not yet been investigated. Therefore, we conducted daily oral administration with AA water extract in a diet-induced obesity animal model and treated 3T3-L1 cells with AA to confirm the anti-adipogenic effects in the related protein expressions. We then evaluated the physiology, adipose tissue histology and mRNA expressions of many related genes. Inhibition of adipogenesis by the AA water extract was observed in vitro. In the animal model, weight gain was significantly lower in the AA treated group, but there were no changes in food intake volume or calories. Reductions in lipid droplet size and mRNA expression associated with adipogenesis were also observed in animal epididymal fat. This study is the first to report that AA has an anti-obese effects in vivo. PMID:26243598

  11. Cisplatin impaired adipogenic differentiation of adipose mesenchymal stem cells.

    PubMed

    Chang, Yu-Hsun; Liu, Hwan-Wun; Chu, Tang-Yuan; Wen, Yao-Tseng; Ding, Dah-Ching

    2017-02-03

    Adipose mesenchymal stem cells (ASCs) were isolated from the adipose tissue and can be induced in vitro to differentiate into osteoblasts, chondroblasts, myocytes, neurons and other cell types. Cisplatin is a commonly used chemotherapy drug for cancer patients. However, the effects of cisplatin on ASC remain elusive. This study found that high-concentration cisplatin affects the viability of ASCs. First, IC50 concentration of cisplatin was evaluated. Proliferation of ASCs assessed by XTT method decreased immediately after cisplatin treatment with various concentrations. ASCs maintained mesenchymal stem cells surface markers evaluating by flow cytometry after cisplatin treatment. Upon differentiation by adding specific chemicals, a significant decrease in adipogenic differentiation (by Oil red staining) and osteogenic differentiation (by Alizarin red staining), and significant chondrogenic differentiation (by Alcian blue staining) were found after cisplatin treatment. Simultaneously, qRT-PCR was also used for evaluating the specific gene expressions after various differentiations. Finally, ASCs from one donor who had received cisplatin showed significantly decreased adipogenic differentiation but increased osteogenic differentiation compared with ASCs derived from one healthy donor. In conclusion, cisplatin affects the viability, proliferation, and differentiation of ASCs both in vitro and in vivo via certain signaling pathway such as p53 and Fas/FasL. The differentiation abilities of ASCs should be evaluated before their transplantation for repairing cisplatin-induced tissue damage.

  12. Maternal overnutrition enhances mRNA expression of adipogenic markers and collagen deposition in skeletal muscle of beef cattle fetuses.

    PubMed

    Duarte, M S; Gionbelli, M P; Paulino, P V R; Serão, N V L; Nascimento, C S; Botelho, M E; Martins, T S; Filho, S C V; Dodson, M V; Guimarães, S E F; Du, M

    2014-09-01

    Twenty-four pregnant Nellore cows were randomly assigned into 2 feeding level groups (control [CTL]; fed 1.0 times the maintenance requirement; n = 12; and overnourished [ON]; fed at 1.5 times the maintenance requirement; n = 12) to evaluate effects of maternal overnutrition on fetal skeletal muscle development. Cows were slaughtered at 135, 190, and 240 d of gestation and samples of fetal LM were collected for analysis of mRNA expression analysis and for histological evaluation of collagen content and number of muscle cells. There was no interaction between gestational period and maternal nutrition for the variables evaluated (P > 0.05). The mRNA expression of Cadherin-associated protein, β 1 (β-catenin) tended to be greater in fetuses from ON cows (P = 0.08), while myogenic differentiation 1 (MyoD; P = 0.56), myogenin (MyoG; P = 0.70), and the number of muscle cells (P = 0.90) were not affected by maternal overnutrition. Gestational period did not affect the mRNA expression of β-catenin (P = 0.60) and MyoG (P = 0.21). The mRNA expression of MyoD tended to increase with days of gestation (P = 0.06). The mRNA expression of zinc finger protein 423 (Zfp423; P < 0.0001), C/EBPα (P = 0.01), and PPARγ (P < 0.0001) were enhanced in ON fetuses. No effects of days of gestation were observed for mRNA expression of Zfp423 (P = 0.75) and C/EBPα (P = 0.48). The mRNA expression of PPARγ in fetuses at 190 d of gestation tended to be greater than those at 135 and 240 d of gestation (P = 0.06). The mRNA expression of transforming growth factor β (TGF-β; P < 0.0001), collagen type III, α I (COL3A1; P < 0.0001), and collagen content (P = 0.01) were increased in ON fetuses. Gestational period did not affect the mRNA expression of collagen type I, α I (COL1A1; P = 0.65). The mRNA expression of COL3A1 (P = 0.09) in fetuses at 190 d of gestation tended to be greater than fetuses at 135 and 240 d of gestation. The mRNA expression of TGF-β in fetuses at 190 d of gestation was

  13. Estrogen-related receptor alpha modulates the expression of adipogenesis-related genes during adipocyte differentiation.

    PubMed

    Ijichi, Nobuhiro; Ikeda, Kazuhiro; Horie-Inoue, Kuniko; Yagi, Ken; Okazaki, Yasushi; Inoue, Satoshi

    2007-07-06

    Estrogen-related receptor alpha (ERRalpha) is an orphan nuclear receptor that regulates cellular energy metabolism by modulating gene expression involved in fatty acid oxidation and mitochondrial biogenesis in brown adipose tissue. However, the physiological role of ERRalpha in adipogenesis and white adipose tissue development has not been well studied. Here, we show that ERRalpha and ERRalpha-related transcriptional coactivators, peroxisome proliferator-activated receptor gamma (PPARgamma) coactivator-1alpha (PGC-1alpha) and PGC-1beta, can be up-regulated in 3T3-L1 preadipocytes at mRNA levels under the adipogenic differentiation condition including the inducer of cAMP, glucocorticoid, and insulin. Gene knockdown by ERRalpha-specific siRNA results in mRNA down-regulation of fatty acid binding protein 4, PPARgamma, and PGC-1alpha in 3T3-L1 cells in the adipogenesis medium. ERRalpha and PGC-1beta mRNA expression can be also up-regulated in another preadipocyte lineage DFAT-D1 cells and a pluripotent mesenchymal cell line C3H10T1/2 under the differentiation condition. Furthermore, stable expression of ERRalpha in 3T3-L1 cells up-regulates adipogenic marker genes and promotes triglyceride accumulation during 3T3-L1 differentiation. These results suggest that ERRalpha may play a critical role in adipocyte differentiation by modulating the expression of various adipogenesis-related genes.

  14. Quantitative approaches to detect donor and passage differences in adipogenic potential and clonogenicity in human bone marrow-derived mesenchymal stem cells.

    PubMed

    Lo Surdo, Jessica; Bauer, Steven R

    2012-11-01

    Bone marrow-derived multipotent stromal cells (MSCs), also known as mesenchymal stem cells, have great promise due to their capacity for tri-lineage differentiation and immunosuppressive properties, which allows for their allogeneic use and ultimately may allow for treatment of many diseases. MSCs will require extensive expansion and passaging to obtain cells in sufficient numbers necessary for cell therapies. MSCs from many donors could potentially be used. Because of this, there is a need to understand the role of passaging and donor differences on differentiation capacity using quantitative approaches. Here, we evaluated MSCs from two donors (noted as PCBM1632 and PCBM1641 by the manufacturer) at tissue culture passages 3, 5, and 7. We used a colony forming unit (CFU) assay and limiting dilution to quantify clonogenicity and precursor frequency during adipogenesis, and quantitative real-time-polymerase chain reaction for adipogenic markers to evaluate changes on a gene expression level. Further, we observed changes in cell size, and we sorted small and large populations to evaluate size-related adipogenic potential. While the adipogenic precursor frequency of ∼1 in 76 cells remained similar through passages for cells from PCBM1641, we found a large decrease in the adipogenic potential of MSCs from PCBM1632, with 1 in 2035 cells being capable of differentiating into an adipocyte at passage 7. MSCs from both donors showed an increase in cell diameter with increasing passage, which correlates with a decrease in clonogenicity by CFU analysis. We also measured adipose lineage gene expression following induction of adipocyte differentiation. Expression of these genes decreased with passage number for MSCs from PCBM1632 and correlated with the decrease in adipogenic potential by passage 7. In contrast, MSCs from PCBM1641 showed increased expression of these genes with increasing passage. We have shown that several quantitative assays can detect differences in MSC

  15. Suppression of Evi1 promotes the osteogenic differentiation and inhibits the adipogenic differentiation of bone marrow-derived mesenchymal stem cells in vitro.

    PubMed

    An, Qijun; Wu, Dou; Ma, Yuehong; Zhou, Biao; Liu, Qiang

    2015-12-01

    Osteoporosis (OP) is considered a complex disease with a strong genetic impact, mainly affecting post-menopausal women and is also a common cause of fracture. Elucidating the molecular mechanisms that regulate the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) is crucial to developing treatment strategies to combat OP. In the present study, we found that ectopic viral integration site‑1 (Evi1) was highly expressed during the process of adipogenesis of rat BMSCs. Notably, Evi1 levels markedly increased on day 3 of adipogenic differentiation following the addition of adipogenic induction supplements. In addition, we interfered with the expression of the Evi1 gene in the adipogenesis of BMSCs by supplementing adenoviral plasmids and measured the expression levels of bone sialoprotein (BSP), osteocalcin (OCN), osteopontin (OPN), peroxisome proliferator‑activated receptor γ2 (PPARγ2) and lipoprotein lipase (LPL) by RT-qPCR and western blot analysis. The mRNA and protein levels of osteogenic and adipogenic markers in the BMSCs were up‑ and downregulated, respectively following the silencing of siEvi1. Our experimental results substantiate that the suppression of Evi1 in BMSCs by RNA interference inhibits adipogenic differentiation, while it promotes osteogenic differentiation. The results from our study demonstrated that the Evi1 gene may be targeted as a therapeutic strategy for promoting bone formation.

  16. The effect of electromagnetic fields on the proliferation and the osteogenic or adipogenic differentiation of mesenchymal stem cells modulated by dexamethasone.

    PubMed

    Song, Mingyu; Zhao, Dongming; Wei, Sheng; Liu, Chaoxu; Liu, Yang; Wang, Bo; Zhao, Wenchun; Yang, Kaixiang; Yang, Yong; Wu, Hua

    2014-10-01

    Although glucocorticoids provide benefits for inflammation or autoimmune disorders, high-dose and long-term use could cause osteonecrosis or osteoporosis as adverse effect for patients. Electromagnetic field (EMF) treatments have been clinically used for many years to promote fracture healing, but whether EMF can attenuate the deleterious effects of glucocorticoids is not clear. In this study, the effects of different concentrations of dexamethasone (DEX) on proliferation and adipogenic or osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) were detected and compared, and the effects of EMF treatment (15 Hz, 1 mT, 4 h/day) on 0.1 µM DEX-modulated BMSCs' proliferation and adipogenic or osteogenic differentiation were investigated. Higher concentrations of DEX (0.1 and 1 µM) inhibited proliferation of BMSCs but promoted expression of adipogenic-related genes, increasing the number of lipid droplets. In the early stage of differentiation, DEX restrained expression of RUNX2 and alkaline phosphatase (ALP), but amplified expression of ALP and osteopontin (OPN) in the late stage. EMF treatment of BMSCs influenced by 0.1 µM DEX inhibited the high expression of adipogenic-related genes, stimulated the expression of RUNX2, ALP, OPN, and osteocalcin, and increased the activity of ALP. EMF exposure augmented the expression of p-ERK, which DEX reduced. After using mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK signaling pathway inhibitor, U0126, the effect of EMF was reduced. In conclusion, EMF exposure accelerates BMSCs proliferation, inhibits adipogenic differentiation, and promotes osteogenic differentiation of BMSCs modulated by DEX, and these effects are mediated at least in part by MEK/ERK signaling pathway.

  17. Epigallocatechin Gallate Inhibits Mouse Mesenchymal Stem Cell Differentiation to Adipogenic Lineage.

    PubMed

    Chani, Baldeep; Puri, Veena; Chander Sobti, Ranbir; Puri, Sanjeev

    2016-01-01

    Epigallocatechin gallate (EGCG) is a major component of green tea polyphenols having a potent anti-oxidant potential. Besides inhibiting the growth of many cancer cell types and inducing proliferation and differentiation in keratinocytes, it has been shown to promote reduction of body fat. The fact that mesenchymal stem cells (MSCs) have ability to self-renew and differentiate into the cells of mesodermal lineages, such as fat and bone, it is, thus, possible that EGCG may directly be involved in affecting fat metabolism through its effect on mesenchymal stem cells. Hence, with this aim, the present study was designed to determine the effect of EGCG on mouse mesenchymal stem cells, C3H10T1/2 cells differentiation into adipocytes. To understand this process, the cells were incubated with varying concentrations of EGCG (1 μM, 5 μM, 10 μM, 50 μM) in the presence and /or absence of adipogenic medium for 9 days. The results demonstrated that, EGCG inhibited the cells proliferation, migration and also prevented their differentiation to adipogenic lineage. These effects were analyzed through the inhibition of wound healing activity, reduction in Oil red O stained cells, together with decrease in the expression of Adipisin gene following EGCG treatment. These observations thus demonstrated anti-adipogenic effect of EGCG with a possibility of its role in the therapeutic intervention of obesity.

  18. Adipogenic signaling in rat white adipose tissue: modulation by aging and calorie restriction.

    PubMed

    Zhu, Min; Lee, Garrick D; Ding, Liusong; Hu, Jingping; Qiu, Guang; de Cabo, Rafa; Bernier, Michel; Ingram, Donald K; Zou, Sige

    2007-08-01

    Alterations in adipogenesis could have significant impact on several aging processes. We previously reported that calorie restriction (CR) in rats significantly increases the level of circulating adiponectin, a distinctive marker of differentiated adipocytes, leading to a concerted modulation in the expression of key transcription target genes and, as a result, to increased fatty acid oxidation and reduced deleterious lipid accumulation in other tissues. These findings led us to investigate further the effects of aging on adipocytes and to determine how CR modulates adipogenic signaling in vivo. CR for 2 and 25 months, significantly increased the expression of PPARgamma, C/EBPbeta and Cdk-4, and partially attenuated age-related decline in C/EBPalpha expression relative to rats fed ad libitum (AL). As a result, adiponectin was upregulated at both mRNA and protein levels, resulting in activation of target genes involved in fatty acid oxidation and fatty acid synthesis, and greater responsiveness of adipose tissue to insulin. Moreover, CR significantly decreased the ratio of C/EBPbeta isoforms LAP/LIP, suggesting the suppression of gene transcription associated with terminal differentiation while facilitating preadipocytes proliferation. Morphometric analysis revealed a greater number of small adipocytes in CR relative to AL feeding. Immunostaining confirmed that small adipocytes were more strongly positive for adiponectin than the large ones. Overall these results suggest that CR increased the expression of adipogenic factors, and maintained the differentiated state of adipocytes, which is critically important for adiponectin biosynthesis and insulin sensitivity.

  19. Activation of the PI3K/Akt pathway by oxidative stress mediates high glucose-induced increase of adipogenic differentiation in primary rat osteoblasts.

    PubMed

    Zhang, Yu; Yang, Jian-Hong

    2013-11-01

    Diabetes mellitus is associated with increased risk of osteopenia and bone fracture that may be related to hyperglycemia. However, the mechanisms accounting for diabetic bone disorder are unclear. Here, we showed that high glucose significantly promoted the production of reactive oxygen species (ROS) in rat primary osteoblasts. Most importantly, we reported for the first time that ROS induced by high glucose increased alkaline phosphatase activity, inhibited type I collagen (collagen I) protein level and cell mineralization, as well as gene expression of osteogenic markers including runt-related transcription factor 2 (Runx2), collagen I, and osteocalcin, but promoted lipid droplet formation and gene expression of adipogenic markers including peroxisome proliferator-activated receptor gamma, adipocyte fatty acid binding protein (aP2), and adipsin, which were restored by pretreatment with N-acetyl-L-cysteine (NAC), a ROS scavenger. Moreover, high glucose-induced oxidative stress activated PI3K/Akt pathway to inhibited osteogenic differentiation but stimulated adipogenic differentiation. In contrast, NAC and a PI3K inhibitor, LY-294002, reversed the down-regulation of osteogenic markers and the up-regulation of adipogenic markers as well as the activation of Akt under high glucose. These results indicated that oxidative stress played a key role in high glucose-induced increase of adipogenic differentiation, which contributed to the inhibition of osteogenic differentiation. This process was mediated by PI3K/Akt pathway in rat primary osteoblasts. Hence, suppression of oxidative stress could be a potential therapeutic approach for diabetic osteopenia.

  20. Bisphenol A Diglycidyl Ether Induces Adipogenic Differentiation of Multipotent Stromal Stem Cells through a Peroxisome Proliferator–Activated Receptor Gamma-Independent Mechanism

    PubMed Central

    Chamorro-García, Raquel; Kirchner, Séverine; Li, Xia; Janesick, Amanda; Casey, Stephanie C.; Chow, Connie

    2012-01-01

    Background: Bisphenol A (BPA) and bisphenol A diglycidyl ether (BADGE), used in manufacturing coatings and resins, leach from packaging materials into food. Numerous studies suggested that BPA and BADGE may have adverse effects on human health, including the possibility that exposure to such chemicals can be superimposed on traditional risk factors to initiate or exacerbate the development of obesity. BPA is a suspected obesogen, whereas BADGE, described as a peroxisome proliferator–activated receptor gamma (PPARγ) antagonist, could reduce weight gain. Objectives: We sought to test the adipogenic effects of BADGE in a biologically relevant cell culture model. Methods: We used multipotent mesenchymal stromal stem cells (MSCs) to study the adipogenic capacity of BADGE and BPA and evaluated their effects on adipogenesis, osteogenesis, gene expression, and nuclear receptor activation. Discussion: BADGE induced adipogenesis in human and mouse MSCs, as well as in mouse 3T3-L1 preadipocytes. In contrast, BPA failed to promote adipogenesis in MSCs, but induced adipogenesis in 3T3-L1 cells. BADGE exposure elicited an adipogenic gene expression profile, and its ability to induce adipogenesis and the expression of adipogenic genes was not blocked by known PPARγ antagonists. Neither BADGE nor BPA activated or antagonized retinoid “X” receptor (RXR) or PPARγ in transient transfection assays. Conclusions: BADGE can induce adipogenic differentiation in both MSCs and in preadipocytes at low nanomolar concentrations comparable to those that have been observed in limited human biomonitoring. BADGE probably acts through a mechanism that is downstream of, or parallel to, PPARγ. PMID:22763116

  1. In Vitro Effect of 30 nm Silver Nanoparticles on Adipogenic Differentiation of Human Mesenchymal Stem Cells.

    PubMed

    He, Wei; Kienzle, Arne; Liu, Xujie; Müller, Werner E G; Elkhooly, Tarek A; Feng, Qingling

    2016-03-01

    With the combined use of silver nanoparticles (Ag NPs) and human bone marrow derived mesenchymal stem cells (hMSCs) in bone tissue engineering, more knowledge of the effects of Ag NPs on hMSCs is required. Up to date, researches mainly focused on the cytotoxicity and genotoxicity of Ag NPs, only few studies discussed their influence on the differentiation of stem cells, especially adipogenic differentiation. In the present study, we investigated the in vitro uptake of 30 nm PVP-coated Ag NPs in hMSCs and their effects on cell viability, cell morphology and adipogenic differentiation of hMSCs. HMSCs were exposed to Ag NPs at concentrations of 25 and 50 μg/mL for 24 hours and at concentrations of 5 and 10 μg/mL throughout the whole differentiation period. Results of cell viability showed that Ag NPs caused time- and dose-dependent toxicity in hMSCs. Transmission electron microscopy (TEM) confirmed the uptake of Ag NPs into cytoplasm of hMSCs. No influence on cell morphology was observed. The 30 nm sized Ag NPs had no effects on adiponectin secretion, lipid droplet formation and the expression of adipogenic marker genes. It is concluded that under our experimental conditions, 30 nm PVP-coated Ag NPs do not influence the adipogenic differentiation of hMSCs in vitro. The present results provide a reference for the usage of 30 nm Ag NPs in the presence of hMSCs in bone tissue engineering.

  2. Co-culture with periodontal ligament stem cells enhances osteogenic gene expression in de-differentiated fat cells.

    PubMed

    Tansriratanawong, Kallapat; Tamaki, Yuichi; Ishikawa, Hiroshi; Sato, Soh

    2014-10-01

    In recent decades, de-differentiated fat cells (DFAT cells) have emerged in regenerative medicine because of their trans-differentiation capability and the fact that their characteristics are similar to bone marrow mesenchymal stem cells. Even so, there is no evidence to support the osteogenic induction using DFAT cells in periodontal regeneration and also the co-culture system. Consequently, this study sought to evaluate the DFAT cells co-culture with periodontal ligament stem cells (PDLSCs) in vitro in terms of gene expression by comparing runt-related transcription factor 2 (RUNX2) and Peroxisome proliferator-activated receptor gamma 2 (PPARγ2) genes. We isolated DFAT cells from mature adipocytes and compared proliferation with PDLSCs. After co-culture with PDLSCs, we analyzed transcriptional activity implying by DNA methylation in all adipogenic gene promoters using combined bisulfite restriction analysis. We compared gene expression in RUNX2 gene with the PPARγ2 gene using quantitative RT-PCR. After being sub-cultured, DFAT cells demonstrated morphology similar to fibroblast-like cells. At the same time, PDLSCs established all stem cell characteristics. Interestingly, the co-culture system attenuated proliferation while enhancing osteogenic gene expression in RUNX2 gene. Using the co-culture system, DFAT cells could trans-differentiate into osteogenic lineage enhancing, but conversely, their adipogenic characteristic diminished. Therefore, DFAT cells and the co-culture system might be a novel cell-based therapy for promoting osteogenic differentiation in periodontal regeneration.

  3. Verification of suitable and reliable reference genes for quantitative real-time PCR during adipogenic differentiation in porcine intramuscular stromal-vascular cells.

    PubMed

    Li, X; Huang, K; Chen, F; Li, W; Sun, S; Shi, X-E; Yang, G

    2016-06-01

    Intramuscular fat (IMF) is an important trait influencing meat quality, and intramuscular stromal-vascular cell (MSVC) differentiation is a key factor affecting IMF deposition. Quantitative real-time PCR (qPCR) is often used to screen the differentially expressed genes during differentiation of MSVCs, where proper reference genes are essential. In this study, we assessed 31 of previously reported reference genes for their expression suitability in porcine MSVCs derived form longissimus dorsi with qPCR. The expression stability of these genes was evaluated using NormFinder, geNorm and BestKeeper algorithms. NormFinder and geNorm uncovered ACTB, ALDOA and RPS18 as the most three stable genes. BestKeeper identified RPL13A, SSU72 and DAK as the most three stable genes. GAPDH was found to be the least stable gene by all of the three software packages, indicating it is not an appropriate reference gene in qPCR assay. These results might be helpful for further studies in pigs that explore the molecular mechanism underlying IMF deposition.

  4. In vitro myogenic and adipogenic differentiation model of genetically engineered bovine embryonic fibroblast cell lines.

    PubMed

    Yin, Jinlong; Jin, Xun; Beck, Samuel; Kang, Dong Ho; Hong, Zhongshan; Li, Zhehu; Jin, Yongcheng; Zhang, Qiankun; Choi, Yun-Jaie; Kim, Sung-Chan; Kim, Hyunggee

    2010-02-01

    Our current understanding of muscle and adipose tissue development has been largely restricted to the study of murine myogenic and adipogenic cell lines, since attempts to establish these cell lines from other species have met with only limited success. Here we report that a spontaneously immortalized bovine embryonic fibroblast cell line (BEFS) undergoes differentiation into adipogenic or myogenic lineages when ectopically transduced with PPARgamma2 (an adipogenic lineage determinant) or MyoD (a myogenic lineage determinant) and grown in adipogenic and myogenic differentiation culture media (ADCM and MDCM, respectively). We also found that PPARgamma2-overexpressing BEFS cells (BEFS-PPARgamma2) grown in ADCM with or without the PPARgamma2 ligand, troglitazone, preferentially differentiate into adipogenic cells in the presence of ectopic MyoD expression. Ectopic expression of PPARgamma2 in the inducible MyoD-overepxressing BEFS cells (BEFS-TetOn-MyoD) completely suppresses myogenic differentiation and leads to a significant increase in adipogenic differentiation, suggesting that the adipogenic differentiation program might be dominant. Therefore, BEFS, BEFS-PPARgamma2, and BEFS-TetOn-MyoD would be a valuable biological model for understanding a fundamental principle underlying myogenic and adipogenic development, and for isolating various genetic and chemical factors that enable muscle and adipocyte differentiation.

  5. IFATS collection: Stem cell antigen-1-positive ear mesenchymal stem cells display enhanced adipogenic potential.

    PubMed

    Staszkiewicz, Jaroslaw; Gimble, Jeffrey M; Manuel, Jessica A; Gawronska-Kozak, Barbara

    2008-10-01

    Hyperplasia is a major contributor to the increase in adipose tissue mass that is characteristic of obesity. However, the identity and characteristics of cells that can be committed into adipocyte lineage remain unclear. Stem cell antigen 1 (Sca-1) has been used recently as a candidate marker in the search for tissue-resident stem cells. In our quest for biomarkers of cells that can become adipocytes, we analyzed ear mesenchymal stem cells (EMSC), which can differentiate into adipocytes, osteocytes, chondrocytes, and myocytes. Our previous studies have demonstrated that EMSC abundantly expressed Sca-1. In the present study, we have analyzed the expression of adipogenic transcription factors and adipocyte-specific genes in Sca-1-enriched and Sca-1-depleted EMSC fractions. Sca-1-enriched EMSC accumulated more lipid droplets during adipogenic differentiation than Sca-1-depleted. Similarly, EMSC isolated from Sca-1(-/-) mice displayed reduced lipid accumulation relative to EMSC from wild-type controls (p < .01). Comparative analysis of the adipogenic differentiation process between Sca-1-enriched and Sca-1-depleted populations of EMSC revealed substantial differences in the gene expression. Preadipocyte factor 1, CCAAT enhancer-binding protein (C/EBP) beta, C/EBPalpha, peroxisome proliferator-activated receptor gamma2, lipoprotein lipase, and adipocyte fatty acid binding protein were expressed at significantly higher levels in the Sca-1-enriched EMSC fraction. However, the most striking observation was that leptin was detected only in the conditioned medium of Sca-1-enriched EMSC. In addition, we performed loss-of-function (Sca-1 morpholino oligonucleotide) experiments. The data presented here suggest that Sca-1 is a biomarker for EMSC with the potential to become functionally active adipocytes. Disclosure of potential conflicts of interest is found at the end of this article.

  6. The anti-adipogenic effect of PGRN on porcine preadipocytes involves ERK1,2 mediated PPARγ phosphorylation.

    PubMed

    Yang, Hao; Cheng, Jia; Song, Ziyi; Li, Xinjian; Zhang, Zhenyu; Mai, Yin; Pang, Weijun; Shi, Xin'e; Yang, Gongshe

    2013-12-01

    Recent researches indicate that PGRN is closely related to diabetes and is regarded as a novel adipokine associated with obesity development, affecting adipocyte biology. In the present study, we investigated the effects and mechanisms of PGRN on porcine preadipocytes differentiation. Porcine preadipocytes were induced to differentiation with the addition of lentivirius-expressed PGRN shRNA at the early or late stage of induction period, and in the presence or absence of recombinant PGRN protein. The effects of PGRN on adipogenic genes expression and ERK activation were investigated. At the early stage of induction, knockdown of PGRN promoted differentiation, evidenced by enhanced lipid accumulation, upregulation of adipocyte markers, as well as master adipogenic transcription factors, PPARγ and C/EBPα. While, decreasing PGRN expression at the late stage of induction (day 3) had no effect on differentiation. These results suggested that PGRN functions in the early adipogenic events. Conversely, porcine preadipocytes differentiation was impaired by MDI and recombinant PGRN protein induction, the expressions of adipocyte markers were decreased. Further studies revealed that PGRN can specifically facilitate ERK1,2 activation, and this activation can be abolished by U0126. Moreover, PPARγ phosphorylation at serine 112 site was increased by PGRN treatment, which could reduce the transcriptional activity of PPARγ. We conclude that PGRN inhibits adipogenesis in porcine preadipocytes partially through ERK activation mediated PPARγ phosphorylation.

  7. Lupenone isolated from Adenophora triphylla var. japonica extract inhibits adipogenic differentiation through the downregulation of PPARγ in 3T3-L1 cells.

    PubMed

    Ahn, Eun-Kyung; Oh, Joa Sub

    2013-05-01

    Adenophora triphylla var. japonica (Campanulaceae) is known to have anti-inflammatory and anti-tussive effects. Dysfunction of adipocytes and adipose tissue in obesity is related to various inflammatory cytokines or adipokines. In this study, we investigated whether lupenone isolated from A. triphylla var. japonica extract inhibits adipocyte differentiation and expression of adipogenic marker genes in 3T3-L1 preadipocytes. We demonstrated that lupenone resulted in a significant reduction in lipid accumulation and expression of adipogenic marker genes in a dose-dependent manner. In addition, lupenone decreased the transcriptional activity of peroxisome proliferator-activated receptor γ (PPARγ) induced by troglitazone, and we also demonstrated that lupenone suppressed the PPARγ and CCAAT-enhancer-binding protein α (C/EBPα) protein levels. These findings demonstrated that lupenone isolated from A. triphylla var. japonica extract effectively inhibited adipocyte differentiation through downregulation of related transcription factor, particularly the PPARγ gene.

  8. Method of controlling gene expression

    DOEpatents

    Peters, Norman K.; Frost, John W.; Long, Sharon R.

    1991-12-03

    A method of controlling expression of a DNA segment under the control of a nod gene promoter which comprises administering to a host containing a nod gene promoter an amount sufficient to control expression of the DNA segment of a compound of the formula: ##STR1## in which each R is independently H or OH, is described.

  9. The flow of gene expression.

    PubMed

    Misteli, Tom

    2004-03-01

    Gene expression is a highly interconnected multistep process. A recent meeting in Iguazu Falls, Argentina, highlighted the need to uncover both the molecular details of each single step as well as the mechanisms of coordination among processes in order to fully understand the expression of genes.

  10. Hierarchization of myogenic and adipogenic progenitors within human skeletal muscle.

    PubMed

    Pisani, Didier F; Clement, Noémie; Loubat, Agnès; Plaisant, Magali; Sacconi, Sabrina; Kurzenne, Jean-Yves; Desnuelle, Claude; Dani, Christian; Dechesne, Claude A

    2010-12-01

    Skeletal muscle cells constitute a heterogeneous population that maintains muscle integrity through a high myogenic regenerative capacity. More unexpectedly, this population is also endowed with an adipogenic potential, even in humans, and intramuscular adipocytes have been found to be present in several disorders. We tested the distribution of myogenic and adipogenic commitments in human muscle-derived cells to decipher the cellular basis of the myoadipogenic balance. Clonal analysis showed that adipogenic progenitors can be separated from myogenic progenitors and, interestingly, from myoadipogenic bipotent progenitors. These progenitors were isolated in the CD34(+) population on the basis of the expression of CD56 and CD15 cell surface markers. In vivo, these different cell types have been found in the interstitial compartment of human muscle. In vitro, we show that the proliferation of bipotent myoadipogenic CD56(+)CD15(+) progenitors gives rise to myogenic CD56(+)CD15(-) progenitors and adipogenic CD56(-)CD15(+) progenitors. A cellular hierarchy of muscle and fat progenitors thus occurs within human muscle. These results provide cellular bases for adipogenic differentiation in human skeletal muscle, which may explain the fat development encountered in different muscle pathological situations.

  11. Discovering modulators of gene expression

    PubMed Central

    Babur, Özgün; Demir, Emek; Gönen, Mithat; Sander, Chris; Dogrusoz, Ugur

    2010-01-01

    Proteins that modulate the activity of transcription factors, often called modulators, play a critical role in creating tissue- and context-specific gene expression responses to the signals cells receive. GEM (Gene Expression Modulation) is a probabilistic framework that predicts modulators, their affected targets and mode of action by combining gene expression profiles, protein–protein interactions and transcription factor–target relationships. Using GEM, we correctly predicted a significant number of androgen receptor modulators and observed that most modulators can both act as co-activators and co-repressors for different target genes. PMID:20466809

  12. Fluoxetine Decreases the Proliferation and Adipogenic Differentiation of Human Adipose-Derived Stem Cells.

    PubMed

    Sun, Bo Kyung; Kim, Ji Hye; Choi, Joon-Seok; Hwang, Sung-Joo; Sung, Jong-Hyuk

    2015-07-22

    Fluoxetine was originally developed as an antidepressant, but it has also been used to treat obesity. Although the anti-appetite effect of fluoxetine is well-documented, its potential effects on human adipose-derived stem cells (ASCs) or mature adipocytes have not been investigated. Therefore, we investigated the mechanisms underlying the inhibitory effects of fluoxetine on the proliferation of ASCs. We also investigated its inhibitory effect on adipogenic differentiation. Fluoxetine significantly decreased ASC proliferation, and signal transduction PCR array analysis showed that it increased expression of autophagy-related genes. In addition, fluoxetine up-regulated SQSTM1 and LC3B protein expression as detected by western blotting and immunofluorescence. The autophagy inhibitor, 3-methyladenine (3-MA), significantly attenuated fluoxetine-mediated effects on ASC proliferation and SQSTM1/LC3B expression. In addition, 3-MA decreased the mRNA expression of two autophagy-related genes, beclin-1 and Atg7, in ASCs. Fluoxetine also significantly inhibited lipid accumulation and down-regulated the levels of PPAR-γ and C/EBP-α in ASCs. Collectively, these results indicate that fluoxetine decreases ASC proliferation and adipogenic differentiation. This is the first in vitro evidence that fluoxetine can reduce fat accumulation by inhibiting ASC proliferation and differentiation.

  13. Fibroblast growth factor-2 stimulates adipogenic differentiation of human adipose-derived stem cells

    SciTech Connect

    Kakudo, Natsuko . E-mail: kakudon@takii.kmu.ac.jp; Shimotsuma, Ayuko; Kusumoto, Kenji

    2007-07-27

    Adipose-derived stem cells (ASCs) have demonstrated a capacity for differentiating into a variety of lineages, including bone, cartilage, or fat, depending on the inducing stimuli and specific growth and factors. It is acknowledged that fibroblast growth factor-2 (FGF-2) promotes chondrogenic and inhibits osteogenic differentiation of ASCs, but thorough investigations of its effects on adipogenic differentiation are lacking. In this study, we demonstrate at the cellular and molecular levels the effect of FGF-2 on adipogenic differentiation of ASCs, as induced by an adipogenic hormonal cocktail consisting of 3-isobutyl-1-methylxanthine (IBMX), dexamethasone, insulin, and indomethacin. FGF-2 significantly enhances the adipogenic differentiation of human ASCs. Furthermore, in cultures receiving FGF-2 before adipogenic induction, mRNA expression of peroxisome proliferator-activated receptor {gamma}2 (PPAR{gamma}2), a key transcription factor in adipogenesis, was upregulated. The results of FGF-2 supplementation suggest the potential applications of FGF-2 and ASCs in adipose tissue regeneration.

  14. Distinct adipogenic differentiation phenotypes of human umbilical cord mesenchymal cells dependent on adipogenic conditions.

    PubMed

    Saben, Jessica; Thakali, Keshari M; Lindsey, Forrest E; Zhong, Ying; Badger, Thomas M; Andres, Aline; Shankar, Kartik

    2014-10-01

    The umbilical cord (UC) matrix is a source of multipotent mesenchymal stem cells (MSCs) that have adipogenic potential and thus can be a model to study adipogenesis. However, existing variability in adipocytic differentiation outcomes may be due to discrepancies in methods utilized for adipogenic differentiation. Additionally, functional characterization of UCMSCs as adipocytes has not been described. We tested the potential of three well-established adipogenic cocktails containing IBMX, dexamethasone, and insulin (MDI) plus indomethacin (MDI-I) or rosiglitazone (MDI-R) to stimulate adipocyte differentiation in UCMSCs. MDI, MDI-I, and MDI-R treatment significantly increased peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT-enhancer binding protein alpha (C/EBPα) mRNA and induced lipid droplet formation. However, MDI-I had the greatest impact on mRNA expression of PPARγ, C/EBPα, FABP4, GPD1, PLIN1, PLIN2, and ADIPOQ and lipid accumulation, whereas MDI showed the least. Interestingly, there were no treatment group differences in the amount of PPARγ protein. However, MDI-I treated cells had significantly more C/EBPα protein compared to MDI or MDI-R, suggesting that indomethacin-dependent increased C/EBPα may contribute to the adipogenesis-inducing potency of MDI-I. Additionally, bone morphogenetic protein 4 (BMP4) treatment of UCMSCs did not enhance responsiveness to MDI-induced differentiation. Finally to characterize adipocyte function, differentiated UCMSCs were stimulated with insulin and downstream signaling was assessed. Differentiated UCMSCs were responsive to insulin at two weeks but showed decreased sensitivity by five weeks following differentiation, suggesting that long-term differentiation may induce insulin resistance. Together, these data indicate that UCMSCs undergo adipogenesis when differentiated in MDI, MDI-I, and MDI-R, however the presence of indomethacin greatly enhances their adipogenic potential beyond that of

  15. Human Lacrimal Gland Gene Expression

    PubMed Central

    Aakalu, Vinay Kumar; Parameswaran, Sowmya; Maienschein-Cline, Mark; Bahroos, Neil; Shah, Dhara; Ali, Marwan; Krishnakumar, Subramanian

    2017-01-01

    Background The study of human lacrimal gland biology and development is limited. Lacrimal gland tissue is damaged or poorly functional in a number of disease states including dry eye disease. Development of cell based therapies for lacrimal gland diseases requires a better understanding of the gene expression and signaling pathways in lacrimal gland. Differential gene expression analysis between lacrimal gland and other embryologically similar tissues may be helpful in furthering our understanding of lacrimal gland development. Methods We performed global gene expression analysis of human lacrimal gland tissue using Affymetrix ® gene expression arrays. Primary data from our laboratory was compared with datasets available in the NLM GEO database for other surface ectodermal tissues including salivary gland, skin, conjunctiva and corneal epithelium. Results The analysis revealed statistically significant difference in the gene expression of lacrimal gland tissue compared to other ectodermal tissues. The lacrimal gland specific, cell surface secretory protein encoding genes and critical signaling pathways which distinguish lacrimal gland from other ectodermal tissues are described. Conclusions Differential gene expression in human lacrimal gland compared with other ectodermal tissue types revealed interesting patterns which may serve as the basis for future studies in directed differentiation among other areas. PMID:28081151

  16. Characterization of Adipogenic Chemicals in Three Different Cell Culture Systems: Implications for Reproducibility Based on Cell Source and Handling.

    PubMed

    Kassotis, Christopher D; Masse, Lauren; Kim, Stephanie; Schlezinger, Jennifer J; Webster, Thomas F; Stapleton, Heather M

    2017-02-08

    The potential for chemical exposures to exacerbate the development and/or prevalence of metabolic disorders, such as obesity, is currently of great societal concern. Various in vitro assays are available to assess adipocyte differentiation, though little work has been done to standardize protocols and compare models effectively. This study compares several adipogenic cell culture systems under a variety of conditions to assess variability in responses. Two sources of 3T3-L1 preadipocytes as well as OP9 preadipocytes were assessed for cell proliferation and triglyceride accumulation following different induction periods and using various tissue culture plates. Both cell line and cell source had a significant impact on potencies and efficacies of adipogenic chemicals. Gene expression analyses suggested that differential expression of nuclear receptors involved in adipogenesis underlie the differences between OP9 and 3T3-L1 cells; however, there were also differences based on 3T3-L1 cell source. Induction period modulated potency and efficacy of response depending on cell line and test chemical, and large variations were observed in triglyceride accumulation and cell proliferation between brands of tissue culture plates. Our results suggest that the selection of a cell system and differentiation protocol significantly impacts the detection of adipogenic chemicals, and therefore, influences reproducibility of these studies.

  17. Characterization of Adipogenic Chemicals in Three Different Cell Culture Systems: Implications for Reproducibility Based on Cell Source and Handling

    PubMed Central

    Kassotis, Christopher D.; Masse, Lauren; Kim, Stephanie; Schlezinger, Jennifer J.; Webster, Thomas F.; Stapleton, Heather M.

    2017-01-01

    The potential for chemical exposures to exacerbate the development and/or prevalence of metabolic disorders, such as obesity, is currently of great societal concern. Various in vitro assays are available to assess adipocyte differentiation, though little work has been done to standardize protocols and compare models effectively. This study compares several adipogenic cell culture systems under a variety of conditions to assess variability in responses. Two sources of 3T3-L1 preadipocytes as well as OP9 preadipocytes were assessed for cell proliferation and triglyceride accumulation following different induction periods and using various tissue culture plates. Both cell line and cell source had a significant impact on potencies and efficacies of adipogenic chemicals. Gene expression analyses suggested that differential expression of nuclear receptors involved in adipogenesis underlie the differences between OP9 and 3T3-L1 cells; however, there were also differences based on 3T3-L1 cell source. Induction period modulated potency and efficacy of response depending on cell line and test chemical, and large variations were observed in triglyceride accumulation and cell proliferation between brands of tissue culture plates. Our results suggest that the selection of a cell system and differentiation protocol significantly impacts the detection of adipogenic chemicals, and therefore, influences reproducibility of these studies. PMID:28176856

  18. Horse serum reduces expression of membrane-bound and soluble isoforms of the preadipocyte marker Delta-like 1 homolog (Dlk1), but is inefficient for adipogenic differentiation of mouse preadipocytes.

    PubMed

    Andersen, Ditte C; Nielsen, Charlotte; Jensen, Charlotte H; Sheikh, Søren P

    2013-05-01

    Downregulation of the preadipocyte marker Delta-like 1 homologue (Dlk1), an inhibitor of adipogenesis, has been suggested to be a prerequisite for adipogenic differentiation to occur, and low Dlk1 levels are often used to verify adipogenesis. Mouse preadipocytic cell lines such as 3T3-L1, as well as primary derived preadipocytes, are important models to study adipogenic differentiation and obesity. However, in vitro adipogenic differentiation of primary derived preadipocytes remains incomplete, and identification of factors that will improve the adipogenic differentiation process is thus of high value. In this study we show that horse serum fails to improve adipogenic differentiation of mouse preadipocytes (both 3T3-L1 cells and primary derived mouse preadipocytes) as otherwise reported for bone marrow derived adipogenic precursors. Unexpectedly, while Dlk1 levels were indeed decreased using horse serum, this did not correlate with a high degree of adipogenic differentiation. In conclusion, our novel results thus reveal that horse serum clearly is insufficient for adipogenic differentiation of mouse preadipocytes and that low levels of Dlk1 alone are a poor marker of mouse in vitro adipogenesis. We would also like to emphasize that it is very important for the field of cellular differentiation that researchers thoroughly investigate the effect of individual reagents in their protocols. Such data will increase understanding of the limitations and possibilities of individual systems.

  19. Monoallelic Gene Expression in Mammals.

    PubMed

    Chess, Andrew

    2016-11-23

    Monoallelic expression not due to cis-regulatory sequence polymorphism poses an intriguing problem in epigenetics because it requires the unequal treatment of two segments of DNA that are present in the same nucleus and that can indeed have absolutely identical sequences. Here, I focus on a few recent developments in the field of monoallelic expression that are of particular interest and raise interesting questions for future work. One development is regarding analyses of imprinted genes, in which recent work suggests the possibility that intriguing networks of imprinted genes exist and are important for genetic and physiological studies. Another issue that has been raised in recent years by a number of publications is the question of how skewed allelic expression should be for it to be designated as monoallelic expression and, further, what methods are appropriate or inappropriate for analyzing genomic data to examine allele-specific expression. Perhaps the most exciting recent development in mammalian monoallelic expression is a clever and carefully executed analysis of genetic diversity of autosomal genes subject to random monoallelic expression (RMAE), which provides compelling evidence for distinct evolutionary forces acting on random monoallelically expressed genes.

  20. Tuning noise in gene expression.

    PubMed

    Tyagi, Sanjay

    2015-05-05

    The relative contribution of promoter architecture and the associated chromatin environment in regulating gene expression noise has remained elusive. In their recent work, Arkin, Schaffer and colleagues (Dey et al, 2015) show that mean expression and noise for a given promoter at different genomic loci are uncorrelated and influenced by the local chromatin environment.

  1. Mannose-binding dietary lectins induce adipogenic differentiation of the marrow-derived mesenchymal cells via an active insulin-like signaling mechanism.

    PubMed

    Bajaj, Manmohan; Hinge, Ashwini; Limaye, Lalita S; Gupta, Rajesh Kumar; Surolia, Avadhesha; Kale, Vaijayanti P

    2011-04-01

    We have recently demonstrated that the mannose-binding lectins, namely banana lectin (BL) and garlic lectin (GL), interacted with the insulin receptors on M210B4 cells--an established mesenchymal cell line of murine marrow origin--and initiate mitogen-activated protein kinase kinase (MEK)-dependent extracellular signal-regulated kinase (ERK) signaling in them. In this study, we show that this lectin-mediated active ERK signaling culminates into an adipogenic differentiation of these cells. Gene expression studies indicate that the effect takes place at the transcriptional level. Experiments carried out with pharmacological inhibitors show that MEK-dependent ERK and phosphatidylinositol 3-kinase-dependent AKT pathways are positive regulators of the lectin- and insulin-mediated adipogenic differentiation, while stress-activated kinase/c-jun N-terminal kinase pathway acts as a negative one. Since both lectins could efficiently substitute for insulin in the standard adipogenic induction medium, they may perhaps serve as molecular tools to study the mechanistic aspects of the adipogenic process that are independent of cell proliferation. Our study clearly demonstrates the ability of BL and GL to activate insulin-like signaling in the mesenchymal cells in vitro leading to their adipocytic differentiation. The dietary origin of these lectins underscores an urgent need to examine their in vivo effects on tissue homeostasis.

  2. ARN: analysis and prediction by adipogenic professional database.

    PubMed

    Huang, Yan; Wang, Li; Zan, And Lin-Sen

    2016-08-08

    Adipogenesis is the process of cell differentiation by which mesenchymal stem cells become adipocytes. Extensive research is ongoing to identify genes, their protein products, and microRNAs that correlate with fat cell development. The existing databases have focused on certain types of regulatory factors and interactions. However, there is no relationship between the results of the experimental studies on adipogenesis and these databases because of the lack of an information center. This information fragmentation hampers the identification of key regulatory genes and pathways. Thus, it is necessary to provide an information center that is quickly and easily accessible to researchers in this field. We selected and integrated data from eight external databases based on the results of text-mining, and constructed a publicly available database and web interface (URL: http://210.27.80.93/arn/ ), which contained 30873 records related to adipogenic differentiation. Then, we designed an online analysis tool to analyze the experimental data or form a scientific hypothesis about adipogenesis through Swanson's literature-based discovery process. Furthermore, we calculated the "Impact Factor" ("IF") value that reflects the importance of each node by counting the numbers of relation records, expression records, and prediction records for each node. This platform can support ongoing adipogenesis research and contribute to the discovery of key regulatory genes and pathways.

  3. Retinoic acid exacerbates chlorpyrifos action in ensuing adipogenic differentiation of C3H10T½ cells in a GSK3β dependent pathway.

    PubMed

    Sandhu, Harkirat Singh; Bhanwer, A J S; Puri, Sanjeev

    2017-01-01

    The cell differentiation can be exploited as a paradigm to evaluate the effects of noxious chemicals, on human health, either alone or in combinations. In this regard, the effect of a known cell differentiation agent, retinoic acid (RA) was analyzed in the presence of a noxious chemical chlorpyrifos (CPF), an organophosphate (OP), the receptors of which have recently been localized to mesenchymal stem cells (MSCs). The observed imbalance of adipogenic to skeletal differentiation by CPF together with conundrum about adipogenic potential of RA prompted us to delineate their combinatorial effects on C3H10T½MSC-like undifferentiated cells. Based on MTT assay, the cellular viability was retained by CPF at concentrations ranging from 0.01-50μM, beyond which it caused cytotoxicity. These non-toxic concentrations also mildly interfered with adipogenesis of C3H10T½ cells following exposure to adipogenic cocktail. However, upon exposure to RA alone, these MSCs adopted elongated morphology and accumulated lipid vesicles, by day 20, as discerned by phase-contrast and transmission electron microscopy (TEM), in concert with enhanced Oil Red O stained cells. This effect got strongly augmented upon exposure to combination of CPF and RA in a dose-dependent manner. Simultaneous up-regulation in perilipin-1 (PLIN1) and adipsin (ADN) genes, additionally reiterated the adipogenic differentiation. Mechanistically, GSK3β pathway was found to be a major player, whereby inhibiting it with lithium chloride (LiCl) resulted in complete blockage of lipid accumulation, accompanied by complete down regulation of PLIN1 and ADN gene expression. In conclusion, these observations for the first time, lend evidence that exposure of CPF accompanied by RA directs commitment of C3H10T½ cells to adipogenic differentiation through a process involving a crosstalk at GSK3β signaling.

  4. Retinoic acid exacerbates chlorpyrifos action in ensuing adipogenic differentiation of C3H10T½ cells in a GSK3β dependent pathway

    PubMed Central

    Sandhu, Harkirat Singh; Bhanwer, A. J. S.; Puri, Sanjeev

    2017-01-01

    The cell differentiation can be exploited as a paradigm to evaluate the effects of noxious chemicals, on human health, either alone or in combinations. In this regard, the effect of a known cell differentiation agent, retinoic acid (RA) was analyzed in the presence of a noxious chemical chlorpyrifos (CPF), an organophosphate (OP), the receptors of which have recently been localized to mesenchymal stem cells (MSCs). The observed imbalance of adipogenic to skeletal differentiation by CPF together with conundrum about adipogenic potential of RA prompted us to delineate their combinatorial effects on C3H10T½MSC-like undifferentiated cells. Based on MTT assay, the cellular viability was retained by CPF at concentrations ranging from 0.01–50μM, beyond which it caused cytotoxicity. These non-toxic concentrations also mildly interfered with adipogenesis of C3H10T½ cells following exposure to adipogenic cocktail. However, upon exposure to RA alone, these MSCs adopted elongated morphology and accumulated lipid vesicles, by day 20, as discerned by phase-contrast and transmission electron microscopy (TEM), in concert with enhanced Oil Red O stained cells. This effect got strongly augmented upon exposure to combination of CPF and RA in a dose-dependent manner. Simultaneous up-regulation in perilipin-1 (PLIN1) and adipsin (ADN) genes, additionally reiterated the adipogenic differentiation. Mechanistically, GSK3β pathway was found to be a major player, whereby inhibiting it with lithium chloride (LiCl) resulted in complete blockage of lipid accumulation, accompanied by complete down regulation of PLIN1 and ADN gene expression. In conclusion, these observations for the first time, lend evidence that exposure of CPF accompanied by RA directs commitment of C3H10T½ cells to adipogenic differentiation through a process involving a crosstalk at GSK3β signaling. PMID:28291828

  5. Estrogen-related receptor {alpha} modulates the expression of adipogenesis-related genes during adipocyte differentiation

    SciTech Connect

    Ijichi, Nobuhiro; Ikeda, Kazuhiro; Horie-Inoue, Kuniko; Yagi, Ken; Okazaki, Yasushi; Inoue, Satoshi . E-mail: INOUE-GER@h.u-tokyo.ac.jp

    2007-07-06

    Estrogen-related receptor {alpha} (ERR{alpha}) is an orphan nuclear receptor that regulates cellular energy metabolism by modulating gene expression involved in fatty acid oxidation and mitochondrial biogenesis in brown adipose tissue. However, the physiological role of ERR{alpha} in adipogenesis and white adipose tissue development has not been well studied. Here, we show that ERR{alpha} and ERR{alpha}-related transcriptional coactivators, peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) coactivator-1{alpha} (PGC-1{alpha}) and PGC-1{beta}, can be up-regulated in 3T3-L1 preadipocytes at mRNA levels under the adipogenic differentiation condition including the inducer of cAMP, glucocorticoid, and insulin. Gene knockdown by ERR{alpha}-specific siRNA results in mRNA down-regulation of fatty acid binding protein 4, PPAR{gamma}, and PGC-1{alpha} in 3T3-L1 cells in the adipogenesis medium. ERR{alpha} and PGC-1{beta} mRNA expression can be also up-regulated in another preadipocyte lineage DFAT-D1 cells and a pluripotent mesenchymal cell line C3H10T1/2 under the differentiation condition. Furthermore, stable expression of ERR{alpha} in 3T3-L1 cells up-regulates adipogenic marker genes and promotes triglyceride accumulation during 3T3-L1 differentiation. These results suggest that ERR{alpha} may play a critical role in adipocyte differentiation by modulating the expression of various adipogenesis-related genes.

  6. MicroRNA hsa-miR-138 inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells through adenovirus EID-1.

    PubMed

    Yang, Zhuo; Bian, Chunjing; Zhou, Hong; Huang, Shan; Wang, Shihua; Liao, Lianming; Zhao, Robert Chunhua

    2011-02-01

    A better understanding of the molecular mechanisms underlying the differentiation of human adipose tissue-derived mesenchymal stem cells (hAD-MSCs) could provide new insights into the pathogenesis of a number of diseases, such as obesity and diabetes, and broaden the spectrum of potential hAD-MSCs-based cell therapy. In this study, we reported that a human microRNA, hsa-miR-138, could inhibit the adipogenic differentiation of hAD-MSCs. Our results showed that miR-138 was significantly down-regulated during adipogenic differentiation. Overexpression of miR-138 in hAD-MSCs could effectively reduce lipid droplets accumulation, inhibit expression of key adipogenic transcription factors cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT) enhancer binding protein alpha and peroxisome proliferator-activated receptor gamma 2 as well as several other adipogenic marker genes, such as fatty acid binding protein 4 and lipoprotein lipase. Further studies showed that the expression of adenovirus early region 1-A-like inhibitor of differentiation 1 (EID-1), a nuclear receptor coregulator, was inversely correlated with that of miR-138 when hAD-MSCs were differentiated into adipocytes. Knockdown of EID-1 by RNA interference inhibited adipocyte differentiation of hAD-MSCs. In addition, luciferase reporter assays demonstrated that miR-138 directly targeted the 3' untranslated region of EID-1, implying that the negative role of miR-138 in the adipocyte differentiation of hAD-MSCs is at least partially mediated via repressing EID-1. Taken together, this study shows that miR-138 plays a negative role in adipogenic differentiation and sheds light on the role of miRNAs during differentiation of hAD-MSCs toward adipocytes.

  7. Differential Gene Expression in Glaucoma

    PubMed Central

    Jakobs, Tatjana C.

    2014-01-01

    In glaucoma, regardless of its etiology, retinal ganglion cells degenerate and eventually die. Although age and elevated intraocular pressure (IOP) are the main risk factors, there are still many mysteries in the pathogenesis of glaucoma. The advent of genome-wide microarray expression screening together with the availability of animal models of the disease has allowed analysis of differential gene expression in all parts of the eye in glaucoma. This review will outline the findings of recent genome-wide expression studies and discuss their commonalities and differences. A common finding was the differential regulation of genes involved in inflammation and immunity, including the complement system and the cytokines transforming growth factor β (TGFβ) and tumor necrosis factor α (TNFα). Other genes of interest have roles in the extracellular matrix, cell–matrix interactions and adhesion, the cell cycle, and the endothelin system. PMID:24985133

  8. Differential gene expression in glaucoma.

    PubMed

    Jakobs, Tatjana C

    2014-07-01

    In glaucoma, regardless of its etiology, retinal ganglion cells degenerate and eventually die. Although age and elevated intraocular pressure (IOP) are the main risk factors, there are still many mysteries in the pathogenesis of glaucoma. The advent of genome-wide microarray expression screening together with the availability of animal models of the disease has allowed analysis of differential gene expression in all parts of the eye in glaucoma. This review will outline the findings of recent genome-wide expression studies and discuss their commonalities and differences. A common finding was the differential regulation of genes involved in inflammation and immunity, including the complement system and the cytokines transforming growth factor β (TGFβ) and tumor necrosis factor α (TNFα). Other genes of interest have roles in the extracellular matrix, cell-matrix interactions and adhesion, the cell cycle, and the endothelin system.

  9. Transcriptomic analyses of the anti-adipogenic effects of oleuropein in human mesenchymal stem cells.

    PubMed

    Casado-Díaz, Antonio; Anter, Jaouad; Müller, Sören; Winter, Peter; Quesada-Gómez, José Manuel; Dorado, Gabriel

    2017-03-22

    Extra virgin olive oil has positive effects on health. Oleuropein is a polyphenolic compound present in olive-tree leaves, fruits (olives) and olive oil. It is responsible for the relevant organoleptic and biological properties of olive oil, including antiadipogenic properties. Thus, the effects of oleuropein on the adipogenesis of human bone-marrow mesenchymal stem cells were studied by transcriptomics and differential gene-expression analyses. Oleuropein could upregulate expression of 60% of adipogenesis-repressed genes. Besides, it could activate signaling pathways such as Rho and β-catenin, maintaining cells at an undifferentiated stage. Our data suggest that mitochondrial activity is reduced by oleuropein, mostly during adipogenic differentiation. These results shed light on oleuropein activity on cells, with potential application as a "nutraceutical" for the prevention and treatment of diseases such as obesity and osteoporosis.

  10. Curcumin represses mouse 3T3-L1 cell adipogenic differentiation via inhibiting miR-17-5p and stimulating the Wnt signalling pathway effector Tcf7l2.

    PubMed

    Tian, Lili; Song, Zhuolun; Shao, Weijuan; Du, William W; Zhao, Lisa R; Zeng, Kejing; Yang, Burton B; Jin, Tianru

    2017-01-19

    Understanding mechanisms underlying adipogenic differentiation may lead to the discovery of novel therapeutic targets for obesity. Wnt signalling pathway activation leads to repressed adipogenic differentiation while certain microRNAs may regulate pre-adipocyte proliferation and differentiation. We show here that in mouse white adipose tissue, miR-17-5p level is elevated after high fat diet consumption. miR-17-5p upregulates adipogenic differentiation, as its over-expression increased while its inhibition repressed 3T3-L1 differentiation. The Tcf7l2 gene encodes a key Wnt signalling pathway effector, and its human homologue TCF7L2 is a highly regarded diabetes risk gene. We found that Tcf7l2 is an miR-17-5p target and confirmed the repressive effect of Tcf7l2 on 3T3-L1 adipogenic differentiation. The natural plant polyphenol compound curcumin possesses the body weight lowering effect. We observed that curcumin attenuated miR-17-5p expression and stimulated Tcf7l2 expression in 3T3-L1 cells. These, along with the elevation of miR-17-5p expression in mouse epididymal fat tissue in response to high fat diet consumption, allowed us to suggest that miR-17-5p is among central switches of adipogenic differentiation. It activates adipogenesis via repressing the Wnt signalling pathway effector Tcf7l2, and its own expression is likely nutritionally regulated in health and disease.

  11. Effect of rate of weight gain of steers during the stocker phase. III. Gene expression of adipose tissues and skeletal muscle in growing-finishing beef cattle.

    PubMed

    Lancaster, P A; Sharman, E D; Horn, G W; Krehbiel, C R; Starkey, J D

    2014-04-01

    The objective of this study was to determine the impact of stocker production systems differing in growth rate on differential adipogenic and lipogenic gene expression of intramuscular (IM), subcutaneous (SC), and perirenal (PR) adipose tissues. Angus steers were assigned to 4 stocker cattle production systems in 2 consecutive years: 1) cottonseed meal-based supplement while grazing dormant native range (CON), 2) ground corn/soybean meal-based supplement while grazing dormant native range (CORN), 3) grazing wheat pasture at a high stocking rate for a low rate of BW gain (LGWP), and 4) grazing wheat pasture at a low stocking rate for a high rate of BW gain (HGWP). Steers were harvested during the stocker phase at similar age (different carcass weight) in Exp. 1 (3 steers/treatment) or at similar carcass weight in Exp. 2 (4 steers/treatment). Adipose tissues were analyzed for mRNA expression of adipogenic (peroxisome proliferator activated receptor γ [PPARγ], sterol regulatory element binding factor 1 [SREBF1], CAATT/enhancer binding protein β, and delta-like homolog 1) and lipogenic (glycerol-3-phosphate dehydrogenase [GPDH], fatty acid synthase [FASN], and diacylglycerol acyltransferase 2 [DGAT2]) genes. Multivariate analysis was used to evaluate the expression of adipogenic or lipogenic genes collectively. There was not a treatment × adipose tissue interaction (F-test, P > 0.15) when steers were harvested at similar age, but a treatment × adipose tissue interaction (F-test, P < 0.05) was evident when steers were harvested at similar carcass weight. At similar carcass weight, treatment had no effect (P > 0.10) on the canonical variate of adipogenic or lipogenic mRNA expression in IM adipose tissue, but faster rates of gain of LGWP and HGWP steers increased (P < 0.10) the canonical variate of adipogenic and lipogenic mRNA expression in SC and PR adipose tissue compared with CON and CORN steers. Strong positive correlations (P < 0.05) of PPARγ, SREBF1, GPDH

  12. Transgenic Arabidopsis Gene Expression System

    NASA Technical Reports Server (NTRS)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  13. Zipf's Law in Gene Expression

    NASA Astrophysics Data System (ADS)

    Furusawa, Chikara; Kaneko, Kunihiko

    2003-02-01

    Using data from gene expression databases on various organisms and tissues, including yeast, nematodes, human normal and cancer tissues, and embryonic stem cells, we found that the abundances of expressed genes exhibit a power-law distribution with an exponent close to -1; i.e., they obey Zipf’s law. Furthermore, by simulations of a simple model with an intracellular reaction network, we found that Zipf’s law of chemical abundance is a universal feature of cells where such a network optimizes the efficiency and faithfulness of self-reproduction. These findings provide novel insights into the nature of the organization of reaction dynamics in living cells.

  14. Identification of suitable reference genes for quantitative gene expression analysis in rat adipose stromal cells induced to trilineage differentiation.

    PubMed

    Santos, Bruno Paiva Dos; da Costa Diesel, Luciana Fraga; da Silva Meirelles, Lindolfo; Nardi, Nance Beyer; Camassola, Melissa

    2016-12-15

    This study was designed to (i) identify stable reference genes for the analysis of gene expression during in vitro differentiation of rat adipose stromal cells (rASCs), (ii) recommend stable genes for individual treatment conditions, and (iii) validate these genes by comparison with normalization results from stable and unstable reference genes. On the basis of a literature review, eight genes were selected: Actb, B2m, Hprt1, Ppia, Rplp0, Rpl13a, Rpl5, and Ywhaz. Genes were ranked according to their stability under different culture conditions as assessed using GenNorm, NormFinder, and RefFinder algorithms. Although the employed algorithms returned different rankings, the most frequently top-ranked genes were: B2m and/or Ppia for all 28day treatments (ALL28); Ppia and Hprt1 (adipogenic differentiation; A28), B2m (chondrogenic differentiation; C28), Rpl5 (controls maintained in complete culture medium; CCM), Rplp0 (osteogenic differentiation for 3days; O3), Rpl13a and Actb (osteogenic differentiation for 7days; O7), Rplp0 and Ppia (osteogenic differentiation for 14days; O14), Hprt1 and Ppia (osteogenic differentiation for 28days; O28), as well as Actb (all osteogenesis time points combined; ALLOSTEO). The obtained results indicate that the performance of reference genes depends on the differentiation protocol and on the analysis time, thus providing valuable information for the design of RT-PCR experiments.

  15. Dynamic changes of epigenetic signatures during chondrogenic and adipogenic differentiation of mesenchymal stem cells.

    PubMed

    Saidi, Navid; Ghalavand, Majdedin; Hashemzadeh, Mohammad Sadegh; Dorostkar, Ruhollah; Mohammadi, Hamed; Mahdian-Shakib, Ahmad

    2017-03-05

    Extensive studies have been performed to clarify the processes during which mesenchymal stem cells (MSCs) differentiate into their lineage fates. In vitro differentiation of MSCs into distinct lineages have attracted the focus of a large number of clinical investigations. Although the gene expression profiling during differentiation of MSC toward bone, cartilage, and adipocytes is well established, the master regulators by which MSC fate can be controlled are not entirely determined. During differentiation of MSCs into a special cell fate, epigenetic mechanisms considered as the primary mediators that suppress the irrelevant genes and activate the genes required for a specific cell lineage. This review dedicated to addressing the changes of various epigenetic mechanisms, including DNA methylation, histone modifications, and micro-RNAs during chondrogenic and adipogenic differentiation of MSC.

  16. Osteogenic and adipogenic potential of porcine adipose mesenchymal stem cells.

    PubMed

    Qu, Chang-qing; Zhang, Guo-hua; Zhang, Li-jie; Yang, Gong-she

    2007-02-01

    Human, rat, and mouse studies have demonstrated the existence of a population of adipose mesenchymal stem cells (AMSCs) that can undergo multilineage differentiation in vitro. Understanding the clinical potential of AMSCs may require their use in preclinical large-animal models such as pigs. Thus, the objectives of this study were to establish a protocol for the isolation of porcine AMSCs from adipose tissue and to examine their ex vivo differentiation potential to adipocytes and osteoblast. The porcine AMSCs from passage 4 were selected for differentiation analysis. The adipocytes were identified morphologically by staining with Oil Red O, and the adipogenic marker genes were examined by RT-PCR technique. Osteogenic lineage was documented by deposition of calcium stained with Alzarin Red S, visualization of alkaline phosphatase activity, and expression of marker gene. Our result indicates that porcine AMSCs have been successfully isolated and induced differentiation into adipocytes and osteoblasts. This study suggested that porcine AMSCs are also a valuable model system for the study on the mesenchymal lineages for basic research and tissue engineering.

  17. Neighboring Genes Show Correlated Evolution in Gene Expression.

    PubMed

    Ghanbarian, Avazeh T; Hurst, Laurence D

    2015-07-01

    When considering the evolution of a gene's expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (<100 kb) but extends much further. Sex-specific expression change is also genomically clustered. As genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking.

  18. Asiatic acid inhibits adipogenic differentiation of bone marrow stromal cells.

    PubMed

    Li, Zheng-Wei; Piao, Cheng-dong; Sun, Hong-hui; Ren, Xian-Sheng; Bai, Yun-Shen

    2014-03-01

    Bone marrow mesenchymal stromal cells (BMSCs) are the common precursors for both osteoblasts and adipocytes. With aging, BMSC osteoblast differentiation decreases whereas BMSC differentiation into adipocytes increases, resulting in increased adipogenesis and bone loss. In the present study, we investigated the effect of asiatic acid (AA) on adipocytic differentiation of BMSCs. AA inhibited the adipogenic induction of lipid accumulation, activity of glycerol-3-phosphate dehydrogenase, and expression of marker genes in adipogenesis: peroxisome proliferation-activated receptor (PPAR)γ, adipocyte fatty acid-binding protein (ap) 2, and adipsin. Further, we found that AA did not alter clonal expansion rate and expression of C/EBPβ, upstream key regulator of PPARγ, and binding activity of C/EBPβ to PPARγ promoter was not affected by AA as well. These findings suggest that AA may modulate differentiation of BMSCs to cause a lineage shift away from the adipocytes, and inhibition of PPARγ by AA is through C/EBPβ-independent mechanisms. Thus, AA could be a potential candidate for a novel drug against osteoporosis.

  19. Dissecting the brown adipogenic regulatory network using integrative genomics

    PubMed Central

    Pradhan, Rachana N.; Bues, Johannes J.; Gardeux, Vincent; Schwalie, Petra C.; Alpern, Daniel; Chen, Wanze; Russeil, Julie; Raghav, Sunil K.; Deplancke, Bart

    2017-01-01

    Brown adipocytes regulate energy expenditure via mitochondrial uncoupling, which makes them attractive therapeutic targets to tackle obesity. However, the regulatory mechanisms underlying brown adipogenesis are still poorly understood. To address this, we profiled the transcriptome and chromatin state during mouse brown fat cell differentiation, revealing extensive gene expression changes and chromatin remodeling, especially during the first day post-differentiation. To identify putatively causal regulators, we performed transcription factor binding site overrepresentation analyses in active chromatin regions and prioritized factors based on their expression correlation with the bona-fide brown adipogenic marker Ucp1 across multiple mouse and human datasets. Using loss-of-function assays, we evaluated both the phenotypic effect as well as the transcriptomic impact of several putative regulators on the differentiation process, uncovering ZFP467, HOXA4 and Nuclear Factor I A (NFIA) as novel transcriptional regulators. Of these, NFIA emerged as the regulator yielding the strongest molecular and cellular phenotypes. To examine its regulatory function, we profiled the genomic localization of NFIA, identifying it as a key early regulator of terminal brown fat cell differentiation. PMID:28181539

  20. The effect of cell passage number on osteogenic and adipogenic characteristics of D1 cells.

    PubMed

    Kwist, K; Bridges, W C; Burg, K J L

    2016-08-01

    Cell line passage number is an important consideration when designing an experiment. At higher passages, it is generally understood that cell health begins to decline and, when this occurs, the result can be variable data. However, there are no specific guidelines regarding optimal passage range, and this information is dependent on cell type. To explore these variabilities, low passage D1 cells were thawed (passage 3) and passaged serially until a much higher number (passage 34). Samples were taken every five passages and analyzed for alkaline phosphatase and triglyceride; also, the gene expression of both adipogenic and osteogenic markers was tested. The results indicate that the growth rate of these cells did slow down after passage 30. However, expression of the osteogenic characteristics seemed to cycle, with the highest levels seen at passage 4 and 24. The adipocyte expression levels remained the same throughout the study.

  1. Depletion of mitoferrins leads to mitochondrial dysfunction and impairment of adipogenic differentiation in 3T3-L1 preadipocytes.

    PubMed

    Chen, Y-C; Wu, Y-T; Wei, Y-H

    2015-01-01

    Dysregulation of iron homeostasis is a potential risk factor for type 2 diabetes mellitus (T2DM) and insulin resistance. Iron transported into mitochondria by mitoferrins is mainly utilized for the biosynthesis of iron-sulfur clusters, heme, and other cofactors. Recent studies revealed that mitochondrial dysfunction leads to impaired adipogenesis and insulin insensitivity in adipocytes. However, it is unknown whether mitochondrial iron import and iron status affect the biogenesis and function of mitochondria during adipogenic differentiation. In this study, we used double knockdown of mitoferrin 1 and mitoferrin 2 (Mfrn1/2) to investigate the role of mitochondrial iron homeostasis in mitochondrial bioenergetic function and adipogenic differentiation. The results showed that depletion of Mfrn1/2 in 3T3-L1 preadipocytes impaired the biosynthesis of iron-sulfur proteins in mitochondria due to a decrease in mitochondrial iron content. This was associated with a decrease in mitochondrial oxygen consumption rate and intracellular ATP level in adipocytes with Mfrn1/2 knockdown. Remarkably, Mfrn1/2 deficiency reduced the expression of adipogenic genes and lipid production during adipogenic differentiation. Moreover, insulin-induced glucose uptake and Akt phosphorylation at the Ser473 residue were decreased concurrently in adipocytes differentiated from 3T3-L1 preadipocytes after knockdown of Mfrn1/2. These findings suggest that dysregulation of mitochondrial iron metabolism elicited by knockdown of Mfrn1/2 results in mitochondrial dysfunction, which culminates in the compromise of differentiation and insulin insensitivity of adipocytes. This scenario may explain the recent findings that iron deficiency or alterations in iron metabolism are associated with the pathogenesis of T2DM.

  2. Angiotensin II directly impairs adipogenic differentiation of human preadipose cells.

    PubMed

    Palominos, Marisol M; Dünner, Natalia H; Wabitsch, Martin; Rojas, Cecilia V

    2015-10-01

    Angiotensin II reduces adipogenic differentiation of preadipose cells present in the stroma-vascular fraction of human adipose tissue, which also includes several cell types. Because of the ability of non-adipose lineage cells in the stroma-vascular fraction to respond to angiotensin II, it is not possible to unequivocally ascribe the anti-adipogenic response to a direct effect of this hormone on preadipose cells. Therefore, we used the human Simpson-Golabi-Behmel syndrome (SGBS) preadipocyte cell strain to investigate the consequences of angiotensin II treatment on adipogenic differentiation under serum-free conditions, by assessing expression of typical adipocyte markers perilipin and fatty acid-binding protein 4 (FABP4), at the transcript and protein level. Reverse transcription-polymerase chain reaction showed that perilipin and FABP4 transcripts were, respectively, reduced to 0.33 ± 0.07 (P < 0.05) and 0.41 ± 0.19-fold (P < 0.05) in SGBS cells induced to adipogenic differentiation in the presence of angiotensin II. Western Blot analysis corroborated reduction of the corresponding proteins to 0.23 ± 0.21 (P < 0.01) and 0.46 ± 0.30-fold (P < 0.01) the respective controls without angiotensin II. Angiotensin II also impaired morphological changes associated with early adipogenesis. Hence, we demonstrated that angiotensin II is able to directly reduce adipogenic differentiation of SGBS preadipose cells.

  3. AMPKα, C/EBPβ, CPT1β, GPR43, PPARγ, and SCD Gene Expression in Single- and Co-cultured Bovine Satellite Cells and Intramuscular Preadipocytes Treated with Palmitic, Stearic, Oleic, and Linoleic Acid.

    PubMed

    Choi, S H; Park, S K; Johnson, B J; Chung, K Y; Choi, C W; Kim, K H; Kim, W Y; Smith, B

    2015-03-01

    We previously demonstrated that bovine subcutaneous preadipocytes promote adipogenic gene expression in muscle satellite cells in a co-culture system. Herein we hypothesize that saturated fatty acids would promote adipogenic/lipogenic gene expression, whereas mono- and polyunsaturated fatty acids would have the opposite effect. Bovine semimembranosus satellite cells (BSC) and intramuscular preadipocytes (IPA) were isolated from crossbred steers and cultured with 10% fetal bovine serum (FBS)/Dulbecco's Modified Eagle Medium (DMEM) and 1% antibiotics during the 3-d proliferation period. After proliferation, cells were treated for 3 d with 3% horse serum/DMEM (BSC) or 5% FBS/DMEM (IPA) with antibiotics. Media also contained 10 μg/mL insulin and 10 μg/mL pioglitazone. Subsequently, differentiating BSC and IPA were cultured in their respective media with 40 μM palmitic, stearic, oleic, or linoleic acid for 4 d. Finally, BSC and IPA were single- or co-cultured for an additional 2 h. All fatty acid treatments increased (p = 0.001) carnitine palmitoyltransferase-1 beta (CPT1β) gene expression, but the increase in CPT1β gene expression was especially pronounced in IPA incubated with palmitic and stearic acid (6- to 17- fold increases). Oleic and linoleic acid decreased (p = 0.001) stearoyl-CoA desaturase (SCD) gene expression over 80% in both BSC and IPA. Conversely, palmitic and stearic acid increased SCD gene expression three fold in co-cultured in IPA, and stearic acid increased AMPKα gene expression in single- and co-cultured BSC and IPA. Consistent with our hypothesis, saturated fatty acids, especially stearic acid, promoted adipogenic and lipogenic gene expression, whereas unsaturated fatty acids decreased expression of those genes associated with fatty acid metabolism.

  4. AMPKα, C/EBPβ, CPT1β, GPR43, PPARγ, and SCD Gene Expression in Single- and Co-cultured Bovine Satellite Cells and Intramuscular Preadipocytes Treated with Palmitic, Stearic, Oleic, and Linoleic Acid

    PubMed Central

    Choi, S. H.; Park, S. K.; Johnson, B. J.; Chung, K. Y.; Choi, C. W.; Kim, K. H.; Kim, W. Y.; Smith, B.

    2015-01-01

    We previously demonstrated that bovine subcutaneous preadipocytes promote adipogenic gene expression in muscle satellite cells in a co-culture system. Herein we hypothesize that saturated fatty acids would promote adipogenic/lipogenic gene expression, whereas mono- and polyunsaturated fatty acids would have the opposite effect. Bovine semimembranosus satellite cells (BSC) and intramuscular preadipocytes (IPA) were isolated from crossbred steers and cultured with 10% fetal bovine serum (FBS)/Dulbecco’s Modified Eagle Medium (DMEM) and 1% antibiotics during the 3-d proliferation period. After proliferation, cells were treated for 3 d with 3% horse serum/DMEM (BSC) or 5% FBS/DMEM (IPA) with antibiotics. Media also contained 10 μg/mL insulin and 10 μg/mL pioglitazone. Subsequently, differentiating BSC and IPA were cultured in their respective media with 40 μM palmitic, stearic, oleic, or linoleic acid for 4 d. Finally, BSC and IPA were single- or co-cultured for an additional 2 h. All fatty acid treatments increased (p = 0.001) carnitine palmitoyltransferase-1 beta (CPT1β) gene expression, but the increase in CPT1β gene expression was especially pronounced in IPA incubated with palmitic and stearic acid (6- to 17- fold increases). Oleic and linoleic acid decreased (p = 0.001) stearoyl-CoA desaturase (SCD) gene expression over 80% in both BSC and IPA. Conversely, palmitic and stearic acid increased SCD gene expression three fold in co-cultured in IPA, and stearic acid increased AMPKα gene expression in single- and co-cultured BSC and IPA. Consistent with our hypothesis, saturated fatty acids, especially stearic acid, promoted adipogenic and lipogenic gene expression, whereas unsaturated fatty acids decreased expression of those genes associated with fatty acid metabolism. PMID:25656188

  5. The anti-adipogenic effects of (-)epigallocatechin gallate are dependent on the WNT/β-catenin pathway.

    PubMed

    Lee, Haeyong; Bae, Sungmin; Yoon, Yoosik

    2013-07-01

    (-)Epigallocatechin gallate (EGCG) is the most abundant catechin in green tea and reportedly has anti-obesity and anti-adipogenic effects. In this study, we determined that the up-regulation of the WNT/β-catenin pathway is the anti-adipogenic mechanisms of EGCG in 3T3-L1 cells. EGCG treatment down-regulates the expression of major genes involved in the adipogenesis pathway including peroxisome proliferator-activated receptor (PPAR)γ, CCAAT/enhancer binding protein (C/EBP)α, fatty acid binding protein (FABP)4 and fatty acid synthase (FASN), while up-regulating the nuclear level of β-catenin. Knockdown of β-catenin using small interfering (si) RNA attenuated the inhibitory effects of EGCG on intracellular lipid accumulation. β-catenin siRNA transfection also recovered terminal adipocyte markers such as FABP4, FASN, lipoprotein lipase and adiponectin, which were down-regulated by EGCG. The DNA binding activities as well as the expression levels of PPARγ and C/EBPα, which were down-regulated by EGCG, were significantly restored by β-catenin siRNA transfection. In addition, we found that EGCG efficiently up-regulates the WNT/β-catenin pathway. Among the members of the WNT/β-catenin pathway, the expressions of low density lipoprotein receptor-related protein (LRP)5, LRP6, disheveled (DVL)2 and DVL3 were significantly up-regulated, while AXIN expression was down-regulated by EGCG, and the phosphorylation of glycogen synthase kinase 3β was increased. These results suggest that EGCG activates the WNT/β-catenin pathway, resulting in the up-regulation of β-catenin, which down-regulates the major genes of the adipogenesis pathway. Taken together, our findings clearly show that the anti-adipogenic effects of EGCG are, at least partially, dependent on the WNT/β-catenin pathway.

  6. Decrease of apoptosis markers during adipogenic differentiation of mesenchymal stem cells from human adipose tissue.

    PubMed

    Lo Furno, Debora; Graziano, Adriana C E; Caggia, Silvia; Perrotta, Rosario E; Tarico, Maria Stella; Giuffrida, Rosario; Cardile, Venera

    2013-05-01

    Although the proliferation and differentiation of mesenchymal stem cells (MSCs) from adipose tissue (AT) have been widely studied, relatively little information is available on the underlying mechanism of apoptosis during the adipogenic differentiation. Thus, the aim of this study was to analyze how the expression of some apoptotic markers is affected by in vitro expansion during adipogenic differentiation of AT-MSCs. The cultures incubated or not with adipogenic medium were investigated by Western blot at 7, 14, 21, and 28 days for the production of p53, AKT, pAKT, Bax, PDCD4 and PTEN. MSCs were recognized for their immunoreactivity to MSC-specific cell types markers by immunocytochemical procedure. The effectiveness of adipogenic differentiation was assessed by staining with Sudan III and examination of adipogenic markers expression, such as PPAR-γ and FABP, at different time points by Western blot. The adipogenic differentiation medium led to the appearance, after 7 days, of larger rounded cells presenting numerous vacuoles containing lipids in which it was evident a red-orange staining, that increased in size in a time-dependent manner, parallel to an increase of the levels of expression of PPAR-γ and FABP. More than 50 % of human MSCs were fully differentiated into adipocytes within the four-week induction period. The results showed that during adipogenic differentiation of AT-MSCs the PI3K/AKT signaling pathway is activated and that p53, PTEN, PDCD4, and Bax proteins are down-regulated in time-dependent manner. Our data provide new information on the behavior of some apoptotic markers during adipogenic differentiation of AT-MSCs to apply for tissues repair and regeneration.

  7. Regulation of ABO gene expression.

    PubMed

    Kominato, Yoshihiko; Hata, Yukiko; Matsui, Kazuhiro; Takizawa, Hisao

    2005-07-01

    The ABO blood group system is important in blood transfusions and in identifying individuals during criminal investigations. Two carbohydrate antigens, the A and B antigens, and their antibodies constitute this system. Although biochemical and molecular genetic studies have demonstrated the molecular basis of the histo-blood group ABO system, some aspects remain to be elucidated. To explain the molecular basis of how the ABO genes are controlled in cell type-specific expression, during normal cell differentiation, and in cancer cells with invasive and metastatic potential that lack A/B antigens, it is essential to understand the regulatory mechanism of ABO gene transcription. We review the transcriptional regulation of the ABO gene, including positive and negative elements in the upstream region of the gene, and draw some inferences that help to explain the phenomena described above.

  8. Adipogenic Differentiation of Thyroid Cancer Cells Through the Pax8-PPARγ Fusion Protein Is Regulated by Thyroid Transcription Factor 1 (TTF-1).

    PubMed

    Xu, Bin; O'Donnell, Michael; O'Donnell, Jeffrey; Yu, Jingcheng; Zhang, Yanxiao; Sartor, Maureen A; Koenig, Ronald J

    2016-09-09

    A subset of thyroid carcinomas contains a t(2;3)(q13;p25) chromosomal translocation that fuses paired box gene 8 (PAX8) with the peroxisome proliferator-activated receptor γ gene (PPARG), resulting in expression of a PAX8-PPARγ fusion protein, PPFP. We previously generated a transgenic mouse model of PPFP thyroid carcinoma and showed that feeding the PPARγ agonist pioglitazone greatly decreased the size of the primary tumor and prevented metastatic disease in vivo The antitumor effect correlates with the fact that pioglitazone turns PPFP into a strongly PPARγ-like molecule, resulting in trans-differentiation of the thyroid cancer cells into adipocyte-like cells that lose malignant character as they become more differentiated. To further study this process, we performed cell culture experiments with thyrocytes from the PPFP mouse thyroid cancers. Our data show that pioglitazone induced cellular lipid accumulation and the expression of adipocyte marker genes in the cultured cells, and shRNA knockdown of PPFP eliminated this pioglitazone effect. In addition, we found that PPFP and thyroid transcription factor 1 (TTF-1) physically interact, and that these transcription factors bind near each other on numerous target genes. TTF-1 knockdown and overexpression studies showed that TTF-1 inhibits PPFP target gene expression and impairs adipogenic trans-differentiation. Surprisingly, pioglitazone repressed TTF-1 expression in PPFP-expressing thyrocytes. Our data indicate that TTF-1 interacts with PPFP to inhibit the pro-adipogenic response to pioglitazone, and that the ability of pioglitazone to decrease TTF-1 expression contributes to its pro-adipogenic action.

  9. Gene expression profile of pulpitis

    PubMed Central

    Galicia, Johnah C.; Henson, Brett R.; Parker, Joel S.; Khan, Asma A.

    2016-01-01

    The cost, prevalence and pain associated with endodontic disease necessitate an understanding of the fundamental molecular aspects of its pathogenesis. This study was aimed to identify the genetic contributors to pulpal pain and inflammation. Inflamed pulps were collected from patients diagnosed with irreversible pulpitis (n=20). Normal pulps from teeth extracted for various reasons served as controls (n=20). Pain level was assessed using a visual analog scale (VAS). Genome-wide microarray analysis was performed using Affymetrix GeneTitan Multichannel Instrument. The difference in gene expression levels were determined by the Significance Analysis of Microarray program using a false discovery rate (q-value) of 5%. Genes involved in immune response, cytokine-cytokine receptor interaction and signaling, integrin cell surface interactions, and others were expressed at relatively higher levels in the in the pulpitis group. Moreover, several genes known to modulate pain and inflammation showed differential expression in asymptomatic and mild pain patients (≥30mm on VAS) compared to those with moderate to severe pain. This exploratory study provides a molecular basis for the clinical diagnosis of pulpitis. With an enhanced understanding of pulpal inflammation, future studies on treatment and management of pulpitis and on pain associated with it can have a biological reference to bridge treatment strategies with pulpal biology. PMID:27052691

  10. Gene expression profile of pulpitis.

    PubMed

    Galicia, J C; Henson, B R; Parker, J S; Khan, A A

    2016-06-01

    The cost, prevalence and pain associated with endodontic disease necessitate an understanding of the fundamental molecular aspects of its pathogenesis. This study was aimed to identify the genetic contributors to pulpal pain and inflammation. Inflamed pulps were collected from patients diagnosed with irreversible pulpitis (n=20). Normal pulps from teeth extracted for various reasons served as controls (n=20). Pain level was assessed using a visual analog scale (VAS). Genome-wide microarray analysis was performed using Affymetrix GeneTitan Multichannel Instrument. The difference in gene expression levels were determined by the significance analysis of microarray program using a false discovery rate (q-value) of 5%. Genes involved in immune response, cytokine-cytokine receptor interaction and signaling, integrin cell surface interactions, and others were expressed at relatively higher levels in the pulpitis group. Moreover, several genes known to modulate pain and inflammation showed differential expression in asymptomatic and mild pain patients (⩾30 mm on VAS) compared with those with moderate to severe pain. This exploratory study provides a molecular basis for the clinical diagnosis of pulpitis. With an enhanced understanding of pulpal inflammation, future studies on treatment and management of pulpitis and on pain associated with it can have a biological reference to bridge treatment strategies with pulpal biology.

  11. Roles of chondroitin sulfate proteoglycan 4 in fibrogenic/adipogenic differentiation in skeletal muscle tissues.

    PubMed

    Takeuchi, Shiho; Nakano, Shin-Ichi; Nakamura, Katsuyuki; Ozoe, Atsufumi; Chien, Peggie; Yoshihara, Hidehito; Hakuno, Fumihiko; Matsuwaki, Takashi; Saeki, Yasushi; Takahashi, Shin-Ichiro; Yamanouchi, Keitaro; Nishihara, Masugi

    2016-10-01

    Intramuscular adipose tissue and fibrous tissue are observed in some skeletal muscle pathologies such as Duchenne muscular dystrophy and sarcopenia, and affect muscle strength and myogenesis. They originate from common fibrogenic/adipogenic cells in the skeletal muscle. Thus, elucidating the regulatory mechanisms underlying fibrogenic/adipogenic cell differentiation is an important step toward the mediation of these disorders. Previously, we established a highly adipogenic progenitor clone, 2G11, from rat skeletal muscle and showed that basic fibroblast growth factor (bFGF) is pro-adipogenic in these cells. Here, we demonstrated that 2G11 cells give rise to fibroblasts upon transforming growth factor (TGF)-β1 stimulation, indicating that they possess mesenchymal progenitor cells (MPC)-like characteristics. The previously reported MPC marker PDGFRα is expressed in other cell populations. Accordingly, we produced monoclonal antibodies that specifically bind to 2G11 cell surface antigens and identified chondroitin sulfate proteoglycan 4 (CSPG4) as a potential MPC marker. Based on an RNA interference analysis, we found that CSPG4 is involved in both the pro-adipogenic effect of bFGF and in TGF-β-induced alpha smooth muscle actin expression and stress fiber formation. By establishing an additional marker for MPC detection and characterizing its role in fibrogenic/adipogenic differentiation, these results will facilitate the development of effective treatments for skeletal muscle pathologies.

  12. Gene expression throughout a vertebrate's embryogenesis

    PubMed Central

    2011-01-01

    Background Describing the patterns of gene expression during embryonic development has broadened our understanding of the processes and patterns that define morphogenesis. Yet gene expression patterns have not been described throughout vertebrate embryogenesis. This study presents statistical analyses of gene expression during all 40 developmental stages in the teleost Fundulus heteroclitus using four biological replicates per stage. Results Patterns of gene expression for 7,000 genes appear to be important as they recapitulate developmental timing. Among the 45% of genes with significant expression differences between pairs of temporally adjacent stages, significant differences in gene expression vary from as few as five to more than 660. Five adjacent stages have disproportionately more significant changes in gene expression (> 200 genes) relative to other stages: four to eight and eight to sixteen cell stages, onset of circulation, pre and post-hatch, and during complete yolk absorption. The fewest differences among adjacent stages occur during gastrulation. Yet, at stage 16, (pre-mid-gastrulation) the largest number of genes has peak expression. This stage has an over representation of genes in oxidative respiration and protein expression (ribosomes, translational genes and proteases). Unexpectedly, among all ribosomal genes, both strong positive and negative correlations occur. Similar correlated patterns of expression occur among all significant genes. Conclusions These data provide statistical support for the temporal dynamics of developmental gene expression during all stages of vertebrate development. PMID:21356103

  13. Does FACS perturb gene expression?

    PubMed

    Richardson, Graham M; Lannigan, Joanne; Macara, Ian G

    2015-02-01

    Fluorescence activated cell sorting is the technique most commonly used to separate primary mammary epithelial sub-populations. Many studies incorporate this technique before analyzing gene expression within specific cellular lineages. However, to our knowledge, no one has examined the effects of fluorescence activated cell sorting (FACS) separation on short-term transcriptional profiles. In this study, we isolated a heterogeneous mixture of cells from the mouse mammary gland. To determine the effects of the isolation and separation process on gene expression, we harvested RNA from the cells before enzymatic digestion, following enzymatic digestion, and following a mock FACS sort where the entire cohort of cells was retained. A strict protocol was followed to minimize disruption to the cells, and to ensure that no subpopulations were enriched or lost. Microarray analysis demonstrated that FACS causes minimal disruptions to gene expression patterns, but prior steps in the mammary cell isolation process are followed by upregulation of 18 miRNA's and rapid decreases in their predicted target transcripts. © 2015 International Society for Advancement of Cytometry.

  14. The Gene Expression Omnibus Database.

    PubMed

    Clough, Emily; Barrett, Tanya

    2016-01-01

    The Gene Expression Omnibus (GEO) database is an international public repository that archives and freely distributes high-throughput gene expression and other functional genomics data sets. Created in 2000 as a worldwide resource for gene expression studies, GEO has evolved with rapidly changing technologies and now accepts high-throughput data for many other data applications, including those that examine genome methylation, chromatin structure, and genome-protein interactions. GEO supports community-derived reporting standards that specify provision of several critical study elements including raw data, processed data, and descriptive metadata. The database not only provides access to data for tens of thousands of studies, but also offers various Web-based tools and strategies that enable users to locate data relevant to their specific interests, as well as to visualize and analyze the data. This chapter includes detailed descriptions of methods to query and download GEO data and use the analysis and visualization tools. The GEO homepage is at http://www.ncbi.nlm.nih.gov/geo/.

  15. Surface topography enhances differentiation of mesenchymal stem cells towards osteogenic and adipogenic lineages.

    PubMed

    Abagnale, Giulio; Steger, Michael; Nguyen, Vu Hoa; Hersch, Nils; Sechi, Antonio; Joussen, Sylvia; Denecke, Bernd; Merkel, Rudolf; Hoffmann, Bernd; Dreser, Alice; Schnakenberg, Uwe; Gillner, Arnold; Wagner, Wolfgang

    2015-08-01

    Surface topography impacts on cell growth and differentiation, but it is not trivial to generate defined surface structures and to assess the relevance of specific topographic parameters. In this study, we have systematically compared in vitro differentiation of mesenchymal stem cells (MSCs) on a variety of groove/ridge structures. Micro- and nano-patterns were generated in polyimide using reactive ion etching or multi beam laser interference, respectively. These structures affected cell spreading and orientation of human MSCs, which was also reflected in focal adhesions morphology and size. Time-lapse demonstrated directed migration parallel to the nano-patterns. Overall, surface patterns clearly enhanced differentiation of MSCs towards specific lineages: 15 μm ridges increased adipogenic differentiation whereas 2 μm ridges enhanced osteogenic differentiation. Notably, nano-patterns with a periodicity of 650 nm increased differentiation towards both osteogenic and adipogenic lineages. However, in absence of differentiation media surface structures did neither induce differentiation, nor lineage-specific gene expression changes. Furthermore, nanostructures did not affect the YAP/TAZ complex, which is activated by substrate stiffness. Our results provide further insight into how structuring of tailored biomaterials and implant interfaces - e.g. by multi beam laser interference in sub-micrometer scale - do not induce differentiation of MSCs per se, but support their directed differentiation.

  16. Classification of genes based on gene expression analysis

    SciTech Connect

    Angelova, M. Myers, C. Faith, J.

    2008-05-15

    Systems biology and bioinformatics are now major fields for productive research. DNA microarrays and other array technologies and genome sequencing have advanced to the point that it is now possible to monitor gene expression on a genomic scale. Gene expression analysis is discussed and some important clustering techniques are considered. The patterns identified in the data suggest similarities in the gene behavior, which provides useful information for the gene functionalities. We discuss measures for investigating the homogeneity of gene expression data in order to optimize the clustering process. We contribute to the knowledge of functional roles and regulation of E. coli genes by proposing a classification of these genes based on consistently correlated genes in expression data and similarities of gene expression patterns. A new visualization tool for targeted projection pursuit and dimensionality reduction of gene expression data is demonstrated.

  17. The Antiaging Gene Klotho Regulates Proliferation and Differentiation of Adipose-Derived Stem Cells

    PubMed Central

    Fan, Jun; Sun, Zhongjie

    2017-01-01

    Klotho was originally discovered as an aging-suppressor gene. The purpose of this study was to investigate whether secreted Klotho (SKL) affects the proliferation and differentiation of adipose-derived stem cells (ADSCs). RT-PCR and Western blot analysis showed that short-form Klotho was expressed in mouse ADSCs. The Klotho gene mutation KL(−/−) significantly decreased proliferation of ADSCs and expression of pluripotent transcription factors (Nanog, Sox-2, and Oct-4) in mice. The adipogenic differentiation of ADSCs was also decreased in KL(−/−) mice. Incubation with Klotho-deficient medium decreased ADSC proliferation, pluripotent transcription factor levels, and adipogenic differentiation, which is similar to what was found in KL(−/−) mice. These results indicate that Klotho deficiency suppresses ADSC proliferation and differentiation. Interestingly, treatment with recombinant SKL protein rescued the Klotho deficiency-induced impairment in ADSC proliferation and adipogenic differentiation. SKL also regulated ADSCs’ differentiation to other cell lineages (osteoblasts, myofibroblasts), indicating that SKL maintains stemness of ADSCs. It is intriguing that overexpression of SKL significantly increased PPAR-γ expression and lipid formation in ADSCs following adipogenic induction, indicating enhanced adipogenic differentiation. Overexpression of SKL inhibited expression of TGFβ1 and its downstream signaling mediator Smad2/3. This study demonstrates, for the first time, that SKL is essential to the maintenance of normal proliferation and differentiation in ADSCs. Klotho regulates adipogenic differentiation in ADSCs, likely via inhibition of TGFβ1 and activation of PPAR-γ. PMID:26865060

  18. Perlecan is required for the chondrogenic differentiation of synovial mesenchymal cells through regulation of Sox9 gene expression.

    PubMed

    Sadatsuki, Ryo; Kaneko, Haruka; Kinoshita, Mayuko; Futami, Ippei; Nonaka, Risa; Culley, Kirsty L; Otero, Miguel; Hada, Shinnosuke; Goldring, Mary B; Yamada, Yoshihiko; Kaneko, Kazuo; Arikawa-Hirasawa, Eri; Ishijima, Muneaki

    2016-05-30

    We previously reported that perlecan, a heparan-sulfate proteoglycan (Hspg2), expressed in the synovium at the cartilage-synovial junction, is required for osteophyte formation in knee osteoarthritis. To examine the mechanism underlying this process, we examined the role of perlecan in the proliferation and differentiation of synovial mesenchymal cells (SMCs), using a recently established mouse synovial cell culture method. Primary SMCs isolated from Hspg2(-/-) -Tg (Hspg2(-/-) ;Col2a1-Hspg2(Tg/-) ) mice, in which the perlecan-knockout was rescued from perinatal lethality, lack perlecan. The chondrogenic-, osteogenic- and adipogenic-potentials were examined in the Hspg2(-/-) -Tg SMCs compared to the control SMCs prepared from wild-type Hspg2(+/+) -Tg (Hspg2(+/+) ;Col2a1-Hspg2(Tg/-) ) littermates. In a culture condition permitting proliferation, both control and Hspg2(-/-) -Tg SMCs showed similar rates of proliferation and expression of cell surface markers. However, in micromass cultures, the cartilage matrix production and Sox9 and Col2a1 mRNA levels were significantly reduced in Hspg2(-/-) -Tg SMCs, compared with control SMCs. The reduced level of Sox9 mRNA was restored by the supplementation with exogenous perlecan protein. There was no difference in osteogenic differentiation between the control and Hspg2(-/-) -Tg SMCs, as measured by the levels of Runx2 and Col1a1 mRNA. The adipogenic induction and PPARγ mRNA levels were significantly reduced in Hspg2(-/-) -Tg SMCs compared to control SMCs. The reduction of PPARγ mRNA levels in Hspg2(-/-) -Tg SMCs was restored by supplementation of perlecan. Perlecan is required for the chondrogenic and adipogenic differentiation from SMCs via its regulation of the Sox9 and PPARγ gene expression, but not for osteogenic differentiation via Runx2. This article is protected by copyright. All rights reserved.

  19. Role of C/EBPβ-LAP and C/EBPβ-LIP in early adipogenic differentiation of human white adipose-derived progenitors and at later stages in immature adipocytes.

    PubMed

    Lechner, Stefan; Mitterberger, Maria C; Mattesich, Monika; Zwerschke, Werner

    2013-01-01

    We investigated the role of the major isoforms of CCAAT enhancer binding protein β (C/EBPβ), C/EBPβ-LAP and C/EBPβ-LIP, in adipogenesis of human white adipose-derived stromal/progenitor cells (ASC). C/EBPβ gene expression was transiently induced early in adipogenesis. At later stages, in immature adipocytes, the C/EBPβ mRNA and protein levels declined. The C/EBPβ-LIP protein steady-state level decreased considerably stronger than the C/EBPβ-LAP level and the C/EBPβ-LIP half-life was significantly shorter than the C/EBPβ-LAP half-life. The turn-over of both C/EBPβ-isoforms was regulated by ubiquitin/proteasome-dependent degradation. These data suggest that the protein stability of the C/EBPβ-isoforms is differentially regulated in the course of adipogenesis and in immature adipocytes. Constitutive overexpression of C/EBPβ-LIP had antiadipogenic activity in human ASC. C/EBPβ-LAP, which promotes adipogenesis in mouse 3T3-L1 preadipocytes by directly activating expression of the adipogenic keyregulator PPARγ2, induced the expression of PPARγ2 and of the adipocyte differentiation gene product FABP4 in confluent ASC in the absence of adipogenic hormones. At later stages after hormone cocktail-induced adipogenesis, in immature adipocytes, constitutive overexpression of C/EBPβ-LAP led to reduced expression of PPARγ2 and FABP4, C/EBPα expression was downregulated and the expression of the adipocyte differentiation gene products adiponectin and leptin was impaired. These findings suggest that constitutive overexpression of C/EBPβ-LAP induces adipogenesis in human ASC and negatively regulates the expression of adipogenic regulators and certain adipocyte differentiation gene products in immature adipocytes. We conclude the regulation of both C/EBPβ gene expression and C/EBPβ-LIP and C/EBPβ-LAP protein turn-over plays an important role for the expression of adipogenic regulators and/or adipocyte differentiation genes in early adipogenic differentiation of

  20. Contrasting effect of perlecan on adipogenic and osteogenic differentiation of mesenchymal stem cells in vitro.

    PubMed

    Nakamura, Ryosuke; Nakamura, Fumio; Fukunaga, Shigeharu

    2014-03-01

    Perlecan, a basement membrane component, shows diverse functions in different organs and tissues. However, the role of perlecan in differentiation of mesenchymal stem cells (MSCs) has been barely investigated. In this study, we examined the effect of perlecan on adipogenic and osteogenic differentiation of MSCs in vitro by adding extrinsic perlecan to culture media or blocking the function of intrinsic perlecan expressed into culture media by differentiating MSCs. Extrinsic perlecan suppressed adipogenic differentiation; however, it promoted osteogenic differentiation. These functions were further confirmed by a study of blocking intrinsic perlecan. Perlecan treated with heparitinase-I also showed the suppressive effect on adipogenic differentiation. In contrast, the promotive effect on osteogenic differentiation was found to be heparan sulfate-dependent. Intrinsic perlecan was suggested to be effective at the late stage of adipogenic differentiation by a study of perlecan-blocking performed at distinct periods, but was suggested to be effective at the early stage of osteogenic differentiation. Our results showed perlecan has contrasting effect on adipogenic and osteogenic differentiation of MSCs due to its diverse actions. Based on these outcomes, we recognized that employing extrinsic perlecan or blocking intrinsic perlecan is effective for regulating adipogenic and osteogenic differentiation of MSCs by restricting its direction.

  1. Anti-adipogenic activity of berberine is not mediated by the WNT/β-catenin pathway.

    PubMed

    Bae, Sungmin; Yoon, Yoosik

    2013-06-01

    Adipogenesis is a differentiation process from preadipocytes to adipocytes, accompanied by the inductions of adipogenic transcription factors and lipid metabolizing enzymes. Among cellular pathways regulating adipogenesis, the WNT/β-catenin pathway is well-known as a suppressor of adipogenesis. Berberine (BBR) is an isoquinoline alkaloid component of the medicinal plants including Coptis chinensis and Coptis japonica with diverse biological activities. This study was conducted to elucidate whether the anti-adipogenic effect of BBR is mediated by the WNT/β-catenin pathway. The results of the present study confirmed that BBR efficiently inhibited adipogenesis of 3T3-L1 cells. However, the anti-adipogenic effects of BBR were not accompanied by the modulations of the WNT/β-catenin pathway members including WNT10B, LRP6, DVL2, GSK3β and β-catenin. When β-catenin was knocked down by its siRNA transfection, the anti-adipogenic effects of BBR including the expression of adipogenic transcription factors and lipid metabolizing enzymes as well as the intracellular fat accumulation were not affected at all. The results of this study showed that the anti-adipogenic effect of BBR is not mediated by the WNT/β-catenin pathway.

  2. Harnessing gene expression networks to prioritize candidate epileptic encephalopathy genes.

    PubMed

    Oliver, Karen L; Lukic, Vesna; Thorne, Natalie P; Berkovic, Samuel F; Scheffer, Ingrid E; Bahlo, Melanie

    2014-01-01

    We apply a novel gene expression network analysis to a cohort of 182 recently reported candidate Epileptic Encephalopathy genes to identify those most likely to be true Epileptic Encephalopathy genes. These candidate genes were identified as having single variants of likely pathogenic significance discovered in a large-scale massively parallel sequencing study. Candidate Epileptic Encephalopathy genes were prioritized according to their co-expression with 29 known Epileptic Encephalopathy genes. We utilized developing brain and adult brain gene expression data from the Allen Human Brain Atlas (AHBA) and compared this to data from Celsius: a large, heterogeneous gene expression data warehouse. We show replicable prioritization results using these three independent gene expression resources, two of which are brain-specific, with small sample size, and the third derived from a heterogeneous collection of tissues with large sample size. Of the nineteen genes that we predicted with the highest likelihood to be true Epileptic Encephalopathy genes, two (GNAO1 and GRIN2B) have recently been independently reported and confirmed. We compare our results to those produced by an established in silico prioritization approach called Endeavour, and finally present gene expression networks for the known and candidate Epileptic Encephalopathy genes. This highlights sub-networks of gene expression, particularly in the network derived from the adult AHBA gene expression dataset. These networks give clues to the likely biological interactions between Epileptic Encephalopathy genes, potentially highlighting underlying mechanisms and avenues for therapeutic targets.

  3. Beta-mecaptoethanol suppresses inflammation and induces adipogenic differentiation in 3T3-F442A murine preadipocytes.

    PubMed

    Guo, Wen; Li, Yahui; Liang, Wentao; Wong, Siu; Apovian, Caroline; Kirkland, James L; Corkey, Barbara E

    2012-01-01

    Preadipocytes are present in adipose tissues throughout adult life that can proliferate and differentiate into mature adipocytes in response to environmental cues. Abnormal increase in adipocyte number or size leads to fat tissue expansion. However, it is now recognized that adipocyte hypertrophy is a greater risk factor for metabolic syndrome whereas fat tissue that continues to produce newer and smaller fat cells through preadipocyte differentiation is "metabolically healthy". Because adipocyte hypertrophy is often associated with increased oxidant stress and low grade inflammation, both are linked to disturbed cellular redox, we tested how preadipocyte differentiation may be regulated by beta-mercaptoethanol (BME), a pharmacological redox regulator and radical scavenger, using murine 3T3-F442A preadipocytes as the cell model. Effects of BME on adipogenesis were measured by microphotography, real-time PCR, and Western analysis. Our data demonstrated that preadipocyte differentiation could be regulated by extracellular BME. At an optimal concentration, BME enhanced expression of adipogenic gene markers and lipid accumulation. This effect was associated with BME-mediated down-regulation of inflammatory cytokine expression during early differentiation. BME also attenuated TNFalpha-induced activation of NFkappaB in differentiating preadipocytes and partially restored TNFalpha-mediated suppression on adipogenesis. Using a non-adipogenic HEK293 cell line transfected with luciferase reporter genes, we demonstrated that BME reduced basal and TNFalpha-induced NFkappaB activity and increased basal and ciglitazone-induced PPARgamma activity; both may contribute to the pro-adipogenic effect of BME in differentiating F442A preadipocytes.

  4. Pulmonary Gene Expression Profiling of Inhaled Ricin

    DTIC Science & Technology

    2007-11-02

    in which 34 genes had statistically significant changes in gene expression. Transcripts identified by the assay included those that facilitate...gene expression. Transcripts identified by the assay included those that facilitate tissue healing (early growth response gene (egr)-1), regulate...impingement to determine aerosol concentration. Ricin concentrations from impinger samples were measured by protein assay (Pierce, MicroBCA, Rockford

  5. Adipogenic differentiation of human mesenchymal stromal cells is down-regulated by microRNA-369-5p and up-regulated by microRNA-371.

    PubMed

    Bork, Simone; Horn, Patrick; Castoldi, Mirco; Hellwig, Isabelle; Ho, Anthony D; Wagner, Wolfgang

    2011-09-01

    Long-term culture of human mesenchymal stromal cells (MSC) has implications on their proliferation and differentiation potential and we have demonstrated that this is associated with up-regulation of the five microRNAs miR-29c, miR-369-5p, miR-371, miR-499, and let-7f. In this study, we examined the role of these senescence-associated microRNAs for cellular aging and differentiation of MSC. Proliferation was reduced upon transfection with miR-369-5p, miR-371, and miR-499. Adipogenic differentiation was impaired by miR-369-5p whereas it was highly increased by miR-371. This was accompanied by respective gene expression changes of some adipogenic key molecules (adiponectin and fatty acid-binding protein 4 [FABP4]). Furthermore luciferase reporter assay indicated that FABP4 is a direct target of miR-369-5p. Microarray analysis upon adipogenic or osteogenic differentiation revealed down-regulation of several microRNAs albeit miR-369-5p and miR-371 were not affected. Expression of the de novo DNA methyltransferases DNMT3A and DNMT3B was up-regulated by transfection of miR-371 whereas expression of DNMT3A was down-regulated by miR-369-5p. In summary, we identified miR-369-5p and miR-371 as antagonistic up-stream regulators of adipogenic differentiation and this might be indirectly mediated by epigenetic modifications.

  6. Ebf2 is a selective marker of brown and beige adipogenic precursor cells.

    PubMed

    Wang, Wenshan; Kissig, Megan; Rajakumari, Sona; Huang, Li; Lim, Hee-Woong; Won, Kyoung-Jae; Seale, Patrick

    2014-10-07

    Brown adipocytes and muscle and dorsal dermis descend from precursor cells in the dermomyotome, but the factors that regulate commitment to the brown adipose lineage are unknown. Here, we prospectively isolated and determined the molecular profile of embryonic brown preadipose cells. Brown adipogenic precursor activity in embryos was confined to platelet-derived growth factor α(+), myogenic factor 5(Cre)-lineage-marked cells. RNA-sequence analysis identified early B-cell factor 2 (Ebf2) as one of the most selectively expressed genes in this cell fraction. Importantly, Ebf2-expressing cells purified from Ebf2(GFP) embryos or brown fat tissue did not express myoblast or dermal cell markers and uniformly differentiated into brown adipocytes. Interestingly, Ebf2-expressing cells from white fat tissue in adult animals differentiated into brown-like (or beige) adipocytes. Loss of Ebf2 in brown preadipose cells reduced the expression levels of brown preadipose-signature genes, whereas ectopic Ebf2 expression in myoblasts activated brown preadipose-specific genes. Altogether, these results indicate that Ebf2 specifically marks and regulates the molecular profile of brown preadipose cells.

  7. Does inbreeding affect gene expression in birds?

    PubMed

    Hansson, Bengt; Naurin, Sara; Hasselquist, Dennis

    2014-09-01

    Inbreeding increases homozygosity, exposes genome-wide recessive deleterious alleles and often reduces fitness. The physiological and reproductive consequences of inbreeding may be manifested already during gene regulation, but the degree to which inbreeding influences gene expression is unknown in most organisms, including in birds. To evaluate the pattern of inbreeding-affected gene expression over the genome and in relation to sex, we performed a transcriptome-wide gene expression (10 695 genes) study of brain tissue of 10-day-old inbred and outbred, male and female zebra finches. We found significantly lower gene expression in females compared with males at Z-linked genes, confirming that dosage compensation is incomplete in female birds. However, inbreeding did not affect gene expression at autosomal or sex-linked genes, neither in males nor in females. Analyses of single genes again found a clear sex-biased expression at Z-linked genes, whereas only a single gene was significantly affected by inbreeding. The weak effect of inbreeding on gene expression in zebra finches contrasts to the situation, for example, in Drosophila where inbreeding has been found to influence gene expression more generally and at stress-related genes in particular.

  8. [Neuronal plasticity and gene expression].

    PubMed

    Sokolova, O O; Shtark, M B; Lisachev, P D

    2010-01-01

    Neuronal plasticity--a fundamental feature of brain--provides adequate interactions with dynamic environment. One of the most deeply investigated forms of the neuronal plasticity is a long-term potentiation (LTP)--a phenomenon underlying learning and memory. Signal paths activated during LTP converge into the nuclear of the neuron, giving rise to launch of the molecular-genetic programs, which mediate structural and functional remodeling of synapses. In the review data concerning involvement of multilevel gene expression into plastic change under neuronal activation are summarized.

  9. Expression of genes controlling fat deposition in two genetically diverse beef cattle breeds fed high or low silage diets

    PubMed Central

    2013-01-01

    Background Both genetic background and finishing system can alter fat deposition, thus indicating their influence on adipogenic and lipogenic factors. However, the molecular mechanisms underlying fat deposition and fatty acid composition in beef cattle are not fully understood. This study aimed to assess the effect of breed and dietary silage level on the expression patterns of key genes controlling lipid metabolism in subcutaneous adipose tissue (SAT) and longissimus lumborum (LL) muscle of cattle. To that purpose, forty bulls from two genetically diverse Portuguese bovine breeds with distinct maturity rates, Alentejana and Barrosã, were selected and fed either low (30% maize silage/70% concentrate) or high silage (70% maize silage/30% concentrate) diets. Results The results suggested that enhanced deposition of fatty acids in the SAT from Barrosã bulls, when compared to Alentejana, could be due to higher expression levels of lipogenesis (SCD and LPL) and β-oxidation (CRAT) related genes. Our results also indicated that SREBF1 expression in the SAT is increased by feeding the low silage diet. Together, these results point out to a higher lipid turnover in the SAT of Barrosã bulls when compared to Alentejana. In turn, lipid deposition in the LL muscle is related to the expression of adipogenic (PPARG and FABP4) and lipogenic (ACACA and SCD) genes. The positive correlation between ACACA expression levels and total lipids, as well trans fatty acids, points to ACACA as a major player in intramuscular deposition in ruminants. Moreover, results reinforce the role of FABP4 in intramuscular fat development and the SAT as the major site for lipid metabolism in ruminants. Conclusions Overall, the results showed that SAT and LL muscle fatty acid composition are mostly dependent on the genetic background. In addition, dietary silage level impacted on muscle lipid metabolism to a greater extent than on that of SAT, as evaluated by gene expression levels of adipogenic and

  10. Obesity and prostate cancer: gene expression signature of human periprostatic adipose tissue

    PubMed Central

    2012-01-01

    Background Periprostatic (PP) adipose tissue surrounds the prostate, an organ with a high predisposition to become malignant. Frequently, growing prostatic tumor cells extend beyond the prostatic organ towards this fat depot. This study aimed to determine the genome-wide expression of genes in PP adipose tissue in obesity/overweight (OB/OW) and prostate cancer patients. Methods Differentially expressed genes in human PP adipose tissue were identified using microarrays. Analyses were conducted according to the donors' body mass index characteristics (OB/OW versus lean) and prostate disease (extra prostatic cancer versus organ confined prostate cancer versus benign prostatic hyperplasia). Selected genes with altered expression were validated by real-time PCR. Ingenuity Pathway Analysis (IPA) was used to investigate gene ontology, canonical pathways and functional networks. Results In the PP adipose tissue of OB/OW subjects, we found altered expression of genes encoding molecules involved in adipogenic/anti-lipolytic, proliferative/anti-apoptotic, and mild immunoinflammatory processes (for example, FADS1, down-regulated, and LEP and ANGPT1, both up-regulated). Conversely, in the PP adipose tissue of subjects with prostate cancer, altered genes were related to adipose tissue cellular activity (increased cell proliferation/differentiation, cell cycle activation and anti-apoptosis), whereas a downward impact on immunity and inflammation was also observed, mostly related to the complement (down-regulation of CFH). Interestingly, we found that the microRNA MIRLET7A2 was overexpressed in the PP adipose tissue of prostate cancer patients. Conclusions Obesity and excess adiposity modified the expression of PP adipose tissue genes to ultimately foster fat mass growth. In patients with prostate cancer the expression profile of PP adipose tissue accounted for hypercellularity and reduced immunosurveillance. Both findings may be liable to promote a favorable environment for

  11. BMP7 promotes adipogenic but not osteo-/chondrogenic differentiation of adult human bone marrow-derived stem cells in high-density micro-mass culture.

    PubMed

    Neumann, Katja; Endres, Michaela; Ringe, Jochen; Flath, Bernd; Manz, Rudi; Häupl, Thomas; Sittinger, Michael; Kaps, Christian

    2007-10-15

    The objective of our study was to elucidate the potential of bone morphogenetic protein-7 (BMP7) to initiate distinct mesenchymal lineage development of human adult mesenchymal stem cells (MSC) in three-dimensional micro-mass culture. Expanded MSC were cultured in high-density micro-masses under serum-free conditions that favor chondrogenic differentiation and were stimulated with 50-200 ng/ml BMP7 or 10 ng/ml transforming growth factor-beta3 (TGFbeta3) as control. Histological staining of proteoglycan with alcian blue, mineralized matrix according to von Kossa, and lipids with Oil Red O, immunostaining of type II collagen as well as real-time gene expression analysis of typical chondrogenic, adipogenic, and osteogenic marker genes showed that BMP7 promoted adipogenic differentiation of MSC. Micro-masses stimulated with BMP7 developed adipocytic cells filled with lipid droplets and showed an enhanced expression of the adipocyte marker genes fatty acid binding protein 4 (FABP4) and the adipose most abundant transcript 1 (apM1). Development along the chondrogenic lineage or stimulation of osteogenic differentiation were not evident upon stimulation with BMP7 in different concentrations. In contrast, TGFbeta3 directed MSC to form a cartilaginous matrix that is rich in proteoglycan and type II collagen. Gene expression analysis of typical chondrocyte marker genes like cartilage oligomeric matrix protein (COMP), link protein, aggrecan, and types IIalpha1 and IXalpha3 collagen confirmed chondrogenic differentiation of MSC treated with TGFbeta3. These results suggest that BMP7 promotes the adipogenic and not the osteogenic or chondrogenic lineage development of human stem cells when assembled three-dimensionally in micro-masses.

  12. Epigallocatechin-3-gallate-induced free-radical production upon adipogenic differentiation in bovine bone-marrow mesenchymal stem cells.

    PubMed

    Jeong, Jin Young; Park, Mi Na; Cho, Eun Seok; Jang, Hyun-Jun; Park, Sungkwon; Lee, Hyun-Jeong

    2015-10-01

    Epigallocatechin-3-gallate (EGCG), a major component of catechin in green tea, has known effects on cancer, diabetes and obesity. We recently reported that the expression levels of various genes and proteins involved in adipogenesis decreases following EGCG treatment. We also assessed apoptosis in EGCG-exposed cells. Here, we explore the variability in free-radical production in bovine bone-marrow mesenchymal stem cells (BMSCs) treated with EGCG. Upon adipogenic differentiation, BMSCs were exposed to various EGCG concentrations (0, 0.1, 1, 5, or 10 μM) for 2, 4, or 6 days. We found that EGCG reduced cell viability and arrested the cell cycle at the gap 2/mitosis phase and that EGCG potentially enhanced the production of free radicals, including reactive oxygen species and reactive nitrogen species, in a concentration- and time-dependent manner. Immunostaining revealed that the expression of genes encoding CCAAT/enhancer-binding protein alpha and stearoyl-CoA desaturase were diminished by EGCG treatment. These findings suggest that EGCG alters free-radical production activity during adipogenic differentiation in BMSCs.

  13. Mechanoregulation of gene expression in fibroblasts

    PubMed Central

    Wang, James H.-C.; Thampatty, Bhavani P.; Lin, Jeen-Shang; Im, Hee-Jeong

    2010-01-01

    Mechanical loads placed on connective tissues alter gene expression in fibroblasts through mechanotransduction mechanisms by which cells convert mechanical signals into cellular biological events, such as gene expression of extracellular matrix components (e.g., collagen). This mechanical regulation of ECM gene expression affords maintenance of connective tissue homeostasis. However, mechanical loads can also interfere with homeostatic cellular gene expression and consequently cause the pathogenesis of connective tissue diseases such as tendinopathy and osteoarthritis. Therefore, the regulation of gene expression by mechanical loads is closely related to connective tissue physiology and pathology. This article reviews the effects of various mechanical loading conditions on gene regulation in fibroblasts and discusses several mechanotransduction mechanisms. Future research directions in mechanoregulation of gene expression are also suggested. PMID:17331678

  14. Depletion of histone demethylase KDM2A enhanced the adipogenic and chondrogenic differentiation potentials of stem cells from apical papilla

    SciTech Connect

    Dong, Rui; Yao, Rui; Du, Juan; Wang, Songlin; Fan, Zhipeng

    2013-11-01

    Mesenchymal stem cells (MSCs) are a reliable resource for tissue regeneration, but the molecular mechanism underlying directed differentiation remains unclear; this has restricted potential MSC applications. The histone demethylase, lysine (K)-specific demethylase 2A (KDM2A), is evolutionarily conserved and ubiquitously expressed members of the JmjC-domain-containing histone demethylase family. A previous study determined that KDM2A can regulate the cell proliferation and osteo/dentinogenic differentiation of MSCs. It is not known whether KDM2A is involved in the other cell lineages differentiation of MSCs. Here, we show that depletion of KDM2A by short hairpin RNAs can enhance adipogenic and chondrogenic differentiation potentials in human stem cells from apical papilla (SCAPs). We found that the stemness-related genes, SOX2, and the embryonic stem cell master transcription factor, NANOG were significantly increased after silence of KDM2A in SCAPs. Moreover, we found that knock-down of the KDM2A co-factor, BCOR also up-regulated the mRNA levels of SOX2 and NANOG. Furthermore, Chromatin immunoprecipitation assays demonstrate that silence of KDM2A increased the histone H3 Lysine 4 (H3K4) trimethylation in the SOX2 and NANOG locus and regulates its expression. In conclusion, our results suggested that depletion of KDM2A enhanced the adipogenic and chondrogenic differentiation potentials of SCAPs by up-regulated SOX2 and NANOG, BCOR also involved in this regulation as co-factor, and provided useful information to understand the molecular mechanism underlying directed differentiation in MSCs. - Highlights: • Depletion of KDM2A enhances adipogenic/chondrogenic differentiation in SCAPs. • Depletion of KDM2A enhances the differentiation of SCAPs by activate SOX2 and NANOG. • Silence of KDM2A increases histone H3 Lysine 4 trimethylation in SOX2 and NANOG. • BCOR is co-factor of KDM2A involved in the differentiation regulation.

  15. Differential Gene Expression in Human Cerebrovascular Malformations

    PubMed Central

    Shenkar, Robert; Elliott, J. Paul; Diener, Katrina; Gault, Judith; Hu, Ling-Jia; Cohrs, Randall J.; Phang, Tzulip; Hunter, Lawrence; Breeze, Robert E.; Awad, Issam A.

    2009-01-01

    OBJECTIVE We sought to identify genes with differential expression in cerebral cavernous malformations (CCMs), arteriovenous malformations (AVMs), and control superficial temporal arteries (STAs) and to confirm differential expression of genes previously implicated in the pathobiology of these lesions. METHODS Total ribonucleic acid was isolated from four CCM, four AVM, and three STA surgical specimens and used to quantify lesion-specific messenger ribonucleic acid expression levels on human gene arrays. Data were analyzed with the use of two separate methodologies: gene discovery and confirmation analysis. RESULTS The gene discovery method identified 42 genes that were significantly up-regulated and 36 genes that were significantly down-regulated in CCMs as compared with AVMs and STAs (P = 0.006). Similarly, 48 genes were significantly up-regulated and 59 genes were significantly down-regulated in AVMs as compared with CCMs and STAs (P = 0.006). The confirmation analysis showed significant differential expression (P < 0.05) in 11 of 15 genes (angiogenesis factors, receptors, and structural proteins) that previously had been reported to be expressed differentially in CCMs and AVMs in immunohistochemical analysis. CONCLUSION We identify numerous genes that are differentially expressed in CCMs and AVMs and correlate expression with the immunohistochemistry of genes implicated in cerebrovascular malformations. In future efforts, we will aim to confirm candidate genes specifically related to the pathobiology of cerebrovascular malformations and determine their biological systems and mechanistic relevance. PMID:12535382

  16. Phenamil enhances the adipogenic differentiation of hen preadipocytes.

    PubMed

    Regassa, Alemu; Park, Kye Won; Kim, Woo Kyun

    2016-10-01

    A study was conducted to examine the effect of phenamil on adipogenic differentiation and expression of key adipogenic transcripts in hen preadipocytes. Preadipocytes were isolated from 20-week old Single Comb White Leghorn hens (Gallas gallus, Lohman strain). The experiment lasted for 48 h and had six treatments. Non-treated control (C) cells, cells treated with dexamethasone, 3-isobutyl-1-methylxanthine, insulin, and oleic acid (DMIOA) (T1), DMIOA + 15 μM phenamil (T2), DMIOA + 30 μM phenamil (T3), 15 μM phenamil alone (T4), and 30 μM phenamil alone (T5). Neutral lipid accumulation and the mRNA expression of key adipogenic transcripts were measured in all treatments and compared. Lipid accumulation was detected in T1, T2, and T3 only. Expression of peroxisome proliferator receptor-activator gamma 2 (PPARγ2), the core enhancer binding protein α (C/EBPα), C/EBPβ, fatty acid binding protein 4 (FABP4), and lipoprotein lipase (LPL) as well as ETS variant 4 (ETV4) and 5 was higher (P < 0.05) in T2, T3, T4, and T5 compared to C. Expression of these transcripts was higher (P < 0.05) in T2 and T3 compared to T4 and T5. The core enhancer binding protein α, C/EBPβ, and FABP4 were highly expressed (P < 0.05) in T1 compared to C. However, the expression of PPARγ2, LPL, and ETV4 and ETV5 was not significantly different. Expression of C/EBPα, C/EBPβ, and FABP4 was higher (P < 0.05) in T2 and T3 compared to T1. Expression of sterol regulatory element binding protein 1 (SREBP1) and leptin receptor (LEPR) was not significantly different among the treatments. In conclusion, phenamil enhances DMIOA-induced adipogenic differentiation of hen preadipocytes but does not induce adipogenesis by itself.

  17. Norovirus gene expression and replication.

    PubMed

    Thorne, Lucy G; Goodfellow, Ian G

    2014-02-01

    Noroviruses are small, positive-sense RNA viruses within the family Caliciviridae, and are now accepted widely as a major cause of acute gastroenteritis in both developed and developing countries. Despite their impact, our understanding of the life cycle of noroviruses has lagged behind that of other RNA viruses due to the inability to culture human noroviruses (HuNVs). Our knowledge of norovirus biology has improved significantly over the past decade as a result of numerous technological advances. The use of a HuNV replicon, improved biochemical and cell-based assays, combined with the discovery of a murine norovirus capable of replication in cell culture, has improved greatly our understanding of the molecular mechanisms of norovirus genome translation and replication, as well as the interaction with host cell processes. In this review, the current state of knowledge of the intracellular life of noroviruses is discussed with particular emphasis on the mechanisms of viral gene expression and viral genome replication.

  18. Effect of lipopolysaccharides on adipogenic potential and premature senescence of adipocyte progenitors.

    PubMed

    Zhao, Ming; Chen, Xiaoli

    2015-08-15

    The elevation of circulating LPS has been associated with obesity and aging. However, whether and how LPS contributes to adipose tissue dysfunction is unclear. In this study, we investigated the effect of LPS on the adipogenic capacity and cellular senescence of adipocyte progenitors. Stromal-vascular cells were isolated from inguinal adipose tissue of C57BL/6 mice and treated with LPS during the different time periods of adipocyte differentiation. We found that LPS treatment for 24 h prior to the induction of differentiation led to the most profound effect on the inhibition of adipogenesis, as evidenced by the morphological changes and the decreased mRNA expression of adipocyte marker genes. In addition, LPS induced features of premature senescence of SV cells, including the activation of p53, the elevation of SA-β-gal activity, and increased hydrogen peroxide production, but not telomere length. Upon LPS treatment, SV cells also developed senescence-associated secretory phenotype (SASP), as demonstrated by the increased expression of TNFα, IL-1β, IL-6, MCP-1, and VEGFα. Blocking LPS-induced NF-κB activation and cytokine production by Bay 11-7082 failed to rescue the impaired adipogenesis and the reduction in PPARγ and Zfp423 expression. On the contrary, rosiglitazone had little effect on cytokine production but corrected the defective adipogenic potential. In conclusion, we demonstrate that LPS inhibits adipogenesis by disrupting the differentiation of adipocyte progenitors in a NF-κB-independent manner; LPS also induces premature senescence of adipocyte progenitors. Our data suggest that LPS could be a potential contributor to the defective adipogenesis and the development of cellular senescence in adipose tissue during obesity and aging.

  19. Distinct adipogenic differentiation phenotypes of human umbilical cord mesenchymal cells dependent on adipogenic conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The umbilical cord (UC) matrix is a source of multipotent mesenchymal stem cells (MSCs) that have adipogenic potential and thus can be a model to study adipogenesis. However, existing variability in adipocytic differentiation outcomes may be due to discrepancies in methods utilized for adipogenic d...

  20. Post-natal myogenic and adipogenic developmental

    PubMed Central

    Konings, Gonda; van Weeghel, Michel; van den Hoogenhof, Maarten MG; Gijbels, Marion; van Erk, Arie; Schoonderwoerd, Kees; van den Bosch, Bianca; Dahlmans, Vivian; Calis, Chantal; Houten, Sander M; Misteli, Tom

    2011-01-01

    A-type lamins are a major component of the nuclear lamina. Mutations in the LMNA gene, which encodes the A-type lamins A and C, cause a set of phenotypically diverse diseases collectively called laminopathies. While adult LMNA null mice show various symptoms typically associated with laminopathies, the effect of loss of lamin A/C on early post-natal development is poorly understood. Here we developed a novel LMNA null mouse (LMNAGT−/−) based on genetrap technology and analyzed its early post-natal development. We detect LMNA transcripts in heart, the outflow tract, dorsal aorta, liver and somites during early embryonic development. Loss of A-type lamins results in severe growth retardation and developmental defects of the heart, including impaired myocyte hypertrophy, skeletal muscle hypotrophy, decreased amounts of subcutaneous adipose tissue and impaired ex vivo adipogenic differentiation. These defects cause death at 2 to 3 weeks post partum associated with muscle weakness and metabolic complications, but without the occurrence of dilated cardiomyopathy or an obvious progeroid phenotype. Our results indicate that defective early post-natal development critically contributes to the disease phenotypes in adult laminopathies. PMID:21818413

  1. Familial aggregation analysis of gene expressions

    PubMed Central

    Rao, Shao-Qi; Xu, Liang-De; Zhang, Guang-Mei; Li, Xia; Li, Lin; Shen, Gong-Qing; Jiang, Yang; Yang, Yue-Ying; Gong, Bin-Sheng; Jiang, Wei; Zhang, Fan; Xiao, Yun; Wang, Qing K

    2007-01-01

    Traditional studies of familial aggregation are aimed at defining the genetic (and non-genetic) causes of a disease from physiological or clinical traits. However, there has been little attempt to use genome-wide gene expressions, the direct phenotypic measures of genes, as the traits to investigate several extended issues regarding the distributions of familially aggregated genes on chromosomes or in functions. In this study we conducted a genome-wide familial aggregation analysis by using the in vitro cell gene expressions of 3300 human autosome genes (Problem 1 data provided to Genetic Analysis Workshop 15) in order to answer three basic genetics questions. First, we investigated how gene expressions aggregate among different types (degrees) of relative pairs. Second, we conducted a bioinformatics analysis of highly familially aggregated genes to see how they are distributed on chromosomes. Third, we performed a gene ontology enrichment test of familially aggregated genes to find evidence to support their functional consensus. The results indicated that 1) gene expressions did aggregate in families, especially between sibs. Of 3300 human genes analyzed, there were a total of 1105 genes with one or more significant (empirical p < 0.05) familial correlation; 2) there were several genomic hot spots where highly familially aggregated genes (e.g., the chromosome 6 HLA genes cluster) were clustered; 3) as we expected, gene ontology enrichment tests revealed that the 1105 genes were aggregating not only in families but also in functional categories. PMID:18466548

  2. Methods for monitoring multiple gene expression

    SciTech Connect

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2012-05-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  3. Methods for monitoring multiple gene expression

    SciTech Connect

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2013-10-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  4. Methods for monitoring multiple gene expression

    DOEpatents

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2008-06-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  5. Human adipocytes from the subcutaneous superficial layer have greater adipogenic potential and lower PPAR-γ DNA methylation levels than deep layer adipocytes.

    PubMed

    Kosaka, Kentaro; Kubota, Yoshitaka; Adachi, Naoki; Akita, Shinsuke; Sasahara, Yoshitaro; Kira, Tomoe; Kuroda, Masayuki; Mitsukawa, Nobuyuki; Bujo, Hideaki; Satoh, Kaneshige

    2016-08-01

    Human subcutaneous fat tissue consists of two layers, superficial adipose tissue (SAT) and deep adipose tissue (DAT). Some recent reports suggest that a disproportionate accumulation of DAT is related to obesity-associated metabolic complications. However, the differences in adipocyte function between SAT and DAT are unclear. To clarify the differences in human adipocyte characteristics between SAT and DAT, human ceiling culture-derived proliferative adipocytes (ccdPAs) were primary cultured from SAT and DAT of three lean female patients. Differences in adipogenic differentiation potential and sensitivity to exogenous adipogenic factors were examined. Epigenetic modification of the CpG island DNA methylation levels of genes related to adipogenesis was measured. In histological analyses, the mean adipocyte size in SAT was significantly larger than that in DAT (8,741 ± 416 vs. 7,732 ± 213 μm(2), P < 0.05). Primary cultured adipocytes from SAT showed significantly greater adipogenesis than did those of DAT. Sensitivity to partial adipogenic stimulation was significantly different between ccdPAs of SAT and DAT. Peroxisome proliferator-activated receptor-γ (PPAR-γ) protein expression and leptin protein secretion from ccdPAs were significantly higher in SAT than DAT. DNA methylation levels of PPAR-γ were significantly lower in ccdPAs of SAT than DAT. Adipocyte size was larger in SAT than DAT in vivo. This is consistent with the findings of an in vitro study that, compared with ccdPAs in DAT, ccdPAs in SAT have higher adipogenic potential and lower DNA methylation levels of PPAR-γ.

  6. Anti-adipogenic effect of epiberberine is mediated by regulation of the Raf/MEK1/2/ERK1/2 and AMPKα/Akt pathways.

    PubMed

    Choi, Jae Sue; Kim, Ji-Hye; Ali, Md Yousof; Jung, Hee Jin; Min, Byung-Sun; Choi, Ran Joo; Kim, Gun-Do; Jung, Hyun Ah

    2015-12-01

    It has been reported that alkaloids derived from Coptis chinensis exert anti-adipogenic activity on 3T3-L1 adipocytes by downregulating peroxisome proliferation-activity receptor-γ (PPAR-γ) and CCAAT/enhancer binding protein-α (C/EBP-α). However, the signaling-based mechanism of the inhibitory role of epiberberine in the early stages of 3T3-L1 adipocyte differentiation is uncharacterized. Here, we show that epiberberine had inhibitory effects on adipocyte differentiation and significantly decreased lipid accumulation by downregulating an adipocyte-specific transcription factor, sterol regulatory element-binding protein-1 (SREBP-1). Furthermore, we observed that epiberberine markedly suppressed the differentiation-mediated phosphorylation of components of both the Raf/mitogen-activated protein kinase 1 (MEK1)/extracellular signal-regulated protein kinase 1/2 (ERK1/2) and AMP-activated protein kinase-α1 (AMPKα)/Akt pathways. In addition, gene expression of fatty acid synthase (FAS) was significantly inhibited by treatment with epiberberine during adipogenesis. These results indicate that the anti-adipogenic mechanism of epiberberine is associated with inhibition of phosphorylation of Raf/MEK1/ERK1/2 and AMPKα/Akt, followed by downregulation of the major transcription factors of adipogenesis, such as PPAR-γ, C/EBP-α, and SREBP-1, and FAS. Taken together, this study suggests that the anti-adipogenic effect of epiberberine is mediated by downregulation of the Raf/MEK1/ERK1/2 and AMPKα/Akt pathways during 3T3-L1 adipocyte differentiation. Moreover, the anti-adipogenic effects of epiberberine were not accompanied by modulation of β-catenin.

  7. Fetal muscle contains different CD34+ cell subsets that distinctly differentiate into adipogenic, angiogenic and myogenic lineages.

    PubMed

    Dupas, Tanaelle; Rouaud, Thierry; Rouger, Karl; Lieubeau, Blandine; Cario-Toumaniantz, Chrystelle; Fontaine-Pérus, Josiane; Gardahaut, Marie-France; Auda-Boucher, Gwenola

    2011-11-01

    We have previously demonstrated that CD34(+) cells isolated from fetal mouse muscles are an interesting source of myogenic progenitors. In the present work, we pinpoint the tissue location of these CD34(+) cells using cell surface and phenotype markers. In order to identify the myogenic population, we next purified different CD34(+) subsets, determined their expression of relevant lineage-related genes, and analyzed their differentiation capacities in vitro and in vivo. The CD34(+) population comprised a CD31(+)/CD45(-) cell subset exhibiting endothelial characteristics and only capable of forming microvessels in vivo. The CD34(+)/CD31(-)/CD45(-)/Sca1(+) subpopulation, which is restricted to the muscle epimysium, displayed adipogenic differentiation both in vitro and in vivo. CD34(+)/CD31(-)/CD45(-)/Sca1(-) cells, localized in the muscle interstitium, transcribed myogenic genes, but did not display the characteristics of adult satellite cells. These cells were distinct from pericytes and fibroblasts. They were myogenic in vitro, and efficiently contributed to skeletal muscle regeneration in vivo, although their myogenic potential was lower than that of the unfractionated CD34(+) cell population. Our results indicate that angiogenic and adipogenic cells grafted with myogenic cells enhance their contribution to myogenic regeneration, highlighting the fundamental role of the microenvironment on the fate of transplanted cells.

  8. Transgelin is a TGFβ-inducible gene that regulates osteoblastic and adipogenic differentiation of human skeletal stem cells through actin cytoskeleston organization.

    PubMed

    Elsafadi, M; Manikandan, M; Dawud, R A; Alajez, N M; Hamam, R; Alfayez, M; Kassem, M; Aldahmash, A; Mahmood, A

    2016-08-04

    Regenerative medicine is a novel approach for treating conditions in which enhanced bone regeneration is required. We identified transgelin (TAGLN), a transforming growth factor beta (TGFβ)-inducible gene, as an upregulated gene during in vitro osteoblastic and adipocytic differentiation of human bone marrow-derived stromal (skeletal) stem cells (hMSC). siRNA-mediated gene silencing of TAGLN impaired lineage differentiation into osteoblasts and adipocytes but enhanced cell proliferation. Additional functional studies revealed that TAGLN deficiency impaired hMSC cell motility and in vitro transwell cell migration. On the other hand, TAGLN overexpression reduced hMSC cell proliferation, but enhanced cell migration, osteoblastic and adipocytic differentiation, and in vivo bone formation. In addition, deficiency or overexpression of TAGLN in hMSC was associated with significant changes in cellular and nuclear morphology and cytoplasmic organelle composition as demonstrated by high content imaging and transmission electron microscopy that revealed pronounced alterations in the distribution of the actin filament and changes in cytoskeletal organization. Molecular signature of TAGLN-deficient hMSC showed that several genes and genetic pathways associated with cell differentiation, including regulation of actin cytoskeleton and focal adhesion pathways, were downregulated. Our data demonstrate that TAGLN has a role in generating committed progenitor cells from undifferentiated hMSC by regulating cytoskeleton organization. Targeting TAGLN is a plausible approach to enrich for committed hMSC cells needed for regenerative medicine application.

  9. Heat Shock Protein Augmentation of Angelica gigas Nakai Root Hot Water Extract on Adipogenic Differentiation in Murine 3T3-L1 Preadipocytes.

    PubMed

    Lumbera, Wenchie Marie L; Dela Cruz, Joseph; Yang, Seung-Hak; Hwang, Seong Gu

    2016-03-01

    There is a high association of heat shock on the alteration of energy and lipid metabolism. The alterations associated with thermal stress are composed of gene expression changes and adaptation through biochemical responses. Previous study showed that Angelica gigas Nakai (AGN) root extract promoted adipogenic differentiation in murine 3T3-L1 preadipocytes under the normal temperature condition. However, its effect in heat shocked 3T3-L1 cells has not been established. In this study, we investigated the effect of AGN root hot water extract in the adipogenic differentiation of murine 3T3-L1 preadipocytes following heat shock and its possible mechanism of action. Thermal stress procedure was executed within the same stage of preadipocyte confluence (G0) through incubation at 42°C for one hour and then allowed to recover at normal incubation temperature of 37°C for another hour before AGN treatment for both cell viability assay and Oil Red O. Cell viability assay showed that AGN was able to dose dependently (0 to 400 μg/mL) increase cell proliferation under normal incubation temperature and also was able to prevent cytotoxicity due to heat shock accompanied by cell proliferation. Confluent preadipocytes were subjected into heat shock procedure, recovery and then AGN treatment prior to stimulation with the differentiation solution. Heat shocked preadipocytes exhibited reduced differentiation as supported by decreased amount of lipid accumulation in Oil Red O staining and triglyceride measurement. However, those heat shocked preadipocytes that then were given AGN extract showed a dose dependent increase in lipid accumulation as shown by both evaluation procedures. In line with these results, real-time polymerase chain reaction (RT-PCR) and Western blot analysis showed that AGN increased adipogenic differentiation by upregulating heat shock protection related genes and proteins together with the adipogenic markers. These findings imply the potential of AGN in heat

  10. Human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by AMP-activated protein kinase.

    PubMed

    Kim, Eung-Kyun; Lim, Seyoung; Park, Ji-Man; Seo, Jeong Kon; Kim, Jae Ho; Kim, Kyong Tai; Ryu, Sung Ho; Suh, Pann-Ghill

    2012-04-01

    AMP-activated protein kinase (AMPK) is an energy-sensing kinase that has recently been shown to regulate the differentiation of preadipocytes and osteoblasts. However, the role of AMPK in stem cell differentiation is largely unknown. Using in vitro culture models, the present study demonstrates that AMPK is a critical regulatory factor for osteogenic differentiation. We observed that expression and phosphorylation of AMPK were increased during osteogenesis in human adipose tissue-derived mesenchymal stem cells (hAMSC). To elucidate the role of AMPK in osteogenic differentiation, we investigated the effect of AMPK inhibition or knockdown on mineralization of hAMSC. Compound C, an AMPK inhibitor, reduced mineralized matrix deposition and suppressed the expression of osteoblast-specific genes, including alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), and osteocalcin (OCN). Knockdown of AMPK by shRNA-lentivirus infection also reduced osteogenesis. In addition, inhibition or knockdown of AMPK during osteogenesis inhibited ERK phosphorylation, which is required for osteogenesis. Interestingly, inhibition of AMPK induced adipogenic differentiation of hAMSC, even in osteogenic induction medium (OIM). These results provide a potential mechanism involving AMPK activation in osteogenic differentiation of hAMSC and suggest that commitment of hAMSC to osteogenic or adipogenic lineage is governed by activation or inhibition of AMPK, respectively.

  11. Estimation and Testing of Gene Expression Heterosis

    PubMed Central

    Liu, Peng; Nettleton, Dan

    2014-01-01

    Heterosis, also known as the hybrid vigor, occurs when the mean phenotype of hybrid off-spring is superior to that of its two inbred parents. The heterosis phenomenon is extensively utilized in agriculture though the molecular basis is still unknown. In an effort to understand phenotypic heterosis at the molecular level, researchers have begun to compare expression levels of thousands of genes between parental inbred lines and their hybrid offspring to search for evidence of gene expression heterosis. Standard statistical approaches for separately analyzing expression data for each gene can produce biased and highly variable estimates and unreliable tests of heterosis. To address these shortcomings, we develop a hierarchical model to borrow information across genes. Using our modeling framework, we derive empirical Bayes estimators and an inference strategy to identify gene expression heterosis. Simulation results show that our proposed method outperforms the more traditional strategy used to detect gene expression heterosis. This article has supplementary material online. PMID:25435758

  12. Estimation and Testing of Gene Expression Heterosis.

    PubMed

    Ji, Tieming; Liu, Peng; Nettleton, Dan

    2014-09-01

    Heterosis, also known as the hybrid vigor, occurs when the mean phenotype of hybrid off-spring is superior to that of its two inbred parents. The heterosis phenomenon is extensively utilized in agriculture though the molecular basis is still unknown. In an effort to understand phenotypic heterosis at the molecular level, researchers have begun to compare expression levels of thousands of genes between parental inbred lines and their hybrid offspring to search for evidence of gene expression heterosis. Standard statistical approaches for separately analyzing expression data for each gene can produce biased and highly variable estimates and unreliable tests of heterosis. To address these shortcomings, we develop a hierarchical model to borrow information across genes. Using our modeling framework, we derive empirical Bayes estimators and an inference strategy to identify gene expression heterosis. Simulation results show that our proposed method outperforms the more traditional strategy used to detect gene expression heterosis. This article has supplementary material online.

  13. Fat depot-specific differences in pref-1 gene expression and adipocyte cellularity between Wagyu and Holstein cattle.

    PubMed

    Yamada, Tomoya; Higuchi, Mikito; Nakanishi, Naoto

    2014-03-07

    Preadipocyte factor-1 (pref-1) is specifically expressed in preadipocytes and acts as a gatekeeper of adipogenesis by maintaining the preadipocyte state and preventing adipocyte differentiation. We hypothesized that the breed differences of adipogenic capacity in cattle could be explained by the expression level of pref-1. In this experiment, we studied the expression level of the pref-1 gene and adipocyte cellularity in subcutaneous and mesenteric adipose tissues of Japanese Black (Wagyu) and Holstein fattening cattle. In subcutaneous adipose tissue, there were no significant differences in the pref-1 gene expression levels and adipocyte sizes between the breeds. In contrast, the expression level of the pref-1 gene in mesenteric adipose tissue of Holsteins was significantly higher than that of Wagyu. In addition, the size of mesenteric adipocytes in Holsteins was significantly smaller than that of Wagyu. These results indicate that the breed differences of fattening cattle affect the expression pattern of the pref-1 gene and adipocyte cellularity in a fat depot-specific manner.

  14. Comparative epigenetic influence of autologous versus fetal bovine serum on mesenchymal stem cells through in vitro osteogenic and adipogenic differentiation.

    PubMed

    Fani, Nesa; Ziadlou, Reihane; Shahhoseini, Maryam; Baghaban Eslaminejad, Mohamadreza

    2016-06-10

    Mesenchymal stem cells (MSCs) derived from bone marrow (BM) represents a useful source of adult stem cells for cell therapy and tissue engineering. MSCs are present at a low frequency in the BM; therefore expansion is necessary before performing clinical studies. Fetal bovine serum (FBS) as a nutritional supplement for in vitro culture of MSCs is a suitable additive for human cell culture, but not regarding subsequent use of these cells for clinical treatment of human patients due to the risk of viral and prion transmission as well as xenogeneic immune responses after transplantation. Recently, autologous serum (AS) has been as a supplement to replace FBS in culture medium. We compared the effect of FBS versus AS on the histone modification pattern of MSCs through in vitro osteogenesis and adipogenesis. Differentiation of stem cells under various serum conditions to a committed state involves global changes in epigenetic patterns that are critically determined by chromatin modifications. Chromatin immunoprecipitation (ChIP) coupled with real-time PCR showed significant changes in the acetylation and methylation patterns in lysine 9 (Lys9) of histone H3 on the regulatory regions of stemness (Nanog, Sox2, Rex1), osteogenic (Runx2, Oc, Sp7) and adipogenic (Ppar-γ, Lpl, adiponectin) marker genes in undifferentiated MSCs, FBS and AS. All epigenetic changes occurred in a serum dependent manner which resulted in higher expression level of stemness genes in undifferentiated MSCs compared to differentiated MSCs and increased expression levels of osteogenic genes in AS compared to FBS. Adipogenic genes showed greater expression in FBS compared to AS. These findings have demonstrated the epigenetic influence of serum culture conditions on differentiation potential of MSCs, which suggest that AS is possibly more efficient serum for osteogenic differentiation of MSCs in cell therapy purposes.

  15. A Novel Regulatory Function of Sweet Taste-Sensing Receptor in Adipogenic Differentiation of 3T3-L1 Cells

    PubMed Central

    Masubuchi, Yosuke; Nakagawa, Yuko; Ma, Jinhui; Sasaki, Tsutomu; Kitamura, Tadahiro; Yamamoto, Yoritsuna; Kurose, Hitoshi; Kojima, Itaru; Shibata, Hiroshi

    2013-01-01

    Background Sweet taste receptor is expressed not only in taste buds but also in nongustatory organs such as enteroendocrine cells and pancreatic beta-cells, and may play more extensive physiological roles in energy metabolism. Here we examined the expression and function of the sweet taste receptor in 3T3-L1 cells. Methodology/Principal Findings In undifferentiated preadipocytes, both T1R2 and T1R3 were expressed very weakly, whereas the expression of T1R3 but not T1R2 was markedly up-regulated upon induction of differentiation (by 83.0 and 3.8-fold, respectively at Day 6). The α subunits of Gs (Gαs) and G14 (Gα14) but not gustducin were expressed throughout the differentiation process. The addition of sucralose or saccharin during the first 48 hours of differentiation considerably reduced the expression of peroxisome proliferator activated receptor γ (PPARγ and CCAAT/enhancer-binding protein α (C/EBPα at Day 2, the expression of aP2 at Day 4 and triglyceride accumulation at Day 6. These anti-adipogenic effects were attenuated by short hairpin RNA-mediated gene-silencing of T1R3. In addition, overexpression of the dominant-negative mutant of Gαs but not YM-254890, an inhibitor of Gα14, impeded the effects of sweeteners, suggesting a possible coupling of Gs with the putative sweet taste-sensing receptor. In agreement, sucralose and saccharin increased the cyclic AMP concentration in differentiating 3T3-L1 cells and also in HEK293 cells heterologously expressing T1R3. Furthermore, the anti-adipogenic effects of sweeteners were mimicked by Gs activation with cholera toxin but not by adenylate cyclase activation with forskolin, whereas small interfering RNA-mediated knockdown of Gαs had the opposite effects. Conclusions 3T3-L1 cells express a functional sweet taste-sensing receptor presumably as a T1R3 homomer, which mediates the anti-adipogenic signal by a Gs-dependent but cAMP-independent mechanism. PMID:23336004

  16. Validation of immature adipogenic status and identification of prognostic biomarkers in myxoid liposarcoma using tissue microarrays.

    PubMed

    Cheng, Hongwei; Dodge, Jim; Mehl, Erika; Liu, Shuzhen; Poulin, Neal; van de Rijn, Matt; Nielsen, Torsten O

    2009-09-01

    Myxoid liposarcoma displays variably aggressive behavior and responds poorly to available systemic therapies. Expression profiling followed by tissue microarray validation linked to patient outcome is a powerful approach for validating biological mechanisms and identifying prognostic biomarkers. We applied these techniques to independent series of primary myxoid liposarcomas in an effort to assess markers of adipose differentiation in myxoid liposarcoma and to identify prognostic markers that can be efficiently assessed by immunohistochemistry. Candidate genes were selected based on analysis of expression profiles from 9 primary myxoid/round liposarcomas and 45 other soft tissue tumors, and by reference to publicly available data sets. Protein products were validated on an adipose neoplasm tissue microarray, including 32 myxoid liposarcomas linked to patient outcome. Results were scored visually and correlated with clinical outcome by Kaplan-Meier and Cox regression analyses. In the study, by examining expression patterns of several lipogenic regulatory gene products, an immature adipogenic status was verified in myxoid liposarcomas. We also found that expression levels of the ret proto-oncogene, insulin-like growth factor 1 receptor, and insulin-like growth factor 2 correlate with poor metastasis-free survival, supporting a role for ERK/MAPK and PI3K/AKT pathways in clinically aggressive myxoid liposarcomas.

  17. Gene Expression Patterns in Ovarian Carcinomas

    PubMed Central

    Schaner, Marci E.; Ross, Douglas T.; Ciaravino, Giuseppe; Sørlie, Therese; Troyanskaya, Olga; Diehn, Maximilian; Wang, Yan C.; Duran, George E.; Sikic, Thomas L.; Caldeira, Sandra; Skomedal, Hanne; Tu, I-Ping; Hernandez-Boussard, Tina; Johnson, Steven W.; O'Dwyer, Peter J.; Fero, Michael J.; Kristensen, Gunnar B.; Børresen-Dale, Anne-Lise; Hastie, Trevor; Tibshirani, Robert; van de Rijn, Matt; Teng, Nelson N.; Longacre, Teri A.; Botstein, David; Brown, Patrick O.; Sikic, Branimir I.

    2003-01-01

    We used DNA microarrays to characterize the global gene expression patterns in surface epithelial cancers of the ovary. We identified groups of genes that distinguished the clear cell subtype from other ovarian carcinomas, grade I and II from grade III serous papillary carcinomas, and ovarian from breast carcinomas. Six clear cell carcinomas were distinguished from 36 other ovarian carcinomas (predominantly serous papillary) based on their gene expression patterns. The differences may yield insights into the worse prognosis and therapeutic resistance associated with clear cell carcinomas. A comparison of the gene expression patterns in the ovarian cancers to published data of gene expression in breast cancers revealed a large number of differentially expressed genes. We identified a group of 62 genes that correctly classified all 125 breast and ovarian cancer specimens. Among the best discriminators more highly expressed in the ovarian carcinomas were PAX8 (paired box gene 8), mesothelin, and ephrin-B1 (EFNB1). Although estrogen receptor was expressed in both the ovarian and breast cancers, genes that are coregulated with the estrogen receptor in breast cancers, including GATA-3, LIV-1, and X-box binding protein 1, did not show a similar pattern of coexpression in the ovarian cancers. PMID:12960427

  18. Arabidopsis gene expression patterns during spaceflight

    NASA Astrophysics Data System (ADS)

    Paul, A.-L.; Ferl, R. J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments resulted in the differential expression of hundreds of genes. A 5 day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β -Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on two fronts. First, expression patterns visualized with the Adh/GUS transgene were used to address specifically the possibility that spaceflight induces a hypoxic stress response, and to assess whether any spaceflight response was similar to control terrestrial hypoxia-induced gene expression patterns. (Paul et al., Plant Physiol. 2001, 126:613). Second, genome-wide patterns of native gene expression were evaluated utilizing the Affymetrix ATH1 GeneChip? array of 8,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes identified with the arrays was further characterized with quantitative Real-Time RT PCR (ABI - TaqmanTM). Comparison of the patterns of expression for arrays of hybridized with RNA isolated from plants exposed to spaceflight compared to the control arrays revealed hundreds of genes that were differentially expressed in response to spaceflight, yet most genes that are hallmarks of hypoxic stress were unaffected. These results will be discussed in light of current models for plant responses to the spaceflight environment, and with regard to potential future flight opportunities.

  19. Stratified gene expression analysis identifies major amyotrophic lateral sclerosis genes.

    PubMed

    Jones, Ashley R; Troakes, Claire; King, Andrew; Sahni, Vibhu; De Jong, Simone; Bossers, Koen; Papouli, Efterpi; Mirza, Muddassar; Al-Sarraj, Safa; Shaw, Christopher E; Shaw, Pamela J; Kirby, Janine; Veldink, Jan H; Macklis, Jeffrey D; Powell, John F; Al-Chalabi, Ammar

    2015-05-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of motor neurons resulting in progressive paralysis. Gene expression studies of ALS only rarely identify the same gene pathways as gene association studies. We hypothesized that analyzing tissues by matching on degree of disease severity would identify different patterns of gene expression from a traditional case-control comparison. We analyzed gene expression changes in 4 postmortem central nervous system regions, stratified by severity of motor neuron loss. An overall comparison of cases (n = 6) and controls (n = 3) identified known ALS gene, SOX5, as showing differential expression (log2 fold change = 0.09, p = 5.5 × 10(-5)). Analyses stratified by disease severity identified expression changes in C9orf72 (p = 2.77 × 10(-3)), MATR3 (p = 3.46 × 10(-3)), and VEGFA (p = 8.21 × 10(-4)), all implicated in ALS through genetic studies, and changes in other genes in pathways involving RNA processing and immune response. These findings suggest that analysis of gene expression stratified by disease severity can identify major ALS genes and may be more efficient than traditional case-control comparison.

  20. Gene Expression Noise, Fitness Landscapes, and Evolution

    NASA Astrophysics Data System (ADS)

    Charlebois, Daniel

    The stochastic (or noisy) process of gene expression can have fitness consequences for living organisms. For example, gene expression noise facilitates the development of drug resistance by increasing the time scale at which beneficial phenotypic states can be maintained. The present work investigates the relationship between gene expression noise and the fitness landscape. By incorporating the costs and benefits of gene expression, we track how the fluctuation magnitude and timescale of expression noise evolve in simulations of cell populations under stress. We find that properties of expression noise evolve to maximize fitness on the fitness landscape, and that low levels of expression noise emerge when the fitness benefits of gene expression exceed the fitness costs (and that high levels of noise emerge when the costs of expression exceed the benefits). The findings from our theoretical/computational work offer new hypotheses on the development of drug resistance, some of which are now being investigated in evolution experiments in our laboratory using well-characterized synthetic gene regulatory networks in budding yeast. Nserc Postdoctoral Fellowship (Grant No. PDF-453977-2014).

  1. "The preadipocyte factor" DLK1 marks adult mouse adipose tissue residing vascular cells that lack in vitro adipogenic differentiation potential.

    PubMed

    Andersen, Ditte Caroline; Jensen, Line; Schrøder, Henrik Daa; Jensen, Charlotte Harken

    2009-09-03

    Delta-like 1 (Dlk1) is expressed in 3T3-L1 preadipocytes and has frequently been referred to as "the" preadipocyte marker, yet the phenotype of DLK1(+) cells in adipose tissue remains undetermined. Herein, we demonstrate that DLK1(+) cells encompass around 1-2% of the adult mouse adipose stromal vascular fraction (SVF). Unexpectedly, the DLK1(+)SVF population was enriched for cells expressing genes generally ascribed to the vascular lineage and did not possess any adipogenic differentiation potential in vitro. Instead, DLK1(+) cells comprised an immediate ability for cobblestone formation, generation of tube-like structures on matrigel, and uptake of Acetylated Low Density-Lipoprotein, all characteristics of endothelial cells. We therefore suggest that DLK1(+)SVF cells are of a vascular origin and not them-selves committed preadipocytes as assumed hitherto.

  2. Biochanin a promotes osteogenic but inhibits adipogenic differentiation: evidence with primary adipose-derived stem cells.

    PubMed

    Su, Shu-Jem; Yeh, Yao-Tsung; Su, Shu-Hui; Chang, Kee-Lung; Shyu, Huey-Wen; Chen, Kuan-Ming; Yeh, Hua

    2013-01-01

    Biochanin A has promising effects on bone formation in vivo, although the underlying mechanism remains unclear yet. This study therefore aimed to investigate whether biochanin A regulates osteogenic and adipogenic differentiation using primary adipose-derived stem cells. The effects of biochanin A (at a physiologically relevant concentration of 0.1-1 μM) were assessed in vitro using various approaches, including Oil red O staining, Nile red staining, alizarin red S staining, alkaline phosphatase (ALP) activity, flow cytometry, RT-PCR, and western blotting. The results showed that biochanin A significantly suppressed adipocyte differentiation, as demonstrated by the inhibition of cytoplasmic lipid droplet accumulation, along with the inhibition of peroxisome proliferator-activated receptor gamma (PPAR γ ), lipoprotein lipase (LPL), and leptin and osteopontin (OPN) mRNA expression, in a dose-dependent manner. On the other hand, treatment of cells with 0.3 μM biochanin A increased the mineralization and ALP activity, and stimulated the expression of the osteogenic marker genes ALP and osteocalcin (OCN). Furthermore, biochanin A induced the expression of runt-related transcription factor 2 (Runx2), osteoprotegerin (OPG), and Ras homolog gene family, member A (RhoA) proteins. These observations suggest that biochanin A prevents adipogenesis, enhances osteoblast differentiation in mesenchymal stem cells, and has beneficial regulatory effects in bone formation.

  3. Gene expression in the etiology of schizophrenia.

    PubMed

    Bray, Nicholas J

    2008-05-01

    Gene expression represents a fundamental interface between genes and environment in the development and ongoing plasticity of the human brain. Individual differences in gene expression are likely to underpin much of human diversity, including psychiatric illness. In the past decade, the development of microarray and proteomic technology has enabled global description of gene expression in schizophrenia. However, it is difficult on the basis of gene expression assays alone to distinguish between those changes that constitute primary etiology and those that reflect secondary pathology, compensatory mechanisms, or confounding influences. In this respect, tests of genetic association with schizophrenia will be instructive because changes in gene expression that result from gene variants that are associated with the disorder are likely to be of primary etiological significance. However, regulatory polymorphism is extremely difficult to recognize on the basis of sequence interrogation alone. Functional assays at the messenger RNA and/or protein level will be essential in elucidating the molecular mechanisms underlying genetic association with schizophrenia and are likely to become increasingly important in the identification of regulatory variants with which to test for association with the disorder and related traits. Once established, etiologically relevant changes in gene expression can be recapitulated in model systems in order to elucidate the molecular and physiological pathways that may ultimately give rise to the condition.

  4. Noise minimisation in gene expression switches.

    PubMed

    Monteoliva, Diana; McCarthy, Christina B; Diambra, Luis

    2013-01-01

    Gene expression is subject to stochastic variation which leads to fluctuations in the rate of protein production. Recently, a study in yeast at a genomic scale showed that, in some cases, gene expression variability alters phenotypes while, in other cases, these remain unchanged despite fluctuations in the expression of other genes. These studies suggested that noise in gene expression is a physiologically relevant trait and, to prevent harmful stochastic variation in the expression levels of some genes, it can be subject to minimisation. However, the mechanisms for noise minimisation are still unclear. In the present work, we analysed how noise expression depends on the architecture of the cis-regulatory system, in particular on the number of regulatory binding sites. Using analytical calculations and stochastic simulations, we found that the fluctuation level in noise expression decreased with the number of regulatory sites when regulatory transcription factors interacted with only one other bound transcription factor. In contrast, we observed that there was an optimal number of binding sites when transcription factors interacted with many bound transcription factors. This finding suggested a new mechanism for preventing large fluctuations in the expression of genes which are sensitive to the concentration of regulators.

  5. Noise Minimisation in Gene Expression Switches

    PubMed Central

    Monteoliva, Diana; McCarthy, Christina B.; Diambra, Luis

    2013-01-01

    Gene expression is subject to stochastic variation which leads to fluctuations in the rate of protein production. Recently, a study in yeast at a genomic scale showed that, in some cases, gene expression variability alters phenotypes while, in other cases, these remain unchanged despite fluctuations in the expression of other genes. These studies suggested that noise in gene expression is a physiologically relevant trait and, to prevent harmful stochastic variation in the expression levels of some genes, it can be subject to minimisation. However, the mechanisms for noise minimisation are still unclear. In the present work, we analysed how noise expression depends on the architecture of the cis-regulatory system, in particular on the number of regulatory binding sites. Using analytical calculations and stochastic simulations, we found that the fluctuation level in noise expression decreased with the number of regulatory sites when regulatory transcription factors interacted with only one other bound transcription factor. In contrast, we observed that there was an optimal number of binding sites when transcription factors interacted with many bound transcription factors. This finding suggested a new mechanism for preventing large fluctuations in the expression of genes which are sensitive to the concentration of regulators. PMID:24376783

  6. Dimethylfumarate suppresses adipogenic differentiation in 3T3-L1 preadipocytes through inhibition of STAT3 activity.

    PubMed

    Kang, Hyeon-Ji; Seo, Hyun-Ae; Go, Younghoon; Oh, Chang Joo; Jeoung, Nam Ho; Park, Keun-Gyu; Lee, In-Kyu

    2013-01-01

    The excessive accumulation of adipocytes contributes to the development of obesity and obesity-related diseases. The interactions of several transcription factors, such as C/EBPβ, PPARγ, C/EBPα, Nrf2, and STAT3, are required for adipogenic differentiation. Dimethylfumarate (DMF), an immune modulator and antioxidant, may function as an inhibitor of STAT3 and an activator of Nrf2. This study examined whether DMF inhibits adipogenic differentiation of 3T3-L1 preadipocytes by inhibiting STAT3 or activating Nrf2. DMF suppressed 3T3-L1 preadipocyte differentiation to mature adipocytes in a dose-dependent manner as determined by Oil Red O staining. The mRNA and protein levels of adipogenic genes, including C/EBPβ, C/EBPα, PPARγ, SREBP-1c, FAS, and aP2, were significantly lower in DMF-treated 3T3-L1 preadipocytes. Suppression of adipogenic differentiation by DMF treatment resulted primarily from inhibition of the early stages of differentiation. DMF inhibits clonal expansion during adipogenic differentiation through induction of a G1 cell cycle arrest. Additionally, DMF regulates cell cycle-related proteins, such as p21, pRb, and cyclin D. DMF treatment markedly inhibited differentiation medium-induced STAT3 phosphorylation and inhibited STAT3 transcriptional activation of a reporter construct composed of four synthetic STAT3-response elements. Moreover, inhibition of endogenous Nrf2 activity using a dominant negative Nrf2 did not abolish the DMF-induced inhibition of adipogenic differentiation of 3T3-L1 preadipocytes. In summary, DMF is a negative regulator of adipogenic differentiation based on its regulation of adipogenic transcription factors and cell cycle proteins. This negative regulation by DMF is mediated by STAT3 inhibition, but is unlikely to involve Nrf2 activation.

  7. Nucleosome repositioning underlies dynamic gene expression.

    PubMed

    Nocetti, Nicolas; Whitehouse, Iestyn

    2016-03-15

    Nucleosome repositioning at gene promoters is a fundamental aspect of the regulation of gene expression. However, the extent to which nucleosome repositioning is used within eukaryotic genomes is poorly understood. Here we report a comprehensive analysis of nucleosome positions as budding yeast transit through an ultradian cycle in which expression of >50% of all genes is highly synchronized. We present evidence of extensive nucleosome repositioning at thousands of gene promoters as genes are activated and repressed. During activation, nucleosomes are relocated to allow sites of general transcription factor binding and transcription initiation to become accessible. The extent of nucleosome shifting is closely related to the dynamic range of gene transcription and generally related to DNA sequence properties and use of the coactivators TFIID or SAGA. However, dynamic gene expression is not limited to SAGA-regulated promoters and is an inherent feature of most genes. While nucleosome repositioning occurs pervasively, we found that a class of genes required for growth experience acute nucleosome shifting as cells enter the cell cycle. Significantly, our data identify that the ATP-dependent chromatin-remodeling enzyme Snf2 plays a fundamental role in nucleosome repositioning and the expression of growth genes. We also reveal that nucleosome organization changes extensively in concert with phases of the cell cycle, with large, regularly spaced nucleosome arrays being established in mitosis. Collectively, our data and analysis provide a framework for understanding nucleosome dynamics in relation to fundamental DNA-dependent transactions.

  8. Gene Expression Patterns in Human Liver Cancers

    PubMed Central

    Chen, Xin; Cheung, Siu Tim; So, Samuel; Fan, Sheung Tat; Barry, Christopher; Higgins, John; Lai, Kin-Man; Ji, Jiafu; Dudoit, Sandrine; Ng, Irene O.L.; van de Rijn, Matt; Botstein, David; Brown, Patrick O.

    2002-01-01

    Hepatocellular carcinoma (HCC) is a leading cause of death worldwide. Using cDNA microarrays to characterize patterns of gene expression in HCC, we found consistent differences between the expression patterns in HCC compared with those seen in nontumor liver tissues. The expression patterns in HCC were also readily distinguished from those associated with tumors metastatic to liver. The global gene expression patterns intrinsic to each tumor were sufficiently distinctive that multiple tumor nodules from the same patient could usually be recognized and distinguished from all the others in the large sample set on the basis of their gene expression patterns alone. The distinctive gene expression patterns are characteristic of the tumors and not the patient; the expression programs seen in clonally independent tumor nodules in the same patient were no more similar than those in tumors from different patients. Moreover, clonally related tumor masses that showed distinct expression profiles were also distinguished by genotypic differences. Some features of the gene expression patterns were associated with specific phenotypic and genotypic characteristics of the tumors, including growth rate, vascular invasion, and p53 overexpression. PMID:12058060

  9. PLD1 regulates adipogenic differentiation through mTOR - IRS-1 phosphorylation at serine 636/639

    PubMed Central

    Song, Hae-In; Yoon, Mee-Sup

    2016-01-01

    Phospholipase D1 (PLD1) plays a known role in several differentiation processes, but its role in adipogenic differentiation remains unknown. In the present study, we identified PLD1 as a negative regulator of adipogenic differentiation. We showed that PLD activity was downregulated by both 3-Isobutyl-1-methylxanthine (IBMX) and insulin upon induction of differentiation in 3T3-L1 adipogenic cells. In line with this observation, PLD activity decreased in both high fat diet (HFD)-fed mice and ob/ob mice. We also found that differentiation of 3T3-L1 preadipocytes was enhanced by the depletion of PLD1 levels or inhibition of PLD1 activity by VU0155069, a PLD1-specific inhibitor. Conversely, treatment with phosphatidic acid (PA), a PLD product, and overexpression of PLD1 both caused a decrease in adipogenic differentiation. Moreover, the elevated differentiation in PLD1-knockdown 3T3-L1 cells was reduced by either PA treatment or PLD1 expression, confirming negative roles of PLD1 and PA in adipogenic differentiation. Further investigation revealed that PA displaces DEP domain-containing mTOR-interacting protein (DEPTOR) from mTORC1, which subsequently phosphorylates insulin receptor substrate-1 (IRS-1) at serine 636/639 in 3T3-L1 cells. Taken together, our findings provide convincing evidence for a direct role of PLD1 in adipogenic differentiation by regulating IRS-1 phosphorylation at serine 636/639 through DEPTOR displacement and mTOR activation. PMID:27872488

  10. Digital gene expression signatures for maize development.

    PubMed

    Eveland, Andrea L; Satoh-Nagasawa, Namiko; Goldshmidt, Alexander; Meyer, Sandra; Beatty, Mary; Sakai, Hajime; Ware, Doreen; Jackson, David

    2010-11-01

    Genome-wide expression signatures detect specific perturbations in developmental programs and contribute to functional resolution of key regulatory networks. In maize (Zea mays) inflorescences, mutations in the RAMOSA (RA) genes affect the determinacy of axillary meristems and thus alter branching patterns, an important agronomic trait. In this work, we developed and tested a framework for analysis of tag-based, digital gene expression profiles using Illumina's high-throughput sequencing technology and the newly assembled B73 maize reference genome. We also used a mutation in the RA3 gene to identify putative expression signatures specific to stem cell fate in axillary meristem determinacy. The RA3 gene encodes a trehalose-6-phosphate phosphatase and may act at the interface between developmental and metabolic processes. Deep sequencing of digital gene expression libraries, representing three biological replicate ear samples from wild-type and ra3 plants, generated 27 million 20- to 21-nucleotide reads with frequencies spanning 4 orders of magnitude. Unique sequence tags were anchored to 3'-ends of individual transcripts by DpnII and NlaIII digests, which were multiplexed during sequencing. We mapped 86% of nonredundant signature tags to the maize genome, which associated with 37,117 gene models and unannotated regions of expression. In total, 66% of genes were detected by at least nine reads in immature maize ears. We used comparative genomics to leverage existing information from Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) in functional analyses of differentially expressed maize genes. Results from this study provide a basis for the analysis of short-read expression data in maize and resolved specific expression signatures that will help define mechanisms of action for the RA3 gene.

  11. Time-lapse microscopy and classification of 2D human mesenchymal stem cells based on cell shape picks up myogenic from osteogenic and adipogenic differentiation.

    PubMed

    Seiler, Christof; Gazdhar, Amiq; Reyes, Mauricio; Benneker, Lorin M; Geiser, Thomas; Siebenrock, Klaus A; Gantenbein-Ritter, Benjamin

    2014-09-01

    Current methods to characterize mesenchymal stem cells (MSCs) are limited to CD marker expression, plastic adherence and their ability to differentiate into adipogenic, osteogenic and chondrogenic precursors. It seems evident that stem cells undergoing differentiation should differ in many aspects, such as morphology and possibly also behaviour; however, such a correlation has not yet been exploited for fate prediction of MSCs. Primary human MSCs from bone marrow were expanded and pelleted to form high-density cultures and were then randomly divided into four groups to differentiate into adipogenic, osteogenic chondrogenic and myogenic progenitor cells. The cells were expanded as heterogeneous and tracked with time-lapse microscopy to record cell shape, using phase-contrast microscopy. The cells were segmented using a custom-made image-processing pipeline. Seven morphological features were extracted for each of the segmented cells. Statistical analysis was performed on the seven-dimensional feature vectors, using a tree-like classification method. Differentiation of cells was monitored with key marker genes and histology. Cells in differentiation media were expressing the key genes for each of the three pathways after 21 days, i.e. adipogenic, osteogenic and chondrogenic, which was also confirmed by histological staining. Time-lapse microscopy data were obtained and contained new evidence that two cell shape features, eccentricity and filopodia (= 'fingers') are highly informative to classify myogenic differentiation from all others. However, no robust classifiers could be identified for the other cell differentiation paths. The results suggest that non-invasive automated time-lapse microscopy could potentially be used to predict the stem cell fate of hMSCs for clinical application, based on morphology for earlier time-points. The classification is challenged by cell density, proliferation and possible unknown donor-specific factors, which affect the performance of

  12. Gene expression homeostasis and chromosome architecture

    PubMed Central

    Seshasayee, Aswin Sai Narain

    2014-01-01

    In rapidly growing populations of bacterial cells, including those of the model organism Escherichia coli, genes essential for growth - such as those involved in protein synthesis - are expressed at high levels; this is in contrast to many horizontally-acquired genes, which are maintained at low transcriptional levels.1 This balance in gene expression states between 2 distinct classes of genes is established by a galaxy of transcriptional regulators, including the so-called nucleoid associated proteins (NAP) that contribute to shaping the chromosome.2 Besides these active players in gene regulation, it is not too far-fetched to anticipate that genome organization in terms of how genes are arranged on the chromosome,3 which is the result of long-drawn transactions among genome rearrangement processes and selection, and the manner in which it is structured inside the cell, plays a role in establishing this balance. A recent study from our group has contributed to the literature investigating the interplay between global transcriptional regulators and genome organization in establishing gene expression homeostasis.4 In particular, we address a triangle of functional interactions among genome organization, gene expression homeostasis and horizontal gene transfer. PMID:25997086

  13. Unmasking ultradian rhythms in gene expression

    PubMed Central

    van der Veen, Daan R.; Gerkema, Menno P.

    2017-01-01

    Biological oscillations with an ultradian time scale of 1 to several hours include cycles in behavioral arousal, episodic glucocorticoid release, and gene expression. Ultradian rhythms are thought to have an extrinsic origin because of a perceived absence of ultradian rhythmicity in vitro and a lack of known molecular ultradian oscillators. We designed a novel, non–spectral-analysis method of separating ultradian from circadian components and applied it to a published gene expression dataset with an ultradian sampling resolution. Ultradian rhythms in mouse hepatocytes in vivo have been published, and we validated our approach using this control by confirming 175 of 323 ultradian genes identified in a prior study and found 862 additional ultradian genes. For the first time, we now report ultradian expression of >900 genes in vitro. Sixty genes exhibited ultradian transcriptional rhythmicity, both in vivo and in vitro, including 5 genes involved in the cell cycle. Within these 60 genes, we identified significant enrichment of specific DNA motifs in the 1000 bp proximal promotor, some of which associate with known transcriptional factors. These findings are in strong support of instrinsically driven ultradian rhythms and expose potential molecular mechanisms and functions underlying ultradian rhythms that remain unknown.—Van der Veen, D. R., Gerkema, M. P. Unmasking ultradian rhythms in gene expression. PMID:27871062

  14. Adipogenic role of alternatively activated macrophages in β-adrenergic remodeling of white adipose tissue.

    PubMed

    Lee, Yun-Hee; Kim, Sang-Nam; Kwon, Hyun-Jung; Maddipati, Krishna Rao; Granneman, James G

    2016-01-01

    De novo brown adipogenesis involves the proliferation and differentiation of progenitors, yet the mechanisms that guide these events in vivo are poorly understood. We previously demonstrated that treatment with a β3-adrenergic receptor (ADRB3) agonist triggers brown/beige adipogenesis in gonadal white adipose tissue following adipocyte death and clearance by tissue macrophages. The close physical relationship between adipocyte progenitors and tissue macrophages suggested that the macrophages that clear dying adipocytes might generate proadipogenic factors. Flow cytometric analysis of macrophages from mice treated with CL 316,243 identified a subpopulation that contained elevated lipid and expressed CD44. Lipidomic analysis of fluorescence-activated cell sorting-isolated macrophages demonstrated that CD44+ macrophages contained four- to five-fold higher levels of the endogenous peroxisome-proliferator activated receptor gamma (PPARγ) ligands 9-hydroxyoctadecadienoic acid (HODE), and 13-HODE compared with CD44- macrophages. Gene expression profiling and immunohistochemistry demonstrated that ADRB3 agonist treatment upregulated expression of ALOX15, the lipoxygenase responsible for generating 9-HODE and 13-HODE. Using an in vitro model of adipocyte efferocytosis, we found that IL-4-primed tissue macrophages accumulated lipid from dying fat cells and upregulated expression of Alox15. Furthermore, treatment of differentiating adipocytes with 9-HODE and 13-HODE potentiated brown/beige adipogenesis. Collectively, these data indicate that noninflammatory removal of adipocyte remnants and coordinated generation of PPARγ ligands by M2 macrophages provides localized adipogenic signals to support de novo brown/beige adipogenesis.

  15. Altered gene expression in human adipose stem cells cultured with fetal bovine serum compared to human supplements.

    PubMed

    Bieback, Karen; Ha, Viet Anh-Thu; Hecker, Andrea; Grassl, Melanie; Kinzebach, Sven; Solz, Hermann; Sticht, Carsten; Klüter, Harald; Bugert, Peter

    2010-11-01

    Mesenchymal stromal cells (MSCs) are promising candidates for innovative cell therapeutic applications. For clinical scale manufacturing regulatory agencies recommend to replace fetal bovine serum (FBS) commonly used in MSC expansion media as soon as equivalent alternative supplements are available. We already demonstrated that pooled blood group AB human serum (HS) and thrombin-activated platelet releasate plasma (tPRP) support the expansion of multipotent adipose tissue-derived MSCs (ASCs). Slight differences in size, growth pattern and adhesion prompted us to investigate the level of equivalence by compiling the transcriptional profiles of ASCs cultivated in these supplements. A whole genome gene expression analysis was performed and data verified by polymerase chain reaction and protein analyses. Microarray-based screening of 34,039 genes revealed 102 genes differentially expressed in ASCs cultured with FBS compared to HS or tPRP supplements. A significantly higher expression in FBS cultures was found for 90 genes (fold change ≥2). Only 12 of the 102 genes showed a lower expression in FBS compared to HS or tPRP cultures (fold change ≤0.5). Differences between cells cultivated in HS and tPRP were hardly evident. Supporting previous observations of reduced adhesion of cells cultivated in the human alternatives we detected a number of adhesion and extracellular matrix-associated molecules expressed at lower levels in ASCs cultivated with human supplements. Confirmative assays analyzing transcript or protein expression with selected genes supported these results. Likewise a number of mesodermal differentiation-associated genes were higher expressed in cells grown in FBS. Quantifying adipogenic and osteogenic differentiation lacked to demonstrate a clear correlation to the supplement due to donor-specific variances. Our results emphasize the necessity of comparability studies as they indicate that FBS induces a culture adaptation exceeding that of ex vivo

  16. Expression of polarity genes in human cancer.

    PubMed

    Lin, Wan-Hsin; Asmann, Yan W; Anastasiadis, Panos Z

    2015-01-01

    Polarity protein complexes are crucial for epithelial apical-basal polarity and directed cell migration. Since alterations of these processes are common in cancer, polarity proteins have been proposed to function as tumor suppressors or oncogenic promoters. Here, we review the current understanding of polarity protein functions in epithelial homeostasis, as well as tumor formation and progression. As most previous studies focused on the function of single polarity proteins in simplified model systems, we used a genomics approach to systematically examine and identify the expression profiles of polarity genes in human cancer. The expression profiles of polarity genes were distinct in different human tissues and classified cancer types. Additionally, polarity expression profiles correlated with disease progression and aggressiveness, as well as with identified cancer types, where specific polarity genes were commonly altered. In the case of Scribble, gene expression analysis indicated its common amplification and upregulation in human cancer, suggesting a tumor promoting function.

  17. Regulation of Gene Expression in Protozoa Parasites

    PubMed Central

    Gomez, Consuelo; Esther Ramirez, M.; Calixto-Galvez, Mercedes; Medel, Olivia; Rodríguez, Mario A.

    2010-01-01

    Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or drug resistance, and the comprehension of the mechanisms implicated in that control could help to develop novel therapeutic strategies. However, until now these mechanisms are poorly understood in protozoa. Recent investigations into gene expression in protozoa parasites suggest that they possess many of the canonical machineries employed by higher eukaryotes for the control of gene expression at transcriptional, posttranscriptional, and epigenetic levels, but they also contain exclusive mechanisms. Here, we review the current understanding about the regulation of gene expression in Plasmodium sp., Trypanosomatids, Entamoeba histolytica and Trichomonas vaginalis. PMID:20204171

  18. Dynamic modeling of gene expression data

    NASA Technical Reports Server (NTRS)

    Holter, N. S.; Maritan, A.; Cieplak, M.; Fedoroff, N. V.; Banavar, J. R.

    2001-01-01

    We describe the time evolution of gene expression levels by using a time translational matrix to predict future expression levels of genes based on their expression levels at some initial time. We deduce the time translational matrix for previously published DNA microarray gene expression data sets by modeling them within a linear framework by using the characteristic modes obtained by singular value decomposition. The resulting time translation matrix provides a measure of the relationships among the modes and governs their time evolution. We show that a truncated matrix linking just a few modes is a good approximation of the full time translation matrix. This finding suggests that the number of essential connections among the genes is small.

  19. Mining Gene Expression Data of Multiple Sclerosis

    PubMed Central

    Zhu, Zhenli; Huang, Zhengliang; Li, Ke

    2014-01-01

    Objectives Microarray produces a large amount of gene expression data, containing various biological implications. The challenge is to detect a panel of discriminative genes associated with disease. This study proposed a robust classification model for gene selection using gene expression data, and performed an analysis to identify disease-related genes using multiple sclerosis as an example. Materials and methods Gene expression profiles based on the transcriptome of peripheral blood mononuclear cells from a total of 44 samples from 26 multiple sclerosis patients and 18 individuals with other neurological diseases (control) were analyzed. Feature selection algorithms including Support Vector Machine based on Recursive Feature Elimination, Receiver Operating Characteristic Curve, and Boruta algorithms were jointly performed to select candidate genes associating with multiple sclerosis. Multiple classification models categorized samples into two different groups based on the identified genes. Models’ performance was evaluated using cross-validation methods, and an optimal classifier for gene selection was determined. Results An overlapping feature set was identified consisting of 8 genes that were differentially expressed between the two phenotype groups. The genes were significantly associated with the pathways of apoptosis and cytokine-cytokine receptor interaction. TNFSF10 was significantly associated with multiple sclerosis. A Support Vector Machine model was established based on the featured genes and gave a practical accuracy of ∼86%. This binary classification model also outperformed the other models in terms of Sensitivity, Specificity and F1 score. Conclusions The combined analytical framework integrating feature ranking algorithms and Support Vector Machine model could be used for selecting genes for other diseases. PMID:24932510

  20. Identification of cord blood-derived mesenchymal stem/stromal cell populations with distinct growth kinetics, differentiation potentials, and gene expression profiles.

    PubMed

    Markov, Vladimir; Kusumi, Kenro; Tadesse, Mahlet G; William, Dilusha A; Hall, Dorian M; Lounev, Vitali; Carlton, Arlene; Leonard, Jay; Cohen, Rick I; Rappaport, Eric F; Saitta, Biagio

    2007-02-01

    Phenotypic heterogeneity has been observed among mesenchymal stem/stromal cell (MSC) populations, but specific genes associated with this variability have not been defined. To study this question, we analyzed two distinct isogenic MSC populations isolated from umbilical cord blood (UCB1 and UCB2). The use of isogenic populations eliminated differences contributed by genetic background. We characterized these UCB MSCs for cell morphology, growth kinetics, immunophenotype, and potential for differentiation. UCB1 displayed faster growth kinetics, higher population doublings, and increased adipogenic lineage differentiation compared to UCB2. However, osteogenic differentiation was stronger for the UCB2 population. To identify MSC-specific genes and developmental genes associated with observed phenotypic differences, we performed expression analysis using Affymetrix microarrays and compared them to bone marrow (BM) MSCs. We compared UCB1, UCB2, and BM and identified distinct gene expression patterns. Selected clusters were analyzed demonstrating that genes of multiple developmental pathways, such as transforming growth factor-beta (TGF-beta) and wnt genes, and markers of early embryonic stages and mesodermal differentiation displayed significant differences among the MSC populations. In undifferentiated UCB1 cells, multiple genes were significantly up-regulated (p < 0.0001): peroxisome proliferation activated receptor gamma (PPARG), which correlated with adipogenic differentiation capacities, hepatocyte growth factor (HGF), and stromal-derived factor 1 (SDF1/CXCL12), which could both potentially contribute to the higher growth kinetics observed in UCB1 cells. Overall, the results confirmed the presence of two distinct isogenic UCB-derived cell populations, identified gene profiles useful to distinguish MSC types with different lineage differentiation potentials, and helped clarify the heterogeneity observed in these cells.

  1. Amino acid regulation of gene expression.

    PubMed Central

    Fafournoux, P; Bruhat, A; Jousse, C

    2000-01-01

    The impact of nutrients on gene expression in mammals has become an important area of research. Nevertheless, the current understanding of the amino acid-dependent control of gene expression is limited. Because amino acids have multiple and important functions, their homoeostasis has to be finely maintained. However, amino-acidaemia can be affected by certain nutritional conditions or various forms of stress. It follows that mammals have to adjust several of their physiological functions involved in the adaptation to amino acid availability by regulating the expression of numerous genes. The aim of the present review is to examine the role of amino acids in regulating mammalian gene expression and protein turnover. It has been reported that some genes involved in the control of growth or amino acid metabolism are regulated by amino acid availability. For instance, limitation of several amino acids greatly increases the expression of the genes encoding insulin-like growth factor binding protein-1, CHOP (C/EBP homologous protein, where C/EBP is CCAAT/enhancer binding protein) and asparagine synthetase. Elevated mRNA levels result from both an increase in the rate of transcription and an increase in mRNA stability. Several observations suggest that the amino acid regulation of gene expression observed in mammalian cells and the general control process described in yeast share common features. Moreover, amino acid response elements have been characterized in the promoters of the CHOP and asparagine synthetase genes. Taken together, the results discussed in the present review demonstrate that amino acids, by themselves, can, in concert with hormones, play an important role in the control of gene expression. PMID:10998343

  2. The role of PIN1 on odontogenic and adipogenic differentiation in human dental pulp stem cells.

    PubMed

    Lee, Young-Man; Shin, Seung-Yun; Jue, Seong-Suk; Kwon, Il-Keun; Cho, Eun-Hee; Cho, Eui-Sic; Park, Sang-Hyuk; Kim, Eun-Cheol

    2014-03-15

    Recently, the involvement of PIN1, a peptidyl-prolyl cis/trans isomerase, has been reported in age-related bone homeostasis and adipogenesis. However, the role of PIN1 during odontogenic and adipogenic differentiation remains to be fully understood, particularly regarding human dental pulp stem cells (HDPSCs). Thus, in the present study, we have investigated the role of PIN1 in odontogenic and adipogenic differentiation of HDPSCs and signaling pathways possibly involved. PIN1 mRNA and protein level were upregulated in a time-dependent manner during adipogenic differentiation, increasing until 1 day of odontogenic induction and then steadily declined during odontogenic differentiation. Treatment of a known PIN1 inhibitor, juglone, significantly increased odontogenic differentiation as confirmed by alkaline phosphatase (ALP) activity, calcium deposition, and mRNAs induction of odontogenic markers [ALP, osteopontin (OPN), osteocalcin (OCN), dentin sialophosphoprotein (DSPP), and dentin matrix protein 1 (DMP-1)]. On the contrary, adipogenic differentiation was dramatically reduced upon juglone treatment, with concomitant downregulation of lipid droplet accumulation and adipogenic marker genes [peroxisome proliferation-activated receptor gamma (PPARγ), lipoprotein lipase (LPL), and adipocyte fatty acid-binding protein (AP2)]. In contrast to PIN1 inhibition, the overexpression of PIN1 via adenoviral infection (Ad-PIN1) in HDPSCs inhibited odontogenic differentiation but increased adipogenic differentiation, in which stem cell property markers such as stage-specific embryonic antigen-4 (SSEA-4) and STRO-1 were upregulated during odontogenic differentiation but downregulated in adiopogenic differentiation. Consistently, juglone-mediated inhibition of PIN1 augmented the osteogenic medium (OM)-induced activation of bone morphogenetic protein (BMP), Wnt/β-catenin, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and nuclear factor-kappa B (NF

  3. Imputing gene expression to maximize platform compatibility.

    PubMed

    Zhou, Weizhuang; Han, Lichy; Altman, Russ B

    2017-02-15

    Microarray measurements of gene expression constitute a large fraction of publicly shared biological data, and are available in the Gene Expression Omnibus (GEO). Many studies use GEO data to shape hypotheses and improve statistical power. Within GEO, the Affymetrix HG-U133A and HG-U133 Plus 2.0 are the two most commonly used microarray platforms for human samples; the HG-U133 Plus 2.0 platform contains 54 220 probes and the HG-U133A array contains a proper subset (21 722 probes). When different platforms are involved, the subset of common genes is most easily compared. This approach results in the exclusion of substantial measured data and can limit downstream analysis. To predict the expression values for the genes unique to the HG-U133 Plus 2.0 platform, we constructed a series of gene expression inference models based on genes common to both platforms. Our model predicts gene expression values that are within the variability observed in controlled replicate studies and are highly correlated with measured data. Using six previously published studies, we also demonstrate the improved performance of the enlarged feature space generated by our model in downstream analysis.

  4. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis.

    PubMed

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis.

  5. Perspectives: Gene Expression in Fisheries Management

    USGS Publications Warehouse

    Nielsen, Jennifer L.; Pavey, Scott A.

    2010-01-01

    Functional genes and gene expression have been connected to physiological traits linked to effective production and broodstock selection in aquaculture, selective implications of commercial fish harvest, and adaptive changes reflected in non-commercial fish populations subject to human disturbance and climate change. Gene mapping using single nucleotide polymorphisms (SNPs) to identify functional genes, gene expression (analogue microarrays and real-time PCR), and digital sequencing technologies looking at RNA transcripts present new concepts and opportunities in support of effective and sustainable fisheries. Genomic tools have been rapidly growing in aquaculture research addressing aspects of fish health, toxicology, and early development. Genomic technologies linking effects in functional genes involved in growth, maturation and life history development have been tied to selection resulting from harvest practices. Incorporating new and ever-increasing knowledge of fish genomes is opening a different perspective on local adaptation that will prove invaluable in wild fish conservation and management. Conservation of fish stocks is rapidly incorporating research on critical adaptive responses directed at the effects of human disturbance and climate change through gene expression studies. Genomic studies of fish populations can be generally grouped into three broad categories: 1) evolutionary genomics and biodiversity; 2) adaptive physiological responses to a changing environment; and 3) adaptive behavioral genomics and life history diversity. We review current genomic research in fisheries focusing on those that use microarrays to explore differences in gene expression among phenotypes and within or across populations, information that is critically important to the conservation of fish and their relationship to humans.

  6. Control of gene expression in trypanosomes.

    PubMed Central

    Vanhamme, L; Pays, E

    1995-01-01

    Trypanosomes are protozoan agents of major parasitic diseases such as Chagas' disease in South America and sleeping sickness of humans and nagana disease of cattle in Africa. They are transmitted to mammalian hosts by specific insect vectors. Their life cycle consists of a succession of differentiation and growth phases requiring regulated gene expression to adapt to the changing extracellular environment. Typical of such stage-specific expression is that of the major surface antigens of Trypanosoma brucei, procyclin in the procyclic (insect) form and the variant surface glycoprotein (VSG) in the bloodstream (mammalian) form. In trypanosomes, the regulation of gene expression is effected mainly at posttranscriptional levels, since primary transcription of most of the genes occurs in long polycistronic units and is constitutive. The transcripts are processed by transsplicing and polyadenylation under the influence of intergenic polypyrimidine tracts. These events show some developmental regulation. Untranslated sequences of the mRNAs seem to play a prominent role in the stage-specific control of individual gene expression, through a modulation of mRNA abundance. The VSG and procyclin transcription units exhibit particular features that are probably related to the need for a high level of expression. The promoters and RNA polymerase driving the expression of these units resemble those of the ribosomal genes. Their mutually exclusive expression is ensured by controls operating at several levels, including RNA elongation. Antigenic variation in the bloodstream is achieved through DNA rearrangements or alternative activation of the telomeric VSG gene expression sites. Recent discoveries, such as the existence of a novel nucleotide in telomeric DNA and the generation of point mutations in VSG genes, have shed new light on the mechanisms and consequences of antigenic variation. PMID:7603410

  7. Resource Sharing Controls Gene Expression Bursting.

    PubMed

    Caveney, Patrick M; Norred, S Elizabeth; Chin, Charles W; Boreyko, Jonathan B; Razooky, Brandon S; Retterer, Scott T; Collier, C Patrick; Simpson, Michael L

    2017-02-17

    Episodic gene expression, with periods of high expression separated by periods of no expression, is a pervasive biological phenomenon. This bursty pattern of expression draws from a finite reservoir of expression machinery in a highly time variant way, i.e., requiring no resources most of the time but drawing heavily on them during short intense bursts, that intimately links expression bursting and resource sharing. Yet, most recent investigations have focused on specific molecular mechanisms intrinsic to the bursty behavior of individual genes, while little is known about the interplay between resource sharing and global expression bursting behavior. Here, we confine Escherichia coli cell extract in both cell-sized microfluidic chambers and lipid-based vesicles to explore how resource sharing influences expression bursting. Interestingly, expression burst size, but not burst frequency, is highly sensitive to the size of the shared transcription and translation resource pools. The intriguing implication of these results is that expression bursts are more readily amplified than initiated, suggesting that burst formation occurs through positive feedback or cooperativity. When extrapolated to prokaryotic cells, these results suggest that large translational bursts may be correlated with large transcriptional bursts. This correlation is supported by recently reported transcription and translation bursting studies in E. coli. The results reported here demonstrate a strong intimate link between global expression burst patterns and resource sharing, and they suggest that bursting plays an important role in optimizing the use of limited, shared expression resources.

  8. VEGF Gene Expression in Adult Human Thymus Fat: A Correlative Study with Hypoxic Induced Factor and Cyclooxigenase-2

    PubMed Central

    Tinahones, Francisco; Salas, Julian; Mayas, María Dolores; Ruiz-Villalba, Adrian; Macias-Gonzalez, Manuel; Garrido-Sanchez, Lourdes; DeMora, Manuel; Moreno-Santos, Inmaculada; Bernal, Rosa; Cardona, Fernando; Bekay, Rajaa El

    2009-01-01

    It is well known that the adult human thymus degenerates into fat tissue; however, it has never been considered as a potential source of angiogenic factors. Recently, we have described that this fat (TAT) produces angiogenic factors and induces human endothelial cell proliferation and migration, indicating its potential angiogenic properties. Design Adult thymus fat and subcutaneous adipose tissue specimens were obtained from 28 patients undergoing cardiac surgery, making this tissue readily available as a prime source of adipose tissue. We focused our investigation on determining VEGF gene expression and characterizing the different genes, mediators of inflammation and adipogenesis, and which are known to play a relevant role in angiogenesis regulation. Results We found that VEGF-A was the isoform most expressed in TAT. This expression was accompanied by an upregulation of HIF-1α, COX-2 and HO-1 proteins, and by increased HIF-1 DNA binding activity, compared to SAT. Furthermore, we observed that TAT contains a high percentage of mature adipocytes, 0.25% of macrophage cells, 15% of endothelial cells and a very low percentage of thymocyte cells, suggesting the cellular variability of TAT, which could explain the differences in gene expression observed in TAT. Subsequently, we showed that the expression of genes known as adipogenic mediators, including PPARγ1/γ2, FABP-4 and adiponectin was similar in both TAT and SAT. Moreover the expression of these latter genes presented a significantly positive correlation with VEGF, suggesting the potential association between VEGF and the generation of adipose tissue in adult thymus. Conclusion Here we suggest that this fat has a potential angiogenic function related to ongoing adipogenesis, which substitutes immune functions within the adult thymus. The expression of VEGF seems to be associated with COX-2, HO-1 and adipogenesis related genes, suggesting the importance that this new fat has acquired in research in relation to

  9. Application of multidisciplinary analysis to gene expression.

    SciTech Connect

    Wang, Xuefel; Kang, Huining; Fields, Chris; Cowie, Jim R.; Davidson, George S.; Haaland, David Michael; Sibirtsev, Valeriy; Mosquera-Caro, Monica P.; Xu, Yuexian; Martin, Shawn Bryan; Helman, Paul; Andries, Erik; Ar, Kerem; Potter, Jeffrey; Willman, Cheryl L.; Murphy, Maurice H.

    2004-01-01

    Molecular analysis of cancer, at the genomic level, could lead to individualized patient diagnostics and treatments. The developments to follow will signal a significant paradigm shift in the clinical management of human cancer. Despite our initial hopes, however, it seems that simple analysis of microarray data cannot elucidate clinically significant gene functions and mechanisms. Extracting biological information from microarray data requires a complicated path involving multidisciplinary teams of biomedical researchers, computer scientists, mathematicians, statisticians, and computational linguists. The integration of the diverse outputs of each team is the limiting factor in the progress to discover candidate genes and pathways associated with the molecular biology of cancer. Specifically, one must deal with sets of significant genes identified by each method and extract whatever useful information may be found by comparing these different gene lists. Here we present our experience with such comparisons, and share methods developed in the analysis of an infant leukemia cohort studied on Affymetrix HG-U95A arrays. In particular, spatial gene clustering, hyper-dimensional projections, and computational linguistics were used to compare different gene lists. In spatial gene clustering, different gene lists are grouped together and visualized on a three-dimensional expression map, where genes with similar expressions are co-located. In another approach, projections from gene expression space onto a sphere clarify how groups of genes can jointly have more predictive power than groups of individually selected genes. Finally, online literature is automatically rearranged to present information about genes common to multiple groups, or to contrast the differences between the lists. The combination of these methods has improved our understanding of infant leukemia. While the complicated reality of the biology dashed our initial, optimistic hopes for simple answers from

  10. Osteogenic and Adipogenic Cell Fractions Isolated from Postnatal Mouse Calvaria

    PubMed Central

    Steenhuis, P.; Carr, K.M.; Pettway, G.J.; Ignelzi, M.A.

    2009-01-01

    The use of stem/progenitor cells represents a promising approach to treat craniofacial bone defects, but successful treatments will rely on the availability of cells that can be expanded in vitroand which will differentiate appropriately in vivo. The calvaria may represent a source of autologous cells for such purposes. We demonstrate expression of stem cell antigen-1 (Sca-1) in mouse calvaria. We isolated Sca-1+ and Sca-1– cells at high purity and tested the ability of these cells to differentiate into adipose and bone. We show that the Sca-1+ cell fraction has adipogenic differentiation potential and that the cell Sca-1– fraction has osteogenic differentiation potential. The Sca-1+ cell fraction partially retains its adipogenic differentiation potential and the Sca-1– cell fraction partially retains its osteogenic differentiation potential after in vitroexpansion. These data suggest that the calvaria may be used as a source of stem/progenitor cells that can be expanded in vitroand transplanted in vivofor craniofacial tissue regeneration. PMID:19088466

  11. Introducing a single-cell-derived human mesenchymal stem cell line expressing hTERT after lentiviral gene transfer.

    PubMed

    Böcker, Wolfgang; Yin, Zhanhai; Drosse, Inga; Haasters, Florian; Rossmann, Oliver; Wierer, Matthias; Popov, Cvetan; Locher, Melanie; Mutschler, Wolf; Docheva, Denitsa; Schieker, Matthias

    2008-08-01

    Human mesenchymal stem cells (hMSCs) can be readily isolated from bone marrow and differentiate into multiple tissues, making them a promising target for future cell and gene therapy applications. The low frequency of hMSCs in bone marrow necessitates their isolation and expansion in vitro prior to clinical use, but due to senescence-associated growth arrest during culture, limited cell numbers can be generated. The lifespan of hMSCs has been extended by ectopic expression of human telomerase reverse transcriptase (hTERT) using retroviral vectors. Since malignant transformation was observed in hMSCs and retroviral vectors cause insertional mutagenesis, we ectopically expressed hTERT using lentiviral gene transfer. Single-cell-derived hMSC clones expressing hTERT did not show malignant transformation in vitro and in vivo after extended culture periods. There were no changes observed in the expression of tumour suppressor genes and karyotype. Cultured hMSCs lack telomerase activity, but it was significantly increased by ectopic expression of hTERT. HTERT expression prevented hMSC senescence and the cells showed significantly higher and unlimited proliferation capacity. Even after an extended culture period, hMSCs expressing hTERT preserved their stem cells character as shown by osteogenic, adipogenic and chondrogenic differentiation. In summary, extending the lifespan of human mesenchymal stem cells by ectopic expression of hTERT using lentiviral gene transfer may be an attractive and safe way to generate appropriate cell numbers for cell and gene therapy applications.

  12. Modeling gene expression in time and space.

    PubMed

    Rué, Pau; Garcia-Ojalvo, Jordi

    2013-01-01

    Cell populations rarely exhibit gene-expression profiles that are homogeneous in time and space. In the temporal domain, dynamical behaviors such as oscillations and pulses of protein production pervade cell biology, underlying phenomena as diverse as circadian rhythmicity, cell cycle control, stress and damage responses, and stem-cell pluripotency. In multicellular populations, spatial heterogeneities are crucial for decision making and development, among many other functions. Cells need to exquisitely coordinate this temporal and spatial variation to survive. Although the spatiotemporal character of gene expression is challenging to quantify experimentally at the level of individual cells, it is beneficial from the modeling viewpoint, because it provides strong constraints that can be probed by theoretically analyzing mathematical models of candidate gene and protein circuits. Here, we review recent examples of temporal dynamics and spatial patterning in gene expression to show how modeling such phenomenology can help us unravel the molecular mechanisms of cellular function.

  13. Chemically regulated gene expression in plants.

    PubMed

    Padidam, Malla

    2003-04-01

    Chemically inducible systems that activate or inactivate gene expression have many potential applications in the determination of gene function and in plant biotechnology. The precise timing and control of gene expression are important aspects of chemically inducible systems. Several systems have been developed and used to analyze gene function, marker-free plant transformation, site-specific DNA excision, activation tagging, conditional genetic complementation, and restoration of male fertility. Chemicals that are used to regulate transgene expression include the antibiotic tetracycline, the steroids dexamethasone and estradiol, copper, ethanol, the inducer of pathogen-related proteins benzothiadiazol, herbicide safeners, and the insecticide methoxyfenozide. Systems that are suitable for field application are particularly useful for experimental systems and have potential applications in biotechnology.

  14. CIRCADIAN CLOCK AND CELL CYCLE GENE EXPRESSION

    PubMed Central

    Metz, Richard P.; Qu, Xiaoyu; Laffin, Brian; Earnest, David; Porter, Weston W.

    2009-01-01

    Mouse mammary epithelial cells (HC-11) and mammary tissues were analyzed for developmental changes in circadian clock, cellular proliferation and differentiation marker genes. Expression of the clock genes, Per1 and Bmal1, were elevated in differentiated HC-11 cells whereas Per2 mRNA levels were higher in undifferentiated cells. This differentiation-dependent profile of clock gene expression was consistent with that observed in mouse mammary glands as Per1 and Bmal1 mRNA levels were elevated in late pregnant and lactating mammary tissues, while Per2 expression was higher in proliferating virgin and early pregnant glands. In both HC-11 cells and mammary glands, elevated Per2 expression was positively correlated with c-Myc and Cyclin D1 mRNA levels while Per1 and Bmal1 expression changed in conjunction with ß-casein mRNA levels. Interestingly, developmental stage had differential effects on rhythms of clock gene expression in the mammary gland. These data suggest that circadian clock genes may play a role in mouse mammary gland development and differentiation. PMID:16261617

  15. Regulation of the osteogenic and adipogenic differentiation of bone marrow-derived stromal cells by extracellular uridine triphosphate: The role of P2Y2 receptor and ERK1/2 signaling

    PubMed Central

    LI, WENKAI; WEI, SHENG; LIU, CHAOXU; SONG, MINGYU; WU, HUA; YANG, YONG

    2016-01-01

    An imbalance in the osteogenesis and adipogenesis of bone marrow-derived stromal cells (BMSCs) is a crucial pathological factor in the development of osteoporosis. Growing evidence suggests that extracellular nucleotide signaling involving the P2 receptors plays a significant role in bone metabolism. The aim of the present study was to investigate the effects of uridine triphosphate (UTP) on the osteogenic and adipogenic differentiation of BMSCs, and to elucidate the underlying mechanisms. The differentiation of the BMSCs was determined by measuring the mRNA and protein expression levels of osteogenic- and adipogenic-related markers, alkaline phosphatase (ALP) staining, alizarin red staining and Oil Red O staining. The effects of UTP on BMSC differentiation were assayed using selective P2Y receptor antagonists, small interfering RNA (siRNA) and an intracellular signaling inhibitor. The incubation of the BMSCs with UTP resulted in a dose-dependent decrease in osteogenesis and an increase in adipogenesis, without affecting cell proliferation. Significantly, siRNA targeting the P2Y2 receptor prevented the effects of UTP, whereas the P2Y6 receptor antagonist (MRS2578) and siRNA targeting the P2Y4 receptor had little effect. The activation of P2Y receptors by UTP transduced to the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway. This transduction was prevented by the mitogen-activated protein kinase inhibitor (U0126) and siRNA targeting the P2Y2 receptor. U0126 prevented the effects of UTP on osteogenic- and adipogenic-related gene expression after 24 h of culture, as opposed to 3 to 7 days of culture. Thus, our data suggest that UTP suppresses the osteogenic and enhances the adipogenic differentiation of BMSCs by activating the P2Y2 receptor. The ERK1/2 signaling pathway mediates the early stages of this process. PMID:26531757

  16. Paternally expressed genes predominate in the placenta.

    PubMed

    Wang, Xu; Miller, Donald C; Harman, Rebecca; Antczak, Douglas F; Clark, Andrew G

    2013-06-25

    The discovery of genomic imprinting through studies of manipulated mouse embryos indicated that the paternal genome has a major influence on placental development. However, previous research has not demonstrated paternal bias in imprinted genes. We applied RNA sequencing to trophoblast tissue from reciprocal hybrids of horse and donkey, where genotypic differences allowed parent-of-origin identification of most expressed genes. Using this approach, we identified a core group of 15 ancient imprinted genes, of which 10 were paternally expressed. An additional 78 candidate imprinted genes identified by RNA sequencing also showed paternal bias. Pyrosequencing was used to confirm the imprinting status of six of the genes, including the insulin receptor (INSR), which may play a role in growth regulation with its reciprocally imprinted ligand, histone acetyltransferase-1 (HAT1), a gene involved in chromatin modification, and lymphocyte antigen 6 complex, locus G6C, a newly identified imprinted gene in the major histocompatibility complex. The 78 candidate imprinted genes displayed parent-of-origin expression bias in placenta but not fetus, and most showed less than 100% silencing of the imprinted allele. Some displayed variability in imprinting status among individuals. This variability results in a unique epigenetic signature for each placenta that contributes to variation in the intrauterine environment and thus presents the opportunity for natural selection to operate on parent-of-origin differential regulation. Taken together, these features highlight the plasticity of imprinting in mammals and the central importance of the placenta as a target tissue for genomic imprinting.

  17. Hepatic Xenobiotic Metabolizing Enzyme Gene Expression ...

    EPA Pesticide Factsheets

    BACKGROUND: Differences in responses to environmental chemicals and drugs between life stages are likely due in part to differences in the expression of xenobiotic metabolizing enzymes and transporters (XMETs). No comprehensive analysis of the mRNA expression of XMETs has been carried out through life stages in any species. RESULTS: Using full-genome arrays, the mRNA expression of all XMETs and their regulatory proteins was examined during fetal (gestation day (GD) 19), neonatal (postnatal day (PND) 7), prepubescent (PND32), middle age (12 months), and old age (18 and 24 months) in the C57BL/6J (C57) mouse liver and compared to adults. Fetal and neonatal life stages exhibited dramatic differences in XMET mRNA expression compared to the relatively minor effects of old age. The total number of XMET probe sets that differed from adults was 636, 500, 84, 5, 43, and 102 for GD19, PND7, PND32, 12 months, 18 months and 24 months, respectively. At all life stages except PND32, under-expressed genes outnumbered over-expressed genes. The altered XMETs included those in all of the major metabolic and transport phases including introduction of reactive or polar groups (Phase I), conjugation (Phase II) and excretion (Phase III). In the fetus and neonate, parallel increases in expression were noted in the dioxin receptor, Nrf2 components and their regulated genes while nuclear receptors and regulated genes were generally down-regulated. Suppression of male-specific XMETs w

  18. Three gene expression vector sets for concurrently expressing multiple genes in Saccharomyces cerevisiae.

    PubMed

    Ishii, Jun; Kondo, Takashi; Makino, Harumi; Ogura, Akira; Matsuda, Fumio; Kondo, Akihiko

    2014-05-01

    Yeast has the potential to be used in bulk-scale fermentative production of fuels and chemicals due to its tolerance for low pH and robustness for autolysis. However, expression of multiple external genes in one host yeast strain is considerably labor-intensive due to the lack of polycistronic transcription. To promote the metabolic engineering of yeast, we generated systematic and convenient genetic engineering tools to express multiple genes in Saccharomyces cerevisiae. We constructed a series of multi-copy and integration vector sets for concurrently expressing two or three genes in S. cerevisiae by embedding three classical promoters. The comparative expression capabilities of the constructed vectors were monitored with green fluorescent protein, and the concurrent expression of genes was monitored with three different fluorescent proteins. Our multiple gene expression tool will be helpful to the advanced construction of genetically engineered yeast strains in a variety of research fields other than metabolic engineering.

  19. Notch Signaling Rescues Loss of Satellite Cells Lacking Pax7 and Promotes Brown Adipogenic Differentiation

    PubMed Central

    Pasut, Alessandra; Chang, Natasha C.; Rodriguez, Uxia Gurriaran; Faulkes, Sharlene; Yin, Hang; Lacaria, Melanie; Ming, Hong; Rudnicki, Michael A.

    2016-01-01

    Summary Pax7 is a nodal transcription factor that is essential for regulating the maintenance, expansion, and myogenic identity of satellite cells during both neonatal and adult myogenesis. Deletion of Pax7 results in loss of satellite cells and impaired muscle regeneration. Here we show that ectopic expression of the constitutively active intracellular domain of Notch1 (NICD1) rescues the loss of Pax7-deficient satellite cells and restores their proliferative potential. Strikingly NICD1-expressing satellite cells do not undergo myogenic differentiation and instead acquire a brown adipogenic fate both in vivo and in vitro. NICD-expressing Pax7-/- satellite cells fail to upregulate MyoD and instead express the brown adipogenic marker PRDM16. Overall these results show that Notch1 activation compensates for the loss of Pax7 in the quiescent state and acts as a molecular switch to promote brown adipogenesis in adult skeletal muscle. PMID:27346341

  20. Notch Signaling Rescues Loss of Satellite Cells Lacking Pax7 and Promotes Brown Adipogenic Differentiation.

    PubMed

    Pasut, Alessandra; Chang, Natasha C; Rodriguez, Uxia Gurriaran; Faulkes, Sharlene; Yin, Hang; Lacaria, Melanie; Ming, Hong; Rudnicki, Michael A

    2016-07-12

    Pax7 is a nodal transcription factor that is essential for regulating the maintenance, expansion, and myogenic identity of satellite cells during both neonatal and adult myogenesis. Deletion of Pax7 results in loss of satellite cells and impaired muscle regeneration. Here, we show that ectopic expression of the constitutively active intracellular domain of Notch1 (NICD1) rescues the loss of Pax7-deficient satellite cells and restores their proliferative potential. Strikingly NICD1-expressing satellite cells do not undergo myogenic differentiation and instead acquire a brown adipogenic fate both in vivo and in vitro. NICD-expressing Pax7(-/-) satellite cells fail to upregulate MyoD and instead express the brown adipogenic marker PRDM16. Overall, these results show that Notch1 activation compensates for the loss of Pax7 in the quiescent state and acts as a molecular switch to promote brown adipogenesis in adult skeletal muscle.

  1. Effect of cell density on adipogenic differentiation of mesenchymal stem cells.

    PubMed

    Lu, Hongxu; Guo, Likun; Wozniak, Michal J; Kawazoe, Naoki; Tateishi, Tetsuya; Zhang, Xingdong; Chen, Guoping

    2009-04-10

    The effect of cell density on the adipogenic differentiation of human bone marrow-derived mesenchymal stem cells (MSCs) was investigated by using a patterning technique to induce the formation of a cell density gradient on a micropatterned surface. The adipogenic differentiation of MSCs at a density gradient from 5 x 10(3) to 3 x 10(4) cells/cm2 was examined. Lipid vacuoles were observed at all cell densities after 1-3 weeks of culture in adipogenic differentiation medium although the lipid vacuoles were scarce at the low cell density and abundant at the high cell density. Real-time RT-PCR analysis showed that adipogenesis marker genes encoding peroxisome proliferator-activated receptor gamma2 (PPARgamma2), lipoprotein lipase (LPL), and fatty acid binding protein-4 (FABP4) were detected in the MSCs cultured at all cell densities. The results suggest that there was no apparent effect of cell density on the adipogenic differentiation of human MSCs.

  2. Effect of cell density on adipogenic differentiation of mesenchymal stem cells

    SciTech Connect

    Lu, Hongxu; Guo, Likun; Wozniak, Michal J.; Kawazoe, Naoki; Tateishi, Tetsuya; Zhang, Xingdong; Chen, Guoping

    2009-04-10

    The effect of cell density on the adipogenic differentiation of human bone marrow-derived mesenchymal stem cells (MSCs) was investigated by using a patterning technique to induce the formation of a cell density gradient on a micropatterned surface. The adipogenic differentiation of MSCs at a density gradient from 5 x 10{sup 3} to 3 x 10{sup 4} cells/cm{sup 2} was examined. Lipid vacuoles were observed at all cell densities after 1-3 weeks of culture in adipogenic differentiation medium although the lipid vacuoles were scarce at the low cell density and abundant at the high cell density. Real-time RT-PCR analysis showed that adipogenesis marker genes encoding peroxisome proliferator-activated receptor {gamma}2 (PPAR{gamma}2), lipoprotein lipase (LPL), and fatty acid binding protein-4 (FABP4) were detected in the MSCs cultured at all cell densities. The results suggest that there was no apparent effect of cell density on the adipogenic differentiation of human MSCs.

  3. Anti-adipogenic activity of the edible brown alga Ecklonia stolonifera and its constituent fucosterol in 3T3-L1 adipocytes.

    PubMed

    Jung, Hyun Ah; Jung, Hee Jin; Jeong, Hyun Young; Kwon, Hyun Ju; Kim, Min-Sun; Choi, Jae Sue

    2014-06-01

    Fucosterol is a sterol metabolite of brown algae and regulates genes involved with cholesterol homeostasis. As a part of our continuous search for anti-obesity agents from natural marine sources, the anti-adipogenic activities of Ecklonia stolonifera and its sterol, fucosterol, were evaluated for the inhibition of adipocyte differentiation and lipid formation. Oil Red O staining was used to evaluate triglyceride contents in 3T3-L1 pre-adipocytes primed by differentiation medium (DM) I and DM II. The methanolic extract of E. stolonifera showed strong anti-adipogenic activity, and was thus fractionated with several solvents. Among the tested fractions, the dichloromethane (CH2Cl2) fraction was found to be the most active fraction, with significant inhibition (40.5 %) of intracellular lipid accumulation at a non-toxic concentration, followed by the ethyl acetate fraction (30.2 %) at the same concentration, while the n-butanol and water fractions did not show inhibitory activity within the tested concentrations. The strong anti-adipogenic CH2Cl2-soluble fraction was further purified by a repeated chromatography to yield fucosterol. Fucosterol reduced lipid contents in a concentration-dependent manner without showing any cytotoxicity. Fucosterol treatment also yielded a decrease in the expression of the adipocyte marker proteins peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα) in a concentration-dependent manner. Taken together, these results suggest that fucosterol inhibits expression of PPARγ and C/EBPα, resulting in a decrease of lipid accumulation in 3T3-L1 pre-adipocytes, indicating that the potential use of E. stolonifera and its bioactive fucosterol as an anti-obesity agent.

  4. Expression of myriapod pair rule gene orthologs

    PubMed Central

    2011-01-01

    Background Segmentation is a hallmark of the arthropods; most knowledge about the molecular basis of arthropod segmentation comes from work on the fly Drosophila melanogaster. In this species a hierarchic cascade of segmentation genes subdivides the blastoderm stepwise into single segment wide regions. However, segmentation in the fly is a derived feature since all segments form virtually simultaneously. Conversely, in the vast majority of arthropods the posterior segments form one at a time from a posterior pre-segmental zone. The pair rule genes (PRGs) comprise an important level of the Drosophila segmentation gene cascade and are indeed the first genes that are expressed in typical transverse stripes in the early embryo. Information on expression and function of PRGs outside the insects, however, is scarce. Results Here we present the expression of the pair rule gene orthologs in the pill millipede Glomeris marginata (Myriapoda: Diplopoda). We find evidence that these genes are involved in segmentation and that components of the hierarchic interaction of the gene network as found in insects may be conserved. We further provide evidence that segments are formed in a single-segment periodicity rather than in pairs of two like in another myriapod, the centipede Strigamia maritima. Finally we show that decoupling of dorsal and ventral segmentation in Glomeris appears already at the level of the PRGs. Conclusions Although the pair rule gene network is partially conserved among insects and myriapods, some aspects of PRG interaction are, as suggested by expression pattern analysis, convergent, even within the Myriapoda. Conserved expression patterns of PRGs in insects and myriapods, however, may represent ancestral features involved in segmenting the arthropod ancestor. PMID:21352542

  5. Human AZU-1 gene, variants thereof and expressed gene products

    DOEpatents

    Chen, Huei-Mei; Bissell, Mina

    2004-06-22

    A human AZU-1 gene, mutants, variants and fragments thereof. Protein products encoded by the AZU-1 gene and homologs encoded by the variants of AZU-1 gene acting as tumor suppressors or markers of malignancy progression and tumorigenicity reversion. Identification, isolation and characterization of AZU-1 and AZU-2 genes localized to a tumor suppressive locus at chromosome 10q26, highly expressed in nonmalignant and premalignant cells derived from a human breast tumor progression model. A recombinant full length protein sequences encoded by the AZU-1 gene and nucleotide sequences of AZU-1 and AZU-2 genes and variant and fragments thereof. Monoclonal or polyclonal antibodies specific to AZU-1, AZU-2 encoded protein and to AZU-1, or AZU-2 encoded protein homologs.

  6. Rubisco gene expression in C4 plants.

    PubMed

    Patel, Minesh; Berry, James O

    2008-01-01

    In leaves of most C(4) plants, ribulose 1,5 bisphosphate carboxylase (Rubisco) accumulates only in bundle sheath (bs) cells that surround the vascular centres, and not in mesophyll (mp) cells. It has been shown previously that in the C(4) dicots amaranth and Flaveria bidentis, post-transcriptional control of mRNA translation and stability mediate the C(4) expression patterns of genes encoding the large and small Rubisco subunits (chloroplast rbcL and nuclear RbcS, respectively). Translational control appears to regulate bs cell-specific Rubisco gene expression during early dicot leaf development, while control of mRNA stability appears to mediate bs-specific accumulation of RbcS and rbcL transcripts in mature leaves. Post-transcriptional control is also involved in the regulation of Rubisco gene expression by light, and in response to photosynthetic activity. Transgenic and transient expression studies in F. bidentis provide direct evidence for post-transcriptional control of bs cell-specific RbcS expression, which is mediated by the 5' and 3' untranslated regions (UTRs) of the mRNA. Comparisons of Rubisco gene expression in these dicots and in the monocot maize indicates possible commonalities in the regulation of RbcS and rbcL genes in these divergent C(4) species. Now that the role of post-transcriptional regulation in C(4) gene expression has been established, it is likely that future studies of mRNA-protein interactions will address long-standing questions about the establishment and maintenance of cell type-specificity in these plants. Some of these regulatory mechanisms may have ancestral origins in C(3) species, through modification of pre-existing factors, or by the acquisition of novel C(4) processes.

  7. The expression of pluripotency genes and neuronal markers after neurodifferentiation in fibroblasts co-cultured with human umbilical cord blood mononuclear cells.

    PubMed

    Marinowic, D R; Domingues, M F; Machado, D C; DaCosta, J C

    2015-01-01

    Human umbilical cord blood is an attractive source of stem cells; however, it has a heterogeneous cell population with few mesenchymal stem cells. Cell reprogramming induced by different methodologies can confer pluripotency to differentiated adult cells. The objective of this study was to evaluate the reprogramming of fibroblasts and their subsequent neural differentiation after co-culture with umbilical cord blood mononuclear cells. Cells were obtained from four human umbilical cords. The mononuclear cells were cultured for 7 d and subsequently co-cultured with mouse fibroblast NIH-3T3 cells for 6 d. The pluripotency of the cells was evaluated by RT-PCR using primers specific for pluripotency marker genes. The pluripotency was also confirmed by adipogenic and osteogenic differentiation. Neural differentiation of the reprogrammed cells was evaluated by immunofluorescence. All co-cultured cells showed adipogenic and osteogenic differentiation capacity. After co-cultivation, cells expressed the pluripotency gene KLF4. Statistically significant differences in cell area, diameter, optical density, and fractal dimension were observed by confocal microscopy in the neurally differentiated cells. Contact in the form of co-cultivation of fibroblasts with umbilical cord blood mononuclear fraction for 6 d promoted the reprogramming of these cells, allowing the later induction of neural differentiation.

  8. Alternative-splicing-mediated gene expression

    NASA Astrophysics Data System (ADS)

    Wang, Qianliang; Zhou, Tianshou

    2014-01-01

    Alternative splicing (AS) is a fundamental process during gene expression and has been found to be ubiquitous in eukaryotes. However, how AS impacts gene expression levels both quantitatively and qualitatively remains to be fully explored. Here, we analyze two common models of gene expression, each incorporating a simple splice mechanism that a pre-mRNA is spliced into two mature mRNA isoforms in a probabilistic manner. In the constitutive expression case, we show that the steady-state molecular numbers of two mature mRNA isoforms follow mutually independent Poisson distributions. In the bursting expression case, we demonstrate that the tail decay of the steady-state distribution for both mature mRNA isoforms that in general are not mutually independent can be characterized by the product of mean burst size and splicing probability. In both cases, we find that AS can efficiently modulate both the variability (measured by variance) and the noise level of the total mature mRNA, and in particular, the latter is always lower than the noise level of the pre-mRNA, implying that AS always reduces the noise. These results altogether reveal that AS is a mechanism of efficiently controlling the gene expression noise.

  9. Mechanical strain regulates osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cells.

    PubMed

    Li, Runguang; Liang, Liang; Dou, Yonggang; Huang, Zeping; Mo, Huiting; Wang, Yaning; Yu, Bin

    2015-01-01

    This study examined the effects of mechanical strain on osteogenic and adipogenic differentiation of cultured MSCs by stimulating MSCs cultured in general and adipogenic differentiation media using a mechanical strain device. Markers of osteogenic (Runx2, Osx, and I-collagen) and adipogenic (PPARγ-2, C/EBPα, and lipid droplets) differentiation were examined using real-time PCR, western blot, immunocytochemical, or histochemical stain analyses. Levels of Runx2 and Osx gradually increased in MSC groups in general medium subject to strain stimulation, as compared with in unstrained groups. After adding the stress signal, I-collagen protein levels of expression were obviously promoted in cells in comparison to the controls. The levels of PPARγ-2 and C/EBPα were decreased, and the emergence of lipid droplets was delayed in MSCs groups in adipogenic differentiation medium subject to strain stimulation, as compared with in unstrained groups. Mechanical strain can promote differentiation of MSCs into osteoblasts and can impede differentiation into adipocytes. These results clarify the mechanisms underlying the effects of exercise on bone repair and reconstruction and provide a more adequate scientific basis for the use of exercise therapy in the treatment of obesity and metabolic osteoporosis.

  10. Tributyltin affects adipogenic cell fate commitment in mesenchymal stem cells by a PPARγ independent mechanism.

    PubMed

    Biemann, Ronald; Fischer, Bernd; Blüher, Matthias; Navarrete Santos, Anne

    2014-05-05

    The food contaminant tributyltin (TBT) is an endocrine disrupting compound (EDC) promoting adipogenic differentiation in vitro and in vivo. Although prenatal TBT exposure has been shown to induce obesity, the underlying mechanisms and the role of the transcription factor PPARγ are not clarified yet. At different stages of adipogenesis, multipotent murine mesenchymal stem cells (MSC), C3H10T1/2, were exposed to TBT and analyzed for adipogenic differentiation, PPARγ promoter activation and PPARγ1, PPARγ2, Pref-1 and SOX9 expression. Depending on the exposure window, TBT promoted subsequent adipogenesis independently and dependently from PPARγ. In undifferentiated MSC, TBT exposure induced a transcriptional PPARγ-independent repression of Pref-1 and SOX9, which are both suppressors of adipogenic cell fate commitment. During hormonal induction TBT additionally enhanced adipogenic differentiation by PPARγ signaling. The impact of TBT on early cell fate development documents a novel mechanistic insight in the development of adipocytes derived from MSC and its susceptibility to EDC.

  11. Sphingosine-1-phosphate inhibits the adipogenic differentiation of 3T3-L1 preadipocytes.

    PubMed

    Moon, Myung-Hee; Jeong, Jae-Kyo; Lee, You-Jin; Seol, Jae-Won; Park, Sang-Youel

    2014-10-01

    Sphingosine-1-phosphate (S1P) is a pluripotent lipid mediator that transmits signals through G-protein-coupled receptors to control diverse biological processes. The novel biological activity of S1P in the adipogenesis of 3T3-L1 preadipocytes was identified in the present study. S1P significantly decreased lipid accumulation in maturing preadipocytes in a dose‑dependent manner. In order to understand the anti‑adipogenic effects of S1P, preadipocytes were treated with S1P, and the change in the expression of several adipogenic transcription factors and enzymes was investigated using quantitative RT-PCR. S1P downregulated the transcriptional levels of the peroxisome proliferator-activated receptor γ, CCAAT/enhancer binding proteins and adiponectin, which are markers of adipogenic differentiation. The effects of S1P on the levels of mitogen‑activated protein kinase (MAPK) signals in preadipocytes were also investigated. The activation of JNK and p38 were downregulated by S1P treatment in human preadipocytes. In conclusion, the results of this study suggest that S1P alters fat mass by directly affecting adipogenesis. This is mediated by the downregulation of adipogenic transcription factors and by inactivation of the JNK and p38 MAPK pathways. Thus, selective targeting of the S1P receptors and sphingosine kinases may have clinical applications for the treatment of obesity.

  12. Weight cycling promotes fat gain and altered clock gene expression in adipose tissue in C57BL/6J mice.

    PubMed

    Dankel, S N; Degerud, E M; Borkowski, K; Fjære, E; Midtbø, L K; Haugen, C; Solsvik, M H; Lavigne, A M; Liaset, B; Sagen, J V; Kristiansen, K; Mellgren, G; Madsen, L

    2014-01-15

    Repeated attempts to lose weight by temporary dieting may result in weight cycling, eventually further gain of body fat, and possible metabolic adaptation. We tested this with a controlled experiment in C57BL/6J mice subjected to four weight cycles (WC), continuous hypercaloric feeding (HF), or low-fat feeding (LF). To search for genes involved in an adaptive mechanism to former weight cycling and avoid acute effects of the last cycle, the last hypercaloric feeding period was prolonged by an additional 2 wk before euthanization. Total energy intake was identical in WC and HF. However, compared with HF, the WC mice gained significantly more total body mass and fat mass and showed increased levels of circulating leptin and lipids in liver. Both the HF and WC groups showed increased adipocyte size and insulin resistance. Despite these effects, we also observed an interesting maintenance of circulating adiponectin and free fatty acid levels after WC, whereas changes in these parameters were observed in HF mice. Global gene expression was analyzed by microarrays. Weight-cycled mice were characterized by a downregulation of several clock genes (Dbp, Tef, Per1, Per2, Per3, and Nr1d2) in adipose tissues, which was confirmed by quantitative PCR. In 3T3-L1 cells, we found reduced expression of Dbp and Tef early in adipogenic differentiation, which was mediated via cAMP-dependent signaling. Our data suggest that clock genes in adipose tissue may play a role in metabolic adaptation to weight cycling.

  13. Gene expression profiles in irradiated cancer cells

    NASA Astrophysics Data System (ADS)

    Minafra, L.; Bravatà, V.; Russo, G.; Ripamonti, M.; Gilardi, M. C.

    2013-07-01

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses.

  14. Gene expression profiles in irradiated cancer cells

    SciTech Connect

    Minafra, L.; Bravatà, V.; Russo, G.; Ripamonti, M.; Gilardi, M. C.

    2013-07-26

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses.

  15. Nucleoredoxin promotes adipogenic differentiation through regulation of Wnt/β-catenin signaling.

    PubMed

    Bahn, Young Jae; Lee, Kwang-Pyo; Lee, Seung-Min; Choi, Jeong Yi; Seo, Yeon-Soo; Kwon, Ki-Sun

    2015-02-01

    Nucleoredoxin (NRX) is a member of the thioredoxin family of proteins that controls redox homeostasis in cell. Redox homeostasis is a well-known regulator of cell differentiation into various tissue types. We found that NRX expression levels were higher in white adipose tissue of obese ob/ob mice and increased in the early adipogenic stage of 3T3-L1 preadipocyte differentiation. Knockdown of NRX decreased differentiation of 3T3-L1 cells, whereas overexpression increased differentiation. Adipose tissue-specific NRX transgenic mice showed increases in adipocyte size as well as number compared with WT mice. We further confirmed that the Wingless/int-1 class (Wnt)/β-catenin pathway was also involved in NRX-promoted adipogenesis, consistent with a previous report showing NRX regulation of this pathway. Genes involved in lipid metabolism were downregulated, whereas inflammatory genes, including those encoding macrophage markers, were significantly upregulated, likely contributing to the obesity in Adipo-NRX mice. Our results therefore suggest that NRX acts as a novel proadipogenic factor and controls obesity in vivo.

  16. Visualizing Gene Expression In Situ

    SciTech Connect

    Burlage, R.S.

    1998-11-02

    Visualizing bacterial cells and describing their responses to the environment are difficult tasks. Their small size is the chief reason for the difficulty, which means that we must often use many millions of cells in a sample in order to determine what the average response of the bacteria is. However, an average response can sometimes mask important events in bacterial physiology, which means that our understanding of these organisms will suffer. We have used a variety of instruments to visualize bacterial cells, all of which tell us something different about the sample. We use a fluorescence activated cell sorter to sort cells based on the fluorescence provided by bioreporter genes, and these can be used to select for particular genetic mutations. Cells can be visualized by epifluorescent microscopy, and sensitive photodetectors can be added that allow us to find a single bacterial cell that is fluorescent or bioluminescent. We have also used standard photomultipliers to examine cell aggregates as field bioreporter microorganisms. Examples of each of these instruments show how our understanding of bacterial physiology has changed with the technology.

  17. Gene expression profile in pelvic organ prolapse†

    PubMed Central

    Brizzolara, S.S.; Killeen, J.; Urschitz, J.

    2009-01-01

    It was hypothesized that the processes contributing to pelvic organ prolapse (POP) may be identified by transcriptional profiling of pelvic connective tissue in conjunction with light microscopy. In order to test this, we performed a frequency-matched case–control study of women undergoing hysterectomy for POP and controls. Total RNA, extracted from uterosacral and round ligament samples used to generate labeled cRNA, was hybridized to microarrays and analyzed for the expression of 32 878 genes. Significance Analysis of Microarrays (Stanford University, CA, USA) identified differentially expressed genes used for ontoanalysis. Quantitative PCR (qPCR) confirmed results. Light microscopy confirmed the tissue type and assessed inflammatory infiltration. The analysis of 34 arrays revealed 249 differentially expressed genes with fold changes (FC) larger than 1.5 and false discovery rates ≤5.2%. Immunity and defense was the most significant biological process differentially expressed in POP. qPCR confirmed the elevated steady-state mRNA levels for four genes: interleukin-6 (FC 9.8), thrombospondin 1 (FC 3.5) and prostaglandin-endoperoxide synthase 2 (FC 2.4) and activating transcription factor 3 (FC 2.6). Light microscopy showed all the samples were composed of fibromuscular connective tissue with no inflammatory infiltrates. In conclusion, genes enriched for ‘immunity and defense’ contribute to POP independent of inflammatory infiltrates. PMID:19056808

  18. Low frequency mechanical stimulation inhibits adipogenic differentiation of C3H10T1/2 mesenchymal stem cells.

    PubMed

    Khayat, Ghazaleh; Rosenzweig, Derek H; Quinn, Thomas M

    2012-04-01

    Oscillatory mechanical stimulation at relatively high frequencies (0.1 Hz) has been shown to inhibit adipogenic and promote osteogenic differentiation of mesenchymal stem cells. However, for physiological interpretations and ease of implementation it is of interest to know whether different rates of mechanical stimulation can produce similar results. We hypothesized that relatively low frequency mechanical stimulation (0.01 Hz) can inhibit adipogenic differentiation of C3H10T1/2 mouse mesenchymal stem cells, even in a potent adipogenic differentiation medium. C3H10T1/2 cells were cultured in adipogenic medium under control (non-mechanically stimulated) conditions and under oscillatory surface stretch with 10% amplitude and 0.01 Hz frequency for 6h per day for up to 5 days. Cell population was assessed by counting and adipogenic differentiation was assessed by real-time quantitative PCR (qPCR) analysis of peroxisome proliferator-activated receptor gamma (PPARγ) and fatty acid binding protein 4 (FABP4) after 3 and 5 days. Involvement of the ERK signaling pathway was assessed by Western blot. Low frequency mechanical stimulation significantly decreased expression of PPARγ after 3 days and FABP4 after 3 and 5 days versus non-stimulated culture. ERK signaling was decreased in mechanically-stimulated culture, indicating a role in the inhibition of adipogenic differentiation. Application of this study: Low frequency mechanical stimulation may provide a technically simple means for control of mesenchymal stem cell differentiation in cell-based therapies, particularly for inhibition of differentiation toward undesired adipogenic lineages.

  19. Clustering of High Throughput Gene Expression Data

    PubMed Central

    Pirim, Harun; Ekşioğlu, Burak; Perkins, Andy; Yüceer, Çetin

    2012-01-01

    High throughput biological data need to be processed, analyzed, and interpreted to address problems in life sciences. Bioinformatics, computational biology, and systems biology deal with biological problems using computational methods. Clustering is one of the methods used to gain insight into biological processes, particularly at the genomics level. Clearly, clustering can be used in many areas of biological data analysis. However, this paper presents a review of the current clustering algorithms designed especially for analyzing gene expression data. It is also intended to introduce one of the main problems in bioinformatics - clustering gene expression data - to the operations research community. PMID:23144527

  20. Facilitated diffusion buffers noise in gene expression.

    PubMed

    Schoech, Armin P; Zabet, Nicolae Radu

    2014-09-01

    Transcription factors perform facilitated diffusion [three-dimensional (3D) diffusion in the cytosol and 1D diffusion on the DNA] when binding to their target sites to regulate gene expression. Here, we investigated the influence of this binding mechanism on the noise in gene expression. Our results showed that, for biologically relevant parameters, the binding process can be represented by a two-state Markov model and that the accelerated target finding due to facilitated diffusion leads to a reduction in both the mRNA and the protein noise.

  1. Facilitated diffusion buffers noise in gene expression

    NASA Astrophysics Data System (ADS)

    Schoech, Armin P.; Zabet, Nicolae Radu

    2014-09-01

    Transcription factors perform facilitated diffusion [three-dimensional (3D) diffusion in the cytosol and 1D diffusion on the DNA] when binding to their target sites to regulate gene expression. Here, we investigated the influence of this binding mechanism on the noise in gene expression. Our results showed that, for biologically relevant parameters, the binding process can be represented by a two-state Markov model and that the accelerated target finding due to facilitated diffusion leads to a reduction in both the mRNA and the protein noise.

  2. Objective and subjective probability in gene expression.

    PubMed

    Velasco, Joel D

    2012-09-01

    In this paper I address the question of whether the probabilities that appear in models of stochastic gene expression are objective or subjective. I argue that while our best models of the phenomena in question are stochastic models, this fact should not lead us to automatically assume that the processes are inherently stochastic. After distinguishing between models and reality, I give a brief introduction to the philosophical problem of the interpretation of probability statements. I argue that the objective vs. subjective distinction is a false dichotomy and is an unhelpful distinction in this case. Instead, the probabilities in our models of gene expression exhibit standard features of both objectivity and subjectivity.

  3. Genomic signatures of germline gene expression.

    PubMed

    McVicker, Graham; Green, Phil

    2010-11-01

    Transcribed regions in the human genome differ from adjacent intergenic regions in transposable element density, crossover rates, and asymmetric substitution and sequence composition patterns. We tested whether these differences reflect selection or are instead a byproduct of germline transcription, using publicly available gene expression data from a variety of germline and somatic tissues. Crossover rate shows a strong negative correlation with gene expression in meiotic tissues, suggesting that crossover is inhibited by transcription. Strand-biased composition (G+T content) and A → G versus T → C substitution asymmetry are both positively correlated with germline gene expression. We find no evidence for a strand bias in allele frequency data, implying that the substitution asymmetry reflects a mutation rather than a fixation bias. The density of transposable elements is positively correlated with germline expression, suggesting that such elements preferentially insert into regions that are actively transcribed. For each of the features examined, our analyses favor a nonselective explanation for the observed trends and point to the role of germline gene expression in shaping the mammalian genome.

  4. [Imprinting genes and it's expression in Arabidopsis].

    PubMed

    Zhang, Hong-Yu; Xu, Pei-Zhou; Yang, Hua; Wu, Xian-Jun

    2010-07-01

    Genomic imprinting refers to the phenomenon that the expression of a gene copy depends on its parent of origin. The Arabidopsis imprinted FIS (Fertilisation-independent seed) genes, mea, fis2, and fie, play essential roles in the repression of central cell and the regulation of early endosperm development. fis mutants display two phenotypes: autonomous diploid endosperm development when fertilization is absent and un-cellularised endosperm formation when fertilization occurs. The FIS Polycomb protein complex including the above three FIS proteins catalyzes histone H3 K27 tri-methylation on target loci. DME (DEMETER), a DNA glycosylase, and AtMET1 (Methyltransferase1), a DNA methyltransferase, are involved in the regulation of imprinted expression of both mea and fis2. This review summarizes the studies on the Arabidopsis imprinted FIS genes and other related genes. Recent works have shown that the insertion of transposons may affect nearby gene expression, which may be the main driving force behind the evolution of genomic imprinting. This summary covers the achievements on Arabidopsis imprinted genes will provide important information for studies on genomic imprinting in the important crops such as rice and maize.

  5. Sequence and gene expression evolution of paralogous genes in willows

    PubMed Central

    Harikrishnan, Srilakshmy L.; Pucholt, Pascal; Berlin, Sofia

    2015-01-01

    Whole genome duplications (WGD) have had strong impacts on species diversification by triggering evolutionary novelties, however, relatively little is known about the balance between gene loss and forces involved in the retention of duplicated genes originating from a WGD. We analyzed putative Salicoid duplicates in willows, originating from the Salicoid WGD, which took place more than 45 Mya. Contigs were constructed by de novo assembly of RNA-seq data derived from leaves and roots from two genotypes. Among the 48,508 contigs, 3,778 pairs were, based on fourfold synonymous third-codon transversion rates and syntenic positions, predicted to be Salicoid duplicates. Both copies were in most cases expressed in both tissues and 74% were significantly differentially expressed. Mean Ka/Ks was 0.23, suggesting that the Salicoid duplicates are evolving by purifying selection. Gene Ontology enrichment analyses showed that functions related to DNA- and nucleic acid binding were over-represented among the non-differentially expressed Salicoid duplicates, while functions related to biosynthesis and metabolism were over-represented among the differentially expressed Salicoid duplicates. We propose that the differentially expressed Salicoid duplicates are regulatory neo- and/or subfunctionalized, while the non-differentially expressed are dose sensitive, hence, functionally conserved. Multiple evolutionary processes, thus drive the retention of Salicoid duplicates in willows. PMID:26689951

  6. Sequence and gene expression evolution of paralogous genes in willows.

    PubMed

    Harikrishnan, Srilakshmy L; Pucholt, Pascal; Berlin, Sofia

    2015-12-22

    Whole genome duplications (WGD) have had strong impacts on species diversification by triggering evolutionary novelties, however, relatively little is known about the balance between gene loss and forces involved in the retention of duplicated genes originating from a WGD. We analyzed putative Salicoid duplicates in willows, originating from the Salicoid WGD, which took place more than 45 Mya. Contigs were constructed by de novo assembly of RNA-seq data derived from leaves and roots from two genotypes. Among the 48,508 contigs, 3,778 pairs were, based on fourfold synonymous third-codon transversion rates and syntenic positions, predicted to be Salicoid duplicates. Both copies were in most cases expressed in both tissues and 74% were significantly differentially expressed. Mean Ka/Ks was 0.23, suggesting that the Salicoid duplicates are evolving by purifying selection. Gene Ontology enrichment analyses showed that functions related to DNA- and nucleic acid binding were over-represented among the non-differentially expressed Salicoid duplicates, while functions related to biosynthesis and metabolism were over-represented among the differentially expressed Salicoid duplicates. We propose that the differentially expressed Salicoid duplicates are regulatory neo- and/or subfunctionalized, while the non-differentially expressed are dose sensitive, hence, functionally conserved. Multiple evolutionary processes, thus drive the retention of Salicoid duplicates in willows.

  7. Dynamic and distinct histone modifications modulate the expression of key adipogenesis regulatory genes.

    PubMed

    Zhang, Qiongyi; Ramlee, Muhammad Khairul; Brunmeir, Reinhard; Villanueva, Claudio J; Halperin, Daniel; Xu, Feng

    2012-12-01

    Histone modifications and their modifying enzymes are fundamentally involved in the epigenetic regulation of adipogenesis. This study aimed to define the roles of various histone modifications and their "division of labor" in fat cell differentiation. To achieve these goals, we examined the distribution patterns of eight core histone modifications at five key adipogenic regulatory genes, Pref-1, C/EBPβ, C/EBPα, PPARγ2 and aP2, during the adipogenesis of C3H 10T1/2 mouse mesenchymal stem cells (MSCs) and 3T3-L1 preadipocytes. We found that the examined histone modifications are globally stable throughout adipogenesis but show distinct and highly dynamic distribution patterns at specific genes. For example, the Pref-1 gene has lower levels of active chromatin markers and significantly higher H3 K27 tri-methylation in MSCs compared with committed preadipocytes; the C/EBPβ gene is enriched in active chromatin markers at its 3'-UTR; the C/EBPα gene is predominantly marked by H3 K27 tri-methylation in adipogenic precursor cells, and this repressive marker decreases dramatically upon induction; the PPARγ2 and aP2 genes show increased histone acetylation on both H3 and H4 tails during adipogenesis. Further functional studies revealed that the decreased level of H3 K27 tri-methylation leads to de-repression of Pref-1 gene, while the increased level of histone acetylation activates the transcription of PPARγ2 and aP2 genes. Moreover, the active histone modification-marked 3'-UTR of C/EBPβ gene was demonstrated as a strong enhancer element by luciferase assay. Our results indicate that histone modifications are gene-specific at adipogenic regulator genes, and they play distinct roles in regulating the transcriptional network during adipogenesis.

  8. The TRANSFAC system on gene expression regulation.

    PubMed

    Wingender, E; Chen, X; Fricke, E; Geffers, R; Hehl, R; Liebich, I; Krull, M; Matys, V; Michael, H; Ohnhäuser, R; Prüss, M; Schacherer, F; Thiele, S; Urbach, S

    2001-01-01

    The TRANSFAC database on transcription factors and their DNA-binding sites and profiles (http://www.gene-regulation.de/) has been quantitatively extended and supplemented by a number of modules. These modules give information about pathologically relevant mutations in regulatory regions and transcription factor genes (PathoDB), scaffold/matrix attached regions (S/MARt DB), signal transduction (TRANSPATH) and gene expression sources (CYTOMER). Altogether, these distinct database modules constitute the TRANSFAC system. They are accompanied by a number of program routines for identifying potential transcription factor binding sites or for localizing individual components in the regulatory network of a cell.

  9. Marker gene tethering by nucleoporins affects gene expression in plants.

    PubMed

    Smith, Sarah; Galinha, Carla; Desset, Sophie; Tolmie, Frances; Evans, David; Tatout, Christophe; Graumann, Katja

    2015-01-01

    In non-plant systems, chromatin association with the nuclear periphery affects gene expression, where interactions with nuclear envelope proteins can repress and interactions with nucleoporins can enhance transcription. In plants, both hetero- and euchromatin can localize at the nuclear periphery, but the effect of proximity to the nuclear periphery on gene expression remains largely unknown. This study explores the putative function of Seh1 and Nup50a nucleoporins on gene expression by using the Lac Operator / Lac Repressor (LacI-LacO) system adapted to Arabidopsis thaliana. We used LacO fused to the luciferase reporter gene (LacO:Luc) to investigate whether binding of the LacO:Luc transgene to nucleoporin:LacI protein fusions alters luciferase expression. Two separate nucleoporin-LacI-YFP fusions were introduced into single insert, homozygous LacO:Luc Arabidopsis plants. Homozygous plants carrying LacO:Luc and a single insert of either Seh1-LacI-YFP or Nup50a-LacI-YFP were tested for luciferase activity and compared to plants containing LacO:Luc only. Seh1-LacI-YFP increased, while Nup50a-LacI-YFP decreased luciferase activity. Seh1-LacI-YFP accumulated at the nuclear periphery as expected, while Nup50a-LacI-YFP was nucleoplasmic and was not selected for further study. Protein and RNA levels of luciferase were quantified by western blotting and RT-qPCR, respectively. Increased luciferase activity in LacO:Luc+Seh1-LacI-YFP plants was correlated with increased luciferase protein and RNA levels. This change of luciferase expression was abolished by disruption of LacI-LacO binding by treating with IPTG in young seedlings, rosette leaves and inflorescences. This study suggests that association with the nuclear periphery is involved in the regulation of gene expression in plants.

  10. Transgenic control of perforin gene expression

    SciTech Connect

    Lichtenheld, M.G.; Podack, E.R.; Levy, R.B.

    1995-03-01

    Perforin is a pore-forming effector molecule of CTL and NK cells. To characterize perforin gene expression and its transcriptional control mechanisms in vivo, expression of a cell surface tag, i.e., human CD4, was driven by 5.1 kb of the murin perforin 5{prime} flanking and promoter region in transgenic mice. Six out of seven transgenic lines expressed the perforin-tag hybrid gene at low to intermediate levels, depending on the integration site. Transgene expression occurred in all cells that physiologically are able to express perforin. At the whole organ level, significant amounts of transgenic mRNA and endogenous perforin mRNA were co-expressed in the lymphoid organs, as well as in the lung, the ileum, the oviduct/uterus, and the bone marrow. At the single cell level, the perforin tag was present on NK cells and on CD8{sup +}, as well as on CD4{sup +} cells. Also targeted were Thy-1.2{sup +} {gamma}{delta} T cells, but not Thy-1.2{sup -} {gamma}{delta} T cells, B cells, nor monocytes. During thymic T cell development, transgene expression occurred in double negative (CD4{sup -}CD8{sup -}) thymocytes and was detected at all subsequent stages, but exceeded the expression levels of the endogenous gene in the thymus. In conclusion, the analyzed perforin 5{prime} flanking and promoter region contains important cis-acting sequences that restrict perforin expression to T cells and NK cells, and therefore provides a unique tool for manipulating T cell and/or Nk cell-mediated immune responses in transgenic mice. On the other hand, the normal control of perforin gene expression involves at least one additional negative control mechanism that was not mediated by the transgenic promoter and upstream region. This control restricts perforin gene expression in thymically developing T cells and in most resting peripheral T cells, but can be released upon T cell activation. 43 refs., 7 figs., 1 tab.

  11. Organization and expression of hair follicle genes.

    PubMed

    Rogers, G E; Powell, B C

    1993-07-01

    Several families of proteins are expressed in the growth of hair and an estimated 50-100 proteins constitute the final hair fiber. The cumbersome nomenclature for naming these different proteins has led to a proposal to modify that which is currently used for epidermal keratins. Investigations of the organization of hair genes indicate that the members of each family are clustered in the genome and their expression could be under some general control. Interestingly, the protein called trichohyalin, markedly distinct from the hair proteins, is produced in the inner root sheath cells and the gene for it has been found to be located at the same human chromosome locus as the genes for profilaggrin, involucrin, and loricrin. A mainstream objective is to identify controls responsible for the production in the hair cortex of keratin intermediate filaments (IFs) and two large groups of keratin-associated proteins (KAPs) rich in the amino acids cysteine or glycine/tyrosine. A specific family of cysteine-rich proteins is expressed in the hair cuticle. Comparisons of promoter regions of IF genes and KAP genes, including a recently characterized gene for a glycine/tyrosine-rich protein, have revealed putative hair-specific motifs in addition to known elements that regulate gene expression. In the sheep, the patterns of expression in hair differentiation are particularly interesting insofar as there are distinct segments of para- and orthocortical type cells that have significantly different pathways of expression. The testing of candidate hair-specific regulatory sequences by mouse transgenesis has produced several interesting hair phenotypes. Transgenic sheep over-expressing keratin genes but showing no hair growth change have been obtained and compared with the equivalent transgenic hair-loss mice. Studies of the effects of amino acid supply on the rate of hair growth have demonstrated that with cysteine supplementation of sheep a perturbation occurs in which there is a

  12. Regulation of Calreticulin Gene Expression by Calcium

    PubMed Central

    Waser, Mathilde; Mesaeli, Nasrin; Spencer, Charlotte; Michalak, Marek

    1997-01-01

    We have isolated and characterized a 12-kb mouse genomic DNA fragment containing the entire calreticulin gene and 2.14 kb of the promoter region. The mouse calreticulin gene consists of nine exons and eight introns, and it spans 4.2 kb of genomic DNA. A 1.8-kb fragment of the calreticulin promoter was subcloned into a reporter gene plasmid containing chloramphenicol acetyltransferase. This construct was then used in transient and stable transfection of NIH/ 3T3 cells. Treatment of transfected cells either with the Ca2+ ionophore A23187, or with the ER Ca2+-ATPase inhibitor thapsigargin, resulted in a five- to sevenfold increase of the expression of chloramphenicol acetyltransferase protein. Transactivation of the calreticulin promoter was also increased by fourfold in NIH/3T3 cells treated with bradykinin, a hormone that induces Ca2+ release from the intracellular Ca2+ stores. Analysis of the promoter deletion constructs revealed that A23187- and thapsigargin-responsive regions are confined to two regions (−115 to −260 and −685 to −1,763) in the calreticulin promoter that contain the CCAAT nucleotide sequences. Northern blot analysis of cells treated with A23187, or with thapsigargin, revealed a fivefold increase in calreticulin mRNA levels. Thapsigargin also induced a fourfold increase in calreticulun protein levels. Importantly, we show by nuclear run-on transcription analysis that calreticulin gene transcription is increased in NIH/3T3 cells treated with A23187 and thapsigargin in vivo. This increase in gene expression required over 4 h of continuous incubation with the drugs and was also sensitive to treatment with cycloheximide, suggesting that it is dependent on protein synthesis. Changes in the concentration of extracellular and cytoplasmic Ca2+ did not affect the increased expression of the calreticulin gene. These studies suggest that stress response to the depletion of intracellular Ca2+ stores induces expression of the calreticulin gene in vitro

  13. The frustrated gene: origins of eukaryotic gene expression

    PubMed Central

    Madhani, Hiten D.

    2014-01-01

    Eukarytotic gene expression is frustrated by a series of steps that are generally not observed in prokaryotes and are therefore not essential for the basic chemistry of transcription and translation. Their evolution may have been driven by the need to defend against parasitic nucleic acids. PMID:24209615

  14. Different anti-adipogenic effects of bio-compounds on primary visceral pre-adipocytes and adipocytes

    PubMed Central

    Colitti, Monica; Stefanon, Bruno

    2016-01-01

    Several natural compounds exhibit strong capacity for decreasing triglyceride accumulation, enhancing lipolysis and inducing apoptosis. The present study reports the anti-adipogenic effects of Silybum marianum (SL), Citrus aurantium (CA), Taraxacum officinale (TO), resveratrol (RE), Curcuma longa (CU), caffeine (CF), oleuropein (OL) and docosahexaenoic acid (DHA) in reducing differentiation and increasing lipolysis and apoptosis. Analyses were performed on human primary visceral pre-adipocytes after 10 (P10) and 20 (P20) days of treatment during differentiation and on mature adipocytes after 7 days of treatment (A7). The percentage of apoptosis induced by TO extract in P10 and P20 cells was significantly higher than that induced by all other compounds and in CTRL cells. Triglyceride accumulation was significantly lower in cells treated with DHA, CF, RE in comparison to cells treated with OL and in CTRL cells. Treatments with CF, DHA and OL significantly incremented lipolysis in P20 cells in comparison to other compounds and in CTRL cells. On the contrary, the treatment of A7 cells with OL, CA and TO compounds significantly increased cell lipolysis. The addition of CF in differentiating P20 pre-adipocytes significantly increased the expression of genes involved in inhibition of adipogenesis, such as GATA2, GATA3, WNT1, WNT3A, SFRP5, and DLK1. Genes involved in promoting adipogenesis such as CCND1, CEBPB and SREBF1 were significantly down-regulated by the treatment. The screening of bioactive compounds for anti-adipogenic effects showed that in differentiating cells TO extract was the most effective in inducing apoptosis and CF and DHA extracts were more efficient in inhibition of differentiation and in induction of cell lipolysis. PMID:27540349

  15. Trigger finger, tendinosis, and intratendinous gene expression.

    PubMed

    Lundin, A-C; Aspenberg, P; Eliasson, P

    2014-04-01

    The pathogenesis of trigger finger has generally been ascribed to primary changes in the first annular ligament. In contrast, we recently found histological changes in the tendons, similar to the findings in Achilles tendinosis or tendinopathy. We therefore hypothesized that trigger finger tendons would show differences in gene expression in comparison to normal tendons in a pattern similar to what is published for Achilles tendinosis. We performed quantitative real-time polymerase chain reaction on biopsies from finger flexor tendons, 13 trigger fingers and 13 apparently healthy control tendons, to assess the expression of 10 genes which have been described to be differently expressed in tendinosis (collagen type 1a1, collagen 3a1, MMP-2, MMP-3, ADAMTS-5, TIMP-3, aggrecan, biglycan, decorin, and versican). In trigger finger tendons, collagen types 1a1 and 3a1, aggrecan and biglycan were all up-regulated, and MMP-3and TIMP-3 were down-regulated. These changes were statistically significant and have been previously described for Achilles tendinosis. The remaining four genes were not significantly altered. The changes in gene expression support the hypothesis that trigger finger is a form of tendinosis. Because trigger finger is a common condition, often treated surgically, it could provide opportunities for clinical research on tendinosis.

  16. The low noise limit in gene expression

    SciTech Connect

    Dar, Roy D.; Weinberger, Leor S.; Cox, Chris D.; Simpson, Michael L.; Razooky, Brandon S.

    2015-10-21

    Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i) the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii) the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiency can-and in the case of E. coli does-control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. Lastly, these results show the existence of two distinct expression noise patterns: (1) a global noise floor uniformly imposed on all genes by expression bursting; and (2) high noise distributed to only a select group of genes.

  17. The Low Noise Limit in Gene Expression

    PubMed Central

    Dar, Roy D.; Razooky, Brandon S.; Weinberger, Leor S.; Cox, Chris D.; Simpson, Michael L.

    2015-01-01

    Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i) the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii) the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiency can–and in the case of E. coli does–control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. These results show the existence of two distinct expression noise patterns: (1) a global noise floor uniformly imposed on all genes by expression bursting; and (2) high noise distributed to only a select group of genes. PMID:26488303

  18. Digital gene expression signatures for maize development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome-wide expression signatures detect specific perturbations in developmental programs and contribute to functional resolution of key regulatory networks. In maize (Zea mays) inflorescences, mutations in the RAMOSA (RA) genes affect determinacy of axillary meristems and thus alter branching patt...

  19. Analysis of baseline gene expression levels from ...

    EPA Pesticide Factsheets

    The use of gene expression profiling to predict chemical mode of action would be enhanced by better characterization of variance due to individual, environmental, and technical factors. Meta-analysis of microarray data from untreated or vehicle-treated animals within the control arm of toxicogenomics studies has yielded useful information on baseline fluctuations in gene expression. A dataset of control animal microarray expression data was assembled by a working group of the Health and Environmental Sciences Institute's Technical Committee on the Application of Genomics in Mechanism Based Risk Assessment in order to provide a public resource for assessments of variability in baseline gene expression. Data from over 500 Affymetrix microarrays from control rat liver and kidney were collected from 16 different institutions. Thirty-five biological and technical factors were obtained for each animal, describing a wide range of study characteristics, and a subset were evaluated in detail for their contribution to total variability using multivariate statistical and graphical techniques. The study factors that emerged as key sources of variability included gender, organ section, strain, and fasting state. These and other study factors were identified as key descriptors that should be included in the minimal information about a toxicogenomics study needed for interpretation of results by an independent source. Genes that are the most and least variable, gender-selectiv

  20. Multiple Stochastic Point Processes in Gene Expression

    NASA Astrophysics Data System (ADS)

    Murugan, Rajamanickam

    2008-04-01

    We generalize the idea of multiple-stochasticity in chemical reaction systems to gene expression. Using Chemical Langevin Equation approach we investigate how this multiple-stochasticity can influence the overall molecular number fluctuations. We show that the main sources of this multiple-stochasticity in gene expression could be the randomness in transcription and translation initiation times which in turn originates from the underlying bio-macromolecular recognition processes such as the site-specific DNA-protein interactions and therefore can be internally regulated by the supra-molecular structural factors such as the condensation/super-coiling of DNA. Our theory predicts that (1) in case of gene expression system, the variances ( φ) introduced by the randomness in transcription and translation initiation-times approximately scales with the degree of condensation ( s) of DNA or mRNA as φ ∝ s -6. From the theoretical analysis of the Fano factor as well as coefficient of variation associated with the protein number fluctuations we predict that (2) unlike the singly-stochastic case where the Fano factor has been shown to be a monotonous function of translation rate, in case of multiple-stochastic gene expression the Fano factor is a turn over function with a definite minimum. This in turn suggests that the multiple-stochastic processes can also be well tuned to behave like a singly-stochastic point processes by adjusting the rate parameters.

  1. The low noise limit in gene expression

    DOE PAGES

    Dar, Roy D.; Weinberger, Leor S.; Cox, Chris D.; ...

    2015-10-21

    Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i) the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii) the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiencymore » can-and in the case of E. coli does-control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. Lastly, these results show the existence of two distinct expression noise patterns: (1) a global noise floor uniformly imposed on all genes by expression bursting; and (2) high noise distributed to only a select group of genes.« less

  2. Expression of mouse metallothionein genes in tobacco

    SciTech Connect

    Maiti, I.B.; Yeargan, R.; Wagner, G.J.; Hunt, A.G. )

    1990-05-01

    We have expressed a mouse metallothionein (NT) gene in tobacco under control of the cauliflower mosaic virus (CaMV) 35S promoter and a pea ribulose-1,5-bisphosphate carboxylase small subunit (rbcS) gene promoter. Seedlings in which MT gene expression is driven by the 35S promoter are resistant to toxic levels of cadmium. Mature plants carrying the 35S-MT gene accumulate less Cd in their leaves when exposed to low levels of Cd in laboratory growth conditions. Plants with the rbcS-MT construction express this gene in a light-regulated and tissue-specific manner, as expected. Moreover, the MT levels in leaves in these plants are about 20% of those seen in 35S-MT plants. These plants are currently being tested for Cd resistance. In addition, a small field evaluation of 35S-MT lines for Cd levels is being evaluated. These experiments will address the possibility of using MTs to alter Cd levels in crop species.

  3. HDAC-regulated myomiRs control BAF60 variant exchange and direct the functional phenotype of fibro-adipogenic progenitors in dystrophic muscles.

    PubMed

    Saccone, Valentina; Consalvi, Silvia; Giordani, Lorenzo; Mozzetta, Chiara; Barozzi, Iros; Sandoná, Martina; Ryan, Tammy; Rojas-Muñoz, Agustin; Madaro, Luca; Fasanaro, Pasquale; Borsellino, Giovanna; De Bardi, Marco; Frigè, Gianmaria; Termanini, Alberto; Sun, Xin; Rossant, Janet; Bruneau, Benoit G; Mercola, Mark; Minucci, Saverio; Puri, Pier Lorenzo

    2014-04-15

    Fibro-adipogenic progenitors (FAPs) are important components of the skeletal muscle regenerative environment. Whether FAPs support muscle regeneration or promote fibro-adipogenic degeneration is emerging as a key determinant in the pathogenesis of muscular diseases, including Duchenne muscular dystrophy (DMD). However, the molecular mechanism that controls FAP lineage commitment and activity is currently unknown. We show here that an HDAC-myomiR-BAF60 variant network regulates the fate of FAPs in dystrophic muscles of mdx mice. Combinatorial analysis of gene expression microarray, genome-wide chromatin remodeling by nuclease accessibility (NA) combined with next-generation sequencing (NA-seq), small RNA sequencing (RNA-seq), and microRNA (miR) high-throughput screening (HTS) against SWI/SNF BAF60 variants revealed that HDAC inhibitors (HDACis) derepress a "latent" myogenic program in FAPs from dystrophic muscles at early stages of disease. Specifically, HDAC inhibition induces two core components of the myogenic transcriptional machinery, MYOD and BAF60C, and up-regulates the myogenic miRs (myomiRs) (miR-1.2, miR-133, and miR-206), which target the alternative BAF60 variants BAF60A and BAF60B, ultimately directing promyogenic differentiation while suppressing the fibro-adipogenic phenotype. In contrast, FAPs from late stage dystrophic muscles are resistant to HDACi-induced chromatin remodeling at myogenic loci and fail to activate the promyogenic phenotype. These results reveal a previously unappreciated disease stage-specific bipotency of mesenchimal cells within the regenerative environment of dystrophic muscles. Resolution of such bipotency by epigenetic intervention with HDACis provides a molecular rationale for the in situ reprogramming of target cells to promote therapeutic regeneration of dystrophic muscles.

  4. Depletion of histone demethylase KDM2A enhanced the adipogenic and chondrogenic differentiation potentials of stem cells from apical papilla.

    PubMed

    Dong, Rui; Yao, Rui; Du, Juan; Wang, Songlin; Fan, Zhipeng

    2013-11-01

    Mesenchymal stem cells (MSCs) are a reliable resource for tissue regeneration, but the molecular mechanism underlying directed differentiation remains unclear; this has restricted potential MSC applications. The histone demethylase, lysine (K)-specific demethylase 2A (KDM2A), is evolutionarily conserved and ubiquitously expressed members of the JmjC-domain-containing histone demethylase family. A previous study determined that KDM2A can regulate the cell proliferation and osteo/dentinogenic differentiation of MSCs. It is not known whether KDM2A is involved in the other cell lineages differentiation of MSCs. Here, we show that depletion of KDM2A by short hairpin RNAs can enhance adipogenic and chondrogenic differentiation potentials in human stem cells from apical papilla (SCAPs). We found that the stemness-related genes, SOX2, and the embryonic stem cell master transcription factor, NANOG were significantly increased after silence of KDM2A in SCAPs. Moreover, we found that knock-down of the KDM2A co-factor, BCOR also up-regulated the mRNA levels of SOX2 and NANOG. Furthermore, Chromatin immunoprecipitation assays demonstrate that silence of KDM2A increased the histone H3 Lysine 4 (H3K4) trimethylation in the SOX2 and NANOG locus and regulates its expression. In conclusion, our results suggested that depletion of KDM2A enhanced the adipogenic and chondrogenic differentiation potentials of SCAPs by up-regulated SOX2 and NANOG, BCOR also involved in this regulation as co-factor, and provided useful information to understand the molecular mechanism underlying directed differentiation in MSCs.

  5. Regulation of methane genes and genome expression

    SciTech Connect

    John N. Reeve

    2009-09-09

    At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the “methane” genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ΔH (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein

  6. Fluid Mechanics, Arterial Disease, and Gene Expression

    PubMed Central

    Tarbell, John M.; Shi, Zhong-Dong; Dunn, Jessilyn; Jo, Hanjoong

    2014-01-01

    This review places modern research developments in vascular mechanobiology in the context of hemodynamic phenomena in the cardiovascular system and the discrete localization of vascular disease. The modern origins of this field are traced, beginning in the 1960s when associations between flow characteristics, particularly blood flow–induced wall shear stress, and the localization of atherosclerotic plaques were uncovered, and continuing to fluid shear stress effects on the vascular lining endothelial) cells (ECs), including their effects on EC morphology, biochemical production, and gene expression. The earliest single-gene studies and genome-wide analyses are considered. The final section moves from the ECs lining the vessel wall to the smooth muscle cells and fibroblasts within the wall that are fluid me chanically activated by interstitial flow that imposes shear stresses on their surfaces comparable with those of flowing blood on EC surfaces. Interstitial flow stimulates biochemical production and gene expression, much like blood flow on ECs. PMID:25360054

  7. Fluid Mechanics, Arterial Disease, and Gene Expression.

    PubMed

    Tarbell, John M; Shi, Zhong-Dong; Dunn, Jessilyn; Jo, Hanjoong

    2014-01-01

    This review places modern research developments in vascular mechanobiology in the context of hemodynamic phenomena in the cardiovascular system and the discrete localization of vascular disease. The modern origins of this field are traced, beginning in the 1960s when associations between flow characteristics, particularly blood flow-induced wall shear stress, and the localization of atherosclerotic plaques were uncovered, and continuing to fluid shear stress effects on the vascular lining endothelial) cells (ECs), including their effects on EC morphology, biochemical production, and gene expression. The earliest single-gene studies and genome-wide analyses are considered. The final section moves from the ECs lining the vessel wall to the smooth muscle cells and fibroblasts within the wall that are fluid me chanically activated by interstitial flow that imposes shear stresses on their surfaces comparable with those of flowing blood on EC surfaces. Interstitial flow stimulates biochemical production and gene expression, much like blood flow on ECs.

  8. Gene expression profiling of human ovarian tumours

    PubMed Central

    Biade, S; Marinucci, M; Schick, J; Roberts, D; Workman, G; Sage, E H; O'Dwyer, P J; LiVolsi, V A; Johnson, S W

    2006-01-01

    There is currently a lack of reliable diagnostic and prognostic markers for ovarian cancer. We established gene expression profiles for 120 human ovarian tumours to identify determinants of histologic subtype, grade and degree of malignancy. Unsupervised cluster analysis of the most variable set of expression data resulted in three major tumour groups. One consisted predominantly of benign tumours, one contained mostly malignant tumours, and one was comprised of a mixture of borderline and malignant tumours. Using two supervised approaches, we identified a set of genes that distinguished the benign, borderline and malignant phenotypes. These algorithms were unable to establish profiles for histologic subtype or grade. To validate these findings, the expression of 21 candidate genes selected from these analyses was measured by quantitative RT–PCR using an independent set of tumour samples. Hierarchical clustering of these data resulted in two major groups, one benign and one malignant, with the borderline tumours interspersed between the two groups. These results indicate that borderline ovarian tumours may be classified as either benign or malignant, and that this classifier could be useful for predicting the clinical course of borderline tumours. Immunohistochemical analysis also demonstrated increased expression of CD24 antigen in malignant versus benign tumour tissue. The data that we have generated will contribute to a growing body of expression data that more accurately define the biologic and clinical characteristics of ovarian cancers. PMID:16969345

  9. Gene expression profiling of human ovarian tumours.

    PubMed

    Biade, S; Marinucci, M; Schick, J; Roberts, D; Workman, G; Sage, E H; O'Dwyer, P J; Livolsi, V A; Johnson, S W

    2006-10-23

    There is currently a lack of reliable diagnostic and prognostic markers for ovarian cancer. We established gene expression profiles for 120 human ovarian tumours to identify determinants of histologic subtype, grade and degree of malignancy. Unsupervised cluster analysis of the most variable set of expression data resulted in three major tumour groups. One consisted predominantly of benign tumours, one contained mostly malignant tumours, and one was comprised of a mixture of borderline and malignant tumours. Using two supervised approaches, we identified a set of genes that distinguished the benign, borderline and malignant phenotypes. These algorithms were unable to establish profiles for histologic subtype or grade. To validate these findings, the expression of 21 candidate genes selected from these analyses was measured by quantitative RT-PCR using an independent set of tumour samples. Hierarchical clustering of these data resulted in two major groups, one benign and one malignant, with the borderline tumours interspersed between the two groups. These results indicate that borderline ovarian tumours may be classified as either benign or malignant, and that this classifier could be useful for predicting the clinical course of borderline tumours. Immunohistochemical analysis also demonstrated increased expression of CD24 antigen in malignant versus benign tumour tissue. The data that we have generated will contribute to a growing body of expression data that more accurately define the biologic and clinical characteristics of ovarian cancers.

  10. Repression of gene expression by oxidative stress.

    PubMed Central

    Morel, Y; Barouki, R

    1999-01-01

    Gene expression is modulated by both physiological signals (hormones, cytokines, etc.) and environmental stimuli (physical parameters, xenobiotics, etc.). Oxidative stress appears to be a key pleiotropic modulator which may be involved in either pathway. Indeed, reactive oxygen species (ROS) have been described as second messengers for several growth factors and cytokines, but have also been shown to rise following cellular insults such as xenobiotic metabolism or enzymic deficiency. Extensive studies on the induction of stress-response genes by oxidative stress have been reported. In contrast, owing to the historical focus on gene induction, less attention has been paid to gene repression by ROS. However, a growing number of studies have shown that moderate (i.e. non-cytotoxic) oxidative stress specifically down-regulates the expression of various genes. In this review, we describe the alteration of several physiological functions resulting from oxidative-stress-mediated inhibition of gene transcription. We will then focus on the repressive oxidative modulation of various transcription factors elicited by ROS. PMID:10477257

  11. [Structure and expression of thyroglobulin gene].

    PubMed

    Vassart, G; Brocas, H; Christophe, D; de Martynoff, G; Leriche, A; Mercken, L; Pohl, V; Van Heuverswyn, B

    1982-01-01

    Thyroglobulin is composed of two 300000 dalton polypeptide chains, translated from an 8000 base mRNA. Preparation of a full length cDNA and its cloning in E. coli have lead to the demonstration that the polypeptides of thyroglobulin protomers were identical. Used as molecular probes, the cloned cDNA allowed the isolation of a fragment of thyroglobulin gene. Electron microscopic studies have demonstrated that this gene contains more than 90% intronic material separating small size exons (less than 200 bp). Sequencing of bovine thyroglobulin structural gene is in progress. Preliminary results show evidence for the existence of repetitive segments. Availability of cloned DNA complementary to bovine and human thyroglobulin mRNA allows the study of genetic defects of thyroglobulin gene expression in the human and in various animal models.

  12. Determining Physical Mechanisms of Gene Expression Regulation from Single Cell Gene Expression Data

    PubMed Central

    Moignard, Victoria; Göttgens, Berthold; Adryan, Boris

    2016-01-01

    Many genes are expressed in bursts, which can contribute to cell-to-cell heterogeneity. It is now possible to measure this heterogeneity with high throughput single cell gene expression assays (single cell qPCR and RNA-seq). These experimental approaches generate gene expression distributions which can be used to estimate the kinetic parameters of gene expression bursting, namely the rate that genes turn on, the rate that genes turn off, and the rate of transcription. We construct a complete pipeline for the analysis of single cell qPCR data that uses the mathematics behind bursty expression to develop more accurate and robust algorithms for analyzing the origin of heterogeneity in experimental samples, specifically an algorithm for clustering cells by their bursting behavior (Simulated Annealing for Bursty Expression Clustering, SABEC) and a statistical tool for comparing the kinetic parameters of bursty expression across populations of cells (Estimation of Parameter changes in Kinetics, EPiK). We applied these methods to hematopoiesis, including a new single cell dataset in which transcription factors (TFs) involved in the earliest branchpoint of blood differentiation were individually up- and down-regulated. We could identify two unique sub-populations within a seemingly homogenous group of hematopoietic stem cells. In addition, we could predict regulatory mechanisms controlling the expression levels of eighteen key hematopoietic transcription factors throughout differentiation. Detailed information about gene regulatory mechanisms can therefore be obtained simply from high throughput single cell gene expression data, which should be widely applicable given the rapid expansion of single cell genomics. PMID:27551778

  13. Coevolution of gene expression among interacting proteins

    SciTech Connect

    Fraser, Hunter B.; Hirsh, Aaron E.; Wall, Dennis P.; Eisen,Michael B.

    2004-03-01

    Physically interacting proteins or parts of proteins are expected to evolve in a coordinated manner that preserves proper interactions. Such coevolution at the amino acid-sequence level is well documented and has been used to predict interacting proteins, domains, and amino acids. Interacting proteins are also often precisely coexpressed with one another, presumably to maintain proper stoichiometry among interacting components. Here, we show that the expression levels of physically interacting proteins coevolve. We estimate average expression levels of genes from four closely related fungi of the genus Saccharomyces using the codon adaptation index and show that expression levels of interacting proteins exhibit coordinated changes in these different species. We find that this coevolution of expression is a more powerful predictor of physical interaction than is coevolution of amino acid sequence. These results demonstrate previously uncharacterized coevolution of gene expression, adding a different dimension to the study of the coevolution of interacting proteins and underscoring the importance of maintaining coexpression of interacting proteins over evolutionary time. Our results also suggest that expression coevolution can be used for computational prediction of protein protein interactions.

  14. Differential var gene expression in children with malaria and antidromic effects on host gene expression.

    PubMed

    Kalmbach, Yvonne; Rottmann, Matthias; Kombila, Maryvonne; Kremsner, Peter G; Beck, Hans-Peter; Kun, Jürgen F J

    2010-07-15

    Among 62 children with mild malaria, cerebral malaria, or severe malarial anemia, we analyzed the transcription of different var gene types. There was no difference in parasitemia level or body temperature between groups. However, a significantly different expression pattern was observed in children with cerebral malaria, compared with that in patients in the other 2 groups: children with cerebral malaria had lower expression of the upsA subtype but higher expression of the upsB and upsC subtypes. Furthermore, expression of human genes responsive to tumor necrosis factor and hypoxia correlated with distinct ups types.

  15. Transcriptome-Level Signatures in Gene Expression and Gene Expression Variability during Bacterial Adaptive Evolution

    PubMed Central

    Erickson, Keesha E.; Otoupal, Peter B.

    2017-01-01

    ABSTRACT Antibiotic-resistant bacteria are an increasingly serious public health concern, as strains emerge that demonstrate resistance to almost all available treatments. One factor that contributes to the crisis is the adaptive ability of bacteria, which exhibit remarkable phenotypic and gene expression heterogeneity in order to gain a survival advantage in damaging environments. This high degree of variability in gene expression across biological populations makes it a challenging task to identify key regulators of bacterial adaptation. Here, we research the regulation of adaptive resistance by investigating transcriptome profiles of Escherichia coli upon adaptation to disparate toxins, including antibiotics and biofuels. We locate potential target genes via conventional gene expression analysis as well as using a new analysis technique examining differential gene expression variability. By investigating trends across the diverse adaptation conditions, we identify a focused set of genes with conserved behavior, including those involved in cell motility, metabolism, membrane structure, and transport, and several genes of unknown function. To validate the biological relevance of the observed changes, we synthetically perturb gene expression using clustered regularly interspaced short palindromic repeat (CRISPR)-dCas9. Manipulation of select genes in combination with antibiotic treatment promotes adaptive resistance as demonstrated by an increased degree of antibiotic tolerance and heterogeneity in MICs. We study the mechanisms by which identified genes influence adaptation and find that select differentially variable genes have the potential to impact metabolic rates, mutation rates, and motility. Overall, this work provides evidence for a complex nongenetic response, encompassing shifts in gene expression and gene expression variability, which underlies adaptive resistance. IMPORTANCE Even initially sensitive bacteria can rapidly thwart antibiotic treatment

  16. Transcriptome-Level Signatures in Gene Expression and Gene Expression Variability during Bacterial Adaptive Evolution.

    PubMed

    Erickson, Keesha E; Otoupal, Peter B; Chatterjee, Anushree

    2017-01-01

    Antibiotic-resistant bacteria are an increasingly serious public health concern, as strains emerge that demonstrate resistance to almost all available treatments. One factor that contributes to the crisis is the adaptive ability of bacteria, which exhibit remarkable phenotypic and gene expression heterogeneity in order to gain a survival advantage in damaging environments. This high degree of variability in gene expression across biological populations makes it a challenging task to identify key regulators of bacterial adaptation. Here, we research the regulation of adaptive resistance by investigating transcriptome profiles of Escherichia coli upon adaptation to disparate toxins, including antibiotics and biofuels. We locate potential target genes via conventional gene expression analysis as well as using a new analysis technique examining differential gene expression variability. By investigating trends across the diverse adaptation conditions, we identify a focused set of genes with conserved behavior, including those involved in cell motility, metabolism, membrane structure, and transport, and several genes of unknown function. To validate the biological relevance of the observed changes, we synthetically perturb gene expression using clustered regularly interspaced short palindromic repeat (CRISPR)-dCas9. Manipulation of select genes in combination with antibiotic treatment promotes adaptive resistance as demonstrated by an increased degree of antibiotic tolerance and heterogeneity in MICs. We study the mechanisms by which identified genes influence adaptation and find that select differentially variable genes have the potential to impact metabolic rates, mutation rates, and motility. Overall, this work provides evidence for a complex nongenetic response, encompassing shifts in gene expression and gene expression variability, which underlies adaptive resistance. IMPORTANCE Even initially sensitive bacteria can rapidly thwart antibiotic treatment through stress

  17. Gene expression regulation in roots under drought.

    PubMed

    Janiak, Agnieszka; Kwaśniewski, Mirosław; Szarejko, Iwona

    2016-02-01

    Stress signalling and regulatory networks controlling expression of target genes are the basis of plant response to drought. Roots are the first organs exposed to water deficiency in the soil and are the place of drought sensing. Signalling cascades transfer chemical signals toward the shoot and initiate molecular responses that lead to the biochemical and morphological changes that allow plants to be protected against water loss and to tolerate stress conditions. Here, we present an overview of signalling network and gene expression regulation pathways that are actively induced in roots under drought stress. In particular, the role of several transcription factor (TF) families, including DREB, AP2/ERF, NAC, bZIP, MYC, CAMTA, Alfin-like and Q-type ZFP, in the regulation of root response to drought are highlighted. The information provided includes available data on mutual interactions between these TFs together with their regulation by plant hormones and other signalling molecules. The most significant downstream target genes and molecular processes that are controlled by the regulatory factors are given. These data are also coupled with information about the influence of the described regulatory networks on root traits and root development which may translate to enhanced drought tolerance. This is the first literature survey demonstrating the gene expression regulatory machinery that is induced by drought stress, presented from the perspective of roots.

  18. Expression of bacterial genes in plant cells.

    PubMed Central

    Fraley, R T; Rogers, S G; Horsch, R B; Sanders, P R; Flick, J S; Adams, S P; Bittner, M L; Brand, L A; Fink, C L; Fry, J S; Galluppi, G R; Goldberg, S B; Hoffmann, N L; Woo, S C

    1983-01-01

    Chimeric bacterial genes conferring resistance to aminoglycoside antibiotics have been inserted into the Agrobacterium tumefaciens tumor-inducing (Ti) plasmid and introduced into plant cells by in vitro transformation techniques. The chimeric genes contain the nopaline synthase 5' and 3' regulatory regions joined to the genes for neomycin phosphotransferase type I or type II. The chimeric genes were cloned into an intermediate vector, pMON120, and inserted into pTiB6S3 by recombination and then introduced into petunia and tobacco cells by cocultivating A. tumefaciens cells with protoplast-derived cells. Southern hybridization was used to confirm the presence of the chimeric genes in the transformed plant tissues. Expression of the chimeric genes was determined by the ability of the transformed cells to proliferate on medium containing normally inhibitory levels of kanamycin (50 micrograms/ml) or other aminoglycoside antibiotics. Plant cells transformed by wild-type pTiB6S3 or derivatives carrying the bacterial neomycin phosphotransferase genes with their own promoters failed to grow under these conditions. The significance of these results for plant genetic engineering is discussed. Images PMID:6308651

  19. Transient gene expression in electroporated Solanum protoplasts.

    PubMed

    Jones, H; Ooms, G; Jones, M G

    1989-11-01

    Electroporation was used to evaluate parameters important in transient gene expression in potato protoplasts. The protoplasts were from leaves of wild potato Solanum brevidens, and from leaves, tubers and suspension cells of cultivated Solanum tuberosum cv. Désirée. Reporter enzyme activity, chloramphenicol acetyl transferase (CAT) under the control of the cauliflower mosaic virus (CaMV) 35S promoter, depended on the field strength and the pulse duration used for electroporation. Using field pulses of 85 ms duration, the optimum field strengths for maximum CAT activity were: S. brevidens mesophyll protoplasts--250 V/cm; Désirée mesophyll protoplasts--225 V/cm; Désirée suspension culture protoplasts--225 V/cm; and Désirée tuber protoplasts--150 V/cm. The optimum field strengths correlated inversely with the size of the protoplasts electroporated; this is consistent with biophysical theory. In time courses, maximum CAT activity (in Désirée mesophyll protoplasts) occurred 36-48 h after electroporation. Examination at optimised conditions of a chimaeric gene consisting of a class II patatin promoter linked to the beta-glucuronidase (gus) gene, showed expression (at DNA concentrations between 0-10 pmol/ml) comparable to the CaMV 35S promoter in both tuber and mesophyll protoplasts. At higher DNA concentrations (20-30 pmol/ml) the patatin promoter directed 4-5 times higher levels of gus expression. Implications and potential contributions towards studying gene expression, in particular of homologous genes in potato, are discussed.

  20. Toward stable gene expression in CHO cells

    PubMed Central

    Mariati; Koh, Esther YC; Yeo, Jessna HM; Ho, Steven CL; Yang, Yuansheng

    2014-01-01

    Maintaining high gene expression level during long-term culture is critical when producing therapeutic recombinant proteins using mammalian cells. Transcriptional silencing of promoters, most likely due to epigenetic events such as DNA methylation and histone modifications, is one of the major mechanisms causing production instability. Previous studies demonstrated that the core CpG island element (IE) from the hamster adenine phosphoribosyltransferase gene is effective to prevent DNA methylation. We generated one set of modified human cytomegalovirus (hCMV) promoters by insertion of one or two copies of IE in either forward or reverse orientations into different locations of the hCMV promoter. The modified hCMV with one copy of IE inserted between the hCMV enhancer and core promoter in reverse orientation (MR1) was most effective at enhancing expression stability in CHO cells without comprising expression level when compared with the wild type hCMV. We also found that insertion of IE into a chimeric murine CMV (mCMV) enhancer and human elongation factor-1α core (hEF) promoter in reverse orientation did not enhance expression stability, indicating that the effect of IE on expression stability is possibly promoter specific. PMID:25482237

  1. Engineering Genes for Predictable Protein Expression

    PubMed Central

    Gustafsson, Claes; Minshull, Jeremy; Govindarajan, Sridhar; Ness, Jon; Villalobos, Alan; Welch, Mark

    2013-01-01

    The DNA sequence used to encode a polypeptide can have dramatic effects on its expression. Lack of readily available tools has until recently inhibited meaningful experimental investigation of this phenomenon. Advances in synthetic biology and the application of modern engineering approaches now provide the tools for systematic analysis of the sequence variables affecting heterologous expression of recombinant proteins. We here discuss how these new tools are being applied and how they circumvent the constraints of previous approaches, highlighting some of the surprising and promising results emerging from the developing field of gene engineering. PMID:22425659

  2. Engineering genes for predictable protein expression.

    PubMed

    Gustafsson, Claes; Minshull, Jeremy; Govindarajan, Sridhar; Ness, Jon; Villalobos, Alan; Welch, Mark

    2012-05-01

    The DNA sequence used to encode a polypeptide can have dramatic effects on its expression. Lack of readily available tools has until recently inhibited meaningful experimental investigation of this phenomenon. Advances in synthetic biology and the application of modern engineering approaches now provide the tools for systematic analysis of the sequence variables affecting heterologous expression of recombinant proteins. We here discuss how these new tools are being applied and how they circumvent the constraints of previous approaches, highlighting some of the surprising and promising results emerging from the developing field of gene engineering.

  3. {beta}-Catenin mediates the anti-adipogenic effect of baicalin

    SciTech Connect

    Lee, Haeyong; Bae, Sungmin; Kim, Kijeong; Kim, Wonyong; Chung, Sang-In; Yoon, Yoosik

    2010-08-06

    Research highlights: {yields} Baicalin maintains the levels of {beta}-Catenin during adipogenesis. {yields} {beta}-Catenin mediates the anti-adipogenic effect of baicalin. {yields} Baicalin maintains the WNT/{beta}-Catenin pathway during adipogenesis. -- Abstract: {beta}-Catenin reportedly inhibits adipogenesis through the down-regulations of peroxisome proliferator-activated receptor (PPAR){gamma} and CCAAT/enhancer binding protein (C/EBP){alpha}. We report that baicalin, a natural flavonoid compound, inhibits adipogenesis by modulating {beta}-Catenin. During 3T3-L1 cell adipogenesis, {beta}-Catenin was down-regulated, but baicalin treatment maintained {beta}-Catenin expression. Anti-adipogenic effects of baicalin were significantly attenuated by {beta}-Catenin siRNA transfection. {beta}-Catenin siRNA rescued the reduced expressions of PPAR{gamma}, C/EBP{alpha}, fatty acid binding protein 4 and lipoprotein lipase by baicalin. Furthermore, baicalin modulated members of the WNT/{beta}-Catenin pathway by maintaining the expressions of low-density lipoprotein receptor-related protein 6, disheveled (DVL)2 and DVL3. These findings suggest that {beta}-Catenin mediates the anti-adipogenic effects of baicalin.

  4. Cancer outlier differential gene expression detection.

    PubMed

    Wu, Baolin

    2007-07-01

    We study statistical methods to detect cancer genes that are over- or down-expressed in some but not all samples in a disease group. This has proven useful in cancer studies where oncogenes are activated only in a small subset of samples. We propose the outlier robust t-statistic (ORT), which is intuitively motivated from the t-statistic, the most commonly used differential gene expression detection method. Using real and simulation studies, we compare the ORT to the recently proposed cancer outlier profile analysis (Tomlins and others, 2005) and the outlier sum statistic of Tibshirani and Hastie (2006). The proposed method often has more detection power and smaller false discovery rates. Supplementary information can be found at http://www.biostat.umn.edu/~baolin/research/ort.html.

  5. Programming gene expression with combinatorial promoters

    PubMed Central

    Cox, Robert Sidney; Surette, Michael G; Elowitz, Michael B

    2007-01-01

    Promoters control the expression of genes in response to one or more transcription factors (TFs). The architecture of a promoter is the arrangement and type of binding sites within it. To understand natural genetic circuits and to design promoters for synthetic biology, it is essential to understand the relationship between promoter function and architecture. We constructed a combinatorial library of random promoter architectures. We characterized 288 promoters in Escherichia coli, each containing up to three inputs from four different TFs. The library design allowed for multiple −10 and −35 boxes, and we observed varied promoter strength over five decades. To further analyze the functional repertoire, we defined a representation of promoter function in terms of regulatory range, logic type, and symmetry. Using these results, we identified heuristic rules for programming gene expression with combinatorial promoters. PMID:18004278

  6. Combinatorial engineering for heterologous gene expression.

    PubMed

    Zwick, Friederike; Lale, Rahmi; Valla, Svein

    2013-01-01

    Tools for strain engineering with predictable outcome are of crucial importance for the nascent field of synthetic biology. The success of combining different DNA biological parts is often restricted by poorly understood factors deriving from the complexity of the systems. We have previously identified variants for different regulatory elements of the expression cassette XylS/Pm. When such elements are combined they act in a manner consistent with their individual behavior, as long as they affect different functions, such as transcription and translation. Interestingly, sequence context does not seem to influence the final outcome significantly. Expression of reporter gene bla could be increased up to 75 times at the protein level by combining three variants in one cassette. For other tested reporter genes similar results were obtained, except that the stimulatory effect was quantitatively less. Combination of individually characterized DNA parts thus stands as suitable method to achieve a desired phenotype.

  7. Structure, expression and functions of MTA genes.

    PubMed

    Kumar, Rakesh; Wang, Rui-An

    2016-05-15

    Metastatic associated proteins (MTA) are integrators of upstream regulatory signals with the ability to act as master coregulators for modifying gene transcriptional activity. The MTA family includes three genes and multiple alternatively spliced variants. The MTA proteins neither have their own enzymatic activity nor have been shown to directly interact with DNA. However, MTA proteins interact with a variety of chromatin remodeling factors and complexes with enzymatic activities for modulating the plasticity of nucleosomes, leading to the repression or derepression of target genes or other extra-nuclear and nucleosome remodeling and histone deacetylase (NuRD)-complex independent activities. The functions of MTA family members are driven by the steady state levels and subcellular localization of MTA proteins, the dynamic nature of modifying signals and enzymes, the structural features and post-translational modification of protein domains, interactions with binding proteins, and the nature of the engaged and resulting features of nucleosomes in the proximity of target genes. In general, MTA1 and MTA2 are the most upregulated genes in human cancer and correlate well with aggressive phenotypes, therapeutic resistance, poor prognosis and ultimately, unfavorable survival of cancer patients. Here we will discuss the structure, expression and functions of the MTA family of genes in the context of cancer cells.

  8. Identifying driver genes in cancer by triangulating gene expression, gene location, and survival data.

    PubMed

    Rouam, Sigrid; Miller, Lance D; Karuturi, R Krishna Murthy

    2014-01-01

    Driver genes are directly responsible for oncogenesis and identifying them is essential in order to fully understand the mechanisms of cancer. However, it is difficult to delineate them from the larger pool of genes that are deregulated in cancer (ie, passenger genes). In order to address this problem, we developed an approach called TRIAngulating Gene Expression (TRIAGE through clinico-genomic intersects). Here, we present a refinement of this approach incorporating a new scoring methodology to identify putative driver genes that are deregulated in cancer. TRIAGE triangulates - or integrates - three levels of information: gene expression, gene location, and patient survival. First, TRIAGE identifies regions of deregulated expression (ie, expression footprints) by deriving a newly established measure called the Local Singular Value Decomposition (LSVD) score for each locus. Driver genes are then distinguished from passenger genes using dual survival analyses. Incorporating measurements of gene expression and weighting them according to the LSVD weight of each tumor, these analyses are performed using the genes located in significant expression footprints. Here, we first use simulated data to characterize the newly established LSVD score. We then present the results of our application of this refined version of TRIAGE to gene expression data from five cancer types. This refined version of TRIAGE not only allowed us to identify known prominent driver genes, such as MMP1, IL8, and COL1A2, but it also led us to identify several novel ones. These results illustrate that TRIAGE complements existing tools, allows for the identification of genes that drive cancer and could perhaps elucidate potential future targets of novel anticancer therapeutics.

  9. Gene expression during normal and malignant differentiation

    SciTech Connect

    Andersson, L.C.; Gahmberg, C.G.; Ekblom, P.

    1985-01-01

    This book contains 18 selections. Some of the titles are: Exploring Carcinogenesis with Retroviral and Cellular Oncogenes; Retroviruses, Oncogenes and Evolution; HTLV and Human Neoplasi; Modes of Activation of cMyc Oncogene in B and T Lymphoid Tumors; The Structure and Function of the Epidermal Growth Factor Receptor: Its Relationship to the Protein Product of the V-ERB-B Oncogene; and Expression of Human Retrovirus Genes in Normal and Neoplastic Epithelial Cells.

  10. Nonreplicating vaccinia vector efficiently expresses recombinant genes.

    PubMed

    Sutter, G; Moss, B

    1992-11-15

    Modified vaccinia Ankara (MVA), a highly attenuated vaccinia virus strain that has been safety tested in humans, was evaluated for use as an expression vector. MVA has multiple genomic deletions and is severely host cell restricted: it grows well in avian cells but is unable to multiply in human and most other mammalian cells tested. Nevertheless, we found that replication of viral DNA appeared normal and that both early and late viral proteins were synthesized in human cells. Proteolytic processing of viral structural proteins was inhibited, however, and only immature virus particles were detected by electron microscopy. We constructed an insertion plasmid with the Escherichia coli lacZ gene under the control of the vaccinia virus late promoter P11, flanked by sequences of MVA DNA, to allow homologous recombination at the site of a naturally occurring 3500-base-pair deletion within the MVA genome. MVA recombinants were isolated and propagated in permissive avian cells and shown to express the enzyme beta-galactosidase upon infection of nonpermissive human cells. The amount of enzyme made was similar to that produced by a recombinant of vaccinia virus strain Western Reserve, which also had the lacZ gene under control of the P11 promoter, but multiplied to high titers. Since recombinant gene expression is unimpaired in nonpermissive human cells, MVA may serve as a highly efficient and exceptionally safe vector.

  11. A gene expression biomarker accurately predicts estrogen ...

    EPA Pesticide Factsheets

    The EPA’s vision for the Endocrine Disruptor Screening Program (EDSP) in the 21st Century (EDSP21) includes utilization of high-throughput screening (HTS) assays coupled with computational modeling to prioritize chemicals with the goal of eventually replacing current Tier 1 screening tests. The ToxCast program currently includes 18 HTS in vitro assays that evaluate the ability of chemicals to modulate estrogen receptor α (ERα), an important endocrine target. We propose microarray-based gene expression profiling as a complementary approach to predict ERα modulation and have developed computational methods to identify ERα modulators in an existing database of whole-genome microarray data. The ERα biomarker consisted of 46 ERα-regulated genes with consistent expression patterns across 7 known ER agonists and 3 known ER antagonists. The biomarker was evaluated as a predictive tool using the fold-change rank-based Running Fisher algorithm by comparison to annotated gene expression data sets from experiments in MCF-7 cells. Using 141 comparisons from chemical- and hormone-treated cells, the biomarker gave a balanced accuracy for prediction of ERα activation or suppression of 94% or 93%, respectively. The biomarker was able to correctly classify 18 out of 21 (86%) OECD ER reference chemicals including “very weak” agonists and replicated predictions based on 18 in vitro ER-associated HTS assays. For 114 chemicals present in both the HTS data and the MCF-7 c

  12. Expression of foreign genes in filamentous cyanobacteria

    SciTech Connect

    Kuritz, T.; Wolk, C.P. )

    1993-06-01

    Several advantages make cyanobacteria attractive hosts for biodegradative genes and possibly for other exogenous genes that have practical uses. The authors have obtained expression in Anabaena sp. strain PCC 7120 and Nostoc ellipsosporum of a dechlorination operon, fcbAB, from Arthrobacter globiformis, and have also developed a simple method for qualitative assessment of dechlorination by microorganisms, such as cyanobacteria, whose metabolism is dependent on the presence of chloride in the medium. Transcription of fcbAB under the control of a variety of promoters was monitored by placing luxAB (encoding luciferase) downstream from fcbAB, and by measuring light emission from luciferase. They believe that the system that they have described has value as a means to screen for factors influencing transcription of foreign genes in cyanobacteria.

  13. GeneTIER: prioritization of candidate disease genes using tissue-specific gene expression profiles

    PubMed Central

    Antanaviciute, Agne; Daly, Catherine; Crinnion, Laura A.; Markham, Alexander F.; Watson, Christopher M.; Bonthron, David T.; Carr, Ian M.

    2015-01-01

    Motivation: In attempts to determine the genetic causes of human disease, researchers are often faced with a large number of candidate genes. Linkage studies can point to a genomic region containing hundreds of genes, while the high-throughput sequencing approach will often identify a great number of non-synonymous genetic variants. Since systematic experimental verification of each such candidate gene is not feasible, a method is needed to decide which genes are worth investigating further. Computational gene prioritization presents itself as a solution to this problem, systematically analyzing and sorting each gene from the most to least likely to be the disease-causing gene, in a fraction of the time it would take a researcher to perform such queries manually. Results: Here, we present Gene TIssue Expression Ranker (GeneTIER), a new web-based application for candidate gene prioritization. GeneTIER replaces knowledge-based inference traditionally used in candidate disease gene prioritization applications with experimental data from tissue-specific gene expression datasets and thus largely overcomes the bias toward the better characterized genes/diseases that commonly afflict other methods. We show that our approach is capable of accurate candidate gene prioritization and illustrate its strengths and weaknesses using case study examples. Availability and Implementation: Freely available on the web at http://dna.leeds.ac.uk/GeneTIER/. Contact: umaan@leeds.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25861967

  14. Reduced expression of Autographa californica nucleopolyhedrovirus ORF34, an essential gene, enhances heterologous gene expression

    SciTech Connect

    Salem, Tamer Z.; Zhang, Fengrui; Thiem, Suzanne M.

    2013-01-20

    Autographa californica multiple nucleopolyhedrovirus ORF34 is part of a transcriptional unit that includes ORF32, encoding a viral fibroblast growth factor (FGF) and ORF33. We identified ORF34 as a candidate for deletion to improve protein expression in the baculovirus expression system based on enhanced reporter gene expression in an RNAi screen of virus genes. However, ORF34 was shown to be an essential gene. To explore ORF34 function, deletion (KO34) and rescue bacmids were constructed and characterized. Infection did not spread from primary KO34 transfected cells and supernatants from KO34 transfected cells could not infect fresh Sf21 cells whereas the supernatant from the rescue bacmids transfection could recover the infection. In addition, budded viruses were not observed in KO34 transfected cells by electron microscopy, nor were viral proteins detected from the transfection supernatants by western blots. These demonstrate that ORF34 is an essential gene with a possible role in infectious virus production.

  15. Screening of differentially expressed genes in pathological scar tissues using expression microarray.

    PubMed

    Huang, L P; Mao, Z; Zhang, L; Liu, X X; Huang, C; Jia, Z S

    2015-09-09

    Pathological scar tissues and normal skin tissues were differentiated by screening for differentially expressed genes in pathologic scar tissues via gene expression microarray. The differentially expressed gene data was analyzed by gene ontology and pathway analyses. There were 5001 up- or down-regulated genes in 2-fold differentially expressed genes, 956 up- or down-regulated genes in 5-fold differentially expressed genes, and 114 up- or down-regulated genes in 20-fold differentially expressed genes. Therefore, significant differences were observed in the gene expression in pathological scar tissues and normal foreskin tissues. The development of pathological scar tissues has been correlated to changes in multiple genes and pathways, which are believed to form a dynamic network connection.

  16. Gene expression and IG-DMR hypomethylation of maternally expressed gene 3 in developing corticospinal neurons.

    PubMed

    Qu, Chunsheng; Jiang, Tian; Li, Yong; Wang, Xiongwei; Cao, Huateng; Xu, Hongping; Qu, Jia; Chen, Jie-Guang

    2013-01-01

    The mammalian cerebral cortex plays a central role in higher cognitive functions and in the complex task of motor control. Maternally expressed gene 3 (Meg3) appears to play a role in cortical development and neurodegeneration, but the expression and regulation of Meg3 in the cortex is not clear. In this study, we examined the expression of transcript variants of Meg3 in the developing mouse cerebral cortex. By in situ hybridization, we found that a novel transcript variant of Meg3 with 8 small exons was expressed in the developing cortex, whereas the long isoforms of Meg3 (~11 kb) were enriched in corticospinal neurons (CSNs) in layer V of the cortex. No transcript variants of Meg3 were found in the neural progenitors at E12.5, when the intergenic differential methylation region (IG-DMR) near Meg3 was highly methylated. IG-DMR became demethylated at E15.5 and remained hypomethylated in early CSNs isolated from Fezf2-EGFP transgenic mice. The expression of Meg3 transcript variant 1 was inversely correlated with the IG-DMR methylation level during development. Moreover, expression of paternally expressed gene Peg11 was limited to the upper layers, consistent with the idea that the maternally expressed gene may be preferentially transcribed in the lower layers of the cortex. The spatiotemporal expression pattern of Meg3 suggests that it may participate in the early development of CSNs and contribute to cortical malfunctions related to aberrant imprinting in Meg3.

  17. The anti-adipogenic effect of angiotensin II on human preadipose cells involves ERK1,2 activation and PPARG phosphorylation.

    PubMed

    Fuentes, Paula; Acuña, María José; Cifuentes, Mariana; Rojas, Cecilia V

    2010-07-01

    Despite the importance of adipocyte formation for adipose tissue physiology, current knowledge about the mechanisms that regulate the recruitment of progenitor cells to undergo adipogenic differentiation is limited. A role for locally generated angiotensin II emerged from studies with human and murine cells. Preadipose cells from different human fat depots show reduced response to adipogenic stimuli when exposed to angiotensin II. This investigation sought to gain an insight into the intracellular mechanisms involved in the anti-adipogenic response of human preadipose cells from omental fat to angiotensin II. Its effect was evaluated on cells stimulated to adipogenic differentiation in vitro, by assessment of glycerol-3-phosphate dehydrogenase activity and expression of early markers of adipogenesis. Extracellular signal-regulated kinase(1,2) (ERK(1,2)) pathway activation was inferred from the phosphorylated to total ERK(1,2) ratio determined by western blot. Exposure to angiotensin II throughout the 10-day differentiation period resulted in a reduced adipogenic response. A similar anti-adipogenic effect was observed when this hormone was present during the first 48 h of induction to differentiation. Angiotensin II treatment had no consequences on CCAAT/enhancer-binding protein beta and peroxisome proliferator-activated receptor gamma (PPARG) induction, but increased the phosphorylated form of the key adipogenic regulator PPARG. Upon angiotensin II exposure, a raise of phosphorylated ERK(1,2) was determined, which was more prominent 8-20 h after induction of adipogenesis (when controls reached negligible values). Chemical inhibition of ERK(1,2) phosphorylation prevented angiotensin II-dependent reduction in adipogenesis. These results support the participation of the mitogen-activated protein kinase/ERK(1,2) pathway in the anti-adipogenic effect of angiotensin II on preadipose cells from human omental adipose tissue.

  18. Gravity-Induced Gene Expression in Plants.

    NASA Astrophysics Data System (ADS)

    Sederoff, Heike; Heber, Steffen; Howard, Brian; Myburg-Nichols, Henrietta; Hammond, Rebecca; Salinas-Mondragon, Raul; Brown, Christopher S.

    Plants sense changes in their orientation towards the vector of gravity and respond with directional growth. Several metabolites in the signal transduction cascade have been identified. However, very little is known about the interaction between these sensing and signal transduction events and even less is known about their role in the differential growth response. Gravity induced changes in transcript abundance have been identified in Arabidopsis whole seedlings and root apices (Moseyko et al. 2002; Kimbrough et al. 2004). Gravity induced transcript abundance changes can be observed within less than 1 min after stimulation (Salinas-Mondragon et al. 2005). Gene expression however requires not only transcription but also translation of the mRNA. Translation can only occur when mRNA is associated with ribosomes, even though not all mRNA associated with ribosomes is actively translated. To approximate translational capacity we quantified whole genome transcript abundances in corn stem pulvini during the first hour after gravity stimulation in total and poly-ribosomal fractions. As in Arabidopsis root apices, transcript abundances of several clusters of genes responded to gravity stimulation. The vast majority of these transcripts were also found to associate with polyribosomes in the same temporal and quantitative pattern. These genes are transcriptionally regulated by gravity stimulation, but do not exhibit translational regulation. However, a small group of genes showed increased transcriptional regulation after gravity stimulation, but no association with polysomes. These transcripts likely are translationally repressed. The mechanism of translational repression for these transcripts is unknown. Based on the hypothesis that the genes essential for gravitropic responses should be expressed in most or all species, we compared the temporal gravity induced expression pattern of all orthologs identified between maize and Arabidopsis. A small group of genes showed high

  19. X chromosome regulation of autosomal gene expression in bovine blastocysts.

    PubMed

    Itoh, Yuichiro; Arnold, Arthur P

    2014-10-01

    Although X chromosome inactivation in female mammals evolved to balance the expression of X chromosome and autosomal genes in the two sexes, female embryos pass through developmental stages in which both X chromosomes are active in somatic cells. Bovine blastocysts show higher expression of many X genes in XX than XY embryos, suggesting that X inactivation is not complete. Here, we reanalyzed bovine blastocyst microarray expression data from a network perspective with a focus on interactions between X chromosome and autosomal genes. Whereas male-to-female ratios of expression of autosomal genes were distributed around a mean of 1, X chromosome genes were clearly shifted towards higher expression in females. We generated gene coexpression networks and identified a major module of genes with correlated gene expression that includes female-biased X genes and sexually dimorphic autosomal genes for which the sexual dimorphism is likely driven by the X genes. In this module, expression of X chromosome genes correlates with autosome genes, more than the expression of autosomal genes with each other. Our study identifies correlated patterns of autosomal and X-linked genes that are likely influenced by the sexual imbalance of X gene expression when X inactivation is inefficient.

  20. Gene expression and cAMP.

    PubMed Central

    Nagamine, Y; Reich, E

    1985-01-01

    By comparing the 5'-flanking region of the porcine gene for the urokinase form of plasminogen activator with those of other cAMP-regulated genes, we identify a 29-nucleotide sequence that is tentatively proposed as the cAMP-regulatory unit. Homologous sequences are present (i) in the cAMP-regulated rat tyrosine aminotransferase, prolactin, and phosphoenolpyruvate carboxykinase genes and (ii) 5' to the transcription initiation sites of cAMP-regulated Escherichia coli genes. From this we conclude that the expression of cAMP-responsive genes in higher eukaryotes may be controlled, as in E. coli, by proteins that form complexes with cAMP and then show sequence-specific DNA-binding properties. The complex formed by cAMP and the regulatory subunit of the type II mammalian protein kinase might be one candidate for this function. Based on several homologies we suggest that this subunit may have retained both the DNA-binding specificity and transcription-regulating properties in addition to the nucleotide-binding domains of the bacterial cAMP-binding protein. If this were so, dissociation of protein kinase by cAMP would activate two processes: (i) protein phosphorylation by the catalytic subunit and (ii) transcription regulation by the regulatory subunit. PMID:2991882

  1. Functionally convergent white adipogenic progenitors of different lineages participate in a diffused system supporting tissue regeneration.

    PubMed

    Lemos, Dario R; Paylor, Benjamin; Chang, Chihkai; Sampaio, Arthur; Underhill, T Michael; Rossi, Fabio M V

    2012-06-01

    Pathologies characterized by lipomatous infiltration of craniofacial structures as well as certain forms of lipodystrophies suggest the existence of a distinct adipogenic program in the cephalic region of mammals. Using lineage tracing, we studied the origin of craniofacial adipocytes that accumulate both in cranial fat depots and during ectopic lipomatous infiltration of craniofacial muscles. We found that unlike their counterparts in limb muscle, a significant percentage of cranial adipocytes is derived from the neural crest (NC). In addition, we identified a population of NC-derived Lin(-)/α7(-)/CD34(+)/Sca-1(+) fibro/adipogenic progenitors (NC-FAPs) that resides exclusively in the mesenchyme of cephalic fat and muscle. Comparative analysis of the adipogenic potential, impact on metabolism, and contribution to the regenerative response of NC-FAPs and mesoderm-derived FAPs (M-FAPs) suggests that these cells are functionally indistinguishable. While both NC- and M-FAPs express mesenchymal markers and promyogenic cytokines upon damage-induced activation, NC-FAPs additionally express components of the NC developmental program. Furthermore, we show that craniofacial FAP composition changes with age, with young mice containing FAPs that are almost exclusively of NC origin, while NC-FAPs are progressively replaced by M-FAPs as mice age. Based on these results, we propose that in the adult, ontogenetically distinct FAPs form a diffused system reminiscent of the endothelium, which can originate from multiple developmental intermediates to seed all anatomical locations.

  2. Inhibition of adipogenic differentiation of bone marrow mesenchymal stem cells by erythropoietin via activating ERK and P38 MAPK.

    PubMed

    Liu, G X; Zhu, J C; Chen, X Y; Zhu, A Z; Liu, C C; Lai, Q; Chen, S T

    2015-06-26

    We examined whether erythropoietin (EPO) can inhibit adipogenic differentiation of mesenchymal stem cells (MSCs) in the mouse bone marrow and its underlying mechanism. We separated and extracted mouse bone marrow MSCs and induced adipogenic differen-tiation using 3-isobutyl-1-methylxanthine, insulin, and dexamethasone. Different concentrations of EPO were added to the cells and observed by Oil Red O staining on the 20th day to quantitatively analyze the degree of cell differentiation. mRNA expression levels of peroxysome proliferator-activated receptor γ (PPARγ), CCAAT enhancer binding protein α, and adiponectin were analyzed by real-time quantitative polymerase chain reaction, and the activity of PPARγ, extracellular sig-nal-regulated kinase (ERK), and p38 mitogen-activated protein kinase (p38 MAPK) were determined by western blotting. EPO significantly inhibited adipogenic differentiation of MSCs after 20 days and reduced absorbance values by Oil Red O staining without affecting proliferation activity. EPO downregulated the mRNA expression of PPARγ, CCAAT enhancer binding protein α, fatty acid binding protein 4, and adiponec-tin during adipogenesis and increased protein phosphorylation of ERK, p38 MAPK, and PPARγ during differentiation. EPO downregulated the mRNA expression of PPARγ, CCAAT enhancer binding protein α, fatty acid binding protein 4, and adiponectin by increasing protein phosphor-ylation of ERK, p38 MAPK, and PPARγ during differentiation, which inhibited adipogenic differentiation of MSCs.

  3. Differential expression of the ras gene family in mice.

    PubMed Central

    Leon, J; Guerrero, I; Pellicer, A

    1987-01-01

    We compared the expression of the ras gene family (H-ras, K-ras, and N-ras) in adult mouse tissues and during development. We found substantial variations in expression among different organs and in the amounts of the different transcripts originating from each gene, especially for the N-ras gene. The expression patterns were consistent with the reported preferential tissue activation of ras genes and suggested different cellular functions for each of the ras genes. Images PMID:3600635

  4. Mechanism of osteogenic and adipogenic differentiation of tendon stem cells induced by sirtuin 1.

    PubMed

    Liu, Junpeng; Han, Weifeng; Chen, Lei; Tang, Kanglai

    2016-08-01

    The aim of the present study was to assess the expression of sirtuin (Sirt)1 in tendon stem cells (TSCs) and to elucidate its association with osteogenic and adipogenic differentiation of TSCs. Reverse-transcription quantitative polymerase chain reaction (RT-qPCR) and western blot analyses were performed to detect Sirt1 mRNA and protein levels in TSCs, respectively. TSCs were positive for Sirt1 expression, which was elevated by Sirt1 activator SRT1720 in a time- and concentration- dependent manner, and decreased by Sirt1 inhibitor EX527. TSCs were treated with SRT1720 and EX527 for various time periods and resulting changes in osteogenic and adipogenic protein markers were analyzed using alizarin red and oil red O staining. According to RT-qPCR and western blot analyses, the associated factors β‑catenin, Runt-related transcription factor 2 (Runx2) and bone morphogenetic protein 2 were elevated following increases of Sirt1 levels, while CCAAT/enhancer binding protein (CEBP)α and peroxisome proliferator-activated receptor (PPAR)γ were decreased. These results suggested that osteogenic differentiation capacity was enhanced, while adipogenic differentiation capacity declined. Further mechanistic study revealed that phosphoinositide‑3 kinase (PI3K) and AKT were decreased following activation of Sirt1. In conclusion, the present study suggested that Sirt1 promotes the osteogenic differentiation of TSCs through upregulating β‑catenin and Runx2 and inhibits the adipogenic differentiation of TSCs through the PI3K/AKT pathway with downregulation of CEBPα and PPARγ.

  5. Studying the complex expression dependences between sets of coexpressed genes.

    PubMed

    Huerta, Mario; Casanova, Oriol; Barchino, Roberto; Flores, Jose; Querol, Enrique; Cedano, Juan

    2014-01-01

    Organisms simplify the orchestration of gene expression by coregulating genes whose products function together in the cell. The use of clustering methods to obtain sets of coexpressed genes from expression arrays is very common; nevertheless there are no appropriate tools to study the expression networks among these sets of coexpressed genes. The aim of the developed tools is to allow studying the complex expression dependences that exist between sets of coexpressed genes. For this purpose, we start detecting the nonlinear expression relationships between pairs of genes, plus the coexpressed genes. Next, we form networks among sets of coexpressed genes that maintain nonlinear expression dependences between all of them. The expression relationship between the sets of coexpressed genes is defined by the expression relationship between the skeletons of these sets, where this skeleton represents the coexpressed genes with a well-defined nonlinear expression relationship with the skeleton of the other sets. As a result, we can study the nonlinear expression relationships between a target gene and other sets of coexpressed genes, or start the study from the skeleton of the sets, to study the complex relationships of activation and deactivation between the sets of coexpressed genes that carry out the different cellular processes present in the expression experiments.

  6. Covariance Structure Models for Gene Expression Microarray Data

    ERIC Educational Resources Information Center

    Xie, Jun; Bentler, Peter M.

    2003-01-01

    Covariance structure models are applied to gene expression data using a factor model, a path model, and their combination. The factor model is based on a few factors that capture most of the expression information. A common factor of a group of genes may represent a common protein factor for the transcript of the co-expressed genes, and hence, it…

  7. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository.

    PubMed

    Edgar, Ron; Domrachev, Michael; Lash, Alex E

    2002-01-01

    The Gene Expression Omnibus (GEO) project was initiated in response to the growing demand for a public repository for high-throughput gene expression data. GEO provides a flexible and open design that facilitates submission, storage and retrieval of heterogeneous data sets from high-throughput gene expression and genomic hybridization experiments. GEO is not intended to replace in house gene expression databases that benefit from coherent data sets, and which are constructed to facilitate a particular analytic method, but rather complement these by acting as a tertiary, central data distribution hub. The three central data entities of GEO are platforms, samples and series, and were designed with gene expression and genomic hybridization experiments in mind. A platform is, essentially, a list of probes that define what set of molecules may be detected. A sample describes the set of molecules that are being probed and references a single platform used to generate its molecular abundance data. A series organizes samples into the meaningful data sets which make up an experiment. The GEO repository is publicly accessible through the World Wide Web at http://www.ncbi.nlm.nih.gov/geo.

  8. Novel recombinant papillomavirus genomes expressing selectable genes

    PubMed Central

    Van Doorslaer, Koenraad; Porter, Samuel; McKinney, Caleb; Stepp, Wesley H.; McBride, Alison A.

    2016-01-01

    Papillomaviruses infect and replicate in keratinocytes, but viral proteins are initially expressed at low levels and there is no effective and quantitative method to determine the efficiency of infection on a cell-to-cell basis. Here we describe human papillomavirus (HPV) genomes that express marker proteins (antibiotic resistance genes and Green Fluorescent Protein), and can be used to elucidate early stages in HPV infection of primary keratinocytes. To generate these recombinant genomes, the late region of the oncogenic HPV18 genome was replaced by CpG free marker genes. Insertion of these exogenous genes did not affect early replication, and had only minimal effects on early viral transcription. When introduced into primary keratinocytes, the recombinant marker genomes gave rise to drug-resistant keratinocyte colonies and cell lines, which maintained the extrachromosomal recombinant genome long-term. Furthermore, the HPV18 “marker” genomes could be packaged into viral particles (quasivirions) and used to infect primary human keratinocytes in culture. This resulted in the outgrowth of drug-resistant keratinocyte colonies containing replicating HPV18 genomes. In summary, we describe HPV18 marker genomes that can be used to quantitatively investigate many aspects of the viral life cycle. PMID:27892937

  9. Nuclear AXIN2 represses MYC gene expression

    SciTech Connect

    Rennoll, Sherri A.; Konsavage, Wesley M.; Yochum, Gregory S.

    2014-01-03

    Highlights: •AXIN2 localizes to cytoplasmic and nuclear compartments in colorectal cancer cells. •Nuclear AXIN2 represses the activity of Wnt-responsive luciferase reporters. •β-Catenin bridges AXIN2 to TCF transcription factors. •AXIN2 binds the MYC promoter and represses MYC gene expression. -- Abstract: The β-catenin transcriptional coactivator is the key mediator of the canonical Wnt signaling pathway. In the absence of Wnt, β-catenin associates with a cytosolic and multi-protein destruction complex where it is phosphorylated and targeted for proteasomal degradation. In the presence of Wnt, the destruction complex is inactivated and β-catenin translocates into the nucleus. In the nucleus, β-catenin binds T-cell factor (TCF) transcription factors to activate expression of c-MYC (MYC) and Axis inhibition protein 2 (AXIN2). AXIN2 is a member of the destruction complex and, thus, serves in a negative feedback loop to control Wnt/β-catenin signaling. AXIN2 is also present in the nucleus, but its function within this compartment is unknown. Here, we demonstrate that AXIN2 localizes to the nuclei of epithelial cells within normal and colonic tumor tissues as well as colorectal cancer cell lines. In the nucleus, AXIN2 represses expression of Wnt/β-catenin-responsive luciferase reporters and forms a complex with β-catenin and TCF. We demonstrate that AXIN2 co-occupies β-catenin/TCF complexes at the MYC promoter region. When constitutively localized to the nucleus, AXIN2 alters the chromatin structure at the MYC promoter and directly represses MYC gene expression. These findings suggest that nuclear AXIN2 functions as a rheostat to control MYC expression in response to Wnt/β-catenin signaling.

  10. Inducible gene expression systems and plant biotechnology.

    PubMed

    Corrado, Giandomenico; Karali, Marianthi

    2009-01-01

    Plant biotechnology relies heavily on the genetic manipulation of crops. Almost invariantly, the gene of interest is expressed in a constitutive fashion, although this may not be strictly necessary for several applications. Currently, there are several regulatable expression systems for the temporal, spatial and quantitative control of transgene activity. These molecular switches are based on components derived from different organisms, which range from viruses to higher eukaryotes. Many inducible systems have been designed for fundamental and applied research and since their initial development, they have become increasingly popular in plant molecular biology. This review covers a broad number of inducible expression systems examining their properties and relevance for plant biotechnology in its various guises, from molecular breeding to pharmaceutical and industrial applications. For each system, we examine some advantages and limitations, also in relation to the strategy on which they rely. Besides being necessary to control useful genes that may negatively affect crop yield and quality, we discuss that inducible systems can be also used to increase public acceptance of GMOs, reducing some of the most common concerns. Finally, we suggest some directions and future developments for their further diffusion in agriculture and biotechnology.

  11. Combined clustering models for the analysis of gene expression

    SciTech Connect

    Angelova, M. Ellman, J.

    2010-02-15

    Clustering has become one of the fundamental tools for analyzing gene expression and producing gene classifications. Clustering models enable finding patterns of similarity in order to understand gene function, gene regulation, cellular processes and sub-types of cells. The clustering results however have to be combined with sequence data or knowledge about gene functionality in order to make biologically meaningful conclusions. In this work, we explore a new model that integrates gene expression with sequence or text information.

  12. Isolation of adipose and bone marrow mesenchymal stem cells using CD29 and CD90 modifies their capacity for osteogenic and adipogenic differentiation.

    PubMed

    Davies, Owen G; Cooper, Paul R; Shelton, Richard M; Smith, Anthony J; Scheven, Ben A

    2015-01-01

    Mesenchymal stem cells isolated from rats are frequently used for tissue engineering research. However, considerable differences have been identified between rat mesenchymal stem cells and those derived from humans, and no defined panel of markers currently exists for the isolation of these cells. The aim of this study was to examine the effects of cell sorting for CD29(+)/CD90(+) cells from rat adipose and bone marrow tissues on their differentiation and expression of stem cell-associated genes. Flow cytometry showed 66% and 78% CD29(+)/CD90(+) positivity within passage 1 of adipose and bone marrow cultures, respectively. CD29(+)/CD90(+) cells showed a reduction in both osteogenic and adipogenic differentiation when compared with unsorted cells, as determined by alizarin red and Oil Red-O staining, respectively. These findings could not entirely be explained by fluorescence-activated cell sorting-induced cell injury as sort recovery was only modestly affected in adipose-derived cells. Maintaining cells in fluorescence-activated cell sorting buffer did not affect adipose-derived cell viability, but a significant (p < 0.05) reduction was found in bone marrow-derived cell viability. Additionally, CD29(+)/CD90(+) selection was associated with a significant decrease in the expression of Lin28, Sox2, Nanog and CD73 in adipose-derived cell cultures, whereas differences in stem cell-associated gene expression were not observed in sorted bone marrow-derived cell cultures. In summary, this study demonstrated that fluorescence-activated cell sorting had differential effects on adipose-derived cells and bone marrow-derived cells, and both CD29(+)/CD90(+) cells displayed a significantly reduced capacity for osteogenic/adipogenic differentiation. In conclusion, we identify that maintaining heterogeneity within the mesenchymal stem cell population may be important for optimal differentiation.

  13. Amplification of Adipogenic Commitment by VSTM2A.

    PubMed

    Secco, Blandine; Camiré, Étienne; Brière, Marc-Antoine; Caron, Alexandre; Billong, Armande; Gélinas, Yves; Lemay, Anne-Marie; Tharp, Kevin M; Lee, Peter L; Gobeil, Stéphane; Guimond, Jean V; Patey, Natacha; Guertin, David A; Stahl, Andreas; Haddad, Élie; Marsolais, David; Bossé, Yohan; Birsoy, Kivanc; Laplante, Mathieu

    2017-01-03

    Despite progress in our comprehension of the mechanisms regulating adipose tissue development, the nature of the factors that functionally characterize adipose precursors is still elusive. Defining the early steps regulating adipocyte development is needed for the generation of tools to control adipose tissue size and function. Here, we report the discovery of V-set and transmembrane domain containing 2A (VSTM2A) as a protein expressed and secreted by committed preadipocytes. VSTM2A expression is elevated in the early phases of adipogenesis in vitro and adipose tissue development in vivo. We show that VSTM2A-producing cells associate with the vasculature and express the common surface markers of adipocyte progenitors. Overexpression of VSTM2A induces adipogenesis, whereas its depletion impairs this process. VSTM2A controls preadipocyte determination at least in part by modulating BMP signaling and PPARγ2 activation. We propose a model in which VSTM2A is produced to preserve and amplify the adipogenic capability of adipose precursors.

  14. Using PCR to Target Misconceptions about Gene Expression

    PubMed Central

    Wright, Leslie K.; Newman, Dina L.

    2013-01-01

    We present a PCR-based laboratory exercise that can be used with first- or second-year biology students to help overcome common misconceptions about gene expression. Biology students typically do not have a clear understanding of the difference between genes (DNA) and gene expression (mRNA/protein) and often believe that genes exist in an organism or cell only when they are expressed. This laboratory exercise allows students to carry out a PCR-based experiment designed to challenge their misunderstanding of the difference between genes and gene expression. Students first transform E. coli with an inducible GFP gene containing plasmid and observe induced and un-induced colonies. The following exercise creates cognitive dissonance when actual PCR results contradict their initial (incorrect) predictions of the presence of the GFP gene in transformed cells. Field testing of this laboratory exercise resulted in learning gains on both knowledge and application questions on concepts related to genes and gene expression. PMID:23858358

  15. Regulation of Airway Mucin Gene Expression

    PubMed Central

    Thai, Philip; Loukoianov, Artem; Wachi, Shinichiro; Wu, Reen

    2015-01-01

    Mucins are important components that exert a variety of functions in cell-cell interaction, epidermal growth factor receptor signaling, and airways protection. In the conducting airways of the lungs, mucins are the major contributor to the viscoelastic property of mucous secretion, which is the major barrier to trapping inhaled microbial organism, particulates, and oxidative pollutants. The homeostasis of mucin production is an important feature in conducting airways for the maintenance of mucociliary function. Aberrant mucin secretion and accumulation in airway lumen are clinical hallmarks associated with various lung diseases, such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, emphysema, and lung cancer. Among 20 known mucin genes identified, 11 of them have been verified at either the mRNA and/or protein level in airways. The regulation of mucin genes is complicated, as are the mediators and signaling pathways. This review summarizes the current view on the mediators, the signaling pathways, and the transcriptional units that are involved in the regulation of airway mucin gene expression. In addition, we also point out essential features of epigenetic mechanisms for the regulation of these genes. PMID:17961085

  16. Hyperbaric oxygen treatment induces antioxidant gene expression.

    PubMed

    Godman, Cassandra A; Joshi, Rashmi; Giardina, Charles; Perdrizet, George; Hightower, Lawrence E

    2010-06-01

    Although the underlying molecular causes of aging are not entirely clear, hormetic agents like exercise, heat, and calorie restriction may generate a mild pro-oxidant stress that induces cell protective responses to promote healthy aging. As an individual ages, many cellular and physiological processes decline, including wound healing and reparative angiogenesis. This is particularly critical in patients with chronic non-healing wounds who tend to be older. We are interested in the potential beneficial effects of hyperbaric oxygen as a mild hormetic stress on human microvascular endothelial cells. We analyzed global gene expression changes in human endothelial cells following a hyperbaric exposure comparable to a clinical treatment. Our analysis revealed an upregulation of antioxidant, cytoprotective, and immediate early genes. This increase coincided with an increased resistance to a lethal oxidative stress. Our data indicate that hyperbaric oxygen can induce protection against oxidative insults in endothelial cells and may provide an easily administered hormetic treatment to help promote healthy aging.

  17. Expressing exogenous genes in newts by transgenesis.

    PubMed

    Casco-Robles, Martin Miguel; Yamada, Shouta; Miura, Tomoya; Nakamura, Kenta; Haynes, Tracy; Maki, Nobuyasu; Del Rio-Tsonis, Katia; Tsonis, Panagiotis A; Chiba, Chikafumi

    2011-05-01

    The great regenerative abilities of newts provide the impetus for studies at the molecular level. However, efficient methods for gene regulation have historically been quite limited. Here we describe a protocol for transgenically expressing exogenous genes in the newt Cynops pyrrhogaster. This method is simple: a reaction mixture of I-SceI meganuclease and a plasmid DNA carrying a transgene cassette flanked by the enzyme recognition sites is directly injected into fertilized eggs. The protocol achieves a high efficiency of transgenesis, comparable to protocols used in other animal systems, and it provides a practical number of transgenic newts (∼20% of injected embryos) that survive beyond metamorphosis and that can be applied to regenerative studies. The entire protocol for obtaining transgenic adult newts takes 4-5 months.

  18. Gene expression signatures in lymphoid tumours.

    PubMed

    Kees, Ursula R

    2004-04-01

    Lymphoid tumours comprise the acute and chronic leukaemias, the broad spectrum of lymphomas, including Hodgkin's disease, and multiple myeloma. The subdivision of the acute leukaemias according to the proliferating type of white blood cells has had a major impact on the care of these patients. More recently, specific chromosomal translocations have been used to identify patients who may benefit from more intensive therapies. The novel high-throughput genomic technologies, such as microarrays, provide new avenues for the molecular diagnosis of the haematological malignancies. Rapid advances in genome sequencing and gene expression profiling provide unprecedented opportunities to identify specific genes involved in complex biological processes, including tumorigenesis. The features of microarray technology and the variety of experimental approaches to elucidate lymphoid malignancies are discussed. Microarray technology has the potential to lead to more accurate prognostic assessment for patients and is expected to ultimately allow the clinician to select therapies optimally suited to each patient.

  19. Retrotransposons as regulators of gene expression.

    PubMed

    Elbarbary, Reyad A; Lucas, Bronwyn A; Maquat, Lynne E

    2016-02-12

    Transposable elements (TEs) are both a boon and a bane to eukaryotic organisms, depending on where they integrate into the genome and how their sequences function once integrated. We focus on two types of TEs: long interspersed elements (LINEs) and short interspersed elements (SINEs). LINEs and SINEs are retrotransposons; that is, they transpose via an RNA intermediate. We discuss how LINEs and SINEs have expanded in eukaryotic genomes and contribute to genome evolution. An emerging body of evidence indicates that LINEs and SINEs function to regulate gene expression by affecting chromatin structure, gene transcription, pre-mRNA processing, or aspects of mRNA metabolism. We also describe how adenosine-to-inosine editing influences SINE function and how ongoing retrotransposition is countered by the body's defense mechanisms.

  20. Gene expression-targeted isoflavone therapy.

    PubMed

    Węgrzyn, Alicja

    2012-04-01

    Lysosomal storage diseases (LSD) form a group of inherited metabolic disorders caused by dysfunction of one of the lysosomal proteins, resulting in the accumulation of certain compounds. Although these disorders are among first genetic diseases for which specific treatments were proposed, there are still serious unsolved problems that require development of novel therapeutic procedures. An example is neuronopathy, which develops in most of LSD and cannot be treated efficiently by currently approved therapies. Recently, a new potential therapy, called gene expression-targeted isoflavone therapy (GET IT), has been proposed for a group of LSD named mucopolysaccharidoses (MPS), in which storage of incompletely degraded glycosaminoglycans (GAGs) results in severe symptoms of virtually all tissues and organs, including central nervous system. The idea of this therapy is to inhibit synthesis of GAGs by modulating expression of genes coding for enzymes involved in synthesis of these compounds. Such a modulation is possible by using isoflavones, particularly genistein, which interfere with a signal transduction process necessary for stimulation of expression of certain genes. Results of in vitro experiments and studies on animal models indicated a high efficiency of GET IT, including correction of behavior of affected mice. However, clinical trials, performed with soy isoflavone extracts, revealed only limited efficacy. This caused a controversy about GET IT as a potential, effective treatment of patients suffering from MPS, especially neuronopathic forms of these diseases. It this critical review, I present possible molecular mechanisms of therapeutic action of isoflavones (particularly genistein) and suggest that efficacy of GET IT might be sufficiently high when using relatively high doses of synthetic genistein (which was employed in experiments on cell cultures and mouse models) rather than low doses of soy isoflavone extracts (which were used in clinical trials). This

  1. Maternal diet programs embryonic kidney gene expression.

    PubMed

    Welham, Simon J M; Riley, Paul R; Wade, Angie; Hubank, Mike; Woolf, Adrian S

    2005-06-16

    Human epidemiological data associating birth weight with adult disease suggest that organogenesis is "programmed" by maternal diet. In rats, protein restriction in pregnancy produces offspring with fewer renal glomeruli and higher systemic blood pressures than controls. We tested the hypothesis that maternal diet alters gene expression in the metanephros, the precursor of the definitive mammalian kidney. We demonstrated that maternal low-protein diet initiated when pregnancy starts and maintained to embryonic day 13, when the metanephros consists of mesenchyme surrounding a once-branched ureteric bud, is sufficient to significantly reduce glomerular numbers in offspring by about 20%. As assessed by representational difference analyses and real-time quantitative polymerase chain reactions, low-protein diet modulated gene expression in embryonic day 13 metanephroi. In particular, levels of prox-1, the ortholog of Drosophila transcription factor prospero, and cofilin-1, a regulator of the actin cytoskeleton, were reduced. During normal metanephrogenesis, prox-1 protein was first detected in mesenchymal cells around the ureteric tree and thereafter in nascent nephron epithelia, whereas cofilin-1 immunolocalized to bud derivatives and condensing mesenchyme. Previously, we reported that low-protein diets increased mesenchymal apoptosis cells when metanephrogenesis began and thereafter reduced numbers of precursor cells. Collectively, these studies prove that the maternal diet programs the embryonic kidney, altering cell turnover and gene expression at a time when nephrons and glomeruli have yet to form. The human implication is that the maternal diet ingested between conception and 5- 6-wk gestation contributes to the variation in glomerular numbers that are known to occur between healthy and hypertensive populations.

  2. Pathway network inference from gene expression data

    PubMed Central

    2014-01-01

    Background The development of high-throughput omics technologies enabled genome-wide measurements of the activity of cellular elements and provides the analytical resources for the progress of the Systems Biology discipline. Analysis and interpretation of gene expression data has evolved from the gene to the pathway and interaction level, i.e. from the detection of differentially expressed genes, to the establishment of gene interaction networks and the identification of enriched functional categories. Still, the understanding of biological systems requires a further level of analysis that addresses the characterization of the interaction between functional modules. Results We present a novel computational methodology to study the functional interconnections among the molecular elements of a biological system. The PANA approach uses high-throughput genomics measurements and a functional annotation scheme to extract an activity profile from each functional block -or pathway- followed by machine-learning methods to infer the relationships between these functional profiles. The result is a global, interconnected network of pathways that represents the functional cross-talk within the molecular system. We have applied this approach to describe the functional transcriptional connections during the yeast cell cycle and to identify pathways that change their connectivity in a disease condition using an Alzheimer example. Conclusions PANA is a useful tool to deepen in our understanding of the functional interdependences that operate within complex biological systems. We show the approach is algorithmically consistent and the inferred network is well supported by the available functional data. The method allows the dissection of the molecular basis of the functional connections and we describe the different regulatory mechanisms that explain the network's topology obtained for the yeast cell cycle data. PMID:25032889

  3. Altered gene expression correlates with DNA structure.

    PubMed

    Kohwi, Y; Kohwi-Shigematsu, T

    1991-12-01

    We examined the participation of triplex DNA structure in gene regulation using a poly(dG)-poly(dC) sequence as a model. We show that a poly(dG)-poly(dC) sequence, which can adopt an intramolecular dG.dG.dC triplex under superhelical strain, strongly augments gene expression when placed 5' to a promoter. The activity of this sequence exhibits a striking length dependency: dG tracts of 27-30 bp augment the expression of a reporter gene to a level comparable to that observed with the polyoma enhancer in mouse LTK- cells, whereas tracts of 35 bp and longer have virtually no effect. A supercoiled plasmid containing a dG tract of 30 bp competes in vivo for a trans-acting factor as revealed by reduction in the reporter gene transcription driven by the (dG)29/promoter of the test plasmid, while dGs of 35 bp and longer in the competition plasmid failed to compete. In purified supercoiled plasmid DNA at a superhelical density of -0.05, dG tracts of 32 bp and longer form a triplex, whereas those of 30 bp and shorter remain double-stranded under a PBS solution. These results suggest that a localized superhelical strain can exist, at least transiently, in mouse LTK- cells, and before being relaxed by topoisomerases this rapidly induces dG tracts of 35 bp and longer to adopt a triplex preventing the factor from binding. Thus, these data suggest that a poly(dG)-poly(dC) sequence can function as a negative regulator by adopting an intramolecular triple helix structure in vivo.

  4. Dynamics of single-cell gene expression

    PubMed Central

    Longo, Diane; Hasty, Jeff

    2006-01-01

    Cellular behavior has traditionally been investigated by utilizing bulk-scale methods that measure average values for a population of cells. Such population-wide studies mask the behavior of individual cells and are often insufficient for characterizing biological processes in which cellular heterogeneity plays a key role. A unifying theme of many recent studies has been a focus on the development and utilization of single-cell experimental techniques that are capable of probing key biological phenomena in individual living cells. Recently, novel information about gene expression dynamics has been obtained from single-cell experiments that draw upon the unique capabilities of fluorescent reporter proteins. PMID:17130866

  5. Solid state nanopores for gene expression profiling

    NASA Astrophysics Data System (ADS)

    Mussi, V.; Fanzio, P.; Repetto, L.; Firpo, G.; Valbusa, U.; Scaruffi, P.; Stigliani, S.; Tonini, G. P.

    2009-07-01

    Recently, nanopore technology has been introduced for genome analysis. Here we show results related to the possibility of preparing "engineered solid state nanopores". The nanopores were fabricated on a suspended Si 3N 4 membrane by Focused Ion Beam (FIB) drilling and chemically functionalized in order to covalently bind oligonucleotides (probes) on their surface. Our data show the stable effect of DNA attachment on the ionic current measured through the nanopore, making it possible to conceive and develop a selective biosensor for gene expression profiling.

  6. Clinical diagnostic gene expression thyroid testing.

    PubMed

    Steward, David L; Kloos, Richard T

    2014-08-01

    Thyroid fine-needle aspiration biopsies are cytologically indeterminate in 15% to 30% of cases. When cytologically indeterminate thyroid nodules undergo diagnostic surgery, approximately three-quarters prove to be histologically benign. A negative predictive value of more than or equal to 94% for the Afirma Gene Expression Classifier (GEC) is achieved for indeterminate nodules. Most Afirma GEC benign nodules can be clinically observed, as suggested by the National Comprehensive Cancer Network Thyroid Carcinoma Guideline. More than half of the benign nodules with indeterminate cytology (Bethesda categories III/IV) can be identified as GEC benign and removed from the surgical pool to prevent unnecessary diagnostic surgery.

  7. Transcriptomics comparison between porcine adipose and bone marrow mesenchymal stem cells during in vitro osteogenic and adipogenic differentiation.

    PubMed

    Monaco, Elisa; Bionaz, Massimo; Rodriguez-Zas, Sandra; Hurley, Walter L; Wheeler, Matthew B

    2012-01-01

    Bone-marrow mesenchymal stem cells (BMSC) are considered the gold standard for use in tissue regeneration among mesenchymal stem cells (MSC). The abundance and ease of harvest make the adipose-derived stem cells (ASC) an attractive alternative to BMSC. The aim of the present study was to compare the transcriptome of ASC and BMSC, respectively isolated from subcutaneous adipose tissue and femur of 3 adult pigs, during in vitro osteogenic and adipogenic differentiation for up to four weeks. At 0, 2, 7, and 21 days of differentiation RNA was extracted for microarray analysis. A False Discovery Rate ≤0.05 for overall interactions effect and P<0.001 between comparisons were used to determine differentially expressed genes (DEG). Ingenuity Pathway Analysis and DAVID performed the functional analysis of the DEG. Functional analysis of highest expressed genes in MSC and genes more expressed in MSC vs. fully differentiated tissues indicated low immunity and high angiogenic capacity. Only 64 genes were differentially expressed between ASC and BMSC before differentiation. The functional analysis uncovered a potential larger angiogenic, osteogenic, migration, and neurogenic capacity in BMSC and myogenic capacity in ASC. Less than 200 DEG were uncovered between ASC and BMSC during differentiation. Functional analysis also revealed an overall greater lipid metabolism in ASC, while BMSC had a greater cell growth and proliferation. The time course transcriptomic comparison between differentiation types uncovered <500 DEG necessary to determine cell fate. The functional analysis indicated that osteogenesis had a larger cell proliferation and cytoskeleton organization with a crucial role of G-proteins. Adipogenesis was driven by PPAR signaling and had greater angiogenesis, lipid metabolism, migration, and tumorigenesis capacity. Overall the data indicated that the transcriptome of the two MSC is relatively similar across the conditions studied. In addition, functional analysis

  8. Clustering gene expression data using graph separators.

    PubMed

    Kaba, Bangaly; Pinet, Nicolas; Lelandais, Gaëlle; Sigayret, Alain; Berry, Anne

    2007-01-01

    Recent work has used graphs to modelize expression data from microarray experiments, in view of partitioning the genes into clusters. In this paper, we introduce the use of a decomposition by clique separators. Our aim is to improve the classical clustering methods in two ways: first we want to allow an overlap between clusters, as this seems biologically sound, and second we want to be guided by the structure of the graph to define the number of clusters. We test this approach with a well-known yeast database (Saccharomyces cerevisiae). Our results are good, as the expression profiles of the clusters we find are very coherent. Moreover, we are able to organize into another graph the clusters we find, and order them in a fashion which turns out to respect the chronological order defined by the the sporulation process.

  9. Gene expression during the life cycle of Drosophila melanogaster.

    PubMed

    Arbeitman, Michelle N; Furlong, Eileen E M; Imam, Farhad; Johnson, Eric; Null, Brian H; Baker, Bruce S; Krasnow, Mark A; Scott, Matthew P; Davis, Ronald W; White, Kevin P

    2002-09-27

    Molecular genetic studies of Drosophila melanogaster have led to profound advances in understanding the regulation of development. Here we report gene expression patterns for nearly one-third of all Drosophila genes during a complete time course of development. Mutations that eliminate eye or germline tissue were used to further analyze tissue-specific gene expression programs. These studies define major characteristics of the transcriptional programs that underlie the life cycle, compare development in males and females, and show that large-scale gene expression data collected from whole animals can be used to identify genes expressed in particular tissues and organs or genes involved in specific biological and biochemical processes.

  10. Gene Expression During the Life Cycle of Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Arbeitman, Michelle N.; Furlong, Eileen E. M.; Imam, Farhad; Johnson, Eric; Null, Brian H.; Baker, Bruce S.; Krasnow, Mark A.; Scott, Matthew P.; Davis, Ronald W.; White, Kevin P.

    2002-09-01

    Molecular genetic studies of Drosophila melanogaster have led to profound advances in understanding the regulation of development. Here we report gene expression patterns for nearly one-third of all Drosophila genes during a complete time course of development. Mutations that eliminate eye or germline tissue were used to further analyze tissue-specific gene expression programs. These studies define major characteristics of the transcriptional programs that underlie the life cycle, compare development in males and females, and show that large-scale gene expression data collected from whole animals can be used to identify genes expressed in particular tissues and organs or genes involved in specific biological and biochemical processes.

  11. An extensive network of coupling among gene expression machines.

    PubMed

    Maniatis, Tom; Reed, Robin

    2002-04-04

    Gene expression in eukaryotes requires several multi-component cellular machines. Each machine carries out a separate step in the gene expression pathway, which includes transcription, several pre-messenger RNA processing steps and the export of mature mRNA to the cytoplasm. Recent studies lead to the view that, in contrast to a simple linear assembly line, a complex and extensively coupled network has evolved to coordinate the activities of the gene expression machines. The extensive coupling is consistent with a model in which the machines are tethered to each other to form 'gene expression factories' that maximize the efficiency and specificity of each step in gene expression.

  12. A Double Selection Approach to Achieve Specific Expression of Toxin Genes for Ovarian Cancer Gene Therapy

    DTIC Science & Technology

    2006-11-01

    specific expression of toxin genes for ovarian cancer gene therapy PRINCIPAL INVESTIGATOR: David T. Curiel, M.D., Ph.D. Gene Siegal...A double selection approach to achieve specific expression of toxin genes for ovarian cancer gene therapy 5b. GRANT NUMBER W81XWH-05-1-0035...cancer. This system should result in highly efficient and specific expression of toxin encoding genes in tumor cells, enabling these cells to be

  13. Differential gene expression in anatomical compartments of the human eye

    PubMed Central

    Diehn, Jennifer J; Diehn, Maximilian; Marmor, Michael F; Brown, Patrick O

    2005-01-01

    Background The human eye is composed of multiple compartments, diverse in form, function, and embryologic origin, that work in concert to provide us with our sense of sight. We set out to systematically characterize the global gene expression patterns that specify the distinctive characteristics of the various eye compartments. Results We used DNA microarrays representing approximately 30,000 human genes to analyze gene expression in the cornea, lens, iris, ciliary body, retina, and optic nerve. The distinctive patterns of expression in each compartment could be interpreted in relation to the physiology and cellular composition of each tissue. Notably, the sets of genes selectively expressed in the retina and in the lens were particularly large and diverse. Genes with roles in immune defense, particularly complement components, were expressed at especially high levels in the anterior segment tissues. We also found consistent differences between the gene expression patterns of the macula and peripheral retina, paralleling the differences in cell layer densities between these regions. Based on the hypothesis that genes responsible for diseases that affect a particular eye compartment are likely to be selectively expressed in that compartment, we compared our gene expression signatures with genetic mapping studies to identify candidate genes for diseases affecting the cornea, lens, and retina. Conclusion Through genome-scale gene expression profiling, we were able to discover distinct gene expression 'signatures' for each eye compartment and identified candidate disease genes that can serve as a reference database for investigating the physiology and pathophysiology of the eye. PMID:16168081

  14. RNA-Seq Analysis of Abdominal Fat in Genetically Fat and Lean Chickens Highlights a Divergence in Expression of Genes Controlling Adiposity, Hemostasis, and Lipid Metabolism

    PubMed Central

    Resnyk, Christopher W.; Chen, Chuming; Huang, Hongzhan; Wu, Cathy H.; Simon, Jean; Le Bihan-Duval, Elisabeth; Duclos, Michel J.; Cogburn, Larry A.

    2015-01-01

    Genetic selection for enhanced growth rate in meat-type chickens (Gallus domesticus) is usually accompanied by excessive adiposity, which has negative impacts on both feed efficiency and carcass quality. Enhanced visceral fatness and several unique features of avian metabolism (i.e., fasting hyperglycemia and insulin insensitivity) mimic overt symptoms of obesity and related metabolic disorders in humans. Elucidation of the genetic and endocrine factors that contribute to excessive visceral fatness in chickens could also advance our understanding of human metabolic diseases. Here, RNA sequencing was used to examine differential gene expression in abdominal fat of genetically fat and lean chickens, which exhibit a 2.8-fold divergence in visceral fatness at 7 wk. Ingenuity Pathway Analysis revealed that many of 1687 differentially expressed genes are associated with hemostasis, endocrine function and metabolic syndrome in mammals. Among the highest expressed genes in abdominal fat, across both genotypes, were 25 differentially expressed genes associated with de novo synthesis and metabolism of lipids. Over-expression of numerous adipogenic and lipogenic genes in the FL chickens suggests that in situ lipogenesis in chickens could make a more substantial contribution to expansion of visceral fat mass than previously recognized. Distinguishing features of the abdominal fat transcriptome in lean chickens were high abundance of multiple hemostatic and vasoactive factors, transporters, and ectopic expression of several hormones/receptors, which could control local vasomotor tone and proteolytic processing of adipokines, hemostatic factors and novel endocrine factors. Over-expression of several thrombogenic genes in abdominal fat of lean chickens is quite opposite to the pro-thrombotic state found in obese humans. Clearly, divergent genetic selection for an extreme (2.5–2.8-fold) difference in visceral fatness provokes a number of novel regulatory responses that govern

  15. RNA-Seq Analysis of Abdominal Fat in Genetically Fat and Lean Chickens Highlights a Divergence in Expression of Genes Controlling Adiposity, Hemostasis, and Lipid Metabolism.

    PubMed

    Resnyk, Christopher W; Chen, Chuming; Huang, Hongzhan; Wu, Cathy H; Simon, Jean; Le Bihan-Duval, Elisabeth; Duclos, Michel J; Cogburn, Larry A

    2015-01-01

    Genetic selection for enhanced growth rate in meat-type chickens (Gallus domesticus) is usually accompanied by excessive adiposity, which has negative impacts on both feed efficiency and carcass quality. Enhanced visceral fatness and several unique features of avian metabolism (i.e., fasting hyperglycemia and insulin insensitivity) mimic overt symptoms of obesity and related metabolic disorders in humans. Elucidation of the genetic and endocrine factors that contribute to excessive visceral fatness in chickens could also advance our understanding of human metabolic diseases. Here, RNA sequencing was used to examine differential gene expression in abdominal fat of genetically fat and lean chickens, which exhibit a 2.8-fold divergence in visceral fatness at 7 wk. Ingenuity Pathway Analysis revealed that many of 1687 differentially expressed genes are associated with hemostasis, endocrine function and metabolic syndrome in mammals. Among the highest expressed genes in abdominal fat, across both genotypes, were 25 differentially expressed genes associated with de novo synthesis and metabolism of lipids. Over-expression of numerous adipogenic and lipogenic genes in the FL chickens suggests that in situ lipogenesis in chickens could make a more substantial contribution to expansion of visceral fat mass than previously recognized. Distinguishing features of the abdominal fat transcriptome in lean chickens were high abundance of multiple hemostatic and vasoactive factors, transporters, and ectopic expression of several hormones/receptors, which could control local vasomotor tone and proteolytic processing of adipokines, hemostatic factors and novel endocrine factors. Over-expression of several thrombogenic genes in abdominal fat of lean chickens is quite opposite to the pro-thrombotic state found in obese humans. Clearly, divergent genetic selection for an extreme (2.5-2.8-fold) difference in visceral fatness provokes a number of novel regulatory responses that govern

  16. Ellagic acid suppresses lipid accumulation by suppressing early adipogenic events and cell cycle arrest.

    PubMed

    Woo, Mi-Seon; Choi, Hyeon-Son; Seo, Min-Jung; Jeon, Hui-Jeon; Lee, Boo-Yong

    2015-03-01

    Ellagic acid (EA) is a natural polyphenol found in various fruits and vegetables. In this study, we examined the inhibitory effect of EA on fat accumulation in 3T3-L1 cells during adipogenesis. Our data showed that EA reduced fat accumulation by down-regulating adipogenic markers such as peroxisome proliferator activated receptor γ (PPARγ) and the CCAAT/enhancer binding protein α (C/EBPα) at the mRNA and protein levels in a dose-dependent manner. We found that the decrease in adipogenic markers resulted from reduced expression of some early adipogenic transcription factors such as KLF4, KLF5, Krox20, and C/EBPβ within 24 h. Also, these inhibitions were correlated with down-regulation of TG synthetic enzymes, causing inhibition of triglyceride (TG) levels in 3T3-L1 cells investigated by ORO staining and in zebrafish investigated by TG assay. Additionally, the cell cycle analysis showed that EA inhibited cell cycle progression by arresting cells at the G0/G1 phase.

  17. Identification of human HK genes and gene expression regulation study in cancer from transcriptomics data analysis.

    PubMed

    Chen, Meili; Xiao, Jingfa; Zhang, Zhang; Liu, Jingxing; Wu, Jiayan; Yu, Jun

    2013-01-01

    The regulation of gene expression is essential for eukaryotes, as it drives the processes of cellular differentiation and morphogenesis, leading to the creation of different cell types in multicellular organisms. RNA-Sequencing (RNA-Seq) provides researchers with a powerful toolbox for characterization and quantification of transcriptome. Many different human tissue/cell transcriptome datasets coming from RNA-Seq technology are available on public data resource. The fundamental issue here is how to develop an effective analysis method to estimate expression pattern similarities between different tumor tissues and their corresponding normal tissues. We define the gene expression pattern from three directions: 1) expression breadth, which reflects gene expression on/off status, and mainly concerns ubiquitously expressed genes; 2) low/high or constant/variable expression genes, based on gene expression level and variation; and 3) the regulation of gene expression at the gene structure level. The cluster analysis indicates that gene expression pattern is higher related to physiological condition rather than tissue spatial distance. Two sets of human housekeeping (HK) genes are defined according to cell/tissue types, respectively. To characterize the gene expression pattern in gene expression level and variation, we firstly apply improved K-means algorithm and a gene expression variance model. We find that cancer-associated HK genes (a HK gene is specific in cancer group, while not in normal group) are expressed higher and more variable in cancer condition than in normal condition. Cancer-associated HK genes prefer to AT-rich genes, and they are enriched in cell cycle regulation related functions and constitute some cancer signatures. The expression of large genes is also avoided in cancer group. These studies will help us understand which cell type-specific patterns of gene expression differ among different cell types, and particularly for cancer.

  18. Prostaglandin E2 impairs osteogenic and facilitates adipogenic differentiation of human bone marrow stromal cells.

    PubMed

    Noack, Carolin; Hempel, Ute; Preissler, Carolin; Dieter, Peter

    2015-03-01

    The synthetic glucocorticoid dexamethasone (dex) is a mandatory additive to induce osteogenic differentiation of bone marrow stromal cell (BMSC) in vitro; however it is also known to promote the pathogenesis of osteoporotic bone disease in vivo. In this study human (h)BMSC were cultured in osteogenic medium containing β-glycerophosphate and ascorbate (OM) and in OM containing dex (OM/D). It was seen that dex induced in human (h)BMSC both, osteogenic and adipogenic differentiation markers. Dex reveals its anti-inflammatory effect by reducing endogenous prostaglandin E2 (PGE2) formation and by suppressing the inducible enzymes cyclooxygenase 2 and microsomal PGE2 synthase 1. It was further seen that dex enhanced the expression of prostaglandin receptors, mainly EP2 and EP4 receptor subtypes. We thus hypothesized that dex enforces the susceptibility of hBMSC to respond to exogenous PGE2. Permanent exposure of hBMSC which were cultured in OM/D to PGE2, decreased osteogenic and increased adipogenic differentiation markers. The effects of PGE2 were preferentially mediated by receptor subtypes EP2 and EP4; EP1 was partially involved in pro-adipogenic effects, and EP3 was partially involved in anti-osteogenic effects. These results suggest that dex suppresses the formation of endogenous PGE2 but also enables hBMSC to respond to PGE2 due to the induction of PGE2 receptors EP2 and EP4. PGE2 then shifts in hBMSC the balance from osteogenic to adipogenic differentiation.

  19. Phosphoprotein phosphatase 1CB (PPP1CB), a novel adipogenic activator, promotes 3T3-L1 adipogenesis.

    PubMed

    Cho, Young-Lai; Min, Jeong-Ki; Roh, Kyung Min; Kim, Won Kon; Han, Baek Soo; Bae, Kwang-Hee; Lee, Sang Chul; Chung, Sang J; Kang, Hyo Jin

    2015-11-13

    Understanding the molecular networks that regulate adipogenesis is crucial for gaining insight into obesity and identifying medicinal targets thereof is necessary for pharmacological interventions. However, the identity and molecular actions of activators that promote the early development of adipocytes are still largely unknown. Here, we demonstrate a novel role for phosphoprotein phosphatase 1CB (PPP1CB) as a potent adipogenic activator that promotes adipocyte differentiation. PPP1CB expression increased in vitro during the early phase of 3T3-L1 adipogenesis and in the murine model of high-fat diet-induced obesity. Depletion of PPP1CB dramatically suppressed the differentiation of 3T3-L1 cells into mature adipocytes, with a concomitant change in adipocyte marker genes and significantly inhibited clonal expansion. We also showed that knockdown of PPP1CB caused a significant decrease in C/EBPδ expression, which in turn resulted in attenuation of PPARγ, C/EBPα, adiponectin, and aP2. In addition, we elucidated the functional significance of PPP1CB by linking p38 activation to C/EBPδ expression in early adipogenesis. Overall, our findings demonstrate a novel function of PPP1CB in promoting adipogenesis and suggest that PPP1CB may be a promising therapeutic target for treatment of obesity and obesity-related diseases.

  20. Gut microbiota, host gene expression, and aging.

    PubMed

    Patrignani, Paola; Tacconelli, Stefania; Bruno, Annalisa

    2014-01-01

    Novel concepts of disease susceptibility and development suggest an important role of gastrointestinal microbiota and microbial pathogens. They can contribute to physiological systems and disease processes, even outside of the gastrointestinal tract. There is increasing evidence that genetics of the host influence and interact with gut microbiota. Moreover, aging-associated oxidative stress may cause morphologic alterations of bacterial cells, thus influencing the aggressive potential and virulence markers of an anaerobic bacterium and finally the type of interaction with the host. At the same time, microbiota may influence host gene expression and it is becoming apparent that it may occur through the regulation of microRNAs. They are short single-stranded noncoding RNAs that regulate posttranscriptional gene expression by affecting mRNA stability and/or translational repression of their target mRNAs. The introduction of -omics approaches (such as metagenomics, metaproteomics, and metatranscriptomics) in microbiota research will certainly advance our knowledge of this area. This will lead to greatly deepen our understanding of the molecular targets in the homeostatic interaction between the gut microbiota and the host and, thereby, promises to reveal new ways to treat diseases and maintain health.

  1. Dose-dependent effect of estrogen suppresses the osteo-adipogenic transdifferentiation of osteoblasts via canonical Wnt signaling pathway.

    PubMed

    Gao, Bo; Huang, Qiang; Lin, Yan-Shui; Wei, Bo-Yuan; Guo, Yun-Shan; Sun, Zhen; Wang, Long; Fan, Jing; Zhang, Hong-Yang; Han, Yue-Hu; Li, Xiao-Jie; Shi, Jun; Liu, Jian; Yang, Liu; Luo, Zhuo-Jing

    2014-01-01

    Fat infiltration within marrow cavity is one of multitudinous features of estrogen deficiency, which leads to a decline in bone formation functionality. The origin of this fat is unclear, but one possibility is that it is derived from osteoblasts, which transdifferentiate into adipocytes that produce bone marrow fat. We examined the dose-dependent effect of 17β-estradiol on the ability of MC3T3-E1 cells and murine bone marrow-derived mesenchymal stem cell (BMMSC)-derived osteoblasts to undergo osteo-adipogenic transdifferentiation. We found that 17β-estradiol significantly increased alkaline phosphatase activity (P<0.05); calcium deposition; and Alp, Col1a1, Runx2, and Ocn expression levels dose-dependently. By contrast, 17β-estradiol significantly decreased the number and size of lipid droplets, and Fabp4 and PPARγ expression levels during osteo-adipogenic transdifferentiation (P<0.05). Moreover, the expression levels of brown adipocyte markers (Myf5, Elovl3, and Cidea) and undifferentiated adipocyte markers (Dlk1, Gata2, and Wnt10b) were also affected by 17β-estradiol during osteo-adipogenic transdifferentiation. Western blotting and immunostaining further showed that canonical Wnt signaling can be activated by estrogen to exert its inhibitory effect of osteo-adipogenesis. This is the first study to demonstrate the dose-dependent effect of 17β-estradiol on the osteo-adipogenic transdifferentiation of MC3T3-E1 cells and BMMSCs likely via canonical Wnt signaling. In summary, our results indicate that osteo-adipogenic transdifferentiation modulated by canonical Wnt signaling pathway in bone metabolism may be a new explanation for the gradually increased bone marrow fat in estrogen-inefficient condition.

  2. Posttranscriptional Control of Gene Expression in Yeast

    PubMed Central

    McCarthy, John E. G.

    1998-01-01

    Studies of the budding yeast Saccharomyces cerevisiae have greatly advanced our understanding of the posttranscriptional steps of eukaryotic gene expression. Given the wide range of experimental tools applicable to S. cerevisiae and the recent determination of its complete genomic sequence, many of the key challenges of the posttranscriptional control field can be tackled particularly effectively by using this organism. This article reviews the current knowledge of the cellular components and mechanisms related to translation and mRNA decay, with the emphasis on the molecular basis for rate control and gene regulation. Recent progress in characterizing translation factors and their protein-protein and RNA-protein interactions has been rapid. Against the background of a growing body of structural information, the review discusses the thermodynamic and kinetic principles that govern the translation process. As in prokaryotic systems, translational initiation is a key point of control. Modulation of the activities of translational initiation factors imposes global regulation in the cell, while structural features of particular 5′ untranslated regions, such as upstream open reading frames and effector binding sites, allow for gene-specific regulation. Recent data have revealed many new details of the molecular mechanisms involved while providing insight into the functional overlaps and molecular networking that are apparently a key feature of evolving cellular systems. An overall picture of the mechanisms governing mRNA decay has only very recently begun to develop. The latest work has revealed new information about the mRNA decay pathways, the components of the mRNA degradation machinery, and the way in which these might relate to the translation apparatus. Overall, major challenges still to be addressed include the task of relating principles of posttranscriptional control to cellular compartmentalization and polysome structure and the role of molecular channelling

  3. Social regulation of cortisol receptor gene expression

    PubMed Central

    Korzan, Wayne J.; Grone, Brian P.; Fernald, Russell D.

    2014-01-01

    In many social species, individuals influence the reproductive capacity of conspecifics. In a well-studied African cichlid fish species, Astatotilapia burtoni, males are either dominant (D) and reproductively competent or non-dominant (ND) and reproductively suppressed as evidenced by reduced gonadotropin releasing hormone (GnRH1) release, regressed gonads, lower levels of androgens and elevated levels of cortisol. Here, we asked whether androgen and cortisol levels might regulate this reproductive suppression. Astatotilapia burtoni has four glucocorticoid receptors (GR1a, GR1b, GR2 and MR), encoded by three genes, and two androgen receptors (ARα and ARβ), encoded by two genes. We previously showed that ARα and ARβ are expressed in GnRH1 neurons in the preoptic area (POA), which regulates reproduction, and that the mRNA levels of these receptors are regulated by social status. Here, we show that GR1, GR2 and MR mRNAs are also expressed in GnRH1 neurons in the POA, revealing potential mechanisms for both androgens and cortisol to influence reproductive capacity. We measured AR, MR and GR mRNA expression levels in a microdissected region of the POA containing GnRH1 neurons, comparing D and ND males. Using quantitative PCR (qPCR), we found D males had higher mRNA levels of ARα, MR, total GR1a and GR2 in the POA compared with ND males. In contrast, ND males had significantly higher levels of GR1b mRNA, a receptor subtype with a reduced transcriptional response to cortisol. Through this novel regulation of receptor type, neurons in the POA of an ND male will be less affected by the higher levels of cortisol typical of low status, suggesting GR receptor type change as a potential adaptive mechanism to mediate high cortisol levels during social suppression. PMID:25013108

  4. Expressing genes do not forget their LINEs: transposable elements and gene expression.

    PubMed

    Kines, Kristine J; Belancio, Victoria P

    2012-01-01

    Historically the accumulated mass of mammalian transposable elements (TEs), particularly those located within gene boundaries, was viewed as a genetic burden potentially detrimental to the genomic landscape. This notion has been strengthened by the discovery that transposable sequences can alter the architecture of the transcriptome, not only through insertion, but also long after the integration process is completed. Insertions previously considered harmless are now known to impact the expression of host genes via modification of the transcript quality or quantity, transcriptional interference, or by the control of pathways that affect the mRNA life-cycle. Conversely, several examples of the evolutionary advantageous impact of TEs on the host gene structure that diversified the cellular transcriptome are reported. TE-induced changes in gene expression can be tissue- or disease-specific, raising the possibility that the impact of TE sequences may vary during development, among normal cell types, and between normal and disease-affected tissues. The understanding of the rules and abundance of TE-interference with gene expression is in its infancy, and its contribution to human disease and/or evolution remains largely unexplored.

  5. Isolation, Characterization, Cryopreservation of Human Amniotic Stem Cells and Differentiation to Osteogenic and Adipogenic Cells

    PubMed Central

    Gholizadeh-Ghaleh Aziz, Shiva; Pashaei-Asl, Fatima; Fardyazar, Zahra; Pashaiasl, Maryam

    2016-01-01

    Human stem cells and progenitor cells can be used to treat cancer and replace dysfunctional cells within a tissue or organ. The objective of this study was to identify the appropriate cells type in regenerative medicine and targeted therapy. As an alternative to embryonic and bone marrow stem cells, we examined human amniotic fluid stem cells (hAFSCs), one of the potential source of multipotent stem cells isolated from both cell pellet (using single-stage method), and supernatant of human amniotic fluid. Source of isolation and unique property of the cells emphasize that these cells are one of the promising new tools in therapeutic field. Double sources for isolation and availability of the left over samples in diagnostic laboratory at the same time have less legal and ethical concerns compared with embryonic stem cell studies. Cells were isolated, cultured for 18th passage for 6 months and characterized using qPCR and flow cytometry. Cells showed good proliferative ability in culture condition. The cells successfully differentiated into the adipogenic and osteogenic lineages. Based on these findings, amniotic fluid can be considered as an appropriate and convenient source of human amniotic fluid stem cells. These cells provide potential tools for therapeutic applications in the field of regenerative medicine. To get a better understanding of crosstalk between Oct4/NANOG with osteogenesis and adipogenesis, we used network analysis based on Common Targets algorithm and Common Regulators algorithm as well as subnetwork discovery based on gene set enrichment. Network analysis highlighted the possible role of MIR 302A and MIR let-7g. We demonstrated the high expression of MIR 302A and low expression of MIR let7g in hAFSCs by qPCR. PMID:27434028

  6. [Mechanism on differential gene expression and heterosis formation].

    PubMed

    Xu, Chen-Lu; Sun, Xiao-Mei; Zhang, Shou-Gong

    2013-06-01

    Despite the rediscovery of heterosis about a century ago and the suggestion of various genetic models to explain this phenomenon, little consensus has yet been reached about the genetic basis of heterosis. Following the genome organization variation and gene effects, an understanding of gene differential expression in hybrids and its parents provides a new opportunity to speculate on mechanisms that might lead to heterosis. Investigation on allele-specific gene expression in hybrid and gene differential expression between hybrids and its parents might contribute to improve our understanding of the molecular basis of heterosis and eventually guide breeding practices. In this review, we discussed the recent researches on allelic-specific expression in hybrid which was frequently observed in recent studies and analyzed its regulatory mechanism. All possible modes of gene action, including additivity, high- and low-parent dominance, underdominance, and over-dominance, were observed when investigating gene differential expression between hybrids and its parents. Data from transcriptomic studies screened several heterosis-associated genes and highlighted the importance of certain key biochemical pathways that may prove to be quintessential for the manifestation of heterosis. So far, no uniform global expression pat-terns were observed in these gene expression studies. Most heterosis-associated gene expression analyses have not revealed a predominant functional category to which differentially expressed genes belong. However, these gene expression profiling studies represent a first step towards the definition of the complex gene expression networks that might be relevant in the context of heterosis. New technique on gene expression profile and advancements in bioinformatics will facilitate our understanding of the genetic basis of heterosis at the gene-expression level.

  7. Correspondence between resting state activity and brain gene expression

    PubMed Central

    Wang, Guang-Zhong; Belgard, T. Grant; Mao, Deng; Chen, Leslie; Berto, Stefano; Preuss, Todd M.; Lu, Hanzhang; Geschwind, Daniel H.; Konopka, Genevieve

    2015-01-01

    SUMMARY The relationship between functional brain activity and gene expression has not been fully explored in the human brain. Here, we identify significant correlations between gene expression in the brain and functional activity by comparing fractional Amplitude of Low Frequency Fluctuations (fALFF) from two independent human fMRI resting state datasets to regional cortical gene expression from a newly generated RNA-seq dataset and two additional gene expression datasets to obtain robust and reproducible correlations. We find significantly more genes correlated with fALFF than expected by chance, and identify specific genes correlated with the imaging signals in multiple expression datasets in the default mode network. Together, these data support a population-level relationship between regional steady state brain gene expression and resting state brain activity. PMID:26590343

  8. Homologous versus heterologous gene expression in the yeast, Saccharomyces cerevisiae.

    PubMed Central

    Chen, C Y; Oppermann, H; Hitzeman, R A

    1984-01-01

    DNA sequences normally flanking the highly expressed yeast 3-phosphoglycerate kinase (PGK) gene have been placed adjacent to heterologous mammalian genes on high copy number plasmid vectors and used for expression experiments in yeast. For many genes thus far expressed with this system, expression has been 15-50 times lower than the expression of the natural homologous PGK gene on the same plasmid. We have extensively investigated this dramatic difference and have found that in most cases it is directly proportional to the steady-state levels of mRNAs. We demonstrate this phenomenon and suggest possible causes for this effect on mRNA levels. Images PMID:6096814

  9. Sequence determinants of prokaryotic gene expression level under heat stress.

    PubMed

    Xiong, Heng; Yang, Yi; Hu, Xiao-Pan; He, Yi-Ming; Ma, Bin-Guang

    2014-11-01

    Prokaryotic gene expression is environment-dependent and temperature plays an important role in shaping the gene expression profile. Revealing the regulation mechanisms of gene expression pertaining to temperature has attracted tremendous efforts in recent years particularly owning to the yielding of transcriptome and proteome data by high-throughput techniques. However, most of the previous works concentrated on the characterization of the gene expression profile of individual organism and little effort has been made to disclose the commonality among organisms, especially for the gene sequence features. In this report, we collected the transcriptome and proteome data measured under heat stress condition from recently published literature and studied the sequence determinants for the expression level of heat-responsive genes on multiple layers. Our results showed that there indeed exist commonness and consistent patterns of the sequence features among organisms for the differentially expressed genes under heat stress condition. Some features are attributed to the requirement of thermostability while some are dominated by gene function. The revealed sequence determinants of bacterial gene expression level under heat stress complement the knowledge about the regulation factors of prokaryotic gene expression responding to the change of environmental conditions. Furthermore, comparisons to thermophilic adaption have been performed to reveal the similarity and dissimilarity of the sequence determinants for the response to heat stress and for the adaption to high habitat temperature, which elucidates the complex landscape of gene expression related to the same physical factor of temperature.

  10. Gene Expression patterns in cryogenically stored Arabidopsis thaliana shoot tips

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genes expressed in response to cryostress in plant shoot tips are not known. In this project we compared the gene expression patterns in untreated, cryoprotectant-treated, and recovering shoot tips using differential display methods. This project identified two genes that appeared to be differ...

  11. The anti-adipogenic effect of macrophage-conditioned medium requires the IKKβ/NF-κB pathway.

    PubMed

    Yarmo, M N; Gagnon, A; Sorisky, A

    2010-11-01

    Macrophage-secreted factors inhibit adipogenesis, but the underlying mechanism is not well understood. Our objective was to determine if anti-adipogenic signaling pathways in human preadipocytes are activated by macrophage-conditioned medium (MacCM). Human abdominal subcutaneous stromal preadipocytes were treated with adipogenic inducers in either standard medium or medium conditioned by human THP-1 macrophages. THP-1-MacCM increased inhibitor of κB kinase β (IKKβ) phosphorylation, inhibitor of NF-κB α (IκBα) degradation, and NF-κB activity in human preadipocytes in a time-dependent manner. Concomitant treatment of human abdominal subcutaneous preadipocytes with sc-514, a selective inhibitor of IKKβ, prevented the inhibitory effect of THP-1-MacCM on lipid accumulation and expression of adipogenic markers. Our data indicate that activation of the preadipocyte IKKβ/NF-κB pathway is required for the anti-adipogenic effect of THP-1-MacCM on human adipogenesis.

  12. Gene expression profiling in male genital lichen sclerosus

    PubMed Central

    Edmonds, Emma; Barton, Geraint; Buisson, Sandrine; Francis, Nick; Gotch, Frances; Game, Laurence; Haddad, Munther; Dinneen, Michael; Bunker, Chris

    2011-01-01

    Male genital lichen sclerosus (MGLSc) has a bimodal distribution in boys and men. It is associated with squamous cell carcinoma (SCC). The pathogenesis of MGLSc is unknown. HPV and autoimmune mechanisms have been mooted. Anti extracellular matrix protein (ECM)1 antibodies have been identified in women with GLSc. The gene expression pattern of LSc is unknown. Using DNA microarrays we studied differences in gene expression in healthy and diseased prepuces obtained at circumcision in adult males with MGLSc (n = 4), paediatric LSc (n = 2) and normal healthy paediatric foreskin (n = 4). In adult samples 51 genes with significantly increased expression and 87 genes with significantly reduced expression were identified; paediatric samples revealed 190 genes with significantly increased expression and 148 genes with significantly reduced expression. Concordance of expression profiles between adult and paediatric samples indicates the same disease process. Functional analysis revealed increased expression in the adult and child MGSLc samples in the immune response/cellular defence gene ontology (GO) category and reduced expression in other categories including genes related to squamous cancer. No specific HPV, autoimmune or squamous carcinogenesis-associated gene expression patterns were found. ECM1 and CABLES1 expression were significantly reduced in paediatric and adult samples respectively. PMID:21718371

  13. Evolution of Gene Expression Balance Among Homeologs of Natural Polyploids

    PubMed Central

    Mutti, Jasdeep S.; Bhullar, Ramanjot K.; Gill, Kulvinder S.

    2017-01-01

    Polyploidy is a major evolutionary process in eukaryotes, yet the expression balance of homeologs in natural polyploids is largely unknown. To study this expression balance, the expression patterns of 2180 structurally well-characterized genes of wheat were studied, of which 813 had the expected three copies and 375 had less than three. Copy numbers of the remaining 992 ranged from 4 to 14, including homeologs, orthologs, and paralogs. Of the genes with three structural copies corresponding to homeologs, 55% expressed from all three, 38% from two, and the remaining 7% expressed from only one of the three copies. Homeologs of 76–87% of the genes showed differential expression patterns in different tissues, thus have evolved different gene expression controls, possibly resulting in novel functions. Homeologs of 55% of the genes showed tissue-specific expression, with the largest percentage (14%) in the anthers and the smallest (7%) in the pistils. The highest number (1.72/3) of homeologs/gene expression was in the roots and the lowest (1.03/3) in the anthers. As the expression of homeologs changed with changes in structural copy number, about 30% of the genes showed dosage dependence. Chromosomal location also impacted expression pattern as a significantly higher proportion of genes in the proximal regions showed expression from all three copies compared to that present in the distal regions. PMID:28193629

  14. Evaluating Fumonisin Gene Expression in Fusarium verticillioides.

    PubMed

    Scala, Valeria; Visentin, Ivan; Cardinale, Francesca

    2017-01-01

    Transcript levels of key genes in a biosynthetic pathway are often taken as a proxy for metabolite production. This is the case of FUM1, encoding the first dedicated enzyme in the metabolic pathway leading to the production of the mycotoxins Fumonisins by fungal species belonging to the genus Fusarium. FUM1 expression can be quantified by different methods; here, we detail a protocol based on quantitative reverse transcriptase polymerase chain reaction (RT-qPCR), by which relative or absolute transcript abundance can be estimated in Fusaria grown in vitro or in planta. As very seldom commercial kits for RNA extraction and cDNA synthesis are optimized for fungal samples, we developed a protocol tailored for these organisms, which stands alone but can be also easily integrated with specific reagents and kits commercially available.

  15. Monoallelic expression of the human FOXP2 speech gene

    PubMed Central

    Adegbola, Abidemi A.; Cox, Gerald F.; Bradshaw, Elizabeth M.; Hafler, David A.; Gimelbrant, Alexander; Chess, Andrew

    2015-01-01

    The recent descriptions of widespread random monoallelic expression (RMAE) of genes distributed throughout the autosomal genome indicate that there are more genes subject to RMAE on autosomes than the number of genes on the X chromosome where X-inactivation dictates RMAE of X-linked genes. Several of the autosomal genes that undergo RMAE have independently been implicated in human Mendelian disorders. Thus, parsing the relationship between allele-specific expression of these genes and disease is of interest. Mutations in the human forkhead box P2 gene, FOXP2, cause developmental verbal dyspraxia with profound speech and language deficits. Here, we show that the human FOXP2 gene undergoes RMAE. Studying an individual with developmental verbal dyspraxia, we identify a deletion 3 Mb away from the FOXP2 gene, which impacts FOXP2 gene expression in cis. Together these data suggest the intriguing possibility that RMAE impacts the haploinsufficiency phenotypes observed for FOXP2 mutations. PMID:25422445

  16. Monoallelic expression of the human FOXP2 speech gene.

    PubMed

    Adegbola, Abidemi A; Cox, Gerald F; Bradshaw, Elizabeth M; Hafler, David A; Gimelbrant, Alexander; Chess, Andrew

    2015-06-02

    The recent descriptions of widespread random monoallelic expression (RMAE) of genes distributed throughout the autosomal genome indicate that there are more genes subject to RMAE on autosomes than the number of genes on the X chromosome where X-inactivation dictates RMAE of X-linked genes. Several of the autosomal genes that undergo RMAE have independently been implicated in human Mendelian disorders. Thus, parsing the relationship between allele-specific expression of these genes and disease is of interest. Mutations in the human forkhead box P2 gene, FOXP2, cause developmental verbal dyspraxia with profound speech and language deficits. Here, we show that the human FOXP2 gene undergoes RMAE. Studying an individual with developmental verbal dyspraxia, we identify a deletion 3 Mb away from the FOXP2 gene, which impacts FOXP2 gene expression in cis. Together these data suggest the intriguing possibility that RMAE impacts the haploinsufficiency phenotypes observed for FOXP2 mutations.

  17. Phenotypic plasticity and divergence in gene expression.

    PubMed

    Healy, Timothy M; Schulte, Patricia M

    2015-07-01

    The extent to which phenotypic plasticity, or the ability of a single genotype to produce different phenotypes in different environments, impedes or promotes genetic divergence has been a matter of debate within evolutionary biology for many decades (see, for example, Ghalambor et al. ; Pfennig et al. ). Similarly, the role of evolution in shaping phenotypic plasticity remains poorly understood (Pigliucci ). In this issue of Molecular Ecology, Dayan et al. () provide empirical data relevant to these questions by assessing the extent of plasticity and divergence in the expression levels of 2272 genes in muscle tissue from killifish (genus Fundulus) exposed to different temperatures. F. heteroclitus (Fig. A) and F. grandis are minnows that inhabit estuarine marshes (Fig. B) along the coasts of the Atlantic Ocean and Gulf of Mexico in North America. These habitats undergo large variations in temperature both daily and seasonally, and these fish are known to demonstrate substantial phenotypic plasticity in response to temperature change (e.g. Fangue et al. ). Furthermore, the range of F. heteroclitus spans a large latitudinal gradient of temperatures, such that northern populations experience temperatures that are on average ~10°C colder than do southern populations (Schulte ). By comparing gene expression patterns between populations of these fish from different thermal habitats held in the laboratory at three different temperatures, Dayan et al. () address two important questions regarding the interacting effects of plasticity and evolution: (i) How does phenotypic plasticity affect adaptive divergence? and (ii) How does adaptive divergence affect plasticity?

  18. Fibrin glue is a candidate scaffold for long-term therapeutic protein expression in spontaneously differentiated adipocytes in vitro

    SciTech Connect

    Aoyagi, Yasuyuki; Kuroda, Masayuki; Asada, Sakiyo; Tanaka, Shigeaki; Konno, Shunichi; Tanio, Masami; Aso, Masayuki; Okamoto, Yoshitaka; Nakayama, Toshinori; Saito, Yasushi; Bujo, Hideaki

    2012-01-01

    Adipose tissue is expected to provide a source of cells for protein replacement therapies via auto-transplantation. However, the conditioning of the environment surrounding the transplanted adipocytes for their long-term survival and protein secretion properties has not been established. We have recently developed a preparation procedure for preadipocytes, ceiling culture-derived proliferative adipocytes (ccdPAs), as a therapeutic gene vehicle suitable for stable gene product secretion. We herein report the results of our evaluation of using fibrin glue as a scaffold for the transplanted ccdPAs for the expression of a transduced gene in a three-dimensional culture system. The ccdPAs secreted the functional protein translated from an exogenously transduced gene, as well as physiological adipocyte proteins, and the long viability of ccdPAs (up to 84 days) was dependent on the fibrinogen concentrations. The ccdPAs spontaneously accumulated lipid droplets, and their expression levels of the transduced exogenous gene with its product were maintained for at least 56 days. The fibrinogen concentration modified the adipogenic differentiation of ccdPAs and their exogenous gene expression levels, and the levels of exogenously transduced gene expression at the different fibrinogen concentrations were dependent on the extent of adipogenic differentiation in the gel. These results indicate that fibrin glue helps to maintain the high adipogenic potential of cultured adipocytes after passaging in a 3D culture system, and suggests that once they are successfully implanted at the transplantation site, the cells exhibit increased expression of the transduced gene with adipogenic differentiation.

  19. Modulation of R-gene expression across environments

    PubMed Central

    MacQueen, Alice; Bergelson, Joy

    2016-01-01

    Some environments are more conducive to pathogen growth than others, and, as a consequence, plants might be expected to invest more in resistance when pathogen growth is favored. Resistance (R-) genes in Arabidopsis thaliana have unusually extensive variation in basal expression when comparing the same R-gene among accessions collected from different environments. R-gene expression variation was characterized to explore whether R-gene expression is up-regulated in environments favoring pathogen proliferation and down-regulated when risks of infection are low; down-regulation would follow if costs of R-gene expression negatively impact plant fitness in the absence of disease. Quantitative reverse transcription–PCR was used to quantify the expression of 13 R-gene loci in plants grown in eight environmental conditions for each of 12 A. thaliana accessions, and large effects of the environment on R-gene expression were found. Surprisingly, almost every change in the environment—be it a change in biotic or abiotic conditions—led to an increase in R-gene expression, a response that was distinct from the average transcriptome response and from that of other stress response genes. These changes in expression are functional in that environmental change prior to infection affected levels of specific disease resistance to isolates of Pseudomonas syringae. In addition, there are strong latitudinal clines in basal R-gene expression and clines in R-gene expression plasticity correlated with drought and high temperatures. These results suggest that variation in R-gene expression across environments may be shaped by natural selection to reduce fitness costs of R-gene expression in permissive or predictable environments. PMID:26983577

  20. Modulation of R-gene expression across environments.

    PubMed

    MacQueen, Alice; Bergelson, Joy

    2016-03-01

    Some environments are more conducive to pathogen growth than others, and, as a consequence, plants might be expected to invest more in resistance when pathogen growth is favored. Resistance (R-) genes in Arabidopsis thaliana have unusually extensive variation in basal expression when comparing the same R-gene among accessions collected from different environments. R-gene expression variation was characterized to explore whether R-gene expression is up-regulated in environments favoring pathogen proliferation and down-regulated when risks of infection are low; down-regulation would follow if costs of R-gene expression negatively impact plant fitness in the absence of disease. Quantitative reverse transcription-PCR was used to quantify the expression of 13 R-gene loci in plants grown in eight environmental conditions for each of 12 A. thaliana accessions, and large effects of the environment on R-gene expression were found. Surprisingly, almost every change in the environment--be it a change in biotic or abiotic conditions--led to an increase in R-gene expression, a response that was distinct from the average transcriptome response and from that of other stress response genes. These changes in expression are functional in that environmental change prior to infection affected levels of specific disease resistance to isolates of Pseudomonas syringae. In addition, there are strong latitudinal clines in basal R-gene expression and clines in R-gene expression plasticity correlated with drought and high temperatures. These results suggest th